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Abstract

There is danger in reckless

change; but greater danger in

blind conservatism.

Henry George, Social Problems

It has been proposed several times in the past that one can obtain an equivalent,

but in many aspects simpler description of fermions by first reformulating their

first-order (Dirac) Lagrangian in terms of two-component spinors, and then inte-

grating out the spinors of one chirality (e.g. primed or dotted). The resulting new

Lagrangian is second-order in derivatives, and contains two-component spinors of

only one chirality. The new second-order formulation simplifies the fermion Feyn-

man rules of the theory considerably, e.g. the propagator becomes a multiple of

an identity matrix in the field space. The aim of this thesis is to work out the

details of this formulation for theories such as Quantum Electrodynamics, and

the Standard Model of elementary particles. After having developed the tools

necessary to establish the second-order formalism as an equivalent approach to

spinor field theories, we proceed with some important consistency checks that the

new formulation is required to pass, namely the presence or absence of anomalies

in their perturbative and non-perturbative description, and the unitarity of the

S-Matrix derived from their Lagrangian. Another aspect which is studied is uni-

fication, where we seek novel gauge-groups that can be used to embed all of the

Standard Model content: forces and fermionic representations. Finally, we will

explore the possibility to unify gravity and the Standard Model when the former

is seen as a diffeomorphism invariant gauge-theory.
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Introduction

Why second-order?

Since the emergence of Quantum Mechanics (QM) and Special Relativity (SR)

at the beginning of the twentieth century, and after the success of Maxwell’s

unification of Electromagnetism, a lot of effort was put into merging the two

theories. This led to a race, which aim was to find relativistic wave equations

that would govern the dynamics of quantum-mechanical systems. Schrödinger

and then Klein and Gordon formulated a second-order wave equation that was

supposed to describe the relativistic evolution of the wavefunction. However,

at that time it seemed that the nature of the latter violated some fundamental

properties of mechanical systems: the Klein-Gordon solutions admitted both a

positive and a negative energy mode. It must be emphasised that the theoretical

framework that is nowadays called Quantum Field Theory was yet to be invented

and understood. Nonetheless, British physicist Paul A.M. Dirac believed that the

issue related to the presence of negative energy solutions relied on the second-

order nature of the differential equation. Thus, he tried to construct a first-

order differential equation that was compatible with the relativity principle. His

theory was formulated in 1928 and the Dirac equation was later shown to describe

relativistic spin 1/2 particles: fermions. This was followed by the development of

Quantum Electrodynamics (QED), the relativistic quantum theory of light and

matter interactions which was then generalised into Yang-Mills (YM) theory, the

theory of non-abelian SU(n) gauge fields that describes the weak and the strong

forces. This summarises the success of particle physics in the last century, success

that culminated with the edification of the Standard Model (SM) of particle

physics which is today the most accurate description of Nature that has been

developed [1].

Yet something can be seen as puzzling. Indeed, one of Dirac’s reasons to con-

struct a first-order wave equation was the misinterpretation of the negative energy

solutions. However shortly after the discovery of his equation, it became clear

1
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that Nature admitted particles and antiparticles (positive and “negative” energy

solutions). Nonetheless, fermions remained the only dynamical system that only

admitted a first-order description.

Indeed, today it is well known that physical theories can be described by first- as

well as by second-order Lagrangians. The classical example that every theoretical

physicist has encountered is the relation between Hamiltonian and Lagrangian

mechanics. The Hamiltonian formulation gives first-order evolution equations,

but contains twice as many independent variables as the second-order Lagrangian

formalism. Nevertheless, with a simple Legendre transform, it is possible to de-

scribe the system in whichever formalism is suitable. The Legendre transform

amounts to inverting the relation between the momenta and the time derivatives

of the generalised coordinates, and then “plugging it back” into the transform.

In other words, it amounts to integrating out the momentum variables from the

first-order Hamiltonian formulation to arrive to the second-order Lagrangian for-

malism (and vice-versa). The formulation that should be used for solving a given

problem is a matter of convenience. Nonetheless, the community will generally

side with the formulation that was developed first, unless the new approach brings

unignorable advantages.

As a matter of fact, the most evident example is given by the first- and second-

order formulations of General Relativity (GR). Physicists use the second-order

metric formulation as the one in which GR was originally proposed. What is more,

the first-order description of GR can seldom be found in textbooks. However,

some aspects of the theory become more transparent in the first-order formalism.

For example, in this formulation the Lagrangian of GR is polynomial (cubic) in

the fields [2, 3], whereas the non-polynomiality of the second-order formulation

makes it very cumbersome to work with. The availability of a simple polynomial

Lagrangian, even though it contains more fields, is sometimes important. Another

slightly less familiar example is the first order formalism for QCD [4]. Thus, one

can rewrite the Yang-Mills Lagrangian in the BF form, plus a term quadratic in

the B-field. Again, the first-order Lagrangian is cubic in the fields.

As for fermions, their Lagrangian is first-order in derivatives. Hence, it is natural

to ask whether a second-order formulation of fermions is possible.

Let us make the last argument more precise. A Dirac spinor can be written as

the sum of two unitary infinite dimensional representations of the Lorentz group

PhD Thesis 2 Johnny Espin
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SO(1, 3) (or its double cover SL(2,C)):

ΨD ∈ (1/2, 0) ⊕ (0, 1/2)

which we call left-handed (unprimed) and right-handed (primed) respectively.

The Dirac equation is then derived from the Dirac Lagrangian, here in 3 + 1

dimensions with the metric ηµν = (−,+,+,+):

LD = Ψ̄D

(

−i/∂ −m
)

ΨD

with /∂ = γµ∂µ, and {γµ} are the Dirac gamma matrices. This Lagrangian gen-

eralises in a straightforward way so as to include the interaction of fermions and

photons (QED). We see that the Dirac equation

(

−i/∂ −m
)

ΨD = 0

relates spinors of one chirality to the other through the off-diagonal entries of the

Dirac matrices1. This is heuristically why a second order Lagrangian of the type

LD
?
= Ψ̄D

(

−� +m2
)

ΨD

does not work since the Klein-Gordon operator is diagonal and hence we lose

information contained in the Dirac equation.

In this thesis, we will construct a set of second-order spinor field theories that

can account for all of the information contained in the first-order Dirac equation.

Second-order fermions and the Standard Model

In order to justify a second-order description of fermions, it is not only important

but necessary to reformulate the whole SM in this formalism. In its usual form,

it is a version of the first-order Dirac Lagrangian. As we argued above, there

should also exist an associated second-order formulation that can be obtained

by integrating out the “momenta” fields of the first-order formalism, and indeed,

such a second order formulation exists and has been studied by many authors.

The list of references that we are aware of is [5–18], plus a few more works listed

1In the case of Majorana fermions the spinor is linked to its hermitian conjugate through
the Dirac equation.

PhD Thesis 3 Johnny Espin
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in [9]. A lot of insight can be gained on the issue when one expresses all the

quantities in terms of two-component spinors, and hence, our approach will be

closest to that in [19].

In terms of two-component spinors it is straightforward to observe that for fermionic

Lagrangians the “momenta” canonically conjugated to, say, unprimed spinors, are

the primed spinors. In a path integral formulation of the the theory, these spinors

are treated as independent degrees-of-freedom that have to be integrated over,

and thus one can freely choose to integrate out the primed spinors only, arriving

at the second-order Lagrangian for unprimed two-component spinors. A common

aspect of second-order theories, is that the complexity of the first-order formalism

is shifted from the propagator to the vertex, which in the second-order formalism

contains a derivative operator. There is also now a new quartic vertex, absent

in the first-order formulation. Thus, one obtains a formalism for fermions with

Feynman rules very similar to those in QCD, with the familiar (∂A)A2 and A4

vertices.

Because the propagator of the second-order formulation is essentially a scalar-type

propagator, and because we are working with two-component fermions, the spinor

algebra calculations that are often cumbersome in usual Feynman diagrams are

much simpler in this case. The second order formalism is also very ideally suited

for computations using the spinor helicity methods, see also [19] for an emphasis

of this point. Indeed, in computing Feynman diagrams, all that is left to do is

proceeding with spinor contractions, and therefore projecting over helicity states

becomes a trivial exercise. All in all, we will see that the second-order formalism

is more efficient in perturbative calculations.

Checking the consistency of the theory

It is important to note at this point, that the aim that we are trying to achieve

here, is a completely equivalent description of spinor field theories. It is obviously

possible to consider modifications of these as we will discuss later on, however, as

a first check we would like to see whether we can reproduce all the basic properties

of our usual well-known QFTs.

In the case of fermionic Lagrangians, a non-trivial consistency check is that of the

presence (or absence) of anomalies. A lot of attention has been paid in the past

to the treatment of anomalies in gauge theories (see [20–22] for further reading).

Indeed, although they would have catastrophic consequences if they affected a

PhD Thesis 4 Johnny Espin
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gauge symmetry, they are of evident use when affecting a global symmetry as

in the effective field theory description of the pseudo-goldstone bosons of chiral

transformations in QCD or for solving the U(1) problem, again in QCD. They

also lead to new phenomenological models such as the axion and appear not

only in high-energy particle physics, but also in condensed matter physics when

one is interested in an effective field theory description of the system through

bosonisation of the fermions (see e.g. [23, 24]). In this thesis we will show that

we can reproduce all of the non-trivial aforementioned results.

A reason why we do not learn about fermions directly in their more computa-

tionally superior second-order version is that there is a price to pay for going to

the second-order formulation. Thus, having integrated out the primed spinors,

which in the Dirac Lagrangian are Hermitian conjugates of the unprimed, we

have lost manifest unitarity. As a matter of fact, when reformulated in a second-

order formalism, the Lagrangian for a spin 1/2 particle becomes non-hermitian.

Although the theory is obtained from a first-order Lagrangian which is known to

lead to a unitary S-matrix, an independent proof of unitarity in the former for-

malism is needed. In this work, we investigate how particular reality conditions,

that we describe in the first part of the thesis, lead to a unitary theory in the

context of perturbation theory, when imposed on the external states appearing

in the S-matrix. The unitarity of quantum field theories is a fundamental prop-

erty required of any model aiming at describing Nature. For example, it leads

to sensible probabilities when calculating the possible outcomes of a scattering

experiment that can be measured in a laboratory. Here, we will only consider

perturbative unitarity of the S-matrix, that is, we only require the latter to be

unitary order-by-order in pertubation theory. We will follow an approach that

was first developed by Veltman [25], who used the decomposition of the Feynman

propagator into forward and backward propagators to construct an equation that

only depends on a combinatorics argument.

Novel aspects

After having presented the main aspects of the formalism and checked its con-

sistency, it is worth starting to look at novel aspects that are specific to our new

formulation. As a matter of fact, one of the most striking aspects of the second-

order theory is that it involves only half the number of fields. This has direct

consequences on beyond SM physics (BSM), most particularly on Grand Unified

PhD Thesis 5 Johnny Espin
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Theories (GUTs) models. It is well know that the biggest successes of particle

physics in the twentieth century have to do with the edification of the SM, but this

relies on the important fact that the weak and electromagnetic forces have been

unified into a Yang-Mills theory of electroweak interactions: SU(2)W × U(1)Y .

Once this was achieved and after evidence arose from high-energy Quantum Chro-

modynamics (QCD) that quarks come into three colours, leading to the estab-

lishment of the additional SU(3)c symmetry group, it was only a matter of time

before physicists tried to unify further the SM. The most famous attempts were

Georgi-Glashow’s SU(5) [26] and Pati-Salam’s SU(4)×SU(2)×SU(2) [27], which

can be both further embedded into an SO(10) gauge-group, see e.g. [28]. The

groups that are allowed in these GUTs are constrained by both the forces and

matter content of the SM. As we mentioned above, the fact that we have a dif-

ferent number of fermionic representations in our model, directly influences the

different GUT patterns that can be obtained. We will develop this in more details

in Chapter 10. Further novel aspects of the theory that have not been covered in

this thesis will be mentioned in the discussions throughout the chapters and in

the final conclusion.

Plan for the thesis

The aim of this work is to be as self-contained as possible, however, it is obviously

unavoidable that a minimal set of concepts is assumed to be known. Nevertheless,

we hope that this thesis can be thought of as a reference as far as second-order

fermionic field theories are concerned, therefore, in Part I we construct explic-

itly the theory of Majorana-Weyl fermions, Chapter 1, and then generalise it to

Dirac fermions, Chapter 2. In these two chapters, both a first- and second-order

description can be found, their aim being the acquisition of a certain ease with

the two-component spinor formalism.

Part II describes the construction of Quantum Electrodynamics, Chapter 3, and

of the Standard Model, Chapter 4. The former will be the framework with which

we will be doing calculations in the rest of the thesis, whereas the latter has its

obvious importance.

We then arrive to Part III, where in Chapter 6 we deal with simple tree-level

processes in order to get acquainted with the perturbative methods in their newly

introduced second-order framework. Renormalisation problems in Chapter 7 are

the first step towards the non-trivial consistency checks that we derive in Part

PhD Thesis 6 Johnny Espin
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IV.

We start checking that the formalism can reproduce appropriately some non-

trivial results such as the anomalies in Weyl and Dirac theories, Chapter 8. In

Chapter 9, we prove that the theory we have been working with is indeed unitary,

and finally in Chapter 10 we present new possible unification patterns that are

available due to the specificities of the second-order theory.

The thesis will end with a conclusion that will summarise what was achieved with

this work, and a series of appendices follow in order to fill some gaps that the

main text might have left.

PhD Thesis 7 Johnny Espin
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Chapter 1

Majorana-Weyl Fermions

1.1 Introduction

When studying the representation theory of the Lorentz group in four dimensions,

the simplest non-trivial representation that can be built is that of a Majorana(-

Weyl) fermion. It amounts to taking one single copy of a state transforming

under the (1/2, 0) or (0, 1/2) representation. A field theory can then be written

for such a state and the latter is called a Majorana spinor if it is massive, and

a Weyl spinor otherwise. In this chapter, we construct and quantise the field

theory of such objects. First in the usual first-order formalism and later as a

second-order theory. For a review on two-component spinors and for a guideline

on the conventions that are used here, see Appendix A.

1.2 First-order formalism

1.2.1 The Weyl (Majorana) Lagrangian

Let us construct a free field theory of a single Grassmann-valued two-component

spinor λA. The most general Lagrangian that is Hermitian and contains only

terms of mass dimension four or lower is given by:

LMaj = −i
√

2λ†
A′θµAA′

∂µλA − m

2
λAλA − m

2
λ†

A′λ† A′

(1.1)

The first term can be rewritten as a combination of two terms that make the

Lagrangian explicitly Hermitian, but this rewriting is equivalent to the above

Lagrangian up to a surface term. Note that it is the Hermiticity that requires

11



Chapter 1. Majorana-Weyl Fermions

the presence of the imaginary unit in the kinetic term. Moreover, the sign in

front of the latter is not arbitrary, it has to be chosen so that the Hamiltonian is

positive definite, see below. Note that we could have taken the mass parameter

m to be complex as long as m∗ is used in the second mass term. However, the

phase of m can always be absorbed into λA, and is thus irrelevant. In particular,

the sign in front of m is arbitrary, and the sign as in (1.1) can be achieved by a

redefinition of the spinor fields. The factor of
√

2 in front of the first (kinetic)

term is introduced for convenience.

For m = 0 one obtains the theory first considered by Weyl:

LWeyl = −i
√

2λ†
A′θµAA′

∂µλA (1.2)

It is often convenient to rewrite formulas omitting the spinor indices. Using the

index-free notation the above Lagrangian is rewritten as:

LMaj = −i
√

2λ†θµ∂µλ− m

2
λλ− m

2
λ†λ† (1.3)

which is indeed more compact than (1.1).

1.2.2 Field equations and mode decomposition

The field equations for (1.1) are obtained by varying the action with respect to

λA and λ† A′

, which for purposes of obtaining the field equations can be treated

as independent variables. Note that special care needs to be taken when varying

with respect to Grassmann-valued variables. Indeed, in the Grassmann case the

left derivative is no longer the same as the right derivative. One has to decide

which derivative is used. A good convention is that one varies with respect to

unprimed spinors from the right, while with respect to primed spinors from the

left. This gives, for the primed spinor equation:

i
√

2 θµAA′

∂µλA +mλ† A′

= 0 (1.4)

and for the unprimed spinor equation (note that we need to integrate by parts,

hence an extra minus sign):

i
√

2 θµAA′

∂µλ
†
A′ −mλA = 0 (1.5)

Note that this is the Hermitian conjugate of (1.4), as it should be. In order to
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Chapter 1. Majorana-Weyl Fermions

see what these equations imply, we solve the first equation for λ† and substitute

the result into the second equation. Thus,

λ† A′

= −i
√

2

m
θµAA′

∂µλA (1.6)

and then

i
√

2 θµAA′

∂µ

(

−i
√

2

m
θνB

A′∂νλB

)

−mλA = 0. (1.7)

Note that we have here two soldering forms with their primed spinor indices

contracted. Moreover, their spacetime indices are contracted wit ∂µ∂ν , which is

symmetric in µν (partial derivatives commute). Thus, we are interested in the

object θ(µAA′

θν)B
A′ , where the brackets denote the symmetrisation:

(µν) =
1

2
(µν + νµ) (1.8)

This object can be computed explicitly from the formula for the soldering form

given in (A.33). Alternatively, one may expect that this object must be pro-

portional to the spacetime metric ηµν , and then compute the proportionality

coefficient from the formula for the metric in terms of the soldering form. One

gets:

θ(µAA′

θν)B
A′ =

1

2
ηµνǫAB (1.9)

This formula is the simplest from a series of identities satisfied by the soldering

forms. Many other useful identities can be derived. We now use this identity in

the above equation for λA, which we multiply by m to put it into the form:

(2 −m2)λA = 0. (1.10)

Thus, each component of our two-component spinor λA satisfies the wave equa-

tion already familiar from the scalar field theory case. It is then clear that the

parameter m plays the role of the mass of our fermionic particles. This stems

naturally from the group theory of the Poincaré group, where the momentum

generator squared is a quadratic Casimir for any representation and can be used

to define a differential equation for the states.

In deriving (1.10), we have used two first-order field equations for two-component
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Chapter 1. Majorana-Weyl Fermions

spinors λA and λ† A′

to obtain a second-order equation for λA. However, if we

regard the latter as the defining equation of the system, it is clear that some infor-

mation has been lost, and our original equations imply more than (1.10). In order

to understand what the first-order differential equations imply for the theory, it

is convenient to work in momentum space. Thus, we expand the spinor fields λA

and λ† A′

into Fourier modes. As it is usually done in field theory, a second-order

wave equation will give rise to two linearly independent solutions: positive and

negative energy modes. This leads to the following mode decomposition:

λA(x) =
∫ d3k

(2π)32ωk

(

aA(k)e−iωkt+i~k~x + b†
A(k)eiωkt−i~k~x

)

≡
∫

dΩk

(

aA(k)e+ikx + b†
A(k)e−ikx

)

(1.11)

where dΩk is the Lorentz-invariant momentum-space measure, and kµ = (−ωk, ~k).

As for the scalar field, we expect that the coefficient (operator) in front of the

mode eiωkt to be a creation operator, and this is why it was denoted by b†
A(k).

Similarly for the Hermitian conjugate spinor, we have:

λ† A′

(x) =
∫ d3k

(2π)32ωk

(

a† A′

(k)eiωkt−i~k~x + bA′

(k)e−iωkt+i~k~x
)

≡
∫

dΩk

(

a† A′

(k)e−ikx + bA′

(k)e+ikx
)

(1.12)

We can then rewrite the first-order differential equations as algebraic equations

for the modes. The equation (1.4) then becomes:

√
2θµAA′

kµaA(k) −mbA′

(k) = 0,
√

2θµAA′

kµb
†
A(k) +ma† A′

(k) = 0 (1.13)

The second equation (1.5) is the complex conjugate of (1.4), and so we get another

pair of equations:

√
2θµAA′

kµa
†
A′(k) −mb† A(k) = 0,

√
2θµAA′

kµbA′(k) +maA(k) = 0 (1.14)

The above equations imply that the operators aA(k), bA′

(k) are not independent,

they can be written as linear combinations of one another. Hence, the content of

(1.4), (1.5) can be summarised by saying that they imply:

bA′

(k) =

√
2

m
θµAA′

kµaA(k) (1.15)
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as well as the on-shell condition k2 +m2 = 0. This last condition, together with

(1.15) is equivalent to the full set of first-order differential equations. In order to

have a more compact notation, it is convenient to introduce:

kAA′

:= θAA′

µ kµ (1.16)

Using the above notation as well as (1.15), the mode decomposition (1.11) can

be rewritten as:

λA(x) =
∫

dΩk

(

aA(k)e+ikx −
√

2

m
kAA′a† A′

(k)e−ikx

)

(1.17)

Thus, we see that in the case of a single Majorana fermion there is just one type of

ladder operators, and therefore in a particle interpretation, a Majorana particle

is its own anti-particle. This can be explained by noting that the Majorana

equation (1.4) can be interpreted as a reality condition for the fermion field λA.

Indeed, we have a complex spinor field λA satisfying the wave equation (1.10). In

general, for a complex field we get two types of creation-annihilation operators,

and thus particles and anti-particles. However, in this case the field satisfies

an additional equation (1.4) that can be interpreted as a (non-trivial) reality

condition. This condition relates the anti-particle operators to the particle ones,

and thus is the reason why there is only one type of operators in the mode

expansion: the Majorana spinor is real in the sense of (1.4).

The above mode decomposition can be used as a starting point for the canonical

quantisation, i.e. the computation of the (anti-)commutators of aA(k) and a†
A′(k),

particle interpretation, and then the derivation of the LSZ formula needed for

extracting the scattering amplitudes from the correlation functions. To do this

we need the Hamiltonian formulation of the theory.

1.2.3 Hamiltonian description of a single Majorana fermion

We now proceed with a space-time split of our quantities in order to define the

Hamiltonian of the theory. Necessary material for the understanding of what

follows can be found in Appendix A.2. The 3+1 decomposition of the Majorana

Lagrangian (1.1) is given by:

LMaj = i
√

2λ†
A′θAA′

0 ∂tλA − i
√

2λ†
A′θi AA′

∂iλA − m

2
λAλA − m

2
λ†

A′λ† A′

(1.18)
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It readily follows that the canonically conjugated momentum to the spinor field

λA is given by:

πA = i
√

2λ†
A′θAA′

0 = iλ⋆ A (1.19)

Notice that the normalisation that we chose for the kinetic term involving a

factor of
√

2 is needed precisely in order to have such a simple relation between

the conjugate momentum πA and the ⋆-conjugate of λA. We can now rewrite our

Lagrangian as:

LMaj = πA∂tλA − iπAT i
A

B∂iλB − m

2
λAλA − m

2
πAπA (1.20)

where we have used the spatial soldering form in their version (A.62). An al-

ternative expression for the above Lagrangian involving the star-conjugation is

given by:

LMaj = iλ⋆ A∂tλA + λ⋆ AT i
A

B∂iλB − m

2
λAλA − m

2
(λ⋆)Aλ

⋆ A (1.21)

Using (λAηB)⋆ = (η⋆)B(λ⋆)A as well as the fact that ⋆2 = −1 and that the

quantities T i
A

B are ⋆-Hermitian, one can easily check this Lagrangian to be ⋆-

Hermitian modulo a surface term.

A useful exercise for what follows is to find the field equations that follow from

(1.20). Treating the fermionic fields λA, πA as independent we get:

λ̇A − iT i
A

B∂iλB −mπA = 0, π̇A + iT i
A

B∂iπB +mλA = 0 (1.22)

The second equation is the ⋆-conjugate of the first, as it should be. One can find

the momentum πA from the first equation and substitute the result to the second.

Using (A.63) and multiplying the result by m one gets:

(∂t∂t − ∂i∂
i +m2)λA = 0 (1.23)

which is the desired massive wave equation for a two-component fermion.

1.2.4 Momentum spinors and mode decomposition

The mode decomposition (1.17) is not a good starting point for computations,

because the operators aA(k) and a† A′

(k) are not the canonically normalised oper-
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ators for creation and annihilation of particles. It is also clear that aA(k) contains

in fact two operators when decomposed into some basis in the spinor space; it is

a spinor-valued operator and we would like to have a mode decomposition where

the ladder operators and the polarisation spinors appear explicitly. For all these

reasons it is necessary to develop another tool — that of momentum spinors.

Consider a null real four-vector kµ = (|k|, ~k) (not yet related to the momentum

of any particle). As such, it can be written as a product of two spinors kµ =

−θµ
AA′kAkA′

, i.e., kAkA′

= θAA′

µ kµ. In the case of Lorentzian signature the spinors

kA, kA′

must be complex conjugates of each other (for a real four-vector). It is

then clear that kA is only defined modulo a phase. Moreover, as the vector ~k

varies, thats is, as ~n = ~k/|~k| varies over the sphere S2, there is no continuous

choice for the spinor kA. We make the following choice for the momentum spinor:

kA ≡ kA(~k) := 21/4
√

|k|
(

cos(θ/2)eiφ/2oA + sin(θ/2)e−iφ/2ιA
)

(1.24)

where oA, ιA is a basis in the space of unprimed spinors. Here θ, φ are the usual

coordinates on S2 so that the momentum vector in the direction of the posi-

tive z-axis corresponds to θ = φ = 0. We see that the corresponding spinor is

21/4
√

|k|oA. The formula (1.24) can be checked using the expression (A.33) for

the soldering form.

We can now readily observe how the spinor changes as we rotate the vector
~k. Consider, for example, what happens when the momentum direction gets

reversed. This corresponds to θ → π − θ and φ → φ+ π. We get

kA(−~k) = 21/4i
√

|k|
(

sin(θ/2)eiφ/2oA − cos(θ/2)e−iφ/2ιA
)

(1.25)

Let us compare this to the effect of the ⋆-operation on the momentum spinor.

We have

kA(−~k) = −i k⋆A(~k) (1.26)

We could have chosen a different phase factor in (1.24) so that there is no imagi-

nary unit in this formula. However, in this case some formulas below become less

symmetrical.

An interesting consequence of (1.26) can be obtained by taking the ⋆-conjugate

of this formula. Using ⋆2 = −1 we get k⋆A(−~k) = −ikA(~k). This means that

flipping the sign of the momentum twice we get minus the original momentum
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spinor. In other words, kA takes values in a non-trivial spinor bundle over S2.

Let us now see how this formalism can be applied to the mode decomposition

(1.17).

As is usual in field theory, the Hamiltonian formulation of the theory allows for

a standard derivation of the commutation relations between the ladder operators

appearing in the mode decomposition of the fields. However, as was mentioned

above, (1.17) is not suitable for this task as it contains a mixture of unprimed

and primed spinors, whereas the Hamiltonian description only contains unprimed

SU(2) spinors. Therefore, we need an new adequate decomposition that will allow

us to do so, and that additionally, will allows us to show that the Hamiltonian of

the theory is indeed positive definite.

It is clear that momentum spinors kA(~k) and k⋆A(~k) that we introduced above are

linearly independent and can be used as a basis to decompose the operator-valued

spinor aA(k). Thus, we introduce a pair of operators

aA(~k) = k⋆A(~k)ã+
k + kA(~k)ã−

k (1.27)

where the interpretation of the new operators ã±
k is to be clarified below and the

momentum spinors k⋆A and kA still have to be related to the four-momentum of

the particle. We have denoted the new operators with an overtilde because they

are still not canonically normalised to have a particle interpretation.

The mode expansion convenient for the purposes of the Hamiltonian formulation

is then obtained by either just expressing everything in terms of ⋆-conjugate

spinors in (1.17), or alternatively by writing a general mode expansion and then

using the field equations in their form (1.22). For using this second method we

note that the operator T i
A

B∂i becomes, when acting on the modes

T i
A

B∂ie
i~k~x = |k|

(

(oAo
Beiφ − ιAι

Be−iφ) sin(θ) − (oAι
B + ιAo

B) cos(θ)
)

ei~k~x (1.28)

When acting on the momentum spinors kA, k⋆A this gives

T i
A

B∂ikB(~k)ei~k~x = −|k|kA(~k)ei~k~x, T i
A

B∂ik
⋆
B(~k)ei~k~x = |k|k⋆

A(~k)ei~k~x (1.29)

so these are eigenmodes of eigenvalues ∓|k|. Using this fact, we get the following
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mode expansion

λA(x) =
∫

dΩk

(

(k⋆Aã+
k + kAã−

k )e+ikx (1.30)

+
1

m
(k⋆A(ωk − |k|)ã† −

k − kA(ωk + |k|)ã† +
k )e−ikx

)

where we dropped the argument ~k from kA(~k) and k⋆A(~k) for brevity. This

coincides with what is obtained directly from (1.17).

1.2.5 Quantisation and polarisation spinors

Let us now compute the (anti-)commutational relations between the ã±, ã† ±
k

operators. With our conventions the anti-commutator between πA, λB is

{πA(x), λB(y)} = −iǫABδ3(x− y) (1.31)

One then finds that the non-vanishing anti-commutators are

{ã† ±
k , ã±

p } = (2π)32ωkδ
3(k − p)

m2

√
2|k|(ωk ± |k|) (1.32)

To obtain this result we have used the following relation for the momentum

spinors

kAk⋆B − k⋆AkB =
√

2|k|ǫAB (1.33)

which can be checked using the corresponding definitions.

Thus, the operators we have introduced are not canonically normalised. Let us

introduce new, canonically normalised operators via

ã+
k =

√
√
√
√
ωk − |k|√

2|k| a
+
k , ã−

k =

√
√
√
√
ωk + |k|√

2|k| a
−
k (1.34)

The new operators satisfy

{ã† ±
k , a±

p } = (2π)32ωkδ
3(k − p) (1.35)
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The mode decomposition in terms of the canonically normalised operators is

λA(x) =
∫

dΩk

√
m
(

(ǫ+
Aa

+
k + ǫ−

Aa
−
k )e+ikx + (ǫ+

Aa
† −
k − ǫ−

Aa
† +
k )e−ikx

)

(1.36)

where we have introduced the polarisation spinors

ǫ+
A =

√
√
√
√
ωk − |k|√

2m|k|k
⋆
A, ǫ−

A =

√
√
√
√
ωk + |k|√

2m|k|kA (1.37)

which are normalised so that ǫ+Aǫ−
A = 1.

For completeness, let us also give the expression for the momentum

πA(x) =
i

m

∫

dΩk

√
m
( (

−(ωk − |k|)ǫ−
Aa

† +
k + (ωk + |k|)ǫ+

Aa
† −
k

)

e−ikx (1.38)

+
(

−(ωk − |k|)ǫ−
Aa

−
k − (ωk + |k|)ǫ+

Aa
+
k

)

e+ikx
)

Alternative expression for the polarisations

Here we motivate our choice for the normalisation of the operators (and the

polarisation spinor ǫ±
A) by providing an alternative expression. We also relate

the momentum spinors that we have been using to the four-momentum of each

mode. Let us consider the quantity kAA′

defined in (1.16) that corresponds to

an excitation with the corresponding momentum. This is a massive quadrivector

kA
A′kA

A′

= −m2. However, we can always represent it as a sum of two null

vectors. In the spinor notation

kAA′

= KAKA′ − m2pApA′

2(KEpE)(KE′pE′)
(1.39)

Here pApA′

is a reference null vector (in the spinor form). The above decompo-

sition of kAA′

is defined once pA is chosen. Let us compute KA, pA in the frame

in which the spatial momentum vector ~k points along the z-axes. In this case we

have from (A.32)

kAA′

=
1√
2

(ωk + |k|)oAoA′

+
1√
2

(ωk − |k|)ιAιA′

(1.40)

We would like our KA to be proportional to kA, which in this case is a multiple
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of oA. Thus, we take pA ∼ ιA and get

KA =

√

ωk + |k|
21/4

oA =

√
√
√
√
ωk + |k|

2|k| kA (1.41)

Note that in the massless limit we get KA = kA as one can expect.

Using the spinor KA we can now write the polarisation spinors ǫ± in the following

convenient form convenient for calculations

ǫ−
A = 21/4 KA√

m
, ǫ+

A =

√
mpA

21/4(KEpE)
. (1.42)

1.2.6 Hamiltonian

The total Hamiltonian is given by

H =
∫

d3x
(

iπAT i
A

B∂iλB + (m/2)λAλA + (m/2)πAπA

)

(1.43)

Substituting (1.36) one gets

H =
∫

dΩk
m

2

(
m

ωk + |k|a
† +
k a+

k − ωk + |k|
m

a+
k a

† +
k (1.44)

+
m

ωk − |k|a
† −
k a−

k − ωk − |k|
m

a−
k a

† −
k

)

where we have used

k⋆AkA =
√

2|k| (1.45)

The normal ordered Hamiltonian (i.e. ignoring the contribution from the zero

modes) is then

H =
∫

dΩkωk

(

(a+
k )†a+

k + (a−
k )†a−

k

)

(1.46)

which confirms the interpretation of a† ±
k and a±

k as the creation-annihilation op-

erators of two species of particles of the same energy ωk.

1.2.7 Massless limit

It is now not hard to obtain the massless limit of the above theory. This is called

a theory of a Weyl fermion, in contrast to the Majorana massive case considered
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so far. For small m we have

ωk = |k| +
m2

2|k| +O(m4) (1.47)

and two of the terms drop out from the expansion (1.36). What remains is

λA(x) =
∫

dΩk21/4kA

(

a−
k e

+ikx − a† +
k e−ikx

)

(1.48)

with the corresponding momentum given by

πA(x) = i
∫

dΩk21/4k⋆
A

(

−a+
k e

+ikx + a† −
k e−ikx

)

(1.49)

The main difference with the massive case above is that in the Weyl theory

the field λ(x) does not satisfy any equation that can be interpreted as a reality

condition. It satisfies a constraint equation.

The full Hamiltonian in the Weyl case is

H =
∫

d3x
(

iπAT i
A

B∂iλB

)

=
∫

dΩkωk

(

−a+
k a

† +
k + a† −

k a−
k

)

(1.50)

reproducing of course the same normal ordered Hamiltonian (1.46).

1.2.8 Parity

It is clear that both modes enter the Majorana theory symmetrically. Thus,

there is a discrete symmetry with an action which changes the sign of the spatial

momentum and exchanges the two modes. However, since for fermions the square

of this operation can also take value minus one, we can have an additional phase

in the definition of this transformation.

P †a±
k P = ηa∓

−k (1.51)

as it leads to the most convenient transformation property. Let us determine

what effect this has on the field operator λ(x). It is clear that this operation

must have something to do with the inversion of the spatial coordinate ~x → −~x.
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Thus, we compute

P †λ(t,−~x)P =
i

m

∫

dΩk

√
m
(

η
(

−(ωk − |k|)ǫ−
Aa

−
k − (ωk + |k|)ǫ+

Aa
+
k

)

e+ikx

(1.52)

+η∗
(

−(ωk − |k|)ǫ−
Aa

† +
k + (ωk + |k|)ǫ+

Aa
† −
k

)

e−ikx
)

where we have used kA(−~k) = −ik⋆
A(~k), k⋆

A(−~k) = −ikA(~k) and that

ωk + |k|
m

=
m

ωk − |k| (1.53)

We see that for the field to be a representation of parity we must have

η = η∗ (1.54)

Then

P †λ(t,−~x)P = ηπ(t, ~x) = ηiλ⋆(t, ~x) (1.55)

Using this transformation rule on (1.43), we see that the theory is parity invariant.

1.3 Second-order formulation of the Majorana

theory

We now turn to the main subject of this thesis, which is a second-order formula-

tion of fermions. We first study it on the simplest example of Majorana theory.

1.3.1 Second-order Lagrangian

As we have already mentioned in the introduction, a second-order formulation

can be obtained by integrating out all fields of an SL(2,C) representation of

one chirality. We choose to integrate out the primed spinors, so that the action

depends only on an unprimed spinor.

Let us carry out this simple exercise. We will keep all the spinor indices explicit

to make the operation more transparent. The field equation that one gets for λ†
A′
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is

−i
√

2∂A′AλA −mλ† A′

= 0 (1.56)

where as before ∂A′A ≡ θµ A′A∂µ. This equation can be solved for the primed

spinor, we find:

λ† A′

= −i
√

2

m
∂A′AλA (1.57)

We now substitute this back into (1.1) and get a second-order action involving

only λA. We have

LMaj = − 1

m
∂A′

AλA∂
A′BλB − m

2
λAλA (1.58)

Let us now integrate by parts to put both derivatives on the same spinor field;

taking into account the fact that partial derivatives commute and using the simple

identity:

θ(µ AA′

θ
ν)
A′

B =
1

2
ǫABηµν (1.59)

we get the following chiral Lagrangian

LMaj =
1

2m
λA

2λA − m

2
λAλA (1.60)

which is just the obvious second-order Lagrangian leading to the Klein-Gordon

equation as its field equation.

Finally, we rescale the field λA to have the canonically normalised Lagrangian.

Thus, we introduce

ξA =
1√
m
λA (1.61)

in terms of which the Lagrangian takes the form

LMaj = −∂A′
AξA∂

A′BξB − m2

2
ξAξA (1.62)

where we have kept the unsymmetrised kinetic term for reasons that will become
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clear later on1.

1.3.2 Second-order Hamiltonian formulation

Let us now derive the Hamiltonian density for the second-order Lagrangian (1.62).

The momentum conjugate to ξA is

pA = ∂tξ
A (1.63)

and then the Hamiltonian density is

H =
1

2
pApA +

1

2
∂iξA∂iξA +

m2

2
ξAξA (1.64)

where we have again symmetrised the kinetic term as well as the spatial gradient.

For each mode ei~k~x this is just a harmonic oscillator of frequency ωk. However,

the field ξA has 4 real components, and thus describes twice too many modes as

compared to the original system. Thus, reality conditions need to be added to

recover the original dynamics. The reality conditions are (1.22), rescaled to make

sense for ξ. We choose to write them in the form

ξ⋆
A =

1

im

(

∂tξA − iT i B
A ∂iξB

)

(1.65)

which is of course just the original Majorana equation in its time plus space

version. After the reality conditions are imposed, there are only two propagating

modes left, and one recovers the original system. The reality conditions are

quite non-trivial, and result in the following decomposition of the field ξ into the

canonically normalised modes

ξA(x) =
∫

dΩk

( (

ǫ+
Aa

+
k + ǫ−

Aa
−
k

)

e+ikx +
(

ǫ+
Aa

† −
k − ǫ−

Aa
† +
k

)

e−ikx
)

(1.66)

To write this we just took the mode decomposition (1.36) and divided by
√
m to

get ξ. As we shall see below, this is completely legitimate because the passage

between the first- and second-order descriptions is a canonical transformation.

Thus, the commutational relations and the form of the Hamiltonian in terms of

1As an advanced notice, when considering interactions for second-order fermions, it is the
unsymmetrised version of the Lagrangian that allows for a simple minimal coupling. Neverthe-
less, whenever one is considering the free theory, the kinetic term can be rewritten as a Laplace
operator without losing any information.
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a±
k , a

† ±
k is as we found before. In particular, it is worth emphasising that the

theory (1.62) that is in no sense Hermitian, after imposition on it of the reality

condition (1.65) becomes an ordinary theory with a Hermitian Hamiltonian.

Canonical transformation

A transformation between the original first-order description (1.43) and (1.64) is

a canonical one. Indeed, starting from the second-order description, let us define

new configuration and momentum variables via

λA =
√
mξA, πA =

1√
m

(

pA − iT i AB∂iξB

)

(1.67)

This is a canonical transformation because modulo a surface term

πA∂tλA = pA∂tξA (1.68)

And in terms of the new variables the Hamiltonian density takes the form

H = iπAT i B
A ∂iλB +

m

2
πAπA +

m

2
λAλA (1.69)

which is the original Hamiltonian (1.43). This implies, that the second-order

formulation, even though it uses only one chirality of spinors, is still Hermitian

and parity invariant.

1.3.3 Working with the second-order formulation

Let us now discuss if we could start with (1.62) and consistently work with the

second-order formulation. The Lagrangian (1.62) is holomorphic in the field ξ,

and is not Hermitian. It is clear that to lead to unitary physics it needs to be

supplemented with a reality condition. In our case the required reality condition

(1.65) came from the original first-order formulation, but an interesting question

is if it is possible to “discover” the condition (1.65) without any prior knowledge

of it.

Let us first discuss this at the level of the Lagrangian. The reality condition is

some equation that relates the field to its complex conjugate. In general it is the

statement that some anti-linear operation R applied to the field leaves it invariant.

In the case of Majorana theory this anti-linear operation is the combination of,

first, the application of the operation of Hermitian conjugation on the spinor λA,
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and then converting the resulting primed spinor to an unprimed one with the

help of the Dirac operator

(Rλ)A =

√
2

im
θµ

AA′∂µλ
† A′ ≡ 1

im
∂AA′λ† A′

(1.70)

Thus, the anti-linear operation that gives the required reality condition can be

schematically written as

R =
1

im
∂ ◦ † (1.71)

This operator maps unprimed spinors into unprimed spinors, and so can be used

as imposing the reality via

Rλ = λ (1.72)

It is also a quite natural operator to be used for this purpose. Indeed, sinceR must

be anti-linear it must involve the operation of taking the Hermitian conjugation

of λ. However, then the resulting spinor will be of a different type from the

original λA, and thus cannot be compared to λ. But one does have an operator

converting spinors of one type into those of the other - the Dirac operator. This

is exactly what is used in (1.71). The proportionality coefficient is then fixed

from the requirement of compatibility with the dynamics of our theory. Indeed,

the operator R2 is a linear, second-order differential operator. Fields λ satisfying

Rλ = λ will also satisfy R2λ = λ. This second-order differential equation for λ

must be compatible with the dynamics of the original complex theory. The easiest

option is that it coincides with the field equation that one obtains for λ from the

original complex Lagrangian, and this is precisely what we have happening.

To summarise, one could start with the theory (1.62), and then search for an anti-

linear operator that can be used to impose the reality condition. Since Hermitian

conjugation sends unprimed spinors into primed we have to use the Dirac operator

to build up R. Then the linear operator R2 must be compatible with the dynamics

of the theory, which in our case fixes the choice of R completely. After the

reality condition Rλ = λ is imposed, the theory becomes an usual theory with

a Hermitian Hamiltonian. There is however no guarantee that such a procedure

of finding an appropriate R works for an arbitrary complex Lagrangian. But the

importance of the above example is in showing that the requirement of working

with a Hermitian Lagrangian can be too restrictive, and that non-hermitian,
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holomorphic Lagrangians can also lead to the usual unitary dynamics provided

an appropriate operator R exists that can be used to impose the reality. As the

example of Majorana theory shows, this operator can be quite non-trivial, and in

fact be a differential operator.

Let us now, in anticipation to later chapters, briefly discuss how to do computa-

tions with such a holomorphic, second-order in derivatives formulation. The key

point is that one only needs to worry about the reality of the field (and resulting

particle interpretation) on the external lines of all the diagrams. On the internal

lines one can safely forget about any issues of reality, because in the fermionic

path integral the spinors and their complex conjugate spinors are integrated over

independently, and this takes care of the reality constraint: the second-order

Lagrangian that arises from this integration automatically knows about the con-

straint, the interactions are built such as to respect the reality condition. So, the

R-operation that we discussed here is only important to fix the mode decompo-

sition (1.66) and thus the particle interpretation. It is of no importance at all for

computing the correlation functions of the field operator. It is only after these are

computed, that one extracts the scattering amplitudes via an appropriate version

of the LSZ formula that follows from (1.66). Having these rules in mind simplifies

computations significantly, because one can compute Feynman diagrams working

with a holomorphic second-order theory (1.62), which has much simpler Feyn-

man rules (even in the case in which we have interactions with external gauge

fields) than the usual first order action. Below we shall apply these ideas to the

Lagrangian of the Standard Model, after the Dirac spinors are discussed.
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2.1 More general fermionic Lagrangians

We have considered the Lagrangian for a single two-component fermion. Let us

now generalise this, and consider a collection of N two-component fermions that

we shall denote by λi
A, i = 1, . . . , N . It is clear that the following Lagrangian is

the most general Hermitian Lagrangian of mass dimension four:

L =
N∑

i=1

−i
√

2λ†
i∂λ

i − 1

2
Mijλ

iλj − 1

2
M∗ijλ†

iλ
†
j (2.1)

Note that since λiλj = λjλi the matrix Mij is symmetric. The matrix M∗ij is

then the complex conjugate of Mij.

Note now that the first kinetic term is invariant under the following “flavour

symmetry”:

λi → U i
jλ

j, U ∈ U(N) (2.2)

This symmetry mixes up the different fermionic species present. The mass terms

are not invariant. However, we can use the chiral symmetry to diagonalise the

mass matrix Mij. Indeed, being a symmetric N × N matrix is is parametrized

by N(N + 1)/2 complex numbers, and thus by N(N + 1) real numbers. On the

other hand, the (real) dimension of U(N) is N2. Thus, using the available U(N)

freedom we can kill N2 of the components of Mij, which leaves us with only N

real diagonal entries. In fact, the transformation of absorbing the phase of the

parameter m of our original Majorana Lagrangian into the fermionic field λA,

which allowed us to take m to be real, was an example of a U(1) transformation.
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Therefore, we can always go into the mass eigenstate basis and write down the

most general fermionic Lagrangian (2.1) as follows:

L =
N∑

i=1

−i
√

2λ†
i∂λ

i − 1

2
miλ

iλj − 1

2
miλ

†
iλ

†
j (2.3)

where now mi = m∗
i are real mass parameters. These are, in general, all different.

Thus, in general, the most general fermionic Lagrangian is just a collection of

Majorana Lagrangians that we have considered before.

2.2 The Dirac Lagrangian

A case that is very important for applications arises when two of the mass eigen-

states of our collection of fermions have the same mass. Let us consider this

case specifically. Thus, we now introduce different names to our two Majorana

fermions, and call them η and λ. We get the following Lagrangian:

LD = −i
√

2λ†∂λ− i
√

2η†∂η − m

2
λλ− m

2
ηη − m

2
λ†λ† − m

2
η†η† (2.4)

With the mass spectrum being degenerate, this Lagrangian has a residual SO(2)

symmetry mixing the two fermions:

η → cos(α)η + sin(α)λ, λ → − sin(α)η + cos(α)λ (2.5)

where α ∈ R. Let us rewrite this Lagrangian in the form that makes the above

SO(2) symmetry an U(1) symmetry. Hence, let us introduce the following com-

plex linear combinations of our fermions:

χ :=
1√
2

(η + iλ), ξ :=
1√
2

(η − iλ) (2.6)

These can be seen to transform as

χ → χe−iα, ξ → ξeiα (2.7)

The Lagrangian can be written in terms of these new fermionic fields, and reads:

LD = −i
√

2χ†∂χ− i
√

2ξ†∂ξ −m(χξ + χ†ξ†) (2.8)
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In this form the Lagrangian is explicitly invariant under (2.7). We note that more

generally, the mass matrix will break the chiral flavour U(N) symmetry down to

some symmetry group G. Fermions of the theory can then be classified according

to representations of G that they realise. Thus, in the Dirac case the symmetry

is broken down to U(1), and the two fermions that we have transform in complex

conjugate representations of U(1).

2.2.1 Dirac spinors

As we shall soon see, the “global” U(1) symmetry of the Dirac Lagrangian can be

made local by introducing a gauge field. The resulting theory is the one relevant

for (quantum) electrodynamics. It was first discovered in a different form by

Dirac. To motivate the original Dirac’s version, let us note that the Feynman

rules for the theory (2.8) are quite complicated. Indeed, the Lagrangian pairs

fields χ with χ† and ξ with ξ† in the kinetic terms, as well as pairs χξ and χ†ξ† in

the mass terms. Thus, there are 4 different propagators to be considered. This

makes Feynman diagrams calculations with the above Lagrangian quite complex

(because of the number of diagrams), see Appendix D. This can be avoided if we

put two two-component spinors into a single four-component (Dirac) spinor. It is

only natural to clamp together fermionic fields that are in the same representation

of the U(1) group. This is why we define:

Ψ :=




χ

ξ†



 (2.9)

We also define the Dirac conjugate of Ψ via:

Ψ̄ :=
(

ξ χ†
)

(2.10)

We now have:

Ψ̄Ψ = ξχ+ χ†ξ† (2.11)

which is the correct mass term in (2.8). To rewrite the kinetic terms in terms of

Ψ we integrate by parts in the ξ kinetic term to put the derivative onto ξ†. We
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then define

γµ :=




0

√
2 θµ

√
2 θµ 0



 (2.12)

and rewrite (2.8) as:

LD = −iΨ̄γµ∂µΨ −mΨ̄Ψ (2.13)

which is the original form in which this Lagrangian was discovered by Dirac.

As in the two-component version the main object was the soldering form θµAA′

,

in the four-component version the object γµ plays the fundamental role. These

4 × 4 matrices are called Dirac gamma-matrices. They satisfy the following basic

algebra:

γµγν + γνγµ = −2ηµν1 (2.14)

which is the four-component analogue of (1.9). The Feynman rules of the Dirac

version of the theory are much simpler in that there is only the pairing ΨΨ̄ in

the propagator.

