
Yao, Yuan and Logan, Brian and Thangarajah, John 
(2016) Robust execution of BDI agent programs by 
exploiting synergies between intentions. In: 30th AAAI 
conference on Artificial Intelligence (AAAI-16), 12–17 
Feb 2016, Phoenix, USA. (In Press) 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/30967/11/aaai16-mcts.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Robust Execution of BDI Agent Programs by Exploiting Synergies Between
Intentions

Yuan Yao
School of Computer Science

University of Nottingham
Nottingham, UK

yvy@cs.nott.ac.uk

Brian Logan
School of Computer Science

University of Nottingham
Nottingham, UK
bsl@cs.nott.ac.uk

John Thangarajah
School of Computer Science and IT

RMIT University
Melbourne, Australia

john.thangarajah@rmit.edu.au

Abstract

A key advantage the reactive planning approach
adopted by BDI-based agents is the ability to recover
from plan execution failures, and almost all BDI agent
programming languages and platforms provide some
form of failure handling mechanism. In general, these
consist of simply choosing an alternative plan for the
failed subgoal (e.g., JACK, Jadex). In this paper, we
propose an alternative approach to recovering from ex-
ecution failures that relies on exploiting positive inter-
actions between an agent’s intentions. A positive inter-
action occurs when the execution of an action in one
intention assists the execution of actions in other inten-
tions (e.g., by (re)establishing their preconditions). We
have implemented our approach in a scheduling algo-
rithm for BDI agents which we call SP . The results of
a preliminary empirical evaluation of SP suggest our
approach out-performs existing failure handling mech-
anisms used by state-of-the-art BDI languages. More-
over, the computational overhead of SP is modest.

1 Introduction

Arguably the dominant paradigm in agent development
is the Belief-Desire-Intention (BDI) model (Rao and
Georgeff 1991). In BDI-based agent programming lan-
guages, e.g., JACK (Winikoff 2005) Jason (Bordini, Hübner,
and Wooldridge 2007), 2APL (Dastani 2008), the behaviour
of an agent is specified in terms of beliefs, goals, and plans.
Beliefs represent the agent’s information about the environ-
ment (and itself). Goals represent desired states of the en-
vironment the agent is trying to bring about. Plans are the
means by which the agent can modify the environment in or-
der to achieve its goals. Plans are composed of steps which
are either basic actions that directly change the agent’s en-
vironment, or subgoals which are in turn achieved by other
plans. For each top-level goal, the agent selects a plan which
forms the root of an intention, and commences executing the
steps in the plan. If the next step in an intention is a subgoal,
a (sub)plan is selected to achieve the subgoal and pushed
onto the intention, and the steps in the (sub)plan are then ex-
ecuted and so on. This process of repeatedly choosing and
executing plans is referred to the agent’s deliberation cycle.

Copyright c© 2016, Association for the Advancement of Artificial
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Deferring the selection of plans until the corresponding
goal must be achieved allows BDI agents to respond flexi-
bly to the current state of the environment, by adapting the
means used to achieve a goal to the current circumstances.
However, as with any software system, BDI agent programs
may fail. Several different types of execution failure can be
distinguished.1 Coverage failures occur when there is no ap-
plicable plan for the current (sub)goal in the current environ-
ment. Precondition failures occur when an action cannot be
executed because a precondition for the action does not hold
(e.g., in order to pick up an object, a robot agent must be
within gripping distance of the object). Postcondition fail-
ures occur when the intended effect of the action does not
hold after executing the action (e.g., if the gripper is faulty, a
pickup action may not result in the agent holding the object).

In popular BDI agent programming languages such as
JACK (Winikoff 2005) or Jadex (Pokahr, Braubach, and
Lamersdorf 2005), when an execution failure occurs another
applicable plan is tried to achieve the current (sub)goal.
(This form of failure handling is also implemented in
the Jason ‘backtracking declarative goal’ pattern (Bordini,
Hübner, and Wooldridge 2007).) If no alternative means is
available, then the goal is deemed failed, and the failure is
propagated to higher-level motivating goals. This approach
to failure handling gives rise to a very large behaviour space
for BDI agent programs (Winikoff and Cranefield 2014), and
can result in robust execution. However, this robustness can
come at a considerable cost in terms of backtracking (i.e.,
partial execution of a plan to the point of failure, followed
by selection of an alternative plan for the current subgoal).

