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1. Introduction

The concept of a multi-fuzzy set [12, 13, 15, 16, 18] is an extension of a fuzzy
set and Atanassov’s intuitionistic fuzzy set. Multi-fuzzy sets are useful for handling
problems with multi dimensional characterization properties. Applications of multi-
fuzzy sets in image processing are discussed in [14]. Previous papers on multi-fuzzy
sets concern set theoretical [11, 12, 13], topological [16] and algebraic [17] properties.

Our previous work on multi-fuzzy sets [19, 20] are based on the product order on
their membership functions. This paper discusses the properties of multi-fuzzy sets
with various order relations on their membership functions, in particular dictionary
order and product order. It also studies the relationship between multi-fuzzy sets
and intuitionistic fuzzy sets, type-2 fuzzy sets and fuzzy multisets.
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2. Preliminaries

Throughout this paper X and Y stand for universal sets, I, J and K stand for
indexing sets, {Lj : j ∈ J} and {Mi : i ∈ I} are families of lattices, unless it is
stated otherwise and LX stands for the set of all functions from X into L.

Let X be a nonempty crisp set and L be a complete lattice. An L-fuzzy set [5]
on X is a mapping A : X → L, and the family of all the L-fuzzy sets on X is just
LX consisting of all the mappings from X into L.

If {Lj : j ∈ J} is a family of lattices, then the product
∏

j∈J

Lj is a lattice. If

x, y ∈
∏

j∈J

Lj , then join x ∨ y and meet x ∧ y of x, y are defined as: (x ∨ y)j =

xj ∨ yj and (x ∧ y)j = xj ∧ yj , ∀xj , yj ∈ Lj , ∀j ∈ J ; or, equivalently, the product
order x ≤ y is defined as xj ≤j yj , ∀j ∈ J , where ≤ and ≤j are the order relations

in
∏

j∈J

Lj and Lj respectively (Adopted from [24]).

Definition 2.1 ([22]). Let L and M be completely distributive lattices with order
reversing involutions ′ : M → M and ′ : L → L. A mapping h : M → L is called an
order homomorphism, if it satisfies the conditions h(0) = 0, h(∨ai) = ∨h(ai) and
h−1(b′) = (h−1(b))′.

h−1 : L → M is defined by ∀b ∈ L, h−1(b) = ∨{a ∈ M : h(a) ≤ b}. Order
homomorphisms satisfy the following properties [22]: for every a ∈ M and p ∈ L;
a ≤ h−1(h(a)), h(h−1(p)) ≤ p, h−1(1L) = 1M , h−1(0L) = 0M and a ≤ h−1(p) ⇔
h(a) ≤ p ⇔ h−1(p′) ≤ a′. Both h and h−1 are order preserving and arbitrary join
preserving maps. Moreover h−1(∧ai) = ∧h−1(ai).

2.1. Multi-fuzzy sets.

Definition 2.2 ([12, 16]). Let X be a nonempty set, J be an indexing set and
{Lj : j ∈ J} a family of partially ordered sets. A multi-fuzzy set A in X is a set :

A = {⟨x, (µj(x))j∈J⟩ : x ∈ X, µj ∈ LX
j , j ∈ J}.

The function µA = (µj)j∈J is called the multi-membership function of the multi-
fuzzy set A.

∏
j∈J Lj is called the value domain. If J = {1, 2, ..., n} (that is,

|J | = n, a natural number), then n is called the dimension of A. Suppose that
Lj = [0, 1], ∀j ∈ J and dimension of multi-fuzzy sets in X is n, then MnFS(X)
denotes the set of all multi-fuzzy sets in X.

Let {Lj : j ∈ J} be a family of partially ordered sets, A = {⟨x, (µj(x))j∈J⟩ :
x ∈ X, µj ∈ LX

j , j ∈ J} and B = {⟨x, (νj(x))j∈J ⟩ : x ∈ X, νj ∈ LX
j , j ∈ J}

be multi-fuzzy sets in X with product order on their membership functions. Then
A ⊑ B if and only if µj(x) ≤ νj(x), ∀x ∈ X and ∀j ∈ J.