2.2.2 Hamiltonian formulation and mode decomposition

The 3+1 decomposition of (2.8) is

LD = πA∂tξA − iπAT i
A

B∂iξB + ηA∂tχA − iηAT i
A

B∂iχB −m(χAξA + πAηA)

(2.15)

where πA := iξ⋆ A, ηA := iχ⋆ A are the momenta conjugated to ξA, χA. The above

Lagrangian leads us to the following equations of motion for the fields:

ξ̇A − iT i
A

B∂iξB = mηA, χ̇A − iT i
A

B∂iχB = mπA (2.16)

and similar ones for their respective momenta.
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In the exact same way as before, we can use the fact that both χ and ξ satisfy

the Klein-Gordon equation to expand the spinors in Fourier plane-waves:

ξA =
∫

dΩk

(

aA(k)e−ikx + b†
A(k)eikx

)

, χA =
∫

dΩk

(

cA(k)e−ikx + d†
A(k)eikx

)

(2.17)

where dΩk ≡ d3k
(2π)32ωk

as before and the ladder operators a, b, c, d are not all

independent. Indeed, using the equations of motion, we have for instance:

−
√

2kAA′

c†
A′ −mb† A = 0, −

√
2kAA′

aA −mdA′

= 0 (2.18)

and therefore there are only two sets of independent ladder operators. Expanded

on the (a, c) basis, the fields become:

ξA =
∫

dΩk

(

aA(k)e−ikx +

√
2

m
kAA′c† A′

(k)eikx

)

χA =
∫

dΩk

(

cA(k)e−ikx +

√
2

m
kAA′a† A′

(k)eikx

)

(2.19)

Recall now that we can expand our ladder operators on the (k, k⋆) basis:

aA(k) = k⋆
Aã

+
k + kAã

−
k , cA(k) = k⋆

Ac̃
+
k + kAc̃

−
k (2.20)

where the tilde is meant to remind us that the modes are not yet canonically

normalised. Then, using the equations of motion at the Hamiltonian level and

recalling that our spinors kA and k⋆
A are eigenvectors of the gradient energy, we

obtain:

ξA(x) =
∫

dΩk

(

(k⋆Aã+
k + kAã−

k )e+ikx (2.21)

+
1

m
(k⋆A(ωk − |k|)c̃† −

k − kA(ωk + |k|)c̃† +
k )e−ikx

)

χA(x) =
∫

dΩk

(

(k⋆Ac̃+
k + kAc̃−

k )e+ikx (2.22)

+
1

m
(k⋆A(ωk − |k|)ã† −

k − kA(ωk + |k|)ã† +
k )e−ikx

)

which is the same mode decomposition as for the Majorana fermion except that

here we have two sets of ladder operators. It is worth noticing that under the
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exchange of ladder operators the fields simply are exchanged as well:

ã± ↔ c̃± ⇒ ξ ↔ χ (2.23)

Now, using the anti-commutational relations between the fields:

{πA(~x), ξB(~y)} = −iǫABδ
3(~x− ~y), {ηA(~x), χB(~y)} = −iǫABδ

3(~x− ~y) (2.24)

and all others being zero, we can normalise our ladder operators so as to be

canonical:

{

a±
k , a

† ±
p

}

= (2π)32ωkδ
3(~k − ~p) =

{

c±
k , c

† ±
p

}

(2.25)

This yields as before the canonical mode decomposition of the spinors:

ξA(x) =
∫

dΩk

√
m
( (

ǫ+
Aa

+
k + ǫ−

Aa
−
k

)

e+ikx +
(

ǫ+
Ac

† −
k − ǫ−

Ac
† +
k

)

e−ikx
)

, (2.26)

χA(x) =
∫

dΩk

√
m
( (

ǫ+
Ac

+
k + ǫ−

Ac
−
k

)

e+ikx +
(

ǫ+
Aa

† −
k − ǫ−

Aa
† +
k

)

e−ikx
)

(2.27)

2.2.3 Hamiltonian and CPT

The total Hamiltonian is given by

H =
∫

d3x
(

iπAT i
A

B∂iξB + iηAT i
A

B∂iχB +mχAξA +mπAηA

)

. (2.28)

Substituting the mode decomposition one gets for the normal ordered Hamilto-

nian:

H =
∫

dΩkωk

(

a† +
k a+

k + a† −
k a−

k + c† +
k c+

k + c† −
k c−

k

)

, (2.29)

which confirms the interpretation of a† ±
k , a±

k and c† ±
k , c±

k as the creation-annihilation

operators of four species of particles of the same energy ωk.

Let us start considering the operation of parity acting on the ladder operators.

As we recover Majorana theory when the two sets of ladder operators coincide

we define parity transformations on the Fock space in the following way:

P †a±
k P = ϕpa

∓
−k, P †c±

k P = ϕpc
∓
−k (2.30)
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The action on the fields is then:

P †ξ(t,−~x)P =
i

m

∫

dΩk

√
m
(

ϕp

(

−(ωk − |k|)ǫ−
Aa

−
k − (ωk + |k|)ǫ+

Aa
+
k

)

e+ikx

(2.31)

+ϕ∗
p

(

−(ωk − |k|)ǫ−
Ac

† +
k + (ωk + |k|)ǫ+

Ac
† −
k

)

e−ikx
)

and just as in the Majorana case, we require the field to be a representation of

parity, leading to:

ϕp = ϕ∗
p, ϕ2

p = 1 (2.32)

Then:

P †ξ(t,−~x)P = ϕpη(t, ~x), P †χ(t,−~x)P = ϕpπ(t, ~x) (2.33)

Under charge conjugation, the ladder operators transform as:

C†a±
k C = ϕcc

±
k (2.34)

with again ϕc ∈ R and ϕ2
c = 1. Then:

C†ξC = ϕcχ (2.35)

The Lagrangian is then C invariant. Finally, for sake of completeness, time

reversal is an anti-linear operator that flips both spin and momentum, thus:

T †a±
k T = ϕta

∓
−k, T †c±

k T = ϕtc
∓
−k (2.36)

Then:

T †ξ(−t, ~x)T = ϕtη(t, ~x), T †χ(−t, ~x)T = ϕtπ(t, ~x) (2.37)

with ϕ2
t = 1. Notice in particular:

(PT )†ξ(−t,−~x)PT = ϕtϕpξ(t, ~x), (PT )†χ(−t,−~x)PT = ϕtϕpχ(t, ~x) (2.38)

Thus, we see explicitly that the theory is PT invariant (regardless of C invari-

ance).
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2.2.4 Second-order Dirac theory

As for Majorana fermions considered above, at the level of the path integral

we can integrate out the fermionic fields ξ†, χ† and obtain a chiral Lagrangian

involving only unprimed spinors. From the field equations for the primed spinors

we get:

ξ† A′

= −i
√

2

m
∂A′AχA, χ† A′

= −i
√

2

m
∂A′AξA. (2.39)

Substituting this into the Lagrangian (3.9) we get:

LD = − 2

m
∂A′

AχA∂
A′BξB −mχAξA. (2.40)

We now use:

θµ A
A′ θν A′B = −1

2
ǫABηµν + Σµν AB (2.41)

where Σµν AB is the self-dual two-form defined in (A.47), to rewrite this La-

grangian as:

LD = − 1

m
∂µχA∂µξA −mχAξA (2.42)

where we used the antisymmetry of Σµν AB in its space time indices. In the

following chapter we will explore more explicitly the theory of second-order Dirac

fermions coupled to a gauge field. Notice that the Lagrangian that will be used

for a straightforward minimal coupling is (2.40).
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Chapter 3

Electrodynamics

3.1 First-order electrodynamics

3.1.1 Lagrangian and symmetries

The Dirac Lagrangian (2.13) is invariant under the following global symmetry:

Ψ → e−iαΨ

where global means that the transformation parameter is a constant, not a func-

tion of spacetime coordinates. This is of course just the U(1) symmetry that we

have discussed above, see (2.7). This symmetry can be promoted into a local

symmetry if one introduces the so-called gauge potential. Thus, we introduce a

new field Aµ which under local gauge transformations with a gauge parameter

α(x) transforms as:

Aµ → Aµ + (1/e) ∂µα (3.1)

Now, with this local gauge transformation the original Lagrangian is not invariant

anymore. Using Noether’s method or alternatively, using the minimal coupling

scheme, this non-invariance can be corrected. Let us now introduce the notion of

covariant derivative of a spinor:

DµΨ := (∂µ + ieAµ)Ψ (3.2)
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It is easy to verify that

DµΨ → e−iαDµΨ (3.3)

Thus, the following Lagrangian

LD = −iΨ̄γµDµΨ −mΨ̄Ψ (3.4)

is invariant under local U(1) transformations. When this Lagrangian is supple-

mented with a Lagrangian describing the dynamics of the gauge field (Maxwell

Theory):

LM = −1

4
FµνF

µν , Fµν := ∂µAν − ∂νAµ (3.5)

one obtains the Lagrangian of (quantum) electrodynamics:

L = LD + LM (3.6)

Note that, by construction, it is gauge invariant. Varying it with respect to the

gauge field Aµ one gets the following field equation:

∂µF
µν = −eΨ̄γνΨ (3.7)

This is just the Maxwell’s (non-trivial) equations ∂µF
µν = −jν with the current

being equal to jµ = eΨ̄γµΨ. Quantum field theory based on the above Lagrangian

describes the quantum properties of electrons, their anti-particles positrons, as

well as the mediators of interactions between them, photons.

3.1.2 Two-component form

We now promote the global U(1) symmetry of (2.8) into local one at the level

of the two-component Dirac Lagrangian (2.8). Thus, we introduce as above an

U(1) gauge field and convert the usual derivative into the covariant ones

∂ξ → Dξ = (∂ − ieA)ξ, ∂χ → Dχ = (∂ + ieA)χ (3.8)

where D ≡ θµ AA′

Dµ and Aµ is the electromagnetic potential. Note that, since the

fields ξ and χ are charged in the opposite way, the expressions for the covariant
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derivatives on these fields differ by a sign in front of Aµ. The gauge transformation

rule for the electromagnetic potential is Aµ → Aµ + (1/e) ∂µα as before. The

Lagrangian becomes

LD = −i
√

2ξ†Dξ − i
√

2χ†Dχ−mχξ −mξ†χ† (3.9)

This is the way that the two-component Dirac fermions couple to the electromag-

netic potential.

3.1.3 U(1) charge, spin and Hamiltonian

Let us describe the main quantities of the theory. The U(1) current is given by:

jµ =
√

2eξ†θµξ −
√

2eχ†θµχ (3.10)

and hence, the U(1) charge operator is given by:

Q ≡
∫

d3xj0 = e
∫

d3x (−ξ⋆ξ + χ⋆χ) (3.11)

In terms of the ladder operators, it becomes:

Q = e
∫

dΩk

[(

a† +
k a+

k + a† −
k a−

k

)

−
(

c† +
k c+

k + c† −
k c−

k

)]

(3.12)

which confirms the fact that we are dealing with two particles with opposite

electromagnetic charges. One can also compute the spin-current and analyse

how it acts on one-particle states created by either of the creation operators in

its rest frame. If a† + creates a spin up, negatively (e < 0) charged particle, then

Table 3.1 encodes the different species and their quantum numbers.

The free Hamiltonian is the same as in the non-interacting theory, we recall:

H0 =
∫

d3x
(

iπAT i
A

B∂iξB + iηAT i
A

B∂iχB +mχAξA +mπAηA

)

(3.13)

or in terms of the ladder operators:

H0 =
∫

dΩkωk

(

a† +
k a+

k + a† −
k a−

k + c† +
k c+

k + c† −
k c−

k

)

(3.14)
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Whereas, the interactions Hamiltonian is given by:

Hint =
∫

d3x
(

ieA0(η
AχA − πAξA) − eT i

A
BAi(η

AχB − πAξB)
)

(3.15)

Species Q S
a† + (−) (+)
a† − (−) (−)
c† + (+) (+)
c† − (+) (−)

Table 3.1: Fermions Zoology

3.2 Second-order Electrodynamics

3.2.1 Lagrangian

As we did before, at the level of the path integral we can integrate out the

fermionic fields ξ† and χ†, and obtain a second-order Lagrangian involving only

unprimed spinors. From the field equations for the primed spinors we get:

ξ† A′

= −i
√

2

m
DA′AχA, χ† A′

= −i
√

2

m
DA′AξA. (3.16)

Substituting this into the Lagrangian (3.9) we get:

LD = − 2

m
DA′

AχAD
A′BξB −mχAξA. (3.17)

We now use:

θµ A
A′ θν A′B = −1

2
ǫABηµν + Σµν AB (3.18)

to rewrite this Lagrangian as:

LD = − 1

m
DµχADµξA −mχAξA − i

m
eΣµν ABχAξBFµν , (3.19)
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where we have integrated by parts to get the last term and Fµν = 2∂[µAν]. The last

term describes interactions with the gauge field and can be seen to be essentially

the spin to electromagnetic potential coupling term of Pauli’s phenomenological

description of spin. Note, however, that there are also interaction with the elec-

tromagnetic field vertices hidden in the first term. We can further simplify this

Lagrangian by rescaling the fields. It is clear that in this formalism it is natural

to introduce fermionic fields of mass dimension one via χ → √
mχ, ξ → √

mξ. In

terms of the rescaled fields the Lagrangian takes a particularly simple form:

LD = −DµχADµξA −m2χAξA − ieΣµν ABχAξBFµν . (3.20)

However, for later convenience we will mainly work with

LD = −2DA′
AχAD

A′BξB −m2χAξA. (3.21)

3.2.2 Parity at the Hamiltonian level

It now arises the question on how parity and time reversal could be implemented

in the Lagrangian formalism as they involve the canonically conjugated momenta.

To answer this question, two points need to be recalled. First of all, in order to

go from the first-order to the second-order formalism, one replaces the (first-

order) canonically conjugated fields by their equation of motion. Second, as we

previously saw this can be thought of as a canonical transformation between

two sets of canonically conjugated variables. For an interacting Dirac field (with

canonical pairs (χ, η), (ξ, π)), we have the four Dirac equations:

χ̇A − iT i
A

B∂iχA − i
√

2eGA
A′

AA′
BχB = mπA

η̇A + iT i
A

B∂iηB + i
√

2eAAB′GB′BηB = −mξA

ξ̇A − iT i
A

B∂iξA + i
√

2eGA
A′

AA′
BξB = mηA

π̇A + iT i
A

B∂iπB − i
√

2eAAB′GB′BπB = −mχA

(3.22)

with

√
2GA

A′

AA′
B = δA

BA0 + T i
A

BAi (3.23)

We define therefore in an analogous way to the Majorana fermions the following
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canonical transformations:

χA → √
mχA, ηA → 1√

m

(

NA − iT i
A

B∂iξB

)

, NA = ξ̇A + i
√

2eGA
A′

AA′
BξB

(3.24)

ξA → √
mξA, πA → 1√

m

(

ΠA − iT i
A

B∂iχB

)

, ΠA = χ̇A − i
√

2eGA
A′

AA′
BχB

(3.25)

In terms of the new variables, the Hamiltonian reads:

H = NAΠA + ∂iχ
A∂iξA − i

√
2eGA

A′

AA′
B
(

ΠAξB −NAχB

)

− e
√

2T i ABGA
A′

AA′
C (χC∂iξB − ξC∂iχB)

(3.26)

For example, for the fields N and ξ, it leads to the equations of motion:

χ̇A = ΠA + i
√

2eGA
A′

AA′
BχB (3.27)

−Π̇A = −∂2
i χA − i

√
2eGBA′

AAA′ΠB

+ 2ie
(

(∂i)A
A′

(AA′
BχB) + AAA′(∂i)

A′BχB

)

(3.28)

with (∂i)
A′B = θA′B

i ∂i. Which leads finally to (using twice the field equation for

Π):

�χA + 2ie
(

∂A
A′

(AA′
BχB) + AAA′∂A′BχB

)

+ 2e2AA
A′

AA′
BχB = 0 (3.29)

This are the same field equations that follow from the second-order Lagrangian

(3.17), showing that the above Hamiltonian properly describes QED.

Concerning parity, it is however easier to express the Hamiltonian as a function

of the old conjugate fields (they are not anymore the conjugate momenta of

the second-order fields). Nonetheless, as we just discussed, in terms of the old

variables, the Hamiltonian simply resembles the first-order Hamiltonian with the

fields rescaled, we recall:

H =
∫

d3x
(

iπAT i
A

B∂iξB + iηAT i
A

B∂iχB +mχAξA +mπAηA

+ieA0(η
AχA − πAξA) − eT i

A
BAi(η

AχB − πAξB)
)

.
(3.30)

As this is a canonical transformation and the above Hamiltonian is parity in-

variant, we conclude (trivially from the transformation properties of A and the

PhD Thesis 44 Johnny Espin



Chapter 3. Electrodynamics

fermions) that the second-order formulation of QED is also parity invariant1. This

result about parity generalises straightforwardly to time invariance and charge

conjugation.

1Equivalently, one could rewrite the Lagrangian using the unprimed spinors and their ⋆-
conjugate as was done for the free theory.
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Chapter 4

The Standard Model

4.1 Standard Model fields and Lagrangian

In this chapter we will be working exclusively with two-component fermions. We

follow [29], with some differences in conventions. This chapter is based on [30,31].

4.1.1 Standard Model particles

Fermions

The SM fermions can be put together in the following table

Two-component fermions SU(3) SU(2) Y T3 Q = T3 + Y

Qi =




ui

di




3

3
2

1/6

1/6

1/2

−1/2

2/3

−1/3

ūi 3̄ 1 −2/3 0 −2/3

d̄i 3̄ 1 1/3 0 1/3

Li =




νi

ei




1

1
2

−1/2

−1/2

1/2

−1/2

0

−1

ēi 1 1 1 0 1

ν̄i 1 1 0 0 0

Where 3 and 3̄ denote SU(3) triplets, 2 denotes an SU(2) doublet and the 1 de-

notes the singlets. All fermionic fields here are unprimed two-component spinors.

Hence, ūi denotes another set of fermions independent of ui, whose Hermitian

conjugate is denoted u†
i . The first half of the table corresponds to the quarks,
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Chapter 4. The Standard Model

whereas the second corresponds to the leptons. The last line is included here so

as to complete the neutrino minimal standard model (νMSM, [32]) that allows

the presence of Majorana mass terms for the latter and enables different mech-

anisms that explain the neutrinos mass hierarchy and the baryon asymmetry of

the Universe. Notice that as their name indicates, the SU(3) triplet fields are

a set of three two-component spinor fields that transform into each other under

SU(3) rotations. For example, if we were to be explicit with the index struc-

ture of ui, we should write uα
i A where A = 1, 2 is the usual spinor index, and

α = 1, 2, 3 is the index on which SU(3) acts. We only keep the index i = 1, 2, 3

that denotes the spinor generation (flavour) as it is the only one that will play

an important role in the construction to be carried out below. In total there are

16 two-component spinors for each generation of the Standard Model, plus their

Hermitian conjugates.

Higgs field

The Higgs field is the last ingredient necessary to the construction of a sensible

theory that accommodates all the representations that we have mentioned above

in a gauge-invariant fashion. It is a complex scalar field of U(1) hypercharge

Y = 1/2. It is also a weak SU(2) doublet, i.e. :

Higgs SU(3) SU(2) Y T3 Q = T3 + Y

φ =




φ+

φ0



 1 2
1/2

1/2

1/2

−1/2

1

0

Being a doublet, it is actually a collection of two complex scalar fields that are

denoted by φ+ and φ0. We shall denote the weak SU(2) index by a, b, . . . = 1, 2.

Therefore, the Higgs field can be written as φa, with φ1 = φ+ and φ2 = φ0.
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4.1.2 Fermionic sector of the Standard Model

Using an index-free notation, the Lagrangian for the fermionic sector of the Stan-

dard Model is given by:

Lferm = − i
√

2Q†iDQi − i
√

2ū†iDūi − i
√

2d̄†iDd̄i

− i
√

2L†iDLi − i
√

2ē†iDēi − i
√

2ν̄†iDν̄i

+ Y ij
u φ

T εQiūj − Y ij
d φ

†Qid̄j + Y ij
ν φ

T εLiν̄j − Y ij
e φ

†Liēj

− (Y †
u )ijū†

iQ
†
jεφ

∗ − (Y †
d )ij d̄†

iQ
†
jφ− (Y †

ν )ij ν̄†
iL

†
jεφ

∗ − (Y †
e )ij ē†

iL
†
jφ

− 1

2
M ij

ν̄ ν̄iν̄j − 1

2
(M †

ν̄)ij ν̄†
i ν̄

†
j

(4.1)

Here as before DAA′ ≡ θµAA′

Dµ, where Dµ is a covariant derivative that acts

on the fermions according to their SM representation. The quantities Y ij are

arbitrary complex 3 × 3 Yukawa matrices.

The above Lagrangian, is the most general that can be written using first-order

kinetic terms, overall gauge-invariant and that contains operators of dimension

up to four. This allows for the additional Majorana mass terms as mentioned

earlier. To get the usual SM, any terms containing ν̄ or its Hermitian conjugate

in (4.1) should be removed. As far as gauge-invariance is concerned, it is easier to

understand the construction of the mass terms when the SU(2) index structure

is made explicit, all other implicit indices have straightforward contractions. As

we have already mentioned, the Higgs field is a doublet φa with a single SU(2)

index in the lower position with a = 1, 2. Its transpose is then an object (φT )a.

The complex conjugate field (φ∗)a still carries a lower position index (for SU(2),

we have the well known 2 ∼ 2̄), while the Hermitian conjugate is (φ†)a. Similarly,

the quark doublet Qa has a lower position index. Its Hermitian conjugate is an

object (Q†)a. The quantity ǫ ≡ ǫa
b is the matrix

ǫa
b =




0 1

−1 0



 (4.2)

Then the object φT ǫQ ≡ (φT )aǫa
bQa is invariant under the action of SL(2,C) via

Q → gQ, φ → gφ since gT ǫg = ǫ and therefore ǫ can be taken as a metric over the

fundamental representations of SL(2,C). In particular, φT ǫQ is SU(2) invariant

as it is a well defined scalar product. This property also applies to the Hermitian

conjugate objects. It is then clear that all the mass terms in (4.1) are SU(2)
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invariant. The U(1) and SU(3) invariance is straightforwardly checked using the

tables above.

4.2 Second-order formulation of the Standard

Model

As it was done antecedently for the Majorana and Dirac Lagrangians, we now

proceed with the construction of the second-order Lagrangian for the SM.

4.2.1 Quark sector

We start with the quark sector as there is no Majorana mass term in this case.

The equations of motion for the unprimed spinors are:

Q†
i : i

√
2DQi = − (ǫφ∗) ū†

j(Y
†

u )ji − φ d̄†
j(Y

†
d )ji

ū†
i : i

√
2Dūi = −(Y †

u )ijQ†
j (ǫφ∗)

d̄†
i : i

√
2Dd̄i = −(Y †

d )ijQ†
j φ

(4.3)

Notice that some symmetry structure is appearing in the equations of motion.

Indeed, let us combine the components of the Higgs field and of its Hermitian

conjugate into the following 2 × 2 matrix:

ρΦ† := (ǫφ∗, φ) ≡



(φ0)∗ φ+

−φ− φ0



 (4.4)

Under the weak SU(2) the matrix Φ† transforms as:

Φ† 7→ ΩΦ† (4.5)

while the field ρ remains invariant. It is clear that ρ2 = |φ|2 is just the modulus

squared of the Higgs field. Furthermore:

Φ†Φ = 1 (4.6)
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so that Φ ∈ SU(2). This will become important in what follows. However, before

using this fact, let us make the above equations look more transparent. We define

new quark singlets as linear combinations of the old ones:

ūi → (Y †
u )ijūj, d̄i → (Y †

d )ij d̄j (4.7)

This constant reparametrisation of the fields makes the Yukawa matrices dis-

appear from the last two equations of motion. Having done this, to further

symmetrise the system, we combine the new quark singlets into a row

Q̄i :=
(

ūi , d̄i

)

(4.8)

In terms of the new quark singlets the equations of motion become:

Q†
i : i

√
2DQi = −ρ Φ†

(

Q̄†Λ
)

i

Q̄†
i : i

√
2DQ̄i = −ρ Q†

iΦ
†

(4.9)

which is already much simpler than the previous system of equations. Here we

introduced new hermitian Yukawa matrices

Λij
q := Y ik

q (Y †
q )kj, (4.10)

as well as a new column

(

Q̄†Λ
)i ≡




ū†

jΛ
ji
u

d̄†
jΛ

ji
d



 (4.11)

While introducing the new pair of quarks Q̄i has made the equations look more

symmetric, there is no complete symmetry. Indeed, the doublet Qi transforms

under the weak SU(2) as before, and so does the Higgs matrix Φ† as we have

seen, while Q̄i does not transform, it is simply a rearrangement of the fields

into a convenient structure. However, this suggests that we define a new set of

SU(2)-invariant quark variables ΦQi

ΦQi := Qinv
i (4.12)
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Notice that, as we mentioned earlier, Φ ∈ SU(2) and therefore this is a Higgs-

field dependent SU(2) gauge rotation of the original quark doublet. As such,

after transforming the SU(2) gauge fields accordingly, this transformation can be

pulled through the covariant derivative as it is usually done. As we will work out

in details below, the new gauge field will be an SU(2)-invariant object, the trans-

formation that we have carried out effectively corresponds to fixing the gauge.

It is similar to the well-known unitary gauge representation of a spontaneously

broken gauge theory, therefore, the symmetry principle that allowed for the con-

struction of SU(2) invariant terms in the Lagrangian is still present, it is just

rendered implicit. The new set of variables shall be called “frozen”. Notice that

the construction that we are implementing does not rely on this choice of gauge,

the latter is merely a convenient choice. Now, keeping in mind this change in the

covariant derivative operator we can write the field equations as:

Q†
i : i

√
2DQi = −ρ

(

Q̄†Λ
)

i

Q̄†
i : i

√
2DQ̄i = −ρ Q†

i

(4.13)

We have dropped the superscript inv from the Qi as we will be dealing exclusively

with these from here on. Notice that the equations become much simpler than in

terms of the original variables. Let us now substitute the primed spinors obtained

from the above field equations into the Lagrangian (4.1) and obtain the following

second-order Lagrangian:

Lquarks = −2

ρ
DQ̄iDQi − ρ

(

ΛQ̄
)i
Qi (4.14)

where we have introduced a new row

(

ΛQ̄
)i

:=
(

Λij
u ūj,Λ

ij
d d̄j

)

(4.15)

which is the Hermitian conjugate of (4.11)
(

ΛQ̄
)†

= Q̄†Λ. It is not difficult to see

that in order to obtain (4.14) it is enough to note that half of the kinetic terms

cancels the mass terms for the primed spinors, while the other half survives. This

is the same phenomenon as before, in the simpler cases of Majorana and Dirac

Lagrangians. Then the kinetic term in (4.14) is obtained from the first-order
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kinetic term Q†iDQi by substituting the expression for Q†i. The mass term in

(4.14) is easily obtained by combining the mass terms for the unprimed spinors

in (4.1), and taking into account the definitions (4.7), (4.12) of the new fermionic

variables. The covariant derivative acting on Qi in (4.14) takes into account the

field redefinition (4.12).

The Lagrangian (4.14) is much more compact than (4.1) from which it was ob-

tained. However, it is evidently non-polynomial in the Higgs scalar field ρ, because

of the presence of 1/ρ in the kinetic term. In the case of Dirac theory (3.21), we

simply needed a constant rescaling of the fields to bring the kinetic term into

its canonical form. After doing this, the spinor fields effectively became fields of

mass dimension one. The same, or rather an equivalent, procedure can be applied

to (4.14). However, ρ is now a dynamical field and absorbing it into the fermion

fields thus changes the derivative operators acting on both Q̄i, Qi. Indeed, when

going through the derivative operator, we need to include an appropriate trans-

formation of the latter. Otherwise stated [ρn, ∂] ∼ (∂ρ)ρn−1. Denoting the new

Higgs-containing derivative operators by the curly D we finally write:

Lquarks = −2DQ̄iDQi − ρ2
(

ΛQ̄
)i
Qi (4.16)

where 1/
√
ρ was absorbed into each spinor field. The new covariant derivative D

contains non-polynomial Higgs-quarks interactions as well as the physical SU(2)-

frozen gauge fields when acting on the unbarred doublet. In order to obtain the

physical states of the theory, one should expand (4.16) around the Higgs vacuum

expectation value (vev) ρ → v + h(x), then one gets the free massive quarks

with masses being multiples of the eigenvalues of the hermitian Yukawa matrices

Λij
q , together with quark interactions with the gauge fields as well as with the

Higgs. We will give an example of the simplest interactions below. It is clear

that interaction vertices with the Higgs can be of arbitrarily high valency (due

to non-polynomiality in ρ).

The field equations (4.13) for the new fermionic fields of mass dimension one read

i
√

2DQi = −ρ
(

Q̄†Λ
)

i
, i

√
2DQ̄i = −ρ Q†

i (4.17)

As in the previous chapters, these are now to be interpreted as the reality condi-

tions, whose linearised versions are to be imposed on the external lines.
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4.2.2 Leptonic sector without the Majorana mass terms

We first consider the case where all the Majorana mass terms are absent. The

construction then follows exactly the one presented in the previous subsection.

Hence, introducing the new barred lepton fields

ν̄i → (Y †
ν )ij ν̄j, ēi → (Y †

e )ij ēj (4.18)

we gather the new fields together in a row

L̄i := (ν̄i , ēi) (4.19)

and further define another row

(

ΛL̄
)i

:=
(

Λij
ν ν̄j,Λ

ij
e ēj

)

(4.20)

where Λl = YlY
†

l are the Hermitian Yukawa matrices. We also define the physical

SU(2)-invariant unbarred leptonic doublet Linv
i = ΦLi. Rewriting everything in

terms of these quantities we get the following Lagrangian

Lleptons = −i
√

2L†iDLi − i
√

2
(

DL̄i
) (

L̄†Λ
)

i
− ρ

(

ΛL̄
)i
Li − ρL†i

(

L̄†Λ
)

i
(4.21)

The resulting equations for the primed spinors are

L†
i : i

√
2DLi = −ρ

(

L̄†Λ
)

i

ν̄†
i : i

√
2DL̄i = −ρ L†

i

(4.22)

And finally, substituting the resulting primed spinors into the Lagrangian we get

Lleptons = −2

ρ
DL̄iDLi − ρ

(

ΛL̄
)i
Li (4.23)

One can now rescale the lepton fields as we did with the quarks to give them

mass dimension one and convert the kinetic terms into a canonical form. One

obtains a Lagrangian as in (4.16):

Lleptons = −2DL̄iDLi − ρ2
(

ΛL̄
)i
Li (4.24)
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The sum of (4.24) and (4.16) is the Lagrangian that would describe the second-

order SM without the inclusion of Majorana mass terms.

4.2.3 Majorana mass terms included

We now reinstate the Majorana mass terms. This leads to a more complicated

analysis and not so simple final result, however, the construction is identical.

Performing the same redefinitions of the fermionic variables as was done above,

we can write the original Lagrangian in terms of the new spinor fields:

Lleptons = − i
√

2L†iDLi − i
√

2
(

DL̄i
) (

L̄†Λ
)

i
− ρ

(

ΛL̄
)i
Li − ρL†i

(

L̄†Λ
)

i

− 1

2
(Y †

ν )ik(Y †
ν )jlM ij

ν̄ ν̄kν̄l − 1

2
Y ki

ν Y lj
ν (M †

ν̄)ij ν̄†
kν̄

†
l

(4.25)

The structure of the last two terms suggests the following redefinition of the

barred neutrino Yukawa-mass matrix

(Y †
ν )ik(Y †

ν )jlM ij
ν̄ → Mkl

ν̄ . (4.26)

The new mass matrix is still symmetric. The first-order Lagrangian then becomes

Lleptons = − i
√

2L†iDLi − i
√

2
(

DL̄i
) (

L̄†Λ
)

i
− ρ

(

ΛL̄
)i
Li − ρL†i

(

L̄†Λ
)

i

− 1

2
M ij

ν̄ ν̄iν̄j − 1

2
(M †

ν̄)ij ν̄†
i ν̄

†
j

(4.27)

The resulting equations of motion for the primed spinors are as follows

L†
i : i

√
2DLi = −ρ

(

L̄†Λ
)

i

ν̄†
i : i

√
2Dν̄i = −ρ ν†i − ν̄†j(M †

ν̄)jk(Λ−1)ki

ē†
i : i

√
2Dēi = −ρ e†

i

(4.28)

We can now solve for the barred primed spinors using the first equation. The

solution for ν̄† is then substituted into the second equation. The last pair is

then solved for the L† fermions. It is not as easy as before to obtain the new
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Lagrangian after the solutions are substituted, however simplifications happen.

For example, it is easy to note that the first and the last terms in the first line

of (4.27) cancel each other in view of the first equation in (4.28). Indeed, we can

combine these two terms as

Lleptons ⊃ L†
i

(

−i
√

2DLi − ρ
(

L̄†Λ
)

i

)

(4.29)

It is clear that this combination gives zero on the first equation in (4.28). To

eliminate the remaining primed spinors we again need just the first field equation

that gives us L̄†. Overall, this gives:

Lleptons = − 2

ρ
DL̄iDLi − ρ

(

ΛL̄
)i
Li

− 1

2
M ij

ν̄ ν̄iν̄j +
1

ρ2
(Λ−1

ν M †
ν̄Λ−1

ν )ij(DLi)
ν(DLj)

ν
(4.30)

where (DLi)
ν stands for the first ν-component of the doublet DLi. This La-

grangian is more complicated than the previous second-order Lagrangian due to

the presence of the Majorana mass. There are two ways of understanding what

is going on here. First of all, notice that the last term in (4.30) is simply equal to

the Majorana mass term on the surface of the reality conditions (4.28). Moreover,

looking at the second field equation in (4.28) and substituting the latter reality

condition (the solution for ν̄†
i from the first equation) one gets:

i
√

2

(

Dν̄i − 1

ρ
(Λ−1

ν M †
ν̄Λ−1

ν )ij(DLj)
ν

)

= −ρ ν†i (4.31)

If one expands all terms in this equation around the Higgs vev 〈ρ〉 = v, the terms

linear in the fields are

i
√

2 ∂
(

ν̄i − 1

v
(Λ−1

ν M †
ν̄Λ−1

ν )ijνj

)

= −v ν†i. (4.32)

This equation suggests that we should introduce a new barred neutrino field

ν̄new
i := ν̄i − 1

v
(Λ−1

ν M †
ν̄Λ−1

ν )ijν
j (4.33)

as it is this field that satisfies reality conditions similar to those for all other two-

component fermions present, otherwise stated, this field redefinition diagonalises

the system of reality conditions that allow for a particle interpretation. However,
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rewriting the Lagrangian (4.30), as well as the interaction vertices in terms of

ν̄new
i , and then proceed with the usual perturbation theory calculations becomes

rather cumbersome. It is clear that the result is complicated, as it relies on the

field redefinition (4.33) that in turn relies on the Higgs field assuming its vev.

Therefore, the second-order Lagrangian with the Majorana mass terms added is

not much simpler than its first-order counterpart.

If we take the approach that the second-order formalism is more fundamental

and we do not wish to accommodate the complicated structure of the Majorana

mass terms, we have a very simple SM fermionic Lagrangian:

LSM,f = −2DQ̄iDQi − 2DL̄iDLi − ρ2
(

ΛqQ̄
)i
Qi − ρ2

(

ΛlL̄
)i
Li (4.34)

This Lagrangian explains neutrino oscillations by giving the neutrinos masses, but

as previously stated, does not by itself explain the observed mass hierarchy or the

baryon asymmetry of the Universe which relies on the lepton number violation

introduced by the Majorana mass terms.

The inclusion of Majorana masses or modifications of the SM can however be

studied in the second-order framework. For example, a toy model that could

be used would a model of a Dirac fermion with both Dirac and Majorana mass

terms. This area of investigation has not been covered in this thesis, but could

represent a future line of study.

4.3 Bosonic sector revisited

In this section we rewrite the bosonic sector of the Standard Model in terms

of the same frozen gauge-fields that were used in the covariant derivatives of

our fermionic Lagrangian. In doing so, we will have explicit expressions for the

interactions between the bosons and the fermions. This approach allows for a

more insightful perspective on the Higgs mechanism for spontaneously broken

gauge-theories [33–36]. However the presence of a vacuum breaking the larger

symmetry group into its little group is not necessary. The material covered in this

sections appears in [35] with minor differences in conventions, it is nonetheless

interesting to spell it out for sake of completeness and in order to derive the

interaction vertices for the physical states of the theory.
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4.3.1 Higgs sector

We denote the gauge fields associated to the Standard Model group SU(2)×U(1)1

by Bµ and Yµ respectively and their coupling constants by g2, g1.

First recall the construction of an SU(2) matrix element out of the SM Higgs

doublet. The Higgs field is an SU(2) doublet with a Y -charge of 1/2, therefore

its covariant derivative is given by

Dµφ = ∂µφ+ ig2Bµφ+
ig1

2
Yµφ (4.35)

where Bµ = T aBa
µ and T a = (1/2)σa, with σa the usual Pauli matrices. The

transformation rules for the gauge-connections are of the standard form, so that

the SU(2) connection Bµ transforms as

Bµ → Ω†BµΩ + (1/ig2)Ω
†(∂µΩ) (4.36)

and trivially the U(1) connection as

Yµ → Yµ + (1/g1)∂µξ (4.37)

We now parametrize this doublet as

φ ≡ ρχ, ρ ∈ R
+, χ ∈ C

2 with |χ|2 = 1. (4.38)

Using the SL(2,C) metric ε, we can construct

Φ ≡



(εχ)T

χ†



 ∈ SU(2) (4.39)

The transformation properties of the Higgs doublet under the SM group are then

translated into the following transformations of the new object

U(1) : Φ 7→ eiξT 3

Φ (4.40)

SU(2) : Φ 7→ ΦΩ† (4.41)

We can then define a covariant derivative operator such that DµΦ transforms

1The SU(3) part is omitted as it does not affect the construction that follows.
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covariantly. This derivative operator is given by:

DµΦ := ∂µΦ − ig2ΦBµ + ig1YµT
3Φ =




(εDµχ)T

(Dµχ)†



 (4.42)

where to obtain the last expression we have used ǫBµ = BT
µ ǫ

T which can be

checked to hold for all 3 generators T a.

We can now use the object Φ, as well as its covariant derivative (4.42) to rewrite

the Higgs kinetic term |Dµφ|2 as

|Dµφ|2 = (∂µρ)
2 + ρ2|Dµχ|2 = (∂µρ)

2 +
ρ2

2
Tr|DµΦ|2 (4.43)

where we have defined as before

|φ|2 = ρ2. (4.44)

Now let us recall the construction of SU(2)-invariant doublets. In (4.12) we have

defined Qinv
i so that Qi = Φ†Qinv

i . We then rewrote the Lagrangian in terms of

Qinv
i and the gauge-transformed SU(2) connection

Wµ := ΦBµΦ† +
1

ig2

Φ∂µΦ† = ΦBµΦ† − 1

ig2

(∂µΦ)Φ† (4.45)

This connection is SU(2)-invariant. It however transforms under the U(1) trans-

formations

Wµ 7→ eiξT3Wµe
−iξT3 − 1

g2

(∂µξ)T3 (4.46)

Notice importantly that in the SU(2)-invariant connection Wµ a part of the quan-

tity DµΦ appears. Indeed, we have

i(DµΦ)Φ† = g2Wµ − g1YµT
3 (4.47)

Therefore we have

Tr|DµΦ|2 =
1

2

(

g2
2

(

W 1
µW

1 µ +W 2
µW

2 µ
)

+
(

g2W
3
µ − g1Yµ

)2
)

(4.48)

where we decomposed Wµ = W a
µT

a. These are the “will be” mass terms2 for

2They become the mass terms for the gauge-fields only if the scalar field ρ takes a non-zero
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the W,Z bosons obtained from the kinetic term for the Higgs. Usually this is

a consequence of choosing a vev for the Higgs field and therefore breaking the

symmetry. Here, even though the cause is identical (perturbing the scalar field

around its vev), we instead defined an SU(2) invariant connection Wµ, which

appears in the covariant derivative acting on the SU(2) invariant doublets.

We can now define the usual linear combinations

W±
µ :=

1√
2

(

W 1
µ ∓ iW 2

µ

)

, Zµ :=
g2W

3
µ − g1Yµ

√

g2
1 + g2

2

(4.49)

where the normalisation is a convention chosen for later convenience. By con-

struction these fields are invariant under the weak SU(2) and transform under

U(1) as

W±
µ 7→ e±iξ(x)W±

µ , Zµ 7→ Zµ (4.50)

These three gauge-fields are identified as the physical SU(2) bosons which one

can measure in an experiment. We can further define as usual the Weinberg angle

θW so that

Zµ := cos(θW )W 3
µ − sin(θW )Yµ (4.51)

From this equation one can deduce (we will further motivate this choice later on)

that the second linear combination, the photon gauge field, will be given by:

Aµ := sin(θW )W 3
µ + cos(θW )Yµ (4.52)

Notice that the field redefinition from W 3
µ , Yµ to Zµ, Aµ is an SO(2) ∼ U(1)

transformation. All in all, the Higgs sector Lagrangian can be rewritten in terms

of physical quantities as follows:

LHiggs = −|Dµφ|2 − V
(

|φ|2
)

= − (∂µρ)
2 − (g2ρ)

2

2

(

W+W− +
1

2 cos2(θW )
ZµZ

µ

)

− V (ρ2)
(4.53)

With this Lagrangian in hands, all that is needed to extract the mass terms is to

value in the vacuum.
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set the Higgs field on its vev. Interactions can be obtained at cubic and quartic

order, expanding everything with ρ(x) = v + h(x). All that was done here is a

reformulation of the Higgs sector in terms of the physical SU(2)-invariant degrees

of freedom of the theory. More details on this reparametrisation of the Higgs field

can be found in [35].

4.3.2 Yang-Mills sector

We now perform the same change of variables in the Yang-Mills sector. The

physical gauge-fields have already been defined, thus we only need to reconstruct

their curvatures. Let us start with the following Lagrangian:

LY M = −1

8
Tr (BµνB

µν) − 1

4
YµνY

µν (4.54)

where the curvature tensors are defined according to (4.80). Since the field redef-

inition (4.45) is a gauge transformation, we can immediately write

LY M = −1

8
Tr (WµνW

µν) − 1

4
YµνY

µν (4.55)

It is now convenient to define the following curvature combinations:

W±
µν :=

1√
2

(

W 1
µν ∓ iW 2

µν

)

≡ DµW
±
ν −DνW

±
µ , (4.56)

where the covariant derivatives are

DµW
±
ν ≡

(

∂µ ± ig2W
3
µ

)

W±
ν (4.57)

We then have :

Tr (WµνW
µν) = 2W 3

µνW
3 µν + 4W+

µνW
− µν (4.58)

Recall now that the W 3, Y connections can be expressed in terms of the physical

Z,A connections as




W 3

Y



 =




cos(θW ) sin(θW )

− sin(θW ) cos(θW )








Z

A



 (4.59)
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Hence,

DµW
±
ν ≡ (∂µ ± ieAµ ± ig2 cos(θW )Zµ)W±

ν (4.60)

where the electric charge e is given by

e := g2 sin(θW ) = g1 cos(θW ) (4.61)

Finally, another expression that we need is

W 3
µν = cos(θW )Zµν + sin(θW )Fµν + ig2

(

W+
µ W

−
ν −W−

µ W
+
ν

)

(4.62)

where Fµν and Zµν are the curvature tensors of the photon and Z boson. This

gives the following final expression for the Yang-Mills sector Lagrangian:

LY M = − 1

4
FµνF

µν − 1

4
ZµνZ

µν − 1

2
W+

µνW
− µν

+
g2

2

2
W+

µ W
−
ν

(

W+ µW− ν −W− µW+ ν
)

− ie (Fµν + cot(θW )Zµν)W+ µW− ν

(4.63)

4.4 Interactions

We have seen how to construct the Higgs and Yang-Mills sector Lagrangians in

terms of the SU(2)-frozen variables. The physical components W±
µ , Zµ of the

connection Wµ are massive fields, with their mass determined by the vev of the

scalar field ρ. We now explicitly show how the physical SU(2) and U(1) gauge

fields interact with the physical fermions. The interaction vertices are obviously

different in the second-order formulation. We will only look at the quark’s vertices

as the lepton’s are similar.

4.4.1 Weak interactions

We first consider Higgsless interactions arising when the scalar field sits on its

vev ρ(x) = ν. Recall that the Lagrangian is given by (4.16), the fermionic fields

have canonical mass dimension one, and the covariant derivative contains some

of the Higgs field interaction vertices. However, since we assume here that the

scalar field sits on its vev, the covariant derivative D contains just the weak and
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electromagnetic connections. We have:

DµQi =
(

∂µ + ig2Wµ +
ig1

6
Yµ

)

Qi, DµQ̄i = (∂µ + ig1QYµ) Q̄i (4.64)

where Q is the matrix of electric charges, which is in this case

QQ̄i ≡



−2/3 0

0 1/3








ūi

d̄i



 (4.65)

The gauge fields that appear in the covariant derivative are the frozen fields,

however, they have not yet been decomposed on the physical basis. Moreover,

the kinetic term contains the term DµQ̄iDµQi, where the covariant derivatives

acting on Q̄i and Qi contain a different set of gauge fields. Nevertheless, as it

is usually the case in the literature, we use the same symbol Dµ to denote the

covariant derivative acting on different representations. Indeed, it is assumed

that the fermionic representation on which it acts is known and therefore, the

choice of derivative operator is imposed. Furthermore, integration by parts also

works as usual, since the application of Dµ to e.g. Qi maps this field into a

different representation, namely the complex conjugate representation to the one

describing Q̄i, as is clear from the reality conditions (4.17).

In terms of the physical field the covariant derivatives are rewritten as:

ig2Wµ +
ig1

6
Yµ =

ig2√
2




0 W+

µ

W−
µ 0



+ ieQAµ +
ie

sW cW

Zµ

(
1

2
T 3 − s2

W Q
)

(4.66)

where, as before, e := g1 cos(θW ) and sW ≡ sin(θW ), cW ≡ cos(θW ). Whereas for

the barred quarks we have:

ig1QYµ = ieQAµ − ieQtWZµ (4.67)

where tW ≡ tan(θW ). Notice that the matrix of electric charges acting on the

unbarred quarks is the opposite to that of the barred ones. Hence, the quark fields

interact with the electromagnetic field in the usual way. Let us now consider the

interactions with the W -bosons. Recall, that due to the fact that these weak

interactions are off-diagonal, expressing the quarks’ free Lagrangian in terms of

mass eigenstates brings up quark-mixing interactions. The relevant part of the
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Lagrangian (4.16) becomes

−i
√

2g2

(

Kij(∂A
A′ūiA)W+A′BdjB + (K†)ij(∂A

A′ d̄iA)W−A′BujB

)

, (4.68)

where we reinstated the spinor indices for clarity. The unitary matrix Kij is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix that produces the aforementioned

mixing. Terms in (4.68) not only give the interactions responsible for the mixing

between the generations, thus making the heavier generations unstable, but are

also responsible for the β-decay. As was the case in Electrodynamics, in the

SM second-order formalism there is a derivative present in the cubic vertex. Of

course, this can be seen to be the standard vertex with no derivative present if

one uses the “reality condition” (4.17) to express the derivative of the barred

spinors in terms of the Hermitian conjugates of the unbarred. However, there is

no need to introduce the primed spinors, and one can work with the Feynman

rules that follow directly from (4.68). We will explore this further in the simpler

case of Electrodynamics.

The second-order formalism also introduces new quartic vertices that are quadratic

in the gauge field in a similar way to scalar Electrodynamics. Indeed, we see that

such vertices are present for both A and Z fields, but not for W± as they only ap-

pear in the unbarred quarks’ covariant derivative. However, because the second-

order Lagrangian was obtained after integrating out the primed two-component

spinors, it is clear that the correlation functions of the unprimed fields are cor-

rectly reproduced. We will see how this fact can be proven perturbatively in the

case of Electrodynamics.

4.4.2 Interactions with the Higgs

Although the construction of the interactions with the gauge fields is non-standard,

something more interesting happens to the interactions of the fermions with the

Higgs field. Indeed, due to the non-polynomiality of the Lagrangian, there exists

vertices of arbitrarily high valency. In order to see this, consider fluctuations

around the vev ρ = ν + h(x), where h(x) stands for the physical Higgs field. The

latter interacts polynomially with the gauge bosons and this can be read off from

(4.53). The self-interactions of the Higgs are also as usual. As for the fermions,

let us again consider only the quark sector; for leptons everything is analogous.

We recall that in the form of the Lagrangian (4.16) the covariant derivative was
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defined so that:

1√
ρ
D ↔ D 1√

ρ
. (4.69)

Therefore:

D = D +
1

2
∂ ln ρ. (4.70)

This logarithmic non-polynomiality suggests that we should parametrise the Higgs

field in a different way:

ρ ≡ νeφ(x). (4.71)

This shifts the non-polynomiality from the covariant derivative to the mass terms,

schematically

ρ2(ΛQ̄)Q → m2e2φ(x)Q̄Q, (4.72)

where m is the quark mass. At the same time, the covariant derivative is now

simple:

DQ ≡
(

D +
1

2
∂φ(x)

)

Q. (4.73)

The exponential non-polynomiality also enters into the Higgs with gauge fields

interaction vertices, as well as in the kinetic term for the Higgs that now becomes:

(∂µρ)
2 = ν2(∂µφ)2e2φ. (4.74)

For practical purposes, one is only interested in terms involving a few external

Higgs lines, and therefore, the exponentials can be expanded and the theory

truncated. Hence, for calculations of this type it should not really matter which

parameterisation of the field is used. However, one expects the theory to be

renormalisable (as a resummation of all the vertices into the exponential) only

when all valencies are considered. Renormalisability of these modified theories

has not been explored here and is left as a future investigation possibility.
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4.5 Curvature and covariant derivative conven-

tions

In this chapter we deal exclusively with unitary groups so that the inverse of a

group object is its Hermitian conjugate. Let Aµ := As
µT

s be a connection gauge

field. T s (s = 1, . . . , dim(G)) are the generators of the Lie group, which we take

to be Hermitian, that satisfy:

[T s, T r] = if srtT t (4.75)

A vector φ in the fundamental representation transforms as:

φ 7→ φΩ ≡ Ωφ, Ω ≡ exp (iqξs(x)T s) , ξs(x) ∈ R (4.76)

and q stands for the charge of the field while ξs(x) are coordinates that parametrise

the transformation. The covariant derivative is constructed as follows

Dµφ := (∂µ + igqAµ)φ. (4.77)

If we require that this transforms covariantly under the gauge transformations

Dµφ 7→ ΩDµφ (4.78)

we deduce the transformation rule for the connection:

Aµ 7→ AΩ
µ ≡ Ω†AµΩ +

1

igq
Ω† (∂µΩ) , Ω ∈ G (4.79)

where g denotes the coupling constant of the group. The field strength tensor or

Yang-Mills curvature tensor is defined as:

Fµν := ∂µAν − ∂νAµ + igq [Aµ, Aν ] (4.80)

It transforms in the adjoint representation of the Lie group:

Fµν 7→ FΩ
µν ≡ Ω†FµνΩ. (4.81)
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Chapter 5

Path-Integral Quantisation

In this chapter we will derive the Feynman rules for second-order Majorana

fermions minimally coupled to a vector field. In the massless limit, this gives

the quantum theory of a Weyl fermion coupled to Electrodynamics when one

treats the field as being charged. This particular example will be further dis-

cussed in the context of anomalies in Chapter 8. The derivation then generalises

straightforwardly to the case of Dirac Electrodynamics, for which we will simply

state the rules. In Chapters 6, 7, we will be dealing exclusively with the latter.

