

Amberbir, Alemayehu (2012) Early life determinants of wheeze and allergic disease: a longitudinal study in an Ethiopian birth cohort. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/29714/1/588086.pdf

. . .

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

The University of Nottingham

EARLY LIFE DETERMINANTS OF WHEEZE AND ALLERGIC DISEASE: A LONGITUDINAL STUDY IN **AN ETHIOPIAN BIRTH COHORT**

Alemayehu Amberbir

(BSc.Ph, MPH)

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

July, 2012

ABSTRACT

Background

The hypothesis that paracetamol may increase the risk of asthma and other allergic disease has gained consistent support from epidemiological studies, but evidence from longitudinal cohort studies, particularly those looking at the timing and dose of exposure are lacking. Epidemiological studies have also reported an inverse relation between gastro-intestinal infections including *Helicobacter pylori*, commensal bacteria and geohelminths and asthma and allergic disease, however, data from longitudinal birth cohort study are scarce. This thesis has therefore investigated the effects of paracetamol, *H. pylori* and other gastro-intestinal infections in a low-income birth cohort in which confounding by social advantage and other medical interventions is unlikely to play a role.

Methods

In 2005/6 a population based cohort of 1065 pregnant women from Butajira, Ethiopia was established, to whom 1006 live singleton babies were born, and these children have been followed-up from birth to age five. At ages one, three and five, the International Study of Asthma and Allergies in Children (ISAAC) questionnaires were administered to the mothers to obtain data on wheeze, eczema and rhinitis. Allergen skin tests to *Dermatophagoides pteronyssinus* and cockroach were performed at ages three and five. Data on child's use of paracetamol, and various early life putative risk factors, including levels of Der p 1 and Bla g 1 allergen in the child's bedding and symptoms of respiratory tract infections were also measured. Stool samples were collected at ages three and five for analysis of *H. pylori* antigen using a rapid test (Medimar immunocard),

İ

as well as for geohelminths (at ages one, three and five) and selected commensal bacteria (at age three). Multivariate logistic regression was used to determine the independent effects of various markers of paracetamol use on the incidence of each outcome between age one and five, as well as on prevalence at age five. Similar analyses were also carried out to determine the independent effects of *H. pylori*, geohelminths and commensals on the incidence and prevalence of each outcome.

Results

Effects of paracetamol

Of the 1006 children in the cohort at birth, 863 children were successfully followed up at age five (94% of surviving mother-child dyads). Wheeze and eczema incidence between the ages of one and five were reported in 5.9% (40/676) and 5.8% (39/700) of children respectively, and rhinitis and sensitization incidence between ages three and five were found in 3.9% (31/798) and 2.0% (15/766) of children respectively. Paracetamol use in the first three years of life was common, with 18% reported use at age one but not three, 23% at age three but not one and 21% at both time points. Use in the first year of life was significantly associated with a dose-dependent increased risk of incident wheeze between ages one and three (fully adjusted ORs, 95% CI, 1.77; 0.96, 3.26 for 1-3 tablets and 6.78; 1.89, 24.39 for \geq 4 tablets in past month versus never), but not eczema. The risk of incident wheeze, eczema, rhinitis and sensitization between ages three and five was increased in those exposed, significantly so for incident eczema (p=0.02) and borderline significant for rhinitis (p=0.07), with fully adjusted odds ratios (ORs), including for symptoms of respiratory tract infections, for persistent exposure (ages one and three) versus never of 3.82 (95% CI 1.36, 10.73) and 3.10 (1.00, 9.57) respectively. Borderline significant trends were also seen between paracetamol dose in the first three years of life and incident eczema and rhinitis, with adjusted ORs for heavy reported use compared to low of 1.59 (0.44, 5.74; p trend=0.06) and 2.31 (0.72, 7.46; p trend=0.07) respectively, but not with incident wheeze (fully adjusted OR=3.64; 1.34, 9.90, p trend=0.11). Cross-sectional analysis at age five resulted in significant positive dose-response effects of lifetime use (use at ages one, three and five) in relation to the prevalence of all outcomes.

Effects of gastro-intestinal infection

H. pylori infection was found in 17% of the children at age three but not five, 21% at age five but not three years, and 25% at both ages. In the longitudinal analysis, *H. pylori* infection at age three was significantly associated with a decreased risk of incident eczema between ages three and five years (adjusted OR, 95% CI, 0.31; 0.10, 0.94, p=0.02), but the associations with incident wheeze, rhinitis and sensitization were not significant. In cross-sectional analysis at age three, *H. pylori* infection was associated with a borderline significant reduced risk of eczema (adjusted OR, 95% CI, 0.49; 0.24, 1.01, p=0.05) and *D. pteronyssinus* sensitization (adjusted OR, 95% CI, 0.42; 0.17, 1.08, p=0.07), and a significant inverse association between current exposure to *H. pylori*, and any sensitization at age five (adjusted OR, 95% CI, 0.26; 0.07, 0.92, p=0.02). However, no significant associations were seen for wheeze and rhinitis.

The prevalence and intensity of geohelminth infection (hookworm, Ascaris

lumbricoides and *Trichuris trichiura*) were found to be low in this cohort, with only 4% of children infected at age one, 9% at age three and only 0.2% at both ages. The risk of new onset wheeze between ages one and three was lower in those infected at age one (3.6%) than uninfected (7.8%), but infection was insufficiently prevalent to compute estimates of effect. Exposure to geohelminth infections in the first three years of life was not significantly associated with the incidence of reported outcomes or sensitization. However, *A. lumbricoides* infection was associated with a borderline increased risk of incident eczema between ages three and five (adjusted OR, 95% CI, 2.86; 1.04, 7.86, p=0.07). Children at age three were commonly colonized with enterococci 38% (207/544), lactobacilli 31% (169/544) and bifidobacteria 19% (103/544). However, none of these commensal bacteria were associated significantly with either incidence or prevalence of allergic outcomes.

Conclusions

This longitudinal study from a developing country birth cohort provides further support for an association between early life use of paracetamol and increased risk of wheeze and allergic disease, which is unlikely to be explained by aspirin avoidance, reverse causation or confounding by indication. Furthermore, among young children in this cohort, the study found novel evidence to support the hypothesis of a protective effect of *H. pylori* infection on the risk of allergic disease, but no evidence to support an etiological role for the microflora enterococci, lactobacilli or bifidobacteria. The power of the study to explore the role of geohelminth infection on wheeze and allergic disease was limited by few infected children, and therefore understanding on this particular relation has not been much further advanced.

PAPERS ARISING FROM THIS THESIS

The work in this thesis has been published in the following journals (Appendix I):

Papers directly related to the work presented in this thesis:

- <u>Amberbir A</u>, Medhin G, Alem A, Britton J, Davey G, Venn A. The role of acetaminophen and geohelminth infection on the incidence of wheeze and eczema: a longitudinal birth-cohort study. Am J Respir Crit Care Med. 2011;183 (2):165-70.
- <u>Amberbir A</u>, Medhin G, Erku W, Alem A, Rebecca S, Robinson K, Fogarty A, Britton J, Venn A, Davey G. Effects of *Helicobacter pylori*, geohelminth infection, and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin Exp Allergy. 2011(41):1422-1430.

Other papers arising from the cohort but not directly related to the thesis:

- Belyhun Y, <u>Amberbir A</u>, Medhin G, Erko B, Hanlon C, Venn A, Britton J, Davey G. Prevalence and risk factors of wheeze and eczema in 1-year-old children: the Butajira birth cohort, Ethiopia. Clin Exp Allergy. 2010 (40):619-626.
- Amberbir A, Medhin G, Hanlon C, Britton J, Venn A, Davey G. Frequent use of paracetamol and risk of allergic diseases among women in an Ethiopian population. PLoS ONE 2011; 6(7): e22551.

PRESENTATIONS/ABSTRACTS

- Amberbir A, Medhin G, Alem A, Britton J, Davey G, Venn A. The role of paracetamol, geohelminths and other environmental exposures on the incidence of wheeze and eczema in an Ethiopian birth cohort. Am J Respir Crit Care Med 181; 2010: A2505 (American Thoracic Society (ATS) 2010) – oral presentation.
- Amberbir A, Medhin G, Erku W, Alem A, Robinson K, Fogarty A, Britton J, Venn A, Davey G. Effects of Helicobacter pylori and intestinal microflora on the risk of allergic disease and sensitization in young children. Am J Respir Crit Care Med 181; 2010: A4143 (ATS 2010) – poster discussion.
- <u>Amberbir A</u>, Medhin G, Alem A, Hanlon C, Britton J, Venn A, Davey G. Frequent use of paracetamol and risk of allergic diseases among women in an Ethiopian population. Eur Respir J, E5252 (European Respiratory Society (ERS) 2010) - E-communication session.
- Amberbir A, Medhin G, Abegaz W, Hanlon C, Robinson K, Fogarty A, Britton J, Venn A, Davey G. Exposure to Helicobacter pylori infection in early childhood and the risk of allergic disease and atopic sensitization: a longitudinal birth cohort study. Am J Respir Crit Care Med, A28908 – Poster discussion (Accepted for the forthcoming ATS conference in May 2012).
- <u>Amberbir A</u>, Medhin G, Hanlon C, Britton J, Davey G, Venn A. Early life exposure to acetaminophen and the prevalence and incidence of allergic disease and sensitization: 5 year follow-up of an Ethiopian birth cohort. Am J Respir Crit Care Med, A28671 – Poster presentation (Accepted for the forthcoming ATS conference in May 2012).

vi

ACKNOWLEDGMENTS

This PhD work was supervised by Dr Andrea Venn, Division of Epidemiology and Public Health, the University of Nottingham, Dr Gail Davey, Addis Ababa University, Ethiopia and Prof John Britton, Division of Epidemiology and Public Health, the University of Nottingham. I am grateful to Dr Andrea Venn who has spent a lot of time teaching and mentoring me during the period of my PhD. Andrea, your advice and keen desire to help, hard work, and encouragement has brought me this far. I am indeed greatly thankful to you. Dr Gail Davey also deserves special mention; I will not forget your invaluable support during the lengthy field work, and I am also very thankful to you for your encouragement and support. Professor John Britton has provided an overall direction for this PhD, and John has always made time for me despite his busy schedule. John, I consider myself privileged to have worked with you and your team.

I will not stop short mentioning Dr Andrew Fogarty (Division of Epidemiology and Public Health) along with his wife Purba Choudhury, for their encouragement and hospitality. I would also like to thank my other UK based collaborators, Dr Karen Robinson, Centre for Biomolecular Sciences, and University of Nottingham for her invaluable advice on the *H. pylori* analysis and Rebecca Simms, Respiratory Biomedical Research Unit, University of Nottingham, for analysis of the dust samples. In addition, I would like to thank everyone in the Division of Epidemiology and Nottingham including the team of studious students in room C109, whom I haven't mentioned by name, but am grateful for their help during the PhD process.

vii

I am also thankful to my Ethiopian based collaborators in the Butajira Birth Cohort, particularly Drs Girmay Medhin, Charlotte Hanlon and Atalay Alem, and administrative staffs in the Department of Psychiatry for all your help. I am also grateful to Dr Woldaregay Erku, a microbiologist, and Mr Haile Alemayehu, a laboratory technologist at the Aklilu Lemma Institute of Pathobiology, Addis Ababa University for their help in the preparatory phase of the study. I also would like to thank the study participants of the Butajira birth cohort, the data collectors, data entry clerks and driver, who have been following the cohort for the last five years. The Butajira Health Centre has hosted both the microbiology and parasitology laboratory works. I am grateful to all the laboratory technicians, particularly Mrs. Nigist Yitagesu and Ms. Sintayehu Mulugeta, for your hard work.

The School of Public Health, Addis Ababa University provided me an office base during the study period and I am especially thankful to the previous and current head of the School, Drs Fikre Enqusilassie and Getnet Mitike respectively, for their kind support when I needed help.

This work has been funded by Asthma UK project grant (07/036) and the University of Nottingham Biomedical Research Unit grant (RB08CJ), with additional funding from the Wellcome Trust (WT081504/Z/06/Z) and the Faculty of Medicine and Health Sciences Research Strategy Group of Nottingham University. I am very grateful to all of them for funding the study.

viii

I also would like to thank my colleagues, Fikre Hailekiros and Kebede Deribe, for their encouragement and support throughout the PhD work.

Very special thanks to my family, my wife, Misrak Melese, my daughter, Saron Alemayehu, who were always my source of love and great inspiration. I have always thought I had a special family - I am greatly indebted to you.

STATEMENT OF AUTHOR'S ROLE

I played a significant role in designing the study and fieldwork for Butajira birth cohort from just before the three year follow-up in February 2008 until the five year follow-up in June 2011. During that time, I was responsible for everything from obtaining ethical approval for the study; organising and overseeing the data collection including providing training and day-to-day supervision of data collectors as they visited homes to collect questionnaire and skin test data, stool samples and dust samples; establishing a new rudimentary microbiology laboratory in Butajira (and learning the techniques required); preparing and importing the consumables needed for the fieldwork; organising dust samples analysis in Nottingham; designing databases for data entry; carrying out all data analyses; and writing all manuscripts relating to the research that I have led. The only follow-up which I was not responsible was data from the first year follow up of the cohort which was supervised by the Master's student before I joined the project.

I was also responsible for the dissemination of the findings to the local and international audiences. I have presented the findings at the American Thoracic Society conference (ATS) in May 2010 and at the European Respiratory Society meeting (ERS) in September 2010. I have also presented the work within Ethiopia and Africa at the Ethiopian Public Health Association annual conference (EPHA) in October 2010 and at the International Network for the Demographic Evaluation of Populations and Their Health in Developing Countries (INDEPTH Network) annual conference in September 2010, in Accra, Ghana.

Х

DEDICATION

To my wife Misrak, my daughter Saron and to my kindest sister Tsige who accompanied me on this journey. Saron, I am sure you will understand when you see this thesis; the reason why I missed your birth while I was in the UK. I love you very much!

TABLE OF CONTENTS

ABSTRACT		
PAPERS ARSISING FROM THIS THESISv		
PRESENTATIONS/ABSTRACTSvi		
ACKNOWLEDGEMENTSvii		
STATEMENTS OF AUTHOR'S ROLEx		
DEDICATIONxi		
TABLE OF CONTENTSxii		
LIST OF TABLESxvi		
LIST OF FIGURESxx		
LIST OF APPENDICESxxi		
LIST OF ABBREVIATIONSxxii		
1 INTRODUCTION		
1.1 ASTHMA AND ALLERGY1		
1.1.1 DEFINITIONS		
1.1.2 MEASURING ASTHMA IN EPIDEMIOLOGICAL STUDIES		
1.1.3 WHEEZING PHENOTYPES IN CHILDREN		
1.1.4 RELATION BETWEEN ATOPY, ASTHMA AND ALLERGIC DISEASES		
1.1.5 GEOGRAPHICAL AND TEMPORAL VARIATION IN THE PREVALENCE OF ASTHMA AND		
ALLERGIC DISEASE		
1.2 RISK FACTORS OF ASTHMA AND ALLERGIC DISEASE		
1.2.1 GENETIC FACTORS		
1.2.2 The hygiene hypothesis		
1.2.3 GASTRO-INTESTINAL INFECTIONS 14		
1.2.4 OTHER RISK FACTORS		
1.3 SUMMARY		
1.4 Objectives of this thesis		
2 METHODS		
2.1 COUNTRY PROFILE: ETHIOPIA 42		
2.1.1 GEOGRAPHY		
2.1.2 DEMOGRAPHY AND EDUCATION		
2.1.3 Есолому		
2.1.4 HEALTH		
2.2 BUTAJIRA RURAL HEALTH PROGRAM (BRHP)		

2.2.1	THE BUTAJIRA RURAL HEALTH PROGRAM AND REASONS FOR CHOICE OF BUTAJIRA 49
2.2.2	THE STUDY SETTING: GEOGRAPHY 49
2.2.3	THE BRHP POPULATION: DEMOGRAPHY AND HEALTH
2.3 E	SUTAJIRA BIRTH COHORT
2.3.1	ESTABLISHMENT OF THE BUTAJIRA BIRTH COHORT
2.3.2	CHARACTERISTICS OF THE WOMEN AT RECRUITMENT
2.3.3	BIRTH OF BABIES IN COHORT
2.3.4	FOLLOW-UP OF COHORT AT AGE ONE
2.3.5	FOLLOW-UP OF COHORT AT AGE THREE
2.3.6	FOLLOW-UP OF COHORT AT AGE FIVE
2.3.7	DATA ENTRY AND MANAGEMENT
2.3.8	STATISTICAL ANALYSES
2.3.9	THE STUDY POWER
2.3.1	DETHICS AND CONSENT
3 LC	NGITUDINAL ANALYSIS OF EARLY LIFE RISK FACTORS FOR
	DENT WHEEZE AND ECZEMA BETWEEN AGE ONE AND THREE
	NTRODUCTION
	RESULTS
	NATURAL HISTORY OF WHEEZE BETWEEN AGE ONE AND THREE
	NATURAL HISTORY OF ECZEMA BETWEEN AGE ONE AND THREE
	DISTRIBUTION OF POTENTIAL CONFOUNDERS WITH INCIDENT WHEEZE AND ECZEMA 94
	ASSOCIATIONS BETWEEN PARACETAMOL USE AND EARLY LIFE RISK FACTORS 101 DETERMINANTS OF INCIDENT WHEEZE AND ECZEMA
3.3 5	SUMMARY 110
4 CR	COSS-SECTIONAL ANALAYSIS OF GEOHELMINTHS INFECTION,
	COBACTER PYLORI, COMMENSAL BACTERIA AND ALLERGIC
DISE	ASES AT THE AGE OF THREE112
4.1 I	NTRODUCTION 112
4.2 F	RESULTS
4.2.1	
1 2 2	THE BIRTH COHORT AT AGE THREE 113
4.2.2	THE BIRTH COHORT AT AGE THREE 113 PREVALENCE OF WHEEZE, ECZEMA AND RHINITIS 113
4.2.3	PREVALENCE OF WHEEZE, ECZEMA AND RHINITIS
4.2.3 4.2.4	PREVALENCE OF WHEEZE, ECZEMA AND RHINITIS

4.2.7 EFFECTS OF GEOHELMINTHS ON SKIN SENSITIZATION	132
4.2.8 EFFECTS OF H. PYLORI AND INTESTINAL MICROFLORA ON WHEEZE, ECZEMA AND	
RHINITIS	135
4.2.9 EFFECTS OF H. PYLORI AND INTESTINAL MICROFLORA ON SKIN SENSITIZATION	139
4.3 SUMMARY	142
5 EARLY LIFE EXPOSURE TO PARACETAMOL AND THE PREVALENCE A	ND
INCIDENCE OF WHEEZE AND ALLERGIC DISEASE AT AGE 5	
5.1 INTRODUCTION	
5.2 RESULTS	
5.2.1 The Birth Cohort at age five	
5.2.2 NATURAL HISTORY OF THE OUTCOMES BETWEEN AGES ONE AND FIVE	145
5.2.3 ASSOCIATIONS BETWEEN EARLY SENSITIZATION AND INCIDENT ALLERGIC SYMPTOMS	
	151
5.2.4 ASSOCIATIONS BETWEEN URBAN AND RURAL RESIDENCE AND INCIDENCE OF OUTCOM	IES
	151
5.2.5 DISTRIBUTION OF POTENTIAL CONFOUNDERS WITH INCIDENT DISEASE OUTCOMES .	152
5.2.6 LONGITUDINAL ASSOCIATIONS BETWEEN PARACETAMOL USE AND INCIDENCE OF	
ALLERGIC OUTCOMES	164
5.2.7 CROSS-SECTIONAL ANALYSES BETWEEN PARACETAMOL AND ALLERGIC OUTCOMES AT	
AGE FIVE	177
5.2.8 INDICATIONS FOR USE OF PARACETAMOL AT AGE FIVE	200
5.3 SUMMARY	202
6 EXPOSURE TO GASTRO-INTESTINAL INFECTIONS AND THE	
PREVALENCE AND INCIDENCE OF WHEEZE AND ALLERGIC OUTCOMES	ΑΤ
AGE FIVE	
6.1 INTRODUCTION	
6.2 RESULTS	206
6.2.1 The BIRTH COHORT AT AGE FIVE	206
6.2.2 H. PYLORI AND GEOHELMINTH INFECTION AT AGE FIVE	206
6.2.3 LONGITUDINAL ASSOCIATIONS BETWEEN H. PYLORI, GEOHELMINTH INFECTION AND	
COMMENSAL BACTERIA AND INCIDENCE OF ALLERGIC OUTCOMES	208
6.2.4 CROSS-SECTIONAL ANALYSIS OF H. PYLORI AND GEOHELMINTH INFECTION, AND	
PREVALENCE OF ALLERGIC OUTCOMES AT AGE FIVE	219
6.3 SUMMARY	228
7 DISCUSSION	:30

7.1 P	PRINCIPAL FINDINGS 2	230
7.1.1	WHEEZE, ALLERGIC DISEASE AND SENSITIZATION	230
7.1.2	EFFECTS OF PARACETAMOL 2	231
7.1.3	EFFECTS OF H. PYLORI	233
7.1.4	EFFECTS OF GEOHELMINTH INFECTION	234
7.1.5	EFFECTS OF COMMENSAL BACTERIA 2	234
7.2 S	TRENGTHS AND WEAKNESSES OF THE STUDY 2	235
7.2.1	BIRTH COHORT DESIGN	235
7.2.2	REPRESENTATIVENESS OF THE COHORT 2	236
7.2.3	THE STUDY POWER 2	236
7.2.4	MEASUREMENT ERROR AND INFORMATION BIAS 2	237
7.2.5	RESIDUAL CONFOUNDERS 2	243
7.3 C	CONSISTENCY OF THE FINDINGS 2	244
7.3.1	PARACETAMOL, WHEEZE AND ALLERGIC DISEASES	244
7.3.2	GASTRO-INTESTINAL INFECTIONS 2	250
7.4 C	ONCLUSIONS AND CLINICAL RELEVANCE 2	:60
7.4.1	PARACETAMOL, WHEEZE AND ALLERGIC DISEASE	:60
7.4.2	H. PYLORI, WHEEZE AND ALLERGIC DISEASE 2	:62
7.4.3	GEOHELMINTH, WHEEZE AND ALLERGIC DISEASES	:6 3
7.4.4	COMMENSAL BACTERIA, WHEEZE AND ALLERGIC DISEASES 2	64
	UGGESTIONS FOR FUTURE RESEARCH 2	
REFERE	ENCES2	68
APPEND	DICES	92

LIST OF TABLES

TABLE 1.1 STUDIES SHOWING THE ASSOCIATION BETWEEN GEOHELMINTH INFECTION, ASTHMA	ł
AND ALLERGIC DISEASE	.8
TABLE 1.2 EPIDEMIOLOGICAL STUDIES SHOWING ASSOCIATIONS BETWEEN H. PYLORI, ASTHMA	4
AND ALLERGIC DISEASE	2
TABLE 1.3 ASSOCIATION BETWEEN SELECTED COMMENSAL BACTERIA, ASTHMA AND ALLERGIC	
DISEASE	7
TABLE 1.4 STUDIES SHOWING LINK BETWEEN PARACETAMOL, ASTHMA AND ALLERGIC DISEASE	
	5
TABLE 2.1 Key health and health related indicators in Ethiopia 4	8
TABLE 2.2 BASELINE CHARACTERISTICS AT RECRUITMENT 5	9
TABLE 2.3 DEMOGRAPHICS AND EARLY LIFE CHARACTERISTICS OF THE BABIES 6	1
TABLE 2.4 SUMMARY OF VARIABLES MEASURED DURING PREGNANCY, AT BIRTH AND AT AGES	
ONE, THREE AND FIVE	3
TABLE 2.5 DISTRIBUTION OF DEMOGRAPHICS AND POTENTIAL RISK FACTORS AT AGE ONE 6	7
TABLE 3.1 DISTRIBUTION OF POTENTIAL CONFOUNDERS IN THE FIRST YEAR OF LIFE IN	
RELATION TO INCIDENT WHEEZE BETWEEN AGES 1 AND 3	6
TABLE 3.2 DISTRIBUTION OF POTENTIAL CONFOUNDERS IN THE FIRST YEAR OF LIFE IN	
RELATION TO INCIDENT ECZEMA BETWEEN AGES $1 ext{ and } 3 ext{$	8
TABLE 3.3 PREVALENCE OF SYMPTOMS OF RESPIRATORY INFECTIONS IN EARLY LIFE IN THOSE	
WITH AND WITHOUT INCIDENT WHEEZE BETWEEN AGE ONE AND THREE \ldots 100	0
TABLE 3.4 PREVALENCE OF SYMPTOMS OF RESPIRATORY INFECTIONS IN EARLY LIFE IN THOSE	
WITH AND WITHOUT INCIDENT ECZEMA BETWEEN AGE ONE AND THREE	1
TABLE 3.5 USE OF PARACETAMOL IN THE FIRST YEAR OF LIFE BY DEMOGRAPHIC, LIFE STYLE AND	כ
EARLY CHILDHOOD FACTORS	3
TABLE 3.6 OR FOR INCIDENT WHEEZE AND ECZEMA IN RELATION TO GEOHELMINTH EXPOSURES	;
IN THE FIRST YEARS OF LIFE	5
TABLE 3.7 UNIVARIATE ASSOCIATIONS BETWEEN CHILD'S USE OF PARACETAMOL IN THE FIRST	
YEAR OF LIFE AND INCIDENT WHEEZE BETWEEN AGE ONE AND THREE	7
TABLE 3.8 MULTIVARIATE ANALYSIS: CHILD'S USE OF PARACETAMOL IN THE FIRST YEAR OF LIFE	Ξ
AND INCIDENT WHEEZE BETWEEN AGE ONE AND THREE	3
TABLE 3.9 UNIVARIATE ANALYSIS: CHILD'S USE OF PARACETAMOL IN THE FIRST YEAR OF LIFE	
AND INCIDENT ECZEMA	Э
TABLE 3.10 MULTIVARIATE ANALYSIS: CHILD'S USE OF PARACETAMOL IN THE FIRST YEAR OF	

TABLE 4.1 PREVALENCE OF SELF REPORTED WHEEZE AND ALLERGIC SYMPTOMS BY AREA OF
RESIDENCE
TABLE 4.2 PREVALENCE OF SKIN SENSITIZATION BY AREA OF RESIDENCE 114
TABLE 4.3 OR FOR WHEEZE, ECZEMA AND RHINITIS IN RELATION TO SKIN SENSITIZATION. 116
TABLE 4.4 DISTRIBUTION OF POTENTIAL CONFOUNDERS AND ASSOCIATIONS WITH WHEEZE AT
AGE 3
TABLE 4.5 DISTRIBUTION OF POTENTIAL CONFOUNDERS AND ASSOCIATIONS WITH ECZEMA AT
AGE 3
TABLE 4.6 DISTRIBUTION OF POTENTIAL CONFOUNDERS AND ASSOCIATIONS WITH RHINITIS AT
AGE 3
TABLE 4.7 DISTRIBUTION OF POTENTIAL CONFOUNDERS AND ASSOCIATIONS WITH DUST MITE
SENSITIZATION AT AGE 3 125
TABLE 4.8 DISTRIBUTION OF POTENTIAL CONFOUNDERS AND ASSOCIATIONS WITH COCKROACH
SENSITIZATION AT AGE 3 127
TABLE 4.9 OR FOR WHEEZE IN RELATION TO GEOHELMINTH INFECTION AT AGE 3 130
TABLE 4.10 OR FOR ECZEMA IN RELATION TO GEOHELMINTH INFECTIONS 131
TABLE 4.11 OR FOR RHINITIS IN RELATION TO GEOHELMINTH INFECTION 132
TABLE 4.12 OR FOR DUST MITE SENSITIZATION IN RELATION TO GEOHELMINTH INFECTIONS
TABLE 4.13 OR FOR COCKROACH SENSITIZATION IN RELATION TO GEOHELMINTH INFECTIONS
TABLE 4.14 OR FOR ANY SENSITIZATION IN RELATION TO GEOHELMINTH INFECTION 135
TABLE 4.15 OR FOR WHEEZE IN RELATION TO H. PYLORI AND MICROFLORA 136
TABLE 4.16 OR FOR ECZEMA IN RELATION TO H. PYLORI AND MICROFLORA 138
TABLE 4.17 OR FOR RHINITIS IN RELATION TO <i>H. PYLORI</i> AND MICROFLORA
TABLE 4.18 OR FOR DUST MITE SENSITIZATION IN RELATION TO H. PYLORI AND MICROFLORA
TABLE 4.19 OR FOR COCKROACH SENSITIZATION IN RELATION TO H. PYLORI AND MICROFLORA
TABLE 4.20 OR FOR ANY SENSITIZATION IN RELATION TO H. PYLORI AND MICROFLORA 142
TABLE 5.1 OR FOR INCIDENT WHEEZE, ECZEMA AND RHINITIS IN RELATION TO SKIN
SENSITIZATION AT THE AGE OF THREE
TABLE 5.2 INCIDENCE OF THE OUTCOMES BY AREA OF RESIDENCE 152
TABLE 5.3 DISTRIBUTION OF POTENTIAL CONFOUNDERS IN THE FIRST YEAR OF LIFE IN
RELATION TO INCIDENT WHEEZE BETWEEN AGES 3 AND 5
TABLE 5.4 DISTRIBUTION OF POTENTIAL CONFOUNDERS IN THE FIRST YEAR OF LIFE IN

RELATION TO INCIDENT ECZEMA BETWEEN AGES 3 AND 5
TABLE 5.5 DISTRIBUTION OF POTENTIAL CONFOUNDERS IN THE FIRST YEAR OF LIFE IN
RELATION TO INCIDENT RHINITIS BETWEEN AGES 3 AND 5
TABLE 5.6 DISTRIBUTION OF POTENTIAL CONFOUNDERS IN THE FIRST YEAR OF LIFE IN
RELATION TO INCIDENT SENSITIZATION BETWEEN AGES 3 AND 5
TABLE 5.7 SYMPTOMS OF RESPIRATORY TRACT INFECTIONS IN THE FIRST YEAR OF LIFE IN
RELATION TO INCIDENT WHEEZE, ECZEMA AND RHINITIS
TABLE 5.8 SYMPTOMS OF RESPIRATORY TRACT INFECTIONS IN THE FIRST YEAR OF LIFE IN
RELATION TO INCIDENT SENSITIZATION
TABLE 5.9 UNIVARIATE ANALYSIS OF INCIDENT WHEEZE IN RELATION TO EARLY LIFE EXPOSURE
TO PARACETAMOL
TABLE 5.10 MULTIVARIATE ANALYSIS OF INCIDENT WHEEZE IN RELATION TO EARLY LIFE USE OF
PARACETAMOL
TABLE 5.11 UNIVARIATE ANALYSIS OF INCIDENT ECZEMA IN RELATION TO EARLY LIFE USE OF
PARACETAMOL
TABLE 5.12 MULTIVARIATE ANALYSIS OF INCIDENT ECZEMA IN RELATION TO EARLY LIFE
PARACETAMOL USE
TABLE 5.13 UNIVARIATE ANALYSIS OF INCIDENT RHINITIS IN RELATION TO EARLY LIFE USE OF
PARACETAMOL
TABLE 5.14 MULTIVARIATE ANALYSIS OF INCIDENT RHINITIS IN RELATION TO PARACETAMOL
EXPOSURE EARLY IN LIFE
TABLE 5.15 UNIVARIATE ANALYSIS OF SENSITIZATION IN RELATION TO PARACETAMOL
EXPOSURE EARLY IN LIFE
TABLE 5.16 MULTIVARIATE ANALYSIS OF SENSITIZATION IN RELATION TO PARACETAMOL
EXPOSURE EARLY IN LIFE 176
TABLE 5.17 PREVALENCE OF ALLERGIC SYMPTOMS AND SENSITIZATION BY AREA OF RESIDENCE
TABLE 5.18 OR FOR WHEEZE AND ALLERGIC OUTCOMES IN RELATION TO SENSITIZATION AT
AGE FIVE
TABLE 5.19 DISTRIBUTION OF POTENTIAL CONFOUNDERS MEASURED AT THE AGE OF FIVE IN
RELATION TO REPORTED WHEEZE AT YEAR FIVE
TABLE 5.20 DISTRIBUTION OF POTENTIAL CONFOUNDERS MEASURED AT THE AGE OF FIVE IN
RELATION TO REPORTED ECZEMA AT YEAR FIVE
TABLE 5.21 DISTRIBUTION OF POTENTIAL CONFOUNDERS MEASURED AT THE AGE OF FIVE IN
RELATION TO REPORTED RHINITIS AT YEAR FIVE
TABLE 5.22 DISTRIBUTION OF POTENTIAL CONFOUNDERS MEASURED AT THE AGE OF FIVE IN

