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Abstract 

This paper describes an experiment that was undertaken to compare three levels of 

automation in rail signalling; a high level in which an automated agent set routes for 

trains using timetable information, a medium level in which trains were routed along 

pre-defined paths, and a low level where the operator (signaller) was responsible for 

the movement of all trains. These levels are described in terms of a rail automation 

model based on previous automation theory (Parasuraman, Sheridan, & Wickens, 

2000). Performance, subjective workload, and signaller activity were measured for 

each level of automation running under both normal operating conditions and 

abnormal, or disrupted, conditions. The results indicate that perceived workload, during 

both normal and disrupted phases of the experiment, decreased as the level of 

automation increased and performance was most consistent (i.e. showed the least 

variation between participants) with the highest level of automation. The results give a 

strong case in favour of automation, particularly in terms of demonstrating the potential 

for automation to reduce workload, but also suggest much benefit can achieved from a 

mid-level of automation potentially at a lower cost and complexity. 

 

Impact Statement 

Research in the area of automation, and in particular in the examination of human 

interaction with different levels of automation, has normally been undertaken in 
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laboratory settings using simple tasks and naïve participants where the level of 

automation can be easily manipulated. This research was undertaken with expert 

participants using complex simulation of three ecologically valid levels of automation 

and provides empirical field validation of some of the results found in laboratory 

studies. 

Introduction 

Automation, defined as the performance of tasks by machines (often computers) rather 

than human operators (Parasuraman & Riley, 1997), continues to be deployed in 

various industrial settings in order to increase efficiency and reduce variability. Cited 

benefits include the reduction of operator workload and error coupled with a reduction 

in labour costs (Dekker, 2004; Hollnagel, 2001). These benefits make automation very 

attractive to businesses wishing to increase efficiency while reducing costs. Numerous 

lab-based studies in the field of human factors have been undertaken to investigate the 

effects of automation and these have often found the benefits to be less clear-cut than 

might be expected (Parasuraman & Riley, 1997). For example, situation awareness 

may be reduced under high levels of automation (Kaber & Endsley, 2004) and 

workload may be increased under abnormal circumstances (Kantowitz, 1994). The 

level of reliability of automation is crucial, with a level below 70% believed to be worse 

than no automation (Wickens & Dixon, 2007). Among other weaknesses, such as the 

potential for programming errors (Wickens, 1992; Wiener & Curry, 1980), automation 

can lack the flexibility of human operators in the face of novel situations and thus 

difficulties can be encountered when the designers attempt to replace human problem 

solving abilities with automation. Hence, automation has thus far been most successful 

in closed loop systems, such as manufacturing systems, but humans are likely to 

remain vital to system performance in open loop systems, such as are commonly found 

in control environments, for many years (Parasuraman & Wickens, 2008).  

Rail Signalling 

Rail signalling is an example of an open loop system that cannot easily be fully 

automated. At its most basic, rail signalling involves authorising trains to move through 

the rail infrastructure while ensuring separation between all trains in an area. 

Separation in the rail context is defined in terms of sections of track (block sections) 
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and under normal signalling rules only one train may occupy a section at any one time. 

As networks become more congested signalling systems face greater challenges in 

terms of performance. Decisions must be made on the ordering of trains through 

junctions and bottlenecks, and on the most effective management of failure situations. 

These challenges are particularly prevalent in the British rail network due to the 

complexity of the infrastructure and the congestion on key routes. 

 

Nevertheless, automation has been present in British rail signalling systems for 

decades. At a basic level, the interlocking systems that ensure signallers do not set 

conflicting routes (i.e. prevent a second train being authorised to enter a block section) 

for trains can be regarded as an early form of automated decision support. Mechanical 

forms of interlocking have been in place since the 1800s and modern computer based 

interlockings still perform the same function today. Early signalling systems were 

controlled through sets of levers directly connected to the trackside equipment. Pulling 

these levers changed signal aspects or the position of points, allowing signallers to 

change the routes of trains and give train drivers the authority to proceed. These lever 

frame systems were the predominant form of signalling in the UK until the 1950s when 

eNtry-eXit (NX) panels were introduced. NX panels reduced the physical labour 

involved with signalling; the signaller simply presses buttons on the panel and the 

physical movement of the trackside equipment is achieved automatically. In the 1980s 

visual display unit (VDU) based signalling was introduced in Britain facilitating the 

development of more advanced decision making automation in the form of Automatic 

Route Setting (ARS). All three forms of signalling are still in use on the British rail 

network but only the modern VDU form is considered here.  

Rail Automation Model 

Models of levels of automation have typically been used to structure investigations into 

the impact of different levels of automation on key cognitive ergonomics concepts such 

as situation awareness (SA; e.g. Durso & Sethumadhavan, 2008; Endsley & Kiris, 

1995; Kaber, Onal, & Endsley, 2000; Kaber, Perry, Segall, McClernon, & Prinzel, 2006) 

and workload (e.g. Kaber & Endsley, 2004; Kaber et al., 2006; Kantowitz, 1994). The 

levels of automation identified in the models can be used to distinguish levels of 

independent variables in experimental designs; if sufficient levels are defined, the effect 

of automation can being to be described on a continuum. The levels of automation 
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incorporated in this study are described in terms of the model for types and levels of 

automation described by Parasuraman et al. (2000). The benefit of this model over 

those used by other researchers (e.g. Billings, 1991; Endsley & Kiris, 1995) is the 

ability to discriminate levels and types of automation between four functional 

dimensions of Information Acquisition, Information Analysis, Decision and Action 

Selection, and Action Implementation. Simply describing automation systems along 

one continuum does not give an appreciation of the different types of automation which 

may be present within systems and does not allow the analysis of the impact of 

automation at different stages of decision making. 