5.1 LSZ reduction formula

The LSZ reduction formula is a mean to construct the appropriate initial and

final states for scattering amplitudes starting from the correlation functions that

can be calculated in quantum field theory. We will mainly follow the construction

that can be found in [37]. Let us start recalling the mode decomposition of the

Majorana field as described in the second-order formalism (1.66):

ξA(x) =
∫

dΩk

( (

ǫ+
Aa

+
k + ǫ−

Aa
−
k

)

e+ikx +
(

ǫ+
Aa

† −
k − ǫ−

Aa
† +
k

)

e−ikx
)

(5.1)

∂tξA(x) =
∫

dΩk(−iωk)
( (

ǫ+
Aa

+
k + ǫ−

Aa
−
k

)

e+ikx −
(

ǫ+
Aa

† −
k − ǫ−

Aa
† +
k

)

e−ikx
)

(5.2)

We now introduce a more compact notation as follows:

ξA(x) =
∫

dΩk

(

uk A(s)ak(s)e+ikx + vk A(s)a†
k(s)e−ikx

)

(5.3)

∂tξA(x) =
∫

dΩk(−iωk)
(

uk A(s)ak(s)e+ikx − vk A(s)a†
k(s)e−ikx

)

(5.4)
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with uk A(s) = (ǫ+
A(k), ǫ−

A(k)), vk A(s) = (−ǫ−
A(k), ǫ+

A(k)) and summation over

the index s = 1, 2 is implicit. Let us look at the different states that can be

constructed with this set of ladder operators. Consider a one particle state in the

free theory:

|p, s〉 = a†
p(s)|0〉 (5.5)

Also:

〈p, s| = 〈0|ap(s) (5.6)

and these are normalised so that:

〈p, r|k, s〉 = 2ωp(2π)3δ(3)(p− k)δrs (5.7)

Now, in order to relate physical scattering experiments to mathematical correla-

tion functions calculated using the field theory, we need to express the creation

operator as a function of the field. As a first step, the spatial Fourier transforms

of (5.3) are:

∫

d3x eipxξA(x) =
1

2ωp

(

u−p A(s)a−p(s)e−2iωpt + vp A(s)a†
p(s)

)

(5.8)

∫

d3x eipx∂tξA(x) =
−i
2

(

u−p A(s)a−p(s)e−2iωpt − vp A(s)a†
p(s)

)

(5.9)

so that:

∫

d3x eipx
↔
∂tξA(x) = ivp A(s)a†

p(s) (5.10)

with eipx
↔
∂tξA(x) = eipx∂tξA − (∂te

ipx)ξA. Finally, using uA
p (r)vp A(s) = −δrs

1, we

obtain:

i
∫

d3x eipx
↔
∂t

(

uA
p (s)ξA(x)

)

= a†
p(s) (5.11)

Similarly, the annihilation operator can be constructed as (we do not want to

take the Hermitian conjugate of the above expression to avoid introducing primed

1Recall ǫ+ Aǫ−
A = 1.
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spinors):

i
∫

d3x e−ipx
↔
∂t

(

vA
p (s)ξA(x)

)

= ap(s) (5.12)

Notice the similarity of the construction to the scalar field case rather than to

the first-order fermionic field case. Also note that the sign depends on the con-

vention one chooses for the incoming and outgoing polarisations (whether, say,

the incoming particle has polarisation uA or uA), therefore the overall sign that

we will obtain in the LSZ formula will depend on this choice.

For practical purposes, the ladder operators are not considered on their own (as

they give an infinite spread to the particles they create), but rather smeared out

by some wavepacket that localises the particle both in momentum and position

space, e.g. (dropping the spin index):

a†
1 :=

∫

d3kf1(k)a†
k, f1(k) ∝ e−(~k− ~k1)2/(4σ2) (5.13)

where here f1(k) is a Gaussian wavepacket localised around the origin in posi-

tion space and around k1 with width σ in momentum space. In the free theory,

the states created by this smeared operator will time evolve in the Schrödinger

picture; the wavepacket will propagate away from the origin and spread out. Sim-

ilarly, if we consider a two-particle state, as t → ±∞, the particles will effectively

become widely separated. Let us now consider the case of an interacting theory,

and more specifically a 2-2 scattering (it generalises straightforwardly). In this

case, both the operators and the states evolve with time. We can however assume

that we can construct a well defined multi-particle state in the far past (or far

future) following the principles we just discussed. Therefore, we assume that our

initial state is of the form:

|i〉 = lim
t→−∞

a†
1(t)a

†
2(t)|0〉, k1 6= k2 (5.14)

with 〈i|i〉 = 1 and 〈i| is defined using (5.12). Similarly our final state will be

given by:

|f〉 = lim
t→+∞

a†
3(t)a

†
4(t)|0〉, k3 6= k4 (5.15)

with 〈f |f〉 = 1 and 〈f | is defined in a similar way to 〈i|. The physical scattering

experiment will measure the amplitude 〈f |i〉, and it is this quantity that needs to
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be related to the fields present in the theory. In order to obtain the LSZ formula

the following trick is used:

a†
i (+∞) − a†

i (−∞) =
∫ +∞

−∞
dt ∂ta

†
i (t)

= i
∫

d3kfi(k)
∫

d4x ∂t

(

eikx
↔
∂t (ukξ(x))

)

= i
∫

d3kfi(k)
∫

d4x
(

eikx(∂2
t + ω2

k) (ukξ(x))
)

= i
∫

d3kfi(k)
∫

d4x
(

eikx(−� +m2) (ukξ(x))
)

(5.16)

where in the last line we used the on-shell condition ω2
k = |~k|2+m2 and integration

by parts after converting ~k into a derivative operator acting on the Fourier mode.

Notice that for a free second-order spinor field, we have (−� + m2)ξ(x) = 0

(as this is the free theory equation of motion). However, when interactions are

included, this is no longer true. Similarly for the annihilation operators, we have:

ai(+∞) − ai(−∞) = i
∫

d3kfi(k)
∫

d4x
(

e−ikx(−� +m2) (vkξ(x))
)

(5.17)

In the following, we will use:

a†
i (−∞) = a†

i (+∞) + i
∫

d3kfi(k)
∫

d4x
(

eikx(−� +m2) (ukξ(x))
)

ai(+∞) = ai(−∞) + i
∫

d3kfi(k)
∫

d4x
(

e−ikx(−� +m2) (vkξ(x))
) (5.18)

So that if we look at the scattering amplitude in which we are interested, we have

(dropping the wavepacket factors):

〈f |i〉 = 〈0|a3(+∞)a4(+∞)a†
1(−∞)a†

2(−∞)|0〉
= 〈0|Ta3(+∞)a4(+∞)a†

1(−∞)a†
2(−∞)|0〉

= i2(−i)2
∫

d4x1 e
ik1x1uA

k1
(−� +m2) · · ·

∫

d4x3 e
−ik3x3vC

k3
(−� +m2) · · · 〈0|TξA(x1)ξB(x2)ξC(x3)ξD(x4)|0〉

(5.19)

where in the second line we used the fact the the operators are time-ordered in the

first line, and in the third line we replaced the ladder operators using (5.18) and

that the annihilation operators acting on the vacuum give zero. This generalises

PhD Thesis 72 Johnny Espin



Chapter 5. Path-Integral Quantisation

easily to ni incoming and nf outgoing particles:

〈f |i〉 = ini(−i)nf

∫ ni∏

i=1

d4xi e
ikixiuAi

ki
(−� +m2)

nf∏

j=1

d4yj e
−ikjyjv

Bj

kj
(−� +m2)

× 〈0|TξA1(x1) · · · ξAni
(xni

)ξB1(y1) · · · ξBnf
(ynf

)|0〉
(5.20)

This equation is known as the Lehmann-Symanzik-Zimmerman (LSZ) reduction

formula. It links the correlation functions on the RHS that are computed by

means of Feynman diagrams to the physical scattering amplitudes on the LHS.

Note that, as usual, the LSZ reduction formula holds provided the vacuum ex-

pectation value of the field as well as the matrix element for the creation of a

one-particle state from the vacuum satisfy some constraints:

〈0|ξA(x)|0〉 = 0 (5.21)

〈p, s|ξA(x)|0〉 = vp A(s)e−ipx (5.22)

〈0|ξA(x)|p, s〉 = up A(s)eipx (5.23)

This implies that the Lagrangian ought to be modified to satisfy the quantum

theory constraints: this modification is usually encoded in the Zi factors that

renormalise the field, the mass, and other couplings present in the theory.

5.2 The path-integral for second-order fermions

We now develop the tools necessary to compute the correlation functions that

appear on the RHS of the LSZ reduction formula (5.20). The main quantity that

is used is the path-integral (partition function, or generating functional), which

for the free-field theory is given by:

Z0[J ] := 〈0|0〉J =
∫

Dξ ei
∫

d4x(L0+JAξA), Z0[0] = 1 (5.24)

where

L0 = −1

2
ξA
(

−� +m2
)

ξA (5.25)

is the free Lagrangian, JA is a grassmann-valued source for the spinor field ξA,

and Dξ is an appropriate functional measure. The path-integral can be rewritten
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using a Fourier transform of the fields:

ξA(x) =
∫ d4k

(2π)4
eikxξA(k) (5.26)

The action then becomes:

S0 = − i

2

∫ d4k

(2π)4
ξA(k)(k2 +m2)ξA(−k) (5.27)

and the exponent of the path integral:

S0[J ] = − i

2

∫ d4k

(2π)4

(

ξA(k)(k2 +m2)ξA(−k) + JA(k)ξA(−k) + JA(−k)ξA(k)
)

(5.28)

This can be rewritten after a constant shift of the variables (which leaves the

measure unchanged):

ξA(k) → ξA(k) − JA(k)

k2 +m2
(5.29)

Then:

S0[J ] = − i

2

∫ d4k

(2π)4

(

ξA(k)(k2 +m2)ξA(−k) − JA(k)JA(−k)

k2 +m2

)

(5.30)

So that the partition function becomes:

Z0[J ] = e
i
2

∫
d4k

(2π)4
JA(k)JA(−k)

k2+m2 ≡ e
1
2

∫
d4k

(2π)4 JA(k)(SF )AB(k)JB(−k)
(5.31)

where we used Z0[0] = 1. In position space it becomes:

Z0[J ] = e
1
2

∫
d4xd4y JA(x)(SF )AB(x−y)JB(y) (5.32)

The quantity SF (x − y) is the Feynman propagator, it is the Green function of

the field equation for the free field:

(−� +m2)SF (x− y) = iδ(4)(x− y) (5.33)
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It is given by:

(SF )AB(k) =
−iǫAB

k2 +m2
, (SF )AB(x− y) =

∫ d4k

(2π)4

−iǫAB

k2 +m2 − iε
eik(x−y) (5.34)

where in position space the contour to be chosen is dictated by the ε > 0 reg-

ularisation. More will be said about the position space propagator in Chapter

9.

The question that arises now is, how do we relate this partition function to the

correlation functions in which we are interested? Let us go back to (5.24) and

observe that:

〈0|TξA(x1) · · · |0〉 =

(

1

i

δ

δJA(x1)

)

· · · Z0[J ]|J=0 (5.35)

We have, for example:

〈0|TξA(x)ξB(y)|0〉 =

(

1

i

δ

δJA(x)

)(

1

i

δ

δJB(y)

)

Z0[J ]|J=0 = (SF )AB(x− y)

(5.36)

or in momentum space:

〈0|TξA(k)ξB(−k)|0〉 =

(

1

i

δ

δJA(−k)

)(

1

i

δ

δJB(k)

)

Z0[J ]|J=0 = (SF )AB(k)

(5.37)

We see that correlation function in the free theory are given by products of propa-

gators. However, we are interested in the correlation functions for the interacting

theory. In order to obtain the latter, we define the path-integral for this theory:

Z[J ] := 〈0|0〉J =
∫

Dξ ei
∫

d4x(L0+Lint+JAξA), Z[0] = 1 (5.38)

where Lint is the interaction part of the Lagrangian, which depends on ξ but

which can also depend on other fields (e.g. a vector field, see below). For now,
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let us suppose that it depends only on the spinor field. We can then rewrite:

Z[J ] =
∫

Dξ ei
∫

d4x(L0+Lint+JAξA)

= ei
∫

d4xLint[δx]
∫

Dξ ei
∫

d4x(L0+JAξA)

= ei
∫

d4xLint[δx]Z0[J ], Z[0] = 1

(5.39)

where we introduced the notation δx ≡ 1
i
δ/δJA(x). Note that in general Z[0] 6= 1,

so that the condition has to be imposed by hand. However, for sake of simplicity

(it will not affect the following statements), we will assume that it has been

done. The generating functional for the interaction theory generates, as its name

suggests, the correlation functions of the latter. As before, we have:

〈0|TξA(x1) · · · |0〉 =

(

1

i

δ

δJA(x1)

)

· · · Z[J ]|J=0 (5.40)

Which in this case becomes:

〈0|TξA(x1) · · · |0〉 =

(

1

i

δ

δJA(x1)

)

· · · ei
∫

d4xLint[δx]Z0[J ]
∣
∣
∣
J=0

(5.41)

As it is well known, these correlation functions are generally calculated in per-

turbation theory after expanding the exponential containing the interactions La-

grangian in a power series in the (assumed small) coupling constant. Since the

interactions are typically higher than quadratic, the two-point functions (or prop-

agators) remain unchanged at tree-level. Similarly, after having specified the

interactions, the (tree level) vertices of the theory can be derived. The set of ex-

pressions containing the propagators and the vertices form the Feynman rules of

the theory. We now derive these for two simple models of second-order fermions.

5.3 Feynman rules for Majorana-Weyl theory

Let us now look more particularly at the case discussed at the beginning of the

chapter. We consider a massive Majorana fermion minimally coupled to a vector

field. In the massless limit, the now called Weyl fermion can be considered as a

charged field and then the vector field is the appropriate gauge field under whose
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symmetry group the fermion transforms. The Lagrangian is given by:

L = −(DA′
AξA)(DA′BξB) − m2

2
ξAξA (5.42)

with reality condition:

ξ† A′

= −i
√

2

m
DA′AξA, DA′AξA = (∂ − ieA)A′AξA (5.43)

which leads to the mode decomposition (5.3):

ξA(x) =
∫

dΩk

(

uk A(s)ak(s)e+ikx + vk A(s)a†
k(s)e−ikx

)

(5.44)

The Lagrangian splits into its free part (upon integration by parts):

L0 = −1

2
ξA(−� +m2)ξA (5.45)

and interacting part:

Lint = ieAA′
A
(

ξA∂
A′BξB − (∂A′BξB)ξA

)

+
e2

2
A2ξAξA (5.46)

where we chose to write the terms in the brackets in a way that will mimic Dirac

theory to be discussed below, and A2 ≡ AA′
AAA

A′

= AµA
µ. We are first of all

interested in the cubic vertex in momentum space. After Fourier transforming

all the fields (all momenta incoming by convention), we have:

iS(3) = ie
∫ d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
(2π)4δ(4)(k1+k2 + k3)AA′

A(k1)ξ
B(k2)ξ

C(k3)

×
[

ǫBAk
A′

3 C − ǫCAk
A′

2 B

]

(5.47)

The Feynman rule is related to the three-point correlation function:

〈0|TAA′
A(k1)ξ

B(k2)ξ
C(k3)|0〉 ≡

(

1

i

δ

δBA′

A (−k1)

)(

1

i

δ

δJB(−k2)

)(

1

i

δ

δJC(−k3)

)

Z[B, J ]|B,J=0

(5.48)

where BA
A′ is the source current associated to the vector field, and the generating
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functional has to be expanded to first order. In the following we will assume

that the free part of the generating functional corresponding to the vector field

is given by:

Z0[B] = exp

(

−1

2

∫ d4q

(2π)4
BA′

A(q)DA′B′

AB (q)BB′
B(−q)

)

(5.49)

with D(q) an appropriate propagator and the extra minus sign in the exponent

corresponds to the Bose symmetry of the vector field. Let us introduce some

notation. For a generic N -particle interaction, the integration measure is:

∫

dK(N) ≡
∫ N∏

i=1

d4ki

(2π)4
(2π)4δ(4)(

N∑

j=1

kj) (5.50)

Furthermore, the functional derivatives will be denoted as:

∆A
A′(k) ≡

(

1

i

δ

δBA′

A (k)

)

, δA(k) ≡
(

1

i

δ

δJA(k)

)

(5.51)

We then have, at order e:

Z[B, J ] = ie
∫

dK(3)
[

ǫBAk
A′

3 C − ǫCAk
A′

2 B

]

∆A
A′(−k1)δ

B(−k2)δ
C(−k3)Z0[B]Z0[J ]

(5.52)

Together with (5.48), we see that we need to expand the exponential containing

the vector propagator once, and the exponential containing the fermion propaga-

tor twice. This yields an overall factor of 1/(2!). Once the functional derivatives

have been taken care of, we are left with:

〈0|TAA′
A(k1)ξ

B(k2)ξ
C(k3)|0〉 = (2π)4δ(4)(k1 + k2 + k3)

× 2ie
[

ǫF Dk
D′

2 E − ǫEDk
D′

3 F

]

SBE(k2)S
CF (k3)D

AD
A′D′(k1)

(5.53)

Let us now recall, that the correlation functions are linked to the scattering

amplitudes through the LSZ reduction formula (5.20). In momentum space, the
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latter is given by:

〈f |i〉 = ini(−i)nf

ni∏

i=1

uAi

ki
(k2

i +m2)
nf∏

i=1

vBj
pj

(p2
j +m2)

× 〈0|TξA1(k1) · · · ξAni
(kni

)ξB1(−p1) · · · ξBnf
(−pnf

)|0〉
(5.54)

and similarly, a formula can be derived for vector fields. Notice that:

i(p2 +m2)SAB
F (p) = ǫAB (5.55)

So that, what the LSZ effectively does is to amputate the external propagators

from the correlation functions! Therefore, we have schematically (up to signs and

before projecting on polarisations):

〈f |i〉 ∼ 〈0|TξA1(k1) · · · ξAni
(kni

)ξB1(−p1) · · · ξBnf
(−pnf

)|0〉
∣
∣
∣
amputated

(5.56)

For the case of the cubic vertex Feynman rule, we are not interested in projecting

the correlation function on external polarisations (as this is only done for external

states that are on-shell). Moreover, it is usual to define the transition matrix T :

〈f |i〉 ≡ i(2π)4δ(4)(Kin −Kout)T (5.57)

So that the overall conservation of momentum is factored out. All in all, the

off-shell cubic vertex Feynman rules is given by (all particles incoming):

2ie
[

ǫCAk
A′

2 B − ǫBAk
A′

3 C

]

(5.58)

In a similar way, the Feynman rule for the quartic vertex can be derived, one

obtains:

2ie2ǫA′B′

ǫABǫCD (5.59)

We can now summarise the Feynman rules for this theory as it is usually done in

any quantum field theory textbook.

• Draw all amputated connected diagrams at a given order in the coupling

constant (topologically inequivalent).
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• Each internal line corresponds to a propagator:

SAB
F =

−iǫAB

p2 +m2
(5.60)

• Enforce momentum conservation at each vertex. The latter are either cubic

or quartic (Fig.5.1) and are given by:

2ie
[

ǫCAk
A′

2 B − ǫBAk
A′

3 C

]

, 2ie2ǫA′B′

ǫABǫCD (5.61)

respectively, with all momenta incoming.

• The rules for the signs are as follows: we write spinor arrows at each vertex

as we previously drew charge arrows. In this case, an outgoing arrow denotes

the spinor that sits to the left in the vertex interaction and an incoming

arrow denotes the spinor sitting to the right. The sign in the momentum is

positive if the spinor arrow and the momentum flow arrow are antiparallel.

The indices in the propagator and in the quartic vertex correspond to the

order that “climbs up” the spinor arrow.

• For loops, an extra minus sign arises as in the usual first-order formalism,

and the momentum running into each of them has to be integrated over.

• External lines are contracted with polarisation spinors2

incoming : uk(s), outgoing : vk(s) (5.62)

• Symmetry factors need to be accounted for.

Using these rules, it is possible to carry on with perturbation theory in this

formalism, but before doing so, we will give the same rules for the case of Dirac

Electrodynamics.

2Notice that in the LSZ formula (5.54), there is an extra (−1)nf coming from the outgoing
particles. Later on, we will develop an index free notation where the contraction of the polar-
isation spinor of the outgoing particles is reversed compared to the incoming particles. This
will cancel this overall sign.
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AA′

A

ξC

ξB

AA′

A

AB′

B

ξC

ξD

Figure 5.1: Cubic and quartic vertices for the Majorana-Vector interactions

5.4 Feynman rules for Dirac theory

The Lagrangian for second-order Quantum Electrodynamics is given by (we sim-

ply consider the fermionic part):

L = −2DA′
AχAD

A′BξB −m2χAξA (5.63)

with

Dµξ = (∂µ − ieAµ)ξ, Dµχ = (∂µ + ieAµ)χ, (5.64)

where we included the electromagnetic coupling |e| ≪ 1, and the fields transform

under the U(1) symmetry group as:

δξ = +ieαξ, δχ = −ieαχ (5.65)

The mode decomposition that follows is given by:

ξA(x) =
∫

dΩk

(

uk A(s)ak(s)e+ikx + vk A(s)c†
k(s)e−ikx

)

(5.66)

χA(x) =
∫

dΩk

(

uk A(s)ck(s)e+ikx + vk A(s)a†
k(s)e−ikx

)

(5.67)

where summation over the index s = 1, 2 is implicit. Recalling Table 3.1, a†

creates electrons, while c† creates positrons. Being not Hermitian, the theory is

PhD Thesis 81 Johnny Espin



Chapter 5. Path-Integral Quantisation

supplemented with reality conditions:

ξ† A′

= −i
√

2

m
DA′AχA, χ† A′

= −i
√

2

m
DA′AξA. (5.68)

The Lagrangian can be expanded so that:

L = L0 + Lint (5.69)

with

L0 = −∂µχA∂µξA −m2χAξA, (5.70)

and

Lint = 2ieAAA′
(

χA(∂A′
BξB) + (∂A′

BχB)ξA

)

− e2AB
B′AB′

Bχ
AξA (5.71)

Because there are now two distinct fermionic fields, both the propagator and

vertices are oriented. Using the same method as above, one arrives to the following

rules for the propagator:

〈0|T{ξA(p)χB(−p)}|0〉 ≡ SF (p)AB =
−i

p2 +m2
ǫAB (5.72)

where, the field ξA sits at the end of the directed line. Similarly, taking all our

particles to be incoming, the vertices are (cubic and quartic resp.):

2ie
[

ǫCAk
A′

2 B + ǫBAk
A′

3 C

]

, −2ie2ǫA′B′

ǫABǫCD (5.73)

AA′

A

ξC

χB

AA′

A

AB′

B

χC

ξD

Figure 5.2: Cubic and quartic vertices for Dirac Electrodynamics interactions
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As for the external polarisations to be used, let us for example consider an in-

coming electron. Its state is given by:

|p, s, e〉 = a†
p(s)|0〉 (5.74)

We need to consider the following Wick contraction:

ξA(x)|p, s, e〉 = eipxuA(s, p)|0〉 (5.75)

Similarly an incoming positron will be given by:

|p, s,−e〉 = c†
p(s)|0〉 (5.76)

and then:

χA(x)|p, s,−e〉 = eipxuA(s, p)|0〉 (5.77)

As for the outgoing particles, an outgoing electron state is given by:

〈p, s, e| = 〈0|ap(s) (5.78)

So that the Wick contraction to consider is:

〈p, s, e|χA(x) = 〈0|e−ipxvA(s) (5.79)

Finally, an outgoing positron:

〈p, s,−e| = 〈0|cp(s) (5.80)

Hence:

〈p, s,−e|ξA(x) = 〈0|e−ipxvA(s) (5.81)

We see that electrons and positrons are described by the same polarisation spinor.

This is due to the charge symmetry invariance of the theory. Finally, let us

summarise the Feynman rules:

• Draw all amputated connected diagrams at a given order in the coupling

constant (topologically inequivalent).
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• Each, oriented, internal line corresponds to a propagator:

SAB
F =

−iǫAB

p2 +m2
(5.82)

The field ξA sits at the end of the directed line.

• Enforce momentum conservation at each vertex. The latter are either cubic

or quartic (Fig.5.1) and are given by:

2ie
[

ǫCAk
A′

2 B + ǫBAk
A′

3 C

]

, −2ie2ǫA′B′

ǫABǫCD (5.83)

respectively, with all momenta incoming. The spinor field ξ has an incoming

directed line.

• For loops, an extra minus sign arises as in the usual first-order formalism,

and the momentum running into each of them as to be integrated over.

Notice that due to the orientation of the lines, there is in general more than

one loop orientation.

• External lines are contracted with polarisation spinors (electrons and positrons

share the same polarisation spinors):

incoming : uk(s), outgoing : vk(s) (5.84)

• Symmetry factors need to be accounted for.

We can now proceed with some basic Perturbation Theory calculations. There,

we will see that these Feynman rules (although sufficient) can be improved to

simplify calculations.

PhD Thesis 84 Johnny Espin



Chapter 6

Tree-level Processes

We start by computing some of the most typical QED amplitudes. If not other-

wise stated, we will be dealing exclusively with Dirac Electrodynamics from now

on. In this chapter we will be quite explicit in deriving the amplitudes in order

to get acquainted with the two-component spinor formalism.

6.1 On-shell formalism for the three-valent ver-

tex

Before carrying out any calculation, it is interesting to construct the Berends-

Giele currents [38] for the cubic vertex that allow for simpler calculations later

on. This exercise also serves as an introduction to the research area of “Scatter-

ing Amplitudes” using a spinor-helicity formalism. Our three-valent vertex with

incoming (fermions) momenta k1 and k2 is:

V3(k1, k2)ABC
C′

= 2ie
[

k1A
C′

ǫBC + k2B
C′

ǫAC

]

(6.1)

with momentum conservation imposed. When computing scattering amplitudes,

this vertex will be projected on polarisation spinors for incoming fermions. We

therefore compute the following “on-shell” amplitudes:

M(h1, h2)C
C′

= ǫA(k, h1)ǫ
B(p, h2)V3(k1, k2)ABC

C′

(6.2)

where we split the previously used spinors uA and vA into their components

ǫA ≡ ǫ±
A. In order to do so, recall that a massive momentum admits the following
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spinor decomposition:

kAA′

= KAKA′ − m2pApA′

2(Kp)[Kp]
(6.3)

where both K and p are null spinors. In this formula, p is a reference spinor from

which any physical amplitude can not depend and which can be chosen freely.

For clarity we also recall:

ǫ−
A(k) =

21/4KA√
m

, ǫ+
A(k) =

√
mpA

21/4(Kp)
(6.4)

Let us then compute the partially on-shell amplitudes (currents) for two incoming

particles with momentum k1 and k2 respectively:

M(−,−)C
C′

= −
√

2iem

(

pC′

1 K2C

[1p1]
+
pC′

2 K1C

[2p2]

)

(6.5)

M(+,+)C
C′

= −
√

2iem

(

p1CK
C′

2

(1p1)
+
p2CK

C′

1

(2p2)

)

(6.6)

M(−,+)C
C′

= −2ie

(

K1CK
C′

2 +
m2

2

pC′

1 p2C

[1p1](2p2)

)

(6.7)

M(+,−)C
C′

= −2ie

(

KC′

1 K2C +
m2

2

p1Cp
C′

2

(1p1)[2p2]

)

(6.8)

where (1p1) := KA
1 p1A and similarly [1p1] := K1A′pA′

1 . Notice that for real mo-

menta, we have the following identity:

M(h1, h2)C
C′

= (−1)(h1+h2)ǫCDǫ
C′D′M∗(−h1,−h2)D′

D (6.9)

with hi = ±1/2. From the above formulas, the computation of different diagrams

for external fermions becomes much simpler, specially at tree level, as one simply

needs to contract them with internal propagators. We will not consider here the

amplitudes for on-shell photon and fermions as for those cases we will have to

consider quartic interactions to be treated later on. It is worth noticing here that

when dealing with massless incoming/outgoing fermions, there are only two cur-

rents that contribute to the process. In this formalism one immediately sees that

only fermions with opposite helicity (if both incoming or outgoing) contribute,
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with:

M(−,+)C
C′ m=0

= − 2ieK1CK
C′

2 (6.10)

M(+,−)C
C′ m=0

= − 2ieKC′

1 K2C (6.11)

Lastly, if we consider one outgoing particle or both of them outgoing, there is a

change in sign in the three-valent vertex. Moreover, a positive helicity outgoing

particle will be represented by ǫ− as we previously saw. Accordingly, there will

be either a global sign change in the on-shell amplitudes if both particles are

outgoing, or a relative sign if there is one incoming particle and one outgoing,

as well as a change of helicity state. For example, for two outgoing particles we

have:

Mout(−,+) = −Min(+,−) (6.12)

6.2 Sum rules: spin averaged probabilities

When specific helicity combinations are not of interest, one is led to consider

unpolarised cross-sections. As it is done in the usual first-order formalism, we

develop now similar tools for an efficient computation of averaged probabilities.

When we sum (or average) over photon polarisation states, one can make use of

a Ward identity to obtain:

∑

pol.

ǫµǫ
∗
ν → ηµν (6.13)

In our case, this will become:

∑

pol.

ǫAA′ǫ∗
BB′ → − ǫABǫA′B′ (6.14)

As for the fermions, we need to compute:

ǫ+
Aǫ

∗+
A′ + ǫ−

Aǫ
∗−
A′ (6.15)

Using (1.39) and (1.42), we obtain:

ǫ+
Aǫ

∗+
A′ (k) + ǫ−

Aǫ
∗−
A′ (k) =

√

2

m2
kAA′ (6.16)
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6.3 Unpolarised processes: e−µ− → e−µ− scat-

tering

We now have everything we need to work with our formalism. Hence, we start

considering the simplest QED process: electron-muon scattering at tree level in

the limit me ≪ mµ, Fig.6.1.

Figure 6.1: e−µ− → e−µ−

Let us first compute the amputated amplitude MABCD for an incoming electron

with momentum k1 scattered off an incoming muon with momentum p1. We have:

MABCD = 4
(ie)2(−i)

q2

(

k1A
E′

ǫDE − k2D
E′

ǫAE

)

ǫEF ǫE′F ′

(

p1B
F ′

ǫCF − p2C
F ′

ǫBF

)

=
4ie2

q2
[(k1 · p1)AB ǫCD + (k2 · p1)DB ǫAC

− (k1 · p2)AC ǫBD − (k2 · p2)DC ǫAB]

(6.17)

where we defined:

(k · p)AB := kA
C′

pBC′ (6.18)

and q2 = (k1 − k2)
2 = (p1 − p2)

2 = t. The complex conjugate amplitude is simply

obtained after replacing every unprimed spinor by a primed one and vice versa,

so that (taking into account the extra minus sign from the imaginary unit):

M∗
A′B′C′D′ =

4ie2

q2
[(k1 · p1)A′B′ ǫC′D′ + (k2 · p1)D′B′ ǫA′C′

− (k1 · p2)A′C′ ǫB′D′ − (k2 · p2)C′D′ ǫA′B′ ]

(6.19)
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and we defined:

(k · p)A′B′ := kA′CpB
C (6.20)

Now, one generally needs to compute an unpolarised cross-section. In order to

do so, we project our amplitude on external polarisation states, average over

incoming particles’ spin and sum over outgoing particles’. In the end, we have:

|M|2 =
1

4

∑

pol.

MABCDM∗
A′B′C′D′ǫAǫ∗A′

(k1)ǫ
Bǫ∗B′

(p1)ǫ
Cǫ∗C′

(p2)ǫ
Dǫ∗D′

(k2)

=
1

4
MABCDM∗

A′B′C′D′kAA′

1 pBB′

1 pCC′

2 kDD′

2

2

m2
e

2

m2
µ

(6.21)

Let us consider the following quantity:

M∗
A′B′C′D′kAA′

1 pBB′

1 pCC′

2 kDD′

2

2

m2
e

2

m2
µ

(6.22)

Either using (6.19) and

kAA′

kA′
B = −m2

2
ǫAB (6.23)

or similarly noticing:

2

m2
k

kAA′

pBB′V∗
3 (k, p)A′B′C′

C = −V3(k, p)ABC′
C (6.24)

It is easy to derive the following equality1

M∗
A′B′C′D′kAA′

1 pBB′

1 pCC′

2 kDD′

2

2

m2
e

2

m2
µ

= −MABCD (6.25)

So that:

|M|2 = −1

4
MABCDMABCD (6.26)

In the above formula, we only need to compute three different expressions. Con-

sider four momenta k, p, q, l describing massive particles. We have:

1In Section 9.4.4 we derive the general formula for an arbitrarily high number of external
particles in order to prove unitarity.
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(k · p)ABǫCD







(k · p)ABǫCD = m2
km

2
p

(k · q)ACǫBD = −1
2
m2

k(p · q)
(q · l)CDǫAB = (k · p)(q · l)

(6.27)

where

k · p = kA
A′pA′

A = kµp
µ (6.28)

Using this and neglecting terms proportional to the electron mass, we obtain:

|M|2 =
8e4

q4

[

(k1 · p1)(k2 · p2) + (k1 · p2)(k2 · p1) +m2
µ(k1 · k2)

]

(6.29)

which is the well know squared amplitude for the unpolarised process.

6.4 Helicity structure: muon pair production

e−e+ → µ−µ+

It is important to understand what happens physically in scattering processes

and, even though unpolarised cross-sections are easier to compute, they often

do not provide any insight about what is really going on. One could instead

consider individual physical processes, that is, different helicity structures for a

given process. Once this has been done, one is still free to sum over all helicity

channels to recover an averaged cross-section.

Figure 6.2: e−e+ → µ−µ+
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We will consider the high-energy behaviour of the muon pair production from an

electron-positron annihilation (Fig.6.2), i.e. its massless limit. The latter makes

the computation much easier and at the same time is insightful toward exhibiting

the simplicity of our formalism in the helicity basis.

Using the results of (6.1), we only have to consider four amplitudes. We need

to connect (6.10) and (6.11) for, on one side, the electron/positron pair and, on

the other side, the muon/antimuon pair, with a photon propagator in between.

Moreover, from (6.9), we have:

M(+,−)C
C′

= ǫCDǫ
C′D′M∗(−,+)D′

D (6.30)

so that there are effectively only two distinct amplitudes. These are:

M(+,−; +,−) = Min
e (+,−)E

E′ −i
q2
ǫEF ǫE′F ′ Mout

µ (+,−)F
F ′

(6.31)

M(+,−; −,+) = Min
e (+,−)E

E′ −i
q2
ǫEF ǫE′F ′ Mout

µ (−,+)F
F ′

(6.32)

We can relate them to the amplitudes with opposite helicities as follows:

M(+,−; +,−) = −M∗(−,+; −,+) (6.33)

M(+,−; −,+) = −M∗(−,+; +,−) (6.34)

Let us then compute these amplitudes. We label the particles with their mo-

mentum ki and use the abbreviation kA
i kjA := (ij) and kiA′kA′

j := [ij]. We then

have:

M(+,−; −,+) =
4ie2

q2
(13)[24] (6.35)

M(−,+; +,−) =
4ie2

q2
[13](24) (6.36)

M(+,−; +,−) =
4ie2

q2
(14)[23] (6.37)

M(−,+; −,+) =
4ie2

q2
[14](23) (6.38)

where we used (ij)∗ = −[ij]. Finally, using

(ij)[ij] = (ki · kj) (6.39)
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we obtain:

|M(+,−; +,−)|2 =
16e4

q4
(k1 · k4)(k2 · k3) = |M(−,+; −,+)|2 (6.40)

|M(+,−; −,+)|2 =
16e4

q4
(k1 · k3)(k2 · k4) = |M(−,+; +,−)|2 (6.41)

And trivially:

|M|2 =
8e4

q4

[

(k1 · k3)(k2 · k4) + (k1 · k4)(k2 · k3)
]

(6.42)

We can qualitatively analyse the physics of the process. Consider the above

process in the centre-of-mass frame of the incoming particles and assume without

loss of generality that the particle flies along the positive direction of the z-axis

(the antiparticle flies along the negative direction). There are only two distinct

amplitudes, as for an incoming pair of particle and antiparticle with opposite

polarisations2, say +/- respectively, both particles will have spin up along the

z-axis, summing up to a spin 1 state. After they decay and their product creates

the other pair of particles, the latter will either have opposite helicities to the

original pair, or carry the same helicities as their predecessors. In any case they

could not have the same helicity, as it would correspond to a spin 0 state. Another

way to see this is to recall that the cubic vertex vanishes (in the massless limit) for

particles with identical helicities. Therefore, one can physically only distinguish

those two different states if one does not know about the initial state of the

incoming particles.

6.5 Compton scattering e−γ → e−γ and the quar-

tic vertex

We consider now Compton-scattering, a very well known process, but more specif-

ically in our case, the first tree-level process in which the new quartic vertex

comes into play. We label as before the particles by their momenta ki and their

spinor indices. The process is described by three diagrams (Fig.6.3): the s-

channel diagram with the momentum flowing in the internal propagator is given

2By polarisation, we mean helicity (information carried by the polarisation spinors), which
has to be distinguished from the spin (eigenvalue of the spin operator defined in some reference
frame). The helicity is the projection of the spin onto the direction of the momentum.
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by (k1+k2) = q = (k3+k4) and q2 = s; the u-channel with (k2−k3) = p = (k4−k1)

and p2 = u; and the new quartic vertex.

The three amputated amplitudes are given by:

MA′

1 AB
C′

CD = 2ie
(

−k4D
C′

ǫF C + qF
C′

ǫDC

) −iǫF E

s+m2
2ie

(

k2B
A′

ǫEA − qE
A′

ǫBA

)

= − 4e2i

s+m2

(

−ǫACk2B
A′

k4D
C′

+ ǫABqC
A′

k4D
C′

−ǫCDqA
C′

k2B
A′

+
1

2
q2ǫA′C′

ǫABǫCD

)

(6.43)

MA′

2 AB
C′

CD = 2ie
(

−k4D
A′

ǫF A + pF
A′

ǫDA

) −iǫF E

u+m2
2ie

(

k2B
C′

ǫEC − pE
C′

ǫBC

)

= − 4e2i

u+m2

(

+ǫACk2B
C′

k4D
A′ − ǫBCpA

C′

k4D
A′

−ǫADpC
A′

k2B
C′

+
1

2
p2ǫA′C′

ǫBCǫAD

)

(6.44)

MA′

3 AB
C′

CD = −2ie2ǫA′C′

ǫACǫDB = 2ie2ǫA′C′

ǫACǫBD (6.45)

Let us make a few comments. First of all, notice that in the propagators the

Levi-Civita symbol has to be contracted from the outgoing fermion onto the in-

coming fermion (this is the usual “climb up the fermions arrows” rule). If in the

Dirac formalism, this extra sign does not matter, it is simply because consistency

between all diagrams is sufficient to ensure the right sign. However, here, relative

signs matter as the channel amplitudes have interferences with the quartic ver-

tex, which does not have any propagator. Instead, when stating the four-valent

amplitude, one has to take into account that the spinor indices of the fermions

also have to be placed in the same order (from the outgoing state inwards).

Second, while the quartic vertex describes the “identity” amplitude, we see how

each of the eight terms entering the channel amplitudes describe all possible ways

of mixing spinor indices among the particles. Indeed, if one is to “scatter” the

spinor index of the incoming fermion with the incoming photon, one is considering

an s-channel process for which the indices A and B, on one side, C and D on

the other side, mix. Indices belonging to the same spinor representation mix

naturally with a Levi-Civita symbol, however, if one is to mix an unprimed index

with a primed index, one understands naturally the appearance of the momenta

PhD Thesis 93 Johnny Espin



Chapter 6. Tree-level Processes

in this formalism. Similary, if one wishes to mix, say A and D indices, one

is considering a u-channel subprocess. Finally, the extra factor of two in the

last term of each channel amplitude is understood as a symmetry factor of the

consequent subprocess.

Figure 6.3: The three tree-level diagrams entering the Compton scattering calcu-
lation.

Last but not least, crossing symmetry is already apparent at this level of the

computation. Indeed, under the exchange of the two photons indices3 (A and C)

as well as q and p, the two channel amplitudes are mapped into each other. This

symmetry will greatly shorten the computation of the amplitude squared since

as a consequence one only needs to compute half of the terms.

We now proceed with the computation. As before, the sum over all polarisations

is carried out and we have:

∑

pol.

→ 2

m2
ǫAEǫCF ǫA′E′ǫC′F ′kBB′

2 kDD′

4 (6.46)

The dual amplitudes are this time not equal to the original ones as the fermion

in the propagator is off-shell (recall that the sum over polarisations amounts

to contracting the complex amplitude with the Dirac operator in momentum

space). However, it is possible to regroup the amplitudes in the physical scattering

channels. Indeed we can simplify the calculation if we look more carefully at the

four-valent vertex. Recall:

MA′

3 AB
C′

CD = −2ie2ǫA′C′

ǫACǫDB = 2ie2ǫA′C′

ǫACǫBD (6.47)

3It is understood that by “photon index A”, what is meant is “the pair of photon indices
AA′”.
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Using the Shouten identity

ǫABǫCD = ǫACǫBD − ǫADǫBC (6.48)

We can rewrite the amplitude as:

MA′

3 AB
C′

CD = −4ie2ǫA′C′

(

−1

2

s+m2

s+m2
ǫABǫCD − 1

2

u+m2

u+m2
ǫADǫBC

)

(6.49)

Then, one can split this amplitude within the s− and u−channel amplitudes to

have:

MA′

s AB
C′

CD = − 4e2i

s+m2

(

−ǫACk2B
A′

k4D
C′

+ ǫABqC
A′

k4D
C′

−ǫCDqA
C′

k2B
A′ − 1

2
m2ǫA′C′

ǫABǫCD

) (6.50)

MA′

u AB
C′

CD = − 4e2i

u+m2

(

+ǫACk2B
C′

k4D
A′ − ǫBCpA

C′

k4D
A′

−ǫADpC
A′

k2B
C′ − 1

2
m2ǫA′C′

ǫBCǫAD

) (6.51)

M = Ms + Mu (6.52)

With this trick the dual amplitudes become equal to minus the bare amplitudes!

The four valent vertex comes to help us to relate the complex amplitudes to the

original ones through the Dirac equation4.

Let us now carry on with our computation. The spin averaged squared amplitude

will be given by:

|M|2 =
1

4

∑

ij

MA′

i AB
C′

CDM̃jA′
AB

C′
C

D = −1

4
M · M (6.53)

Thanks to crossing symmetry, we only need to compute two squared amplitudes:

|Ms|2, Ms · Mu (6.54)

The task of computing Compton scattering became at least as simple as in the

usual Dirac formalism, likely easier as one needs only to plug together the Feyn-

man rules and contract spinors. In computing these amplitudes, we will express

4See Section 9.4.4 and Appendix D.
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the momenta dot products in terms of the Mandelstam variables here defined:

s = (k1 + k2)
2 = 2(k1 · k2) −m2 = 2(k3 · k4) −m2 (6.55)

t = (k1 − k3)
2 = −2(k1 · k3) = −2(k2 · k4) − 2m2 (6.56)

u = (k2 − k3)
2 = −2(k2 · k3) −m2 = −2(k1 · k4) −m2 (6.57)

0 = s+ t+ u+ 2m2 (6.58)

We then have the following identities:

(k2 · q) =
s−m2

2
= (k4 · q) (6.59)

(k2 · p) =
u−m2

2
= (k4 · p) (6.60)

(k2 · k4) =
s+ u

2
(6.61)

(q · p) = −m2 (6.62)

And finally, we need:

Σµν ABΣαβ
AB =

1

2

(

ηµαηνβ − ηµβηνα − iǫµναβ
)

(6.63)

So that we have the following identity:

kAA′

pA
B′

pA′
BqBB′ = (k · p)(q · p) − 1

2
p2(k · q) (6.64)

We obtain:

|Ms|2 = −8e4

[

(s+ u)

(s+m2)
− (s−m2)2

(s+m2)2

]

(6.65)

|Mu|2 = −8e4

[

(s+ u)

(u+m2)
− (u−m2)2

(u+m2)2

]

= |Ms|2(s ↔ u) (6.66)

MsMu = −16e4 m2

(s+m2)(u+m2)

[

m2 − 1

2
(s+ u)

]

= MuMs (6.67)
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So that:

|M|2 = −2e4

[(

u+m2

s+m2
+
s+m2

u+m2

)

+ 4m2
(

1

s+m2
+

1

u+m2

)

−4m4
(

1

s+m2
+

1

u+m2

)2
] (6.68)

As we will see in Section 9.4.4, the four vertex can be excluded of any tree level

calculation if we define a set of rules to be followed. This is very similar to what

is done in Yang-Mills theory to reconstruct all tree-level diagrams from a basis of

three-valent vertices. Firstly, define the reduced channel amplitudes:

Msi
:= (si +m2)Msi

(6.69)

where m is the mass of the fermion in the channel. Then, the amputated ampli-

tude for a two-fermions-two-photons process with momenta ki is:

M(s1, s2, {ki}) =
Ms1(s1, {ki})

(s1 +m2)
+

Ms2(s2, {ki})

(s2 +m2)
+ V4

=
Ms1(s1 = −m2, {ki})

(s1 +m2)
+

Ms2(s2 = −m2, {ki})

(s2 +m2)

(6.70)

This fixes the rules for the cases in which the four-valent vertex appears as a

tree. In the following we will see how this rule also works for loops involving the

four-vertex; as long as the amplitudes describes a physical process.
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After having explored a few basic tree-level processes, it is important to check

that both formalisms (first- and second-order) are equivalent at loop level. Indeed,

QED has been experimentally shown to be the most accurate theory of Nature; it

would be a huge blow to the new formalism if it were not able to predict the same

results as its first-order counterpart. In this chapter we explore the simplest loop

processes, for which an analytical calculation is both tractable and pedagogical.

In order to check full consistency, higher loops calculations would be needed,

however this is not covered in this thesis and is left as a future possible line of

investigation. For further explanations about the Physics behind these processes,

we refer the reader to [37,39].

7.1 Using dimensional regularisation

We use dimensional regularisation, which is a natural choice for gauge theories,

to deal with the divergent one-loop integrals. However, one must be careful when

using soldering form identities in this scheme. Indeed, even though its algebraic

properties are retained, many identities only hold in four dimensions (see [29]

Appendix B.2). We shortly summarise here the main identities in D 6= 4. As we

mentioned, the algebraic equation:

θµ
AA′θν A′

B = −1

2
ηµνǫAB + Σµν

AB (7.1)

is still valid in dimensional regularisation. The trace identity is then

θµ
AA′θν AA′

= −ηµν , ǫABǫ
AB = 2 (7.2)
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where the internal spinor space is two-dimensional even in our regularisation

scheme. Similarly, another identity that follows from the algebra is:

θµ
AA′θA′

µ B = −D

2
ǫAB (7.3)

Now, any identity that involves the Levi-Civita tensor cannot be valid in D 6= 4

dimensions, for example:

Σµν
ABΣαβ AB =

1

2

(

ηµαηνβ − ηµβηνα − iǫµναβ
)

(7.4)

does not hold any longer. However, for any symmetric tensor T(µα), the identity:

Σµν
ABΣαβ ABT(µα) =

1

2

(

ηµαηνβ − ηµβηνα
)

T(µα) (7.5)

remains valid. After having set the rules for using dimensional regularisation in

our formalism, we can finally start calculating some simple amplitudes.

7.2 More on the quartic vertex: charge renor-

malisation

We will, first of all, compute the amputated two-point photon amplitude at one

loop in second-order QED. We begin our calculation by considering the two dia-

grams that contribute to the one-loop amplitude, (Fig.7.1). We then have, using

the Feynman rules listed in Section 5.4:

iΠ(1)(k)A′

A
B′

B =

(−1)4e2
∫ d4p

(2π)4

[

pA′

B(p+ k)B′

A + (p+ k)A′

Bp
B′

A − 1
2

((p+ k)2 + p2) ǫA′B′

ǫAB

]

[p2 +m2] [(p+ k)2 +m2]

+ (−1)4e2
∫ d4p

(2π)4

ǫA′B′

ǫAB

[p2 +m2]

(7.6)
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Figure 7.1: Photon two-point function diagrams at one loop

In dimensional regularisation, we have D = 4 − ε. This allows us to freely shift

momenta and to rewrite the second integral as:

∫ dDp

(2π)D

1

[p2 +m2]
=
∫ dDp

(2π)D

(

1/2

[p2 +m2]
+

1/2

[(p+ k)2 +m2]

)

=
∫ dDp

(2π)D

[
1
2

((p+ k)2 + p2) +m2
]

[p2 +m2] [(p+ k)2 +m2]

(7.7)

Then:

iΠ(1)(k)A′

A
B′

B

= (−1)4e2
∫ dDp

(2π)D

[

pA′

B(p+ k)B′

A + (p+ k)A′

Bp
B′

A +m2ǫA′B′

ǫAB

]

[p2 +m2] [(p+ k)2 +m2]

(7.8)

We expect the amplitude to be proportional to the transverse projector so as to

satisfy the Ward-Takahashi identity. Therefore, it should depend on kA′

A and

kB′

B with this index structure. This is not the case in our integrand, we thus use

the following identity:

θ(µ A′

Bθ
ν) B′

A = θ(µ A′

Aθ
ν) B′

B +
1

2
ηµνǫA′B′

ǫAB (7.9)

in order to rewrite the numerator. Once this has been done, Feynman parameters

are introduced to rewrite this integral (keeping terms involving even powers of

the loop momentum ℓ only) and we Wick rotate the time component of our loop
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momentum (ℓ0 = iℓ0
E). We then have for iΠ(1)A′

A
B′

B:

(−1)4e2i
∫ 1

0
dx
∫ dDℓE

(2π)D

1
[

ℓE
2 + ∆

]2

[

2ℓE
A′

AℓE
B′

B + ℓE
2ǫA′B′

ǫAB

−x(1 − x)k2ǫA′B′

ǫAB − 2x(1 − x)kA′

Ak
B′

B +m2ǫA′B′

ǫAB

]

=(−1)4e2
∫ 1

0
dx
∫ dDℓE

(2π)D

1
[

ℓE
2 + ∆

]2

[(

− 2

D
+ 1

)

ℓE
2ǫA′B′

ǫAB

−x(1 − x)k2ǫA′B′

ǫAB − 2x(1 − x)kA′

Ak
B′

B +m2ǫA′B′

ǫAB

]

(7.10)

with

ℓ = p+ xk, ∆ = x(1 − x)k2 +m2 (7.11)

and we replaced

ℓE
A′

AℓE
B′

B → − 1

D
ℓE

2ǫA′B′

ǫAB (7.12)

Finally, using:

(

− 2

D
+ 1

) ∫ dDℓE

(2π)D

ℓ2
E

(ℓ2
E + ∆)

2 =
1

(4π)D/2
Γ(2 −D/2)

(
1

∆

)2− D
2

(−∆) (7.13)

∫ dDℓE

(2π)D

1

(ℓ2
E + ∆)

2 =
1

(4π)D/2
Γ(2 −D/2)

(
1

∆

)2− D
2

(7.14)

We obtain:

iΠ(1)A′

A
B′

B = 4e2i
Γ(2 −D/2)

(4π)D/2

(

k2ǫA′B′

ǫAB + kA′

Ak
B′

B

) ∫ 1

0
dx

2x(1 − x)

∆2− D
2

(7.15)

The two point function is usually written as:

iΠ(1)A′

A
B′

B = −
(

k2ǫA′B′

ǫAB + kA′

Ak
B′

B

)

· iΠ(1)(k2) (7.16)

We have here :

Π(1)(k2) = −8e2 Γ(2 −D/2)

(4π)D/2

∫ 1

0
dx
x(1 − x)

∆2− D
2

(7.17)
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We shall now use our regularisation and take the D → 4 limit:

Π(1)(k2) −→
D→4 − 2α

π

∫ 1

0
dx x(1 − x)

(

2

ε
− γ − log

∆

4π
+ O(ε)

)

(7.18)

Let us now shortly recall that the quantity we have just computed describes the

renormalisation of the electromagnetic coupling constant α. Indeed, because of

the Ward-Takahashi identities, we have that the photon two-point function is

given by:

− iǫA′B′

ǫAB

k2(1 − Π(k2))
(7.19)

Therefore, as long as Π(k2) is regular for on-shell momenta, the propagator always

has a simple pole at k2 = 0 and the photon remains massless (this is for example

not the case in 2D massless QED where the photon acquires a mass at the one-loop

level1). The residue of the pole is related to the wave-function renormalisation:

1

1 − Π(0)
= Z3 (7.20)

Referring to the quantity that multiplies the vector-current interaction in the

Lagrangian as the bare charge e0, after renormalisation we have:

e =
√

Z3e0 (7.21)

with e the physical renormalised charge. Notice that if one looks at the countert-

erms in the Lagrangian (computed as usual, see e.g. [39]), one has

Z1 =
e0

e
Z2

√

Z3, δi = Zi − 1 (7.22)

with δ1 the counterterm corresponding to the three-valent vertex and Z2 the

1To see this, consider (7.15) at m2 = 0 and D = 2. Including a factor of 1/2 as a dimensional
correction for the loop, the two-point function has the structure of a transverse propagator for
a massive photon with mass e2/π. Notice however that the isomorphism between the Lorentz
group in two dimensions and SU(2) spinors is no longer valid. Therefore, the limit should be
understood in the following way: compute the quantity in 4D, use the isomorphism to go back
to spacetime indices, take the limit D → 2 and multiply by one half for each fermion loop as a
dimensional correction.
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fermion wavefunction renormalisation. Equation (7.21) is a first indication that

Z1 = Z2 (7.23)

Furthermore, in our case, we introduce a fourth counterterm for the four-valent

vertex such that:

δ4 = Z4 − 1 =
(
e0

e

)2

Z3Z2 − 1 =
Z2

1

Z2

− 1 (7.24)

Then, we have:

Z1 = Z2 = Z4 (7.25)

This follows from gauge invariance (or equivalently from the Ward identities).