RELATION TO SENSITIZATION AT YEAR FIVE
TABLE 5.23 UNIVARIATE ANALYSIS OF WHEEZE IN RELATION TO PARACETAMOL EXPOSURE UP TO
THE AGE OF 5 YEAR
TABLE 5.24 MULTIVARIATE ANALYSIS OF WHEEZE IN RELATION TO PARACETAMOL EXPOSURE UP
TO THE AGE OF 5 YEARS
TABLE 5.25 UNIVARIATE ANALYSIS OF ECZEMA IN RELATION TO PARACETAMOL EXPOSURE UP TO
THE AGE OF 5 YEAR
TABLE 5.26 MULTIVARIATE ANALYSIS OF ECZEMA IN RELATION TO PARACETAMOL EXPOSURE UP
TO THE AGE OF 5 YEAR
TABLE 5.27 UNIVARIATE ANALYSIS OF RHINITIS IN RELATION TO PARACETAMOL EXPOSURE UP
TO THE AGE OF 5 YEARS
TABLE 5.28 MULTIVARIATE ANALYSIS OF RHINITIS IN RELATION TO PARACETAMOL EXPOSURE UP
TO THE AGE OF 5 YEARS
TABLE 5.29 UNIVARIATE ANALYSIS OF SENSITIZATION IN RELATION TO PARACETAMOL
EXPOSURE UP TO THE AGE OF 5 YEARS 198
TABLE 5.30 MULTIVARIATE ANALYSIS OF SENSITIZATION IN RELATION TO PARACETAMOL
EXPOSURE UP TO THE AGE OF 5 YEARS
TABLE 6.1 UNIVARIATE AND MULTIVARIATE ANALYSIS OF GASTRO-INTESTINAL INFECTION IN
RELATION TO INCIDENT WHEEZE BETWEEN AGES 3 AND 5
TABLE 6.2 UNIVARIATE AND MULTIVARIATE ANALYSIS OF GASTRO-INTESTINAL INFECTION IN
RELATION TO INCIDENT ECZEMA BETWEEN AGES 3 AND 5 213
TABLE 6.3 UNIVARIATE AND MULTIVARIATE ANALYSIS OF GASTRO-INTESTINAL INFECTION IN
RELATION TO INCIDENT RHINITIS BETWEEN AGES 3 AND 5
TABLE 6.4 UNIVARIATE AND MULTIVARIATE ANALYSIS OF GASTRO-INTESTINAL INFECTION IN
RELATION TO INCIDENT SENSITIZATION BETWEEN AGES 3 AND 5
TABLE 6.5 UNIVARIATE AND MULTIVARIATE ANALYSIS OF WHEEZE IN RELATION TO
GEOHELMINTH AND <i>H. PYLORI</i> INFECTION UP TO THE AGE OF 5
TABLE 6.6 UNIVARIATE AND MULTIVARIATE ANALYSIS OF ECZEMA IN RELATION TO
GEOHELMINTHS AND H. PYLORI INFECTION UP TO THE AGE OF 5
TABLE 6.7 UNIVARIATE AND MULTIVARIATE ANALYSIS OF RHINITIS IN RELATION TO
GEOHELMINTHS AND H. PYLORI INFECTION UP TO THE AGE OF 5
TABLE 6.8 UNIVARIATE AND MULTIVARIATE ANALYSIS OF SENSITIZATION IN RELATION TO
GEOHELMINTH AND <i>H. PYLORI</i> INFECTION UP TO THE AGE OF 5

LIST OF FIGURES

FIGURE 2.1 REGIONAL MAP OF ETHIOPIA
FIGURE 2.2 MAP OF ETHIOPIA SHOWING THE STUDY AREA - BUTAJIRA AND SAMPLING UNITS 52
FIGURE 2.3 THE BUTAJIRA BIRTH COHORT FROM RECRUITMENT UP TO YEAR FIVE
FIGURE 3.1 FLOW CHART SHOWING REPORTING OF WHEEZE BETWEEN ONE AND THREE YEARS93
FIGURE 3.2 FLOW CHART SHOWING REPORTING OF ECZEMA BETWEEN ONE AND THREE YEARS 94
FIGURE 5.1 WHEEZE REPORTING BETWEEN ONE AND FIVE YEARS
FIGURE 5.2 ECZEMA REPORTING BETWEEN ONE AND FIVE YEARS
FIGURE 5.3 RHINITIS REPORTING BETWEEN THREE AND FIVE YEARS
FIGURE 5.4 PATTERNS OF SKIN SENSITISATION BETWEEN THREE AND FIVE YEARS 150
FIGURE 5.5 PREVALENCE OF WHEEZE AND ALLERGIC OUTCOMES BY AGE
FIGURE 5.6 PREFERENCE FOR CHILD'S USE OF PARACETAMOL AT THE AGE OF FIVE
FIGURE 5.7 MATERNAL PERCEPTIONS OF PARACETAMOL AND ASPIRIN USE
FIGURE 5.8 INDICATIONS FOR CHILD'S USE OF PARACETAMOL AT THE AGE OF FIVE
FIGURE 6.1 PREVALENCE OF GEOHELMINTHS AND <i>H. PYLORI</i> UP TO AGE FIVE

LIST OF APPENDICES

APPENDIX I PUBLICATIONS ARISING FROM THIS THESIS	293
APPENDIX II YEAR THREE FOLLOW UP QUESTIONNAIRE, BUTAJIRA BIRTH COHORT, ETHIOPIA	٩
	316
APPENDIX III YEAR THREE FOLLOW UP QUESTIONNAIRE (AMHARIC TRANSLATED), BUTAJIRA	1
віктн сонокт, Етніоріа	324
APPENDIX IV YEAR FIVE FOLLOW UP QUESTIONNAIRE, BUTAJIRA BIRTH COHORT, ETHIOPIA	331
APPENDIX V YEAR FIVE FOLLOW UP QUESTIONNAIRE (AMHARIC TRANSLATED), BUTAJIRA BI	RTH
COHORT, ETHIOPIA	339
APPENDIX VI FORMOL ETHER CONCENTRATION TECHNIQUE FOR GEOHELMINTH ANALYSIS,	
BUTAJIRA BIRTH COHORT, ETHIOPIA	347
APPENDIX VII RAPID TEST ON CARD TO DETERMINE HELICOBACTER PYLORI ANTIGEN IN THE	:
STOOL SAMPLE, BUTAJIRA BIRTH COHORT, ETHIOPIA	348
APPENDIX VIII FIELD SKIN TEST PROTOCOL FOR SENSITIZATION TEST, BUTAJIRA BIRTH	
COHORT, ETHIOPIA	349
APPENDIX IX ETHICS APPROVAL CERTIFICATE, ETHIOPIAN SCIENCE AND TECHNOLOGY	
MINISTRY, ADDIS ABABA UNIVERSITY INSTITUTIONAL REVIEW BOARD AND UNIVERSITY OF	;
NOTTINGHAM, UK	350

LIST OF ABBREVIATIONS

Ag	Antigen
ALSPAC	Avon Longitudinal study of Parents and Children
ATS	American Thoracic Society
BCG	Bacillus Calmette-Guerin
BHR	Bronchial hyperresponsiveness
Bla g 1	Cockroach allergen type 1
BMI	Body mass index
BRHP	Butajira Rural Health Program
CagA	Cytotoxin-associated gene A
COPD	Chronic obstructive pulmonary disease
DALY	Disability-adjusted life year lost
Der p 1	Dust mite allergens type 1
DHS	Demographic and Health Survey
DPT/DTP	Diphtheria, Pertussis and Tetanus
DSS	Demographic Surveillance Site
ECHRS	European Community Respiratory Health Survey
EDHS	Ethiopian Demographic and Health Survey
ELISA	Enzyme-Linked Immunosorbent Assay
EOS	Outreach Strategy for Child Survival
ERS	European Respiratory Society
FeNO	Fractional exhaled nitric oxide
FEV ₁	Forced expiratory volume in 1 second
FVC	Forced vital capacity
GP	General Practitioner
GSH	Glutathione
GSTP1	Glutathione S-transferase pi gene xxii

HSDP	Health Sector Development Program
HSEP	Health Service Extension Program
IFN	Interferon
IgE	Immunoglobulin E
IgG	Immunoglobulin G
IL	Interleukin
ISAAC	International Study of Asthma and Allergies in Childhood
MAS	German Multicentre Allergy cohort
NO ₂	Nitrogen dioxide
NCDs	Non Communicable Diseases
NHANES	National Health and Nutrition Examination Survey
NSAIDs	Nonsteroidal anti-inflammatory drugs
OR	Odds ratio
PAR	Population-attributable risks
PCR	Polymerase chain reaction
ΡΙΑΜΑ	Prevention and Incidence of Asthma and Mite Allergy
PM ₁₀	Aerodynamic diameter of <10 μ m
RCT	Randomized Clinical Trial
S0 ₂	Sulfur Dioxide
SPT	Skin prick test
TCRS	Tucson Children's Respiratory Study
TGF	Transforming growth factor
Th cells	T helper cells
Treg cells	Regulatory T-cells
95% CI	95% confidence interval

1 INTRODUCTION

1.1 ASTHMA AND ALLERGY

Asthma and allergic conditions are prevalent throughout the world, and have become one of the most common chronic disorders among children and adults.¹⁻ ³ At a conservative estimate, around 300 million people in the world have asthma and it accounts for 4 in every 1000 deaths worldwide.⁴ It has been ranked 25th amongst the leading causes of death in terms of disability-adjusted (DALYs) life years lost, and the economic cost is significant.⁴⁻⁶

1.1.1 Definitions

Asthma is a chronic disorder of the airways often associated with variable airflow obstruction, and manifested by episodes of wheezing, cough, dyspnoea and chest tightness.⁷ A disease condition characterised by the existence of hypersensitivity or sensitivity^a reactions and initiated by specific immunological mechanisms (antibody- or cell-mediated) is termed allergic disease.⁸ Asthma therefore can be allergic (resulting from immunological reactions, mostly immunoglobulin E mediated, but also non-IgE mediated) or non-allergic

^a Objectively reproducible symptoms or signs initiated by exposure to a defined stimulus at a dose tolerated by normal persons.

asthma.^{7, 8} Rhinitis is a hypersensitivity syndrome characterised by itching, sneezing, and nasal obstruction, and can also be accompanied by conjunctivitis which can be allergic (also known as hay fever) or non-allergic.⁸ The term rhinitis will be used in this thesis. Eczema is a localized inflammation of the skin which may be atopic (dominated by IgE-antibody associated reaction) or non-atopic.⁸ Atopy (also referred to as sensitization in the thesis) is a complex condition under genetic influence in which IgE-sensitised to allergens^b occurring in the environment are produced.⁸

1.1.2 Measuring asthma in epidemiological studies

There is no gold standard definition for asthma owing to the complex nature of the disease including, multiple aetiological causes and variable symptom expression. Epidemiological studies have, either alone or in combination, used reported symptoms of asthma, doctor diagnosis of asthma or objective measurements such as bronchial hyperresponsiveness (BHR).⁹⁻¹¹

Use of doctor's diagnosis of asthma as an epidemiological tool is unreliable because of wide variation in the diagnostic criteria.^{10, 12} It is also influenced by availability of diagnostic facilities, and comparisons between populations, a focus of epidemiological research, are especially difficult.⁹ An issue with the clinical

^b An allergen is an antigen causing allergic disease.

labelling of asthma by a clinician is also that a diagnosis might have been given for transient symptoms that have since resolved.¹⁰

Despite a continuing debate about measuring asthma in epidemiological studies, ¹⁰ symptoms based questionnaires are widely used,^{9, 13} and wheezing has been shown to be symptom that best predicts asthma (75% sensitivity and 87% specificity).¹¹ Luyt and colleagues found a reliability of 97% for 12-month prevalence of asthma and ever wheeze questionnaires responses, compared with the clinical diagnosis of asthma.¹² Even though most population based studies tend to use symptom questionnaires (e.g. wheezing or whistling in last 12 months) which are simple to use, cost effective and encourage a good response rate;^{9, 13} bias associated with symptom recognition and recall is a problem.⁹ Bronchial hyperresponsiveness (BHR),^{9, 10} is often used as an adjunct to symptom-based questionnaires in epidemiological studies,^{9, 10} because it has generally higher specificity (over 80%), although sensitivity is lower (less than 50%).¹⁰

1.1.3 Wheezing phenotypes in children

Several wheezing phenotypes in children have been described based on clinical and epidemiological observations.¹⁴⁻¹⁶ The Tucson Children's Respiratory Study (TCRS) identified four wheezing phenotypes: no wheezing, transient early wheezing, late-onset wheezing, and persistent wheezing.¹⁴ Interestingly, these wheezing phenotypes characteristically have distinct risk factors; maternal asthma, smoking, rhinitis, eczema, and atopy were seen to predict the persistent wheezing phenotype, and these children had significant lung function

impairments, whilst maternal smoking was seen to predict the transient phenotype and these children had normal lung function.¹⁴ More recently, comparable wheeze phenotypes were identified from the Avon Longitudinal study of Parents and Children (ALSPAC),¹⁵ and the Prevention and Incidence of Asthma and Mite Allergy (PIAMA)¹⁶ birth cohorts using longitudinal latent class PIAMA¹⁶ analysis. The study presented five wheezing phenotypes (never/infrequent wheeze, transient early wheeze, intermediate-onset wheeze, late-onset wheeze, and persistent wheeze) which were broadly similar to the findings from the ALSPAC cohort.¹⁵ Characteristically the persistent phenotype was associated with asthma, atopy, lower lung function tests, and bronchial hyperresponsiveness (BHR)^{15, 16} consistent with that identified by Martinez and colleagues.¹⁴ Overall, it may be possible to infer that the transient wheezing phenotype has a favourable outcome (most of the children grow out of it),14 whereas children with persistent wheezing phenotype may be destined to have a considerable deficit in lung function and airflow limitation, and progress to adultonset asthma.14-16

1.1.4 Relation between atopy, asthma and allergic diseases

Various studies have independently identified atopy as a predictor of asthma in children and adults.¹⁷⁻²⁰ A prospective study recently reported a 6-fold increased risk of wheeze at the age of 12 years in those who were positive to house dust mite sensitization at 2 years.²⁰ A similar relation was reported from the ISAAC phase II multicountry study, however, it appeared in this study that the pooled association between atopy and asthma for the affluent countries was 2-fold higher than the non affluent countries, and that the strength of association increased with economic development.¹⁸ Overall, Pearce and co-workers¹⁹

estimated, based on the available evidence, that the proportion of asthma cases attributable to atopy (defined as skin prick test positivity) in children is about 38%, with a similar attributable risk in adults.¹⁹ Rhinitis, alone or with atopy, has also been shown to be related to asthma.^{21, 22} The German Multicentre Allergy cohort (MAS) reported a nearly 4-fold increased risk of developing wheezing during adolescence in children with rhinitis in the first 5 years of life.²² Shaaban *et al*²¹ recently found evidence from longitudinal analyses of the ECRHS I and II study in adults that rhinitis predicts adult onset asthma with odds ratios ranging from 2.7 for non-allergic rhinitis to 3.5 for allergic rhinitis.²¹ As with rhinitis and atopy, studies have also shown a link between childhood eczema and asthma.^{23, 24} A meta analysis and systematic review which pooled data from the available birth cohort studies, reported that children with eczema in the first four years of life had an estimated 36% increased risk of developing asthma later in childhood.²³

1.1.5 Geographical and temporal variation in the prevalence of asthma and allergic disease

1.1.5.1 Worldwide variation

The International Study of Asthma and Allergies in Childhood (ISAAC),^{25, 26} conducted in children aged 6-7 and 13-14 years, and the European Community Respiratory Health Survey (ECHRS),²⁷ based on adults aged 20-40 years, were designed to assess the geographical and temporal variations in asthma and allergy.⁴ The highest prevalence rates of current wheezing in childhood, as a measure of prevalence of current asthma, were reported in the UK (15.3%), New Zealand (15.1%), Australia (14.7%), Ireland (14.6%) and Canada

(14.1%), and the lowest prevalence estimates were found in Ethiopia (3.1%), Nepal (1.5%), Indonesia (1.1%) and Macau (0.7%), which gives an indication of the difference between developed and developing countries.⁴ There was also found to be a 30-fold variation (range 1.4-39.7%) between countries in the prevalence of symptoms of rhinoconjunctivitis, with the lowest reported prevalence centres being similar to those seen for asthma symptoms.²⁸ There was also a substantial variation in the prevalence of reported eczema between centres, ranging from 2.0 to 15.6%.²⁸ The prevalence of atopy has also shown to vary greatly by country, with the highest being in China (45.3%) and the lowest found in rural Ghana (1.7%).¹⁸ Marked differences in the prevalence of asthma and atopy were also documented in the ECRHS in adults, a higher prevalence being in English speaking countries than Eastern Europe and Mediterranean region.²⁷ Overall, there exists a wide geographical variation in the prevalence of asthma and allergic conditions worldwide, with substantial differences seen between developing and developed countries. This observation raises the possibility that a range of environmental factors including adoption of more affluent living styles, or other factors related to socio-economic disparity across the countries likely to be important.4, 27, 28

1.1.5.2 Temporal changes

A range of independent epidemiological studies, using the ISAAC and ECHRS allergy and environmental questionnaire, have demonstrated an increasing trend in asthma prevalence in both developed and developing countries over the last three decades.²⁸⁻³³ Comparable data from the ISAAC Phase One and Phase Three studies in children aged 6-7 years between 1992-2003 showed the prevalence of asthma symptoms increased in 64% of the participated centres.³²

Similarly, the prevalence of symptoms of rhinoconjunctivitis and eczema have shown an increase in 83% and 85% of the centres respectively.³² The increase in all three symptoms were particularly evident in regions where the prevalence was previously low, including Asian-Pacific, India, Northern and Eastern Europe, and Africa.³² This observation is particularly important as the increase was reported in low and middle income countries with a growing economy and industrialisation, and the role of environmental factors for the observed trend have been emphasised elsewhere.^{30, 32}

More recently, however, there are studies reporting a stabilizing, or even a declining pattern of asthma and allergic conditions in developed countries.³⁴⁻³⁸ Gupta and colleagues in the UK using data from primary care consultations and GP records, showed hospitalisation for eczema had stabilized whilst for rhinitis has fallen since 1995.³⁴ Another study in the British Isles also reported a similar decline in the prevalence of self reported wheezing, allergic rhinoconjunctivitis and eczema.³⁷ A multicenter study from the ECRHS between 1998 and 2003 has reported an increase in asthma diagnosis, and use of medication, but no increase in wheezing and other bronchial symptoms across the European countries. Most of the decreasing or stabilising trend in asthma and allergic conditions however is reported from developed countries, therefore the possibility that the observed changes have arisen from improved diagnostic facilities, use of effective medication and uptake of the service by the patients remain unclear.³⁹

1.1.5.3 Asthma and allergic disease in Africa

Data on the prevalence of asthma and allergic diseases in most African countries come from the ISAAC multicountry studies. The ISAAC study divided the African study centres into English (South Africa, Nigeria, Kenya and Ethiopia) and French speaking (Algeria, Morocco and Tunisia), and higher prevalences were reported in the former.³² The prevalences were generally less than those reported in developed countries, with only South Africa seeing rates approaching those found in the UK (12-month wheeze, rhinoconjunctivitis, and eczema prevalence of 20.3%, 20.7% and 13.3% respectively).³² Studies have also reported a marked variation between urban and rural area within African countries; for example in Ghana⁴⁰, Kenya⁴¹ and Zimbabwe,⁴² a higher prevalence of asthma was seen in the urban than rural areas.

Comparison between the ISAAC Phase One and Three studies between 1992-2003 also found an increase in the prevalence of asthma, rhinoconjunctivitis and eczema symptoms in most African countries, however, the increase was more apparent in 13- to 14 years age group than in the younger aged 6 to 7 children.³² A further insight into the trends of asthma prevalence in Africa has been reported in Ghanaian schoolchildren by Addo-Yobo and colleagues.⁴⁰ This study showed a 2.1% increase in the prevalence of exercise-induced bronchospasm between 1993 to 2003, and a doubling in prevalence of sensitization over the ten-year period.⁴⁰

1.1.5.4 Asthma and allergic disease in Ethiopia

Prevalence data from Ethiopia, the country in which the research presented in this thesis is set, come from a variety of sources including the ISAAC multicentre study³² and elsewhere from prevalence studies.⁴³⁻⁴⁵ The 12-month prevalence of wheeze among 13- to 14 years old children in Addis Ababa was 9.1%, rhinoconjunctivitis 9.9%, and eczema 19.0%.³² A study of adults in Jimma, southwest Ethiopia, over five years before the ISAAC Phase Three study,³² using comparable measurements, reported a 12-month wheeze prevalence much lower than the ISAAC Phase Three study (3.7% in urban and 1.2% in rural areas), and dust mite sensitization was 4% in urban and 11.8% in rural.43 Another study in Jimma of 1 to 5 year-old-children reported a higher prevalence of wheeze in urban (4.4%) than rural areas (2.0%);⁴⁴ the prevalence of eczema was also low, overall being 1.2% and higher in urban than rural areas.⁴⁶ Prevalence studies were also reported from Butajira, central Ethiopia, the same area in which the research in this thesis is based. Davey and colleagues⁴⁵ in a population sample of urban and rural adults and children found a high prevalence of wheeze of 10.5% which was higher in urban than rural areas.⁴⁵

In summary, asthma prevalence appears to be increasing in African countries, at a time where many are experiencing an epidemiologic and economic transition.⁴⁷ Factors relating to this transisition may therefore have contributed to the observed variations and trends in asthma and allergic disease.

1.2 RISK FACTORS OF ASTHMA AND ALLERGIC DISEASE

1.2.1 Genetic factors

Many studies have identified the importance of gene-environment interactions in the causation of asthma and allergic diseases,⁴⁸⁻⁵² though most agreed that genetics by itself is unlikely to explain the worldwide increasing prevalence of asthma, and allergic disease.⁵³ A Danish birth cohort comprising 20,888 twin pairs revealed higher concordance for asthma in monozygotic than dizygotic twins, evidence supporting a role of genetics in asthma aetiology.⁵⁰ The epigenetics of asthma has been reviewed by Miller and colleagues,⁴⁸ and in the past decade, several gene-by-environment interactions have been identified. These include, interactions between gene variant and both active⁵⁴ and passive smoking⁵⁵, gene CD14 and farm exposure, ⁵⁶ gene β_2 -Adrenalgic receptor and obesity,⁵⁷ and gene IL-4 and infection with *H. pylori*.⁵⁸

Overall, it has been suggested that a range of environmental factors, interacting possibly with genetics, might altogether explain the worldwide changes in the prevalence of asthma and allergic disease. The next sections describe the most common environmental factors identified in epidemiological studies which are linked to asthma and allergic diseases.

1.2.2 The hygiene hypothesis

In the mid 1970s Gerrard and colleagues examined serum IgE levels and the prevalence of certain atopic diseases in 819 individuals in 176 white Canadian

families living in central Saskatchewan and in 275 individuals in 58 Indian (called Metis) families living in northern Saskatchewan.⁵⁹ The prevalence of asthma, eczema and urticaria was greater in the white community than in the more rural Metis community who had increased exposure to geohelminths, bacterial and viral infection and diminished access to medical care. In contrast to this, the geometric mean total IgE was three-fold higher in the Metis community compared with the white, suggesting that atopic disease may be the price paid due to over-cleanliness.⁵⁹

In the late 1980s, David Strachan showed independent inverse associations between hay fever and family size and presence of older sibling and eczema.⁶⁰ He suggested that declining family size, improvements in household facilities, and hygienic behaviour have reduced the opportunity for infection in smaller families,⁶⁰ a theory which then became colloquially known as the 'hygiene hypothesis. The hygiene theory proposes that lower exposure to infections at a younger age may be responsible for the increase in atopic diseases, and this theory has since gained support from a range of epidemiological studies.⁶¹⁻⁶⁷ Studies since have shown consistent findings with relation to older siblings. 65, 66 A review of 53 studies of the effects of having a higher number of siblings on the risk of allergic diseases, found that there was an inverse relation in all but 2 of the 11 studies of eczema, in all but 10 of the 31 studies of wheezing and asthma and in all but 2 of the 16 studies of sensitization.⁶⁷ However, evidence for an asthma outcome was found to be less consistent.63, 68 Possible mechanisms for the infection and immune link have been given by Holt et al69 based on the Tcells immune modulation theory. Holt et al proposed that T-cell memory is driven by immune stimulation of Th1 or Th2 cells, which primarily occurs

The hygiene hypothesis, however, has been argued in recent decade by Douwes and Pearce.^{71, 72} They have proposed the importance of other factors in the aetiology of asthma and atopy particularly in view of a study by Ponsonby *et al*,⁷³ whom reported a decline in asthma in Australian schoolchildren, and a rise in eczema symptoms in recent decades. Douwes and Pearce^{71, 72} explained that the immune modulation in the case of the hygiene theory, possibly works for atopic asthma more than non atopic asthma, and if so the hygiene hypothesis might not fully explain this trend,⁷³ and other factors need to be sought. The mechanism has also been challenged by Heaton and colleagues⁷⁴ who showed heterogeneity of an individual immune response, and that the Th1/Th2 pattern may not apply to everyone.⁷⁴

1.2.2.1 Infection, immunization and daycare

Various cross-sectional and longitudinal studies have explored the hypothesis that the decrease in early childhood infection, through immunization, increases the prevalence of allergic diseases. Among the studies, the protective effect of childhood infection and immunization, particularly measles, was reported in a British national birth cohort,⁷⁵ Aberdeen school children, UK,⁶⁵ in a west Africa population (Guinea-Bissau),⁷⁶ and in Ethiopia.⁴³ However, others have shown no associations, for example between infection with measles, mumps, or rubella,⁷⁷ and BCG vaccination⁷⁸ and allergic disease. The larger international evidence on immunization and risk of allergy came from the ISAAC ecological analysis of immunization data for tuberculosis, diphtheria, tetanus toxoid (DTP) and

measles, and concluded that the increase in allergic disease was unlikely to be explained by variation in immunization.⁷⁹

Another specification of the hygiene hypothesis relating to childhood infection is daycare attendance, though the evidence is inconsistent.⁸⁰⁻⁸² Daycare attendance has been positively associated with respiratory tract infections,⁸⁰ but no effect seen on allergic disease.⁸⁰⁻⁸²

In summary, the current evidence on childhood infection, daycare attendance and allergy, both in the first⁶³ and second decade,⁸³ provides little or weak support for the hygiene hypothesis.

1.2.2.2 Farm environment

Several studies have shown that children who have grown up on a farm are less likely to have allergic disease and sensitization than those not living in a farm environment,⁸⁴⁻⁸⁷ and the evidence to date is intriguing.⁸⁸ Possible explanations include farm environment increasing exposure to infection, for example exposure to commensal bacteria, parasites and microbial products, or farm environment may be a 'proxy marker' for other risk factors such as larger family size, pets exposure, dietary habit, or the association could be due to other unknown factors.^{61, 63, 68}

1.2.2.3 Allergen exposure

Several studies have reported that exposure to various sources of perennial and seasonal allergens increase the risk of asthma and allergic diseases.^{43, 46, 89} This observation is important since increasing urbanisation and changes in domestic environment, including use of mattresses, favours exposure to allergens. In this regard, particularly exposure to house dust mite and the risk of asthma and allergic disease has received consistent support.⁸⁹ Despite support from epidemiological studies, however, allergen avoidance interventions are less successful to date.^{90, 91} Several reasons were speculated for this disappointing outcomes from the trials, including a focus on mono-allergen avoidance intervention (mainly to house dust mite) and inability to reduce the exposure to a clinically relevant level.^{90, 91} The former speculation was supported by Schayck *et al* meta-analysis whom reported that multifaceted intervention (intervention involving multiple environmental allergens) decreased the risk of asthma in children by 27% whilst the monofaceted intervention (an intervention aiming at reducing a single environmental allergen) shown to have no effect.⁹⁰

1.2.3 Gastro-intestinal infections

1.2.3.1 Geohelminth exposure

The hypothesis that geohelminth infection, which tends to be more common in rural populations, may protect against asthma was first proposed in the 1970s,⁹² but appears to have been generally disregarded after an epidemiological review in 1985 concluded that the data 'neither refute nor support the theory that parasite infection protects against asthma'.⁹² However, in the past two decades,

a range of independent studies including cross-sectional,^{45, 93-101} case control¹⁰²⁻¹⁰⁴ and intervention studies¹⁰⁵⁻¹⁰⁷ have shown a link with asthma, clinical allergy and atopy (Table 1.1).

