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Abstract

We characterise mutations between fake weighted projective spaces, and give
explicit formulas for how the weights and multiplicity change under mutation. In
particular, we prove that multiplicity-preserving mutations between fake weighted
projective spaces are mutations over edges of the corresponding simplices. As an
application, we analyse the canonical and terminal fake weighted projective spaces
of maximal degree.

Keywords: Lattice polytopes; mutations; cluster transformations; mirror symme-
try; Fano varieties; canonical singularities; terminal singularities; projective space

1 Introduction

In this paper we analyse mutations between fake weighted projective spaces; equivalently
we analyse mutations between lattice simplices. Mutations arise naturally when consid-
ering mirror symmetry for Fano manifolds. A Fano manifold X is expected to correspond
under mirror symmetry to a Laurent polynomial [3, 5, 6, 7, 10, 11, 14, 18]. In general there
will be many different Laurent polynomials which correspond to a given Fano manifold,
and it is expected that these Laurent polynomials are related via birational transforma-
tions analogous to cluster transformations [1, 15, 16, 17]. These cluster-style transfor-
mations act on Newton polytopes via mutations; see Definition 5 below. A mutation
between Newton polytopes can be thought of as the tropicalisation of the corresponding
cluster-type transformation. Ilten [20] has shown that if two lattice polytopes P and Q
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are related by mutation then the corresponding toric varieties XP and XQ are deforma-
tion equivalent: there exists a flat family X → P1 such that X0

∼= XP and X∞
∼= XQ.

Mutations are thus expected to form the one-skeleton of the tropicalisation of the Hilbert
scheme. Our understanding of this one-skeleton is rudimentary but improving [1, 2]; in
this paper we conduct the first systematic analysis in higher dimensions.

The notion of mutation raises many new and interesting combinatorial questions: for
example, how can polytopes be classified up to mutation, and what properties of poly-
topes are mutation-invariant? Here we begin to address these questions by analysing the
behaviour of lattice simplicies under mutation. In two dimensions, Akhtar and Kasprzyk
determined how the weights of a fake weighted projective plane, i.e. the weights of a lattice
triangle, change under mutation, and showed that mutations between fake weighted pro-
jective planes are multiplicity-preserving [2]. We show below that the situation in higher
dimensions is different. We give an explicit formula (Theorem 12) for how the weights of
a fake weighted projective space, i.e. the weights of a lattice simplex, change under mu-
tation, and derive a strong necessary condition (Theorem 15) for a mutation to preserve
multiplicity. In §§7–8 we apply our results to the study of fake weighted projective spaces
of high degree with canonical and terminal singularities.

2 Fake Weighted Projective Space

We begin by recalling some standard definitions. Throughout let N ∼= Zn denote a lattice
of rank n with dual lattice M := Hom(N,Z). From the toric viewpoint N corresponds
to the lattice of one-parameter subgroups and M corresponds to the lattice of characters.
For an introduction to toric geometry see [13].

Definition 1. A convex lattice polytope P ⊂ NQ := N ⊗Z Q is said to be Fano if:

1. P is of maximum dimension, that is dimP = n;

2. the origin is contained in the strict interior of P , that is 0 ∈ int(P );

3. the vertices vert(P ) of P are primitive lattice points.

In addition to being compelling combinatorial objects, Fano polytopes are in bijective
correspondence with toric Fano varieties: see [24] for an overview. The complete fan in
N generated by the faces of P , which we call the spanning fan of P , corresponds to a
toric Fano variety XP , that is, to a (possibly singular) projective toric variety with ample
anticanonical divisor −KX . Two Fano polytopes P and P ′ give isomorphic varieties
XP

∼= XP ′ if and only if there exists a change of basis of the underlying lattice N sending
P to P ′. Thus we regard P as being defined only up to GLn(Z)-equivalence.

Definition 2. Let P := conv{v0, . . . , vn} ⊂ NQ be a Fano n-simplex. By Definition 1(2)
there exists a unique choice of n+ 1 coprime positive integers λ0, . . . , λn ∈ Z>0 such that
λ0v0 + . . .+ λnvn = 0. These are called the (reduced) weights of P .
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Definition 1(3) implies that any n of the weights are also coprime, or in other words
that the weights are well-formed. See [19, §5] for details of the natural role that reduced
and well-formed weights play in the study of weighted projective space.

Definition 3. Let P ⊂ NQ be a Fano n-simplex and let N ′ := v0 · Z + . . . + vn · Z be
the sublattice in N generated by the vertices of P . The rank-one Q-factorial toric Fano
variety XP given by the spanning fan of P is XP = P(λ0, . . . , λn)/(N/N ′), where the
group N/N ′ acts freely in codimension one. We call XP a fake weighted projective space.

Fake weighted projective spaces have been studied in [9, 12, 21]. One important
invariant is the multiplicity : the index of the sublattice N ′ in N , denoted by mult(P ) :=
[N : N ′]. A fake weighted projective space is a weighted projective space if and only if
mult(P ) = 1 [8, Proposition 2].

3 Mutations

We recall the definition of mutation, following [1, §3]. A primitive element w ∈ M
determines a surjective linear map w : N → Z which extends naturally to a map NQ → Q.
A point v ∈ NQ is said to be at height w(v). Given a subset S ⊂ NQ, if w(v) = h for all
v ∈ S we say that S lies at height h and write w(S) = h. The hyperplane Hw,h is defined
to be the set of all points in NQ at height h. For a convex lattice polytope P ⊂ NQ we
define wh(P ) := conv(Hw,h ∩ P ∩N) to be the (possibly empty) convex hull of all lattice
points in P at height h. We set hmin := min{w(v) | v ∈ P} to be the minimum height
occurring amongst the the points of P , and hmax to be the maximum height. Since P is
a lattice polytope, both hmin and hmax are integers. If 0 ∈ int(P ), and in particular if P
is Fano, then hmin < 0 and hmax > 0.

Definition 4. A factor of P ⊂ NQ with respect to a primitive height function w ∈ M is
a lattice polytope F ⊂ NQ such that:

1. w(F ) = 0;

2. for every integer h with hmin 6 h < 0, there exists a (possibly empty) lattice
polytope Gh ⊂ NQ such that Hw,h ∩ vert(P ) ⊆ Gh + (−h)F ⊆ wh(P ).

Definition 5. The (combinatorial) mutation of P ⊂ NQ with respect to the primitive
height function w ∈ M and a factor F ⊂ NQ is the convex lattice polytope

mutw(P, F ) := conv

(
−1⋃

h=hmin

Gh ∪

hmax⋃

h=0

(wh(P ) + hF )

)
⊂ NQ.

Although this is not obvious from the definition, the mutation mutw(P, F ) is inde-
pendent of the choice of the Gh [1, Proposition 1]. Furthermore, mutw(P, F ) is a Fano
polytope if and only if P is a Fano polytope [1, Proposition 2]. More obviously, muta-
tions are always invertible (if Q := mutw(P, F ) then P ∼= mut−w(Q,F )) [1, Lemma 2], and
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translating the factor results in an isomorphic mutation (i.e. mutw(P, F ) ∼= mutw(P, F+v)
for any v ∈ N with w(v) = 0).

Mutations have a natural description as transformations of the dual polytope

P∨ := {u ∈ MQ | u(v) > −1 for all v ∈ P}.

A mutation induces a piecewise GLn(Z)-transformation ϕ : u 7→ u−uminw ofMQ such that
(ϕ(P∨))∨ = mutw(P, F ); here umin := min{u(v) | v ∈ F}. This is analogous to a cluster
transformation. As a consequence |kP∨ ∩M | = |kQ∨ ∩M | for any dilation k ∈ Z>0,
where Q := mutw(P, F ) [1, Proposition 4]; hence Hilb(XP ,−KXP

) = Hilb
(
XQ,−KXQ

)

and XP and XQ have the same anticanonical degree.