The equality, union and intersection(see [12]) of A and B are defined as:
2
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• A = B if and only if µj(x) = νj(x), ∀x ∈ X and ∀j ∈ J ;
• A ⊔B = {⟨x, (µj(x) ∨ νj(x))j∈J ⟩ : x ∈ X};
• A ⊓B = {⟨x, (µj(x) ∧ νj(x))j∈J ⟩ : x ∈ X}.

Complement of A is A′ = {⟨x, (µ′

j(x))j∈J ⟩ : x ∈ X}, where µ′

j is the order reversing
involution of µj .

If A,B,C are multi-fuzzy sets in X having same value domain with product order,
then:

• A ⊔A = A, A ⊓A = A ;
• A ⊑ A ⊔B, B ⊑ A ⊔B, A ⊓B ⊑ A and A ⊓B ⊑ B;
• A ⊑ B if and only if A ⊔B = B if and only if A ⊓B = A;

Definition 2.3 ( [14, 15]). Let {Lj : j ∈ J} be a family of complete lattices,
f : X → Y and h :

∏
Mi →

∏
Lj be functions. The multi-fuzzy extension F :∏

MX
i →

∏
LY
j of f with respect to h is defined by

F (A)(y) =
∨

y=f(x)

h(A(x)), A ∈
∏

MX
i , y ∈ Y.

The lattice valued function h :
∏

Mi →
∏

Lj is called the bridge function of the
multi-fuzzy extension of f . If {Lj : j ∈ J} and {Mi : i ∈ I} are families of
completely distributive lattices and h−1 is the upper adjoint of h in Wang’s [22]
sense (see Definition 2.1), then the inverse F−1 :

∏
LY
j →

∏
MX

i is defined by

F−1(B)(x) = h−1(B(f(x))), B ∈
∏

LY
j , x ∈ X;

3. Multi-fuzzy Sets and the Relationship to other Sets

This section discusses the relationship between multi-fuzzy sets and similar sets
like intuitionistic fuzzy sets, type 2 fuzzy sets, Obtulowicz’s general multi-fuzzy sets,
multisets, fuzzy multisets, Syropoulo’s multi-fuzzy sets, Blizard’s multi-fuzzy sets
and general sets.

3.1. Multi-fuzzy Sets and Intuitionistic Fuzzy Sets. An Atanassov’s intuition-
istic fuzzy set [1] on X is a set A = {⟨x, µA(x), νA(x)⟩ : µA(x) + νA(x) ≤ 1, x ∈ X},
where µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] denote the membership degree and the non-
membership degree of x in A respectively.

Consider multi-fuzzy sets A,B of X with value domain L1×L2, where L1 = L2 =
[0, 1]. That is, A = {⟨x, µ1(x), µ2(x)⟩ : x ∈ X} = (µ1, µ2) andB = {⟨x, ν1(x), ν2(x)⟩ :
x ∈ X} = (ν1, ν2) are multi-fuzzy sets of dimension 2. Define a partial order as fol-
lows (µ1(x), µ2(x)) ≤M (ν1(x), ν2(x)) if and only if µ1(x) ≤ ν1(x) and µ2(x) ≥ ν2(x).
If µ1(x) and µ2(x) are the grade membership and grade nonmembership values of
x in A respectively and if µ1(x) + µ2(x) ≤ 1, ∀x ∈ X, then A is an intuitionistic
fuzzy set. That is, every intuitionistic fuzzy set in X is a multi-fuzzy set in X of
dimension 2.

If A = {⟨x, µ1(x), µ2(x)⟩ : x ∈ X} and B = {⟨x, ν1(x), ν2(x)⟩ : x ∈ X} are
multi-fuzzy sets in X with the above order relation, then

3
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• A ⊑ B if and only if µ1(x) ≤ ν1(x) and µ2(x) ≥ ν2(x), ∀x ∈ X, where ≤ is
the usual order relation and ≥ is its dual order in [0, 1];

• A ⊔B = {⟨x, µ1(x) ∨ ν1(x), µ2(x) ∧ ν2(x)⟩ : x ∈ X};
• A ⊓B = {⟨x, µ1(x) ∧ ν1(x), µ2(x) ∨ ν2(x)⟩ : x ∈ X}.

This shows that union and intersection defined in multi-fuzzy sets with the above
order relation are the same as the union and intersection defined in intuitionistic
fuzzy sets.