In this paper, we propose an alternative approach to recov-
ering from execution failures that relies on exploiting posi-
tive interactions between an agent’s intentions. A positive
interaction occurs when the execution of an action in one
intention assists the execution of plans or actions in other
intentions (e.g., by (re)establishing their context or precon-
ditions). We have implemented our approach in a schedul-
ing algorithm for BDI agents which we call SP . We present
the results of a preliminary empirical evaluation of SP in
a range of scenarios of increasing difficulty. The results
suggest our approach out-performs existing failure handling

1We ignore failures arising from programmer error, and assume
that programs are correctly written.



mechanisms used by state-of-the-art BDI languages. More-
over, the computational overhead of SP is modest.

2 Beliefs, Plans and Actions

We consider BDI agent programming languages in which
there is an explicit representation of beliefs, plans and ac-
tions. For simplicity, we assume that the agent’s beliefs are
represented by a set of literals. (In practice, beliefs in BDI
agent programming languages are first order ground terms,
so this assumption is really without loss of generality.) To
select a plan or execute an action, a subset of these literals
must hold in the current environment. In the case of a plan,
the set of literals is termed the context condition of the plan,
and indicate the situations in which the plan is applicable. In
the case of an action, the literals are termed the precondition
of the action, and indicate the situations in which the ac-
tion may be executed. For example, a plan to perform a rock
experiment may have the context condition ‘have-battery-
power’. The postcondition of an action is the set of literals
that are made true by executing the action. A plan consists
of its context condition and a sequence of steps which are
either actions or subgoals. The actions in a plan are defined
by their pre- and postconditions and can be either infallible
or fallible.

We say an action is infallible if it has only one pos-
sible outcome (postcondition). An action is fallible if it
has more than one possible outcome. We denote the ef-
fects of a fallible action by [C0, . . . , Cn], where each Ci

is a possible postcondition. Some outcomes may be more
likely than others. If the probability distribution over pos-
sible outcomes is known, we denote the possible outcomes
by [(C0, P0), . . . , (Cn, Pn)] where Ci is a possible outcome
and Pi is the corresponding probability of its occurring, e.g.,
[(C0, 0.25), (C1, 0.75)]. For each fallible action, we assume
there is a single intended outcome that the agent developer
assumes (or hopes) will occur when the action is executed.
All other (unintended) outcomes correspond to anticipated
failure modes of the action. For example, the intended out-
come of a fallible action may establish a precondition of a
subsequent action in the plan, while the other outcome(s) do
not.

We distinguish two kinds of fallible action failures: non-
disruptive and disruptive. The failure of a fallible action
is non-disruptive if it has two outcomes and the unin-
tended outcome is the negation of the intended outcome.
For example, a pickup action fails non-disruptively if it has
holding block and ¬holding block as outcomes. An action
which fails non-disruptively does not change the state of
the environment. The agent was not holding the block be-
fore attempting the action and is not holding the block af-
ter executing the action.2 An action failure is disruptive if
at least one of the unintended outcomes is not the nega-
tion of the intended outcome. For example, a pickup action
fails disruptively if it has two outcomes: holding block and
gripper broken . In addition to failing to establish the pre-

2We assume that ¬holding block is a precondition of the ac-
tion, i.e., the agent would not attempt to pickup the block if it is
already holding it.

condition of a subsequent action in the same intention, a
disruptive failure may destroy the precondition of the action
itself (e.g., ¬gripper broken), with the result that the action
can’t simply be retried.

3 Exploiting Synergies

An execution failure occurs when it is not possible to
progress the intention chosen for execution at this cycle.3

The ‘standard’ approach to execution failures in BDI agent
programming is to abort the plan in which the failure oc-
curred (perhaps after performing some ‘cleanup’ actions),
and try another applicable plan to achieve the current sub-
goal. If there are no applicable plans, failure is propagated
to higher-level motivating goals.