Coming back to the charge renormalisation, when one computes a scattering

process at non-zero k2 at one-loop, one deals with the quantity:

−iǫA′B′

ǫAB

k2

e2
0

1 − Π(k2)
= −iǫA′B′

ǫAB

k2
e2(1 + Π(k2) − Π(0))

= −iǫA′B′

ǫAB

k2

e2

1 − (Π(k2) − Π(0))

(7.26)

Then, although the first order shift in the electric charge is divergent, the effective

electromagnetic coupling that appears in (7.26) is well defined:

αeff (k2) =
α

1 − (Π(k2) − Π(0))
(7.27)

with, at one-loop

Π(k2) − Π(0) = −2α

π

∫ 1

0
dx x(1 − x) log

(

m2

m2 + x(1 − x)k2

)

(7.28)

7.3 Charge renormalisation using the Passarino-

Veltman reduction

The Passarino-Veltman (PV) reduction is a useful tool to simplify the calcula-

tion of one-loop integrals. Its principle relies on the fact that one can expand

any kind of one-loop tensor integral in a basis of scalar integrals (see [40] for a
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comprehensive review). We give here a short overview of the technique in both

first- and second-order formalisms. Although the method is the same, we will see

that it is easier to obtain the decomposition on basis integrals in the latter.

7.3.1 Within the Dirac formalism

Let us first look at the workings of the reduction in the usual case for the specific

example that we have treated above. We write the expression for the one-loop

polarisation tensor given by usual Dirac first-order Feynman rules:

iΠ(1) µν = (−1)(ie)2(−i)2
∫ dDℓ

(2π)D
Tr (Sℓ+kγ

µSℓγ
ν) , Sp =

−/p+m

p2 +m2
(7.29)

with /p := γµpµ and the algebra of Dirac gamma matrices is defined in (8.3.1).

Using the definition of the one- and two-point scalar integrals:

A0(i) =
1

iπD/2

∫

dDℓ
1

Di

, Di = (ℓ+ ki)
2 +m2 (7.30)

B0;B
µ;Bµν =

1

iπD/2

∫

dDℓ
1; ℓµ; ℓµℓν

D0D1

, k0 = 0, k1 = k (7.31)

we can rewrite it as (we drop from now on the superscript (1) as we are exclusively

dealing with the one-loop quantity):

iΠµν = − ie2

(4π)D/2



Tr
(

γαγµγβγν
)

(Bαβ + kαBβ) +m2Tr (γµγν)B0



 (7.32)

Our aim is to scalarise the integrals. In order to do so, we give a reminder of the

Passarino-Veltman reduction.

We make explicit the Passarino-Veltman reduction algorithm for the case of two-

point tensor integrals. By Lorentz invariance the integrals can be rewritten as:

Bµ = kµB1 (7.33)

Bµν = gµνB00 + kµkνB11 (7.34)

where B1, B00, B11 are form factors. Dotting the first equation with the external
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momentum and using2:

2(k · ℓ) = D1 −D0 − k2, A0(1) = A0(0) (7.35)

for m0 = m1 = m. We have:

B1 = −B0

2
(7.36)

Let us now define the transverse projector:

P (T )
µν := gµν − kµkν

k2
(7.37)

We then have:

1

D − 1
P (T )

µν B
µν = B00 (7.38)

− 1

D − 1
P (T )

µν B
µν +

kµkν

k2
Bµν = k2B11 (7.39)

Using loop-momentum shifts and rewriting numerators as inverse propagators,

we obtain:

(D − 1)B00 =
A0(1)

2
−m2B0 − k2

4
B0 (7.40)

k2B11 = −B00 +
k2

4
B0 +

A0(1)

2
(7.41)

Let us now go back to our calculation. The photon self-energy can be written as:

iΠµν = P (T )
µν ΠT (k) +

kµkν

k2
ΠL(k) (7.42)

where P (T )
µν is the projector defined in (7.37) and ΠT/L are form factors. We then

have:

ikµkνΠµν = k2ΠL (7.43)

igµνΠµν = (D − 1)ΠT + ΠL (7.44)

2We may use a shift in the integral to prove the second equality. The latter is allowed since
the integrals are convergent in dimensional regularisation.
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Using the gamma matrices algebra and the decomposition of the tensor integrals

in scalar form factors, it is straightforward, however cumbersome, to show that

ΠL = 0 and that:

(D − 1)ΠT =
4ie2

(4π)D/2



(D − 2)A0(1) + 2m2B0 − k2

2
(D − 2)B0



 (7.45)

So that:

iΠµν = iP (T )
µν

4e2

(4π)D/2

1

D − 1



(D − 2)A0(1) + 2m2B0 − k2

2
(D − 2)B0



 (7.46)

7.3.2 Within the second-order formalism

In this formalism, things work in a similar fashion. We want to scalarise the

following integral:

iΠ(k)A′B′

AB =
∫ dDℓ

(2π)D

(−1)4e2

D0Dk

[

ℓA′

B(ℓ+ k)B′

A + (ℓ+ k)A′

Bℓ
B′

A +m2ǫA′B′

ǫAB

]

(7.47)

where as before

Dk = (ℓ+ k)2 +m2 (7.48)

Again, the amplitude should be proportional to the transverse projector so that

to satisfy the Ward-Takahashi identity. Using the same identity as before in order

to shuffle the indices of the soldering forms, we can rewrite the numerator so as

to match the external (physical) index structure:

iΠ(k)A′B′

AB = (−1)
4ie2

(4π)D/2

∫ dDℓ

iπD/2

1

D0Dk

[

2ℓA′

Aℓ
B′

B + ℓA′

Ak
B′

B + ℓB′

Bk
A′

A

+(ℓ · (ℓ+ k) +m2)ǫA′B′

ǫAB

]

= (−1)
4ie2

(4π)D/2

[

2BA′

A
B′

B +BA′

A kB′

B +BB′

B kA′

A

+(A0(1) + k2B1)ǫ
A′B′

ǫAB

]

(7.49)
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where BA′

A
B′

B and BA′

A are given as before by their form-factor decomposition3.

Compared to the Dirac-formalism’s expression, the latter is much simpler as

there are no gamma matrices to worry about. The scalarisation in itself is the

same, but equations (7.43,7.44) are calculated almost straightforwardly using as

before ǫA′B′

ǫABǫA′B′ǫAB = D.

7.4 Fermion self-energy

We compute now the fermion self energy at one-loop order (Fig.7.2). We are

mainly interested in extracting the counterterms corresponding to the mass op-

erator and the fermion wave function. We have:

−iΣ(p2) = −iΣ(1)(p2) − i(p2 +m2)δ2 − iδm (7.50)

With the renormalisation conditions:

Σ(p2 +m2 = 0) = 0,
∂Σ

∂p2

∣
∣
∣
∣
∣
p2+m2=0

= 0 (7.51)

Leading to:

δm = −Σ(1)(m2), δ2 = − ∂Σ(1)

∂p2

∣
∣
∣
∣
∣
p2+m2=0

(7.52)

Figure 7.2: Fermion self-energy diagrams at one loop

Let us then compute these quantities. The tadpole diagram vanishes in dimen-

sional regularisation due to the photon being massless. We use a non-zero photon

3Recall that gµν → −ǫA′B′

ǫAB
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mass to regularise the infrared divergence of the remaining diagram, we then have:

−iΣ(1)(p2) = lim
mγ→0

2e2ǫAB

∫ dDq

(2π)D

(m2 − p2) − q2

(q2 +m2
γ)((q + p)2 +m2)

= lim
mγ→0

2e2iǫAB

[

(m2 − p2)
∫ 1

0
dx
∫ dDℓE

(2π)D

1

(ℓ2
E + ∆)2

−
∫ dDℓE

(2π)D

1

(ℓ2
E +m2)

]

(7.53)

with

∆ = p2x(1 − x) + (1 − x)m2 + xm2
γ (7.54)

and we used

∫ dDq

(2π)D

(q + p)2

q2((q + p)2 +m2)
=
∫ dDq

(2π)D

−m2

q2((q + p)2 +m2)
(7.55)

Now, the second integral is straightforwardly evaluated and yields:

iǫAB
α

2π
m2

(

2

ǫ
− γ + log 4π − log

m2

µ2
+ 1

)

(7.56)

where µ is a UV cutoff scale. The first integral is less trivial because of the

integration over the Feynman parameter x:

iǫAB
α

2π

(
2

ǫ
− γ + log 4π

)

(m2 − p2)
(

1 − ǫ

2

∫ 1

0
dx log ∆

)

(7.57)

As we previously said, we are interested in the counterterms. The first renormal-

isation condition is then given by the value of the self-energy on-shell. In that

case we have:

∫ 1

0
dx log ∆(p2 +m2 = 0) = −2 + log

m2

µ2
(7.58)

So that:

δm = − α

2π
3m2

(

2

ǫ
− γ + log 4π − log

m2

µ2
+ 5/3

)

(7.59)

where we removed the spinor metric ǫBA from the definition. The remaining
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counterterm is given by the derivative of the self-energy set on-shell:

−i ∂Σ(1)

∂p2

∣
∣
∣
∣
∣
p2+m2=0

= iǫAB
α

2π

(

2

ǫ
− γ + log 4π − log

m2

µ2
− log

m2
γ

m2
+ 1

)

(7.60)

So that:

δ2 = − α

2π

(

2

ǫ
− γ + log 4π − log

m2

µ2
− log

m2
γ

m2
+ 1

)

(7.61)

These are the usual counterterms obtained in the first-order formalism. We will

not cover the analysis of their UV and IR divergences in this thesis, which is a

typical exercise to be found in any QFT textbook.

7.5 Three-valent vertex renormalisation

We will now give the UV divergent part of the one-loop correction to the three

valent vertex.

Figure 7.3: Three-valent vertex renormalisation at one loop

There are three diagrams (Fig.7.3), whose amplitudes are given (resp.) by:

8e3
∫ d4q

(2π)4
DF (k1 − q)DF (k2 + q)Dγ(q)





(

k1BN ′k2
N ′

C

)

(k1 − k2 − 2q)A′

A

+ (k2 + q)A′

Bk2C
N ′

(k1 − q)N ′A + (k1 − q)A′

Ck1B
N ′

(k2 + q)N ′A

+
1

2
(k1 − q)2

(

k2
A′

CǫBA − (k2 + q)A′

AǫBC

)

+
1

2
(k2 + q)2

(

k1
A′

BǫCA + (k1 − q)A′

AǫBC

)





(7.62)
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4e3
∫ d4q

(2π)4
DF (k1 − q)Dγ(q)



k1
A′

BǫCA − (k1 − q)A′

CǫBA



 (7.63)

4e3
∫ d4q

(2π)4
DF (k2 + q)Dγ(q)



k2
A′

CǫBA − (k2 + q)A′

BǫCA



 (7.64)

where DF (p) = 1/(p2 + m2) and Dγ(p) = 1/p2. We now only keep the UV

divergent pieces as we are concerned by the (in dimensional regularisation) 1/ǫ

part of the counterterm needed to renormalise the 3-vertex:

V(1)
3 (k1, k2)ABC

A′

=8e3
∫ d4q

(2π)4
DF (k1 − q)DF (k2 + q)Dγ(q)

×


− qA′

BqN ′Ak2
N ′

C − qA′

CqN ′Ak1
N ′

B

+
1

2
(k1 − q)2(k2 − q)A′

CǫBA +
1

2
(k2 + q)2(k1 + q)A′

BǫCA





(7.65)

where V(1)
3 (k1, k2) denotes the one loop contribution to the 3-vertex, and we have

gathered all the terms under the same integral. We now use Feynman parameters,

so that ℓ = q − xk1 + yk2, ∆ = xyq2 + (1 − z)2m2 and ℓA′

A ℓ
B′

B → − ǫA′B′
ǫAB

D
ℓ2 to

obtain (keeping only UV divergent pieces):

V(1)
3 (k1, k2)ABC

A′

= 16e3
∫

DF
∫ dDℓ

(2π)D

ℓ2

(ℓ2 + ∆)3

×


k1
A′

BǫCA

(
1 + x

2
− 1 − x

D

)

+ k2
A′

CǫBA

(
1 + y

2
− 1 − y

D

)

k1
A′

CǫBA

(
1 − x

D
− x

2

)

+ k2
A′

BǫCA

(
1 − y

D
− y

2

)




(7.66)

where
∫

DF =
∫

dxdydz δ(x+ y + z − 1). Using

∫ dDℓ

(2π)D

ℓ2

(ℓ2 + ∆)3
=

i

(4π)2

(
2

ǫ

)

+ O(1), as ǫ → 0 (7.67)
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We are left with the straightforward Feynman parameters integrations:

∫

DF
(

1 + x

2
− 1 − x

4

)

=
1

4
(7.68)

∫

DF
(

1 − x

4
− x

2

)

= 0 (7.69)

So that we obtain:

V(1)
3 (k1, k2)ABC

A′

= 2ei
(

k1
A′

BǫCA + k2
A′

C ǫBA

)

×
(
α

2π

)(
2

ǫ

)

= V3(k1, k2)ABC
A′ × (1 loop)

(7.70)

Finally, the renormalised vertex is:

VR
3 (k1, k2) = V3(k1, k2) (1 + (1 loop) + δ1) (7.71)

where δ1 is the vertex counterterm. Using δ1 = − (1 loop)|on−shell, we obtain:

δ1 = −
(
α

2π

)(
2

ǫ

)

+ O(1) ∼ δ2 (7.72)

In order to check the equality of the counterterms, we would have had to calculate

accurately the finite parts contribution of the integrals. We refer the reader

to [39].

We now move on to calculations and properties in/of the second-order formalism

that are not straightforwardly equivalent to its first-order counterpart.
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Chapter 8

Anomalies

8.1 Introduction

We will see how the anomaly can be calculated in pertubation theory using Feyn-

man diagrams, and then how its non-perturbative nature can be demonstrated

using a path-integral derivation. In both cases, we review first how the anomaly

is computed in the usual Dirac formalism and thereafter study its construction

in a theory with second-order fermions.

8.2 Fermion number anomaly in perturbation

theory

8.2.1 First-order perturbative calculation

The anomaly can be computed in perturbation theory by means of Feynman

diagrams. Indeed, one shows that the divergence of the current has a non-zero

matrix element to create two photons:

〈k1, k2|jA′

A (p)|0〉 = ǫ∗ B
B′ (k1)ǫ

∗ C
C′ (k2)MABC

A′B′C′(k1, k2)

〈k1, k2|p · j(p)|0〉 6= 0 (8.1)

We briefly translate the two-component anomaly calculation of [29] into our no-
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tation. The Feynman rules are as follows:

〈0|λ̄A′(p)λB(−p)|0〉 =
−i

√
2pA′B

p2 +m2

V3(q, p, k) = i
√

2e ǫA′B′

δA
C (8.2)

Taking into account the two orientations for the triangle diagram (Fig. 8.1), and

denoting the incoming photons by spinor indices (AA′), (BB′), (CC ′) and their

massless momenta k1, k2, k3:

iM(1)(k2, k3) = 8e3
∫ d4q

(2π)4



qB′

C(q − k2)
A′

B(q + k3)
C′

A

− qC′

B(q − k2)
B′

A(q + k3)
A′

C



× 1

(q − k2)2q2(q + k3)2

(8.3)

From here, one can show that the amplitude is shift dependent (q → q + a) and

that the divergence of the amplitude with respect to the currents is given by:

ik1 · iM(1)(k2, k3; c) =
ie3

8π2
(2c)ǫµναβk2µk3β (8.4)

ik2 · iM(1)(k2, k3; c) = − ie3

8π2
(1 + c)ǫµναβk2νk3β (8.5)

ik3 · iM(1)(k2, k3; c) = − ie3

8π2
(1 + c)ǫµναβk2αk3β (8.6)

where we have used aβ = c(k2 − k3)
β.

+

Figure 8.1: First-order Feynman diagrams for the fermion number anomaly in
Weyl theory.
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8.2.2 Second-order Lagrangian

We will now carry out the calculation for a Weyl fermion in a second-order for-

malism. The Lagrangian in this case is given by:

L = −DA′
AλAD

A′BλB − m2

2
λAλA. (8.7)

This should be supplemented with the reality conditions:

mλ† A′

= −i
√

2DA′AλA (8.8)

The field equations that result from the above Lagrangian are

2DA′
ADA′BλB +m2λA = 0 (8.9)

In what follows we will consider only Weyl theory, which amounts to setting the

mass to zero in the above equations. We see that the Lagrangian is not invariant

under the usual U(1) transformations

δλ = +ieαλ (8.10)

However, the field equations and the reality condition are. Furthermore, the

current given by:

jA
A′

= ie
(

λAD
A′BλB −DA′BλBλA

)

= 2ieλAD
A′BλB (8.11)

is conserved on-shell:

DA′
AjA

A′

= 0 (8.12)

In order to see if the transformations are a symmetry of the theory, we need

to check the above equation in the quantum theory. We will therefore compute

pertubatively the anomaly corresponding to U(1) transformations. As we have

seen, the current conservation equation is anomalous in the presence of only one

Weyl fermion. However, the anomaly should cancel out if several Weyl fermions

are present and their charges sum up to zero.
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8.2.3 Perturbative calculation in the second-order formal-

ism

In order to proceed, we need Feynman rules to compute the diagrams (5.3) that

we recall here (all incoming, and where the order of the fields in the vertices is

γff and γγff):

〈0|λA(p)λB(−p)|0〉 =
−i

p2 +m2
ǫAB (8.13)

V3(q, p, k) = 2ie(pB
A′

ǫCA − kC
A′

ǫBA) (8.14)

V4(q1, q2, p, k) = 2ie2ǫA′B′

ǫABǫCD (8.15)

With these rules, we give the amplitude for the process where we denote the

incoming photons by spinor indices (AA′), (BB′), (CC ′) and they are labelled

by their massless momenta k1, k2, k3. We split the amplitude into different

contributions:

iM(k2, k3; s) = 8e3
∫ d4q

(2π)4




I + J

D(−k2)D(k3)D(0)
+

A
D(−k2)D(k3)

+
B

D(−k2)D(0)
+

C
D(0)D(k3)





(8.16)

+

++

Figure 8.2: Second-order Feynman diagrams for the fermion number anomaly in
Weyl theory. There is only one triangle diagram, however, the quartic vertex now
also contributes.

where D(k) = (qs +k)2 and we allowed the amplitude to depend on a shifted loop
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momentum qs := q+s, and where I +J are contributions from the diagram made

of cubic vertices only and A, B, C are contributions from the diagrams with a

quartic vertex (Fig.8.2). For sake of clarity, we omitted the external indices on all

the integrands and on the full amplitude MA
A′

B
B′

C
C′(k2, k3; s) ≡ M(k2, k3; s).

Let us now make explicit the different terms. First of all:

I = qB′

s C(qs − k2)
A′

B(qs + k3)
C′

A − qC′

s B(qs − k2)
B′

A(qs + k3)
A′

C (8.17)

They correspond to iM(1)(k2, k3) in (8.3). In our case, the triangle diagram yields

an extra contribution:

J =
1

2
q2

sǫ
B′C′

(

ǫAB(qs + k3)
A′

C + ǫAC(qs − k2)
A′

B

)

+
1

2
(qs + k3)

2ǫA′C′
(

ǫABq
B′

s C + ǫCB(qs − k2)
B′

A

)

+
1

2
(qs − k2)

2ǫA′B′
(

−ǫACq
C′

s B − ǫBC(qs + k3)
C′

A

)

(8.18)

These terms arise from the contractions of momenta by propagators as it was the

case when we computed the photon two-point function. They are expected to

cancel out with terms arising from the quartic vertex, let us then look at these:

A =
1

4
ǫB′C′

ǫBC(k2 + k3)
A′

A (8.19)

B = −1

4
ǫA′C′

ǫACk2
B′

B (8.20)

C = −1

4
ǫA′B′

ǫABk3
C′

C (8.21)

We can combine these four terms in the following way: in the J term, one can

cancel one propagator and add to A, B or C the correct term in terms of scalar

propagators remaining uncancelled. We have:

Ã =
1

2
ǫB′C′

(
1

2
ǫBC(k2 + k3)

A′

A + ǫAB(qs + k3)
A′

C + ǫAC(qs − k2)
A′

B

)

(8.22)

B̃ =
1

2
ǫA′C′

(

−1

2
ǫACk2

B′

B + ǫABq
B′

s C + ǫCB(qs − k2)
B′

A

)

(8.23)

C̃ =
1

2
ǫA′B′

(

−1

2
ǫABk3

C′

C − ǫACq
C′

s B − ǫBC(qs + k3)
C′

A

)

(8.24)

To summarise what we have done so far, the amplitude can be rewritten as:

iM(k2, k3; s) = iM(1)(k2, k3; s) + (Bubbles) (8.25)
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where the bubbles are given by Ã, B̃ or C̃. We want to show that the shift

dependence of the integral allows us to reproduce the same result as in the first

order case. We therefore compute the overall shift dependence of the amplitude

(and by extension of the bubbles):

iδsM ≡ iM(k2, k3; s) − iM(k2, k3) (8.26)

Then, we have:

iδsM = 8e3isD
D′ lim

q→∞

∫ dΩ4

(2π)4
qD′

D q2I(q) (8.27)

where q has been Wick rotated and I(q) is the whole integrand in (8.16). The

only contribution comes from the order q3 part of the triangle diagrams, and from

the order q in the bubbles. Hence:

iδsM = 4e3isD
D′ lim

q→∞

∫ dΩ4

(2π)4

qD′

D

q2



ǫB′C′
(

ǫABq
A′

C + ǫACq
A′

B

)

+ ǫA′C′
(

ǫABq
B′

C + ǫCBq
B′

A

)

+ ǫA′B′
(

−ǫACq
C′

B − ǫBCq
C′

A

)

+ 2
(

qB′

C qA′

B q
C′

A − qC′

B qB′

A qA′

C

)





(8.28)

Using the usual replacements:

qA′

A q
B′

B → −q2

4
ǫA′B′

ǫAB (8.29)

qA′

A q
B′

B qC′

C qD′

D → q4

24

(

ǫA′B′

ǫABǫ
C′D′

ǫCD + ǫA′C′

ǫACǫ
B′D′

ǫBD + ǫA′D′

ǫADǫ
B′C′

ǫBC

)

(8.30)

we obtain

iδsM =
ie3

3π2
sD

D′



ǫD′A′

ǫB′C′

ǫA(BǫC)D − ǫD′B′

ǫA′C′

ǫD(AǫC)B + ǫD′C′

ǫA′B′

ǫD(AǫB)C





(8.31)

=
ie3

3π2
sD

D′



− ΣD′ A′

D A · ΣB′ C′

B C + ΣD′ B′

D B · ΣA′ C′

A C − ΣD′ C′

D C · ΣA′ B′

A B





(8.32)
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where

ΣD′ A′

D A · ΣB′ C′

B C ≡
(

ΣEF
)D′A′

DA
(ΣEF )B′C′

BC (8.33)

and we have used the expression for the self-dual two-forms in spinorial notation:

(

ΣA′B′

AB

)EF ≡ 2ǫA′B′

δE
(Aδ

F
B) (8.34)

We can now replace the pairs of spinor indices by their Minkowski correspondence:

iδsM =
ie3

3π2
sβ



− Σβµ · Σνα + Σβν · Σµα − Σβα · Σµν



 (8.35)

=
e3

2π2
ǫµναβsβ (8.36)

where we used1

Σµν · Σαβ =
1

2

(

ηµαηνβ − ηµβηνα − iǫµναβ
)

(8.37)

The dependence of the shift is on the momenta k2, k3. We consider a symmetric

interchange of momenta and indices. We therefore write sµ = c(k2 −k3)µ, so that:

iδsM = c
e3

2π2
ǫµναβ(k2 − k3)β (8.38)

Because we already know how the first-order amplitude depends on the shift

we can extract the shift dependence of the bubbles (it can also be read off the

calculation as an intermediate step):

iδs∆ = iδsM − iδsM(1) =
e3

2π2
ǫµναβsβ − e3

8π2
ǫµναβsβ =

3e3

8π2
ǫµναβsβ (8.39)

where we denoted by ∆ the contribution from the bubbles. Now, in order to

conclude, we notice that one can explicitly compute the value of ∆(s = 0) (see

1Using the self-dual properties of the Σs, it is also possible to show that the quantity in
square braquets (written as in (8.31)) is equal to 3

2i
ǫµναβ .
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Appendix D.3 and E):

i∆(0) =
ie3

16π2





(

ηµνηαβ − ηµβηνα − 2iǫµναβ
)

k3β

+
(

ηµαηνβ − ηµβηνα + 2iǫµναβ
)

k2β





(8.40)

The contractions with the metric will vanish on-shell, we can therefore write:

i∆(0) = − e3

8π2
ǫµναβ(k2 − k3)β (8.41)

where the equality is valid on-shell. We can now finally write the expression for

the anomaly in the second-order formalism. Since the expressions for the anomaly

are given in the first-order case by Eqs.(8.4-8.6), we fix the shift dependence of

these to be c1(k2 − k3) and write:

iM(c2) = iM(1)(c2) + i∆(c2)

= iM(1)(c1) + iδ21M(1) + i∆(0) + iδc2∆ (8.42)

where iδ21M(1) is given by e3

8π2 ǫ
µναβ(k2−k3)β(c2−c1). Therefore, the second-order

amplitude at shift c2 will be equal to the first-order amplitude at shift c1 when

0 = iδ21M(1) + i∆(0) + iδc2∆

=
e3

8π2
ǫµναβ(k2 − k3)β

[

4c2 − c1 − 1
]

(8.43)

In the end, the anomalies are equal in both formalisms, when the shifts are related

by:

4c2 = c1 + 1 (8.44)

This means that there is always a shift c2 so that the anomaly is given by Eqs.(8.4-

8.6). In the appendix, we compute explicitly the anomaly in the second-order
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formalism. There we obtain:

ik1 · iM(k2, k3; c2) = − ie3

4π2
(1 − 4c2)ǫ

µναβk2µk3β (8.45)

ik2 · iM(k2, k3; c2) = − ie3

4π2
(2c2)ǫ

µναβk2νk3β (8.46)

ik3 · iM(k2, k3; c2) = − ie3

4π2
(2c2)ǫ

µναβk2αk3β (8.47)

One readily sees that using (8.44), one obtains exactly Eqs.(8.4-8.6), hence prov-

ing the result consistent.

8.2.4 Generalisation to N Weyl fermions

The result generalises easily to the case in which we are dealing with N Weyl

spinors with charges eQi. Choosing c2 = 1/6 (symmetric in all channels), the

anomaly is given by:

ik1 · iM(k2, k3; 1/6) = −Tr(Q3
i )
ie3

12π2
ǫµναβk2µk3β (8.48)

So that the theory is anomaly-free if, for example, we are dealing with a Dirac

fermion for which there are two Weyl spinors of opposite charge. The condition

for an anomaly-free theory reads:

Tr(Q3
i ) = 0 (8.49)

It also generalises to the case of the axial anomaly in Electrodynamics. Indeed,

the axial current arises from what can be seen as two equally charged Weyl

fermions, whereas the vector current is constructed out of two oppositely charged

spinors:

ja
A′

A = −2iλAD
A′BλB − 2iχAD

A′BχB, jv
A′

A = 2ieλAD
A′BλB − 2ieχAD

A′BχB

(8.50)

So that defining:

QA =




−1 0

0 −1



 QV =




1 0

0 −1



 (8.51)

The anomaly of the axial current (where the vector currents are gauge and there-
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fore c2 = 0 above) is given by2:

ikA · iM(k2, k3; 0) = Tr(QAQ
2
V )
ie2

4π2
ǫµναβk2µk3β = − ie2

2π2
ǫµναβk2µk3β (8.52)

Which leads to

〈k2, k3|∂µj
µ
a |0〉 = − e2

(4π)2
ǫµναβ〈k2, k3|FµνFαβ|0〉 (8.53)

where there is a factor of 1/2 for each antisymmetrisation and an extra factor

of 1/2 for the 2 different contractions of the operator on the final bosonic state.

This is the same result as we obtained above in the case of Dirac QED.

8.3 Path-integral methods

We now follow a non-perturbative approach to the calculation of the anomaly. In

order to do so, we first look at the chiral anomaly in Dirac theory and then we will

see how the fermion number anomaly can also be constructed similarly. The first

three subsections are a review of the calculation that is usually carried out using

non-perturbative methods. We then repeat the calculation using two-component

spinors in both first- and second-order formalisms.

8.3.1 First-order Dirac Lagrangian and chiral symmetry

We work with the Dirac Lagrangian coupled to Electrodynamics in 3 + 1 dimen-

sions with metric ηµν = (−,+,+,+). We have:

LD = −iΨ̄ /DΨ −mΨ̄Ψ, /DΨ = (/∂ + ie /A)Ψ (8.54)

with /D = γµDµ and we have:

{γµ, γν} = −2ηµν , (γµ)† = γ0γµγ0, γ5 = iγ0γ1γ2γ3, (γ5)
† = γ5 (8.55)

The Lagrangian has the usual U(1) gauge symmetry:

Ψ 7→ e−ieα(x)Ψ, Aµ 7→ Aµ + ∂µα (8.56)

2There is an extra minus sign coming from the fact both photons are now outgoing, so that
kA = k2 + k3.
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If the Dirac fermion were massless, the above Lagrangian would be invariant

under an additional global symmetry:

Ψ 7→ eiθγ5Ψ (8.57)

which is the so-called axial symmetry. The respective currents are:

jµ = −eΨ̄γµΨ, jµ
5 = Ψ̄γµγ5Ψ (8.58)

Using the equations of motion we have:

∂µj
µ = 0, ∂µj

µ
5 = −2miΨ̄γ5Ψ (8.59)

Therefore, we see that, at the classical level, the gauge current is conserved and

the axial current is also conserved if the fermions are massless. As we have seen,

anomalies arise when the classical conservation of a current is broken by quantum

corrections. For gauge theories involving Dirac fermions, the gauge symmetry is

never anomalous, however we will see that the axial symmetry is.

8.3.2 Euclidean path integral and chiral Jacobian

We describe here the method developed by Fujikawa [41] to compute the anomaly

due to the chiral transformations. We continue analytically our quantities into

Euclidean space such that x4 = ix0, ∂4 = −i∂0, γ
4 = iγ0 and A4 = iA0. We now

have:

{γµ, γν} = −2δµν , (γµ)† = −γµ, γ5 = −γ1γ2γ3γ4, (γ5)
† = γ5 (8.60)

The Euclidean path integral of the Dirac action becomes:

∫

DΨ̄DΨ exp
[

−
∫

d4xΨ̄(i /D +m)Ψ
]

(8.61)

where /D is a Hermitian operator. In order to analyse the Jacobian for the chiral

transformation, we expand the Dirac fields into a basis of eigenfunctions of the
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latter:

Ψ(x) =
∑

n

anϕn(x) =
∑

n

〈x|n〉an, (8.62)

Ψ̄(x) =
∑

n

b̄nϕ
†
n(x) =

∑

n

b̄n〈n|x〉 (8.63)

with:

/Dϕn(x) = λnϕn(x), (8.64)
∫

d4xϕ†
n(x)ϕm(x) = δnm (8.65)

This basis formally diagonalises the Dirac action:

∫

d4xΨ̄(i /D +m)Ψ = lim
N→∞

N∑

n=1

(iλn +m)b̄nan, (8.66)

where the sum runs over the non-vanishing eigenvalues. Similarly, the measure

transforms into:

DΨ̄DΨ = [det〈n|x〉det〈x|n〉]−1 lim
N→∞

N∏

n=1

db̄ndan

=
(

det
∫

d4x〈n|x〉〈x|m〉
)−1

lim
N→∞

N∏

n=1

db̄ndan

= (det δnm)−1 lim
N→∞

N∏

n=1

db̄ndan

= lim
N→∞

N∏

n=1

db̄ndan

(8.67)

We can use this definition of the path integral measure to carry out our calcu-

lations. Let us start by considering the Jacobian for a local infinitesimal chiral

transformation:

Ψ(x) 7→ Ψ′(x) = eiθ(x)γ5Ψ(x) = (1 + iθ(x)γ5)Ψ(x), (8.68)

Ψ̄(x) 7→ Ψ̄′(x) = Ψ̄(x)eiθ(x)γ5 = Ψ̄(x)(1 + iθ(x)γ5) (8.69)

In order to see how the coefficients transform, we expand the fields in the above
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equation in terms of the eigenfunctions:

Ψ′(x) =
∑

n

a′
nϕn(x)

=
∑

n

(1 + iθ(x)γ5)anϕn(x)
(8.70)

So that

a′
n =

∑

m

(δnm + i
∫

d4xϕ†
n(x)θ(x)γ5ϕm(x))am (8.71)

and similarly:

b̄′
n =

∑

m

b̄m(δmn + i
∫

d4xϕ†
m(x)θ(x)γ5ϕn(x)) (8.72)

From these expressions, we obtain that the measure transforms as (keeping N

finite as a mode cut-off):

N∏

n=1

db̄′
nda

′
n = det

[

δmn + i
∫

d4xϕ†
m(x)θ(x)γ5ϕn(x)

]−1 N∏

n=1

db̄n

× det
[

δnm + i
∫

d4xϕ†
n(x)θ(x)γ5ϕm(x)

]−1 N∏

n=1

dan

(8.73)

Using the relation for an infinitesimal matrix δM :

det(1 + δM) = exp tr ln(1 + δM) = exp tr δM (8.74)

we have:

N∏

n=1

db̄′
nda

′
n = exp

[

−2i
N∑

n=1

∫

d4xϕ†
n(x)θ(x)γ5ϕn(x)

]
N∏

n=1

db̄ndan (8.75)

We want to replace the mode cut-off (N → ∞) by a cut-off in terms of eigenvalues.
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This proceeds as follows:

lim
N→∞

N∑

n=1

∫

d4xϕ†
n(x)θ(x)γ5ϕn(x) = lim

M→∞

∞∑

n=1

∫

d4xϕ†
n(x)θ(x)γ5F(λ2

n/M
2)ϕn(x)

= lim
M→∞

∞∑

n=1

∫

d4xϕ†
n(x)θ(x)γ5F( /D

2
/M2)ϕn(x)

= lim
M→∞

Trθ(x)γ5F( /D
2
/M2)

(8.76)

where F(x) is an arbitrary smooth regulator that rapidly approaches 0 as x → ∞
and F(0) = 1. For the choice F(x) = e−x, we obtain results related to the heat-

kernel or ζ-function regularisation. In terms of the regulator, the Jacobian for

the chiral transformations is given by:

J = exp
[

−2i lim
M→∞

Trθ(x)γ5F( /D
2
/M2)

]

≡ exp
[

i
∫

d4xθ(x)A(x)
]

(8.77)

where the function A(x) is the anomaly.

The anomaly produces, here in a quantum regime, the same modification of theory

at the level of the action as would a Lagrangian that is not classically invariant

but is instead shifted by the same anomaly function when performing an axial

transformation of its content. Thereby, when we use an effective Lagrangian

with the fermions integrated out (i.e. when their path-integral has been solved),

one should add to the Lagrangian a term transforming accordingly to take into

account the anomaly:

Leff → Leff + θ(x)A(x) (8.78)

This is, for example, what happens in the effective theory description of the pions.

Before proceeding with the computation of the anomaly, let us come back to our

conservations laws (8.59). An infinitesimal axial transformation will change the

partition function of the theory as:

δθ(Z) 7→
∫

DΨ̄DΨ
[

i
∫

d4x (θ(x)A(x) + jµ
5 ∂µθ(x))

]

e−SE (8.79)

And therefore we have the anomalous conservation of the axial current:

∂µ〈jµ
5 〉 = A(x) (8.80)
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Notice that this equation does not depend on any loop-expansion or perturba-

tive definition. It is therefore clearly a consequence that depends on the non-

perturbative aspects of the theory.

8.3.3 Heat-kernel regularisation

We now explicitly calculate the anomaly using a decreasing exponential as regu-

lator. We then have:

A(x) = lim
M2→∞

−2tr

[
∑

n

e−λ2
n/M2

(

ϕ†
n(x)γ5ϕn(x)

)
]

= lim
M2→∞

−2tr

[
∑

n

(

ϕ†
n(x)γ5e

− /D
2
/M2

ϕn(x)
)] (8.81)

Fujikawa’s method proceeds now as follows: as the eigenfunctions of the Dirac

operator also satisfy the Klein-Gordon equation, they admit a plane-wave decom-

position; then expand the Dirac operator such as to obtain:

/D
2

= −D2 + E, Dµ = ∂µ + ieAµ, E = ieσµνFµν (8.82)

with σµν = 1
4

[γµ, γν ] (this convention is different from the one usually used, but

will become clear later on). We then have:

A(x) = lim
M2→∞

−2
∫ d4k

(2π)4
tr
[

γ5e
−ikxe(D2−E)/M2

eikx
]

= lim
M2→∞

−2
∫ d4k

(2π)4
tr
[

γ5e
((D+ik)2−E)/M2

]
(8.83)

We now rescale the momentum by a factor of M such that k 7→ Mk. Then,

in the limit where M goes to infinity, one can Taylor expand the exponential

around k2 and the only terms that will contribute will be of order O(M−4) or

less. Moreover, since we are tracing the matrices in the exponent with γ5, only

traces involving at least four extra gamma matrices will be non-vanishing. This

leaves us with one single term:

A(x) = −
∫ d4k

(2π)4
e−k2

tr
[

γ5E
2
]

(8.84)
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Using that, in Euclidean signature

tr
[

γ5

[

γµ, γν
][

γα, γβ
]]

= −16ǫµναβ (8.85)

with ǫ1234 = +1. We have finally:

A(x) = − e2

16π2
ǫµναβFµνFαβ (8.86)

To obtain the anomaly in Minkowski space, we need to analytically continue each

step of the derivation. This will bring up a factor of i from the Wick rotation of

the momentum integral, a second factor of i from the trace of the gamma matrices

and a minus sign for changing the orientation to ǫ0123 = +1. In the end, the axial

anomaly is given by:

AM(x) = − e2

16π2
ǫµναβFµνFαβ (8.87)

where we denoted by a subscript “M” the anomaly continued to Minkowski space-

time. Let us now shortly come back to (8.81). Since γ5 anticommutes with the

Dirac operator, for each eigenfunction ϕn with eigenvalue λn 6= 0, there will be an

eigenfunction ϕ−n with eigenvalue −λn given by ϕ−n = γ5ϕn. Since these eigen-

functions have different eigenvalues, they are orthonormal. In particular they can

not be eigenfunctions of γ5 because of the relation ϕ−n = γ5ϕn. Nevertheless, it

is possible to decompose them such that:

ϕ±
n =

1

2
(1 ± γ5)ϕn, γ5ϕ

±
n = ±ϕ±

n , /D
2
ϕ±

n = λ2
nϕ

±
n (8.88)

Then, both ϕ+
n and ϕ−

n will appear in the sum with the same exponential prefactor

but with different chirality eigenvalues, thus cancelling in the sum. What remains

are the eigenfunctions of the Dirac operator with null eigenvalue. In this case,

since both ϕ0 and γ5ϕ0 live in the same eigensubspace we can diagonalise γ5 in

the latter such that:

γ5ϕ
±
i = ±ϕ±

i (8.89)

Notice however that for λ = 0, eigenfunctions of opposite chirality do not nec-

essarily come in pairs (indeed for a general Lagrangian, we could have several

left-handed Weyl fermions and no right-handed partner). If n± counts the num-
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ber of eingenfunctions with positive/negative eigenvalues respectively, we have:

A(x) = lim
M2→∞

−2tr

[
∑

n

e−λ2
n/M2

(

ϕn(x)†γ5ϕn(x)
)
]

(8.90)

= −2





n+
∑

i=1

(ϕ+
i )†ϕ+

i −
n−
∑

i=1

(ϕ−
i )†ϕ−

i



 (8.91)

And therefore:

∫

d4xA(x) = −2(n+ − n−) = −2 index( /D) (8.92)

This is an example of the Atiyah-Singer index theorem, the anomaly is propor-

tional to the index of the Dirac operator.

Last but not least, we give here a similar way to compute the anomaly. Recall:

A(x) = lim
M2→∞

−2tr
[

γ5e
− /D

2
/M2

]

(8.93)

Now, this quantity can be related to the heat kernel coefficients of the effective

action derived from the Dirac Lagrangian, [42]:

Tr
[

fe−t /D
2
]

≃
∑

k≥0

t(k−D)/2ak(f, /D
2
) (8.94)

where the trace denotes also the integration over the Euclidean space. By making

the replacement 1/M2 → t, we have:

∫

d4xA(x) = lim
t→0

−2Tr
[

γ5e
−t /D

2
]

= aD(−2γ5, /D
2
) (8.95)

In four dimensions, we have:

a4(f, /D
2
) =

1

(4π)2
Tr

[

f ·
(

D2E

6
+
E2

2
+

ΩµνΩµν

12

)]

(8.96)

where Ωµν = ieFµν here. So that, keeping only the non-vanishing trace:

∫

d4xA(x) =
1

(4π)2
Tr

[

−2γ5 · E
2

2

]

= − e2

16π2

∫

d4x ǫµναβFµνFαβ (8.97)

This way of computing the anomaly will turn out to be useful when dealing with
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two component spinors.

8.3.4 First-order Lagrangian and symmetries

We now show briefly how the calculation proceeds when dealing with two-component

spinors. The Dirac Lagrangian is:

LD = iχ†D̄χ+ iξ†Dξ −m(χξ + χ†ξ†)

= i
√

2χ†
A′D̄A′

Aχ
A + i

√
2ξ†A′

DA′
AξA −m(χAξA + χ†

A′ξ†A′

)
(8.98)

The electromagnetic U(1) transformations are given by

δξ = +ieαξ, δχ = −ieαχ (8.99)

DA′AξA = (∂A′A − ieAA′A)ξA, D̄A′AχA = (∂A′A + ieAA′A)χA (8.100)

and we have

Ψ =




χ

ξ†



 (8.101)

On the other hand, chiral transformations are given by

δξ = −iαξ, δχ = −iαχ (8.102)

We recall the Dirac equations for the four spinors3:

iDξ = −mχ†, iD†χ† = −mξ (8.103)

iD̄χ = mξ†, iD̄†ξ† = mχ (8.104)

Using the Euclidean conjugation defined in the Appendix C.2, there are four

gauge-covariant, self-adjoint operators that we can define:

D†D = −2(∂ − ieA)A
A′

(∂ − ieA)A′
B, D̄†D̄ = −2(∂ + ieA)A

A′(∂ + ieA)A′

B

DD† = −2(∂ − ieA)A′
A(∂ − ieA)A

B′

, D̄D̄† = −2(∂ + ieA)A′

A(∂ + ieA)A
B′

(8.105)

3Recall that the adjoint of a differential operator is defined through integration by parts and
complex conjugation.
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They are self-adjoint in the sense that, e.g.:

〈λ1|D†Dλ2〉 =
∫

d4xλ̂1D
†Dλ2 =

∫

d4x ̂(D†Dλ1)λ2 = 〈D†Dλ1|λ2〉 (8.106)

Where we used integration by parts and the antilinearity of the conjugation. We

then define four complete orthonormal basis of eigenfunctions:

D†DφL n(x) = λ2
nφL n(x), DD†φR n(x) = λ2

nφR n(x)

D̄†D̄ϕL n(x) = κ2
nϕL n(x), D̄D̄†ϕR n(x) = κ2

nϕR n(x)
(8.107)

The relation between the eigenfunctions is chosen to be:

DφL n(x) = λnφR n(x), D̄ϕL n(x) = κnϕR n(x) (8.108)

with λn, κn > 0 for λn, κn 6= 0, so that D†D and DD† (as well as the other pair)

share the same number of non-vanishing eigenvalues. We can also normalise the

functions so that φ̂ ∼ ϕ and κn = λn. We then expand our fields as45:

ξ(x) =
∑

n

anφL n(x), χ(x) =
∑

n

bnϕL n(x)

ξ†(x) =
∑

n

ānφ̂R n(x), χ†(x) =
∑

n

b̄nϕ̂R n(x)
(8.109)

As before, we can compute the Jacobian for the transformation of the measure:

N∏

n=1

db̄′
ndā

′
ndb

′
nda

′
n = exp

[

i
N∑

n=1

∫

d4xα(x)
(

φ̂L n(x)φL n(x) + ϕ̂L n(x)ϕL n(x)

− φ̂R n(x)φR n(x) − ϕ̂R n(x)ϕR n(x)
) ] N∏

n=1

db̄ndāndbndan

(8.110)

Using as before the appropriate regulator for each sum over modes, we have for

4ξ† can be decomposed in the dual basis of eigenfuntions of DD† as the terms
∫

d4xξ†(x)DD†φR(x) are then SU(2) invariant and we still have
∫

d4xξ†(x)DD†φR(x) =
∫

d4x(D̄D̄†ξ†(x))φR(x) ∼ ∑
∫

d4x(D̄D̄†φ̂R(x))φR n(x) ∼ ∑
∫

d4x ̂(DD†φR(x))φR(x).
5Note that we could also have expanded ξ† ∼ ∑

ϕR and χ† ∼ ∑
φR as they are eigenfunc-

tions of the corresponding operators. Similarly for the unprimed spinors, we could have chosen
the basis corresponding to the dual of the basis of their operator integrated by parts: ξ ∼ ∑ϕ†

L

and χ ∼ ∑φ†
L.
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the anomaly:

A(x) = lim
M2→∞

(

+tr
[

e−D†D/M2
]

+ tr
[

e−D̄†D̄/M2
]

− tr
[

e−DD†/M2
]

− tr
[

e−D̄D̄†/M2
])

(8.111)

where the operators have been appropriately continued to Euclidean space as

before. We then rewrite our operators as:

D†D = −D2 −ieΣµνFµν
︸ ︷︷ ︸

E

, DD† = −D2 −ieΣ̄µνFµν
︸ ︷︷ ︸

Ē

(8.112)

D̄†D̄ = −D̄2 − E, D̄D̄† = −D̄2 − Ē (8.113)

where Σ and Σ̄ can be identified as the ’t Hooft symbols once properly rescaled

(in Minkowski spacetime they also correspond to the basis of self-dual and anti-

self-dual two forms). We then have:

∫

d4xA(x) =
1

(4π)2

(

Tr

[

+2 ·
(

E2

2
+

ΩµνΩµν

12

)]

+ Tr

[

−2 ·
(

Ē2

2
+

Ω̄µνΩ̄µν

12

)])

(8.114)

Using (in Euclidean signature):

trE2 = −e2

2

(

ηµαηνβ − ηµβηνα + ǫµναβ
)

FµνFαβ (8.115)

trĒ2 = −e2

2

(

ηµαηνβ − ηµβηνα − ǫµναβ
)

FµνFαβ (8.116)

and:

Ωµν = ±ieFµν , Ω̄µν = ±ieFµν (8.117)

We obtain finally:

∫

d4xA(x) = − e2

(4π)2

∫

d4x ǫµναβFµνFαβ (8.118)

which is the same result as (8.97), as expected.
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8.3.5 Axial anomaly in the second-order formalism

We now proceed with the same calculation, but in the second-order formalism.

Recall that the Lagrangian for Dirac fermions in the second-order formalism is

given by:

L = −(D̄χ)T (Dξ) −m2χξ

= −2(D̄A′

Aχ
A)(DA′

BξB) −m2χAξA.
(8.119)

This should be supplemented with the reality conditions:

mξ† = i(D̄χ)T , mχ† = iDξ. (8.120)

Noticing that D̄ integrated by parts gives D†, the field equations that result from

the above Lagrangian are

(D†D −m2)ξ = 0, (D̄†D̄ −m2)χ = 0. (8.121)

We see that the Lagrangian is invariant under the usual U(1) transformations

δξ = +ieαξ, δχ = −ieαχ, δAAA′ = ∂AA′α. (8.122)

However, the Lagrangian is explicitly not invariant under the (local or global)

chiral transformations

δchiralξ = −iαξ, δchiralχ = −iαχ (8.123)

that act on both spinor fields in the same way. Note that the electromagnetic

potential is not transformed. We have:

δchiralL = −2iα(x)L + j5 µ∂µα(x), (8.124)

where6

j5 µ :=
√

2i
(

(θµχ)TDξ + (D̄χ)T (θµξ)
)

. (8.125)

6Recall D =
√

2θµDµ.
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This expression should be compared to the usual U(1) current

jµ =
√

2ie
(

(θµχ)TDξ − (D̄χ)T (θµξ)
)

(8.126)

At the classical level, using the equations of motion, the gauge current is conserved

Dµj
µ = 0, whereas the axial current is not:

Dµj
5 µ = −2i L. (8.127)

In the massless limit the field equations (8.121) are invariant under the global

chiral transformations. So are the reality conditions (8.120). In this limit the

right-hand-side of (8.127) becomes

Dµj
5 µ = 2i(D̄χ)T (Dξ), (8.128)

which vanishes on the surface of the reality conditions (8.120). It is only in this

sense that the massless theory is invariant under the chiral transformations.