 

Parasuraman et al. (2000) provide an interpretation of how automation will vary in each 

of these functional dimensions. For information acquisition, a low level of automation is 

suggested which simply helps gather the information; a mid-level is when the 

automation organises the information in some form, perhaps forming priorities; and a 

high level is where the automation filters the information so that a full set of raw data is 

not provided to the operator. Lower levels of information analysis automation may 

involve the use of algorithms to extrapolate incoming data over time or predict, and a 

higher level may involve integration of input variables into a single value. Automation 

may assist the operator with decision and action selection, for example by using 

conditional logic. Parasuraman et al. (2000) proposed that the decision selection 

automation level increases as the automation narrows the decision alternatives. 

Automation of the final stage, action implementation, may be the easiest type of 

automation to understand or observe with the level being defined by how much 

physical activity is replaced by automation. 

 

The work of Parasuraman et al. (2000) was extended during this study to generate 

levels appropriate to the rail signalling domain in each of the four functional 

dimensions. A limitation of the existing scales used to describe the level of automation 

in each functional dimension developed by Parasuraman et al. is that they combine the 

functional dimensions, creating one scale for information acquisition and analysis and a 

second for decision-making and action implementation. This approach compromises 

some of the power of the four functional dimensions as the level of automation could 

differ independently in each. None of the other existing definitions of levels (e.g. 

Endsley & Kiris, 1995; Endsley & Kaber, 1999; Sheridan & Verplank, 1978) exactly 

matched the differences seen in the rail setting. Therefore four distinct scales were 
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established to describe automation at the four different decision making stages in the 

context of rail control. The levels defined for the rail environment are described in Table 

1.  

 

Information Acquisition 
None Human gathers all information manually 

Low Information is gathered with assistance from ICT 

Medium Information gathering is shared between computer and human 

High Computer and technology provide most required information 

Full All information collected automatically 

Information Analysis 
None Human analyses all information 

Low Basic analysis to identify immediate control requirements 

Medium Identification of control requirements and basic prediction of future states 

High Identification of control requirements and advanced prediction of future states 

Full Full predictive analysis performed using all required data 

Decision and Action Selection 
None Human makes all decisions 

Low Computer provides decision support to help ensure decisions are safe 

Medium Computer uses basic rules to make decisions between competing demands 

High Computer makes complex decisions between competing demands under 
normal circumstances 

Full Computer makes complex decisions under all conditions 

Action Implementation 
None Human augments all actions 

Low Computer augments humans’ physical labour 
Medium Computer implements any actions not requiring a decision 

High Computer implements most required actions 

Full Computer implements all control actions 
Table 1: Levels of Automation in the Rail Automation Model 

 

This model can be used to describe the three levels of automation used in this 

experiment; ARS, Auto-Routes, and Manual operation. The lowest level was Manual in 

which the participants were required to route all the trains under their control manually 

via the VDU interface. The next level was Auto-Routes in which specific routes could 

be set up on the workstation and any trains arriving at the start of an auto-route would 

be automatically routed along that path. Any trains planned over a different path 

required the signaller to cancel the auto-route and set an alternate route for that train. 

ARS was the highest level of automation. ARS has access to the planned timetable for 

all trains in the area and uses this information to set appropriate routes for trains 

arriving in its area of control. ARS also uses advanced algorithms to resolve any 

conflicts between trains. Figure 1 describes these three levels of automation in terms of 

the Rail Automation Model.  
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Figure 1: Levels of Rail Signalling Automation 

 

All three LOA have high levels of information acquisition automation, as most 

information required is presented on the VDU. No automatic analysis of information is 

performed in the Manual LOA and the Auto-Routes only analyses the information to the 

extent of recognising a train is in the area. The ARS LOA however performs a more 

advanced analysis of information, comparing the relative positions and delays of trains 

to determine optimum routing. The interlocking provided in all signalling systems 

provides support for decision and action selection for all LOA, and hence Manual and 

Auto-routes have been assigned low levels of decision making automation. ARS 

provides additional automation of decision and action selection by basing the routing of 

trains on the outputs of its analysis, taking into account the competing demands of all 

the trains in the area. In terms of action implementation, the physical moving of points 

and signals is achieved automatically but in the Manual condition the signaller must 

specifically select each route for each train. Therefore this has been assigned a low 

level of automation. In the Auto-routes condition, any routings which do not require a 

specific decision are implemented automatically; hence, a medium LOA. For ARS, 

almost all required actions can be implemented by the automation. The main 

differences between the three LOA are therefore in terms of information analysis and 

decision and action selection, with the ARS LOA being considerably higher than both 

Auto-Routes and Manual, and for action implementation there are incremental raises 

between the three LOA. The tasks for each LOA are described in Table 2 in terms of 

each functional dimension. 

1 

2 

3 

4 

5 

ARS (High) 

Auto-Routes (Med) 

Manual (Low) 

Information 

Acquisition 

Decision and 

Action 

Selection 

Action 

Implementation 
Information 

Analysis 

Full 

High 

Medium 

Low 

None 
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Table 2: Tasks for each LOA 

 Information 

Acquisition 

Information 

Analysis 

Decision and 

Action Selection 

Action 

Implementation 

Manual Train Location (A) 

Train Identity (A) 

Recognise train (M) 

Check route (M) 

Check timing (M) 

Check conflicts (M) 

Decide route (M) 

Check safety (A) 

Decide when to set 

route (M) 

Set Route (M) 

Auto-

Routes 

Train Location (A) 

Train Identity (A) 

Recognise train (A) 

Check route (M) 

Check timing (M) 

Check conflicts (M) 

Decide route (M) 

Check safety (A) 

Decide when to set 

route (A) 

Set Route (A) 

ARS Train Location (A) 

Train Identity (A) 

Recognise train (A) 

Check route (A) 

Check timing (A) 

Check conflicts (A) 

Decide route (A) 

Check safety (A) 

Decide when to set 

route (A) 

Set Route (A) 

 

For the remainder of this paper, the three levels of automation will be referred to as 

High (ARS), Medium (Auto-routes), and Low (Manual). 

