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Abstract

Let P be a convex polytope containing the origin, whose dual is a lattice poly-

tope. Hibi’s Palindromic Theorem tells us that if P is also a lattice polytope then

the Ehrhart δ-vector of P is palindromic. Perhaps less well-known is that a similar

result holds when P is rational. We present an elementary lattice-point proof of

this fact.

1 Introduction

A rational polytope P ⊂ Rn is the convex hull of finitely many points in Qn. We shall
assume that P is of maximum dimension, so that dim P = n. Throughout let k denote
the smallest positive integer for which the dilation kP of P is a lattice polytope (i.e. the
vertices of kP lie in Zn).

A quasi-polynomial is a function defined on Z of the form:

q(m) = cn(m)mn + cn−1(m)mn−1 + . . . + c0(m),

where the ci are periodic coefficient functions in m. It is known ([Ehr62]) that for a
rational polytope P , the number of lattice points in mP , where m ∈ Z≥0, is given by
a quasi-polynomial of degree n = dim P called the Ehrhart quasi-polynomial ; we denote
this by LP (m) := |mP ∩ Zn|. The minimum period common to the cyclic coefficients ci

of LP divides k (for further details see [BSW08]).
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Stanley proved in [Sta80] that the generating function for LP can be written as a
rational function:

EhrP (t) :=
∑

m≥0

LP (m)tm =
δ0 + δ1t + . . . + δk(n+1)−1t

k(n+1)−1

(1 − tk)n+1
,

whose coefficients δi are non-negative. For an elementary proof of this and other relevant
results, see [BS07] and [BR07]. We call (δ0, δ1, . . . , δk(n+1)−1) the (Ehrhart) δ-vector of P .

The dual polyhedron of P is given by P ∨ := {u ∈ Rn | 〈u, v〉 ≤ 1 for all v ∈ P}. If the
origin lies in the interior of P then P ∨ is a rational polytope containing the origin, and
P = (P ∨)∨. We restrict our attention to those P containing the origin for which P ∨ is a
lattice polytope.

We give an elementary lattice-point proof that, with the above restriction, the δ-
vector is palindromic (i.e. δi = δk(n+1)−1−i). When P is reflexive, meaning that P is
also a lattice polytope (equivalently, k = 1), this result is known as Hibi’s Palindromic
Theorem [Hib91]. It can be regarded as a consequence of a theorem of Stanley’s concerning
the more general theory of Gorenstein rings; see [Sta78].

2 The main result

Let P be a rational polytope and consider the Ehrhart quasi-polynomial LP . There exist
k polynomials LP,r of degree n in l such that when m = lk + r (where l, r ∈ Z≥0 and
0 ≤ r < k) we have that LP (m) = LP,r(l). The generating function for each LP,r is given
by:

EhrP,r(t) :=
∑

l≥0

LP,r(l)t
l =

δ0,r + δ1,rt + . . . + δn,rt
n

(1 − t)n+1
, (2.1)

for some δi,r ∈ Z.

Theorem 2.1. Let P be a rational n-tope containing the origin, whose dual P ∨ is a lattice
polytope. Let k be the smallest positive integer such that kP is a lattice polytope. Then:

δi,r = δn−i,k−r−1.

Proof. By Ehrhart–Macdonald reciprocity ([Ehr67, Mac71]) we have that:

LP (−lk − r) = (−1)nLP ◦(lk + r),

where LP ◦ enumerates lattice points in the strict interior of dilations of P . The left-
hand side equals LP (−(l + 1)k + (k − r)) = LP,k−r (−(l + 1)). We shall show that the
right-hand side is equal to (−1)nLP (lk + r − 1) = (−1)nLP,r−1(l).

Let Hu := {v ∈ Rn | 〈u, v〉 = 1} be a bounding hyperplane of P , where u ∈ vert P ∨.
By assumption, u ∈ Zn and so the lattice points in Zn lie at integer heights relative to
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Hu; i.e. given u′ ∈ Zn there exists some c ∈ Z such that u′ ∈ {v ∈ Rn | 〈u, v〉 = c}. In
particular, there do not exist lattice points at non-integral heights. Since:

P =
⋂

u∈vert P∨

H−
u ,

where H−
u is the half-space defined by Hu and the origin, we see that (mP ◦) ∩ Zn =

((m − 1)P ) ∩ Zn. This gives us the desired equality.
We have that LP,k−r (−(l + 1)) = (−1)nLP,r−1(l). By considering the expansion

of (2.1) we obtain:

n
∑

i=0

δi,k−r

(

−(l + 1) + n − i

n

)

= LP,k−r(−(l + 1))

= (−1)nLP,r−1(l) = (−1)n

n
∑

i=0

δi,r−1

(

l + n − i

n

)

.

But
(

−(l+1)+n−i

n

)

= (−1)n
(

l+n−i

n

)

, and since
(

l

n

)

,
(

l+1
n

)

, . . . ,
(

l+n

n

)

form a basis for the vector
space of polynomials in l of degree at most n, we have that δi,k−r = δn−i,r−1.

Corollary 2.2. The δ-vector of P is palindromic.

Proof. This is immediate once we observe that:

EhrP (t) = EhrP,0(t
k) + tEhrP,1(t

k) + . . . + tk−1EhrP,k−1(t
k).

3 Concluding remarks

The crucial observation in the proof of Theorem 2.1 is that (mP ◦)∩Zn = ((m − 1)P )∩Zn.
In fact, a consequence of Ehrhart–Macdonald reciprocity and a result of Hibi [Hib92] tells
us that this property holds if and only if P ∨ is a lattice polytope. Hence rational convex
polytopes whose duals are lattice polytopes are characterised by having palindromic δ-
vectors. This can also be derived from Stanley’s work [Sta78] on Gorenstein rings.
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