To see what becomes of the axial current conservation in the quantum theory, let

us consider the effect of the local chiral transformation on the path integral. We

have:

Z =
∫

DξDχ exp
[

i
∫

d4x
(

L + α(x)
{

Achiral
M − 2iL − ∂µj

5 µ
})]

, (8.129)

where Achiral
M is the coming from non-invariance of the (chiral half of the) inte-

gration measure. We thus see that the usual quantum non-conservation of the

axial current is replaced in our case by:

∂µ〈j5
µ〉 = Achiral

M − 2i〈L〉 ≡ AM , (8.130)

where we have introduced the notation AM for the full anomaly. We will proceed

as before to compute the anomaly. We have the same four complete basis of

eigenfunctions:

D†DφL n(x) = λ2
nφL n(x), DD†φR n(x) = λ2

nφR n(x)

D̄†D̄ϕL n(x) = λ2
nϕL n(x), D̄D̄†ϕR n(x) = λ2

nϕR n(x)
(8.131)
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with the relation between the eigenfunctions:

DφL n(x) = λnφR n(x), D̄ϕL n(x) = λnϕR n(x) (8.132)

Together with the equations of motion, that we recall:

(D†D −m2)ξ = 0, (D̄†D̄ −m2)χ = 0. (8.133)

and the reality conditions:

mξ† = i(D̄χ)T , mχ† = iDξ (8.134)

We expand our fields as follows:

ξ(x) =
∑

n

anφL n(x), χ(x) =
∑

n

bnφ̂L n(x) (8.135)

where the hat denotes the dual basis and we have the relation:

D̄φ̂L n(x) = λnφ̂R n(x) (8.136)

This formally diagonalises the Lagrangian:

∫

d4xL = −
∞∑

λn 6=0

bnanλ
2
n (8.137)

Now, for the anomaly, we can calculate the change in the measure as we have pre-

viously done, expanding the chiral transformations on the basis of eigenfunctions

and extracting the transformation of the coefficients, we obtain in the end:

N∏

n=0

db′
nda

′
n = exp

[

2i
N∑

n=0

∫

d4xα(x)
(

φ̂L n(x)φL n(x)
) ] N∏

n=1

dbndan (8.138)

Similarly, it is straightforward to extract the contribution coming from the La-
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grangian, since it is proportional to the latter and is given by7:

∫ N∏

n=0

dbndan

[

(−2iα)
N∑

λn 6=0

bnanλ
2
n

]

exp





N∑

λn 6=0

bnanλ
2
n





=
∫ N∏

n=0

dbndan

[

(−2iα)
N∑

λn 6=0

1
]

exp





N∑

λn 6=0

bnanλ
2
n





(8.139)

We have to carefully think about the sum over modes that we have on the RHS.

If we put together the variation of the measure and the contribution coming from

the Lagrangian, we have:

δZ =
∫ N∏

n=0

dbndan

[

(2iα)





N∑

n=0

−
N∑

λn 6=0





]

exp





N∑

λn 6=0

bnanλ
2
n





=
∫ N∏

n=0

dbndan

[

(2iα)n0
L

]

exp





N∑

λn 6=0

bnanλ
2
n





(8.140)

where n0
L is the number of zero modes of the unprimed quadratic operator. This

is a piece of the Atiyah-Singer index theorem which states (we recall):

∫

d4xA(x) = 2(n0
L − n0

R) = 2(dim kerD − dim kerD†) = 2ind D (8.141)

It seems that we are missing the bit coming from dim kerD†. To understand what

happens, we must go back to the first-order formulation in terms of grassmann

coefficients. Recall the Lagrangian:

LD = iχ†(D̄χ)T + iξ†Dξ −m(χξ + χ†ξ†) (8.142)

with the expansion in modes

ξ(x) =
∑

n

anϕ̂L n(x), χ(x) =
∑

n

bnϕL n(x)

ξ†(x) =
∑

n

ānϕR n(x), χ†(x) =
∑

n

b̄nϕ̂R n(x)
(8.143)

7Intuitively, in the LHS, only the (N − 1)th term of the Taylor expansion of the exponential
contributes to the integral, while in the RHS, we used the prefactor as the N th term, and then,
after an N/N normalisation, we rewrote the whole as an exponential, thereby leaving the sum
over modes.

PhD Thesis 138 Johnny Espin



Chapter 8. Anomalies

The Lagrangian is then:

∫

d4xL =
∑

λn 6=0

[ (

ānan + b̄nbn

)

iλn −
(

bnan + b̄nān

)

m
]

−m





n0
L∑

i=1

b0
i a

0
i +

n0
R∑

i=1

b̄0
i ā

0
i





(8.144)

where the first terms in square brackets only contain non-zero modes and the

last two terms sum over left and right handed zero modes. The path-integral

formulation is then given by exponentiating the above Lagrangian and integrating

on the measure:




∏

n6=0

db̄ndān








∏

n6=0

dbndan



 db̄0
1 . . . db̄

0
n0

R
dā0

1 . . . dā
0
n0

R
db0

1 . . . db
0
n0

L
da0

1 . . . da
0
n0

L

(8.145)

where
∏

n6=0 simply reminds us that this part of the measure does not contain

any zero-mode. We can then derive the equations of motion for the grassmann

coefficients:

iλnan = −mb̄n, iλnbn = mān, λn 6= 0 (8.146)

mb̄0
i = 0, mā0

i = 0, i = 1, . . . , n0
R (8.147)

We see that for massive fermions, the zero-modes are constrained to vanish. We

must however recall that once we solve for the “primed” spinors, we will be inter-

ested in the massless limit, leaving therefore these zero-modes unconstrained. We

can nevertheless integrate out the ‘massive modes’ using (8.146) so that to obtain

our new second-order Lagrangian (after an appropriate rescaling and dropping

an overall constant from the path-integral):

∫

d4xL = −
∑

λn 6=0

(

λ2
n +m2

)

bnan −m2





n0
L∑

i=1

b0
i a

0
i +

n0
R∑

i=1

b̄0
i ā

0
i



 (8.148)

We can then consider the massless limit we are interested in:

∫

d4xL = −
∑

λn 6=0

λ2
nbnan (8.149)

If we rewrite the Lagrangian in terms of the spinor fields, this is indeed equivalent
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to:

L = −(D̄χ)T (Dξ) (8.150)

We see that the zero-modes have disappeared from the Lagrangian. This can be

understood as they automatically satisfy the massless reality condition (8.134)

by means of them being zero-modes. However, we did not integrate over them8,

they still are present in the measure, which is now given by:




∏

n6=0

dbndan



 db̄0
1 . . . db̄

0
n0

R
dā0

1 . . . dā
0
n0

R
db0

1 . . . db
0
n0

L
da0

1 . . . da
0
n0

L
(8.151)

This, in turn, implies that for the anomaly the change in the measure is not given

by (8.138), but rather by:

N∏

n=1

db′
nda

′
ndb̄

′0
1 . . . db̄

′0
n0

R
dā′0

1 . . . dā
′0
n0

R
=

N∏

n=1

dbndandb̄
0
1 . . . db̄

0
n0

R
dā0

1 . . . dā
0
n0

R

× exp
[

2iα

(
N∑

n=0

{left} − n0
R

) ]
(8.152)

where for simplicity, we have again considered a constant phase α and denoted

by
∑N

n=1{left} the sum over unprimed spinor modes. All in all, if we gather the

change in the measure, and the change in the Lagrangian, we obtain:

δZ =
∫ N∏

n=0

dbndan

n0
R∏

i=1

db̄0
i dā

0
i

[

2iα
(

n0
L − n0

R

) ]

exp





N∑

λn 6=0

bnanλ
2
n



 (8.153)

Which leads to the usual

∫

d4xA(x) = 2(n0
L − n0

R) = 2(dim kerD − dim kerD†) = 2ind D (8.154)

We therefore see that at the level of the path-integral, one has to be careful in

calculating the anomaly. This problem does not arise when the latter is computed

pertubatively since triangle diagrams “do not care” about the modes expansion

and automatically take into account the contribution from both chiralities.

8Another way to think about this is to remember that the path-integral of a theory whose
quadratic operator contains zero-modes is singular. This is the case of the massless limit of
Dirac theory, and to circumvent this singularity, the zero-modes can be left “unsolved”.
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8.3.6 Fermion number anomaly in Weyl theory

We now calculate the anomalous conservation of the fermionic number in the

theory of one Weyl fermion. This result then generalises to N Weyl fermions and

the axial anomaly can be seen as a subcase of the general result. We will proceed

as in the previous case, using a mode expansion of the first-order Lagrangian and

then integrating out the modes of the primed fermions to achieve the second-order

Lagrangian.

The Lagrangian for a Weyl fermions is given by:

L = iλ†(Dλ)T − m

2

(

λTλ+ λ†(λ†)T
)

= iλ†
A′DA′

Aλ
A − m

2

(

λAλA + λ†
A′λ† A′

) (8.155)

This leads to the equations of motion:

i(Dλ) = −mλ†, iDA′
AλA = −mλ†

A′ (8.156)

The kinetic term can be diagonalised when the fermions are expanded into modes:

λ†(x) =
∑

n

ānφ̂R n(x), λ(x) =
∑

n

anφL n(x) (8.157)

with DφL = λφR as before. This then leads to (in the massless case):

∫

d4xL =
∑

n

iλnānan (8.158)

whereas the measure becomes:




∏

n6=0

dān








∏

n6=0

dan



 dā0
1 . . . dā

0
n0

R
da0

1 . . . da
0
n0

L
(8.159)

and it is easy to read off the anomaly from the zero modes of the left and right

handed fermions to be9

∫

d4xA(x) = n0
L − n0

R = dim kerD − dim kerD† = ind D (8.160)

As we are interested in the second order formulation, let us see what happens

9Recall that dim ker D† = dim ker D̄†.
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with the mass terms. When expanded on the above modes, they become:

m

2

∫

d4x
(

λTλ+ λ†(λ†)T
)

=
m

2

∑

m,n

amΛL
mnan + āmΛR

mnān (8.161)

where ΛL,R are antisymmetric matrices given by:

ΛL
mn =

∫

d4xφL mφL n, ΛR
mn =

∫

d4xφ̂R mφ̂R n (8.162)

For later purposes, we can separate the contribution to the mass terms containing

zero modes:

m

2

∑

m,n6=0

(

amΛ
′L
mnan + āmΛ

′R
mnān

)

+m
∑

i,{n6=0}

(

a0
i Λ

L
inan + ā0

i Λ
R
inān

)

+
m

2

∑

i,j

(

a0
i Λ

L
ija

0
j + ā0

i Λ
R
ij ā

0
j

) (8.163)

where from now on, we denote by a prime the part of the matrix Λ that does not

contain the zero-modes subspaces. The massive Lagrangian can be rewritten as:

∫

d4xL =
∑

n6=0

iānλnan − m

2

∑

m,n

amΛL
mnan + āmΛR

mnān (8.164)

with the equations of motion

iλnan = m
∑

m

ΛR
nmām, λn 6= 0 (8.165)

m
∑

m

ΛR
imām = 0, i = 1, . . . , n0

R (8.166)

It should be noticed here that the equations of motion mix the zero and non-

zero modes of the operators. Furthermore, in the massive case, we see that the

matrix ΛR
mn has n0

R “null directions”. This corresponds to the previous case in

which the massive equations of motion simply constrained the zero modes to

vanish. However, as before, we only want to invert the equations of motion for

the non-zero barred modes, we then rewrite:

iλnan −m
∑

i

ΛR
niā

0
i = m

∑

m6=0

Λ
′R
nmām, λn 6= 0 (8.167)
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We then have:

i
∑

n6=0

(

Λ
′R
)−1

mn
λnan −m

∑

i {n6=0}

(

Λ
′R
)−1

mn
ΛR

niā
0
i = mām, λm 6= 0 (8.168)

Integrating out one barred fermion in the first sum in (8.163), we have:

m

2

∑

m,n6=0

āmΛ
′R
mnān → 1

2

∑

n6=0

iānλnan − m

2

∑

i,{n6=0}
ā0

i Λ
R
inān (8.169)

Repeating the same manipulation on the kinetic term and on the remaining mass

term involving the barred non-zero modes, we obtain (after an appropriate rescal-

ing of the fields):

∫

d4xL = −1

2

∑

m,n6=0

(

iλnan +m
∑

i

ā0
i Λ

R
in

)
(

Λ
′R
)−1

nm



iλmam −m
∑

j

ΛR
mj ā

0
j





− m2

2

∑

m,n

amΛL
mnan − m2

2

∑

i,j

ā0
i Λ

R
ij ā

0
j

(8.170)

Notice that in the massive case, if we use the constraint (8.166), then the con-

tribution from the barred zero-modes disappears from the Lagrangian. Here, as

we are interested in the case of a massless Weyl fermion, our Lagrangian finally

becomes:

∫

d4xL =
1

2

∑

m,n6=0

λnan

(

Λ
′R
)−1

nm
λmam (8.171)

which is the equivalent of

L = −1

2
(Dλ)T (Dλ)

= −(DA′

Aλ
A)(DA′

BλB).
(8.172)

with the extra minus sign coming from the “transpose” which effectively amounts

to flipping an internal spinor contraction carried out with the antisymmetric

epsilon metric, and we have:

(

Λ
′R
)−1

nm
=
∫

d4xφR nφR m, m, n 6= 0 (8.173)

In the path integral for the theory, the measure becomes, after integrating out
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the non-zero modes:




∏

n6=0

dan



 dā0
1 . . . dā

0
n0

R
da0

1 . . . da
0
n0

L
(8.174)

As in the case of Dirac fermions, we see that both the left and right handed zero

modes have been left untouched and hence contribute to the anomaly. We can

read off the contribution to the anomaly coming from the measure to be:

∫

d4xAmeas = n0
L − n0

R +
∑

n6=0

{left} (8.175)

where
∑

n6=0{left} is the sum over non zero modes. As before, this should cancel

with the contribution coming from the non-invariance of the Lagrangian. We

have:

∫ N∏

n=0

dan

[

(−iα)(−1)
∑

m,n6=0

λnan

(

Λ
′R
)−1

nm
λmam

]

× exp



−1

2

∑

m,n6=0

λnan

(

Λ
′R
)−1

nm
λmam





=
∫ N∏

n=0

dan

[

(−iα)
N∑

λn 6=0

1
]

× exp



−1

2

∑

m,n6=0

λnan

(

Λ
′R
)−1

nm
λmam





(8.176)

Where we used:

∫

dθ
(

−θTMθ
)

exp
[

−1

2
θTMθ

]

= 2
∂

∂t

∫

dθ exp
[

− t

2
θTMθ

]∣
∣
∣
∣
t=1

= 2
∂

∂t
tn/2

∫

dξ exp
[

−1

2
ξTMξ

]∣
∣
∣
∣
t=1

= n
∫

dθ exp
[

−1

2
θTMθ

]

(8.177)

where we changed variables ξ =
√
tθ and in the last line, we used that the latter

is the identity operation at t = 1. In the case we are interested in, n is equal

to the number of non-zero modes (modes appearing in Lagrangian), hence the

result. Finally, using the contribution from the non-invariance of the Lagrangian
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to cancel the extra term in the transformation of the measure, we have:

∫

d4xA = n0
L − n0

R (8.178)

which is the usual Atiyah-Singer index theorem for the anomaly in the theory of

one Weyl fermion.

8.4 Discussion

First of all, the main result obtained in this chapter is that the anomaly (chiral

or fermion number) that arises in the first-order formalism can be equivalently

derived using the second-order formalism. When it is calculated perturbatively,

we have shown that, although the integral that has to be computed is different,

there exists a shift in the loop momentum that maps the calculation in one

formalism to the the calculation in the other. We then have developed the tools

necessary to the computation of the anomaly using non-perturbative methods for

two-component spinors and, again, have shown that the same result is obtained.

However, it must be emphasised that the approach taken here is that the second-

order Lagrangian is not fundamental but rather is obtained from its first-order

counterpart. Indeed, as we have seen during the derivation, we have had to take

into account the contribution of the right-handed zero modes corresponding to

the primed fermions that were integrated out. This is due to the fact that the

path-integral over an operator containing zero modes is singular and cannot be

carried out without paying a particular attention to these.

Furthermore, notice that nowhere in our derivation we have used the reality condi-

tions that are imposed on the unprimed fermions. Indeed, we have simply worked

with a Lagrangian in which the mass was set to zero after having integrated out

the primed spinors, and with a general mode expansion of the remaining fields.

The same calculation can be carried out after having imposed sharply the reality

conditions. This leads for example to:

Dξ = 0 →
∑

n

anDφL n =
∑

n6=0

anλnφR n = 0 ↔ an = 0, ∀n 6= 0 (8.179)

From this, it follows that the Lagrangian vanishes and the measure only contains

the integration over the zero modes that have been left unsolved by the above

constraint. This immediately leads to the same result as we have derived, but in
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a much quicker way10.

There are some subtleties in the implementation of the reality conditions at the

level of the action and in the counting of zero modes. Indeed, because the Weyl

action in the second-order formalism is only considered as a limit after the reality

conditions (massive) have been imposed, the modes that are left unsolved are

only the left-handed zero modes and the “massive” left-handed modes.

In the above derivation we have circumvented the problem by imposing the reality

conditions on the (right-handed) massive modes only (and therefore keeping the

contribution of the right-handed zero modes explicit for clarity). Now, because

massive modes of either chirality are in one-to-one correspondence, the count of

zero-modes in this subspace is not affected by the former’s reality conditions.

However, as we have seen before in the case of zero modes, this is not true any

longer. Had we solved the massive reality conditions for the right-handed zero

modes, these would have been constrained to vanish. Since at the field level,

this is what has been done, we have effectively removed these modes from the

theory. This, by extension, affects the number of left-handed zero modes11 there

are n0
L −n0

R zero modes remaining. Hence giving the appropriate result but from

a purely second-order perspective (the same conclusion would be obtained had we

considered the second-order theory fundamental since the above argument relies

only on the functional properties of the operators). We would like to emphasise

that this is only an intuitive argument, a more rigorous explanation has not been

developed for this thesis and is left for further exploration.

10Even though this method is quicker, the method we have presented makes the derivation
more easily generalisable.

11Because the right-handed zero modes are constrained to vanish, they are formally left-
handed zero modes as well. Therefore, in the count of non trivial left-handed zero modes, there
are n0

R less modes.
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Chapter 9

Unitarity

9.1 Introduction

As we mentioned in the Introduction, we will only consider perturbative unitarity

of the S-matrix. In order to prove perturbative unitarity, we shall use the so-called

Largest-Time Equation (LTE), which we will explicitly construct for a scalar field

theory.

The organisation of this chapter is as follows: in the first section we discuss what

it means for the S-matrix to be unitary. In the second section, we introduce the

concept of anti-propagator, develop the LTE for scalars and show how this is

related to unitarity in a simple example. In the third section, we summarise the

main ingredients of the second-order theory for fermions that are needed for the

proof, we discuss their propagators, derive the consequences of the reality condi-

tions and finally develop the proof of unitarity. The last section is a discussion

of the results we obtain.

9.2 General remarks about unitarity

In quantum field theory, the S-matrix (operator) can be written in the interaction

picture:

S = T ei
∫

d4xLint(x) (9.1)
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where T denotes time-ordering1. Taking matrix elements between physical states2,

unitarity of the S-matrix reads:

〈f |i〉 =
∑

phys n

〈f |S|n〉〈n|S†|i〉 =
∑

phys n

〈f |S†|n〉〈n|S|i〉 (9.2)

where the sum runs only over physical intermediate states, and the latter are

eigenstates of the free Hamiltonian. For practical calculations, one splits the

S-matrix into the identity plus a transition operator T :

S = 1 + iT (9.3)

The unitarity equation in terms of the latter operator then reads:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉 = −
∑

phys n

〈f |(iT )†|n〉〈n|(iT )|i〉 (9.4)

Each of the terms appearing in the equation corresponds to a transition amplitude

that can be computed by means of Feynman diagrams. In order to do so, the

S-matrix exponential factor is expanded and we obtain, for instance,

〈f |(iT )|i〉 = 〈f |
∞∑

m=1

im

m!

∫

d4x1 · · · d4xm [T Lint(x1) · · · Lint(xm)] |i〉 (9.5)

This ought to be compared to:

〈f |(iT )†|i〉 = 〈f |
∞∑

m=1

(−i)m

m!

∫

d4x1 · · · d4xm

[

T †L†
int(x1) · · · L†

int(xm)
]

|i〉 (9.6)

The first thing to notice is that for this amplitude we get an extra minus sign

for each vertex. Let us now have a look at the terms inside the brackets. The

operator T † corresponds to an anti-chronological time ordering, i.e.:

T †O1(x)O2(y) = ∓θ(x0 − y0)O2(y)O1(x) + θ(y0 − x0)O1(x)O2(y) (9.7)

1Notice that for interactions’ Lagrangians containing derivatives, the latter is not equal to
minus the interacting Hamiltonian, however the mismatch corresponds to non-covariant terms
that are exactly cancelled in correlation functions by the chronological products of derivative
terms. Therefore, the operator that is considered in the aforementioned situation is the covariant
time-ordering operator.

2In this chapter 〈f |i〉 ≡ δfi, were both states are seen as free asymptotic states, and therefore
should not to be confused with the similar quantity that appears in the LSZ reduction formula.
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where the minus sign would be assigned to anti-commuting operators. Using

Wick’s theorem for correlation functions, this anti-chronological ordering will

lead to anti-propagators, to be discussed below, connecting vertices. Finally, the

reader should have noticed that we did not use the hermicity of the Lagrangian

in the brackets. Indeed, if the Lagrangian were hermitian, we would obtain

exactly the same Feynman rules for (9.5) and (9.6), replacing propagators by

anti-propagators, up to an extra sign in the vertices. However, as we will shortly

recall below, in the case of second-order fermions, the Lagrangian is not hermitian,

and therefore we will have to work out the consequences of such a difference. It

must be noted that it is usually assumed that a non-hermitian Lagrangian leads

to a non-unitary theory, but we will show that this is not necessarily the case.

9.3 Largest-time equation for scalars

As we discussed in the introduction, we will develop a proof of unitarity using

the LTE. It only relies on the decomposition of the Feynman propagator into a

sum of forward and backward propagators with theta functions, and on a simple

combinatorics argument. Because it does not directly depend on the dynamics of

a system, and because it will turn out to be useful, we first develop it in the case

of a scalar field.

9.3.1 Propagators

The propagator for a massive scalar field ϕ(x) is given by:

∆F (x− y) ≡ 〈0|T ϕ(x)ϕ(y)|0〉 =
∫ d4p

(2π)4

−i
p2 +m2 − iε

eip(x−y) (9.8)

with p2 = −p2
0 + p2

i . It can alternatively be written as:

∆F (x− y) ≡ θ(x0 − y0)∆+(x− y) + θ(y0 − x0)∆−(x− y)

=
∫ d3p

(2π)3

[

eip(x−y)

2ω
θ(x0 − y0) +

e−ip(x−y)

2ω
θ(y0 − x0)

]
(9.9)

with px = −ωt+ ~k · ~x and

∆±(x− y) =
∫ d3p

(2π)3

e±ip(x−y)

2ω
(9.10)
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We see that ∆+(x − y) describes an energy (particle) flow3 from y to x whereas

∆−(x− y) describes a flow from x to y. On the other hand, the anti-propagator

is given by:

∆∗
F (x− y) ≡ 〈0|T †ϕ(x)ϕ(y)|0〉 =

∫ d4p

(2π)4

+i

p2 +m2 + iε
e−ip(x−y) (9.11)

We see that it is the complex conjugate of the ordinary propagator (p → −p
change of variables). The important factor here is the +iε in the denominator.

This implies that the poles will have opposite imaginary parts compared to the

poles in the propagator, and therefore, when writing the anti-propagator as a

three-dimensional integral, the contour will have to be closed in the opposite

half-planes in the complex plane. This leads to:

∆∗
F (x− y) ≡ θ(y0 − x0)∆+(x− y) + θ(x0 − y0)∆−(x− y)

=
∫ d3p

(2π)3

[

eip(x−y)

2ω
θ(y0 − x0) +

e−ip(x−y)

2ω
θ(x0 − y0)

]
(9.12)

In the following, we will need the following identities between propagators:

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆−(x)

∆∗
F (x) = θ(−x0)∆+(x) + θ(x0)∆−(x)

(∆+(x))∗ = ∆−(x) ; ∆+(−x) = ∆−(x)

(∆F (x))∗ = ∆∗
F (x) ; ∆F (−x) = ∆F (x)

(9.13)

9.3.2 Largest-time equation

Now that we have introduced the different types of propagators and their relations

with respect to complex conjugation, we can derive a result known as the largest-

time equation (LTE). Consider a Feynman integrand with N interaction vertices

x1, . . . , xN in Minkowski spacetime. We denote this function of the vertices points

as F (xi), and the corresponding Feynman amplitude is obtained by integrating

over all xi and adding emission and absorption factors for the external wave

functions. For a scalar field (with appropriately normalised interactions), F (xi)

is given by a factor of i for each vertex and by propagators ∆F (xi −xj) ≡ ∆F (ij)

for each line joining the vertices xi and xj.

The establishment of the LTE goes as follows: for each integrand F (xi) containing

3We consider the positive energy particle to have a phase factor exp(−iωt).
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N vertices, there are 2N − 1 other functions of the xi that can be constructed.

This is done by applying the following algorithm:

1. Draw circles around vertices. There are 2N possible combinations, the dia-

gram with no circles being the original F (xi).

2. For each circle, swap the sign in the vertex i → −i.

3. For uncircled connected vertices, write ∆F (ij). If both vertices are circled,

write ∆∗
F (ij). If xi is circled and xj is not, write ∆+(ij) = ∆−(ji).

After having constructed the 2N graphs, we shall derive an equation for their

sum. Consider the set of points xi contained in the Feynman integrand F (xi). In

some reference frame, there will be a point, xℓ, which has the largest time of all

the points: x0
ℓ > x0

i , ∀i 6= ℓ. Consider now a graph belonging to the whole set

of possible integrands where xℓ is uncircled and another point xs connected to it

is also uncircled. Among the other 2N−1 graphs, there is another one which has

the same circling pattern as the former, except for xℓ which is this time circled.

Then, the sum over the two graphs is zero. Following our construction rules, the

Feynman propagator ∆F (ℓs) is replaced by ∆+(ℓs) and the sign in the xℓ vertex

is swapped. The statement is therefore true because we have:

∆F (ℓs) = ∆+(ℓs), if x0
ℓ > x0

s (9.14)

Similarly, if xℓ is uncircled and another point xs connected to it is circled, there is

another graph which has the same circling pattern, except for xℓ which is circled.

The sum vanishes since

∆−(ℓs) = ∆∗
F (ℓs), if x0

ℓ > x0
s (9.15)

This generalises straightforwardly to the case in which xℓ is connected to several

other vertices. The propagators will be equal, and only the sign swap in the

vertex will make the sum cancel.

It is then easy to see that the sum over all 2N graphs will give zero. Indeed, we

can group them in 2N−1 pairs whose graphs sum up to zero, see (Fig.9.1).
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A A B
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F
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G H H

Figure 9.1: Construction of the 24 diagrams contributing to the LTE. Here, xℓ is
taken to be the point at the far left of the diagram. Diagrams are grouped two
by two in order to show how they cancel pairwise.

Finally, the Largest-Time Equation is written as:

F (xi) + F ∗(xi) = −F (xi) (9.16)

where F ∗(xi) denotes the complex conjugated integrand (all vertices and propa-

gators are complex conjugated), and F (xi) is the sum over the 2N − 2 remaining

graphs where there is at least one vertex of each type.

In the next subsection we explain how this is related to unitarity.

9.3.3 Unitarity from the cutting rules

We have just seen how we can derive an equation for the Feynman integrand

appearing in a scalar field amplitude by simply using combinatorics. In order

to obtain the corresponding S-matrix, one needs to multiply the corresponding

diagram by plane waves for the emission and absorption of particles and integrate

over the different vertices xi:

〈f |iT |i〉 =
∫
(

N∏

i=1

d4xi

)



Ni∏

j=1

eipjxmj









Nf∏

k=1

e−ipkxmk



 F (xi) (9.17)

where pj denotes incoming momenta to a subset of vertices xmj
and pk denotes

outgoing momenta from xmk
. These factors are the same for all diagrams appear-

ing in the LTE, the only difference is in the propagators involved. Notice also
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that there will in general be more terms in the RHS of the LTE than in the sum

over physical states in the unitary relation. Indeed, for every cut propagator, i.e.

a propagator that is replaced by a sum over states in the unitary relation, there

will be two different diagrams in the LTE: one where the vertex on the left is

circled and the one on the right uncircled, and another diagram where the circles

are swapped. In terms of the sum over states in
∑

phys n〈f |(iT )†|n〉〈n|(iT )|i〉, if

the particle is emitted at x by T and absorbed at y by T †, we obtain:

∑

phys n

|n〉〈n| →
∫ d3p

(2π)3

e−ip(x−y)

2ωp

= ∆+(y − x) (9.18)

whereas in the LTE we will get two terms involving either ∆+(y−x) or ∆−(y−x).

We will see how the extra terms cancel due to energy conservation. As an example,

consider the following scalar field interaction:

Lint = g1ϕϕ1ϕ2 + g2ϕϕ3ϕ4 (9.19)

and the 12 → 34 tree level scattering:

Mtree = g1g2

∫

d4xd4yϕ1(x)ϕ2(x)ϕ3(y)ϕ4(y) [i∆F (x− y)i] (9.20)

The LTE reads:

i∆F (x− y)i+ (−i)∆∗
F (x− y)(−i) = −

[

i∆−(x− y)(−i) + (−i)∆+(x− y)i
]

(9.21)

It can readily be checked using the decomposition of the Feynman (anti-)propagator

in terms of the forward and backward propagators and that θ(t)+θ(−t) = 1. Let

us now derive the unitarity relation deriving from the LTE.

1. Assume energy flows from x to y and replace ϕi by emission/absorption

factors. We will have for the energy plane waves:

e−ix0(E1+E2)e+iy0(E3+E4) (9.22)

2. Integration over x and y will lead to two momentum conservation delta
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functions. For the term involving ∆−(x− y) we have:

∫

dx0dy0 e−ix0(E1+E2)e+iy0(E3+E4)e+iω(x0−y0)

∼ δ(E1 + E2 − ω)δ(ω − E3 − E4), Ei, ω > 0
(9.23)

whereas for the term involving ∆+(x− y), we have:

∫

dx0dy0 e−ix0(E1+E2)e+iy0(E3+E4)e−iω(x0−y0)

∼ δ(E1 + E2 + ω)δ(ω + E3 + E4), Ei, ω > 0
(9.24)

which can never be satisfied for strictly positive energies.

3. We see that energy conservation kills the extra term in the RHS of the LTE,

and we are left with a factor that corresponds to the sum over states in the

unitary relation.

∑

phys n

|n〉〈n| = ∆−(x− y) (9.25)

To summarise the algorithm: write the Feynman integrand corresponding to

a given process and write its corresponding LTE. The LHS is identical to the

unitarity relation’s LHS when integrated over vertices with plane waves factors

inserted. The LTE tells us that this is equal to the sum over some cut diagrams,

some of which have to be removed using energy conservation. Finally, show that

the remaining diagrams correspond exactly to the RHS of the unitary relation

using the fact that a sum over physical states is replaced by a forward or a

backward propagator.

The last step of the algorithm can be further simplified if one adds from the

beginning an extra diagrammatic rule encoding the energy flow in a diagram.

In a Feynman (anti-)propagator, energy flows both ways as it corresponds to a

virtual particle. However, for cut propagators which correspond effectively to a

physical sum over states, energy can only flow in one direction. As we have seen,

in ∆+(x−y) (∆−(y−x)), energy flows from y to x. Henceforth, for every diagram

linking a circled to an uncircled vertex, we draw an arrow pointing towards the

circle denoting energy flow. We now give the so-called cutting rules for unitarity:

1. Given a Feynman amplitude, draw all possible graphs obtained by circling

a subset (all) of the vertices.
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2. In addition, for every line linking two different types of vertices, draw an

arrow pointing towards the circled vertex.

3. Choose a direction for the overall energy flow.

4. If a graph contains at least one vertex whose links are all incoming (outgo-

ing), it vanishes.

5. Draw now a cut through all directed lines but not through undirected lines.

6. The only non-vanishing graphs are those for which energy flows from one

side of the cut to the other side, and for which each side of the cut contains

only one type of vertices.

7. The remaining graphs are in one-to-one correspondence with the terms ap-

pearing in the unitarity equation for that given diagram.

This demonstrates that for a scalar field, perturbative unitarity of the S-matrix

follows directly from the LTE. Note however, that the LTE (and thus unitarity)

holds here diagram by diagram. This is more than is required, as all we need for

perturbative unitarity to hold is that the S-matrix is unitary at a given order in

the coupling constant(s). This will be important for the problem of second-order

fermions as we will now see.

9.4 Unitarity of second-order fermions

We now focus on the theory of second-order fermions. We will give a short recap

of the formalism for self-consistency of the chapter, then we will have a second

look at two scattering processes that were calculated in previous chapters, we

will explore the consequences of the reality conditions, and finally we will link

the construction of the LTE for a scalar field to the theory of spinor fields.

9.4.1 Brief reminder of second-order fermions

Let us shortly summarise Section 5.4. The Lagrangian for second-order Dirac

Quantum Electrodynamics is given by (we simply consider the fermionic part):

L = −2DA′
AχAD

A′BξB −m2χAξA (9.26)
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with

Dµξ = (∂µ − ieAµ)ξ, Dµχ = (∂µ + ieAµ)χ, (9.27)

where we included the electromagnetic coupling |e| ≪ 1. Being not hermitian,

the theory is supplemented with reality conditions:

ξ† A′

= − i
√

2

m
DA′AχA, χ† A′

= − i
√

2

m
DA′AξA. (9.28)

The status of the reality conditions can be clarified by the inclusion of source

terms for the fields which are integrated out. The Lagrangian can be expanded

so that:

L = L0 + Lint (9.29)

with

L0 = −∂µχA∂µξA −m2χAξA, (9.30)

and

Lint = 2ieAAA′
(

χA(∂A′
BξB) + (∂A′

BχB)ξA

)

− e2AB
B′AB′

Bχ
AξA (9.31)

To extract the propagator for the spinor fields, let us rewrite the free part of their

Lagrangian as:

iLDirac = χA

[

iǫAB
(

−� +m2
)]

ξB (9.32)

Then the inverse of the quadratic operator is:

〈0|T{ξA(p)χB(−p)}|0〉 ≡ SF (p)AB =
−i

p2 +m2
ǫAB (9.33)

where, the field ξA sits at the end of the directed line. Similarly, the Feynman

rules for the vertices can be obtained by considering the momentum space version

of the Lagrangian and setting, by convention, all our particles as incoming. Then

the field can be expanded in positive-frequency modes and we obtain for the
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vertices (all momenta incoming):

〈0|AA′

A(q)χB(p)ξC(k)|0〉 → 2ie
[

kC
A′

ǫBA + pB
A′

ǫCA

]

(9.34)

〈0|AA′

A(q1)A
B′

B(q2)χC(p)ξD(k)|0〉 → −2ie2ǫA′B′

ǫABǫCD (9.35)

9.4.2 Propagators

In the case of second-order fermions, the propagator can be rewritten as:

SF (x− y) = I · ∆F (x− y) (9.36)

where I is the identity over the unprimed spinors space. This implies that, as

before, we have:

SF (x− y) = I · ∆F (x− y) = I ·
(

θ(x0 − y0)∆+(x− y) + θ(y0 − x0)∆−(x− y)
)

(9.37)

Because of this property of second-order fermionic propagators, we also have:

S†
F (x− y) = −Ī · ∆∗

F (x− y) = − (SF (x− y))∗ (9.38)

where this time Ī is the identity over primed spinors space, and we used I† = −Ī

due to the antisymmetry of the spinor space metric. This minus sign will be

important below. We see that as in the scalar field case, the anti-propagator is

related to the complex conjugate of the propagator. This is not the case for the

first-order propagator. We will, from here on, drop the identity matrices in the

propagators and work with the scalar field notation ∆. We therefore have as

before:

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆−(x)

∆∗
F (x) = θ(−x0)∆+(x) + θ(x0)∆−(x)

(∆+(x))∗ = ∆−(x) ; ∆+(−x) = ∆−(x)

(∆F (x))∗ = ∆∗
F (x) ; ∆F (−x) = ∆F (x)

(9.39)

And this propagators satisfy the same LTE than we derived above. However, as

we will now see, it does not apply straightforwardly to fermions as we are in fact

working with a non-hermitian Lagrangian.
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9.4.3 Two warm-up examples

The fact that the Lagrangian for second-order fermions is non-hermitian implies

that in the unitary equation, the Feynman rules used in

〈n|(iT )|m〉 or 〈n|(iT )†|m〉 (9.40)

not only differ by their dependence in the propagators, but the vertices are also

different. Moreover, if in the first case we use polarisations for unprimed spinors,

in the latter, we need to use primed polarisations. We will now see in two sim-

ple examples how the reality conditions (9.28), when imposed linearly on the

external (physical) states of each amplitude in the unitary equation, lead to the

perturbative unitarity of the S-matrix.

Compton Scattering

We first consider the simple tree-level example of Compton scattering, see Section

6.5 for more details. We recall that the amplitude can be split into its different

channel contributions:

MA′

s AB
C′

CD = − 4e2i

s+m2

(

−ǫACk2B
A′

k4D
C′

+ ǫABqC
A′

k4D
C′

−ǫCDqA
C′

k2B
A′ − 1

2
m2ǫA′C′

ǫABǫCD

) (9.41)

MA′

u AB
C′

CD = − 4e2i

u+m2

(

+ǫACk2B
C′

k4D
A′ − ǫBCpA

C′

k4D
A′

−ǫADpC
A′

k2B
C′ − 1

2
m2ǫA′C′

ǫBCǫAD

) (9.42)

M = Ms + Mu (9.43)

Unitarity in the s-channel means:

PhD Thesis 158 Johnny Espin



Chapter 9. Unitarity

+ 1
2 =

∑

e

Figure 9.2: s-channel contribution to Compton scattering.

where in the LHS it is understood that we sum over the diagrams and their com-

plex conjugates. In order to compute the latter, we need the complex conjugated

Feynman rules derived from the hermitian conjugate of the Lagrangian and the

extra sign in the S†-matrix expansion. The quantity to consider is:

−i
∫

d4xL† = −i
∫

d4x
(

−2DAA′

ξ†
A′DA

B′

χ†
B′ −m2ξ†

A′χ† A′
)

= +i
∫

d4x
(

−2DA
A′

ξ†
A′DAB′

χ†
B′ −m2ξ† A′

χ†
A′

) (9.44)

with now

Dµξ
† = (∂µ + ieAµ)ξ†, Dµχ

† = (∂µ − ieAµ)χ† (9.45)

and where in the last line we rewrote the conjugated Lagrangian with the ex-

act same index structure as the original Lagrangian. We therefore see that the

momentum space Feynman rules will be exactly the same in the conjugated case:

〈0|T †{χ†
A′(p)ξ

†
B′(−p)}|0〉 ≡ S†

F (p)A′B′ =
−i

p2 +m2
ǫA′B′ (9.46)

and

〈0|AA
A′(q)ξ†

B′(p)χ
†
C′(k)|0〉 → 2ie

[

kC′
AǫB′A′ + pB′

AǫC′A′

]

(9.47)

〈0|AA
A′(q1)A

B
B′(q2)ξ

†
C′(p)χ

†
D′(k)|0〉 → −2ie2ǫABǫA′B′ǫC′D′ (9.48)

Therefore the amplitudes are the same as in the usual case, except for the SL(2,C)

index structure of the representations that is swapped with its complex conju-

gated counterpart.
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Using these facts, the complex conjugate of the s-channel amplitude is given by:

M∗
s = − 4e2i

s+m2

(

−ǫA′C′k2B′
Ak4D′

C + ǫA′B′qC′
Ak4D′

C

−ǫC′D′qA′
Ck2B′

A − 1

2
m2ǫACǫA′B′ǫC′D′

) (9.49)

where now B′, D′ denote primed fermions. This amplitude is obtained straight-

forwardly from the complex conjugate of the aforementioned Feynman rules. So

far, we have written the amplitudes in momentum space, however to make sense

of the unitarity equation, we rewrite:

Ms = −4e2i
∫ d4q

(2π)4

e−iq(x−y)

q2 +m2 − iε
F (ki, q)

M∗
s = −4e2i

∫ d4q

(2π)4

e−iq(x−y)

q2 +m2 + iε
F ∗(ki, q)

(9.50)

where F corresponds the the integrand properly contracted with external polar-

isations:

ǫB(k2), ǫD(k4), ǫA
A′(k1), ǫC

C′(k3) (9.51)

We see that the only difference comes from the fact that the second amplitude

contains anti-propagators and that F ∗ might in general differ from F as they are

projections on the polarisations coming from different spaces. In order to under-

stand which polarisations are used in F ∗, we need to use the mode decomposition

of the primed and unprimed fermions and compare them. For unprimed spinors,

the rules are given in Section 5.4. We simply recall their mode decomposition:

ξA(x) =
∑

s

∫

dΩk

(

uA(s)ak(s)eikx + vA(s)c†
k(s)e−ikx

)

, (9.52)

χA(x) =
∑

s

∫

dΩk

(

uA(s)ck(s)eikx + vA(s)a†
k(s)e−ikx

)

(9.53)

For the primed fermions, using the linearised reality condition for external states:

χ† A′

= i

√
2

m
∂A′

Aξ
A, ξ† A′

= i

√
2

m
∂A′

Aχ
A (9.54)
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and the decomposition into modes of the primed fermions:

ξ†
A′(x) =

∑

s

∫

dΩk

(

u†
A′(s)a

†
k(s)e−ikx + v†

A′(s)ck(s)eikx
)

, (9.55)

χ†
A′(x) =

∑

s

∫

dΩk

(

u†
A′(s)c

†
k(s)e−ikx + v†

A′(s)ak(s)eikx
)

, (9.56)

we have:

√
2

m
pA′

Av
A(s) = u† A′

(s),

√
2

m
pA′

Au
A(s) = −v† A′

(s) (9.57)

Now, if we consider the same external states in terms of creation and annihilation

operators, but this time with the primed fermions decomposition, we have:

|p, s,±e〉 → eipxv† A′

(s)|0〉 (9.58)

〈p, s,±e| → 〈0|e−ipxu† A′

(s) (9.59)

Using the reality condition (9.57), these states can be rewritten as:

eipxv† A′

(s)|0〉 = −
√

2

m
pA′

A

(

eipxuA|0〉
)

(9.60)

〈0|e−ipxu† A′

(s) =
(

〈0|vA(s)e−ipx
)

√
2

m
pA′

A (9.61)

We therefore see that the reality conditions imply that we can replace the primed

polarisations using the reality equation independently of the state. This will allow

us to easily compare numerators in the unitarity equation.

We shall now show that we have F = −F ∗, in other words, that the integrand

in the amplitude is purely imaginary once it has been projected on the external

polarisations. We can compute the numerators as follows:

F (ki, q) = ǫD
4 ǫ

C
3 C′

(

−ǫACk2B
A′

k4D
C′

+ ǫABqC
A′

k4D
C′

−ǫCDqA
C′

k2B
A′ − m2

2
ǫA′C′

ǫABǫCD

)

ǫB
2 ǫ

A
1 A′

= (ǫ4k4)
C′

(ǫ2k2)
A′

(ǫ1ǫ3)A′C′ + (ǫ4k4)
C′

(ǫ1ǫ2)
A′

(ǫ3q)C′A′

+ (ǫ4ǫ3)
C′

(ǫ2k2)
A′

(ǫ1q)A′C′ +
m2

2
(ǫ2ǫ1)

C′

(ǫ4ǫ3)C′

(9.62)
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where notation is as follows:

(λk)A′ ≡ λAkA
A′

, (kp)A′B′ ≡ kA′
ApAB′ , (λχ) ≡ λAχA (9.63)

for any λ, χ ∈ (1/2, 0) and k, p ∈ (1/2, 1/2), and for commuting spinors these

inner products are antisymmetric. Also, ǫi ≡ ǫ(ki). The second numerator is

given by:

F ∗(ki, q) = ǫ∗ D′

4 ǫC′

3 C

(

−ǫA′C′k2B′
Ak4D′

C + ǫA′B′qC′
Ak4D′

C

−ǫC′D′qA′
Ck2B′

A − m2

2
ǫACǫA′B′ǫC′D′

)

ǫ∗ B′

2 ǫA′

1 A

=

(√
2

m
ǫD

4 k4D
D′

)

ǫC′

3 C (· · · )

(

−
√

2

m
k2B

B′

ǫB
2

)

ǫA′

1 A

= ǫD
4 ǫ

C′

3 C

(

ǫACk2BA′k4DC′ + δA
Bq

C
A′k4DC′ − δC

Dq
A

C′k2BA′

+
m2

2
ǫA′C′δA

Bδ
C
D

)

ǫB
2 ǫ

A′

1 A

= (−1)
(

(ǫ4k4)
C′

(ǫ2k2)
A′

(ǫ1ǫ3)A′C′ + (ǫ4k4)
C′

(ǫ1ǫ2)
A′

(ǫ3q)C′A′

+(ǫ4ǫ3)
C′

(ǫ2k2)
A′

(ǫ1q)A′C′ +
m2

2
(ǫ2ǫ1)

C′

(ǫ4ǫ3)C′

)

(9.64)

where in the second equality, we have used (9.60-9.61). In the third, the fact the

the external fermions are on-shell (i.e. k2 = −m2). The fourth line, simply gives

F = −F ∗ as foretold. The LHS of the unitary equation is then given by:

Ms + M∗
s = −4e2i

∫ d4q

(2π)4

(

1

q2 +m2 − iε
− 1

q2 +m2 + iε

)

e−iq(x−y)F (ki, q)

= 4e2
∫ d4q

(2π)4
(∆F (q) + ∆∗

F (q)) e−iq(x−y)F (ki, q)

(9.65)

Now, using

1

a∓ iε
= P

(
1

a

)

± iπδ(a) (9.66)
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The two principal values cancel and the imaginary parts add up to give:

Ms + M∗
s = 4e2

∫ d4q

(2π)4
(2π)δ(ω2 − q2

0)e−iq(x−y)F (ki, q)

= 4e2
∫ d3q

(2π)3

1

2ω

∫

dq0 (δ(ω + q0) + δ(ω − q0)) e
−iq(x−y)F (ki, q)

= 4e2
∫ d3q

(2π)3

1

2ω

(

e+iω(x0−y0)F (ki, q) + e−iω(x0−y0)F (ki, q̄)
)

e−i~q(~x−~y)

(9.67)

with in the last line we have qµ = (−ω, ~q) and q̄µ = (ω, ~q). This is almost it, what

remains to be done is adding the plane wave factors for the external particles and

integrating over the position of the vertices:

∫

d4xd4y (Ms + M∗
s) e

i(k1+k2)xe−i(k3+k4)y (9.68)

Let us simply consider the time integral over the plane waves, we have:

∫

dx0dy0
(

e−ix0(E1+E2−ω)e−iy0(ω−E3−E4) + e−ix0(E1+E2+ω)e−iy0(ω+E3+E4)
)

=(2π)2
(

δ(E1 + E2 − ω)δ(E4 + E3 − ω) + δ(E1 + E2 + ω)δ(E3 + E4 + ω)
)

(9.69)

where ki µ = (−Ei, ~ki), and because the energies are positive, only the first term

contributes, leading to the LHS of the unitarity equation:

LHS = 4e2
∫ d3q

(2π)3

1

2ω
F (ki, q)(2π)4δ(4)(k1 + k2 − q)(2π)4δ(4)(k3 + k4 − q)

(9.70)

It now remains to compute the RHS. It will be given by, schematically:

−
∫

d4xd4y
∑

q

(ǫ1ǫ2V3ǫq)
(

ǫ∗
qV

∗
3 ǫ

∗
3ǫ

∗
4

)

ei(k1+k2)xe−i(k3+k4)y (9.71)

Before writing the integrand, we must make sense of the sum over states implied

in the equation. We have:

∑

spins

ǫAǫ∗A′

(k) =

√
2

m
kAA′

,
∑

~q

≡
∫ d3q

(2π)3

1

2ω
(9.72)
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where the integration measure corresponds to the Lorentz invariant one. So that

we write, for a one-fermion intermediate state:

∑

n

|n〉〈n| ≡
∑

q

ǫA
q ǫ

∗A′

q e−iq(x−y) =
∫ d3q

(2π)3

1

2ω
e−iq(x−y)

√
2

m
qAA′

(9.73)

with qµ = (−ω, ~q). The position space integrals can then be carried out very

simply to lead to the same delta functions as in (9.70). We are left with the

contraction of the vertices and polarisation states. We have:

−
∫ d3q

(2π)3

1

2ω
ǫB

2 ǫ
A
1 A′V A′

3 ABE

√
2

m
qEE′

V ∗C
3 C′D′E′ǫC′

3 Cǫ
∗D′

4 (9.74)

We only need to show that the integrand is equal to 4e2F (ki, q) and then the

unitarity equation would be proven for this case. We have, using again (9.60-9.61)

and the fact that q is now on-shell, for the contraction of the two amplitudes:

(−1)2ei
(

kA′

2 BǫEA − qA′

EǫBA

)
√

2

m
qEE′

2ei
(

qC
E′ǫD′C′ − kC

4 D′ǫE′C′

)
(

−
√

2

m
kD′

4 D

)

× pol

=4e2
(

kA′

2 BǫEA − qA′

EǫBA

) (

−ǫECk4C′D + qE
C′δC

D

)

× pol

=4e2

(

−kA′

2 Bδ
C
Ak4C′D + qA′CǫABk4C′D + qAC′δC

Dk
A′

2 B − m2

2
δA′

C′ǫABδ
C
D

)

× pol

=4e2
(

(ǫ2k2)
A′

(ǫ1ǫ3)A′C′(ǫ4k4)
C′

+ (ǫ2ǫ1)A′(ǫ4k4)C′(qǫ3)
A′C′

+(ǫ2k2)
A′

(ǫ4ǫ3)
C′

(ǫ1q)A′C′ − m2

2
(ǫ2ǫ1)C′(ǫ4ǫ3)

C′

)

=4e2F (ki, q)

(9.75)

This implies that, upon integration over vertices, we have the unitarity equation

(Fig.9.2):

LHS = 4e2
∫ d3q

(2π)3
1

2ω
F (ki, q)(2π)4δ(4)(k1 + k2 − q)(2π)4δ(4)(k3 + k4 − q)

= RHS

(9.76)

Therefore proving unitarity for this process at this order in the coupling constant.
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It should be noted, that the main ingredient is the possibility to convert the

complex conjugated amplitude into an usual one using the reality conditions on

the external primed states and the fact the the sum over intermediate states also

gives a reality condition-like factor. The rest follows from the decomposition of

the propagators into forward and backward propagations.

Photon two-point function

Let us now consider a case in which the fermions appear inside a loop. The easiest

case is the photon two-point function, or charge renormalisation diagram that we

discussed in Section 7.2. Recall that the amplitude is given by:

M(k) =(−1)4e2
(

ǫA
k A′ǫ∗B

k B′

) ∫

dDxdDy eikxe−iky

∫ dDp

(2π)D

dDq

(2π)D
e−i(q+p)(x−y)

[

−pA′

Bq
B′

A − qA′

Bp
B′

A +m2ǫA′B′

ǫAB

]

[p2 +m2 − iε] [q2 +m2 − iε]

(9.77)

In the LHS of the unitarity equation (Fig.9.3), there is a sum over the afore-

mentioned amplitude and the amplitude calculated using conjugated Feynman

rules.

+ =
∑

ee

Figure 9.3: Unitarity equation at one-loop.

