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Abstract

Direct electrospray ionisation-mass spectrometry (direct ESI-MS), by omitting
the chromatographic step, has great potential for application as a high-
throughput approach for untargeted urine metabolomics analysis compared to
liquid chromatography-mass spectrometry (LC-MS). The rapid development and
technical innovations revealed in the field of ambient ionisation MS such as
nanoelectrospray ionisation (nanoESI) chip-based infusion and liquid extraction
surface analysis mass spectrometry (LESA-MS) suggest that they might be

suitable for high-throughput metabolomics analysis.

In this thesis, LC-MS and high-throughput direct ESI-MS methods using high
resolution orbital trap mass spectrometer were developed and validated for
untargeted metabolomics of human urine. Three different direct ESI-MS
techniques were explored and compared with LC-MS: flow injection electrospray
ionisation-MS (FIE-MS), chip-based infusion and LESA-MS of dried urine spots
on a cell culture slide. A high-throughput sample preparation protocol was
optimised using in-house artificial urine. Urine samples after consumption of
green tea and healthy controls were used as a model to explore the performance
and classification ability of the direct ESI-MS. High-throughput data pre-
processing and multivariate analysis protocols were established for each method.
The developed methods were finally applied for the analysis of clinical urine
samples for biomarker discovery and to investigate the metabolic changes in
osteoarthritis and malaria. Also, the methods were applied to study the effect of
oligofructose diet on the gut microbial community of healthy subjects. The
analytical performance of the methods for urine metabolomics was validated
using quality control (QC) and principal component analysis (PCA) approaches.
Rigorous validation including cross-validation, permutation test, prediction
models and area under receiver operating characteristic (ROC) curve (AUC) was

performed across the generated datasets using the developed methods.

Analysis of green tea urine samples generated 4128, 748, 1064 and 1035 ions from
LC-MS, FIE-MS, chip-based infusion and LESA-MS analysis, respectively. A
selected set of known green tea metabolites in urine were used to evaluate each
method for detection sensitivity. 15 metabolites were found with LC-MS
compared to 8, 5 and 6 with FIE-MS, chip-based infusion and LESA,

respectively.



The developed methods successfully differentiated between the metabolic profiles
of osteoarthritis active patients and healthy controls (Q* 0.465 (LC-MS), 0.562
(FIE-MS), 0.472 (chip-based infusion) and 0.493 (LESA-MS)). The altered level

of metabolites detected in osteoarthritis patients showed a perturbed activity in
TCA cycle, pyruvate metabolism, B-oxidation pathway, amino acids and
glycerophospholipids metabolism, which may provide evidence of mitochondrial
dysfunction, inflammation, oxidative stress, collagen destruction and use of
lipolysis as an alternative energy source in the cartilage cells of osteoarthritis
patients. FIE-MS, chip-based infusion and LESA-MS increased the analysis
throughput and yet they were able to provide 33%, 44% and 44%, respectively, of
the LC-MS information, indicating their great potential for diagnostic application

in osteoarthritis.

Malaria samples datasets generated 9,744 and 576 ions from LC-MS and FIE-MS,
respectively. Supervised multivariate analysis using OPLS-DA showed -clear
separation and clustering of malaria patients from controls in both LC-MS and
FIE-MS methods. Cross-validation R*Y and Q values obtained by FIE-MS were
0.810 and 0.538, respectively, which are comparable to the values of 0.993 and
0.583 achieved by LC-MS. The sensitivity and specificity were 80% and 77% for
LC-MS and FIE-MS, respectively, indicating valid, reliable and comparable
results of both methods. With regards to biomarker discovery, altered level of 30
and 17 metabolites were found by LC-MS and FIE-MS, respectively, in the urine
of malaria patients compared to healthy controls. Among these metabolites,
pipecolic acid, taurine, 1,3-diacetylpropane, N-acetylspermidine and N-

acetylputrescine may have the potential of being used as biomarkers of malaria.

LC-MS and FIE-MS were able to separate urine samples of healthy subjects on
oligofructose diet from controls (specificity/sensitivity 80%/88% (LC-MS) and
71%/64% (FIE-MS)). An altered level of short chain fatty acids (SCFAs), fatty
acids and amino acids were observed in urine as a result of oligofructose intake,
suggesting an increased population of the health-promoting Bifidobacterium and a

decreased Lactobacillus and Enterococcus genera in the colon.

In conclusion, the developed direct ESI-MS methods demonstrated the ability to
differentiate between inherent types of urine samples in disease and health state.
Therefore they are recommended to be used as fast diagnostic tools for clinical
urine samples. The developed LC-MS method is necessary when comprehensive

biomarker screening is required.
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CHAPTER ONE

General Introduction



1. General Introduction

1.1 Urine chemistry and composition

Human urine is a sterile, transparent, amber coloured fluid produced by the
kidneys as a result of extraction of soluble waste, excess water and small
molecular weight metabolic byproducts from bloodstream in a process called
“urination”. Urination is the primary route of elimination of water-soluble waste
products from the human body, which generates 1,500-2,000 mL of urine/day.
Urine normally consists of 95% water, urea, ammonia, inorganic salts, organic
substances and water-soluble metabolic products of endogenous compounds,
toxins and xenobiotics (Table 1-1). Urea, a waste product produced during
proteins and amino acids breakdown in the liver, accounts for almost 50% of
solutes in urine. Urobilin, a haemoglobin breakdown pigmented product, is also
excreted in urine and accounts for the characteristic colour of urine. However, the
concentrations of these substances may vary throughout the day under the
influence of many factors such as physical activity, dietary intake, body
metabolism and endocrine functions. Urine volume is determined by the amount
of water excreted by the kidneys as a response to state of hydration of the body.
The major factors that have a direct influence on the amount of urine excreted
are fluid intake/fluid loss, amount of antidiuretic hormone secreted and the urge
to eliminate increased amount of dissolved waste (Bouatra et al., 2013, Strasinger
and Di-Lorenzo, 2008).

Table 1-1 Human urine main composition

Component Process involved /comments

1. Water Kidney excretion (95%)

2. Organic

Urea Amino acids breakdown

Creatinine Derived from creatine, a nitrogen containing substance in muscles
Uric acid Derived during metabolism of nucleic acid from food and cell lysis

Hippuric acid

3. Inorganic
Sodium chloride
Potassium
Sulphate
Phosphate
Ammonium
Magnesium
Calcium

4. Other substances

Benzoic acid metabolite

Principal salt (varies with intake)

Occurs as salt of chloride, sulphate, and phosphate
Derived from amino acids metabolism

Occurs mainly as sodium salt (blood buffer)
Protein metabolism

Occurs as salt of chloride, sulphate, and phosphate
Occurs as salt of chloride, sulphate, and phosphate

Carbohydrates, pigments, fatty acids, mucin, enzymes, hormones may

present in small amounts depending on diet and health




1.2 Metabolomics analysis and its application to urine

Urine generally viewed as a human waste but it is also considered as a valuable
diagnostic biofluid. The analysis of urine (also known as urinalysis) is routinely
performed to diagnose various types of diseases and disorders. Simple tests such
as urine dipsticks are used to measure urinary glucose, bilirubin, urobilinogen,
ketone bodies, nitrates, leukocyte esterase, specific gravity, haemoglobin and
protein (Bouatra et al., 2013). While sophisticated analytical tests are used to
determine a variety of urinary metabolites which help in the study of metabolic
changes during normal or disease states, e.g. bladder (Issaq et al., 2008) and
kidney diseases (Kim et al., 2009). Different tables of normal reference
concentration ranges of 100s of urine solutes have been published and used for
such purposes (Kim et al., 2008, Luo et al., 1997, Bollard et al., 2005, Bouatra et
al., 2013). In addition to these detailed referential ranges, urine as readily
available biofluid has been an attractive choice for more comprehensive
investigations using metabolomics approaches. Urine is non-invasive, simple and
is less likely to be volume-limited which provides enough aliquots for metabolite
identification, quantification and subsequent data analysis. It can be easily
sampled at different time intervals allowing temporal metabolic changes to be
investigated. Also, urine being a waste product pool of the biological system and
it is not under homeostatic regulation, can provide insights into metabolic dis-
regulation associated with physiological changes during normal or disease

processes (Chen et al., 2013a).

Metabolomics deals with quantitative and qualitative investigations of small
molecules, known as metabolites within a biological system framework. Typically,
metabolites are defined as a class of organic molecules of molecular mass less
than 1.5 kDa (Lokhov and Archakov, 2009). Metabolomics mainly delivers its
target goals by analysing metabolite levels in biological samples followed by
extensive data analysis and interpretation. Although metabolomics is considered
as a well-established science now, there is still no known standalone single-
instrument platform capable of performing a complete analysis of a metabolome,
an organism’s complete set of metabolites. The metabolome represents a huge set
of components that belong to different compound classes, such as lipids,
nucleotides, amino acids ... etc. This diversity is accompanied not only by
differences in their chemical and physical properties but also their presence in

wide concentration ranges in the organism. Therefore, a successful metabolomics



study using experimental design is crucial, desirable and challenging (Andrade et
al., 2010).

Metabolomics analyses are mainly carried out by two different approaches,
targeted and untargeted (global) metabolomics. Targeted metabolomics is a
directed approach that focuses on the quantitative analysis of a pre-defined set of
metabolites with similar chemical properties from a class of molecules (e.g.
carbohydrates, lipids or amino acids), members of a specific metabolic pathway
(e.g. histidine metabolism) or belonging to a certain group of metabolites. The
interest here is on a certain group of compounds in the metabolome and usually
selective sample preparation steps are used to improve the data quality and
optimize the method. This manipulation of sample preparation leads to the
higher sensitivity and precision desired for the quantification of the specific set of
metabolites (metabolite pool size). Analysing a specific set of metabolites with
the ignorance of the rest in the metabolome, is clearly a targeted approach and
cannot be considered a truly ‘global’ metabolomics approach. However,
establishing a suit of assembled quantitative measurements targeting key
metabolites can give rise to the concept of metabolomics. For instance, it
promises to provide an effective investigative quantitative tool for studying
microbial metabolism, in which the good knowledge in the intracellular
metabolite concentrations changes provides a direct way to study kinetics of

enzymes of the underlying metabolic pathway (Buchholz et al., 2002).

Untargeted metabolomics, also known as global metabolomics, metabolic profiling
or metabolic fingerprinting, ideally provides an unbiased overview of the whole
metabolic activity in a biological system by detecting all the metabolites from a
representative set of samples (Figure 1-1). It involves the analysis of treated
(altered) and control sets of samples and then by comparing these sets using
multivariate analysis (MVA), the tentative identity of metabolites of interest can
be extracted. The identity of those metabolites could be further confirmed using
a targeted method (Dettmer et al., 2007). In 2003, another variant of

fingerprinting called “metabolic footprinting” was introduced. It differs in
analysing extracellular metabolites instead of intracellular ones (Allen et al.,
2003). A few years later, newer terms, endo- and exo-metabolome, were coined by
Nielsen and Oliver to distinguish between intracellular and extracellular

metabolites, respectively (Nielsen and Oliver, 2005).



Many studies have applied metabolomics approaches to urine, mainly i1 the area
of nutrition (Khymenets et al., 2015), metabolic disorders (Luan et al., 2015) and
disease biomarker discovery (Peng et al., 2014). Recently, an extensive effort has
been made to gather most of the metabolites found in urine using metabolomics
approaches; as a result a comprehensive list of 449 metabolites (identified) and
378 metabolites (quantified) was compiled (Bouatra et al., 2013). In addition,

3100 urine metabolites were annotated along with 3900 concentration values in

the Human Urine Metabolome Database, http://www.urinemetabolome.ca/, as
part of the Human Metabolome Database (HMDB) project (Wishart et al.,
2013).
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Figure 1-1 Typical untargeted metabolomics workflow

1.3 Analytical techniques used in metabolomics

Different traditional and modern analytical techniques have been used for
metabolite analysis, such as thin layer chromatography (TLC) (Tweeddale et al.,
1998), enzymatic assays (Bergmeyer, 1984), nuclear magnetic resonance (NMR)
(De Graaf et al., 1999), gas chromatography (GC) (Womersley, 1981), liquid
chromatography (LC) including high performance liquid chromatography
(HPLC) (Bhattacharya et al., 1995) and capillary electrophoresis (CE) (Edwards



et al., 2006) and mass spectrometry (MS) (Castrillo et al., 2003, Fuzfai et al.,
2004, Dubbelboer et al., 2012). Metabolomics analysis requires highly sensitive
and selective methods, capable of handling small sample volumes and yet
providing reliable measurement of a large spectrum of compounds in the
metabolome of interest. The metabolome constitutes a very small percentage of
the total biomass of a cell. Hence, the volume of the metabolome constituents in
a biological sample used for the analysis is limited. The volume of the biological
sample can be increased to overcome this problem but the routine way of sample
dilution decreases metabolite concentrations for the analysis. Also, the detector
used in the measurement should measure the compound of interest and reduce
the sample matrix background signals to the minimum (Oldiges et al., 2007).
Therefore, in metabolomics, mass spectrometry (MS) and nuclear magnetic
resonance (NMR) are the most commonly used techniques; especially when
coupled with chromatography and capillary electrophoresis as pre-detection
separation techniques, e.g. GC-MS, LC-MS, CE-MS and LC-NMR.

Different NMR and MS techniques have been applied for urine metabolomics
such as high resolution NMR (Yang et al., 2008), HPLC-MS (Wilson, 2011), high
performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)
(Navarro-Munoz et al., 2012), ultra-high performance liquid chromatography-
mass spectrometry (UHPLC-MS) (Jimenez Giron et al., 2012), fast atom
bombardment-mass spectrometry (FAB-MS) (Luo et al., 1997), two-dimensional-
GC-MS (Zhang et al., 2011) and nano-flow LC-MS/MS (Kim et al., 2008).
However, the selection of an analytical technique is often based on the speed of
the runs, sensitivity and selectivity. As it is a difficult task to combine all of
them in a method and the selection of the most suitable technique is generally a
compromise between them. The acquired data from MS and NMR is usually
complementary and therefore, ideally it is preferable to use both techniques on a
sample set, but in practice this is rarely achieved. For example, Law et al.,
applied GC-MS, LC-MS and 'H NMR for metabolomics investigation of human
urine after consumption of green tea to help improve metabolite coverage (Law
et al., 2008).

NMR is a non-destructive technique that allows the same samples to be further
analysed by other methods which gives the technique a unique advantage where
the sample volume is a crucial issue. However, the low sensitivity of 'H NMR
compared to MS (which is several orders of magnitude more sensitive), limits its

use in the field. In addition, difficulty associated with the identification of large



groups of metabolites due to overlapping peaks in NMR favours other techniques
such as MS. The use of 2D-NMR methods can overcome identification problems
to some extent but it is usually restricted to the characterization of unidentified
analytes from the 1D-NMR spectrum (Ward et al., 2007). On the other hand,
there are many applications in the literature describing the use of MS routinely
coupled to GC and LC for metabolomics analysis to increase sensitivity,
selectivity and to provide metabolite identification by measurement of mass.
(Bouatra et al., 2013). MS analysis reduces the background signals and peaks
overlapping due to the matrix interferences which are usually associated with
biological samples. In comparison with NMR, MS is less robust, lower in

reproducibility and is limited to ionisable metabolites. However, MS has the
ability to detect the “invisible NMR” moieties, e.g. sulphates, and it provides

higher sensitivity and therefore, it is now established as the cornerstone

technique in metabolomics (Xiayan and Legido-Quigley, 2008).

Hyphenated MS methods such as LC-MS and GC-MS have been used for clinical
analysis of both polar and non-polar metabolites. GC-MS enables both
quantification and identification of wide ranges of metabolites, but its use is
limited to thermally stable volatile compounds and derivatisation step is required
to include non-volatile ones (Rauha et al., 2001). LC-MS is now considered as the
primary method in MS-based metabolomics as it delivers adequate selectivity and
sensitivity of a wider range of metabolites in the sample including thermally
labile and non-volatile metabolites compared to GC-MS without the need for
chemical derivatisation, the essential pre-analysis step for non-volatile
metabolites in GC-MS analysis (Andrade et al., 2010).

1.4 LC-MS based urine metabolomics

The rapid development and inventions in the field of mass spectrometry have
played an important role in the adoption of LC-MS as one of the most useful
technique for metabolomics. The introduction of atmospheric pressure ionisation
(API) interfaces overcame most of the problems associated with coupling of LC
with MS such as relatively high flow rate of effluent from the LC column as well
as coupling of high pressure technique into a vacuum working environment of
MS. Many interfaces or soft ionisation methods usually provide molecular ions
with fewer fragmentations and are now used routinely such as electrospray
ionisation (ESI), atmospheric pressure chemical ionisation (APCI) and

atmospheric pressure photoionisation (APPI) (Gross, 2011). A literature review



of most recent LC-MS urine metabolomics publications (Table 1-2) shows that
most studies used ESI as the ionisation technique with either HPLC-MS or
UHPLC-MS. However, the combination of different ionisation interfaces may
increase the detectable range of masses in metabolic profiling and footprinting.
For instance, ESI and APCI were effectively combined for untargeted
metabolomics study in which more metabolites have been detected (Nordstrom et
al., 2007). In addition, the use of nanoESI with nanoUHPLC has been reported
to improve MS sensitivity of low abundance compounds in urine metabolomics
(Chetwynd et al., 2014, Chetwynd et al., 2015).

The introduction of UHPLC-MS with its improved chromatographic resolution,
efficiency, shorter analysis time and lower sample volume, has resulted in the
detection of more metabolites than conventional HPLC-MS (Han et al., 2009).
Many urine metabolomics studies have used UHPLC-MS for untargeted approach
with either reversed-phase (RP) (Llorach et al., 2014, Jin et al., 2014, Peng et al.,
2014) or hydrophilic interaction liquid chromatography (HILIC) columns (Peretz
et al., 2012). The choice of the column for LC-MS analysis mainly depends on the
matrix and the analytes of interest. In urine, the metabolites of interest are fairly
polar or semi-polar (i.e. hydrophilic) in nature. Hence, the use of RP columns
with good retentive power is an adequate standard choice for urine metabolomics.
However, highly polar metabolites will not be retained on a RP column, thus
limiting the method detection coverage especially for untargeted metabolomics.
For these applications, the use of a HILIC column, which is more suited for the
analysis of polar compounds, provides complementary information to those
obtained with RP columns. Combined LC-MS analysis with HILIC and RP
columns has already been applied for urine analysis to enhance metabolite
coverage (Huang et al., 2013, Zhang et al., 2013c).

In targeted metabolomics, tandem LC-MS (LC/MS") is a widely used platform
for urine analysis such as tandem triple quadrupole MS (Struck et al., 2013) and
tandem Q-Trap (Blydt-Hansen et al., 2014), as it provides good sensitivity and
accuracy in quantification of metabolites of interest (Sawada et al., 2009). The
application of internal or external calibration is essential when accurate
measurement is required, e.g. screening of biomarkers in clinical metabolomics
(Ceglarek et al., 2009). Several ion modes of MS and tandem MS can be used
such as selected ion monitoring (SIM), selected reaction monitoring (SRM) and
multiple reaction monitoring (MRM). However, in untargeted metabolomics the

use of low resolution mass analysers such as quadrupole and ion trap has



significant disadvantages. Such features in a mass spectrometer cause severe
overlapping of metabolite masses which makes their identification a difficult task
to attain (Han et al., 2009). The use of high resolution mass analysers such as Q-
ToF and orbital trap MS for metabolomics in general and for urine analysis is
desirable. Therefore, most of untargeted urine analysis (Table 1-2) has been
carried out with high resolution mass spectrometers (HRMS) such as hybrid
Quadrupole-ToF (Q-ToF) (Llorach et al., 2014, Mattarucchi et al., 2012) (Jin et
al., 2014), orbital trap MS (May et al., 2013, Ridder et al., 2014) (Peretz et al.,
2012) and hybrid ion trap ToF (IT-ToF) (van Wietmarschen et al., 2012).

For a successful application of LC-MS method for urine analysis, careful control
of chromatography is essential to ensure stability and reproducibility of the
analysis. In addition, the chromatographic separation step adds some degree of
complexity to the metabolome datasets, therefore, significant time, efforts and
expertise are required for data processing in order to extract, align, deconvolute
and annotate peaks correctly. LC runs take a relatively long time for each
sample, thus becoming a bottle-neck in the analysis and processing of large
batches of samples for high-throughput metabolomics studies. During this long
analysis time or upon repetitive use, chromatographic columns may gradually
deteriorate, resulting in the need to address problems with a significant drop in
the quality of the acquired datasets across the analytical run. Moreover, LC-MS
analytical run time is limited to the stability of urine sample during the analysis.
Gika et al., demonstrated that urine sample can be stable for a maximum of 48
hours at 4 °C for LC-MS analysis and beyond that significant changes in urine
composition may occur (Gika et al., 2008c). Thus, for urine metabolomics studies
involving analysis of large batches of samples, an alternative high-throughput
approach is essentially needed. The development of MS profiling methods such as
direct ESI-MS without recourse to any chromatographic separation might be a
suitable approach for high-throughput urine metabolomics. The omission of the
separation step increases sample throughput. Also, the absence of the need to
undertake chromatographic peak alignment and reduce dataset dimensionality
significantly simplifies data processing (Fuhrer et al., 2011, Southam et al., 2007).
The direct ESI-MS method meeds to provide the necessary information related to

the total pool of metabolites in urine samples for metabolomics analysis.



Table 1-2 A selected list of recent LC-MS urinary metabolomics publications

Normalisation

Application MS method Data processing software method Statistical approach Reference
Aronia-citrus juice HPLC-Q-ToF (RP) MarkerView (AB Sciex) Not applied UVA and OPLS-DA Llorach et al., 2014)
Asthma UHPLC-Q-ToF (RP) MarkerLynx (Waters) MSTUS OPLS-DA Mattarucchi et al., 2012)
Bladder cancer HPLC-Q-ToF (RP) MZMine 2 MSTUS UVA, OPLS-DA,and ROC (Jin et al., 2014)
Bladder cancer HPLC-Q-ToF (RP) XCMS C-labeled UMS PCA, OPLS-DA,and ROC (Peng et al., 2014)
Bladder cancer HPLC-Q-ToF (RP) and CE-Q-ToF MassHunter (Agilent) Creatinine UVA, PCA and OPLS-DA  (Alberice et al., 2013)
Bladder, kidney and HPLC-triple quardrupole MS (RP) Targeted method Creatinine UVA, PCA and PLS-DA Struck et al., 2013)
prostate cancer
Cervical cancer HPLC-Q-ToF (RP) MarkerVeiw (AB Sciex), Creatinine UVA, PCA, OPLS-DA and (Chen et al., 2013b)

XCMS and MZMine 2 ROC
Cervical cancer HPLC-Q-ToF (RP) MassHunter (Agilent) TIC UVA and PLS Liang et al., 2014)
Chinese herbal UHPLC-Q-ToF (RP) MarkerLynx (Waters) MSTUS UVA, PCA and OPLS-DA (Liu et al., 2013)

medicine

Chinese herbal
medicine

Chinese herbal
medicine

Citrus fruit
intervention
Citrus intervention

Cardiovascular
disease
Coffee metabolites

Dietary pattern
Dioxin exposure
Doping control
Dietary intervention
Goji tea intervention

Green tea
intervention
Gastric Cancer

Idiopathic nephrotic
syndrome
Jaundice syndrome

Kidney and Bladder
cancer
Kidney cancer

HPLC-Orbital trap MS (RP)
UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)

HPLC-Q-ToF (RP)
HPLC-Q-ToF (RP)

UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)
HPLC-Orbital trap MS (RP)
HPLC-Q-ToF (RP)
HPLC-Orbital trap MS (RP)

UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)

UHPLC-Q-ToF (RP)
HPLC-Q-ToF (RP and HILIC)

UHPLC-IT (RP)

SIEVE (Thermo)
MarkerLynx (Waters)
MarkerLynx (Waters)

Profile Analysis (Bruker)
MarkerView (AB Sciex)

XCMS

MZMine 2

MarkerLynx (Waters)
Profile Analysis (Bruker)
MSInspect

Profile Analysis (Bruker)
MAGMa

MarkerLynx (Waters)
Progenesis Comet (Nonliner

Dynamics)
MarkerLynx (Waters)

Profile analysis (Bruker)

Not mentioned

Not applied
TIC
Not applied

Highest intensity
Not applied

Not applied
MSTUS

MSTUS

Not applied
Not applied
Not applied
Not applied

Not applied
TIC

TIC
MSTUS

MSTUS

UVA and OPLS-DA
UVA, PCA and OPLS-DA

UVA, PCA, PLS-DA and
HCA
PCA

UVA and OPLS-DA

UVA, PLS-DA and ROC
UVA, PCA and PLS-DA
UVA and OPLS-DA
UVA, PCA and OPLS-DA
UVA and PCA

UVA, PCA and PLS-DA
Not applied

UVA, PCA, OPLS-DA,
HCA and ROC
OPLS-DA

OPLS-DA and HCA

UVA, PCA, OPLS-DA ,and
ROC
UVA

Lu et al., 2014)
Su et al., 2013)
Pujos-Guillot et al., 2013)

Medina et al., 2013)
Llorach et al., 2013)

Rothwell et al., 2014)
Andersen et al., 2014)
Jeanneret et al., 2014)
Kiss et al., 2013)

May et al., 2013)
Tseng and Li, 2014)
Ridder et al., 2014)

Fan et al., 2012)
Sedic et al., 2014)

Wang et al., 2012a)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(Huang et al., 2013)
(

Ganti et al., 2012)
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Application

MS method

Data processing software

Normalisation
method

Statistical approach

Reference

Liver cancer
Liver cancer

Liver cirrhosis
Lung carcinoma

Male infertility
Metabolic syndrome

Neuroleptic-Naive
Schizophrenia
Method protocol

Method development

Ovarian cancer

ThioTEPA
metabolism
Prostate cancer

Radiation effect
Renal clearance rate

Rheumatoid arthritis
subtypes

Rejection in kidney
transplantation
Stomach cancer

Tuberculosis
treatment signature
Tea polyphenols
profiling
a-Tocopherol
metabolism

Urinary signature of
tetrahydrocannabinol
Xanthinuria
biomarkers

UHPLC-Q-ToF (RD)
UHPLC-Q-ToF (RP)
UHPLC-Orbital trap MS (RP)

UHPLC-Q-ToF (RP)

HPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)

UHPLC-Q-ToF (RP and HILIC)

NanoUHPLC-nanoESI-Q-TOF
(RP)
UHPLC-Q-ToF (RP)

UHPLC-Q-ToF (RP)

HPLC-Orbital trap MS (RP and
HILIC)

UHPLC-ToF (RP)
UHPLC-Orbital trap MS (RP)
UHPLC-IT-ToF ( RP)

HPLC-Q-Trap (RP)

HPLC-Q-ToF (RP)
HPLC-Q-ToF (RP)

UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)
UHPLC-Q-ToF (RP)

HPLC-Orbital trap MS (ZIC-
HILIC)

MarkerLynx (Waters)
XCMS

MS finder
MarkerLynx (Waters)

Profile analysis (Bruker)
Profile analysis (Bruker)
MarkerLynx (Waters)

MarkerLynx (Waters)
MarkerLynx (Waters)

XCMS
MarkerLynx (Waters)

MZMine 2

MarkerLynx (Waters)
MZMine 2

Profiling Solution
Shimadzu
CATPCA (SPSS)
Targeted analysis

MassHunter (Agilent
MassHunter (Agilent

)
)
MarkerLynx (Waters)
MarkerLynx (Waters)
MarkerLynx (Waters)

SIEVE (Thermo)

Not applied
Not applied

MSTUS

MSTUS and
creatinine
MSTUS

IS and creatine
TIC

Not applicable

Total spectral
area
MSTUS

Not applied
Creatinine,
osmolality and

MSTUS
Creatinine

Not applied
Not applied

Creatinine

Not applied
Creatinine

Not applied
IS
Not applied

Not applied

OPLS-DA
UVA and PCA

UVA (Non parametric -

test) and PCA

UVA, OPLS-DA,and ROC

UVA, OPLS-DA,and ROC
UVA, PCA and OPLS-DA

UVA and OPLS-DA

UVA and OPLS-DA
UVA and OPLS-DA

UNA, PCA and PLS-DA

UVA and OPLS-DA

UVA, PCA, OPLS-DA and

ROC

UVA and PCA
UVA
NPCA and PLS-DA

UVA (Non parametric t-
test), PLS-DA and ROC

PCA
UVA and PCA

UVA, PCA and OPLS-DA
UVA, PCA and OPLS-DA

UVA (ANOVA), PLS-DA

and OPLS
UVA

Zhang et al., 2013b)
Zhang et al., 2013a)

Dai et al., 2014)

Zhang et al., 2014a)
Yu et al., 2014)

(
(
(
(Wu et al., 2014)
(
(
(Cai et al., 2012)

Want et al., 2010)
Chetwynd et al., 2015)

(

(

(Chen et al., 2012)
(Li et al., 2011)

(

Zhang et al., 2013c)

(Laiakis et al., 2014)
(Sirich et al., 2013)
(van Wietmarschen et al., 2012)

Blydt-Hansen et al., 2014)

(
(Zhang et al., 2013d)
(Mahapatra et al., 2014)
(

(

Xie et al., 2012)
Johnson et al., 2012)
(Kiss et al., 2014)

(Peretz et al., 2012)

RP: reverse phase, IS: internal standard, HILIC: hydrophilic interaction liquid chromatography, MSTUS: MS total useful signal, TIC: total ion current, UMS: Universal
Metabolome-Standard, UVA: univariate analysis, PCA: principal component analysis, N-PCA: nonlinear-principal component analysis, PLS: partial least square, PLS-DA:
partial least square-discriminant analysis, OPLS: orthogonal-partial least square, OPLS-DA: orthogonal-partial least square-discriminant analysis, ROC: receiver operator
characteristic and HCA: hierarchical cluster analysis.
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1.5 Direct ESI-MS: a potential high-throughput approach for urine

metabolomics

Direct electrospray ionisation-mass spectrometry (direct ESI-MS) is an
introduction technique of samples into MS source omitting the chromatographic
separation step for both targeted and untargeted metabolomics. It is considered
as a high-throughput approach as it provides short time sample analysis (Kayser
and Warzecha, 2012). Among different types of ionisation sources in mass
spectrometry, electrospray ionisation (ESI) can be considered as standard, and is

probably the most commonly used ion source in MS.
1.5.1 Electrospray ionisation: the standard ion source in MS

Electrospray ionisation (ESI) is a soft ionisation technique, it provides minimal
fragmentations of molecular ions and less complex mass spectra could be
obtained (Kayser and Warzecha, 2012). It was first described in the late 60s after
Malcolm Dole and his colleagues had performed a provocative ingenious series of
experiments in which they attempted to form in vacuo beams of macro ions in a
gas-phase from a dilute polymer (macromolecules) solution (Dole et al., 1968). In
mid 1980s, a breakthrough in the field was reported by two different research
groups as they were able to couple ESI to a mass spectrometer and generating
intact ions from large and complex chemical species in solution (Yamashita and
Fenn, 1984). Few years later, Fenn group was able to obtain MS spectra of
biopolymers including oligonucleotides and proteins such as insulin using ESI
coupled to Fourier transform MS (Fenn et al., 1989). Twenty years later, John B.
Fenn and Koichi Tanaka were shared half of the 2002 Nobel Prize in Chemistry
“for their development of soft desorption ionisation methods for mass
spectrometric analyses of biological macromolecules” (Nobel Media AB, 2014).
The advent of coupling ESI to MS has had great impact on reshaping the future
use of mass spectrometry and makes it one of the most important techniques for

biomolecule analysis.

The principle of ion generation in ESI involves the use of electrical energy to
assist the transfer of ionic species from solution into the gas phase. Its mechanism
involves formation of charged droplets mist followed by evaporation of solvent
and subsequent ions formation from the droplets. In ESI source, a sample

solution is pumped through a capillary tube maintained at high voltage, e.g. 1.5
— 6.0 kV. This leads to formation of a fine spray cone of charged droplets at the
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tip end of the electrospray capillary known as ‘Taylor cone’. The use of a
nebulising gas, e.g. nitrogen, improves handling higher sample flow rases. These
droplets pass down towards the mass spectrometer region by pressure and
potential gradients. With the aid of a high ESI source temperature: and the use of
a drying gas, the solvent starts to evaporate from the droplets and charge density
on the surface increases. At this point, there are two different competing
mechanisms and controversial scenarios of how ions in the charged droplets
transferred into the gaseous phase, namely, single ion or charged residue

mechanism (CRM) and ion evaporation mechanism (IEM).

In the CRM, when Rayleigh limit is reached the droplets begin to subdivide into
smaller ones as the coulomb repulsion forces star: to overcome the surface
tension holding the droplet together. The fission process continues until each
droplet contains only one ion at the end. The evaporation of the remaining
solvent leads to formation of single ions in the gas phase (Yamashita and Fenn,
1984). In the IEM, when the electric field strength limit is reached within the
charged droplets, it makes the ejection of the ions at the surface more
energetically and kinetically favourable (Thomson and Iribarne, 1979); shown
below is a combination model of CRM and IEM (Figure 1-2). At the end, the
generated ions are sampled by a skimmer cone and then accelerated into the

mass analyser for subsequent measurement of molecular mass and inteusities (Ho
et al., 2003).
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Figure 1-2 A schematic of ions formation process in electrospray ionisation
(Lamond-Lab, 2014).
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1.5.2 Direct ESI-MS techniques

A literature review of publications reporting the use of direct ESI-MS analysis
(Table 1-3) highlights that the method has been applied with different types of
introduction techniques, ranging from classical approaches using syringe pumps

to advanced and newly emerging robotic techniques.
1.5.2.1 Direct infusion mass spectrometry (DIMS)

Direct ESI-MS is performed, classically, by using a syringe pump or an infusion
device to deliver samples directly into MS which is known as direct infusion mass
spectrometry (DIMS). The use of DIMS has found many applications in
metabolomics. Lin et al., proposed a DIMS method for the fast diagnosis of
kidney cancer. They reported a high-throughput method capable of detecting 23
potential biomarkers in a 0.5 min sample run compared to 30 min LC-MS
method (Lin et al., 2010). Zhou et al. proposed simple and rapid DIMS method
for the identification of Vinca alkaloids from a crude extract of Catharanthus
roseus. The method not only revealed the molecular weight information of 5
major Vinca alkaloids but also provides useful structural information for the
identification. In comparison, with an HPLC-MS method, the proposed method
reduces the run time from 1 h to a few min. They described the technique as
sensitive, rapid and convenient for targeted metabolomics in complex and mixed
plant extracts. Moreover, they suggested the method as a valuable addition for
metabolic profiling and quantitative analyses that may be necessary in quality
control (Zhou et al., 2005). Despite that DIMS provides a rapid MS analysis, but
the use of the syringe pumps limits the throughput in which each sample must be
infused manually. Therefore, some direct ESI-MS approaches use an LC as a flow

injection system to improve the throughput by automating sample injection and

it is known as flow injection ESI-MS (Beckmann et al., 2008).
1.5.2.2 Flow injection ESI mass spectrometry (FIE-MS)

In FIE-MS, the sample is injected using the LC autosampler into a stream of
solution entering the ESI source at steady rate. A typical FIE-MS profile takes
about 1 min, in which a sharp increase in the signal to the peak’s apex is followed
by a gradual tailing-off as sample slightly delayed due to week diffusion and
interaction processes within the solvent lines enter the ESI source (Figure 1-3).

An injection of a blank or a few minute delays before the next sample injection
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can minimise any carry-over effect between consecutive runs and also provides a
signal noise region for background subtraction (Beckmann et al., 2008). FIE-MS
has been used in different applications in metabolomics focusing to date mainly
in the analysis of microbes (Higgs et al., 2001, Parker et al., 2008, Kaderbhai et
al., 2003, Smedsgaard and Frisvad, 1996) and plants extracts (Chen et al., 2010b,
Enot et al., 2006, Mas et al., 2007, Beckmann et al., 2007). FIE-MS also has been
reported for targeted and untargeted analysis of body fluids such as olood and
urine in animal (Beckmann et al., 2010, Yang et al., 2009) and nutritional (Fave
et al., 2011, Lloyd et al., 2011a, Lloyd et al., 2011b) studies.
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Figure 1-3 Typical FIE-MS chromatogram of a plant extract acquired using a linear ion
trap mass spectrometer in (a) ESI+ and (b) ESI- modes (Beckmann et al., 2008).

1.5.2.3 Chip-based infusion and liquid extraction surface analysis-
mass spectrometry (LESA-MS)

Ambient ionisation MS implies the use of an ionisation source that operates at
room temperature and atmospheric pressure. The technique promises high
specificity in studying and investigating in situ biochemical and celluler changes
in organisms with minimal or no sample pre-treatment. In 2004, desorption
electrospray ionisation (DESI) was introduced by Cooks group and rep-esented a
breakthrough in direct high-throughput MS analysis (Takats et al., 2004).
Following the invention of DESI, more than 20 Ambient ionisation MS
techniques were introduced, including extractive electrospray ionisation (EESI),
laser ablation electrospray ionisation (LAESI), desorption atmospheric pressure
photoionisation (DAPPI), direct analysis in real time (DART) (Han et al., 2009),

nanoESI chip-based infusion and liquid extraction surface analysis-mass

spectrometry (LESA-MS) (Li et al., 2012, Le Gac and van den Berg, 2009). Some
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least popular ambient ionisation MS methods also have been reported in the
literature, including surface desorption atmospheric pressure chemical ionisation
(DAPCI) (Pi et al., 2011), low temperature plasma (LTP) (Harper et al., 2008),
a plasma-based active capillary ionisation (Nudnova et al., 2012) and easy
ambient sonic ionisation (EASI) (Amaral et al., 2011).

Ambient ionisation MS uses ESI such as nanoESI chip-based infusion and liquid
extraction surface analysis-mass spectrometry (LESA-MS), can be considered a
form of an advanced DIMS, suggessing that it might be suitable for high-
throughput metabolomics. The minimal sample pre-treatment and fast analysis
times offering potential advantages (Li et al., 2012, Le Gac and van den Berg,
2009). NanoESI chip-based devices such as NanoMate (Advion Bioscierce, USA),
allow direct infusion, fraction collection and LESA-MS. The system is used in
conjunction with a nanoESI chip when interfaced with mass a spectrometer. The
technique provides more informative data from complex samples much better in
comparison with those obtained from standalone systems with ordinary interfaces
(Li et al., 2012). A silicon-based integrated nanoESI microchip device is used
which contains 400 nanoESI nozzles with different internal diameters that
capable of delivering flow rate down to 30-50 nL/min (Almeida et al., 2008). A
designed robotic arm inside the device picks up a pipette tip from a rack and
aspirates the sample from 96/384 multi-well samples plate to be engaged into the
back of the ESI chip. Applying high voltages through the tip while spraying
produce ions that can be introduced directly into the mass spectrometsr (Figure
1-4). This method aids intact protein analysis, non-covalent interactions and
metabolite/lipid analysis (Le Gac and van den Berg, 2009, Southam et al., 2007).

Silicon chip bearing a
: 20 x 20 array of
High Voltage __—nanospray nozzles

850-1500 V

Sample

L BReE | MS
Orifice

conductive pipette tip

Figure 1-4 Sample infusion into MS by nanoESI using the silicon chip technology
integrated in the NanoMate robot (Flangea et al., 2011).
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Different applications of chip-based infusion were reported in the literature for

DIMS analysis (Table 1-3) and they were mainly used for targeted enalysis of
metabolites in urine (Yang et al., 2004) or plasma (Han et al., 2008a). While

LESA-MS has been extensively used for quantification of metaboites from

different types of clinical samples, e.g. dried blood spots (Kertesz and Van
Berkel, 2010) and tissues (Tomlinson et al., 2014). Flangea et al. reviewed the

use of NanoMate for DIMS analysis focusing on strategies for brain gangliosides

mapping and sequencing. In comparison with classical capillary based infusion
ESI-MS, the review concluded that chip-based ESI-MS provides efficient

ionisation, sensitive (detection limits up to fmol range) and high-throughput

analyses. Furthermore, the use of the technique in conjunction with ultra-high

resolution mass spectrometers enables multistage precursor ions fragmentations

and subsequently, provides structural information of minor gangliosides which

are often represented as invaluable biomarkers (Figure 1-5) (Flangea et al.,
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Figure 1-5 A chip based nanoESI-Q-ToF mass spectrum of the native gliosarcoma
gangliosides mixture showing different types of metabolites detected in the negative
mode (Flangea et al., 2011).
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Table 1-3 A selected list of direct ESI-MS based publications for metabolomics analysis

Type/purpose of

Mass spectrometer

Reference

Method  Sample/Application the study
1. Low resolution MS/nominal mass direct ESI-MS
DIMS Olive oil, adulteration Classification
DIMS Botanical dietary Classification
supplements
DIMS Berry fruits, polyphenol Classification
content
DIMS Catharanthus roseus Targeted
anthocyanins metabolomics
DIMS Hypericins in Hypericum Targeted
elodes metabolomics
DIMS Biodiesel typification Quality control
DIMS Yeast, footprinting Classification
DIMS Wine aging Classification
DIMS Crude cell extracts, Classification
bacterial identification
DIMS Humic Substances Classification
DIMS Yeast intracellular Specific protocol
metabolites
DIMS Mouse tissue, lipidomics Methodology
DIMS Broccoli fingerprinting Classification
DIMS Ginkgo biloba extract Method
development
DIMS Medicinal plant extracts Screening
DIMS Plant extract Screening
DIMS Intact bacteria Classification
DIMS Olive oil characterisation Classification
DIMS Plant extract Classification
DIMS Microbial cells suspensions Classification
FIE-MS herbal products Quality control
adulteration
FIE-MS  Urine, dog breeds Classification
FIE-MS Arabidopsis and potato screening
profiling strategy
FIE-MS Grape anthocyanins Classification
FIE-MS Catharanthus roseus Targeted
extracts analysis
FIE-MS Raw plant extracts Method
development
FIE-MS Rice blast disease Protocol
FIE-MS Plant extracts Protocol
FIE-MS Yeast mutants Classification
FIE-MS Dietary supplement Quality control
FIE-MS Grapefruit fingerprinting Quality
assurance
FIE-MS Microbial Extracts Method
development
FIE-MS Crude fungal extracts Classification
FIE-MS Penicillium extracts, Classification
screening
FIE-MS Potato fingerprinting Classification
FIE-MS  Genetically modified Classification

Potato

LIT

LIT

LIT
LIT-MS/MS
LIT-MS/MS
Q-ToF

Q-ToF

Q-ToF

Q-ToF

Q-Trap (MS/MS)
QhQ

QqQ

Single quadruple
MS

Single quadruple
MS

Single quadruple
MS

Single quadruple
MS

ToF

ToF and Q-ToF
ToF

ToF

LIT

LIT

LIT

LIT

LIT

LIT

LIT

LIT

LIT

LIT

LIT and ToF
Single quadruple
MS

Single quadruple
MS

Single quadruple
MS

ToF

ToF

Alves et al., 2010)
Mattoli et al., 2011)
McDougall et al., 2008)
Piovan et al., 1998)

(

(

(

(

(Piovan et al., 2004)
(Catharino et al., 2007)
(Pope et al., 2007)
(Sawaya et al., 2011)

(

Baigorri et al., 2008)
Castrillo et al., 2003)

(

(

(Han et al., 2008b)
(Luthria et al., 2008)
(Mauri et al., 1999)

(

Mauri and Pietta,
2000a)

(Mauri and Pietta,
2000b)

(Goodacre et al., 1999)
(Goodacre et al., 2002)
(Goodacre et al., 2003)
(Vaidyanathan et al.,
2001)

Chen et al., 2010b)
Beckmann et al., 2010)

(
(
(Enot et al., 2006)
(

Favretto et al., 2001)
Koulman et al., 2007)

Parker et al., 2008)

~~ o~ o~

Beckmann et al., 2008)
(Mas et al., 2007)
(Sun and Chen, 2011)
(Chen et al., 2010a)
(Higgs et al., 2001)
(Smedsgaard and
Frisvad, 1996)
(Smedsgaard, 1997)
(Beckmann et al., 2007)
(

Catchpole et al., 2005)
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Type/purpose of

Method Sample/Application the study Mass spectrometer Reference
FIE-MS Yeast, mutation Classification ToF (Allen et al., 2003)
FIE-MS Antifungal modes of action  Classification ToF (Allen et al., 2004)
FIE-MS Plant leaf extracts Classification ToF (Grata et al., 2007)
FIE-MS Plant extracts Classification ToF (Johnson et al., 2007)
FIE-MS Escherichia coli tryptophan  Classification ToF (Kaderbhai et al., 2003)
metabolism
FIE-MS Enhance Plant Resistance Classification ToF (Lloyd et al., 2011c)
to necrotrophic fungus
FIE-MS Plant extracts Classification ToF (Scott et al., 2010)
FIE-MS Corn Stover Conditioning QqQ (Helm et al., 2010)
Prehydrolysates Processes
assessment

2. Low plus ultra-high resolution MS: hierarchical direct ESI-MS

FIE-MS
FIE-MS
FIE-MS
FIE-MS
FIE-MS

Human urine, diet
assessment

Human urine, dietary
biomarkers

Human urine, dietary
biomarkers

Rice blast disease

Bacterial infection in plants

Classification
Biomarkers
Biomarkers
Classification

Classification

3. High resolution MS: accurate mass direct ESI-MS

DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS
DIMS

DIMS
DIMS

DIMS
DIMS
DIMS
DIMS

DIMS
DIMS

Urine, drug metabolites

Tomato profiling

Plant populations profiling

Plant extract

Rice blast disease
Serum, kidney cancer
Plasma, lung cancer
Crude plant extracts

Phospholipids role for
salmonella growth in bile
Salmonella infection on
host metabolism

Alcohol liver toxicity
(animal model)

wine discrimination

Nut oil analysis

Wine diversity
plant physiology

Plasma/mouse serum

Rat urine,
phospholipidosis

Rat urine, drug-induced
toxicity

Faecal water, Crohn’s
disease

Plant metabolism

Champagne Wine

Targeted
Classification
Classification
Methodology
evaluation
Classification
Biomarkers
Biomarkers
Classification
untargeted
metabolomics
untargeted

metabolomics
Classification

Quality control

Identification

Classification

Classification
and feature
Targeted
approach
Biomarkers

Biomarkers
Biomarkers

Identification

profiling

LIT/LIT-FT-ICR-MS
LIT/LIT-FT-ICR-MS
LIT/LIT-FT-ICR-MS
LIT/LIT-FT-ICR-MS
LIT/LIT-FT-ICR-MS

LIT-Orbital trap

MS
ToF

ToF
ToF

ToF and Q-ToF

Q-ToF

Q-ToF

FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS
FT-ICR-MS

FT-ICR-MS
FT-ICR-MS

Fave et al., 2011)
Lloyd et al., 2011a)

(
(
(Lloyd et al., 2011b)
(Parker et al., 2009)
(

Ward et al., 2010)

(Rathahao-Paris et al.,
2014)

(Overy et al., 2005)
(Davey et al., 2008)
(Dunn et al., 2005)
(William Allwood et al.,
2006)

Lin et al., 2010)
Lokhov et al., 2012)

Aharoni et al., 2002)

(
(
(
(Antunes et al., 2011a)
(Antunes et al., 2011b)
(Bradford et al., 2008)
(

Cooper and Marshall,
2001)
(Fard et al., 2003)

Gougeon et al., 2009)

Gray and Heath, 2005)
Han et al., 2008a)

Hasegawa et al., 2007)
Hasegawa et al., 2010)

(
(
(
(
(
(

Jansson et al., 2009)

(Kai et al., 2009)
(Liger-Belair et al., 2009)
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Type/purpose of

Method Sample/Application the study Mass spectrometer Reference
DIMS Mycobacterium extract Identification FT-ICR-MS (Mougous et al., 2002)
DIMS Tobacco plant metabolism  Identification FT-ICR-MS (Mungur et al., 2005)
DIMS Cell culture, metabolic Identification FT-ICR-MS (Nakamura et al., 2007)
activity
DIMS Plant metabolic disorders Methodology FT-ICR-MS (Ohta et al., 2007)
DIMS Plant extracts Methodology FT-ICR-MS (Oikawa et al., 2006)
DIMS Nut oil, aging Quality FT-ICR-MS (Proschogo et al., 2012)
assessment
DIMS Bacterial extract, Classification FT-ICR-MS (Rossello-Mora et al.,
geographic isolation 2008)
DIMS Poppy alkaloids extract Screening FT-ICR-MS (Schmidt et al., 2007)
DIMS Accurate mass and isotope ~ Methodology FT-ICR-MS (Stoll et al., 2006)
pattern
DIMS E. coli, growth conditions Identification FT-ICR-MS (Takahashi et al., 2008)
DIMS Plasma, insulin sensitivity Biomarkers FT-ICR-MS (Lucio et al., 2010)
DIMS Bacterial extract Classification FT-ICR-MS (Nam et al., 2008)
DIMS Fish liver extract Methodology FT-ICR-MS (Southam et al., 2007)
DIMS Water flea extract, Cu- Classification FT-ICR-MS (Taylor et al., 2009)
toxicity
DIMS E. coli CYP450 Substrate LIT-FT-ICR-MS (Furuya et al., 2008)
screening
DIMS Plant extracts, isotope Methodology LIT-FT-ICR-MS (Giavalisco et al., 2008)
labeling
DIMS Liver transplantation Methodology LIT-FT-ICR-MS (Hrydziuszko et al.,
2010
DIMS Wine discrimination Classification LIT-FT-ICR-MS (Villagra et al., 2012)
FIE-MS Yeast, Cd treatment Classification LIT-Orbital trap (Madalinski et al., 2008)
MS
FIE-MS Plasma (mice), phosphatidylchol ToF (Yang et al., 2009)
hypercholesterolemia ine biomarkers
FIE-MS Escherichia coli extract, Method Q-ToF (Fuhrer et al., 2011)
profiling development
FIE-MS Yeast extract, footprinting  Classification Q-ToF (Hojer-Pedersen et al.,
2008)
FIE-MS Penicillium extracts Classification Q-ToF (Smedsgaard et al., 2004)
FIE-MS Coumarins extracts Targeted Q-ToF (MS/MS) (Yue et al., 2011)
metabolomics

DIMS: direct infusion mass spectrometry using chip-based infusion device (NanoMate) or a syringe pump,
FIE-MS: flow injection mass spectrometry, LIT: linear ion trap MS, QqQ: triple quadrupole MS, QhQ:
quadrupole-hexapole-quadrupole MS, ToF: time of flight MS, Q-ToF: quadrupole-time of flight MS, FT-ICR-
MS: fourier transform ion cyclotron resonance MS and Q-Trap: quadrupole ion trap MS.
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1.56.3 Mass spectrometers used for direct ESI-MS

Different types of mass spectrometers and data processing techniques have been
used for direct ESI-MS (Table 1-3). Direct ESI-MS experiments were originally
performed with nominal mass analysers such as single-stage quadrupole (Luthria
et al., 2008, Mauri et al., 1999, Mauri and Pietta, 2000a, Mauri and Pietta,
2000b), linear ion trap (LIT) (Alves et al., 2010, Mattoli et al., 2011, Piovan et
al., 1998, Piovan et al., 2004), quadrupole ion trap (Q-Trap) (Baigorri et al.,
2008) and triple quadrupole (QqQ) (Helm et al., 2010) instruments. The analysis
with low resolution mass spectrometers is highly robust and offers fast scanning
over a wide m/z range (Gross, 2011), hence, nominal mass ESI-MS datasets are
quite reproducible and fast to generate. Metabolite profiling using nominal mass
ESI-MS is usually carried out when there is a need for a high-throughput
screening approach with wide coverage of metabolites. This method usually
provides classification and discrimination between samples according to their
biological relevance without the need to identify or quantify metabolites in the
sample (Beckmann et al., 2008). Most of nominal mass ESI-MS applications have
been concentrated in the area of plant metabolomics (Grata et al., 2007, Johnson
et al., 2007), food quality assessment (Alves et al., 2010, Chen et al., 2010a) and
microbial profiling/footprinting (Allen et al., 2003, Kaderbhai et al., 2003).
However, in order to resolve isobaric compounds (compounds with the same
nominal masses) as in the case of more complex matrices such as plasma and
urine, high-resolution mass spectrometers (HRMS) are the instruments of choice.
Nevertheless, the reproducibility of the analysis with HRMS can decrease as mass
resolution increases. It is therefore, in some direct ESI-MS studies, HRMS such
as ToF (Beckmann et al., 2007, Catchpole et al., 2005) and Q-ToF (Pope et al.,
2007, Sawaya et al., 2011) has been used to generate nominal mass ESI-MS
datasets. It is quite understandable they sacrificed resolution with the promise of
improving method reproducibility. Alternatively, for the purpose of identification
using accurate mass and retaining reproducibility, direct ESI-MS has been
employed with hierarchical approach in which nominal mass ESI-MS profiling is
followed by a targeted analysis of specific ions using HRMS. Hierarchical nominal
mass FIE-MS has found applications to urine in the area of nutrition using ion
trap MS followed by FT-ICR-MS analysis (Fave et al., 2011, Lloyd et al., 2011a,
Lloyd et al., 2011b). However, this approach increases the capital cost associated
with the method as it requires at least two MS instruments to perform nominal

and accurate mass analyses.
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In contrast to nominal mass ESI-MS, the use of HRMS instruments in direct
ESI-MS provides higher mass resolution and therefore, offers a means to annotate
metabolites based on their accurate mass. The desire behind using exact mass
methodologies is that the measured m/z values of specific metabolites can be
directly used to interrogate publically available metabolite databases. Thus,
accurate mass information obtained from the analysis could tentatively identify
those metabolites. Furthermore, HRMS instruments, depending on their resolving
power, are capable of resolving most of isobaric compounds that would normally
be binned into a single m/z in nominal mass ESI-MS and therefore, more spectral
information could be obtained from the analysis. However, with the increased
resolution, a valid analysis protocol followed by a powerful data processing
technique is needed to ensure method reproducibility. Direct ESI-MS untargeted
metabolomics have been reported with different types of HRMS instruments such
as FT-ICR-MS (Hasegawa et al., 2010), ToF-MS (Davey et al., 2008), Q-ToF
(Smedsgaard et al., 2004) and orbital trap MS (Koulman et al., 2009). Q-ToF
MS has a resolution of 10,000-17,500 at full width at half maximum (FWHM)
depending on the geometry of the ion optics, the flight-tube (e.g. use of a
reflectron) and instrument tuning with a typical mass accuracy of 5-10 ppm
(Kayser and Warzecha, 2012, Waters, 2005, Draper et al., 2013). A reported FIE-
MS method using Q-ToF for microbial profiling was able to detect around 1500
reproducible ions at a resolution of 10,000 (FWHM) with mass error within 1
mDa in the range of m/z 100-1,000 (Fuhrer et al., 2011). However, recent types
of Q-ToF can achieve a mass resolution up to 50,000 (FWHM) when internal
calibration is used (Ranasinghe et al., 2012). The increase in the resolution of MS
is usually associated with a loss of sensitivity and dynamic range (highest to
lowest ratio of analyte concentration detected) and could only be achieved upon
expense of mass accuracy. With the advent of new ultra-high resolution mass

spectrometers such as FT-ICR-MS and orbital trap MS, such problems are

reduced significantly. FT-ICR-MS has a very high resolution of 100,000—
1,000,000 (FWHM) with sub-ppm accuracy while orbital trap MS resolution in
the range of 10,000-130,000 (FWHM) and 1-2 ppm accuracy (Gross, 2011).
Rathahao-Paris et al., reported detection of more than 3400 ions with average

mass error of 2.4 ppm in the mass range of m/z 125-1,000 from rat urine
analysed by FIE-MS using orbital trap MS (Rathahao-Paris et al., 2014).