However in some situations, it may be possible to oppor-
tunistically recover from an execution failure by appropri-
ate scheduling the agent’s remaining progressable intentions
to execute an already intended action which reestablishes a
missing context or precondition. Actions which are executed
in the same environment often have similar or overlapping
preconditions; many physical actions rely on the location of
the agent, for example. Alternatively, it may be possible to
recover by selecting a plan for a subgoal in a progressable
intention, which, in addition to achieving its triggering goal,
reestablishes the missing condition. Although such oppor-
tunistic recovery may delay the achievement of the top-level
goal of the failed intention (until the relevant condition can
be reestablished by another intention), exploiting positive in-
teractions between intentions can reduce the total number of
actions an agent has to perform, by reducing backtracking.

We have therefore developed an approach to failure re-
covery in BDI agent programs, which, before backtracking
is initiated, first attempts to progress the agent’s non-failed
intentions in such a way as to reestablish a missing precon-
dition of an action or establish a context condition of a plan
for a subgoal with no applicable plans. Our approach con-
sists of two parts: a representation of the agent’s intentions,
and a scheduler, SP , which determines, at each deliberation
cycle, which intention should be progressed.

3.1 Goal-Plan Trees

We use the notion of goal-plan trees (Thangarajah,
Padgham, and Winikoff 2003; Thangarajah and Padgham
2011) to represent the relations between goals, plans and
actions, and to reason about the interactions between inten-
tions. The root of a goal-plan tree is a top-level goal (goal-
node), and its children are the plans that can be used to
achieve the goal (plan-nodes). Plans may in turn contain
subgoals (goal nodes), giving rise to a tree structure rep-
resenting all possible ways an agent can achieve the top-
level goal. In (Thangarajah, Padgham, and Winikoff 2003;
Thangarajah and Padgham 2011) goal-plan trees contain
only goals and plans. We extend their definition of goal-plan
trees to allow actions in plans. We assume that it is possible

3In BDI agent platforms, postcondition failures are typically
signalled by the underlying implementation of a basic action.



to generate a goal-plan tree corresponding to each top-level
goal that can be achieved by an agent program.4

We use goal-plan trees to represent the agent’s intentions.
Each path through a goal plan tree corresponds to a different
way of achieving the top level goal forming the root of the
tree. We define the next-step pointer of a goal-plan tree as
the next step in its corresponding intention. An intention is
progressable if its next-step pointer points to a step which
is either an action whose precondition holds, or a sub-goal
for which there is at least one applicable plan in the current
state. The execution of an agent program thus corresponds to
an interleaving of a path through each of the goal-plan trees
corresponding to the agent’s current intentions.

3.2 The SP Scheduler

The SP scheduler is based on Monte-Carlo Tree Search
(MCTS) (Chaslot et al. 2006; Kocsis and Szepesvári 2006;
Chaslot et al. 2008). MCTS is a best-first search in which
pseudorandom simulations are used to guide expansion of
the search tree. It was originally developed for game play-
ing (e.g., Go (Chaslot et al. 2006)). However, it has also been
applied in problems where the domain can be represented as
trees of sequential decisions (e.g. planning).
SP schedules the execution of agent’s intentions, i.e., it

chooses which intention should be progressed at the current
deliberation cycle. The scheduler takes three parameters as
input: the set of goal plan trees (and their next-step pointers)
corresponding to the agent’s current intentions, T , the cur-
rent state of the agent’s environment s0, and the number of
iterations to be performed α. α specifies the ‘computational
budget’ of the scheduler, and allows the agent developer to
configure how long the scheduler should run in a particular
application. The pseudocode for the scheduler is shown in
Algorithm 1.

Algorithm 1 Return the action be executed at this cycle

function SP (T, s0, α)
n0 ← node0(T, s0)
for i← 1, α do

ne ← MAX-UCB1-LEAF-NODE(n0)
children(ne)← EXPAND(ne)
ns ← RANDOM-CHILD(children(ne))
value(ns)← SIMULATE(ns)
BACKUP(value(ns), ns)

return BEST-CHILD(n0)

As in MCTS, SP iteratively builds a search tree. Each
node in the search tree represents an interleaving of steps
from the goal-plan trees in T , and records the state of the
agent’s environment resulting from the execution of this in-
terleaving and the current next-step in each goal-plan tree.
In addition, each node n also contains values num(n) repre-
senting the number of times it has been visited and value(n)
representing the total reward value of all simulations starting
from the state represented by this node or any of its children.
Edges in the search tree represent the selection of a plan for
a subgoal or the execution of primitive action in a plan.