The latter is given by:

M∗(k) =(−1)4e2
(

ǫA′

k Aǫ
∗B′

k B

) ∫

dDxdDy eikxe−iky

∫ dDp

(2π)D

dDq

(2π)D
e−i(q+p)(x−y)

[

−pA
B′qB

A′ − qA
B′pB

A′ +m2ǫABǫA′B′

]

[p2 +m2 + iε] [q2 +m2 + iε]

(9.78)
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Notice that the sum of the amplitudes can again be written as a function of the

scalar propagators:

M + M∗ = (−1)4e2
∫

dDxdDy
∫ dDp

(2π)D

dDq

(2π)D
e−i(q+p−k)(x−y)

× (−∆F (p)∆F (q) − ∆∗
F (p)∆∗

F (q))F (q, p, k)

(9.79)

where F is again a function of the momenta with no poles. Because of this, the

decomposition of the propagators appearing in the integral in terms of forward

and backward propagations is still valid, since it only relies on the pole structure in

the energy plane. Let us first explicitly show it in momentum space by considering

the zeroth component integrals for the first term in the brackets in the above

formula:

∫ dp0

(2π)

dq0

(2π)
e−i(q+p)0(x−y)0

∆F (p)∆F (q)F (q, p, k) (9.80)

We have for the first integral:

∫ dp0

(2π)
e−ip0(x−y)0

∆F (p)F (q, p, k)

=

[

eiωp(x−y)0

2ωp

θyxF (q, p, k) +
e−iωp(x−y)0

2ωp

θxyF (q, p̄, k)

] (9.81)

with θxy ≡ θ(x0 − y0). Let us now consider the second integral over the first term

in the square brackets:

∫ dq0

(2π)
e−iq0(x−y)0

∆F (q)θyxF (q, p, k)

=

[

eiωq(x−y)0

2ωq

θyxθyxF (q, p, k) +
e−iωq(x−y)0

2ωq

θxyθyxF (q̄, p, k)

]

=

[

eiωq(x−y)0

2ωq

θyxF (q, p, k)

]

(9.82)

where in the second line we used θxyθyx = 0 and θyxθyx = θyx. Similarly the
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second terms yields:

∫ dq0

(2π)
e−iq0(x−y)0

∆F (q)θxyF (q, p, k) =

[

e−iωq(x−y)0

2ωq

θxyF (q̄, p̄, k)

]

(9.83)

So that:

∫ dp0

(2π)

dq0

(2π)
e−i(q+p)0(x−y)0

∆F (p)∆F (q)F (q, p, k)

=

[

e−i(ωq+ωp)(x−y)0

(2ωq)(2ωp)
θxyF (q̄, p̄, k) +

ei(ωq+ωp)(x−y)0

(2ωq)(2ωp)
θyxF (q, p, k)

]

(9.84)

Finally, the antipropagators integral is:

∫ dp0

(2π)

dq0

(2π)
e−i(q+p)0(x−y)0

∆∗
F (p)∆∗

F (q)F (q, p, k)

=

[

e−i(ωq+ωp)(x−y)0

(2ωq)(2ωp)
θyxF (q̄, p̄, k) +

ei(ωq+ωp)(x−y)0

(2ωq)(2ωp)
θxyF (q, p, k)

]

(9.85)

and adding the two contributions gives:

[

e−i(ωq+ωp)(x−y)0

(2ωq)(2ωp)
F (q̄, p̄, k) +

ei(ωq+ωp)(x−y)0

(2ωq)(2ωp)
F (q, p, k)

]

(9.86)

where we used θxy + θyx = 1. If we now consider the integration over vertices,

including the external plane waves factors, only the second term contributes to

the delta functions, as before, and we get for the LHS of the unitarity equation:

M + M∗ = 4e2
∫

dΩpdΩq

(

(2π)Dδ(D)(p+ q − k)
)2
F (q, p, k) (9.87)

where dΩp = dD−1p
(2π)D−1(2ωp)

is the Lorentz invariant measure. It only remains to

check that the RHS of the equation reproduces the same result. The sum over

internal states with momenta q and p will yield the same integrals, furthermore,

the integration over vertices will yield the same delta functions, we only need to

check that the numerator is the same. Schematically:

− (ǫkV3ǫpǫq)
(

ǫ∗
qǫ

∗
pV

∗
3 ǫ

∗
k

)
?
= 4e2F (q, p, k) (9.88)
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We have using (9.72.i) again:

(−1)(−2ei)2(−pA′

EǫF A − qA′

F ǫEA)
2

m2
pEE′

qF F ′

(pB
E′ǫF ′B′ + qB

F ′ǫE′B′)

=4e2(−pA′

EǫF A − qA′

F ǫEA)(−ǫEBqF
B′ − ǫF BpE

B′)

=4e2(−pA′BqAB′ − qA′BpAB′ −m2δB
Aδ

A′

B′)

(9.89)

So that, when contracting with the polarisations:

4e2ǫA
k A′

[

−pA′

Bq
B′

A − qA′

Bp
B′

A +m2ǫA′B′

ǫAB

]

ǫ∗B
k B′ = 4e2F (q, p, k) (9.90)

and therefore:

LHS = 4e2
∫

dΩpdΩq

(

(2π)Dδ(D)(p+ q − k)
)2
F (q, p, k) = RHS (9.91)

Hence proving unitarity for this process.

9.4.4 Reality conditions and amplitude numerators

In the two examples that we have explicitly developed, the proof of unitarity relied

extensively on the fact that all contributions to the LHS and to the RHS share the

same numerator. This is not at all an obvious fact, as in general the contributions

to the unitarity equation are a mixture of amplitudes calculated using different

Feynman rules (recall that our Lagrangian is not Hermitian). However, we dis-

covered that by making use of the reality conditions (9.60,9.61) and of (9.72), we

can project the amplitudes derived using the hermitian-conjugated Lagrangian

onto “unprimed” amplitudes. Without this trick it would, à priori, not be true

that the theory is unitary. Therefore we should derive a general result involving

amplitudes numerators, before proving in the next subsection that this and the

scalar field theory LTE is enough to ensure unitarity of second-order fermions.

In order to do so, we will need a compact notation for the numerators. We will

henceforth use an index-free notation for the Feynman rules. We have for the

vertices with p1 incoming and p2 outgoing:

V µ
3 = (−2ei)(θµp1 + p2θ

µ) = V ∗µ
3 , V µν

4 = (−2e2i) (θµθν + θνθµ) = V ∗ µν
4 (9.92)

where we wrote the quartic vertex so that the contribution to the two channels

over the symmetrisation over photon lines is explicit. The “propagators” are
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simply given by:

−iI, −īI (9.93)

Notice that from now on, the order in which we contract vertices matters. We

follow the usual rules for fermions: we climb up the charge arrow, and in the above

vertex p2 corresponds to that momentum. Also now, using unprimed spinors and

following a fermionic line, the latter starts with a polarisation spinor uA and

finishes (at the tip of the arrow) with another spinor vA. Because of this, the

reality conditions (9.60,9.61) become:

v†|0〉 =

√
2

m
p · u|0〉 (9.94)

〈0|u† = 〈0|v · p
√

2

m
(9.95)

where p ≡ pµθ
µ and the extra sign in (9.94) comes from the modified spinor

contractions. Finally:

∑

spins

ǫǫ†(k) =

√
2

m
k (9.96)

Using this notation we shall derive results for a string of primed or unprimed

fermions (or fermionic line) with one polarisation spinor at each end or with a

sum over states inserted in the middle, as well as for (cut) single-loops. Indeed,

the interaction vertices are such that these are the only two possible cases to

consider. Also, we will restrict ourselves to the ‘s-channel’ amplitudes only, as

the proof is the same for other channels. Our convention is that all of the external

photons are incoming.

Fermionic lines

We first compare a string of unprimed fermions (uncut) to the same string of

primed fermions. This case corresponds to the LHS of the unitarity equation.

We will prove the results by induction, not taking into account what follows the

photon line. First, for one external photon, we have:

N µ = v(p1)(−2ei)(θµp+ p1θ
µ)u(p) (9.97)
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N ∗µ = u†(p1)(−2ei)(θµp+ p1θ
µ)v†(p) =

2

m2
v(p1)(−2ei)p1(θ

µp+ p1θ
µ)pu(p)

= −v(p1)(−2ei)(θµp+ p1θ
µ)u(p) = −N µ

(9.98)

which satisfies the unitarity equation trivially. For two photons, this amplitude

can either be extended with a propagator and another cubic vertex, or replaced

with the quartic vertex (in both cases, we choose the s-channel):

N µ2µ1

= v(p2)
[

−i(−2ei)2(θµ2p1 + p2θ
µ2)(θµ1p+ p1θ

µ1) + (−2e2i)(s1 +m2)θµ2θµ1

]

u(p)

= v(p2)(4e
2i) [θµ2p1θ

µ1p+ p2θ
µ2θµ1p+ θµ2p1p1θ

µ1

+p2θ
µ2p1θ

µ1 − θµ2(p1p1 +
m2

2
)θµ1

]

u(p)

= v(p2)(4e
2i)

[

θµ2p1θ
µ1p+ p2θ

µ2θµ1p+ p2θ
µ2p1θ

µ1 − θµ2
m2

2
θµ1

]

u(p)

(9.99)

where we multiplied the quartic vertex by the inverse propagator with s1 = p2
1 =

2p1p1, so that it effectively comes with the same denominator in the amplitude.

For the conjugated amplitude we have:

N ∗µ2µ1 = u†(p2)(4e
2i)

[

θµ2p1θ
µ1p+ p2θ

µ2θµ1p+ p2θ
µ2p1θ

µ1 − θµ2
m2

2
θµ1

]

v†(p)

(9.100)

In this case, we can explicitly carry through the amplitude the reality condition

that we impose on v†(p), which in turn will transform the last spinor u†(p2) in its
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unprimed equivalent. We have:

N ∗µ2µ1

= v†(p2)(4e
2i)

[

θµ2p1θ
µ1p+ p2θ

µ2θµ1p+ p2θ
µ2p1θ

µ1 − θµ2
m2

2
θµ1

] √
2

m
pu(p)

= u†(p2)

√
2

m
(4e2i)

[

θµ2p1θ
µ1pp+ p2θ

µ2θµ1pp+ p2θ
µ2p1θ

µ1p− θµ2
m2

2
θµ1p

]

u(p)

= u†(p2)

√
2

m
(4e2i)

[

−m2

2
θµ2p1θ

µ1 − p2θ
µ2
m2

2
θµ1 + p2θ

µ2p1θ
µ1p− m2

2
θµ2θµ1p

]

u(p)

= u†(p2)

√
2

m
(4e2i)

[

p2p2θ
µ2p1θ

µ1 − p2θ
µ2
m2

2
θµ1 + p2θ

µ2p1θ
µ1p+ p2p2θ

µ2θµ1p

]

u(p)

= u†(p2)p2

√
2

m
(4e2i)

[

p2θ
µ2p1θ

µ1 − θµ2
m2

2
θµ1 + θµ2p1θ

µ1p+ p2θ
µ2θµ1p

]

u(p)

= −v(p2)(4e
2i)

[

p2θ
µ2p1θ

µ1 − θµ2
m2

2
θµ1 + θµ2p1θ

µ1p+ p2θ
µ2θµ1p

]

u(p)

= −N µ2µ1

(9.101)

where we have used the fact that p2 is on-shell, and that (9.94-9.95) imply:

u†(p)p

√
2

m
= −v(p),

√
2

m
pv†(p) = −u(p) (9.102)

We have obtained the same result as in (9.64), but using this time an index-free

notation.

We will show:

√
2

m
pnN ∗ µn···µ1p

√
2

m
= − N µn···µ1 (9.103)

In the Appendix, we showed (D.64)4

SnAµn...µ1

(1) S = mDnAµn...µ1

(2) D (9.104)

where the amplitude on the left is either from unprimed to unprimed or from

primed to primed and on the right, it is an amplitude built using second-order

Feynman rules (or equivalently their anti-chronological conjugated rules). Di

4In this chapter, we use the notation A to denote the amplitude that has not yet been
projected over the fermions polarisations.
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stands for either ∆F or −∆∗
F . And Si stands for the first-order fermionic propa-

gator. If we consider unprimed fermions external states, we have:

v(1)(pn)(
√

2pn +m)DnAµn...µ1

(1) D(−
√

2p+m)u(1)(p)

= mv(1)(pn)DnAµn...µ1

(2) Du(1)(p)
(9.105)

If on the LHS we consider the primed to primed amputated amplitude, we have:

−m2v†
(1)(pn)Aµn...µ1

(1) u†
(1)(p) = m2v(2)(pn)Aµn...µ1

(2) u(2)(p) (9.106)

where we have rescaled the second-order polarisation spinors. Consider now

primed fermions external states:

v†
(1)(pn)(−

√
2pn +m)DnAµn...µ1

(1) D(
√

2p+m)u†
(1)(p)

= mv†
(1)(pn)DnAµn...µ1

(2) Du†
(1)(p)

(9.107)

with the the primed to primed amputated amplitude on the LHS:

+m2v†
(1)(pn)Aµn...µ1

(1) u†
(1)(p) = m2v†

(2)(pn)Aµn...µ1

(2) u†
(2)(p) (9.108)

So that we have:

v(2)(pn)Aµn...µ1

(2) u(2)(p) = −v†
(2)(pn)Aµn...µ1

(2) u†
(2)(p) (9.109)

Which is equivalent to:

Mµn...µ1 = −M∗µn...µ1 (9.110)

since the Feynman rules used on the RHS are the same for 〈f |(iT )|i〉 and 〈f |(iT )†|i〉,
and by extension this leads to (9.103).

Now, consider the same string of fermions, but with a sum over states inserted

somewhere in the middle, and with the rest of the amplitude calculated using the

conjugated Feynman rules. This would correspond to the RHS of the unitarity

equation. Again, we would like to show that the numerator of this quantity

is proportional to the numerator of the full (conjugated) amplitude. In order

to do so, let us first state a result concerning the vertices that are involved in

the diagrams. As we saw before, for any number of connected photons n ≥ 2,

we will have several diagrams (restricting ourselves without loss of generality to
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the s-channel) contributing to the amplitude. More precisely, for any two cubic

vertices connected by a propagator, there will be another diagram where such

contribution is replaced by a (s-channel contribution of a) quartic vertex, and the

rest of the amplitude is identical. Specifically, we will have:

Aµ2µ1 =
[

(−2ei)2(θµ2p1 + p2θ
µ2)(−i)(θµ1p+ p1θ

µ1) + (−2e2i)(s1 +m2)θµ2θµ1

]

= (4e2i)

[

θµ2p1θ
µ1p+ p2θ

µ2θµ1p+ p2θ
µ2p1θ

µ1 − θµ2
m2

2
θµ1

]

=
[

(−2ei)2(θµ2p1 + p2θ
µ2)(−i)(θµ1p+ p1θ

µ1)
]

s1=−m2

(9.111)

and it will always be the case that the quartic vertex contribution effectively

sets on-shell, in the numerator, the momentum propagating between the cubic

vertices. So that, any numerator for a string of fermions can be written as:

Aµn···µ1 = (−i)n−1

[
1∏

i=n

V µi

3 (−pi, pi−1)

]

si=−m2

(9.112)

where by
∏1

i=n, we mean the ordered contraction of cubic vertices, starting from

the outgoing fermion:

1∏

i=n

V µi

3 (−pi, pi−1) = (−2ei)(θµnpn−1 + pnθ
µn) · · · (−2ei)(θµ1p+ p1θ

µ1) (9.113)

Now that we have this result, we can look at the full numerator:

Ñ µn···µ1 = v(pn)Aµn···µq+1

√
2

m
qA∗µq ···µ1v†(p)

= v(pn)Aµn···µq+1

√
2

m
qA∗µq ···µ1p

√
2

m
u(p)

= −v(pn)Aµn···µq+1Aµq ···µ1u(p)

= (−i)v(pn)Aµn···µq+1(−i)Aµq ···µ1u(p)

= (−i)N µn···µ1

(9.114)

where in the third line we used (9.103) and in the last line the fact that any

amplitude can be built from lower order amplitudes with on-shell numerators

(9.112). Moreover, the results does not depend on the index q, and therefore is

valid for any cut along the string. Notice, that we recover the result from the

PhD Thesis 173 Johnny Espin



Chapter 9. Unitarity

first example where we had:

N = (−4e2i)F (q, ki), N ∗ = (+4e2i)F (q, ki), Ñ = (−4e2)F (q, ki) (9.115)

We therefore see that the numerators are proportional to each other. We will use

this result in the next subsection, but before we will prove similar results in the

case of loops.

Loops

First of all, if we consider a closed fermion loop (LHS of the unitarity equation),

we have trivially:

N µn···µ1 = (−1)Tr (Aµn···µ1) = (−1)Tr (A∗µn···µ1) = N ∗µn···µ1 (9.116)

since the traces are independent of the type of fermions involved inside the loop.

On the RHS, however, we will have something more complicated. Suppose the

loop is cut through the propagators labelled by k, l, then

Ñ µn···µ1 = Aµk+1···µlv(pk)v(pl)u
†(pl)u

†(pk)A∗µl+1···µk

= Aµk+1···µl
2

m2
plpkA∗µl+1···µk

= (−)i2Tr
(

Aµk+1···µl(−i)2Aµl+1···µk

)

= (−1)N µn···µ1

(9.117)

which again reproduces the result we obtained in the loop example.

9.4.5 Unitarity of spinors from scalar field theory

We will now use the results obtained about the numerators in order to factor

out the fermionic dependence (numerators) from the unitarity equation, and deal

instead with a purely scalar case. As before, we will treat separately the case of

a string of fermions with V ≥ 2 connected photons, and the fermionic loop.
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String of fermions

In order to conclude our proof of unitarity, let us rewrite the most general am-

plitude for a string of fermions as:

〈f |(iT )|i〉 =
∫ V∏

i=1

d4xie
ipx1e−iqxV

∫ I∏

j=1

d4pj

(2π)4
eipj(xj+1−xj)∆F (pj)N ({pj}, q, p)

(9.118)

with V the number of vertices, I = V − 1 the number of internal lines (propa-

gators), x1 the vertex attached to the incoming fermion with momentum p, xV

the vertex attached to the outgoing fermion with momentum q, and where we

have stripped off a factor of (−i)I from the numerator (as it was defined above)

in order to have the exact expression for the Feynman propagators. Also, we

have omitted the spacetime indices on the numerator. Let us now define a 4I

dimensional momentum variable as well as a 4I dimensional spacetime variable:

P I =
I⊕

j=1

pj, XI =
I⊕

j=1

(xj+1 − xj) (9.119)

as well as a propagator function:

D(P ) =
I∏

j=1

∆F (pj) (9.120)

The amplitude can then be rewritten as (dropping for a moment the q and p

dependence of the numerator):

〈f |(iT )|i〉 =
∫ V∏

i=1

d4xie
ipx1e−iqxV

∫ d4IP

(2π)4I
eiP XD(P )N (P ) (9.121)

The second integral is now simply rewritten as a 4I dimensional Fourier transform

of a product of functions. Using the convolution theorem, we have:

∫ d4IP

(2π)4I
eiP XD(P )N (P ) =

∫

d4IZ D(Z)N (X − Z) (9.122)

where D(Z) and N (Z) are the Fourier transforms into position space of their
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respective momentum space quantities. The full amplitude is now given by:

〈f |(iT )|i〉 =
∫ V∏

i=1

d4xie
ipx1e−iqxV

∫

d4IZ D(Z)N (X − Z; p, q) (9.123)

Let us look more carefully at the propagator function in position space:

D(Z) =
∫ I∏

j=1

d4pj

(2π)4
eipj(zj+1−zj)∆F (pj) =

I∏

j=1

∆F (zj+1 − zj) (9.124)

This is nothing but the first term in the LTE for scalar fields stripped off the

vertices factors! The same can be applied to the conjugated amplitude to obtain:

〈f |(iT )†|i〉

=
∫ V∏

i=1

d4xie
ipx1e−iqxV

∫ I∏

j=1

d4pj

(2π)4
eipj(xj+1−xj) (−∆∗

F (pj)) N ∗ ({pj}, q, p)

=
∫ V∏

i=1

d4xie
ipx1e−iqxV

∫

d4IZ D̄(Z)N (X − Z; p, q)

(9.125)

where we used N ∗ = −N , and

D̄(Z) = (−1)
∫ I∏

j=1

d4pj

(2π)4
eipj(zj+1−zj) (−∆∗

F (pj)) = (−1)I+1
I∏

j=1

∆∗
F (zj+1 − zj)

(9.126)

Now, the LHS of the unitarity equation becomes:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉 =
∫ V∏

i=1

d4xie
ipx1e−iqxV

×
∫

d4IZ
(

D(Z) + D̄(Z)
)

N (X − Z; p, q)

(9.127)

Let us look at the sum over the propagator functions:

D(Z) + D̄(Z) =
I∏

j=1

∆F (zj+1 − zj) + (−1)I+1
I∏

j=1

∆∗
F (zj+1 − zj) (9.128)

This expression is very similar to the LHS of the scalar LTE for a string of scalars,

PhD Thesis 176 Johnny Espin



Chapter 9. Unitarity

indeed we have in the scalar case:

i
I∏

j=1

i∆F (zj+1 − zj) + (−i)
I∏

j=1

(−i)∆∗
F (zj+1 − zj) = iI+1

(

D(Z) + D̄(Z)
)

(9.129)

On the other hand, the RHS is given by:

−
I∑

p=1









p−1
∏

j=1

i∆F (zj+1 − zj)



 i∆+(zp+1 − zp)





I∏

i=p+1

(−i)∆∗
F (zi+1 − zi)



 (−i)

+





p−1
∏

j=1

(−i)∆∗
F (zj+1 − zj)



 (−i)∆−(zp+1 − zp)





I∏

i=p+1

i∆F (zi+1 − zi)



 (i)





(9.130)

where the sum over p denotes all possible cuts. We can factor out the i factors

so that:

−(−i)I+1
I∑

p=1

(−1)p









p−1
∏

j=1

∆F (zj+1 − zj)



∆+(zp+1 − zp)





I∏

i=p+1

∆∗
F (zi+1 − zi)





+ (−1)I+1





p−1
∏

j=1

∆∗
F (zj+1 − zj)



∆−(zp+1 − zp)





I∏

i=p+1

∆F (zi+1 − zi)









(9.131)

and we define the above quantity as:

−(−i)I+1
I∑

p=1

(−1)p
(

D+
p (Z) + D−

p (Z)
)

(9.132)

The LTE for the scalar fields gives us therefore:

iI+1
(

D(Z) + D̄(Z)
)

= −(−i)I+1
I∑

p=1

(−1)p
(

D+
p (Z) + D−

p (Z)
)

(9.133)

or

(

D(Z) + D̄(Z)
)

= (−1)I
I∑

p=1

(−1)p
(

D+
p (Z) + D−

p (Z)
)

(9.134)
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We can plug this back in our unitarity equation:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉

=
∫ V∏

i=1

d4xie
ipx1e−iqxV

×
∫

d4IZ (−1)I
I∑

p=1

(−1)p
(

D+
p (Z) + D−

p (Z)
)

N (X − Z; p, q)

(9.135)

but because the energy flows from x1 to xV , the only non-vanishing contribution

is5:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉

=
∫ V∏

i=1

d4xie
ipx1e−iqxV

×
∫

d4IZ
I∑

p=1

(−1)I+pD+
p (Z)N (X − Z; p, q)

(9.136)

Let us now check the RHS. We have:

−
∑

phys n

〈f |(iT )†|n〉〈n|(iT )|i〉

= −
I∑

p=1

(−i)(−1)I+p
∫ V∏

i=1

d4xie
ipx1e−iqxV





∫
∏

j<p

d4pj

(2π)4
eipj(xj+1−xj)∆F (pj) ×

∫ d3pp

(2π)3(2ωp)
eipp(xp+1−xp)

×
∫
∏

i>p

d4pi

(2π)4
eipi(xi+1−xi)∆∗

F (pi)Ñ ({pj, pi}, pp, q, p)





=
I∑

p=1

(−1)I+p
∫ V∏

i=1

d4xie
ipx1e−iqxV





∫
∏

j<p

d4pj

(2π)4
eipj(xj+1−xj)∆F (pj) ×

∫ d3pp

(2π)3(2ωp)
eipp(xp+1−xp)

×
∫
∏

i>p

d4pi

(2π)4
eipi(xi+1−xi)∆∗

F (pi)N ({pj, pi}, pp, q, p)





(9.137)

5To see it explicitly, we can rewrite this amplitude as it was originally given.

PhD Thesis 178 Johnny Espin



Chapter 9. Unitarity

where we used Ñ = (−i)N and when we factor out (−i)I from the numerator

there is one extra factor to cancel the former (with the overall minus sign), and

there is a factor of (−1)I+p for the extra minus sign in each anti propagator. In

order to proceed as before, we need to rewrite the sum over intermediate states

as a four-dimensional integral:

∫ d3p

(2π)3(2ωp)
e±ip(x−y)f(p) =

∫ d4p

(2π)4
e±ip(x−y)(2π)θ(∓p0)δ(p

2 +m2)f(p)

(9.138)

so that we rewrite the RHS as:

−
∑

phys n

〈f |(iT )†|n〉〈n|(iT )|i〉

=
I∑

p=1

(−1)I+p
∫ V∏

i=1

d4xie
ipx1e−iqxV

×











∫ d4IP

(2π)4I
eiP X

∏

j<p

∆F (pj)∆
+(pp)

∏

i>p

∆∗
F (pi)

︸ ︷︷ ︸

D+
p (P )

N (P, q, p)











=
∫ V∏

i=1

d4xie
ipx1e−iqxV

I∑

p=1

∫

d4IZ D+
p (Z) N (Z −X, q, p)

(9.139)

and therefore we have proved the unitarity equation for a string of fermions:

LHS =
∫ ∏V

i=1 d
4xie

ipx1e−iqxV
∑I

p=1(−1)I+p
∫

d4IZ D+
p (Z) N (Z −X, q, p)

= RHS

(9.140)

Fermionic loop

We are left with the case of a fermionic loop, let us therefore rewrite the most

general amplitude for a loop:

〈f |(iT )|i〉 =
∫ V∏

i=1

d4xi

∫ V∏

j=1

d4pj

(2π)4
eipj(xj+1−xj)∆F (pj)N ({pj}) (9.141)

with xV +1 = x1 and this time the number of internal lines and of external particles
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I = N = V . We do not write explicitly the photon polarisations or plane waves

as this loop could be connected to a more general amplitude. As before, we define

a generalised momentum and position which are this time 4V dimensional:

P I =
V⊕

j=1

pj, XI =
V⊕

j=1

(xj+1 − xj) (9.142)

as well as a propagator function:

D(P ) =
V∏

j=1

∆F (pj) (9.143)

The amplitude can then be rewritten as:

〈f |(iT )|i〉 =
∫

d4VX
∫ d4V P

(2π)4V
eiP XD(P )N (P ) (9.144)

As before, the second integral is now simply rewritten as a 4V dimensional Fourier

transform of a product of functions. Using the convolution theorem, we have:

∫ d4V P

(2π)4V
eiP XD(P )N (P ) =

∫

d4VZ D(Z)N (X − Z) (9.145)

where D(Z) and N (Z) are the Fourier transforms into position space of their

respective momentum space quantities. The full amplitude is now given by:

〈f |(iT )|i〉 =
∫

d4VXd4VZ D(Z)N (X − Z) (9.146)

Let us look more carefully at the propagator function in position space:

D(Z) =
∫ V∏

j=1

d4pj

(2π)4
eipj(zj+1−zj)∆F (pj) =

V∏

j=1

∆F (zj+1 − zj) (9.147)

Again, this is nothing but the first term in the LTE for scalar fields stripped off

the vertices factors. The same can be applied to the conjugated amplitude to
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obtain:

〈f |(iT )†|i〉 =
∫ V∏

i=1

d4xi

∫ V∏

j=1

d4pj

(2π)4
eipj(xj+1−xj) (−∆∗

F (pj)) N ∗ ({pj}, q, p)

=
∫

d4VXd4VZ D̄(Z)N (X − Z)

(9.148)

where we used N ∗ = N for loops, and

D̄(Z) =
∫ V∏

j=1

d4pj

(2π)4
eipj(zj+1−zj) (−∆∗

F (pj)) = (−1)V
I∏

j=1

∆∗
F (zj+1 − zj) (9.149)

Now, the LHS of the unitarity equation becomes:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉

=
∫

d4VXd4VZ
(

D(Z) + D̄(Z)
)

N (X − Z)
(9.150)

Let us look at the sum over the propagator functions:

D(Z) + D̄(Z) =
V∏

j=1

∆F (zj+1 − zj) + (−1)V
V∏

j=1

∆∗
F (zj+1 − zj) (9.151)

This expression is very similar to the LHS of the scalar LTE for a string of scalars,

indeed we have in the scalar case:

(−1)
V∏

j=1

i∆F (zj+1 − zj) + (−1)
V∏

j=1

(−i)∆∗
F (zj+1 − zj) = (−1)iV

(

D(Z) + D̄(Z)
)

(9.152)

In order to write the RHS, recall that in this case the LTE implies that one can

only have one sequence of propagators followed by one sequence of antipropaga-

tors (linked by ∆±). Indeed, we only consider single cuts that split the loop into

two pieces. In order to write an expression for this sum over cuts, notice that the

expression in terms of (anti-)propagators only depends on the distance between

the two cut propagators, and on the position of one of the two cuts. Therefore

we define the distance between the first cut propagator and the second:

δi ≡ ℘(pi+δi) − ℘(pi) (9.153)
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where ℘(pi) = i is the position of the ith propagator, and the subscript i in δi

labels the first cut propagator we consider. Then, we can write the RHS as:

−
V∑

i=1

V −1∑

δi=1

i∆+(zi+1 − zi)





i−1+δi
∏

j=i+1

(−i)∆∗
F (zj+1 − zj)





× (−i)∆−(zi+1+δi − zi+δi)





i−1+V∏

j=i+1+δi

i∆F (zj+1 − zj)





(9.154)

Notice that the number of (anti-)propagators in the sum does not depend on

the position of the first cut propagator (by symmetry of the loop) but only on

δi. Moreover, for δi = 1, there is no antipropagator, and for δi = V − 1, no

propagator. We can factor out the explicit i dependence:

(−1)iV
V∑

i=1

V −1∑

δi=1

(−1)δi

∆+(zi+1 − zi)





i−1+δi
∏

j=i+1

∆∗
F (zj+1 − zj)





× ∆−(zi+1+δi − zi+δi)





i−1+V∏

j=i+1+δi

∆F (zj+1 − zj)





(9.155)

and we define the above quantity as:

(−1)iV
V∑

i=1

V −1∑

δi=1

(−1)δiDδi(Z) (9.156)

The LTE for the scalar fields gives us therefore:

(−1)iV
(

D(Z) + D̄(Z)
)

= (−1)iV
V∑

i=1

V −1∑

δi=1

(−1)δiDδi(Z) (9.157)

or

(

D(Z) + D̄(Z)
)

=
V∑

i=1

V −1∑

δi=1

(−1)δiDδi(Z) (9.158)
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We can plug this back in our unitarity equation:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉

=
∫

d4VXd4VZ
V∑

i=1

V −1∑

δi=1

(−1)δiDδi(Z)N (X − Z)
(9.159)

for particles that are all incoming, there cannot be only one circled vertex in the

RHS of the LTE (otherwise the delta function is not satisfied at that vertex),

therefore, there must at least be one anti-propagator. Hence, in Dδi(Z), we must

have δi > 1. The only non-vanishing contribution is:

〈f |(iT )|i〉 + 〈f |(iT )†|i〉

=
∫

d4VXd4VZ
V∑

i=1

V −1∑

δi=2

(−1)δiDδi(Z)N (X − Z)
(9.160)

Let us now check the RHS. We have:

−
V∑

i=1

V −1∑

δi=2

(−1)δi−1
∫ V∏

j=1

d4xj

(
∫ d3pi

(2π)3(2ωi)
eipi(xi+1−xi)

×
∫ i−1+δi

∏

j=i+1

d4pj

(2π)4
eipj(xj+1−xj)∆∗

F (pj)
∫ d3pi+δi

(2π)3(2ωi+δi)
e−ip

i+δi (x
i+1+δi −x

i+δi )

×
∫ i−1+V∏

j=i+1+δi

d4pi

(2π)4
eipj(xj+1−xj)∆F (pj)Ñ ({pj})





=
V∑

i=1

V −1∑

δi=2

(−1)δi
∫ V∏

j=1

d4xj

(
∫ d3pi

(2π)3(2ωi)
eipi(xi+1−xi)

×
∫ i−1+δi

∏

j=i+1

d4pj

(2π)4
eipj(xj+1−xj)∆∗

F (pj)
∫ d3pi+δi

(2π)3(2ωi+δi)
e−ip

i+δi (x
i+1+δi −x

i+δi )

×
∫ i−1+V∏

j=i+1+δi

d4pi

(2π)4
eipj(xj+1−xj)∆F (pj)N ({pj})





(9.161)

where we used Ñ = (−1)N and when we factor out (−i)V from the numerator

there are two extra factors to cancel the former. Moreover for each antiprop-

agator, there is a factor of (−1) ‘unused’, so that in the end there is an extra

factor of (−1)δi

. In order to proceed as before, we need to rewrite the sum over
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intermediate states as a four-dimensional integral:

∫ d3p

(2π)3(2ωp)
e±ip(x−y)f(p) =

∫ d4p

(2π)4
e±ip(x−y)(2π)θ(∓p0)δ(p

2 +m2)f(p)

(9.162)

so that we rewrite the RHS as:

−
∑

phys n

〈f |(iT )†|n〉〈n|(iT )|i〉 =
V∑

i=1

V −1∑

δi=2

(−1)δi
∫

d4VX

×











∫ d4IP

(2π)4I
eiP X ∆+(pi)

i−1+δi
∏

j=i+1

∆∗
F (pj)∆

−(pi+δi)
i−1+V∏

k=i+1+δi

∆F (pk)

︸ ︷︷ ︸

D
δi (P )

N (P )











=
V∑

i=1

V −1∑

δi=2

(−1)δi
∫

d4V dXd4IZ Dδi(Z) N (Z −X)

(9.163)

and therefore we have proved the unitarity equation for a fermionic loop:

LHS =
∫

d4VXd4VZ
V∑

i=1

V −1∑

δi=2

(−1)δiDδi(Z)N (X − Z) = RHS (9.164)

9.5 Discussion

In this chapter we proved that the second-order Dirac theory is indeed unitary

even though its Lagrangian is not hermitian. After having developed the tools

necessary for the proof in the case of a scalar field, we have shown that the uni-

tarity of the theory relies deeply on the fact that external (physical) states are

subject to a set of reality conditions. Without these, it would have been impos-

sible to link the complex conjugated amplitudes to their original counterparts.

Furthermore, the structure of the interactions are also constrained by, this time, a

fully non-linear set of equations. Indeed, if we consider the theory as a construc-

tion arising from the first-order formalism, the form of the vertices is dictated by

the gauge-covariant Dirac equation. This, in turn, forces the quartic vertex to be

how it is, and therefore allows for the necessary cancellations and factorisations

in the unitary equation. Notice that if, instead, we had considered the second-

order theory as fundamental, the quartic vertex would have been included in a
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Noether construction of the (locally) gauge-invariant Lagrangian. Together with

the constraint on external states, the quartic vertex ensure the unitarity of the

theory.

We argue that unitarity holds because of the right balance of interactions and

constraints, the reader might wonder what would happen if one were to add an

additional quartic interaction to the Lagrangian, such as:

Lλ ∼ λ(ξχ)2 (9.165)

Because the fermions have mass dimension one in the second-order formalism (and

their propagator is scalar), this interaction is power-counting renormalisable6,

besides having a tree-level amplitude ∼ (s/m2)2 which is a sign of its effective

character. However, once can see that in order to ensure the unitarity of the

theory (assuming the same reality conditions on the external states ∂ξ ∼ mχ†),

one must also include:

Lλ∗ ∼ λ∗ 1

m4
(∂ξ∂χ)2 (9.166)

which is non-renormalisable7. We therefore see that in the second-order formal-

ism, there is a clear tension between renormalisability and unitarity. The fact

that the above interactions (when required to be unitary) are non-renormalisable

is intuitively understood as they arise from a (Ψ̄Ψ)2 term in the first-order for-

malism, which is known to be non-renormalisable.

Aside from the case of second-order fermions that was considered here, this proof

of unitarity can be generalised to other non-hermitian theories that have a scalar-

type propagator. Indeed, for such a theory to be unitary, some reality conditions

are needed. Using a generalisation of the results of Section 9.4.4, we can see that

this will impose stringent constraints on the numerators already at tree-level. For

example, in a spinor-helicity formalism, one must require the theory to produce

the same helicity configurations using both sets of (usual or conjugated) Feynman

rules. At this time, it seems that it is sufficient for a theory that is non-hermitian

to be PT symmetric, as a future line of research, it would be worth exploring this

in the context of the constraints numerators must satisfy.

6If there is only the above interaction present in the theory, the superficial degree of diver-
gence is D = 4 − Nf , with Nf the external number of fermions. This is to be compared to the
usual D = 4 − Nf + Pf where Pf is the number of propagators.

7D = 4L since for each internal propagator there will be two derivatives from the vertices
in the numerator
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Unification

10.1 Introduction

We have seen in Chapter 4 that our second-order Lagrangian (4.34) is much

simpler and more compact than the first-order Lagrangian. Moreover, in joining

together the barred fermions, we have made explicit an approximate symmetry

of the theory. In this spirit, we will discuss in this chapter different “unifications”

in the second-order formalism. We do not claim that the groups that we will

introduce below represent new GUTs, but rather that the Lagrangian of the SM

can be written using higher approximate symmetries in a much simpler way.

Section 10.3 is based on work done in [30], whereas the other sections contain

mainly ongoing research. The main result of this chapter can be found in Section

10.6. For an introduction to group theory, we refer the reader to [43, 44] for a

physicist’s perspective, while [45] is a comprehensive mathematical reference. We

mainly use the same conventions as in [43].

10.2 SO(8) unification

As we have seen, each generation of fermions has 16 components. Furthermore,

in our second-order Lagrangian where the weak SU(2) is frozen, the fermionic

representations appearing are real. Indeed, for each SU(3) triplet, there is an anti-

triplet with opposite electromagnetic charge and the same occurs for the singlets.

This allows us to look for a 16 dimensional real representation of a gauge group

that is broken down to SU(3)×U(1), thereby escaping the embedding constraints

imposed by the weak charges. The simplest group containing a 16-dimensional
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real irreducible representation is SO(9) with its spinor representation. However,

SO(8) contains two real 8-dimensional representations, we will therefore start

with the latter. We want to find an embedding SU(3) × U(1) ⊂ SO(8). The

Dynkin diagram for this group is

D4 ≡ so(8)

If we denote its simple roots by αi, i = 1, . . . , 4, a useful representation for the

latter is:

αi = ei − ei+1, α4 = e3 + e4, ei · ej = δij (10.1)

Its Cartan matrix is given by:

Aij =











2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 −1 0 2











(10.2)

so that the simple roots in the Dynkin basis are given by:

(αi)j = Aij (10.3)

A suitable embedding is obtained by considering the SU(3) subgroup generated

by α1 and α2 (the root on the left and the middle root). As for which representa-

tion is needed, SO(8) has no 16 dimensional irreducible representation, however

it has three 8 dimensional representations (triality).

The spinor irreps of SO(8) are given by the decomposition of their highest-weight

in terms of Dynkin indices:

8(0010) =
(

0 0 1 0
)

8(0001) =
(

0 0 0 1
)

(10.4)

Our choice of embedding leads us to consider the two spinor representations
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8(0010) + 8(0001). The first one decomposes under SU(3) as:

8(0010) →

3 ⊂
(

1 0 0 −1
) (

−1 1 0 −1
) (

0 −1 1 0
)

3̄ ⊂
(

0 1 −1 0
) (

1 −1 0 1
) (

−1 0 0 1
)

1 ⊂
(

0 0 1 0
)

1 ⊂
(

0 0 −1 0
)

(10.5)

and the second as:

8(0001) →

3 ⊂
(

1 0 −1 0
) (

−1 1 −1 0
) (

0 −1 0 1
)

3̄ ⊂
(

0 1 0 −1
) (

1 −1 1 0
) (

−1 0 1 0
)

1 ⊂
(

0 0 0 1
)

1 ⊂
(

0 0 0 −1
)

(10.6)

This has been derived in the following way: we seek an embedding of the SM un-

broken gauge group inside SO(8) and the latter can be found by considering the

reduced Dynkin diagram obtained after omitting the last two roots in D4. The

new diagram describes an embedding SU(3) × U(1) ⊂ SO(8) where the SU(3)

sector is generated by the first two simple roots. Now, in order to see how our

spinor representation transforms under the subgroup, one needs simply remem-

ber that for SU(3) the (anti-)triplet representation is obtained by a successive

lowering of the highest-weight state by the two simple roots.

We still have to check the electric charges of those particles. In order to do so,

we need to find the charge generator Q. The latter is a linear combination of

Cartan’s generators of SO(8) and as such can be written as1:

Q =
(

a b c d
)

(10.7)

For the U(1) subgroup to commute with SU(3), we have to require that the

charges within an (anti-) triplet are equal. Using that the charge of a state λ is

given by:

Q · λ = qλ (10.8)

1In the Chevalley basis where [Eα, E−α] = Hα.
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This allows us to define a charge operator

Q = −1

3

(

1 2 3 0
)

(10.9)

and we obtain the branching rule

8(0010) + 8(0001) = 3 2
3

+ 3− 1
3

+ 3̄− 2
3

+ 3̄ 1
3

+ 1−1 + 10 + 10 + 11 (10.10)

Later on, we will construct the embedding of the SM into SO(9) in the same way.

10.3 SU(2) × SU(4) unification

We now construct a Pati-Salam-like unification [27]. Consider the second-order

Lagrangian in the form (4.34) that we recall here:

LSM,f = −2DQ̄iDQi − 2DL̄iDLi − ρ2
(

ΛqQ̄
)i
Qi − ρ2

(

ΛlL̄
)i
Li (10.11)

Here the quarks’ kinetic term contains a sum over the three colour indices.

Spelling this out we have the following kinetic term:

−2(DQ̄i)r(DQi)
r − 2(DQ̄i)g(DQi)

g − 2(DQ̄i)b(DQi)
b − 2DL̄iDLi (10.12)

where r, g, b are the three colours and (DQi)
∗ denotes the projection of a triplet

on a particular colour index. As in the Pati-Salam unification, it seems legitimate

at the level of this Lagrangian to define the leptons as the fourth “colour”. This

suggests that we put all of the SM fermions into two multiplets:

Si :=




ur

i ug
i ub

i νi

dr
i dg

i db
i ei



 , S̄i :=











ūr
i d̄r

i

ūg
i d̄g

i

ūb
i d̄b

i

ν̄i ēi











(10.13)

We can then rewrite the Lagrangian in terms of Si, S̄i, using covariant deriva-

tives appropriate for each field. However, what seems to spoil this picture is the

different electric charges of the quarks and leptons. As we have seen above, the

embedding into a larger gauge-group is not always straightforward. The same

problem arises in the usual Pati-Salam treatment, where it is solved by using a

non-trivial embedding of the SM gauge group into a larger group, see e.g. [28] for
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a nice exposition.

Thus, to understand what is happening with the electric charges, we need to

understand how the SM symmetry group sits inside some larger gauge group. If

for SO(8) we have carried out the construction at the level of the representation

in a purely algebraic way, we will here do it at the level of the action of the group

on the states. Note that the symmetry group that is unbroken in the Lagrangian

(10.11) is U(1) × SU(3). The weak SU(2) no longer acts on our fermions, as

they are all SU(2)-invariant objects. However, there is a leftover from this gauge

group in the form of the massive gauge field (also SU(2)-invariant) that acts on

doublets Qi, Li and does not act on Q̄i, L̄i. So, the group SU(2) is broken, but

the fact that the fermions come as doublets tells us that it was there. Similarly,

now that we put in (10.13) leptons on the same footing as the quarks, it appears

that there is an SU(4) behind this construction. So, we take SU(2) × SU(4) as

the GUT gauge group that acts on multiplets Si, S̄i, and look for an embedding

of U(1) × SU(3) into it. The sought embedding is given by

U(1) × SU(3) ∋ {α, h} →









α3 0

0 α−3



 ,




αh 0

0 α−3










∈ SU(2) × SU(4)

(10.14)

where in the top-right corner of the second matrix, we have a 3 × 3 matrix, and

therefore (for example for h = 1) α ≡ αI3. Let us check how this works out for

the charges. According to this prescription the U(1) acts on the up quarks as

ui → α1+3ui, which corresponds to the correct electric charge of 4/6 = 2/3 for α =

e1/6. Similarly, for the down quarks we have di → α1−3di, which gives the correct

electric charge of −2/6 = −1/3. For the neutrino we have νi → α3−3νi, which

gives zero electric charge, and for the electrons ei → α−3−3ei, which gives the

electric charge −1. This gives all the correct quantum numbers of the unbarred

fermions. For the barred ones it is clear that we simply have to use the hermitian

conjugate representation of SU(2)×SU(4) (but not of the Lorentz group, because

the barred fermions are still unprimed 2-component spinors).

We can now write the kinetic terms for all the fermions in a very compact form

−2DS̄iDSi (10.15)

Here D is the covariant derivative relevant for each multiplet. The SU(3) and

U(1) connections are present in both DSi and DS̄i in a symmetric way, with the
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hermitian conjugate connections appearing in DS̄i. This is because the represen-

tation of the unbroken gauge group of the SM is indeed real as mentioned earlier.

However, the massive SU(2) gauge field appears asymmetrically in that DS̄i is

diagonal in the isospin indices, while DSi is not, see Section 4.4. Let us now

discuss the mass terms. These can again be written in terms of S̄i, Si as

−ρ2 S̄iΛ
ijSj (10.16)

The mass matrices Λij appearing here are complicated objects. Each of them

is an 8 × 8 block matrix that consists of 4 different entries Λij
u ,Λ

ij
d ,Λ

ij
ν ,Λ

ij
e . It

thus breaks SU(2) symmetry completely, while the SU(4) is broken down to

U(1) × SU(3).

Overall, the sum of two terms (10.15), (10.16) gives the Lagrangian:

−2DS̄iDSi − ρ2 S̄iΛ
ijSj (10.17)

We note that the unification described here is different from the Pati-Salam

model, as no second SU(2) has been used. This seems natural in the second-order

formalism in which the weak SU(2) has been frozen from the beginning by using

physical variables. In our framework the unbarred doublets simply transform

under the hermitian conjugate representation of SU(2) × SU(4) and therefore

the same SU(2) acts on both barred and unbarred particles. Furthermore, in the

Pati-Salam unification the representations that are needed are complex because

both the usual (left-)weak and right-weak SU(2)s are unbroken and act differently

on the doublets. Here we have the following (real) reducible representation:

S ⊕ S̄ = (2,4) ⊕ (2, 4̄) ∈ SU(2) × SU(4) (10.18)

whereas in Pati-Salam, the representation used is:

S ⊕ S̄ = (2,1,4) ⊕ (1,2, 4̄) ∈ SU(2) × SU(2) × SU(4) (10.19)

which is complex as clearly we have (2,1,4) 6= (1,2, 4̄) (with 2̄ ∼ 2). Notice now

that SU(2) × SU(4) ∼ SO(3) × SO(6) ⊂ SO(9). Below we discuss the direct

embedding of U(1) ×SU(3) ⊂ SO(9), and in the last section we will see how the

former can be constructed.
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10.4 SO(9) unification

We give an algebraic derivation of the particle content of the aforementioned 16-

dimensional spinor irrep of SO(9) by making use of Dynkin diagrams and of the

highest weight construction. The Dynkin diagram of SO(9) belongs to the Cn

series for (rank) n = 4:

C4 ≡ so(9)

If we denote its simple roots by αi, i = 1, . . . , 4, a useful representation for the

latter is:

αi = ei − ei+1, α4 = e4, ei · ej = δij (10.20)

Its Cartan matrix is given by:

Aij =

















2 −1 0 0

−1 2 −1 0

0 −1 2 −2

0 0 −1 2

















(10.21)

so that the simple roots in the Dynkin basis are given by:

(αi)j = Aij (10.22)

The spinor irrep of SO(9) is given by the decomposition of its highest-weight in

terms of Dynkin indices:

16 =
(

0 0 0 1
)

(10.23)

We can therefore construct the whole irrep in the Dynkin basis. We do it here

explicitly:
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(

0 0 0 1
)

(

1 −1 0 1
) (

0 1 0 −1
)

(

0 0 0 −1
)

(

0 0 1 −1
)

(

0 1 −1 1
)

(

−1 0 0 1
) (

1 −1 1 −1
)

(

−1 0 1 −1
) (

1 0 −1 1
)

(

0 −1 1 −1
)

(

0 0 −1 1
)

(

−1 1 −1 1
) (

1 0 0 −1
)

(

0 −1 0 1
) (

−1 1 0 −1
)

Figure 10.1: Highest-weight construction of the spinor representation of SO(9)
in the Dynkin basis.

where we denoted by an arrow the action of the simple roots α1 and α2 and by

dotted lines the others. As before, we seek an embedding of the SM unbroken

gauge group inside SO(9). Again, a good embedding can be found by consid-

ering the reduced Dynkin diagram obtained after omitting the last two roots in

C4. The new diagram describes an embedding SU(3) ×U(1) ⊂ SO(9) where the

SU(3) sector is generated by the first two simple roots. Now, in order to see

how our spinor representation transforms under the subgroup, one needs simply

remember that for SU(3) the (anti-)triplet representation is obtained by a suc-
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cessive lowering of the highest-weight state by the two simple roots. It is easy to

see that states linked by arrows decompose appropriately under SU(3) therefore,

we see that the 16 decomposes (under SU(3)) as follows:

16 = 3 + 3 + 3̄ + 3̄ + 1 + 1 + 1 + 1 (10.24)

which maps into the SM particle content as far as color is concerned. We still

have to check the electric charges of those particles. In order to do so, we need

to find the charge generator Q. Again:

Q =
(

a b c d
)

(10.25)

For the U(1) subgroup to commute with SU(3), we have to require that the

charges within an (anti-) triplet are equal. In order to fix our conventions, we

have the following triplets:

(

1 0 −1 1
)

(

−1 1 −1 1
)

(

0 −1 0 1
)

,

(

1 0 0 −1
)

(

−1 1 0 −1
)

(

0 −1 1 −1
)

(10.26)

while the other two 3 dimensional weight subspaces are anti-triplets and the

remaining four states are singlets. Using that the charge of a state λ is given by:

Q · λ = qλ (10.27)

We obtain, on the one hand:

Q = −1

3

(

1 2 3 0
)

(10.28)

which can be understood as Q = −1
3
(H1 + 2H2 + 3H3), H i being the Cartan

generators, and on the other hand:

16 = 3 2
3

+ 3− 1
3

+ 3̄− 2
3

+ 3̄ 1
3

+ 1−1 + 10 + 10 + 11 (10.29)

which corresponds to the particle content of the SM. Therefore, we see that the

fermionic states of the (second-order) SM can be gathered into a single SO(9)

irrep.
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10.5 SO(10) unification

It is known that all left-handed fermions of the SM can be put into a single 16-

dimensional irreducible representation of SO(10), see e.g. [37], section 97 or [28].

So, our unprimed fermions S̄i, Si can be combined into a single multiplet of

SO(10). This SO(10) is obtained from the already encountered SU(2) × SU(4)

by adding another SU(2) that mixes S̄i and Si. Putting these groups together we

have SU(2) × SU(2) × SU(4) ∼ SO(4) × SO(6) ⊂ SO(10). The Lagrangian one

obtains is of the same schematic form (10.11), now with a single 16-dimensional

fermionic multiplet F i. We will not explore this theory any further, since for our

purposes it is enough to consider the above SO(9) irrep.