Our group's previous work in adults in Jimma in south west Ethiopia showed a three-fold higher prevalence of asthma symptoms in urban than in rural areas,⁴³ and found a strong protective effect of hookworm infection (adjusted OR, 0.48, 95% CI; 0.24, 0.93).¹⁰⁴ More recent work in Butajira, southern Ethiopia, with a relatively low prevalence of geohelminth infection and intensity than Jimma, however, showed no significant protective effect of any geohelminth infection against wheeze or asthma.⁴⁵

Despite this body of evidence, studies in children are limited. Inverse associations between geohelminth infection and allergy in children were reported from Brazilian,⁹³ Ecuadorian⁹⁵ and Vietnamese school children.⁹⁶ Rodrigues and colleagues in urban Brazil, an area with higher wheeze prevalence, showed early life exposure to *T. trichiura* (at age 2) protected from atopy later in life (at age 7).⁹³ The Ecuadorian study by Cooper *et al*⁹⁵ reported an inverse relation between current or chronic exposure to hookworm, *A. lumbricoides*, *T. Trichiura* and atopy.⁹⁵ Our group's work in Jimma, in children of aged 1 to 4, found higher prevalence of asthma symptoms in urban area (4.4%) than rural (2%), and *A. lumbricoides* appeared in the study to be protective, however the association for either hookworm or *T. trichiura* was non significant.⁹⁷

Several meta analyses have reported pooled estimates of the available

observational studies.^{108, 109} Among the meta-analyses conducted in the past six years, Leonardi-Bee and colleagues showed a 50% reduction in asthma risk with hookworm infection which was intensity related.¹⁰⁸ However, the study showed an increased risk of asthma with exposure to *A. lumbricoides*.¹⁰⁸ The other meta-analysis explored the link between atopy and geohelminth infection and found a decreased risk of atopy with current parasite infection (OR, 95% CI, 0.68; 0.60, 0.76).¹⁰⁹ However, it appeared in species specific analysis that the odds of atopy significantly reduced with exposure to *A. lumbricoides* and *T. trichiura*, but marginally with hookworm.¹⁰⁹ Plausible mechanisms for apparent protection of geohelminth infection includes production of immune regulatory cytokines IL-10^{110, 111} and transforming growth factor-ß (TGF- ß).¹¹¹

Intervention studies are limited to few studies. Cooper and colleagues¹⁰⁵ randomized controlled trial found no evidence of the effect of deworming and risk of atopy or clinical allergy.¹⁰⁵ The Gabonese intervention study in schoolchildren however showed a 2.5-fold increased risk of atopy following a deworming programme.¹¹² The first experimental hookworm trial was recently conducted in the UK in previously unexposed adults and found no difference between the experimental and placebo arm in respect to bronchial responsiveness, atopy status or use of asthma medication.¹⁰⁶

In summary, the role of geohelminths in the development of asthma and allergic diseases, particularly with atopy is relatively consistent; and there is independent support for hookworm whilst the effects of *A. lumbricoides* and *T. trichiura* are conflicting. Results from the available intervention studies are disappointing, although most of them are eradication studies among previously

infected subjects. Most of the studies to date are cross-sectional or case control where reverse causation is difficult to exclude, and cohort studies in children particularly, prospective birth cohort studies are remarkably scarce. Table 1.1 Studies showing the association between geohelminth infection, asthma and allergic disease

Authors	Study area	Study design	Age group	Outcome	Main findings (OR, 95% CI)
Rodrigues <i>et al</i> 2008 ⁹³	Brazil	Cross-sectional	12-13 yr	Atopy	Hookworm (0.89; 0.24, 3.38) A. lumbricoides (0.71; 0.39, 1.30) T. trichiura (0.29; 0.08, 0.98)
Cooper et al 2004 ⁹⁴	Ecuador	Cross-sectional	1-17 yr	Atopy	Any helminth (0.65; 0.47, 0.91)
Cooper et al 2003 ¹¹³	Ecuador	Cross-sectional	5-19 yr	Atopy	Hookworm (0.39; 0.18, 0.85) A. lumbricoides (0.74; 0.60, 0.91) T. trichiura (0.82; 0.67, 1.01)
Flohr <i>et al</i> 2006 ⁹⁶	Vietnam	Cross-sectional	6 -18 yr	Sensitization (dust mite)	Hookworm (0.61; 0.39, 0.96) A. lumbricoides (0.28; 0.10, 0.78)
Dagoye et al 2003 ⁹⁷	Jimma, Ethiopia	Cross-sectional	1-4 yr	Wheeze	Hookworm (0.6; 0.2, 1.8) A. lumbricoides (0.5; 0.3, 0.9) T. trichiura (1.1; 0.6, 1.8)
Davey et al 2004a ⁴⁵	Butajira, Ethiopia	Cross-sectional	5 or more	Wheeze	Hookworm (0.92; 0.73, 1.14) A. lumbricoides (1.00; 0.80, 1.25) Any geohelminth (0.98; 0.83, 1.15)
Davey <i>et al</i> 2004b ⁴⁵	Butajira, Ethiopia	Cross-sectional	5 or more	Dust mite sensitization Cockroach sensitization	Hookworm (1.03; 0.83, 1.29) A. lumbricoides (1.19; 0.97, 1.47) Hookworm (0.79; 0.61, 1.03) A. lumbricoides (0.92; 0.72, 1.18)
Wordemann <i>et al</i> 2008 ¹⁰⁰	Cuba	Cross-sectional	4-14 yr	Rhinoconjunctivitis Eczema	Hookworm (2.81; 1.23, 6.42) A. lumbricoides (0.23; 0.08, 0.68)
Nyan <i>et al</i> 2001 ⁹⁸	Gambia	Cross-sectional	15 or more	atopy	Any helminth (0.30; 0.11, 0.80)
Palmer <i>et al</i> 2002 ⁹⁹	China	Cross-sectional	8-18 yr	Asthma	A. lumbricoides (1.85; 1.37, 2.49)
Scrivener <i>et al</i> 2001a ¹⁰⁴	Jimma, Ethiopia	Case control	14 or over	Wheeze	Hookworm (0.48; 0.24, 0.93) A. lumbricoides (0.69; 0.38, 1.25)

					T. trichiura (0.75; 0.45, 1.26)
Haileamlak <i>et al</i>	Jimma,	Case-control	1-5 yr	Eczema	Hookworm (1.01; 0.45, 2.28)
2005 ¹⁰³	Ethiopia				A. lumbricoides (1.31; 0.95, 1.81)
					T. trichiura (1.64; 1.18, 2.28)
Schafer et al 2005 ¹⁰²	Germany	Case-control	5-14 yr	Eczema	Any helminth (Ascaris or Oxyuris)
					(0.45; 0.33, 0.60)
				Allergen specific	Any helminth (Ascaris or Uxyuris)
	,			IgE Abs	(0.74; 0.60, 0.92)
Cooper et al 2006 ¹⁰⁵	Ecuador	Randomized	School age	Atopy	Albendazole vs. no treatment group
		controlled trial	children		(0.97; 0.68,1.39)
			(mean age 9.4		
			yr)	Wheeze	Albendazole vs. control group (1.07;
					0.54,2.11)
Feary <i>et al</i>	Хŋ	Randomized	18 or more	Change in PD ₂₀ AMP	Mean difference DD hookworm vs.
2010 ¹⁰⁶		placebo-controlled		(doubling dose DD)	placebo group
		trial			(-0.51; -1.79, -2.80)

1.2.3.2 Helicobacter pylori infection

Helicobacter pylori is a Gram negative, urease positive, bacterium which is common and exclusively colonizes the stomach.¹¹⁴ It is acquired early in childhood, with new infections usually occurring before the age of 10 years.¹¹⁵ H. pylori can readily be cultured from vomitus, and occasionally from saliva or diarrhea stool.¹¹⁶ It is now evident that the prevalence of *H. pylori* in developed countries has been rapidly declining over the last 4-5 decades. Bantavala et al studied 631 samples collected between 1969 and 1989 and showed that H. pylori prevalence deceased by 26% per decade.¹¹⁷ Similarly, rapid declines in the CagA⁺ strains of *H. pylori* between 1973 and 1974 were reported by Perez et al¹¹⁸ and Kosunen et al¹¹⁹ where markers of allergy increased by more than 3fold with the increase mainly occurring in those H. pylori negative subjects.¹¹⁹ A comparable decline in H. pylori infection was also reported in the UK, described as a 'birth cohort effect', with a reported 8-fold decrease in prevalence between 1930 and 1970.¹²⁰ This decrease in the prevalence of *H. pylori* in developed countries over the last decades, when markers of affluence became more apparent,¹¹⁷ were paralleled by a dramatic increase in the prevalence of allergy and asthma (Table 1.2).³²

As part of the hygiene hypothesis, therefore, recent interest has been focused on the protective role of *H. pylori* infections in the etiology of asthma and allergic disease, which has gained support from a range of epidemiological^{58, 119,} ¹²¹⁻¹³³ and epigenetic studies.⁵⁸ Reduced risk of atopy and asthma has been seen in many studies^{58, 118, 123-128, 130, 130, 134, 135} both in children,^{121, 122, 133} and adults.^{123, 125, 127, 128, 130} However, most of the studies to date are either crosssectional,¹²¹⁻¹²⁸ or case-control,^{58, 119, 129-133} A cross-sectional study by Chen and colleagues¹²³ showed an inverse relation between *H. pylori* and reported asthma, current and ever rhinitis and sensitization, with greater effects seen in children with onset of *H. pylori* infection before the age of 15.¹²³ Herbarth and colleagues work in children, independent of potential confounders, also showed the protective role *H. pylori* infection on eczema (OR=0.37), but not with respiratory disease.¹²²

Conflicting findings have been reported from case-control studies in adults,^{58, 119, 129, 131-133} and reviewed by Blaser *et al.*¹³⁵ The review found consistent inverse associations from cross-sectional studies, but no assocations from case-control studies. The review,¹³⁵ as in the authors of the case-control studies,¹²⁴ highlighted that the lack of an association could be attributed to the power of the study.¹³⁶

Plausible mechanisms include the development of cell-mediated immunity of Thelper 1 type, and higher IL-10 responses in children with *H. pylori*,¹³⁷ or stimulation of H. *pylori* associated Treg cells that suppress immune responses.¹³⁸

In summary, most of the studies of *H. pylori* and allergic diseases to date are cross-sectional and case control and based in developed country adult populations, with only three studies conducted in children. Alternative explanations including reverse causation and bias due to antibiotic eradication therapy affecting *H. pylori* acquisition are therefore difficult to exclude.

Table 1.2 Epidemiological studies showing associations between *H. pylori*, asthma and allergic disease

Author	Study area	Study	Age	Exposure	Outcome	Main findings
		design	group	measure		
Chen et al.	SN	Cross-	3-19 yr	IgG Abs	Asthma, rhinitis,	OR for ever had asthma, 0.49 (0.30,0.80),
2008 ¹²¹		sectional			wheeze and	current asthma, 0.41 (0.24,0.69), allergic
					eczema	rhinitis, 0.31 (0.17,0.57), wheeze, 0.73
						(0.57,0.94), and eczema, 0.73 (0.57,0.94)
Chen et al.	SN	Cross-	≥17 yr	IgG Abs,	Asthma, rhinitis,	OR for asthma, 0.79 (0.63,0.99); allergic
2007123		sectional		IgG CagA	wheeze, eczema,	rhinitis, 0.77 (0.62,0.94), and significantly
					and sensitization	associated with sensitization
Jarvis et al.	UK	Cross-	20-44		Asthma, rhinitis,	OR for wheeze, 1.21 (0.71, 1.72), rhinitis,
2004 ¹²⁴		sectional		IgG Abs	IgE, and	1.01 (0.70, 1.52), and any sensitization,
					sensitization	1.13 (0.81, 1.59).
						Associated significantly with sensitization to
						grass.
Herbarth et al.	Germany	Cross-	Mean age	C-urea	Eczema	OR for eczema, 0.37 (p<0.01), bronchitis,
2007 ¹²²		sectional	6.3 yr	breath test		1.99 (p<0.01)
McCune et al.	UK	Cross	Adults	C-urea	Asthma, eczema,	*A 30% reduction in asthma, eczema and
2003 ¹²⁵		sectional		breath test	and rhinitis	rhinitis risk
Fullerton et al.	UK	Cross-	18-70 yr		FEV ₁ , FVC,	OR for wheeze, 0.94 (0.74,1.19), chronic
2009 ¹²⁶		sectional		IgG Abs	bronchial	bronchitis, 1.00 (0.75, 1.33), rhinitis, 1.00
					reactivity,	(0.79,1.26), asthma, 1.09 (0.77,1.54) and
	-				sensitization, and	atopy, 0.92 (0.74,1.15)
					IgE	
Janson et al.	Sweden	Cross-	42 yr	IgG Abs	Asthma, eczema,	*H pylori infection protects from atopy
2007 ^{12/}		sectional			rhinitis, IgE	(24.8% vs. 36.6%, p<0.01).
Hertzen et al.	Finland and	Cross-	25-54 yr	IgG Abs	Sensitization	H pylori infection alone explains 32% of the
2006 ¹²⁸	Russia	sectional				difference in the prevalence of atopy
						between Finland and Russia.
Reibman <i>et al.</i> 2008 ¹³⁰	New York	Case control	18-65 yr	IgG Abs	Total IgE, and Spirometry	OR for asthma, 0.57 (0.36, 0.89)

Tsang <i>et al.</i> 2000 ¹²⁹	Hong Kong	Case control	41-56 yr	IgG Abs	Asthma, FEV ₁ , FVC	*No association
Jun <i>et al.</i> 2005 ¹³¹	Japan	Case control	Adults	IgG, CagA ⁺	Asthma	*No association
Bodner <i>et al.</i> 2000 ¹³²	Х	Case control	39-45 yr	IgG Abs	Asthma, IgE, and sensitization	*No association
Kosunen <i>et al.</i> 2002 ¹¹⁹	Finland	Longitudinal	15-54 yr	IgG Abs	Allergen specific IgE	OR for allergen specific IgE Abs, 0.63 (0.17,2.40)
Cam <i>et al.</i> 2009 ¹³⁹	Turkey	Prospective	13-17 yr	C-urea breath test	Wheeze, rhinitis, eczema, and sensitization	*No association
Seiskari <i>et al</i> 2007 ¹³³	Russia and Finland	Case control	7-15 yr	IgG Abs	Total and specific IgE	OR for IgE in Russia Karelia children, 0.33 (0.1, 0.9)
Pessi <i>et al</i> 2004 ⁵⁸	Finland	Case control	30 or over IgG Abs	IgG Abs	Sensitization and asthma	*Inverse association with sensitization
*OR not reported in the study	ad in the study					

*OR not reported in the study

1.2.3.3 Commensal bacteria

Commensal microflora that live in symbiosis with human hosts, contain various microbial antigens that may contribute to individual risk of allergy.¹⁴⁰ The development and composition of the commensal bacteria from birth are likely affected by feeding pattern,¹⁴¹ hygienic condition, dietary difference, use of antibiotics and other environmental factors,¹⁴² and may in part contribute to the worldwide differences in the prevalence of asthma and allergic diseases. The 'microflora hypothesis' first debated by Sepp and colleagues¹⁴³ about two decades ago, has since received support from cross-sectional,^{88, 144, 145} case control,^{141, 146, 147} and small¹⁴⁸⁻¹⁵² and large^{153, 154} scale birth cohort studies (Table 1.3). The intestinal microflora species believed most important in induction of immune stimulation early in life, are enterococci, lactobacilli and bifidobacteria.^{140, 143, 144, 150}

The most pioneering small scale study by Sepp colleagues¹⁴³ in a cohort of Estonian and Swedish children, identified faecal composition of intestinal flora in Estonian (less affluent, and lower prevalence of asthma) and Swedish (more affluent, and higher prevalence of asthma) one year infants.¹⁴³ The result showed high counts of lactobacilli, eubacteria and enterococci in Estonian children (sign of undisturbed flora) while more clostridia were found in the Swedish children, which is a sign of disturbed microbial balance.¹⁴³ A five year follow up study of 47 Swedish infants, by the same group, further reported that children who developed allergic symptoms and atopy were significantly less colonized by strains of lactobacilli and bifidobacteria in the first two months of life. Inverse relation between atopy and bifidobacteria colonization during infancy was also reported by Suzuki *et al*¹⁵⁵ and Kalliomaki *et al*.¹⁵¹ The latter

prospective study demonstrated that the gut microflora may precede the development of atopic symptoms, though it was based on small sample size of 76 infants.¹⁵¹ These findings over the year were replicated in other studies particularly in relation to atopic eczema,^{141, 145, 147, 151} though associations with specific bacterial strains have been conflicting.^{147, 151}

The largest epidemiological study so far is recently reported by Ege *et al*⁸⁸ presenting data from two large cross-sectional studies in children comparing living on farms with the reference group. Even though, the study analysed microbial and fungal species from the dust samples, the findings showed that children living on farms had a 24 to 51% reduced risk of asthma, and a 49 to 76% reduced risk of atopy, and that it was positively associated with detectable microorganisms in dust samples.⁸⁸ Even though the study was unable to identify specific microbes, it appeared that a diversity of bacterial and fungal genera were protective with odds ratios of 0.37 and 0.57 respectively.⁸⁸ A similar role of bacterial diversity in asthma aetiology more than a single bacterial strain has also been reported elsewhere in molecular based studies.^{146, 148} The plausible mechanisms for down-regulation of the immune system includes the production of anti-inflammatory cytokines and regulatory T-cells (Treg cells),¹⁵⁶ though regulatory mechanisms might differ depending on the specific commensal stains.^{157, 158}

Whilst studies have reported inverse association between commensal bacteria and risk of asthma and allergic disease, others have reported no associations.^{154,} ¹⁵⁹⁻¹⁶¹ The Manchester Asthma and Allergy case-control study of children aged 3 to 5 years showed no significant difference in the composition of lactobacilli or bifidobacteria between atopic wheezy and non atopic non wheezy children.¹⁵⁹ Similar findings were also reported from the Danish¹⁵⁴ and the European birth cohort studies.¹⁶¹

In summary, most studies exploring the 'microflora hypothesis' are crosssectional, and are primarily based in developed countries. Such studies are susceptible to reverse causation, and differences in commensal composition between allergic and non-allergic subjects probably arise from antibiotic therapy or changes in dietary habit. Moreover, longitudinal studies, particularly from developing countries, are lacking. Table 1.3 Association between selected commensal bacteria, asthma and allergic disease

Commensal bacteria	Study area	Study	Ace aroun	Fynciira	Outcome	Main reculte
		design		measure		(with vs. without outcome)
Enterococci spp						
Bjorksten <i>et al</i> 1999 ¹⁴⁴	Estonia and Sweden	Cross- sectional	2 yr	Stool culture	Allergy/atopy	Colonization and atopy at 2 years (85% vs. 89%), P>0.05
Bjorksten <i>et al</i> 2001 ¹⁵⁰	Estonia and Sweden	Cohort	Up to 2 yr	Stool culture	Eczema and/or atopy	Colonization at 1 week and allergy at 2 years (67% vs. 96%), p=0.03
Kalliomaki <i>et al</i> 2001 ¹⁵¹	Finland	Cohort	Up to 1 yr	Stool culture	Atopy	Colonization at 3 weeks and atopy at 12 months (100% vs. 95.9%), p=0.36
Lactobacilli spp						
Bjorksten <i>et al</i> 1999 ¹⁴⁴	Estonia and Sweden	Cross- sectional	2 yr	Stool culture	Allergy/atopy	Colonization and atopy at 2 years (44% vs. 60%), p<0.01
Bjorksten <i>et al</i> 2001 ¹⁵⁰	Estonia and Sweden	Cohort	Up to 2 yr	Stool culture	Eczema and/or atopy	Colonization at 1 week and allergy at 2 years (39% vs. 8%), p=0.03
Penders <i>et al</i> 2007a ¹⁵⁴	Netherland	Cohort	Up to 2 yr	PCR	Wheeze	OR for wheeze at 2 years and colonization at 1 month; 1.22 (0.77, 1.93), p>0.05
Penders <i>et al</i> 2007b ¹⁵⁴	Netherland	Cohort	Up to 2 yr	PCR	Eczema	OR for eczema at 2 years and colonization at 1 month; 1.23 (0.91,1.65), p>0.05
Penders <i>et al</i> 2007c ¹⁵⁴	Netherland	Cohort	Up to 2 yr	PCR	Atopy	OR for atopy at 2 years and colonization at 1 month; 1.04 (0.71,1.53), p>0.05
Kalliomaki <i>et al</i> 2001 ¹⁵¹	Finland	Cohort	Up to 1 yr	Stool culture	Atopy	Colonization at 3 weeks and atopy at 12 months (90% vs. 89.8%), p=0.98
Bifidobacteria spp						
Bjorksten <i>et al</i> 1999 ¹⁴⁴	Estonia and Sweden	Cross- sectional	2 yr	Stool culture	Allergy/atopy	Colonization and atopy at 2 years (59% vs. 71%), p<0.05
Bjorksten <i>et al</i> 2001 ¹⁵⁰	Estonia and Sweden	Cohort	Up to 2 yr	Stool culture	Eczema and/or atopy	Colonization at 1 week and allergy at 2 years 17% vs. 50%, p=0.03
Suzuki <i>et al</i> 2007 ¹⁵⁵	Japan	Case control	Up to 6 months	PCR	Allergic symptoms/atopy	Colonization and allergy at 6 months (70% vs. 12.5%), p<0.01
Murray <i>et al</i> 2005a ¹⁵⁹	Manchester	Case control	Mean age 4.4 yr	PCR	Wheeze, and atopy	Median colonization among sensitized wheezy and non sensitized non wheezy children

						1.71% vs. 1.88%, p=0.70
Murray <i>et al</i> 2005b ¹⁵⁹	Manchester	Case	Mean age 4.4	PCR	Wheeze, atopy	Median colonization among sensitized wheezy
		control	years		and eczema	plus eczema and non sensitized non wheezy and non eczema children (1.6% vs. 4.0%), p=0.05
Penders <i>et al</i> 2007a ¹⁵⁴	Netherland	Cohort	Up to 2 yr	PCR	Wheeze	OR for wheeze at 2 years and colonization at 1 month; 1.32 (0.85,2.06), p>0.05
Penders <i>et al</i> 2007b ¹⁵⁴	Netherland	Cohort	Up to 2 yr	PCR	Eczema	OR for eczema at 2 years and colonization at 1 month; 1.02 (0.77,1.35), p>0.05
Penders <i>et al</i> 2007c ¹⁵⁴	Netherland	Cohort	Up to 2 yr	PCR	Atopy	OR for atopy at 2 years and colonization at 1 month; 1.23 (0.85,1.77), p>0.05

PCR - polymerase chain reaction

1.2.4 Other risk factors

1.2.4.1 Birth weight and body mass index

The association between birth weight,¹⁶²⁻¹⁶⁵ a marker of maternal diet during pregnancy or other mechanisms related to lung growth, and the risk of asthma has been explored in various studies. Whilst several studies have shown low birth weight increased the risk of asthma and allergic disease,^{162, 164, 165} others have shown no associations.¹⁶⁶ Studies have also looked at the role of body mass index (BMI),^{165, 167-169} which may be a proxy for low physical inactivity, dietary habit, and other factors including hormonal imbalance. Higher body mass index has been reported to be positively associated with wheeze¹⁷⁰ including maternal obesity and risk off-spring asthma.¹⁶⁹ Despite heterogeneity among the literature, however, recent a meta-analysis suggested a 50% increased risk of incident asthma in obese and overweight adults.¹⁶⁸

1.2.4.2 Diet and breastfeeding

Several studies have proposed that alteration to a more westernized diet may be fuelling the worldwide variation and increasing prevalence of asthma and allergic disease.¹⁷¹⁻¹⁷⁴ In this context, dietary hypotheses, particularly those relating to the role of antioxidant deficiency (vitamin C, vitamin E, carotinoids, flavonoids and selenium), have gained support from epidemiological studies and been reviewed in detail.¹⁷²⁻¹⁷⁶ The beneficial effect of vitamin D on asthma morbidity has also gained recent interest,¹⁷⁷ which may operate through altering viral infections or increasing responsiveness to asthma therapy.¹⁷⁸ A metaanalysis including 37 observational studies (23 case control, 15 cross-sectional and 2 cohort studies) reported an inverse association between vitamin A, and C status and measures of asthma, but evidence to support the role of vitamin E was found to be limited.¹⁷⁶

The role of breast feeding in asthma and allergic disease aetiology has also been explored in a range of epidemiological studies, however to date the scientific evidence is controversial.^{179, 180} A recent meta-analysis of the available observational studies in the past 10 years found no association between any or exclusive breast feeding and wheezing symptoms in younger children. The results of this meta-analysis were also supported by an earlier large scale randomized clinical trial of breast feeding promotion programme in children on asthma and atopy.¹⁷⁹

In summary, despite an inverse association between dietary antioxidant and asthma, data from clinical trials to date, for example supplementation of vitamin C in asthma,¹⁸¹ and the role of breast feeding¹⁷⁹ are disappointing.

1.2.4.3 Pollutants and exposure to tobacco smoke

Among the risk factor studies of asthma and allergic disease in the past two decades, exposure to road traffic pollution, and other pollutants of particulate matters have gained considerable attention, though the evidence is often conflicting.^{182, 183} The available epidemiological studies of exposure to air pollution and risk of asthma were summarized by Anderson *et al*.¹⁸² and Weinmayr *et al*.¹⁸³ The first study included 21 multi-community studies of long-term exposure to NO₂,

SO₂ and particulate matter with aerodynamic diameter of <10 μ m (PM₁₀).¹⁸² The pooled estimate from this meta-analysis showed no evidence of an association between these exposures and the prevalence of asthma (wheeze symptom and asthma diagnosis).¹⁸² The second meta-analysis however demonstrated exposure to PM₁₀ increased the risk of asthma symptom, but the effect of NO₂ appeared less clear, though a high degree of heterogeneity was observed among the studies.¹⁸³ In general, the role of air pollution on asthma and allergic disease is uncertain and multicentre studies have reported weaker associations than individual studies. A number of factors including distance from traffic sources, level and dose of exposure and bias associated with the measurement of the exposure probably lead to these inconsistent findings.¹⁸²

Exposure to tobacco smoke has been consistently shown to influence the risk of asthma, though the association with clinical allergy is inconsistient.^{184, 185} A systematic review by Cook and Strachan reported consistent findings with odds ratios ranging from 1.2 to 2 for the effects of parental smoking (maternal, paternal or both) on the prevalence and incidence of respiratory disease in children, but the effects on allergy was generally less strong.¹⁸⁴ Most recently a review by Burke and colleagues¹⁸⁶ concurred with findings of the earlier reviews,^{184, 185} and reported an adverse effect of pre- or postnatal passive smoke exposure on the incidence of wheeze and asthma. This review included 79 cohort studies and found exposure to postnatal maternal smoking was associated with a 70% increased risk of incident wheeze in children ≤ 2 years and a similar increased risk of exposure to prenatal maternal smoking on incident asthma in younger children.¹⁸⁶

1.2.4.4 Paracetamol

Varner and colleagues were the first to speculate that the decreased use of aspirin in favour of paracetamol (also known as acetaminophen) in the early 1980s, due to the adverse effect of aspirin related Reye's syndrome in children with febrile illness,¹⁸⁷ may be fuelling the world wide increase in the prevalence of asthma and allergic disease. Since then paracetamol remains one of the most prescribed, over-the-counter pain reliever, and is the safe analgesic and antipyretic drug of choice in the world.¹⁸⁸

There is now increasing epidemiological evidence from worldwide multicounty studies,¹⁸⁹⁻¹⁹¹ systematic reviews¹⁹²⁻¹⁹⁵ and meta-analyses^{193, 196} implicating paracetamol use in the etiology of asthma and other allergic disease. The evidence to date has been remarkably consistent,^{187, 189, 190, 192, 193, 195, 197-206} with adverse effects reported in relation to paracetamol exposure *in utero*,¹⁹⁷⁻²⁰⁰ during infancy,^{200, 201} in childhood^{189, 190, 202} and during adult life.²⁰³⁻²⁰⁶ The effect also extends to asthma severity amongst asthmatics.^{201, 204-206} However, most of these studies were cross-sectional or case-control and reverse causation is difficult to exclude (Table 1.4).

The largest studies so far are the reports of the ISAAC multicounty study in children by Beasley *et al.*^{189, 190} These two studies reported significant dose dependent associations between current and first year use of paracetamol and the risk of asthma, eczema and rhinoconjunctivitis in 6-7 years old children,¹⁸⁹ which persisted when the children reached adolescence.¹⁹⁰ According to the ISAAC multicentre study, the population-attributable risks (PAR) of severe

asthma symptoms in children due to paracetamol use in the first year of life range from 22% to 38%.¹⁸⁹

Various other cross-sectional,²⁰⁷⁻²¹⁰ case control,²¹¹ and one longitudinal study²¹² also reported an adverse role of exposure to paracetamol on childhood asthma, and meta-analysis of the available observational studies by Etminan and colleagues¹⁹³ estimated a 63% increased risk of asthma among children using paracetamol. Our group's previous work in Butajira, Ethiopia showed a significant and dose-dependent increased risk of allergic symptoms among paracetamol users,²⁰³ which accompanying qualitative work suggested was unlikely to be explained by aspirin avoidance.²¹³ Lowe *et al*²¹² from Australia also found a similar positive association between child's exposure to paracetamol and the risk of asthma, however, it appeared that the associations were confounded by respiratory tract infections, and became non significant on adjustment.²¹²

Shaheen SO *et al*, using the ALSPAC cohort in the UK, were the first to report positive associations between prenatal use of paracetamol during pregnancy and the risk of childhood asthma and allergic disease.¹⁹⁷ This study found that use of paracetamol in late pregnancy (20 to 32 weeks) was associated with an increased risk of wheezing in children at 30-40 months.¹⁹⁷ Similar findings were reported elsewhere from study in Spain,²¹⁴ a US birth cohort²¹⁵ and a Danish birth cohort¹⁹⁹, all linking exposure *in utero* with increased risks of off-spring asthma and allergic diseases. Overall, a pooled estimate from meta-analysis of the available observational studies for use of paracetamol during pregnancy and childhood wheeze showed an increased risk for use prenatally (adjusted OR, 95% CI, 1.21; 1.02, 1.44).¹⁹⁶

Among the observational studies in adults are two United States-based studies.^{204, 206} The study by Barr *et al*²⁰⁶ prospectively examined paracetamol use on new onset asthma in women and found an increase in adult onsetasthma. The other study by McKeever and colleagues²⁰⁴ showed paracetamol use to be associated with increased risk of asthma and COPD.

The Randomized controlled trial (RCT) is a gold standard design to establish a cause-effect relationship, however, is limited to one study of paracetamol due to ethical dilemmas. The only randomized clinical trial in asthmatic febrile children from the US showed increased outpatient visit in the paracetamol arm compared to the ibuprofen arm (adjusted OR, 95% CI, 1.79; 1.05, 2.94),²⁰¹ and weak positive association with rates of hospitalization. Whilst the trial was double-blinded, the lack of placebo control arm in this trial, limits its interpretation.

In *vivo* and *in vitro* studies support these epidemiological observations and provide plausible mechanisms, including depletion of pulmonary glutathione concentration,^{216, 217} inhibition of basal INF-a and IL-6 protein secretion in the lung.²¹⁷

In summary, studies reporting the role of paracetamol in the development or maintenance of asthma and allergic disease, particularly for childhood wheezing are more consistent. However, evidence on eczema and sensitization is limited to a few studies, and data from longitudinal studies are lacking. Moreover, most of the studies were based in developed countries and alternative explanations including aspirin avoidance is difficult to exclude.

Table 1.4 Studies showing link between paracetamol, asthma and allergic disease

Author	Chirdy area	Study decion	And aroun	Outcome	Main raculte
	Juny area	-+	ANO R SKO	סמורסוווכ	
Beasley et al 2011 ¹⁹⁰	ISAAC	Cross-	13-14 yr	Asthma,	OR for current asthma for use of paracetamol (high
	multicountry	sectional		rhinoconjunctivitis	dose) vs. never: 2.51 (2.33, 2.70), current wheeze
	study			and eczema	(video): 2.35 (2.13, 2.60), rhinoconjunctivitis: 2.39 (2.24-2-55) and erzema: 1.99 (1.82-2-16)
Beasley et al 2008 ¹⁸⁹	ISAAC	Cross-	6-7 yr	Asthma,	OR for asthma at 6 to 7 yrs for use of paracetamol
	multicountry	sectional	•	rhinoconjunctivitis	in the first years of life vs. never: 1.46 (1.36, 1.56),
	study			and eczema	rhinoconjunctivitis: 1.48 (1.38, 1.60), and eczema: 1.35 (1.26, 1.45)
					Current use also associated with the outcomes at 6
					to 7 years.
Davey <i>et al</i> 2005 ²⁰³	Butajira,	Cross-	≥5 yr	Wheeze, rhinitis,	OR for wheeze for use ≥ 3 tablets per month vs.
	Ethiopia	sectional		eczema, asthma,	never: 1.89 (1.51, 2.36), eczema: 1.90 (1.39,
				and sensitization	2.61), rhinitis: 2.52 (1.99, 3.20), dust mite
					sensitization: 1.17 (0.92, 1.48), and cockroach
					sensitization: 1.40 (1.10, 1.79)
Vlaski et al 2007 ²⁰⁷	Republic of	Cross-	13-14 yr	Wheeze, asthma,	OR for wheeze for use once per month vs. never:
	Macedonia	sectional		rhinitis, eczema	2.04 (1.31, 3.20), asthma ever: 2.77 (1.06, 7.26),
					rhinitis: 2.25 (1.36, 3.70), current eczema: 0.93
					(0.41, 2.10)
Garcia-Marcos et al	Spain	Cross-	3-5 yr	Wheeze	OR for wheeze for use of paracetamol during
2008 ²¹⁴		sectional			pregnancy once per month vs. never: 1.71 (1.15,
					2.53), for asthmatic mothers: 0.95 (0.15, 5.79),
					and for non-asthmatic mothers: 1.74 (1.15, 2.61)
Cohet et al 2004 ²⁰⁹	New Zealand	Cross sectional	6-7 yr	Asthma, wheeze,	OR for current wheeze at 6 to 7 yrs for use in the
				eczema, and	first year of life vs. never: 1.38 (1.04, 1.83),
				rhinitis	asthma ever: 1.72 (1.32, 2.23), current allergic
					conjunctivitis: 1.25 (0.92, 1.70), and eczema ever:
					1.27 (1.02, 1.58)
Barragan-meijuerio et	Mexico	Cross -	6-7 yr	Wheeze, rhinitis,	OR for wheeze for paracetamol use in past month
<i>al</i> 2006 ²¹⁰		sectional		eczema	vs. never: 3.30 (1.54, 7.18), rhinitis: 1.61 (1.33,
					1.95), eczema: 1.82 (1.24, 2.66)
Mckeever <i>et al</i> 2004 ²⁰⁴	NS	Cross- sectional	20-80 yr	Asthma, COPD and Jund function tests	OR for asthma for daily use vs. never: 1.20 (1.12, 1.28) for COPD: 1.16 (1.09, 1.24, and for FEV.
			35		

					(m)): - E4 0 (-00 3 - 17 7)
Newson et al 2000 ²⁰²	ISAAC and ECRHS multi	Ecological studv	6-7, 13-14, and	Reported asthma, wheeze. eczema.	Regression coefficient for wheeze for every gram increase in per capital paracetamol sales: +0.26
	centre study		20-44 yr	rhinoconjunctivitis	(0.16, 0.37), for rhinitis: +0.35 (0.21, 0.49), for Atopy: 0.20 (-0.02, 0.41), and BHR: -0.02 (-0.03,
					0.00) for adults 20-44 years.
Lesko <i>et al</i> 2002 ²⁰¹	SU	Randomized	6-12	Asthma (outpatient	OR for outpatient visit for asthma for paracetamol
		clinical trial	months	visit and hospitalization)	arm vs. ibuprofen: 1.79 (1.05,2.94)
Shaheen <i>et al</i> 2000 ²⁰⁵	UK	Case control	16-49 yr	Asthma, and rhinitis	<i>OR for asthma for daily use vs. never: 2.38 (1.22, 4.64), and rhinitis in those without asthma: 2.33 (1.09, 4.96).</i>
Shaheen et al 2008 ¹⁹¹	Multicentre	Case control	20-45 yr	Diagnosed and	OR for asthma for weekly use vs. less frequent use:
	study (European Network)			reported astnma	2.8/ (1.49-5.3/).
Lowe et a/ 2010 ²¹²	Australia	Longitudinal	6-7 yr	Asthma, wheeze,	OR for asthma for increasing total days of use of
		birth cohort		rhinitis, and	paracetamol further adjusted for respiratory tract
				eczema	Infections at 5 to 7 yr: 1.08 (0.91, 1.29), inclaent sethms: 0 07 (0 76 -1 25) alleraic rhinitis: 1 17
					(0.96, 1.43), and eczema: 1.10 (0.93, 1.29)
Kang <i>et al</i> 2009 ²¹⁸	ž	Longitudinal (<i>in utero</i>)	0-6 yr	Diagnosed asthma	<i>OR for asthma:</i> 0.67 (0.53-1.10)
Shaheen <i>et al</i> 2002 ¹⁹⁷	R	Iongitudinal	18-40	Wheeze and	OR for wheeze for use of paracetamol at 20 to 32
		study (in	months	eczema	weeks of pregnancy for daily/most days use vs.
		utero)			never: 2.10 (1.30, 3.42), eczema: 1.04 (0.65, 1.66) and for use at infancy for eczema: 1.22
					(1.06, 1.41) and wheeze: 1.64 (1.13, 2.39)
Perzanowski et al	US	longitudinal	5 yr	Wheeze	Exposure to paracetamol during pregnancy
2008 ⁴¹²		study (in			(particularly during the third trimester) increased
		utero)			risk of wheeze at the age of 5 years. But no effect before this age.
Rebordosa et al	Denmark	longitudinal	18 months-	Diagnosed asthma	RR for physician diagnosed asthma or bronchitis at
		study (in	7 yr	and hospitalization	18 months for use of paracetamol at any time
			36		

2008 ¹⁹⁹		utero)		for asthma	during pregnancy: 1.17 (1.13, 1.23), hospitalization due to asthma: 1.24 (1.11, 1.38) and physician diagnosed asthma at 7 yr: 1.15 (1.02, 1.29)
Persky <i>et al</i> 2008 ²⁰⁰	sn	longitudinal study (<i>in</i> <i>utero</i>)	1 yr	Respiratory symptoms, wheeze, and asthma	OR for wheeze for use of paracetamol during middle to early pregnancy: 1.80 (1.10, 3.00), asthma: 2.00 (0.60, 7.20). However no significant effect with exposure early in pregnancy
Shaheen <i>et al</i> 2005 ²¹⁹	ž	longitudinal study (<i>in</i> utero)	18 months- 7 yr	Wheeze, eczema, rhinitis, sensitization and serum IgE	OR for asthma for use of paracetamol during late pregnancy for those who took most days/daily vs. never: 1.62 (0.86, 3.04), wheezing: 1.86 (0.98, 3.55), and total IgE (geometric mean ratio): 1.14 (1.03, 1.26). No association with eczema or rhinitis
Barr <i>et al</i> 2003 ²⁰⁶	NS	longitudinal study	30-35 yr (women)	Physician diagnosed asthma	OR for asthma for use of paracetamol for more than 14 days per month vs. never: 1.63 (1.11, 2.39).