3.2. Multi-fuzzy Sets and Type-2 Fuzzy Sets. A type-2 fuzzy set is a fuzzy
set having a membership function which itself is a fuzzy set (see page 17 of [6] and
page 24 of‘[25]). Suppose A = {⟨x, νA(x)⟩ : x ∈ X} and B = {⟨x, νB(x)⟩ : x ∈ X}
are multi-fuzzy sets of dimension 1 with value domain L1 = II , where I = [0, 1].
Note that νA(x), νB(x) ∈ II , for each x ∈ X. Define a partial order as follows
νA(x) ≤M νB(x) if and only if νA(x) ⊆ νB(x), where ≤M and ⊆are the order rela-
tions in multi-fuzzy sets and II respectively. ⊆ is the fuzzy set inclusion operation
in II . That is, type-2 fuzzy sets are multi-fuzzy sets.

Let A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} = (µA, νA) and B = {⟨x, µB(x), νB(x)⟩ :
x ∈ X} = (µB , νB) be multi-fuzzy sets of dimension 2 with value domain L1 × L2.

Suppose L1 = [0, 1], L2 = II , I = [0, 1], and νA(x), νB(x) ∈ II , for each x ∈ X.

Define the partial order (µA(x), νA(x)) ≤M (µB(x), νB(x)) if and only if µA(x) ≤
µB(x) and νA(x) ⊆ νB(x). With respect to this order relation, A is a multi-fuzzy
set and it is a generalization of type-2 fuzzy set.

3.3. Multi-fuzzy Sets and Obtulowicz’s General Multi-fuzzy Sets.

Obtulowicz’s general multi-fuzzy sets [10] over a universal set X are functions
M : X × N → I or equivalently, functions M : X → IN, where N is the set of
all natural numbers and I = [0, 1]. The value M(x, n) or M(x)(n) is the degree of
certainty that n copies of an object x ∈ X occur in a system or its part. In the
general multi-fuzzy sets the order relations and operations are defined component
wise.

Let A = {⟨x, νA(x)⟩ : x ∈ X} and B = {⟨x, νB(x)⟩ : x ∈ X} be multi-fuzzy sets of
dimension 1 with value domain L1 = IN, where I = [0, 1], and νA(x), νB(x) ∈ IN for
each x ∈ X. Consider the partial order νA(x) ≤M νB(x) if and only if νA(x) ⊆ νB(x),
where ≤M and ⊆are the order relations in multi-fuzzy sets and IN respectively. Note
that νA(x) = A(x)(n) and νB(x) = B(x)(n). Hence Obtulowicz’s general multi-fuzzy
sets are multi-fuzzy sets.

3.4. Multi-fuzzy Sets and Multisets. Let W be the set of nonnegative in-
tegers and let CA be function the universal set X into W. A multiset [2, 3] M over
the set X is the set A = {(x,CA(x)) : x ∈ X,CA(x) > 0}. The value CA(x) is the
number of copies of x occur in the multiset A. Let A and B be multisets over X.

Then:

• A ⊆ B, if CA(x) ≤ CB(x), ∀x ∈ X;
• A = B, if CA(x) = CB(x), ∀x ∈ X;
• CA∪B(x) = max{CA(x), CB(x)};

4
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• CA∩B(x) = min{CA(x), CB(x)}.

Multisets are multi-fuzzy sets of dimension 1 with L1 = W and CA(x) ≤M CB(x)
equivalent to CA(x) ≤ CB(x), where ≤M and ≤ order relations in multi-fuzzy sets
and multisets respectively. Miyamoto’s [8, 9] above definition of inclusion, equal-
ity, union and intersection of multisets are the same as the definition of respective
operations in multi-fuzzy sets of dimension 1 with value domain L1 = W.