We also note that it is the SO(10) unification scheme that incorporates the

SU(5) ⊂ SO(10) viewpoint [26] on the SM fermions. The second-order ver-

sion of the SU(5) model is also possible, but we refrain from spelling out the

details as it has no immediate added interest.

10.6 Gauge-gravity unification

Earlier, we saw that the unprimed fermions of the SM (16 per generation) sit

nicely into the 16-dimensional spinor irrep of SO(9). However, a higher “unifica-

tion” can occur if we consider gravity as a gauge theory. The idea of reformulating

gravity in terms of new variables dates back to [46], where an SU(2) connection

was introduced to account for the gravitational degrees of freedom of the theory.

More recently, a novel description of gravity as diffeomorphism invariant gauge

theory was developed, see [47–49]. It seems therefore natural, in our efforts to

seek the nicest irrep possible for the fermions, to take their spinor index into

account. Indeed, as it is well known, the Lorentz group SO(1, 3) is isomorphic

(up to complexification) to SU(2)L × SU(2)R and all the field representations of

the former can be built using the latter. Fermions are no exception to this rule

and unprimed spinors live in the (2,1) irrep, while primed fermions live in the

(1,2)2. Nevertheless the two irreps are linked by complex conjugation, and based

on the gauge-theoretical approach to gravity, it is not a leap of faith to consider

2In this chapter we use the dimensional notation for irreps. The representation (2, 1) would
be denoted ( 1

2 , 0) in a spin notation.
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the extended symmetry group for the SM representations to be

GSM+GR = SO(9) × SO(3)GR (10.30)

where we used to well known isomorphism SO(3) ∼ SU(2). The representation

we need is (for the unprimed fermions only at this point):

F = (16,2) (10.31)

where F denotes the fermions multiplet, and we have now a 32 dimensional object

that takes into account the doubling of the original 16 due to the fact that spinors

are SO(3)GR doublets. Once this has been set, the simplest embedding that can

be considered is the obvious:

SO(9) × SO(3)GR ⊂ SO(12) (10.32)

This embedding is the most natural, because SO(12) possesses a 32-dimensional

(pseudo-)real spinor representation. Not only that, but it actually has two 32-

dimensional spinor irreps, so that the second can account for the primed fermions

if needed! It turns out that this embedding exists, and after a “breaking”

SO(12) → SO(9) × SO(3)GR (10.33)

its spinor irreps transform in the right manner under its subgroup:

32 = (16,2), 32′ = (16,2) (10.34)

In what follows we will be particularly interested in a more direct embedding of

the SM symmetry group, even though the embedding we have just described can

be considered as an intermediate step. More precisely we want:

SO(12) ⊃ SO(9) × SO(3)GR

⊃ SO(6)c × SO(3)W × SO(3)GR ∼ SU(4)c × SU(2)W × SU(2)GR

(10.35)

As far as representations are concerned we want:

32 = (4,2,2) ⊕ (4̄,2,2) (10.36)
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This would correspond to the colour-weak representations of Section 10.3 with

the spinor index taken into account. In this section, we will explicitly construct

the representation using a Clifford Algebra that generates SO(12) and its subse-

quent ladder operators that generate the SU(6) ⊂ SO(12) subgroup. This will

allow us to construct and name all the states that appear in the 32 in terms of

their SM quantum numbers. Moreover, using the the SU(6) subgroup that we

have just mentioned, we will be able to represent this states as antisymmetric

tensors (forms) living in a 6-dimensional complex space. This brings along many

investigation opportunities that we will mention in the Discussion, but before

considering the full SO(12) algebra we will shortly focus on a toy-model that

describes a neutrino-electron doublet.

10.6.1 Quick reminder: SO(2n) spinor irreps

We would like to give a short reminder on the way spinor representations of

SO(2n) can be built using Clifford Algebras (CA). We will focus on the “even”

orthogonal groups as these will be the main focus in this section. In order to

build their spinor irrep(s), we construct the following CA:

{ΓI ,ΓJ} = 2δIJ , I, J = 1, . . . , 2n+ 1 (10.37)

The algebra generators are then constructed as:

Mij =
1

4i
[Γi,Γj] , i, j = 1, . . . , 2n (10.38)

and the last gamma matrix that was not used commutes with all of the generators:

Γ2n+1 = (−i)n
2n∏

i=1

Γi, [Γ2n+1,Mij] = 0, ∀i, j (10.39)

This implies that the SO(2n) (Dirac) spinor representations are in fact reducible,

and the above gamma matrix acts as a projector onto two (Weyl) irreps:

P± =
1

2
(1 ± Γ2n+1) → Dn, Dn−1 (10.40)

where Dn, Dn−1 denote the two irreps and both have dimension 2n−1. Fur-

thermore, depending on the value of n, they are either (pseudo-)real or complex

conjugate to each other. All we need to know here is that for SO(6) they are
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complex and for SO(12) they are pseudo-real.

Using the aforementioned CA, we can build the two irreps in the following way.

First, define a set of (pairs of) ladder operators:

As :=
1

2
(Γ2s−1 − iΓ2s), A†

s :=
1

2
(Γ2s−1 + iΓ2s) (10.41)

with s = 1, . . . , n. They form a set of canonically normalised ladder operators, in

the sense that:

{As, Ar} = 0 =
{

A†
s, A

†
r

}

,
{

As, A
†
r

}

= δrs (10.42)

Furthermore, the set of creation operators
{

A†
s

}

generates a SU(n) ⊂ SO(2n)

subalgebra, and with respect to the former, they are tensor operators that trans-

form according to its defining representation3. Now, it only remains to construct

the spinor irreps of SO(2n). We mentioned that there are two such irreps, and

these are given by their fundamental weights. We could use the simple roots

to construct all the states appearing in the irreps, however, we decide to take

a different approach that is closer in spirit to what is usually done for physical

systems. Therefore, consider the lowest weight (or vacuum). Let us denote it by:

|0〉, As|0〉 = 0, ∀s (10.43)

Because each pair of ladder operators acts on a separable spin 1/2 subspace, we

can also use a spin up-down notation to label the states. Therefore, we have

equivalently:

|0〉 ≡
⊗

n

|−〉 (10.44)

We will use both notations in the two examples that we work out below, however

let us, for now, focus on the properties of the states. Because the creation op-

erators can also be seen as tensor operators, the first excited states are just the

defining representation of SU(n):

A†
s|0〉 ∼ n (10.45)

3Precisely: Ta =
∑

rs A†
r [Ta]

(n)
rs As where T

(n)
a denotes the defining representation’s genera-

tors of SU(n) and
[
Ta, A†

s

]
=
∑

r A†
r [Ta]

(n)
rs .
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Next, two “particle” states will transform as a rank-two antisymmetric tensor

because the creation operators anti-commute:

A†
sA

†
r|0〉 ∼ (n ⊗ n)a (10.46)

Similarly, we generate all the higher-rank antisymmetric tensors up to n. We

therefore have:

Dn ⊕Dn−1 =
n∑

m=0

[m] (10.47)

where [m] denotes the rank-m antisymmetric irrep. Equivalently, these spinors

irreps can be thought of as m−forms in n complex dimensions, so that:

Dn ⊕Dn−1 = ΛCn (10.48)

Finally, because the last gamma matrix Γ2n+1 anticommutes with the creation

operators, it commutes with an even number of them, and therefore (as we have

already mentioned) the Dirac spinor splits into two Weyl irreps. In terms of

forms, we have:

Dn ⊕Dn−1 = Λe
C

n ⊕ Λo
C

n (10.49)

where e, o stand for even and odd, and which irrep is matched to which forms’

subspace depends on the value of n. We will make the details explicit in the two

examples we discuss below.

10.6.2 Toy model: SO(3)W × SO(3)GR ⊂ SO(6)

Let us now focus our attention on a simple toy model. Consider a single generation

weak doublet consisting of a neutrino (q = 0) and an electron (q = −1). Their

weak isospin is +1/2 and −1/2 respectively. Furthermore, we consider a second-

order description of their dynamics, so that their field representation is a doublet

of unprimed spinors. In matrix form, the particle content can be described as:

χa
A ≡




ν1 ν2

e1 e2



 (10.50)
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where A = 1, 2 is their spinor index. In terms of groups and representations, the

symmetry group is SU(2)W × SU(2)GR ∼ SO(3)W × SO(3)GR and their irrep is:

χ ∼ (2,2) (10.51)

We would like to consider an embedding of that group into SO(6) ∼ SU(4) and

because of the dimension of the representation, it is natural to look at (one of)

the Weyl spinors of SO(6):

4 = (2,2) or 4̄ = (2,2) (10.52)

At this point, we could choose to work with the first irrep without loss of gener-

ality. Below we will see that both arise naturally in our construction.

We would like to construct explicitly the generators of the subgroup starting from

the generators of SO(6). In order to do so, notice:

6 = (4 ⊗ 4)a (10.53)

where 6 is the vector irrep of SO(6). Using the constraint we want to impose

(10.52), we have:

6 = (3,1) ⊕ (1,3) (10.54)

where on the LHS we have an SO(6) irrep and on the RHS we have SO(3)W ×
SO(3)GR representations. The above equation means that a 6-dimensional vector

decomposes into two 3-dimensional vectors. Let us see what this tells us about

the generators. As we have done above, we have now in hands a construction of

the SO(6) generators using 6 gamma matrices:

Mij =
1

4i
[Γi,Γj] , i, j = 1, . . . , 6 (10.55)

and we have an extra matrix Γ7 from which we can build a projector. The above

embedding leads us to consider the following generators for the subalgebra:

Jij = Mij, i, j = 1, 2, 3 → SO(3)W (10.56)

Kij = Mij, i, j = 4, 5, 6 → SO(3)GR (10.57)

This (explicit) embedding has all the right properties we have stated above. In
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order to see it, we can explicitly construct all the states. As it is usually done

for SU(2) algebras, we construct two “spin” ladder operators and a measur-

able operator. It is usual to choose the three Cartan generators of SO(6) to be

M12, M34, M56 and therefore, we fix M12 ≡ J3, M56 ≡ K3, the rest of the

generators easily follow. To summarise:







J3 ≡ M12

J2 ≡ M31

J1 ≡ M23

, J± =
1√
2

(J1 ± iJ2) (10.58)







K3 ≡ M56

K2 ≡ M45

K1 ≡ M64

, K± =
1√
2

(K1 ± iK2) (10.59)

with, for example:

[

J3, J±
]

= ±J±,
[

J+, J−
]

= J3 (10.60)

We would like to have an expression for these generators in terms of the SU(3)

ladder operators (10.41). Using (10.38) and the inverse transformation:

Γ2s−1 = As + A†
s, Γ2s = i

(

As − A†
s

)

(10.61)

we can obtain a general formula for the generators:

M2s,2r =
i

2

(

AsAr + A†
sA

†
r − A†

sAr − AsA
†
r

)

(10.62)

M2s−1,2r−1 =
1

2i

(

AsAr + A†
sA

†
r + A†

sAr + AsA
†
r

)

(10.63)

M2s,2r−1 =
1

2

(

AsAr − A†
sA

†
r − A†

sAr + AsA
†
r

)

(10.64)

We therefore have:







J3 = N1 − 1
2

J+ = 1√
2
Σ2A

†
1

J− = 1√
2
A1Σ2

(10.65)







K3 = N3 − 1
2

K+ = i√
2
∆2A

†
3

K− = i√
2
A3∆2

(10.66)
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where we defined:

Ni := A†
iAi, Σ2 := A2 + A†

2, ∆2 := A2 − A†
2 (10.67)

First of all, notice that all the generators are bilinears in the ladder operators.

This implies that once we are in a spinor irrep (4 or 4̄), we stay in it (as expected).

Then notice that, although both SU(2)s have a mix of ladder operators (1,2 and

2,3), the weak group acts “mainly” on the first subspace, while the Lorentz group

acts on the third. The second direction is “broken” at the level of the subgroup.

We now want to construct the states. In order to do so, we need a vacuum state.

In the previous subsection, we saw that the state:

|0〉 = | − −−〉 (10.68)

is annihilated by all ladder operators and can therefore be taken as vacuum state.

However, we are here interested in a particular subalgebra, i.e., we want a vacuum

that is annihilated by a particular set of generators. In this case, there are two:

|0〉e = | − −−〉, |0〉o = | − +−〉, As|0〉e,o = 0, s = 1, 3 (10.69)

where e, o stands for even or odd vacuum, and the parity of the latter is dictated

by its Γ7 value and is even for a state belonging to ΛeC3 and odd otherwise.

Moreover, we have in our case:

|0〉e ∈ 4̄ = D2, |0〉o ∈ 4 = D3 (10.70)

As it is expected, using our subalgebra we can construct two different irreps,

corresponding to the freedom of choice (10.52). Using the quantum numbers that

we want the particles to have, it is then easy to see that we have either:

4̄ =




ν1 ν2

e1 e2



 =




| + −+〉 | + +−〉
| − ++〉 | − −−〉



 (10.71)

or

4 =




ν1 ν2

e1 e2



 =




| + ++〉 | + −−〉
| − −+〉 | − +−〉



 (10.72)

We could conclude with these two equations as now we know explicitly how both
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the embedding group and its subgroup act on each state, and we have therefore

explicitly constructed the embedding. It is however interesting to (equivalently)

express everything in terms of m−forms in three complex dimensions. In order

to do so, let us denote:

A†
1|0〉 ∼ dt, A†

2|0〉 ∼ du, A†
3|0〉 ∼ dv (10.73)

Using these definitions, our original spinor can be rewritten in two different ways:

χ̃′ = ν̃1(p)dt ∧ dv + ν̃2(p)dt ∧ du+ ẽ1(p)du ∧ dv + ẽ2(p) (10.74)

χ = ν1(p)dt ∧ du ∧ dv + ν2(p)dt+ e1(p)dv + e2(p)du (10.75)

where p = (t, u, v) is a point in C3 and where the tilde denotes another possible

function for the corresponding state. In this notation, we used the fact that a

scalar product is well defined for forms and that they admit a complete basis

upon which they can be decomposed. These two representations can equivalently

describe the particle content that we wished to have in our theory. Nonetheless,

it seems natural at this point to choose one, because the notation is more elegant,

we can simply choose the spinor irrep 4:

χ = ν1(p)dt ∧ du ∧ dv + ν2(p)dt+ e1(p)dv + e2(p)du (10.76)

However, it seems a bit brutal to throw away an entire irrep that we have just

constructed. Indeed, recall that in Chapter 4 we saw that in addition to the weak

doublet, there is an additional pair or barred fermions with opposite quantum

numbers:

ν̄A, ēA (10.77)

If, as we did in the second-order formulation of the SM, we build a doublet out of

them and give them the correct weak isospin quantum numbers, we can rewrite

for the 4̄:

χ̄ = ē1(p)dt ∧ dv + ē2(p)dt ∧ du+ ν̄1(p)du ∧ dv + ν̄2(p) (10.78)
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This is beautifully unified, as we know that in SO(6), we have:

4̄ ⊗ 4 = 15adj ⊕ 1 (10.79)

so that we can build a scalar out of these two irreps. Let us look in our case at

the scalar we obtain:

χ̄χ = (ν̄2ν1 − ν̄1ν2 + ē2e1 − ē1e2) dt ∧ du ∧ dv (10.80)

where we allowed ourselves a change of phase in the definition of the wavefunctions

to obtain the correct relative sign. This is nothing but the mass term we would

like to write for a fermion, e.g.:

ēAeA = ē2e1 − ē1e2 (10.81)

At this point we could try to construct a Lagrangian in terms of these quantities,

it seems however that they live in a three dimensional space so that the interpre-

tation that is given to the forms must be carefully thought about. This is still a

current research interest. After this warm-up, we consider the full SM symmetry

group unified with gravity.

10.6.3 The real deal: SU(4)c × SU(2)W × SU(2)GR ⊂ SO(12)

In this final subsection, we would like to consider all of the SM fermionic section

(one generation). There are 16 unprimed fermions, and each of them can be

seen as a SU(2)GR doublet. This amounts to a total of 32 “particles”. To be

as general as possible, we also consider the primed fermions, which also add up

to 32 independent objects. We will treat the weak SU(2)W as frozen, however,

both barred and unbarred fermions are seen as weak doublets as was done in

Chapter 4. We will therefore talk about the approximate symmetry of the (free

Lagrangian of the) SM. The smallest group with two 32-dimensional spinor irreps

is SO(12) and we wish to describe the embedding:

SU(4)c × SU(2)W × SU(2)GR ⊂ SO(6)c × SO(6)W G ⊂ SO(12) (10.82)

So that:

32 = (4,4) ⊕ (4̄, 4̄), 32′ = (4, 4̄) ⊕ (4̄,4) (10.83)
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where the embedding is such that 32 = 32, 32′ = 32′ and 12 ∈ 32 ⊗ 32′ ∋
(6,1) ⊕ (1,6). This embedding can be understood as follows: SO(12) admits

an SU(6) subalgebra generated by 6 pairs of ladder operators. Its Dirac spinor

representation will split into two Weyl spinors as before, and we have:

32 = Λe
C

6, 32′ = Λo
C

6 (10.84)

As far as SO(6) irreps are concerned, recall:

4 = Λo
C

3, 4̄ = Λe
C

3 (10.85)

Thus, we have:

(4,4) ∈ Λe
C

6, (4, 4̄) ∈ Λo
C

6 (10.86)

and similarly for the conjugate representations.

Furthermore, to see that we can embed all of the SM particle content with the

right quantum numbers, it is sufficient to check that we can embed two spinor

irreps of SO(6) that transform independently, in other words, that 3 pairs of

ladder operators generate the first SO(6)c spinor and the remaining three generate

the weak-gravity SO(6)W G. Indeed, if this is true, then Sections 10.3 and 10.6.2

allow us to conclude.

Let us now then proceed with the details of the embedding. We have for the

generators:

Aij = Mij, i, j = 1, . . . , 6 → SO(6)W G (10.87)

Bij = Mij, i, j = 7, . . . , 12 → SO(6)c (10.88)

At the next “breaking” step we have:

Jij = Aij, i, j = 1, . . . , 3 → SO(3)W (10.89)

Kij = Aij, i, j = 4, . . . , 6 → SO(3)GR (10.90)

But let us focus on the first two subalgebras. It is easy to see that:

[Aij, Bkl] = 0 (10.91)

Also, the Cartan generators of SO(12) beingM1,2, M3,4, M5,6, M7,8, M9,10, M11,12,
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we see that they are equally split into each SO(6). Finally, using (10.64), it is easy

to see that Aij will be given by bilinears of As, A
†
s, s = 1, 2, 3, while Bij will be

given by bilinears of As, A
†
s, s = 4, 5, 6. This nice factorisation happens because

SO(12) belongs to the SO(4m) type of algebras. At this stage, the construction

of the embedding becomes trivial because we already know which representations

can appear on each subspace: namely the two Weyl spinors of each SO(6) as

mentioned earlier. We therefore have as expected:

32 =
(

(Λe
C

3 + Λo
C

3), (Λe
C

3 + Λo
C

3)
)

e

=
(

Λe
C

3,Λe
C

3
)

⊕
(

Λo
C

3,Λo
C

3
) (10.92)

and similarly for 32′.

We could conclude this chapter here, but let us carry on for a bit and try to

construct a Lagrangian for such representations. As we did before, let us denote

the first set of generators for the (colour) forms to be dx, dy, dz , whereas we have

as before the weak-gravity space generated by dt, du, dv with the dt subspace

corresponding to the weak isospin quantum number and the dv subspace to the

spin. The exact dictionary stating which particle corresponds to which form in

this 6-dimensional complex space can be obtained as was done in Section 10.6.2,

but we will refrain to do so here as no further insight can be gained from it. It is

simply a generalisation of Sections 10.3 and 10.6.2. All we need for the argument

below is that we choose to embed all the unprimed spinors in 32 and all the

primed spinors in 32′. We will take the point of view that we take seriously the

interpretation given to us by the forms representations and hence, we will try to

build a Lagrangian on a 6-dimensional complex space. Using:

32 ⊗ 32 = 1 ⊕ Λ2
R

12 ⊕ Λ4
R

12 ⊕ Λsd
R

12 (10.93)

32′ ⊗ 32′ = 1 ⊕ Λ2
R

12 ⊕ Λ4
R

12 ⊕ Λasd
R

12 (10.94)

32 ⊗ 32′ = 12 ⊕ Λ3
R

12 ⊕ Λ5
R

12 (10.95)

where Λ(a)sdR12 denotes the rank-6 antisymmetric tensor that satisfies a real (anti-

)self-duality property. We see that mass terms can be built as expected. Indeed,

let us denote the spinor irreps:

|F〉 ≡ F = 32, |F〉 ≡ F = 32′ (10.96)
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Then there is a natural pairing that gives us a scalar quantity. In terms of forms,

it is given by their usual scalar product so that:

〈F|F〉 + 〈F|F〉 ∼ M(p)dt ∧ dx ∧ dy ∧ dz ∧ du ∧ dv (10.97)

where M(p) is a (real) scalar mass function that contains mass terms for all

fermions and p = (t, x, y, z, u, v) is a point in a 6-dimensional space and with

〈F| ≡ ⋆F , 〈F| ≡ ⋆F (10.98)

is the Hodge dual of the form4. Let us now assume that we build a kinetic term

for the fermions using (10.95). On the RHS we have the 12-dimensional (real)

vector; the rank-3 (real) antisymmetric tensor with dimension 220; and the rank-

5 (real) antisymmetric tensor with dimension 792. For a first-order Dirac-type

Lagrangian, we need a map:

〈F|D|F〉 → 1 (10.99)

where D is a covariant derivative on the space of forms. In order to get a singlet,

we can for example consider the covariant derivative to be given simply by a

12-(real)-dimensional SO(12) vector because:

(12 ⊗ 12)s ∋ 1 (10.100)

where s denotes a symmetric Kronecker product. This would be it for a sim-

ple non-interacting Lagrangian in 6-complex dimensions as, indeed we have that

the simple partial derivative is a (complex) 6-dimensional vector5. However, we

expect the covariant derivative to include gauge-fields as well. Let us assume

that they transform according to the adjoint representation and that they carry

a vector index as well, therefore, we write:

D ∈ 12 ⊗ 66adj = 12 ⊕ 220 ⊕ 560 (10.101)

where the last 560-dimensional representation corresponds to the fundamental

4In 6 dimensions, the Hodge dual of an even form is an even form. This is why the singlet
representation appears in the Kronecker product 32 ⊗ 32 (and similarly with the other spinor
irrep).

5In a 6-dimensional complex space, we would surely expect a kinetic operator of the type
∂ + ∂̄ ∼ 6 ⊕ 6 = 12.
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weight (110000). We then have:

〈F|D|F〉 = (12 ⊕ 220 ⊕ 792) ⊗ (12 ⊕ 220 ⊕ 560) (10.102)

It remains to construct a scalar out of this Kronecker product. In addition to

(10.100), we also have:

(220 ⊗ 220)s ∋ 1 (10.103)

All the other Kronecker products do not generate singlets, therefore we can define

our kinetic term to be:

Tr|SO(12) 〈F|D|F〉 = 1 (10.104)

Where Tr|SO(12) denotes the usual trace over the algebra, and the trace of any

non-trivial (i.e. other than the singlet) representation of the algebra vanishes. We

see that the only contribution coming from the covariant derivative corresponds

to:

D = 12 ⊕ 220 (10.105)

where the 12 can be seen as the contribution from the partial derivative, and the

220 ≡ Λ3R12 as the representation in which the gauge-fields live. In terms of

forms in 6-dimensional complex space, we have:

220 = Λ3
R

12 =
(

Λ1
C

6 ⊗ Λ2
C

6
)

⊕ ⋆
(

Λ1
C

6 ⊗ Λ2
C

6
)

⊕ Λ3
C

6 ⊕ Λ3
C

6

= (70 ⊕ 20) ⊕ (70 ⊕ 20) ⊕ 20 ⊕ 20
(10.106)

with ⋆ (Λ1C6 ⊗ Λ2C6) = (Λ5C6 ⊗ Λ4C6). This can be obtained by looking at

the decomposition 220 = (32 ⊗ 32′)a, with 32 = ΛeC6, and with the additional

constraint that we want a rank-3 antisymmetric tensor.

Finally, if in terms of 6-dimensional representations, we assume:

D ≡ (∂ + ∂) + (A + A) (10.107)

We have:

A = 70 ⊕ 20 ⊕ 20 (10.108)
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Let us summarise what we have achieved here. We have seen that we can embed

the whole SM symmetry group and gravity seen as a gauge theory inside SO(12).

Within this group, its two spinor representations encapsulate both primed and

unprimed fermions in a unified way, so that they have the right “low-energy”

quantum numbers. Due to the equivalence between the spinor representations of

SO(2n) and forms in n-complex-dimensions, we have seen that there is a possi-

bility to reinterpret the states of the SM taking seriously this equivalence. We

therefore schematically constructed, using basic representation theory, a possible

Lagrangian (first-order in this case) for fermions in 6-dimensions. A more detailed

construction of the latter is an ongoing research project.

10.7 Discussion

In this chapter we have explored the different unification patterns that can be ex-

plored using (mainly) a second-order approach to fermionc Lagrangians. Indeed,

the content of these theories differs from the usual first-order content as we do

not need to take into account half of the particles (primed fermions). Further-

more, since in the second-order SM the weak symmetry is frozen, smaller unify-

ing groups can be found as we have seen with the SO(8) and SO(9) examples.

Nevertheless, it is always possible to consider different approximate symmetries,

where left- and right-handed particles are taken as representation of the same

weak group. In that sense, these are not GUTs, but rather (once the Lagrangian

has been written down) approximate symmetries of the theory. Finally, we have

seen that gravity can also be included in the discussion, once its description as

a gauge theory has been established. In this case, it is interesting to see that

we can construct higher-dimensional Lagrangians that might be able to repro-

duce the “low-energy” content of the SM. It seems that the two extra dimensions

that correspond to the gravity degrees-of-freedom ought to be integrated-out (by

means of compactification or any other suitable mechanism), thus recovering a

four-dimensional spacetime. As mentioned earlier, this is ongoing research.
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The aim of this thesis was to demonstrate that a second-order formulation of

fermionic field theories is indeed possible. In order to do so, we took a bottom-

up approach to the construction of the formalism. We first developed the tools

necessary for the free-field theory of second-order fermions in Chapters 1 and 2.

There we saw that the first-order field equations play a special role in this new

formalism. Indeed, they are now seen as reality conditions: a constraint that

should be imposed at the level of the mode-decomposition so as to kill half of the

solutions of the second-order Klein-Gordon equation. As far as the free-theory is

concerned, switching from a first- to a second-order formalism is merely a change

of interpretation. The main differences appear when one considers interacting

theories, as we saw in Chapters 3 and 4.

In the second-order formalism, the complexity that arose in the first-order prop-

agators and number of fields present in the theory is shifted to the interaction

vertices. Nevertheless, due to the fact that the new Lagrangians that were ob-

tained only contain unprimed two-component spinors, the theories appear to be

more compact. Moreover, and more particularly in the case of the Standard

Model, this led to an entire reformulation of both its bosonic and fermionic sec-

tor. There, we were led to combine the SU(2) singlets into “doublets”, as well as

to define SU(2)-invariant combinations from the fermion doublets and the Higgs.

Similarly, the angular part of the Higgs field was absorbed into the gauge fields to

produce SU(2)-frozen massive gauge fields. This reformulation of the SM allows

for a more direct description of its physical content.

Another interesting aspect of the new SM Lagrangian is that the Higgs field

appears non-polynomially. The analogy between the Higgs field and the con-

formal factor of the metric was already emphasised in [35]. Indeed, consider

a Weyl transformation gµν → ρ2gµν with, recall, ρ2 the modulus squared of the

Higgs field. Under such a conformal rescaling the spinor metric ǫAB transforms as

ǫAB → ρǫAB, ǫ
AB → ρ−1ǫAB. The Dirac operator changes as DAA′χB → DAA′χB−
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(∂BA′ log ρ)χA, see e.g. [50], formula (5.6.15). Then, if we define the transfor-

mation rule for second-order spinors to be SA → ρ−1SA, similarly for S̄A, the

quantity ǫABDAA′SB transforms homogeneously ǫABDAA′SB → ρ−2ǫABDAA′SB,

with the covariant derivative remaining unchanged. This implies that under such

a transformation

√
g DS̄DS → 1

ρ

√
g DS̄DS, (10.109)

where we have taken into account that
√
g → ρ4√g, and there is an extra factor

of 1/ρ coming from the contraction of the primed spinor indices. Similarly,

√
g S̄S → ρ

√
g S̄S. (10.110)

Thus, we see that, as already observed in [35] for the bosonic sector, the Higgs

field ρ enters the fermionic Lagrangian (4.34) as the conformal factor of a trans-

formation gµν → ρ2gµν (there the Higgs field was reabsorbed into the covariant

derivative so as to give a canonical kinetic term). It would be interesting to un-

derstand the implications of a second-order formulation for fermions on the mod-

ifications of the Higgs effective potential in the context of frame-independence

of General Relativity. This new formalism could possibly affect different Higgs-

inflation scenarios that depend on the parametrisation of the potential [51–53].

In the third part of this thesis, we developed the tools necessary to carry out per-

turbative calculations in the two simplest theories: Dirac and Majorana-Weyl

Electrodynamics. As we have mentioned above, in the case of second-order

fermions, the complexity of the first-order propagator is shifted to the interaction

vertices. As a matter of fact, the former becomes a simple scalar-type propaga-

tor, while the latter now contain derivatives (cubic vertex). Furthermore, there

is now a four-valent interaction, which although very simple (it takes the form of

an identity operator over vector and spinor representations), is of the uttermost

importance. Indeed, the effect of integrating-out half of the fermions (in our

convention, primed spinors) is that these excitations are effectively set on-shell.

In perturbation theory, the propagating internal primed fermions that are con-

strained to satisfy their first-order field equation “resonate” so as to contract their

propagator into a quartic vertex. We saw explicitly how this happened in Chap-

ter 6 for the case of Compton scattering. Therefore, we see that including this

quartic vertex ensures that the scattering amplitudes that are computed using
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the second-order formalism are equivalent to the results obtained using the usual

first-order formulation. Nonetheless, we also saw that (at tree level), this new

quartic vertex could be forgotten as long as a new set of rules to construct the

scattering amplitudes was followed. More details on this procedure are described

in Appendix D. In Chapter 7, we have also developed a few textbook examples of

loop calculations in order to emphasise that, even at loop level, the equivalence

between the formalisms is maintained. There the quartic vertex plays the same

role as at tree-level.

It must be noticed that perturbative calculations in the second-order formalism

are much more economical than in the first-order framework. This is not only due

to the fact that we are dealing with half the number of fields, but also to the fact

that we are working with two-dimensional spinor irreps (as compared to the four

component Dirac spinors). The algebra of gamma matrices has effectively been

taken care of, so that all that is left to calculate is spinor contractions. In the

case of two-component first-order spinor Lagrangians, the algebra computations

are also simpler, however, there one has to deal with a huge amount of Feynman

diagrams. In our formalism, the presence of extra diagrams containing quartic

vertices is much less cumbersome.

Finally, in the last part of this work we covered some advanced field-theoretical

aspects that are specific to the second-order formalism. A deeper and more

specific discussion about each of these topics can be found in their respective

chapters, we summarise here the main points. In Chapter 8, we explored the

calculation of the anomalies that could arise in this framework. The final result

is equivalent to its first-order counterpart, however, both the perturbative and

non-perturbative calculations have to be carefully conducted.

In Chapter 9, we showed that the second-order theory is unitary even though its

Lagrangian is not Hermitian. Any other result would have been a hard blow to

the formalism. Moreover, the results and methodology derived in this thesis may

lead to new insights on the development of different theories described by complex

fields upon which reality conditions need to be imposed. Such an example would

be an SU(2) connection description of gravity, for which no definitive answer has

been found yet.

The last results we presented in Chapter 10 can be tied to the ideas that were

first introduced in Chapter 4. Indeed, after a very compact Lagrangian for the

fermionic section of the SM was obtained, it seemed natural to explore this di-
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rection further. This led to the results in the former chapter. There we showed

how a different interpretation of the particle content of the SM could lead to new

unification patterns. In addition to this, once gravity is included in the game, in-

teresting new aspects coming from the symmetry groups appear. Indeed, spinor

irreps of SO(2n) groups admit a representation as forms in n complex dimen-

sions. With gravity being added to the picture, it seems natural to look at four

(when available) of those dimensions as spacetime, while the rest can be thought

of as compactified or “frozen” or “UV” dimensions. This idea is currently being

investigated.

To conclude this thesis, we hope this work will motivate new research directions

in the framework of second-order fermionic field theories. A few aspects were

discussed here, while possible future lines of research were also mentioned. Nev-

ertheless, we believe the topic to be very vast, and possibly tied to many other

research areas such as Scattering Amplitudes, Twistors or PT symmetric theories

to just mention a few.
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Appendix A

Two-component spinors

A.1 SO(1, 3) ∼ SL(2,C)

The Lorentz group SO(1, 3) acts on Minkowski spacetime M1,3, with signature

convention (−,+,+,+)1, via:

xµ → Λµ
νx

ν , xµ = (t, x, y, z) ∈ M1,3.

Let us form from the components of xµ an Hermitian 2 × 2 matrix2

X =
1√
2




t− z x+ iy

x− iy t+ z



 , X† = X (A.1)

It is not hard to see that:

2 det(X) = t2 − x2 − y2 − z2 = −ηµνx
µxν , ηµν = diag(−1, 1, 1, 1) (A.2)

Moreover, one can show that any Hermitian 2 × 2 matrix is of this form for some

t, x, y, z. Thus, Minkowski spacetime M1,3 can be identified with the space of

Hermitian 2 × 2 matrices:

M1,3 ∼ X ∈ Mat(2 × 2) : X† = X (A.3)

1and orientation ǫ0123 = +1
2The normalisation is chosen for later convenience.

217



Appendix A. Two-component spinors

Consider now the group SL(2,C) of complex 2×2 matrices with unit determinant:

SL(2,C) ∋ g =




a b

c d



 , ad− bc = 1 (A.4)

This group acts on the space of Hermitian matrices via:

X → gXg†. (A.5)

It is clear that this action preserves det(X) (because det(g) = 1), and preserves

the space of Hermitian 2 × 2 matrices. Thus, this gives a norm-preserving action

of SL(2,C) on Minkowski spacetime, and thus an embedding of SL(2,C) into

SO(1, 3). Since the element g = −1 ∈ SL(2,C) is sent to the identity in SO(1, 3),

this embedding can be seen to be a 2 → 1 covering map.

A.2 Spinors

There are two inequivalent fundamental 2-dimensional representations of the

group SL(2,C). Both are isomorphic as vector spaces, but with a different ac-

tion of SL(2,C). Consider a column with entries being two arbitrary complex

numbers:

ξ =




ξ1

ξ2



 (A.6)

Such a column is called a spinor. There is a natural action of SL(2,C) on ξ given

by:

ξ → gξ g ∈ SL(2,C) (A.7)

Spinors on which the Lorentz group SL(2,C) acts as above are called unprimed.

However, there is yet another natural action of SL(2,C) on the space of spinors.

This is given by:

ξ̄ → g∗ξ̄ g ∈ SL(2,C) (A.8)

where g∗ is the matrix consisting of complex conjugates of a, b, c, d. Spinors on

which SL(2,C) acts this way are called primed. In order to avoid confusion we
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shall label primed spinors by a symbol with a bar over it, which is why the spinor

in the above formula is denoted by ξ̄. Unprimed and primed spinors constitute

two fundamental (inequivalent) representations of SL(2,C). The corresponding

representation spaces (spaces of unprimed and primed spinors) are denoted by:

unprimed ξ ∈ V (1/2,0), primed ξ̄ ∈ V (0,1/2) (A.9)

This notation has to do with the fact that a general (finite dimensional) rep-

resentation of the Lorentz group SL(2,C) is specified by two half-integers j, j′.

The corresponding representation space is denoted by V (j,j′). Thus, the repre-

sentations realising the unprimed and primed spinors are the simplest possible

ones.

We note that the above definitions of the action of SL(2,C) on unprimed and

primed spinors imply that the complex conjugate of an unprimed spinor is a

primed one.

Index notation

It turns out to be very convenient to introduce a certain spinor index notation.

In this notation we represent the matrix g ∈ SL(2,C) by gA
B, where A,B = 1, 2

are the spinor indices. An unprimed spinor is denoted by ξA, and the action of

SL(2,C) on ξ is given by:

ξA → gA
BξB (A.10)

The index notation is developed in order to avoid thinking which of these two

indices corresponds to rows and which to columns, and so this is left unspecified

(even though is not hard to deduce from the fact that ξA was a column). Similarly

for the primed spinors, we introduce a new type of spinor indices A′, B′ = 1, 2, so

that a primed spinor is denoted by ξ̄A′

. The action of SL(2,C) on primed spinors

is then:

ξ̄A′ → ξ̄B′

(g†)B′
A′

(A.11)

Here g† = (gT )∗ is the Hermitian conjugate of g.

PhD Thesis 219 Johnny Espin



Appendix A. Two-component spinors

The spinor metric

The determinant condition det(g) = 1 can be rewritten as:

1 =
1

2
ǫABgA

CgB
DǫCD (A.12)

where ǫAB = −ǫBA and similarly ǫAB = −ǫBA are anti-symmetric tensors. This

is easily shown to be equivalent to:

ǫACgA
BgC

D = ǫCD (A.13)

Thus, ǫAB is an SL(2,C)-invariant metric in V (1/2,0), and the following bilinear

form in the space of unprimed spinors is SL(2,C)-invariant:

(ξ, λ) ≡ (ξλ) := −ǫABξAλB (A.14)

The minus sign is introduced here for future convenience (we will later develop

index free notations where it will disappear). Note that this bilinear form is

anti-symmetric, and so the norm squared of any spinor is zero:

(ξ, ξ) = 0 (A.15)

Similarly, one introduces an SL(2,C)-invariant metric ǫA′B′ in the space of primed

spinors, as well as an SL(2,C)-invariant bilinear pairing:

[ξ̄, λ̄] ≡ [ξ̄λ̄] := ξ̄A′

λ̄B′

ǫA′B′ (A.16)

Note that we denoted the primed inner product by square brackets, while the

unprimed spinor product was denoted by the usual round brackets. This will be

convenient below.

Raising and lowering of spinor indices

Using the invariant metrics in V (1/2,0), V (0,1/2) one can define an operation of

raising and lowering of indices. Thus, to raise an index of an unprimed spinor we

define:

ξA := ǫABξB (A.17)
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To lower a spinor index we need the inverse of the metric ǫAB, which we define

via:

ǫAB : ǫABǫAC = δC
B (A.18)

where δA
B is the Kronecker delta. We would like the spinor ξA obtained above

with its index lowered to be the original spinor ξA, which is achieved via the

following definition:

ξA := ξBǫBA (A.19)

Note that in these formulas the upper index to the left is contracted with a lower

index to the right, which is the rule how these formulas can be memorised.

One defines similar raising and lowering of primed indices via ǫA′B′ and its inverse

ǫA′B′

defined via:

ǫA′B′

: ǫA′B′

ǫA′C′ = δC′
B′

(A.20)

Thus, we have:

ξ̄A′ := ξ̄B′

ǫB′A′ , ξ̄A′

:= ǫA′B′

ξ̄B′ (A.21)

Note that the operation of raising-lowering a pair of spinor indices is now not

innocuous:

ξAλA = −ξAλ
A (A.22)

Now that we understand how the spinor indices can be raised and lowered, we

can write down a formula that summarises the effect of the complex conjugation

on an unprimed spinor. Indeed, from (A.8) we see that the complex conjugate of

an unprimed spinor transforms under SL(2,C) as a primed one. We write:

(ξA)∗ = (ξ∗)A′ (A.23)

Thus, the rule is that under the complex conjugation the unprimed spinor index

gets replaced by a primed one, whose symbol is the original symbol with a sign

of complex conjugation added.
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The soldering form

If we write the Hermitian 2 × 2 matrix X in the spinor index notation as XA
A′

,

it can be written as a linear combination of 2 × 2 matrices times the components

of the 4-vector xµ. This defines the following object:

XA
A′

= θµA
A′

xµ (A.24)

The object θµA
A′

is called the soldering form. It provides an isomorphism between

the space of Hermitian 2 × 2 matrices XA
A′

and Minkowski spacetime whose

elements are xµ. Note that the matrix XA
A′

transforms (A.5) as a vector in the

irreducible representation space V (1/2,1/2). Thus, the usual 4-vectors xµ are seen

to form an irreducible representation of the Lorentz group more complicated than

the spinor representations. You need two spinors (unprimed and a primed one)

to get a vector!

Note that the soldering form is Hermitian. This property is best written for the

soldering form with both its indices raised:

(θAA′

µ )∗ = θAA′

µ (A.25)

Now, computing the determinant of XA
A′

we get:

det(X) =
1

2
θµA

A′

θνB
B′

ǫABǫA′B′xµxν (A.26)

On the other hand, the same determinant is equal to half of −ηµνx
µxν . Thus, we

see that the following relation between the Minkowski metric and the soldering

form holds:

ηµν = −θµA
A′

θνB
B′

ǫABǫA′B′ (A.27)

The spinor basis

It is very convenient to introduce in each space V (1/2,0), V (0,1/2) a certain spinor

basis. Since each space is (complex) 2-dimensional we need two basis vectors for

each space. Let us denote these by:

oA, ιA ∈ V (1/2,0), oA′

, ιA
′ ∈ V (0,1/2) (A.28)
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Note that we shall assume that the basis in the space of primed spinors is the

complex conjugate of the basis in the space V (1/2,0):

ιA
′

= (ιA)∗, oA′

= (oA)∗ (A.29)

The basis vectors are pronounced as “omicron” and “iota”. Since the norm of ev-

ery spinor is zero, we cannot demand that each of the basis vectors is normalised.

However, we can demand that the product between the two basis vectors in each

space is unity. Thus, the basis vectors satisfy the following normalisation:

ιAoA = 1, ιA
′

oA′ = 1 (A.30)

Of course, a spinor basis in each space V (1/2,0), V (0,1/2) is only defined up to an

SL(2,C) rotation. Any SL(2,C) rotated basis gives an equally good basis, and

it can be seen that any two bases can be related by a (unique) SL(2,C) rotation.

Once a spinor basis is introduced, we have the following expansion of the ǫAB

symbol:

ǫAB = oAιB − ιAoB (A.31)

A similar formula is also valid for ǫA′B′ .

The soldering form in the spinor basis

The following explicit expression for the soldering form θµA
A′

in terms of the basis

one-forms tµ, xµ, yµ, zµ and the spinor basis vectors oA, oA′

, ιA, ιA
′

can be obtained:

θAA′

µ =
tµ√

2
(oAoA′

+ ιAιA
′

) +
zµ√

2
(oAoA′ − ιAιA

′

)

+
xµ√

2
(oAιA

′

+ ιAoA′

) +
iyµ√

2
(oAιA

′ − ιAoA′

)
(A.32)

Here we have given a formula for the soldering form with its both spinor indices

raised. This expression encodes the same information as in the formula (A.1) for

XA
A′

in terms of a matrix. However, one now never needs to think about what

corresponds to column and what to a row, and can manipulate with the spinor

objects in a completely algorithmic (algebraic) fashion, which is convenient. Note

that the above expression is explicitly Hermitian.
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A doubly null tetrad

Collecting the components in front of equal spinor combinations in the above

formula for the soldering form we can rewrite it as:

θAA′

µ = lµo
AoA′

+ nµι
AιA

′

+mµo
AιA

′

+ m̄µι
AoA′

(A.33)

where

lµ =
tµ + zµ√

2
, nµ =

tµ − zµ√
2

, mµ =
xµ + iyµ√

2
, m̄µ =

xµ − iyµ√
2

(A.34)

Note that l, n are real one-forms, while m̄µ = m∗
µ. The above collection of one-

forms is known as a doubly null tetrad. Indeed, it is easy to see that all four

one-forms introduced above are null, e.g. lµlµ = 0. The only non-zero products

are:

lµnµ = −1, mµm̄µ = 1 (A.35)

Thus, the Minkowski metric can be written in terms of a doubly null tetrad as:

ηµν = −lµnν − nµlν +mµm̄ν + m̄µmν (A.36)

which can also be verified directly by substituting (A.33) into the formula (A.27)

for the metric.

Grassmann spinors

We have seen that the norm of any spinor is zero. This is due to the fact that

the spinor metric ǫAB is anti-symmetric and so:

(ξ, ξ) = −ǫABξAξB = ξ2ξ1 − ξ1ξ2 = 0 (A.37)

However, this is so if the spinor components commute: ξ1ξ2 = ξ2ξ1, which is the

case for ordinary spinors. Let us now introduce a new type of spinors, whose

components anti-commute:

ξ1ξ2 = −ξ2ξ1 (A.38)
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Numbers that anti-commute are known from algebra, and form the so-called

Grassmann algebra. In the case of two-component spinors we introduce a Grass-

mann algebra generated by two anti-commuting generators ξ1, ξ2. These are re-

quired to anti-commute with each other (A.38), but also with themselves:

ξ1ξ1 = −ξ1ξ1 (A.39)

and similarly for ξ2. This, in particular implies that each generator ξ1, ξ2 is

nilpotent:

ξ1ξ1 = 0, ξ2ξ2 = 0 (A.40)

Going back to spinor index notations, we define a Grassmann-valued (unprimed)

spinor ξA so that it satisfies:

ξAξB = −ξBξA (A.41)

i.e., anti-commutes with itself. For such a spinor its norm (squared):

(ξ, ξ) = ξAξA = 2ξ2ξ1 6= 0 (A.42)

If we have a collection of Grassmann-valued spinors ξA, λA, . . . these anti-commute

with themselves and between each other:

ξAλB = −λBξA (A.43)

Primed Grassmann spinors are defined analogously. They anti-commute with

themselves, with other primed spinors, as well as with unprimed spinors.

Finally, let us define the action of the Hermitian conjugation on the Grassmann-

valued spinors (we cannot talk about complex conjugation anymore, as Grassmann-

valued spinors are not numbers; we need Hermitian conjugation instead). We

have:

(ξAλB)† = (λB)†(ξA)† = (λ†)B′(ξ†)A′ (A.44)

Thus, the Hermitian conjugation acts on spinors as on operators, in that the

Hermitian conjugates of all operators are taken in the opposite order, as one is

used to in quantum mechanics.
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Index-free notations

As is usual in the 2-component spinor literature, we shall sometimes use an index-

free notation:

λAξA := λξ ≡ (λξ), (λ†)A′(ξ†)A′

= λ†ξ† ≡ [λ†ξ†] (A.45)

Thus, if no indices are shown in a fermionic contraction, this means that the

natural contraction is used, i.e. unprimed spinors are contracted as in λAξA and

primed spinors are contracted in an opposite way as (λ†)A′(ξ†)A′

. This is a natural

convention, for we have:

(λξ)† = ξ†λ† (A.46)

Sometimes, when more than two spinors are present in an index-free formula,

it is necessary to put brackets around spinors to make it clear which pairs are

contracted. Then we use round brackets to denote contractions of unprimed

spinors and square brackets for contractions of primed spinors.

Self-dual two-forms

The following self-dual two-forms play a very important role in the second-order

formulation of fermions. They are defined as:

ΣAB =
1

2
θA

A′ ∧ θBA′

(A.47)

Explicitly, in terms of the null tetrad and the spinor basis we get:

ΣAB = l ∧moAoB + m̄ ∧ n iAiB + (l ∧ n−m ∧ m̄)i(AoB) (A.48)

This formula can be used to derive all the necessary identities involving the self-

dual two forms.

SU(2) spinors

We will need SU(2) spinors when we consider the Hamiltonian formulation of

any of our fermionic theories. Our conventions here are reminiscent of those

in Appendix A of [54], but there are some differences. In particular, we use a

Hermitian tetrad, while the convention in [54] is that the tetrad is anti-Hermitian.
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Let us first consider ordinary, non-Grassmann-valued spinors. To define SU(2)

spinors we need a Hermitian positive-definite form on spinors. This is a rank

2 mixed spinor GA′A: ḠA′A = GA′A, such that for any spinor λA we have

λ̄A′

λAGA′A > 0. Here λ̄A′

is the complex conjugate of λA. We can define the

SU(2) transformations to be those SL(2,C) ones that preserve the form GA′A.

Then GA′A defines an anti-linear operation ⋆ on spinors via:

(λ⋆)A := GAA′

λ̄A′ (A.49)

We require that the anti-symmetric rank 2 spinor ǫAB is preserved by the ⋆-

operation:

(ǫ⋆)AB = ǫAB (A.50)

which implies the following normalisation condition:

GAA′GA′

B = ǫAB (A.51)

Using the normalisation condition we find that (λ⋆⋆)A = −λA or:

⋆2 = −1 (A.52)

Thus, the ⋆-operation so defined is similar to a “complex structure”, except for

the fact that it is anti-linear:

(αλA + βηA)⋆ = ᾱ(λ⋆)A + β̄(η⋆)A (A.53)

We note that using the ⋆-operation we can rewrite the positive-definite quantity

λ̄A′

λAGA′A as follows:

λ̄A′

λAGA′A = λA(λ⋆)A > 0 (A.54)

Now for the purpose of 3+1 decompositions to be carried out below, we need to

introduce a special Hermitian form that arises once a time vector field is chosen.