1.3 SUMMARY

From the risk factors discussed above, it can be concluded that a range of environmental factors, interacting possibly with genetics, may explain the worldwide changes in the prevalence of asthma and allergic diseases. However, no specific harmful or protective putative exposure has been identified yet.

Among the risk factors explored in the past decade, the role of paracetamol in the development or maintenance of asthma and allergic disease is intriguing. However, in studies based in developed countries, the possibility that paracetamol and asthma are associated through reverse causation, in turn arising from medical advice to avoid aspirin use in people with asthma, is difficult to exclude. Moreover, prospective evidence has been limited to a handful of studies, and only two studies looked at personal consumption: one in children and the other in adult women, and both are based in developed countries. Studies have also tended to rely on recall of paracetamol use in the past, or not adjusted for confounding by early respiratory infections. Further work is therefore needed, particularly that in developing countries, where avoidance of aspirin due to asthma risk is unlikely,²⁰³ and bias due to the availability of multiple formulations of paracetamol is less of a problem.

Recent interest has also been focused on the protective role of various gastrointestinal organisms on asthma and allergic disease, including the stomachcolonizing bacterium *H. pylori*, geohelminths and commensal bacteria. Most of the *H. pylori* studies are cross-sectional or case control, in which alternative

explanations including reverse causation are a problem; and no prospective study has been reported in children. Moreover, the majority of the studies have been in adults, with only three studies conducted in children; furthermore as all are based in developed countries, bias arising from universal H. pylori eradication therapy, that this is not the case in developing countries, is difficult to exclude. The relation between geohelminth infection, particularly hookworm, and asthma and allergic disease has proven controversial. In tropical areas, like Ethiopia, the first exposure to geohelminth infections typically occurs at an early age, during a crucial period of immune development. However, to date, most studies have been based on older children or adult populations, and evidence from prospective birth cohort studies from developing countries is remarkably scarce. Finally, the role of commensal bacteria in the pathogenesis of asthma and allergic disease has been debated over the past 15 years, and remains unclear. As with the other gastro-intestinal exposures, studies exploring this hypothesis are mainly based in developed countries, in which the possibility that bias arising from antibiotic therapy and changes in the dietary habit is difficult to untangle. Moreover, the available prospective studies, with a few exceptions, are small scale studies, often include less than 100 subjects, and power is an issue. No longitudinal study from a developing country to date is available, therefore making a case for this study.

At present, the relationship between each of these risk factors and asthma and allergy remains uncertain. The association between geohelminth infection, commensal bacteria and *H. pylori*, and asthma and allergic disease is potentially very important, because it raises the possibility that products might have a therapeutic value. Furthermore, paracetamol remains one of the most prescribed over-the-counter pain reliever, and the safe analgesic and antipyretic drug of choice in the world, and Africa; and further investigation of this enigma in asthma; if this is a true effect, could have potential preventive value.

This thesis has therefore explored these associations in a birth cohort of children followed to age five in Butajira, Ethiopia, where previously established bias associated with each exposure is less pronounced, and where asthma and allergic disease are continuing to emerge as clinical problems. The study aims to establish, for the first time prospectively in a longitudinal cohort, the influence of these risk factors on the incidence and prevalence of allergic diseases.

1.4 OBJECTIVES OF THIS THESIS

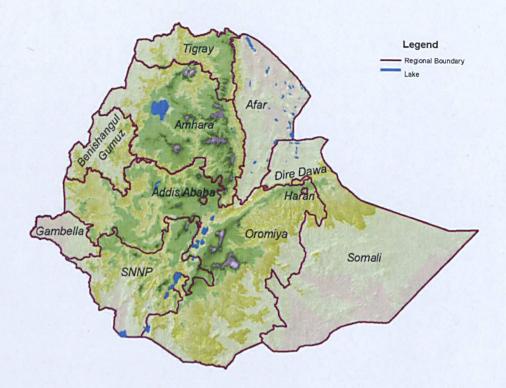
The aim of this thesis is to investigate the hypothesis that early infection with geohelminths, commensal bacteria, and *H. pylori* protects against asthma and other allergic disease, and paracetamol increases the risk of these conditions using an Ethiopian birth cohort. More specifically the objectives of this thesis are:

- To determine the independent effect of paracetamol use in early life on the incidence and prevalence of wheeze, eczema, rhinitis, and skin sensitization in young children.
- 2. To determine the independent of effect of *H. pylori* infection on the incidence and prevalence of wheeze, eczema, rhinitis, and sensitization in young children.

- 3. To determine the independent effect of geohelminth infection, specifically hookworm, *A. lumbricoides*, and *T. trichiura* infection, on the incidence and prevalence of wheeze, eczema, rhinitis and sensitization in young children.
- 4. To determine the independent effects of selected commensal bacteria, namely enterococci, lactobacilli, and bifidobacteria, on the incidence and prevalence of wheeze, eczema, rhinitis and sensitization in young children.

2 METHODS

2.1 COUNTRY PROFILE: ETHIOPIA


2.1.1 Geography

Ethiopia is situated in the Horn of Africa between 3^o and 15^o north and 33^o and 48^o east. It is the tenth largest country in Africa with an area of 1.1 million km². Ethiopia is bordered to the north by Eritrea, Sudan and South Sudan to the west, Djibouti and Somalia to the east, and Kenya to the south. Ethiopia is an ecologically diverse country with a range of deserts, tropical forests and Afromountain. The principal climatic zones are tropical rainy, dry and warm temperate climates. It is administratively divided in to nine regional states and two city administrations, and the capital city is Addis Ababa²²⁰ (Figure 2.1).

2.1.2 Demography and education

Ethiopia is the second most populous nation in Africa. According to the most recent census in 2007, it has a total population of 73.9 million, with annual growth rate of 2.6%.²²⁰ Of these, 37.3 million (50.5%) are males, and the rest (36.6 million, 49.5%) females. Most of the population live in rural areas (84%), while the rest live in urban areas (16%). The population of under five children (0-4 years) is 10.8 million.²²⁰ The dependency ratio is high, with 48.9% of the population age under 15 or over 65, and 51.9% in the working age group (15-64 years).²²⁰ The largest proportion of the country's population are found in Oromia region (36.7%), followed by Amhara (23.3%) and Southern Nations, Nationalities and People's Region (SNNPR) (20.4%) (Figure 2.1).²²⁰ The majority

of the population are Orthodox Christian by religion (43.5%), followed by Muslim/Islam (33.9%), Protestant (18.6%), traditional religion group followers (2.6%), and Catholic (0.8%).²²⁰ Ethiopia is a multi-cultural country with more than 80 ethnic groups²²⁰ and over hundred dialectics; Amharic being the official language. In regards to education, the Gross Enrolment Ratio (GER) at primary level (grade 1-8) is 85.8%, with a Net Enrolment Ratio of 73.9% and a male to female gender gap of 14.4%.²²¹ Although Ethiopia has shown improvement in the education sector, a significant share of the primary school age population has an unmet need of education.²²¹

Figure 2.1 Regional map of Ethiopia

Source: United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA). Available at; http://www.ocha-eth.org/Maps/downloadables/ETH.GENERAL.pdf

2.1.3 Economy

Ethiopia is among the least developed counties, with a per capita gross national income (GNI) in 2009 of US\$330.²²² The main economy is based on agriculture which employs about 80% of the population and accounts for about 90% of the exports,²²³ and 51% of the gross domestic product (GDP).²²² According to the crop production survey conducted by the Central Statistical Authority, the major crops produced from 2007 to 2009 were cereals (maize, wheat, sorghum, barley, finger millet, rice, oats and *teff*), and oil seeds (mainly rapeseed and groundnuts).²²⁴ Ethiopia is a major producer of coffee, which is the main source of export economy for the country.²²⁴

2.1.4 Health

According to the Ethiopian Federal Ministry of Health report on the Health Sector Development Program (HSDP), the health service coverage in 2006/07 is 87%.²²⁵ The number of hospitals in 2006/2007 is 143, while the number of health centres and health posts (the smallest primary health care unit) is 690 and 9,914 respectively.²²⁵ The doctor-to-population ratio is 1:42,706 and nurseto-population ratio 1:4,207.²²⁵ The Health Service Extension Program (HSEP), an approach that brings health care to the village level, is the main actor of the health care delivery particularly at community level, with the health extension worker-to-population ratio being 1:4,369 (Table 2.1).²²⁵ Safe water and sanitation supply are rudimentary in the country with only around 47% and 30% of the population estimated to have access to safe water and sanitation respectively (Table 2.1).²²⁶

Given the high population growth rate, and the poor health care delivery system, Ethiopia has poor health and health-related indicators. According to the preliminary report of the Ethiopian Demographic and Health Survey (EDHS) 2011, the total fertility rate (the number of children a woman would have in her child bearing age) three years preceding the survey is 4.8 per 1000 women aged 15-49.²²⁷ As expected, the fertility rate is considerably higher in rural (5.5) than urban areas (2.6).²²⁷ Regardless of type of contraceptive, overall 29% of currently married women are using any family planning methods.²²⁷

Amongst the main health problems in Ethiopia, HIV/AIDS created a significant burden in the health system with an estimated adult prevalence in 2010 of

2.4%, and around 1.2 million people living with the disease.²²⁸ A trend analysis however showed that the urban epidemic appears to have levelled off whilst there is no change in the rural epidemic.²²⁸ Tuberculosis (TB) and malaria are the other major health problems in the country with about 126,106 new cases of TB registered in 2006/2007,²²⁵ and estimated malaria parasite prevalence in 2007 of 0.7%.²²⁹

Twenty four percent of the children aged between 12 to 23 months in 2011 are fully vaccinated whilst 15% have never received any vaccination.²²⁷ Malnutrition is highly prevalent in Ethiopia with 44% of the children less than five years stunted, indicating chronic malnutrition, whereas 10% of them are wasted, a condition reflecting acute malunitrion.²²⁷ The most important causes of childhood morbidity and mortality, among others, are acute respiratory tract infections (ARI), fever and diarrhoea with dehydration. The Ethiopian Demographic and Health Survey (EDHS) 2011 found that overall, 7% and 17% of children under five showed symptoms of ARI and fever in the two weeks preceding the survey, of whom 27% and 24% respectively sought treatment from the health facility.²²⁷

In relation to child mortality, the neonatal morality rate (the chance of dying within the first month of life) is 37 per 1,000 live births and the infant mortality rate (the chance of dying before the first birthday) 59 per 1,000 live births. The estimated child mortality (the probability of dying between the first and fifth birth day) is 31 deaths per 1,000 children surviving to 12 months of age, and the overall under-5 mortality rate (the probability of dying between the birth and fifth birthday) is 88 deaths per 1,000 live births (Table 2.1).²²⁷ The maternal mortality rate in 2005 was 673/100,000 live births,²³⁰ with the major causes of

death being bleeding, infection (sepsis), obstructed labour, and abortion. The proportion of mothers who attended antenatal care and delivered in an institution with a skilled birth attendant was 29% and 10%, respectively.²²⁷

Comprehensive data on Non Communicable Diseases (NCDs) are not available in Ethiopia. However, some studies have shown that the prevalence and incidence of chronic diseases and risk factors such as high blood pressure, physical inactivity, overweight, smoking, and alcohol drinking are increasing.²³¹⁻²³⁵ A recent population based survey among 25-64 years living in Addis Ababa showed that about 20% of males and 38% of females were overweight, and 31% and 17% of females and males respectively were reported to have low physical inactivity.²³³ The burden of high blood pressure is also showing an increasing trend with almost a third of the population in Addis Ababa found to be hypertensive.²³³ Furthermore from the same population it was documented that (*Catha edulis Forsk*) chewing was 15.9%.²³⁴ Table 2.1 summarises key maternal, child, and environmental and basic health indicators in Ethiopia.

Table 2.1 Key health and health related indicators in Ethiopia

Health indicators	
General health*	<u> </u>
Potential health service coverage	87%
Doctor/population ratio	1:42,706
Nurse/population ratio	1:4,207
Health extension worker/population ratio	1:4,369
Child health [†]	
Neonatal mortality rate	37
Infant mortality rate	59
Child mortality rate	31
Under-five mortality rate	88
All basic vaccinations (BCG, measles and 3	24.3%
doses of DPT)	
Symptoms of acute respiratory tract	7%
infections (cough, and fast breathing)	
Fever (2 weeks preceding the survey)	17%
Diarrhoea (2 weeks preceding the survey)	13%
Maternal Health [‡]	
Antenatal care coverage	34%
Institutional delivery	9.9%
Maternal mortality rate [*]	673
Environmental health ^c	
Access to safe water (2004/05)	47%
Access to sanitation (2004/05)	30%

* Source:²²⁵ Federal Ministry of health of Ethiopia, Health and Health related indicators, 2006/2007.

⁺ Source:²²⁷ EDHS 2011, and all rates expressed per 1,000 live birth, except for child mortality which is expressed per 1,000 children surviving to 12 months of age.

[¥]Source:²³⁰ EDHS 2005, rates expressed per 100,000 live births.

^cSource:²²⁶ Federal Ministry of health of Ethiopia, Health and Health related indicators, 2004/2005.

2.2 BUTAJIRA RURAL HEALTH PROGRAM (BRHP)

2.2.1 The Butajira Rural Health Program and reasons for choice of Butajira

The shortage of data on vital and other health related events in low income settings led to the development of other strategies for obtaining this information. One such example in Ethiopia is the Demographic Surveillance Site (DSS) in Butajira, called the Butajira Rural Health Program. The BRHP is part of the International Network for the Demographic Evaluation of Populations and Their Health in Developing Countries (INDEPTH Network), which is a global network of members working in 19 countries in Africa, Asia and Oceania who conduct longitudinal health and demographic evaluation of populations in low and middle income settings (www.indepth-network.org). The BRHP was initiated in mid 1986 by performing a census of the population of ten randomly selected *kebeles* (the smallest administrative unit) using the probability proportionate to size technique in the districts of Meskan, Mareko and Silti.²³⁶

2.2.2 The study setting: geography

The Butajira DSS is located in the Meskan, Mareko and Silti Districts, Gurage Zone, in the Southern Nations, Nationalities and Peoples Regional state (SNNPR) of Ethiopia (Figure 2.2). According to the 2007 population and housing survey, the total population of the study area (Mareko, Meskan, Silti Wodeda and Butajira town) is 434, 036, with a female to male ratio of 1:1.02. The majority live in rural areas (84%), and the rest live in urban areas (16%).²²⁰ The estimated size of the District is 797 km² and Butajira town covers approximately

9km². The district capital, Butajira, is located 135 km south of the capital city, Addis Ababa, and 50 km to the west of Zway town in the Rift valley. Historically the district was part of 'Gurageland' and acquired its name in 1954. The naming of the town originating from the presence of a '*shifta'* (bandit) in the area by the name of 'Buta': traders coming into the town called out 'Buta jira' to ask 'is Buta there?', and thus coined the name 'Butajira'.²³⁶

Butajira is located at an elevation of around 2,100 meters above sea level, ranging from 1,750 meters in the lowlands to 3,400 meters in the mountainous area (Figure 2.2). The climate varies from arid dry lowland areas to cool mountainous areas. The main rainy season is from June to September with rainfall ranging between 900 to 1,400 mm per annum.²³⁶

The district was divided administratively into approximately 86 units, mostly rural, but including the urban Butajira town.²³⁷ Out of the ten initially sampled study units, nine were rural *kebeles* (also called Peasants' Associations), and one was an urban *kebele* (also called Urban Dwellers Association) (Figure 2.2). The nine rural *kebeles* (administrative units) are: 'Dobena', 'Bati', 'Hobe', and 'Mekakelegna Jare Demeka' from the lowland areas, 'Misrak Meskan', 'Wurib', 'Yeteker', 'Bido' and 'Dirama' from the highland areas, and 'Butajira 04' from the town (Figure 2.2). An initial census at the end of 1986 enumerated all the residents of the ten selected communities and formed the basis for an open cohort study (where members of the cohort enter by birth or in-migration, or exit by out-migration or death), which is still continuing. The initial census was used to obtain baseline population information and to establish a system of demographic surveillance with continuous registration of vital events (birth,

death, marriage, new household formation, out-migration, in-migration, and internal moves within the study units) at the household level. In addition, the study base aimed to generate information on morbidity, mortality and provide a sampling frame for other health-related research and interventions.²³⁶ The demographic and other health related indicators of the DSS were very similar to the EDHS, and also to the national figures, reflecting the representativeness of the BRHP.^{236, 238}

The Butajira area was chosen purposefully as being potentially representative of the Ethiopian population on the basis of being 130km from the capital Addis Ababa (but also near enough to Addis Ababa University where the study administration is based), combining a mixture of the highland and lowland areas typical of Ethiopia, and being home to a mixture of geographical, ethnic, cultural and religious groups.

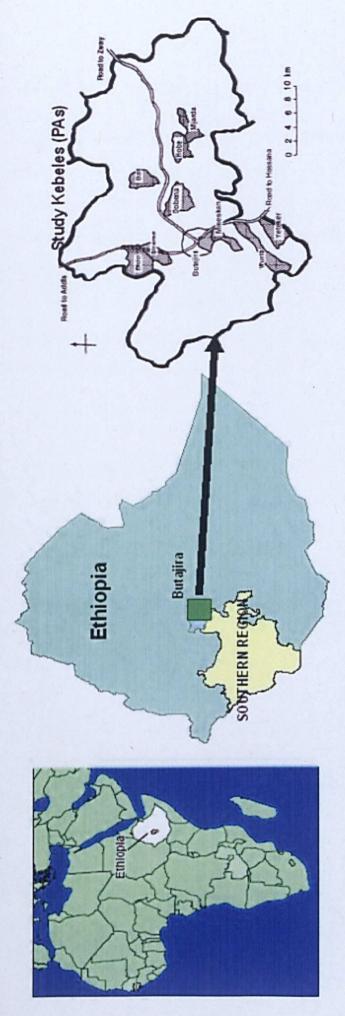


Figure 2.2 Map of Ethiopia showing the study area – Butajira and sampling units

Source (with some modification)²³⁶

2.2.3 The BRHP population: demography and health

The BRHP population is estimated to be 60,000, and contains more than 13,268 women of reproductive age.²³⁶ Butajira, the district capital, has a total population of 33,393, with male to female ratio of 1:1.03.²²⁰ Two thirds of the district population are followers of Islam religion followed by Orthodox and other Christian. Various ethnic groups such as the Meskan, Mareko, Silti and Sodo, live in the district. The predominant language, '*Guragigna'* belongs to the Ethiosemitic language group, and the working language is Amharic which is spoken by most of the population in the district.²³⁶

The livelihood of the majority of the residents is based on mixed farming. Khat (*Cata edulis Forsk*) and chilli-peppers are the main cash crops, while maize and "false banana" or Ensete (*Ensete ventricosun*) are the main staples.²³⁶ The main occupations are related to farming in the rural area, and small-scale businesses in the town.²³⁶ An all-weather road connects Butajira town north with Addis Ababa and south with Hosanna, another all-weather road connects it to Zway. The villages in the district, with few exceptions, are connected to the town by dry-weather roads.²³⁶ The lowland areas are drought prone and have been affected by major drought in the past decade,²³⁶ the most recent being in 2002/2003. The Butajira town has 24-hour electricity, and telephone and postal service, none of which are available in the rural areas.²³⁶

The study population is served by one government owned hospital, one private hospital, four health centres (more health centres are under construction), at

least one health post per study unit, and several privately owned drug stores and clinics. Childhood mortality indicators in the study area resemble the national indicators, with the perinatal mortality rate reported at 22 per 1,000 live births, the infant mortality rate 65/1,000 live births, the childhood mortality rate 31.5/1,000 live births, and the under-five mortality rate 40/1,000 live births.²³⁸ The major causes of morbidity and mortality in the district are malaria, respiratory tract infection (pneumonia), tuberculosis, diarrhoea and gastroenteritis, acute febrile illness and other infective and parasitic diseases (*giardiasis*, and *amoebiasis*). In terms of adult mortality, the crude mortality rate (between 15-64 years) was 7.8 per 1,000 person years, of which 53% were attributed to communicable diseases and the rest to NCDs, showing the emergence of NCDs in the study area.²³⁹ The cause of death data were derived from verbal autopsy questionnaires and therefore need careful interpretation as bias due to misclassification is possible.

The BRHP is now well established and is used for a variety of nested studies, involving many international collaborators from across the world.²³⁷ One such nested study is the Butajira birth cohort, on which this thesis is based, and which is described in the next section.

2.3 BUTAJIRA BIRTH COHORT

2.3.1 Establishment of the Butajira Birth Cohort

In 2004, collaboration between the Institute of Psychiatry, King's College London, and the Department of Psychiatry, Addis Ababa University received funding from The Wellcome Trust to set up a birth cohort to investigate the hypothesis that common maternal mental health disorders in pregnancy and the post natal period are associated with infant health, growth, development and survival (grant number WT081504/Z/06/Z). Earlier collaboration over risk factors for asthma and allergic diseases between investigators at Addis Ababa University, Ethiopia and the University of Nottingham, United Kingdom, led to an extension of this birth cohort to include additional hypotheses relating to aetiology of asthma and allergic disease (funded by Asthma UK, grant number 07/036). The collaboration was started just after the birth of the children; however my involvement in the cohort started after the follow-up at age one, and this thesis therefore focuses on outcomes collected after this time (age three and five).

The methodology relating to the initiation of the cohort and data collection during pregnancy has been described elsewhere.^{240, 241} In brief, after validation and qualitative work,²⁴¹ pregnant women living in the BRHP were recruited into this birth cohort (Figure 2.3). Eligible women were those aged between 15-49 years, in the third trimester of pregnancy during the study recruitment period (July 2005 to February 2006), living in the area covered by the BRHP, and able to speak the national language of Ethiopia, Amharic. These women were identified by the BRHP fieldworkers during a quarterly surveillance interviews.²⁴⁰

Of the 1234 eligible women, 134 were excluded because they delivered before interview, 26 were not identified before birth or not traced, and nine refused to participate, leaving 1065 women (86% of eligible) who were successfully recruited in the study (Figure 2.3). Non-participating women did not differ from participating women in respect to socio-demographic characteristics.²⁴⁰ The project data collectors visited the pregnant women at home and an interview-led questionnaire was administered. Information collected during pregnancy, as part of the main study among others are: antenatal common mental health disorder (CMD), psychosocial exposures, physical illness and somatic symptoms.²⁴⁰ Furthermore socio-demographic data including age of the mother, area of residence, ethnicity, religion, marital status, maternal occupation, education, household income, and housing characteristics were available during this follow-up.²⁴⁰

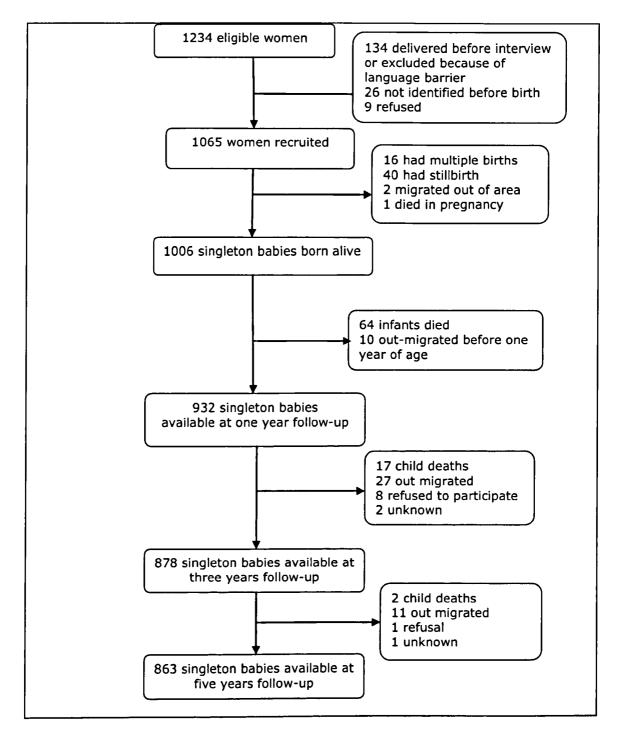


Figure 2.3 The Butajira Birth Cohort from recruitment up to year five

2.3.2 Characteristics of the women at recruitment

The age range of the women was 15 to 46 years (mean [SD] 26.9 [6.4] years), the great majority (85%) were in the age group 15-34 years, and the rest were older. Less than one quarter of mothers (20.6%) had formal education, the rest had no education (Table 2.2). Over 85% of the mothers were from rural areas, 76% of them lived in houses with thatched roofs, and more than 80% of them were housewives. The largest Ethnic group was Meskan (46%), and the majority of the women (78%) were Muslim (Table 2.2).

Table 2.2	Baseline	characteristics	at	recruitment
-----------	----------	-----------------	----	-------------

Baseline characteristics	Number (%)		
Area of residence			
Urban	152 (14.3)		
Rural	913 (85.7)		
Age of the mother			
15-24	410 (38.5)		
25-34	495 (46.5)		
35-46	160 (15.0)		
Ethnic origin			
Meskan	485 (45.5)		
Silti	257 (24.1)		
Mareko	147 (13.8)		
Others*	176 (16.5)		
Religion			
Muslim	826 (77.6)		
Christian	239 (22.4)		
Education of the mother			
No formal education	846 (79.4)		
Had formal education	219 (20.6)		
Occupation of the mother			
House wife	901 (84.6)		
Any other jobs†	164 (15.4)		
Marital relation of the mother			
Monogamous marriage	855 (80.3)		
Polygamous marriage	200 (18.8)		
Single	10 (0.9)		
Type of roof			
Thatched roof	806 (75.7)		
Corrugated iron sheet	259 (24.3)		

N=1065

*Sodo, Dobi, Oromo, Amhara and Wolene

†Farm related, profession related, trade related and daily laborer

2.3.3 Birth of babies in cohort

Of the 1065 women recruited into the study, two migrated out of the area before giving birth, one died during pregnancy, 40 had still births, 16 had multiple births and 1006 had live singleton babies²⁴⁰ (Figure 2.3). These 1006 babies from the birth cohort subsequently followed-up. Birth weights were collected; mostly within 48-hours of birth on over 60% of cohort babies (measured in districts where a suitable health worker was available) (Table 2.3).

In addition, information on breastfeeding status (exclusive breastfeeding) and immunization for age (BCG and polio at birth, and DPT₁ vaccines) were available at two months (Table 2.3). These variables were ascertained by asking the mother whether the child was immunized for age (Yes/No), and if available, registration cards were checked, and BCG scar verified. Information on symptoms of respiratory tract infection (cough, fast breathing and fever) was also available. The mothers were asked whether the child had coughing (Yes/No), fast breathing (Yes/No) or fever (Yes/No) since birth.

The demographic and early life characteristics of the babies in the cohort are shown in Table 2.3. The sex ratio was 1:1.05. Most (84.0%) of the infants were exclusively breast fed till the age of two months, more than 90% of those weighed had birth weights of >2.5kg. Around 59% of the infants had received at least one vaccination by two months.

Characteristics	Number (%)
Gender (N=1006)	
Male	516 (51.3)
Female	490 (48.7)
Birth weight (N=653)	. ,
Low (<2.5kg)	48 (7.4)
Normal	605 (92.7)
Vaccination at 2 months [*] (N=955)	
Yes	562 (58.9)
Νο	393 (41.2)
Exclusive breastfeeding status at 2	. ,
months (N=955)	
Yes	802 (84.0)
No	153 (16.0)

Table 2.3 Demographics and early life characteristics of the babies

⁺ Any vaccination history at 2 months (BCG, Polio, and DPT₁)

2.3.4 Follow-up of cohort at age one

The first year follow-up of the birth cohort was conducted by a previous Master's student project between July 2006 and May 2007. The Butajira data collectors, who knew and visited the mothers bi-annually since the establishment of the birth cohort administered an interview-led questionnaire (within two weeks of the first birthday). Of the 1006 babies in the cohort, 64 (6.4%) had died and 10 (0.9%) migrated from the study area before their first birthday, leaving 932 children successfully followed-up at age one (Figure 2.3). The prevalence of and risk factors for wheeze and eczema at age one have been reported elsewhere.²⁴²

2.3.4.1 Wheeze and allergic disease measures at age one

The questionnaire included questions on wheeze, asthma and eczema based on the International Study of Asthma and Allergies in Children (ISAAC) core allergy and environmental questionnaire,²⁵ and used previously in Ethiopian populations^{43, 104, 243, 244} (Table 2.4). Data on wheeze and eczema were collected at year one, however questions on rhinitis were not asked, consistent with other studies in very young children as it is unlikely to represent an allergic phenotype.^{197, 199} These outcomes were identified by a positive answer to the following questions, and the full questionnaire (English and Amharic translated) can be found in Appendix II to Appendix V.