Different techniques such as selected ion monitoring (SIM) stitching have been
reported to address the dynamic range limitation of direct ESI-MS for both

nominal mass and accurate mass profiling. In SIM stitching, datasets are
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generated as a series of overlapping spectra with narrow mass windows and then
those spectra are stitched (combined) together after acquisition. Southam et al.,
described a SIM stitching strategy to widen the dynamic range of FT-ICR-MS
for DIMS (chip-based infusion) and therefore, low and high concentrations
metabolites could be detected with high accuracy (Southam et al., 2007).
Datasets were generated in SIM mode in the range of m/z 70-500 with 30 m/z
window overlapped by 10 m/z and then the acquired spectra were stitched using
custom-written MATLAB algorithms (Payne et al., 2009). They used fish liver
samples to demonstrate that, when a wide mass range is used the SIM stitching
method increased the detection of peaks by a factor of 5.3 with mass error less
than 0.5 ppm compared to standard wide-scan range (WSR). Similarly, SIM
stitching methods for two mass ranges (low: m/z 15-200 and high: m/z 110-
2,000) have been reported with nominal mass ESI-MS for the analysis of dog
urine (Beckmann et al., 2010) and infected plant extracts (Parker et al., 2008,
Parker et al., 2009). This technique was further extended to acquire four scans in
a mass range of m/z 15-1200 and has been applied to great effect for urine
metabolomics (Fave et al., 2011, Lloyd et al., 2011a, Lloyd et al., 2011b). The
collection of datasets in narrow mass windows in nominal mass ESI-MS generally
improved classification characteristics of multivariate models. However, the use of
SIM stitching technique for direct ESI-MS requires an instrument with MS2
capability such as LIT-orbital trap and LIT-FT-ICR-MS which increases the
capital cost of the analysis. In addition a sophisticated algorithm is used for SIM
stitching with intensive data pre-processing steps, therefore significant time,

effort and expertise is required to handle such data.

In summary, direct ESI-MS has been extensively used for both targeted and
untargeted metabolomics using different approaches. However, few studies were
reported for urine analysis (Table 1-3) and most of direct ESI-MS have not been
validated properly; a point will be discussed further in the next chapter.
Regarding instrumentation, the high resolution and accuracy of FT-ICR-MS
makes it the ideal instrument for direct ESI-MS untargeted urine metabolomics.
However, the high capital cost of the instrument limited its use for large and
well-funded laboratories. While the advent of relatively affordable benchtop mass
spectrometers such as Orbital trap MS offers the opportunity to perform direct
ESI-MS analysis more routinely at higher mass resolutions (Kayser and
Warzecha, 2012).
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1.6 Data processing in LC-MS and direct ESI-MS based

metabolomics

Untargeted MS-based metabolomics involves the analysis of treated and control
sets of samples, generating large, complex datasets containing the analytical
measurements. Difficulties in extracting useful analytical information from these
datasets may arise due to (1) the high matrix MS background noise and
impurities associated with the sample, (2) poor separation of isomers, (3)
multiple analytes co-elution, (4) protonation/deprotonation, ion fragments and
cluster/adduct formation associated with the single analyte leading to multiple
features in the data sets, and (5) the wide range of analytes in the sample. The
numerous features and the complex datasets remain a hurdle in the development
of reliable and unbiased data processing approach in high-throughput
metabolomics. Therefore, a standardised workflow of metabolomics experiments
is essential in order to be analytically informative and useful (Han et al., 2009).
In 2007, the chemical analysis working group (CAWG) Metabolomics Standards
Initiative (MSI) recommended minimum requirements that should be reported in
any metabolomics experiments to maximise the utility of the metadata
generated. These requirements include reporting of: collection/sample preparation
protocol, experimental analysis, quality control, data processing and

identification of metabolites detected in the experiment (Sumner et al., 2007).

The pre-processing workflow of the LC-MS datasets for metabolomics includes, in
general, (1) spectral filtering (uses baseline subtraction to reduce spectral noise),
(2) peak detection and deconvolution (deconvolution is an algorithm-based
process utilised to reverse the recorded data convolution effect) by finding m/z
values of a single ion in all scans to reconstruct ion chromatograms through peak
deconvolution, (3) Peak alignment (matches peaks across replicates) and (4)
normalisation (to reduce systematic errors). Each step has it is own parameters
to setup with no standard way to do so. Therefore, researchers primarily setup
parameters from their own experience which potentially affect their final output.
In conclusion, although many data processing packages are available, the gap
between accurate data acquisition and accurate data processing still exists and
remains an obstacle in high-throughput metabolomics using MS approaches (Han
et al., 2009).

In targeted metabolomics, platform-dependent software provided with the

instrument is quite satisfactory in processing the limited number of metabolites
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of interest. Nevertheless, open source programmes for automatic quantification of
floods of data can be used, e.g. MetaQuant (Bunk et al., 2006). On the other
hand, in metabolic profiling and fingerprinting, thousands of mass spectral sets
including metabolite features such as m/z, retention time, and peak intensity as
well as different ion fragments can be generated from a single metabolome
(Borner et al., 2007). Therefore, an important data processing step is to use
unbiased mass spectral deconvolution software such as Progenesis QI. Progenesis
QI is platform-independent mass spectrometry software, and it has the ability to
analyse different file format directly from different instrument vendors. It
provides identification of each individual component in the metabolomics profile.
It extracts the analyte peaks and intensities from the raw data and aligns them
with a reference spectrum. Progenesis QI performs normalisation with different

methods across the dataset of samples (Nonlinear-Dynamics, 2014).

Several commercial instrument vendors and open-source software tools are now
available with more advanced features which improve, to some extent, data
processing for MS-based metabolomics. The software packages from MS
instrument vendors are restricted to certain format that should be generated
from a certain platform and they are not applicable, in general, for cross
platforms data processing. They include MarkerLynx from Waters, MarkerView
from MDS/Applied Biosystems, SIEVE from ThermoFisher Scientific, Profile
Analysis form Bruker Daltonics, and Mass Profiler Professional from Agilent
Technologies (Han et al, 2009). Open source software tools such as
MetaboliteDetector (Hiller et al., 2009), MET-IDEA (Broeckling et al., 2006),
TagFinder (Luedemann et al., 2008), MetaAlign (De Vos et al., 2007), MZmine
(Katajamaa and Oresic, 2005), MZmine2 (Katajamaa et al., 2006), XCMS (Smith
et al., 2006), XCMS2 (Benton et al., 2008) and MathDAMP (Baran R Fau -
Kochi et al., 2006) are also available. However, the process results should be
exported into common data format files (CDF), e.g. netCDF, mzData, mzML,
mzXML and ASCII, first before processing. The analysis of LC-MS based
metabolomics datasets may require relatively long processing time and therefore,

limiting the overall throughput of the analysis (Han et al., 2009).

In contrast to LC-MS datasets, direct ESI-MS datasets are lower in
dimensionality in which the retention time (RT) is not a variable. LC-MS
software are not designed, in general, for processing direct ESI-MS datasets,
therefore, many research groups had developed their own data processing

algorithms in R or MATLAB environment in combination with sophisticated
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signal acquisition procedures (Southam et al., 2007, Han et al., 2008a). However,
these data processing protocols require extensive output validation, efforts, time
and expertise to ensure the quality of the extracted data matrices and therefore,
increasing the debates of considering them as a high-throughput data analysis
approach. Alternatively, some dedicated software for direct ESI-MS data pre-
processing are available such as MetaboAnalyst (Xia et al., 2012) and SpecAlign
(Wong et al., 2005). However, the raw datasets should be converted into common
data format files, e.g. netCDF or comma-separated values (.csv), first before pre-
processing. On the other hand, some LC-MS data processing software such as
Progenesis QI, has the capability to handle direct ESI-MS raw datasets without
conversion (Nonlinear-Dynamics, 2014). This makes data analysis a simple
process with minimum intervention, hence high-throughput analysis could be

achieved.

In conclusion, the wide availability of data analysis software and bioinformatics
tools promises to facilitate interpretation and data processing of many
metabolomics studies worldwide. However, such tools still require further
refinement. Finding an efficient metabolic identification strategy is still a
bottleneck hurdle in pursuing high-throughput in metabolomics and a challenging

future task.
1.7 Multivariate analysis (MVA) in MS based metabolomics

The complexity of data generated by metabolomics datasets result in 2
dimensional multivariate data matrices (n x m) where n denotes metabolite
features (variable) and m denotes samples (observation). To obtain useful
information from these matrices, multivariate analysis (MVA) techniques are
needed for data modelling and exploratory analysis. These MVA approaches
include the use of unsupervised approach with no need for prior sample
information such as principal component analysis (PCA) which reduces the
number of variable in the matrix into specific small number of projections named
as “principal components”. Then, the differences or similarities of each metabolic
profile of the sample are displayed as a plot consists of 2 or 3 principal
components called a “score plot”. Unfortunately the score plot does not give any
information about variable trends; instead, a correlated loading plot can reveal
such trends. Partial least square combined with discriminant analysis (PLS-DA),

is an alternative supervised extension of PCA. It has the advantage of

maximising the separation between groups by providing classes’ information to
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the model. However, the modelling of the data using PLS-DA should be followed
by proper model validation as data overfitting is a possibility, wkich could
deviate the model (Li et al., 2009). In Figure 1-6, PCA and PLS-DA score plots
are compared for human plasma metabolic profiles of groups of 10 healthy
volunteers (control) against 10 metabolic syndrome patients (study) analysed by
UHPLC-Q-ToF-MS. It is obvious that supervised PLS-DA plot shows better
groups separation than PCA plot. Another extemsion of PLS is orthogonal PLS-
DA (OPLS-DA) which is additionally featured orthogonal signal correction. In
OPLS-DA, the datasets are divided into two parts; one part contains the
systematic variations of the variables (n) which are linearly related to the
observations (m) and the second part is orthogonal. This facilitates and provides
better model fitting and interpretation of the data compared to PLS-DA model
(Trygg and Wold, 2002).

It is worth mentioning that, the data pre-processing steps, e.g. normalisation,
scaling and possibly transformation before MV A have a large impact on the
subsequent models generated and can significantly affect the metabolites
extracted and identified by MS-based metabolomics. Van den Berg, et al.,
demonstrated (using LC-MS datasets) the effect of centering, scaling, and
transformations on the quality of biological information that can be gained from

a metabolomics study (Van den Berg et al., 2006 ).
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Figure 1-6 Principal component analysis (PCA) and partial least square-discriminant
analysis (PLS-DA) score plots of human metabolic syndrome study. Comparison
between the score plots of the 1% VS 2" principal components from PCA (upper) and
PLS-DA (lower) models of datasets from metabolic syndrome patients (rec triangles)
and health;)f controls (blue triangles) analysed by C8 UHPLC-Q-ToF-MS (Van den Berg
et al., 2006).
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1.8 Metabolite identification in MS-based metabolomics

Extracted metabolites from HRMS-based metabolomics are putatively identified
by searching local or web-based databases against their measured accurate mass.
Then, metabolites identities can be confirmed further by performing MS/MS
analysis in which the obtained fragmentation pattern is compared with reference
spectral libraries. Whereas absolute identification is achieved only by comparing
metabolites retention times and MS/MS spectra with reference standards (Gika
et al., 2014). The large amount of data that can be obtained from the
metabolome drives the development of many bioinformatics software and
metabolome databases. For complexity and purpose of interest, the metabolome
open source databases can be categorized into (1) compound-specific, e.g.
PubChem (Wang et al., 2012b), (2) species-specific, e.g. HMDB (human specific
metabolites database) (Kouskoumvekaki and Panagiotou, 2011), KNApSAcK
(plant and microorganisms specific database) (Afendi et al., 2012) (3) pathway
specific, e.g. KEGG (general pathways) (Krishnappa, 2011) and (4) reference
spectral database, e.g. MassBank (MS/MS standard chemical substances
spectral database) (Horai et al., 2010).

1.9 General considerations in the development of urine MS-based

metabolomics methods

1.9.1 Analytical considerations

In MS-based metabolomics studies there are different sources of variability
associated with the analysis of biological samples. They could be genuine due to
the nature of the biological sample (biological variability) or artificial (introduced
variability) due to pre-analytical or analytical manipulations in the study. These
sources of variability are mainly of biological, pre-analytical (e.g. sample
collection and preparation) and analytical origins. In urine analysis the biological
variability is quite high due to extreme diversity of metabolite classes present in
the sample which exist in wide dynamic concentration ranges and they are
continuously subjected to huge inter-individual variability (Da Silva et al., 2013).
Therefore pre-analytical and analytical variability should be kept at the

minimum in order to estimate the biological one (Gika et al., 2012).
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1.9.1.1 Biological variability

It is advantageous during the stage of designing the experiment for urine
metabolomics to minimise the possible factors that could increase the biological
variability and they are not relevant to the aim of the study such as differences
in gender and age of subjects. Un-matching gender and ages of the subjects in
urine metabolomics have been demonstrated to have a substantial impact on
metabolic profiles (Holmes et al., 2008). It likewise has been shown that the urine
metabolic profiles can easily detect differences associated with samples collected
from different cities and countries which is possibly due to different environment,
cultural habits and diet from one place to another (Lenz et al., 2004). Therefore,
during subject recruitment for urine metabolomics, inclusion and exclusion
criteria should be in favour of controlling such differences. This will be discussed

in details in chapter 2, section 2.1.2.2.
1.9.1.2 Pre-analytical variability

When clinical samples are collected, the collection procedure should be highly
standardised, e.g. specify samples time of collection during the day (Fave et al.,
2011). Diurnal variation has been demonstrated to have a great influence on the
urine metabolic profiling (Lenz et al., 2003), a point will be discussed in detail in
the next chapter. In addition, the handling steps of urine samples during
collection and sample preparation may introduce a considerable bias in the study,
these steps include: sample collection containers, time before freezing, storage
temperature, thaw/freeze cycles and sample preparation procedure (SMRS,
2005). Therefore, many studies developed different protocols to standardise urine
collection and sample preparation procedure and they demonstrated significant
improvement in the analytical outcomes (Fave et al., 2011, Araki et al., 1990,
Carrieri et al., 2000, Saude et al., 2007).

1.9.1.3 Analytical variability

In MS-based metabolomics, especially LC-MS, analysis of large batches of
samples are required and potentially takes 10s to 100s hours of continuous
analysis. Such analysis is only practical if good analytical stability is achieved.
The repeatability /reproducibility of the MS-based analytical methods is more
prone to variability than other methods such as NMR-based metabolomics. This
is not just because of the nature of the MS instrument, but also due to the

extensive samples pre-treatment required prior analysis. Therefore, the
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instrument performance should be checked and optimised to reduce the
variability to the minimum. The use of pooled quality control (QC) samples
and/or a set of analytical standards interspaced between samples are the most

common techniques to assess the performance of the MS instrument. Different

protocols in the literature suggest following a roadmap for a “good practice” in
LC-MS based metabolomics (Want et al., 2010, Zelena et al., 2009).

1.9.2 Data analysis considerations

The datasets generated by MS-metabolomics are multivariate by nature; hence,
the majority of metabolomics studies use multivariate analysis (MVA)
approaches, e.g. PCA and OPLS-DA to report their findings. Most of instrument
vendors, as mentioned earlier, provide different software packages for
multivariate analysis. Despite the elegance of MVA models, their predictive
power might be compromised due to model overfitting. Therefore, a substantial
MVA model validation is needed such as cross-validation (CV), permutation and
training/prediction sets can be handled using the classical univariate statistical
approaches which consider only one variable at a time (Saccenti et al., 2014).
However, univariate approaches overlook correlations within m/z and/or
retention time features and subsequently information related to correlation trends
in the data are not retained. Therefore, it is also recommended to use both
multivariate and univariate analysis in parallel to maximise the confidence in the
extracted sets of features from metabolomics studies (Goodacre et al., 2007).
Moreover in univariate analysis, normal distribution is assumed when parametric
statistical tests such as ANOVA or Student ¢-test is used and in many MS-
derived datasets normality might be violated (Vinaixa et al., 2012). If the data is
not normally distributed (i.e. skewed distribution), transformations such as log
transformation (Broadhurst and Kell, 2006), power transformation (Van den
Berg et al., 2006) or ArcSinh transformation (Jones, 2008) can be effective ways

to restore normality to the data.

When univariate analysis is used for MS-based metabolomics, the number of tests
equates the number of the MS features detected. Subsequently, type I error (false
positive) may occur due to the multiple testing problem. Different approaches
have been used for multiple testing corrections such as family wise error rate
(FWER) and false discovery rate (FDR). FWER such as Bonferroni correction
remains the most commonly used parameter for ascribing significance levels to

statistical test in metabolomics. However, its conservative power to keep a strict
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control on avoiding Type I error (false positive) increases the probability of Type
IT error (false negative). Other methods such as FDR strike a balance between
the need to avoid false discoveries (type I error) and retaining true discoveries
from being missed (type II error). FDR calculates g-value (adjusted p-value) for
each tested feature by estimating the rate of significant features being false. In
another words, the number of false positives is computed out of the significantly
varied metabolic features, for example, a p-value = 0.05 means that 5% of all
computed tests might be false positive while a g-value = 0.05 implies that only
5% from the significant tests might result in false positive (Vinaixa et al., 2012).
Some commercial LC-MS software such as Progenesis QI calculates both
ANOVA p-values and FDR g-values after applying ArcSinh transformation to

restore normality (Nonlinear-Dynamics, 2014).

All these practical and data analysis aspects should be considered carefully when
designing and executing an MS-based metabolomics study. The choice of
following a certain workflow above another depends mainly on the biological

context of the study, instrumentation and data processing approaches.
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1.10 General aims and objectives of the study

In untargeted metabolomics studies, when a large batch of samples must be
analysed, one of the main concerns in the analysis is the stability of the samples
during the run especially for unstable metabolites (Han et al., 2008a). The use of
the common chromatography MS with its long separation time even make the
situation worse in term of sample stability. A truly effective analytical technique
must be capable not only of sensitive and selective detection of diverse molecules
present in the metabolome, but also of accurate quantitation over a wide range of

concentrations, in a high-throughput fashion (Gamache et al., 2004).

This PhD research aims to develop and compare several high-throughput direct
ESI-MS approaches for urine metabolomics. The specific objectives required to

fulfil this aim are as follows:

e Optimise an LC-MS method for urine metabolomics.
e Develop three different direct ESI-MS methods for urine metabolomics.

e (Compare and validate the developed direct ESI-MS methods with the LC-
MS.

Apply the developed direct ESI-MS methods and the LC-MS for clinical urine

metabolomics to study:

e Osteoarthritis (OA) urinary signature.
e Malaria urinary biomarkers.

e The dietary effect of oligofructose on gastrointestinal microbiota in

healthy volunteers.
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2. Development of High-Throughput Mass Spectrometry

Approaches for Clinical Urine Metabolomics

2.1 Introduction

2.1.1 Current use of direct mass spectrometry for urine-based

metabolomics

Urine composes of aqueous media with a high salt content and many small
molecules, e.g. creatinine, urea, and amino acids but also different organic acids
and xenobiotics (Strasinger and Di-Lorenzo, 2008). The interest of using urine in
metabolomics has its advantages as it involves non-invasive sample collection,
well suited for clinical or epidemiological applications. However, there are
relatively few studies reported in the literature related to the use of flow injection
electrospray-mass spectrometry (FIE-MS) for the analysis of urine samples,
mainly in toxicological and nutritional areas as summarised in Table 2-1. High-
throughput FIE-MS targeted screening for inborn errors of metabolism in urine
samples under controlled pH conditions has confirmed that 4-hydroxyglutamate
is a biomarker for primary hyperoxaluria type 3 (PH3) (Pitt et al., 2015). A
further study has used FIE-MS/MS as an alternative tool to immunoassays for
screening for mephedrone, six amphetamine-type stimulants (ATS), ketamine
and its metabolites in human urine (Lua et al., 2012). Similarly, FIE-MS has
found its use for rapid quantification of creatinine using stable isotope dilution
tandem mass spectrometry in urine (Niesser et al., 2012). The use of a liquid
handling robotic system (e.g. NanoMate) as a recent automated direct infusion
mass spectrometry (DIMS) introduction system with chip-based nanoelectrospray
(nanoESI) as an alternative to manual syringe infusion has also getting more
intension for clinical studies. NanoMate has been applied for structural
elucidation of drug metabolites in urine using Q-ToF in MS/MS mode (Trunzer
et al., 2007). Studies involving complex carbohydrate analysis have demonstrated
the high-throughput power of the technique for glycoconjugates detection in
urine (Froesch et al., 2004) or structure assignment of carbohydrate components

in complex mixtures (Zamfir et al., 2004).

In many cases FIE-MS has been employed with low resolution MS analysers such
as quadrupole and ion trap (Castrillo et al., 2003, Cao et al., 2008), but it is

accepted that high resolution accurate mass analysers, e.g. time of flight (ToF),

32
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FT-ICR-MS and orbital trap MS, are more suited for untargeted metabolomics
(Giardi et al., 2010). FT-ICR-MS has been reported for FIE-MS human urine
metabolomics for dietary biomarkers (Lloyd et al., 2011lc, Lloyd et al., 2011a,
Fave et al., 2011). A recent study described an FIE-MS method with an orbital
trap MS instrument for the rapid detection of vinclozolin metabolites in the urine
of rats (Rathahao-Paris et al., 2014). In direct ESI-MS the quality of the data,

performance and outcomes obtained employing electrospray ionisation (ESI) is

quite promising when it is used in combination with chemometric data analysis

tool such as cluster analysis and principal component analysis. Generally, its use,

in comparison with other detection techniques, is considered competitive in terms

of speed and simplicity especially when large samples sets are analysed.

Nevertheless, it must be dealt with caution as its potential gains lie in

compromise between speed and information (Giardi et al., 2010).

Table 2-1 An overview of direct ESI-MS based publications for urine metabolomics

Technique Type of the study Aim Mass spectrometer  Reference
FIE-MS Untargeted metabolomics Biomarkers related to LIT, LIT-FT-ICR- (Lloyd et al., 2011a)
(Dietary biomarkers) consumption habitual MS
citrus fruit
FIE-MS Untargeted metabolomics ~ Food biomarkers LIT, LIT-FT-ICR- (Lloyd et al., 2011b)
MS
FIE-MS Untargeted metabolomics Feature selection and LIT, LIT-FT-ICR- (Fave et al., 2011)
(Diet assessment) classification MS
DIMS Untargeted metabolomics Phospholipidosis FT-ICR-MS (Hasegawa et al.,
(Rat urine, toxicology) biomarkers (syringe pump) 2007)
DIMS Untargeted metabolomics Drug induced toxicity FT-ICR-MS (Hasegawa et al.,
(Rat urine, toxicology) (syringe pump) 2010)
FIE-MS Targeted metabolomics hyperoxaluria type 3 Triple quadrupole  (Pitt et al., 2015)
(confirmation) (PH3) biomarker
FIE-MS Targeted metabolomics Drug screening Triple quadrupole  (Lua et al., 2012)
FIE-MS Targeted metabolomics Creatinine Triple quadrupole  (Niesser et al., 2012)
quantification
DIMS Targeted metabolomics Structural elucidation Q-ToF (Trunzer et al.,
of urinary metabolites (NanoMate) 2007)
DIMS Targeted metabolomics Carbohydrate screening FT-ICR-MS (Froesch et al.,
(Schindler’s disease) (NanoMate) 2004)
DIMS Targeted metabolomics Carbohydrate analysis Q-ToF (Zamfir et al., 2004)
(NanoMate)
FIE-MS Targeted metabolomics Identification of LIT-Orbital trap (Rathahao-Paris et
xenobiotics metabolites ~ MS al., 2014)
FIE-MS Untargeted metabolomics ~ Breast cancer Triple quadrupole  (Chen et al., 2015a)
biomarkers
DIMS Untargeted metabolomics Alzheimer’s disease Q-ToF (Gonzalez-
(Mice urine, development)  hiomarkers (syringe pump) Dominguez et al.,
2014)
DIMS Targeted metabolomics Quantification of Triple quadrupole  (Yang et al., 2004)
Methylphenidate (NanoMate)
FIE-MS Untargeted metabolomics Dietary metabolism in ~ FT-ICR-MS (Beckmann et al.,

(Dogs urine, Diet)

domestic dogs

2010)

DIMS: direct infusion mass spectrometry using chip-based infusion device (NanoMate) or a syringe pump,
FIE-MS flow injection mass spectrometry, Q-ToF: quadrupole-time of flight MS, LIT: linear ion trap MS,
and FT-ICR-MS: fourier transform ion cyclotron resonance MS.
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2.1.2 Analytical challenges in the development of direct ESI-MS

methods for urine metabolomics

2.1.2.1 Ion suppression

Ton suppression during the ionisation phase is one of the most important factors
that can affect the performance of the mass spectrometer for direct ESI-MS
analysis of complex biological samples. Sample related issues such as co-eluting
analytes and sample matrix (e.g. salts in urine) may have a high impact on this
effect. Although it affects both electrospray ionisation (ESI) and atmospheric
pressure chemical ionisation (APCI), a comparative study using biological
extracts has shown that ESI is more prone to ion suppression than APCI.
Further investigations in the same article have indicated that the change in the
droplet properties due to presence of non- or less volatile materials is the main
cause of ion suppression in the ESI (King et al., 2000). Samples containing non-
volatile solutes such as salts, xenobiotics/metabolites, endogenous compounds or
ion pairing agents have a direct effect on the efficiency of the formation and
evaporation of droplets during the ESI process. This in turn has a direct effect on
the population of ions generated in the gas phase and subsequently, deteriorates
the detection performance of the mass spectrometer. Other factors such as mass
and charge of the individual analytes may also contribute as a source of ion
suppression for the analyte itself or for other ions. High mass molecules suppress
the ionisation of smaller ones (Sterner et al., 2000) and polar compounds are

more prone to ion suppression than non- or less polar compounds (Bonfiglio et
al., 1999).

2.1.2.2 Urine variability

In metabolomics studies, when sample preparation and the analytical procedure
are adequately standardised, the remaining source of variation is mainly that of
biological origin. This variability is a main concern in the case of urine as it is
continuously subjected to huge inter-individual variability in terms of ionic
strength, pH and osmolarity. The unpredictable dilution throughout the day
causes urine volume to vary, it is not uncommon in a metabolomics study to
encounter up to 15-fold differences in urine volumes (Tsuchiya et al., 2003). As a
result, the amount of metabolites in urine also varies. All these sources of
variability might question the suitability of urine for metabolomics analysis.
However, there are many advantages associated with urine samples make it an

attractable choice. Urine collection is non-invasive, simple and is less likely to be
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volume-limited which provides enough aliquots for metabolite identification,
quantification and subsequent data analysis. Furthermore, it can be easily
sampled at different time intervals allowing temporal metabolic changes to be
investigated. In addition, urine being a waste product pool of the biological
system and it is not under homeostatic regulation, it can provide insights into
metabolic dis-regulation associated with physiological changes during normal or
disease processes (Chen et al., 2013a). Therefore, different techniques and
approaches such as post-analysis normalisation, sample-intervened normalisation
and standardised wurine protocols have been reported to compensate such
variability for metabolomics studies. Post-analysis normalisation mainly include
normalisation to creatinine (Alberice et al., 2013, Wagner et al., 2010, Cone et
al., 2009, Heavner et al., 2006), urine volume normalisation (Warrack et al.,
2009), osmolality normalisation (Chadha et al., 2001) and total area
normalisation (Sen et al., 2013, Chetwynd et al., 2015). Creatinine excretion may
vary due to gender, lean body mass and kidney function (Miller et al., 2004,
Waikar et al., 2010). Therefore normalisation to creatinine should be limited to
subjects with normal kidney function. Normalisation to osmolality is used to
correct the concentration of all metabolites in urine samples based on the premise
that the concentration of osmolite is a direct measure of total metabolites in the
sample (Gyamlani et al., 2003). However, osmolality is often affected by the
presence of insoluble substances in urine (Chadha et al., 2001) and therefore,
might not reflect the true amount of metabolites in urine. Total area
normalisation is also used in MS-based analysis, however, the background noise
and ion suppression of urine matrix may significantly interfere with the total
signal in ESI-MS. In addition, metabolites response in ESI is a compound
specific, therefore normalisation to total peak area might yield biased results as it
may not reflect the total concentrations of metabolites in urine (Chen et al.,
2015a).

Sample-intervened normalisation such as normalisation to multiple internal
standards (IS) (Bijlsma et al., 2006) or chemically labelled metabolites (Wu and
Li, 2012) has also been reported for MS-based metabolomics and might be
applicable to different clinical samples including urine. Recently, Chen et al.,
described an FIE-MS with a matrix-induced ion suppression (MIIS)
normalisation technique for urinary metabolomics (Chen et al., 2015a). In this
approach, the intensity of an ion suppression indicator spiked into different
aliquots of diluted urine samples was measured, and then a correction factor was

calculated by subtracting the intensity of the indicator in the samples from a
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blank. This correction factor was then used to estimate the extent of suppression
in the signal by the urine matrix. Subsequently, a regression equation was
generated to estimate the relative concentration of unknown urine metabolites. A
good reproducibility with this method was obtained with relative standard
deviations (RSDs) below 8.95% for the intensity of the indicator across 50
samples. However, this type of sample-intervened normalisation techniques
require each sample to be chemically labelled or spiked with internal standard

which will increase the analytical cost and decrease the throughput of the
experiment. A different normalisation concept called “MS total useful signal”

(MSTUS) has been introduced by Warrack et al. (Warrack et al., 2009). MSTUS
normalisation uses the total intensity of peaks that are common in all samples to
generate a normalisation factor which is then used to normalise individual peaks
and, therefore, avoids the possible xenobiotics and artefact interferences and
subsequently, more realistic measure of urinary metabolites profiles could be
achieved. This method has been proven to reduce variations between biological
replicates and detect significant differences in the metabolic profiles of urine
samples (Chen et al., 2013a). However, it does not provide a control measure to
estimate the suitable amount of urine sample to be introduced into mass

spectrometer, a point that will be discussed further in the next section.

Although much efforts have been focused on normalisation, but different studies
also have considered managing other sources contributed to urine variability.
Dietary intake habit was reported to have a remarkable impact on urinary
composition and significant changes in endogenous urinary metabolites were
observed (German et al., 2003, Phipps et al., 1998, Gavaghan et al., 2001).
However, pre-intervention diet intake (e.g. fasting) can be controlled, and this
has proven to reduce both inter and intra-individual variability in urinary
metabolomics (Lenz et al., 2003, Walsh et al., 2006, Winnike et al., 2009,
Wallner-Liebmann et al., 2014). Moreover, the use of a standardised urine
collection procedure has shown to minimise such variability (Fernandez-Peralbo

and Luque de Castro, 2012). Urine is normally collected as random spot samples

(Rybi—Szuminska et al., 2014) or 24 h pooled samples (Le et al., 1999),
sometimes longer sampling times were used in pharmacokinetics studies (Blum et
al., 1994). Collection of random-spot samples, including first void in the morning
or late-void samples, has the potential of being convenient, manageable and
improves subject compliance. However, diurnal variation is not taken into
consideration and therefore different metabolite profiles may be observed as a

result of random and short time collection of urine samples (Araki et al., 1990,
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Carrieri et al., 2000). Saude et al., calculated the variability associated with
quantification of 24 metabolites in spot urine samples (without controlling
dietary intake) and as expected, they observed high variance between metabolites
in the samples (Saude et al., 2007). Fave et al., developed a standardised protocol
for urine collection and demonstrated that spot urine collection at different times
of the day gave distinctly different metabolic profiles (Fave et al., 2011).
Therefore, when overall individual metabolic status is investigated, 24 h pooled
urine samples are preferred, if possible, to minimise the variability in the urinary
profiles obtained with shorter collection periods (Fernandez-Peralbo and Luque
de Castro, 2012).

2.1.3 Justification of the study

Different sample preparation protocols have been used for urine metabolomics
such as solid-phase extraction (SPE) (Chetwynd et al., 2015, Idborg-Bjorkman et
al., 2003), liquid-liquid extraction (LLE) and simple urine dilution (Fernandez-
Peralbo and Luque de Castro, 2012). The amount of salts in urine has a direct
effect on the extent of ion suppression experienced in ESI (van Hout et al., 2003).
Therefore, extensive sample clean-up may reduce the amount of salts in urine
and subsequently the ion suppression effect on ESI. However, for high-
throughput FIE-MS analysis, urine dilution was reported to be a quick and
reasonable approach compared to SPE and LLE in terms of simplicity,
reproducibility and no metabolites loss during sample preparation which leads to
unbiased urinary metabolomics investigations (Gonzalez-Dominguez et al., 2014).
Nevertheless, an adequate volume of urine in the sample for the analysis should
be carefully estimated. The amount of the sample injected in MS analysis is one
of the important factors for the analyte detection. If a small amount is used, the
concentration of some compounds might be below the MS limit of detection and
subsequently those compounds will not be detected. On the other hand, if a large
amount of sample is used, ESI source and MS detector can be easily saturated
and high abundance ions might obscure small ones and make them undetectable
(Mattarucchi and Guillou, 2012). Most of the reported urine metabolomics
studies (Lloyd et al., 2011b, Want et al., 2010) used different percentages of urine
in the sample without addressing the need to estimate the proper urine amount

for the analysis.

In FIE-MS samples are infused directly into MS analyser, which may reduce
sensitivity and deteriorate metabolite identification. Regardless the type of MS

used; matrix and ion suppression effect on ESI is a major inevitable issue notably
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with urine samples. Therefore, for FIE-MS urine metabolomics it is essential to
optimise MS source parameters to improve ionisation with minimum ion
suppression. The use of standards mixtures of chemicals naturally found in urine
has been reported to enhance detection in MS (Fitzgerald et al., 2012). However,
most of reported direct ESI-MS urinary studies (Table 2-1) optimised the MS
source parameters without considering the diversity of chemical classes present in
urine and the need to improve instrument performance in order to maximise
metabolites coverage, e.g. by using a mixture of standards. Thus there is a need
to establish a urine analysis protocol which will help enhance the detection of
urinary metabolites, reduce analytical variability and minimise ion suppression

effect of urine salts on ESI.

Variability associated with urine samples has been thoroughly investigated with
different techniques in order to maximise reproducibility in urine metabolomics,
as detailed in the previous section. However, most of the reported normalisation
methods were either flawed, time consuming or require high cost and efforts (Wu
and Li, 2012). Nevertheless, some reported methods, despite the drawbacks, such
as MS total useful signal (MSTUS) normalisation has proven to reduce the
possible xenobiotics and artefact interferences associated with urine samples
(Warrack et al., 2009). However, this method lacks the ability to estimate the
optimum sample amount for MS-based analysis. Chen et al., proposed a strategy
of combining MSTUS normalisation with a pre-analysis optimisation of urine
volume for LC-MS and better results were obtained (Chen et al., 2013a). Yet this
approach has not been fully investigated for direct ESI-MS and might be an
adequate approach for reducing urine variability in order to attain the essential

prerequisites for clinical urine metabolomics.

Several attempts in the literature have been reported to improve the performance
of direct ESI-MS and LC-MS for urine metabolomics using advanced ESI sources
such as nanoelectrospray ionisation (nanoESI) (Trunzer et al., 2007, Froesch et
al., 2004, Zamfir et al., 2004, Chetwynd et al., 2014, Chetwynd et al., 2015).
NanoESI using a chip-based infusion device, NanoMate, for DIMS or LESA-MS
analysis has demonstrated better ionisation efficiency, no carry over effects and
higher throughput than the conventional FIE-MS using standard ESI (Yang et
al., 2004). Yet, this technique, with all its merits, has not been fully evaluated for
clinical urine untargeted metabolomics. Most of the published urinary studies
using chip-based infusion were concentrated mainly in the area of toxicology
(animal models) or targted analysis (Table 2-1). LESA-MS has been used for

metabolite quantification in different body fluids other than urine, e.g. dried
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blood spots (Kertesz and Van Berkel, 2010) and tissues (Tomlinson et al., 2014).
This technique showed to produce different MS spectral profiles compared to LC-
MS with standard ESI (Trunzer et al., 2007). This indicates that detection is
improved for the analytes that could not be seen by standard ESI or it forms
different types of ions, adducts or fragments. Thus, it is essential to investigate
and compare the performance of this technique with standard ESI interface when

untargeted metabolomics is planned.

In conclusion, direct ESI-MS for urine metabolomics has been used with different
sample preparation protocols, normalisation methods and ESI interfaces. There is
no general consensus of a standard preparation protocol and most of the reported
normalisation methods were either time consuming or flawed. There is no
reported study evaluate these conditions to improve the performance of direct
ESI-MS for urine untargeted metabolomics and most reported studies lack proper
validation (Hasegawa et al., 2010, Hasegawa et al., 2007) or evaluation against
conventional methods such as LC-MS. The use of nanoESI interface in either
infusion or LESA-MS mode, with all its anticipated advantages, has not been
fully evaluated for urine untargeted metabolomics. Thus there is a need for a
rigorous comparative study to determine the optimum conditions for the analysis
and compare different methodologies to evaluate the most suitable one for urine

untargeted metabolomics.

2.1.4 Aims and objectives

e Adapt and optimise a HILIC LC-MS method for urine metabolomics.
e Develop and test three high-throughput direct ESI-MS approaches for

human urine untargeted metabolomics (Figure 2-1). These methods are:
1. Flow injection ESI-MS (FIE-MS).
2. Chip-based infusion MS.
3. Liquid extraction surface analysis-MS (LESA-MS).

e Establish a high-throughput data analysis protocol for direct ESI-MS

methods.

e Compare and validate the performance of direct ESI-MS methods with

LC-MS for urine untargeted metabolomics.



HPLC vials

LC Autosampler
and pump

i

=

!

Urine samples

'i‘ | ‘ =i
| !

\ ! II \_{I |
\/'fl Il'\.-"l! \\_r"‘l

Y

Sample preparation

96-well plate

LESA-MS

FIE-MS method

optimisation

Figure 2-1 A simplified workflow of the direct ESI-MS methods for urine metabolomics

Chip-based
infusion device

Orbital trap MS

!

PFOQEHESiS' Ql (Data pre-processing)

SIMCA

BY UMETRICS

Multivariate Analysis
(PCA, OPLS-DA)

40



2.2 Materials and methods

2.2.1 Materials and reagents

41

All chemicals and reagents used are analytical grade, HPLC grade or MS grade

and were used without any further purification but minimum handlings were

performed to minimise any possible contamination. The materials and reagents

and their sources are summarized alphabetically in Table 2-2.

Table 2-2 List of materials and reagents

Standards and Reagents

Description

Supplier

Acetonitrile
Adrenaline

Alanine
4-Aminohippuric acid

Ammonium acetate
Aspartic acid

Citric acid
Creatine
Creatinine
Cytidine

3,4-Dihydroxymandelic
acid

3,4-
Dihydroxyphenylacetic
acid (DOPAC)
3,4-Dihydroxyphenyl
alanine (L-DOPA)
Formic acid

0.1% Formic acid
Glutamic acid
Hippuric acid
Histidine

Homovanillic acid
5-Hydroxyindole-3-
acetic acid
2-Hydroxyisobutyric
acid

4-Hydroxy-3-
methoxymandelic acid

4-Hydroxyphenylacetic
acid
Hypoxanthine

Lactic acid
Leucine enkephalin
Metanephrine

Methanol
MHPG sulphate

Hypersolv Chromanorm acetonitrile 99.9%
L- Adrenaline 98+%

L-Alanine
4- Aminohippuric acid 99%
LC-MS ultra-ammonium acetate 99%

L-Aspartic acid monosodium salt

Citric acid-anhydrous

Creatine monohydrate

Creatinine 98%

Cytidine Ultra-Pure Grade
DL-3,4-Dihydroxymandelic acid 98%

3,4-Dihydroxyphenylacetic acid 98%

3,4-Dihydroxyphenylalanine 97%
LC-MS formic acid 98%
LC-MS 0.1% formic acid in water

DL-Glutamic acid monohydrate = 98%
Hippuric acid Sodium salt 99%

DL-Histidine 98%

Homovanillic acid 98%
5-Hydroxyindole-3-acetic acid = 98%
2-Hydroxyisobutyric acid

DL-4-Hydroxy-3-methoxymandelic acid 2
98%
4-Hydroxyphenylacetic acid 98%

Hypoxanthine 99%
DL-Lactic acid lithium salt 98%

LC-MS Leucine enkephalin
DL-Metanephrine HCI

LC-MS Methanol

VWR international, EU
Alfa Aesar, UK

Amresco, USA
Acros Organics, USA

Fluka, Sigma-Aldrich,
Netherland

Sigma Chemical Co,
USA

Sigma-Aldrich, Germany

Acros Organics, USA
Alfa Aesar, UK
Amresco, USA
Sigma-Aldrich, Germany

Acros Organics, USA

Sigma-Aldrich, Germany

Sigma-Aldrich, Germany
Sigma-Aldrich, Germany
Sigma-Aldrich, Germany
Acros Organics, USA

Sigma-Aldrich, Germany
Acros Organics, USA

Sigma-Aldrich, Germany

Alfa Aesar, UK

Sigma-Aldrich, Germany

Sigma-Aldrich, Germany

Alfa Aesar, UK

Sigma Chemical Co,
USA
Sigma-Aldrich, Germany

Sigma-Aldrich, Germany
Fisher Scientific, UK

3-Methoxy-4-hydroxyphenylglycol (MHPG) Sigma-Aldrich, Germany

sulphate potassium salt
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Standards and Reagents

Description

Supplier

3-Methyl-L-histidine
4-Methyl-2-oxovaleric
acid
Normetanephrine

Phenylalanine

2-Propanol
Serotonin

Sodium Hydroxide
trans-Aconitic acid
Threonine

Tryptophan
Tyrosine
Urea

Uric acid
Uridine
Water

3-Methyl-L-histidine
4-Methyl-2-oxovaleric acid 2 98.0%, liquid

Normetanephrine HC1 98%
L-Phenylalanine 99%

LC-MS 2-propanol 99.96%
Serotonin HC1

LC-MS Sodium Hydroxide 97%
trans-Aconitic acid 98%
L-Threonine 98%
L-Tryptophan Pure Ph.

L-Tyrosine
Urea Sigma Ultra

Uric acid 99%

Uridine = 99%
LC-MS Chromasolv water

Sigma-Aldrich, Germany
Sigma-Aldrich, Germany

Aldrich Chemical,
Germany
Aldrich-Chemie,
Germany

Fisher Scientific, UK

Sigma-Aldrich, Germany
Sigma-Aldrich, Germany
Alfa Aesar, UK

Acros Organics, USA

AppliChem GmbH,
Germany

Sigma Chemical Co,
USA

Sigma Chemical Co,
USA

Alfa Aesar, UK

Sigma-Aldrich, Germany
Fluka, Sigma-Aldrich,

Switzerland

2.2.2 Mass spectrometers

Q-ToF MS (Micromass Q-ToF Premier, Waters, USA) coupled with an HPLC
(SIL-HTc LC10ADvp pumps, UK)

extensively used for FIE-MS method development, optimisation and analysis in

system autosampler, Shimadzu, was
both positive and negative ion modes. Initial setting of MS conditions were:
capillary voltage (kV) 2.56 (ESI+), 2.75 (ESI-), sampling cone voltage (V) 38
(ESI+), -48 (ESI-), desolvation gas flow (L/h) 250, cone gas flow (L/hr) 70,
source temperature 120 °C and desolvation temperature 250 °C. The data

acquired in continuum (profile) mode (m/z 30-1000) employing 1 pg/mL leucine
enkephalin as a lock mass with 1 Hz (1 scan/s) scan rates for 1.0 min. The
optimised source parameters were: capillary voltage (kV) 1.5 (ESI4), 1.8 (ESI-),
sampling cone voltage (V) 40 (ESI+), 65 (ESI-), desolvation gas flow (L/h) 250
(ESI+), 400 (ESI-), cone gas flow (L/h) 70.0, source temperature 120°C and

desolvation temperature 250 °C. The data acquired in continuum mode (m/z 30-

1000) with 1 Hz scan rate for 1.0 min.

Orbital trap mass spectrometer (Exactive-Orbitrap, Thermo Fisher Scientific,
USA) was used in both ESI+ and ESI- modes for all types of analyses. The
optimised source parameters were: spray voltage (kV) 1.5 (ESI+), 1.8 (ESI-),
capillary voltage (V) 25 (ESI+), -40 (ESI-), sheath, auxiliary and sweep gas flow
rate (arbitrary unit) were: 50, 5 and 5 (ESI+/-), respectively. Capillary and
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heater temperature were maintained at 250 and 120 °C, respectively, in both
modes. Data were acquired in full scan mode with resolution 25,000 from m/z 50-

1000 with 4 Hz scan rate. A syringe pump (Razel, Connecticut, USA) was used

at a flow rate of 50 pL/min to infuse samples from an analytical 5.0 mL syringe

(SGE analytical Science, Australia) with a flow of 300 pL/min of 0.1% formic

acid/water for MS source parameters optimisation.
2.2.3 Chromatography

Chromatography was performed using an Accela UHPLC system (Thermo
Fisher, USA) on BEH HILIC UHPLC column (2.1 x 100 mm, 1.7 pm particle
size, Waters, USA) coupled to the orbital trap MS. The column was maintained
at 40 °C and a flow rate of 400 uL/min. Mobile phases used were: (A) 50:50
acetonitrile:ammonium acetate (10 mM final concentration) and (B) 95:5
acetonitrile:ammonium acetate (10 mM final concentration). The gradient started
with 1% (A) and increased to 100% (A) over 12 min then the composition was
returned to its initial conditions and maintained for the second run (15 min
total). The injection volume was 5 pL and samples were maintained at 4 °C

during the analysis.
2.2.4 Direct ESI-MS analyses

In FIE-MS analysis, the method employed the LC as a flow injection system to
inject samples from the pre-chilled autosampler (4 °C) directly without using a

column into the MS. 10 pL sample volume was injected in a flow of 300 uL /min
of 0.1% formic acid for 0.5 min run. Triversa NanoMate (Advion, USA) coupled
to orbital trap MS was used for chip-based infusion and LESA-MS. In chip-based

infusion, 10 pL. sample volume was infused from a 96-well plate into MS. While

in LESA-MS, 10 uL of an extraction solvent of 0.1% formic acid in 1:9 (ESI+)
and 7:3 (ESI-) methanol:water in positive and negative ion modes, respectively,
was used to extract analytes from 1 pL dried urine spots on Permanox cell
culture slide (Thermo Scientific, USA). NanoESI spray conditions comprised a
nitrogen gas head pressure of 0.7 psi and 1.5 kV (ESI+), 1.8 kV (ESI-) spray
voltage controlled by Chipsoft Manager software (version 8.3.3, Advion
BioSciences, USA). Urine dried spots positions on the cell culture slide were
mapped for LESA-MS analysis using LESA-Points software (version 1.1, Advion
BioSciences, USA).
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2.2.5 Human urine samples collection and storage

Two sets of human urine samples; control and after ingestion of greer. tea were
used as a study model to evaluate and compare the suitability of the proposed
direct ESI-MS methodologies against a conventional LC-MS method for
untargeted metabolomics. Control urine was collected without tke use of
preservatives from 6 healthy male volunteers (28-35 years old of 21.8-29.8 BMI)
in the morning after an overnight 12 hour fasting period. Then, 200 mL of
brewed 2 green tea bags with water, Camellia sinensis (Twinings, R. Twinings &
company, UK) was ingested, followed by 350 mIL water to enhance diuresis. The
urine samples were collected in a period of 0-4 h after consumption of the green
tea (Figure 2-2). Urine samples collected from each subject at different collection
intervals were pooled in pre-labelled 50 mL sample collection containers. Eight

aliquots (1 mL) from each sample were transferred into 1.5 mL cryogenic tubes

and stored immediately in -80 °C freezer.

Time 8:00am 9:00am 10:00am 11:00am 12:00pm
Hours 0 1 2 3 4
: 9:15am
330 mL water
intake

Void Morning
urine (discarded)

c————————————— = >

Second urine collection
(pooled)

First (control)
urine collection

|

Green tea
intake

Figure 2-2 Urine samples collection protocol
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2.2.6 Artificial urine preparation

35 metabolites were selected to represent a range of metabolite structures (Figure
2-3) naturally found or expected in healthy human urine (Saude et al., 2007,
Bouatra et al., 2013, Brooks and Keevil, 1997, Rane et al., 2013). A standard
solution of each metabolite was prepared in water and was used to generate
calibration curves and fingerprint mass spectra with FIE-MS using Q-ToF. A
suitable concentration of each metabolite, representative of a typical

concentration found in urine was selected to prepare a standards mixture at a
concentration range of 2.7-67.8 pug/mL as “artificial urine” (Appendix A). They

were stored in Falcon tubes at -20 °C between analyses. Artificial urine was
diluted 10 times with 0.1% formic acid in water and used for the optimisation of

MS source conditions.

2.2.7 Preparation of urine samples for LC-MS and direct ESI-MS

analysis

Thawed urine/artificial urine samples for metabolomics analysis were prepared in
three different ways: (1) LC-MS: 60 pL were centrifuged at 10,000 g for 10 min
to remove particulate. 50 pL. of the supernatant was added to 100 pL. water in
HPLC amber glass vials containing 200 uL micro glass inserts. (2) FIE-MS and
chip-based infusion: 50 pL aliquots of thawed artificial urine/urine were diluted
with 450 pL pre-chilled 0.1% formic acid in 1:8 methanol:water spiked with
leucine enkephalin to give 0.2 pg/mL final solution. Samples were shaken for 15
min and centrifuged (13,000 g, 4 °C) for 5 min. 60 pL of the supernatant was

transferred to HPLC amber glass vials containing 200 pl. micro glass inserts.
Blank was prepared following the same protocol without including artificial
urine/urine. (3) LESA-MS: 1 pL of urine was placed on Permanox cell culture

slide and left to dry prior analysis.

For metabolomics analysis, a pooled QC sample was prepared by mixing 20 pL
aliquots taken from each urine sample in the study. Pooled control urine sample
was prepared the same but only from the control urine samples. The pooled urine

samples were treated the same as described for the samples in this section.
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2.2.8 Optimisation of urine dilution for direct ESI-MS analysis

Aliquots (50 pL) of control urine were diluted with different volumes (0 - 450 pL)
of methanol. The total ion current (TIC) was then measured for the samples
against their methanol blanks to assess the quality of the analysis and find out

the optimum volume of methanol that gives the best signal from urine samples.