Example 6. The weighted projective spaces P(1, 1, 1, 3) and P(1, 1, 4, 6) have the largest
degree amongst all canonical1 toric Fano threefolds [22] and amongst allGorenstein canon-
ical Fano threefolds [26]. They are related by a mutation [1, Example 7]. The simplex
associated to P(1, 1, 1, 3) is P := conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−3)} ⊂ NQ. Set-
ting w = (−1, 2, 0) ∈ M gives hmin = −1 and hmax = 2, with w−1(P ) equal to the edge
conv{(−1,−1,−3), (1, 0, 0)} and w2(P ) given by the vertex (0, 1, 0). The factor

F := conv{(0, 0, 0), (2, 1, 3)}

gives:
mutw(P, F ) = conv{(−1,−1,−3), (0, 0, 1), (0, 1, 0), (4, 3, 6)}

and this is the simplex associated with P(1, 1, 4, 6). This mutation is illustrated in Fig-
ure 1.

4 Mutations of n-Simplices

We begin by establishing some basic properties of mutations between simplices. Through-
out this section we assume that P is a Fano n-simplex, and that w ∈ M and F ⊂ NQ

are (respectively) a primitive height function and a factor such that Q := mutw(P, F ) is
a simplex. In other words, we assume that there is a mutation from the fake weighted
projective space X associated with P to the fake weighted projective space Y associated
with Q.

Lemma 7. Let P be a Fano n-simplex, let w ∈ M be a primitive height function, and let
F ⊂ NQ be a factor such that Q := mutw(P, F ) is a simplex. Suppose that the mutation
from P to Q is non-trivial, so that P 6∼= Q. Then whmax(P ) is a vertex of P and F is a
translation of 1

|hmin|
whmin

(P ).

1See §6 below for a discussion of canonical singularities.
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7−→

Figure 1: An edge mutation from the polytope corresponding to P(1, 1, 1, 3), depicted
on the left, to the polytope corresponding to P(1, 1, 4, 6). This mutation is described in
Example 6.

Proof. We first consider whmax(P ). Suppose for a contradiction that whmax(P ) is not a
vertex of P . Then in particular it contains an edge E1 of P . Let us pick an edge E2

contained in whmin
(P ) (if such an edge does not exist then whmin

(P ) is a vertex and the
mutation is trivial). Note that E1 and E2 cannot be parallel: if they were then the
four endpoints of E1 and E2 would lie in a common two-dimensional affine subspace and
thus would be affinely dependent; this contradicts the fact that P is a simplex. It is an
immediate consequence of the definition of mutation that whmax(Q) = whmax(P ) + hmaxF .
Recall that F is a Minkowski factor of whmin

(P ). Because P is a simplex, whmin
(P ) is

also a simplex and so by [30, Result 13] F is a dilation and translation of whmin
(P ). It

follows that hmaxF is also a dilation and translation of whmin
(P ). Let E ′

2 denote the edge
of hmaxF corresponding to the edge E2 of whmin

(P ). Then E1 and E ′
2 are not parallel,

because E1 and E2 are not parallel. Thus the face E1+E ′
2 of whmax(Q) = whmax(P )+hmaxF

is a quadrilateral. Since Q is by assumption a simplex, and therefore all faces of Q are
simplices, this gives a contradiction. We conclude that whmax(P ) consists of a single vertex.

Now consider the factor F . By the definition of factor there exists a lattice polytope
Ghmin

such that
whmin

(P ) = Ghmin
+ |hmin|F.

We claim that Ghmin
is a point. After mutation we have whmin

(Q) = Ghmin
. As discussed

above, we can mutate Q back to P by taking the height function −w and the factor
F . But (−w)−hmin

(Q) = whmin
(Q) = Ghmin

and we conclude from the first part of the
proposition that Ghmin

is a point: Ghmin
= {v}. It follows that |hmin|F = whmin

(P ) − v,
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and so F is a translation of 1
|hmin|

whmin
(P ) as required.

Definition 8. If whmin
(P ) has k+1 vertices then we say that the corresponding mutation

is a mutation over a k-face. Cases of particular interest are k = 1 and k = n − 1, which
we call mutations over edges and mutations over facets, respectively.

Lemma 9. Let P be a Fano n-simplex, let w ∈ M be a primitive height function, and let
F ⊂ NQ be a factor such that Q := mutw(P, F ) is a simplex. Let v ∈ vert(P ) be such that
w(v) 6= hmax and w(v) 6= hmin. Then w(v) = 0.

Proof. Let us write P = conv{v0, . . . , vn} and whmin
(P ) = conv{v1, . . . , vk}. If k = n then

the statement holds vacuously, so let us assume that k < n. Without loss of generality
we may assume that 0 ∈ vert(F ). In view of Lemma 7 we may assume further that
whmax(P ) = {v0}, that whmin

(P ) = v1 + |hmin|F , and that

F := conv

{
0,

1

|hmin|
(v2 − v1), . . . ,

1

|hmin|
(vk − v1)

}
.

Suppose for a contradiction that there exists some v ∈ vert(P ) such that w(v) 6= hmax,
w(v) 6= hmin, and w(v) 6= 0. Without loss of generality we can take v = vn.

Suppose first that w(vn) > 0. Let w′ ∈ M be a primitive lattice point such that
w′(vi) = 0 for vi ∈ {v1, . . . , vn−1}. We can choose w′ so that w′(v0) > 0 and w′(vn) < 0.
Let h′

max = sup{w′(p) | p ∈ P} and h′
min = inf{w′(p) | p ∈ P}. We see that Hw′,h′

max
∩P =

{v0} and Hw′,h′

min
∩ P = {vn}. Note that by the definition of F , w′(F ) = 0 and so

w′(x) = w′(x+w(x)F ) for all x ∈ P (with w(x) > 0). Then Hw′,h′

max
∩Q = v0+hmaxF =

v0+w(v0)F and Hw′,h′

min
∩Q = vn+w(vn)F . Thus v0+w(v0)F and vn+w(vn)F are two

faces of Q, with vertices v0+w(v0)f and vn+w(vn)f for f ∈ vert(F ). Let f1, f2 ∈ vert(F )
be any two distinct vertices of F ; these exist since otherwise F is a point and the mutation
is trivial. As Q is a simplex

F ′ := conv{v0 + w(v0)f1, v0 + w(v0)f2, vn + w(vn)f1, vn + w(vn)f2}

is a two-dimensional face of Q. But F ′ has four vertices and thus is not a simplex. This
gives a contradiction.

Suppose instead that w(vn) < 0. By [1, Lemma 3.7] there exists a vQ ∈ vert(Q)
and vF ∈ vert(F ) such that vn = vQ − w(vQ)vF . Applying w to this equation yields
w(vQ) = w(vn) < 0. We now have mut−w(Q,F ) = P but −w(vQ) > 0 which, by the
preceding argument, gives a contradiction. It follows that w(vn) = 0.

Combining the previous two results gives a necessary and sufficient combinatorial
condition for the existence of a mutation between simplices.

Lemma 10. Let P be a Fano n-simplex and let w ∈ M be a primitive height function.
Let the vertices of P be {v0, v1, . . . , vn}, ordered such that whmin

(P ) = conv{v1, . . . , vk}.
There exists a factor F ⊂ NQ such that Q := mutw(P, F ) is a simplex if and only if the
following hold:
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1. whmax(P ) is a vertex;

2. hmin | vi − v1 for i ∈ {1, . . . , k};

3. if v is a vertex of P such that w(v) 6= hmax and w(v) 6= hmin, then w(v) = 0.

Proof. The “only if” direction is Lemmas 7 and 9. On the other hand, it is clear that if
conditions (1)–(3) are satisfied, then defining

F := conv

{
0,

1

|hmin|
(v2 − v1), . . . ,

1

|hmin|
(vk − v1)

}

gives a factor with respect to w. Let us label the vertices of P = conv{v0, . . . , vn} so that:

w(v0) = hmax, w(v1) = . . . = w(vk) = hmin, w(vk+1) = . . . = w(vn) = 0.

From [1, Lemma 3.7] we have that vert(Q) ⊆ {v′0, v
′
1, . . . , v

′
n}, where:

v′i =

{
vi if i = 0, i = 1, or i ∈ {k + 1, . . . , n}

v0 +
hmax

|hmin|
(vi − v1) if i ∈ {2, . . . , k}.

Furthermore by [1, Proposition 3.11] we have that Q is Fano, and hence is of maximal
dimension in the n-dimensional lattice. It follows that Q must have at least n+1 vertices.
Thus Q = conv{v′0, v

′
1, . . . , v

′
n}, and so Q is a simplex.