3.5. Multi-fuzzy Sets and Fuzzy Multisets. Yager [23] proposed the notion
of fuzzy bags and later Miyamoto [7, 8, 9] renamed them as fuzzy multisets. LetX be

a nonempty set and µ
j
A(x) ∈ [0, 1], for j = 1, 2, ..., k. A fuzzy multiset A in X is a set

: A = {(x, µ1
A(x), µ

2
A(x), ..., µ

k
A(x)) : x ∈ X, µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µk

A(x)} (see [4]).
In a fuzzy multiset an element of X may occur more than once with possibly the
same or different membership values and fuzzy multiset membership value of x ∈ X

is a non-increasing sequence of fuzzy membership values of x. Usually we write the
elements ofX with nonzero membership values only. Appending any number of zeros
at the right end of a finite sequence of the membership values of x will not make
any difference to the occurrence of an element x. Let A and B be fuzzy multisets
over X. Then:

• A ⊆ B if and only if µj
A(x) ≤ µ

j
B(x), j = 1, 2, ..., k, ∀x ∈ X;

• A = B if and only if µj
A(x) = µ

j
B(x), j = 1, 2, ..., k, ∀x ∈ X;

• µ
j
A∪B(x) = max{µj

A(x), µ
j
B(x)}, j = 1, 2, ..., k;

• µ
j
A∩B(x) = min{µj

A(x), µ
j
B(x)}, j = 1, 2, ..., k.

A fuzzy multiset is a multi-fuzzy set with value domain
∏

Lj having the relation
µ1
A(x) ≥ µ2

A(x) ≥ ... ≥ µk
A(x) ≥ ... and Lj = [0, 1], for j = 1, 2, .... If the order

relation in the value domain of multi-fuzzy sets are product orders, then inclusion,
union and intersection in fuzzy multisets and multi-fuzzy sets are identical.

3.6. Multi-fuzzy Sets and Syropoulos’s Multi-fuzzy Sets. Syropoulos’s
multi-fuzzy sets [21] is a fuzzification of multisets. Let X be the universal set and
N be the set of natural numbers. If M : X → N characterizes a multiset M, then
Syropoulos’s multi-fuzzy set of M is characterized by a function H : X → N× [0, 1],
such that if M(x) = n, then H(x) = (n, i), for every x ∈ X. In addition, the
expression H(x) = (n, i) denotes the degree to which these n copies of x belongs to
H is i. Union and intersection operations of Syropoulos’s multi-fuzzy sets are defined
as follows: Let H,G : X → N × [0, 1] be two Syropoulos’s multi-fuzzy sets, H ∪ G
and H ∩ G be the union and intersection of H,G. The membership function can be
defined as

(H ∪ G)(x) = (max{Hm(x),Gm(x)},max{Hµ(x),Gµ(x)})

and

(H ∩ G)(x) = (min{Hm(x),Gm(x)},min{Hµ(x),Gµ(x)}),

where Hµ(x) and Gµ(x) are the membership values of x in H and G respectively.
Similarly Hm(x) and Gm(x) are the multiplicities of x in H and G respectively.

Syropoulos’s multi-fuzzy sets are multi-fuzzy sets defined by the author with
dimension 2, and L1 = L, L2 = N. The order relation H(x) ≤M G(x) if and only if

5
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Hµ(x) ≤ Gµ(x) and Hm(x) ≤ Gm(x), where ≤M and ≤ are order relations defined
in multi-fuzzy sets and Syropoulos’s multi-fuzzy sets respectively.

3.7. Blizard’s Multi-fuzzy Sets. Blizard [2] proposed the notion of multi-fuzzy
sets characterized by nonnegative and real valued membership functions. That is,
membership function of a Blizard’s multi-fuzzy set is µ(x) ∈ [0,∞). He extended the
value domain of membership functions into the set of all real numbers and called
it a general set. Blizard’s multi-fuzzy sets and general sets are our multi-fuzzy sets
with dimension 1, and value domains L1 = [0,∞) and L1 = R respectively.

It is possible to define multi-fuzzy extensions of a crisp function f : X → Y with
respect to bridge a function h :

∏
Li →

∏
Li in intuitionistic fuzzy sets, type-2 fuzzy

sets, multisets, fuzzy multisets, Obtulowicz’s general multi-fuzzy sets, Syropoulos’s
multi-fuzzy sets and Blizard’s multi-fuzzy sets, since they are multi-fuzzy sets. If h is
the identity function defined on

∏
Li, then the extension is Zadeh’s extension. Using

the bridge functions h :
∏

Mi →
∏

Lj , we can extend a crisp function f : X → Y as
a function from intuitionistic fuzzy sets (or any of the above sets) into type-2 fuzzy
sets (or any of the above sets).