4Note that goal-plan trees can be computed offline.

Each iteration of the main loop consists of 4 phases: se-
lection, expansion, simulation and back-propagation. In the
selection phase, a leaf node ne is selected for expansion. A
node may be expanded if it represents a non-terminal state
(a state in which it is possible to execute the next-step of
a goal-plan tree in T ). The node is selected using Upper
Confidence Bound for Trees (UCB1) (Auer, Cesa-Bianchi,
and Fischer 2002), which models the choice of node as
a k-armed bandit problem (Kocsis and Szepesvári 2006;
Auer, Cesa-Bianchi, and Fischer 2002). Starting from the
root node, we recursively follow child nodes with highest
UCB1 value until a leaf node is reached.

In the expansion phase, ne is expanded by adding child
nodes representing the execution of the next-step of each in-
tention that is progressable in the environment state s(ne).
If the next-step is a subgoal, then a child node n′ is gener-
ated for each plan for the subgoal that is applicable in s(ne)
(where s(n′) = s(ne)), and the next-step pointer of n′ points
to the first action in the applicable plan. If the next-step is
an infallible action, a single child node is generated which
represents the state resulting from the execution of the ac-
tion and the advancement of the next-step pointer to the next
action or subgoal in the plan. The expansion of a fallible ac-
tion generates multiple child nodes, one for each possible
outcome of the action. Each possible outcome of a fallible
action is thus considered separately, as “opponent moves” in
a two player game. Each child node therefore corresponds
to a different choice of which intention to progress at this
cycle, and the different postconditions the chosen step may
bring about. One of the newly created child nodes, ns, is
then selected at random for simulation.

In the simulation phase, the reward value of ns is esti-
mated. Starting from the state represented by ns, a next-step
of a goal-plan tree that is executable in that state is randomly
selected and executed, and the environment and the current
step of the selected goal-plan tree updated. This process is
repeated until a terminal state is reached in which no next-
steps can be executed or all top-level goals are achieved. The
reward value value(ns) is then taken to be the number of
top-level goals achieved in the terminal state.

Finally, in the back-propagation phase value(ns) is back-
propagated from ns to all nodes n on the path from ns to
the root node n0. For each node n, the value of num(n) is
increased by 1, and value(n) is increased by value(ns).

After α iterations, the algorithm halts, and an execution
step corresponding to the most visited child of the root node
(the child with highest num(n) value) is returned (this se-
lection strategy is called robust child in (Schadd 2009)). SP

thus tends to select the most “promising” step at each delib-
eration cycle, by simulating possible executions of agent’s
current intentions.

3.3 Robust Execution

In the selection phase, only progressable intentions can be
selected for expansion. When an execution failure occurs,
i.e., the precondition of the next-step of an intention ti ∈ T
is false in the current environment state, s0, SP does not
backtrack to try an alternative plan for the current subgoal
in ti immediately as in JACK or Jadex. Instead SP attempts



to find an execution order of the steps in progressable in-
tentions which re-establishes the context or pre- condition
of the next step in ti. Only when all the agent’s remain-
ing intentions become non-progressable, does SP drop the
currently intended plan for the current subgoal in each in-
tention, and consider an alternative applicable plan for each
subgoal. If all applicable plans for a subgoal have been tried
and failed, then the current subgoal is dropped and failure is
propagated to higher-level goals.

4 Evaluation
In this section, we evaluate the ability of our approach to
recover from execution failures. We compare the number of
goals achieved and the number of ‘backtracks’ (selection of
an alternative plan for a subgoal) for both SP and Round
Robin scheduling with failure handling (RR+) in scenarios
of increasing difficulty. In RR+, intentions are executed in
RR fashion. When an execution failure occurs, the current
intended plan is dropped and an alternative applicable plan is
tried. If there are no applicable plans, the current subgoal is
dropped and failure is propagated to higher-level goals. The
number of goals achieved is a key metric for any BDI agent.
The number of ‘backtracks’ can be seen as the amount of
effort ‘wasted’ by the agent in achieving its goals (i.e., plans
that are partially executed before being dropped when they
become unexecutable in favour of an alternative plan for a
subgoal). We chose RR+ as representative of the state of
the art in practical implementations of agent programming
languages such as JACK and Jadex.