Example 11. Consider the 3-simplex

P = conv{(1,−1, 0), (−2,−2,−1), (−2,−2, 1), (0, 1, 0)}

The weighted projective space associated to P is P(1, 1, 4, 8). Let w = (1, 0, 0) ∈ M .
Lemma 10 implies that there is a factor F such that Q := mutw(P, F ) is the simplex:

Q = conv{(1,−1, 0), (−2,−2,−1), (1,−1, 1), (0, 1, 0)}

The weighted projective space associated to Q is P(1, 1, 1, 4).

The main result of this paper is:

Theorem 12. Let X and Y be fake weighted projective spaces related by a mutation. Sup-
pose that P = conv{v0, . . . , vn} ⊂ NQ is the simplex corresponding to X, that Q ⊂ NQ is
the simplex corresponding to Y , and that the weights of X are λ0, λ1, . . . , λn. Let w ∈ M be
the primitive height function and F ⊂ NQ be the factor such that Q = mutw(P, F ). Then
we may relabel the vertices of P such that whmax(P ) = v0, whmin

(P ) = conv{v1, . . . , vk},
and the weights of Y are:

1

d

(
λ0λ1, (λ1 + . . .+ λk)

2, λ0λ2, . . . , λ0λk, λk+1(λ1 + . . .+ λk), . . . , λn(λ1 + . . .+ λk)
)

where d is a positive integer satisfying:

d ·
mult(X)

mult(Y )
=

λk−1
0

(λ1 + . . .+ λk)k−2
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Proof. By Lemma 10 we have Q = conv{v′0, v
′
1, . . . , v

′
n} where:

v′i =

{
vi if i = 0, i = 1, or i ∈ {k + 1, . . . , n}

v0 +
hmax

|hmin|
(vi − v1) if i ∈ {2, . . . , k}.

(1)

Since P is Fano we may assume that the weights λ0, λ1, . . . , λn are well-formed. We
normalise by setting h :=

∑n

i=0 λi and λ′
i :=

1
h
λi. Then

∑n

i=0 λ
′
ivi = 0,

∑n

i=0 λ
′
i = 1, and

λ′
i > 0 for all i. The sequence λ′

0, λ
′
1, . . . , λ

′
n is unique with these properties; these are the

normalised barycentric co-ordinates for P .
Since Q is Fano there exist µ′

0, µ
′
1, . . . , µ

′
n such that

∑n

i=0 µ
′
iv

′
i = 0,

∑n

i=0 µ
′
i = 1, and

µ′
i > 0 for all i. From

∑n

i=0 µ
′
iv

′
i = 0 and (1) we have that:

(
µ′
0 +

k∑

i=2

µ′
i

)
v0 +

(
µ′
1 −

hmax

|hmin|

k∑

i=2

µ′
i

)
v1 +

k∑

i=2

µ′
i

hmax

|hmin|
vi +

n∑

i=k+1

µ′
ivi = 0.

Let θi denote the coefficient of vi in the expression above. We claim that the θi are
normalised barycentric co-ordinates. It is clear that

∑n

i=0 θi =
∑n

i=0 µ
′
i = 1, and that

θ0, θ2, θ3, . . . , θn > 0. It remains to check that θ1 > 0. Suppose for a contradiction that
θ1 < 0. Then we have:

−θ1v1 = θ0v0 + θ2v2 + . . .+ θnvn ∈ cone{v0, v2, . . . , vn}

and −θ1 > 0, so a point on the ray from 0 through v1 lies in the cone over v0, v2, . . . , vn.
This contradicts the fact that 0 lies in the strict interior of P .

Hence the θi are normalised barycentric co-ordinates for P , and so by uniqueness we
have θi = λ′

i for all i. Solving these equations for µ′
i yields:

µ′
i =





λ′
0 −

|hmin|
hmax

∑k

i=2 λ
′
i if i = 0

λ′
1 +

∑k

i=2 λ
′
i if i = 1

|hmin|
hmax

λ′
i if i ∈ {2, . . . , k}

λ′
i if i ∈ {k + 1, . . . , n}.

Applying w to both sides of the equation
∑n

i=1 λivi = 0, we find that

|hmin|

hmax

=
λ0

λ1 + . . .+ λk

(2)

and thus:

µ′
i =





λ′
0 −

λ0

λ1+...+λk

∑k

i=2 λ
′
i if i = 0

λ′
1 +

∑k

i=2 λ
′
i if i = 1

λ0

λ1+...+λk
λ′
i if i ∈ {2, . . . , k}

λ′
i if i ∈ {k + 1, . . . , n}.
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Now we can form integer weights by defining µi = h(λ1 + . . .+ λk)µ
′
i; this gives:

µi =





λ0λ1 if i = 0

(λ1 + . . .+ λk)
2 if i = 1

λ0λi if i ∈ {2, . . . , k}

λi(λ1 + . . .+ λk) if i ∈ {k + 1, . . . , n}.

These weights are integers, but they may not be well-formed. However since Q is Fano,
we know that the weights are well-formed if and only if they are reduced. Therefore it
remains to divide through by their greatest common divisor, which we denote by d. Thus
the weights of Q are:

1

d

(
λ0λ1, (λ1 + . . .+ λk)

2, λ0λ2, . . . , λ0λk, λk+1(λ1 + . . .+ λk), . . . , λn(λ1 + . . .+ λk)
)
.

Consider now the degrees of X and Y :

(−KX)
n =

(λ0 + . . .+ λn)
n

λ0 . . . λn mult(X)

(−KY )
n =

1
dn

(λ0λ1 + . . .+ λn(λ1 + . . .+ λk))
n

1
dn+1 ((λ0λ1) . . . λn(λ1 + . . .+ λk)) mult(Y )

Since degree is preserved by mutation, we conclude that

d ·
mult(X)

mult(Y )
=

λk−1
0

(λ1 + . . .+ λk)k−2
(3)

as claimed.

Remark 13. When mult(X) = mult(Y ), and in particular if X and Y are weighted pro-
jective spaces, we have:

d =
λk−1
0

(λ1 + . . .+ λk)k−2

This gives an explicit expression for the weights after mutation in terms of the weights
before mutation.

Remark 14. In the case of a mutation over a facet we see that the new weights are:

1

d

(
λ0λ1, (λ1 + . . .+ λk)

2, λ0λ2, . . . , λ0λn

)

Note that λ0 divides d, because λ0 |λ0λi for i = 1, . . . , n and the weights are well-formed.
On the other hand, after dividing through by λ0 we obtain well-formed weights, and so in
fact d = λ0. In this case, therefore, we obtain an explicit formula for how the multiplicity
changes:

mult(X)

mult(Y )
=

(
λ0

λ1 + . . .+ λn

)n−2

the electronic journal of combinatorics 21(4) (2014), #P4.14 9



5 Multiplicity-preserving Mutations

The following result places a strong restriction on which mutations of fake weighted pro-
jective spaces can preserve multiplicity.

Theorem 15. Any non-trivial multiplicity-preserving mutation between fake weighted pro-
jective spaces X and Y is a mutation over an edge.

Proof. Let P = conv{v0, v1, . . . , vn} be the simplex associated to X, and let λ0, λ1, . . . , λn

be the corresponding weights. Let Q = conv{v′0, v
′
1, . . . , v

′
n} be the simplex associated

to Y , and let λ′
0, λ

′
1, . . . , λ

′
n be the corresponding weights. Suppose for a contradiction

that P and Q are related by a non-trivial mutation over a k-face, for some k > 2. By
Remark 13, after reordering weights if necessary, we have:

(µ0, . . . , µn) =

1

d

(
(λ1 + . . .+ λk)

2, λ0λ1, λ0λ2, . . . , λ0λk, λk+1(λ1 + . . .+ λk), . . . , λn(λ1 + . . .+ λk)
)

where:

d =
λk−1
0

(λ1 + . . .+ λk)k−2

We recall from (2) that
hmax

|hmin|
=

λ1 + . . .+ λk

λ0

and write hmax/ |hmin| = A/B with A and B coprime integers. So, for i ∈ {1, . . . , k}, we
have:

µi =
λ0λi

d
= λi

(
λ1 + . . .+ λk

λ0

)k−2

= λi

(
A

B

)k−2

Since A and B are coprime and k > 2, we have that B |λi. Similarly for i ∈ {k+1, . . . , n}
we have:

µi =
λi(λ1 + . . .+ λk)

d
= λi

(
λ1 + . . .+ λk

λ0

)k−1

= λi

(
A

B

)k−1

and so in this case too B |λi. However λ1, λ2, . . . , λn are coprime, because the weights of
X are well-formed, and therefore B = 1.