4. Different Order Relations on Membership Functions

This section discusses properties of multi-fuzzy sets with membership function
having order relations other than product order.

LetA = {⟨x, µ1(x), µ2(x)⟩ : x ∈ X, µ1(x), µ2(x) ∈ [0, 1]} andB = {⟨x, ν1(x), ν2(x)⟩ :
x ∈ X, ν1(x), ν2(x) ∈ [0, 1]} be multi-fuzzy sets in X of dimension 2 and value do-
main I2 with dictionary order. That is, A,B ∈ M2FS(X) with dictionary order in
the value domain. Then

• A = B if and only if µj(x) = νj(x), j = 1, 2, ∀x ∈ X;
• A ⊂ B if and only if µ1(x) < ν1(x) or if µ1(x) = ν1(x) and µ2(x) <

ν2(x), ∀x ∈ X;
• A ⊔B = {⟨x, µ1(x) ∨ ν1(x), µ2(x) ∨ ν2(x)⟩ : x ∈ X};
• A ⊓B = {⟨x, µ1(x) ∧ ν1(x), µ2(x) ∧ ν2(x)⟩ : x ∈ X}.

In a similar manner we can define equality, set inclusion, union and intersection of
A,B ∈ MnFS(X) with dictionary order in the value domain.

If A,B ∈ M2FS(X) with reverse dictionary order in the value domain, then
A ⊂ B if and only if µ2(x) < ν2(x) or if µ2(x) = ν2(x) and µ1(x) < ν1(x), ∀x ∈ X.

Equality, union and intersection of A,B ∈ M2FS(X) with reverse dictionary order
in the value domain are similar to the respective relations of A,B ∈ M2FS(X) with
dictionary order in the value domain.
Let A,B ∈ M2FS(X) with dictionary order in the value domain. If

• A ⊔1 B = {⟨x, µ1(x) ∨ ν1(x), µ2(x)⟩ : x ∈ X};
• A ⊔2 B = {⟨x, µ1(x) ∨ ν1(x), ν2(x)⟩ : x ∈ X};
• A ⊔min B = {⟨x, µ1(x) ∨ ν1(x), µ2(x) ∧ ν2(x)⟩ : x ∈ X};
• A ⊓1 B = {⟨x, µ1(x) ∧ ν1(x), µ2(x)⟩ : x ∈ X};
• A ⊓2 B = {⟨x, µ1(x) ∧ ν1(x), ν2(x)⟩ : x ∈ X};

6



Sabu Sebastian, Robert John/Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

• A ⊓max B = {⟨x, µ1(x) ∧ ν1(x), µ2(x) ∨ ν2(x)⟩ : x ∈ X}.

then

• A ⊓B ⊑ A ⊔min B ⊑ A ⊔1 B ⊑ A ⊔B;
• A ⊓B ⊑ A ⊔min B ⊑ A ⊔2 B ⊑ A ⊔B;
• A ⊓B ⊑ A ⊔1 B ⊑ A ⊔max B ⊑ A ⊔B;
• A ⊑ B ⇒ B ⊑ A⊔B and A⊓B ⊑ A. Note that A⊔B need not be equal to
B or A ⊓ B need not be equal to A, (but equality holds if the dimension is
1). For example, consider the constant multi-fuzzy sets A = (0.1, 0.3) and
B = (0.2, 0.2). Here A ⊔ B = (0.2, 0.3) and A ⊓ B = (0.1, 0.2). In general
M2FS(X) with dictionary order in the value domain need not be a lattice
with respect to the operations union and intersection.

5. Conclusions

The relationships between multi-fuzzy sets and other sets like intuitionistic fuzzy
sets, type-2 fuzzy sets, multisets, fuzzy multisets, Obtulowicz’s general multi-fuzzy
sets, Syropoulos’s multi-fuzzy sets and Blizard’s multi-fuzzy sets are important for
the development of each of them. This paper showed that the above sets are multi-
fuzzy sets. Finally we investigated some order relations in the value domain other
than product order and showed that such order relations have significance in set the-
oretical study. In the future we can expect multi-fuzzy extensions of crisp functions
on the above sets.

Acknowledgements. The authors are very grateful to referees for their con-
structive comments and suggestions.
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