4.1 Experimental Setup

In the interests of generality, our evaluation is based on sets
of randomly-generated, synthetic goal-plan trees represent-
ing the current intentions of an agent in a simple static envi-
ronment. By controlling the characteristics of the trees, and
the number of fallible actions, we can evaluate the perfor-
mance of each approach under different conditions.

The environment is defined by a set of propositions, V ,
that may appear as pre- or postconditions of the actions
in each goal-plan tree. By varying the number of proposi-
tions in V, we can vary the likelihood of actions in differ-
ent goal-plan trees having the same pre- and postconditions,
and hence the probability of positive and negative interac-
tions between intentions. Each synthetic goal-plan tree is
specified by six parameters: the depth of the tree, the plan
branching factor (the maximum number of plans that can be
used to achieve a goal), the goal branching factor (the max-
imum number of sub-goals a plan may have), the maximum
number of actions in a plan, the probability that an action
is a fallible action, and the number of environment variables
that may appear in the tree. For top-level goals where there
are two plans to achieve the goal, if one of the plans has the
environment variable p as its precondition, then the other
plan has ¬p as its precondition. For subplans, the context
condition of the plan is established by the postcondition of
a previous step in the goal-plan tree. Each plan consists of a
list of actions followed by subgoals. The first action in the
plan has the plan’s context condition as its own precondi-
tion. The remaining actions either have the plan’s context

condition as their own precondition or their precondition is
established by a previous action in the plan. The postcon-
dition of an action is selected randomly from the set of en-
vironment variables V . Execution of plans and actions in
different trees therefore may interact through shared envi-
ronment variables, and a change in the value of a variable
may affect (positively or negatively) the selection of plans
or the executability of actions in more than one tree. If all
actions are infallible (i.e., the percentage of fallible actions
is 0), the constraints on goal-plan tree structure and precon-
ditions ensure that: (a) each plan is well formed (the plan
can be successfully executed in some environment), and (b)
taken individually, each goal-plan tree is executable.

Each trial consists of a randomly generated environment
and a randomly generated set of 10 goal-plan trees (each
generated with the same parameter values). The variables
appearing as conditions in each tree are randomly selected
from the environment variables, subject to the constraints
specified above. The depth of each tree is 5, and we assume
there are exactly two plans for each goal and that each plan
has a single environment variable as its context condition.
Each plan consists of three actions followed by one subgoal
(except for leaf plans, which have no subgoals).

For the experiments reported below, we vary the number
of environment variables appearing in pre- and postcondi-
tions from 20 to 50 (with fewer variables, there are more in-
teractions between the goal-plan trees). The percentage of
fallible actions in each plan was varied from 0% (all ac-
tions are infallible actions) to 30%, and in a given experi-
ment, all fallible actions in a goal-plan tree either fail non-
disruptively or fail disruptively. We also varied the proba-
bility of action failure (i.e., probability of the non-intended
postcondition of a fallible action occurring) from 10% to
50%. For each experiment we report average performance
values over 50 trials. SP was configured to perform 1000
iterations (α = 1000).

4.2 Results

We evaluate the performance of each approach in a range of
scenarios. In our first scenario, all fallible actions fail non-
disruptively. When the goal-plan trees are generated, each
fallible action added to a plan is assigned two postcondi-
tions, p and ¬p, where p is randomly selected from V .

The results of the first experiment are shown in Tables 1
and 2. In the tables, |V | is the number of environment vari-
ables and ND is the percentage of fallible actions in each
plan (0%, 5%, 10%, 20% and 30%). Goal is the average
number of top-level goals achieved by each approach, and
Back is the average number of backtracks. For each percent-
age of fallible actions considered, the first row gives results
for an action failure probability of 10%, and the second and
third rows give results for action failure probabilities of 25%
and 50%.