2.2.9 Assessing the ion suppression effect of urine on standard

metabolites

The ion suppression effect in ESI-MS experiments has been assessed using
different approaches (Matuszewski et al., 1998, King et al., 2000, van Hout et al.,
2003, Fitzgerald et al., 2012). The most direct approach involves comparison of
the MS response of a mixture of standards (100% response) with the same
amount of standards spiked into pre-extracted samples (the effect of sample
matrix on MS response, the ion suppression). The addition of the same amount
of standards before extraction highlights whether the loss of the signal is
attributed to the ion suppression or extraction process (Matuszewski et al.,
1998). For urine dilution optimisation, the above principle was used to study the
effect of ion suppression of urine salts and subsequently determine the adequate
dilution of urine that will give minimum ion suppression. Different aliquots of
control urine (0 - 350 pL) were added to 50 pL of artificial urine and 50 pL
methanol (i.e. urine spiked with artificial urine). All the volumes were kept
constant at 500 pL with MS grade water. A second set of samples were treated
the same; omitting artificial urine (i.e. urine). Triplicates of these samples were
analysed by FIE-MS in positive and negative modes. Maximum peak counts of
artificial urine analytes were used to compare differences in signal before and
after addition of urine. As some of these analytes already found in human urine,
the following steps were used to estimate the % ion suppression effect of urine

salts on their signals:

(a) Expected analyte level in the samples of (urine + artificial urine) is:
Peak count (gxpecteay = Peak count g tificiar urine) + Peak count gpiney (1)

(b) Actual analyte level in the samples of (urine +artificial urine ) is:
Peak count (g¢1yqr) = Peak count (pine+artificat urine) (2)

(c) From (1) and (2), the % ion suppression on analyte signal is:

Peak count (gxpected)—Peak count (gceual) x 100% (3)

o/ . _
10n suppression =
% pp Peak count (gxpected)
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2.2.10 Experimental design for untargeted metabolomics

Control urine (n = 6) and urine samples after consumption of green tea (n = 6)
were randomised and analysed in both positive and negative ion modes with the
LC-MS, FIE-MS, chip-based infusion and LESA-MS. The whole analysis time for
direct ESI-MS methods including operation time was about 1.0 min for each
sample. MS signal was sufficiently stable within the injection time for chip-based
infusion and LESA-MS and the injection peak was eluted in about 0.3 min in
FIE-MS. Therefore, longer infusion time than 0.5 min was not used. Artificial
urine triplicates were injected in the beginning and at the end of the run as a
reference test mix to check the stability and performance of the instrument for

accurate mass measurements. To monitor mass accuracy within each run a
reference standard of leucine enkephalin, m/z 556.2771 (ESI+), 554.2615 (ESI-)

was spiked in each sample to give final concentration of 0.2 pg/mL. Pooled
quality control (QC) samples were interspaced with samples for the purpose of
monitoring the stability, robustness, reproducibility and performance of the
proposed analytical platforms. Blank samples were injected after each sample in

FIE-MS to minimise the carryover effect, if any.
2.2.11 Multivariate analysis and metabolite identification

The raw data were acquired and visualised with Xcalibur v2.1 software (Thermo
Scientific, USA). The performance of the analytical methods were validated by
monitoring a representative set of urine metabolites in the pooled QC sample for
retention time (RT) shifts (LC-MS), mass accuracy, relative standard deviations
(RSD%) of peak areas/counts. Xcalibur Quan Browser was used to integrate and
extract peaks areas of (RT, m/z) metabolites pairs from the LC-MS raw data.
While, ToxID v2.12.57 software (Thermo Scientific, USA) was used to extract
intensities of m/z values of metabolites of interest from the FIE-MS, chip-based
infusion and LESA-MS raw data. The obtained results were compared with the
acceptable limits for bioanalysis (FDA, 2013). Furthermore, the quality of the
datasets obtained from the LC-MS analysis was assessed by determining the
variability (RSD%) in the mean peak areas of all peaks present in at least 80% of
the QC samples using a metabolomics approach proposed by Want et al., (Want
et al., 2010). The results were evaluated against the suggested limit for a reliable
metabolomics analysis, in which the RSD% across at least 70% of the mean peak
areas should be less than 30%. For direct ESI-MS, the quality of the data was
assessed using principal component analysis (PCA) as proposed by Beckmann et
al., (Beckmann et al., 2008).
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For metabolomics analysis, the full datasets of control urine samples and urine
samples after ingestion of green tea were imported and pre-processed by
Progenesis QI software (Nonlinear-Dynamics, Waters, USA). LC-MS main
parameters were set as follows: high resolution-accurate mass MS, profile mode,
mass range m/z 60-1000, automatic chromatographic peak alignment, automatic
peak picking and 5 ppm mass window. For direct ESI-MS, the acquired raw data
of urine samples were imported directly into Progenesis QI; the main parameters
were set the same as LC-MS except: Adduct, M+H (positive) and M-H
(negative) with no chromatographic peak alignment. Pre-processing steps of
Progenesis QI include: peak picking, peak alignments and normalisation to all
compounds which is a modified type of MS total useful signal (MSTUS)
(Warrack et al., 2009). Automatic deconvolution of the extracted m/z peaks was
also carried out using Progenesis QI to remove isotopes, adducts, and other

confounding peaks resulting from MS detection.

The selected metabolites (RT, m/z) pairs and m/z values of LC-MS and direct
ESI-MS methods, respectively, were then exported with their normalised
abundances for multivariate analysis (MVA) using Simca P+14 (Umetrics AB,
Sweden). As retention times (¢;) were not relevant in the infusion data sets, the
separation and clustering of metabolites will be only a function of (m/z,
intensity) pairs of the variables. Imported datasets were mean-centred and scaled
to unit variance (UV). The mean-centering technique subtracts the mean of the
variables intensity and hence, shifts the data towards the mean. UV scaling
procedure gives the weight of each variable by its standard deviation, which
shrinks the weight of intense features and stretches the weight of smaller ones so
that all features rest with equal weights (Eriksson et al., 2006b). Principal
component analysis (PCA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA) were used for modelling the differences between samples and
controls. Cross-validation using leave-one out method (1 out of 7) was used to
evaluate the robustness of the models by monitoring the fitness of model (R*Y)
and predictive ability (Q*) values. Prediction method based on randomly selected
training (50%) and test sets (50%) using OPLS-DA model were also performed.

The ions responsible for the class separation in OPLS-DA models between
samples and controls were selected by means of Variable Importance for the
Projection (VIP) and variables loadings plots. To increase the confidence in the
selection of those ions, univariate analysis using Student’s ¢t-test was computed in
parallel to test the significant difference of the selected ions between the two

groups. Prior to univariate analysis, ArcSinh transformation (Jones, 2008) was
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performed for the normalised data to restore normality using Progenesis QI.
Accounting for multiple testing problems, p-values were adjusted using false
discovery rate (FDR) technique, which was computed also using Progenesis QI.
A set of metabolites reported in urine after consumption of green tea was used to
generate a local database of green tea metabolites (Ridder et al., 2014, Spencer,
2003, van der Hooft et al., 2012). The exact mass of the significant ions
generated from the OPLS-DA models was then used to interrogate the green tea
metabolite database for possible identification based on accurate mass

measurements within 3 mDa error range.
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2.3 Results and discussion

2.3.1 Generation of artificial urine database of structures and

standard ESI spectra

The use of standards mixtures of chemicals naturally ‘ound in biofluids have been
reported to enhance detection in MS (Fitzgerald et al., 2012, Zamboni and
Fisher, 2012). Hence, the preparation of artificial urine containing most of
metabolite classes to improve MS detection of different urine components will be
beneficial. Creatinine standard solution (22.6 pg/mL) was infused, initially, to
optimise Q-ToF source parameters (see initial Q-ToF settings in section 2.2.2).
The optimised settings were applied to construct calibration curwves of artificial
urine standards. FIE-MS mass spectra of individual artificial urine compounds
were used to build an “artificial urine database” in access format (Microsoft
access, Microsoft, USA). Figure 2-4 shows the interface of the artificial urine
database, the database includes ESI+ and ESI- spectra, expected m/z values and
actual m/z values detected for each compound with Q-ToF alongside its basic
chemical properties. A softcopy of artificial urine database is attached in
Appendix B. The MS information of each artificial urine compound was used to
select a suitable concentration, which gave good signal in (Q-ToF for the

preparation of artificial urine as detailed in section 2.2.6.
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Figure 2-4 The main interface of artificial urine database.
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2.3.2 Optimisation of FIE-MS using artificial urine

The effect of different cone and capillary voltages of the Q-ToF ESI source on
total ion current (TIC) signal from direct infusion of artificial urine is shown in
Figure 2-5. The highest intensities observed were at 40 and 65 V cone voltages
for positive and negative modes, respectively. These new cone voltages were used
to optimise the capillary voltage over a range of 0.9-3.0 kV with 0.1 kV
increment intervals. The optimum voltages were 1.5 kV (ESI+) and 1.8 kV
(ESI-). The optimum desolvation temperature was found to be 250°C for both
modes with desolvation gas flow rates of 250 and 400 L/h for the positive and
negative modes, respectively. Different composition of mobile phases (water,
methanol and acetonitrile), flow rates, injection volumes, mass ranges and scan
rates were explored and optimised for FIE-MS using artificial urine (data not
shown). The acquired data of artificial urine samples (n = 3) was used to
evaluate and compare the signal quality before and after MS optimisation with
artificial urine. Figure 2-6 presents a direct comparison of TIC and combined
spectral counts of the infused artificial urine samples before and after MS source
optimisation. TICs and summed peak counts of artificial urine improved by a
factor of 3 in both modes. This indicates better sensitivity of the system with the

new settings.

This is the first time that artificial urine has been for this type of optimisation.
All reported in-house or commercial artificial urine mixtures have been intended
for other purposes such as improving in-vitro growth of urinary pathogens
(Brooks and Keevil, 1997) or to prevent formation of certain pathogens biofilms
(Rane et al., 2013). Nevertheless, similar optimisation strategies of using chemical
standards to enhance sensitivity of direct ESI-MS have been reported for Q-ToF
analysis. Zamboni and Fisher, used a mixture of 80 standards to improve the MS
coverage of FEscherichia coli extract analysed with FIE-MS using 6550 Q-ToF
(Zamboni and Fisher, 2012). They reported an increase in the number of detected
peaks by a factor of 11 and one order of magnitude in ion counts. However, the
improvement in sensitivity was evaluated against another study performed with
an old version of the instrument, the 6520 Q-ToF (Fuhrer et al., 2011), making
the comparison a function of the improved capability of the new instrument
rather than demonstrating the improvement in sensitivity of the same

instrument.
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Figure 2-5 The effect of cone and capillary voltages on Q-ToF performance with artificial
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between 25-90 V and 0.9-3.0 kV in both (a) positive and (b) negative ESI modes,
respectively. The vertical arrows represent the selected (optimum) cone and capillary
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Figure 2-6 The performance of FIE-MS before and after optimisation with artificial
urine. The histogram presents a direct comparison before and after optimisation (n = 3).
The TIC and peak counts of combined mass spectra in positive and negative ESI modes
using Q-ToF were used for the comparison.
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2.3.3 Optimisation of orbital trap MS for artificial urine analysis

Artificial urine was then used to transfer and optimise the flow injection and ESI
source parameters of the developed FIE-MS (Q-ToF) to the orbital trap mass
spectrometer. To give an overview of the capability of the optimised FIE-MS
(orbital trap-MS) on detection of different compounds found in artificial urine,
typical summed mass spectra in both ESI+ and ESI- modes are presented in
Figure 2-7. Some compounds such as histidine gave a good response in both
ionisation modes, whereas others such as nitrogen containing compounds with
basic functional groups, e.g. 3-methyl-L-histidine gave a response in ESI+ only.
Compounds with carboxylic acid or phenolic groups such as lactic acid, 2-
hydroxyisobutyric acid, hippuric acid and uridine ionised better in the negative
mode. Therefore, it is essential to carry out analysis in both modes to maximise
metabolite coverage of the MS methods. It is worth mentioning that some of the
ions in the positive ion mode have a m/z difference of 21.9819 Da corresponding
to the mass difference of Na and H. This indicates that compounds were forming
sodium adducts as well as M+H, e.g. cytidine, and this is a well-known
phenomenon in ESI+ MS when sodium ions are present in the injected solution
(Nielsen et al., 2003). This is quite consistent with the common ions or adducts
usually expected with nominal mass FIE-MS analysis (Table 2-3) (Overy et al.,
2008, Beckmann et al., 2008). Some of the expected ions/adducts were also
observed in artificial urine but at low intensities (highlighted in bold face in the
table).

Table 2-3 Nominal mass ion adducts commonly expected in FIE-MS analysis.

Cation Mass Cation Mass Anion Mass
[M+H]* M+1 [2M+H]* 2M+1 [M-H] M-1
[M+Li]* M+7 [2M+H+Nal* M+20 [M-H20-H] M-19
[M+NHA4]* M + 18 [2M+Na]* 2M+23 [M+Na-2H] M + 21
[M+Na]* M+ 23 [2M+2H+3H20]*"  2M+28 [M+CIJf M + 35
[M+H+CH30H]* M + 33 [2M+K]* 2M+39 [M+K-2H] M + 37
[M+K]* M+ 39 [2M+2Na-H]* 2M+-45 [2M-H] 2M -1
[M+2Na-H]* M + 45 [M+2H]** M/2 +1 [2M+Na-2H] 2M + 21
[M+2K-H]* M+ 77 [M+H+Nal]** M/2 +12 [2M+ClJ 2M + 35
[M+H-HCOOH]"*  M-45 [M+H+K]** M/2 +20 [2M+K-2H] 2M + 37
[M+H-H20]* M-17 [M+2Na]** M/2 + 23  [M-3H}* M/3-1
[M+H-NH3]* M-16 [M-2H]* M/2-1

Tons detected with flow injection electrospray—mass spectrometry (FIE-MS) of artificial urine analysis are
highlighted in bold font. However, their occurrence and abundance are analyte specific and matrix
dependent (Overy et al., 2008, Beckmann et al., 2008).
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Figure 2-7 MS fingerprint of artificial urine analysed with FIE-MS. Typical summed spectra of artificial urine analysed by FIE-MS (orbital trap
MS) in positive (upper) and (b) negative (lower) ion modes.
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2.3.4 Optimisation of urine dilution to maximise direct ESI-MS

response

A urine dilution method was considered in this study as it is compatible with a
simple high-throughput sample preparation protocol, minimal sample volume
usage and unbiased metabolites coverage could be attained with no sample loss

(i.e. 100% recovery of metabolites).
2.3.4.1 Optimisation of sample dilution solvent for direct ESI-MS

Urine contains a small amount of protein. It is advantageous to remove any
proteins to minimise matrix effect in the ESI and to reduce any interfering peaks
resulting from multiply-charged protein ions. Methanol has the ability to cause
proteins to precipitate but a high percentage of methanol in the sample can
enhance ionisation of some ions and the signal of low abundance ions maybe
overlaid leading to a decrease in the number of the detected peaks (Iavarone et
al., 2000). Therefore, it is essential to find an optimum point at which methanol
precipitates proteins in the sample without affecting total number of ions
detected. A urine dilution-protocol (Fave et al., 2011) for FIE-MS was adapted
as a starting point for the optimisation of urine sample preparation. In this
protocol, a 10-fold dilution with 3.5:1 methanol:water was used for urine samples

preparation for FIE-MS.

Optimisation of methanol volume for the dilution protocol was studied using

orbital trap MS. Different loads of methanol were incorporated with a constant

control urine volumes (50 uL). Hence, any increment in the total ion current
(TIC) is either due to the enhanced ionisation of urine metabolite or increased
background ions signal by methanol as illustrated in Figure 2-8. The lower
graphs present TIC of urine:methanol ratio in the sample against its volume
ratio. The increase in the signal ratio corresponds to the methanol effect on ESI.
Little or no effect was observed above 1:1 urine:methanol and therefore, such
ratio was used for the proposed method protocol. Although methanol has been
extensively used as organic modifier for urine dilution or as flow injection solvent
(Beckmann et al., 2008). However, it is proportion in the dilution solvent was
quite different from one protocol to another, e.g. 1:1 methanol:water (Gonzalez-
Dominguez et al., 2014), 2:1 methanol:water (Chen et al., 2015a) and 3.5:1
methanol:water (Fave et al., 2011, Lloyd et al., 2011b). Some studies had used

water only for dilution without considering other organic modifiers (Want et al.,
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2010, Fitzgerald et al., 2012). None of the reported studies considered the need to
optimise methanol volume in the sample which makes the results obtained with
this experiment quite valuable. It minimised the increase in the background
signal due to unnecessary large volume of methanol and at the same time
precipitates possibly existed proteins in the sample. This optimisation enhanced
the signal of wurine metabolite detected by FIE-MS and minimised the

background signals, hence more peaks can be observed.
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Figure 2-8 Optimisation of methanol load for urine dilution. (a) Positive and (b)
negative TIC orbital trap MS of urine samples (blue line) and methanol (blank) (brown
line) VS different loads of methanol in the samples analysed by FIE-MS. The lower
graphs represent the ratio of TIC of urine:methanol VS methanol loads in the samples
(the highest ratio represents the corresponding optimum methanol load in the sample).
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2.3.4.2 Ion suppression effect of urine salts on ESI

Selection of a suitable dilution of urine sample for direct-ESI-MS was
investigated using artificial and control urine. Different dilutions (2 to 10-fold) of
human urine were reported in the literature for MS analysis (Gonzalez-
Dominguez et al., 2014, Want et al., 2010, Fitzgerald et al., 2012). Among these,
the most suitable dilution of wurine for direct ESI-MS was assessed by
investigating the effect of ion suppression of urine salts on ESI. Different loads of
urine were added to a constant volume of artificial urine and analysed with FIE-
MS using Q-ToF and orbital trap MS as described in the method section.
Creatinine, m/z 114.0667 [M+H]" and uridine, m/z 243.0617 [M-H| were selected
as an example to display the ion suppression effect on ESI signal as a result of
changing urine load in the sample (i.e. different dilution folds) as illustrated in
Figure 2-9. Different levels of ion suppression on the signal of all analytes in
artificial urine were observed in both modes; the degree of ion suppression
increased with increasing urine load in the sample. King et al., illustrated that
the main event that induces ion suppression is the efficiency of droplet formation
and evaporation process during ESI (King et al., 2000). This theory explains the
different degree of ion suppression observed with urine samples. The efficiency of
ionisation decreases with the increase of non-volatile substances in the sample
(urine salts in this case) and subsequently suppresses the signal of the analytes.
Therefore, any suppression on the signals of artificial urine compounds is a

function of the increased load of salts from urine.

Figure 2-10 gives an overview of % ion suppression of the detected artificial urine
analytes in the samples in either positive or negative ion modes of orbital trap
MS. The appropriate urine dilution that gave a reasonable signal and detection of
most artificial urine analytes (89%) with minimum ion suppression on ESI was
10-fold dilution (0.1 urine ratio in the sample). These results were quite
consistent with the literature as 10-fold dilution of urine was the most used
dilution for FIE-MS (Fave et al., 2011, Lloyd et al., 2011a, Lloyd et al., 2011b).
However, these methods did not evaluate the ion suppression effect on ESI. Van
Hout et al., highlighted the benefits of increasing analyte/urine matrix ratio by
extensive sample clean-up for improving MS sensitivity (van Hout et al., 2003).
They demonstrated the importance of performing ion suppression validation by

analysing urine samples spiked with different concentrations of clenbuterol (45-93
ug/L). The ion suppression on clenbuterol signal at the lowest concentration was

69% and decreased to 37% at the highest concentration, indicating that ion
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suppression effect is more prominent at low level of analyte in the samples.
Similarly, metabolites in urine were found to experience different levels of ion
suppression based on their chemical structures. Fitzgerald et al., used a 10-fold
dilution method for the measurement of drug of abuse in urine from different
chemical classes (Fitzgerald et al., 2012). They reported that ion suppression less
than 31% was observed with benzoylecgonine, amphetamine, methamphetamine,
hydromorphone, and hydrocodone. Whereas a considerable ion suppression of
urine salts was observed with morphine (81%) and codeine (89%) at the same
concentration range. The obtained outcome from the above two articles
highlighted the importance of using a mixture of diverse chemical classes in a
wide concentration range to investigate the ion suppression effect in urine and

hence, maximise metabolite coverage.

A recent DIMS study compared the use of SPE, LLE and simple dilution for
decreasing the ion suppression effect of urine salts on ESI using Q-ToF
(Gonzalez-Dominguez et al., 2014). In this article, assessment of ion suppression
was carried out by measuring the ionic conductivity of urine extracts as it
provides a mean to estimate the concentration of salts in the sample after
treatment. They concluded that, 10-fold dilution of urine samples with 50%
methanol/water gave a better result than LLE and was comparable to SPE for
unbiased DIMS metabolomics fingerprinting. Moreover, they mnoticed that
dilution higher than 10-folds provoked a notable decrease in the sensitivity of the
instrument and therefore, should be avoided. Although, this supports the findings
in this study, but their results showed a high degree of variability in the analysis
with RSDs of 39% giving the developed protocol in this study, with 10%
methanol/water dilution better reproducibility with maximum RSD of 23%

across the detected artificial urine analytes.

In conclusion, 10-fold urine dilution gave good urine metabolites coverage (89%
of artificial urine analytes were detected) with minimum ion suppression and

better reproducibility compared to literature.
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Figure 2-9 The effect of urine salts on ionisation of ESI-Q-ToF. (a) and (b) present
creatinine (ESI+) and uridine (ESI-) levels measured by Q-ToF, respectively. The
dotted red line represents the metabolite levels in the urine samples; the green dotted
line gives the expected levels of metabolites in the samples of (urine spiked with artificial

urine). The solid blue line represents the measured metabolite levels and their % ion
suppression (n = 3).
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Figure 2-10 The effect of ion suppression of urine salts on the FIE-MS performance. Histograms (1-4) present an estimate of ions suppression

(%) of artificial urine compounds with 0.1, 0.2, 0.4 and 0.5 control urine ratio in the sample analysed with orbital trap MS, respectively.

Minimum ion suppression experienced by most of the ions corresponds with the 0.1 urine ratio in the sample (10-fold dilution) (n = 3).
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2.3.5 Cross-platform comparison of direct ESI-MS performance with

artificial urine

Artificial urine was used to check and compare the performance of the optimised
sample dilution protocol, MS source and flow injection parameters on Q-ToF,
orbital trap MS and chip-based infusion. Artificial urine was injected 6 times to
evaluate the analytical stability of the systems across the analysis. TIC,
reproducibility, S/N ratio, number of peaks detected and mass accuracy of the
direct ESI-MS methods were compared and listed in Table 2-4. FIE-MS analysis
with orbital trap MS detected more features with higher peak counts, accuracy
and repeatability in comparison with Q-ToF analysis. This suggested different
sensitivities between the two instruments, which is a logical reflection of the
instrument capabilities. The high resolution (10,000 - 130,000 at FWMH) of
Exactive Orbitrap (orbital trap MS) (Zubarev and Makarov, 2013) compared to
a maximum of 17,500 FWMH resolution of Q-ToF Premier (Kayser and
Warzecha, 2012) enables resolving more mass features from compounds with the
same nominal masses, hence, more peaks were detected. Exactive improved ions
focusing optics increase its sensitivity over Q-ToF. Glauser et al., compared the
performance of Q-ToF (Synapt G2 Q-TOF, Waters, USA) with orbital trap MS
(Exactive Plus Orbitrap, Thermo Fisher Scientific, USA) for untargeted
metabolomics (Glauser et al., 2013). They reported that sensitivity of Exactive
was higher for certain compounds compared to Q-ToF, while higher accuracy was
observed with Q-ToF. However, the overall sensitivity, number of detected
features and repeatability were comparable between the two instruments. These
results contradicted with the findings in this experiment as better performance
was observed with Exactive compared to Q-ToF Premier. However, the Q-ToF
used in this study was not the most sensitive on the market and more recent Q-

ToF insurtuments might provide comparable sensitivity to the orbital trap MS.

The best direct ESI-MS performance in terms of number of features detected was
obtained with chip-based infusion. Nevertheless, higher variability was observed
compared to FIE-MS with orbital trap MS and Q-ToF. The performance of Q-
ToF compared to orbital trap MS, as explained above, is entirely a result of the
very different instrumental design and capabilities. On the contrary, the varied
performance between chip-based infusion and FIE-MS (orbital trap MS) is not

due to mass analyser capabilities as they were both performed on the same
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instrument. This might be a function of the improved ionisation with nanoESI-
chip over standard ESI, appoint already has been discussed in general
introduction chapter. Also, the concentration of the analytes in the sample was
relatively higher in chip-based infusion compared to FIE-MS as the dilution effect

of flow analysis solvent was opted out in chip-based infusion.

MS fingerprints of artificial urine obtained with the developed methods are
presented in Figure 2-11. Different base peaks were observed, e.g. 3-methyl-L-
histidine, m/z 170.0944 [M-+H]" is the most abundant peak in FIE-MS (Q-ToF),
while it was creatinine, m/z 114.0668 [M+H]|" in both FIE-MS (orbital trap MS)
and chip-based infusion. This indicates that direct ESI-MS ionisation strictly
platform dependent. The detection of different ions with different sensitivity has
been highlighted before in the literature. Gika et al., performed simultaneous
urine analysis with two mass spectrometers, Q-ToF and Q-Trap, for untargeted
metabolomics (Gika et al., 2010). They reported that urine sample analysed at
the same time with the two instruments gave different MS profiles. This, as
observed in this study, may be a result of the very different ESI configurations
and design between the two instruments. Hence, for the purpose of comparison,
evaluation and validation of the developed methods; orbital trap MS were used
for further FIE-MS, chip-based infusion and LESA-MS analyses. In addition, the
mass shift observed with the Q-ToF is quite high and not suitable for untargeted

metabolomics.

Table 2-4 A direct comparison of the performance of direct ESI-MS using artificial urine

MS Measured FIE-MS Chip-based
parameters Q-ToF RSD%  Orbital trap MS RSD%  infusion RSD%
TIC (arbitrary unit)

EST+ 62,400 11% 9,448,333 5% 130,666,667 2%
ESI- 48,567 10% 301,333 4% 11,153,333 16%
Sample:blank TIC ratio

ESI+ 4.46 - 1.83 - 2.23 -
ESI- 4.34 - 5.58 - 1.09 -
S/N ratio (TIC)

EST+ 248 - 555 - 2646 -
ESI- 133 - 620 - 538 -
Number of peaks detected

ESI+ 1407 3% 9237 4% 78514 4%
ESI- 658 11% 1650 6% 29873 18%
mass accuracy (Appm) (Leucine enkephalin)

ESL+ (m/z556.2771) 31 - 4 - 4 ;

ESI- (m/z 554.2615) 16 - 3 - 3 -
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Figure 2-11 Cross platform evaluation of direct ESI-MS performance with artificial urine. Combined mass spectra of artificial urine analysed by
direct ESI-MS using Q-ToF (FIE-MS) (a-1, a-2), Orbital trap MS (FIE-MS) (b-1, b-2) and chip-based infusion (c-1, c-2) in both positive and
negative ESI modes, respectively.
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2.3.6 Direct ESI-MS performance with urine samples

Control urine samples spiked with artificial urine [1:1] (n =6) were analysed with
FIE-MS, chip-based infusion and LESA-MS. The analysis was carried out with
orbital trap MS in both ESI modes to check the performance and coverage of the
direct ESI-MS methods for urine analysis. In addition, a standard HILIC
UHPLC-MS urine profiling protocol (Want et al., 2010) has been adapted for the
analysis of samples as a reference method. Detailed tabulated results of the
detected peaks were provided in Appendix C. Most of artificial urine compounds
have been detected as [M-+H]" or [M-H] ions within 5.0 ppm mass accuracy.
89%, 86%, 86% and 94% of artificial urine compounds were detected by LC-MS,
FIE-MS, chip-based infusion and LESA-MS, respectively. The RSDs of the peak
areas/intensities were calculated across the samples; LC-MS, FIE-MS, chip-based
infusion and LESA-MS had %RSD within 8%, 21%, 25% and 30%, respectively.
The retention time (RT) shift RSD% of the LC-MS method was within 1%. The
stability of the analytical platform is one of the major issues in obtaining valid
metabolomics results. There is no general consensus on accepting a preferred
analytical technique as suitable for biomarker discovery. However, for
conventional bioanalysis, the Food and Drug Administration (FDA) considers a
technique as suitable if analyte response in at least 5 determinations does not
exceed 15% of the relative standard deviation (RSD%) except for those near the
limit of detection where < 20% can be accepted (FDA, 2013). While an upper
limit of 30% is considered adequate for biomarker discovery (Gika et al., 2007,
Want et al., 2010). The reproducibility of the FIE-MS and chip-based infusion
analyses was relatively low compared to LC-MS analysis, but it is still within the
acceptable limit for biomarker discovery (Gika et al., 2007, Want et al., 2010).
Whereas LESA-MS is still counted as the least reproducible method compared to
the rest. In LESA-MS, the sample was extracted every time with a solvent using
a robotic arm which might introduce another level of variability to the analysis
(i.e. technical variability). This variability is mainly due to the possible loss of
sample during aspiration in the extraction process and subsequently

concentrations of analytes in the sample may vary.

Adequate chromatographic separation (graphs not shown) was obtained with LC-
MS, which is comparable to urinary profiles of previously published studies using
HILIC column (Gika et al., 2008b, Cubbon et al., 2007, Chen et al., 2015b). The
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spread out of analytes in the chromatography reduces ion suppression effect of
urine salts and subsequently, increases the ionisation efficiency over FIE-MS
(Buszewski and Noga, 2012). Hence, better analyte signals and coverage were
attained with artificial urine analysis using LC-MS. In addition, the adequate
precision obtained in chromatography had produced a stable flow to ESI source,
therefore, low variability in the analytes signal was observed with RSDs less than
8%. Comparable coverage of the artificial urine analytes were obtained with FIE-
MS and chip-based infusion to LC-MS, which may be a true reflection of the

extensive optimisation of the method for urine metabolomics.

This is the first time that FEI-MS, chip-based infusion and LESA-MS were
evaluated and compared with LC-MS for untargeted metabolomics using urine
samples spiked with a mixture of standards. However, a published targeted
analysis using chip-based infusion for urine analysis had reported a 40% coverage
of the compounds under investigation compared to LC-MS method (Froesch et
al., 2004). Yang et al., highlighted the possible sources of variability in chip-
based infusion for the quantification of methylphenidate in urine (Yang et al.,
2004). They reported that the variability in the analysis was directly proportional
to the concentration of the analyte in urine with RSD% of 19.1% at 20 ng/mL
and improved to 3.5% at 200 ng/mL. Considering these reported findings with
the wide concentration range of artificial urine compounds, the obtained results
with the developed direct ESI-MS methods demonstrates excellent coverage of

urine metabolites with adequate accuracy and consistency in comparison to LC-
MS.

2.3.7 Application of the optimised LC-MS and direct ESI-MS
methods for urine metabolomics analysis: a human

intervention study using green tea

Analytical performance of LC-MS and direct ESI-MS for urine analysis

Different approaches to ensure validity of metabolomics studies have been
reported including the use of internal standards, QC samples and test mix (Gika
et al., 2007, Gika et al., 2008a, Sangster et al., 2006, Viswanathan et al., 2007).
Hence, it was decided to reference the direct ESI-MS results against a valid
published protocol for urine profiling using UHPLC-MS analysis (Want et al.,
2010). Urine samples from subjects after the ingestion of green tea (n = 6) and

controls (n = 6) were analysed in a single analytical run using the developed LC-
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MS, FIE-MS, chip-based infusion and LESA-MS. Pooled QC sample was inserted
between samples during the analysis. Typical LC-MS base peak chromatograms
of urine samples before and after ingestion of green tea are shown in Figure 2-12.
Some of the base peaks are marked to give an intuitive display. Similar urinary
profiles were obtained from subjects after ingestion of green tea and controls in
both modes. Creatinine, m/z 114.0663 [M-+H]", was the base peak in the positive
mode, while it is m/z 187.0073 (p-cresol sulphate) in the negative mode. The
separation profile in LC-MS between control wurine samples and after
consumption of green tea were quite similar in both modes. However the TIC for
the control urine samples was slightly higher than the green tea samples. This
indicates that the collected urine samples after the ingestion of green tea were
more diluted than the control which could be as a result of the mild diuretic
effect of caffeine in the green tea (Maughan and Griffin, 2003). To give an
overview of the differences in the findings between LC-MS and the developed
methods; summed mass spectra of urine samples after the consumption of green
tea analysed in positive ion modes are presented in Figure 2-13. Similar spectral
profiles were observed with the LC-MS and FIE-MS, while higher peak counts
but different profiles were obtained with chip-based infusion and LESA-MS. The
high peak counts in chip-based infusion and LESA-MS analyses, suggesting an
improved sensitivity of nanoESI over standard ESI which was consistent with
previously reported studies (Dethy et al., 2003, Wickremsinhe et al., 2005,
Flangea et al., 2011). While detection of different MS profiles by chip-based
infusion and LESA-MS compared to LC-MS and FIE-MS, may be a result of
using different ESI source configurations (Gika et al., 2010, Trunzer et al., 2007),
ESI in LC-MS and FIE-MS, and nanoESI in chip-based infusion and LESA-MS.

Validation of LC-MS and direct ESI-MS for urine analysis

Complete LC-MS, FIE-MS, chip-based infusion and LESA-MS urine
metabolomics datasets were acquired for urine samples after the ingestion of
green tea (n=6), the healthy control samples (n=6) and the pooled QC sample in
in a single analytical run. A representative set of 57 urine metabolites in the QC
sample was used to check the stability of the analysis and compare the
performance of the developed methods against LC-MS (Appendix D). 44, 43, 45
and 41 of these metabolites were detected with LC-MS, FIE-MS, chip-based
infusion and LESA-MS, respectively. This indicates adequate coverage of urine
metabolites by the developed method compared to LC-MS. LESA-MS and chip-

based infusion detected some metabolites which were not found by LC-MS,
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indicating that enhanced sensitivity of some metabolites were obtained by
nanoESI compared to ESI, consistent with Froesch et el. (Froesch et al., 2004).
This finding suggested that the use of nanoESI in urine metabolomics studies
may provide complementary information that could not be attained with LC-MS

alone.

The maximum RSD% values of peaks counts/areas of the selected urine
metabolites in the datasets of the pooled QC sample were 15.0%, 24%, 32% and
34% for LC-MS, FIE-MS, chip-based infusion and LESA-MS, respectively. LC-
MS retention time shifts were less than 0.03 min with maximum RSDs of 0.65%
and mass accuracy was within 5 ppm in both positive and negative ion modes for
all analyses. The RSDs values obtained from LC-MS and FIE-MS were within
the acceptable limits, less than 30%, stated for the bioanalysis and biomarker
discovery (FDA, 2013, Gika et al., 2007, Want et al., 2010). Chip-based infusion
and LESA-MS gave a slightly higher level of variability of metabolites in the QC
sample compared to FIE-MS. But, 93% and 79% of the selected peaks in the QC
samples gave RSD% less than 30% for chip-based infusion and LESA-MS,
respectively, which indicates adequate repeatability of the methods for urine
metabolomics (Want et al., 2010).

In addition, the quality of the data obtained from LC-MS analysis was also
assessed using all peaks present in at least 80% of the pooled QC samples. The
RSDY% across the mean was less than 30% for 89% of these peaks, which was
lower than the recommended threshold for metabolomics analysis (Want et al.,
2010). For direct ESI-MS, principal component analysis (PCA) was used to check
the quality of the obtained datasets as suggested by Beckmann et al. (Beckmann
et al, 2008). PCA score plots of the sample sets (Figure 2-14) showed
comparable clustering of the pooled QC sample towards the centre of the plots
with all direct ESI-MS methods and LC-MS. Chip-based infusion and LESA-MS
showed tight clustering of the pooled QC samples but with a shift towards the
urine samples after the ingestion of green tea, yet it is considered adequate in
term of analysis stability (Beckmann et al., 2008, Gika et al., 2007). In summary,
these results validate and compare the analytical performance of the developed
direct ESI-MS methods against LC-MS.
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Evaluation of direct ESI-MS throughput for urine analysis

Advanced features and capabilities of the developed methods compared to LC-
MS were summarised in Table 2-5. Direct ESI-MS analysis time per sample was
less than 1.0 min compared to 15 min in LC-MS. This means that the methods
are quite capable of performing large batch analysis of urine samples. For FIE-
MS, Beckmann et al., estimated a possible throughput of 240 samples/20 h
(576/48 h) and a total of at least two weeks for a full study to be accomplished
(Beckmann et al., 2008). While for urine analysis, Gika et al., investigated the
stability of urine samples in the autosampler at 4 °C for LC-MS analysis by
continuous reanalysis of a pooled urine QC sample over 6 days. They reported
that QC sample was stable for 48 h, after which significant changes in the sample
were observed, suggesting that this was the maximum time urine samples should
be kept for the analysis under such conditions (Gika et al., 2008c). Considering
this time limitation for urine analysis, it is worth highlighting that in 48 h the
developed direct ESI-MS methods can analyse up to 2,880 samples compared to
192 samples with LC-MS. Thus, a higher throughput in direct ESI-MS analysis
with a quick and simple data analysis protocol was obtained. Furthermore, the
improved detection sensitivity and adequate reproducibility with chip-based
infusion and LESA-MS for urine analysis make them suitable and versatile
choices for urine metabolomics. The ease of the analysis with no carry-over effect
(Yang et al., 2004) and no sample treatment further the advantages of LESA-MS

over conventional FIE-MS and chip-based infusion.
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Description LC-MS FIE-MS Chip-based infusion LESA-MS
Sample preparation  Dilution-method Dilution-method Dilution-method Spotting
(time/sample) (10-20min) (15-20min) (15-20min) (<1min)
Analysis 15min 0.5min 0.5min 0.5min
time/sample
Carryover effect Possible Possible No No
requires proper wash  requires proper
cycle wash cycle or blank
injection
Wash cycle/sample 2 min 0.5 min 0 min Omin
(blank injection)
Dataset 3D 2D 2D 2D
dimensionality (RT, m/z, intensity) (m/z, intensity) (m/z, intensity) (m/z, intensity)

Data pre-processing
time/sample

Overall time/sample

Instrumentation

Number of peaks
detected (urine)

Capital cost
compared to LC-MS

Solvents and
reagents

other cost

Analysis
cost/sample
compared to LC-MS

~10 min

37-47 min

- LC system
- HRMS

4,128

Standard

- Mobile Phases for
chromatography
- Sample solvent

-Chromatographic
guard/ analytcial
column

-HPLC vials or 96-
well plates

Standard

< 0.5 min

16.5-21.5 min

- LC system
- HRMS

748

Standard

- Mobile Phases for
flow injection
- Sample solvent

-NO column
required

-HPLC vials or 96-
well plates

Lower: no column,
quick run (minimal
solvent usage)

< 0.5 min

16-21 min

- Chip-based
infusion device
- HRMS

1,064

Lower (no need for
LC System)

- Mobile Phases
not required
- Sample solvent

-NanoESI chip
-96-well plates

higher (disposable
nanoESI chip)

< 0.5 min

<2 min

- Chip-based
infusion device
- HRMS

1,611

Lower (no need
for LC System)

- Mobile Phases
not required

- Extraction
solvent

-NanoESI chip
-Slides

higher
(disposable
nanoESI chip)

Advanced desirable capabilities of each method compared to others were highlighted in bold.
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Figure 2-12 LC-MS base peak chromatograms (BPC) of urine samples before and after
ingestion of green tea. From top to bottom, BPC of urine samples after green tea

consumption (ESI4), control urine (ESI+),

control urine (ESI-) analysed by LC-MS using BEH HILIC column.

after green tea consumption (ESI-) and
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Figure 2-13 Typical metabolic fingerprints obtained from wurine samples after the
consumption of green tea analysed with LC-MS and the developed direct ESI-MS
methods. Figure presents the combined mass spectra (50-500 Da) of urine samples
analysed in the positive mode by (a) LC-MS, (b) FIE-MS, (c) chip-based infusion and
(d) LESA-MS using Orbital trap MS.
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2.3.8 Direct ESI-MS data analysis protocol for high-throughput

urine metabolomics

Software Evaluation for high-throughput urine metabolomics

For a comprehensive modelling of the differences between groups in the study,
datasets generated by LC-MS and direct ESI-MS methods were submitted for
multivariate analysis. Three metabolomics software, MetaboAnalyst (Xia et al.,
2012), SpecAlign (Wong et al., 2005) and Progenesis QI (Nonlinear-Dynamics,
2014), were evaluated to establish a high-throughput data analysis protocol (data
not shown). In metaboAnalyst, the raw datasets was exported into common data
format files (CDF), first before pre-processing. The data analysis was carried out
on a web server with an upload capacity limit of 50MB, indicating that it may
not be a suitable choice for large batch analysis. In SpecAlign raw data was
extracted manually and imported into the software in comma-separated values
(.csv) for peak alignment. The processing and conversion of the raw datasets may
require time-consuming manual intervention steps. Therefore, the wuse of
Metaboanalyst and SpecAlign might not be suitable for high-throughput data
analysis. In Progenesis QI, raw data was imported directly without conversion,
indicating that the throughput of the proposed direct ESI-MS methods can be
increased with minimum intervention. It also provided a way of comparing LC-
MS with the developed direct ESI-MS. Therefore, it was decided to use
Progenesis QI for data pre-processing of LC-MS and direct ESI-MS.

Multivariate analysis

The raw datasets obtained from the analysis of urine samples after ingestion of
green tea (n = 6) and controls (n = 6) were submitted for peak picking, peak
alignment and normalisation using Progenesis QI. The datasets of LC-MS, FIE-
MS, chip-based infusion and LESA-MS generated 4,128, 748, 1,064 and 1,611
variables, respectively (Table 2-6). The normalised datasets were exported for
multivariate analysis using Simca P+14. Unsupervised principal component
analysis (PCA) was used to give an unbiased overview for any possible trends
and groupings within the sample datasets. PCA score plots showed complete
separation between urine control samples and urine samples after ingestion of
green tea with LC-MS (Figure 2-14). Comparable results were obtained with
FIE-MS and chip-based infusion, whereas LESA-MS datasets produced a lesser

degree of separation between groups. Subsequent supervised multivariate analysis
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method using OPLS-DA showed clear separation and adequate clustering of
green tea group from the control in all MS methods (Figure 2-15). The clustering
trend in FIE-MS is quite similar to that in LC-MS. While in chip-based infusion
and LESA-MS, the urine samples after the consumption of the green tea showed

lesser clustering trends.
Validation of OPLS-DA models and metabolite selection

These OPLS-DA models were evaluated using cross-validation (leave-one out
method) by monitoring the fitness of model (R’Y) and predictive ability (Q?)
values (Cubbon et al., 2007). Further validation using prediction models based on
randomly selected training/test sets was also performed. Comparison of the
results of multivariate data analysis and the prediction of the models obtained
from the developed methods against the LC-MS are summarised in Table 2-6.
Although, a few number of peaks were extracted from the datasets of the
developed direct ESI-MS methods but the generated OPLS-DA models gave
comparable R’Y and Q’ values to LC-MS. Variable importance in the projection
(VIP) of the OPLS-DA models is used in conjunction with loadings plots for the
extraction of urine metabolites with significant differences between the two group
of samples. A VIP score of a variable above 1.0 is considered important for the
model (Yin et al., 2009). Student t-test (Miller and Miller, 2010) corrected with
false discovery rate for multiple testing problem was performed with Progenesis

QI across peaks intensities of urine samples and controls. Ions of significant
differences (g-value < 0.05) have been considered as potential metabolites related

to green tea.
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Figure 2-14 PCA score plots overview obtained from urine samples using LC-MS and the
developed direct ESI-MS methods. a, b, ¢ and d are PCA score plots of urine samples
after consumption of green tea (green circles, n = 6), control samples (yellow circles, n =
6) and pooled QC samples (red circles, n = 6) analysed by LC-MS, FIE-MS, chip-based

infusion and LESA-MS, respectively, in ESI+ and ESI- modes (combined).
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Figure 2-15 OPLS-DA score plots overview obtained from urine samples using LC-MS
and the developed direct ESI-MS methods. a, b, ¢ and d are OPLS-DA score plots of
urine samples after consumption of green tea (green circles, n = 6) and control samples
(yellow circles, n = 6) analysed by LC-MS, FIE-MS, chip-based infusion and LESA-MS,
respectively, in ESI+ and ESI- modes (combined).
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Table 2-6 Validation of OPLS-DA models generated from urine samples after
consumption of green tea and control samples using LC-MS and the developed direct

ESI-MS methods.

Description LC-MS FIE-MS Chip-based infusion LESA-MS
1. Peak detected

ESI+ 2,461 325 472 771
ESI- 1667 423 592 840
Total (ESI+ and ESI-) 4,128 748 1,064 1,611
2. Cross-validation

RYY 0.945 0.963 0.995 0.875
Q? 0.576 0.635 0.598 0.547
3. External validation: classification (training/test models)

True positive (TP) 3 3 3 3
False positive (FP) 0 0 0 1
True negative (TN) 3 3 3 2
False negative (FN) 0 0 0 1
Sensitivity (%)! 100% 100% 100% 75%
Specificity (%) 100% 100% 100% 67%
Accuracy (%)* 100% 100% 100% 1%

'Sensitivity is the true positive rate (TPR) calculated from the formula, TPR = TP/(TP+FP).
*Specificity is the true negative rate (TNR) calculated from the formula, TNR = TN/(TN+FN).
= (TP+TN)/(TP+FP+TN+FN).

*Acuuracy is calculated from the formula, Accuracy (%)
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2.3.9 Direct ESI-MS performance for biomarker discovery

Significantly altered metabolites in urine samples after the consumption of green
tea compared to controls were used to evaluate the methods capability for
biomarker discovery. A set of metabolites reported in urine after consumption of
green tea as caffeine, paraxanthine, L-theanine and flavonoids has been used to
generate a local database of green tea metabolites (Ridder et al., 2014, Spencer,
2003, van der Hooft et al., 2012). The exact mass was used to provide possible
identification of the altered metabolites in urine samples after the consumption of
green tea as detailed in the method section. The identified metabolites by each
method were summarised in Table 2-7 together with their identity code from the
Human Metabolome database (HMDB) (http://www.hmdb.ca/).

15 metabolites were found with LC-MS compared to 8, 5 and 6 with FIE-MS,
chip-based infusion and LESA-MS, respectively. Most of the metabolites detected
by FIE-MS were found with either chip-based infusion or LESA-MS, such as
caffeine, L-theanine and hippuric acid. The majority of metabolites obtained by
direct ESI-MS methods were also detected by LC-MS. Also, some metabolites
detected by direct ESI-MS methods such as caffeine were not found in the
standard LC-MS method. Surprisingly, LESA-MS detected one of the metabolites
as M+K-2H ion instead of the prominent ion M+Na-2H. The detection of
different ions and metabolites by the developed direct ESI-MS compared to LC-
MS could be due to the very different electrospray source configurations and/or
the improved sensitivity observed with nanoESI chip, a point already has been
discussed in section 2.3.7. This may also be related to the effect of ion
suppression of urine salts on ESI as higher load of urine salts was present in
samples for LC-MS (3-fold dilution) compared to urine samples for direct ESI-MS
(10-fold dilution). This finding, suggested that direct ESI-MS methods can be
used as complementary methods with LC-MS to improve metabolite coverage for
certain classes of metabolites. However, the infusion of all metabolites in the
samples for ESI in direct ESI-MS methods decreases the detection ability of the
methods compared to LC-MS. Thus, the LC-MS approach is quite adequate for
comprehensive metabolomics study. While, direct ESI-MS methods are quite
suitable for high-throughput applications. In direct ESI-MS, a high-throughput
was achieved (i.e. they require ~6.7% of the LC-MS analysis time) and yet about
30-50% information of LC-MS was obtained. These results suggested that the
developed direct ESI-MS methods can be used in pilot studies or as rapid

diagnostic tools in clinical practice.
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LC-MS FIE-MS Chip-based infusion LESA-MS
Mass Mass Mass Mass
Metabolite RT difference difference difference difference
Green tea metabolites MW (Da) Formula HMDB ID (min) Tons (mDa) Tons (mDa) Tons (mDa) Tons (mDa)
(epi-)catechin-O-sulphate-O- 384.0515 C;Hs0yS  Not available  0.66 M-H 0.18
methyl I
3-Hygr0xybenzoic acid 138.0317 C.H,0O, HMDB02466  0.89 M-H 0.01
3-Hydroxyphenylacetic acid 152.0473 «HgO; HMDBO00440  0.68 M+H 0.08
4-hydroxy-5-(3',5"- 416.1319  C,H,0,, Not available 2.04 M+H-H,0 1.81
dihydroxyphenyl)-valeric acid-
O-methyl-O-glucuronide I
4-Hydroxy-5-(phenyl)-valeric 274.0511 C,H,,0,S HMDB59981 M+H+Na  0.67
acid-O-sulphate
5-(3,4’,5'-trihydroxyphenyl)-y- ~ 400.1006 C,;H,,0,;, HMDB59984 M+K-2H 1.67
valerolactone-3’-O-glucuronide
5-(3,4’,5'-trihydroxyphenyl)-y- ~ 304.0253 C,,H,,0,S HMDB59987 1.71 M-H 0.13
valerolactone-4’-O-sulphate
5_(3774"57_trihydroxypheny1)_v_ 318.0409 CIQHMOgS Not available M+Na 0.33
valerolactone-O-methyl-O-
sulphate I
5-(3’,4’-dihydroxyphenyl)-y- 288.0304 C,;H,,0,S HMDB29191 0.59 M+H 0.60 M+H+Na 0.75
valerolactone-O-sulphate
5-(dihydroxyphenyl)-y- 302.0460 C,H,,0,S HMDB60031 7.71 M-H,0-H 0.34
valerolactone-O-sulphate-O-
methyl
5-(hydroxyphenyl)-y- 272.0355 C,H,0,S HMDB59993 1.14  M+ACN+Na 1.23
valerolactone-O-sulphate
Pyrocatechol-O-glucuronide 286.0689 C,H,,Oq4 Not available  2.46 M+ACN+Na  0.86 M+ACN+Na 1.17
Pyrocatechol-O-sulphate 189.9936 C:HO;S HMDB59724  0.56 M+2Na-H 0.59
Caffeine 194.0804  C.H,N,0, HMDB01847 M-+H 0.17 M+2Na-H 1.20
Dihydroferulic acid 4-O- 372.1056 C,H,O0,, HMDB41723  6.28 M+NH, 0.22 M-H 0.07
glucuronide
Epicatechin 3-0-(4- 456.1056 C,;H,,0,, HMDB39328 0.00 M+3Na 1.00
methylgallate)
ferulic acid-O-sulphate 274.0147 C,H,,0,S HMDB29200 1.29 M+2Na-H 0.86
hippuric acid 179.0582 C,H,NO, HMDB00714 1.27 M+H 0.63 M+2Na-H 0.25 2M+Na 0.81 M+CH,OH-H 1.34
Kaempferol 3-glucuronide 462.0798 CyH,0,, HMDB29500 M-3H 0.07
L-Theanine 174.1004 C,H,N,0, HMDB34365 5.38 M+H 0.03 M+Cl 1.99 3M+H 1.66
Paraxanthine 180.0647 C,H,N,O0, HMDB0180 1.17 M+H 0.03
Pyrogallol-2-O-glucuronide 302.0638 C,,H.,0, HMDB60017 M+Na 2.70
vanillic acid 168.0423 C.H,0O, HMDBO00484  3.24 2M+ACN+Na 0.36 M-H 1.26 M+Na 0.21
Vanillin 4-sulphate 232.0042 C.H,O4S HMDB41789 M-H 0.29
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2.4 Conclusion

High-throughput direct ESI-MS approaches have been developed and validated
for untargeted metabolomics of human urine. The results were compared with a
conventional LC-MS method. The time consumed during sample preparation,
especially with large sets of samples, adds another limit to the throughput of the
LC-MS method. LESA-MS with no sample preparation step which involves only
placing samples directly onto a slide surface prior analysis gives the method the
advantage of being high-throughput by reducing pre-analysis time significantly.
On the other hand, preparing samples using urine dilution methods for FIE-MS
and chip-based infusion have the same time frame as LC-MS. Considering the
run time for each sample in direct ESI-MS methods is only 1.0 min compared
with several 10s of mins for LC-MS, direct ESI-MS undoubtedly provides a much
higher analysis throughput. Chip-based infusion and LESA-MS use a disposable
chip with nanoESI nozzles provide analysis without carryover effects. Although,
this adds an extra cost to the analysis, but improves the throughput as well.
There is no need for a wash cycle between samples as in conventional LC-MS and
FIE-MS. In term of overall performance of the developed methods, FIE-MS
provided the best throughput solution compared with chip-based infusion and
LESA-MS. It had the lowest analysis cost/sample, same analysis time, lower
variability and detects more metabolites from urine samples. However, LESA-MS
requires no sample preparation step and only involves placing urine samples
directly onto a slide surface, gives the method further credit of being very simple
and easy to use in clinical practice. Although all direct ESI-MS methods provide
high-throughput analysis compared to LC-MS, they lack the ability to resolve
isobaric compounds and a fewer number of peaks were detected. In conclusion,
direct ESI-MS methods employed a robust model for differentiation between
inherent types of samples and it is recommended to be used as a fast analytical
tool for clinical urine samples, while LC-MS is necessary when comprehensive

biomarker screening is required.
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3. Metabolic Signatures of Osteoarthritis (OA) in Human

Urine

3.1 Introduction
3.1.1 Osteoarthritis (OA)

Osteoarthritis (OA) is a chronic degenerative
joint disorder which is considered as the most
common type of arthritis and it is directly linked
to ageing and obesity (Shane Anderson and
Loeser, 2010). It is developed as a result of

progressive erosion of articular cartilage of the

joints and the continuous attempts of the body’s
repair processes. During this slow process, the
cartilage roughens and becomes flimsy; the
subchondral bone (the underlying bone) thickens
and starts forming osteophytes (bone spurs) and

the synovial cavity (the gap between bones in the

joint) narrows. The synovium (the inner

membrane of the joint capsule) may become

Figure 3-1 Right knee X-ray
radiogram of a patient with

affected joint to swell, while the ligaments and  severe ~OA  (Bliddal and
Christensen, 2006).

thick and produce excess fluids, causing the

the joint capsule thicken and contract. In severe

cases (Figure 3-1), bone friction and wearing away may happen due to complete
loss of cartilage which is often associated with chronic pain and physical
disability (Loeuille, 2012a). OA affects all type of joints but it is more prominent
in the weight bearing joints such as the knees, hips and lower spine than in the
shoulders, elbows, wrists and fingers joints (Hinman and Crossley, 2007). World
Health Organisation (WHO) estimates that 9.6% of men and 18% of women
above 60 years of age have symptomatic OA worldwide (WHO, 2015a). Due to
an ongoing ageing population, OA is expected to be the fourth leading cause of
disability among elderly by the year 2020. Radiographic surveys among
FEuropean and United States populations aged above 45 years had showed that
knee OA is the most common types of OA: 14.1% (men) and 22.8% (women)
(Woolf and Pfleger, 2003). In the UK, according to Arthritis Research UK, 8.75
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million people over age of 45 year have sought treatment for OA from which 4.71
million have suffered from OA of the knee and more than 77,000 surgeries were
performed for knee replacements (Arthritis Research UK, 2013). Figure 3-2
presents an estimated number and percentage of people in the UK who have
sought treatment of OA in the last 7 years according to age group and gender. It
shows that around 33% of the total population aged 45 years and over have
suffered from OA, from which 49% of women and 42% of men of those aged 75
years and over have been affected the most. Knee OA is the most common type
of OA in England followed by the hip; 4.11 million people aged 45 and over have
suffered from OA of the knee (18% of total population) whereas 2.46 million

people have OA of the hip (11% of total population aged > 45 years) (Arthritis
Research UK, 2013).
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Figure 3-2 Osteoarthritis in the UK. The estimated number and percentage of people in
the UK who have asked for OA treatment. The statistics based on 7 years consultation
prevalence in UK general practice (Arthritis Research UK, 2013).
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3.1.2 Osteoarthritis: aetiology and symptoms

The exact aetiology of OA is not yet fully understood. However, a range of
factors such as age, obesity, gender, ethnicity, sport, physical activity, inherited
susceptibility such as hereditary metabolic disorders, muscle weakness and
rheumatoid arthritis have been shown to predispose to the development of OA,
and it is often a combination of these factors that increases the risk of having OA
(De Ceuninck et al., 2011, Li et al., 2010). In overweight populations, OA may
develop as a result of cartilage damage due to repeated excess weight load on the
joints or due to physical injury. In addition, the metabolic alterations associated
with obesity along with the continuous production of inflammatory mediators by
the adipose tissues are believed to be the major contributing factors in the
progression of the OA (Yusuf et al., 2010). Recently, there are some new findings
that link OA pathogenesis to synovitis; the local release of a wide variety of
inflammatory mediators such as cytokines and chemokines associated with
synovial inflammation has shown to have a direct metabolic effect on
chondrocytes, the healthy cells that produce and maintain the cartilaginous
matrix (Scanzello and Goldring, 2012).