Effects of Automation 

The study reported here follows on from previous qualitative research in the area which 

had found that signallers’ physical workload has reduced as a result of higher levels of 

automation, but mental workload may have risen due to the additional need to think 

ahead and anticipate the actions of the automation in order to control it (Balfe et al., 

2012). The same study also found that workload reduction was not achieved during 

disrupted train running, for example when there are train delays or infrastructure 

failures. A series of observations of signallers using the ARS system in the signalling 

environment had also been previously undertaken and found signallers engaging in 

different types of monitoring and signaller monitoring behaviour appeared to be driven 

by the quality of the automation (Balfe et al., 2008). Previous research had also 

suggested that the complexity of the ARS system limited the signallers’ ability to 

understand and work cooperatively with it, with a resulting impact on performance 

(Balfe et al., 2012). This study considers the effect that this automation has on system 

performance, operator behaviour and perceived workload in VDU based signalling. 
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Performance in terms of mission effectiveness is a popular metric for evaluating and 

comparing levels of automation (Donmez, Pina, & Cummings, 2009). Without 

improving performance, or at least maintaining performance it is difficult to argue a 

benefit from automation. Data on performance are therefore an important part of 

evaluating an automated system. Several studies have shown that higher levels of 

automation result in higher levels of performance (e.g. Lorenz et al., 2002, Lee & 

Morey, 1992). Metzger and Parasuraman (2005) used experienced air-traffic 

controllers to examine the effect of conflict detection automation on operator workload 

and performance. This study found that automation did improve performance, but only 

when the automation was perfect (i.e. it correctly identified all conflicts). Research in 

the rail signalling environment has shown that poorly designed automation and 

interface design can result in reduced performance (Sandblad et al., 1997). The ability 

for automation to improve performance is central to its implementation and so system 

performance was a key variable in this research. 

 

Well designed automation may lead to a reduction in workload; however, it is often the 

case that while a reduction in physical workload is achieved, there is a potential 

increase in mental workload for the operator (Megaw, 2005). This may be due to the 

need to assimilate greater quantities of information (Macdonald, 1999) or because 

monitoring of automation becomes burdensome (Kaber & Endsley, 2004; Warm, 

Dember, & Hancock, 1996). It is also the case that it is often easier to automate 

information acquisition and action implementation, leaving the cognitive load 

unchanged for operators. Automation may also lead to peaks and troughs in workload 

if it reduces workload during periods when workload was already low but becomes a 

burden during higher workload phases, a situation known as ‘clumsy automation’ 

(Wiener, 1989; Woods, 1996). Automation which assists the operator during high 

workload conditions is most likely to be successful (Dixon & Wickens, 2006), because 

this is when the largest benefits can be achieved. The ability of automation to reduce 

workload during normal operations is well documented in experimental studies (e.g. 

Kaber et al., 2000; Harris et al., 1995; Kantowitz, 1994; Röttger, Bali, & Manzey, 2009) 

and Kaber et al. (2006) found that the greatest workload reductions can be achieved 

when information acquisition and action implementation tasks are automated. This may 

be due to the need for operators to monitor the automation during information analysis 

and decision making phases and continue to make their own decisions as a basis for 

comparison with the automation. Kaber and Endsley (2004) also suggested that the 
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very act of monitoring an automated system may increase workload, perhaps due to 

the effort of remaining vigilant (Warm, Dember, & Hancock, 1996). Relatively few 

studies have directly evaluated workload and levels of automation during disruption, 

but Kantowitz (1994) found that automation may increase workload during incidents. 

The different levels of automation present in the rail signalling environment present an 

ideal opportunity to evaluate the effect of level of automation on workload in a complex 

real-world setting and to compare the results to those found in the literature. 

 

The impact of automation on operator behaviour was also investigated in this study. 

Previous research (Balfe et al., 2008; Sharples et al., 2011) has noted variation in 

monitoring strategies during observations of signalling staff whilst using automation. 

Signallers varied their posture from an upright seated position, labelled ‘active 

monitoring’, to a more relaxed position labelled ‘passive monitoring’. It was theorised 

that there was a corresponding decrease in demand from the workstation when the 

signaller adopted passive monitoring while interventions increased when active 

monitoring was more prevalent. There is relatively little existing research on operator 

behaviour and automation; eye-tracking data has been collected in some studies as a 

measure of monitoring behaviour, for example Bagheri & Jamieson (2004) studied 

monitoring behaviour using eye-tracking equipment and found that operators adjusted 

their monitoring strategy according to the automation reliability. Sarter, Mumaw & 

Wickens (2007) collected eye-tracking data from experienced pilots in a simulator and 

found that pilots do not monitor automation settings to the same degree as basic flight 

parameters. Metzger & Parasuraman (2006) collected eye-tracking data from 

experienced air traffic controllers using an automated conflict cuing system and found 

differences in visual attention under different workload conditions. However, these 

studies focussed on the specific information used by participants; Bahner, Hüper & 

Manzey (2008) developed an approach measuring operator sampling rates of 

information and used this to investigate possible automation complaceny. Röttger, Bali, 