Since hmax/ |hmin| = A/B = A is an integer, we have that λ0 |λ1 + . . .+ λk. It follows
that λ0 | dµi for all i, and since the weights µi are reduced we conclude that λ0 | d. Then

d

λ0

=

(
λ0

λ1 + . . .+ λk

)k−2

is an integer. Taking the (k − 2)th root (recall that k > 2) we see that λ0

λ1+...+λk
is an

integer, and hence that λ1 + . . .+ λk |λ0. Thus λ1 + . . .+ λk = λ0. Substituting this into
our expression for the µi shows that the mutation is trivial, which is a contradiction.
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Corollary 16. Suppose that X is a weighted projective space that admits a non-trivial
mutation to another weighted projective space. Let λ0 be the weight corresponding to the
vertex whmax(P ), and let λ1, λ2 be the weights corresponding to the vertices of the edge
whmin

(P ). Then:

1. λ0 | (λ1 + λ2)
2

2. gcd{λ1, λ2} |λ0

Proof. The mutation is an edge mutation, and so Theorem 12 implies both that d = λ0

and that d | (λ1 + λ2)
2. This proves (1). Looking again at Theorem 12 and using well-

formedness of weights, we see that gcd{λ1, λ2} | d. This proves (2).

Remark 17. Let X be a fake weighted projective plane. Akhtar and Kasprzyk charac-
terise mutations from X to other fake weighted projective planes in terms of solutions to
an associated Diophantine equation [2, Proposition 3.12]. Their argument relies on the
fact that, for lattice triangles, the square-free parts of the weights are preserved (up to
reordering) under mutation. This phenomenon does not persist in higher dimensions:

1. Example 6 above shows that, in general, neither the square-free parts of the weights
nor the kth-power-free parts of the weights nor the square parts of the weights nor
the kth-power parts of the weights are preserved.

2. Example 11 above shows that, in general, neither the nth-power-free parts nor the
nth-power parts of the weights are preserved.

6 Canonical and Terminal Singularities

Terminal and canonical singularities were introduced by Miles Reid; they play a funda-
mental role in birational geometry [27, 28, 29]. Terminal singularities form the smallest
class of singularities that must be allowed if one wishes to construct minimal models in
dimensions three or more. Canonical singularities can be regarded as the limit of termi-
nal singularities; they arise naturally as the singularities occurring on canonical models of
varieties of general type. From the toric viewpoint, terminal and canonical singularities
have a particularly elegant combinatorial description. A toric singularity corresponds to
a strictly convex rational polyhedral cone σ ⊂ NQ [13]. The cone σ is terminal if and
only if:

1. the lattice points ρ1, . . . , ρm corresponding to the primitive generators of the rays
of σ are contained in an affine hyperplane Hu := {v ∈ NQ | u(v) = 1} for some
u ∈ MQ;

2. with the exception of the origin 0 and the generators ρi of the rays, no other lattice
points of N are contained in the part of σ on or under Hu, i.e.

N ∩ σ ∩ {v ∈ NQ | u(v) 6 1} = {0, ρ1, . . . , ρm}
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The cone σ is canonical if and only if (1) holds and

(ii′) the origin 0 is the only lattice point contained in the part of σ under Hu, i.e.

N ∩ σ ∩ {v ∈ NQ | u(v) < 1} = {0}

When the hyperplane Hu in condition (1) corresponds to a lattice point u ∈ M , the
singularity is called Gorenstein.

7 Weighted Projective Spaces With Canonical Sin-

gularities

We now apply our results to the study of weighted projective spaces with canonical singu-
larities, giving some geometric context, in terms of mutations, for a recent combinatorial
result that characterises the fake weighted projective spaces of maximal degree with at
worst canonical singularities [4]. We say that a (fake) weighted projective space with at
worst canonical singularities is a canonical (fake) weighted projective space.

Remark 18. If P(λ0, . . . , λn)/G is a canonical fake weighted projective space then the
weighted projective space P(λ0, . . . , λn) has canonical singularities. Thus a canonical fake
weighted projective space of maximal degree is necessarily a weighted projective space.

Definition 19. The Sylvester numbers y0, y1, y2, . . . are defined by:

yn =

{
2 if n = 0

1 +
∏n−1

i=0 yi otherwise.

We set tn := yn − 1.

Lemma 20 ([31]).

1. The Sylvester numbers are pairwise coprime;

2. If n > 1 and i < n then tn/yi is an integer. Furthermore if p is a prime dividing yi
then p | tn/yj for j < n, j 6= i, and p 6 | tn/yi;

3. We have:
n−1∑

i=0

1

yi
=

tn − 1

tn
.

Define:
Xn := P

(
1, 1, 2tn−1

yn−2
, . . . , 2tn−1

y0

)

Xn is an n-dimensional canonical weighted projective space. Averkov, Krümpelmann,
and Nill [4] have proved that, if n > 4, then Xn is the unique n-dimensional canonical
weighted projective space of maximum degree; this generalizes the corresponding result
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for Gorenstein weighted projective spaces, which is due to Nill [25]. In dimension three
there are precisely two canonical weighted projective spaces of maximum degree, and these
are connected by a mutation: see Example 6. We next determine all weighted projective
spaces X

(m,a)
n that might be connected to Xn by a sequence of mutations through weighted

projective spaces, and show that none of the X
(m,a)
n are canonical.

Proposition 21. Define integers λ
(m,a)
i , where 0 6 i 6 n and 0 6 a 6 n− 2, by:

λ
(0,a)
i =





1 if i = 0
2tn−1

ya
if i = 1

1 if i = 2
2tn−1

yki
otherwise

where {k3, . . . , kn} is {0, 1, . . . , â, . . . , n− 2} with a omitted, and:

λ
(m,a)
i =





λ
(m−1,a)
2 if i = 0

λ
(m−1,a)
1 if i = 1(
λ
(m−1,a)
1 +λ

(m−1,a)
2

)2
λ
(m−1,a)
0

if i = 2

λ
(m−1,a)
i

(
λ
(m−1,a)
1 +λ

(m−1,a)
2

)

λ
(m−1,a)
0

otherwise

for m > 1. Set:

X(m,a)
n := P

(
λ
(m,a)
0 , λ

(m,a)
1 , . . . , λ(m,a)

n

)

Then:

1. X
(0,a)
n = Xn for all a;

2. if m > 0 and if X is a weighted projective space with a non-trivial mutation to
X

(m,a)
n then either X = X

(m−1,a)
n or X = X

(m+1,a)
n ;

3. X
(m,a)
n is not canonical for any m > 1.

In other words, the graph of mutations between weighted projective spaces starting at Xn

is a subtree of the graph depicted in Figure 2, and the only canonical weighted projective
space in this graph is Xn.

Proof. Statement (1) is trivial. For (3), recall that P(µ0, . . . , µn) is canonical if and only
if

n∑

i=0

{µiκ

h

}
∈ {1, . . . , n− 1}

for every κ ∈ {2, . . . , h− 2}, where {x} denotes the fractional part of x and h is the sum

of the µi [23, Proposition 2.5]. This fails for m > 1 and κ = h(m,a) − λ
(m,a)
1 − λ

(m−1,a)
2 ,

where h(m,a) is the sum of the weights of X
(m,a)
n : see Lemma 37.
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Xn

X
(1,0)
n

X
(2,0)
n

X
(3,0)
n

...

X
(1,1)
n

X
(2,1)
n

X
(3,1)
n

...

· · ·

· · ·

· · ·

...

X
(1,n−2)
n

X
(2,n−2)
n

X
(3,n−2)
n

...

Figure 2: The graph of mutations as described in Proposition 21.

It remains to prove (2). Suppose first that there is a non-trivial mutation from Xn to
a weighted projective space X. By Theorem 15, this must be an edge mutation. Let P be
the simplex associated to Xn, let µ0 denote the weight associated to the vertex whmax(P ),
and let µ1, µ2 be the weights associated to the vertices of whmin

(P ). We consider the
possible values of µ0, µ1, µ2.

Case 1. µ0 6= 1. Then µ0 = 2tn−1/ya0 for some a0 ∈ {0, . . . , n− 2}.