OA is clinically characterised not only by the classical features of cartilage
damage, subchondral sclerosis, bone cysts and formation of osteophytes, but also
associated with low to moderate synovitis, ligamentous laxity, malalignment and
meniscal degeneration (Cibere, 2006). Therefore, the clinical manifestations of OA
are quite varied in terms of disease progression rate, joint involved, severity and
onset of symptoms. In general, the major OA clinical symptoms are pain, stiffness
and loss of function (De Ceuninck and Berenbaum, 2009). Pain is the primary
symptom of OA and it is the main reason for patients seeking medical help. The
mechanism of pain in OA is still not clear as cartilage is aneural (i.e. not
innervated), however, bone marrow lesions observed with magnetic resonance
imaging (MRI) has been associated with pain in knee OA (Felson et al., 2001).
Other presumed causes of OA pain include synovial inflammation, elevated
interosseous pressure due to vascular congestion, osteophytic periosteal elevation,
muscle fatigue and joint contracture (NFMCPA, 2015).

3.1.3 Diagnosis and management of osteoarthritis

OA is currently diagnosed with clinical symptoms and radiography, in which X-
ray is considered the “gold standard” radiographic method. The main X-ray



83

features for the OA diagnosis are: presence of osteophytes, space narrowing in the
joint, formation of subchondral cysts and development of subchondral sclerosis.
Although X-ray imaging is quite capable of detecting those features, recent MRI
studies have demonstrated that X-ray as a plain radiography technique only
provides a two dimensional image for the three dimensional structural features
associated with cartilage and bone damage and therefore fails to detect hidden
osteophytes due to overlapped bony features (Cibere, 2006). Magnetic resonance
imaging (MRI) has the capability to provide a multiplanar tomographic imaging
of cartilage, bone synovial effusion and ligaments, hence avoids the problem of
undetected structural features on X-ray radiography. However, it is not
commonly used due to its high capital cost and limited availability (Menashe et
al., 2012, Loeuille, 2012b). Alternatively, arthroscopy provides a direct view of
the affected joint features but its use is quite limited for OA diagnosis as it
involves an invasive surgical procedure and therefore, cannot be routinely applied
for OA clinical screening (Felson, 2010). Although all these techniques are quite
capable of giving a direct insight on the impaired structural features associated
with OA, they lack the ability to provide pathophysiological information at early
stages of OA development. Therefore, non-invasive OA diagnostic tests are
urgently needed for early prognosis and they would further the development of

alternative treatment strategies and clinical evaluation of the disease.

To date, no disease-modifying agent has been approved yet to effectively treat
OA and therefore, treatment strategies concentrate on improving the quality of
life of OA patients through management of associated symptoms including pain
control and improvement of lost function (De Ceuninck et al., 2011). Current
guidelines for OA therapy as recommended by the European League against
Rheumatism (EULAR) are defined in the following order: (1) non-
pharmacological treatment, i.e. behavioral interventions such as exercise, life style
changes and education, (2) pharmacological treatment with simple analgesic e.g.
paracetamol, non-steroidal anti-inflammatory drugs (NSAIDs) or topical
analgesics, (3) intra-articular corticosteroids or hyaluronic acid injections and (4)
surgical interventions, i.e. arthroplasty such as joint replacement (Jordan et al.,
2003). Most of these treatment strategies involve only long term symptomatic
relief of OA and different side effects have been reported for the majority of
patients (Goldring and Berenbaum, 2015). Current OA research aims are directed
towards understanding the aetiologies associated with OA development and
progression in terms of the common and distinct mechanisms at the molecular

level that would be amendable for the development of novel disease-modifying
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OA drugs (DMOAD) for OA treatment (Le Graverand-Gastineau, 2010). Current
DMOAD research is sub-divided into inflammatory pathway targets, remodelling
of subchondral bone and cartilage catabolism/anabolism (Yu and Hunter, 2015).
Nonetheless, in order to find suitable drug targets, assess the therapeutic efficacy
of new chemical entities and reliably monitor OA from early stages of
progression, revealing the identity of biomarkers associated with OA
pathophysiology are desperately needed. Chemical biomarkers such as proteins,
peptides and metabolites that can be detected directly from different body fluids,
e.g. blood, plasma, serum, synovial fluid and urine are excellent candidates to

fulfill the above purposes.
3.1.4 The current value of biomarkers in OA research

The suitable candidates for biomarkers in OA are most likely to be biomolecules
or fragments related to pathophysiological or structural changes of cartilage, bone
or synovium during OA development and progression. They may be specific to
certain type of joint tissue or common to all of them and may be involved in
tissue degradation or synthesis pathways and can be measured in biological fluids
such as synovial fluid, plasma or urine (Lotz et al., 2013). OA Biomarker
Network established by National Institutes of Health (NIH) proposed a
classification scheme to facilitate biomarker research in OA; it includes six
categories which are highlighted in the acronym (BIPEDS): Burden of disease,
Investigative, Prognostic, Efficacy of intervention, Diagnostic, and Safety (Bauer
et al., 2006). The most important category for DMOAD development, as
mentioned in the previous section, is prognostic biomarkers as it helps to predict
progression and future incidence of OA. Current investigated biomarkers for the
evaluation of OA are mainly linked to cartilage/bone collagen metabolism,
cartilage aggrecan metabolism, non-collagenous proteins, inflammation and
fibrosis. Comprehensive reviews of these biomarkers have been reported in the
literature (Rousseau and Delmas, 2007, Mobasheri, 2012, Loeuille, 2012a, Lotz et
al., 2013, Goldring and Berenbaum, 2015). Table 3-1 lists the most interesting
biomolecules under investigation for the evaluation of OA; some of them are quite
promising OA biomarkers such as serum cartilage oligomeric protein and urinary
C-terminal telopeptide of collagen type II. However, none of them sufficiently
discriminate between OA patients under different stages of progression, i.e. OA
active (symptomatic) and OA inactive (asymptomatic) and healthy controls,

predict prognosis of OA or perform consistently with OA patients so they can be
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used as a surrogate biomarkers for further clinical trial investigations (Lotz et al.,

2013).

Table 3-1 Selected biomarkers currently investigated for the evaluation of OA

Biomarker

Description/Type

1. Biomarkers related to collagen metabolism

CTX-II
a-CTX-IT

PIINP, PITANP, PIIBNP, PIICP & CPII

Pyridinoline & Glc-Gal-PYD
C2C

C2M

CTX-I & o-CTX-I

NTX-I

PINP

Cl and C2

C-terminal telopeptide of collagen type II

Type II collagen a chains collagenase neoepitope
Type II collagen propeptide

Cross-linking compound of collagen fibres

Type II collagen cleavage product

Collagen type Il-specific neoepitope

C-terminal telopeptide of collagen type I
N-terminal telopeptide of collagen type I
Aminoterminal propeptide of collagen type I

Types I & II collagen cleavage neoepitope

2. Biomarkers related to aggrecan metabolism

Aggrecan neoepitopes, ARGS & FFGV
Chondroitin sulfate epitope 846

3B3(-)

Keratan sulphate

Core protein fragments
Linear heteropolysaccharide

Monoclonal antibody 3B3(-)
sulphated mucopolysaccharide

3. Biomarkers related to other non-collagenous proteins

COMP & D-COMP

Fib3, Fib3-1& Fib3-2

FSTL-1

Hyaluronic acid

MMP-1, MMP-3, MMP-9, MMP-13
TIMPs

YKL-40 (HC gp-39)

sRAGE

4. Biomarkers related to other processes
hs-CRP, IL-1B, IL-6 & COX-5
Adiponectin, leptin & visfatin

sOB-Rb

periostin

DKKs & SOST

Uric acid

Cartilage oligomeric matrix proteins
Peptides of fibulin

Follistatin-like protein 1
Hyaluronan

Matrix metalloproteinases

Matrix metalloproteinases

Human cartilage glycoprotein 39

Soluble receptor for advanced glycation end
products

Inflammatory biomarkers
Adipokines

Soluble leptin receptor (long form)
Cellular interactions in bone

Wnt inhibitor

Heterocyclic purine derivative

COMP: cartilage oligomeric protein, D-COMP: deaminated COMP, COX-2: cyclo-oxygenase-2, hs-CRP:
high sensitivity C reactive protein, DKKI1: dickkopf-related protein 1, Fib: fibulin, Glc-Gal-PYD:
glucosyl—galactosyl—pyridinoline, IL: interleukin, MMP: matrix metalloproteinase, sSOB-Rb: soluble
leptin receptor, PITANP: N-propeptide IIA of type II collagen, PIIBNP: N-propeptide IIB of type II
collagen, PIICP: C-propeptide of collagen type II, PIINP: N-propeptide II of type II collagen, SOST:
sclerostin, TIMP: tissue inhibitor of matrix metalloproteinase. Table was reproduced from (Lotz et al., 2013).
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3.1.5 The current role of urinary biomarkers in OA research

Urine is simple, readily available and non-invasive samples for metabolomics
studies and it also provides an end metabolite pool of the body. Hence, it has the
potential to increase our understanding of metabolic variation associated with OA
development and progression. However, there are few studies in the literature
related to the use of urine metabolomics in OA research (Li et al., 2010, Nepple
et al., 2015, Lamers et al., 2003a, Lamers et al., 2005). Table 3-2 summaries a
selected list of reported metabolites that have shown significant differences in
urinary profiles of OA patients and animal models compared to healthy controls
or OA patients at a different stage of disease progression. Lamers et al, performed
urinary metabolomics experiment to study OA progression in guinea pigs. They
reported disturbances in the level of malic acid, lactic acid, alanine and
hypoxanthine which were found significantly contributed to the OA metabolic
profiles (Lamers et al., 2003a). The same group further studied the urine of
human from OA patients (n = 45) and healthy volunteers (n = 47) and they
were able to discriminate between the two groups using NMR and multivariate
analysis (Lamers et al., 2005). Li and co-workers performed GC-MS metabolomics
approach on urine from subjects with and without knee OA. They reported a list
of metabolites that showed significant differences between OA patients and
healthy controls (Table 3-2). Elevated levels of aconitic acid, citric acid and
isocitric acid were measured in the urine of OA patients compared to healthy
controls, which might be linked to the enhanced activity level of tricarboxylic
acid cycle (TCA) associated with the perturbed metabolism of chondrocytes and
cartilage (Li et al., 2010). Although these urinary metabolites are quite promising
for the prognosis of OA and could be logically linked to the disturbed biochemical
pathways in OA, but still they lack the proper validation to be considered for
clinical use. Therefore, more research is still needed to further identify, confirm,

validate and characterise OA urinary biomarkers.

State-of-the-art high-resolution MS (HRMS) techniques have the potential to
help not only in better understanding of OA progression but also in revealing a
new sets of biomarkers and would further the development of novel OA
therapeutic strategies. The application of direct ESI-MS metabolomics techniques
such as FIE-MS is still missing in OA research. The versatility of using new
direct ESI mass spectrometric techniques such as chip-based infusion and LESA-

MS with their potential as a quick diagnostic tool for clinical use has not been
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explored yet. Therefore, we intend to apply the developed LC-MS, FIE-MS, chip-
based infusion and LESA-MS for urinary metabolomics study of OA.

Table 3-2 Selected list of urinary metabolites reported as potential biomarkers for OA

Metabolites Type of the study Analysis Reference
4-hydroxy hippurate knee OA vs. control GC-MS  (Li et al., 2010)
4-methyl phenol knee OA vs. control GC-MS  (Liet al., 2010)
4-Methyleneproline knee OA vs. control GC-MS  (Liet al., 2010)
Acetoacetic acid knee OA vs. control GC-MS  (Liet al., 2010)
Aconitic acid knee OA vs. control GC-MS  (Liet al., 2010)
Alanine OA in guinea pigs NMR (Lamers et al., 2003a)
Citric acid knee OA vs. control GC-MS  (Li et al., 2010)
Creatine knee OA vs. control NMR (Lamers et al., 2005)
Creatinine knee OA vs. control NMR (Lamers et al., 2005)
Glutamine knee OA vs. control GC-MS  (Liet al., 2010)
Glycerol knee OA vs. control NMR (Lamers et al., 2005)
Glycine knee OA vs. control GC-MS  (Liet al., 2010)
Hippuric acid knee OA vs. control GC-MS  (Liet al., 2010)
Histamine knee OA vs. control GC-MS  (Liet al., 2010)
Histidine knee OA vs. control GC-MS  (Li et al., 2010)
Histidine knee OA vs. control NMR (Lamers et al., 2005)
Homovanillic acid knee OA vs. control GC-MS  (Liet al., 2010)
Hydroxybutyrate knee OA vs. control NMR (Lamers et al., 2005)
Hypoxanthine OA in guinea pigs NMR (Lamers et al., 2003a)
Isocitric acid knee OA vs. control GC-MS  (Liet al., 2010)
Lactic acid OA in guinea pigs NMR (Lamers et al., 2003a)
Malic acid OA in guinea pigs NMR (Lamers et al., 2003a)
Methylhistidine knee OA vs. control NMR (Lamers et al., 2005)
N-phenylacetyl glutamine knee OA severity GC-MS  (Liet al., 2010)
comparison
Pyruvate knee OA vs. control NMR (Lamers et al., 2005)
Tryptophan knee OA severity GC-MS  (Liet al., 2010)

comparison

3.1.6 Aims and objectives of the chapter

e To investigate urinary profiles of OA patients in active and inactive stages
of the disease using LC-MS and direct ESI-MS methods.

e To identify urinary biomarkers, which can differentiate between OA active

patients and healthy controls.
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3.2 Materials and methods

3.2.1 Reagents and chemicals

Mass spectrometry (MS) grade water was obtained from Fluka, Sigma-Aldrich,
Switzerland. Formic acid, 0.1% formic acid in water and leucine enkephalin are
MS grade and were purchased from Sigma-Aldrich, Germany. Methanol (LC-MS
grade) was obtained from Fisher Scientific, UK. Acetonitrile (LC-MS grade) was
supplied from VWR international, EU. Ammonium acetate (MS grade) was
obtained from Fluka, Sigma-Aldrich, Netherland. Chemicals used for the
preparation of artificial urine (a standard urine metabolite mixture) were either
HPLC or MS grade; their description and sources were previously summarised in
chapter 2, section 2.2.1, Table 2-2.

3.2.2 LC-MS and direct ESI-MS analyses

Orbital trap mass spectrometer (Exactive-Orbitrap, Thermo Fisher Scientific,
USA) equipped with Accela UHPLC system (Thermo Fisher, USA) was used for
LC-MS and FIE-MS analyses as detailed in section 2.2.3 and 2.2.4, respectively.
LC-MS analysis was carried out on BEH HILIC UHPLC column (2.1 x 100 mm,

1.7 pm particle size, Waters, USA) with the optimised multistep gradient
conditions detailed previously in chapter 2, section 2.2.3. Triversa NanoMate
(Advion, USA) coupled to orbital trap MS was used for chip-based infusion and
LESA-MS analyses as detailed in section 2.2.4. NanoESI spray conditions
comprised a nitrogen gas head pressure of 0.7 psi and 1.5 kV (ESI+), 1.8 kV
(ESI-) spray voltage controlled by Chipsoft Manager software (version 8.3.3,
Advion BioSciences, USA). Urine dried spots positions on the cell culture slide
were mapped for LESA-MS analysis using LESA-Points software (version 1.1,
Advion BioSciences, USA). All analyses were carried out with the optimised

orbital trap MS source parameters as described in section 2.2.2.
3.2.3 Preparation of artificial urine standard mixture

A mixture of 35 compounds was prepared in MS grade water in the concentration
range of 2.7-67.8 pg/mL as “artificial urine”, as described in chapter 2, section

2.2.6. Artificial urine was used to optimise flow injection parameters, MS source

parameters, urine dilution, study the effect of ion suppression of urine salts on
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ESI and to check the analytical stability of the MS system during metabolomics

analysis.
3.2.4 Samples collection and storage

Seventy four OA patients and sixty eight healthy volunteers from Nottingham
City Hospital, UK, were enrolled with consent in this study. The study was
undertaken by Professor M Doherty (School of Medicine, University of
Nottingham) and was passed by the appropriate University and Hospital Ethics
Committees. Some patients were in the active stage of the disease, while the rest
were inactive. OA patients were diagnosed and classified according to the
American Rheumatism Association 1987 revised criteria (Arnett et al., 1988). The
criteria used for OA diagnosis were based on expression of pain, limited motion in
one or more of the joint and presence of pathological lesions of OA in at least one
joint using conventional radiography. Then, patients were classified into active
and inactive OA based on the clinical and laboratory data for the presence of
active inflammatory process. OA active patients expressed high erythrocyte
sedimentation rate (ESR), swelling and local hyperthermia in at least one joint,
whereas OA inactive patients lacked such symptoms. All urine samples were
collected in urinary collection vessels without the use of preservatives. Samples

were then, aliquoted in triplicates of 2.0 mL into pre-labelled cryotubes and

stored immediately in -80 °C freezer.
3.2.5 Preparation of urine samples for metabolomics analysis

Thawed urine samples of OA patient and healthy controls were prepared with the
optimised urine dilution protocol for LC-MS and direct ESI-MS analyses as
described in section 2.2.7. For metabolomics analysis, a pooled QC sample was
prepared by mixing 20 pL aliquots taken from each urine sample and was treated

the same as described for the samples in section 2.2.7.

3.2.6 Urine metabolomics analysis of OA patients and controls

Participants’ urine samples were randomised and all urine samples including OA
patients and healthy controls were analysed in a single run in both positive and
negative ion modes with LC-MS, FIE-MS, chip-based infusion and LESA-MS.
For LC-MS analysis, six injections of pooled QC sample were analysed at the

beginning of the run to condition (i.e. stabilise) the column prior the analysis of
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participants’ clinical samples. Artificial urine triplicates were injected in the
beginning and at the end of the run as a reference test mix to check the stability
of instrument accurate mass performance. Pooled QC sample was injected once
after each 10 samples for the purpose of monitoring the stability, robustness,
repeatability and performance of the analytical platform. To monitor mass

accuracy within each run a reference standard of leucine enkephalin, m/z
556.2771 (ESI+), 554.2615 (ESI-) was spiked in every sample to give final

concentration of 0.2 pg/mL. Blank samples were injected after each sample in

FIE-MS analysis to minimise the carryover effect, if any.
3.2.7 Multivariate analysis and metabolite identification

The raw datasets for LC-MS, FIE-MS, chip-based infusion and LESA-MS
analyses were acquired using Xcalibur v2.1 software (Thermo Scientific, USA).
The performance of the analytical methods were validated by monitoring a
representative set of urine metabolites in pooled quality control (QC) samples for
retention time (RT) shifts (LC-MS), mass accuracy, relative standard deviations
(RSD%) of peak areas (LC-MS) and peak counts (direct ESI-MS). Xcalibur Quan
Browser was used to integrate and extract peaks areas of (RT, m/z) metabolites
pairs from the LC-MS raw data. While, Thermo ToxID v2.12.57 software
(Thermo Scientific, USA) was used to extract intensities of m/z values of
metabolites of interest from the direct ES-MS raw datasets. In addition, the
quality of the datasets obtained was assessed using methodology proposed by
Want et al., (Want et al., 2010) and Beckmann et al., (Beckmann et al., 2008)
for LC-MS and direct ESI-MS analysis, respectively, as detailed in chapter 2.

For metabolomics data analysis, raw datasets from OA active patients, OA
inactive patients and healthy controls groups were imported into Progenesis QI
software (Waters, USA) for peak picking, peak alignments, adducts and isotopes
deconvolution, normalisation and transformation as previously detailed in chapter
2, section 2.2.11. The normalised abundance of extracted metabolites peaks (RT,
m/z) pairs (LC-MS) and m/z (direct ESI-MS) were imported into Simca P+14
(Umetrics AB, Sweden) for multivariate analysis (MVA). The data were mean-
centred and scaled to unit variance (UV). The mean-centering technique
subtracts the mean of the variables intensity and hence, shifts the data towards
the mean. UV scaling procedure gives the weight of each variable by its standard
deviation, which shrinks the weight of intense features and stretches the weight

of smaller ones so that all features rest with equal weights (Eriksson et al.,
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2006b). UV scaling was found to generate multivariate models with higher fitness
of model (R’Y) and predictive ability (Q?) values (Eriksson et al., 2006b)
compared to pareto scaling, therefore, it was decided to use such scaling for
further analysis. Any variables associated with metabolites due to analgesic
medication received by OA patients were excluded to eliminate the potential
confounding effect of medication in the classification of groups under
investigation. Principal component analysis (PCA) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) were used to investigate metabolic
changes between different OA patients and healthy controls. To maximise the
classification between OA groups and healthy controls, successive OPLS-DA
models were generated comprising only two classes; datasets from either OA
active patients (n = 22) or OA inactive patients (n = 52) and the healthy
controls (n = 68) were used to build the OPLS-DA. Cross-validation using leave-
one out method (1 out of 7) was used to evaluate the robustness of the models by
monitoring the fitness of model (R’Y) and predictive ability (Q°) values.
Permutation test was used to evaluate the validity of the predictive ability (Q’

values) of the models.
3.2.7.1 Balancing sample size for OA classification

In order to match OA active patients (n = 22) and healthy controls (68) sample
size difference, a multivariate approach was implemented to select a
representative set (n = 22) from the healthy control samples using a combination
of multivariate design, OPLS-DA models and shared and unique structures (SUS)
plots. In multivariate design, a single class analysis of the whole set of samples is
generated using PCA, then any strong outliers should be removed to achieve
symmetrical distribution of the samples within the confidence intervals of the
PCA score plot. Finally, a representative set of samples is assigned from the PCA
by judicious selection of a well distributed group of samples throughout the score
plot area (Wold et al., 2004) and then, SUS plot can be used to check the
validity of the selection. The SUS-plot is used in multivariate analysis for
multiple comparisons of classification models (e.g. OPLS-DA) based on a
common reference class, e.g. control group (Wiklund et al., 2008). The dataset
selected in accordance with a multivariate design will have, in general, a good
spread of the latent variables as the original dataset, and this, in turn, will be

beneficial for the subsequent multivariate analysis (Eriksson et al., 2006b).
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Initially, healthy controls were sub-divided into 3 subsets using multivariate
design based on PCA single class analysis (n = 22 or 23) as illustrated in Figure
3-3, then OPLS-DA models were subsequently generated from each subset against
OA active patients sample set. SUS plot was used to monitor the similarity of the
generated OPLS-DA models. This procedure was repeated in an iterative manner
(10-11 times) until all healthy controls groups (i.e. the 3 subsets) generated
adequately similar OPLS-DA models with OA active patients. Oae of the
balanced OPLS-DA models was then selected for further analysis. Successive
permutation test was used to evaluate the predictive ability (Q® values) of the
model. External validation (prediction method) based on randomly selected
training (50%) and test sets (50%) of samples with correct group classification in
the OPLS-DA model were reported. The specificity and selectivity of the
prediction models were tested using area under the ROC (receiver operating
characteristic) curve (AUC).

PCA Class analysis, healthy controls (n = 68)

| Step (2) |

. 3 subsets (n = 22-23)
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g®e ° oo Step (1) goQﬁ hd © ee distributed
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Figure 3-3 Workflow of balancing OA study groups for multivariate analysis. Healthy
controls (n = 68) were sub-divided into 3 subsets: subset 1, 2 and 3, using multivariate
design based on PCA single class analysis. 3 OPLS-DA models were generated from each
dataset (i.e. subset 1, 2 or 3) against OA active patients dataset. SUS plot was used to
monitor the similarity of the generated OPLS-DA models. SUS plots were generated for
2 models at a time (i.e. OPLS-DA 1 vs OPLS-DA 2, OPLS-DA 1 vs OPLS-DA 3 and
OPLS-DA 2 vs OPLS-DA 3). This procedure was repeated until the selected subsets of
the healthy controls generated adequately similar OPLS-DA models with OA active
patients.
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3.2.7.2 OA urinary metabolite identification

The ions responsible for the class separation in OPLS-DA models between OA
active patients and healthy controls were selected by means of Variable
Importance for the Projection (VIP) and variables loadings plots. To increase the
confidence in the selection of those ions, univariate analysis using Student’s t-test
was computed in parallel to test the significant difference of the selected ions
between the two groups. Prior to univariate analysis, ArcSinh transformation
(Jones, 2008) was performed for the normalised data to restore normality using
Progenesis QI. Accounting for multiple testing problems, p-values were adjusted
using false discovery rate (FDR) technique, which was computed using Progenesis
QI. Tentative identification of urine biomarkers was achieved using Metascope
search engine of Progenesis QI to search for possible identification based on

accurate mass measurements within 3 mDa error range from the Human
Metabolome Database (HMDB) (Wishart et al., 2013).
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3.3 Results
3.3.1 Demographic data assessment for metabolomics study

Participants’ clinical and demographic data are listed in Table 3-3. The median
age of cases was 68 years old and within the range of 50-91 and 52-88 for OA
patients and healthy controls respectively, indicating adequate age matching for
metabolomics study. Statistical Student ¢test was computed to check whether
the distribution of body mass index (BMI) is significantly different between the
participants groups. There was no significant difference in the BMI between OA
inactive patients and healthy controls, indicating that they were well matched for
the study. However, there were significant differences between all OA patients,

OA active patients and healthy controls were observed.

Table 3-3 Demographic data comparing OA patients to healthy participants

Description OA patients Healthy controls
1. Number of subjects
a. All 74 68
Male 26 30
Female 48 38
b. OA active patients 22 -
Male 5 -
Female 17 -
c. OA inactive patients 52 -
Male 21 -
Female 31 -
2. Age:
a. All
Median 68 68
Range 50-91 52-88
b. OA active patients
Median 69 -
Range 54-86 -
c. OA inactive patients
Median 68 -
Range 50-91 -
3. BML:
a. All
Mean (p-value = 0.05) 30.23 28.34
Median 29.27 27.62
Range 20.40-51.04 20.28-45.52
b. OA active patients vs healthy controls
Mean (p-value = 0.02) 31.55 28.34
Median 29.41 27.62
Range 24.77-46.85 20.28-45.52
c. OA inactive patients vs healthy controls
Mean (p-value = 0.19) 29.67 28.34
Median 28.99 27.62
Range 20.40-51.04 20.28-45.52

p-values were computed using a two tail Student #test at 95% confidence limits assuming equal

variance between groups.
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3.3.2 Validation of LC-MS and direct ESI-MS analytical performance

for osteoarthritis urine metabolomics

The quality of datasets generated from metabolomics analysis is of paramount
importance as it has a direct reflection on the final biological outcome obtained
from the study. Therefore, the use of pooled QC approach was used (Want et al.,
2010, Gika et al., 2007) to assess the quality of the acquired datasets from OA
patients and healthy controls. All samples were analysed in a single LC-MS, FIE-
MS, chip-based infusion and LESA-MS with pooled QC samples being inserted
after each 10 samples in the analysis. Six injections of pooled QC sample were
analysed at the beginning of the run to stabilise the system prior analysis of
clinical urine samples. A representative subset of 54 metabolites ions in the
pooled QC urine sample including those detected in artificial urine (30 in ESI+
and 24 in ESI-), covering a range of retention times (RT) (LC-MS), m/z values
and peak areas were selected to monitor the stability of the LC-MS and direct
ESI-MS analyses. The analytical variability of these metabolites was measured
across the datasets of the pooled QCs injected throughout the runs (n = 15),
discarding the first 6 pooled QC injections used for equilibration. Appendix E
reports the percentage of relative standard deviation (%RSD) of the RT, peak
areas (LC-MS) and peak intensity (direct ESI-MS methods) for the selected
metabolites; a summary of the results are presented in Table 3-4. The mean
RSD% values of the selected metabolites peak areas/counts were 15% (range 7 -
18%), 15% (range 6 - 20%), 16% (range 8 - 25%) and 21% (range 10 - 34%) for
LC-MS, FIE-MS, chip-based infusion and LESA-MS, respectively, and
mean %RSD across LC-MS retention times was 0.52% (range 0.11 — 1.31%).
Adequate mass accuracy for these metabolites was also observed with all methods
with mass error within 5 ppm. Food and Drug Administration (FDA) has
suggested an upper limit of 20% of the RSD% for the analyte response in at least
5 analytical replicates to consider the analytical technique as suitable for
bioanalysis (FDA, 2013). Whereas a 30% of the RSD% is considered adequate for
biomarker discovery (Gika et al., 2007). For LC-MS, retention times variability
within 1% is considered acceptable for metabolomics analysis (Want et al., 2010).
The observed results from LC-MS, FIE-MS and chip-based infusion were within
these acceptable limits. While in LESA-MS a slightly higher level of variability in
the metabolites response was observed. This might be due to the fact that in
LESA-MS analysis another level of variability has been introduced as a result of

sampling different urine spots (i.e. technical variability), which increases the
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overall variability (Kertesz and Van Berkel, 2010), a point already has been
discussed in chapter 2, section 2.3.6. In addition, the quality of the datasets
obtained with LC-MS was assessed using the pooled QC sample. The RSD%
across the mean peak areas of peaks present in at least 80% of the pooled QC
samples was less than 30% for 71% of these peaks, which was lower than the
recommended threshold for metabolomics analysis (Want et al., 2010). These
results indicate satisfactory stability and validate the LC-MS and direct ESI-MS

analytical performance for urine metabolomics.

Table 3-4 Validation summary of LC-MS and direct ESI-MS wurine analyses for
metabolomics profiling of OA patients and healthy controls using selected urine
metabolites peaks from pooled QC sample.

Chip-based
Description LC-MS FIE-MS infusion LESA-MS
1. Peak detection
Total number of peaks 54 54 54 54
Number of peaks detected 54 42 39 40
% of peaks detected 100% 78% 72% 74%
Number of artificial urine metabolites 17 13 13 13
detected
2. Retention time (RT) variability
RT RSD% (mean) 0.52% - - -
RT RSD% (range) 0.11 - 1.31% - - -
3. Peak intensity variability
Peak area/count RSD% (mean) 15% 15% 16% 21%
Peak area/count RSD% (range) 7-18% 6 - 20% 8 - 25% 10 - 34%

Retention time and peak area/count statistics of the selected peaks were calculated from the
analysis of the pooled QC urine sample (n = 15).

3.3.3 OA metabolomics analysis of urine samples using LC-MS and
developed direct ESI-MS methods

Visual examination of LC-MS base peak chromatograms (BPC) of urine samples
showed differences between OA active patients, OA inactive patients and healthy
controls in both positive (Figure 3-4, left side) and negative (Figure 3-4, right
side) ion modes. For example, in Figure 3-4, the marked regions (A) and (B)
show an increased concentration level of the metabolite, m/z 232.0274 (unknown)
and m/z 152.0706 (unknown) in OA active patients compared to OA inactive
patients and healthy controls. While the concentration of creatinine, m/z
112.0515 (ESI-, marked region C) was slightly higher in healthy controls
compared to OA patients. Combined mass spectra generated from the analysis of

OA active patients, OA inactive patients and healthy controls urine samples
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analysed by LC-MS, FIE-MS, chip-based infusion and LESA-MS are presented in
Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8, respectively. Visual
examination of MS spectra showed metabolic profile differences between the OA
active patients, OA inactive patients and healthy controls urine samples analysed
by all methods. For instance in LC-MS, the metabolite ion, m/z 181.0286 (ESI+)
and, m/z 286.2642 (ESI-) showed higher peak counts in the OA active patients
compared to OA inactive patients and healthy controls. Taking all molecular
features into account, most of the detected ions were concentrated in the lower
mass range (m/z 60-300) with all methods in the positive mode, while relatively
higher mass ions were detected in the negative modes. Creatinine, m/z 114.0667
(ESI+) was found to be the most abundant ion in the healthy control urine

sample analysed by all methods which indicates comparable results of the
developed methods with LC-MS.

For a comprehensive modelling of the differences between groups in the study,
datasets generated by LC-MS and direct ESI-MS methods were submitted for
multivariate analysis. The raw datasets obtained from the analysis of OA active
patients (n = 22), OA inactive patients (n = 52) and healthy controls (n = 68) in
a single analytical run with pooled QCs (n = 15) interspaced in the analysis were
submitted for peak picking, peak alignment and normalisation using Progenesis
QI (Nonlinear-Dynamics, 2014). The datasets of LC-MS, FIE-MS, chip-based
infusion and LESA-MS generated 7405, 484, 576 and 743 variables, respectively
(Table 3-5). The normalised datasets were exported to Simca P+14 for
multivariate analysis. Unsupervised principal component analysis (PCA) was
used to give an unbiased overview for any possible trends and groupings within
the samples datasets. PCA score plots showed no separation or clustering trends
between the OA study groups with all MS methods (Figure 3-9). Nonetheless, the
analytical runs demonstrated adequate stability as indicated by sufficient
clustering of the pooled QC samples towards the centre of the PCA score plots
with all methods (Beckmann et al., 2008, Gika et al., 2007). Subsequent
supervised orthogonal partial least square-discriminant analysis (OPLS-DA)
models were constructed to find differences and discrimination between OA
patients and healthy controls. Visual evidence of separation and -clustering
between the OA active patients, OA inactive patients and the healthy controls
were observed with all MS methods as shown in the score plots presented in
Figure 3-10.
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Figure 3-4 LC-MS base peak chromatograms (BPC) of urine samples of OA patients and healthy controls. BPCs showed difference between the
urine profiles of (a-1 and b-1): OA active patients, (a-2 and b-2): OA inactive patients and (a-3 and b-3) healthy controls of urine samples in
positive (a) and negative (b) ion modes, respectively, analysed by LC-MS using BEH HILIC column. A, B and C are selected regions with

obvious differences.
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Figure 3-5 Typical metabolic fingerprints obtained from urine samples of OA patients and healthy controls analysed with LC-MS method.
Combined mass spectra (m/z 60-600) showed difference between the urine profiles of (a-1 and b-1): OA active patients, (a-2 and b-2): OA
inactive patients and (a-3 and b-3) healthy controls of urine samples in positive (a) and negative (b) ion modes, respectively, analysed using

BEH HILIC column.
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Figure 3-6 Typical metabolic fingerprints obtained from urine samples of OA patients and healthy controls analysed with FIE-MS method.
Combined mass spectra (m/z 50-500) showed difference between the urine profiles of (a-1 and b-1): OA active patients, (a-2 and b-2): OA
inactive patients and (a-3 and b-3) healthy controls of urine samples in positive (a) and negative (b) ion modes, respectively.
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Figure 3-7 Typical metabolic fingerprints obtained from urine samples of OA patients and healthy controls analysed with chip-based infusion
MS method. Combined mass spectra (m/z 50-500) showed difference between the urine profiles of (a-1 and b-1): OA active patients, (a-2 and b-
2): OA inactive patients and (a-3 and b-3) healthy controls of urine samples in positive (a) and negative (b) ion modes, respectively.
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Figure 3-8 Typical metabolic fingerprints obtained from urine samples of OA patients and healthy controls analysed with LESA-MS method.
Combined mass spectra (m/z 50-500) showed difference between the urine profiles of (a-1 and b-1): OA active patients, (a-2 and b-2): OA
inactive patients and (a-3 and b-3) healthy controls of urine samples in positive (a) and negative (b) ion modes, respectively.
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Figure 3-9 PCA score plots overview obtained from all OA patients and healthy
controls. Healthy controls (red circles, n = 68), OA active patients (green circles, n =

22), OA inactive patients (yellow circles, n = 52) and pooled QC (dark blue squares, n =

15) analysed by (a) LC-MS (b) FIE-MS, (c) chip-based infusion and (d) LESA-MS.
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Figure 3-10 OPLS-DA score plots of OA patients and healthy controls. Healthy controls
red circles, n = 68), OA active patients (green circles, n = 22), OA inactive patients
yellow circles, n = 52) and pooled QC (dark blue squares, n = 15) analysed by (a) LC-
MS (b) FIE-MS, (c) chip-based infusion and (d) LESA-MS.
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3.3.4 Urine metabolomics study of active and inactive OA

To maximise the difference in classification between OA patients and healthy

controls, successive OPLS-DA models were generated from only two classes from

the study’s samples. Figure 3-11 presents the OPLS-DA score plots of OA
inactive patients (n = 52) and healthy controls (n = 68); whereas, Figure 3-12
presents the OPLS-DA score plots of OA active patients (n = 22) and healthy
controls (n = 68) analysed with LC-MS, FIE-MS, chip-based infusion and LESA-
MS.

OA inactive patients versus healthy controls

Insufficient separation between OA inactive patients and healthy controls was
observed with all methods. These models were evaluated using cross-validation
and permutation test. The OPLS-DA classification models of OA inactive
patients and healthy controls gave satisfactory fitness of the model (R’Y) values
in the range of 0.482 - 0.638, but they showed very poor predictive ability with
Q? values in the range of -0.221 to 0.026, and inadequate permutation test results
(Table 3-5), indicating no significance difference between OA inactive patients

and healthy controls classes.
OA active patients versus healthy controls

On the other hand, complete separation between OA active patients and healthy
controls was observed with datasets from LC-MS analysis, and an improved, but
not sufficient, separation between OA active patients and healthy controls was
observed with all direct ESI-MS methods. These models gave good R’Y and Q?
values with LC-MS (0.913 and 0.347 respectively) than FIE-MS (R*Y= 0.590, Q’
= 0.167), chip-based infusion (R’Y = 0.620, Q* = -0.067) and LESA-MS (R*Y =
0.642, Q* = 0.073) (Table 3-5). All OA active patients and healthy controls
OPLS-DA models gave good fitness of the model but they showed low predictive
ability values which increases the possibility of separation between classes to
model overfitting. The low prediction of these models may be attributed to the
fact that the OPLS-DA models were built with two imbalanced groups in terms
of sample size, i.e. OA active patients (n = 22) and healthy controls (n = 68),
hence, balancing groups size may improve the classification and prediction of the
OPLS-DA models.
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Balancing sample size of OA active patients and healthy controls classes

OPLS-DA model performs best when the datasets are fairly symmetrically
distributed and have a fairly constant “error variance”. Therefore, in case of
having different number of samples in each class, the reference point in OPLS-
DA will not be in the middle of the model and the obtained results might be
misleading for predictions and interpretation (Eriksson et al., 2006b, Bylesjo et
al., 2006). A simple remedy of this problem is to balance the number of samples
in each group, however, it is important to select a smaller set of samples that is
representative of the whole set. The selection of smaller representative set from a
bigger group of samples can be carried out using multivariate design based on
PCA (also known as statistical molecular design) (Linusson et al., 2001,
Gabrielsson et al., 2002). Using multivariate design, a representative set (n = 22)
from the healthy control samples (n = 68) was selected as detailed in the method
section 3.2.7. A subsequent balanced OPLS-DA models were obtained from the
metabolic profiles of the OA active patients (n = 22) and healthy controls (n =
22) using the datasets generated by LC-MS and direct ESI-MS methods as shown
in Figure 3-13. The obtained OPLS-DA models showed a clear separation and
clustering of the OA active patients from the healthy controls with improved
cross-validation R*Y and Q® values for all methods compared to the previous

models with the imbalanced group size (Table 3-5).
Validation of OPLS-DA of OA active patients and healthy controls
Cross-validation

The cross-validation results of the OPLS-DA models of OA active patients and
healthy controls after balancing group size (Table 3-5) indicated adequate fitness
and predictive ability of the models. However, these results give no statement
about the statistical significance of the estimated predictive power of the OPLS-
DA models (Eriksson et al., 2006b). Therefore, further permutation test was
carried out for each OPLS-DA model to test if the generated models were
spurious, i.e. the good predictive ability of the model is not due to data
overfitting. The produced Q’-intercept values of the regression lines of the Y-
permuted Q* values of all OPLS-DA models were less than zero and less than the
Q’ value of the tested model (Table 3-5), indicating reliable predictive power of

the generated models and it is not due to overfitting of the datasets.
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External validation

In addition, a typical validation using prediction models based on randomly
selected 50% training and 50% test sets of OA active patients and healthy
controls datasets was also performed as shown in Table 3-5. The obtained OPLS-
DA prediction models showed satisfactory results with all methods. The
sensitivity and specificity of these generated prediction models were assessed by
calculating area under receiver operating characteristic (ROC) curve (AUC)
using Simca P +14. The value of the AUC of the OPLS-DA models was 0.76,
0.88, 0.79 and 0.86 for LC-MS, FIE-MS, chip-based infusion and LESA-MS,
respectively. A rough guide based on AUC for assessing the clinical utility of a

biomarker is as follows: 0.5-0.6 (fail), 0.6-0.7 (poor), 0.7-0.8 (fair); 0.8-0.9
(good) and 0.9-1.0 (excellent) (Xia et al., 2013). These results validate the
OPLS-DA models of OA active patients and healthy controls for biomarker

discovery. Although few variables were detected by direct ESI-MS compared to
LC-MS, the direct ESI-MS datasets still generated as robust a model as LC-MS.

Table 3-5 Validation of OPLS-DA models of OA active patients and healthy controls

Description LC-MS FIE-MS Chip-based infusion LESA-MS
1. Peak detected
ESI+ 4,405 273 238 291
ESI- 3,000 211 338 452
Total (ESI+ and ESI-) 7,405 484 576 743
2. OPLS-DA of OA inactive patients (n = 52) and healthy controls (n = 68)
R*YY 0.638 0.482 0.548 0.554
2 -0.221 -0.031 -0.071 0.026
Permutation (intercept)* -0.141 -0.255 -0.194 -0.192

3. OPLS-DA of OA active patients and healthy controls
a. Different group size: OA active patients (n = 22), healthy controls (n = 68)
0.620

R*Y 0.913 0.590 0.642
? 0.347 0.167 -0.067 0.073
Permutation (intercept) -0.204 -0.215 -0.233 -0.219
b. Balanced group size: OA active patients (n = 22), healthy controls (n = 22)
RY 0.874 0.975 0.972 0.945
2 0.465 0.562 0.472 0.493
Permutation (intercept) -0.130 -0.401 -0.240 -0.262
External validation: classification (training/test models)
True positive (TP) 7 7 5 9
False positive (FP) 1 2 1 2
True negative (TN) 10 9 10 9
False negative (FN) 4 4 6 2
Sensitivity (%)* 88% 78% 83% 82%
Specificity (%)* 1% 69% 63% 82%
Accuracy (%)* % 73% 68% 82%
Area under receiver operative characteristic (ROC) curve (AUC)
AUC (TPR vs FPR)® 0.76 0.88 0.79 0.86

'The OPLS-DA model is considered robust when the regression line of the permuted Q? values intercept at,
or below zero and less than the Q? value of the model. *Sensitivity is the true positive rate (TPR) calculated
from the formula, TPR = TP/(TP+FP). *Specificity is the true negative rate (TNR) calculated from the
formula, TNR = TN/(TN+FN). *Acuuracy is calculated from the formula, Accuracy (%) =
(TP+TN)/(TP+FP+TN+FN). *AUC: Area under receiver operating characteristic curve, ideal model gives
AUC =1 (Eriksson et al., 2006b, Xia et al., 2013).
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Figure 3-13 OPLS-DA score plots obtained from OA active patients and balanced
healthy controls urine samples. Healthy Controls (red circles, n = 22) and OA active
patients (green circles, n = 22) analysed by (a) LC-MS (b) FIE-MS, (c) chip-based
infusion and (d) LESA-MS.

3.3.5 Tentative identification of potential biomarkers of OA in urine
Selection of potential OA biomarkers

Metabolites responsible for the separation between OA active patients and
healthy controls were selected from the balanced group size OPLS-DA models
(Figure 3-13). Variable importance for the projection (VIP) and loadings plots
were used for the extraction of tentative OA biomarkers with significant
differences between OA active patients and healthy controls urine samples. A
VIP score of a variable above 1.0 is considered important for the model (Yin et
al., 2009). As a result, 2366, 153, 207 and 237 variables were extracted from the
models with LC-MS, FIE-MS, chip-based infusion and LESA-MS, respectively.
Subsequent Student t-test with false discovery rate (FDR) for multiple testing
problem was performed across peaks intensities of OA active patients and

healthy controls datasets using Progenesis QI. Top ions of significant differences

(g-value < 0.05) have been considered as potential biomarkers. As a result, 27, 9,

12 and 12 variables were considered as potential OA biomarkers from the LC-
MS, FIE-MS, chip-based infusion and LESA-MS datasets, respectively.
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Identification of OA biomarkers

The exact mass of the biomarkers was then used to interrogate the Human
Metabolome Database (HMDB) to provide tentative identification of the selected
urine metabolites. Table 3-6 lists the tentative OA biomarkers identified with

LC-MS and direct ESI-MS methods. Considering the limitation of database’s
repositories some metabolites remained unknown, however, they were listed in
the table due to their importance for the study. Most of the metabolites obtained
by FIE-MS were also detected with LC-MS such as L-homoserine, pyruvic acid
and 2-hydroxybutyric acid. However, some urinary metabolites were exclusively
detected with chip-based infusion and/or LESA-MS such as 2-keto-glutaramic
acid, nervonyl carnitine and carbonic acid. Structurally, these metabolites are
small molecular weight polar organic acids or amines (62-145 Da), suggesting
that chip-based infusion and LESA-MS have high sensitivity for such
metabolites. The detection of different ions and metabolites by chip-based
infusion and LESA-MS compared to LC-MS and FIE-MS could be due to the
very different electrospray source configurations and improved sensitivity
observed with nanoESI chip, a point already has been discussed in chapter 2,
section 2.3.7. This may also be due to the higher ion suppression effect of urine
salts in LC-MS as samples were prepared with 3-fold dilution compared to 10-
fold dilution in direct ESI-MS methods. This demonstrated that, chip-based
infusion and LESA-MS could provide complementary information to LC-MS for

metabolomics studies.

Overall direct ESI-MS methods comparison have shown that FIE-MS, chip-based
infusion and LESA-MS detected about 33%, 44% and 44% respectively, of the
LC-MS OA biomarkers. Whereas, the majority of metabolites detected with
direct ESI-MS methods were also found by LC-MS. Thus, LC-MS analysis is the
best option for a comprehensive metabolomics study, while direct ESI-MS
methods with their high-throughput power might provide a quick screening

approach for OA and a potential future diagnostic tool.
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MS method
Metabolite Mass Error Chip-based
MW (Da) g-value® Fold change” Tenative identification HMDB ID Formula (mDa) LC-MS  FIE-MS infusion LESA-MS
60.9926 1.33E-02  2.61 Hydrogen carbonate HMDBO00595 CHO, 0.79 v v
62.0004 4.59E-03  2.43 Carbonic acid HMDBO03538 CH,0, 0.72 vV v
70.0055 447E-02  1.92 Propynoic acid HMDB06804 C3H,0, 0.48 Vv
74.0735 6.25E-04  9.21 Unknown v v
83.0483 4.18E-05  174.65 5-Aminoimidazole HMDB03929 C,H,N, 0.13 v vV
88.0160 1.63E-02  -1.56 Pyruvate HMDB00243 C;H,0,4 0.12 v Vv
91.0029 3.84E-02  -14.78 Unknown v
93.0299 9.76E-03  1.30 Unknown v v
97.9769 5.78E-03  1.78 Phosphoric acid HMDB02142 H,OP 1.26 v v
98.9667 4.59E-03  14.83 Unknown v v
98.9892 3.75E-02  -16.15 Unknown Vv
102.1283 4.53E-02  -4.08 Nervonyl carnitine HMDBO06509 CeH N 1.61 Vv
103.0269 2.71E-02  -1.53 3-Oxoalanine HMDB11602 C,H;NO, 0.12 vV
104.0473 5.06E-03  -1.39 2-Hydroxybutyric acid HMDB00008 C,H,0,4 1.17 v Vv
104.0586 3.59E-03 1.91 2,3-Diaminopropionic acid HMDB02006 C,HN,0, 0.07 v
111.0433 1.14E-02  -1.41 Cytosine HMDB00630 C,H;N,0 0.05 vV
113.8855 2.08E-02 -2.91 Unknown v Vv
119.0582 5.63E-03  -1.29 L-Homoserine HMDBO00719 C,H,NO, 0.09 vV v v
129.0790 3.76E-02  -8.43 Pipecolic acid HMDB00070 C¢H;NO, 0.96 v vV
136.0524 1.12E-03  1.68 Phenylacetic acid HMDBO01326 C:H,0, 0.11 vV
139.9875 1.03E-02  1.32 Acetylphosphate HMDB01494 C,H,O,P 1.76 v vV
140.9505 2.19E-02  1.24 Unknown vv
145.0375 4.59E-03  8.24 2-Keto-glutaramic acid HMDBO01552 C,H,NO, 0.08 v
157.0739 3.81E-03  -2.05 3-Methylcrotonylglycine HMDB00459 C.,H,,NO, 0.34 v
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MS method
Metabolite Mass Error Chip-based
MW (Da) g-value®  Fold change® Tenative identification HMDB ID Formula (mDa) LC-MS FIE-MS  infusion LESA-MS
161.0688 5.46E-03  -1.32 Aminoadipic acid HMDBO00510 C.H;;NO, 0.05 v v v
166.0630 3.29E-02 -3.44 4-Methoxyphenylacetic HMDB02072 C,H,,0, 0.04 Vv
acid
167.0252 5.78E-03  -3.51 Homocysteinesulfinic acid HMDB06462 CcH\NO,S 0.01 v
173.0688 6.51E-04  -1.59 N-Acetyl-L-glutamate 5- HMDB06488  C,H,,NO, 0.01 v v
semialdehyde
174.0892 4.59E-03 1.50 Suberic acid HMDBO00893 C.H,,0, 0.19 v Vv v
197.9929 4.20E-02  5.61 1-Acylglycerone 3- HMDB11750  C,H,O,P 0.85 v v v
phosphate
204.0899 5.78E-03  -1.44 Tryptophan HMDB30396  C,H,N,0, 0.44 v
224.0797 6.85E-03  -2.56 Hydroxykynurenine HMDBO01152  C,,H,,N,0, 0.51 v v v
226.0590 1.01E-02  1.40 3-Nitrotyrosine HMDB01904  C,H,,N,0. 0.17 v v
243.0981 8.19E-03  2.29 Prolyl-Glutamate HMDB29016  C,;H,.N,O; 1.12 v
264.1110 8.57E-03  -1.38 Alpha-N-Phenylacetyl-L- ~ HMDB06344  C,,H,\N,0, 0.68 v
glutamine
379.1049 2.43E-02  1.52 S-Lactoylglutathione HMDB01066  C,H,N,0,S  0.54 v

@ g-value: is the adjusted student’s t-test p-value using false discovery rate (FDR), ® the positive value of fold change means a higher level of metabolite in OA active patients
compared to healthy controls, whereas the negative value represents a lower level of metabolite. The g-value, fold change and mass error were calculated for each metabolite
from its MS dataset generated by the MS method with the highest VIP value (primary MS method). Primary method used for the extraction of each biomarker is highlighted
as (V'v) in the table, whereas (v) symbol in the MS method columns indicates that the biomarker was also detected by that method.
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3.4 Discussion

GC-MS and NMR-based metabolomics have been reported for the measurement
of urinary metabolites to reflect the OA process (Li et al., 2010, Lamers et al.,
2005). However, other metabolomics techniques such HILIC LC-MS, which are
more suited for the analysis of urinary polar and semi-polar metabolites, have not
been applied in OA urinary biomarker research. In addition, the versatility of
using direct ESI mass spectrometric techniques such as chip-based infusion and
LESA-MS with their high-throughput potential, minimum or no sample
preparation step and enhanced ionisation sensitivity (Flangea et al., 2011) have
not been explored yet. Comprehensive understanding of metabolic variations
associated with OA progression would be helpful in finding relevant OA
biomarkers which will assist in the diagnosis and allow proper management of the
disease. Therefore, the main objective of this study was to conclude whether the
urinary metabolomics analysis using HILIC LC-MS or direct ESI-MS methods
could establish an alternative direction for understanding the biological
mechanism behind OA progression and assist in the diagnosis and proper
management of the disease. The observed metabolic changes associated with OA
patients were relatively small; therefore, detailed multivariate analysis was used

to separate the OA patients from the healthy controls.