As can be seen, in cases where there is little interaction
between the goal plan trees (|V | = 50), and the percentage
of fallible actions in plans is small, the average number of
goals achieved by RR+ and SP is similar (9.32 for RR+ vs
10 for SP ). However even in this setting, RR+ requires sig-
nificantly more backtracking to achieve the goals (13.82 vs



Table 1: RR+; all fallible actions fail non-disruptively
|V | = 50 |V | = 40 |V | = 30 |V | = 20

ND Goal Back Goal Back Goal Back Goal Back

0% 9.32 13.82 9.34 15.82 9.32 21.50 8.26 30.26

5%

9.32
9.30
9.18

14.16
14.48
16.58

9.32
9.26
8.92

16.36
17.88
18.74

9.22
9
8.88

20.92
23.06
23.50

8.22
8.20
8

30.96
30.26
32.46

10%

9.26
9.16
8.88

14.88
16.06
19.90

9.14
9.14
8.70

17.34
18.82
23.22

9.12
8.72
8.46

22.92
25.06
25.70

8.20
8.08
7.90

29.32
29.68
33.94

20%

9.22
8.98
8.38

16
19.26
25.78

9.10
8.94
8.30

19.02
22.26
26.58

9.06
8.48
7.90

21.88
25.60
29.64

8.08
7.72
7.18

30.82
32.32
39.2

30%

9.04
8.78
7.62

18.18
21.74
30.96

9.08
8.34
7.24

19.18
25.02
34.60

8.94
8.12
7.42

24.90
28.56
37.18

7.94
7.64
6.56

33.46
37.14
44.78

Table 2: SP ; all fallible actions fail non-disruptively
|V | = 50 |V | = 40 |V | = 30 |V | = 20

ND Goal Back Goal Back Goal Back Goal Back

0% 10 0 10 0 10 0 10 0

5% 10

0
0.02
0

10

0
0.02
0.16

10

0.04
0.04
0.04

10

0.02
0.04
0.04

10% 10

0.02
0.04
0.24

10

0.04
0.14
0.12

10

0
0.06
0.50

10

0
0
0.22

20% 10

0.16
0.38
1.78

10

0.08
0.36
1.02

10

0.20
0.24
0.82

10

0.20
0.22
0.64

30% 10

0.52
1.48
6.16

10

0.48
0.98
3.58

10

0.48
1.10
2.26

10

0.28
0.78
1.76

0). Although the number of interactions between intensions
is small, actions in one intention may destroy the context
conditions of plans or the preconditions of actions in other
intentions. In contrast SP is able to schedule the execution
of intentions so as to avoid negative interactions, achieving
all 10 goals, and in general no backtracking is required.

As the percentage of fallible actions in plans, and the
probability of each fallible action failing increases, the av-
erage number of goals achieved by RR+ decreases, and
the number of backtracks required to achieve these goals in-
creases. When 30% of actions are fallible, and each action
has a 50% chance of failure, RR+ can achieve only 7.62
goals on average, and performs on average 30.96 backtracks
to do so. The decrease in performance of RR+ relative to
the case in which all actions are deterministic is due to the
difficulty of recovering from action failures using only back-
tracking. SP achieves all 10 goals and requires only 6.16
backtracks on average, demonstrating the utility of exploit-
ing positive interactions.

As the number of environment variables decreases and
the degree of interaction between the agent’s intentions in-
creases, the performance of RR+ declines, even when all
actions in plans are deterministic. In the |V | = 20, RR+
achieves 8.26 goals on average and requires 30.26 back-
tracks, which is only a marginal improvement on the low
interaction/high failure case. With high interaction and high

Table 3: RR+; all fallible actions fail disruptively
|V | = 50 |V | = 40 |V | = 30 |V | = 20

ND Goal Back Goal Back Goal Back Goal Back

0% 9.32 13.82 9.34 15.82 9.32 21.50 8.26 30.26

5%

9.32
9.16
9.08

13.38
14.36
15.02

9.32
9.06
9

17.24
16.58
17.58

9.04
9.02
9.04

21.22
22.16
22.04

8.22
8.2
8.2

28.28
28.66
28.08

10%

9.30
9.18
9.04

13.68
14.74
15.76

9.26
8.98
8.94

16.54
18.22
19.34

8.92
8.8
8.76

21.54
21.5
24.08

8.12
8.04
7.78

27.78
28.62
30.36

20%

9.22
9.10
9

14.24
16.20
19.76

9.20
9.02
8.64

17.56
19.88
21.56

8.80
8.70
8.52

22.04
24.10
26.24

8.10
7.88
7.72

29.30
30.04
35.84

30%

9.20
9.10
8.68

14.44
17.16
20.62

9.16
9
8.52

17.42
20.86
34.6

8.68
8.44
8.14

20.72
23.48
31.44

7.88
7.82
7.52

30.96
30.84
36.92

Table 4: SP ; all fallible actions fail disruptively
|V | = 50 |V | = 40 |V | = 30 |V | = 20