& Manzey (2009) used the same approach to collect behavioural data on operator 

information sampling and manual interventions at different levels of automation. They 

found that operators reduced the frequency of information sampling and intervention 

when working with higher levels of automated support. This study recognised that 

observing operator behaviour can give valuable insight in to operator use of and 

interaction with automaton and the study reported here sought to further contribute to 

this area. 
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Situation awareness is frequently measured in experimental studies of levels of 

automation (e.g. Kaber et al., 2006; Endsley & Kaber, 1999), with higher levels of 

situation awareness potentially improving performance during automation failures 

(Kaber et al., 2000). Despite the interesting results that have emerged from lab-based 

studies, situation awareness was not included in this study; this was primarily due to 

the lack of a validated tool for measurement of situation awareness in the rail signalling 

environment (Golightly et al., 2012) and the need to first understand which factors 

should be measured with regard to situation awareness in a signalling context.  

 

This research aimed to investigate the three dependent variables in an ecologically 

valid simulated setting, using a real automation system and operators who were 

experts in the environment and with the system. All three LOA represent methods of 

working which are used extensively across the UK signalling network. The experiment 

therefore gathered data on real world use of automation in contrast to much of the 

literature in the area which tends to use artificial simulations and/or non-expert 

participants (e.g. Lee & Moray, 1994; Sauer, Nickel & Wastell, 2013; Röttger, Bali, & 

Manzey, 2009; Endsley & Kaber, 1999; Bagheri & Jamieson, 2004; Beck, Dzindolet, & 

Pierce, 2007; Muir & Moray, 1996; Johnson et al., 2002; Meyer, Feinshreiber, & 

Parmet, 2003). Other studies which did use real world systems and expert operators 

have typically been more exploratory (e.g. Sarter & Woods, 1992; Sarter & Woods, 

1994;) or examined the possible implications of a new tool (e.g. Loft, Smith, & 

Bhaskara, 2011; Alberdi et al, 2008) and have not directly compared different levels of 

automation in terms of workload, performance and operator behaviour. This experiment 

achieved this and also specifically examined the impact of disruption, or non-normal 

system operation, an aspect which is frequently omitted in the existing body of 

research (Sauer, Nickel, & Wastell, 2013). During disruption, ARS cannot be relied 

upon to make a correct decision, due to limitations in the algorithms that cannot 

account for all circumstances or for changes in the timetable since the algorithms were 

designed, and therefore this system represents that of an ‘imperfect’ automation 

system (Wickens & Dixon, 2007). 

 

The hypotheses tested in this experiment drew on the existing findings in the literature, 

as well as the qualitative research previously conducted. The following hypotheses 

were proposed:  
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1. Overall workload will be reduced as level of automation increases and will 

increase for all LOA following the introduction of disruption 

2. The support in setting routes, and consequent lower workload, will lead to 

higher levels of performance in the automated conditions 

3. Higher levels of passive monitoring and quiet time will be observed under 

higher levels of automation while higher levels of active monitoring will be 

observed during the Manual condition to support Information Analysis 

Method 

Participants 

Six participants took part in this study. All were male signallers from a large London 

based signal box. Participation was arranged in advance, although it proved extremely 

difficult to procure signallers for the experiment due to staff shortages in the signal box 

in which the experiment was conducted. For this reason, the number of participants 

was limited to six. The participants had a minimum of five years experience in the 

signal box and thus were expert signallers with familiarity of both the signalling area 

and the automated systems used in the experiment. 

Apparatus and Materials 

Simulator 

Figure 2 shows the simulator used for this experiment. This simulator is typically used 

for training new recruits and to assess and refresh existing signallers. Although not an 

exact physical replica of the real signalling workstation, this simulator functions in an 

identical manner to a real workstation and has the same number of screens and 

identical input devices (i.e. trackerball and keyboard). The simulator gives a percentage 

score based on performance compared to the timetable. 
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Figure 2: Signalling Simulator 

Integrated Workload Scale 

The Integrated Workload Scale (Pickup et al, 2005) was used to measure participants’ 

perceived workload. This is a nine-point scale developed specifically to measure 

perceived mental workload in the signalling environment. A high score on the IWS 

indicates a high workload. Pickup, Wilson, Norris, Mitchell, and Morrisroe (2005) report 

that this tool has proven to be a valuable measure of peaks and troughs in workload 

over time or within a set of scenarios. They also report that the tool is acceptable to 

signallers, having been developed specifically for use in the signalling environment, 

and maps well onto expected workload measured using other techniques. It was 

constructed using the Thurstone technique and so the ratings can be used as interval 

data. Participants were provided with a laminated copy of IWS and asked to verbally 

rate their workload on this scale at 2min intervals throughout the experiment. 

Design 

Table 2 shows the experimental design. A part-counterbalanced repeated measures 

design was used in which three LOA were examined; High (ARS), Medium (Auto-

routes), and Low (Manual). Each condition lasted for 30min and used the same 
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scenario based on the same section of the timetable. After 15min disruption was 

introduced. 

 

Order Group A Group B Group C 

1st  High 
Normal 

Low 
Normal 

Medium 
Normal 

Disrupt Disrupt Disrupt 

2nd Medium 
Normal 

High 
Normal 

Low 
Normal 

Disrupt Disrupt Disrupt 

3rd Low 
Normal 

Medium 
Normal 

High 
Normal 

Disrupt Disrupt Disrupt 

Table 3: Study Design 

 

In order to balance the potential learning effect the participants completed the three 

conditions in different orders. However, a learning effect was not anticipated as the 

participants were expert signallers who operate this timetable and area on a daily basis 

and are competent to deal with any disruption which may occur.  