There were no significant variations observed between the metabolic profiles of
urine samples from OA inactive patients and healthy controls with all MS
methods. This may be due to the fact that the metabolic changes associated with
OA in the asymptomatic stage (inactive stage) are quite small due to slow
progression of the disease over years compared to the acute symptomatic stage of
the disease (active) (Loeuille, 2012a). On the other hand, significant differences
in the urinary metabolomics profile were found between OA active patients and
healthy controls. Urine samples of OA active patients showed significantly
increased levels of metabolites such as propynoic acid, phenylacetate, carbonic
acid, 2-keto-glutaramic acid, 1-acylglycerone 3-phosphate, s-lactoylglutathione, 3-
nitrotyrosine and acetylphosphate when compared with healthy controls. On the
other hand, some metabolites showed significantly decreased levels in OA
patients compared to healthy controls such as pyruvate, 2-hydroxybutyric acid,
L-homoserine, pipecolic acid, 3-methylcrotonylglycine, aminoadipic acid,
tryptophan and alpha-N-phenylacetyl-L-glutamine. The decreased level of
pyruvate, tryptophan and alpha-N-phenylacetyl-l-glutamine in OA was consistent
with previously reported studies (Li et al., 2010, Mickiewicz et al., 2015).
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The identification of metabolites from urinary metabolomics studies of OA
patients enhances our understanding about the possible metabolic changes
associated with OA. For example, increased levels of s-lactoylglutathione,
carbonic acid and acetylphosphate were found in the urine of OA active patients,
which indicating enhanced activity of the pyruvate metabolic pathway and the
tricarboxylic acid (TCA) cycle as a result of the perturbed metabolism in the
cartilage cells. As most of the enzymes involves in the pyruvate metabolism and
TCA, including lactoylglutathione lyase and phosphate acetyltransferase, are
located inside the mitochondrial matrix of the cartilage cells, abnormal urinary
excretion of intermediates of pyruvate metabolism and TCA cycle may provide
metabolic evidence of cartilage cells mitochondrial dysfunction in OA. The
increased activity of the TCA cycle in the mitochondria of the cartilage cells of
the OA patients was previously reported in the literature (Gavriilidis et al., 2013,
Blanco et al., 2004). Li and co-workers, linked the detection of abnormal levels of
TCA substances such as aconitic acid and citric acid in the urine of knee OA
patients to the enhanced activity of the TCA cycle (Li et al., 2010). However,
these metabolites were not detected with LC-MS or direct ESI-MS methods,
which may be attributed to the fact that they used GC-MS for the analysis,
which have different source and MS configurations and hence, different
sensitivity. The finding of increased activity in the pyruvate metabolic pathway
was consistent with the low level of pyruvate found in the urine of OA patients
compared to healthy controls, which indicates that pyruvate was highly

consumed and therefore, lower levels were detected in the urine of OA patients.

Propynioc acid is an intermediate in propanoate metabolism and mitochondrial

fatty acid B-oxidation (the major mitochondrial pathway for the breakdown of
fatty acids (lipolysis) for energy production) (Harvey et al., 2011). The increased
level of urinary propynoic acid in OA patients, as part of a regulatory mechanism
affecting lipids metabolism to maintain certain intermediates for the purpose of
biosynthesis and energy production (Ardawi and Newsholme, 1984), suggested
that lipolysis may play an important role as an alternative source of energy in
cartilage cells of OA patients. This was consistent with previously reported
studies (Li et al., 2010, Damyanovich et al., 1999).

Glycerophospholipids are one of the essential building blocks of cell membrane
lipid bilayers and are intimately involved in regulation of membrane trafficking,
cell signalling and many other membrane-related activities (Berridge and Irvine,

1989, Farooqui et al., 2000). 1-acylglycerone-3-phosphate is a glycerophospholipid
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intermediate in the glycerophospholipids metabolism and ether lipid metabolism
pathways. In the glycerophospholipids metabolic pathway, 1-acylglycerone-3-
phosphate is produced from glycerone phosphate by the action of
glyceronephosphate O-acyltransferase enzyme. It is then converted to 1-acyl-sn-3-
glycercol-phosphate catalysed by 1-acylglycerone phosphate reductase or enters
ether lipid metabolism (Purich and Allison, 1999). The increased levels of 1-
acylglycerone 3-phosphate in OA patients, suggested that glycerophospholipids
metabolism might be altered in OA. Studies reported by Hills, indicated that
alterations in the concentrations and compositions of phospholipids are associated
with the development of OA (Hills, 2002). Kosinska et al., reported a 3.6 fold
increase in the levels of some glycerophospholipids (two lysophosphatidylglycerol
and five phosphatidylglycerol species) in the synovial fluids of late OA patients
compared to healthy controls (Kosinska et al., 2014). Zhang et. al., also reported
a distinct separation and clustering between two OA phenotypes due to
significantly increased levels of glycerophospholipids in synovial fluids between
OA patients subgroups (Zhang et al., 2014b). Our results are quite consistent
with the above findings.

Oxidative stress and inflammation processes are believed to be one of the
primary degenerative mechanisms in the development and progression of OA (De
Ceuninck et al., 2011). Amino acids, the structural building blocks of proteins,
plays an important role in the regulation of these processes. For instance, L-
cysteine is essential for the production of the antioxidant glutathione, which is
thought to help in scavenge the destructive oxygen-free radicals produced during
normal cell metabolism. It also plays an important role in the inflammatory
response by influencing the production of phagocytes in OA (Surapaneni and
Venkataramana, 2007). Under metabolic stress, L-cysteine is produced from
homocysteine and 2-hydroxybutyrate is released as a byproduct. No significant
difference was observed of L-cysteine between OA active patients and healthy
controls, but significantly low level of 2-hydroxybutyrate was found in the urine
of OA patients, which may indicate impaired production of the necessary L-
cysteine in OA. Similarly, abnormal concentrations of urinary amino acids or
their metabolites may provide an evidence of oxidative stress and/or
inflammation in OA patients. Low levels of tryptophan, pipecolic acid and
aminoadipic acid (lysine metabolites), L-homoserine (serine metabolite) and
methylcrotonylglycine (glycine metabolite) were found in the urine of OA
patients compared to healthy controls, signalling the possibility of altered

metabolic pathways and the biological functions of these amino acids in OA.
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Glutamine, an essential amino acid for energy production in connective tissues, is
required by articular cartilage cells as an amino group donor for the biosynthesis
of cartilage collagen (Handley et al., 1980). The increased urinary excretion of 2-
keto-glutaramic acid, a deaminated metabolite of glutamine, in OA patients may
be an indication of the disturbed glutamine metabolism in the chondrocytes and
cartilage cells. Normally, excess glutamine conjugates with active phenyl acetate
(i.e. phenyl acetyl-CoA) to form alpha-phenylacetyl-glutamine and Coenzyme A.
The end product, alpha-phenylacetyl-glutamine is then excreted in urine as a
normal metabolite of glutamine and phenyl acetate (Shockcor et al., 1996),
alternatively under abnormal conditions, glutamine deaminated to form 2-keto-
glutaramic acid. The increased levels of phenyl acetate and 2-keto-glutaramic
acid in addition to the decreased level of alpha-phenylacetyl-glutamine found in
the urine of OA active patients, may give further evidence of the altered
glutamine metabolic pathways in the cartilage cells as illustrated in Figure 3-14.
Altered glutamine level in the urine of knee OA patients was previously reported
in the literature (Li et al., 2010)
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o o [e) [e)
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glutamine 2-keto-glutaramic acid

Figure 3-14 Proposed mechanism of altered glutamine fate in the cartilage cells of OA
active patients compared to healthy controls and the interlink between glutamine and
phenyl acetate during urinary elimination process.
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Peroxynitrite is a potent short-lived oxidant species produced by the cell during
its normal metabolism. The peroxynitrite anion (ONOO") is produced in the
reaction between nitric oxide (NO) and superoxide anion (O2%) radicals. It is a
strong oxidising and nitrating agent, which can cause damage to proteins, DNA
and other cellular structures. Peroxynitrite is believed to be involved in many
pathological conditions such as inflammation, pain, arteriosclerosis,
cardiovascular and neurodegenerative disorders (Pacher et al., 2007). Szabo et al.
summarised the biological and pathological effects of peroxynitrite exposure such
as calcium dysregulation, mitochondrial dysfunction, inhibition of prostaglandin
formation, imbalance of anti-inflammatory mediator pathways and amino acids
nitration (Szabo et al., 2007). 3-Nitrotyrosine is detected in human urine and
plasma by GC-MS and LC-MS and it is strongly believed to be one of the
biomarkers of oxidative damage of peroxynitrite (Tsikas et al., 2012, Gaut et al.,
2002). There was significantly increased level of 3-nitrotyrosine in the urine of
OA patients compared to healthy controls detected by LC-MS and FIE-MS,
which may be an indication of an increased oxidative damage of cartilage cells

due to peroxynitrite.
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3.5 Conclusion

In this chapter, a non-invasive metabolomics study using the developed LC-MS
and direct ESI-MS methods combined with a multivariate analysis was able to
find significant differences between the metabolic profiles of OA patients in the
active stage and healthy controls. This is the first study that used urinary
metabolomics approach to classify OA patients from healthy controls using
HILIC LC-MS, FIE-MS, chip-based infusion and LESA-MS. Moreover, a novel
approach using PCA multivariate design and SUS plot is used to balance the
number of samples in each group in the study for multivariate analysis. The
OPLS-DA models generated from the datasets of OA active patients and healthy
controls, demonstrated good classification of the disease from the healthy controls
with all MS methods. Considering the high-throughput of the direct ESI-MS;
FIE-MS, chip-based infusion and LESA-MS were able to provide 33%, 44% and
44% respectively, of the LC-MS information, indicating their great potential of
diagnostic application in OA, while LC-MS is necessary when comprehensive
biomarker screening is required. The biological interpretation of the metabolites
associated with the separation in the OPLS-DA models, revealed an increased
activity in TCA cycle and pyruvate metabolism, which supports the previously
reported literature of mitochondrial dysfunction in the cartilage cells of OA
patients. In addition, an increased activity in the P-oxidation pathway may
provide an evidence of the use of lipolysis as an alternative source of energy in
the chondrocytes and cartilage cells in OA. Also, altered levels of
glycerophospholipids and amino acids metabolites were found in the urine of OA
patients compared to healthy controls, indicating perturbed metabolism of these
biomolecules which can be linked to inflammation, oxidative stress and collagen

destruction.
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4. A case Study Based in Ethiopia to Investigate the Effect
of Malaria on Urinary Metabolic Profiles and for

Biomarker Discovery

4.1 Introduction

4.1.1 Malaria: a global health and economic burden

Malaria is an infectious disease caused by parasite species belonging to the genus
Plasmodium. Four of these species: P. falciparum, P. vivax, P. malariae and P.
ovale are known to cause malaria in human, which is transmitted from one
person to another by the bite of female Anopheles mosquitoes. There are more
than 400 Anopheles species worldwide, but only 30 of these are vectors of major
importance (Jain et al., 2014). Malaria is endemic in 104 tropical and subtropical
countries, in which the causative agent, P. falciparum is the most virulent among
Plasmodium species, and the most common cause of death from malaria in Africa
(Gething et al., 2011). P. vivax has a wider geographic distribution worldwide,

but its risk of infection is lower than P. falciparum due to lack of a specific gene

known as the “Duffy” gene in many African populations, which helps in the
production of an essential protein for the parasite to invade human red blood
cells (RBCs) (Barnwell et al., 1989). The proportion of malaria infection due to
P. malariae and P. ovale is very low compared to P. falciparum and P. vivax
worldwide, but populations at risk of being infected with P. malariae are
distributed over a wide geographic area including sub-Saharan Africa, South-East
Asia, Amazonian Basin and Western Pacific islands (Collins and Jeffery, 2007).
P. ovale is distributed mainly in Africa and Asia-Pacific regions; however, its
prevalence is deemed to be lower than P. malariae (Sutherland et al., 2010). In
2008, some cases of malaria have been reported in certain forested areas of
southeast Asia due P. knowlesi, a causative species of malaria in monkeys (Cox-
Singh et al., 2008).

The World Malaria Report released by World Health Organisation (WHO)
estimated that 3.3 billion people (half of the world’s population) are at risk of
being infected with malaria, and 1.2 billion at high risk in 2013 (WHO, 2014).
Figure 4-1 presents the WHO recent estimate of the number and percentage of

people who live at risk of being infected with malaria worldwide. The highest
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disease burden is in the African continent, where an estimated 85% of the
population are at risk of being infected with malaria, with 69% of them
considered to be at high risk. Globally, 198 million cases with mortality of about
584,000 people attributed to malaria have been reported in the year 2013. In
Africa only, an estimate of 90% of the mortality occurred, and 78% of all deaths
were children under the age of 5 years. The estimated global annual cost to
attain malaria control and elimination is $5.1 billion, however a maximum
funding of 53% ($2.7 billion) was achieved in 2013, which represents three times
the amount spent in the year 2005. Although there are continuous international
efforts to increase the available fund for malaria control and elimination, the
total expected annual amount by 2020 would still fall short of the estimated
value to achieve international targets (WHO, 2014). This indicates that the fight

against malaria is still one of the unresolved economic burdens on the globe.
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Figure 4-1 Estimated global number and percentage of people at risk of being infected
with malaria in the year 2013. This data was reproduced from World Malaria report
2014 (WHO, 2014).
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4.1.2 The life cycle of Plasmodium and symptoms of malaria

The life cycle of Plasmodium parasite is quite complex (Figure 4-2), which
involves two hosts: a mosquito vector (sexual cyde) and a wertelrate host
(asexual cycle). Sexual development of the parasite (the sporogonic cycle) takes
place in the midgut wall of a female Anopheles mosquito, where the sexual
gametocytes fuse and develop to from the human infective stage “the sporozoite”.
The infected-malaria mosquito inoculates sporozoites into the wertebrate host
(e.g. human) during a blood meal, where the asexual cycle of the parasite starts.
In the human host, sporozoites migrate and infect hepatocytes amd mature into
hypnozoites (exo-erythrocytic cycle) and then undergo asexual multipication in
the red blood cells (erythrocytic cycle). At a certain point, some parasites during
the erythrocytic stage start to differentiate into sexual gametocyties. During the
bite of a female Anopheles mosquito, gametocytes transfer into the stomach of
the mosquito where the sexual life cycle of the parasite begins again (Pain and
Hertz-Fowler, 2009).

Mosquito Stages

Figure 4-2 Diagram of the plasmodium’s life cycle showing the sexual and the asexual
development stages of the parasite (Griffith et al., 2007).
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The blood stage of the parasite is responsible for the clinical manifestations of
malaria. Human infection with Plasmodium parasites affects all age groups, and
patients present with a wide variety of clinical symptoms, ranging from
asymptomatic or very mild to severe symptoms and even death. Typical
uncomplicated malaria symptoms include recurrent episodes of high fever, chills
and rigors. The frequency of the recurrence of the fever is 48 h in P. falciparum,
P. ovale, or P. vivax, 72 h in P. malariae and 24 h in P. knowlesi infections. The
liver stage of the P. vivax parasite (the hypnozoites) can stay dormant in the
hepatocytes and may cause disease recurrence (CDC, 2015). The underlying
mechanisms of infection severity outcomes remain poorly understood, however, in
severe infection with P. falciparum, the infected erythrocytes were reported to
exhibit sequestration in the blood vessels (CDC, 2015, Dondorp et al., 2004).
This sequestration of the infected erythrocytes in turns affects the blood flow in
the microvasculature of different tissues and organs such as liver, kidneys, brain,
intestines, heart, adipose tissue and eyes (Dondorp et al., 2000, MacPherson et
al., 1985), and increases the possibility of a localised metabolic stress. Patients
with severe malaria may exhibit a variety of severe clinical manifestations
possibly through inflammatory immune responses, including vital organs failure
(e.g. liver, kidney), abnormalities in blood coagulation, severe anaemia,
hypoglycaemia, acidosis, cerebral malaria, respiratory distress and coma, which
are the common causes of death from malaria (Lakshmanan et al., 2011, Haldar
et al., 2007, Planche and Krishna, 2006, Trampuz et al., 2003). The process of
transition from one clinical disease stage into another is still not fully understood
and till present there are no reliable predictors available. However, drastic
metabolic changes in the host are associated with the different manifestations of
the disease (Basant et al., 2010). The study of metabolites from different tissues
and body fluids during malaria progression may provide invaluable information
that can be used to investigate the perturbed metabolic pathways in the host as

a response to Plasmodium infection.
4.1.3 Diagnosis and treatment of malaria

Microscopy has been used for the diagnosis of malaria since 1904 when Gustav
Giemsa detected the erythrocyte stage of the Plasmodium parasite from a thin
film of blood from a malaria patient stained with a mixture of methylene blue,
azure B (trimethylthionine) and eosin (the stain mixture also known as Giemsa’s

solution) (Giemsa, 1904). Although microscopy is considered as the “gold

standard” for the diagnosis of malaria, the method is time-consuming, requires
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intensive labour, invasive procedures and expert skills. Recent scientific reports
revealed that there are more sensitive and specific techniques than microscopy for
the diagnosis of malaria (Goncalves et al., 2012, Jain et al., 2014). These
techniques include polymerase chain reaction (PCR) (Morassin et al., 2002),
nested PCR (Li et al., 2014), loop-mediated isothermal amplification (Lau et al.,
2011), flow cytometry (Malleret et al., 2011), laser desorption mass spectrometry
(Demirev et al., 2002) and enzyme-linked immunosorbent assay (Martin et al.,
2009). However, most of these techniques are either more expensive than
microscopy, require high labour skills, not field deployable, or prone to false
results and cross-contamination. Therefore, they are not widespread and their use

is limited to research settings and blood bank screening.

Apart from microscopy and the above-mentioned techniques, rapid diagnostic
tests (RDTs) are also available as dipsticks for quick diagnosis of malaria
(Bjorkman and Martensson, 2010, Jain et al., 2014). RDTs are
immunochromatographic diagnostic tests (ICTs), and they are used for diagnosis
of malaria based on parasite specific antigen-antibody interactions and enzymatic
assays from a peripheral blood sample from malaria patients. They mainly target
plasmodial lactate dehydrogenase (pLDH), histidine-rich protein II (HRP II) and
aldolase for the diagnosis of P. falciparum and P. vivax infections (Tjitra et al.,
1999, Eisen and Saul, 2000). Nonetheless, they demonstrated very poor
sensitivity for P. ovale and P. malariae infections (Maltha et al., 2010). Despite
the fact that ICTs are widely used as quick, portable and cheap diagnostic tools
for malaria and can be used by semi-skilled workers in rural settings; they suffer
from certain limitations such as high variability, false positive/negative results,
and loss of activity notably in tropical areas (Jorgensen et al., 2006). The loss of
activity is mainly attributed to the denaturation of antibodies or nitrocellulose
membrane damage as a result of high temperature and humidity (Chiodini et al.,
2007).

Advanced biosensor techniques including electrochemical immunosensor (Sharma
et al., 2008), piezoelectric biosensors (Sharma et al., 2011) and optical biosensors
(Piper et al., 1999) are also reported for the diagnosis of malaria. A biosensor is a
self-integrated device that is capable of measuring a specific biological entity
using a bio-recognition element such as an enzyme, an aptamer (a single-stranded
DNA or RNA) or an antibody, which is maintained in spatial contact with a
transduction element (Eggins, 2008). In general, biosensors provide a quick,
sensitive and selective determination of bio-molecules of clinical importance,

however, the available biosensors for the diagnosis of malaria are mainly limited
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for the detection of the parasite’s pLDH (Lee et al., 2012) and HRP II (Piper et
al., 1999). These biosensors are still in nascent stages and they mainly use
antibodies and aptamers as bio-recognition elements, hence, the loss of activity
due to denaturation of antibodies and nucleic acids is still a limiting factor in hot

climates.

Malaria is a curable disease if diagnosed early and there are different
chemotherapeutic agents available for the treatment of malaria. However, drug
resistance has drastically increased in recent years especially for P. falciparum
infections (Katzung et al., 2012). Drug resistance has developed against
chloroquine and sulphadoxine-pyrimethamine combinations, the most widely used
therapies to treat malaria (Ridley, 2003). Other drugs such as mefloquine and
halofantrine are quite effective against resistant P. falciparum infections.
Nevertheless, mefloquine may cause serious neuropsychiatric adverse effects such
as unusual behaviour, hallucinations, depression, anxiety and suicidal ideations,
whereas halofantrine can be associated with cardiac arrhythmias at therapeutic
dosages. Therefore, certain measures should be considered to determine the
risk/benefit ratio of administering those drugs (Katzung et al., 2012). For such
reasons, the World Health Organisation (WHO) recommends artemisinin-based
combination therapies (ACTs) as the new international standard for treatment of
malaria (WHO, 2015b). ACTs should be followed by primaquine to eradicate the
liver form in P. vivax and P. ovale infections, while in case of severe P.
falciparum infection, intravenous quinine, quinidine or artesunate is

recommended as an alternative therapy for comatose patients (Katzung et al.,
2012).

The misdiagnosis or over-diagnosis of malaria remains another caveat; it is often
in endemic areas that malaria is misdiagnosed or over-diagnosed leading to
mismanagement of malarial or non-malarial fevers and over-prescription of
malaria treatment (Nankabirwa et al., 2009). The most important factors that
have a direct contribution to this are the unfamiliarity of the microscopic
diagnostic procedure in rural settings and the inherent lower sensitivity of the
technique (Hanscheid, 2003). Therefore, there is an urgent need to develop new
diagnostic techniques which are accurate, non-invasive, simple to use and
comparatively rapid. RDTs and biosensors research holds the promise of
providing a robust, stable and field-deployable device for the diagnosis of malaria
due to their quick detection capability and portable nature. However, in order to

develop an efficient and stable RDTs or biosensors to attain the desired target in
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the diagnosis and treatment of malaria, surrogate biomarkers of malaria need to
be exploited further. This requires a profound understanding of the physiological
and metabolic processes of the parasite and the host during the course of the
infection, and, therefore, a biomarker discovery approach is important to reach

such goals.

4.1.4 Metabolomics and malaria: the current role in understanding

the host response and parasite biology

Different metabolomics studies have been reported in the literature to identify
biomarkers of Plasmodium infections using NMR, GC-MS or LC-MS. Table 4-1
summarises a selected set of reported metabolites that have been shown a
significant difference between Plasmodium-infected RBCs, animal models or

patients and healthy controls.
4.1.4.1 In vitro studies

In vitro, parasite infected RBCs have been extensively used to study Plasmodium
spp. metabolome against non-infected RBCs (Sana et al., 2013, Mehta et al.,
2005, Olszewski et al., 2009). Teng et al., identified more than 40 parasite-specific
intracellular metabolites from P. falciparum-infected RBCs using 'H-NMR based
untargeted approach (Teng et al., 2009). Similarly, Lian et al., studied the P.
falciparum growth in an oxygen-limited environment using "“C-labelled precursor
which showed that infected RBCs produced glycerol and glycerol-3-phosphate as
major glucose metabolites (Lian et al., 2009). This unexpected result uncovered
an important aspect of parasite biology as glycolysis was believed to be the only
energy source for the parasite in which glucose is incompletely oxidized to lactic
acid and excreted (Mehta et al., 2006, Olszewski and Llinas, 2011).

LC-MS/MS targeted analysis was used to investigate the host-parasite
interactions using P. falciparum-infected RBCs (Olszewski et al., 2009). In this
study, arginine was found to be converted into ornithine by parasite arginase
enzyme, indicating a presence of a potential link between parasite-induced
arginine depletion and cerebral malaria pathogenesis. Using targeted
metabolomics profiling of infected RBCs, central carbon metabolism (Olszewski
and Llinas, 2011), mitochondrial metabolism (MacRae et al.,, 2013),
mitochondrial redox balance (Storm et al., 2014), tricarboxylic acid (TCA) cycle,
sphingolipid and fatty acid metabolism (Sana et al., 2013), isoprenoid pathway
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(Couto et al., 1999) and carotenoid biosynthesis (Tonhosolo et al., 2009) of P.

falciparum have also been explored.
4.1.4.2 In vivo animal model studies

The study of the host-parasite responses can provide invaluable information
which may help in understanding the parasite biology, disease prognosis and
possible alternative drug targets as there is a constant complex interplay of
metabolites between the parasite and the host. The dynamic nature of the host-
parasite interactions during the course of infection may perturb the biochemical
profiles of both, the parasite and the host. For such a dual system, it is quite
challenging to profile individual metabolomes; however, this co-metabolome can
be quite informative if a healthy host is available as a baseline for metabolomics
comparisons. For instance, urine and plasma samples of P. berghei-infected mice
were compared with healthy controls using "H-NMR; as a result increased levels
of urinary pipecolic acid, phenyl acetylglycine and dimethylamine were observed,
indicating a gut microbial community disturbance caused by the parasite (Li et
al., 2008). Similarly, Basant et al., studied the metabolic alterations during
disease progression in urine, serum and brain samples from P. berghei-infected
mice using '"H-NMR (Basant et al., 2010). The altered levels of these metabolites
(Table 4-1) were correlated with sexual dimorphism and were suggested to affect

the prognosis and the treatment of malaria.
4.1.4.3 In vivo human studies

Few studies have been reported for clinical metabolomics of malaria
(Lakshmanan et al., 2012, Sengupta et al., 2011b, Sengupta et al., 2015).
Sengupta and co-workers, delineated the urinary metabolic profile of P. vivax
infection using '"H-NMR; altered levels of different metabolites were observed
including pipecolic acid, ornithine, acetate and phenylpyruvate, indicating a
perturbed urea cycle and impaired liver functions (Sengupta et al., 2011b). Few
years later, the same group compared the urinary profile of P. vivax-infected
patients with viral fever patients to healthy controls (Sengupta et al., 2015).
Altered urinary levels of taurine, glycine, hippurate, citrate, alanine and 3-
methylhistidine were observed in malaria patients compared to healthy controls.
While, taurine and hippuric acid were significantly elevated in malaria compared
to viral fever patients, and they were correlated to parasitemia levels in malaria,

hence, they have been suggested to gauge anaemia status in malaria.
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These metabolites are quite promising for prognosis of malaria and they could be
further validated for clinical diagnosis. However, they were obtained from in vitro
infected RBCs, rodent models or clinical samples of the less virulent parasite, P.
vivax (i.e. it is not common in Africa where the disease global burden is the
heaviest). In addition, the majority of these studies used NMR for metabolomics
analysis which is known to be less sensitive than high resolution mass spectrometry
(HRMS) (Dettmer et al., 2007). Therefore, more clinical metabolomics studies are
still needed to find surrogate biomarkers for the most known virulent malaria
parasite, P. falciparum. To date, the use of HILIC LC-MS and FIE-MS for clinical
P. falciparum infections has not been explored yet. The application of these
methodologies could enhance our understanding of host-parasite metabolic responses
during the course of infection and foster efforts towards finding surrogate biomarkers

or drug targets for the rapid clinical diagnosis or treatment of malaria.

Table 4-1 Selected list of reported metabolites as potential biomarkers for Plasmodium
infections

Reference Species/method Sample type Metabolites

(Basant et al., 2010) P. berghei, NMR ~ Brain extract, mice  2-Hydroxy-2-methylbutyrate
Glycerol

Serum, mice Alanine
Kynurenic acid
Lactate
Lysine
Quinolinic acid
Urine, mice Ureidopropionate
Asparagine
Carnitine
Dimethyl-glycine
(Lakshmanan et al., 2012)  P. falciparum, Plasma, Infected 3-Hexenal
LC-MS RBCs Hypoxanthine
Methyl jasmonate
Oxononadienal
Taurine
Traumatic acid
Traumatin
(Li et al., 2008) P. berghei, NMR.  Plasma, mice Creatine
Glucose
Gluycerophoshoryl choline
Lactate
Pyruvate
Urine, mice Dimethyl amine
Pipecolic acid
(Lian et al., 2009) P. falciparum, Infected RBCs Alanine
NMR Glycerol
Glycerol-3-phosphate
(Lian et al., 2009) P. falciparum, Infected RBCs Lactate
NMR Pyruvate

(Mehta et al., 2006) P. falciparum, Infected RBCs Lactate
NMR
(Olszewski et al., 2009) P. falciparum, Infected RBCs Arginine
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Reference Species/method Sample type Metabolites
NMR, LC-MS and Ornithine
GC-MS
(Sana et al., 2013) P. falciparum, Infected RBCs 2-Oxoglutarate
LC-MS and GC- Adenine
MS Adenosine mono- & di-
phosphate
Arginine
Citrulline
D-Myo-inositol 1,4-
bisphosphate
Fumarate

(Sengupta et al., 2015)

(Sengupta et al., 2011b)

(Teng et al., 2009)

(Tritten et al., 2013)

P. vivax, NMR Urine

P. vivax, NMR Urine

P. falciparum,
NMR, LC-MS and
GC-MS

P. berghei , NMR  Urine/mice

Infected RBCs

Guanosine diphosphofucose
Inositol phosphate
Ornithine
S-Succinyl dihydrolipoamide
Succinate
3-Methyl-histidine
Alanine

Citrate

Glycine

Hippurate

Taurine
3-Hydroxybutyrate
Acetate

Alanine

Butyrate

Creatine
Hippurate
N-Acetylglutamine
Ornithine
Phenylalanine
Phenylpyruvate
Phosphocreatine
Pipecolic acid
Salicyluric acid
Tyrosine

Arginine
Aspartate
Glutamate

Lysine
Phosphocholine
Phosphoethanolamine
Pipecolic acid
Unknown 1
Unknown 2

Unknown 1 and Unknown 2 were structurally elucidated using UPLC-TOF-MS/MS and LC-NMR/TOF-MS as 4-
amino-1-[3-hydroxy-5-(hydroxymethyl)-2,3-dihydrofuran-2-yl]pyrimidin-2(1H)-one, and 2-amino-4-(—[5-(4-amino-2-
oxopyrimidin-1(2H)-yl)-4-hydroxy-4,5-dihydrofuran-2-ylmethyl sulfanyl)butanoic acid, respectively (Tritten et al.,

2013).
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4.1.5 Aims and objectives

The aim of this chapter is to use the high resolution mass spectrometry methods
developed in the previous chapters to identify potential urinary biomarkers of
malaria (Plasmodium falciparum). The specific objectives required to fulfil this

aim are as follows:

e To plan and establish the collections of urine samples from healthy
volunteers and malaria patients in a clinical setting where malaria is
endemic (Ethiopia)

e To investigate urinary profiles of malaria patients and healthy controls
using LC-MS and FIE-MS methods.

e To identify urinary biomarkers, which can differentiate between malaria

patients and healthy controls.

e To confirm the identity of some tentatively identified urinary biomarkers
of malaria using LC-MS/MS.
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4.2 Materials and experimental

4.2.1 Materials and reagents

Ultra-pure LC-MS grade ammonium acetate was supplied from Fluka, Sigma-
Aldrich, Netherland. Water (VWR international, EC), formic acid, 0.1% formic
acid in water (Sigma-Aldrich, Germany), leucine enkephalin, acetonitrile and
methanol (Fisher Scientific, UK) are MS grade and minimum handlings were
performed to minimise any possible contamination. Artificial urine was prepared
using chemicals supplied from different sources as detailed elsewhere (chapter 2,
table 2-2). L-Threonine (Acros Organics, USA), urea (Aldrich-Chemie, Germany)
and creatinine (Alfa Aesar, UK) are either HPLC or MS grade. Taurine, succinic

acid, Uridine and inosine were purchased from Sigma-Aldrich, Germany.
4.2.2 LC-MS analysis

Chromatography was performed using Accela UHPLC system (Thermo Fisher,
USA) on BEH HILIC column (2.1 x 100 mm, 1.7 pm particle size, Waters, USA)

as detailed previously in chapter 2, section 2.2.3. Orbital trap mass spectrometer
(Exactive-Orbitrap, Thermo Fisher Scientific, USA) was used in simultaneous
ESI+ and ESI- modes for LC-MS. The operational parameters were: spray
voltage 3.2 kV (ESI+), 2.4 kV (ESI-), capillary voltage 25 V (ESI+), -27 V
(ESI), sheath, auxiliary and sweep gas flow rate were: 20, 5 and 5 (arbitrary
unit), respectively, for both modes. Capillary and heater temperature were
maintained at 350 and 120 ° C, respectively. Data were acquired in full scan mode
with resolution 25,000 from m/z 60-1000 with 4 Hz scan rate.

4.2.3 FIE-MS analysis

Flow injection ESI-MS (FIE-MS) analysis used the above LC system to inject 10

uL. of the sample as detailed in chapter 2, section 2.2.4. The same mass
spectrometer was used for FIE-MS analysis with the following parameters: spray
voltage 1.5 kV (ESI+), 1.8 kV (ESI-), capillary voltage 25 V (ESI+), -40 V
(ESI-), sheath, auxiliary and sweep gas flow rates were: 50, 5 and 5 (arbitrary
unit) (ESI+/-), respectively. Capillary and heater temperature were maintained
at 250 and 120 °C, respectively, in both modes. Data were acquired in full scan
mode with resolution 25,000 from m/z 50-1000 with 4 Hz scan rate.
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4.2.4 LC-MS/MS analysis

The identity of some urinary metabolites was confirmed wusing liquid
chromatography-tandem mass spectrometry (LC-MS/MS). LTQ Velos mass
spectrometer equipped with Accela UHPLC system (Thermo Fischer Scientific,
USA) was used for LC-MS/MS analysis. The LC and MS conditions were the
same as those described in section 4.2.2. Tentative biomarkers of malaria from
orbital trap LC-MS and FIE-MS analyses and their expected retention times
were used to generate parent ions list of the analytes for LC-MS/MS. Product

ions were detected over a scanning range of m/z 50-1000. The MS/MS (MS2)
analysis carried out using data global mass list scanning mode with 35 eV
collision energy and helium was used as the collision gas. Metabolite

identification was confirmed by comparison with pure authentic standards.
4.2.5 Urine samples collection, transport and storage

The study was undertaken by Dr Wakagri Deressa (School of Public Health,
Adis Ababa University, Ethiopia), Dr Andrew Fogarty (School of Medicine,
University of Nottingham, UK), Prof Gail Davey (Brighton and Sussex Medical
School, UK) and Prof David Barrett (School of Pharmacy, University of
Nottingham, UK). Ethical approval has been received to conduct the research
from the Ethiopian Ministry of Science and Technology, the Institutional Review
Board of the College of Health Sciences, Addis Ababa University and University
of Nottingham Ethics Committees. 21 Malaria patients (17 male and 4 female)
and 25 healthy volunteers (20 male and 5 female) from Ethiopia were enrolled
with consent in this study. Four sets of mid-stream urine samples were collected
in Ethiopia, Addis Ababa during September-October 2013: control samples from
healthy volunteers (C1), a 2™ round collection after 4 weeks (C2), samples from
malaria patients infected with P. falciparum (PF1) and a 2™ collection after 4
weeks (PF2). The subjects were classified as healthy or infected with P.
falciparum using microscopy. All urine samples were collected in urinary
collection vessels without the use of preservatives and kept at -20° C. After
transport to UK, samples were aliquoted into cryotubes (6x1.0 mL) and stored in
-80 ° C freezer. During the MS analysis the researcher involved was blinded to the

study.
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4.2.6 Dipstick urinalysis

Simple urinalysis was performed on urine samples in the study using reagent
strips for urinalysis (SureScreen Diagnostics, UK) to detect presence of possible
RBCs and measure urinary pH, glucose, nitrite, urobilinogen, proteins, specific
gravity, ketones and bilirubin. Reagent strip was dipped in each thawed urine

sample for few seconds and then reading was taken after 1 min.
4.2.7 Preparation of urine samples and authentic standards

Thawed urine samples of malaria patients and healthy controls were prepared
with the optimised urine dilution protocol for LC-MS and direct ESI-MS analyses
as described in chapter 2, section 2.2.7. For metabolomics analysis, a pooled QC
sample was prepared by mixing 20 pL aliquots taken from each urine sample in
the study and was treated the same as described for the samples. Artificial urine

was prepared as described in chapter 2, section 2.2.6. Authentic standards for

LC-MS/MS were prepared in the concentration range of 23 - 68 pg/mL in MS

grade water.
4.2.8 LC-MS and FIE-MS metabolomics analysis

Urine samples from malaria patients and healthy controls were randomised and
analysed in a single analytical run using simultaneous positive and negative ion
modes with LC-MS and FIE-MS. Six injections of pooled QC sample were
analysed at the beginning of the run to equilibrate the column (LC-MS) prior the
analysis. Pooled QC and artificial urine sample were interspaced throughout the
run to check the stability, robustness, repeatability and performance of the
analytical system. Leucine enkephalin, m/z 556.2771 (ESI+), 554.2615 (ESI-) was

spiked in every sample (0.2 pg/mL) to monitor mass accuracy within each run.

Blanks were injected after each sample in FIE-MS analysis to minimise the

carryover effect, if any.
4.2.9 Data analysis and metabolite identification

The raw data for LC-MS and FIE-MS were acquired and visualised with Xcalibur
v2.1 software (Thermo Scientific, USA). The performance of the analytical
methods was validated by monitoring a representative set of urine metabolites in
the pooled quality QC as detailed previously in chapter 3, section 3.2.7. In

addition, the quality of the datasets obtained was assessed using methodology
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proposed by Want et al., (Want et al., 2010) for LC-MS, and Beckmann et al.,
(Beckmann et al., 2008) for FIE-MS analysis, as detailed in chapter 2, section
2.2.11.

For metabolomics analysis, full datasets from malaria patients and healthy
controls from both methods were imported and pre-processed by Progenesis QI
software. Pre-processing steps include: peak picking, peak alignments,
normalisation and transformation as previously detailed in chapter 2, section
2.2.11. Automatic deconvolution of the extracted m/z variables was carried out
using Progenesis QI to remove isotopes, adducts, and other confounding peaks
resulting from MS detection. Multivariate data analysis using Principal
component analysis (PCA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA) were used to investigate metabolic changes between all
groups datasets using Simca P +14 (Umetrics AB, Sweden). OPLS-DA models
based on the datasets from malaria patients and healthy controls were validated
using cross-validation and permutation test. Successive external validation using
a prediction method based on randomly selected training (50%) and test sets
(50%) of samples were performed. The specificity and selectivity of the prediction
models were tested using area under the ROC (receiver operating characteristic)
curve (AUC). The ions responsible for the class separation in the OPLS-DA
models of malaria patients (PF1) and healthy controls (C1) were selected using

Variable Importance for the Projection (VIP) and variables loadings plots.
Student’s t-test was performed to test the significant difference of the selected
ions between the two groups. Prior to Student’s t-test, ArcSinh transformation

(Jones, 2008) was applied to restore normality. The p-values of the Student’s t-
test were adjusted using false discovery rate (FDR) for multiple testing problem
(Figure 4-3). Tentative identification of malaria biomarkers was achieved by
interrogating the Human Metabolome Database (HMDB), for possible
identification based on accurate mass measurements within 5 ppm mass error
(Wishart et al., 2013). In-house urine metabolite database (built using the same
LC-MS described in this study) was also used for identification based on accurate
mass determination and retention times. Confirmation of some biomarker
identities was performed by means of tandem mass spectrometry as detailed in
section 4.2.4, using pooled QC sample. The MS/MS spectra of the possible
metabolites were compared with MS/MS spectra obtained from authentic

standards.
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Figure 4-3 Workflow of the selection of potential urinary biomarkers of malaria. Parallel
multivariate and univariate analyses were performed to extract the mmetabolites with
significant difference between malaria patients and healthy controls. FDR: false
discovery rate, g-value: adjusted p-value using FDR.
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4.3 Results

4.3.1 Assessment of urine quality for metabolomics study

Visual examination of urine samples of malaria patients and healthy participants
showed that some of the urine samples had turned slightly red in colour.
Therefore, in order to check the quality of the urine after transportation, and to
determine possible confounding factors that may contribute in the classification
of the study groups, urinalysis using simple dipstick was performed. The analysis
was carried out to check for possible RBCs that may contribute to the observed
red colour in urine and to estimate urinary pH, glucose, nitrite, urobilinogen,
proteins, specific gravity, ketones and bilirubin. Table 4-2 presents the results of

urinalysis performed on all urine samples in the study.

Table 4-2 Urinalysis dipstick test of malaria patients and healthy controls

Number of urine samples

Urinalysis strip test PF1 (n=21) PF2 (n=20) C1 (n=25) C2 (n=22)
1. Blood

Normal (<3 RBCs/pL) 17 19 23 29
Trace Haemolysis (>3 RBCs/uL) 4 1 2 0
2. pH

6.0 (slightly acidic) 18 12 24 19
7.0 (Neutral) 3 2

above 7.0 (basic) 0 6 1 1
Normal (5-9) 21 20 25 22
3. Glucose

Normal (< 100 mg/dL) 20 20 23 20
Abnormal (> 100 mg/dL) 1 0 2 2
4. Nitrite

Normal 21 20 25 22
Abnormal 0 0 0 0
5. Proteins

Negative (< 0.2g/L) 21 20 25 22
Positive (> 0.2g/L) 0 0 0 0
6. specific gravity

Normal (1.001-1.035) 21 20 25 22
Abnormal (<1.001 and >1.035) 0 0 0 0
7. Ketones

Negative (normal) 19 20 25 22
Positive 2 0 0 0
8. Bilirubin

Negative (normal) 21 20 24 21
Positive 0 0 1 1
9. Urobilinogen

Normal (0.1-2.0 mg/dL) 20 20 24 22
Abnormal (> 2.0mg/dL) 1 0 1 0

PF1: urine samples collected from malaria patients in the beginning, PF2: urine samples collected from
malaria patients after 4 weeks, C1: urine samples collected from healthy controls at the beginning, C2:
urine samples of healthy controls collected after 4 weeks.



135

All urine samples showed either zero or only trace amount of RBCs, nitrite,
proteins, ketones bilirubin and urobilinogen; the pH and specific gravity of urine
samples were within the normal range (Mundt and Shanahan, 2010). This
indicates that the red colour observed in some samples was not due to
haematuria (i.e. presence of RBCs in urine) and the transportation of the
samples did not affect the quality of the urine samples in the study for
metabolomics analysis. Cross group examination showed similar ranges of all
tests, indicating adequate matching of study groups for metabolomics analysis
and therefore, the possible classification would not be as a result of any
confounding effects associated with the presence of these metabolites or cells in

the samples.
4.3.2 Validation of LC-MS and FIE-MS performance

The analytical performance of LC-MS and FIE-MS for metabolomics analysis was
evaluated using pooled quality control (QC) samples. All samples were analysed
in a single LC-MS and FIE-MS with pooled QC samples being inserted after each
10 samples in the analysis. In the pooled QC samples datasets the mean RSD%
values of selected urine metabolites peak areas (LC-MS) and peak counts (FIE-
MS) were 4.6 % (range: 0.1 - 12.1%) and 10.9% (range: 3.8 - 23.3%), respectively.
LC-MS retention time shifts were less than 0.06 min (£ 1% RSDs) and mass
accuracy shift was less than 5 ppm in both positive and negative ion modes (for
detailed list of the selected metabolites statistics refer to Appendix F). There is
no general consensus on accepting analytical technique as suitable for
metabolomics analysis. However, for conventional bioanalysis, the Food and Drug
Administration (FDA) considers a technique suitable if analyte response (n 2 5)
not exceed 15% of the relative standard deviation (RSD %) except for those near
the limit of detection where < 20% can be accepted (FDA, 2013). For biomarker
discovery an upper limit up to 30% is considered adequate (Gika et al., 2007,
Want et al., 2010). The obtained results with the developed LC-MS and FIE-MS
were within those limits. In addition, the quality of the datasets obtained with
LC-MS was assessed using all peaks present in at least 80% of the pooled QC
samples. The RSD% across the mean peak areas was less than 30% for 73% of
those peaks, which was lower than the recommended threshold for metabolomics
analysis (Want et al., 2010). Unsupervised PCA score plots of the sample sets
showed adequate clustering of the QC samples towards the centre of the plots in
both LC-MS and FIE-MS, as shown in Figure 4-4. These results validate the LC-
MS and FIE-MS analytical performance for both methods. Also, for the purpose
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of evaluating the FIE-MS method against the LC-MS method, a direct
comparison of the LC-MS pooled QC samples selected peaks was performed. FIE-
MS was able to detect 67% of the peaks found by the LC-MS. The above results
demonstrated that the FIE-MS consistency, metabolic coverage and
reproducibility for the metabolomic analysis of the malaria urine samples were

acceptable and as concluded in chapter 2.
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Figure 4-4 PCA score plots overview obtained from all malaria and control urine
samples. Control samples: C1 (green circles, n=25), C2 (yellow circles, n=22), malaria
samples: PF1 (red circles, n=21) and PF2 (light brown circles, n=20) and pooled QC
(dark blue squares) analysed by LC-MS (upper) and FIE-MS (lower).
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4.3.3 Urine metabolomics analysis of malaria and healthy controls
LC-MS and FIE-MS analyses

Complete LC-MS and FIE-MS urine metabolomics datasets were acquired for
malaria patients (PF1, n = 21), malaria patients after 4 weeks (PF2, n = 20),
healthy controls (C1, n = 25) and healthy controls after 4 weeks (C2, n = 22).
Typical LC-MS base peak chromatograms obtained from malaria patients and
healthy controls urine samples are shown in Figure 4-5. Some of the base peaks
are marked to give an intuitive display. Adequate chromatographic separation
was attained with most of metabolite peaks eluted within 9 min (Appendix F).
The metabolites observed in the chromatograms mainly comprised a range of
organic acids, amino acids and pyrimidine nucleosides. Amino acids such as L-
alanine, L-tryptophan, tyrosine and phenylalanine were eluted within the
retention time range of 5-6.5 min, whereas, organic acids such as 4-aminohippuric
acid, homovanillic acid, lactic acid, uric acid and 2-hydroxyisobutyric acid were
detected within a wider retention time window (0.5-5 min). Some urinary
pyrimidine nucleosides such as cytidine and uridine were eluted within 2.5 min.
To give an overview of the differences in the findings between LC-MS and the
FIE-MS; summed mass spectra obtained from malaria urine samples analysed by
LC-MS and FIE-MS in both positive and negative ion modes are presented in
Figure 4-6 and Figure 4-7, respectively. Similar MS spectra were obtained with
LC-MS and FIE-MS from the urine samples of malaria patients and healthy
controls. The observed metabolic changes associated with malaria patients
compared to healthy controls were relatively small; therefore, detailed
multivariate analysis was used to separate and classify the clinical groups in the

study.
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Figure 4-5 LC-MS base peak chromatograms (BPC) obtained from malaria and control
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Figure 4-6 Typical urinary MS metabolic fingerprints of malaria patients and healthy controls in positive ion mode. Combined mass spectra of

urine sample from: (1.1.) Malaria (PF1): ESI+, HILIC LC-MS, (1
and (2

2.) Control (C1): ESI4, FIE-MS.
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1.) Malaria (PF1): ESI+, FIE-MS
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Figure 4-7 Typical urinary MS metabolic fingerprints of malaria patients and healthy controls in negative ion mode. Combined mass spectra of
urine sample from: (1.1.) Malaria (PF1): ESI-, HILIC LC-MS, (1.2.) Control (C1): ESI-, HILIC LC-MS, (2.1.) Malaria (PF1): ESI-, FIE-MS
and (2.2.) Control (C1): ESI-, FIE-MS.
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Multivariate analysis

Complete LC-MS and FIE-MS datasets were acquired from a single analytical
run for PF1 (n = 21), PF2 (n = 20), C1 (n = 25) and C2 (n = 22) urine
samples. These raw datasets were submitted for peak picking, peak alignment
and normalisation using Progenesis QI (Nonlinear-Dynamics, 2014). The datasets
of LC-MS and FIE-MS analyses generated 9,744 and 576 variables, respectively
(Table 4-3). The normalised datasets were exported to Simca P-+14 for
multivariate analysis. No differences in urine metabolic profiles could be
distinguished between the two control groups (C1 and C2) and malaria samples
collected after 4 weeks (PF2) using principal component analysis (PCA) as
shown previously in (Figure 4-4). However, some degree of separation and
clustering of malaria samples (PF1) from the rest of the groups was observed in
both methods. Supervised multivariate analysis using OPLS-DA showed clear
separation and clustering of PF1 group from the rest in both LC-MS and FIE-
MS methods (Figure 4-8). As the analysis was conducted blindly, the clustering
of malaria samples after 4 weeks (PF2) within the control groups region in the
models indicates no significant differences between those samples. Later, this
observation was confirmed as those patients had received treatment during this
period and no longer had malaria. This gives an added confidence of the model
for malaria metabolic profiling. Subsequent supervised OPLS-DA models were
obtained from malaria patients (PF1) and healthy controls (C1) datasets only,
total separation between the two groups were observed with both methods
(Figure 4-9).

Validation of OPLS-DA models of malaria patients and healthy controls
Cross-validation

OPLS-DA models of malaria patients (PF1) and healthy controls (Cl) were
evaluated using cross-validation by monitoring the fitness of model (R’Y) and
predictive ability (Q?) values. The R’Y and Q® values from FIE-MS were 0.810
and 0.538, respectively, which are comparable to the values of R’Y = 0.993 and
Q* = 0.583 achieved by LC-MS (Table 4-3). Successive permutation test was
carried out for each OPLS-DA model to test if the good predictive ability of the
model is not due to data overfitting (Eriksson et al., 2006b). The produced Q’-
intercept values of the regression lines of the Y-permuted Q* values (Figure 4-10)
were less than Q® values of the tested OPLS-DA models (Figure 4-9) and they
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were intercepted at -0.268 and -0.396 for LC-MS and FIE-MS, respectively,
indicating a reliable predictive power of the generated models and it is not

because of data overfitting.
External validation

A rigorous testing of the classification performance of the OPLS-DA models of
malaria patients and healthy controls was also performed using prediction models
based on 50% randomly selected training/test sets (i.e. external validation) as
shown in (Figure 4-9, 1.2 and 2.2). Overall correct classification (predictive
accuracy) of the OPLS-DA models was 78% for both LC-MS and FIE-MS. The
sensitivity (true positive rate) and specificity (true negative rate) of these models
were 80% and 77% for LC-MS and FIE-MS, respectively (Table 4-3), indicating a
reliable and comparable predictive power of both models. Sensitivity reflects the
probability of a positive result from an actual positive clinical outcome, whereas
selectivity estimates the probability of a negative result from an actual negative
outcome (Xia et al., 2013). The use of sensitivity and selectivity helps to assess
the predictability of the OPLS-DA models for clinical use. For ease of
interpretation, in clinical practice using a given biomarker for the diagnosis of
malaria with a specified decision boundary (e.g. model score or biomarker
concentration), a sensitivity of 80% and a specificity of 77% indicate that: (1)
there is an 80% chance that the new subject with a test score higher than the
given boundary is correctly diagnosed with malaria, whereas, (2) there is a 77%
chance that the subject with a test score less than the boundary is correctly

classified as healthy.

The predictive boundary of these OPLS-DA models to classify a subject as
healthy (negative) or infected with malaria (positive) was based on judicious
selection; hence, there will always be some degree of uncertainty attached to the
predictability of any reported outcome. Therefore, the robustness of the
generated OPLS-DA models was further validated using an unbiased approach,
the area under receiver operating characteristic (ROC) curve (AUC). ROC curve
is a non-parametric test which is generated by computing the area under the
curve of true positive rate (TPR) (sensitivity) against false positive rate (FPR)
(1-specificity) of the prediction models. Ideal model gives AUC equals 1.0 (perfect
classifier), whereas AUC equals 0.5 is equivalent to randomly classifying subjects
as either positive or negative (i.e. the classifier is of no clinical utility). A rough

guide based on AUC for assessing the clinical utility of a biomarker is as follows:
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0.5—-0.6 (fail), 0.6—0.7 (poor), 0.7—0.8 (fair); 0.8—0.9 (good) and 0.9-1.0 (excellent)
(Xia et al., 2013). The OPLS-DA models gave comparable results to those
obtained using training/test sets with AUC of 0.83 for both LC-MS and FIE-MS
(Figure 4-11), indicating that the predictability of the models were robust and
valid. These results validate the OPLS-DA models of malaria (PF1) and healthy
controls (C1) for diagnosis and biomarker discovery of malaria. Although few
variables were detected by FIE-MS compared to LC-MS, the FIE-MS datasets
still generated a robust model as LC-MS.