We can then consider the zeroth component of the soldering form:

θAA′

0 ≡ θAA′

µ

(

∂

∂t

)µ

=
1√
2

(

oAoA′

+ ιAιA
′
)

(A.55)
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It is Hermitian, and so we can use a multiple of θAA′

0 as GAA′

. It remains to

satisfy the normalisation condition (A.51). This is achieved by:

GAA′

:=
√

2θAA′

0 (A.56)

We then define the spatial soldering form via:

σi AB := GAA′

θi B
A′ (A.57)

which is automatically symmetric σi AB = σi (AB) because its anti-symmetric part

is proportional to the product of the time vector with a spatial vector, which is

zero. Explicitly, in terms of the spinor basis introduced above we have:

σi AB = −mioAoB + m̄iιAιB +
zi

√
2

(ιAoB + oAιB) (A.58)

The action of the ⋆-operation on the basis spinors is as follows:

(o⋆)A = ιA, (ι⋆)A = −oA (A.59)

It is then easy to see from (A.58) that the spatial soldering form so defined is

anti-Hermitian with respect to the ⋆ operation:

(σi ⋆)AB = −σi AB (A.60)

The following property of the product of two spatial soldering forms holds:

σi
A

Bσj
B

C =
1

2
δijǫA

C − i√
2
ǫijkσk

A
C . (A.61)

Below we will also often use the following related quantities :

T i
A

B := i
√

2σi
A

B (A.62)

which have the following nicer algebra:

T i
A

BT j
B

C = −δijǫA
C + ǫijk T k

A
C (A.63)

Now, using the Hermitian form (A.56), we extend the ⋆-operation defined above

to Grassmann-valued spinors. Thus, we define a new operation on Grassmann-
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valued spinors which is a combination of the usual Hermitian conjugation † acting

on a Grassmann-valued fermion with the operation of converting the primed index

into an unprimed one:

(λ⋆)A := GAA′

(λ†)A′ (A.64)

This operation is of importance when we discuss the 3+1 decomposition of the

standard Weyl and Dirac actions.
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Pauli and gamma matrices

B.1 Soldering-form v. Pauli and gamma matri-

ces

It would be useful for the unacquainted reader to have a dictionary between com-

monly used quantities such as the Pauli and gamma matrices, and the soldering

for which is extensively used throughout this thesis. In order to do so, we recall

briefly some properties of the former. Dirac gamma matrices satisfy the Clifford

algebra:

{γµ, γν} = −2ηµν (B.1)

so that (γ0)2 = 1, (γi)2 = −1. We can then choose extra hermicity constraints

on the matrices such that these still satisfy the algebra. They are:

(γµ)† = γ0γµγ0 (B.2)

The matrix γ5 is defined:

γ5 = iγ0γ1γ2γ3, (γ5)
† = γ5 (B.3)

and finally the generators of the Lorentz group:

Sµν =
i

4
[γµ, γν ] (B.4)

The Pauli matrices are generators of the spin 1/2 representation of SU(2) and
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are defined by their algebra:

σiσj = δij + iǫijkσk (B.5)

These are related to the gamma matrices through their extension to four dimen-

sions:

σµ = (1,+σi), σ̄µ = ǫT (σµ)∗ǫ = (1,−σi) (B.6)

They satisfy:

σµσ̄ν + σν σ̄µ = −2ηµν , σ̄µσν + σ̄νσµ = −2ηµν (B.7)

which leads to:

γµ =




0 σµ

σ̄µ 0



 (B.8)

This is the Weyl or chiral representation of the gamma matrices which allows us

to decompose Dirac spinors into two irreducible spinors. The Lorentz generators

in each representation are then given by:

σµν =
i

2
σ[µσ̄ν], σ̄µν =

i

2
σ̄[µσν] (B.9)

Finally, these quantities can be connected to the soldering form and self-dual

two-forms. We introduce an index notation for the sigma matrices:

σµ := (σµ)AA′ , σ̄µ := (σ̄µ)A′A (B.10)

We have then:

(σ̄µ)A′A = ǫB′A′

(σµ)∗
B′Bǫ

BA (B.11)

And their algebra can written as:

(σµσ̄ν)A
B = −ηµνδA

B − 2i(σµν)A
B, (σ̄µσν)A′

B′ = −ηµνδA′

B′ − 2i(σ̄µν)A′

B′

(B.12)

It is now possible to identify:
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(σ̄µ)A′A ≡
√

2θµ A′A, (σµ)AA′ ≡
√

2θµ
AA′

−i(σµν)A
B ≡ Σµν

A
B, −i(σ̄µν)A′

B′ ≡ Σ̄µνA′

B′

(B.13)

So that:

γµ =
√

2




0 θµ

AA′

θµ A′A 0



 (B.14)

B.2 Gamma matrices algebra

When dealing with gamma matrices, we work within the mainly plus signs sig-

nature, and within a dimensional regularisation framework (whenever allowed).

We therefore have spacetime indices denoted by greek letters than run from 0 to

D − 1, e.g.: µ, ν = 0, . . . , D − 1. On the other hand, the internal spinor space

can be taken as four dimensional. We then have:

{γµ, γν} = −2ηµν
I4, γµγµ = −DI4 (B.15)

We then have the following identities that we need in our calculations:

γµγαγβγµ = 4ηαβ
I4 − (D − 4)γαγβ (B.16)

Tr
(

γαγµγβγµ

)

= −4(D − 2)ηαβ (B.17)

Tr
(

γαγµγβγν
)

=
(

−4ηµνηαβ + 4ηµαηνβ + 4ηναηµβ
)

(B.18)

Tr
(

γ5γµγνγαγβ
)

= 4iǫµναβ (B.19)

where S(µν) is a symmetric tensor. For our purposes, we will not need any other

identity involving the gamma matrices.
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Euclidean space

C.1 Four-dimensional Euclidean space

In order to work with a path-integral formulation, we need to regularise the inte-

gration by switching to an Euclidean signature. Therefore, we continue analyti-

cally all our quantities into Euclidean space such that x4 = ix0, ∂4 = −i∂0, γ4 =

iγ0 and A4 = iA0. In terms of gamma matrices, we now have:

{γµ, γν} = −2δµν , (γµ)† = −γµ, γ5 = −γ1γ2γ3γ4, (γ5)
† = γ5 (C.1)

The only calculation that will be carried out using Euclidean space and gamma

matrices will be the anomaly in Section 8.3.2. More details about the formalism

can be found there. In this appendix we will focus on developing the Euclidean

formalism for two-components spinors.

C.2 Euclidean space and two-component spinors

We repeat the main steps of Section A.1, this time using an Euclidean signa-

ture for our space. Let us shortly recall that we can form from the (complex)

components of xµ a 2 × 2 matrix:

X =
1√
2




t− z x+ iy

x− iy t+ z



 (C.2)

We earlier saw that for a real xµ, the matrix is Hermitian X† = X and that any

Hermitian 2 × 2 matrix is of this form for some t, x, y, z. We also saw that we
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have:

2 det(X) = t2 − x2 − y2 − z2 = −ηµνx
µxν , ηµν = diag(−1, 1, 1, 1) (C.3)

Thus, Minkowski spacetime M1,3 can be identified with the space of Hermitian

2 × 2 matrices:

M1,3 ∼ X ∈ Mat(2 × 2) : X† = X (C.4)

We know define the Euclidean version of the above formulas. In order to do so,

we must first define an Euclidean spinor conjugation. Above we had the usual

Hermitian conjugation that sent a spinor to its complex conjugate:

wA = αιA + βoA 7→ w̄A′

= ᾱιA
′

+ β̄oA′

(C.5)

and that defines an isomorphism SO(1, 3) ∼ SL(2,C)/Z2. In this case, we want

the isomorphism to be SO(4) ∼ SU(2) × SU(2)/Z2, so that our conjugation

should not mix the two SU(2) spinors subspaces and be invariant over the latter.

Therefore, we seek two maps

wA = αιA + βoA 7→ ŵA, ŵAwA = αᾱ+ ββ̄ (C.6)

zA′

= γιA
′

+ δoA′ 7→ ẑA′

, ẑA′zA′

= γγ̄ + δδ̄ (C.7)

So that the two SU(2) inner products are left invariant. Using ιAoA = 1 = ιA
′

oA′ ,

we obtain:

wA = αιA + βoA 7→ ŵA = β̄ιA + ᾱ(−oA) (C.8)

zA′

= γιA
′

+ δoA′ 7→ ẑA′

= δ̄(−ιA′

) + γ̄oA′

(C.9)

We see that our new conjugation is also antilinear but does not interchange primed

and unprimed indices. Also, it is easy to see that:

ˆ̂wA = −wA, ˆ̂zA′

= −zA′

(C.10)

Finally, one can show that (see below) imposing X̂ = X is equivalent to requiring
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that xµ = (it, x, y, z) should be real. Calculating

XA
A′X̂A′

A = (it)2 + x2 + y2 + z2 = δµνx
µxν , δµν = diag(1, 1, 1, 1) (C.11)

shows that Euclidean space R4 can be identified with the space of 2 × 2 matrices

that are self-adjoint under the above conjugation:

R
4 ∼ X ∈ Mat(2 × 2) : X̂ = X (C.12)

We can make explicit the isomorphism by considering the group SU(2) of unitary

transformations:

SU(2) ∋ g =




α −β̄
β ᾱ



 , |α|2 + |β|2 = 1, α, β ∈ C (C.13)

This group acts on the space of self-adjoint matrices via:

X → LXR (C.14)

where L and R act on two different SU(2) representations (left and right handed).

It is clear that this action preserves det(X) (because det(g) = 1, g = L,R), and

preserves the space of self-adjoint 2 × 2 matrices by construction. Thus, this

gives a norm-preserving action of SU(2) × SU(2) on Euclidean spacetime, and

thus an embedding of SU(2) ×SU(2) into SO(4). Since flipping the sign in both

rotations does not change the way the group acts, this embedding can be seen to

be a 2 → 1 covering map. As before, we write

XA
A′

= θµA
A′

xµ (C.15)

The Euclidean version can be obtained from a Wick rotation of the Minkowski

version by noting τ = x4 = ix0 = it, τ ∈ R and θ4 = −iθ0. This allows us to

rewrite, as in the Minkowski case, the soldering form in terms of a doubly null

tetrad:

θAA′

µ = n̄µo
AoA′ − nµι

AιA
′

+mµo
AιA

′

+ m̄µι
AoA′

(C.16)
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where

n̄µ =
−iτµ + zµ√

2
, nµ =

iτµ + zµ√
2

, mµ =
xµ + iyµ√

2
, m̄µ =

xµ − iyµ√
2

(C.17)

Note that now n̄ = n∗ as m̄ = m∗. The only non-zero products are:

n̄µnµ = 1, mµm̄µ = 1 (C.18)

Thus, the Euclidean metric can be written in terms of a doubly null tetrad as:

δµν = n̄µnν + nµn̄ν +mµm̄ν + m̄µmν , (C.19)

Using the formula for the soldering form (C.16) as well as:

ι̂A = −oA, ι̂A
′

= oA′

(C.20)

and the antilinearity of the conjugation, it is now straightforward to verify X̂ =

X. Furthermore, this can trivially be extended to the statement that for any real

vector vµ, we have V̂ = V . The reader might have noticed that this conjugation

is related to the SU(2) conjugation that we encountered (A.64). Indeed, recall

that

GAA′

= oAoA′

+ ιAιA
′

(C.21)

The conjugation (A.64) that makes use of this matrix precisely acts on the spinor

basis as this “newly” introduced Euclidean conjugation. This is no coincidence

as we are dealing, in Euclidean space, with SU(2) spinors.
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Feynman rules: from first- to

second-order formalism

In this appendix, we make explicit the equivalence of the two formalisms at the

perturbative level using examples that have already been carried out in the main

body of this work. We therefore remind the reader of the different Lagrangians

and Feynman rules with which we are dealing and repeat a few simple calcula-

tions, this time in both formalisms, while explaining their link.

D.1 Dirac fermions

Dirac Lagrangian

Second-order

Recall that the Lagrangian for the fermionic sector of second-order Quantum

Electrodynamics is given by:

L = −2DA′
AχAD

A′BξB −m2χAξA (D.1)

with

Dµξ = (∂µ − ieAµ)ξ, Dµχ = (∂µ + ieAµ)χ, (D.2)
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where we included the electromagnetic coupling |e| ≪ 1. The Lagrangian can be

expanded so that:

L = L0 + Lint (D.3)

with

L0 = −∂µχA∂µξA −m2χAξA, (D.4)

and

Lint = 2ieAAA′
(

χA(∂A′
BξB) + (∂A′

BχB)ξA

)

− e2AB
B′AB′

Bχ
AξA (D.5)

First-order

The Lagrangian can be written in terms of two-component spinor fields, and

reads:

LDirac = −i
√

2χ†
A′DA′AχA − i

√
2ξ†

A′DA′AξA −m(χAξA + χ†
A′ξ† A′

). (D.6)

with

Lint =
√

2eAAA′
(

χ†
A′χA − ξ†

A′ξA

)

(D.7)

Propagator and Feynman Rules

Second-order

To extract the propagator for the spinor fields, let us rewrite the free part of their

Lagrangian as:

iLDirac = χA

[

iǫAB
(

−� +m2
)]

ξB (D.8)

Then the inverse of the quadratic operator is:

〈0|T{ξA(p)χB(−p)}|0〉 ≡ D(p)AB =
−i

p2 +m2
ǫAB (D.9)
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where, the field ξA sits at the end of the directed line. The Feynman rules for the

vertices are:

〈0|AA′

A(q)χB(p)ξC(k)|0〉 → 2ie
[

kC
A′

ǫBA + pB
A′

ǫCA

]

(D.10)

〈0|AA′

A(q1)A
B′

B(q2)χC(p)ξD(k)|0〉 → −2ie2ǫA′B′

ǫABǫCD (D.11)

First-order

In this case we have four propagators:

〈0|T{ξA(p)ξ†
A′(−p)}|0〉 ≡ −i

√
2

pA′A

p2 +m2
(D.12)

〈0|T{χA(p)χ†
A′(−p)}|0〉 ≡ −i

√
2

pA′A

p2 +m2
(D.13)

〈0|T{ξ†
A′(p)χ

†
B′(−p)}|0〉 ≡ −im ǫA′B′

p2 +m2
(D.14)

〈0|T{ξA(p)χB(−p)}|0〉 ≡ −im ǫAB

p2 +m2
(D.15)

We follow [29] for Feynman diagrams’ conventions: an outgoing arrow denotes a

primed fermion whereas an incoming arrow denotes an unprimed one. Moreover,

the rule for the spinor contractions is that we climb up the charge arrows. The

sign in the momentum propagators denotes a momentum flow antiparallel to the

contraction arrow (Fig.D.1).

A A’

p

Figure D.1: Momentum propagator diagram

In the case in which there is one or several mass propagators (two outgoing or

two incoming arrows on the same propagator), we follow the direction dictated

by the rest of the graph (e.g. previous external fermion or momentum propaga-

tor). Notice that in the case where we have a mass propagator in between two

momentum propagators, once we climb up the charge arrow of the first momen-

tum propagator, the second one will be climbed down. This does not affect the

calculation of the diagram since we are working with an explicit index notation

and the “charge arrow rule” simply allows us to set signs consistently among
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diagrams. The interaction vertices with the current are given by:

〈0|AA′

A(q)χ† B′

(p)χC(k)|0〉 → −i
√

2e ǫA′B′

δA
C

〈0|AA′

A(q)ξ† B′

(p)ξC(k)|0〉 → +i
√

2e ǫA′B′

δA
C

(D.16)

Tree level and the quartic vertex

We reconsider Compton-scattering, as we said, the first tree-level process in which

the new quartic vertex comes into play. In Chapter 6, we saw that both formalisms

led to the same result. This was most easily seen after we performed a simple

trick that we recall here for this example. Define the reduced channel amplitudes:

Msi
:= (si +m2)Msi

(D.17)

where m is the mass of the fermion in the channel. Then, the amputated ampli-

tude for a two-fermions-two-photons process with momenta ki is:

M(s1, s2, {ki}) =
Ms1(s1, {ki})

(s1 +m2)
+

Ms2(s2, {ki})

(s2 +m2)
+ V4

=
Ms1(s1 = −m2, {ki})

(s1 +m2)
+

Ms2(s2 = −m2, {ki})

(s2 +m2)

(D.18)

where V4 is the quartic vertex. We will see that this trick is enough to show the

equivalence of amplitudes at tree-level. In the following we will see how this rule

generalises for loops involving the four-vertex.

Loops equivalence

In Chapter 7, we computed the photon two-point function in the second-order

formalism. We now compute the same quantity in the first-order two-component

Dirac formalism. In that case, there are four diagrams: two in which both

propagators incorporate the momentum contribution (the vertices are denoted

by: ξ†ξ → ξξ†, χχ† → χ†χ) and two in which both are mass insertions (ξ†ξ →
χ†χ, χ†χ → ξ†ξ). This immediately leads to:

iΠ(1)(k)A′

A
B′

B

= (−1)4e2
∫ dDp

(2π)D

[

pA′

B(p+ k)B′

A + (p+ k)A′

Bp
B′

A +m2ǫA′B′

ǫAB

]

[p2 +m2] [(p+ k)2 +m2]

(D.19)
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This is the same amplitude as in the second-order formalism. Notice though, that

we needed shift freedom obtained through dimensional regularisation in order to

match them.

All in all, we come to the conclusion that the two formalisms can be matched into

each other. Furthermore, it is worth stating that, in the second-order formalism,

one could consider only diagrams containing cubic vertices with an additional

rule (at tree level): wherever there is a contraction in the numerator leading to a

propagating momentum squared, the latter is set on-shell. This is understood in

the sense that the quartic vertex encodes the information that used to be carried

by the primed fermions. Those propagators containing mass insertions of the

primed spinors have been set on-shell and contracted to form quartic vertices.

Hence, when we consider only unprimed propagating degrees of freedom in the

cubic vertices, we obtain the correct amplitude, up to some resonances in the

virtual particles1 that have to be accounted for. Below we will see how this

happens in the case of non-trivial loop diagrams.

D.2 Majorana-Weyl theory

The photon two-point function calculation develops in the same way as for the

Dirac fermion. The first non-trivial result arises when one considers the triangle

anomaly diagrams. This calculation will mimic what was done in Chapter 8.

First-order Lagrangian

We start with a massive Majorana spinor coupled to an external vector field (we

forget about gauge symmetry for a bit). Indeed, our aim is to link the first-order

calculation to the second-order one and to expose the behaviour of the diagrams

containing a quartic vertex. The Lagrangian is given by:

LMaj = −i
√

2λ†
A′DA′AλA − m

2
(λAλA + λ†

A′λ† A′

). (D.20)

with

DA′AλA = (∂ − ieA)A′A λA (D.21)

1Recall that the reality conditions are ξ† ∼ ∂ξ, so that an on-shell primed spinor in a mass
insertion propagator will lead to a resonance ∂2 → p2.
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First-order perturbative calculation

The anomaly can be computed in perturbation theory by means of Feynman

diagrams. Indeed, one shows that the divergence of the current has a non-zero

matrix element to create two photons, where the amplitude which is considered

is given by:

〈k1, k2|jA′

A (x)|0〉 = ǫ∗ B
B′ (k1)ǫ

∗ C
C′ (k2)MABC

A′B′C′(k1, k2)

〈k1, k2|p · j(x)|0〉 6= 0 (D.22)

We briefly translate the two-component anomaly calculation of [29] into our no-

tation. The Feynman rules are as follows:

〈0|λ†
A′(p)λA(−p)|0〉 ≡ −i

√
2pA′A

p2 +m2
(D.23)

〈0|T{λ†
A′(p)λ

†
B′(−p)}|0〉 ≡ −i ǫA′B′

p2 +m2
(D.24)

〈0|T{λA(p)λB(−p)}|0〉 ≡ −i ǫAB

p2 +m2
(D.25)

〈0|AA′

A(q)λ† B′

(p)λC(k)|0〉 → i
√

2e ǫA′B′

δA
C (D.26)

We have one momentum propagator and two mass-insertion propagators as well

as one cubic vertex and the rule for contracting the indices are as above (climbing

up the arrows and consistently contracting any mass insertion).

Taking into account the two orientations for the triangle diagrams, and denoting

the incoming photons by spinor indices (AA′), (BB′), (CC ′) and their massless
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momenta k1, k2, k3:

iM(1)(k2, k3) = 8e3
∫ d4q

(2π)4

1

(q − k2)2 +m2

1

q2 +m2

1

(q + k3)2 +m2

×




(

qB′

C(q − k2)
A′

B(q + k3)
C′

A − qC′

B(q − k2)
B′

A(q + k3)
A′

C

)

− m2

2
ǫB′C′

(

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

− m2

2
ǫA′C′

(

ǫABq
B′

C + ǫCB(q − k2)
B′

A

)

− m2

2
ǫA′B′

(

−ǫACq
C′

B − ǫBC(q + k3)
C′

A

)





(D.27)

This amplitude leads to the usual anomalous conservation of the current in the

massless limit. Note that dimensional regularisation is not used here as it leads to

some subtleties in the definition of the integral2. Before continuing the analysis

of the amplitude, we will first derive the same amplitude in the second-order

formalism.

Second-order Lagrangian

We will now carry out the calculation for a Majorana fermion in a second-order

formalism coupled to an external vector field. The Lagrangian in this case is

given by:

L = −DA′
AλAD

A′BλB − m2

2
λAλA. (D.28)

This should be supplemented with the reality conditions:

mλ† A′

= −i
√

2DA′AλA (D.29)

The field equations that result from the above Lagrangian are

2DA′
ADA′BλB +m2λA = 0 (D.30)

2In other words, γ5 has to be carefully defined if dimensional regularisation were to be used.
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We see that the Lagrangian is not invariant under the usual U(1) transformations

δλ = +ieαλ (D.31)

However, the field equations and the reality condition are in the massless limit

(where the vector field can be considered as a gauge field). Furthermore, the

current given by:

jA
A′

= ie
(

λAD
A′BλB −DA′BλBλA

)

= 2ieλAD
A′BλB (D.32)

is conserved on-shell in that limit. We will show that the amplitude for the

triangle diagrams is equivalent in both formalisms up to some boundary terms

that are fixed in the calculation of the anomaly (Chapter 8, Appendix E).

Perturbative calculation in the second-order formalism

The calculation is identical to the one carried out in Chapter 8, we therefore refer

the reader to the latter for further details. Let us simply recall:

iM(k2, k3) = 8e3
∫ d4q

(2π)4




I + J

D(−k2)D(k3)D(0)
+

A
D(−k2)D(k3)

+
B

D(−k2)D(0)
+

C
D(0)D(k3)





(D.33)

with now D(k) = (q + k)2 + m2 and where the contribution from I, J , A, B,
and C do not depend on the mass and are the same as before:

I = qB′

C(q − k2)
A′

B(q + k3)
C′

A − qC′

B(q − k2)
B′

A(q + k3)
A′

C (D.34)

These are the terms that, in the massless limit lead to the anomalous conservation

of the current in a theory of one Weyl fermion. They correspond to the m2 → 0

limit of iM(1) in (D.27). In the second-order case, the triangle diagram yields an
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extra contribution:

J =
1

2
q2ǫB′C′

(

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

+
1

2
(q + k3)

2ǫA′C′
(

ǫABq
B′

C + ǫCB(q − k2)
B′

A

)

+
1

2
(q − k2)

2ǫA′B′
(

−ǫACq
C′

B − ǫBC(q + k3)
C′

A

)

(D.35)

These terms arise from the contractions of momenta by propagators as it was the

case when we computed the photon two-point function. They are expected to

cancel out with terms arising from the quartic vertex:

A =
1

4
ǫB′C′

ǫBC(k2 + k3)
A′

A (D.36)

B = −1

4
ǫA′C′

ǫACk2
B′

B (D.37)

C = −1

4
ǫA′B′

ǫABk3
C′

C (D.38)

The difference between the massless and the massive case appears now. If before,

the propagators could be cancelled simply by terms of the type ∼ q2, we now need

an extra contribution from the mass squared. Therefore, we can combine these

four terms in the following way: in the J term, one can add and substract an m2

term. Then, we will have numerators such as q2 +m2 that cancel one propagator

and are added to A, B or C, and there will remain three terms proportional to

m2. The latter are written as:

J (p2
i = −m2) = − 1

2
m2ǫB′C′

(

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

− 1

2
m2ǫA′C′

(

ǫABq
B′

C + ǫCB(q − k2)
B′

A

)

− 1

2
m2ǫA′B′

(

−ǫACq
C′

B − ǫBC(q + k3)
C′

A

)

(D.39)

where pi denotes the momentum flowing the propagators. These terms are in

one-to-one correspondence with the terms in (D.27). We are finally left with the

PhD Thesis 247 Johnny Espin



Appendix D. Feynman rules: from first- to second-order formalism

quartic-vertex contributions with the additional terms coming from J . We have:

Ã =
1

2
ǫB′C′

(
1

2
ǫBC(k2 + k3)

A′

A + ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

(D.40)

B̃ =
1

2
ǫA′C′

(

−1

2
ǫACk2

B′

B + ǫABq
B′

C + ǫCB(q − k2)
B′

A

)

(D.41)

C̃ =
1

2
ǫA′B′

(

−1

2
ǫABk3

C′

C − ǫACq
C′

B − ǫBC(q + k3)
C′

A

)

(D.42)

For the second-order amplitude to be equal to the first-order one, these three

quantities should vanish as is the case in the usual massless calculation (Appendix

E), and therefore the constraint that has to be imposed is the same. Recall that

we are not allowed to use dimensional regularisation: this implies that the terms

proportional to the loop momentum can not be freely shifted as they diverge

linearly. However, if we were able to use shift invariance to rewrite them, e.g. for

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B, we would obtain:

1

2

(

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

+
1

2

(

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

=
1

2

(

ǫAB(q + k3)
A′

C + ǫAC(q − k2)
A′

B

)

+
1

2

(

ǫAB(−q + k2)
A′

C − ǫAC(q + k3)
A′

B

)

= − 1

2

(

(k3 + k2)
A′

CǫAB + (k2 + k3)
A′

BǫAC

)

= − 1

2
(k2 + k3)

A′

AǫBC

(D.43)

where in the second line we have shifted q → q + k2 − k3 and then q → −q
so that their denominators coincide. All in all, each expression into brackets

would individually cancel and the second-order amplitude would be equal to its

first-order counterpart. The problem here arises due to the lack of dimensional

regularisation that we used before to match the calculations. However, it was

shown in Chapter 8 that there always exists a shift in the loop momentum in the

second-order amplitude that matches another shift in the first-order case so that

the physical content of both is equivalent3. We could therefore make the following

assumption: if, from the beginning, we only considered the triangle diagrams with

no quartic vertices and set on-shell the contracted momenta in the numerators

thereby extending (D.18) to loop diagrams, we would have obtained (without

worrying about shift freedom and lack of dimensional regularisation schemes) the

3This is true when the fermion is coupled to a background field that satisfies transversality
conditions.
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sought amplitude. This assumption can be considered as an extra Feynman rule

of the second-order formalism. Its proof is beyond the scope of this thesis, we

shall however see that when dimensional regularisation is allowed, it holds.

D.3 Transition from first- to second-order dia-

grams

Index-free Feynman rules

We recall the Feynman rules for two Dirac two-component spinors, however, we

rewrite them in a more convenient way (as far as the index structure is concerned):

〈0|T{χA(−p)χ† A′

(p)}|0〉 ≡ −i
√

2
pA

A′

p2 +m2
(D.44)

〈0|T{ξA(−p)ξ†
A′(p)}|0〉 ≡ −i

√
2

pA
A′

p2 +m2
(D.45)

〈0|T{ξ†
A′(−p)χ† B′

(p)}|0〉 ≡ −im δA′
B′

p2 +m2
(D.46)

〈0|T{ξA(−p)χB(p)}|0〉 ≡ −im δA
B

p2 +m2
(D.47)

where the momentum flows from the primed to the unprimed spinor (we will call

this the positive direction flow). And the interaction vertices with the current as:

〈0|Aµ(q)χ†
B′(p)χC(k)|0〉 → +i

√
2e (θµ)C

B′ (D.48)

〈0|Aµ(q)ξ† B′

(p)ξC(k)|0〉 → −i
√

2e (θµ)B′

C (D.49)

We can conveniently rewrite all of these propagators in an index free notation as:

−i(
√

2p+m)

p2 +m2
(D.50)

with the momentum flowing in the same direction as the contraction arrows and

p ≡ pµθ
µ. Notice that these arrows correspond to the charge flow for one of the

Dirac fermions and is opposite to it for the other (χ has the same charge as ξ†).

Moreover, when the propagator is written in this way, the reader must remember

that it is simply a convenient rewriting. Indeed, in the first-order two-component

formalism, we have either a mass or a momentum insertion in the propagator,
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not both. The above notation is merely a compact and useful way of gathering

many terms in one amplitude (see below). The vertices are given by:

±ie
√

2θµ (D.51)

where the sign depends on whether it is a χ or ξ vertex. This two-component index

free notation is so far ambiguous because it encapsulates too much information.

Indeed, we à priori do not know with which spinor we are dealing. We therefore

need “extra” Feynman rules. These will fall into two categories: open strings

of fermions, i.e., one incoming fermion going into n photons and one outgoing

fermion at tree level, and closed fermion loops.

String of Dirac fermions

We will start the conversion of the first-order Feynman rules for the case of a

string of fermions. Let us start by listing our rules:

1. We are interested in un-amputated amplitudes with one incoming and one

outgoing unprimed spinor, and n photons (that can be taken to be ampu-

tated). Hence, there will be two types of fermionic propagators connected

to the amplitude:

+i
√

2p

p2 +m2
(D.52)

or

−im
p2 +m2

(D.53)

Depending on whether the amputated first-order amplitude starts with a

primed or unprimed spinor.

2. Each internal fermionic line has also either type of propagator. We therefore

consider, as previously stated, a compact notation4

S(p) =
i(

√
2p−m)

p2 +m2
= D(p)(−

√
2p+m) (D.54)

4The change of sign in this abstract propagator is due to the momentum flowing from
unprimed to primed spinor in the first external propagator.
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3. In order to fix the sign in the vertices, we consider the incoming unprimed

spinor to be χ and the outgoing unprimed spinor to be ξ (this fixes the

charge flow). Therefore, we consider the default vertex (for an amplitude

with no mass insertions, see below) to be

+ie
√

2θµ (D.55)

and after a mass insertion, it becomes (until the next swap):

−ie
√

2θµ (D.56)

4. Because an m insertion swaps the spinor fields and therefore inverts the

“positive” contraction direction5, the sign in the momentum propagators

and in the vertices changes after an odd number of m insertions until there

is another m insertion (if any) so that the number becomes even.

5. Because we are only interested in unprimed un-amputated amplitudes (these

contain all the necessary information), a string of propagators and vertices

can only contain an even number of θ’s. The terms with an odd number of

soldering forms can be neglected once the conversion to second-order am-

plitudes is finished as they correspond to primed to unprimed amplitudes.

However, we will keep them in order to prove general conversation rules

since, e.g., the extra terms in a n photons process, will contribute to the

n+ 1 photons process.

Now that we fixed our rules and conventions, we will go through a few examples

and then give a general formula for the conversion.

First, consider the simplest case consisting of a single vertex, with incoming

5In the following ξξ† propagators the momentum will flow from ξ to ξ†, which is defined as
the negative direction flow.
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momentum p and outgoing p1 = p+ k1. We have:

M(p, p1) = D1(−
√

2p1 +m)(ie
√

2θµ)(−
√

2p+m)D

= D1(−
√

2p1 +m)
[

(−2ei)θµp− ie
√

2θµm
]

D

= D1

[

(−
√

2p1 +m)(−2ei)θµp− (+
√

2p1 +m)ie
√

2θµm
]

D

= D1

[

(−2ei)(mθµp+ p1θ
µm) −

√
2((−2ie)p1θ

µp+ iemθµm)
]

D

= D1

[

mV µ
3 −

√
2((−2ie)p1θ

µp+ iemθµm)
]

D

(D.57)

Notice, in the second line, the change in sign in the vertex due to the mass inser-

tion. In the last line, the first term corresponds to the second-order cubic vertex

with incoming p and outgoing p1, and the remaining terms map an unprimed

spinor into a primed one and would be discarded if we were only interest in that

amplitude.

Next we consider the string with two photons labelled by k1, µ and k2, ν. There

are here two diagrams to consider: in order to compute the amplitude, we need to

consider the symmetrisation of the photons’ external legs. We will try to extract

a conversion formula from this amplitude instead of simply discarding the extra

terms as we have done before.

M(p, p1, p2) = S2(ie
√

2θν)D1

[

mV µ
3 −

√
2((−2ie)p1θ

µp+ iemθµm)
]

D

= S2D1

[

(ie
√

2θν)(mV µ
3 ) + (−2ie)2θνp1θ

µp

−(ie
√

2θν)
√

2iemθµm
]

D

= S2D1

[

(ie
√

2θν)(mV µ
3 ) + (−2ie)2(θνp1)(θ

µp)

+2e2θν(m2 + p2
1)θ

µ − 4e2(θνp1)(p1θ
µ)
]

D

= S2

[

(ie
√

2θν)D1(−
√

2p1 +m)V µ
3 + (−2e2i)θνθµ

]

D

(D.58)
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with p2 = p1 + k2 and we have made use of p ≡ pµθ
µ and pp = pµθ

µθνpν = p2/2.

Once we symmetrise the amplitude we obtain:

Ms(p, p1, p2) = S2

[

(ie
√

2θν)S1V
µ

3 + (−2e2i)θνθµ
]

D + (k1, µ ↔ k2, ν)

= S2

[

(ie
√

2θν)D1(−
√

2p1 +m)V µ
3 + (k1, µ ↔ k2, ν)

]

D

+ S2(−2e2i)ηνµD

= S2

[

(ie
√

2θν)S1V
µ

3 + (k1, µ ↔ k2, ν)
]

D + S2V
νµ

4 D

(D.59)

This allows us to extract a conversion formula:

(ie
√

2θα2)S1(ie
√

2θα1)S = (ie
√

2θα2)S1V
α1

3 D + V̄ α2α1
4 D (D.60)

where V̄ α2α1
4 = (−2e2i)θα2θα1 is the unsymmetrised quartic vertex. Notice that

in (D.60) there is only one photon momentum (k1) and therefore, to obtain the

exact formula for two external photons containing the quartic vertex we need to

consider three vertices (the third one being added ad hoc):

(ie
√

2θα3)S2(ie
√

2θα2)S1(ie
√

2θα1)S, (D.61)

apply (D.60) twice, and then symmetrise over the “physical” (k1, α1 ↔ k2, α2).

We then obtain:

(ie
√

2θα3)Ms(p, p1, p2) =(ie
√

2θα3)S2 [V α2
3 D1V

α1
3 + (1 ↔ 2) + V α2α1

4 ]D

+ V̄ α3α2
4 D1V

α1
3 D

(D.62)

where the terms in square brackets is the second-order amplitude and (1 ↔ 2) ≡
(k1, α1 ↔ k2, α2). We could have multiplied the above equation by the inverse of

the third ad hoc vertex and, as before, simply discard terms with an odd number

of soldering forms however, as presented the formula will be more useful when

dealing with loops.

The above formula is easily generalised to n photons:

(ie
√

2θαn+1)SnMαn...α1

(1) S

= (ie
√

2θαn+1)SnMαn...α1

(2) D + V
αn+1αn

4 Dn−1Rαn−1...α1

(2) D
(D.63)

where V4R(2) is the “rest” that contributes to the next amplitude only. All in

all, when we consider the amplitudes we are interested in (recall we only want an
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even number of soldering forms in the RHS and that the last vertex is ad hoc),

we have:

SnMαn...α1

(1) S
∣
∣
∣
unprimed

= mDnMαn...α1

(2) D (D.64)

The dimensions of the amplitudes seem to mismatch, recall however that the

first-order wavefunctions are related to the second-order ones by:

{u(1), ū(1)} =
√
m · {u(2), ū(2)} (D.65)

Moreover, in the LHS, there is only either a momentum or mass propagator and

the external spinors are onshell, i.e.:

Su(1) = mu(1)D, ū(1)Sn = mDnū(1) (D.66)

All in all:

ū(1)Mαn...α1

(1) u(1)

∣
∣
∣
full

= ū(2)Mαn...α1

(2) u(2) (D.67)

Dirac loops

In order to find similar formulas for loops, we will consider (D.63) without the

explicit symmetrisation. As before, we will use a bar notation to denote unsym-

metrised second-order quantities. In the first-order formalism, a one-loop diagram

for the n+ 1 photons amplitude is given by:

Tr
[

(ie
√

2θαn+1)SnMαn...α1

(1) S
]

(D.68)

which is given in the second-order formalism, after conversion by:

Tr
[

(ie
√

2θαn+1)SnM̄αn...α1

(2) D + V̄
αn+1αn

4 Dn−1R̄αn−1...α1

(2) D
]

(D.69)

with D = Dn+1. In this trace, only terms with an even number of soldering forms

contribute as the trace of an odd number of these vanishes. We see that the

second term in the brackets is directly related to the loop amplitude, whereas in
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the first one, only the momentum propagator in Sn contributes. All in all:

Tr
[

(ie
√

2θαn+1)SnMαn...α1

(1) S
]

= Tr
[

(−2ie)(θαn+1pn)DnM̄αn...α1

(2) D + B̄αn+1αn...α1

(2)

] (D.70)

where B̄ denotes a second-order formalism’s loop diagram where the “last” vertex

is quartic.

Even though we have not symmetrised the diagram over its external photon

states, as we are working with Dirac two-component fermions, there is still a

piece missing the the diagram. Indeed, we must consider the same amplitude

with the interchange χ ↔ ξ†. Since there is always an even number of soldering

forms and that the swap only affect these terms, there will not be any sign change

in the individual terms. However, as we keep the charge flow equal and swap the

fields, the contraction direction changes. Schematically a loop diagram is given

by, if we keep the “last” vertex fixed and apply the swap on it:

Tr
[

(+ie
√

2θαn+1)SnMαn...α1

(1) S
]

+ Tr
[

(−ie
√

2θαn+1)SMα1...αn

(1) Sn

]

(D.71)

where the amplitudes need not be equal. If we apply the same formulas as above

to the second term we obtain for the latter:

Tr
[

(−ie
√

2θαn+1)SMα1...αn

(1) Sn

]

= Tr
[

(−2ie)(−θαn+1p)DM̄α1...αn

(2) Dn + B̄αn+1α1...αn

(2)

] (D.72)

where the additional minus sign comes from the fact that the propagators get an

extra minus sign due to the direction change. The difference in the two first-order

reversed amplitudes comes from the the “last” vertex, i.e., how it connects to the

rest of the amplitude. Once this vertex has been factored out, the rest is equal

and simply contracted in an opposite direction. Therefore, using:

Tr [θµθα1θα2 . . . θαn−1θαn ] = Tr [θµθαnθαn−1 . . . θα2θα1 ] (D.73)

We have:

Tr
[

(−2ie)(θαn+1p)DM̄α1...αn

(2) Dn

]

= Tr
[

(−2ie)(pθαn+1)DnM̄αn...α1

(2) D
]

(D.74)
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and finally:

Tr
[

Lαn+1...α1

(1)

]

= Tr
[

V
αn+1

3 DnM̄αn...α1

(2) D + B̄αn+1αn...α1

(2) + B̄αn+1α1...αn

(2)

]

= Tr
[

Lαn+1...α1

(2)

] (D.75)

where L(i) denotes the full one-loop diagram (counting both two-component

spinors) written in either formalism. Notice however, that the second-order am-

plitude is written in terms of unsymmetrised quartic vertices V̄4. We will explain

the apparent mismatch in a few examples below.

One-loop photon two-point function

We will now construct explicitly the second-order formalism amplitudes from the

first-order diagrams for the simple case of a two-point photon amplitude. We

choose to fix the vertex µ, there are then two diagrams (corresponding to one

charge flow but both directions of contraction): one when the latter is a χχ†

vertex and one when it is a ξ†ξ vertex. The first diagram is given by:

(−1)
∫

Dℓ Tr
[

(ie
√

2θµ)(−
√

2ℓ+m)(ie
√

2θν)(−
√

2ℓ1 +m)
]

DD1

=(−1)
∫

Dℓ (−2ei)2Tr

[

(ℓ1θ
µ)(ℓθν) − m2

2
(θνθµ)

]

DD1

=(−1)
∫

Dℓ (−2ei)2Tr [(ℓ1θ
µ)((ℓθν) + (θνℓ1))]DD1 + (−2e2i)Tr [(θνθµ)]D

=(−1)
∫

Dℓ (−2ei)Tr [(ℓ1θ
µ)V ν

3 ]DD1 + Tr
[

V̄ νµ
4

]

D

(D.76)

where terms as (ℓθν) indicate that the momentum propagator ℓ attaches itself

to the primed spinor in the the vertex θν (climbing up contraction arrows) and

we used p ≡ pµθ
µ and pp = pµθ

µθνpν = 1/2p2 as before to cancel the m2 terms.
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Similarly, the second diagram is given by:

(−1)
∫

Dℓ Tr
[

(−ie
√

2θµ)(
√

2ℓ+m)(−ie
√

2θν)(
√

2ℓ1 +m)
]

DD1

=(−1)
∫

Dℓ (−2ei)2Tr

[

(ℓ1θ
ν)(ℓθµ) − m2

2
(θνθµ)

]

DD1

=(−1)
∫

Dℓ (−2ei)2Tr [(ℓθµ)((ℓ1θ
ν) + (θνℓ))]DD1 + (−2e2i)Tr [(θνθµ)]D1

=(−1)
∫

Dℓ (2ei)2Tr [(θµℓ)((ℓθν) + (θνℓ1))]DD1 + (−2e2i)Tr [(θνθµ)]D1

=(−1)
∫

Dℓ (−2ei)Tr [(θµℓ)V ν
3 ]DD1 + Tr

[

V̄ νµ
4

]

D1

(D.77)

All in all, when we sum up both contributions, we obtain:

(−1)
∫

Dℓ Tr [V µ
3 V

ν
3 ]DD1 + Tr

[

V̄ νµ
4

]

D1 + Tr
[

V̄ νµ
4

]

D (D.78)

The reader can recognise (D.75) for n = 1. We said earlier that the second-order

Feynman rules give rise to the quartic vertex V4 and not V̄4 and in our case the

amplitude is given in terms of the latter. Notice however that:

Tr
[

V̄ νµ
4

]

=
1

2
Tr [V νµ

4 ] (D.79)

So that our amplitude can be written as:

(−1)
∫

Dℓ Tr [V µ
3 V

ν
3 ]DD1 +

1

2
Tr [V νµ

4 ]D1 +
1

2
Tr [V νµ

4 ]D

= (−1)
∫

Dℓ Tr [V µ
3 V

ν
3 ]DD1 + Tr [V νµ

4 ]D
(D.80)

Which is what would be written using second-order Feynman rules.

Massive Majorana in a loop

We give here an explicit construction of the second-order triangle diagrams for

a loop consisting of massive Majorana fermions coupled to external vector fields

(gauge fields in the massless limit). For the former, there is only one kind of

vertex given by −ie
√

2θµ and the propagator is given by −i(
√

2p+m)
p2+m2 (when the

momentum flows in the same direction as the contraction arrows).

We consider three incoming spin 1 particles with momenta ki. In this index

free notation, in order to obtain all the possible diagrams we simply need to fix
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one vertex (say µ) and consider both orientations for the latter. Since we are

solely interested in unprimed Feynman rules for the second-order formalism, each

momentum insertion will contract with the vertex containing a primed spinor,

and mass insertions will also contract when consisting of two primed spinors. All

in all, the amplitude for the first orientation is given by:

(−1)
∫

Dp Tr
[

(−ie
√

2θµ)(
√

2p2 +m)(ie
√

2θβ)

×(
√

2p1 +m)(ie
√

2θα)(
√

2p+m)
]

DD1D2

=(−1)
∫

Dp (−2ie)3Tr
[

(pθµ)(p2θ
β)(p1θ

α)

+
m2

2

(

(p2θ
β)(θαθµ) + (pθµ)(θβθα) − (θβp1)(θ

αθµ)
)
]

DD1D2

(D.81)

In order to convert the amplitude into second-order product of vertices, for each

m2 term, we add a p2
i term such as to cancel one denominator and obtain a

quartic vertex (the momentum is chosen according to the (θθ) contraction) and

subtract the same term but this time writen as 2pipi in order to obtain a cubic

vertex with the remaining terms. All in all, we obtain for this first amplitude:

(−1)
∫

Dp Tr
[

(−2ei)(pθµ)V β
3 V

α
3

]

DD1D2

+ Tr
[

(−2ei)(pθµ)V̄ βα
4

]

DD2 + Tr
[

V β
3 V̄

αµ
4

]

D1D2

(D.82)

with, for a momentum flow following the charge flow in the vertices:

V µ
3 (kout, kin) = (−2ei)(koutθ

µ − θµkin)

V̄ αβ
4 = 2e2i(θαθβ) =

1

2
V αβ

4 + 2e2iΣαβ
(D.83)

The second amplitude is then written (remember that the momentum now mainly

flows in the opposite direction to the charge):

(−1)
∫

Dp (−2ie)3Tr
[

−(p2θ
µ)(pθα)(p1θ

β)

−m2

2

(

(p2θ
µ)(θαθβ) + (pθα)(θβθµ) − (θαp1)(θ

βθµ)
)
]

DD1D2

(D.84)
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We now use the identity:

Tr [θµθα1θα2 . . . θαn−1θαn ] = Tr [θµθαnθαn−1 . . . θα2θα1 ] (D.85)

So that the amplitude can be rewritten as:

(−1)
∫

Dp Tr
[

(−2ei)(−θµp2)V
β

3 V
α

3

]

DD1D2

+ Tr
[

(−2ei)(−θµp2)V̄
βα

4

]

DD2 + Tr
[

V α
3 V̄

µβ
4

]

D1D

(D.86)

All together, the whole triangle diagram amplitude is given by:

(−1)
∫

Dp Tr
[

V µ
3 V

β
3 V

α
3

]

DD1D2 + Tr
[

V µ
3 V̄

βα
4

]

DD2

+ Tr
[

V α
3 V̄

µβ
4

]

D1D + Tr
[

V β
3 V̄

αµ
4

]

D1D2

(D.87)
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Explicit calculation of the

anomaly

We will now compute the amplitude of the divergence of the first current. This

amounts to dot the amplitude with its momentum ik1 = −i(k2 + k3). The pro-

cedure is the same as in Chapter 8 and Appendix D.3: using −i(k2 + k3) =

−i(−(q−k2) + (q+k3)), each term with a different denominator in the integrand

comes with its shifted counterpart, so that the value of the integral is a boundary

term (see below) which we give as:

ik1 · iM

=
e3

8π2
(k2 + k3)

A
A′



ǫB′C(k2 − k3)
A′

(BǫC)A − ǫA′C′

k2
B′

(AǫC)B − ǫA′B′

k3
C′

(AǫB)C





=
e3

8π2
(k2 + k3)

A
A′



 (−ΣDA)B′C′

B C (k2 − k3)
A′D

+ (ΣDB)A′C′

A C k2
B′D + (ΣDC)A′B′

A B k3
C′D





(E.1)

We now make us of the fact that all the pairs of spinor indices we be contracted

by either the momentum (k2 + k3) or the external polarisation vectors of the

photons. Therefore, using

θµ AA′θν B
A′

= −1

2
ηµνǫAB + Σµν AB (E.2)
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and replacing the spinor indices by their Minkowski counterpart:

ik1 · iM

=
e3

8π2
(k2 + k3)µ



− Σµβ · Σνα(k2 − k3)β + Σµα · Σνβk2β + Σµν · Σαβk3β





=
e3

4π2



Σµβ · Σνα + Σµν · Σαβ



k2µk3β

=
e3

4π2




1

2

(

ηµνηαβ − ηµβηνα
)

− iǫµναβ



k2µk3β

(E.3)

We consider the on-shell amplitude (so that k2
i = 0 = ǫi · k1) and we obtain:

ik1 · iMon-shell = − ie3

4π2
ǫµναβk2µk3βǫν(k2)ǫα(k3) (E.4)

Hence the divergence of the first current is anomalous. We should check whether

it is the case for the divergence of, by symmetry, either of the remaining currents.

Let us recall the amplitude:

iM(k2, k3) = 4e3
∫ d4q

(2π)4



qB′

C(q − k2)
A′

B(q + k3)
C′

A

− qC′

B(q − k2)
B′

A(q + k3)
A′

C





× 1

(q − k2)2q2(q + k3)2
+ (k2;BB

′) ↔ (k3;CC
′)

+
ie3

16π2





(

ηµνηαβ − ηµβηνα − 2iǫµναβ
)

k3β

+
(

ηµαηνβ − ηµβηνα + 2iǫµναβ
)

k2β





(E.5)

where it is understood that matching spinor indices are rewritten in terms of

their spacetime counterpart. The terms in the second brackets, that correspond

to the bubbles mentioned in Chapter 8, are given by a boundary term as we saw

in Appendix D.3. The value of the latter is calculated straightforwardly using

the methods presented in the two cited chapters.

In the computation of the divergence of the first current, it turned out that the
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terms that appear in the first brackets lead to a vanishing contribution due to

Lorentz invariance, and only the remaining boundary terms contributed. Now,

in calculating the divergence of the remaining two currents we then need to make

some effort with the first two terms only. Furthermore the result will be sym-

metric under the exchange of momenta and indices (k2; ν) ↔ (k3;α), so only one

calculation is needed. We have then:

ik2 · iM = 2ie3
∫ d4q

(2π)4





(

(q + k3)
A′

Cq
C′

A

q2(q + k3)2
− (q − k3)

C′

Aq
A′

C

q2(q − k3)2

)

+

(

(q − k3)
C′

A(q + k2)
A′

C

(q + k2)2(q − k3)2
− (q + k3)

A′

C(q − k2)
C′

A

(q − k2)2(q + k3)2

)



− (AA′ ↔ CC ′)

+
ie3

8π2
ǫµναβk2νk3β + . . .

(E.6)

Where the dots are terms that vanish onshell. The first quantity in brackets

vanishes by Lorentz invariance, whereas in order to compute the second integral,

it suffices to notice that it can be rewritten as:

2ie3
∫ d4q

(2π)4

[

I(q + S) − I(q)
]

(E.7)

and using the fact that for a quadratically divergent integral we have:

∫ d4q

(2π)4
f(q + a) − f(a) =

i

(2π)4

(

2π2aD′
D lim

q→∞
qD′

Dq
2fo(q)

+π2aE′
EaD′

D lim
q→∞ qE′

Eq
2 ∂

∂qD′
D
fe(q)

) (E.8)

where the LHS momenta have been continued to Euclidian space by Wick rotation

and fo, fe are the odd and even components of the function f . In our case:

I(q) =
(q + k3)

A′

C(q − k2)
C′

A

(q − k2)2(q + k3)2
, S = k2 − k3 (E.9)
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Using:

Io(q) =
−qA′

Ck2
C′

A + qC′

Ak3
A′

C

q4
− 2qC′

Aq
A′

Cq · (k3 − k2)

q6
+ O(q−4) (E.10)

∂Ie(q)

∂qD′
D

=
ǫA′D′

ǫDCq
C′

A + ǫC′D′

ǫDAq
A′

C

q4
− 4qA′

Cq
C′

Aq
D′

D

q6
+ O(q−4) (E.11)

so that the evaluation of the integral yields:

e3

8π2

(

k3
A′

Ck2
C′

A − k2
A′

Ck3
C′

A

)

(E.12)

We now make use of the fact that all the pairs of spinor indices will be contracted

by the external polarisation vectors of the photons, i.e.

kA′

C ε(k)C
C′ = Σ̄µν A′

C′kµǫν , kC′

A ε(k)C
C′ = Σµν C

Akµǫν (E.13)

thus obtaining:

on-shell → e3

8π2



Σ̄µν · Σ̄αβ − Σµν · Σαβ



k3 µε3 νk2 αε1 β = − ie3

8π2
ǫµναβε1 µε3 αk2 νk3 β

(E.14)

So that finally

ik2 · iM = − ie3

8π2
ǫµναβk2 νk3 β +

ie3

8π2
ǫµναβk3 β = 0 = ik3 · iM (E.15)

All in all, if we consider a shifted amplitude (as we saw the result is shift depen-

dent), we obtain:

ik1 · iM(k2, k3; a) = − ie3

4π2
(1 − 4c)ǫµναβk2µk3β (E.16)

ik2 · iM(k2, k3; a) = − ie3

4π2
(2c)ǫµναβk2νk3β (E.17)

ik3 · iM(k2, k3; a) = − ie3

4π2
(2c)ǫµναβk2αk3β (E.18)

So that we can remove the anomaly in two of the currents by choosing c = 0 but

there will always be one anomalous current. The symmetric choice would be to

set c = 1/6 (which must be the case when we are dealing with three identical

currents).
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