 

A form of disruption was also introduced half way through the experiment, meaning 

there were two levels of disruption, normal and disrupted. Choice of disruption was a 

key part of the experimental design as a noticeable effect on workload was required to 

understand whether the impact of automation was different for different levels of 

demand. Many disrupted conditions on the railway involve a high degree of 

communication and/or knowledge and application of the rules. It was necessary to 

control communications as far as possible to ensure that they did not affect the results 

as communications can contribute to increased workload and may have masked 

workload effects of the automation. It was also desirable to avoid application of the 

rules as this held ethical concerns in the event of mis-application by any participant. 

For these reasons, the selected form of disruption was closure of a section of track, 

which was a platform at a busy station. The participants were required to route trains 

around the closed platform and regulate this change to the service.  

 

The disrupted condition was always second in the experiment; the participants 

encountered 15 min of normal running and then 15 min of disruption. It was not 

possible to vary the order as disruption has consequential effects and even if the 
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platform had reopened, the signaller would still be required to regulate the resulting 

delays.  

 

The Independent Variables for the experiment were: 

 Level of Automation 

 Level of Disruption 

 

The Dependent Variables for the experiment were: 

 IWS Scores (perceived workload) 

 Signaller Behaviour 

 Performance Scores (generated by the simulator) 

Behaviour Coding 

The participants were observed during each scenario to note their activity. The coding 

scheme described by Sharples et al. (2011) was adapted for this experiment. The 

coding was based around the five basic codes of Monitoring, Interaction, Planning, 

Communicating, and Quiet Time. As in Sharples et al. (2011), two forms of monitoring 

were coded, active and passive monitoring. Active monitoring was coded when the 

participant was sitting up while viewing the signalling screens. Passive monitoring was 

coded when the participant was sitting back while viewing the signalling screens. 

Interaction was coded when participants used the trackerball and the purpose of each 

interaction was also coded; interactions coded included route setting and cancelling, 

auto-routes set-up, and use of reminders. Reminders are a device that can be placed 

on a piece of infrastructure to prevent it being used. They are frequently applied to 

signals on the VDU to prevent a route being set to or from that signal. Quiet time was 

coded whenever the participant was not involved in any aspect of the signalling task. 

Due to the simulated environment, planning and communication activities were limited 

and no analysis was performed on these. Data were coded live using a software 

package.  

Procedure 

Three researchers were used to gather the data during the experiment. The first 

researcher used a laptop to code signaller behaviour in real time. The second 
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researcher administered the verbal IWS and was responsible for timekeeping. The third 

researcher, a signalling subject matter expert (SME), sat in the adjoining room and 

gathered performance data. The SME also handled any communications with the 

participants required as part of the experiment. The experimental set-up is shown in 

Figure 3. 

 

 

Figure 3: Experimental Set-Up 

 

The participant was invited into the simulator room and the experiment was explained 

to him. He was asked to read the briefing sheet and sign the consent form. The 

participant then took his place at the simulator and the experiment began. At the mid-

point of the experiment, the third researcher announced the closure of the platform to 

the signaller. The remaining half of the experiment was therefore under disrupted 

conditions. At the end of the experiment the simulator was paused and the 

performance data collected. The same procedure was followed for the second and third 

scenarios for which the level of automation was changed according to the group to 

which each participant was assigned. 
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Results 

Workload 

Participants were asked to verbally rate their workload on the IWS Scale every 2min. 

The results are presented here as a graph showing the average workload scores for 

each LOA at each 2min interval.  

 

 Figure 4: Mean IWS Scores for Each LOA  
 

It is clear from Figure 4 that the High LOA was consistently rated lowest and the Low 

LOA was consistently rated highest. The Medium LOA initially showed increased 

workload scores which quickly tapered off. This corresponds with the need to set up 

the auto-routes at the beginning of the scenario. Once these were established the 

workload fell and remained reasonably consistent until the disruption was introduced. 

All three LOA showed an increase in perceived workload following the introduction of 

disruption, with the High condition showing the steepest increase. High automation 

workload scores increased from a mean of 1.77 before disruption to a mean of 3.69 

after disruption, almost 2 full workload points. The Medium automation condition 

increased by just over 1 workload point, from 3.31 to 4.37, and the Low automation 

condition by 1.22 workload points from 4.40 to 5.52. The steep increase for the High 

condition corresponds with the signaller setting up protection around the affected area 

to prevent any trains being routed through. Workload continues to increase following 

the introduction of disruption as delays begin to occur, further complicating regulation. 
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A 2x3 repeated measures ANOVA was run on the averaged IWS data to determine 

whether there were any significant differences due to LOA or disruption. A significant 

main effect of LOA was found (F(2, 10) = 31.916, p<0.001) and a Bonferroni post-hoc 

showed that this was between all levels of automation (M(High) = 2.74, SD(High) = 

1.01); M(Medium) = 3.82, SD(Medium) = 0.69; M(Low) = 5.02, SD(Low) = 0.69; p(High-

Med) < 0.05; p(High-Low) < 0.005; p(Med-Low) < 0.01). There was also a significant 

effect of disruption (F(1, 4) = 36.462, p < 0.005) and a significant interaction (F(2, 8) = 

11.636, p < 0.005) with Low and High automation having a significant difference in 

reported level of workload after the introduction of disruption.  