Table 4-3 Multivariate analysis and validation of OPLS-DA models of malaria patients
and healthy controls

Description LC-MS FIE-MS

1. Peak detected

ESI+ 6,278 248
ESI- 3,466 328
ESI+ and ESI- 9,744 576

2. Cross-validation
R?Y 0.993 0.810
Q? 0.583 0.538

3. Permutation test

Intercept! -0.268 -0.396

4. External validation: classification (training/test models)

Malaria patients

True positive (TP) 8 8
False positive (FP) 2 2
True negative (TN) 10 10
False negative (FN) 3 3
Sensitivity (%) (true positive rate (TPR) =TP/(TP+FP) 80% 80%
Specificity (%) (true negative rate (TNR) =TN/(TN+FN)  77% 7%
Accuracy (%) = (TP+TN)/(TP+FP+TN+FN) 78% 78%

5. Area under receiver operative characteristic (ROC) curve (AUC)
AUC? (TPR vs FPR) 0.83 0.83

'The model is considered valid when the regression line of the permuted Q? values intercept
at, or below zero, >AUC: Area under receiver operating characteristic curve, which is the

total area under the curve of sensitivity “true positive rate (TPR)” vs 1l-specificity “false
positive rate (FPR)”, ideal model gives AUC = 1 (Eriksson et al., 2006b, Xia et al., 2013).
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Figure 4-8 OPLS-DA score plots overview obtained from all malaria and control
samples. Control samples: C1 (green circles, n = 25), C2 (yellow circles, n = 22), malaria
samples: PF1 (red circles, n = 21) and PF2 (light brown circles, n = 20) and pooled QC
(blue squares) analysed by LC-MS (upper) and FIE-MS (lower) (combined ESI+/-).
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Figure 4-9 OPLS-DA score plots obtained from malaria and healthy controls. OPLS-DA
of malaria (PF1, red circles, n = 21) and healthy controls (C1, green circles, n = 25)
analysed by (1.1.) LC-MS (upper left) and (2.1.) FIE-MS (upper right). Lower OPLS-
DA models represent prediction score plots (test set) obtained from 50% randomly
selected samples of PF1 (yellow squares) and C1 (blue squares) analysed by 1.2. LC-MS
(lower left) and 2.2. FIE-MS (lower right). Models were built using the complementary
malaria (PF1) and control (C1) datasets (training sets) (combined ESI+/-).
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1. HILIC LC-MS

A @R
a2

‘j §-8-@-0—@ &

08
06
f”
-
-
-
-
F
-
04 e
[ 5
J”
e
-
-
02 ',t”
-
P
-
-
- ] “,..
P
o I L
e =
" m .
-
L P
02 u.-
. om
& .
04 ]
| |
06+ . + . . . . ! g —
0.2 0 02 04 06 08 1
y @®r2
W a2
08 R P B oL 2
® o &
X 5 S
06 i
e .
L
-
04 ‘,"‘
d”"
-
02 | 7
=] P
-
. . ""
0 o
L
iy &
0.2 | ‘ g
- m
»"’
¥
04
T =
06 I |
-08
1
]
12 - -
02 o 02 04 06 08 1

Figure 4-10 Validation of OPLS-DA models of malaria patients and healthy controls
using permutation test (n = 46). R is the model fit, and Q? is the predictive ability of
the model. The Q® intercept values of the regression line of randomly permuted Q2
values were - 0.268 and - 0.396 for HILIC LC-MS and FIE-MS, respectively, indicating
that the model is statistically sound and the high prediction ability of the model is not
due to data overfitting.
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Figure 4-11 ROC curve shows how the sensitivity (true positive rate) and 1-specificity
(false positive rate) of the OPLS-DA models change as the classificaticn decision
boundary is varied across the range of available biomarker scores. The above graph
shows the ROC curve of the OPLS-DA models of LC-MS and FIE-MS of malaria (PF1,
brown line) and healthy controls (C1, blue line) datasets. The areas under the ROC
curve (AUC) of the OPLS-DA models were 0.83 and 0.83 for LC-MS and FIE-MS
respectively, indicating high sensitivity and specificity of the generated models.
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4.3.4 Tentative identification of malaria urinary biomarkers

Metabolites responsible for the classification between malaria patients (PF1) and
healthy controls (C1) were selected according to VIP values from the OPLS-DA
models. Variables (metabolites ions) with VIP score more than 1.0 were chosen.
The selected ion intensities across malaria patients and healthy controls samples
were subjected to Student’s t-test and the generated p-values were adjusted using
false discovery rate for multiple testing problem. Top ions that differed
significantly (g-value < 0.05) have been considered as potential biomarkers, and
as a result, 30 and 17 variables were considered as potential urinary biomarkers
of malaria from the LC-MS and FIE-MS datasets, respectively. These biomarkers
were tentatively identified; the exact mass of the ions (i.e. urinary biomarkers)
was used to interrogate the Human Metabolome Database (HMDB) with 5 ppm
mass window for possible identification. The list of tentatively identified malaria
biomarkers with their molecular weight, fold change, mass error (ppm) and
HMDB ID are summarised in Table 4-4. Some of the ions remain unknown due
to the limitation of the databases, but they were also listed because of their
importance as potential biomarkers of malaria. To provide a more intuitive
display of the metabolic difference between malaria patients and healthy controls,
box and whisker plots of some representative biomarkers are shown in Figure
4-12 and Figure 4-13. Most of the metabolites obtained by FIE-MS were also
detected with LC-MS such as taurine, glycolic acid, pipecolic acid and creatinine.
However, some metabolites such as butyric acid and 3-hydroxypicolinic acid were
not detected with LC-MS. This may be due to the higher ion suppression effect
of urine salts on the ionisation of these metabolites in LC-MS compared to FIE-
MS or due to instability of these metabolites during the long run of LC-MS
analysis. Urine samples in LC-MS were prepared with 3-fold dilution compared to
10-fold dilution in FIE-MS, therefore, the salt content in LC-MS samples were
higher than FIE-MS and subsequently, the ion suppression effect on these
metabolites might be higher than FIE-MS. This suggested that, FIE-MS method
could be used with LC-MS to improve metabolite coverage, or the optimised
sample preparation protocol could be used with the LC-MS to decrease the ion
suppression effect of urine salts on the ESI. In addition, FIE-MS detected about
50% of LC-MS urinary biomarkers, thus, the LC-MS is a suitable choice for
comprehensive urinary metabolomics study, while FIE-MS as a high-throughput

method might be used as a quick approach for clinical screening.
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Table 4-4 Tentative identification of urinary biomarkers showing differences between malaria patients and healthy controls

HILIC LC-MS FIE-MS
Metabolite RT Fold Mass error Fold Mass error
MW (Da)  Tentative identification ~ HMDB ID  Formula (min) g-value Change (ppm) g-value  Change (ppm) Pathway/process
60.0325 Urea HMDB00294 CH,N,O 1.45 2.51E-05  1.70 3.06 2.68E-03 1.39 1.64 Arginine and proline metabolism, urea cycle [1,2]
76.0160 Glycolic acid HMDBO03035 C,H,0, 3.88  1.50E-02 1.34 2.72 1.27E-03 1.75 4.39 Glyoxylate and dicarboxylate metabolism [1]
88.0524 Butyric acid HMDB00039 C,H,O, 1.77E-03 214  3.00 Butanoate metabolism [1]
101.5395  Unknown 1.51  1.83E-04 8.03 -
113.0589  Creatinine HMDB00562 C,H.N,O  3.11 1.43E-02 1.13 0.50 2.39E-03 1.42 1.45 Arginine and proline metabolism [1]
118.0266  Succinic acid HMDB00254 C,H,O, 3.08  4.99E-02 1.08 1.63 1.27E-03 1.86 2.43 Tricarboxylic acid cycle, Propanoate metabolism [1,2]
119.0582  L-Threonine HMDB00167 C,HNO,  6.53  4.08E-04  3.02 1.33 Aminoacyl-tRNA biosynthesis [1,2]
125.0147  Taurine HMDB00251 C,H,NO,S 429  2.96E-05 5.39 2.20 1.45E-05 14.50  0.80 Taurine metabolism, Nitrogen metabolism [1]
128.0837  1,3-Diacetylpropane HMDB29165 C.H,,0, 6.46  7.62E-04  35.89 1.81 1.77E-03  3.68 2.54 Polyamine metabolism [2]
129.0790  Pipecolic acid HMDB00070 C.H,,NO, 2.18  3.28E-02 1.34 0.11 1.59E-02 2.78 0.89 Lysine degradation [1]
130.1106  N-Acetylputrescine HMDB02064 C,H,N,O 6.62 3.23E-04 1.69 1.45 1.59E-02 3.31 1.81 Arginine and proline metabolism [1,2]
139.0269  3-Hydroxypicolinic acid ~ HMDB13188 C,H,NO, 1.01E-03 -3.42 237 Tryptophan catabolism [1]
139.0633 3,4-Dihydroxybenzylamine HMDB12153 C,H,NO,  3.25  7.57E-04  2.00 2.54 5.17E-03 1.99 2.55 Not available
162.0528  3-Hydroxyadipic acid HMDB00345 C,H,,0, 1.50  2.66E-05  3.40 0.46 4.99E-02 1.24  4.16 Fatty acid metabolism [1]
172.0736  2-Octenedioic acid HMDB00341 C,H,,0, 6.46  152E-04 7.20 1.84 4.79E-03 2.74 2.12 Fatty acid metabolism [1]
174.1546  N-Acetylasparagine HMDB06028 C.H,,N,0, 3.61 7.33E-06 227 0.86 Asparagine catabolism [1]
187.1685  N-Acetylspermidine HMDB01276 C,H,N,0  11.90 9.18E-05 1.72 1.09 2.39E-03 4.17 1.48 Polyamine metabolism [1,2]
188.0797  N-Acetylglutamine HMDBO06029 C,H,,N,0, 3.59 2.30E-04 3.33 2.20 Not available
188.1525  Trimethyl-L-lysine HMDB01325 C,H,N,0, 7.41  9.44E-07  2.60 1.89 2.68E-03 5.84 -1.89 Carnitine biosynthesis [1]
193.0582 Unknown 1.51 8.03E-07  2.52 -
195.0532  3-Hydroxyhippuric acid ~ HMDB06116 C,H,NO,  4.05  2.05E-03  -3.00 2.98 9.06E-04 -2.32  3.07 Fatty acid metabolism [1]
208.0955  Unknown 6.80  1.46E-03 4.44 -
209.0434  Unknown 141  3.80E-07 2.18 -
210.0528  Vanilpyruvic acid HMDB11714 C,H,,0; 1.46  1.56E-03  4.36 0.90 Vanilactic acid biosynthesis [1]
212.0794  Unknown 3.88  1.43E-05 3.36 -
217.1063  Alanyl-Glutamine HMDB28685 C,H,,N,O, 6.87 245E-05 5.45 2.19 Protein catabolism [1]
244.0694  Uridine HMDB00296 C,H,,N,0, 1.64 6.83E-07 1.63 0.57 Pyrimidine metabolism [1,2]
252.1222  Prolyl-Histidine HMDB29019 C,H,N,0, 293  820E-05 5.86 1.23 Protein catabolism [1]
268.0808  Inosine HMDB00195 C,,H,N,0, 1.42  217E-06 2.62 0.82 Purine metabolism [1,2]
281.1124 1-Methyladenosine HMDB03331 C,,HN.O, 5.68 8.07E-05 1.51 1.34 9.60E-03 3.16 1.76 Not available
282.0961 1-Methylinosine HMDB02721 C,H,N,0, 1.78  1.26E-03 2.15 1.26 Not available
285.0961  N4-Acetylcytidine HMDB05923 C H N,O, 1.56 5.76E-05 3.37 0.01 Degradation of transfer ribonucleic acid (tRNA) [1]

RT: retention time, MW: molecular weight, g-value: is the adjusted Student’s ¢-test p-value using false discovery rate (FDR), the positive value of fold change means a higher level of metabolite in
malaria patients compared to healthy controls, whereas the negative value represents a lower level of metabolite. Pathways existence: [1] human and [2] P. falciparum.
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Figure 4-13 Box and whisker plots demonstrated significantly altered levels of

representative urinary biomarkers (q < 0.05) between malaria patients and healthy
controls using LC-MS. The boxes extend from the 25" to 75™ percentiles in the
biomarker intensity distribution, while the 50™ percentile (the median) is the black
horizontal line in the box. The whiskers extend from the upper and lower fence values.
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4.3.5 Identity confirmation of urinary biomarkers of malaria

Initial confirmation of identity started with comparing the retention times and accurate
masses of metabolites (i.e. malaria biomarkers) in the urine sample with those of the
standards (data not shown). Then, the identity of some of urinary malaria biomarkers
were confirmed by means of tandem mass spectrometry, in which pure authentic
standards were injected along with the sample and their MS/MS spectra were compared.
Absolute identity confirmation using LC-MS/MS was carried out for taurine, L-
threonine, inosine, uridine, creatinine, urea and succinic acid against their authentic
standards. The MS/MS spectra of the selected metabolites matched their standards,
thus, confirming their identity as illustrated in Figure 4-14 and Figure 4-15. However,
urea (m/z 61.0398) was confirmed by comparing only its retention time and exact mass
with the standard; this is because the expected MS/MS fragments of urea are lower in
mass than the minimum mass range of the MS/MS instrument used in this study.

Taurine:

In LC-MS/MS analysis, taurine standard (C,H,NO,S) fragmented to produce ions
at m/z 107.00 and 94.98, which is attributed to the fragments [C,H;NO,S] and
[CH,O,S[, respectively. Extra loss of the side chain methyl group [CH;] or [CH,]
from the [CH,0,S] fragment produced ions at m/z 79.91 and 80.97, respectively
(Chaimbault et al., 2004, Tang et al., 2014). The tentatively identified taurine
ion in the sample fragmented to produce those peaks, thus, confirming the

identity of the compound as illustrated in Figure 4-14.

Inosine:

Inosine is relatively large molecule (MW 268.0808) which is readily fragmented in
LC-MS/MS to produce many peaks. However, characteristic fragment peaks were
observed at m/z 250.01 (postulated as [M-H,O-H] '), 230.82, 204.96 (postulated as
[C,H N, O,], 183.96 and 135.00 (postulated as [C;H;N,O]. The presence of these
fragment ions in the MS/MS spectrum of the sample (Figure 4-14) strongly

suggests that the putatively identified metabolite is inosine.

Lactic acid and glycolic acid

A metabolite at m/z 135.0295 (ESI-) found with a significant difference between
malaria patients and healthy controls was firstly identified as lactic acid. The
retention time and MS/MS spectrum of lactic acid standard did not match that
of the sample (data not shown), therefore the tentative identification of the
metabolite as lactic acid was ruled out. Nonetheless, the matching of the exact
mass of the unknown metabolite still suggests that possibly glycolic acid might

be the one present in the sample according to the human metabolome database
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(HMDB) (Wishart et al., 2013). However, the confirmation of the identity of this
metabolite requires further LC-MS/MS verification with glycolic acid authentic

standard which was beyond the scope of this thesis.
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Figure 4-14 MS/MS spectra comparison of tentitively identified inosine and taurine in
the urine sample of malaria patients against their authentic standards. The upper two
spectra present the matching of ionsine fragnment peaks (standard) against the fragment
peaks obtained from metabolite in the sample (sample), while the lower two spectra

present those of taurine.



Succinic acid

Creatinine

Relative Abundance

Relative Abundance

4 m ow s o o9 N ® o B

3

2 v @ s 0 9 N © @

Sample

5899

70.94
72

98

87,01 89,00

98.98

99.97

2N 9 2 9 2 N @ ©

Standard

74,03
98

99.35

oS 3

&

55 60

Sample

65

75 80 85 90 95

miz

UL L e e e
100 105 110 115 120 125 130

57‘05

Standard

86.09

87.10

Uridine

L-threonine

Relative Abundance

Sample

19504

197.03

153

20002

19791

Standard

197,94 19831 19895 19930 200.40

T
1945

T
1950 1955

Sample

55.05

T
196.0

57.01

L e
1965 197.0

58,07

T
1975 1980

UL o
1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

miz

73.01

Relative Abundance
S~ N w2 a2 N @ © B
o 3 8 8 3 & 3 3 3 8 3
Do T PP P TP BT PP Counfnfn B o Pt

Standard

58

miz

Figure 4-15 MS/MS spectra confirmation of tentitively identified succinic acid, creatinine, uridine and L-threonine in the urine sample of
malaria patients against their authentic standards. The spectra present the matching of standards fragnment peaks (standard) against the
fragment peaks obtained from the metabolites in the sample (sample).



154

4.4 Discussion

OPLS-DA models generated from urinary datasets from LC-MS and FIE-MS
analyses showed clear segregation between malaria patients and healthy controls.
Urine samples of malaria patients showed significantly increased levels of
metabolites such as amino acids (taurine, L-threonine, alanine), dipeptides
(alanyl-glutamine, prolyl-histidine), amino acids metabolites (pipecolic acid, N-
acetylasparagine, N-acetylglutamine, trimethyl-L-lysine, 3-hydroxypicolinic acid,
3,4-dihydroxybenzylamine), a tricarboxylic acid (TCA) cycle intermediate
(succinic acid), acetylated polyamines metabolites (N-acetylputrescine, N-
acetylspermidine and 1,3-diacetylpropane), fatty acids urinary metabolites (2-
octenedioic acid, 3-hydroxyadipic acid), purine and pyrimidine metabolism
intermediates (inosine, 1-methyladenosine, 1-methylinosine, N-acetylcytidine,
uridine), urea and creatinine, when compared with healthy controls, signalling
the possibility of altered metabolic pathways and biological functions of these
metabolites in malaria. The identity of taurine, uridine, succinic acid, L-
threonine, creatinine and inosine were confirmed by comparing their MS/MS
spectra with those obtained from pure authentic standards using LC-MS/MS.
The increased level of succinic acid, taurine, alanine and pipecolic acid in malaria
patients was consistent with previously reported studies (Sengupta et al., 2015,
Sengupta et al., 2011b, Gardner et al., 2002, Li et al., 2008, Tritten et al., 2013).
However, the altered level of metabolites such as 1,3-diacetylpropane (acetylated
polyamine), N-acetylspermidine and N-acetylputrescine in urine of malaria
patients compared to healthy controls were found for the first time, suggesting

that they may provide surrogate urinary biomarkers of malaria.

There is a constant dynamic metabolic interplay between the host and the
parasite during the course of infection which may perturb the biochemical

profiles of both, the parasite and the host. The parasite invasion induces a
constellation of responses by the host which are collectively known as “acute-

phase responses” (Dinarello, 1984). This phase is characterised by metabolic,
immunological, neuro-endocrine and behavioural alterations to the host
(Kushner, 1988). Hence, the altered level of metabolites observed in malaria
patients compared to healthy controls might be a direct signal of parasite
activity (parasite-specific metabolites) or from the host as a response to the effect
of the parasite on different organs during the acute-phase response. Moreover, the

parasite during the course of infection releases certain metabolites which induce
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the host metabolic response and subsequently metabolites of parasite-specific
molecules may accumulate in different body fluids. The metabolites directly
related to the parasite are good biomarker candidates of the infection; however,
their altered levels in different body fluids depend on the level of parasitemia and
the severity of the disease and they might not be detected in early stage of the
disease (Surowiec et al., 2015). Therefore, biomarkers related to organ failure
rather than specifically for the parasite have the potential to be more suited for

the early diagnosis of malaria from different body fluids such as urine.

Changes in the glycolysis pathway

No significant difference in the level of urinary lactic acid, a marker of enhanced
glycolysis pathway of the parasite (Delic et al., 2010, Ghosh et al., 2012), was
observed between malaria patients and healthy controls. This finding was
consistent with previous clinical studies, in which no significant difference in the
level of lactic acid was found in urine and plasma of patients infected with P.
vivax (Sengupta et al., 2015, Sengupta et al., 2011b) and P. falciparum (Gardner
et al., 2002), respectively, compared to healthy controls. However, from in vitro
study an elevated level of lactic acid in Plasmodium-infected RBCs compared to
non-infected ones has been previously reported in the literature as a result of
enhanced glycolysis by the parasite during the infection (Mehta et al., 2006).
Also, in rodent models, blood lactic acidosis was reported as a result of enhanced
parasitic glycolysis in severe malaria (Basant et al., 2010). Plasmodium spp. as
an intracellular parasite has a reduced metabolic capacity compared to higher
organisms and depends mainly on the continuous supply of nutrition from the
host. Therefore, Plasmodium parasite depends mainly on glucose supplied by the
host as a major energy source to meet the essential requirements of proliferation
and growth (Lakshmanan et al., 2011, Olszewski and Llinas, 2011, Olszewski et
al., 2009). On the contrary, human erythrocytes as non-proliferative cells have

modest energetic needs which are mainly provided through glucose fermentation.
Most of glucose absorbed by the parasite enters Plasmodium anaerobic Embden—
Meyerhof-Parnas (EMP) pathway of glycolysis and is incompletely oxidised to
lactic acid (Delic et al., 2010, Ghosh et al., 2012). Lactic acid is then converted

to pyruvate and may be deaminated to alanine (Sengupta et al., 2011a).

An increased level of alanine was observed in the urine of malaria patients
compared to healthy controls, suggesting that lactic acid was converted to

alanine and may provide evidence of enhanced glycolysis pathway of the parasite
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during the course of infection. The increased level of alanine in malaria was
previously reported in the literature. Surowiec et al. reported significantly altered
level of alanine but not lactic acid in the plasma of P. falciparum patients
compared to healthy controls, which was linked to hypoglycaemia observed in
malaria (Surowiec et al., 2015). This result is quite consistent with the above
finding. However, alanine, an amino acid, is also an essential precursor for
gluconeogenesis (production of glucose from non-carbohydrate source) in the liver
and its elevated level may also be an indication of an impaired hepatic
gluconeogenesis or a perturbed amino acid metabolism as a result hepatic
dysfunction in malaria. The increased level of alanine in malaria patients might
also be a result of different diet, life-style and genetics of malaria patients
compared to healthy controls, however, this seems unlikely as alanine level was
found elevated in a well-controlled rodent model infected with Plasmodium

parasite (Sengupta et al., 2011a).

Enhanced activity of tricarboxylic acid (T'CA) cycle in malaria

The level of succinate, a human and parasite TCA cycle intermediate, was
significantly elevated in the urine of malaria patients compared to healthy
controls, indicating an enhanced metabolic TCA cycle activity by the parasite
during the course of infection. The increased level of succinate in malaria patients
may also indicate an increased TCA cycle activity by the host to meet the
increased energy demand caused by the infection, indicating a perturbed energy
metabolism in malaria. The increased level of succinate in Plasmodium infection
was consistent with previous in vitro studies (Sana et al., 2013, Teng et al.,
2009). Recently, Sengupta et al., reported an altered level of succinate in the
urine of P. vivax infected patients (Sengupta et al., 2015, Sengupta et al., 2011b).
This result was consistent with the above finding, suggesting succinate as a

potential urinary biomarker of malaria.

As malaria parasite depends mainly on anaerobic glycolysis, it has dampened
tricarboxylic acid (TCA) cycle that is largely dissociated from carbohydrate
metabolism (Olszewski and Llinas, 2011). This is mainly correlated to the
absence of some fundamental enzymes such as malate dehydrogenase from the
mitochondrion, which are required to interlink glycolysis and TCA (Danks et al.,
1975). Alternatively, glutamine and glutamate were found to be the major
metabolites that entered the TCA cycle of the parasite as a carbon source to
produce acetyl-CoA moiety (Plecko et al., 2000). No significant difference in the

urinary levels of glutamine and glutamate were observed between the malaria
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patients and healthy controls. This might be attributed to the fact that these
metabolites were supplied by the host and, therefore, their expected depletion in
the biofluids of malaria patients may be masked due to their abundant presence
in the host serum. Sana and co-workers reported increased level of glutamine and
glutamate in erythrocytes infected with P. falciparum compared to non-infected
ones. On the contrary, clinical studies reported no significant difference in the
urinary level of glutamine and glutamate (Sengupta et al., 2015, Sengupta et al.,
2011b). A recent study reported an elevated level of glutamine in the plasma of
P. falciparum infected patients, which was observed only at high level of
parasitaemia in malaria patients (Surowiec et al., 2015). This results support the
finding in this study and demonstrating that metabolites due to parasite signals
are difficult to detect in body fluids and depend mainly on the degree of

parasitemia and severity of the disease.

Perturbations of amino acids metabolism during malaria

Abnormal levels of urinary amino acids, amino acid metabolites and dipeptides
during the course of P. falciparum infection may also indicate a perturbed amino
acids metabolism and protein catabolism as a result of the enhanced parasite
activity or due to host response to the infection. High levels of alanyl-glutamine,
prolyl-histidine, pipecolic acid (metabolite of lysine), trimethyl-L-lysine
(methylated derivative of lysine), alanine, L-threonine, N-acetylglutamine
(metabolite of glutamine), N-acetylasparagine (metabolite of asparagine) and 3-
hydroxypicolinic acid (catabolite of tryptophan) were observed in urine of
malaria patients compared to healthy controls. This finding was consistent with
previously reported studies, in which abnormal levels of amino acids were found
in urine and plasma of patients infected with P. vivax (Sengupta et al., 2015,

Sengupta et al., 2011b) and P. falciparum (Surowiec et al., 2015), respectively.

Malaria parasites are incapable of de novo amino acid synthesis and rely instead
on scavenging them from haemoglobin catabolism and uptake from host serum,
which generates an excess of amino acids in the bloodstream of the host (Gardner
et al., 2002). Significantly altered levels of urinary alanyl-glutamine and prolyl-
histidine may indicate excessive incomplete breakdown of proteins, which may
provide evidence of the increased haemoglobin catabolism by the parasite to meet
its amino acids demand for proliferation and growth. The altered level of these
dipeptides may also signal the possibility of increased RBCs breakdown during
the course of infection. Although the altered level of these peptides was found for

the first time in urine of malaria patients, but their presence as an indication of
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increased protein catabolism is further supported by the excessive urinary
execration of urea in malaria patients. Urea, a principal urea cycle product, is
formed in the liver from ammonia produced by the deamination of amino acids;
it is the main urinary waste product of protein and amino acid catabolism in the
body. The increased execration of urea in malaria patients may indicate an
enhanced urea cycle activity as a response to the increased body demand of
eliminating excess amino acids generated from RBCs breakdown. Indeed acute
kidney injury during malaria infection resulting in partial-renal impairment may
also lead to the increased level of urea, resulting in ammonia toxicity. Renal
dysfunction was previously reported in severe malaria (Day et al., 1999). This
finding was quite consistent with previously reported literature, in which a high
level of urea was observed in the plasma of malaria patients infected with P.

falciparum (Surowiec et al., 2015).

Abnormal level of taurine (a sulphur amino acid) was observed in the urine of
malaria patients compared to healthy controls. Taurine is known to play an
important role in the liver for detoxification of ammonia in malaria (Delic et al.,
2010), suggesting that it was up-regulated in the liver as a response to the
increased body demand for ammonia elimination. Taurine is mainly metabolised
in the liver (de la Puerta et al., 2010), therefore, it is elevated level may also
indicate liver dysfunction in malaria. Diet or enhanced parasite activity may also
increase taurine level in malaria patients, however, the enhanced level of taurine
was previously found in the sera of Plasmodium-infected mice (Ghosh et al.,
2012) and in the urine of P. vivax infected patients (Sengupta et al., 2015) but
not Plasmodium-infected RBCs (Teng et al., 2009). These results support the

above finding, suggesting taurine as a potential biomarker of malaria.

Pipecolic acid, a metabolite of lysine, showed an increased level in the urine of
malaria patients compared to healthy controls, which may also signalling liver
dysfunction in malaria. This was consistent with the high level of pipecolic acid
previously reported in the urine of P. berghei infected mice (Li et al., 2008,
Tritten et al., 2013) and P. vivax infected patients (Sengupta et al., 2011b).
Pipecolic acid is derived mainly from the catabolism of lysine by the intestinal
microbiota or diet (e.g. fermented beverages and dairy products). Fujita et al.,
found that urinary pipecolic acid is mainly produced by gut microbiota rather
than diet (Fujita et al., 1999b), hence, food intake seems unlikely to contribute
to the increased level of pipecolic acid in malaria patients. However, the

accumulation of pipecolic acid was found to be associated with a range of
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different diseases such as Zellweger syndrome (Danks et al., 1975), chronic liver
disease (Fujita et al., 1999a), neurological damage (Nomura et al., 1981) and
pyridoxine epilepsy (Plecko et al., 2000). The biological relevance of pipecolic
acid in malaria is still unclear, since liver dysfunction, neurological damage and
disturbance of microbiota ecology are all associated with malaria (Li et al., 2008).
However, its elevated level in urine may provide a potential biomarker of organ

failure in malaria.
Changes in polyamines metabolism due to enhanced parasitic activity

Significantly high levels of acetylated polyamines such as 1,3-diacetylpropane, N-
acetylspermidine and N-acetylputrescine were found in urine of malaria patients
compared to healthy controls by both LC-MS and FIE-MS methods. This is the
first time that altered levels of acetylated polyamines were detected in urine of
malaria patients which may provide potential surrogate biomarkers of malaria.
Polyamines are low molecular weight biogenic molecules that exist in different
types of organisms including parasites (e.g. plasmodium), bacteria, plants and
animals including human. They mediate many essential biological processes such
as cell development, membrane stabilisation, proliferation and stress responses
(Kusano et al., 2008). In Plasmodium spp., polyamines constitute up to 14% of
the total parasite’s metabolome and serve as important and critical biomolecules
for the rapid proliferation and growth of the parasite (Muller et al., 2001).
Despite the reduced metabolic capacity, malaria parasite is still capable of de
novo synthesis of polyamines from arginine using unique metabolic machinery
(Muller et al., 2000). On the contrary, human erythrocytes, as non-proliferative
cells, lack the ability to synthesise polyamines and very small amount of them

exist in the cytoplasm (Lakshmanan et al., 2011).

Assaraf et al., performed in vitro experiment using infected human erythrocytes
to study the production of polyamines by P. falciparum (Assaraf et al., 1984).
They reported that synthesis of polyamines by the parasite reached the peak
maximum in the early trophozoite stage, concluding that the parasite is critically
dependant on high concentrations of polyamines for proliferation. In contrast,
polyamines such as putrescine and spermidine are known to be toxic at high
levels in human and, therefore, excess amount are detoxified mainly by oxidative
deamination or acetylation by diamine acetyltransferase to N-acetylputrescine
and N-acetylspermidine (Wunderlichova et al., 2014). No significant difference in

the levels of putrescine and spermidine were observed between malaria patients
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and healthy controls in this study, consistent with the previous clinical studies
(Sengupta et al., 2015, Sengupta et al., 2011b, Surowiec et al., 2015). However,
the altered levels of 1,3-diacetylpropane, N-acetylspermidine and N-
acetylputrescine in urine of malaria patients, suggesting that putrescine and
spermidine have been continuously detoxified by the body before execration as a
response to their excessive production by the parasite (Figure 4-16). Putrescine
and spermidine are derived mainly from diet (e.g. meat) or catabolism of amino
acids (Patocka and Kuehn, 2000). Teng et al., reported significantly elevated
levels of putrescine and spermidine in Plasmodium-infected erythrocytes
compared to non-infected ones (Teng et al., 2009). Hence, dietary intake in
malaria seems unlikely to influence the execration of acetylated polyamines in

urine, whereas perturbed amino acids metabolism still a valid possibility.
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Figure 4-16 Suggested possible fate of the toxic levels of polyamines produced by P.
falciparum during malaria infection. Putrescine and spermidine are excessively produced
by Plasmodium spp. during erythrocytic cycle to meet its demand for proliferation and
growth (Teng et al., 2009). In human, when the extracellular levels of these polyamines
become abnormal, excess amount are detoxified by diamine acetyltransferase to N-
acet}glputrescine and N-acetylspermidine and excreted in urine (Wunderlichova et al.,
2014).

Different NMR, GC-MS and LC-MS based metabolomics approaches have been
used to study the Plasmodium metabolome (Sana et al., 2013, Mehta et al., 2005,
Olszewski et al., 2009) and the host-parasite responses (Lakshmanan et al., 2012,
Sengupta et al., 2011b, Sengupta et al., 2015) during malaria infections. The
majority of these studies were concentrated in understanding the parasite biology or
the host response using in vitro or rodent models. Metabolomics analysis of clinical
samples such as urine, serum and plasma give more insight than in vitro or
rodent model studies in understanding the host-parasite biology and provide a

powerful tool for biomarker discovery and phenotypic biology. However, few
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studies used clinical samples for untargeted metabolic profiling of Plasmodium
infections (Sengupta et al., 2015, Sengupta et al., 2011b, Lakshmanan et al., 2012)
and there is no published work using urine to explore the perturbed human-parasite

metabolome during the course of P. falciparum infection.

Urine, as a readily available sample, has its potential as a convenient clinical sample
to diagnose and study P. falciparum infection. The infection mainly occurred in rural
remote areas in developing countries (WHO, 2014), where the essential facility,
equipment and personnel expertise for invasive sample collection, (e.g. blood) and
microscopic examination is quite difficult to establish and maintain for the diagnosis
of malaria. In contrast, urine collection is fairly simple, non-invasive and no
sophisticated facility or high skills are required if a suitable urinary diagnostic test is
available for malaria. Therefore, in this study, an untargeted approach was
implemented to analyse urine samples from P. falciparum-infected patients and
healthy controls using HRMS and multivariate analysis. Two HRMS methods,
HILIC LC-MS and FIE-MS were employed to identify possible surrogate
biomarkers of malaria, those will complement the current strategies used to
diagnose and treat malaria. This is the first time that an untargeted approach is
employed to develop a high-throughput diagnostic method and find diagnostic

urinary biomarkers of P falciparum infections.



162

4.5 Conclusion

LC-MS and direct ESI-MS metabolomics analysis of urine samples from malaria
patients and healthy controls successfully demonstrated metabolic changes as a
result of malaria and identified potential biomarkers. Confirmation of identity of
some biomarkers was performed by LC-MS/MS with reference to pure authentic
standards. Multivariate analysis using OPLS-DA, demonstrated good classification
of the disease from healthy controls with both LC-MS and FIE-MS methods.
Considering the throughput of the direct ESI-MS, FIE-MS was able to cover 50% of
the LC-MS information, indicating its great potential as a diagnostic tool for
malaria. Interestingly, FIE-MS detected all the potential candidates detected with
LC-MS, such as pipecolic acid, taurine, N-acetylspermidine, N-acetylputrescine
and 1,3-diacetylpropane, indicating that FIE-MS performed as well as LC-MS for
urinary metabolomics of malaria. The biological interpretation of the metabolites
significantly altered in malaria, revealed an increased activity in TCA cycle, which
was consistent with previous reports. Furthermore, taurine and pipecolic acid
which are previously suggested in the literature as potential biomarkers for
malaria were also found associated with malaria. For the first time, altered levels
of acetylated polyamines were detected in urine of malaria patients with LC-MS
and FIE-MS which may provide new potential biomarkers and suggest FIE-MS
as a quick non-invasive diagnostic tool of malaria. However, some urine samples
of patients turned red during transportation from Ethiopia to UK, which flagged
a caveat that the differences found between malaria patients and healthy controls
may be influenced by presence of blood in urine or changes of urine chemistry
during transportation. Nevertheless, simple dipstick urinalysis showed no blood
or any significant differences in urine chemistry between the study groups. Also,
many parameters such as diet, life-style, genetic disposition and sample collection
may influence the metabolic profiles of malaria patients and healthy controls and
subsequently the outcome. In order to circumvent these possible confounding factors,
metabolic profiling of urine samples (24 h pooled urine sample is preferential, if
possible) collected and stored properly from cohorts of malaria patients and healthy
subjects with a longitudinal follow-up and a controlled dietary intake may provide
additional specific information directly related to disease and metabolic changes

associated with P. falciparum infection in human.
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5. The Influence of Dietary Oligosaccharides on Gut
Bacterial Metabolites Detected in Urine

5.1 Introduction

5.1.1 Human-gut microbiota

The human gastrointestinal (GI) microbiota (also known as gut flora or
microflora) can be described as a complex collection of microorganisms, mainly
bacteria but also viruses, archaea and protozoans, that mainly colonise the large
intestine of the digestive tract (Scholtens et al., 2012). It is estimated that the
human intestinal microbiota ecosystem contains about 10" bacterial cells
comprising 500-1000 different species, outnumbering the human cells by ten times
(Sommer and Backhed, 2013). This vast and complex population of the
microbiota that inhabits the human GI tract suggests that the microbiome (the
collective set of microbiota genome) encodes 100-fold more unique genes than
that of the human genome (Qin et al., 2010). Moreover, the gut microbiome is
constantly changing within and between individuals as a result of different
human processes (e.g. GI secretions, gut physiology, innate and adaptive
immunity), diet, life events, use of drugs, disease state and environmental factors
which affect the composition and function of the gut microbiota (Macfarlane and
Macfarlane, 2012).

The main bacterial phyla of microbiota colonise the human GI tract are:
Firmicutes (e.g. Enterococcus and Staphylococcus), Bacteroidetes (e.g.
Bacteroides), Proteobacteria (e.g. FEscherichia), Verrumicrobia, Fusobacteria,
Cyanobacteria, and Actinobacteria (e.g. Bifidobacterium) (Johnson and
Versalovic, 2012, Guarner and Malagelada, 2003). In general, human intestinal
bacteria exert beneficial effects (also known as commensal bacteria, e.g.
Lactobacillus spp.) or harmful effects (pathogenic bacteria, e.g. Staphylococcus
spp.) (Figure 5-1). Some of the commensal bacteria such as Escherichia coli (FE.
coli) have the potential to be pathogenic under compromised health conditions
(Gibson and Roberfroid, 1995). Although the commensal bacteria are isolated
from the human circulating system by the GI mucosal barrier, there are constant
metabolic interactions between the two systems allowing mutual benefits. The
health-promoting effects of the gut bacteria include direct contributions to
different metabolic, protective and trophic functions of the human body. The

metabolic functions of microbiota mainly promote digestion and absorption of
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essential nutrients, synthesis of vitamins and production of short-chain fatty
acids from non-digestible carbohydrates (Guarner and Malagelada, 2003).
Microbiota also inhibit the growth of harmful pathogens (protective functions)
and contribute to the maturation of the immune system (trophic function)

(Meyer and Stasse-Wolthuis, 2009).
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Figure 5-1 The effect and influence of gut microbiota on human health and disease from
birth to old age. At birth, the method of delivery, nutrition, epigenetic: factors play an
important role in the development of a healthy gut microbiota (symbionts) of the fetus.
The composition of microbiota continuously changes from childhood to adulthood in
which Bacteroidetes predominate in childhood while Firmicutes predominate in
adulthood. The intestinal microbiota involves in many essential physiobgical and
energy production processes such as growth, organ maturation, reproduction and
temperature regulation in the human body. Dysbiosis (alteration to the human gut
microbiota) may lead to different variety of organ related diseases such as: (A) colon:
e.g. irritable bowel syndrome (IBS), (B) liver: e.g. fatty liver disease, (C) lungs: e.g.
asthma, and (D) brain: mood and behavioural abnormalities through, eg. GLP-1

hormone signalling (Nicholson et al., 2012).
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Recent studies have suggested that alteration to the human gut microbiota,
known as dysbiosis or dysbacteriosis, may play an important role in the
pathogenesis of many diseases. There is strong evidence that dysbiosis has been
associated with irritable bowel syndrome (IBS) (Le Gall et al., 2011), ulcerative
colitis (Williams et al., 2009, Le Gall et al., 2011), Crohn’s disease (Williams et
al., 2009), multiple sclerosis (Cantarel et al., 2015), diabetes (Musso et al., 2010)
and obesity (Delzenne and Cani, 2011). In many circumstances, the host-microbe
relationships and processes are not fully understood and further studies are
needed for better understanding of the role of dysbiosis in human health and
disease. Initial studies suggested that modulating the composition of the gut
microbiota using certain nutrients may promote or maintain health over diseases
and give rise to the concept of prebiotics (Gibson and Roberfroid, 1995,
Roberfroid et al., 2010).

5.1.2 Introduction to the concept of prebiotics

The term “prebiotic” was first introduced by Gibson and Roberfroid in 1995 to
describe “nondigestible food ingredient that beneficially affects the host by

selectively stimulating the growth and/or activity of one or a limited number of
bacteria in the colon, and thus improves host health” (Gibson and Roberfroid,
1995). The concept of prebiotics is based on the use nutrients such as non-
digestible fermentable carbohydrates to favourably fortify and stabilise the
composition of health-promoting bacteria in the colon through selective
fermentation. The effectiveness of prebiotics depends mainly on their ability to
overcome digestion in the upper GI tract and reach the colon where microbiota
utilises them for fermentation and energy production. Therefore, certain criteria
should be met to consider a dietary nutrient as a prebiotic. These criteria mainly
include the following: (1) resistance to the gastric digestive environment such as
acidic pH, enzymatic hydrolysis and absorption, (2) readily fermentable by
intestinal microbiota, and (3) selective stimulation of growth and activity of
health-promoting intestinal bacteria (Roberfroid, 2007). Among the different
types of dietary ingredients, some lipids, proteins, peptides and carbohydrates are
good candidates to be prebiotics (Gibson and Roberfroid, 1995). However, most
of the interest in food industry is focused on a certain class of carbohydrates,
mainly nondigestible oligosaccharides such as inulin and oligofructose which are
considered as the most potential prebiotics substrates (Rycroft et al., 1999).

Table 5-1 lists some of oligosaccharides and their prebiotics properties.
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Maltodextrin is digestible and easily absorbable carbohydrate and lacks the
criteria to be considered as a prebiotic. However, it has been widely used in food
industry as a food additive to substitute fats, modify texture and as a sweetener.
Also, maltodextrin, being a digestible and non-fermentable carbohydrate, has
been used as a placebo (baseline control) for oligosaccharide prebiotics (e.g.
oligofructose) dietary intervention studies (Dewulf et al., 2013, Cani et al., 2005,
Verhoef et al., 2011, Cani et al., 2009). In contrast, inulin and oligofructose
(heterogeneous blends of fructose polymers) are non-digestible oligosaccharides
that pass through the upper GI tract and reach the colon where they can be
fermented by the intestinal microbiota. They have the basic characteristic of
being non-digestible and fermentable by the intestinal flora. Recent studies
reported that they modulated the microbiota ecology and host physiology in
animals and humans (Delzenne et al., 2011a, Delzenne et al., 2011b), hence they
are considered as the most likely prebiotic candidates amongst tle dietary

oligosaccharides.

Table 5-1 Summary of the prebiotic effects of some oligosaccharides

Prebiotics criteria

Carbohydrate Nondigestible Fermentable Selective Prebiotics status
Galactooligosaccharides Probably Preliminary data Yes Yes
Glucooligosaccharides No available data  No available data  No available data  No
Inulin and oligofructose Yes Yes Yes Yes
Isomaltooligosaccharides Partially Yes Promising No
Lactosucrose No available data  No available data  Promising No
Lactulose Probably Preliminary data Yes Yes
Maltodextrin No No No No
Soybean oligosaccharides ~ No available data ~ No available data ~ No available data  No
Xylooligosaccharides No available data  No available data  Promising No
Table reproduced from Roberfroid, 2007 (Roberfroid, 2007).
5.1.3 Oligofructose: chemistry and sources
Oligofructose  (also  known as  fructooligo- HO
saccharides) is a subgroup of inulin, and defined 6n °
chemically as a short chain of 2 - 10 fructose OH 1o
HO o}
monosaccharide residues connected by a p(2—1) W
glycosidic bond (Figure 5-2) (IUB-IUPAC, 1982). o ?He )
. . . HO 0
Inulin and oligofructose are naturally occurring food 0. O™\
HO B(2—1) glycosidic bond
ingredients which are present in more than 36,000 o OH
plant species including chicory, wheat, onion,  oOligofructose n = 2-10, inulin n ~ 35

bananas and garlic (Carpita et al., 1989). They are

commonly used as dietary fibre in processed food to

Figure 5-2 Chemical structure
of inulin and oligofructose
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improve the texture of fat-free products or to reduce calorie intake. Most of the
available oligofructose in food industry market is synthesised from sucrose (a
disaccharide of glucose and fructose), extracted or enzymatically derived from the
longer chain inulin polymers in chicory roots. Chicory root of Cichorium intybus
contains 5-10% oligofructose and 15-20% inulin (Niness, 1999).

5.1.4 The current research on the effect of oligofructose on intestinal

microbiota in health and disease state

The B(2 - 1) glycosidic bonds (Figure 5-2) prevent oligofructose from being
digested like a typical carbohydrate in the upper GI tract and, therefore, it
passes through to the colon where it is fermented by the microbiota. The
fermentation process of oligofructose in the colon produces gases (e.g. hydrogen
and methane) and short chain fatty acids (SCFAs). The fermentation products of
oligofructose in the colon are believed to induce a variety of health-promoting
prebiotic effects, for instance, SCFAs such as butyrate, lactate, propionate and
acetate provide essential cellular nutrients that enhance the proliferation of
epithelial cells and improve the absorption capacity of colonocytes for minerals
and hence, improve bone health (Coxam, 2007, Scholz-Ahrens et al., 2001). Also,
these SCFAs have been reported to improve intestinal motility (Sabater-Molina

et al., 2009) and modulate the immune system (Arslanoglu et al., 2007).

The presence of oligofructose in the colon was reported to alter the composition
of the gut microbiota (Blaut, 2002). Different dietary interventions have been
reported to investigate the effect of oligofructose and its fermentation products
on intestinal microbiota in health and disease state. Table 5-2 summaries a
selected list of reported metabolites that have shown significant differences in the
metabolic profile of different body fluids due to oligofructose dietary intervention
compared to controls under different health and disease conditions. Dewulf et al.,
reported a "H-NMR-based metabolomics study to investigate the modulation of
inulin/oligofructose 50:50 supplement on gut microbiota and host metabolism in
obese women using urine and plasma samples (Dewulf et al., 2013). Simultaneous
analysis of faecal samples using qPCR and human intestinal tract chip (a
phylogenetic microarray) were also performed to assess the composition of the
gut microbiota. They reported increased concentrations of Bifidobacterium and
Faecalibacterium prausnitzii bacteria; which were negatively correlated to the
altered level of serum lipopolysaccharide. Inulin/oligofructose supplement also

decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium;
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an effect associated with the altered levels of bacteria-related metabolites such as
lactate, hippurate and phosphatidylcholine in obese women compared to controls.
Similarly, Vitali et al., used GC-MS to investigate the effect of oligofructose on
the metabolic profile of gut microbiota in healthy subjects (Vitali et al., 2010).
Altered levels of SCFAs, ketones, carbon disulphide and methyl acetate were
measured in the faecal extract of oligofructose treated subjects compared to
controls, indicating a perturbed metabolism of gut microbiota due to

oligofructose.

De Preter and co-workers performed a GC-MS metabolomics approach on faecal
samples from Crohn’s disease patients and healthy controls before and after
oligofructose/inulin dietary intervention (De Preter et al., 2013). They reported a
list of metabolites that showed significant differences between groups in the study

(Table 5-2). Significantly decreased levels of butyrate, hexanoate, pentanoate,
heptanoate and p-cresol were found in Crohn’s disease patients compared to

healthy controls. Whereas, an elevated level of butyrate was found in Crohn’s
disease patients after receiving oligofructose/inulin diet compared to baseline,
indicating that oligofructose fermentation in the colon upregulated butyrate to
the level in healthy subjects. Presence of butyrate and other SCFAs in the colon
is believed to improve health and welfare; for instance, they decrease the pH in
the colon and, therefore, they selectively stimulate the proliferation of health-
promoting bifidobacteria and lactobacilli which are perfectly adaptable to such
an acidic environment. Moreover, the decrease in the pH increases the resistance

to the growth of enteric pathogens (Gibson et al., 1995).

Table 5-2 A selected list of metabolites reported as potential biomarkers for oligofructose
dietary intervention under different health and disease state

Author
(Dewulf et al., 2013)

Method
NMR

Altered metabolites
Creatinine
Hippurate

Lactate
Lipopolysaccharide
Phosphatidylcholine
Acetate

Alanine

Glutamine

Glycine

Isobutyrate

Lactate
Oligofructose
Phosphatidylcholine

Sample type Type of intervention

Urine Metabolic changes in

obesity
Plasma

(Keller et al., 2011) Plasma/horses NMR Laminitis in horses

(Lamers et al., 2003b)

(Lamers et al., 2003b)

Cell culture

Cell culture

NMR

NMR

Caco-2 cells profiling

Caco-2 cells profiling

Alanine
Glucose
Glutamate
Isoleucine
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Author

Sample type

Method

Type of intervention

Altered metabolites

(continued)

(Meijers et al., 2010)

(De Preter et al., 2010)

(De Preter et al., 2011)

(De Preter et al., 2013)

(Verbrugghe et al., 2010)
(Vitali et al., 2010)

(Windey et al., 2014)

Plasma

Faecal sample

Faecal extract

Faecal extract

Urine

Faecal extract

Faecal water

HPLC
GC-MS

GC-MS

GC-MS

GC-MS
GC-MS

GC-MS

Targeted analysis in
haemodialysis patients
Effect on appetite in

healthy subjects

Metabolic changes in
healthy subjects

Profiling in Crohn’s
disease

Metabolic changes in
domestic cats
Metabolic changes in
healthy subjects

high dose in healthy
subjects

Lactate

Leucine
Phenylalanine
Tyrosine

Valine

p-Cresol sulphate

Acetate

Butyrate

Dimethyl sulphide
p-Cresol

Propionate

Acetate

Butyrate

Dimethyl bisulphide
Dimethyl sulphide
Dimethyl trisulphide
Ethyl benzene
Pentanoate
1-Hexanol

2,2 4-Trimethyl-pentane
2,5-Dimethyl furan
2-Butanone
2-Methyl-2-propenyl-
benzene
2-Methylbutyrate
2-Methylpropanal
2-Pentyl furan
3-Methyl-1H-indole
3-Methyl-2-pentene
Acetone
Acetophenone
Benzeneacetaldehyde
Butyrate

Carbon disulphide
Dimethyl sulphide
Furan

Heptanoate

Hexane

Hexanoate
Methanethiol
Methyl 2-propenyl
disulfide

Methyl alcohol
Methyl propyl
disulphide
Nonyl-cyclopropane
Octanoate
Pentanoate

Phenol

Phenol, 4-methyl-
alpha-terpinene
Propionylcarnitine

Acetate

Valerate
2-Propanone
Carbon disulphide
Methyl acetate
Indole

Thiophene
Isovalerate
p-Cresol
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Most of the reported metabolomics studies investigating the effect of oligofructose
on the metabolic signature of gut microbiota (Table 5-2) relied on the analysis of
faecal samples due to practical inaccessibility to sample differemt parts of the
colon (Figure 5-3). However, several metabolites produced by the intestinal
microbiota are rapidly absorbed, metabolised and eliminated by the host
depending on GI transit time (Lewis and Cochrane, 2007). For example, more
than 95% of SCFAs produced from prebiotics fermentation im the gut are
absorbed by the host, making their determination a difficult task to attain from
faecal samples. Therefore, the use of other body fluids such as wrine or plasma
may provide a better alternative and improve metabolic profiling of gut
microbiota. Urine, compared to plasma, is simple, readily available and non-
invasive samples for metabolomics studies and provides an end metabolite pool of
the body. Moreover, the kind of small, polar metabolites which are produced by
the gut microflora are generally excreted efficiently in the urine, and hence this is
an added advantage. Therefore, urine profiling has the potential to increase our
understanding of metabolites variation associated wita the perturbed metabolism
and composition of gut microbiota due to oligofructose intervention. However,
simultaneous faecal sample analysis is desirable to estimate and correlate the

composition of the gut microbiota to the altered metabolites that might be found

Human metabolism
Microbial metabolism

1n urine.

Absarption

Dietary intake
Carbohydrates
Proteins

Lipids
Micronutrients

Small intestine

Feces

Figure 5-3 A schematic representation of site and fate of the expected metabolites
produced by the interplay between human and intestinal microbiota due to oligofructose.
Oligofructose passes-through the small intestine and reaches the colon, where it is
fermented by the microbiota. This process produces specific microbial metabolites which
are either execrated in faeces or absorbed. The absorbed metabolites pass to the liver
where they are subject to human metabolism and can be execrated in urine and breath
(Hamer et al., 2011).
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5.1.5 The current role of FODMAP diet on gastrointestinal

physiology and microbiota

Oligofructose and inulin enriched diet has shown to promote health and welfare
by selectively stimulating the activity and growth of intestinal microbiota in
health and disease (Verhoef et al., 2011, De Preter et al., 2010, De Preter et al.,
2011, Meijers et al., 2010). However, some studies proposed that such poorly
absorbed short-chain carbohydrates and polyols (designated as FODMAP:
Fermentable Oligo-, Di-, Mono-saccharides And Polyols) exacerbated the
symptoms of inflammatory bowel disease such as Crohn’s disease and irritable
bowel syndrome (IBS) including abdominal discomfort and bloating (Gibson and
Shepherd, 2005, Gibson and Shepherd, 2010). An enriched FODMAP diet is
thought to draw water into the small intestine by osmosis and increase the
fermentable carbohydrates in the proximal colon, which is likely to induce
luminal distension and metabolic effects on motility (Gibson and Shepherd,
2005). Luminal distension induces pain, bloating and clinical abdominal
destination along with possible secondary motility changes (Gibson and
Shepherd, 2010). Recent studies demonstrated that dietary supplements with no
or low FODMAP contents alleviated the GI symptoms in IBS patients, and
hence low FODMAP diet has been proposed as a treatment of IBS (Chumpitazi
et al., 2015, Halmos et al., 2014, Magge and Lembo, 2012).

Recently, Hoad et al., investigated the actual effects of FODMAP on
gastrointestinal physiology by measuring free mobile water in the small bowel
and colonic gas using a valid MRI protocol (Hoad et al., 2007) developed by the
same group. They reported that a single, high dose of inulin (40 g) distended the
colon with gases compared to fructose, glucose or a mixture of both, while
fructose but not inulin increased water in small intestine (Murray et al., 2014).
Such a high dose of inulin is beyond the normal range of dietary variation, but
these results supported the hypothesis that a FODMAP diet increases the
production of colonic gases and the causes of luminal distension. However, no
correlation was found between the extent of luminal distension and the reported
symptoms of bloating and pain in participants, suggesting that the colon
naturally accommodates excess gases without causing clinical GI symptoms. This
interesting finding indicates that the ingestion of FODMAP enriched diet is well
tolerated by healthy subjects and, therefore, their use still might be advantageous

for exerting the anticipated prebiotic effect on gut microbiota. However, to draw



172

such conclusion, further assessment of FODMAP such as oligofructose on

gastrointestinal form, function and microbiota are essentially needed.
5.1.6 Aims and objectives

The aim of this chapter is to use the high resolution mass spectrometry methods
developed in the previous chapters to explore the changes in the urinary
metabolic profiles of healthy subjects treated with a low FODMAP and

oligofructose diet. The specific objectives required to fulfil this aim are as follows:

e To investigate the urinary metabolic profile changes in healthy subjects
due to the effect of low FODMAP and oligofructose diet on gut microbiota
using LC-MS and FIE-MS.

e To identify urinary biomarkers, which can differentiate between low

FODMAP and oligofructose diet study group and controls.
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5.2 Materials and experimental

5.2.1 Materials and reagents

MS grade acetonitrile and methanol were supplied from Fisher Scientific, UK.
Water (VWR international, EC), formic acid, 0.1% formic acid in water (Sigma-
Aldrich, Germany), leucine enkephalin, are MS grade and minimum handlings
were performed to minimise any possible contamination. Ultra-pure LC-MS grade
ammonium acetate was supplied from Fluka, Sigma-Aldrich, Netherland.
Artificial urine was prepared using a mixture of 35 compounds and they were

supplied from different sources as detailed in chapter 2, Table 2-2.
5.2.2 LC-MS and FIE-MS analyses

Chromatography was performed using Accela UHPLC system (Thermo Fisher,

USA) on a BEH HILIC column (2.1 x 100 mm, 1.7 pm particle size, Waters,
USA) as detailed previously in chapter 2, section 2.2.3. Orbital trap mass
spectrometer (Exactive-Orbitrap, Thermo Fisher Scientific, USA) was used in
simultaneous ESI+ and ESI- modes for LC-MS. The operational parameters
were: spray voltage 3.2 kV (ESI+), 2.4 kV (ESIL-), capillary voltage 25 V (ESI+),
-27 V (ESI-), sheath, auxiliary and sweep gas flow rate were: 20, 5 and 5
(arbitrary unit), respectively, for both modes. Capillary and heater temperature
were maintained at 350 and 120 ° C, respectively. Data were acquired in full scan
mode with resolution 25,000 from m/z 60-1000 with 4 Hz scan rate.