ND Goal Back Goal Back Goal Back Goal Back

0% 10 0 10 0 10 0 10 0

5% 10

0
0
0.04

10

0
0.02
0

10

0.02
0.02
0

10

0
0.02
0

10% 10

0.02
0.02
0.06

10

0
0
0.02

10

0
0.02
0.04

10

0.02
0.04
0

20% 10

0.02
0.14
0.32

10

0
0.10
0.12

10

0.06
0.24
0.12

10

0.02
0.02
0.20

30% 10

0.18
0.22
1.08

10

0.10
0.20
0.76

10

0.22
0.26
1.14

10

0.18
0.20
0.46

failure of actions, the performance of RR+ declines sig-
nificantly to 6.56 goals and 44.79 backtracks. In contrast,
even in the extremely challenging setting, SP achieves all
10 goals, and requires only 1.76 backtracks on average. The
number of backtracks is lower than in the low interaction
(|V | = 50) case, as SP is able to exploit the larger number
of interactions between intentions to recover from failures
without backtracking in this case.

In our second scenario, all fallible actions fail disrup-
tively. Each fallible action has two possible outcomes, p, q ∈
V , where q 6= ¬p. The results of the second experiment are
shown in Tables 3 and 4. The presentation of results is as
in the first experiment. As can be seen, in general, disrup-
tive actions facilitate failure recovery, as there is a higher
probability that the unintended outcome of a fallible action
will reestablish a condition necessary to progress a failed in-
tention. Rather than being restricted to the negation of the
intended outcome of an action, in this setting the unintended
outcome of an action may be any environment variable in
V . RR+ achieves more goals and requires fewer backtracks
in the low interaction / high failure case, 8.68 goals and
20.62 backtracks compared to 7.62 goals and 30.96 back-
tracks when actions fail non-disruptively. This increase in
performance also extends to the high interaction / high fail-
ure case, where RR+ achieves 7.52 goals and requires 36.92
backtracks compared to 6.56 goals and 44.78 backtracks in



the first experiment. As in the first experiment, SP achieves
10 goals in all cases, but the number of backtracks required
is significantly reduced. SP requires 1.08 backtracks on av-
erage to achieve 10 goals when 30% of actions in plans are
fallible, and actions fail with 50% probability in the low in-
teraction (|V | = 50) case, and only 0.46 backtracks in the
high interaction (|V | = 20) case.

Overall, SP is able to avoid negative interactions between
intentions, while exploiting positive interactions to recover
from execution failures with minimal backtracking. It might
be argued that the degree of interactions between intentions
in our experiments is higher than typically occurs in agent
programs. For example, if the agent has only a single in-
tention and it fails, SP cannot use actions in other inten-
tions to recover from the failure. To determine the extent
to which the performance of SP relies of the agent execut-
ing a ‘large’ number of intentions in parallel, we repeated
the experiments above with five goal-plan trees in each trial
(i.e., the agent executes five intentions in parallel). Even in
this setting, SP significantly out-performs RR+. For exam-
ple, in the best case for RR+ ( |V | = 50, plans contain
5% disruptive actions with probability of failure = 10%)
RR+ achieves 4.82 goals with 3.8 backtracks, while SP

achieves 5 goals without backtracking. In the worst case
for RR+ (|V | = 20, plans contain 30% actions that fail
non-disruptively with probability 50%) RR+ achieves 3.76
goals with 15.86 backtracks while SP achieves 5 goals with
2.38 backtracks. Full results are omitted due to lack of space.