Performance  

Figure 5 describes the simulator generated performance score of each participant for 

each LOA. It can be seen that performance was most consistent across participants for 

the High LOA. This was also consistently the highest performance, followed by the 

Medium condition and finally the Low condition, both of which showed more variation 

between participants. A repeated measures one-way ANOVA was run on these data 

and a significant main effect of LOA was found (F(2, 10) = 11.516, p < 0.005). A 

Bonferroni post-hoc test showed that the difference was between the Low automation 

group (M(Low) = 75.17, SD(Low) = 3.97) and both higher automation groups 

(M(Medium) = 81.83, SD(Medium) = 5.00, p<0.05; M(High) = 84.83, SD(High) = 1.94, 

p<0.01) with performance lowest in the Low condition.   
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Figure 5: Performance Scores 

 

The order of level of automation was varied for each participant to balance any 

potential learning effect. A learning effect was not anticipated and examining the 

performance data in terms of the order in which each scenario was completed (i.e. first, 

second, or third) shows that none occurred. Table 4 shows the average performance 

score for each order. 

Order Average score 

1 81% 
2 81% 
3 79% 

Table 4: Average performance score for each order of condition 

Signaller Activity 

The results of the behaviour observation are presented in the following sections. 
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Figure 6: Mean Active Monitoring 

 

A 2x3 repeated measures ANOVA found no significant main effect of level of 

automation or disruption. There was a significant interaction (F (2, 10) = 7.713, p < 

0.5). Observation of the data shows that active monitoring was lowest during the High 

LOA under normal running. The high standard deviation (SD) for High and Medium 

LOA indicate that active monitoring was highly variable between participants for those 

two conditions but was much more stable during the Low LOA. 

Passive Monitoring 

Figure 7 describes the mean time dedicated to passive monitoring for all conditions.  
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Figure 7: Mean Passive Monitoring 

 

A 2x3 repeated measures ANOVA revealed a significant main effect of LOA for passive 

monitoring, (F = 11.762 (2, 10), p<0.005). Bonferroni’s post-hoc comparison revealed 

this difference was between the High LOA and both lower automated conditions 

(M(High) = 365.17, SD(High) = 272.95; M(Medium) = 235.58, SD(Medium = 222.74, p< 

0.05; M(Low) = 21.5, SD(Low) = 43.29, p < 0.05). A significant interaction was also 

found (F(2, 10) = 17.157, p < 0.001) demonstrating the particularly strong impact of 

disruption on the high LOA but no signification effect of disruption was found. Again, 

high standard deviations were found for the High and Medium LOA as compared to the 

Low condition. 

Intervention 

Figure 8 describes the use of the trackerball during the experiment. As would be 

expected, use was highest during the Low automation condition as participants used 

the device to set routes for trains in the area. The SD were reasonably small for all 

conditions, suggesting that intervention was driven by the scenario rather than 

individual preference. 

 

A 2x3 repeated measures ANOVA found a significant effect of automation (F(2, 10) = 

92.050, p <0.001) and a significant interaction (F(2, 10) = 8.358, p < 0.1). A Bonferroni 

post-hoc test showed that the Low LOA was significantly different to both higher levels 
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(M(Low) = 388.92, SD(Low) = 45.95; M(Medium) = 184.75, SD(Medium) = 59.76, p < 

0.001; M(High) = 107.75, SD(High) = 66.58, p < 0.001).  

 

 

Figure 8: Use of Trackerball 

 

The purpose of the trackerball interventions was also coded. Figure 9 describes the 

mean and standard deviation of the different types of intervention coded for each LOA.  

 

 

Figure 9: Mean of Intervention Types 

 

A repeated measures two-way ANOVA was run on the data for each dependent 
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= 54.055, p<0.001) and a Bonferroni post-hoc showed that this was between all levels 

of automation (M(High)=15.667, SD(High)=2.315, M(Medium)=47.0.83, 

SD(Medium)=4.913, p<0.005; M(High)=15.667, SD(High)=2.315, M(Low)=127.167, 

SD(Low)=11.861, p<0.001; M(Medium)=47.0.83, SD(Medium)=4.913, M(Low) = 

127.167, SD(Low) = 11.861, p<0.005). No significant effect of disruption was found for 

route-setting, nor a significant interaction. A significant effect of level of automation was 

also found for reminders (F(2, 10) = 76.181, p<0.001) and a Bonferroni post-hoc 

showed that this was between the High LOA and the two lower automation levels 

(M(High) = 13.750, SD(High = 1.806); M(Medium) = 2.917, SD(Medium) = 0.908, 

p<0.001; M(Low) = 2.000, SD(Low) = 0.753), p < 0.001). A significant effect was also 

found for disruption in terms of application of reminder devices (F(1, 5) = 21.818, 

p<0.005). An interaction effect was also found between the two independent variables 

for reminders (F(2, 10) = 21.602, P<0.001). Auto-routes were not further analysed; as 

these were only used in the Medium LOA there was obviously a difference between 

this condition and the others.  

 

Quiet Time 

Figure 10 illustrates the average quiet time observed during each condition. The high 

standard deviations indicate considerable variation between participants, but a 

repeated measures 2x3 ANOVA found only a statistically significant interaction (F(2, 

10) = 5.009, p < 0.05). Observation of the data revealed that quiet time was highest 

during the High automation normal running condition, but was almost equivalent to the 

Medium condition during the disrupted condition. Quiet time was lowest for the Low 

automation condition. All three conditions showed high standard deviations for this 

behaviour. 
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Figure 10: Mean Quiet Time  

Discussion 

Workload 

Workload was expected to reduce as LOA increased, and this was found to be the 

case. A step change can be seen as the level of automation increases, and this is 

reflected in the significant differences found for all levels of automation. Automation 

may reduce workload within any of the four functional dimensions and previous 

research has indicated that automation is most successful at reducing workload when 

applied to the information acquisition and action implementation functional dimensions 

(Kaber et al., 2006). The three LOA are identical for the Information Acquisition 
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Implementation functional dimension. This corresponds with existing theories in the 

literature (Megaw, 2005) but would imply that the main effect of workload was due to 
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mental workload. Further evidence is provided by the High condition, which saw an 

over 200% rise in workload rating following disruption, but a 178% rise in trackerball 

usage. The difference in workload scores can therefore be taken to reflect both 

physical and mental workload decreasing as the level of automation increases, 

suggesting that higher levels of automation can also reduce workload effectively in the 

information analysis and decision making functional dimensions. 