Wheeze

 'In the last 12 months/since birth has your child had wheezing or whistling in their chest?');

Asthma

 'In the last 12 months/since birth has your child had asthma?', and 'has this been confirmed by a doctor?' and;

Eczema

 'In the last 12 months/since birth has your child ever had an itchy skin rash which has affected the skin creases, eg, front of the elbow, behind the knees, the front of the ankles, around the neck, or around the eyes?')

Table 2.4 Summary of variables measured during pregnancy, at birth

and at ages one, three and five

	Follow up points					
Variables	During pregnancy	At birth	At 2 months	At Year 1	At Year 3	At year 5
Reported allergy outcomes	- · · · · · · · · · · · · · · · · · · ·		· .			
Wheeze symptom question				х	х	х
Eczema symptom question				х	х	х
Rhinitis symptom question					х	х
Reported/confirmed asthma				x	х	x
Socio-demographic characteristics						
Age/sex/area of residence	x	x				
Ethnicity/religion	x					
Maternal occupation/education	x					
Household income	х					
Environmental risk factors						
Sanitation and water supply	x			x	х	х
Roof/wall/floor type	х			х	х	x
Indoor smoking	х			х	x	х
Presence of animals	х			х	х	х
Insecticide use	x			х	х	х
Indoor/outdoor cooking	x			x	х	x
Family factors						
Family history of allergy				x	х	x
Household size				х	х	х
Child's place of sleep				х	x	х
Number of siblings				х	х	x
Birth order				х	х	x
Childhood characteristics						
Birth weight		x				
Breast feeding history		x	x	x	х	
Vaccination		x	x	x	х	
Use of paracetamol				x	х	x
Symptoms of respiratory tract			х	x	x	x
infections (cough, fast						
breathing and fever)						
Specific infections						
Geohelminths				х	х	х
Selected commensal bacteria					х	
Helicobacter pylori					х	x
Sensitization						
Skin prick test (D.					х	x
Pteronyssinus and cockroach						
allergen)						
Allergen						
Dust samples (Der p1 and Bla					х	
g1)						

2.3.4.2 Paracetamol exposures at age one

Questions related to paracetamol exposure were asked through mothers on behalf of the child. The questions on paracetamol exposure were adapted from the ISAAC Phase three environmental questionnaires,¹⁸⁹ and had been previously used in the same Butajira population.^{203, 213} The mothers were asked whether the child had taken or been given paracetamol in the past 12 months (*"Has your child taken any paracetamol in the last year (e.g. Panadol, or Pamol)?"*), and a positive response was recorded as use of paracetamol in the past year. To assess a dose-response relationship, those who reported use in the past year was further asked to quantify the dose of paracetamol consumed in the past month (*"How many tablets of paracetamol has the child taken in the last month?"*)

2.3.4.3 Geohelminth analysis at age one

Each child's faecal sample was analyzed for geohelminths at age one. Stool pots with scoops and 4ml diluted formaldehyde were used to collect stool samples for parasitological examination. Stool samples were transported to Aklilu Lemma Institute of Pathobiology at Addis Ababa University for geohelminth analysis. Samples were examined qualitatively using the modified formol-ether concentration method.²⁴⁵ Using an applicator stick, approximately 1g of faeces was placed in a clean 15ml conical centrifuge tube containing 7ml of diluted formalin (10%). The sample was mixed and suspended. The resulting suspension was filtered through a sieve into a beaker and the filtrate was poured back into the same tube. The debris trapped on the sieve was discarded. After adding 3ml of ether to the solution, the contents were shaken and centrifuged at

300rpm for one minute. The supernatant was poured off, and the sediment was then examined under a microscope using 10x and 40x objective lenses (Appendix VI). The prevalence of and risk factors for geohelminth infection at age one has been previously reported.²⁴⁶

2.3.4.4 Measurement of potential confounders at age one

Information was collected on a range of potential confounders (Appendix II to Appendix V), and these are summarized in Table 2.4. This information was collected for adjusted analysis to be explored, and includes:

- Familial factors: Maternal and paternal history of asthma and allergy: parental history of allergy was measured by using three questions on asthma ('In the last 12 months have you or your husband had asthma?'), rhinitis ('In the last 12 months have you or your husband had problems with sneezing or running nose when not have cold or flu, or problems with itchy watery eyes?') and eczema ('In the last 12 months have you or your husband had an itchy skin condition affecting the skin creases (front of the elbow, behind the knees, the front of the ankles, around the neck, or around the eyes?');
- Childhood risk factors: Immunization, and vaccination for age, breastfeeding status and duration, birth order, and number of siblings, child's use of antibiotic, presence or absence of symptoms of respiratory tract infections – cough, fast breathing and fever;
- Household characteristics: roof, wall and floor type, household size, and child's sleeping place;

 Environmental risk factors: waste disposal sites, soap use, and source of water supply, type of toilet, indoor pollution including indoor cooking, indoor kerosene use, presence of animals, and insecticide use.

2.3.4.5 Demographics of the children at age one

Of the 932 singleton babies at age one, 33 had missing data on main outcomes and exposures, leaving 899 (89%) children available for analyses. Just over half were male (50.5%) and the majority (83.1%) were from rural areas. The majority of the households had thatched roofs (76.6%) and mud walls (99.6%) (Table 2.5). Most households (63.3%) had animals inside overnight, and cooking took place inside the main house in 80.9%. Fifty percent of the children slept on locally made grass matting, 42.5% on the floor and only 7.6% on a bed or platform. Most of the children (54.7%) had 1 to 3 older siblings, and 56.3% lived together with 4 to 6 members of the household (Table 2.5).

Table 2.5 Distribution o	f demographics and	d potential risk	factors at age
--------------------------	--------------------	------------------	----------------

one

Risk factor	Overall N (%)		
Child's Gender			
Male	454 (50.5)		
Female	445 (49.5)		
Place of residence			
Urban	117 (13.0)		
Rural	782 (87.0)		
Insecticide use			
Yes	748 (83.2)		
Νο	151 (16.8)		
Number of people in house			
1-3	115 (12.8)		
4-6	506 (56.3)		
7+	278 (30.9)		
Older siblings			
0	138 (15.4)		
1-3	492 (54.7)		
4-10	269 (29.9)		
Child's sleeping place [*]			
Bed/Platform	68 (7.6)		
Floor	382 (42.5)		
Grass matting	448 (49.9)		
Cooking site			
Inside	727 (80.9)		
Outside	172 (19.1)		
Indoor kerosene use			
Yes	98 (10.9)		
No	801 (89.1)		
Animals living in the home*			
Yes	569 (63.4)		
No	329 (36.6)		

N=899 *One missing data (n=858)

2.3.5 Follow-up of cohort at age three

2.3.5.1 Field preparation

The field preparation for the three year follow-up, the time when I got fully involved, was started from late 2007. This involved designing a questionnaire; setting-up a laboratory for the analysis of geohelminths and bacteriological samples in Butajira; recruitment, training, and preparation of manuals for data collectors and laboratory personnel; import of skin test allergen solution and skin-prick-test lancets, vacuum and dust filters, bacteriological agar media, and *H. pylori* stool Ag kits from the UK; and designing a database for data entry. The actual data collection was started in July 2008 through to June 2009.

2.3.5.2 Data collection process, training and pre testing

Data collectors were recruited from the local area. They were all women, and had completed high school education (grade 10 or 12); three were clinical nurses. Women data collectors were purposefully chosen to create rapport with the mothers in the cohort. Alongside the data collectors, two data entry clerks, also women, and high school completed with computer-related training, were employed. Four laboratory technicians, with two years laboratory training, and at least five years of work experience, were recruited to work part time from the Butajira health centre for the three year follow-up. Two supervisors were recruited whose role was organizing the field work and checking the consistency of the questionnaire. Data collection, on average, was undertaken every morning between 0700 and 1400.

The data collectors were given three days of intensive training on the aim, consent process, contents of the questionnaire, conducting the skin prick test, and stool and dust sample collection. Pre-test of the instruments was done in a population other than those included in the study, and feedback was given accordingly. The laboratory personnel were trained at Aklilu Lemma Institute of Pathobiology at Addis Ababa University for two weeks on the stool concentration technique for geohelminths, culture microbiology, and analysis of rapid stool Ag test for *H. pylori*. The trainers were from the Institution who had training and experience on stool microscopy and culture microbiology. Data collection and bench laboratory manuals were provided for daily reference (Appendix VII).

Every questionnaire was checked, edited, marked and passed onto the data entry clerks who further inspect the variables on the hardcopy, and recorded into an Excel sheet using key identifier and the date of birth. Incomplete or missing data were returned to the field for re-collection and the database updated accordingly. Refresher training and feedback to the data collectors and data entry clerks were given every Friday by the PhD candidate to explain any confusion and queries arising from the field.

As for the questionnaire data, the stool and dust samples were checked for amount and consistency and the key identifiers recorded in an Excel sheet. The samples were then taken to the Butajira health centre laboratory for analysis. Reports were collected on a daily basis, checked against the original sample, and entered in the same database as the questionnaire data. About 10% of the positive and negative stool samples and microscopy slides were reserved and transported, when possible, to the Aklilu Lemma Institute of Pathobiology at Addis Ababa University for quality assurance, and feedback was given based on the results.

At three year follow up, 17 (1.8%) children had died since the one year follow up, 27 (2.9%) had out-migrated either temporarily or permanently, eight (0.9%) refused to participate in the study and two (0.2%) were missing for unknown reasons, leaving 878 children who provided outcome and exposure data (Figure 2.3).

2.3.5.3 Wheeze, allergic disease and skin test measurements at age three

The questionnaire included questions, similar as in the one year follow up in section 2.3.4.1, on wheeze, asthma and eczema, and additionally questions on rhinitis were included (see section 2.3.4.1, and Appendix II and Appendix V). Besides the outcomes asked in the past year as in section 2.3.4.1; outcomes referring since birth (i.e. ever wheeze, asthma, eczema, and rhinitis) were measured at age three, as follow:

Wheeze

'Has your child ever had wheezing or whistling in their chest?'

Asthma

'Has your child ever had asthma?'

Eczema

 'Has your child ever had an itchy skin rash which has affected the skin crease (e.g. front of the elbow, behind the knees, the front of the ankles, around the neck, or around the eyes?')

Rhinitis

- 'Has your child had problems with sneezing or running nose in the past 12 months (when not affected by cold or flu), or problems with itchy watery eyes?' and;
- 'Has your child ever had problems with sneezing or running nose (when not affected by cold or flu), or problems with itchy watery eyes?'

In addition to the reported outcome measures, allergen skin sensitization to *D. pteronyssinus* and cockroach allergen (*Blatella germenica*) (Biodiagnostics, Upton-upon-Severn, UK) was measured on each child using skin-prick lancets. These two allergens were previously found to be common in an Ethiopia population.¹⁰⁴ Glycerol saline and histamine dihydrochloride were used as negative and positive controls, respectively. Skin sensitization was conducted at ages three and five, but not at year one. The field work instructions for skin prick testing is available in the Appendix VIII. In brief, after the data collectors explained the aim of skin testing to the mother and requested consent, an 8cm line was drawn long ways down the middle of the palmar side of the forearm, and crossed three times to create four sections (one for each allergen solution). A drop of each solution was then applied, and using a lancet, the upper dermis was lifted and released. After 15 minute, the areas that were raised and red were measured (two diameters at right angles to one another) and recorded. A

positive test were defined as an average of two perpendicular wheal diameters, one of which was the maximum measurable diameter, of at least 3mm greater than the saline control response.

Reliability testing was done among the 11 data collectors who performed the test in 44 children aged three and five years who were not included in the main study. The results showed that there was reasonably good interrater agreement²⁴⁷ both for cockroach (Kappa=0.67, p<0.01) and *D. Pteronyssinus* (Kappa=0.63, p<0.01), and sensitization to any allergen (Kappa=0.75, p<0.01).

2.3.5.4 Paracetamol exposure at age three

The questions used for measuring paracetamol exposure at age three were identical to those used at age one (see section 2.3.4.2).

2.3.5.5 Geohelminth analysis at age three

The laboratory technique used for the analysis of geohelminth infections was also the same as year one (see section 2.3.4.3 and Appendix VI). However, at year three, in addition to qualitative identification, infection intensity was determined quantitatively using three slides per sample.

2.3.5.6 Analysis of Helicobacter pylori Ag in stool samples at age three

A rapid test (Medimar immunocard) was used to determine *Helicobacter pylori* antigen in the stool samples (Biohit, Unit 1 Barton Hill Way, UK) in a randomly chosen subsample at year three due to logistical reasons (N=616) (Table 2.4). The laboratory analysis was conducted in Butajira (Appendix VII). In brief, for a liquid stool, the extraction liquid bottle was opened and 6-7 drops of the stool sample were homogenized in the extraction liquid in the same bottle. For solid stool, a quantity of stool equivalent to 3 or 4 grains of rice was inserted into the extraction liquid and dissolved using a vortex mixer. After 5 minutes, 4 drops of the mixture were dropped on the sampling window and results were read within a maximum of 10 minutes. If only one transverse blue line (control) appeared in the test window, the test was regarded as *H. pylori* negative. While if a second, red transverse line appeared, the test was considered *H. pylori* positive. This method has been accepted for determining current infection status in young children.^{248, 249}

2.3.5.7 Analysis of selected intestinal microflora in stool samples at age three

Bacteriological analysis for the intestinal microflora enterococci, lactobacilli, and bifidiobacterium was undertaken in a random sample of 544 children at age three (Table 2.4). As for the *H. pylori* stool sample analysis, this analysis was undertaken on the day of sample collection. In brief, a weighed sample of 1gm of faeces brought in Amis transport medium, within 6 hours of collection, was mixed into 10ml sterile buffered peptone water and serially diluted from 10^{-2} -

 10^{-9} over Bunsen burner. 0.1ml (100μ) of the mixture from each of the last three dilutions (10^{-7} , 10^{-8} , 10^{-9}) was taken and spread onto freshly prepared media in duplicate on:

- i) Bile Esculine agar (Lab M Limited, Topley House, UK), incubated at 37°C for 24 hour. Colonies with dark brown surroundings were counted and reported. For presumptive identification of enterococci, 2-5 representative colonies from each plate were taken to separately sub-culture in Tryptone Soya Broth grown overnight at 37°C. It was then streaked separately to Tryptone Soya Agar for purification and incubated for 24 hour at 37°C to undergo the catalase test. Those with no reaction on the catalase test underwent gram staining, and any gram positive chained coccus under microscopy was reported as enterococci positive.
- ii) To identify lactobacillus a separate selective agar media was used. Those spread from each dilution above were inoculated into de Man-Rogosa-Sharpe agar (MRS) (Oxoid LTD, Basingstoke, Hampshire UK) in duplicate and grown anaerobically in an aerobic jar at 37°C for 72 hours. Colonies were counted for each Petri dish using a colony counter and recorded on a form prepared for this. Then up to 2-5 representative colonies were taken from the plate to separately sub-culture in MRS Broth or Brain Heart Infusion (BHI) incubated overnight at 37°C. This was streaked separately into MRS agar for purification and anaerobic incubation at 37°C for 24 hours to undergo catalase test. Those which showed no reaction to the catalase test were gram stained and examined microscopically. If gram positive rods with no spores were identified microscopically, they were presumptively reported as lactobacillus.

iii) Similarly, to identify bifidiobacterium, MRS agar was again used. Those spread from each dilution were inoculated into MRS agar in duplicate and grown anaerobically in an aerobic jar at 40°C for 72 hours. Colonies were counted in each Petri dish and recorded. Two to five representative colonies were taken from the plate to separately sub-culture in MRS Broth or Brain Heart Infusion incubated overnight at 40°C. This was streaked separately into MRS agar for purification and anaerobic incubation at 40°C for 24 hours to undergo the catalase test. Those which were catalase test negative were gram stained and examined microscopically. Gram positive, Y or V shaped bifurcating rods, and rods without spores were presumptively identified as bifidiobacterium. This culture-dependent method for measurement of intestinal microflora has been used in a range of epidemiological studies.^{143, 144, 150}

2.3.5.8 Measurement of potential confounders at age three

A range of potential confounders, similar with year one, including residential smoking and antibiotic use were collected at age three (see section 2.3.4.4), and questionnaires found in Appendix II and Appendix V (Table 2.4). In addition to confounders measured using risk factor questionnaire, a dust sample was collected at year three from each child's bedding by 2-3 minute suction through a portable Dyson vacuum cleaner (Dyson LTD, Malmesbury, UK), and DUSTREAM[™] collector and filter (Indoor Biotechnologies LTD, The Old Brewery, UK) (Table 2.4). The methods for analysis for dust samples were described below.

2.3.5.9 Dust sample analysis

Samples were brought to the UK and assayed for Der p1 and Bla g1 allergen. Dust was filtered, weighed and extracted following the Indoor Biotechnologies procedure.²⁵⁰ Dust was sieved through 100uM cell nylon filter to remove large debris and a sample between 95 to 105mg of fine dust was placed into a 2ml Eppendorf. 1ml per 50gm of phosphate buffered saline solution (PBS-T) was added, vortexed briefly and mixed end over end for 2 hours at room temperature (18°c), and centrifuged for 20 minutes and 1200g at 4°C. The supernatant was removed and stored at -20°C until analysed for allergen content. The Der p 1 and Bla g 1 dust assays were performed using a standardized monoclonal antibody-based Enzyme-Linked Immunosorbent Assay (ELISA) method, developed in the Division of Respiratory Medicine, University of Nottingham. The lowest dilution of the sample used was 1/10 (greater than 0.49ng/ml), and a sample found to have no allergen in the 1/10 sample was further analysed for a neat sample using the same ELISA technique.

2.3.6 Follow-up of cohort at age five

2.3.6.1 Field preparation

The five year follow-up was conducted from July 2010 to March 2011. As for the three year follow-up, it has involved field preparation including refresher training for data collectors and laboratory technicians; preparation of laboratory consumables; and import of vacuum and dust filters, *H. pylori* stool Ag kits, and skin test allergen solutions from the UK.

2.3.6.2 Data collection process, training and pre testing

The same data collectors who knew the cohort from pregnancy up until age three were also followed the cohort at age five. The data collection process, training, and pre testing were described in section 2.3.5.2.

At age five, 863 children (86% of the original cohort at birth, and 97% of those available at year three follow up) were followed-up (Figure 2.3). Two children died between ages three and five, 11 out migrated, one refused, and one left the cohort under unknown circumstances (Figure 2.3).

2.3.6.3 Wheeze, allergic disease and skin test measurements at age five

The same ISAAC questionnaire²⁵ used at age one and three were administered at age five (see sections 2.3.4.1 and 2.3.5.3, and Appendix II and Appendix V). The only exception was the time frame in which in addition to the outcomes measured in the past year (in the past 12 months at age five) and outcome ever (since birth), we have also measured wheeze, eczema, rhinitis, and asthma in the past two years (since three year follow-up) as presented below:

Wheeze

 'Has your child had wheezing or whistling in their chest in the past two years?'

Asthma

'Has your child had asthma in the past two years?'

Eczema

 'Has your child had an itchy skin rash which has affected the skin creases in the past two years (e.g. front of the elbow, behind the knees, the front of the ankles, around the neck, or around the eyes?')

Rhinitis

 'Has your child had problems with sneezing or running nose in the past two years (when not affected by cold or flu), or problems with itchy watery eyes?'

Data on allergen skin sensitization to *D. pteronyssinus* and cockroach allergen were measured on each child similar with year three follow-up (section 2.3.5.3).

2.3.6.4 Exposure measures

As in the three year follow up, the main exposures collected at age five were child's use of paracetamol, exposure to geohelminth and *H. pylori* infections. However, data on commensal bacteria were not measured at year five consistent with previous suggestion for the timing of measurement for microflora.¹⁴⁰

2.3.6.5 Paracetamol exposure at age five

Similar questions as ages one and three were used (see section 2.3.4.2). In addition, at year five, data on indications for use of paracetamol, availability (*Is paracetamol available close to where you live?*), affordability (*Is paracetamol affordable to you?*), and preference of use of analgesics including aspirin use (*Do you prefer to give aspirin or paracetamol for your child?*) were collected. The questions on indications for use included (*Can you name any symptoms for which you have given your child paracetamol*?), and the choices were: fever of any origin, malaria, common cold, wheezing illness, coughing, rhinitis, eczema, and any other indications. Identification of paracetamol from aspirin was also verified by showing strips of paracetamol and aspirin and asking the mother to differentiate.

2.3.6.6 Geohelminth analysis at age five

Geohelminth infections were analysed qualitatively as age one (section 2.3.4.3), and quantitatively as age three (see section 2.3.5.5 and Appendix VI) follow-up.

2.3.6.7 Analysis of Helicobacter pylori Ag in stool samples at age five

H. pylori infection was measured in all the children available at age five (N=863). The methods of analysis was by using the same rapid stool antigen test from a similar supplier as at age three, and identical procedure (see section 2.3.5.7 and Appendix VII).

2.3.6.8 Measurement of potential confounders at age five

Information on various potential confounders, similar to year one (see section 2.3.4.4) and year three follow up (see section 2.3.5.8 and Appendix II and Appendix V), was collected. However, data on dust allergen were not available at age five.

2.3.7 Data entry and management

Questionnaire, skin test and all laboratory data were double entered using EpiData version 3.1 (EpiData, Odense, Denmark) on a daily basis. On a weekly basis, the data were exported to Stata 11 (Statacorp, College Station, TX), and frequency tables generated to check data consistency. If data collection errors were found, they were corrected the same day. The datasets from the different time points (pregnancy, birth, two months, one, three and five years) were finally cleaned, coded, and merged ready for analysis using Stata 11. The final merged dataset comprised the 1006 live singleton children born into the cohort.

2.3.8 Statistical analyses

As the study utilized various statistical approaches, the specific statistical methods used are presented in the next sections. The first section describes the natural history of wheeze, eczema, rhinitis and sensitization between age one and five, followed by longitudinal analyses (chapter three, five and six), which includes computation of each incident outcome (incident wheeze, eczema, rhinitis and sensitization) and exposures in the first three years of life (paracetamol, geohelminth infection, *H. pylori* and commensal bacteria), and finally the crosssectional analyses (chapter four, five and six) including computation of the prevalent outcomes and these exposures. In both longitudinal and cross-sectional analyses, the modelling strategies for multivariate analysis and the statistical parameters utilized are described in detail for each.

2.3.8.1 Natural history of wheeze and allergic disease

The patterns of wheeze and eczema between age one, three and five, and rhinitis and sensitization between age three and five were explored by cross tabulation of the outcomes found at each follow up. The frequencies falling into each subgroup were then computed and presented graphically using a flow chart.

2.3.8.2 Longitudinal analyses

For analysis of new onset wheeze between age one and three (chapter three), those children without reported wheeze ever at age one (n=756) were selected for analysis and the outcome defined as reported wheeze ever at age three (Figure 3.1). Similarly, children without eczema ever at age one (n=780) were selected for analysis of incident eczema, defined as a positive response at age three (Figure 3.2). Asthma was very rarely reported in this birth cohort (1%), and therefore not pursued further. Data on rhinitis and sensitization were not available at age one but were included in the subsequent follow up as described below.

For longitudinal analysis between age three and five (chapter five and six), the primary outcome measures were incidence of new-onset wheeze, eczema, rhinitis and allergen sensitization between age three and five. To compute the incidence of wheeze, a wheeze-free cohort comprising all children with a negative response to the wheeze questions at ages one and three (wheeze in the past 12 months at years one and three, and wheeze ever at year three) was selected (n=698), and any children who reported wheeze at the five year follow-up were defined as having new onset wheeze (Figure 5.1). The incidence of eczema (computed from eczema free cohort at age one and three; n=723) and rhinitis (rhinitis free cohort at age three; n=798) were computed in a similar way, although the rhinitis-free cohort at age three was based on responses given at age three only (rhinitis ever and in the past 12 months) (Figure 5.2 and Figure 5.3). For sensitization, those children who were not sensitized at age three (n=789) (defined as an average of two perpendicular wheal diameters, one of which was the maximum measurable diameter, of at least 3mm greater than the saline control response, also described in the methods) were selected for analysis (skin tests not performed at age one), and new-onset sensitization defined as a positive result at age five (Figure 5.4). Since the prevalence of cockroach allergen at age five was low (only one), a separate analysis of each allergen was not possible; instead a combined variable 'any sensitization' was created to refer to sensitization to either D. pteronyssinus or cockroach allergen.

For analysis of child's use of paracetamol in the first year of life (chapter three), the two original variables (use in the past year and dose of exposure in the past month), were combined to create a new four level categorical variable: 'never', 'yes but not in the last month', '1-3 tablets in last month' and '≥4 tablets in last

month.' Due to small numbers, it was also necessary to merge the two highest paracetamol categories in the analysis of eczema as: 'never', 'yes but not in the last month', ' \geq 1 tablet in last month.' To explore evidence of a dose-response trend across paracetamol categories, a new baseline category of 0 tablets in the past month was created by merging the first two paracetamol groups ('never' and 'yes but not in the last month'), and p for trend computed across the categories (0, 1-3, 4+ tablets in past month). This dose-response relationship could only be assessed in relation to wheeze as numbers for the two highest paracetamol categories for eczema analysis were too small for trend analysis.

Two exposure variables were computed for paracetamol exposure in the first three years of life (chapter five). Firstly a variable called 'early life paracetamol use' representing paracetamol use prior to the disease outcomes (i.e. first three years of life) was computed from responses to the questions on use in the past year ('has your child taken any paracetamol in the last year') asked at ages one and three: 'never exposed' (negative responses to the question at both ages one and three), 'exposed at year one not at year three', 'exposed at year three not at year one', and 'persistently exposed' (positive responses to the question at both age one and three). A second exposure variable 'early life paracetamol dose' was computed as a marker of dose during this time period, based on the assumption that those who reported use in the past month were the more 'regular users'. The categories were computed as 'low exposure' (negative response to use in the past month at age one and three), 'medium exposure' (positive response to use in past month at ages one or three), and 'heavy exposure' (positive response to use in past month at both time points).

Data on geohelminth infection (hookworm, Ascaris lumbricoides and Trichuris trichiura) were available at ages one and three. As the prevalence and intensity of individual geohelminth infections in the first year of life were low in the cohort,²⁴² this limited any species level analysis at the age 3 follow-up (chapter three). It was therefore necessary to create a combined variable 'any geohelminth infection' defined as positive infection with any of hookworm, A. *lumbricoides* or *T. Trichiura* at age one. For longitudinal analysis between age three and five (chapter five), a variable called 'early life geohelminth exposure to any geohelminth' representing exposure to any of hookworm, A. lumbricoides or T. trichiura prior to the disease outcomes (first three years of life) was computed from exposure status at year one and three: 'never exposed' (no infection at ages one and three), or 'exposed at any age up to year three' (exposure at age one, or three or both). Similar variables were computed for the individual species hookworm and A. lumbricoides but not T. trichiura as the prevalence was very low. As there were few children with reported incident outcomes infected persistently with geohelminths at ages one and three, or infected at year one but not at year three, it was not possible to use a more detailed exposure variable representing the different timing of infections.

An exposure variable representing infection with *H. pylori* at age three was computed for longitudinal analysis between age three and five. *H. pylori* status in the cohort was only available on a random subsample of 616 children at year three (described in chapter 2, section 2.3.5.6), and therefore the longitudinal analysis included this group of children.

The last exposure variables considered in the longitudinal analysis (between age

3 and 5) were colonization with the selected commensal bacteria, enterococci, lactobacilli and bifidobacteria at age three (binary exposure variable). Data on these commensals were available from a subsample of 544 children in the cohort at age three. The effects of each of the commensal bacteria (enterococci, lactobacilli, and bifidobacteria) on incident outcomes were separately analysed.

In each disease-free cohort the relation between early sensitization (sensitization at age three) and incident outcomes between ages three and five was assessed using univariate analysis with crude odds ratios and 95% confidence interval, along with the p value. The association between demographic characteristics, potential confounders including symptoms of respiratory tract infections and incident outcomes were also computed, and crude odds ratios and 95% confidence interval reported, and the analyses tables included, accordingly, in the results chapter. Since risk factor analysis was not the aim of this thesis, these potential confounders were considered in the adjusted analysis of the main exposures. The relation between child's use of paracetamol at age one and various potential confounders were also assessed using univariate analysis with crude odds ratios and 95% confidence interval, along with the p value.

Univariate analyses with crude odds ratios (OR) and 95% confidence intervals (CI) for each outcome in relation to child's use of paracetamol, geohelminth infection, *H. pylori* and commensal bacteria variables were conducted. Multivariate logistic regression was then used to determine the independent effects of these exposures on each incident outcome, controlling for the *a priori* confounders and adjusted ORs, and 95% CIs obtained. These *a priori* confounders were place of residence (urban/rural), child's gender and maternal education (as a marker of socioeconomic

status) recoded as formal or non formal. The impact of further controlling for any other potential confounders collected in the first year of life including early life respiratory tract infections (cough, fever and fast breathing) was also explored. These covariates were retained in the model if they have altered the odds ratios for the main exposure of interest by more than 10%. The significance of the association between exposure and outcome in the model was assessed using a likelihood ratio test for the association (LRT).

2.3.8.3 Cross-sectional analyses

For cross-sectional analysis at age three (chapter 4), the prevalence of each outcome (wheeze, eczema, rhinitis, and sensitization to *D. Pteronyssinus* and cockroach allergen) at age three was computed. As the prevalence of asthma was small (only two children reporting asthma), this outcome was not analyzed further. A variable 'any sensitization' was created representing sensitization to either dust mite or cockroach allergen. Similarly, for analysis at age five (chapter five and six), the outcomes were wheeze, eczema and rhinitis in the past 12 months as reported at age five, and sensitization to either *D. pteronyssinus* or cockroach allergen. As the prevalence of sensitization at age five was low, allergen-specific analyses were not possible.

For cross-sectional analysis of outcomes at age three (chapter 3), exposure to any geohelminth infection was defined as infection with any of hookworm, *A. lumbricoides* or *T. trichiura* at age three. The prevalence of *T. trichiura* was very low (<1%), and a separate analysis was therefore impossible, so *T. trichiura* was analysed under 'any geohelminths' infection (a combined variable referring to infection with any of these parasites). Exposure to 'any microflora' was also computed as colonization with any of enterococci, lactobacilli, and bifidobacterium. Similarly, for analysis of outcomes at age five (chapter six), the prevalence of *T. trichiura* was low for species-specific analysis and merging was necessary with the other geohelminth infections. A variable called 'lifetime geohelminth exposure to hookworm, *A. lumbricoides* or any geohelminth' was created, reflecting infection status at ages one, three and five: 'never exposed' (no exposure at ages one, three and five), and 'exposed at any age up to year three' (representing exposure at age one, three or five or all). As in the longitudinal analysis above, the low prevalence of geohelminths meant a separate analysis by window of age was not possible.

The effects of *H. pylori* infection, for all available children at year five, were analysed by first creating a new exposure variable with categories representing different combinations of infection status at age three and five: 'never exposed' (never exposed at both time points), 'exposed at year three but not at year five', 'exposed at year five but not at year three', or 'persistently exposed' (exposed at both time points). For the sensitization outcome at year five, however, numbers of children in some exposure categories were low (for example n=0 for category 'exposed at year five'. Moreover, an additional separate analysis of the effects of *H. pylori* infection using only data collected at age five was conducted (infected vs not infected at age 5) to increase statistical power, since *H. pylori* data were available in all the children at year five.

Two markers of paracetamol exposure were computed (chapter five) for crosssectional analysis of outcomes at age 5. Firstly a marker of lifetime paracetamol exposure was computed called 'lifetime paracetamol use' which had the following categories to reflect different timings of exposure over the child's lifetime: 'never exposed' (negative response to use in past year reported at ages one, three and five), 'past exposure only' (positive response to use in past year reported at ages one or three but negative response at age five)', 'current exposure with or without past exposure' (positive response to use in past year reported at age five), and 'persistently exposed' (positive response to use in past year reported at ages one, three and five). A second exposure variable called 'lifetime paracetamol dose' was computed to reflect total lifetime dose and was created using a composite score by adding each exposure at year one, three and five, and computed as: 'never exposed', 'light exposure', 'medium exposure', and 'heavy exposure.'