Case 1.1. µ1 = 1, µ2 = 1. Since n > 4, there exist a1, a2 ∈ {0, 1, . . . , n− 2} distinct such
that ya1 6= ya0 and ya2 6= ya0 . At least one of ya1 or ya2 is not equal to 2, and hence is a
divisor of µ0 not equal to 2 or 4. But (µ1+µ2)

2 = 4, and this contradicts Corollary 16(1).

Case 1.2. µ1 6= 1, µ2 = 1. Then µ1 = 2tn−1/ya1 for some a1 6= a0. Choose a2 not
equal to a0 or a1, and let p be a prime dividing ya2 . Lemma 20(2) imples that p divides
both 2tn−1/ya0 and 2tn−1/ya1 . So p does not divide (2tn−1/ya1 + 1)2, and this contradicts
Corollary 16(1).

Case 1.3. µ1 6= 1, µ2 6= 1. Then µ1 = 2tn−1/ya1 and µ2 = 2tn−1/ya2 for a1, a2 distinct and
not equal to a0. Suppose first that ya0 6= 2, and let p be a prime dividing ya0 . Lemma 20(2)
implies that p | gcd{µ1, µ2} and p 6 |µ0, contradicting Corollary 16(2). On the other hand
if ya0 = 2 then the same argument with p = 2 shows that 4 | gcd{µ1, µ2} and 4 6 |µ0, again
contradicting Corollary 16(2)

Case 2. µ0 = 1.

Case 2.1. µ1 6= 1, µ2 = 1. Then µ1 = 2tn−1/ya for some a ∈ {0, . . . , n − 2}, and

Theorem 12 implies that X = X
(1,a)
n .

Case 2.2. µ1 6= 1, µ2 6= 1. Then µ1 = 2tn−1/ya1 ,µ2 = 2tn−1/ya2 for a1, a2 distinct. Choose
a0 not equal to a1 or a2, and let p be a prime dividing ya0 . Lemma 20(2) implies that
p | gcd{µ1, µ2} and p 6 |µ0, contradicting Corollary 16(2).

This completes the proof in the case where m = 0.
Suppose now that m > 1, and that there is a non-trivial mutation from X

(m,a)
n to a

weighted projective space X. Theorem 15 implies that this is an edge mutation. Let P
be the simplex corresponding to X

(m,a)
n , let µ0 denote the weight associated to the vertex

whmax(P ), and let µ1, µ2 denote the weights associated to the vertices of whmin
(P ). To
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declutter the notation, write λi for the weight λ
(m,a)
i of X

(m,a)
n . We consider the possible

values of µ0, µ1, µ2 in turn.

Example Case. µ0 = λi with i > 3, µ1 = λ1, µ2 = λ2. By Lemma 26 we have that µ0 and
µ2 share a common factor that does not divide µ1, and so does not divide µ1 + µ2. Thus
µ0 6 | (µ1 + µ2), contradicting Corollary 16(1).

The remaining cases are entirely analogous. We arrive at a contradiction in all but
two cases, as summarized in Table 1 below; here λi, λj, λk denote distinct elements of

{3, . . . , n}. The case µ0 = λ0, µ1 = λ1, µ2 = λ2 yields X
(m+1,a)
n , and the case µ0 =

λ2, µ1 = λ0, µ2 = λ1 yields X
(m−1,a)
n . This completes the proof in the case where m > 1.

µ0 µ1 µ2 Contradicts Using µ0 µ1 µ2 Contradicts Using

λ0 λ1 λ2 – – λ2 λ1 λi Corollary 16(1) Lemma 27
λ0 λ1 λi Corollary 16(1) Lemma 28 λ2 λi λj Corollary 16(2) Lemma 29
λ0 λ2 λi Corollary 16(1) Lemma 28 λi λ0 λ1 Corollary 16(1) Lemma 27
λ0 λi λj Corollary 16(2) Lemma 29 λi λ0 λ2 Corollary 16(1) Lemma 27
λ1 λ0 λ2 Corollary 16(1) Lemma 31 λi λ0 λj Corollary 16(1) Lemma 27
λ1 λ0 λi Corollary 16(1) Lemma 30 λi λ1 λ2 Corollary 16(1) Lemma 27
λ1 λ2 λi Corollary 16(1) Lemma 30 λi λ1 λj Corollary 16(1) Lemma 27
λ1 λi λj Corollary 16(1) Lemma 30 λi λ2 λj Corollary 16(1) Lemma 28
λ2 λ0 λ1 – – λi λj λk Corollary 16(1) Lemma 30
λ2 λ0 λi Corollary 16(1) Lemma 27

Table 1: A summary of the argument in the case where m > 1.

Suppose now that m = 1. We can argue exactly as for m > 1, except in those cases
where Lemma 28 is used. We consider these three cases separately. As before, write λi

for λ
(m,a)
i .

Case 3. µ0 = λ0, µ1 = λ1, µ2 = λi with i > 3. Then µ0 = 1, µ1 = 2tn−1/ya, and

µ2 =
2tn−1

yai

(
2tn−1

ya
+ 1
)
. Choose aj not equal to a or ai, and let p be a prime dividing yaj .

Then p divides µ1 and µ2 but does not divide µ0, contradicting Corollary 16(2).

Case 4. µ0 = λ0, µ1 = λ2, µ2 = λi with i > 3. Then µ0 = 1, µ1 = (2tn−1/ya + 1)2, and

µ2 =
2tn−1

yai

(
2tn−1

ya
+ 1
)
. Let p be a prime dividing 2tn−1/ya +1. Then p divides µ1 and µ2

but does not divide µ0, contradicting Corollary 16(2).

Case 5. µ0 = λi with i > 3, µ1 = λ2, µ2 = λj with j > 3. Then µ0 = 2tn−1

yai

(
2tn−1

ya
+ 1
)
,

µ1 = (2tn−1/ya + 1)2, and µ2 = 2tn−1

yaj

(
2tn−1

ya
+ 1
)
. Let p be a prime dividing ya. Then

p divides µ0 and µ2 (Lemma 20) but does not divide µ1 (Lemma 24). This contradicts
Corollary 16(1).

This completes the proof in the case where m = 1.
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8 Weighted Projective Spaces With Terminal Singu-

larities

A (fake) weighted projective space with at worst terminal singularities is called a terminal
(fake) weighted projective space. As before, a terminal fake weighted projective space of
maximal degree is necessarily a weighted projective space. We now give a conjectural
classification of terminal weighted projective spaces of maximal degree, and analyse them
in terms of mutations.

In dimension 3, the unique terminal weighted projective space of maximum degree
is P3. In dimension 4, Kasprzyk has shown [23, Lemma 3.5] that the unique terminal
weighted projective space of maximum degree is:

P(1, 1, 6, 14, 21) = P

(
1, 1, t3

y2
, t3
y1
, t3
y0

)

The classification problem for terminal weighted projective spaces of maximum degree in
dimensions 5 and higher is open. The space

Xn = P

(
1, 1, tn−1

yn−2
, . . . , tn−1

y0

)

is terminal [23, Lemma 3.7] and it seems reasonable to conjecture that, for n > 4, Xn is
the unique terminal weighted projective space of maximum degree. Note that the methods
of [4] do not apply to this problem, as they are unable to distinguish between canonical
and terminal singularities (they are insensitive to lattice points on the boundary of a
simplex).

Proposition 22. Define integers λ
(m,a)
i , where 0 6 i 6 n and 0 6 a 6 n− 2, by:

λ
(0,a)
i =





1 if i = 0
tn−1

ya
if i = 1

1 if i = 2
tn−1

yki
otherwise

where {k3, . . . , kn} is {0, 1, . . . , â, . . . , n− 2} with a omitted, and:

λ
(m,a)
i =





λ
(m−1,a)
2 if i = 0

λ
(m−1,a)
1 if i = 1(
λ
(m−1,a)
1 +λ

(m−1,a)
2

)2
λ
(m−1,a)
0

if i = 2

λ
(m−1,a)
i

(
λ
(m−1,a)
1 +λ

(m−1,a)
2

)

λ
(m−1,a)
0

otherwise

for m > 1. Suppose that n > 5. Set:

X(m,a)
n := P

(
λ
(m,a)
0 , λ

(m,a)
1 , . . . , λ(m,a)

n

)

Then:
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1. X
(0,a)
n = Xn for all a;

2. if m > 0 and if X is a weighted projective space with a non-trivial mutation to
X

(m,a)
n then either X = X

(m−1,a)
n or X = X

(m+1,a)
n ;

3. X
(m,a)
n is not terminal for any m > 1.

In other words, the graph of mutations between weighted projective spaces starting at Xn

is a subtree of the graph depicted in Figure 3, and the only terminal weighted projective
space in this graph is Xn.