Flow injection ESI-MS (FIE-MS) analysis used the same Accela UHPLC system

to inject 10 pL of the sample without a column as detailed in chapter 2, section
2.2.4. The above orbital trap mass spectrometer was also used in simultaneous
ESI+ and ESI- modes for FIE-MS. The MS parameters were: spray voltage 1.5
kV (ESI+), 1.8 kV (ESI-), capillary voltage 25 V (ESI+), -40 V (ESI-), sheath,
auxiliary and sweep gas flow rates were: 50, 5 and 5 (arbitrary unit) (ESI+/-),
respectively. Capillary and heater temperature were maintained at 250 and
120 °C, respectively, in both modes. Data were acquired in full scan mode with
resolution 25,000 from m/z 50-1000 with 4 Hz scan rate.
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5.2.3 Subject recruitment

This study, was undertaken as a part of a randomised double-blind controlled
trial to study the effect of low FODMAP diet and dietary oligofructose on
gastrointestinal form, function and microbiota in healthy volunteers (abbreviated
as FOG study) using a diagnostic MRI protocol (Hoad et al., 2007). FOG study
was designed by Prof Robin Spiller (study chair), Dr Giles Major, Dr Luca
Marcian, Ms Shanthi Krishnasamy (Nottingham Digestive Diseases Centre
(NDDC), Queen’s Medical Centre (QMC), Nottingham, UK), Prof Penny
Gowland (Sir Peter Mansfield Magnetic Resonance Centre (SPMMRC),
University of Nottingham, UK), Dr Mathew Diggle, Dr Tim Sloan (Department
of Microbiology, University of Nottingham, UK), Prof David Barrett (Centre for
Analytical Biosciences, University of Nottingham, UK) and Dr Miranda Lomer,

(Division of Nutrition and Dietetics, King’s College London, UK). The role in
this study was to investigate the influence of oligofructose and low FODMAP

diet on gut bacterial metabolites detected in urine.

Subject recruitment, dietary intervention and urine collection were undertaken
by NDDC and SPMMRC, Nottingham, UK. 48 healthy subjects were voluntarily
recruited by local advertisements for a 2-week double-blind dietary intervention
study. Participants were 18 years old or above and gave informed consent.
Exclusion criteria were: self-declared vegetarian, vegan or kosher/halal diet as the
study involves consumption of carmine red dye of animal origin, pre-existing
bowel-complaints or diseases such as IBS, intestinal stoma and resection of
oesophagus, stomach or intestine (excluding the appendix), health conditions
that contraindicate the use of MRI scanning such as pacemakers, metallic
implants or above MRI scanner weight limit (i.e. more than 120 kg), any medical
conditions will compromise the participation in the study (e.g. diabetes mellitus)
and use of medicines that affect bowel functions including antibiotics. Also,
participants were asked to limit their alcohol intake to less than or equal to 35
units/week and less than or equal to 8 units/day. A diet evaluation using food-
frequency questionnaire was also used to evaluate and exclude subjects with
unusual fibre intake. 11 subjects were excluded after the consent or withdrew
from the study, whereas the remaining 37 subjects were included in the analysis.
Ethical approval was provided by University of Nottingham and QMC Ethics
Committees and appropriate written informed consent was obtained from each

participant.
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5.2.4 FOG dietary intervention

The study’s participants lived at home and they attended 5 visits (visit 1-5)
throughout the 2-week intervention period as illustrated in Figure 5-4. Morning
spot urine (visit 2) was collected from subjects after 1 week of normal diet plan
(spot urine controls), and then a 24 h pooled urine sample was collected in the
next day (visit 3, 24 h urine controls). Previous in vivo and in vitro intervention
studies demonstrated that oligofructose and inulin exert their prebiotic effect and
change the colonic microbiota community within 12 h to 7 days (Euler et al.,
2005, Bouhnik et al., 1999, Kolida et al., 2002, Gibson and Roberfroid, 1995).
Therefore it was decided to undertake oligofructose intervention for a week. All
participants went on a low FODMAP diet by reducing their intake of poorly
digested and fermentable carbohydrates for 7 days. As part of the diet, subjects
were advised to avoid food containing fructans, fructose, galacto-oligosaccharides
and polyols containing food and limit their dietary lactose to less than 4 g/meal
(Table 5-3). For ease of regimen education, food types were colour-coded for
participants using the traffic light system; red (food to avoid), yellow (food in
moderation) and green (allowed food). The type of dietary intake to avoid was
listed to common food groups, i.e. fruits, vegetables, bread/rice/cereal,
meat /poultry /eggs and milk/milk products. Considering that most of the foods
contain more than one poorly absorbable and fermentable carbohydrate, listing
them as food groups made understanding easier. As the diet was restrictive and
could be expensive, subjects were given tips on food preparation and shopping,
and they were also given a loaf of gluten free bread and a packet of rice to take

away.

Table 5-3 Some food examples that should be avoided during the 2™ week of the dietary
intervention

Galacto-
Fructans oligosaccharides Fructose Polyols Lactose
Fructo-oligosaccharide Cashews Apple Cauliflower | Ice-cream
Garlic Chickpeas (baked Concentrated Mannitol Milk
Inulin beans, kidney beans | fruit juices Mushroom Soft
Leek etc.) Dried fruits Sorbitol cheese
Mushroom Legumes Honey Swoet Yogurt
Oligofructose Lentils potato
Onion Pistachios Watermelon
Wheat/Rye
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Low FODMAP diet and
supplement

Follow usual diet

Day| 0 | 1 | 2| 3| 4|56 7|89 |10]11]|12|13| 14| 15

Visit 1: Consent & Visit 2: morning Visit 4: morning
food frequency spot urine spot urine
questionnaire (control) (dietary
intervention)
Visit 3: Visit 5:
24 hr pooled urine 24 hr pooled urine
(control) (dietary intervention)
Start low FODMAP Return supplement
diet & supplement

Key: |:| 24 hr urine collection

Figure 5-4 Low FOODMAP diet and supplement intervention study diagram. Visit 1, 2
and 4 took place in the Nottingham Digestive Diseases Centre (NDDC), Queen’s Medical
Centre, Nottingham, UK. Visit 3 and 5 took place at the 1.5T scanner of the Sir Peter
Mansfield Magnetic Resonance Centre (SPMMRC), University of Nottingham,
Nottingham, UK. Urine samples for visit 2-5 were collected at 8:30am after morning
fasting.

During the low FODMAP dietary period, subjects (n = 37) were assigned to
receive 7 grams twice a day of either a placebo (maltodextrin, an easily digestible

long-chain glucose polysaccharide) (group A) or oligofructose (group B)

supplement using a systematic method, in which half of the study’s participants
received the oligofructose supplement (n = 19) and the other half remained in
the placebo group (n = 18). Maltodextrin powder has a physical appearance and
a taste similar to oligofructose and has been used in previously reported dietary
interventions as a placebo for inulin-type fructans such as oligofructose (Dewulf
et al., 2013, Cani et al., 2005, Verhoef et al., 2011, Cani et al., 2009). Carmine
red dye, a food dye of animal origin, was mixed with the placebo and
oligofructose supplement for colour matching, and they were both provided in
identical opaque packages. The supplement powder was served as a warm drink.
During visit 4 (i.e. after 6 days of low FOODMAP and supplement), morning
urine was collected from the subjects and then pooled 24 h urine was collected in
the next morning (visit 5). To assess the compliance to the supplement, subjects
provided in visit 2 (i.e. the start of dietary intervention) with a pre-weighed
supplement bag, which returned back at the end for monitoring. The subjects,

caregivers, investigators and outcomes assessors involved were blinded to the
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intervention; however for ease of classification, eight sets of urine samples were

collected:

1. A2: A (maltodextrin, control) is spot urine samples (n = 18) collected
from subjects in maltodextrin supplement group (A) during visit 2.

2. A3: A (maltodextrin, control) is 24 h urine samples (n = 18) collected
from subjects in maltodextrin supplement group (A) during visit 3.

3. A4: A (maltodextrin) is spot urine samples (n = 18) collected from
subjects in maltodextrin supplement group (A) during visit 4 (i.e. after 6
days of low FODMAP and maltodextrin supplement).

4. A5: A (maltodextrin) is 24 h urine samples (n = 18) collected from
subjects in maltodextrin supplement group (A) during visit 5 (i.e. after 7
days of low FODMAP and maltodextrin supplement).

5. B2: B (oligofructose, control) is spot urine samples (n = 19) collected from
subjects in oligofructose supplement group (B) during visit 2.

6. B3: B (oligofructose, control) is 24 h urine samples (n = 19) collected from
subjects in oligofructose supplement group (B) during visit 3.

7. B4: B (oligofructose) is spot urine samples (n = 19) collected from
subjects in oligofructose supplement group (B) during visit 4 (i.e. after 6
days of low FODMAP and oligofructose supplement).

8. B5: B (oligofructose) is 24 h urine samples (n = 19) collected from
subjects in oligofructose supplement group (B) during visit 5 (i.e. after 7

days of low FODMAP and oligofructose supplement).

All urine samples were collected in urinary collection vessels without the use of

preservatives. Samples were then, aliquoted in triplicates of 2.0 mL into pre-

labelled cryotubes and stored immediately in -80 “C freezer.

5.2.5 Preparation of urine samples and artificial wurine for

metabolomics analysis

Thawed spot and 24 h pooled urine samples of subjects were prepared with the
optimised urine dilution protocol for LC-MS and direct ESI-MS analyses as
described in chapter 2, section 2.2.7. For metabolomics analysis, pooled QC
samples for spot urine and 24 h urine were prepared separately by mixing 20 pL
aliquots taken from each urine sample (i.e. spot or 24 h urine) and was treated
the same as described for the samples. Artificial urine was prepared as described

in chapter 2 section 2.2.6.
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5.2.6 LC-MS and FIE-MS metabolomics analysis

Spot urine and 24 h urine samples were analysed in two separate analytical runs,
however, they both treated the same during the preparation and analysis.
Spot/24 h urine samples collected after the dietary intervention and controls
were randomised and analysed in a single analytical run using simultaneous
positive and negative ion modes with LC-MS and FIE-MS. Six injections of
pooled QC sample were analysed at the beginning of the run to equilibrate the
column (LC-MS) prior the analysis. Pooled QC urine sample were interspaced
throughout the run to check the stability, robustness, repeatability and
performance of the analytical system. Leucine enkephalin, m/z 556.2771 (ESI+),

554.2615 (ESI-) was spiked in every sample (0.2 pg/mL) to monitor mass
accuracy within each run. Blanks were injected after each sample in FIE-MS

analysis to minimise the carryover effect, if any.
5.2.7 Data analysis and metabolite identification

The raw data for LC-MS and FIE-MS were acquired and visualised using
Xcalibur v2.1 software (Thermo Scientific, USA). The performance of the
analytical methods was validated by monitoring a representative set of urine
metabolites in the pooled QC sample as described previously in chapter 3, section
3.2.7. In addition, the quality of the datasets obtained was assessed using
methodology proposed by Want et al., (Want et al., 2010) for LC-MS, and
Beckmann et al., (Beckmann et al., 2008) for FIE-MS, as detailed in chapter 2,
section 2.2.11.

For metabolomics analysis, full datasets acquired by LC-MS and FIE-MS from
urine samples before (controls) and after dietary intervention were imported and
pre-processed by Progenesis QI software using within-subject design. Within-
subject design is a time series experiment which is suitable for experiment where
each subject has been sampled at different time points. Such design eliminates or
reduces individual differences as a source of between condition differences, which
helps to create a more powerful statistical test (Nonlinear-Dynamics, 2014). Pre-
processing steps include: peak picking, peak alignments, normalisation and
transformation as previously detailed in section 2.2.11. Automatic deconvolution
of the extracted m/z variables was carried out using Progenesis QI to remove

isotopes, adducts, and other confounding peaks resulting from MS detection.
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Normalised abundance of extracted metabolites peaks (RT, m/z) pairs (LC-MS)
and m/z (FIE-MS) were exported for multivariate analysis (MVA). Multivariate
data analysis using principal component analysis (PCA) and orthogonal partial
least squares-discriminant analysis (OPLS-DA) were used to investigate
metabolic changes between A (maltodextrin), A (maltodextrin, control), B
(oligofructose) and B (oligofructose, control) datasets using Simca P +14
(Umetrics AB, Sweden). To maximise the differences between the study groups,
successive OPLS-DA models based on two groups: A (maltodextrin) versus A
(maltodextrin, control) and B (oligofructose) versus B (oligofructose, control),
were generated. The obtained OPLS-DA models were validated using cross-
validation and permutation test. The validation results were used to assess the
suitability of the models for further metabolomics data analysis based on the
type of urine samples used (i.e. spot urine or 24 h urine). The more suitable
OPLS-DA models were then validated using a prediction method based on
randomly selected training (50%) and test sets (50%) of samples. The specificity
and selectivity of the prediction models were further tested using area under the

ROC (receiver operating characteristic) curve (AUC).

The ions responsible for the class separation in the OPLS-DA models of dietary

intervened urine samples and controls were selected using Variable Importance
for the Projection (VIP) and variables loadings plots. Student’s t-test was
performed to test the significant difference of the selected ions between the two
groups. Prior to student’s ¢-test, ArcSinh transformation (Jones, 2008) was

applied to restore normality. The p-values of the student’s t-test were adjusted
using false discovery rate (FDR) for multiple testing problems. Tentative
identification of significantly altered urinary metabolites due to dietary
intervention was achieved by interrogating the Human Metabolome Database
(HMDB), for possible identification based on accurate mass measurements within
5 ppm mass error (Wishart et al., 2013). In-house urine metabolite database
(built using the same LC-MS described in this study) was also used for
identification based on accurate mass determination and retention times. For
ease of biological interpretation and to concentrate on the metabolites related to
the effect of low FOODMAP and oligofructose supplement, the common

metabolites related to maltodextrin (baseline) and diet were excluded.
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5.3 Results

5.3.1 Subjects’ compliance to dietary supplement

Qualitative assessment by the Nottingham Digestive Diseases Centre (NDDC)
researchers during the study reported a compliance with the supplement ranged
from 82% - 147%. These results indicate good compliance for both maltodextrin

and oligofructose during the dietary intervention.
5.3.2 Validation of LC-MS and FIE-MS performance

The quality of datasets obtained from mass spectrometry analysis is of
paramount importance as it has a direct impact on the final biological outcome
obtained from a metabolomics study. Therefore, a pooled QC approach (Want et
al., 2010, Gika et al., 2007) was used to assess the quality of the acquired MS
datasets from FOG dietary intervention urine samples. All spot/24 h urine
samples of FOG dietary intervention were analysed in a single LC-MS and FIE-
MS analytical runs with pooled QC samples being interspaced throughout the
analysis. Appendix G reports the percentage of relative standard deviation
(%RSD) of the retention times (RT), peak areas (LC-MS) and peak intensities
(FIE-MS) of selected set of 58 metabolites found in the pooled QC sample. A
summary of the mean and the range of these RSD% values are listed in Table
5-4. In the pooled QC sample datasets of spot urine, the mean RSD% values of
the selected urine metabolites peak areas (LC-MS) and peak counts (FIE-MS)
were 7 % (range: 3 - 20%) and 10% (range: 2 - 22%), respectively. Whereas they
were 9 % (range: 3 - 15%) and 10% (range: 3 - 22%), for peak areas (LC-MS) and
peak counts (FIE-MS), respectively, for 24 h urine. LC-MS retention time shifts
for both spot and 24 h urine were less than 0.07 min (£ 1% RSDs) and mass
accuracy shift was less than 5 ppm in both positive and negative ion modes for
all analyses. These values were within the recommended acceptable limits of the
Food and Drug Administration (FDA) for bioanalysis (FDA, 2013) and
biomarker discovery (Gika et al., 2007, Want et al., 2010). In addition, the
quality of the datasets obtained with LC-MS was assessed using the peaks
present in at least 80% of QC samples. The RSD% of mean peak areas was less
than 30% for 73% (spot urine) and 75% (24 h urine) of these peaks, which was
lower than the suggested threshold for metabolomics analysis (Want et al., 2010).
The analytical runs demonstrated adequate stability as indicated by sufficient

clustering of the pooled QC samples towards the centre of the PCA score plots
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with both methods (Figure 5-11). These results validate the analytical
performance of LC-MS and FIE-MS for metabolomic analysis of FOG dietary
intervention study spot and 24 h wurine samples. Also, for the purpose of
evaluating the FIE-MS against the LC-MS, a direct comparison of the LC-MS
pooled QC samples selected peaks was performed. FIE-MS was able to detect
78% (spot urine) and 74% (24 h urine) of the peaks found by the LC-MS. The
above results demonstrated that the FIE-MS consistency, metabolic coverage and
reproducibility for the metabolomic analysis of the dietary intervention urine

samples were acceptable and as concluded in chapter (chapter 2).

Table 5-4 A validation summary of LC-MS and FIE-MS analyses for metabolomics
profiling of FOG dietary intervention spot/24 h urine samples using selected urine
metabolites peaks from pooled QC samples.

LC-MS (BEH-HILIC) FIE-MS ﬁﬁfgtable
Description Spot urine 24 h urine Spot urine 24 h urine
1. Peak detection
Total number of peaks 58 58 58 58 -
Number of peaks detected 57 57 45 43 -
% of peaks detected 98% 98% 78% 74% -
Artificial urine metabolites detected 18 18 15 14 -
2. Retention time (RT) variability
RT RSD% (mean) 0.35% 0.46% - - 1%
RT RSD% (range) 0.06 - 1.36% 0.11 - 0.97% - - 0.00 - 1.00%
RT Shift (mean) 0.03 0.04 - - -
RT Shift (range) 0.01 - 0.07 0.00 - 0.07 - - -
3. Peak intensity variability
Peak area/count RSD% (mean) % 9% 10% 10% 30%
Peak area/count RSD% (range) 3-20% 3-15% 2 - 22% 3-22% 0-30%

Selected peaks retention times and peak areas/counts statistics were calculated from the pooled QC urine
sample injections throughout the analytical run (n = 9). 'Acceptable limits based on FDA regulation for
bioanalysis (FDA, 2013) and the recommendations for a reliable metabolomics analysis (Gika et al., 2007,
Want et al., 2010) .

5.3.3 Metabolomics analysis of FOG urine samples: a human dietary

intervention using low FODMAP and oligofructose diet

LC-MS and FIE-MS analyses

Spot urine and 24 h urine samples of FOG dietary intervention classes were
analysed in two separate analytical runs. In each run, complete LC-MS and FIE-
MS datasets were acquired for urine samples of A (maltodextrin, n = 19), A
(maltodextrin control, n = 18), B (oligofructose, n = 19) and B (maltodextrin
control, n = 18). Standard ESI+ and ESI- LC-MS base peak chromatograms
(BPCs) obtained from these classes are shown in Figure 5-5 and Figure 5-6,

respectively. Visual examination of chromatography showed an adequate



182

separation with most of urinary metabolites eluted within 9 min as shown in
appendix G. The metabolites observed in chromatography were mainly comprised
a range of amino acids, acylcarnitines, nitrogen containing compounds, organic
acids, purines and pyrimidines (Table 5-5). Amino acids such as phenylalanine,
L-alanine and L-tryptophan were eluted within a narrow retention time window
of 5.0-6.7 min, whereas acylcarnitines including acetylcarnitine and
butyrylcarnitine were eluted within a slightly higher retention time window (6.7-
7.5 min). Organic acids such as hippuric acid, homovanillic acid, 5-
hydroxyindole-3-acetic acid, 4-Aminohippuric acid, lactic acid and uric acid were
detected within a wider retention time window (0.5-5 min). To give an overview
of the differences in the findings between LC-MS and the FIE-MS; summed mass
spectra obtained from A (maltodextrin), A (maltodextrin control), B
(oligofructose) and B (oligofructose control) urine samples are presented in
Figure 5-7 (LC-MS, ESI+), Figure 5-8 (LC-MS, ESI-), Figure 5-9 (FIE-MS,
ESI+) and Figure 5-10 (FIE-MS, ESI-). For ease of comparison, some of the
known urinary metabolites are annotated in the spectra. Organic acids such as
3,4-dihydroxybutyric acid, lactic acid and butyric acid were mainly detected in
the negative ESI mode in both LC-MS and FIE-MS; however, some of them such
as hippuric acid were observed in both ESI modes of FIE-MS. Taking all
molecular features into account, most of the detected ions were concentrated in
the lower mass range (m/z 60-300) in FIE-MS, while relatively higher mass ions
(m/z 60-400) were detected with LC-MS. Similar MS spectra were obtained with
LC-MS and FIE-MS from the wurine samples of A (maltodextrin), B
(oligofructose) and controls. The observed metabolic changes associated with
maltodextrin) and oligofructose compared to controls were relatively small;
therefore, detailed multivariate analysis using PCA and OPLS-DA was used to

separate and classify urine samples in the study.

Table 5-5 Some of urinary metabolites detected with LC-MS from the analysis of urine
samples of FOG dietary intervention study

Metabolites RT(min) m/z Polarity Metabolites RT(min) m/z Polarity
1. Amino acids Lactic acid 2.33 89.0268  ESI-
L-alanine 6.65 88.0399 ESI- MHPG sulphate 0.75 263.0225 ESI-
Phenylalanine 5.47 166.0868 ESI+ Uric acid 1.49 167.0205 ESI-
L-Tryptophan 5.39 203.0821 ESI- 4. Nitrogen containing compounds

2. acylcarnitines Urea 1.46 61.0399 ESI+
Acetylcarnitine 7.29 204.1230 ESI+ Creatine 6.65 132.0769 ESI+
Butyrylcarnitine 6.74 232.1546 ESI+ Creatinine 3.15 114.0664 ESI+
3. Organic acids Trimethylamine N-oxide 7.71 76.0758  ESI+
4- Aminohippuric acid 3.96 193.0613 ESI- 5. Purines and pyrimidines

5-Hydroxyindole-3-acetic acid 3.02 190.0504 ESI- Hypoxanthine 1.98 137.0459 ESI+
Hippuric acid 4.06 178.0509 ESI- Cytidine 2.40 226.0828 ESI+
2-Hydroxyisobutyric acid 3.26 103.0395 ESI- Uridine 1.71 243.0621 ESI-
Homovanillic acid 3.15 181.0501 ESI-

4-Hydroxy-3-methoxy-mandelic  2.80 197.0450 ESI-

acid
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Figure 5-5 LC-MS base peak chromatograms (BPC) of 24 h urine samples before and
after FOG dietary intervention. From top to bottom, BPC of urine samples of A
(maltodextrin), A (control), B (oligofructose) and B (control) groups analysed by LC-
MS using BEH HILIC column in ESI positive mode.
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Figure 5-6 LC-MS base peak chromatograms (BPC) of 24 h urine samples before and
after FOG dietary intervention. From top to bottom, BPC of urine samples of A
(maltodextrin), A (control), B (oligofructose) and B (control) groups analysed by LC-
MS using BEH HILIC column in ESI negative mode.
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Figure 5-7 Typical LC-MS metabolic fingerprints of 24 h urine samples before and after FOG dietary intervention in positive ion mode. HILIC
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(b-2) B (control).
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Figure 5-8 Typical LC-MS metabolic fingerprints of 24 h urine samples before and after FOG dietary intervention in negative ion mode. HILIC
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B (control).
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Figure 5-9 Typical FIE-MS metabolic fingerprints of 24 h urine samples before and after FOG dietary intervention in positive ion mode.
Combined mass spectra (m/z 50-400) present the urine profile of: (a-1) A (maltodextrin), (a-2) A (control), (b-1) B (oligofructose) and (b-2) B

(control).



Relative Abundance

100— 96.9600 NL: 1.24E5
] (a-1) FIE-MS (ESI-), A (maltodextrin) 5_09#1-44 RT:
= 0.02-0.54 AV:22T:
90— FTMS {1,2} - p ESI
3 Full ms
80 [50.00-1000.00]
3 160.8420 Hippuric acid
704
60—
. 178.0508
] Uric acid
507 61.9880 | {47 0208
404
E 112.9855
304
= 197.8078
20
10
m 236.0095 268.8009
| | L1 | 316.9478 378.9185
fo min Lk " L
100— 96.9600 NL: 1.35E5
B 3_09#1-44 RT:
] (a-2) FIE-MS (ESI-), A (control) 002.0.54 AV: 22 T:
90— FTMS {1,2} - p ESI
J Full ms
807 [50.00-1000.00]
707 160.8419
E Uric acid Hi . id
607 167.0208 'Ppuyic acl
50
161.9879
40
E 178.0508
30
3 197.8078
20
10 215.0327
3 ‘ ‘ A 263.1036 _ o
07 T \“ ’\“ ‘A\ ‘\A“ T “'\ LJ\‘“‘\‘“‘\“‘L L m“j\““\ d \‘ A\ “\‘ T T s T i \‘ ‘\ T T T :\37\8\91\85
50 100 150 200 250 300 350
m/z

Relative Abundance

100

©
o

[o4]
o

N
o

[0
o

o
o

N
o

(&)
o

N
o

-
o

o

100

©
o

®
o

~
o

[0
o

a
o

IN
o

W
(=]

n
o

-
o

o

96.9601

] (b-1) FIE-MS (ESI-), B (oligofructose)

E Hippuric acid

= 178.0509

B Uric acid

3 167.0208

1 61.9879 Citric acid

é 112.9855

= 191.0196

] 199.8048

= 263.1035

= LY L Y P BT 310]9?10 378.9183

- 96.9600 160.8419

] (b-2) FIE-MS (ESI-), B (control)

4 61.9879

E Hippuric acid

E Uric acid

B 167.0208

4 178.0507

; Citric acid

3 191.0195

E 230.0127

3 [ 2991096 3260879 470 o1g4

& AR .1‘1d1‘AL.‘.A.‘A L m‘.‘.l“l gt sy PIETE

50 10 150 200 250 300 350 400
m/z

188

NL: 1.48E5
5_08#1-35 RT:
0.02-0.41 AV:17 T:
FTMS {1,2} - p ESI
Full ms
[50.00-1000.00]

NL: 1.09E5
3_08#1-37 RT:
0.02-0.44 AV:18T:
FTMS {1,2} - p ESI
Full ms
[50.00-1000.00]

Figure 5-10 Typical FIE-MS metabolic fingerprints of 24 h urine samples before and after FOG dietary intervention in negative ion mode.
Combined mass spectra (m/z 50-400) present the urine profile of: (a-1) A (maltodextrin), (a-2) A (control), (b-1) B (oligofructose), (b-2) B
(control).
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Evaluation of spot and 24 h urine samples of FOG dietary intervention for

urinary metabolomics using multivariate analysis

For a comprehensive modelling of the differences between the groups in the
study, datasets generated by LC-MS and FIE-MS were submitted for
multivariate analysis. Spot urine and 24 h urine samples were acquired in two
separate analytical runs. The raw datasets obtained from the analysis of spot
urine or 24 h urine samples of A (maltodextrin, n = 18), A (maltodextrin control,
n = 18), B (oligofructose, n = 19) and B (oligofructose control, n = 19) in a
single analytical run with pooled QCs (n = 9) interspaced in the analysis were
submitted for peak picking, peak alignment and normalisation using Progenesis
QI (Nonlinear-Dynamics, 2014). The datasets of spot urine analysed by LC-MS
and FIE-MS generated 7,690 and 1,053 variables, respectively, whereas 24 h urine
samples generated 5378 and 434 from LC-MS and FIE-MS, respectively (Table
5-6). The normalised datasets were exported to Simca P-+14 for multivariate
analysis. Unsupervised principal component analysis (PCA) was used to give an
unbiased overview for any possible trends and clustering within the sample
datasets. PCA score plots of spot or 24 h urine samples showed no separation or
clustering trends between the FOG study groups with LC-MS and FIE-MS
(Figure 5-11).

Supervised orthogonal partial least square-discriminant analysis (OPLS-DA)
models were constructed from spot/24 h urine samples to find differences and
discrimination between FOG dietary intervention groups. Figure 5-12 presents
the OPLS-DA score plots of A (maltodextrin), A (maltodextrin control), B
(oligofructose) and B (oligofructose control). Separation and clustering was
observed between A (maltodextrin), B (oligofructose) and their controls with
spot urine datasets from both LC-MS and FIE-MS. Complete separation and
clustering between all study groups was observed with 24 h urine datasets from
both methods. However, poor predictive ability (Q°) values and unexpected
separation of control sample groups were observed with these models (Table 5-6),
indicating model overfitting for both type of samples (spot and 24 h urine
samples). Therefore, subsequent OPLS-DA models were generated with only 2
classes to overcome overfitting problem (Eriksson et al., 2006a) as detailed in the

next section.

The high level of variability observed with spot urine (Q* = 0.140) compared to

24 h urine (Q* = 0.272) is quite consistent with previous studies (Saude et al.,
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2007, Fave et al., 2011, Araki et al., 1990, Carrieri et al., 2000). Saude et al.
investigated the variability associated with using spot urine for metabolomics
analysis; they observed high variance between metabolites in the samples (Saude
et al., 2007). Similarly, Fave et al., demonstrated that spot urine collection at
different times of the day gave distinctly different metabolic profiles (Fave et al.,
2011). Therefore, when overall individual metabolic status is investigated (e.g.
dietary intervention study), 24 h pooled samples are preferred, if possible, to
minimise the variability in the urinary profiles obtained with shorter collection
periods (Fernandez-Peralbo and Luque de Castro, 2012). Hence, the 24 h urine
samples obtained from the study groups were selected over the spot urine

samples for further analysis.

Table 5-6 Multivariate analysis and validation of OPLS-DA models of FOG dietary
intervention urine samples

LC-MS FIE-MS
Description Spot urine 24 h urine Spot urine 24 h urine
1. Peak detected
ESI+ 4,911 3,266 483 167
ESI- 2,779 2,112 570 267
Total (ESI+ and ESI-) 7,690 5,378 1,053 434
2. Cross-validation
a. OPLS-DA (all classes)
RYY 0.540 0.598 0.569 0.583
Q? 0.140 0.272 -0.019 0.141
b. OPLS-DA (maltodextrin)
RY 0.901 0.813 0.907 0.995
Q? -0.046 0.337 -0.053 0.156
c. OPLS-DA (oligofructose)
R*Y 0.983 0.822 0.810 0.958
Q? 0.143 0.411 -0.215 0.012
3. Permutation test’
Intercept (maltodextrin) -0.1935 -0.2617 -0.1511 -0.1100
Intercept (oligofructose) -0.2119 -0.2134 -0.1465 -0.2405
4. External validation: classification (training/test models): oligofructose
R’Y (training set) 0.892 0.989 0.947 0.999
@’ (training set) -0.103 0.479 -0.119 0.431
True positive (TP) 2 7 5 7
False positive (FP) 2 1 5 4
True negative (TN) 7 8 4 5
False negative (FN) 7 2 4 2
Sensitivity (%) 50% 88% 50% 64%
Specificity (%)? 50% 80% 50% 1%
Accuracy (%)* 50% 83% 50% 67%
5. Area under receiver operative characteristic (ROC) curve (AUC)®
AUC oligofructose (TPR vs FPR) 0.56 0.85 0.41 0.70

'The OPLS-DA model is considered robust when the regression line of the permuted Q? values intercept at,
or below zero and less than the Q? value of the model. *Sensitivity is the true positive rate (TPR) calculated
from the formula, TPR = TP/(TP+FP). *Specificity is the true negative rate (TNR) calculated from the
formula, TNR = TN/(TN+FN). *Accuracy is calculated from the formula, Accuracy (%) =
(TP+TN)/(TP+FP+TN+FN). PAUC: Area under receiver operating characteristic curve is the total area
under the curve of sensitivity (TPR) vs 1-specificity “false positive rate (FPR)”, ideal model gives AUC = 1
(Eriksson et al., 2006b, Xia et al., 2013).
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(a) Spot urine (HILIC LC-MS) (b) 24 hr urine (HILIC LC-MS)
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Figure 5-11 PCA score plots obtained from all spot/24 h urine samples of FOG dietary
study groups. Sample groups are: A (matodextrin): green circles, n = 18, A (control):
yellow circles, n = 18, B (oligofructose): red circles, n = 19, B (control): light brown
circles, n = 19 and pooled QC: dark blue squares, n = 9, were analysed by LC-MS
(upper) and FIE-MS (lower) of spot (left) and 24 h (right) urine samples.
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Figure 5-12 OPLS-DA score plots overview obtained from all spot/24 h urine samples of
FOG dietary intervention groups. Sample groups are: A (maltodextrin): greea circles, n
= 18, A (control): yellow circles, n = 18, B (oligofructose): red circles, n = 19 and B
control): light brown circles, n = 19, were analysed by LC-MS (upper) and FIE-MS
lower) of spot (left) and 24 h (right) urine samples.
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Validation of oligofructose, maltodextrin and controls OPLS-DA models

To maximise the difference in classification between A (maltodextrin), B
(oligofructose) and their controls, successive OPLS-DA models were generated
from only two classes in the study using 24 h urine samples. Two OPLS-DA
models were constructed from LC-MS and FIE-MS datasets: A (maltodextrin)
versus A (maltodextrin control) and B (oligofructose) versus B (oligofructose
control) as shown in Figure 5-13. OPLS-DA score plots of these models showed
clear separation and clustering of each group from its control in both LC-MS and
FIE-MS. To further validate the differences observed between the controls and
oligofructose samples, the OPLS-DA models were validated using a randomly
selected training set of 10 subjects from B (oligofructose) and 10 subjects from
controls and a test set of 9 subjects from B (oligofructose) and 9 subjects from
controls for both LC-MS and FIE-MS. The obtained R*Y/Q’ cross-validation
values from the training set OPLS-DA models were 0.989/0.479 and 0.999/0.431
for LC-MS and FIE-MS, respectively, demonstrating an acceptable model. The
OPLS-DA models built using the training set were then used to predict the
status of the test set of subjects. In LC-MS prediction models, 7 out of 9 of B
(oligofructose) samples were predicted correctly and 8 out of 9 controls samples
were predicted correctly, whereas in FIE-MS, 7 out of 9 of B (oligofructose)
samples were predicted correctly and 5 out of 9 controls samples were predicted
correctly. The sensitivity/specificity of these models were 88%/80% and
64%/71% for LC-MS and FIE-MS, respectively (Table 5-6), indicating a reliable

predictive power of both models.

The robustness of the prediction models was further assessed using the area
under receiver operating characteristic (ROC) curve (AUC). The value of the
AUC of the OPLS-DA models was 0.85 and 0.70 for LC-MS and FIE-MS,
respectively. Ideal model gives AUC equals 1.0 (perfect classifier), whereas AUC
equals 0.5 is equivalent to randomly classifying subjects as either positive or
negative (i.e. the classifier is of no clinical importance). A rough guide based on
AUC for assessing the clinical utility of a biomarker is as follows: 0.5-0.6 (fail),
0.6-0.7 (poor), 0.7-0.8 (fair); 0.8-0.9 (good) and 0.9-1.0 (excellent) (Xia et al.,
2013). These reference values indicate that the predictability of the LC-MS
models is good, whereas it is adequately fair for FIE-MS for FOG study sample
classification. Although few numbers of variables were detected by FIE-MS
compared to LC-MS, the FIE-MS datasets generated a robust model as LC-MS.
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Figure 5-13 Two-classes OPLS-DA score plots obtained from the 24 h urine samples of
FOG dietary intervention groups. OPLS-DA models are: A (maltodextrin): green circles,
n = 18, versus A (control): yellow circles, n = 18, and B (oligofructose): red circles, n =
19, versus B (control): light brown circles, n = 19, were analysed by LC-MS (upper) and
FIE-MS (lower).

5.3.4 Tentative identification of significantly altered wurinary
metabolites due low FODMAP and oligofructose dietary

intervention

Metabolites responsible for the separation and custering betweer subjects
treated with oligofructose/maltodextrin and controls were selected from the
OPLS-DA models generated from the datasets of 24 h urine samples (Figure
5-13) based on loadings plots and variable importance for the projection (VIP)

scores. A VIP score of a variable above 1.0 is comnsidered important for the model
(Yin et al., 2009). Subsequent Student’s t-test with false discovery rate (FDR) for
multiple testing problem was performed across peak intensities of
oligofructose/maltodextrin group and controls datasets using Progenesis QI. The
number of metabolites found with significant difference (q-value < 0.05) between

oligofructose /maltodextrin group and controls were listed in Table 5-7. The exact
mass of these metabolites was used to interrogate the Human Metabolome
database (HMDB) (http://www.hmdb.ca/) to provide tentative identification of
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the selected wurine metabolites. Then, the altered metabolite lists from
oligofructose and maltodextrin (baseline) interventions were compared. As a
result, 113 and 51 metabolites were found unique to oligofructose but not
maltodextrin with LC-MS and FIE-MS, respectively, demonstrating that FIE-MS
provided about 45% of LC-MS information obtained from oligofructose
intervention. Thus, LC-MS is a suitable choice for comprehensive urinary
metabolomics study while FIE-MS as a high-throughput method might be used

as a quick approach for screening.

Table 5-7 Significantly altered metabolites between oligofructose/maltodextrin (baseline)
subjects and controls

Metabolites significantly altered due to dietary
intervention against controls

Unique to oligofructose
Method  Oligofructose =~ Maltodextrin  but not maltodextrin

LC-MS 187 141 113
FIE-MS 83 26 o1

In order to investigate the metabolites related only to the effect of low
FOODMAP and oligofructose supplement, the common urinary metabolites
related to the effect of maltodextrin (the baseline) and diet were excluded from
the selected list of metabolites related to oligofructose. Top ions of significant
differences in LC-MS and FIE-MS have been considered as potential urinary
metabolites related to oligofructose dietary intervention. Table 5-8 lists the
tentatively identified metabolites from LC-MS and FIE-MS methods related to
the effect of low FOODMAP and oligofructose supplement but not maltodextrin.
Most of the metabolites obtained by FIE-MS were also detected with LC-MS
such as creatinine, propanoic acid, 2-octenoic acid, glutaric acid, hydantoin-5-
propanoic acid and acetylcarnitine. However, some metabolites such as benzoic
acid were detected with FIE-MS but not LC-MS. This might be attributed to the
ion suppression of urine salt on metabolite ionisation as higher load of urine salt
was present in samples prepared for LC-MS (3 fold dilution) compared to
samples for FIE-MS (10 fold dilution) as explained elsewhere (chapter 4, section
4.3.4).
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Table 5-8 Tentative identification of urinary biomarkers showing significant differences between oligofructose subjects and controls but not maltodextrin

Metabolite Fold Mass Error Pathway /process

MW (Da)  Tentative identification HMDB ID Formula q Value*  Change” (ppm) LC-MS  FIE-MS Pathway/Description existence

74.0732 1-Butanol HMDBO04327 C,H,,0 1.05E-02  1.69 0.50 Vv Butanoate metabolism Human and bacteria

(fermentation)
283.2606 7-Methylinosine HMDBO03950 C,;H;N,O, 1.95E-02 2.34 1.64 vv v Methylated purine Human
148.0736 (R) 2,3-Dihydroxy-3- HMDBI12140 C¢H,,0, 8.14E-03  -6.83 0.95 v 2-Oxocarboxylic acid metabolism Human and bacteria
methylvalerate

146.0579 2-Methylglutaric acid HMDBO00422 C¢H,,0, 2.73E-02  2.26 0.99 Vv Metabolite of succinic acid Human

142.0994 2-Octenoic acid HMDB00392 C.H,,0, 3.77E-02  2.89 0.28 vv v metabolite of aliphatic aldehydes Human

285.1940 2-Octenoylcarnitine HMDBI13324 C;H,;,NO, 7.62E-03  1.46 0.07 Vv Fatty acid Human
metabolism/acylcarnitine

144.0423 3-Hexenedioic acid HMDBO00393 CyH O, 8.14E-03  2.70 0.05 Vv Fatty acid Human
metabolism /dicarboxylic acid
metabolite

118.0630 3-Hydroxyvaleric acid HMDBO00531 C,H,,0, 3.35E-03  1.48 2.08 vv Short chain fatty acid metabolite ~Human

138.0317 4-Hydroxybenzoic acid HMDBO00500 C,H,O, 3.77TE-02  1.53 0.63 v Phenylalanine metabolism Human
Ubiquinone and other terpenoid- Human and bacteria
quinone biosynthesis

204.0746 5-Glutamylglycine HMDBI11667 C,H,N,O; 1.08E-02  4.46 0.24 Vv Protein catabolism/dipeptide Human

329.2202 6-Keto-decanoylcarnitine HMDB13202 C,;H;NO; 1.49E-02  1.49 0.33 vV Fatty acid metabolism/ Human
acylcarnitine

117.0426 Acetylglycine HMDBO00532 C,H,NO, 1.53E-02  5.43 0.40 v Protein and amino acid Human
biosynthesis/acylglycine

175.0957 Citrulline HMDB00904 CH;N,O0, 2.72E-02 1.78 0.22 vv Arginine and proline metabolism  Human and bacteria

113.0589 Creatinine HMDBO00562 CH;N,O 1.56E-02  1.10 2.90 Vv v Arginine and proline metabolism  Human

146.0691 Glutamine HMDBO00641 C,H,()N,O, 1.16E-02 4.97 2.49 v Alanine, aspartate and Human and bacteria

glutamate metabolism

Arginine and proline metabolism
D-Glutamine and D-glutamate
metabolism

Purine metabolism

Nitrogen metabolism

Pyrimidine metabolism

Human and bacteria
Human and bacteria

Human and bacteria
Human and bacteria
Human and bacteria
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Metabolite Fold Mass Error Pathway /process

MW (Da)  Tentative identification HMDB ID Formula q Value®  Change” (ppm) LC-MS  FIE-MS Pathway/Description existence

132.0423 Glutaric acid HMDBO00661 C,HO, 4.40E-02  -1.58 2.91 v v Lysine degradation Human
Fatty acid metabolism Human

172.0484 Hydantoin-5- propanoic HMDBO01212  CyH(N,O, 4.39E-03  3.19 1.04 v Vv Histidine metabolism Human

acid

203.1158 Acetylcarnitine HMDBO00201 CyH,;NO, 8.14E-03  3.28 0.57 Vv v Fatty acid Human
metabolism/acylcarnitine

133.0375 Aspartic acid HMDBO00191 C,H;NO, 2.14E-02  2.92 2.89 vv Alanine, aspartate and Human
glutamate metabolism

259.1784  Hexanoylcarnitine HMDBO00756  C,;H,NO,  4.10E-02  9.80 2.54 v gjytfgafgfgnlgemb(ﬂlsm/ Human

215.1158 Propenoylcarnitine HMDB13124 C,,H,;NO, 8.97E-03  1.78 0.52 vv Fatty acid Human
metabolism/acylcarnitine

74.0368 Propanoic acid HMDB00237 C,H,O, 8.14E-03  1.73 1.03 vv v Propanoate metabolism Human and bacteria
Nicotinate and nicotinamide Human
metabolism

123.0320 Picolinic acid HMDB02243 CH,NO, 2.28E-02  2.41 0.31 v v Tryptophan catabolism Human

136.0749 Tetrahydropteridine HMDBO01216  CHN, 8.76E-03  2.40 4.69 Vv Cofactor in amino acids Human
hydroxylation

168.0283 Uric acid HMDBO00289 C,H,N,O, 6.92E-03  -6.37 1.97 Vv v Purine metabolism Human and bacteria

102.0681 Valeric acid HMDBO00892 C,H,,0, 3.74E-02  1.73 0.71 v v Fatty acid metabolism/short Human and bacteria
chain fatty acid (fermentation)

122.0368 Benzoic acid HMDBO01870 2.90E-02 1.49 0.85 vv Phenylalanine metabolism Human
Benzoate degradation via CoA Bacteria

ligation

*g-value: is the adjusted Student’s ttest p-value using false discovery rate (FDR), "the positive value of fold change means a higher level of metabolite in oligofructose subjects compared to
controls, whereas the negative value represents a lower level of metabolite. The g-value, fold change and mass error were calculated for each metabolite from its MS dataset generated by the MS
method with the highest VIP value (primary MS method). Primary method used for the extraction of each biomarker is highlighted as (v'v') in the table, whereas (v') symbol in the MS
method columns indicates that the biomarker was also detected by that method.
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5.4 Discussion

The increased levels of valeric acid, creatinine, glutamine and propionic acid in
the urine of oligofructose subjects was consistent with previously reported animal
and human studies (Keller et al., 2011, Windey et al., 2014, De Preter et al.,
2010, Dewulf et al., 2013).

The effect of oligofructose on the production of short chain fatty acids (SCFAs)

by gut microbiota

The identified metabolites from urinary FOG metabolomics study enhance our
understanding about the possible metabolic changes associated with the effect of
oligofructose on gut microbiota and the subsequent host response to such
changes. For instance, significantly increased level of SCFAs such as propanoic
acid and valeric acid (pentanoic acid) along with their metabolites: 3-
hydroxyvaleric acid and hydantoin-5- propanoic acid, respectively, were found in
the urine of oligofructose subjects compared to placebo (maltodextrin) and
controls, indicating microbial fermentation of oligofructose and concomitant
production of SCFAs in the colon. This finding is quite consistent with
previously reported literature as increased levels of propanoic acid, valeric acid
and other SCFAs (e.g. acetate and butyrate) were found in faecal samples of
healthy subjects treated with oligofructose (Vitali et al., 2010, De Preter et al.,
2011, De Preter et al., 2010, De Preter et al., 2013). However, acetate and
butyrate were not detected in the urine samples of oligofructose subjects,
suggesting that they may be quickly metabolised after being absorbed by the
host. Also, acetate and butyrate are volatile, and they may be lost by

evaporation during analysis.

Recently, Dewulf et al., performed a urinary metabolomics study to investigate
the wurinary metabolic signature of obese women after treatment with
oligofructose (Dewulf et al., 2013). They reported an increased level of acetate in
plasma but not urine, and no altered level of butyrate was found in plasma or
urine; this is quite consistent with the above findings. However, another in vitro
study reported that inulin was selectively fermented by bifidobacteria in the
colon and butyrate was not produced from carbohydrates fermentation (Falony
et al., 2009). This result suggests that oligofructose, in this study, was mainly

fermented by bifidobacteria, hence no altered level of butyrate was observed.
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Nonetheless, another scenario may also be possible; reduction of butyrate to 1-
butanol has been previously reported by gut microbes in order to maintain the
bacterial redox balance (Muller, 2001). A significantly increased level of 1-
butanol was found in the urine of oligofructose subjects compared to placebo
(maltodextrin) and controls, suggesting that butyrate may be produced during
oligofructose fermentation in the colon but it was rapidly converted by gut

microbes to 1-butanol.

In all these scenarios, regardless of the type of SCFAs produced, the increased
synthesis of such biomolecules by microbiota is considered as one of the beneficial
effect of prebiotics on gut microbial activity (Cummings, 1981). SCFAs are
known to create an acidic environment in the colon (Ndagijimana et al., 2009),
which enhance the proliferation of bifidobacteria and lactobacilli (Gibson et al.,
1995), increase the resistance to the growth of enteric pathogens (Topping et al.,
2003), decrease the production of secondary bile acids (Zampa et al., 2004),
enhance the absorption of minerals and hence, improve bone health (Coxam,
2007, Scholz-Ahrens et al., 2001) and reduce gut protein fermentation
(proteolytic fermentation) as a result of impaired activity of protease enzyme at
low pH (Macfarlane et al., 1988).

Changes in fatty acid metabolism

Consumption of oligofructose diet resulted in an increased fatty acid metabolism
by the host, which was evident from significantly increased levels of different
urinary acylcarnitines such as acetylcarnitine, propenoylcarnitine,
hexanoylcarnitine, 2-octenoylcarnitine and 6-keto-decanoylcarnitine.
Acylcarnitine are formed from conjugation of carnitine and fatty acids, a rate
limiting step in the cellular transport of fatty acid from the cytosol into the
mitochondrial matrix, where they enter B-oxidation pathway, the major fatty
acid metabolic pathway in human (Harvey et al., 2011). Abnormal urinary
excretion of acylcarnitine may provide metabolic evidence of enhanced
mitochondrial fatty acid metabolism in subjects treated with oligofructose. The
increased level of urinary acylcarnitines and mitochondrial B-oxidation activity
were previously reported in animal models fed with oligofructose/inulin diet,

suggesting colonic fermentation and fatty acid absorption (Verbrugghe et al.,
2010, Verbrugghe et al., 2009). The finding of increased activity in the fatty acid
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metabolism through B-oxidation due to oligofructose supplement was consistent
with the high levels of fatty acids such as propanoic acid, valeric acid, 2-octenoic
acid and 3-hexenedioic acid found in the urine of subjects treated with

oligofructose compared to controls.
The effect of oligofructose on the activity of gut microbiota

Further analysis of the metabolic profiles showed increased levels of gut bacteria
related metabolites such as benzoic acid and 4-hydroxybenzoic acid in the urine
of oligofructose treated subjects compared to controls, which may indicate an
increased metabolic activity of gut microbiota due to oligofructose. Benzenoids
such as benzoic acid and 4-hydroxybenzoic acid have previously been identified in
faecal samples and were thought to be related to environmental pollution
(Garner et al., 2007). However, some prebiotic intervention studies reported
increased levels of benzoic acid and 4-hydroxybenzoic acid as a result of enhanced
activity of the gut microbial benzoate degradation pathway (Lacombe et al.,
2013) and ubiquinone and other terpenoid-quinone biosynthesis pathway
(Monagas et al., 2009). In these studies, the increased level of benzenoids was
correlated to the decreased populations of the genera Lactobacillus and
Enterococcus and increased population of Bifidobacterium. The increased levels
of benzoic acid and 4-hydroxybenzoic acid were quite consistent with the above
results, suggesting an increased level of health-promoting Bifidobacterium and a
decreased level of Lactobacillus and Enterococcus due to oligofructose. However,
simultaneous estimation of microbiota composition in subjects treated with
oligofructose compared to controls is an essential prerequisite to correlate and

conclude such findings.
Changes in amino acid biosynthesis

Increased levels of amino acids and amino acid metabolites such as glutamine,
citrulline, aspartic acid, picolinic acid (catabolite of tryptophan) and
acetylglycine (acetylated glycine) were found in the urine of oligofructose subjects
compared to controls, signalling the possibility of enhanced microbial amino acid
biosynthesis in the colon. From previous studies, none of these amino acids and
metabolites were detected in body fluids of healthy subjects treated with
oligofructose (Windey et al., 2014, De Preter et al., 2010, De Preter et al., 2011,
De Preter et al., 2013, Vitali et al., 2010, Dewulf et al., 2013). However, in vitro
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and animal models showed an increased level of glutamine and other amino acids
by gut microbes as a result of enhanced microbial amino acid biosynthesis,
especially in the presence of oligofructose (Keller et al., 2011, Maczulak et al.,
1985). Indeed, increased breakdown of proteins in the colon or dietary amino
acids may increase the level of amino acids and their metabolites in urine.
However, in this study the dietary intake was adequately controlled before and
after the intervention, therefore, it is unlikely that increased level of amino acids
and metabolites in oligofructose treated subjects compared to controls were due
to diet. Moreover, a decreased level of glutaric acid, a byproduct of protein
fermentation in general and of lysine in particular (Muller and Kolker, 2004, Rist
et al., 2013), was observed in the urine of subjects treated with oligofructose,
indicating that oligofructose may reduce protein fermentation in the gut; hence
the increased levels of amino acids and metabolites in the urine of oligofructose
subjects were most likely a result of enhanced microbial amino acids biosynthesis.
The finding of increased microbial amino acid production was consistent with the
high level of tetrahydropteridine, a cofactor in amino acid hydroxylation
produced in the liver and GI tract, found in urine of oligofructose subjects
compared to controls, which indicates that tetrahydropteridine was up-regulated
by the host as a metabolic response to the increased production of amino acids in

the colon.
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5.5 Conclusion

In this chapter, a non-invasive metabolomics study using the developed LC-MS and
FIE-MS methods combined with a multivariate analysis was able to find significant
differences between the urinary metabolic profiles of subjects in a low FODMAP and
oligofructose diet for a week and controls. This is the first time that HILIC LC-MS
and FIE-MS based metabolomics have been used to study the effect of oligofructose
on gut microbiota using urine samples from healthy volunteers. The use of spot urine
and 24 h urine samples were evaluated for the analysis, in which lower variability
was observed in the 24 h urine profiles compared to spot urine. The OPLS-DA
models generated from the datasets of oligofructose subjects and controls,
demonstrated good classification of the study groups with both MS methods. FIE-
MS as a high-throughput method was able to provide about 45% of the information
obtained with LC-MS, indicating its potential as a quick screening tool in dietary
interventions, while LC-MS is necessary when comprehensive screening is required.
The biological interpretation of the metabolites associated with the separation of
study groups in the OPLS-DA models, revealed an increased production of SCFAs,
fatty acids and amino acids by gut microbiota as a result of oligofructose intake.
Also, an increased activity in fatty acid metabolism was evident from the increased
levels of different types of acylcarnitines in the subjects treated with oligofructose.
Comparison of these finding with previously reported literature, suggesting an
increased population of a health-promoting Bifidobacterium and decreased
Lactobacillus and Enterococcus genera in the colon due to oligofructose. However,
further investigation of the effect of oligofructose on gut microbial composition is

necessary to conclude such findings.
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Conclusions and Future Work



6. Conclusions and Future Work

6.1 Methods development and validation for urine metabolomics

In this thesis, a validated HILIC LC-MS and three high-throughput direct ESI-
MS approaches: FIE-MS, chip-based infusion and LESA-MS, using high
resolution mass spectrometry were developed for urine untargeted metabolomics.
A urine dilution protocol was developed for sample preparation, in which the ion
suppression effect of urine salts on ESI was studied and optimised to enhance
detection of urinary metabolites using artificial urine. Great attention to details
were applied in the design, development and execution of the MS methods
alongside a rigorous validation of the analytical methods and multivariate models
(Want et al., 2010, Gika et al., 2007, Beckmann et al., 2008), which lends
credibility to the quality of results obtained. The developed methods were
capable of investigating metabolic profiles and studying the altered pathways in
various diseases such as osteoarthritis and malaria and the effect of oligofructose
diet on the gut microbial community. However, there are many potentially wider
applications of the developed methods; they could be applied into any study

involving urine analysis, not just those applications in this thesis.