 

A steep increase was seen in the High automation condition when disruption was 

introduced and the signaller began to apply reminder devices. It was also necessary to 

apply these reminders in the other LOA (Medium and Low), but the same steep 

increase in workload is not seen on those graphs, despite the much higher levels of 

physical interaction. It is proposed that the increase seen on the High LOA graph 

represents the signaller becoming more involved in the signalling and task and being 

required to process more information to maintain situation awareness. When the 

disruption was introduced in the High automation condition the signallers suddenly had 

to become involved with manually routing trains around the blocked section of track. 

The same strategy was employed in the two lower automation conditions but as the 

signallers would already have been manually routing all trains in the Low condition, and 

some trains in the Medium condition, the increase in physical activity was not so steep. 

The High condition still showed the lowest workload scores overall, but this sharp 

increase is characteristic of the peaks and troughs associated with ‘clumsy automation’ 

(Wiener, 1989; Woods, 1996) and may represent the mental effort required to more 

fully engage with the system and attain an appropriate level of situation awareness.  

Performance 

The hypothesis in this area was that performance would increase with higher levels of 

automation and the results indicate that performance was significantly improved with 

the assistance of automation with High automation showing the most consistent 

performance across all signallers. However, two participants achieved higher 

performance under the Medium condition illustrating that high levels of automation do 

not always result in optimum performance for an individual. The hypothesis therefore 

cannot be fully accepted from this data. However, a major benefit from automation may 

be in its ability to achieve consistency between operators resulting in reliably high 

levels of system performance. This is in contrast to limited resources theory which 
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would suggest that performance should be improved by automation only if the task 

exceeds the capacity of the human operator (Wickens, Hollands, Banbery, & 

Parasuraman, 2013). However, the complexity of the rail signalling task means that, 

although within operators’ capacity to perform the task optimally, there is the potential 

for task cues to be missed or wrongly prioritised, resulting in a reduction in 

performance. Automation can assist in both these areas by routing trains in areas of 

the workstation that may not be the current focus of the operators’ attention thus 

leading to more consistent performance. 

 

Unfortunately, it was only possible to measure performance for the whole experiment 

so the difference in performance between normal and disrupted conditions could not be 

investigated. It is possible that the performance decrement in the Low condition came 

from the time taken to set routes manually rather than reduced quality of decision 

making, i.e. it was related to physical workload rather than mental workload. There was 

not a significant difference between the High and Medium LOA, which suggests that 

performance may be, at least partially, influenced by the high level of physical workload 

involved in route setting in the manual condition rather than the mental workload 

involved with the task.  

Behaviour Observation 

Monitoring 

When the two levels of monitoring (active and passive) were differentiated in previous 

studies (Balfe et al., 2008; Sharples et al., 2011) it was noted that active monitoring 

was associated with interventions; this study provides further evidence that active 

monitoring has a strong association with route setting, as high levels of active 

monitoring were sustained by all participants in the Low automation condition. Active 

monitoring in the High automation condition also rose to comparable levels with both 

other conditions after the introduction of disruption. This was as the participants 

became more involved with route setting around the blockage and further indicates the 

link between active monitoring and interaction. It can therefore be proposed that high 

levels of active monitoring is indicative of an increase in mental workload, and in 

information analysis and decision-making (as the information must be analysed and 

decisions made before any route can be set). Active monitoring in the High condition 
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rose to levels comparable with the two lower conditions after disruption was introduced, 

which may indicate that mental workload also rose to similar levels. 

 

Passive monitoring was almost exclusively confined to the higher automated 

conditions, and a sharp reduction could be seen in the High automation condition when 

disruption was introduced. Interestingly, the average passive monitoring observed in 

the Medium condition actually rose following disruption but this was only a small rise 

and is likely to have been due to chance. The Medium and Low conditions were the 

most stable in terms of observed monitoring activity between the normal and disrupted 

conditions, in that there was very little passive monitoring and a high degree of active 

monitoring. 

 

The results from this study suggest that signallers regulate their workload by engaging 

in passive monitoring. Passive monitoring may require a lower level of attention, and 

hence places less demand on the signallers. When the circumstances on the 

workstation became more demanding, signallers reduced their passive monitoring and 

engaged in more active monitoring. The high standard deviations also suggest that 

passive monitoring is a choice for signallers, with some choosing to monitor the system 

at a low level (passive monitoring) while others remain more actively involved or take a 

break completely (quiet time). 