Xn

X
(1,0)
n

X
(2,0)
n

X
(3,0)
n

...

X
(1,1)
n

X
(2,1)
n

X
(3,1)
n

...

· · ·

· · ·

· · ·

...

X
(1,n−2)
n

X
(2,n−2)
n

X
(3,n−2)
n

...

Figure 3: The graph of mutations as described in Proposition 22.

Proof. Statement (1) is trivial. For (3), recall that P(µ0, . . . , µn) is terminal if and only if

n∑

i=0

{µiκ

h

}
∈ {2, . . . , n− 1} (4)

for every κ ∈ {2, . . . , h− 2}, where {x} denotes the fractional part of x and h is the sum
of the µi [23, Proposition 2.3]. This fails for m > 1 and κ = h(m,a)−h(m−1,a), where h(m,a)

is the sum of the weights of X
(m,a)
n : see Lemma 39.

It remains to prove (2). This is analogous to the proof of Proposition 21(2). The

analogs of Lemmas 25–28 and Lemmas 30, 31 hold for these weights λ
(m,a)
i too, with almost

identical proofs, and Lemma 38 functions as a replacement for Lemma 29. Suppose first
that m > 1 and that there is a non-trivial mutation from X

(m,a)
n to a weighted projective

space X. By Theorem 15, this must be an edge mutation. Let P be the simplex associated
to X

(m,a)
n , let µ0 denote the weight associated to the vertex whmax(P ), and let µ1, µ2 be the

weights associated to the vertices of whmin
(P ). To declutter the notation, we again write

λi for the weight λ
(m,a)
i of X

(m,a)
n . We consider the possible values of µ0, µ1, µ2 in turn,

arriving at a contradiction in all but two cases. This is summarized in Table 2 below,
where λi, λj, λk denote distinct elements of {3, . . . , n}. The case µ0 = λ0, µ1 = λ1, µ2 = λ2

yields X
(m+1,a)
n , and the case µ0 = λ2, µ1 = λ0, µ2 = λ1 yields X

(m−1,a)
n .
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µ0 µ1 µ2 Contradicts Using µ0 µ1 µ2 Contradicts Using

λ0 λ1 λ2 – – λ2 λ1 λi Corollary 16(1) Lemma 27
λ0 λ1 λi Corollary 16(1) Lemma 28 λ2 λi λj Corollary 16(2) Lemma 38
λ0 λ2 λi Corollary 16(1) Lemma 28 λi λ0 λ1 Corollary 16(1) Lemma 27
λ0 λi λj Corollary 16(2) Lemma 38 λi λ0 λ2 Corollary 16(1) Lemma 27
λ1 λ0 λ2 Corollary 16(1) Lemma 31 λi λ0 λj Corollary 16(1) Lemma 27
λ1 λ0 λi Corollary 16(1) Lemma 30 λi λ1 λ2 Corollary 16(1) Lemma 27
λ1 λ2 λi Corollary 16(1) Lemma 30 λi λ1 λj Corollary 16(1) Lemma 27
λ1 λi λj Corollary 16(1) Lemma 30 λi λ2 λj Corollary 16(1) Lemma 28
λ2 λ0 λ1 – – λi λj λk Corollary 16(1) Lemma 30
λ2 λ0 λi Corollary 16(1) Lemma 27

Table 2: A summary of the argument in the case where m > 1.

Suppose now that m = 1. We argue exactly as for m > 1, except in those cases
where Lemma 28 is used. We consider these three cases separately, once again writing λi

for λ
(m,a)
i . When µ0 = λ0, µ1 = λ1, µ2 = λi with i > 3, we argue as in Proposition 21

case 3. When µ0 = λ0, µ1 = λ2, µ2 = λi with i > 3, we argue as in Proposition 21
case 4. When µ0 = λi with i > 3, µ1 = λ2, µ2 = λj with j > 3, we have µ0 =
tn−1

yai

(
tn−1

ya
+ 1
)
, µ1 =

(
tn−1

ya
+ 1
)2

and µ2 = tn−1

yaj

(
tn−1

ya
+ 1
)
. Since n > 5 we can find

ak ∈ {0, 1, . . . , n− 2} \ {a, ai, aj}. Let p be a prime dividing yak . Then p divides µ0 and
µ2 but p does not divide µ1, contradicting Corollary 16(1).

P(1, 1, 6, 14, 21)

©

©

© ©

©

© © © ©

©

©

©

© © ©

©

©

© ©

©

©

©

©

©

Figure 4: The graph of mutations between four-dimensional weighted projective spaces
to a depth of 3

Remark 23. The requirement in Proposition 22 that n > 5 is necessary. Figure 4 shows
the graph of mutations between four-dimensional weighted projective spaces starting from
X4 = P (1, 1, 6, 14, 21) to a depth of three, where © denotes some weighted projective
space. The rightmost branch of the tree above corresponds to a mutation with λ0 =
1, λ1 = 21 and λ2 = 1. It can be shown using the methods of §7 that this branch
continues as a chain. We do not know what happens in the other branches at greater
depth.
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A The Sylvester Numbers and Related Sequences

Recall the definition of Sylvester numbers from Definition 19. Recall also that tn := yn−1.

Lemma 24. Let n > 1 and let i ∈ {0, . . . , n− 1}. Then yi | tn/yi + 1 and yi 6 | 2tn/yi + 1.

Proof. We proceed by induction on n. The base case n = 1 holds trivially. Note that:

tn/yi + 1 = (tn−1/yi + 1)yn−1 − (yn−1 − 1)

If i 6 n − 2 then yi | yn−1 − 1 and, by the induction hypothesis, yi | tn−1/yi + 1. Thus
yi | tn/yi + 1. If i = n − 1 then tn/yi + 1 = yn−1, which is certainly divisible by yi. This
completes the induction step, proving that yi | tn/yi+1. It follows that yi | 2tn/yi+2, and
so yi 6 | 2tn/yi + 1.

Lemma 25. Let λ
(m,a)
i be as in Proposition 21. For each i ∈ {0, . . . , n} the sequence(

λ
(m,a)
i

)
m>0

is increasing.

Proof. This is a straightforward induction on m.

Lemma 26. Let λ
(m,a)
i be as in Proposition 21. Fix m > 0. Then λ

(m,a)
0 , λ

(m,a)
1 , and λ

(m,a)
2

are pairwise coprime.

Proof. We begin by showing that λ
(m,a)
1 and λ

(m,a)
2 are coprime, proceeding by induction.

The base case m = 0 is trivial. Suppose that λ
(m−1,a)
1 and λ

(m−1,a)
2 are coprime, and

suppose that there exists a prime p dividing both λ
(m,a)
1 and λ

(m,a)
2 . Then:

p |λ
(m−1,a)
1 and p

∣∣ (λ(m−1,a)
1 +λ

(m−1,a)
2 )2

λ
(m−1,a)
0

Thus p |λ
(m−1,a)
2 , contradicting the hypothesis that λ

(m−1,a)
1 and λ

(m−1,a)
2 are coprime.

This completes the induction step, showing that λ
(m,a)
1 and λ

(m,a)
2 are coprime for all m.

It follows immediately that λ
(m,a)
0 = λ

(m−1,a)
2 and λ

(m,a)
1 = λ

(m−1,a)
1 are also coprime for all

m.
Suppose now that p |λ

(m,a)
0 = λ

(m−1,a)
2 . Then p 6 |λ

(m,a)
1 , as we have just seen, and so p

does not divide the numerator of

λ
(m,a)
2 =

(

λ
(m,a)
1 +λ

(m−1,a)
2

)2

λ
(m−1,a)
0

Thus p 6 |λ
(m,a)
2 , so λ

(m,a)
0 and λ

(m,a)
2 are coprime.

Lemma 27. Let λ
(m,a)
i be as in Proposition 21, let m > 1, and let a ∈ {0, 1, . . . , n− 2}.