4.3 Computational Overhead

The computational overhead of SP depends on the search
configuration α: i.e., how many iterations of the algorithm
are performed. With the search configuration used for the
experiments above (α = 1000), SP requires 35 milliseconds
to return the action to be executed at this deliberation cycle.
If actions require significant time to execute, e.g., moving
from one location to another, this is a relatively small over-
head, particularly when set against the time spent partially
executing plans which ultimately fail in the RR+ approach.

As SP is an anytime algorithm, the time required to re-
turn the next action can be reduced by reducing the number
of iterations performed by the algorithm. Reducing α has a
relatively small impact on the ability of SP to recover from
execution failures. For example, with α = 100, SP achieves
9.98 goals with 4.18 backtracks in the case where |V | = 20,
plans contain 30% non-disruptive actions with probability
of failure = 50% (cf Table 2), and requires 3ms to return the
action to be executed at the current cycle.

5 Related Work
Flexible and robust execution in dynamic environments are
key characteristics of BDI agent systems. Flexibility arises
from having multiple ways of achieving tasks, and robust-
ness from how the system recovers from failure. How-
ever, AgentSpeak(L) (Rao 1996), the most influential ab-
stract BDI agent programming language, does not incorpo-
rate mechanisms for dealing with plan failure. The Con-
ceptual Agent Notation (CAN) (Winikoff et al. 2002) im-
proves on AgentSpeak(L) by providing both declarative and

procedural notions of goals and a mechanism for retrying
goal achievement via alternative plans if one plan fails. This
‘retry on failure’ mechanism is built into practical agent pro-
gramming languages such as JACK (Winikoff 2005) and
Jadex (Pokahr, Braubach, and Lamersdorf 2005). These lan-
guages also allow the programmer to define ‘clean up’ ac-
tions that are executed when a plan fails. In Jason (Bordini,
Hübner, and Wooldridge 2007), a plan failure triggers a goal
deletion event that may also initiate clean up actions includ-
ing attempting alternative plans to achieve the goal. 3APL
(Dastani, van Riemsdijk, and Meyer 2005) provides greater
support for recovery, by allowing a replanning mechanism
that allows a failed plan to be either revised allowing ex-
ecution to continue, or dropped with possible clean up ac-
tions. The Cypress architecture (Wilkins et al. 1995) com-
bines the the Procedural Reasoning System reactive execu-
tor PRS-CL and the SIPE-2 look-ahead planner. PRS-CL is
used to pursue agent’s intentions using a library of plans. If
a failure occurs, the executor calls SIPE-2 to produce a new
plan. However, this approach focusses on the generation of
new plans to recover from failures, rather than interleaving
current intentions. In (Yao, Logan, and Thangarajah 2014),
a variant of MCTS called Single-Player Monte-Carlo Tree
Search (Schadd et al. 2012) is used to schedule intentions at
the level of plans rather than individual actions. There has
also been work on avoiding conflicts and redundant actions
in a multi-agent setting. For example, in (Ephrati and Rosen-
schein 1993) an approach to planning and interleaving the
execution of tasks by multiple agents is presented, where the
combined execution agent tasks achieves a global goal. They
show how conflicts between intentions and redundant steps
can be avoided by appropriate scheduling of the actions of
the agents. However none of these approaches consider ex-
ploiting synergies to recover from execution failures as we
propose here.

6 Discussion and Future Work
We presented an approach to recovering from execution fail-
ures in BDI agent programs which exploits positive interac-
tions between an agent’s intentions to reestablish context or
preconditions. The results of a preliminary empirical evalu-
ation of SP , a scheduler based on our approach, suggest it
out-performs failure handling mechanisms used by state-of-
the-art BDI languages. SP ’s performance advantage is great-
est in those scenarios that are most challenging for conven-
tional approaches (high interaction / high failure), as it is
able to exploit positive interactions to reduce backtracking
while at the same time avoiding negative interactions be-
tween intentions. For simplicity, our evaluation of SP fo-
cusses on a static environment. However we stress that SP

is not limited to static environments. The choice of action at
each deliberation cycle is based on the current state of the
agent’s environment at that cycle, coupled with simulations
of the possible outcomes of actions.

In future work, we plan to extend SP to exploit positive
interactions to reduce the number of executed steps when in-
tentions do not fail. We also plan to investigate the incorpo-
ration of simple environment models to allow the prediction
of likely environment changes during simulation.
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