Outcomes were summarised overall and within each exposure category using percentage frequencies. The relation between reported prevalent symptoms and sensitization was assessed using binary logistic regression analysis to compute crude ORs and associated 95% confidence intervals. Indications for use of paracetamol, availability and preference data collected at year five were summarized using percentages, and presented graphically. Der p 1 and Bla g 1 allergens in the dust sample were categorized into tertiles as '0', '0.02-1.96 U/g' and '2.17-13.95 U/g' for Bla g 1 allergen, and '0', '0.54-500 μ g/g' and ' \geq 501 μ g/g' for Der p 1 allergens. Median and interquartile range were used as a summary statistics as the data were not normally distributed. The associations between potential confounders (details of which were presented in sections

2.3.4.4 and 2.3.5.8 of chapter two), and the outcomes wheeze, eczema, rhinitis, and skin sensitization were determined and are presented in the results section as appropriate.

Univariate analysis using binary logistic regression was carried out to explore the association of each exposure variable on each outcome, and crude ORs presented. Multivariate analysis, yielding adjusted ORs and 95% CIs, was conducted to determine the independent effects of these exposures on each prevalent outcome adjusting for *a priori* confounders (area of residence, child's gender and maternal education) and symptoms of respiratory tract infections, and further adjusted for various potential confounders collected at year five. The modelling strategies were the same as in the longitudinal analysis described above.

2.3.9 The study power

The sample size of the birth cohort was originally determined to address objectives other than this thesis, ^{240, 241, 251, 252} however, retrospective power calculations show that for an outcome with 8% prevalence, our sample of children followed between one and five years provided approximately 80% power at the 5% significance level to detect an odds ratio of around 0.45 for gastro-intestinal exposure,²⁵³ and 2.00 for use of paracetamol.²⁴²

2.3.10 Ethics and consent

Ethical approval was granted by the Institutional Review Board (IRB) of Addis Ababa University, the National Ethical Review Committee of the Ethiopian Science and Technology Ministry, and the University of Nottingham UK. Written, informed consent was obtained from all participants at each study visit. Local authorities and village representatives were formally informed about the study. The principles of health research ethics (consent, autonomy, and confidentiality) were maintained throughout the study period. All mothers and children with geohelminth infections were treated with anti-helminthics based on the national protocol. In keeping with the requirements of the Ethiopian ethics committee, medical costs incurred by each mother or child were reimbursed throughout the study period. Dissemination of the findings was conducted in the presence of representatives from different sectors in Butajira, and the region, and selected women who participated in the study. The ethics approval forms including Material Transfer Agreement (MTA) and correspondence from Ethiopia and the UK are shown in Appendix IX.

3 LONGITUDINAL ANALYSIS OF EARLY LIFE RISK FACTORS FOR INCIDENT WHEEZE AND ECZEMA BETWEEN AGE ONE AND THREE

3.1 INTRODUCTION

In May 2009, follow-up of the cohort at children's third birthday was complete, and longitudinal analysis of the outcomes collected at ages one and three could therefore be conducted. The aim of this analysis was to investigate the effects of child's use of paracetamol and exposure to geohelminth infection (hookworm, *A. lumbricoides* and *T. trichiura*) in the first year of life on the incidence of wheeze and eczema between age one and three. Outcome data on rhinitis and skin sensitization, and exposure to bacterial commensals and *H. pylori* were not available at year one and hence were not included in this analysis. Information on other early life risk factors including socio-demographic, environmental and lifestyle factors, which are not focus of the analysis, are treated as potential confounders and univariate associations between these and the outcomes are presented in the results.

In this chapter, first the results will be described, followed by a short summary of the findings, with the main discussion presented in chapter seven.

3.2 RESULTS

The description of the birth cohort between birth and age one, along with the demographics, was presented in chapter two, sections 2.3.3 and 2.3.4. The findings reported here are based on 899 children with complete outcome data at age one followed up to age three (Figure 2.3).

3.2.1 Natural history of wheeze between age one and three

Figure 3.1 shows natural history of wheeze between age one and three. Of the 96 children with reported wheeze ever at age one and who were successfully followed-up, 26 (27.1%) still reported wheeze ever at age three, while 70 (72.9%) did not (Figure 3.1). Of the 756 non wheezers at age one, 58 (7.7%) reported wheeze ever at age three and were defined as incident wheezers (Figure 3.1).

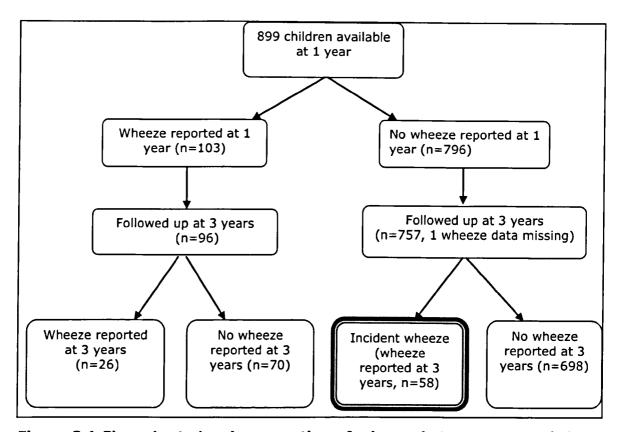


Figure 3.1 Flow chart showing reporting of wheeze between one and three years

3.2.2 Natural history of eczema between age one and three

As shown in Figure 3.2, of the 72 children with reported eczema ever at age one, 9 (12.5%) still reported eczema at age three, but not the other 63 (87.5%). Incident eczema was reported in 7.3% (57/780) of children without reported eczema at age one followed to age three (Figure 3.2).

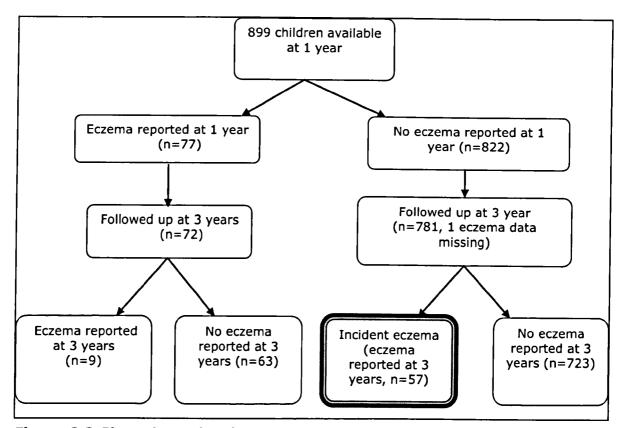


Figure 3.2 Flow chart showing reporting of eczema between one and three years

3.2.3 Distribution of potential confounders with incident wheeze and eczema

3.2.3.1 Demographic and life style risk factors

Table 3.1 and Table 3.2 show the distribution of demographic and potential confounding variables amongst the wheeze and eczema free children at age one on whom subsequent analyses were performed. The risk of incident wheeze was higher, although not significantly so, in urban children (crude OR, 95% CI, 1.50; 0.73, 3.08, p=0.27) and boys (crude OR, 95% CI, 1.35; 0.79, 2.32, p=0.28), and significantly greater in those of low birth weight (crude OR, 95% CI, 2.73; 1.06, 7.04, p=0.04) (Table 3.1). There was a borderline significant decreased

risk of new onset eczema in boys compared to girls (crude OR, 95% CI, 0.59; 0.34, 1.03, p=0.06). There was also a borderline significant increased risk of incident eczema with large households (crude OR, 95% CI, 1.93; 0.71, 5.20 for seven or more households compared with less than four household size, p for trend=0.06) and a significant increased risk with increasing number of older siblings (crude OR, 95% CI, 4.33; 1.28, 14.61 with four to ten number of older siblings versus zero, p trend=0.02) (Table 3.2). A number of other potential confounders collected during pregnancy, at birth and during infancy, including maternal age, maternal education, child's immunization and breastfeeding history, parental history of allergy, use of insecticide, child's sleeping place, indoor cooking, and roof types were not significantly associated with either incident wheeze or eczema (Table 3.1 and Table 3.2).

Table 3.1 Distribution of potential confounders in the first year of life in

e	Whee	eze never a	t age one (N=756	5)
Variables	Overall N (%)	n (%)new wheeze*	Crude OR (95% CI)	P- value
Residence				
Urban Rural	95 (12.6) 661 (87.4)	10 (10.5) 48 (7.3)	1.50(0.73,3.08) 1	0.27
Maternal age				0.92 ⁺
15-24 25-34 35-44	293 (38.8) 351 (46.4) 112 (14.8)	21 (7.2) 28 (8.0) 9 (8.0)	0.88 (0.39,1.99) 0.99 (0.45,2.17) 1	0.71*
Gender				
Male Female	378 (50) 378 (50)	33 (8.7) 25 (6.6)	1.35 (0.79,2.32) 1	0.28
Maternal education				
Formal No formal	148 (19.6) 608 (80.4)	16(10.8) 42 (6.9)	1.63 (0.89,2.99) 1	0.11
Exclusively breastfed [*]				
Yes No	633 (84.1) 120 (15.9)	51 (8.1) 7 (5.8)	1.41 (0.63,3.20) 1	0.40
Vaccination at 2 months ¹				
Yes No	443 (58.8) 310 (41.2)	35 (7.9) 23 (7.4)	1.07 (0.62,1.85) 1	0.81
Birth weight				
Low (< 2.5kg)	35 (7.0)	6 (17.1)	2.73 (1.06,7.04)	0.04
Normal	468 (93.0)	33 (7.1)	1	
Parental allergic history				
Yes No	39 (5.2) 714 (94.8)	4(10.3) 54 (7.6)	1.40 (0.48,4.08) 1	0.54
Insecticide use in home				
Yes No	623 (82.4) 133 (17.6)	46 (7.4) 12 (9.0)	0.81 (0.42,1.57) 1	0.53
Household size			_	0.58
1-3 4-6 7 ⁺	98 (13.0) 422 (55.8) 236 (31.2)	7 (7.1) 36 (8.5) 15 (6.4)	1 1.21 (0.52,2.81) 0.88 (0.35,2.24)	0.58 [*]

relation to incident wheeze between ages 1 and 3

Table 3.1 (continued)

Contrasti Carran	Whee	ze never a	t age one (N=756)
Variables	Overall	n	Crude OR	P-
	N (%)	(%)new	(95% CI)	value
		wheeze*		
No. of older siblings				0.52
0	111 (14.7)	7 (6.3)	1	0.81^{*}
1-3	415 (54.9)	36 (8.7)	1.41 (0.61,3.26)	
4-10	230 (30.4)	15 (6.5)	1.04 (0.41,2.62)	
Child's sleeping place				0.87
Bed/platform	59 (7.8)	5 (8.5)	1	
Floor	324 (42.9)	23 (7.1)	0.83 (0.30,2.26)	
Grass matting	372 (49.3)	30 (8.1)	0.95 (0.35,2.55)	
Indoor cooking				
Yes	609 (80.9)	46 (7.6)	0.90 (0.46,1.74)	0.75
No	144 (19.1)	12 (8.3)	1	
Indoor kerosene use				
Yes	88 (11.7)	6 (6.8)	0.86 (0.36,2.07)	0.74
No	665 (88.3)	52 (7.8)	1	
Type of roof				
Thatched	578 (76.8)	41 (7.1)	0.71 (0.39,1.28)	0.26
Corrugated iron	175 (23.2)	17 (9.7)	1	

[†]Likelihood ratio test

* p for trend

¥ Exclusive breast feeding status at two months

¶ Any vaccination history at two months

*Reported wheeze and eczema ever at year three follow-up.

Table 3.2 Distribution of potential confounders in the first year of life in

<u> </u>	Eczema never at age one (N=780)				
Variables	Overall	n	Crude OR	P-	
	N (%)	(%)new	(95% CI)	value	
		eczema*			
Residence					
Urban	98 (12.6)		1.15 (0.53,2.50)	0.73	
Rural	682 (87.4)	49 (7.2)	1		
Maternal age				0.32^{+}	
15-24	297 (38.1)	19 (6.4)	1.25 (0.49,3.22)	0.96 [‡]	
25-34	367 (47.1)	32 (8.7)	1.75 (0.71,4.30)		
35-44	116 (14.9)	6 (5.2)			
Gender					
Male	394 (50.5)	22 (5.6)	0.59 (0.34,1.03)	0.06	
Female	386 (49.5)	35 (9.1)	1		
Maternal education					
Formal	155 (19.9)	12 (7.7)	1.08 (0.56,2.10)	0.82	
Non formal	625 (80.1)	45 (7.2)	1		
Exclusively breastfed [*]					
Yes	659 (84.7)	49 (7.4)	1.11 (0.51,2.42)	0.78	
Νο	119 (15.3)	8 (6.7)	1		
Vaccination at 2					
months					
Yes	463 (59.5)	• •		0.98	
No	315 (40.5)	23 (7.3)	1		
Birth weight					
Low (< 2.5kg)	39 (7.4)	1 (2.6)	0.32 (0.04,2.40)	0.27	
Normal	487 (92.6)	37 (7.6)	1		
Parental allergic history					
Yes	• • •	3(7.1)	0.97 (0.29,3.25)	0.96	
No	736 (94.6)	54 (7.3)	1		
Insecticide use in home	>	()			
Yes	648 (83.3)	50 (7.7)	1.47 (0.65,3.32)	0.36	
No	130 (16.7)	7 (5.4)	1	0.44	
Household size	00 (11 4)			0.11^{+}	
1-3	89 (11.4)	5 (5.6)		0.06 [‡]	
4-6 7 ⁺	446 (57.3)		1.08 (0.41,2.89)		
•	243 (31.2)	25(10.3)	1.93 (0.71,5.20)	0.01^{\dagger}	
No. of older siblings	104 (13.4)	3 (2.9)	1	< 0.01 [*]	
0 1-3		27 (6.2)	2.22 (0.66,7.45)	20.01	
4-10	237 (30.5)	27 (0.2) 27(11.4)	4.33(1.28,14.61)		

relation to	incident	eczema	between	ages 1	L and 3
-------------	----------	--------	---------	--------	---------

Eczema never at age 1(N=780)			
Overall	n (%)new	Crude OR	P-
<u>N (%)</u>	eczema*	(95% CI)	value
			0.89 [†]
59 (7.6)	5 (8.5)	1	
344 (44.3)	26 (7.6)	0.88 (0.32,2.40)	
374 (48.1)	26 (7.0)	0.81 (0.30,2.19)	
628 (80.7)	46 (7.3)	1.00 (0.50,1.98)	0.99
150 (19.3)	11 (7.30	1	
87 (11.2)	6 (6.9)	0.93 (0.39,2.23)	0.87
691 (88.8)	51 (7.4)	1	
595 (76.5)	42 (7.1)	0.85 (0.46,1.57)	0.61
183 (23.5)	15 (8.2)	1	
	Overall N (%) 59 (7.6) 344 (44.3) 374 (48.1) 628 (80.7) 150 (19.3) 87 (11.2) 691 (88.8) 595 (76.5)	Overall N (%) n (%)new eczema* 59 (7.6) 5 (8.5) 344 (44.3) 26 (7.6) 374 (48.1) 26 (7.0) 628 (80.7) 46 (7.3) 150 (19.3) 11 (7.30) 87 (11.2) 6 (6.9) 691 (88.8) 51 (7.4) 595 (76.5) 42 (7.1)	Overall N (%)n (%)new eczema*Crude OR (95% CI)59 (7.6)5 (8.5)1344 (44.3)26 (7.6)0.88 (0.32,2.40)374 (48.1)26 (7.0)0.81 (0.30,2.19)628 (80.7)46 (7.3)1.00 (0.50,1.98)150 (19.3)11 (7.30187 (11.2)6 (6.9)0.93 (0.39,2.23)691 (88.8)51 (7.4)1595 (76.5)42 (7.1)0.85 (0.46,1.57)

Table 3.2 (continued)

[†]Likelihood ratio test

* p for trend

¥ Exclusive breast feeding status at two months

¶ Any vaccination history at two months

*Reported wheeze and eczema ever at year three follow-up.

3.2.3.2 Symptoms of respiratory tract infections and the risk of incident wheeze and eczema

Information on symptoms of respiratory tract infections during infancy was available from the cohort. This information was collected to account for confounding by indication for the main exposure variable, paracetamol. Tables 3.3 and 3.4 below show infant symptoms of respiratory infections (cough, fast breathing and fever) by new-onset wheeze and eczema between age one and three. At two months, coughing symptoms were reported by 298 (39.6%), fast breathing by 180 (23.9%), and fever by 248 (32.9%) of the cohort babies. Similarly, cough was reported by 443 (58.6%), fast breathing by 251 (33.2%), and fever by 581 (76.9%) of the children at one year. Reported symptoms at age two months were not related to incident wheeze (Table 3.3) or incident

eczema (Table 3.4). All three symptoms in the first year of life were significantly positively associated with the incidence of wheeze between age one and three i.e. children with symptoms of respiratory tract infections were more likely to report new-onset wheezing than children without these symptoms (Table 3.3). However, all the three symptoms at year one were unrelated to incident eczema (Table 3.4).

Table 3.3 Prevalence of symptoms of respiratory infections in early lifein those with and without incident wheeze between age one and three

Symptoms of respiratory	Whee	ze never at	age one (N=7	'56)
infections n (%)	All children	With incident wheeze	Without incident wheeze	p- value
Respiratory infection				
symptoms at two months				
Cough	298 (39.6)	22 (37.9)	276 (39.7)	0.79
Fast breathing	180 (23.9)	15 (25.9)	165 (23.7)	0.72
Fever	248 (32.9)	21 (36.2)	227 (32.7)	0.58
Respiratory infection				
symptoms at one year				
Cough	443 (58.6)	41 (70.7)	402 (57.6)	0.05
Fast breathing	251 (33.2)	27 (46.6)	224 (32.1)	0.03
Fever	581 (76.9)	51 (87.9)	530 (75.9)	0.04

Three missing data on symptoms of respiratory infection at age two months

Table 3.4 Prevalence of symptoms of respiratory infections in early life

Symptoms of respiratory	Eczema never at age one (N=780)			
infections n (%)	All children	With incident eczema	Without incident eczema	p- value
Respiratory infection	-			
symptoms at two months				
Cough	318 (40.9)	23 (40.4)	295 (40.9)	0.93
Fast breathing	192 (24.7)	13 (22.8)	197 (24.8)	0.73
Fever	275 (35.4)	17 (29.8)	258 (35.8)	0.37
Respiratory infection				
symptoms at one year				
Cough	487 (62.4)	37 (64.9)	450 (62.2)	0.67
Fast breathing	297 (38.1)	24 (42.1)	273 (37.8)	0.52
Fever	_618 (79.2)	48 (84.2)	570 (78.8)	0.34

in those with and without incident eczema between age one and three

Two missing data on symptoms of respiratory infection at age two months

3.2.4 Associations between paracetamol use and early life risk factors

The use of paracetamol, as an over-the-counter drug, may be confounded by demographic and lifestyle risk factors. Paracetamol use in the first year of life was commonly reported, with around a quarter reporting use in the past month. As shown in Table 3.5, paracetamol use was associated with symptoms of respiratory infections in the first year of life (p<0.01 for cough, fast breathing and fever), with rural residence (crude OR, 95% CI, 1.59; 0.99, 2.56, p=0.06), and with living in a thatched house (crude OR, 95% CI, 1.41; 0.98, 2.02, p=0.06). Indoor cooking was associated with increased exposure to paracetamol (crude OR, 95% CI, 1.52; 1.02, 2.26, p=0.04). Maternal use of paracetamol was associated with child's use (36.7% use amongst children of mothers who also used, compared to 18.3% in children of mothers who did not, p<0.01). Low birth weight children were more likely to have been exposed to paracetamol

than normal birth weight babies (p=0.09). Other factors explored were not seen to be associated with child's use of paracetamol (Table 3.5).

	Use of	Use of paracetamol in the past month*			
Variables	Overall	Yes	Crude OR	P-value	
	N (%)	n(%)	(95% CI)		
Residence					
Urban	117 (13.0)	24 (20.5)	0.63(0.39,1.01)	0.06	
Rural	782 (87.0)	227 (29.0)	1		
Gender					
Male	454 (50.5)	128 (28.2)	1.03 (0.77,1.38)	0.85	
Female	445 (49.5)	123 (27.6)	1		
Maternal education					
Formal	181(20.1)	43 (23.8)	0.76 (0.52,1.12)	0.16	
No formal	718 (79.9)	208 (29.0)	1		
Birth weight					
Low (<2.5kg)	42 (7.0)	17 (40.5)	1.73 (0.91,3.29)	0.09	
Normal	556 (93.0)	157 (28.2)	1		
Cough at 1 year					
Yes	344 (38.3)	183 (33.0)	2.00 (1.45,2.75)	<0.01	
Νο	555 (61.7)	68 (19.8)	1		
Fast breathing at 1					
year					
Yes	337 (37.5)	126 (37.4)	2.09 (1.55,2.81)	<0.01	
No	562 (62.5)	125 (22.2)	1		
Fever at 1 year					
Yes	704 (78.3)	234 (33.2)	5.21 (3.09,8.78)	<0.01	
Νο	195 (21.7)	17 (8.7)	1		
Parental allergic					
history					
Yes	57 (6.3)	18 (31.6)	1.21 (0.68,2.15)	0.53	
Νο	842 (93.7)	233 (27.7)	1		
Maternal					
paracetamol at one					
year			,		
Yes	472 (52.5)	173 (36.7)	2.59 (1.90,3.53)	P<0.01	
No	427 (47.5)	78 (18.3)	1		
Insecticide use in					
home					
Yes	748 (83.2)	216 (28.9)	1.35 (0.89,2.03)	0.16	
No	151 (16.8)	35 (23.2)	1		
Household size				0.34	
1-3	115 (12.8)	27 (23.5)	1	0.86^{*}	
4-6	506 (56.3)	150 (29.6)	1.37 (0.86,2.20)		
7*	278 (30.9)	74 (26.6)	1.18 (0.71,1.96)		

style and early childhood factors

	Use of paracetamol in the past month*				
Variables	Overall N (%)	Yes n(%)	Crude OR (95% CI)	P-value	
No. of older siblings				0.64	
0	138 (15.4)	34 (24.6)	1	0.47 [‡]	
1-3	492 (54.7)	140 (28.5)	1.22 (0.79,1.88)		
4-10	269 (29.9)	77 (28.6)	1.23 (0.77,1.96)		
Child's sleeping place			- · · ·		
Bed/platform	68 (7.6)	20 (29.4)	1	0.19	
Floor	382 (42.5)	118 (30.9)	1.07 (0.61,1.89)		
Grass matting	448 (49.9)	113 (25.2)	0.81 (0.46,1.42)		
Site of cooking					
Inside	727 (80.9)	214 (29.4)	1.52 (1.02,2.26)	0.04	
Outside	172 (19.1)	37 (21.5)	1		
Types of roof					
Thatched	689 (76.6)	203 (29.5)	1.41 (0.98,2.02)	0.06	
Corrugated iron	210 (23.4)	48 (22.9)	1		

Table 3.5 (continued)

N=899

*Likelihood ratio test

[†] p for trend

*Use of paracetamol in the past month created from never use, use but not in the past month, 1-3 tablets in the past month and \geq 4 tablets in the past month

3.2.5 Determinants of incident wheeze and eczema

3.2.5.1 Exposure to geohelminth infections and risk of incident wheeze and eczema

As part of the primary hypothesis, the effects of geohelminths (hookworm, *A. lumbricoides,* and *T. trichiura*) in the first year of life were investigated. Any geohelminth infection (infection with either hookworm, *A. lumbricoides,* or *T. trichiura*) at age one was found in only 4% of children, with hookworm being the most common infection (2.3%), followed by *A. lumbricoides* (1.4%) and *T. trichiura* (0.4%). Single infection was found in 40 children (4.4%), and the rest 4 (0.4%) with double infection.

In univariate analysis, the risk of new onset wheeze was lower in those infected (3.6%) than uninfected (7.8%), but the 95% CI was wide and significance not reached (crude OR, 95% CI, 0.44; 0.06, 3.27) for any infection, including hookworm infection (crude OR, 95% CI, 0.80; 0.10, 6.16) (Table 3.6). As only one infected child had incident wheeze, no further adjusted analysis could be carried out. No children with geohelminth infection reported incident eczema, and therefore ORs could not be computed or further analysis performed (Table 3.6).

Table 3.6 OR for incident wheeze and eczema in relation to geohelminthexposures in the first years of life

		Incident	wheeze (N=756)	
Geohelminths	Overall	Yes	Crude	P-value
	N (%)	n (%)	OR (95%CI)	<u></u>
Any†	28 (3.7)	1 (3.6)	0.44 (0.06,3.27)	0.39
Hookworm	16 (2.1)	1 (6.3)	0.80 (0.10,6.16)	0.91
Ascaris	11 (1.5)	0(0)	-	-
		Incident	eczema (N=780)	
Geohelminths	Overall	Yes	Crude	P-value
	N (%)	_n (%)	OR (95%CI)	
Any†	26 (3.3)	0 (0)		-
Hookworm	16 (2.1)	0(0)	-	-
Ascaris	10 (1.3)	0 (0)	-	-

†Hookworm, Ascaris lubmricoids or Tricuris Tricuria

3.2.5.2 Exposure to paracetamol and risk of incident wheeze

Paracetamol use in the first year of life was commonly reported in 36% of the wheeze cohort, with around a quarter (24.8%) reporting use in the past month (Table 3.7). In the univariate analyses, use was significantly associated with an increased risk of incident wheeze (p=0.01), with increased risks seen amongst those taking >=4 tablets per month (crude OR, 95% CI, 7.34; 2.09, 25.72) and

those taking 1-3 tablets per month (crude OR 1.79; 95% CI 0.98, 3.26), compared with never users (Table 3.7). The association was found to be dose-dependent with a highly significant trend seen across the 'use in the past month' categories (0, 1-3 and 4+ tablets) (p trend <0.01; Table 3.7).

•

Table 3.7 Univariate associations between child's use of paracetamol in

<u></u>	Incident wheeze (N=756)				
Paracetamol use in the first year of life	Overall N (%)	N (%) new disease	Crude OR (95%CI)	P- value	
Never	486 (64.3)	31 (6.4)	1	0.01*	
Yes but not in the past				<0.01 [¶]	
month	83 (11.0)	4 (4.8)	0.74 (0.26,2.16)		
1-3 tablets per month	175 (23.2)	19 (10.7)	1.79 (0.98,3.26)		
\geq 4 tablets per month	12 (1.6)	4 (33.3)	7.34 (2.09,25.72)		

the first year of life and incident wheeze between age one and three

^{*}Overall p-value (likelihood ratio test); ¹ P value for trend (computed for dose of paracetamol intake in the past month: 0, 1-3, and \geq 4 tablets)

In multivariate analyses, exposure to paracetamol was still significantly associated with the incidence of wheeze (p<0.01) and the odds ratios were little changed with risks still increased in the 1-3 tablets/month group (adjusted OR, 95% CI, 1.88; 1.03, 3.44) and the \geq 4 tablets/month group (adjusted OR 7.25; 2.02, 25.95) compared with the never users. A significant trend across the categories of dose in the past month (0, 1-3, >4 tablets) was also seen (p trend <0.01) (Table 3.8). Further control for other potential confounders collected in Table 3.1, including postnatal maternal paracetamol use (which was strongly related to child's use), did not materially alter the associations (Table 3.8). To explore the effects of confounding by indication, the model was further adjusted for symptoms of respiratory tract infections. Exposure to paracetamol was associated with symptoms of respiratory infections in the first year of life, and adjustment for these slightly reduced the strength of the wheeze association but overall significance remained (further adjusted OR, 95% CI, 6.78; 1.89, 24.39, for \geq 4 tablets/month group versus never users; overall p=0.01; p trend <0.01) (Table 3.8).

Table 3.8 Multivariate analysis: child's use of paracetamol in the first

Paracetamol use in	Incident wheeze (N=756)				
the first year of life	Adjusted OR [*] (95% CI)	P- value	Further adjusted OR [†] (95% CI)	P- value	
Never	1	<0.01*	1	0.01 [‡]	
Yes but not in the past month 1-3 tablets per	0.73 (0.25,2.14) 1.88 (1.03,3.44)	<0.01 [¶]	0.70 (0.24,2.04) 1.77 (0.96,3.26)	<0.01 [¶]	
month ≥ 4 tablets per month	7.25 (2.02,25.95)		6.78 (1.89,24.39)		

year of life and incident wheeze between age one and three

*ORs adjusted for gender, urban/rural residence and maternal education

[†]ORs adjusted for child's gender, place of living and maternal education and additionally adjusted for symptoms of respiratory infections in the first year of life.

^{*}Overall p-value (likelihood ratio test)

¹ P value for trend (computed for dose of paracetamol intake in the past month: 0, 1-3, and \geq 4 tablets)

3.2.5.3 Exposure to paracetamol and risk of incident eczema

Use of paracetamol in the first year of life was reported by 39% of children in the eczema cohort. The numbers of children in the eczema cohort who had taken \geq 4 tablets/month were very small; this category was therefore merged with the 1-3 tablets/month, becoming \geq 1 tablet/month, making dose-response analysis impossible (Table 3.9 and Table 3.10).

In univariate analysis, the odds ratios were increased but not to the level of significance (crude OR, 95% CI, 1.61; 0.90, 2.89, p=0.18 for those taking ≥ 1 tablet/month versus never users) (Table 3.9).

Table 3.9 Univariate analysis: child's use of paracetamol in the first year

Paracetamol use in the	Incident eczema (N=780)					
first year of life	Overall N (%)	n(%) new disease	Crude OR (95%CI)	P- value		
Never	477 (61.3)	30 (6.3)	1	0.18 [‡]		
Yes but not in the past month ≥ 1 tablet per month	86 (11.1) 215 (27.6)	6 (7.0) 21 (9.8)	1.12 (0.45,2.77) 1.61 (0.90,2.89)			

of life and incident eczema

*Overall p-value (likelihood ratio test)

Results of analyses adjusted for a *priori* confounders and additionally for respiratory infections are shown in Table 3.10, and are similar to the univariate results. The odds ratio for use of paracetamol in the past month was still increased (fully adjusted OR, 95% CI, 1.62; 0.89, 2.96) compared to never use, but no overall significant association was seen (p=0.30) (Table 3.10). Further control for potential confounders collected in Table 3.2 had little effect on the odds ratio.

Table 3.10 Multivariate analysis: child's use of paracetamol in the first year of life and incident eczema

Paracetamol use in	Incident eczema (N=780)					
the first year of life	Adjusted OR [*] (95% CI)	P-value	Further adjusted OR ⁺ (95% CI)	P- value		
Never	1	0.25*	1	0.30 [‡]		
Yes but not in the past month ≥ 1 tablet per month	1.17 (0.47,2.91) 1.66 (0.92,2.98)		1.14 (0.45,2.87) 1.62 (0.89,2.96)			

^{*}ORs adjusted for gender, urban/rural residence and maternal education

[†]ORs adjusted for child's gender, place of living and maternal education and additionally adjusted for symptoms of respiratory infections in the first year of life.

*Overall p-value (likelihood ratio test)

3.3 SUMMARY

In summary, exposure to paracetamol in the first year of life, which was reported in over one third of infants, was significantly associated with an increased risk of incident wheeze between age one and three, in a doseresponse manner. However, this positive dose-response association was not seen for incident eczema.

These effects were independent of various early life potential confounders including confounding by indication (paracetamol being taken for respiratory tract infections in early life by children who are also more susceptible to the subsequent development of allergic diseases).²⁵⁴ After adjusting for the main symptoms of respiratory infections early in life, the wheeze association did reduce in magnitude slightly, but remained highly statistically significant.

The effects of geohelminth infection in the first year of life were explored to determine independent effects on incident wheeze and eczema. Whilst the study found no significant associations, the observed effects were in the expected direction. However, the analyses were limited by insufficient statistical power as a result of the low prevalence of geohelminth infection and small numbers with the outcomes amongst the infected children. The low prevalence of geohelminths in children in this population is probably linked to a mass deworming strategy in under-five year olds in study area.²⁵⁵ We anticipate that as the cohort ages, more children will become infected and we will be better able to assess these associations.

Clearly from these findings further follow-up of the birth cohort beyond the first year of life is important. The birth cohort will continued to be followed, and the next chapters explore cross-sectional and further longitudinal associations of geohelminth infections, other gastro-intestinal infections including *H. pylori*, commensal bacteria, and exposure to paracetamol on the development of allergic diseases and sensitization at ages three and five. The discussion of the findings including strengths and weaknesses and comparison with previous studies will be made in chapter seven.