There exists a prime p such that p 6 |λ
(m,a)
0 , p 6 |λ

(m,a)
1 , and p |λ

(m,a)
i for all i > 2.
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Proof. Lemma 25 implies that, for m > 2, λ
(m−1,a)
0 = λ

(m−2,a)
2 6 λ

(m−1,a)
2 . Thus

λ
(m,a)
1 + λ

(m−1,a)
2

λ
(m−1,a)
0

> 1

for all m > 1, and so there is some prime p such that p |λ
(m−1,a)
1 +λ

(m−1,a)
2 but p 6 |λ

(m−1,a)
0 .

Thus p |λ
(m)
i for all i ∈ {2, . . . , n}. Lemma 26 now implies that p 6 |λ

(m,a)
0 and p 6 |λ

(m,a)
1 .

Lemma 28. Let λ
(m,a)
i be as in Proposition 21, let m > 2, and let a ∈ {0, 1, . . . , n− 2}.

There exists a prime p such that p 6 |λ
(m,a)
1 , p 6 |λ

(m,a)
2 , and p |λ

(m,a)
i for i = 0 and all i > 3.

Proof. By Lemma 27 there exists a prime p such that p divides λ
(m−1,a)
i for i ∈ {2, . . . , n}

but p does not divide λ
(m−1,a)
0 or λ

(m−1,a)
1 . Thus p |λ

(m,a)
i for all i ∈ {3, . . . , n} and, as

p |λ
(m−1,a)
2 = λ

(m,a)
0 , we have by Lemma 26 that p does not divide λ

(m,a)
1 or λ

(m,a)
2 .

Lemma 29. Let λ
(m,a)
i be as in Proposition 21, let m > 0, and let a ∈ {0, 1, . . . , n− 2}.

Then 2 6 |λ
(m,a)
0 , 2 6 |λ

(m,a)
2 , and 2 |λ

(m,a)
i for i = 1 and all i > 3.

Proof. This is a straightforward induction on m.

Lemma 30. Let λ
(m,a)
i be as in Proposition 21, let a ∈ {0, 1, . . . , n − 2}, and let i ∈

{3, . . . , n}. Then there exists k > 1 such that for all m > 0, k 6 |λ
(m,a)
j for j ∈ {0, 2, i} and

k |λ
(m,a)
j for j ∈ {0, . . . , n} \ {0, 2, i}.

Proof. We proceed by induction on m. For m = 0 we have λ
(m,a)
j = 2tn−1/yaj for some

aj. If yai 6= 2 then let k be a prime dividing yai ; otherwise, let k = 4. In either case k has
the desired properties and the claim holds.

Suppose now there exists k > 1 such that k 6 |λ
(m−1,a)
j for j ∈ {0, 2, i}, and k |λ

(m−1,a)
j

for j ∈ {0, . . . , n} \ {0, 2, i}. Lemma 26 implies that k and λ
(m−1)
0 are coprime. Thus as

λ
(m,a)
j =

λ
(m−1,a)
j (λ

(m−1,a
1 )+λ

(m−1,a)
2 )

λ
(m−1,a)
0

for j ∈ {3, . . . , n}

we see that k |λ
(m,a)
j for j ∈ {3, . . . , n} \ {i}. Since k |λ

(m,a)
1 = λ

(m−1,a)
1 , by Lemma 26

again we have that k 6 |λ
(m,a)
0 and k 6 |λ

(m,a)
2 . Finally as k does not divide λ

(m−1,a)
2 but does

divide λ
(m−1,a)
1 , it does not divide λ

(m−1,a)
1 +λ

(m−1,a)
2 ; since k also does not divide λ

(m−1,a)
i ,

by the recursion formula it cannot divide λ
(m,a)
i either.

Lemma 31. Let λ
(m,a)
i be as in Proposition 21. There exists a prime p such that, for

m > 0, p |λ
(m,a)
1 and p 6 |λ

(m,a)
0 + λ

(m,a)
2 .

Proof. For the case m = 0, take p to be an odd prime dividing λ1 = 2tn−1/ya. Suppose

there exists a prime p such that p |λ
(m−1,a)
1 and p 6 |λ

(m−1,a)
0 + λ

(m−1,a)
2 . Then p 6 |λ

(m,a)
1 =

λ
(m−1,a)
1 and and p |λ

(m−1,a)
1 (λ

(m−1,a)
1 + 2λ

(m−1,a)
2 ). Now:

λ
(m,a)
0 + λ

(m,a)
2 =

λ
(m−1,a)
2

(
λ
(m−1,a)
0 +λ

(m−1,a)
2

)
+λ

(m−1,a)
1

(
λ
(m−1,a)
1 +2λ

(m−1,a)
2

)

λ
(m−1,a)
0
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and by Lemma 26, p 6 |λ
(m−1,a)
2 . Thus p 6 |λ

(m)
0 + λ

(m)
2 . The result follows by induction on

m.

Lemma 32. Let λ
(m,a)
i be as in Proposition 21, let b ∈ {0, 1, . . . , n−2} be such that b 6= a,

and let m > 0. Then yb |λ
(m,a)
2 − 1

Proof. The cases m = 0 and m = 1 are straightforward. Suppose now that yb |λ
(m−2,a)
2 −1

and yb |λ
(m−1,a)
2 − 1. We have that:

λ
(m,a)
2 − 1 =

λ
(m−1,a)
1

(
λ
(m−1,a)
1 +2λ

(m−1,a)
2

)
+
(
λ
(m−1,a)
2 −1

)(
λ
(m−1,a)
2 +λ

(m−1,a)
0

)
−
(
λ
(m−2,a)
2 −1

)
λ
(m−1,a)
2

λ
(m−1,a)
0

Since yb | 2tn−1/ya = λ
(m,a)
1 , we have by Lemma 26 that yb and λ

(m−1,a)
0 are coprime. It

thus suffices to show that yb divides the numerator of the above expression. But this holds
by assumption. The Lemma follows by induction on m.

Definition 33. Let X
(m,a)
n be as in §7 and let h(m,a) denote the sum of the weights of

X
(m,a)
n .

Lemma 34.

h(m,a) =




2tn−1 if m = 0(
λ
(m−1,a)
1 +λ

(m−1,a)
2

)
h(m−1,a)

λ
(m−1,a)
0

otherwise

and, for any i ∈ {3, . . . , n}:

h(m,a) = ykiλ
(m,a)
i

Proof. This is a straightforward calculation.

Lemma 35. Let λ
(m,a)
i be as in Proposition 21, let a ∈ {0, 1, . . . , n− 2}, and let m > 1.

Then:
λ
(m,a)
0 λ

(m,a)
1

h(m,a)
<

1

2tn−1

Proof. By Lemma 34 it suffices to prove that
2tn−1λ

(m,a)
1

yki
<

λ
(m,a)
i

λ
(m,a)
0

. This evidently holds for

m = 1, and

λ
(m,a)
i

λ
(m,a)
0

=
λ
(m−1,a)
i

λ
(m−1,a)
0

(λ
(m−1,a)
1 + λ

(m−1,a)
2 )

λ
(m−1,a)
2

>
λ
(m−1,a)
i

λ
(m−1,a)
0

The result follows by induction on m.

Lemma 36. Let λ
(m,a)
i be as in Proposition 21, let a ∈ {0, 1, . . . , n− 2}, let m > 0, and

let i ∈ {3, . . . , n}. Then:

yki |λ
(m,a)
2 − λ

(m,a)
0
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Proof. We proceed by induction on m. The base case m = 0 is trivial. Suppose now that
yki |λ

(m−1,a)
2 −λ

(m−1,a)
0 . Then, since λ

(m,a)
2 −λ

(m,a)
0 = (λ

(m,a)
2 −λ

(m−1,a)
0 )−(λ

(m−1,a)
2 −λ

(m−1,a)
0 ),

it suffices to show that yki divides λ
(m,a)
2 − λ

(m−1,a)
0 . But:

λ
(m,a)
2 − λ

(m−1,a)
0 =

λ
(m−1,a)
1 (λ

(m−1,a)
1 + 2λ

(m−1,a)
2 ) + (λ

(m−1,a)
2 − λ

(m−1,a)
0 )(λ

(m−1,a)
2 + λ

(m−1,a)
0 )

λ
(m−1,a)
0

Now yki divides λ
(m,a)
1 = 2tn−1

ya
and yki | (λ

(m−1,a)
2 − λ

(m−1,a)
0 ), so yki divides the numerator

here. Lemma 26 implies that yki is coprime to the denominator. Thus yki divides λ
(m,a)
2 −

λ
(m−1,a)
0 .