Intervention 

The number of observed interventions was found to be significantly different between 

automated conditions. This is unsurprising as the requirement to set routes manually in 

the Low automation condition would have greatly increased the number of interventions 

in that condition. Even during disruption, the High automation condition was 

significantly lower than the Low condition as ARS continued to set routes for trains in 

the unaffected parts of the workstation. This demonstrates the potential value of 

automation in non-routine conditions. However, the intervention levels under disruption 

were comparable for the High and Medium conditions, indicating that the physical 

workload associated with route setting can be similarly reduced by a lower level of 

automation.  
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Four significant differences were found between LOA for types of intervention. Most of 

these differences are as expected. There was a difference between all groups for route 

setting, since the requirement to set routes increased as the level of automation 

decreased. Auto-routes were not used in the High and Low LOA so there are obviously 

significant differences between the Medium LOA and the others due to their use in only 

the Medium LOA. There was a significantly greater use of reminders in the High LOA, 

which is interesting as they were also required in both other conditions to protect the 

platform area following the introduction of disruption. The significant increase in the use 

of reminders in the High condition reflects their use as a control mechanism for ARS; 

they are primarily intended as safety appliances to prevent trains being routed over a 

section of track and thus they effectively constrain ARS. Previous research had already 

suggested that they are frequently used to constrain ARS to improve system 

performance when there are no safety concerns (Balfe, 2010). However, the disruption 

in this experiment was not anticipated to have greatly increased the use of reminders in 

this context and it is interesting that the effect has appeared. This demonstrates how 

extremely common it is for signallers to use this strategy as an easy method to direct 

the automation. 

Quiet Time 

Quiet time was highest in the High LOA during the normal condition; however, it 

reduced to levels equivalent to those of the Medium LOA during disruption.  A similar 

reduction was not seen for the Medium LOA indicating that signallers felt they had the 

same amount of free time in normal and disrupted running and provides further 

evidence of the robustness of this form of automation. It is also noteworthy that quiet 

time was present for the Low condition demonstrating that max capacity was not 

reached. Despite the demands of route setting, participants did spend a small amount 

of time not involved with the system. This is in contrast to passive monitoring during the 

Low condition in which participants rarely engaged and may indicate that participants 

devote passive monitoring resource during automated conditions, but do not feel it is 

necessary when controlling manually, presumably because they are in control of any 

changes. This suggests that passive monitoring is a useful activity, undertaken to 

maintain a level of awareness of the system particularly when automation is present. 
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Conclusions 

This experiment has shown that high levels of automation (i.e. ARS) do lead to a 

reduction in workload compared to lower levels of automation, and that reduction 

occurs in both mental and physical workload. The reduction is not as large during 

disrupted running suggesting the higher levels of automation could be considered 

‘clumsy’ (Woods, 1996). In addition, performance was highest and most consistent 

when working with higher automation levels. The mid-level automation showed the 

most stable workload scores throughout, but performance was variable between 

participants. In terms of the Rail Automation Model, the results suggest that workload 

was reduced in the Action Implementation functional dimension for the highest LOA, 

but that workload was also reduced in the information analysis and/or decision-making 

functional dimensions.  

 

Similar to workload, performance was improved with higher levels of automation, 

although it was not as clear-cut a result with some signallers achieving a higher score 

with the mid-level of automation. However, performance was most consistent across all 

signallers with the high level of automation suggesting that the real benefit in terms of 

performance is in consistently high performance. 

 

There were obvious differences in participants’ behaviours between the conditions 

such as increased use of the trackerball during the Low LOA and increased passive 

monitoring when using high levels of automation. However, the amount of time 

dedicated to monitoring varied between participants more for the automated conditions 

compared to the manual. This appears to indicate that individual signallers engage in 

different strategies during the automated conditions highlighting the importance of 

ensuring that methods to assess workload in situated tasks are able not only to 

measure perceived workload but also capture different strategies that may be adopted 

with different task configurations.   

 

Although statistical differences were found in the results of the experiment, we 

acknowledge that the study did not have strong statistical power and was particularly 

limited by the small sample size as well as other aspects of statistical power (Baguley, 

2004). Rather than focus on statistical power, the study reported here used participants 

with domain expertise in a naturalistic setting (Farrington-Darby & Wilson, 2006). The 
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results, particularly when combined with previous qualitative studies (Balfe et al., 

2012), do have practical significance for the use of automation in complex control 

environments. The experiment was also limited by the time span simulated. Signallers 

would usually work for several hours and the effects of disruption may become more 

complex over this timeframe. Therefore, some of the more complex effects of 

automation during disruption may not have appeared in this experiment. A further 

limitation was the inability to measure the reliability of the automation in the disrupted 

condition. The participants took responsibility for setting routes and controlling the 

automation to ‘force’ the correct decisions but without a measure of the reliability of the 

automation in this condition it is difficult to generalise the results with respect to 

imperfect automation.  

 

Overall the findings of this experiment support the use of automation in rail signalling 

and demonstrated that some of the findings of lab-based previous research hold true in 

real world systems. However, the advantages of high levels of automation over the 

mid-levels are not as great as might be assumed given the differences in complexity 

and cost. Future experiments could further investigate the ARS and Auto-routes LOA 

and involve a greater number of scenarios and participants. A more advanced 

simulator would be capable of giving a better analysis of performance. It is also 

important to develop more advanced measures of workload and performance in order 

to distinguish between performance decrements as a result of reaching maximum 

mental workload capacity and decrements due to the need to work more slowly on 

account of physical workload constraints. Simple measures of primary task 

performance are not sufficiently powerful to determine whether more physical 

assistance automation is required or more decision support automation is necessary to 

improve system performance.  

 

The Rail Automation Model helps to abstract the results so they can be used more 

widely; however the range of technology employed in supporting work systems 

continues to expand and the current granularity of the levels of automation may not be 

sufficient to accurately describe subtle differences in future automation technologies. 

Automation systems can also vary hugely in terms of their design, not just in the type 

and level but also in terms of the characteristics such as degree and quality of 

feedback. The Rail Automation Model and the models it is based upon do not account 

for factors such as feedback, understandability, and interaction styles, all of which 
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could influence results. The results reported in this paper therefore may be 

generalizable to other systems but some of the results are likely to be due to the 

characteristics of the automation as well as the type and level. Currently there is no 

technique available to better represent these influences on work performance in 

automated systems, and this is an area which should be explored in future research.  
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