4 CROSS-SECTIONAL ANALAYSIS OF GEOHELMINTHS INFECTION, HELICOBACTER PYLORI, COMMENSAL BACTERIA AND ALLERGIC DISEASES AT THE AGE OF THREE

4.1 INTRODUCTION

This chapter presents cross-sectional findings from the three year follow up of the Butajira birth cohort. During this follow-up period, the study investigated the hypothesis that gastro-intestinal infections (geohelminths, *H. pylori*, and commensal bacteria), which become less prevalent with increased urbanization and better hygiene, may play a protective role in the aetiology of asthma and allergy.²⁵⁶ Data on *H. pylori* and commensal bacteria were not available at age one, however this further follow up allowed for this analysis to be explored. In addition to wheeze and eczema, rhinitis and sensitization outcomes were able to be investigated.

The relationship between each of these gastro-intestinal infections and allergy remains uncertain. This analysis therefore aimed to determine the independent effects of *H. pylori*, geohelminth infections and selected commensal bacteria on allergic diseases and sensitization in a birth cohort of three-year-old children. The next sections describe the results, followed by a brief discussion of the main findings.

4.2 **RESULTS**

The analyses reported here are based on cross sectional data from the 878 singleton children available at the three year follow up (Figure 2.3), and details of the statistical analyses were described in chapter two.

4.2.1 The birth cohort at age three

At year three, 876 (94.2%) mother-child pairs provided questionnaire information, and 866 (93%) successfully provided an adequate stool sample. Dust samples were collected from 871 (93.5%) child sleeping areas, and 783 of these were analysed for Der p 1 and Bla g 1 dust assays, the rest being inadequate for dust sample analysis. Information on skin sensitization was available on 864 (92.7%) children and bacteriological data on intestinal microflora, and *H. pylori* from a sub sample of 544 and 616 respectively. In fewer than 2% of the children the stool sample was not adequate for laboratory analysis. The demographic characteristics of the children were described previously in chapter two under section 2.3.3.

4.2.2 Prevalence of wheeze, eczema and rhinitis

Self-reported asthma was present in 0.2% (2/876) of children with diagnosis confirmed by a doctor. Wheeze was reported in 9.1% (80/876) of children, half of these reporting 1-3 episodes in the last 12 months. Eczema was reported in 6.3% (55/876) of children and rhinitis reported in 5% (44/876) (Table 4.1). Wheeze and eczema were reported slightly more frequently, and rhinitis slightly

less frequently in urban than rural children, but these differences were not statistically significant (Table 4.1).

Variables	Overall n (%)	Urban† Yes n(%)	Rural [‡] Yes n (%)	Crude OR (95% CI)	p- value
Wheeze (N=876)	80 (9.1)	14 (12.6)	66 (8.6)	1.53 (0.83,2.83)	0.17
Eczema (N=876)	55 (6.3)	8 (7.2)	47 (6.1)	1.17 (0.54,2.58)	0.67
Rhinitis (N=876)	44 (5.0)	4 (3.6)	40 (5.2)	0.68 (0.24,1.93)	0.46

 Table 4.1 Prevalence of self reported wheeze and allergic symptoms by

 area of residence

* n=111 and * n=765

4.2.3 Prevalence of skin sensitization

Sensitization to dust mite and cockroach allergen was found in 5.6% (48/864) and 4.2% (36/864) of the children respectively, and sensitization to any allergen was found in 8.7% (75/864) of the children (Table 4.2). Almost identical proportions of urban and rural children were sensitized to cockroach and dust mite allergen, 5.6% versus 6.5% respectively (Table 4.2).

Table 4.2 Prevalence of skin sensitization by area of residence

Variables	Overall n (%)	Urban Yes n(%)	Rural Yes n (%)	Crude OR (95% CI)	p- value
Dust mite (N=864)	48(5.6)	7 (6.5)	41 (5.4)	1.22(0.53,2.80)	0.64
Cockroach (N=864)	36 (4.2)	6(5.6)	30 (4.0)	1.44 (0.58,3.55)	0.43
Any sensitization [†] (N=864)	75 (8.7)	12 (11.2)	63 (8.3)	1.39 (0.72,2.67)	0.32

* Sensitization to either dust mite or cockroach allergen

Number of urban = 107 and rural = 757

4.2.4 Associations between allergic symptoms and sensitization

Wheeze, eczema and rhinitis were not significantly associated with sensitization to dust mite, cockroach or any sensitization. As only few children who were sensitized to these allergens reported allergic symptoms, no further adjusted analysis could be carried out (Table 4.3).

Table 4.3 OR for wheeze, eczema and rhinitis in relation to skin sensitization

		· • • • •			
Allergic		Overall	Yes	Crude	P-
symptoms	Skin sensitization	N (%)	n (%)	OR (95%CI)	value
Wheeze	Dust mite	48(5.6)	2 (4.2)	0.41 (0.10,1.72)	0.45
(N=876)	Cockroach	36 (4.2)	0 (0.0)	-	-
	Any sensitization [¥]	75 (8.7)	2 (2.7)	0.25 (0.06,1.03)	0.12
Eczema	Dust mite	48(5.6)	1 (2.1)	0.30 (0.04,2.21)	0.23
(N=876)	Cockroach	36 (4.2)	0 (0.0)	-	-
	Any sensitization	75 (8.7)	1 (1.3)	0.18 (0.03,1.35)	0.09
Rhinitis	Dust mite	48(5.6)	0 (0.0)	-	-
(N=876)	Cockroach	36 (4.2)	1 (2.8)	0.52 (0.07,3.89)	0.54
	Any sensitization	75 (8.7)	1 (1.3)	0.23 (0.03,1.72)	0.16

* Sensitization to either dust mite or cockroach allergen

4.2.5 Distribution of potential confounders

4.2.5.1 Relation between potential confounders and wheeze, eczema and rhinitis

Allergic disease symptoms were not significantly related to gender or other socio-demographic characteristics (Table 4.4 to Table 4.6). Maternal allergic history was associated with an increased risk of wheeze (crude OR 2.16, 95% CI 0.97, 4.79, p=0.05), eczema (crude OR 2.33, 95% CI 0.94, 5.75, p=0.06) and rhinitis (crude OR 3.75, 95% CI 1.57, 8.92, p<0.01) although only reaching borderline significance for wheeze and eczema. Paternal allergic history was also significantly associated with an increased risk of wheeze (crude OR 2.09, 95% CI 1.01, 4.29, p=0.04) and eczema (crude OR 2.47, 95% CI 1.11, 5.49,

p=0.02), but no effect was seen for rhinitis. Use of paracetamol (crude OR 3.72, 95% CI 2.11, 6.55, use in past month vs. never, p<0.01) and antibiotics in the child (crude OR 2.23, 95% CI 1.39, 3.55, p<0.01) were both significantly associated with an increased risk of wheeze, but not eczema and rhinitis. There was a positive significant trend between siblingship and rhinitis (p trend=0.05), but not with wheeze and eczema.

The number of dust samples from children's bedding positive for Der p 1 allergens^c was 128 (16.4%) and for Bla g 1 allergen was 216 (27.6%). The level of Der p 1 allergen (median [interquartile range (IQR)] = 782.5 μ g/g [120.29-1355.23] was much higher than Bla g 1 allergen (median [IQR] = 2.3U/g [0.58-5.49]. Der p 1 and Bla g 1 allergen levels in bedding were not significantly related with each of allergic symptoms. The other environmental and life style variables collected were not significantly associated with the reported allergic symptoms (Table 4.4 to Table 4.6).

^c Above detection threshold of ELISA

Table 4.4 Distribution of potential confounders and associations with

wheeze at age 3

Variables	Overall N (%)	n (%) wheeze	Crude OR (95% CI)	P-value
Child's gender	> /		• • • • •	
Male	434 (49.4)	45 (10.2)	1.29 (0.81,2.05)	0.28
Female	442 (50.5)	35 (8.1)	1	
Maternal education	··- ()	- ()		
Formal	172 (19.6)	22 (12.8)	1.63 (0.97,2.75)	0.06
Informal	704 (80.4)	58 (8.1)	1	
Maternal allergic	,	~ /		
history				
Yes	47 (5.4)	8 (17.0)	2.16 (0.97,4.79)	0.05
No	829 (94.6)	72 (8.7)	1	
Paternal allergic				
history				
Yes	61 (7.0)	10 (16.4)	2.09 (1.01,4.29)	0.04
No	815 (93.0)	70 (8.6)	1	
Breast feeding at 3yr	()	()	_	
Yes	93 (10.6)	4 (4.3)	0.42 (0.15,1.17)	0.09
No	783 (89.4)	76 (9.7)	1	
Reported duration of	/00 (0511)		_	0.66
breast feeding				
≤12 mo	45 (5.9)	5 (11.1)	1	0.42*
12-24 mo	443 (58.5)	38 (8.6)	0.75 (0.28,2.02)	
>24 mo	269 (35.5)	28 (10.4)	0.93 (0.34,2.55)	
Older siblings	205 (3313)	20 (2017)		0.35
	132 (15.1)	10 (7.6)	1	0.71*
1-3	480 (54.8)	50 (10.4)	1.42 (0.70,2.88)	
4-10	264 (30.1)	20 (7.6)	1.00 (0.45,2.20)	
Paracetamol use	201 (3012)	20 (7.0)		
Never	496 (56.6)	25 (5.0)	1	<0.01
Yes but not in	204 (23.3)	26 (12.8)	2.75 (1.55,4.89)	
the past month	20 (2010)	()		
Yes in past	176 (20.1)	29 (16.5)	3.72 (2.11,6.55)	
month	1/0 (2011)		== \	
Antibiotic use				
Yes	250 (28.5)	36 (14.4)	2.23 (1.39,3.55)	<0.01
No	626 (71.5)	44 (7.0)	1	
Smoking in the	020 (71.0)		-	
residential house				
Yes	109 (12.4)	14 (12.8)	1.57 (0.85,2.90)	0.15
No	767 (87.6)	66 (8.6)	1	2.2.2
Charcoal fuel use	, , , , , , , , , , , , , , , , , , , ,		-	
	134 (15.3)	14 (10.5)	1.19 (0.65,2.20)	0.57
Yes No	742 (84.7)	66 (8.9)	1.15 (0.05,2.20)	

Variables	Overall N (%)	n (%) wheeze	Crude OR (95% CI)	P- value
Insecticide use				
Yes	519 (59.3)	46 (8.9)	0.92 (0.58,1.47)	0.74
No	357 (40.8)	34 (9.5)	1	
Type of roof				
Thatched	661 (77.2)	58 (8.8)	0.84 (0.49,1.44)	0.52
Corrugated iron	195 (22.8)	20 (10.3)	1	
Der p 1				0.17
allergens(µg/g)				
(N=783) 0	655 (83.7)	58 (18.9)	1	0.93*
0.54-500 ≥501	53 (6.8)	1 (1.9)	0.20 (0.03,1.46) 1.23 (0.56,2.68)	
Blag 1 allergens (U/g) (N=783)	75 (9.6)	8 (10.7)	, , , ,	0.36
0	567 (72.4)	51 (9.0)	1	0.28*
0.02-1.96	101 (12.9)	10 (10.0)	1.12 (0.55,2.30)	
≥2.17	115 (14.7)	6 (5.2)	0.56 (0.23,1.33)	

Table 4.4 (continued)

* p value for trend

eczema at age 3

Variables	Overall N (%)	n (%) eczema	Crude OR (95% CI)	p- value
	14 (70)	eczenia		value
Child's gender	434 (49.4)	24 (5.4)	0.75 (0.43,1.29)	0.30
Male				0.50
Female	442 (50.5)	31 (7.1)	1	
Maternal education			0.00 (0.45.1.02)	0 70
Formal	172 (19.6)	10 (5.8)	0.90 (0.45,1.83)	0.78
Non formal	704 (80.4)	45 (6.4)	1	
Maternal allergic				
history				
Yes	47 (5.4)	6 (12.8)	2.33 (0.94,5.75)	0.06
No	829 (94.6)	49 (5.9)	1	
Paternal allergic				
history				
Yes	61 (7.0)	8 (13.1)	2.47 (1.11,5.49)	0.02
Νο	815 (93.0)	47 (5.8)	1	
Breast feeding at 3yr	• •			
Yes	93 (10.6)	5 (5.4)	0.83 (0.32,2.15)	0.70
No	783 (89.4)	50 (6.4)	1	
Reported duration of	()	(<i>,</i>		0.33
breast feeding				
≤12 mo	45 (5.9)	1 (2.2)	1	0.36*
12-24 mo	443 (58.5)	27 (6.1)	2.86 (0.38,21.62)	
>24 mo	269 (35.5)	21 (7.8)	3.73 (0.48,28.68)	
Older siblings	205 (33.3)	LI (<i>i</i> 10 <i>)</i>		0.24
	132 (15.1)	8 (6.1)	1	0.23*
1-3	480 (54.8)	25 (5.2)	0.85 (0.37,1.93)	0.20
4-10	264 (30.1)	22 (8.3)	1.41 (0.61,3.26)	
Paracetamol use	204 (30.1)	22 (0.5)	1.41 (0.01,0.20)	
	496 (56.6)	27 (5.4)	1	0.35
Never Ves but not in	204 (23.3)	13 (6.4)	1.18 (0.60,2.34)	0.55
Yes but not in	204 (23.3)	13 (0.4)	1.10 (0.00,2.04)	
the past month	176 (20.1)	15 (8.5)	1.62 (0.84,3.11)	
Yes in past	176 (20.1)	12 (0.2)	1.02 (0.04,5.11)	
month				
Antibiotic use			1 12 (0 (2 2 0 4)	0.60
Yes	250 (28.5)	17 (6.8)	1.13 (0.62,2.04)	0.69
No	626 (71.5)	38 (6.1)	1	
Smoking in the				
residential house		_ /		
Yes	109 (12.4)	7 (6.4)	1.03 (0.45,2.33)	0.95
No	767 (87.6)	48 (6.3)	1	
Charcoal fuel use				_
Yes	134 (15.3)	10 (7.5)	1.25 (0.61,2.54)	0.54
No	742 (84.7)	45 (6.1)	1	

Table 4.5 (continued)

Variables	Overall N (%)	n (%) eczema	Crude OR (95% CI)	p- value
Insecticide use				
Yes	519 (59.3)	33 (6.4)	1.03 (0.59,1.81)	0.91
No	357 (40.8)	22 (6.2)	1	
Type of roof				
Thatched	661 (77.2)	40 (6.1)	0.90 (0.47,1.72)	0.75
Corrugated iron	195 (22.8)	13 (6.7)	1	
Der p 1				0.72
allergens(µg/g) (N=783)				
0	655 (83.7)	43 (6.6)	1	0.82*
0.54-500	53 (6.8)	2 (3.8)	0.56 (0.13,2.37)	
≥501	75 (9.6)	5 (6.7)	1.01 (0.39,2.65)	
Bla g 1 allergens (U/g)				0.96
(N=783)				
0	567 (72.4)	36 (6.4)	1	
0.02-1.96	101 (12.9)	6 (6.0)	0.94 (0.39,2.30)	0.86*
≥2.17	115 (14.7)	8 (7.0)	1.10 (0.50,2.44)	

* p value for trend

rhinitis at age 3

Variables	Overall	n (%) rhinitis	Crude OR	P-
Variables	N (%)	minus	(95% CI)	value
Child's gender Male	434 (49.4)	21 (4 9)	0.80 (0.40 1.64)	0.71
	• •	21 (4.8)	0.89 (0.49,1.64)	0.71
Female Maternal education	442 (50.5)	23 (5.3)	1	
Maternal education	172 (10 6)	0 (5 3)	1.06 (0.50.2.24)	0 00
Formal	172 (19.6)	9 (5.2)	1.06 (0.50,2.24)	0.89
Non formal	704 (80.4)	35 (5.0)	1	
Maternal allergic				
history		$\overline{7}$		-0.01
Yes	47 (5.4)	7 (14.9)	3.75 (1.57,8.92)	<0.01
No Determal allerais history	829 (94.6)	37 (4.5)	1	
Paternal allergic history	(1 (7 0))	2 (4 0)		0.07
Yes	61 (7.0)	3 (4.9)	0.98 (0.29,3.25)	0.97
No Broast fooding at 3vr	815 (93.0)	41 (5.0)		
Breast feeding at 3yr	02 (10 6)	5 (5.4)	1.08 (0.42,2.82)	0.87
Yes	93 (10.6)	39 (5.0)	1.00 (0.42,2.02)	0.07
No Reported duration of	783 (89.4)	39 (3.0)		
Reported duration of breast feeding				
≤12 mo	45 (5.9)	2 (4.4)	1	0.96
≤12 mo 12-24 mo	43 (58.5)	23 (5.2)	1.18 (0.27,5.17)	0.84*
>24 mo	269 (35.5)	13 (4.8)	1.09 (0.24,5.02)	0.04
Older siblings	209 (33.3)	13 (4.0)	1.09 (0.24,3.02)	0.08
	132 (15.1)	5 (3.8)	1	0.05*
1-3	480 (54.8)	19 (4.0)	1.05 (0.38,2.86)	0.05
4-10	264 (30.1)	20 (7.6)	2.08 (0.76,5.68)	
Paracetamol use	207 (30.1)	20 (7.0)	2.00 (0.70,0.00)	
Never	496 (56.6)	20 (4.0)	1	0.11
Yes but not in	204 (23.3)	16 (7.8)	2.03 (1.03,3.99)	
the past month		(,)		
Yes in past	176 (20.1)	8 (4.6)	1.13 (0.49,2.62)	
month	1/0 (2012)	- (·····	
Antibiotic use				
Yes	250 (28.5)	15 (6.0)	1.31 (0.70,2.50)	0.40
No	626 (71.5)	29 (4.6)	1	
Smoking in the	525 (72.5)	()	-	
residential house				
Yes	109 (12.4)	7 (6.4)	1.35 (0.59,3.12)	0.46
No	767 (87.6)	37 (4.8)	1	
Charcoal fuel use		/	-	
Yes	134 (15.3)	3 (2.2)	0.39 (0.12,1.28)	0.11
No	742 (84.7)	41 (5.5)	1	

	Overall	n (%)	Crude OR	P-
Variables	N (%)	rhinitis	(95% CI)	value
Insecticide use	······································			
Yes	519 (59.3)	28 (5.4)	1.22 (0.65,2.28)	0.54
Νο	357 (40.8)	16 (4.5)	1	
Type of roof				
Thatched	661 (77.2)	33 (5.0)	1.09 (0.51,2.31)	0.83
Corrugated iron	195 (22.8)	9 (4.6)	1	
Der p 1 allergens(µg/g) (N=783)				0.80
0	655 (83.7)	35 (5.4)	1	0.53*
0.54-500	53 (6.8)	2 (3.8)	0.69 (0.16,2.97)	
≥501	75 (9.6)	3 (4.0)	0.74 (0.22,2.46)	
Bla g 1 allergens (U/g)				0.16
(N=783) 0				0.00*
0.02-1.96	567 (72.4) 101 (12.9)	25 (4.4) 9 (9.0)	1 2.14 (0.97,4.74)	0.36*
			1.19 (0.48,2.98)	
≥2.17	<u>115 (14.7)</u>	6 (5.2)	(

Table 4.6 (continued)

* p value for trend

4.2.5.2 Relation between potential confounders and sensitization

A large number of familial, environmental and lifestyle exposures, including parental allergic history, breastfeeding, siblingship, smoking in the residential house, insecticide use, and type of housing, were unrelated to dust mite or cockroach sensitization, or sensitization to any allergens (Table 4.7 and Table 4.8). The risk of dust mite was decreased in those who used paracetamol (crude OR 0.14, 95% CI 0.03, 0.61, use in the past month versus never, p<0.01), but not with cockroach sensitization. Use of charcoal for cooking and heating increased the risk of cockroach sensitization (crude OR 2.29, 95% CI 1.07, 4.86, p=0.03), but was unrelated to dust mite sensitization. There was a significant positive trend of Der p 1 allergen level in child's bedding and cockroach sensitization (crude OR 2.26, 95% CI 0.82, 6.22 for \geq 501 µg/g and, 2.66; 0.87,

8.10 for 0.54 to 500 μ g/g compared to 0, p for trend= 0.05), but not with dust mite (Table 4.7 and Table 4.8).

.

Table 4.7 Distribution of potential confounders and associations with

Variables	Overall	n (%) Dust mite	Crude OR (95% CI)	P- value
	<u>N (%)</u>	sensitization		
Child's gender				
Male	439 (50.8)	25 (5.7)	1.06 (0.59,1.89)	0.86
Female	425 (49.2)	23 (5.4)	1	
Maternal education				
Formal	166 (19.2)	6 (3.6)	0.59 (0.24,1.40)	0.23
Non formal	698 (80.8)	42 (6.0)	1	
Maternal allergic				
history				
Yes	46 (5.3)	1 (2.2)	0.36 (0.05,2.70)	0.30
Νο	816 (94.7)	47 (5.8)	1	
Paternal allergic				
history				
Yes	60 (7.0)	2 (3.3)	0.57 (0.13,2.39)	0.43
No	802 (93.0)	46 (5.7)	1	
Breast feeding at 3yr				
Yes	93 (10.8)	6 (6.5)	1.19 (0.49,2.89)	0.70
No	769 (89.2)	42 (5.5)	1	
Reported duration of				0.35
breast feeding				
≤12 mo	44 (5.9)	2 (4.6)	1	0.33*
12-24 mo	434 (58.4)	29 (6.7)	1.50 (0.35,6.54)	
>24 mo	265 (35.7)	11 (4.2)	0.91 (0.19,4.26)	
Older siblings				0.07
0	125 (14.5)	6 (4.8)	1	0.21*
1-3	477 (55.3)	34 (7.1)	1.52 (0.62,3.71)	
4-10	260 (30.2)	8 (3.1)	0.63 (0.21,1.86)	
Paracetamol use			<u>,</u>	
Never	490 (56.8)	37 (7.6)	1	<0.01
Yes but not in	201 (23.3)	9 (4.5)	0.57 (0.27,1.21)	
the past				
month				
Yes in past	171 (19.8)	2 (1.2)	0.14 (0.03,0.61)	
month				
Antibiotic use				
Yes	243 (28.2)	9 (3.7)	0.57 (0.27,1.20)	0.32
No	619 (71.8)	39 (6.3)	1	
Smoking in the				
residential house				
Yes	108 (12.5)	3 (2.8)	0.45 (0.14,1.48)	0.18
No	754 (87.5)	45 (6.0)	1	_

dust mite sensitization at age 3

Variables	Overall N (%)	n (%) Dust mite sensitization	Crude OR (95% CI)	P- value
Charcoal fuel use				
Yes	129 (15.0)	10 (7.8)	1.54 (0.75,3.17)	0.24
No	733 (85.0)	38 (5.2)	1	
Insecticide use				
Yes	511 (59.3)	28 (5.5)	0.96 (0.53,1.73)	0.89
No	351 (40.7)	20 (5.7)	1	
Type of roof				
Thatched	656 (77.7)	35 (5.3)	0.91 (0.45,1.82)	0.78
Corrugated iron	188 (22.3)	11 (5.9)	1	
Der p 1 allergens(µg/g) (N=783)				0.61
0	645 (83.8)	34 (5.3)	1	0.41*
0.54-500 ≥501	51 (6.6) 74 (9.6)	3 (5.9) 2 (2.7)	1.12 (0.33,3.79) 0.50 (0.12,2.12)	
Bla g 1 allergens (U/g) (N=783)				0.99
0 0.02 - 1.96	556 (72.2) 101 (13.1)	28 (5.0) 5 (5.0)	1 0.98 (0.37,2.61)	0.92*
≥2.17	113 (14.7)	6 (5.3)	1.06 (0.43,2.62)	

Table 4.7 (continued)

* p value for trend

Table 4.8 Distribution of potential confounders and associations with

Variables	Overall N (%)	n (%) Cockroach sensitization	Crude OR (95% CI)	P-value
Child's gender		<u>Sensicization</u>		
Male	439 (50.8)	16 (3.6)	0.77 (0.39,1.50)	0.44
Female	425 (49.2)	20 (4.7)	1	••••
Maternal education	123 (13.2)	20 (117)	-	
Formal	166 (19.2)	6 (3.6)	0.84(0.34,2.04)	0.69
Non formal	698 (80.8)	30 (4.3)	1	0.05
	098 (80.8)	50 (4.5)	1	
Maternal allergic				
history	46 (5.3)	2 (4.4)	1.05 (0.24,4.49)	0.95
Yes			1.05 (0.24,4.45)	0.95
No Determol allerais	816 (94.7)	34 (4.2)	T	
Paternal allergic				
history		2 (2 2)	0 70 (0 10 2 21)	0.74
Yes	60 (7.0)	2 (3.3)	0.78 (0.18,3.32)	0.74
No	802 (93.0)	34 (4.2)	1	
Breast feeding at 3yr			1.04 (0.26.2.00)	0.05
Yes	93 (10.8)	4 (4.3)	1.04 (0.36,3.00)	0.95
No	769 (89.2)	32 (4.2)	1	
Reported duration of				0.66
breast feeding			_	
≤12 mo	44 (5.9)	2 (4.6)	1	0.42*
12-24 mo	434 (58.4)	21 (4.8)	1.07 (0.24,4.72)	
>24 mo	265 (35.7)	9 (3.4)	0.74 (0.15,3.55)	
Older siblings				0.57
0	125 (14.5)	4 (3.2)	1	0.87*
1-3	477 (55.3)	23 (4.8)	1.53 (0.52,4.52)	
4-10	260 (30.2)	9 (3.5)	1.08 (0.33,3.59)	
Paracetamol use				
Never	490 (56.8)	24 (4.9)	1	0.20
Yes but not in	201 (23.3)	9 (4.5)	0.91 (0.42,1.99)	
the past				
month				
Yes in past	171 (19.8)	3 (1.8)	0.35 (0.10,1.17)	
month	. ,		· · · · · · ·	
Antibiotic use				
Yes	243 (28.2)	6 (2.5)	0.50 (0.20,1.21)	0.12
No	619 (71.8)	30 (4.9)	1	
Smoking in the	. ,			
residential house				
Yes	108 (12.5)	2 (1.9)	0.40 (0.09,1.69)	0.20
No	754 (87.5)	34 (4.5)	1 1	

cockroach sensitization at age 3

Variables	Overall	n (%) Cockroach	Crude OR (95% CI)	P- value
	N (%)	sensitization		
Charcoal fuel use				
Yes	129 (15.0)	10 (7.8)	2.29 (1.07,4.86)	0.03
No	733 (85.0)	26 (3.6)	1	
Insecticide use				
Yes	511 (59.3)	22 (4.3)	1.08 (0.55,2.15)	0.82
No	351 (40.7)	14 (4.0)	1	
Type of roof				
Thatched	656 (77.7)	28 (4.3)	1.15 (0.50,2.68)	0.74
Corrugated iron	188 (22.3)	7 (3.7)	1	
Der p 1				0.08
allergens(µg/g) (N=783)				
0	645 (83.8)	20 (3.1)	1	0.05*
0.54-500	51 (6.6)	4 (7.8)	2.66 (0.87,8.10)	
≥501	74 (9.6)	5 (6.8)	2.26 (0.82,6.22)	
Bla g 1 allergens				0.80
(U/g) (N=783)				0.06*
	556 (72.2)	20 (3.6)		0.86*
0.02-1.96	101 (13.1)	5 (5.0)	1.40 (0.51,3.81) 0.98 (0.33,2.93)	
≥2.17	113 (14.7)	4 (3.5)		

Table 4.8 (continued)

* p value for trend

4.2.6 Effects of geohelminths on wheeze, eczema and rhinitis

4.2.6.1 Prevalence of geohelminths

A total of 866 stool samples were examined and three species of geohelminths were identified with an overall prevalence of 8.5% in three year old children. Hookworm, *A. lumbricoides* and *T. trichiura* were detected in 4.9% (42/866), 4.3% (37/866) and 0.1% (1/866) of the children, respectively (Table 4.9). Infection intensity was low (median [interquartile range (IQR)] = 6 eggs per gram of faeces [3-10] for hookworm and (median [interquartile range (IQR)] = 128 12 eggs per gram of faeces [3-39] for *A. lumbricoides*, therefore this was not analysed further.

Hymenolepsis nana was the most frequently detected intestinal parasite with a prevalence of 13.6% (118/866). Enterobias vermicularis was found in four children (0.5%), and Taenia species found in one (0.1%). Strongyloides and Schistosoma infections were not found in the cohort. Among protozoa, Giardia lamblia, and Entamoeba species were found in 9.1% (79/866), and 7.5% (65/866) of children respectively.

Emphasis is now given to the findings relating to geohelminths as this was the *a priori* hypothesis, and was previously reported to be linked to asthma and allergy. However, these other parasites were looked at as potential confounders, though adjustment was found to make little change in the odds ratios reported below.

Wheeze

In this cross-sectional analysis, none of the geohelminth parasites were significantly associated with wheeze at age 3 (Table 4.9). A non-significant slight increased risk of wheeze was observed in relation to hookworm infection (adjusted OR, 95% CI, 1.11; 0.38, 3.21, p=0.53). However, a non-significant decreased risk of wheeze was seen with *A. lumbricoides* infection (adjusted OR, 95% CI, 0.28; 0.04, 2.09, p=0.22), but confidence intervals were wide and no associations were statistically significant (Table 4.9).

129

		Wheeze (N=876)				
Geohelminth	Overall	Yes	Crude	Adjusted	P-	
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value	
Hookworm		, <u> </u>				
Yes	42 (4.9)	4 (9.5)	1.03 (0.36,2.97)	1.11 (0.38,3.21)	0.85	
No	824 (95.1)	76 (9.3)	1	1		
A. lumbricoides						
Yes	37 (4.3)	1 (2.7)	0.26 (0.04,1.94)	0.28 (0.04,2.09)	0.22	
No	829 (95.7)	79 (9.6)	1	1		
Any						
geohelminths†						
Yes	75 (8.5)	5 (6.7)	0.69 (0.27,1.77)	0.74 (0.29,1.90)	0.53	
No	791 (91.3)	75 (9.5)	1	1		

Table 4.9 OR for wheeze in relation to geohelminth infection at age 3

*OR adjusted for gender, urban rural residence and maternal education,

[†]Hookworm, A. lumbricoides, or T. trichiura

Eczema

Eczema was reduced in relation to hookworm (adjusted OR, 95% CI, 0.36; 0.05, 2.68, p=0.32), and *A. lumbricoides* (adjusted OR, 95% CI, 0.38; 0.05, 2.86, p=0.35) infection (Table 4.10). However, only few children with eczema were infected by either hookworm or *A. Lumbricoides* infection, and confidence intervals were wide, and none of these associations were significant (Table 4.10).

	Eczema (N=876)						
Geohelminth	Overall	Yes	Crude	Adjusted	P-		
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value		
Hookworm			<u> </u>				
Yes	42 (4.9)	1 (2.4)	0.35 (0.05,2.57)	0.36 (0.05,2.68)	0.32		
No	824 (95.1)	54 (6.6)	1	1			
A. lumbricoides							
Yes	37 (4.3)	1 (2.7)	0.40 (0.05,2.96)	0.38 (0.05,2.86)	0.35		
No	829 (95.7)	54 (6.5)	1	1			
Any							
geohelminths†							
Yes	75 (8.5)	2 (2.7)	0.39 (0.09,1.62)	0.39 (0.09,1.63)	0.19		
No	791 (91.3)	53 (6.7)	1	1			

Table 4.10 OR for eczema in relation to geohelminth infections

'OR adjusted for gender, urban rural residence and maternal education,

†Hookworm, A. lumbricoides, or T. trichiura

Rhinitis

As in the wheeze and eczema associations, none of the geohelminths were significantly associated with rhinitis though the effect was in the expected direction. For hookworm the adjusted OR was 0.44 (95% CI 0.06, 3.30, p=0.43), and for *A. lumbricoides* infection the adjusted OR was 0.54 (95% CI 0.07, 4.02, p=0.54) but again the number of infected children with the outcome was very low (Table 4.11).

		Rhinitis (N=876)					
Geohelminth	Overall	Yes	Crude	Adjusted	P-		
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value		
Hookworm			·····				
Yes	42 (4.9)	1 (2.4)	0.45 (0.06,3.37)	0.44 (0.06,3.30)	0.43		
No	824 (95.1)	42 (5.1)	1	1			
A. lumbricoides							
Yes	37 (4.3)	1 (2.7)	0.52 (0.07,3.88)	0.54 (0.07,4.02)	0.54		
No	829 (95.7)	42 (5.1)	1	1			
Any							
geohelminths†							
Yes	75 (8.5)	2 (2.7)	0.50 (0.12,2.09)	0.49 (0.12,2.09)	0.33		
No	791 (91.3)	41 (5.2)	1	1			

Table 4.11 OR for rhinitis in relation to geohelminth infection

*OR adjusted for gender, urban rural residence and maternal education,

+Hookworm, A. lumbricoides, or T. trichiura

4.2.7 Effects of geohelminths on skin sensitization

Dust mite sensitization

Hookworm infection was associated with a non-significant decreased risk (adjusted OR, 95% CI, 0.86; 0.20, 3.69, p=0.84), and *A. lumbricoides* with a non-significant increased risk of dust mite sensitization (adjusted OR, 95% CI, 1.48; 0.43, 5.04, p=0.53) (Table 4.12). However, as in the symptom outcomes, the number of infected children with the outcomes was low (Table 4.12).