Urine as a readily available biofluid has been an attractive choice for more
comprehensive biomarker investigations wusing metabolomics approaches.
However, the high level of day-to-day variability and the salt content of urine,
makes its analysis with direct ESI-MS method a complex and a difficult area of
research, indicated by the relatively small number of untargeted metabolomics
studies reported (Hasegawa et al., 2007, Hasegawa et al., 2010, Lloyd et al.,
2011a, Lloyd et al., 2011b, Beckmann et al., 2010, Gonzalez-Dominguez et al.,
2014). Considering the above challenges, the developed methods have made many
improvements over the existing methodologies; for instance, ion suppression effect
of urine salts on ESI was minimised by optimising the urine dilution protocol,
and the MS detection was enhanced for urine metabolites using a mixture of
standards representing a wide range of urine chemical classes (i.e. artificial
urine). Also, a type of MS total useful signal (MSTUS) normalisation (Warrack
et al., 2009) was used for LC-MS and direct ESI-MS to compensate for urine
variability as it has proven to reduce the possible xenobiotics and artefact
interferences associated with urine analysis. Moreover, several attempts in the

literature have been reported to improve the performance of LC-MS and direct
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ESI-MS by using advanced ESI sources such as nanoelectrospray ionisation
(nanoESI) (Trunzer et al., 2007, Froesch et al., 2004, Zamfir et al., 2004,
Chetwynd et al., 2015, Chetwynd et al., 2014). In this study, the versatility of
nanoESI has been tested for urine analysis by developing and validating a chip-

based infusion and LESA-MS methods for untargeted metabolomics.

One particularly challenging aspect of the method development was performing
validation. Most of the available reports of direct ESI-MS analysis of urine lack
proper validation (Hasegawa et al., 2010, Hasegawa et al., 2007) or evaluation
against conventional methods such as LC-MS for untargeted metabolomics.
Therefore, before commencement of clinical urine analysis, the developed direct
ESI-MS methods were validated using a small-scale dietary intervention with
green tea. The results were compared with the developed LC-MS method.
Although fewer metabolites were detected by direct ESI-MS compared to LC-MS,
the direct ESI-MS datasets still generated a robust model as compared with LC-
MS. In direct ESI-MS, the run time is less than 1.0 min compared with several
10s min for LC-MS, hence, direct ESI-MS undoubtedly provides a much higher
analysis throughput. Chip-based infusion and LESA-MS use a disposable chip
with nanoESI nozzles provide analysis without carryover effects. Although this
adds an extra cost to the analysis it results in improved the throughput as well.
In terms of overall performance of the developed methods, FIE-MS provided the
best throughput solution compared with chip-based infusion and LESA-MS. It
had the lowest analysis cost/sample, lower variability and detects more
metabolites in urine samples. However, LESA-MS with no sample preparation
step gives the method the advantage of being the highest throughput by reducing

pre-analysis time significantly.

The strengths of the developed methods in this thesis are: (1) the use of
rigorously optimised urine dilution protocol to ensure wide metabolic coverage,
(2) the use of validated HILIC LC-MS, FIE-MS, chip-based infusion and LESA-
MS for ensured a high specificity and sensitivity, (3) the use of high throughput
direct ESI-MS methods to detect most of the metabolites in shorter analytical
runs, hence minimising the risks of invalid results due to sample instability
during the analysis, (4) exploring the versatility of LESA-MS with no sample
preparation step for the metabolic profiling of urine with its potential ability as a
simple and rapid diagnostic and screening tool, and (5) the rigorous validation

methods used in the data analysis to minimise the risks of false positive
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biomarkers and on the same time retaining the true biomarkers from being
missed. The ability of the developed methods to differentiate and classify urine
samples after ingestion of green tea from controls (reported in chapter 2) clarify
that these methods have the potential to differentiate disease from control of
various clinical studies using urine samples to identify potential disease

biomarkers and study metabolic perturbations during health and disease state.

In this thesis, certain caveats and method limitations should also be addressed,
including, direct ESI-MS lacks the ability to resolve isobaric compounds and
fewer peaks were detected compared to LC-MS. However, the high throughput
power of the developed methods (i.e. they require ~6.7% of the LC-MS analysis
time) and yet provide about 40-50% information compared to LC-MS. Also, the
overall batch analysis time for both LC-MS and direct ESI-MS should be less
than 48 h as significant changes in urine composition were reported when urine
samples kept for the analysis for more than 48 h (Gika et al., 2008c). Considering
such constraints, direct ESI-MS methods have the potential to analyse larger
batch of samples compared to LC-MS, hence more information could be gained.
In addition, LC-MS/MS method was developed for confirming the identity of the
reported urinary biomarkers, but the lack of available suitable standards to
generate an MS/MS spectral database, meant that the discovered biomarkers
could only be putatively identified by accurate mass alone. Some biomarkers
were definitively identified with reference to pure authentic standards, however,
funds and time placed constraints to confirm the identity of all reported
biomarkers in this thesis. Also, in clinical applications of the developed methods,
some of the biomarkers remained unknown due to the limitation of the available
databases. Therefore, further investigation to reveal the identity of these
metabolites may provide additional information; however, structure elucidation of

these metabolites is beyond the scope of this thesis.
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6.2 The clinical applications of the developed LC-MS and direct ESI-

MS for urine metabolomics

Metabolomics studies have identified different biomarkers of osteoarthritis (OA)
in serum, synovial fluid and plasma which helped in studying the
pathophysiology, progression and diagnosis of OA (Rousseau and Delmas, 2007,
Mobasheri, 2012, Loeuille, 2012a, Lotz et al., 2013, Goldring and Berenbaum,
2015). However, there are few studies in the literature related to the use of urine
metabolomics in OA (Li et al., 2010, Nepple et al., 2015, Lamers et al., 2003a,
Lamers et al., 2005). In this thesis, the validated LC-MS and direct ESI-MS
methods were applied to study urinary metabolic signature of OA. The developed
methods successfully differentiated between the metabolic profiles of OA patients
in the active stage and healthy controls as detailed in chapter 3. A novel
multivariate design and SUS plot was used to balance the number of samples in
each group in the study for multivariate analysis. FIE-MS, chip-based infusion
and LESA-MS were able to provide 33%, 44% and 44%, respectively, of the LC-
MS information, indicating their great potential for diagnostic application in OA,
while LC-MS is necessary when comprehensive biomarker screening is required.

The altered level of metabolites detected in OA patients suggesting a perturbed

activity in TCA cycle, pyruvate metabolism, B-oxidation pathway, amino acids
and glycerophospholipids metabolism, which supports the previously reported
literature of mitochondrial dysfunction, inflammation, oxidative stress, collagen
destruction and use of lipolysis as an alternative energy source in the cartilage
cells of OA patients (Gavriilidis et al., 2013, Blanco et al., 2004, Li et al., 2010,
Damyanovich et al., 1999, Kosinska et al., 2014, Zhang et al., 2014b).

In chapter 4, the developed LC-MS and FIE-MS methods were applied to
investigate the effect of malaria on urinary metabolic profiles and for biomarker
discovery. Both methods successfully identified potential biomarkers from the
urinary profiles of malaria patients and healthy controls. Some of the biomarkers
were definitively identified by LC-MS/MS with reference to authentic standards.
FIE-MS was able to cover 50% of the LC-MS information and detected all the
potential candidates found with LC-MS. These findings indicated that FIE-MS
performance was comparable to LC-MS and demonstrated its great potential as a
high throughput diagnostic tool for malaria. The altered level of urinary pipecolic
acid and taurine in malaria was consistent with previously reported studies
(Sengupta et al., 2015, Ghosh et al., 2012, Sengupta et al., 2011b, Li et al., 2008,
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Tritten et al., 2013), supporting the suggestion of their use as diagnostic
biomarkers of malaria. Whereas the altered levels of acetylated polyamines such
as 1,3-diacetylpropane, N-acetylspermidine and N-acetylputrescine were detected
in the urine of malaria patients for the first time, which may provide surrogate

biomarkers of malaria.

In chapter 5, the developed methods were also applied in nutrition. Different dietary
interventions have been reported to investigate the effect of oligofructose and its
fermentation products on intestinal microbiota in health and disease state
(Windey et al., 2014, Vitali et al., 2010, Verhoef et al., 2011, De Preter et al.,
2013, De Preter et al., 2011, De Preter et al., 2010, Dewulf et al., 2013). Most of
these studies relied on the analysis of faecal samples (De Preter et al., 2010, De
Preter et al., 2011, De Preter et al., 2013, Windey et al., 2014), despite the
anticipated loss of metabolites in faeces due to absorption (Lewis and Cochrane,
2007). Few studies used urine for untargeted metabolomics to study the effect of
oligofructose on microbiota in cats (Verbrugghe et al., 2010) and obese women
(Dewulf et al., 2013). In this study, the developed LC-MS and FIE-MS methods
were applied for urinary metabolic profiling of healthy volunteers to study the effect
of the low FODMAP and oligofructose diet on gut microbiota. The developed
methods were able to find significant differences between the urinary metabolic
profiles of healthy subjects on oligofructose diet and controls. FIE-MS as a high
throughput method was able to provide about 45% of the information obtained with
LC-MS. An increased production of SCFAs, fatty acids and amino acids by gut
microbiota as a result of oligofructose intake were observed, suggesting an increased
population of the health-promoting Bifidobacterium and a decreased Lactobacillus
and Enterococcus genera in the colon. However, further investigation of the effect
of oligofructose on gut microbial composition is necessary to correlate and

conclude such findings.

General parameters such as diet, life-style, genetic disposition and sample
collection protocol may influence the metabolic profiles between the study groups
and subsequently the biological outcome. In order to circumvent these possible
confounding factors, metabolic profiling of urine samples (pooled 24 h urine
sample is preferential, if possible) from cohorts of study and control subjects with
a longitudinal follow-up and a controlled dietary intake may provide more
specific information directly related to metabolic changes found between the

study groups.
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6.3 The potential applications of the developed direct ESI-MS in
clinical practice and research

In conclusion, the developed direct ESI-MS methods demonstrated the ability to
obtain relevant information for diagnosis and differentiation between inherent
types of urine samples in disease and health state. The use of urine with all its
advantages as a simple, non-invasive and requires minimal skills to handle,
suggesting that the above direct ESI-MS methods can be implemented in clinical
practice (e.g. hospitals) for high throughput screening and diagnosis of diseases.
The identified list of urinary biomarkers from OA, malaria and oligofructose
dietary intervention may provide further insight in identifying disease
mechanisms and progression, as discussed with comparison to the relevant
literature in chapter 3-5. However, these biomarkers require certain prerequisites
(which is beyond the scope of this thesis) to be considered specific enough for
diagnostic purposes. Most of the biomarkers were tentatively identified, hence
absolute confirmation of identity using LC-MS/MS is desirable. Following this, a
targeted analysis of these biomarkers will help in quantifying each metabolite in
the samples and increase the confidence in specificity of the biomarker for the
disease under question. Addressing these issues, the methodologies could be
applied in two ways: the discovery and confirmation of biomarkers could be used
to develop a urine ‘dipstick’ type of immune method to enable rapid screening
with simple equipment, and with the use of cheap portable mass spectrometers
coupled with ambient or direct analysis could make a mobile diagnostic screening
unit with rapid feedback to patients. For instance, FIE-MS demonstrated high
performance as LC-MS in detecting surrogate urinary biomarkers of P.
falciparum infection, and yet provides a high throughput analysis. Hence, the
method can be used as a portable screening tool for early diagnosis of malaria in
endemic areas, where the availability of equipped laboratory and skilled
personnel are limited. Furthermore, the use of chip-based infusion and LESA-MS
adds further advantages for their clinical use as they demonstrated a higher
throughput power, enhanced sensitivity and no carry-over effect. In particular,
LESA-MS requires no sample preparation step and only involves placing urine
samples directly onto a slide surface, gives the method further credit of being
very simple and easy to use in clinical practice. While the developed LC-MS is

necessary when comprehensive biomarker screening is required.
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The developed urine dilution protocol for the direct ESI-MS demonstrated high
reproducibility with minimum ion suppression on the ionisation of urinary
metabolites, therefore, it may be beneficial to transfer such protocol for LC-MS
analysis to improve sensitivity and coverage of urinary metabolites. Moreover,
the use of the nanoESI interface for direct ESI-MS demonstrated higher
sensitivity and S/N ratio compared to standard ESI interface (Table 2-4).
Therefore, development of an LC-MS method combined with the use of the
nanoESI interface might improve the coverage of urine metabolites for
metabolomics analysis. Recently, Chetwynd et al., reported an improved MS
sensitivity of low abundance compounds in urine metabolomics using nanoESI
with nanoUHPLC and a wider range of metabolites was detected compared to
standard LC-MS (Chetwynd et al., 2014, Chetwynd et al., 2015). Nevertheless,
the use of LC-MS for comperhensive screening of large batches of urine samples
(e.g. 200 samples) is limited to the stability of the urine samples during the
analysis (less than 48 h) and the stability of the analytical system (Gika et al.,
2008c). This problem can be overcome by using LC-MS batch analysis, however,
extensive data analysis and certain techniques such as nonlinear locally estimated
smoothing function (LOESS) (Cleveland, 1979) are required to correct for signal
intensity drift and integration of data from multiple analytical batches (Dunn et
al., 2011).

It is worth mentioning that the developed method has already been used by
other researchers in the group; FIE-MS successfully applied for urinary metabolic
signature after broccoli consumption, whereas chip-based infusion and LESA-MS
have been adapted for targeted analysis of analgesics and their metabolites in
urine. Also, LESA-MS has been used for targeted analysis of opiate analgesics in
saliva, plasma and urine. The established data analysis protocol has also been
used for LESA-MS metabolic profiling of human skin, and profiling of amino

acids adsorbed on surfaces treated with oxygen and plasma.
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6.4 Future work and recommendations

Additional work which is beyond the scope of this thesis would be beneficial and
includes definitive confirmation of biomarker identity using the developed LC-
MS/MS, and detailed pathway analysis and mechanisms of each biomarker in the
study. In this thesis, due to time and funds constraints most of the reported
biomarkers were tentatively identified and these could be better defined by using
the developed LC-MS/MS method with reference to pure authentic standards to
confirm the identity and to increase the confidence of the obtained results. A
detailed further targeted MS method for a specific class of urinary metabolites
could give better qualitative and quantitative information of the reported
biomarkers. Nonetheless, the developed methods could be further adapted as a
targeted method. Moreover, the developed direct ESI-MS can be further tested
and adapted with a portable mass spectrometer for disease diagnosis such as

malaria; however, design modification is essentially required.

In some studies of this thesis such as malaria (n = 46) and oligofructose dietary
intervention (n = 37) it would be advantageous to have a larger group of
subjects for untargeted metabolomics. Also some of the reported biomarkers
remained unknown due to limitation of databases; it would be better to
structurally elucidate the identity of those metabolites. This will provide
additional information which may help in further understanding of the biological
processes related to the study in question. Finally the developed methods could
be applied into any study involving urine analysis and therefore, have the
potential to be applied in different research areas such as drug doping, toxicology

and clinical trials.
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Appendix A Artificial urine composition and concentrations
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Compound MW (Da) Conc. (ug/mL) [M+H]* [M-HJ
Adrenaline 183.2044 83.5 184.0974 182.0817
Alanine 89.0932 38.7 90.0555 88.0399
AM4-Aminohippuric acid 194.1873 12.8 195.0770 193.0613
Aspartic acid 133.1027 29.0 134.0453 132.0297
Citric acid 192.1235 28.8 193.0348 191.0192
Creatine 131.1332 29.6 132.0773 130.0617
Creatinine 113.1179 22.6 114.0667 112.0511
Cytidine 243.2166 75.9 244.0933 242.0777
3,4-Dihydroxymandelic acid 184.1461 17.7 185.0450 183.0293
3,4-Dihydroxyphenylacetic acid (DOPAC) 168.1467 60.5 169.0501 167.0344
3,4-Dihydroxyphenylalanine (L-DOPA) 197.1879 42.9 198.0766 196.0610
Glutamic acid 147.1293 21.1 148.0610 146.0453
Hippuric acid 179.1727 92.1 180.0661 178.0504
Histidine 155.1546 31.6 156.0773 154.0617
4-Hydroxy-3-methoxymandelic acid 198.1727 5.5 199.0606 197.0450
Homovanillic acid 182.1733 18.0 183.0657 181.0501
4-Hydroxyphenylacetic acid 152.1473 22.5 153.0552 151.0395
5-Hydroxyindole-3-acetic acid 191.1834 11.1 192.0661 190.0504
2-Hydroxyisobutyric acid 104.1045 60.4 105.0552 103.0395
Hypoxanthine 136.1115 12.7 137.0463 135.0307
Lactic acid 90.0779 60.2 91.0395 89.0239
4-Methyl-2-oxovaleric acid 130.1418 13.5 131.0708 129.0552
Metanephrine 197.231 2.7 198.1130 196.0974
3-Methyl-L-histidine 169.1811 51.1 170.0930 168.0773
MHPG sulphate 264.252 1.0 265.0382 263.0225
Normetanephrine 183.2044 14.9 184.0974 182.0817
Phenylalanine 165.1891 21.1 166.0868 164.0712
Serotonin 176.2151 13.3 177.1028 175.0871
trans-Aconitic acid 174.1082 23.0 175.0243 173.0086
Threonine 119.1192 34.8 120.0661 118.0504
Tryptophan 204.2252 31.9 205.0977 203.0821
Tyrosine 181.1885 54.7 182.0817 180.0661
Urea 60.0553 67.8 61.0402 59.0245
Uric acid 168.1103 62.5 169.0362 167.0205
Uridine 244.2014 48.5 245.0774 243.0617
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Appendix B Artificial urine database (attached CD)



Appendix C Performance of the developed direct ESI-MS and LC-MS for urine analysis
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HILIC LC-MS FIE-MS Chip-based infusion LESA-MS
RT shift

Artificial urine compounds m/z ITons RT(min) (min) RSD% Peak area RSD% Peak counts RSD% Peak counts  RSD% Peak counts  RSD%
Adrenaline 166.0868 M+H-H20]" 4.49 0.004 0.1% 2,931,350 2% 18,182 13% 104,768 12% 286,945 22%
Alanine 90.0555 M+H]* - - - Not detected - 25,905 8% 130,257 19% 312,207 26%
4-Aminohippuric acid 193.0613 M-H] 4.58 0.004 0.1% 257,993 3% 1,651 21% 27,287 13% 18,143 7%
Aspartic acid 132.0293 M-H| 5.36 0.022 0.2% 227,452 7% 4,016 11% 64,435 10% 94,664 20%
Citric acid 173.0086 M-H-H20J] 6.56 0.003 0.0% 21,647,473 1% 29,917 6% 4,374,650 9% 5,217,463 11%
Creatine 132.0773 M+H]* 6.56 0.015 0.2% 14,732,724 1% 55,737 10% 426,022 11% 808,210 23%
Creatinine 114.0667 M+H|* 3.15 0.012 0.2% 1,076,748,825 1% 3,382,380 3% 40,858,691 25% 32,433,272 25%
Cytidine 244.0933 M+H|* 3.10 0.014 0.3% 5,090,960 3% 3,096 21% 61,508 16% 150,504 5%
3,4-Dihydroxymandelic acid 183.0293 M-HJ| - - - Not detected - 1,414 9% 31,857 10% 57,274 20%
DOPAC 167.0342 M-HJ 0.90 0.001 0.2% 30,447 2% Not detected - 95,973 10% 218,381 16%
L-DOPA 198.0766 M+H]* - - - Not detected - 2,001 18% Not detected - 29,288 21%
Glutamic acid 146.0453 M-H] - - - Not detected - 4,007 4% 50,162 14% 59,127 27%
Hippuric acid 178.0504  [M-H| 3.98 0.014 0.3% 167,721,038 1% 1,011,798 5% 13,421,248 8% 12,974,603 16%
Histidine 156.0773 M+H]* 1.36 0.002 0.1% 350,174 2% 32,875 6% 466,699 20% 456,689 12%
Homovanillic acid 181.0501 M-HJ 3.08 0.014 0.4% 7,178,010 2% 3,026 14% 52,233 5% 79,383 28%
5-Hydroxyindole-3-acetic acid 190.0504 M-H| 2.74 0.016 0.5% 1,451,876 5% 1,434 18% Not detected - 9,628 6%
2-Hydroxyisobutyric acid 103.0395  [M-HJ 2.92 0.020 04% 1,512,983 2% 20,510 4% 468,202 8% 706,803 7%
4-Hydroxy-3-methoxymandelic
acid 197.0450 M-H| 2.73 0.027 0.7% 1,332,275 4% 2,973 11% 50,801 14% 83,016 13%
4-Hydroxyphenylacetic acid 151.0395 M-HJ| 2.84 0.012 0.4% 9,708,292 1% 2,997 ™% 72,934 11% 117,690 21%
Hypoxanthine 137.0463 M+H]* 1.95 0.017 0.4% 35,143,665 2% 4,839 14% 46,839 22% 41,088 19%
Lactic acid 89.0239 M-H] 2.28 0.003 0.1% 4,955,643 1% 11,751 9% 334,980 8% 852,108 9%
Metanephrine 180.1025 M+H-H20]" 4.71 0.004 0.0% 5,055,099 2% 2,937 16% 29,334 12% 51,344 11%
MHPG sulphate 263.0225 M-HJ 0.76 0.002 0.2% 2,957,966 3% Not detected - Not detected - 17,244 22%
3-Methyl-L-histidine 170.0930  [M-+H]* 8.11 0.028 0.2% 24,290,882 2% 109,984 5% 1,254,331 16% 1,142,199 12%
4-Methyl-2-oxovaleric acid 129.0552 M-HJ 0.95 0.002 0.1% 1,910,989 3% 6,552 13% 177,531 7% 224,956 11%
Normetanephrine 184.0974 M+H-H20]" 4.43 0.014 0.3% 64,347 7% 1,964 16% 29,523 18% 76,585 11%
Phenylalanine 164.0712 M-H] 5.34 0.021 0.2% 815,668 3% Not detected - 16,235 9% 67,259 14%
Serotonin 177.1028 M+H]* 4.65 0.018 0.3% 280,219 4% 2,586 19% 48,753 9% 85,426 16%
t-Aconitic acid 173.0086 M-HJ 6.59 0.140 1.0% 21,653,714 2% 29,917 6% 4,374,650 9% 5,217,463 11%
Threonine 120.0661 M+H]* 6.58 0.013 0.2% 999,418 8% 11,024 7% 130,288 13% 124,375 21%
Tryptophan 203.0821 M-HJ 5.27 0.017 0.2% 748,628 3% Not detected - Not detected - Not detected -
Tyrosine 180.0660 M-HJ 4.11 0.018 0.3% 322,222 1% 122,507 6% 35,934 8% 31,907 19%
Urea 61.0402 M-+H]* 1.44 0.002 01% 57,787,213 1% 2,586,231 4% 13,146,281 21% 9,608,980 30%
Uric acid 167.0233 M-HJ 4.48 0.023 0.3% 7,283,733 5% 8,186 10% Not detected - Not detected -
Uridine 243.0617 M-HJ 1.69 0.020 0.6% 34,794,114 1% Not detected - 34,902 12% 35,444 22%
Max RSD% - - - - 1.0% - 8% - 21% 25% - 30%
Artificial urine compounds
detected 31 - - 31 - 30 - 30 - 33 -

RSD% of retention time (RT),

Peak area/count of the artificial

urine compounds were calculated from the analysis of urine samples spiked with artificial urine (n = 6).
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Appendix D Validation of LC-MS, FIE-MS, chip-based infusion and LESA-MS analyses for green tea intervention metabolomics study using selected urine
metabolites peaks from pooled QCs injected throughout the run

Compounds present in LC-MS (BEH-HILIC) FIE-MS Chip-based infusion LESA-MS
m/z Polarity  artificial urine RT(min) Shift(min) RSD% Peak Area  RSD% Counts RSD%  Counts RSD%  Counts RSD%
61.0402 EST+ Urea 1.438 0.014 0.65% 43,670,703 13% 2,552,632 6% 15,295,067 23% 6,492,819 16%
89.0239 ESI- Lactic acid 2.262 0.016 0.40% 2,949,002 1% 1,904 18% 78,197 19% 379,888 24%
90.0555 EST+ Alanine - - - - - 12,620 6% 91,571 21% 58,451 25%
96.0682 ESI+ - 6.637 0.020 0.17% 291,764 6% - - - - - -
96.9600 ESI- - 6.590 0.019 0.18% 31,097,261 1% 161,779 15% 1,948,150 11% 90,909 20%
103.0395 ESI- 2-Hydroxyisobutyric acid - - - - - 6,031 14% 149,040 10% 211,104 32%
104.9923 ESI+ - 5.556 0.017 0.19% 20,591,625 3% - - - - - -
112.0515 ESI- - 3.151 0.026 0.41% 173,519,038 1% 3,587 24% 110,811 24% 542,017 28%
114.0667 EST+ Creatinine 3.117 0.029 0.55% 726,511,481 5% 3,044,014 6% 37,980,925 30% 29,040,752 29%
118.0862 EST+ - 5.947 0.018 0.20% 4,871,985 2% 118,245 7% 1,587,559 22% 1,551,406 16%
120.0661 EST+ Threonine 6.574 0.025 0.21% 467,339 3% 6,992 14% 126,616 29% 65,497 13%
129.0552 ESI- 4-Methyl-2-oxovaleric acid - - - - - 1,584 16% 48,442 12% 39,423 16%
132.0293 ESI- Aspartic acid 5.387 0.022 0.22% 92,553 8% 2,428 13% 47,491 9% 62,025 27%
132.0773 ESI+ Creatine 6.541 0.014 0.13% 8,506,068 3% 36,888 5% 402,164 18% 267,558 21%
136.0482 ESI+ - 3.187 0.019 0.41% 133,881,969 2% 139,545 13% 1,261,793 25% 770,216 28%
137.0463 EST+ Hypoxanthine 1.939 0.014 0.38% 16,483,991 3% 3,086 14% 36,361 18% - -
144.1018 EST+ - 6.058 0.010 0.14% 17,262,621 2% 323,422 8% 5,722,468 24% 4,588,623 11%
146.0453 ESI- Glutamic acid - - - - - 2,546 6% 39,763 15% 43,485 27%
151.0395 ESI- 4-Hydroxyphenylacetic acid 2.829 0.018 0.44% 4,630,459 4% 2,648 12% 71,454 10% 97,127 31%
152.0706 ESI+ - 4.344 0.017 0.22% 4,754,329 2% 2,425 20% - - - -
156.0773 ESI+ Histidine 1.324 0.007 0.27% 183,271 3% 24,198 5% 384,774 28% 278,000 22%
156.9909 ESI- - 5.706 0.012 0.11% 60,208,713 0% - - - - - -
164.0712 ESI- Phenylalanine - - - - - - - 7,296 9% 16,341 14%
166.0868 EST+ Adrenaline - - - - - 5,816 9% 30,158 26% - -
167.0233 ESI- Uric acid 4.446 0.020 0.28% 1,792,755 15% - - - - - -
170.0930 EST+ 3-Methyl-L-histidine 8.299 0.021 0.17% 23,299,696 4% 80,664 6% 1,023,530 23% 719,589 24%
172.991 ESI- - 0.646 0.002 0.27% 33,875,833 3% 13,719 5% 523,654 9% 455,870 14%
173.0086 ESI- Citric acid 6.620 0.027 0.24% 12,417,391 2% 26,699 7% 3,132,752 31% 4,359,845 32%
173.0086 ESI- t-Aconitic acid - - - - - 26,699 7% 3,132,752 31% 4,359,845 32%
174.0408 ESI- - 6.845 0.016 0.17% 541,325 5% 2,137 15% 47,618 11% 55,010 34%
177.1028 ESI+ Serotonin - - 29,234 12%

178.0504 ESI- Hippuric acid 3.967 0.011 0.19% 88,291,205 2% 737,726 3% 12,107,797 10% 11,838,764 10%
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Compounds present in LC-MS (BEH-HILIC) FIE-MS Chip-based infusion LESA-MS
m/z Polarity artificial urine RT(min) Shift(min) RSD% Peak Area RSD% Counts RSD%  Counts RSD%  Counts RSD%
180.0660 ESI- Tyrosine 4.100 0.010 0.15% 159,759 4% 95,486 11% 29,472 5% 25,559 18%
180.1025 ESI+ Metanephrine 4.718 0.017 0.21% 26,157 9% - - - - - -
181.0501 ESI- Homovanillic acid 3.062 0.017 0.31% 2,641,782 5% 2,668 8% 54,775 9% 46,693 11%
183.0293 ESI- 3,4-Dihydroxymandelic acid - - - - - - - 10,792 9% 9,179 16%
184.0974 ESI+ Normetanephrine - - - - - 1,427 19% - - - -
186.9953 EST+ - 5.556 0.017 0.19% 14,363,621 2% - - - - - -
187.0070 ESI- - 0.646 0.002 0.27% 201,375,264 3% 29,358 8% 2,875,052 12% 2,466,036 9%
190.0504 ESI- 5-Hydroxyindole-3-acetic acid ~ 2.869 0.027 0.52% 228,654 4% - - - - - -
193.0613 ESI- 4-Aminohippuric acid - - - - - - - 19,109 ™% 12,743 15%
194.9275 ESI- - 6.597 0.015 0.13% 17,316,364 2% 4,216 16% 8,451 28% - -
195.0521 ESI- - 3.124 0.027 0.56% 5,493,711 1% 20,556 6% 168,079 4% 173,190 24%

4-Hydroxy-3-
197.0450 ESI- methoxymandelic acid - - - - - 1,286 13% 27,417 17% 28,966 30%
203.0821 ESI- Tryptophan 5.291 0.025 0.28% 170,484 ™% - - - - - -
203.1502 EST+ - 9.358 0.024 0.17% 18,479,597 4% 11,110 7% 139,469 11% 100,786 16%
216.9810 ESI- - 1.356 0.007 0.29% 11,012,194 2% 1,411 13% 52,290 8% 52,727 16%
9295.0628 ESI- ; 1.722 0.013 0.39% 8202,141 2% 92,430 5% 150,481 12% 179,836 26%
229.1544 EST+ - 8.141 0.019 0.14% 19,678,192 6% 76,580 5% 1,920,355 32% 983,268 9%
232.0273 ESI+ - 0.702 0.003 0.28% 9,722,750 3% 1,240 19% - - - -
243.0617 ESI- Uridine 1.678 0.012 0.39% 23,815,846 2% 6,764 12% 35,640 19% 36,959 28%
245.0123 ESI- - 1.457 0.014 0.49% 1,952,090 4% - - 19,542 6% 18,151 12%
249.1070 ESI+ - 3.187 0.023 0.52% 20,940,966 3% 41,411 17% 69,941 21% 41,659 15%
254.9814 ESI- - - - - - - 3,444 15% 85,333 19% 86,737 31%
263.0225 ESI- MHPG sulphate 0.754 0.004 0.30% 1,684,117 4% - - - - - -
263.1036 ESI- - 4.754 0.017 0.21% 15,618,321 1% 80,200 3% 1,280,472 9% 940,453 15%
265.1180 EST+ - 4.750 0.013 0.18% 9,580,283 2% 19,738 13% 184,849 ™% 92,354 9%
RSD% (maximum) 0.65% 15% 24% 32% 34%

RSD% of retention time (RT), Peak area/count of the selected peaks were calculated from the analysis of the pooled QC urine sample (n = 7).
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Appendix E Validation of LC-MS, FIE-MS, chip-based infusion and LESA-MS metabolomics analyses of osteoarthritis urine samples using selected metabolites
peaks from pooled QC injections interspaced throughout the analytical run

Compounds present in LC-MS (BEH-HILIC) FIE-MS Chip-based infusion LESA-MS
m/z Polarity  artificial urine RT(min) RSD(%) Peak Area  RSD(%) Counts RSD(%) Counts RSD(%)  Counts RSD(%)
61.0399 ESI+ Urea 1.42 0.89% 18,726,739 15.5% 90,504 19.4% 2,710,008 11.2% 1,266,953 27.9%
76.0758 ESI+ - .77 0.22% 8,071,358 11.9% 183,442 17.4% 6,696,967 11.7% 8,039,761 21.6%
88.0399 ESI- L-alanine 6.15 0.00 284818.23 18.0% 176 13.3% 10,535 21.0% 19,615 29.2%
94.0653 ESI+ - 5.90 0.28% 3,045,676 11.7% 5625.031 7.5% 196081.067 12.7% 244362.667 13.1%
96.9600 ESI- - 6.61 0.18% 8,332,453 16.4% 8,959 8.8% 387,847 19.5% 317,509 34.5%
103.0395 ESI- 2-Hydroxyisobutyric acid 4.10 0.01 373351.77 13.1% 1,146 17.4% 97,855 12.2% 50,868 28.7%
104.9923 ESI+ - 5.63 0.16% 5,962,086 8.9% - - - - - -
112.0507 ESI+ - 2.31 1.31% 1,931,229 17.4% 3,370 19.0% - - - -
112.0515 ESI- - 3.21 0.89% 36,022,537 12.1% 3,370 19.0% - - 190,516 26.2%
114.0664 ESI+ Creatinine 3.16 1.13% 219,528,745  15.0% 114,433 11.6% 12,955,540 24.3% 13,768,035 15.6%
115.0697 ESI+ - 3.16 1.09% 9,432,436 15.5% 4,400 10.7% 508,848 19.9% 577,182 14.1%
118.0864 ESI+ - 6.06 0.00 1983323.97 15.1% 3,932 14.0% 232,031 14.7% 297,976 23.6%
120.0661 ESI+ L-threonine 6.55 0.55% 83,885 15.9% 386 17.9% 19,117 18.7% 16,380 17.4%
130.1089 ESI+ - 5.32 0.20% 4,951,975 16.3% 22,186 5.7% 2,458,381 12.1% 3,484,016 19.6%
132.0769 ESI+ Creatine 6.59 0.15% 2,183,826 14.3% 1,326 10.9% 76,982 13.8% 83,701 18.9%
137.0459 ESI+ Hypoxanthine 1.95 0.70% 4,615,790 16.3% 213 15.3% 7,388 22.8% 9099.625 26.8%
141.0167 ESI- - 5.63 0.26% 24,499,130 6.6% - - - - - -
142.0864 ESI+ - 3.97 0.00 2089146.02 17.8% 204 14.8% 10,000 16.8% 11,369 23.8%
143.1180 ESI+ - 8.68 0.23% 2,077,661 14.6% 2,085 17.2% 51,544 7.8% 72,523 18.9%
144.1019 ESI+ - 6.18 0.31% 4,946,851 17.0% 13,420 16.5% 631819.200 24.9% 769863.467 29.5%
152.0706 ESI+ - 4.40 0.37% 2,231,276 12.3% 392 20.3% - - - -
153.0660 ESI+ - 1.38 1.24% 5,054,141 14.8% 290.705 12.9% 9039.700 10.8% 9573.000
160.1333 ESI+ - 8.89 0.18% 2,751,757 15.5% 1666.263 16.2% 96,333 9.3% 111,769 16.0%
162.1125 ESI+ - 7.68 0.00 3323420.84 18.3% 1,919 10.9% 186,749 22.2% 239070.667 22.4%
166.0725 ESI+ - 2.78 0.83% 5,790,744 17.5% 457.979 18.7% 28281.133 16.4% 28538.333 18.3%
166.0868 ESI+ Phenylalanine 5.25 0.27% 112,671 17.3% 307 17.8% - - - -
170.0925 ESI+ 3-Methyl-L-Histidine .77 0.50% 3,781,756 18.2% 4,297 16.1% 127,254 13.4% 132,873 18.2%
172.9914 ESI- ; 0.61 0.13% 8,521,617  13.9% 11,081 17.4% 209,592 7.9% 926,687 11.6%
174.0406 ESI- - 6.89 0.00 206454.27 17.7% 293 13.6% 13,131 15.2% 15,393 13.5%
178.0509 ESI- Hippuric acid 4.00 0.51% 21,442,240 17.5% 46,475 14.6% 1,885,018 16.8% 2,003,627 19.7%
180.0660 ESI- Tyrosine 5.50 0.00 72516.90 17.6% 2791.639 13.9% 6,901 11.1% 6541.667 11.1%
186.9954 ESI+ - 5.63 0.18% 3,938,743 10.9% - - - - - -
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Compounds present in LC-MS (BEH-HILIC) FIE-MS Chip-based infusion LESA-MS
m/z Polarity artificial urine RT(min) RSD(%) Peak Area RSD(%) Counts RSD(%) Counts RSD(%)  Counts RSD(%)
187.0070 ESI- - 0.61 0.13% 50,119,797 15.6% 61,605 20.2% 991,281 10.5% 994,878 17.1%
190.0504 ESI- 5-Hydroxyindole-3-acetic acid ~ 2.95 0.97% 127,512 17.8% - - - - - -
193.0613 ESI- 4-Aminohippuric acid 3.89 0.41% 92,201 18.0% - - 5,224 16.7% 2,548 15.1%
194.9273 ESI- - 6.61 0.00 3590258.40 11.3% 229.968 14.5% - - - -
4-Hydroxy-3-

197.0450 ESI- methoxymandelic acid 2.55 0.01 294092.52 18.3% 167 12.4% 7682.786 11.0% 7915.200 20.2%
203.0821 ESL L-Tryptophan 5.17 0.22% 97,002 13.6% - : - - : -
203.1504 ESI+ - 9.16 0.11% 6,092,154 17.2% 1,392 13.4% 41,043 8.8% 47,097 14.4%
212.0022 ESI- - 0.63 0.14% 15,997,383 14.6% 3,461 20.2% 102099.923 14.1% 111675.733 22.8%
223.0199 ESI- - 5.62 0.00 3172090.29 7.4% - - - - - -
225.0627 ESI- - 1.75 1.07% 3,505,031 13.2% 5,672 16.8% 85,136 24.2% 79485.667 32.2%
226.0828 ESI+ Cytidine 2.27 1.03% 596,664 17.3% - - - - - -
229.1549 ESI+ - 7.50 0.01 6015114.50 16.7% 5,802 19.2% 230,568 24.5% 282,101 24.5%
232.0275 ESI+ - 0.67 0.16% 4,322,180 10.3% - - - - - -
243.0621 ESI- Uridine 1.65 0.81% 5,991,699 12.9% 431 17.0% 13,039 19.9% 13,710 22.7%
245.0123 ESI- - 1.45 0.97% 1,177,384 15.7% 239 15.4% 8,574 11.3% 8,267 10.4%
254.9815 ESI- - 0.74 1.14% 1,069,467 18.3% 703 18.5% 13,358 24.2% 5,920 30.3%
263.1037 ESI- - 4.77 0.58% 7,618,696 17.5% 7,965 13.0% 334,091 16.3% 335,456 23.1%
265.1182 EST+ - 4.77 0.65% 3,658,075 15.1% 1,303 17.1% 23629.933 9.7% 11359.800 19.1%
268.9984 EST+ - 5.63 0.18% 6,826,822 12.5% - - - - - -
305.0335 ESI- - 1.46 1.21% 1,397,431 15.5% - - 4,589 17.4% 5,192 16.6%
357.1093 ESI- - 4.01 0.39% 1,399,247 18.1% 216 13.1% 2,800 17.7% 4,000 34.3%
515.0079 ESI+ - 5.63 0.18% 1,287,547 12.0% - - - - - -

RSD% of retention time (RT), Peak area/count of the selected peaks were calculated from the analysis of the pooled QC urine sample (n = 15).
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Appendix F Validation of LC-MS and FIE-MS analyses for metabolomics profiling of malaria
using selected urine metabolites peaks from pooled QC samples

Compounds present in LC-MS (BEH-HILIC) FIE-MS
m/z Polarity artificial urine RT(min) RSD(%) Peak area  RSD(%) Counts RSD(%)
61.0309  ESI+  Urea 1.45 0.69% 47,187,222 3% 654,684 4%
76.0758 ESI+ - 7.79 0.25% 24,251,989 5% 498,887 ™%
88.0399 ESI- L-alanine 6.19 0.21% 541,218 8% 1,676 11%
89.0268 ESI- Lactic acid 2.16 0.66% 32,393,711 3% - -
94.0653 ESI+ - 5.93 0.41% 18,454,689 5% 77,197 10%
96.9600 ESI- - 6.62 0.29% 52,033,613 3% 184,566 12%
103.0395 ESI- Z—Hydroxyisobutyric 4.24 0.33% 7,063,654 3% 6,200 21%
104.9923 ESI+ a—CId 5.64 0.38% 33,746,354 3% - -
105.0336 ESI+ - 4.01 0.40% 2,458,530 8% 6,204 8%
112.0507 ESI+ - 2.29 0.41% 22,255,228 3% 2,390 15%
112.0515 ESI- - 3.18 0.61% 169,499,037 2% 1,860 18%
114.0664 ESI+  Creatinine 3.12 0.42% 910,770,147 3% 1,247,896 4%
115.0697  ESI+ - 3.12 0.39% 39539573 2% 53,256 5%
118.0864  ESI+ - 6.06 0.34% 5356280 7% 32,226 6%
120.0661 ESI+  L-Threonine 6.53 0.24% 627,755 12% 4,326 14%
130.1089 ESI+ - 5.36 0.44% 156,338 8% - -
132.0769 ESI+ Creatine 6.60 0.24% 9,889,928 3% 9,430 6%
137.0459 ESI+  Hypoxanthine 1.95 0.51% 23,083,594 5% 1,496 20%
141.0167 ESI- - 5.64 0.34% 144,825,883 1% - -
142.0864 ESI+ - 3.97 0.52% 12,521,078 5% 1,961 20%
143.1180 ESI+ - 8.72 0.18% 11,237,483 4% 14,364 9%
144.1019 ESI+ - 6.20 0.30% 6,106,461 4% 28,465 ™%
152.0706 ESI+ - 4.40 0.43% 764,484 4% - -
153.0660 ESI+ - 1.41 0.66% 7,554,338 4% - -
160.1333 ESI+ - 8.89 0.13% 3,975,983 6% 1,980 23%
162.1125 ESI+ - 7.69 0.20% 19,556,764 5% 34,971 5%
166.0725 ESI+ - 2.70 0.59% 35,449,941 3% 3,948 13%
166.0868 ESI+ Phenylalanine 5.31 0.27% 1,087,605 3% 5,867 13%
167.0205 ESI- - 1.45 0.64% 656,995 6% 64,270 4%
172.9914 ESI- - 0.64 0.56% 69,253,890 3% 24,856 8%
174.0406  ESI- ; 6.88 0.14% 1592452 8% 1,421 23%
178.0509 ESI- Hippuric acid 4.00 0.46% 102,229,693 1% 266,231 9%
180.0660 ESI- Tyrosine 5.52 0.28% 293,726 12% 28,774 9%
180.0881 ESI+ - 2.23 0.75% 17,198,686 2% - -
181.0501 ESI- Homovanillic acid 3.15 0.46% 10,650,934 2% 5,884 ™%
186.9954 ESI+ - 5.64 0.34% 26,186,276 4% - -
187.0070 ESI- - 0.64 0.56% 319,751,678 3% 95,750 10%
190.0504 ESI- 5-Hydroxyindole-3- 2.80 1.37% 449,565 10% - -

acetic acid
193.0613  ESI- 4-Aminohippuric acid 3.88 0.40% 463,402 3% - -
194.9273 ESI- - 6.62 0.29% 26,678,056 2% 4,087 19%
195.0522 ESI- - 3.13 0.81% 14,782,718 6% 12,156 %
197.0450 ESI- 4-Hydroxy-3- 2.51 0.69% 1,651,895 5% 1,167 21%

methoxymandelic acid
203.0821 ESI- L-Tryptophan 5.24 0.24% 585,848 3% - -
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Compounds present in  LC-MS (BEH-HILIC) FIE-MS
m/z Polarity artificial urine RT(min) RSD(%) Peak area  RSD(%) Counts RSD(%)
203.1504 EST+ - 9.20 0.17% 35,846,006 6% 9,836 8%
204.1231 EST+ - 7.35 0.25% 15,814,618 4% 36,489 ™%
212.0022 ESI- - 0.66 1.14% 83,944,045 1% 6,474 10%
216.9810 ESI- - 1.35 0.84% 14,492,929 6% - -
223.0199 ESI- - 5.64 0.32% 27,260,765 2% - -
225.0627 ESI- - 1.72 0.80% 3,075,832 9% 3,744 10%
226.0828 ESI+ Cytidine 2.24 0.52% 15,315,227 5% - -
232.0275 ESI+ - 0.69 0.52% 2,255,168 3% - -
9243.0621 ESI+  Uridine 1.64 0.42% 45620277 5% 5,141 9%
9254.9815  ESL ; 0.74 1.34% 2754107 5% 1,248 6%
263.0225 ESI- MHPG sulphate 0.74 0.52% 3,524,896 3% - -
263.1037 ESI- - 4.76 0.30% 31,252,508 1% 57,466 5%
265.1182 ESI- - 4.75 0.29% 21,164,752 5% 12,045 12%
268.9984 ESI- - 5.64 0.39% 47,467,723 2% - -
357.1093 ESI+ - 4.01 0.46% 8,660,359 2% - -
391.1119 ESI+ - 3.13 0.76% 2,101,625 10% - -
515.0079 ESI- - 5.64 0.39% 9,604,267 2% - -

RSD% of retention time (RT), Peak area/count of the selected peaks were calculated from the analysis of the pooled
QC urine sample (n = 10).
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Appendix G Validation of LC-MS and FIE-MS analyses for FOG dietary intervention using selected urine metabolites peaks from pooled QCs.

Spot urine analysis

24 h urine analysis

Compounds present LC-MS (BEH-HILIC) FIE-MS LC-MS (BEH-HILIC) FIE-MS
m/z Polarity in artificial urine RT(min) RSD(%) Peak Area  RSD(%) Counts RSD(%) RT(min) RSD(%) Peak Area  RSD(%) Counts  RSD(%)
61.0399 ESI+  Urea 1.46 0.32% 78,487,199 8% 1048442 7% 144 081% 22498379 8% 5,896,627 4%
76.0758  EST+ 7.78 0.06% 40,620,025 3% 2,380,057 3% 772 0.36% 10,375,509  12% 1,261,813 4%
88.0399 ESI- L-alanine 6.65 0.09% 1,406,798 8% 2,573 16% 6.62 0.13% 632,362 13% 3,018 10%
89.0242 ESI- Lactic acid 2.33 0.25% 4,454,704 ™% - - 2.15 0.27% 686,491 8% - -
94.0653 ESI+ 5.92 0.13% 13,743,248 5% 66,432 2% 5.87 0.41% 5,844,364 6% 64,846 6%
96.9600 ESI- 6.70 0.09% 52,861,048 ™% 184,042 18% 6.64 0.34% 17,379,699 9% 141,815 20%
103.0395 ESI- 2—%ydroxyisobutyric 3.26 0.26% 10,921,025 9% 13,220 6% 3.15 0.42% 3,572,236 ™% 3,720 14%
104.9923 ESI+ o 5.68 0.07% 25,962,199 5% - - 5.61 0.19% 12,249,793 4% - -
105.0336 ESI+ 4.06 0.24% 9,934,866 14% 18,327 % 3.97 0.52% 1,185,691 6% 8,148 10%
112.0507 ESI+ 2.46 0.49% 15,051,628 9% 4,573 13% 2.34 0.52% 1,210,474 9% 3,186 11%
112.0515 ESI- 3.20 0.31% 269,537,096 3% 4,573 13% 308  0.54% 72215808 4% 3,161 10%
114.0664 ESI+  Creatinine 3.15 0.55%  1,539,222,543 6% 4,844,998 5% 3.05 0.64% 377,792,257 11% 1,556,672 6%
115.0697 ESI+ 3.15 0.55% 65,816,944 6% 206,649 5% 3.05 0.63% 16,218,782 11% 66,407 4%
118.0864 ESI+ 6.08 0.14% 1,670,379 4% 55,496 10% 5.97 0.50% 1,172,480 ™% 45,861 6%
120.0661 ESI+ L-threonine - - - - 10,275 16% 6.03 0.35% 28,096 8% 8,393 8%
132.0769 ESI+ Creatine 6.65 0.09% 11,026,123 8% 31,173 10% 6.55 0.32% 4,924,340 14% 52,347 7%
137.0459 ESI+ Hypoxanthine 1.98 0.26% 57,963,049 6% 6,540 11% 1.88 0.50% 4,231,559 10% - -
142.0864 ESI+ 4.14 0.20% 9,374,639 20% 6,068 13% 4.13 0.47% 2,030,220 13% 7,919 21%
143.1180 ESI+ 8.93 0.19% 6,144,224 5% 26,980 12% 8.49 0.31% 256,005 8% 13,791 14%
144.1019 ESI+ 6.19 0.13% 10,539,684 14% 246,980 7% 6.12 0.39% 7,843,285 10% 424,716 5%
152.0706 ESI+ 4.47 0.13% 3,667,164 10% 1,782 20% 4.32 0.67% 552,228 8% 2,272 21%
153.0660 ESI+ 1.40 0.34% 34,294,375 4% 6,898 20% 1.40 0.72% 6,729,831 8% 7,467 12%
160.1333 ESI+ 8.91 0.07% 16,266,337 6% 15,952 9% 8.76 0.22% 4,407,289 14% 13,224 10%
162.1125 ESI+ 7.69 0.06% 7,211,681 8% 50,831 3% 7.59 0.19% 2,034,656 10% 36,335 9%
166.0725 ESI+ 2.78 0.41% 51,009,736 ™% 14,872 11% 2.65 0.32% 4,832,693 4% 5,064 15%
166.0868 ESI+ Phenylalanine 5.47 0.23% 331,421 6% 7,749 16% 5.46 0.48% 46,785 11% 5,652 13%
167.0205 ESI- Uric acid 1.49 0.51% 693,238 5% 172,431 2% 1.44 0.80% 66,913 12% 131,502 3%
172.9914 ESI- 0.64 1.36% 93,513,639 6% 34,072 6% 0.63 0.17% 13,914,906 11% 11,148 10%
174.0406 ESI- 6.98 0.09% 4,758,727 10% 4,289 9% 6.82 0.35% 139,226 ™% 3,825 11%
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Spot urine analysis

24 h urine analysis

Compounds present LC-MS (BEH-HILIC) FIE-MS LC-MS (BEH-HILIC) FIE-MS
m/z Polarity in artificial urine RT(min) RSD(%) Peak Area  RSD(%) Counts RSD(%) RT(min) RSD(%) Peak Area  RSD(%) Counts  RSD(%)
178.0509 ESI- Hippuric acid 4.06 0.20% 147,690,552 6% 607,252 5% 3.96 0.68% 22,086,726 4% 402,930 3%
180.0881 ESI+ 2.05 0.94% 3,912,320 7% - - 2.39 0.57% 1,142,146 8% - -
181.0501 ESI- Homovanillic acid 3.15 0.37% 19,318,117 9% 11,150 9% 3.08 0.43% 2,700,425 6% 7,454 9%
186.9954 ESI+ 5.68 0.07% 17,475,857 3% - - 5.60 0.39% 8,401,089 6% - -
187.0070  ESI- 0.63 1.24% 304,339,281 6% 36,311 13% 0.63 0.17% 55,380,796 11% 17,868 17%
190.0504 ESI- 5—Hydr0)§yindole—3— 3.02 0.30% 638,604 7% 2,524 22% - - - - 1,788 21%
193.0613 ESI- i—cgcrlr(ljh?(():igppuric acid 3.96 0.21% 388,245 9% 1,111 3% 3.85 0.60% 85,841 6% 1,154 11%
194.9273 ESI- 6.72 0.08% 30,544,804 6% 4,561 19% 6.62 0.32% 8,904,405 9% 3,435 21%
195.0522 ESI- 3.21 0.13% 40,897,158 12% 39,373 4% 3.01 0.39% 1,811,722 5% 17,220 7%
197.0450 ESL-  4-Hydroxy-3- 2.80 0.69% 1,102,000  12% 2,044 12%  2.69 0.35% 154,465 14% 2,070 14%

methoxymandelic acid
203.0821 ESI- L-Tryptophan 5.39 0.14% 284,990 8% - - 5.37 0.41% 13,882 8% - -
204.1231 ESI+ 7.36 0.08% 19,761,392 6% 38,009 4% 7.27 0.32% 3,302,924 12% 29,949 6%
212.0022 ESI- 0.65 0.59% 118,900,289 6% 6,788 21% 0.66 0.11% 15,723,519 12% 1,803 22%
216.9810 ESI- 1.36 0.84% 25,570,263 4% 1,276 12% 1.32 0.78% 3,752,584 4% - -
223.0199 ESI- 5.68 0.10% 19,345,106 4% - - 5.59 0.47% 11,190,849 3% - -
225.0627 ESI- 1.76 0.40% 17,185,846 3% 30,522 6% 1.65 0.38% 1,903,889 8% 8,229 3%
226.0828 ESI+ Cytidine 2.40 0.82% 5,335,680 8% - - 2.28 0.57% 245,016 15%
229.1549 ESI+ 7.38 0.13% 40,332,389 7% 105,095 5% 7.35 0.31% 3,654,667 10% 50,233 11%
232.0275 ESI+ 0.70 0.48% 8,137,240 5% - - 0.69 0.18% 2,625,077 5% - -
243.0621 ESI- Uridine 1.71 0.34% 50,806,572 4% 8,782 9% 1.64 0.46% 9,393,648 9% 6,081 6%
245.0123 ESI- 1.48 0.60% 17,916,898 5% - - 1.32 0.97% 1,529,179 7% 1,064 3%
254.9815 ESI- 0.74 1.15% 6,033,463 9% 3,928 16% 0.74 0.66% 1,085,442 13% 2,722 7%
263.0225 ESI- MHPG sulphate 0.75 0.98% 2,695,715 5% - - 0.75 0.65% 455,316 14% - -
263.1037 ESI- 4.85 0.10% 28,379,398 5% 73,575 5% 4.77 0.47% 3,917,168 4% 61,834 3%
265.1182 ESI+ 4.85 0.42% 20,616,618 5% 25,173 11% 4.76 0.66% 4,003,646 11% 22,436 7%
268.9984 ESI+ 5.68 0.07% 29,194,542 3% - - 5.61 0.30% 14,317,585 6% - -
305.0335 ESI- 1.50 0.56% 15,937,110 6% - - 1.33 0.87% 287,322 14% - -
357.1093 ESI- 4.06 0.20% 13,975,776 4% 1,338 6% 3.98 0.78% 986,373 8% - -
515.0079 ESI+ 5.68 0.07% 6,257,022 3% - - 5.59 0.49% 3,654,763 3% - -
RSD% of retention time (RT), Peak area/count of the selected peaks were calculated from the analysis of the pooled QC urine sample interspaced throughout the run (n = 9).