Lemma 37. Let λ
(m,a)
i be as in Proposition 21, let a ∈ {0, 1, . . . , n− 2}, let m > 1, and

let κ(m,a) = h(m,a) − (λ
(m−1,a)
1 + λ

(m−1,a)
2 ). Then κ(m,a) ∈ {2, . . . , h(m,a) − 2}, and:

n∑

i=0

{
λ
(m,a)
i κ(m,a)

h(m,a)

}
> n− 1

where {x} denotes the fractional part of x.

Proof. The first statement follows immediately from Lemma 25. We claim that:

{
κ(m,a)λ

(m,a)
0

h(m,a)

}
=

{
1− 1

2tn−1
if m is odd

1− 1
2tn−1

− 1
ya

if m is even
(5)

Note that:

κ(m,a)λ
(m,a)
0

h(m,a)
= 1−

(λ
(m−1,a)
1 + λ

(m−1,a)
2 )λ

(m,a)
0

ykiλ
(m,a)
i

by Lemma 34

= 1−
λ
(m−1,a)
0 λ

(m,a)
0

ykiλ
(m−1,a)
i

= 1−
λ
(m−2,a)
0 λ

(m−1,a)
0 λ

(m−1,a)
2

ykiλ
(m−2,a)
i (λ

(m−2,a)
1 + λ

(m−2,a)
2 )

= 1−
λ
(m−2,a)
2 (λ

(m−2,a)
1 + λ

(m−2,a)
2 )

ykiλ
(m−2,a)
i

= 1−
λ
(m−2,a)
0 (λ

(m−3,a)
1 + λ

(m−3,a)
2 )

ykiλ
(m−2,a)
i

−
λ
(m−2,a)
2 (λ

(m−2,a)
1 + λ

(m−2,a)
2 )− λ

(m−2,a)
0 (λ

(m−2,a)
1 + λ

(m−2,a)
0 )

ykiλ
(m−2,a)
i

(6)
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We claim that the last term (6) here is an integer. It is equal to:

(λ
(m−2,a)
2 − λ

(m−2,a)
0 )(λ

(m−2,a)
0 + λ

(m−2,a)
1 + λ

(m−2,a)
2 )

h(m−2,a)

Now:

λ
(m−2,a)
0 + λ

(m−2,a)
1 + λ

(m−2,a)
2

h(m−2,a)
=

h(m−2,a) −
∑n

i=3 λ
(m−2,a)
i

h(m−2,a)

= 1−
n∑

i=3

λ
(m−2,a)
i

h(m−2,a)

= 1−
n∑

i=3

1

yki
by Lemma 34

= 1−
n−2∑

i=0

1

yi
+

1

ya

=
1

tn−1

+
1

ya
by Lemma 20

Hence (6) is equal to:

(λ
(m−2,a)
2 − λ

(m−2,a)
0 )(tn−1/ya + 1)

tn−1

Recall that tn−1 =
∏n−2

i=0 yi. We will show that each yi divides the numerator of this
expression. By Lemma 24 we have that ya |

tn−1

ya
+ 1, and by Lemma 36 we have that, for

all i 6= a, yi |λ
(m−2,a)
2 − λ

(m−2,a)
0 . Hence (6) is an integer. Thus:

{
κ(m,a)λ

(m,a)
0

h(m,a)

}
=

{
1−

λ
(m−2,a)
0 (λ

(m−3,a)
1 + λ

(m−3,a)
2 )

ykiλ
(m−2,a)
i

}
=

{
κ(m−2,a)λ

(m−2,a)
0

h(m−2,a)

}

Since (5) holds for m = 1 and m = 2, by induction it holds for all m.
Lemma 34 implies that

κ(m,a)

h(m,a)
= 1−

λ
(m−1,a)
0

h(m−1,a)

We have:
{
κ(m,a)λ

(m,a)
1

h(m,a)

}
=

{
1−

λ
(m−1,a)
0 λ

(m,a)
1

h(m−1,a)

}

= 1−
λ
(m−1,a)
0 λ

(m,a)
1

h(m−1,a)
by Lemma 35
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and for i ∈ {3, . . . n} we have:

{
κ(m,a)λ

(m,a)
i

h(m,a)

}
=

{
1−

λ
(m−1,a)
i (λ

(m−1,a)
1 + λ

(m−1,a)
2 )

h(m−1,a)

}

=

{
1−

λ
(m−1,a)
1 + λ

(m−1,a)
2

yki

}
by Lemma 34

=

{
1−

λ
(m−1,a)
1

yki
−

λ
(m−1,a)
2 − 1

yki
−

1

yki

}

= 1−
1

yki
by Lemma 32

Putting this all together, for m = 1 we obtain:

n∑

i=0

{
κ(1,a)λ

(1,a)
i

h(1,a)

}
=

{
κ(1,a)λ

(1,a)
2

h(1,a)

}
+ n−

n−2∑

i=0

1

yi
−

1

2tn−1

=

{
κ(1)λ

(1)
2

h(1)

}
+ n−

tn−1 − 1

tn−1

−
1

2tn−1

by Lemma 20

> n− 1

and for m > 2 we obtain:

n∑

i=0

{
κ(m,a)λ

(m,a)
i

h(m,a)

}
>

{
κ(m,a)λ

(m,a)
2

h(m,a)

}
+ n−

n−2∑

i=0

1

yi
−

1

2tn−1

−
λ
(m−1,a)
0 λ

(m,a)
1

h(m−1,a)

> (n− 1) +
1

2tn−1

−
λ
(m−1,a)
0 λ

(m,a)
1

h(m−1,a)

> n− 1

where at the last step we used Lemma 35.

Lemma 38. Let λ
(m,a)
i be as in Proposition 22, let n > 5, let a ∈ {0, 1, . . . , n − 2}, and

let i, j ∈ {3, . . . , n} be distinct. There exists a prime p such that, for all m > 0, p divides

λ
(m,a)
1 , λ

(m,a)
i , and λ

(m,a)
j but p does not divide λ

(m,a)
0 or λ

(m,a)
2 .

Proof. We have λ
(0,a)
i = tn−1

yki
, λ

(0,a)
j = tn−1

ykj
, and λ

(0,a)
1 = tn−1

ya
. Since n > 5 we can find

kl ∈ {0, 1, . . . , n−2}\{a, ki, kj}. Let p be a prime dividing ykl . Then p divides λ
(0,a)
i , λ

(0,a)
j ,

and λ
(0,a)
1 and thus, by Lemma 26, p divides neither λ

(0,a)
0 nor λ

(0,a)
2 . We now proceed by

induction on m: the induction step is straightforward.
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Lemma 39. Let λ
(m,a)
i be as in Proposition 22, let a ∈ {0, 1, . . . , n− 2}, let m > 1, and

let κ(m,a) = h(m,a) − h(m−1,a). Then κ(m,a) ∈ {2, . . . , h(m,a) − 2}, and:

n∑

i=0

{
λ
(m,a)
i κ(m,a)

h(m,a)

}
< 2

where {x} denotes the fractional part of x.

Proof. The first statement follows immediately from Lemma 25. The conclusions of
Lemma 34 hold here too, and thus:

κ(m,a)

h(m,a)
= 1−

λ
(m−1,a)
0

λ
(m−1,a)
1 + λ

(m−1,a)
2

It follows that:
{
κ(m,a)λ

(m,a)
2

h(m,a)

}
=

{
−λ

(m,a)
2

λ
(m−1,a)
0

λ
(m−1,a)
1 + λ

(m−1,a)
2

}
= 0

and, for i ∈ {3, . . . , n}:

{
κ(m,a)λ

(m,a)
i

h(m,a)

}
=

{
−λ

(m,a)
i

λ
(m−1,a)
0

λ
(m−1,a)
1 + λ

(m−1,a)
2

}
= 0

Thus:
n∑

i=0

{
κ(m,a)λ

(m,a)
i

h(m,a)

}
=

{
κ(m,a)λ

(m,a)
0

h(m,a)

}
+

{
κ(m,a)λ

(m,a)
1

h(m,a)

}
< 2
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