		Dust mite sensitization (N=864)			
Geohelminth	Overall	Yes	Crude	Adjusted	P-
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value
Hookworm		· · · · ·	· · · · · · · · · · · · · · · · · · ·		
Yes	42 (4.9)	2 (4.8)	0.88 (0.21,3.75)	0.86 (0.20,3.69)	0.84
No	824 (95.1)	44 (5.4)	1	1	
A. lumbricoides					
Yes	37 (4.3)	3 (8.1)	1.60 (0.47,5.41)	1.48 (0.43,5.04)	0.53
No	829 (95.7)	43 (5.2)	1	1	
Any					
geohelminths†					
Yes	75 (8.7)	5 (6.7)	1.24 (0.48,3.23)	1.18 (0.45,3.09)	0.74
No	791 (91.3)	41 (5.2)	1	1	

Table 4.12 OR for dust mite sensitization in relation to geohelminth infections

*OR adjusted for gender, urban rural residence and maternal education †Hookworm, *A. lumbricoides, or T. trichiura*

Cockroach sensitization

The risks of cockroach sensitization was reduced in those with hookworm infection (adjusted OR, 95% CI, 0.58; 0.08, 4.34, p=0.59), and increased in those with *A. lumbricoides* infection (adjusted OR, 95% CI, 1.99; 0.57, 6.89, p=0.28) (Table 4.13). However, none of these associations were statistically significant.

Table 4.13	OR for	cockroach	sensitization	in	relation	to	geohelminth
infections							

·····		Cockroach sensitization (N=864)					
Geohelminth	Overall	Yes	Crude	Adjusted	P-		
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value		
Hookworm							
Yes	42 (4.9)	1(2.4)	0.54 (0.07,4.07)	0.58 (0.08,4.34)	0.59		
No	824 (95.1)	35 (4.3)	1	1			
A. lumbricoides							
Yes	37 (4.3)	3 (8.1)	2.11(0.62,7.21)	1.99 (0.57,6.89)	0.28		
No	829 (95.7)	33 (4.0)	1	1			
Any							
geohelminths†							
Yes	75 (8.7)	4 (5.3)	1.33 (0.46,3.88)	1.34 (0.46,3.92)	0.59		
No	791 (91.3)	32 (4.1)	1	1			

*OR adjusted for gender, urban rural residence and maternal education

†Hookworm, A. lumbricoides, or T. trichiura

Any sensitization

None of the geohelminth parasites were significantly associated with sensitization to any allergen (either dust mite or cockroach allergens), and again numbers of infected children with the outcome were too small (Table 4.14).

		Any sensitization [¥] (N=864)					
Geohelminth	Overall	Yes	Crude	Adjusted	P-		
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value		
Hookworm							
Yes	42 (4.9)	3 (7.1)	0.82 (0.25,2.77)	0.83 (0.25,2.76)	0.76		
No	824 (95.2)	70 (8.6)	1	1			
A. lumbricoides							
Yes	37 (4.3)	5 (13.5)	1.73 (0.65,4.59)	1.62 (0.61,4.32)	0.34		
No	829 (95.7)	68 (8.3)	1	1			
Any							
geohelminths+							
Yes	75 (8.5)	8 (10.7)	1.29 (0.59,2.79)	1.25 (0.57,2.73)	0.58		
No	803 (91.5)	67 (8.5)	1	1			

Table 4.14 OR for any sensitization in relation to geohelminth infection

*OR adjusted for gender, urban rural residence and maternal education

†Hookworm, A. lumbricoides, or T. trichiura

* Sensitization to either dust mite or cockroach allergen

4.2.8 Effects of H. pylori and intestinal microflora on wheeze, eczema and rhinitis

The most common commensal bacteria detected were enterococci (38.1% - 207/544) followed by lactobacilli (31.1% - 169/544) and bifidobacteria (19.0% - 103/544). *H. pylori* was identified in 41.1% (253/616) of children (Table 4.15).

Wheeze

The presence of enterococci (adjusted OR, 95% CI, 1.27; 0.72, 2.24, p=0.40), lactobacilli (adjusted OR, 95% CI, 1.19; 0.66, 2.16, p=0.56), and bifidobacteria (adjusted OR, 95% CI, 1.24; 0.63, 2.47, p=0.53) in stool tended to be associated with a non significant increased risk of wheeze (Table 4.15). Infection with *H. pylori* was associated with a non significant decreased risk of wheeze (adjusted OR 0.80, 95% CI 0.46 to 1.38, p=0.41). However, none of these associations were statistically significant (Table 4.15).

		Wheeze						
Infection	Overall	Yes	Crude	Adjusted	P-			
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value			
Helicobacte	r							
pylori								
Yes	253 (41.1)	24 (9.6)	0.88 (0.51,1.50)	0.80 (0.46,1.38)	0.41			
No	363 (58.9)	39 (10.7)	1	1				
Enterococci								
Yes	207 (38.1)	24 (11.6)	1.24 (0.71,2.17)	1.27 (0.72,2.24)	0.40			
No	337 (61.9)	32 (9.6)	1	1				
Lactobacilli								
Yes	169 (31.1)	19 (11.2)	1.15 (0.64,2.07)	1.19 (0.66,2.16)	0.56			
No	375 (68.9)	37 (9.9)	1	1				
Bifidobacter	ia							
Yes	103 (18.9)	12 (11.8)	1.20 (0.61,2.36)	1.24 (0.63,2.47)	0.53			
No	441 (81.1)	44 (10.0)	1	1				
Any microfic	ora†							
Yes	317 (58.3)	37 (11.7)	1.44 (0.81,2.58)	1.49 (0.83,2.69)	0.18			
No	227 (41.3)	19 (8.4)	1	1				

Table 4.15 OR for wheeze in relation to *H. pylori* and microflora

*OR adjusted for gender, urban rural residence and maternal education

†Enterococci, lactobacilli and bifidobacteria

Eczema

None of the intestinal microflora detected were significantly associated with eczema (adjusted OR, 95% CI, 1.07; 0.53, 2.17, p=0.84 for enterococci, adjusted OR, 95% CI, 1.00; 0.48, 2.10, p=0.99 for lactobacilli, and adjusted OR, 95% CI, 1.19; 0.18, 1.50, p=0.23 for bifidobacteria) (Table 4.16).

However, infection with *H. pylori* was associated with a borderline significant decreased risk of eczema (adjusted OR 0.49, 95% CI; 0.24, 1.01, p=0.05) (Table 4.16), and the magnitude of these effects changed little following adjustment for other potential confounders shown in Table 4.5, and further mutual adjustment for geohelminth and microflora exposure.

			Eczem	a	
Infection	Overall	Yes	Crude	Adjusted	P-
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value
Helicobacter				·····	
pylori					
Yes	253 (41.1)	11 (4.4)	0.51 (0.25,1.04)	0.49 (0.24,1.01)	0.05
No	363 (58.9)	30 (8.3)	1	1	
Enterococci					
Yes	207 (38.1)	14 (6.8)	1.08 (0.54,2.18)	1.07 (0.53,2.17)	0.84
No	337 (61.9)	21 (6.3)	1	1	
Lactobacilli					
Yes	169 (31.1)	11 (6.5)	1.01 (0.48,2.12)	1.00 (0.48,2.10)	0.99
No	375 (68.9)	24 (6.4)	1	1	
Bifidobacteria					
Yes	103 (18.9)	4 (3.9)	0.54 (0.19,1.56)	0.52 (0.18,1.50)	0.23
No	441 (81.1)	31 (7.1)	1	1	
Any					
microflora†					
Yes	317 (58.3)	22 (7.0)	1.23 (0.60,2.49)	1.20 (0.59,2.45)	0.61
No	227 (41.3)	13 (5.8)	1	1	

Table 4.16 OR for eczema in relation to H. pylori and microflora

*OR adjusted for gender, urban rural residence and maternal education

†Enterococci, lactobacilli and bifidobacteria

Rhinitis

The presence of lactobacilli (adjusted OR, 95% CI, 1.14; 0.54, 2.41, p=0.74), bifidobacteria (adjusted OR, 95% CI, 1.49; 0.65, 3.43, p=0.35), and *H. pylori* (adjusted OR, 95% CI, 1.86; 0.92, 3.78, p=0.09) were associated with a non significant increased risk of rhinitis (Table 4.17). The relation between the commensal enterococci bacteria and rhinitis was also not significant (p=0.85), though the direction of effect was in the expected direction (Table 4.17).

			Rhini	tis	
Infection	Overall	Yes	Crude	Adjusted	P-
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value
Helicobacter					
pylori					
Yes	253 (41.1)	18 (7.2)	1.79 (0.89,3.63)	1.86 (0.92,3.78)	0.09
No	363 (58.9)	15 (4.1)	1	1	
Enterococci					
Yes	207 (38.1)	12 (5.8)	0.92 (0.44,1.91)	0.93 (0.45,1.94)	0.85
No	337 (61.9)	21 (6.3)	1	1	
Lactobacilli					
Yes	169 (31.1)	11 (6.5)	1.11 (0.53,2.35)	1.14 (0.54,2.41)	0.74
No	375 (68.9)	22 (5.9)	1	1	
Bifidobacteria					
Yes	103 (18.9)	8 (7.8)	1.41 (0.62,3.23)	1.49 (0.65,3.43)	0.35
No	441 (81.1)	25 (5.7)	1	1	
Any microflora†					
Yes	317 (58.3)	22 (7.0)	1.46 (0.69,3.08)	1.51 (0.71,3.19)	0.28
No	227 (41.3)	11 (4.9)	1	1	

Table 4.17 OR for rhinitis in relation to *H. pylori* and microflora

*OR adjusted for gender, urban rural residence and maternal education, †Enterococci, lactobacilli and bifidobacteria

4.2.9 Effects of H. pylori and intestinal microflora on skin sensitization

Dust mite sensitization

The commensal bacteria enterococci was associated with a non significant increased risk of dust mite sensitization (adjusted OR, 95% CI, 1.03; 0.44, 2.43, p=0.94). Lactobacilli (adjusted OR, 95% CI, 0.76; 0.29, 1.96, p=0.57), and bifidobacteria (adjusted OR, 95% CI, 0.61; 0.18, 2.11, p=0.44) were associated with a non significant decreased risk of dust mite sensitization (Table 4.18).

The association between *H. pylori* and a reduced risk of dust mite sensitization, however, did reach borderline significance (adjusted OR, 95% CI, 0.42; 0.17, 1.08, P=0.07) (Table 4.18). Further adjustment for potential confounders presented in Table 4.7, including mutual adjustment for geohelminths and commensal bacteria made little change on the size of the risk estimate.

Table 4.18	OR fo	r dust	mite	sensitization	in	relation	to	н.	pylori	and
microflora										

		Dust mite sensitization						
Infection	Overall	Yes	Crude	Adjusted	P-			
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value			
Helicobacter								
pylori								
Yes	253 (41.1)	6 (2.4)	0.41 (0.16,1.05)	0.42 (0.17,1.08)	0.07			
No	363 (58.9)	20 (5.6)	1	1				
Enterococci								
Yes	207 (38.1)	9 (4.4)	1.04 (0.44,2.46)	1.03 (0.44,2.43)	0.94			
No	337 (61.9)	14 (4.2)	1	1				
Lactobacilli								
Yes	169 (31.1)	6 (3.4)	0.77 (0.30,2.00)	0.76 (0.29,1.96)	0.57			
No	375 (68.9)	17 (4.6)	1	1				
Bifidobacteria								
Yes	103 (18.9)	3 (3.0)	0.64 (0.19,2.19)	0.61 (0.18,2.11)	0.44			
No	441 (81.1)	20 (4.6)	1	1				
Any microflora†								
Yes	317 (58.3)	12 (3.8)	0.77 (0.33,1.78)	0.76 (0.33,1.75)	0.51			
No	227 (41.3)	11 (4.9)	1	1				

*OR adjusted for gender, urban rural residence and maternal education

†Enterococci, lactobacilli and bifidobacteria

Cockroach sensitization

The association between intestinal microflora and cockroach sensitization was not significant; however the observed effects were in the expected direction. Infection with *H. pylori* was also associated with a non significant decreased risk of cockroach sensitization (adjusted OR, 95% CI, 0.59; 0.22, 1.56, p=0.29) (Table 4.19).

Table 4.19 OR for cockroach sensitization in relation to H. pylori andmicroflora

;		Cockroach sensitization						
Infection	Overall	Yes	Crude	Adjusted	P-			
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value			
Helicobacter	<u> </u>							
pylori								
Yes	253 (41.1)	6 (2.4)	0.60 (0.23,1.59)	0.59 (0.22,1.56)	0.29			
No	363 (58.9)	14 (3.9)	1	1				
Enterococci								
Yes	207 (38.1)	6 (2.9)	0.74 (0.28,1.98)	0.72 (0.27,1.95)	0.52			
No	337 (61.9)	13 (3.9)	1	1				
Lactobacilli								
Yes	169 (31.1)	8 (4.8)	1.64 (0.65,4.16)	1.65 (0.65,4.19)	0.29			
No	375 (68.9)	11 (3.0)	1	1				
Bifidobacteria								
Yes	103 (18.9)	3 (3.0)	0.80 (0.23,2.81)	0.75 (0.21,2.64)	0.65			
No	441 (81.1)	16 (3.7)	1	1				
Any microflora†								
Yes	317 (58.3)	10 (3.2)	0.79 (0.32,1.97)	0.76 (0.30,1.92)	0.57			
No	227 (41.3)	9 (4.0)	1	1				

'OR adjusted for gender, urban rural residence and maternal education

†Enterococci, lactobacilli and bifidobacteria

Any sensitization

None of the commensal bacteria in the stool, nor infection with *H. pylori* were significantly associated with sensitization to any allergens (Table 4.20).

			Any sensi	tization [¥]	
Infection	Overall	Yes	Crude	Adjusted	P-
	N (%)	n (%)	OR (95%CI)	OR* (95% CI)	value
Helicobacter					
pylori					
Yes	253 (41.1)	12 (4.8)	0.62 (0.31,1.24)	0.61 (0.30,1.23)	0.16
No	363 (58.9)	27 (7.5)	1	1	
Enterococci					
Yes	207 (38.1)	13 (6.3)	0.87 (0.43,1.75)	0.85 (0.42,1.72)	0.65
No	337 (61.9)	24 (7.2)	1	1	
Lactobacilli					
Yes	169 (31.1)	13 (7.8)	1.22 (0.60,2.45)	1.20 (0.59,2.42)	0.62
No	375 (68.9)	24 (6.5)	1	1	
Bifidobacteria					
Yes	103 (18.9)	6 (5.9)	0.83 (0.33,2.03)	0.78 (0.31,1.93)	0.59
No	441 (81.1)	31 (7.1)	1	1	
Any microflora†					
Yes	317 (58.3)	20 (6.4)	0.83 (0.43,1.63)	0.80 (0.41,1.58)	0.59
No	227 (41.3)	17 (7.6)	1	1	

Table 4.20 OR for any sensitization in relation to H. pylori and microflora

*OR adjusted for gender, urban rural residence and maternal education

†Enterococci, lactobacilli and bifidobacteria

* Sensitization to either dust mite or cockroach allergen

4.3 SUMMARY

In this population-based study of young Ethiopian children, cross-sectional analyses at age three resulted in a borderline significant decreased risk of eczema symptoms and dust mite sensitization in relation to *H. pylori*, in which alternative explanations including medical interventions are unlikely to play a role. The study however found no evidence to support an etiological role of the commensal bacteria on allergic diseases. The power to assess effects of geohelminths was limited. Further follow up of the cohort beyond three years is important to clarify conflicting findings, and to investigate whether the associations seen in these cross-sectional analyses could also be replicated in a longitudinal analysis.

The study also showed that the reported prevalence of wheeze, eczema and the levels of sensitization to domestic allergens in three year old children were low in both urban and rural areas, and unrelated to geohelminth exposure and commensal bacteria. Furthermore, reported outcome measures were unrelated to sensitization to dust mite and cockroach allergens at this age. This may be due to the low prevalence of reported symptoms and sensitization in the study.

The prevalence and intensity of geohelminths in this cohort of children was very low, and hookworm (4.8%) and *A. lumbricoides* (4.3%) were the predominant geohelminths identified. The low prevalence of geohelminths in the study is likely linked to a mass de-worming program,²⁵⁷ and may account for the low statistical power for this analysis.

The cohort was followed further, and results of this continued follow up are described in the next chapters: chapter five focuses on further analyses (longitudinal and cross-sectional) of the effects of paracetamol on allergic symptoms and sensitization at the age of five years, and chapter six covers longitudinal and cross-sectional analyses of the roles of geohelminths, commensal bacteria, and *H. pylori* on allergic disease and sensitization at the same age.

143

5 EARLY LIFE EXPOSURE TO PARACETAMOL AND THE PREVALENCE AND INCIDENCE OF WHEEZE AND ALLERGIC DISEASE AT AGE 5

5.1 INTRODUCTION

In May 2011, follow-up of the cohort at age five was complete which allowed further exploration of the role of paracetamol in the aetiology of allergic disease to be carried out. So far this thesis has investigated the effects of paracetamol in the first year of life on the incidence of wheeze and eczema between ages one and three but the analysis was limited to two outcomes, wheeze and eczema. Data collected at this later time point allows analysis of two additional outcomes, rhinitis and allergic sensitization. In addition, as the children grow older, it may likely that the wheeze outcome will represent asthmatic phenotype, rather than a marker of respiratory tract infection. Furthermore, exploration of the relative importance of timing and dose of paracetamol exposure is possible at this follow-up by incorporating exposure responses given at age one and three. Furthermore, the availability, preference and indications for use of paracetamol could be explored for the first time at this follow-up.

This chapter will therefore present further prospective findings of the five year follow-up of the same children in which paracetamol use and outcomes have been prospectively measured at ages one, three and five. The primary aim is therefore to determine the longitudinal association between early life paracetamol use (dose and timing) on the incidence of wheeze, eczema, rhinitis and skin sensitization between ages three and five. In addition, this chapter aims to determine the cross-sectional association between the use of paracetamol and these allergic outcomes using current and previous exposures at the age of five years (lifetime use of paracetamol), and to investigate indications for use of paracetamol. Analysis of five year follow-up of the other early life risk factors of interest, namely geohelminths, *H. pylori* infection, and commensal bacteria, will be reported in chapter six.

5.2 RESULTS

5.2.1 The birth cohort at age five

At age five, 863 (86% of the original cohort at year one, and 98% of those available at year three follow up) were followed-up (see section 2.3.6 and Figure 2.3). Reported symptom outcome data were available from 852 children; for the other 11 children, mothers were not around to provide the information. Skin tests were performed on 855 children (three of these children did not provide symptom questionnaire data but skin tests were able to be carried out in the presence of another guardian). Children who were lost to follow up (less than 2% between year three and five) were not different in terms of paracetamol exposure or the outcomes collected.

5.2.2 Natural history of the outcomes between ages one and five

Of the wheeze-free cohort up to three years of age (n=698), incident wheeze

was reported in 5.9% (40/676) of children between ages three and five (Figure 5.1). Of the 26 children who were persistent wheezers (wheezers at year one and three), 6 (23.1%) still reported wheeze ever at age five whereas 20 (76.9%) did not (Figure 5.1).

Among the eczema-free cohort up to year three (n=723), incident eczema was reported in 5.8% (39/700) (Figure 5.2). Of the eight children who reported eczema at ages one and three and followed up to year five, only 1 (12.5%) still reported eczema at age five, the remaining 7 (87.5%) did not (Figure 5.2).

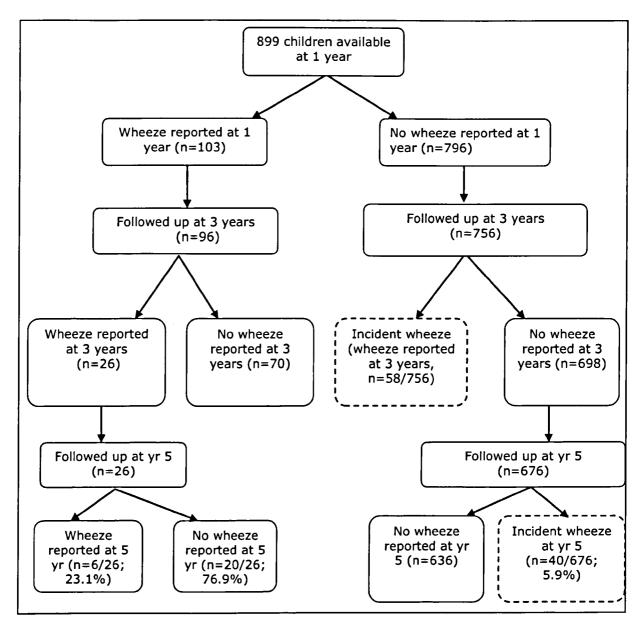


Figure 5.1 Wheeze reporting between one and five years

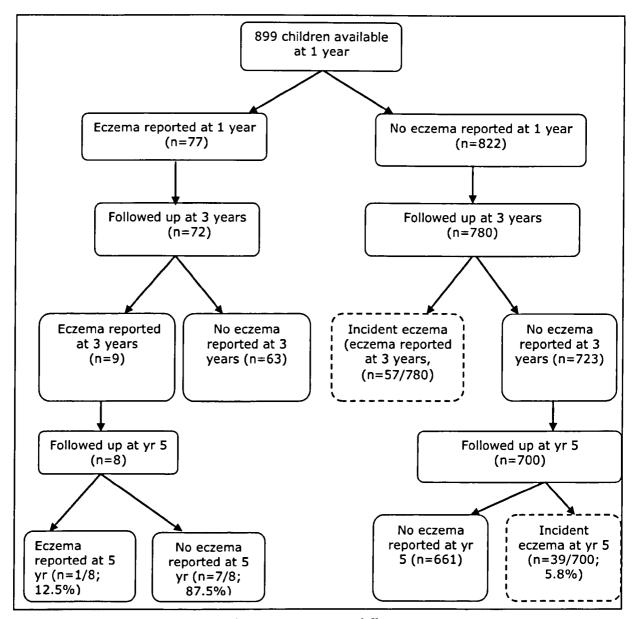


Figure 5.2 Eczema reporting between one and five years

Again, of the rhinitis-free cohort at age three who were followed up to age five (n=798), incident rhinitis was reported in 3.9% (31/798) of the children. Of the 50 children with reported rhinitis ever at age three who were successfully followed-up, 9 (18%) still had persistent rhinitis and 41 (82%) did not (Figure 5.3).

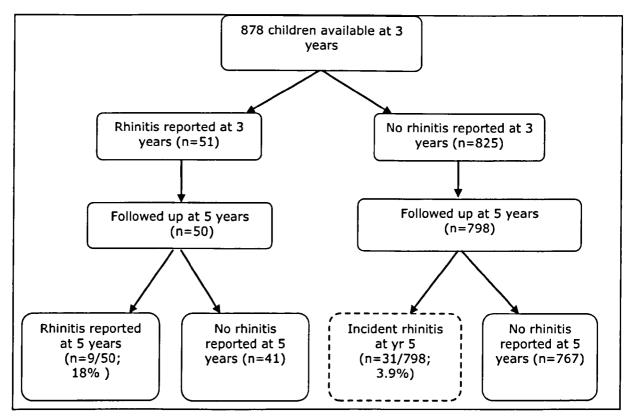


Figure 5.3 Rhinitis reporting between three and five years

Similarly, of the children with no sensitization at the age of three followed up at age five (n=766), incident sensitization to either *D. pteronyssinus* or cockroach allergen between ages three and five was found in 2.0% (15/766) (Figure 5.4). However, of the 72 children who were skin test positive for these allergens at age three, and were successfully followed-up, only 1 (1.4%) remained sensitized at age five and the rest 71 (98.6%) were not (Figure 5.4).

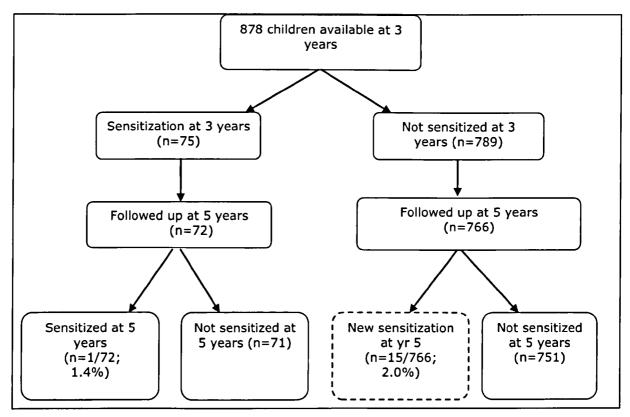


Figure 5.4 Patterns of skin sensitisation between three and five years

5.2.3 Associations between early sensitization and incident allergic symptoms

Sensitization at the age of three increased the risk of incident wheeze, eczema and rhinitis between ages three and five, and reached statistical significance for new onset eczema (OR, 2.49; 95% CI, 1.04, 5.95, p=0.03) and rhinitis (OR, 2.54; 95% CI, 1.00, 6.45, p=0.04) (Table 5.1). The risk of incident wheeze was increased (OR, 1.45; 95% CI, 0.54, 3.84, p=0.46), but the confidence interval was wide and significance not reached (Table 5.1).

Table 5.1 OR for incident wheeze, eczema and rhinitis in relation to skinsensitization at the age of three

	Any sensitization at year three [†]					
New	Over all	Yes	Crude	P-value		
symptoms	N (%)	n (%)	OR (95%CI)			
at age 5						
Wheeze	63 (9.2)	5 (8.2)	1.45 (0.54,3.84)	0.46		
Eczema	61 (8.9)	7 (11.5)	2.49 (1.04,5.95)	0.03		
Rhinitis	71 (9.0)	6 (8.5)	2.54 (1.00,6.45)	0.04		

[†]Sensitization to either *D. pteronyssinus* or cockroach allergen

5.2.4 Associations between urban and rural residence and incidence of outcomes

The reported new-onset symptoms and sensitization to any allergen did not differ by place of residence, however, slightly more rural than urban children reported incident outcomes between ages three and five, none of these comparisons, however, reached statistical significant (Table 5.2).

Incident	Overall	Urban	Rural	Crude OR	p-
Outcome	n (%)	Yes n (%)	Yes n	(95% CI)	value
			(%)		
Wheeze (N=676)	40 (5.9)	2 (2.6)	38 (6.4)	0.39 (0.09,1.64)	0.18
Eczema (N=700)	39 (5.8)	2 (2.4)	37 (6.0)	0.38 (0.09,1.62)	0.17
Rhinitis (N=798)	31 (3.9)	2 (2.0)	29 (4.2)	0.48 (0.11,2.03)	0.30
Any sensitization †	15 (2.0)	1 (1.1)	14 (2.1)	0.54 (0.07,4.15)	0.55
(N=766)					

Table 5.2 Incidence of the outcomes by area of residence

[†] Sensitization to either *D. pteronyssinus* or cockroach allergen

5.2.5 Distribution of potential confounders with incident disease outcomes

5.2.5.1 Association between demographic and lifestyle risk factors with incident wheeze, eczema, rhinitis and sensitization

Table 5.3 to Table 5.6 show the distribution of various potential early life confounders measured in the first year of life on the incidence of wheeze, eczema, rhinitis and sensitization between ages three and five. Borderline significant inverse associations were seen between incident wheeze and increasing household size (ORs [95% CIs], 0.68 [0.30, 1.58] for 4-6 people and 0.37 [0.13, 1.04] for 7+ people, compared to 1-3 number of people; p for trend=0.05), but not with the other outcomes (Table 5.3). The other early life risk factors including demographic variables, parental history of allergic diseases, child's birth weight, breast feeding and vaccination status, indoor cooking and other household and life style risk factors were not associated with any of the incident reported outcomes, or sensitization (Table 5.3 to Table 5.6).

Table 5.3 Distribution of potential confounders in the first year of life in

	Wheeze never up to age 3 (N=676)					
Variables	Overall	n (%)new	Crude OR	P-		
	<u>N (%)</u>	wheeze	(95% CI)	value		
Residence						
Urban	78 (11.5)	2 (2.6)	0.39 (0.09,1.64)	0.18		
Rural	598 (88.5)	38 (6.4)	1			
Child's gender						
Male	336 (49.7)	24 (7.1)	1.56 (0.81,2.99)	0.18		
Female	340 (50.3)	16 (4.7)	1			
Maternal education						
Formal	121 (17.9)	10 (8.3)	1.58 (0.75,3.32)	0.23		
Non formal	555 (82.1)	30 (5.4)	1			
Low birth weight						
Low birth weight	28 (6.2)	3 (10.3)	2.44 (0.68,8.81)	0.16		
Normal	427 (93.9)	20 (4.7)	1			
Cough reported at yr 1	、					
Yes	390 (57.7)	32 (8.2)	3.11 (1.40,6.87)	<0.01		
No	286 (42.3)	8 (2.8)	1			
Fast breathing at yr 1						
Yes	218 (32.3)	21 (9.6)	2.46 (1.29,4.70)	<0.01		
No	458 (67.8)	19 (4.2)	1			
Fever reported at yr 1	、					
Yes	513 (75.9)	38 (7.4)	6.44 (1.52,27.27)	<0.01		
No	163 (24.1)	2 (1.2)	1			
Exclusive breast	()					
feeding at 2 mo						
Yes	565 (83.8)	36 (6.4)	1.79 (0.62,5.13)	0.27		
No	109 (16.2)	4 (3.7)	1			
Vaccination at 2 mo						
Yes	393 (58.3)	15 (5.3)	1.20 (0.62,2.33)	0.58		
Νο	281 (41.7)	25 (6.4)	1			
Parental allergic history						
Yes	33 (4.9)	1 (3.0)	0.48 (0.06,3.64)	0.47		
No	643 (95.1)	39 (6.1)	1			
Insecticide use in the						
home						
Yes	559 (82.7)	34 (6.1)	1.20 (0.49,2.92)	0.69		
Νο	117 (17.3)	6 (5.1)	1			

relation to incident wheeze between ages 3 and 5

	Wheeze never up to age 3 (N=676)				
Variables	Overall	n	Crude OR	P-	
	N (%)	(%)new	(95% CI)	value	
		wheeze			
Household size 1-3	87 (12.9)	8 (9.2)	1	0.14	
4-6	370 (54.7)	24 (6.5)	0.68 (0.30,1.58)	0.051	
7+	219 (32.4)	8 (3.7)	0.37 (0.13,1.04)		
No of older siblings				0.13	
0	96 (14.2)	6 (6.3)	1	0.14†	
1-3	366 (54.1)	27 (7.4)	1.19 (0.48,2.99)		
4-10	214 (31.7)	7 (3.3)	0.51 (0.17,1.56)		
Child's sleeping place				0.15	
Bed/platform	52 (7.7)	3 (5.8)	1		
Floor	291 (43.1)	23 (7.9)	1.40 (0.40,4.86)		
Grass matting	332 (49.2)	14 (4.2)	0.72 (0.20,2.60)		
Indoor cooking					
Yes	549 (81.2)	33 (6.0)	1.10 (0.47,2.54)	0.83	
No	127 (18.8)	7 (5.5)	1		
Indoor kerosene use					
Yes	77 (11.4)	6 (7.8)	1.40 (0.57,3.47)	0.46	
No	599 (88.6)	34 (5.7)	1		
Smoking in the house at yr 3					
Yes	85 (12.6)	2 (2.4)	0.35 (0.08,1.49)	0.14	
No	591 (87.4)	38 (6.4)	1		
Antibiotic use at yr 3					
Yes	183 (27.1)	11 (6.0)	1.02 (0.50,2.09)	0.95	
No	493 (72.9)	29 (5.9)	1		
Type of roof					
Thatched roof	528 (78.1)	31 (5.9)	0.96 (0.45,2.07)	0.92	
corrugated iron sheet	148 (21.9)	9 (6.1)	1		

Table 5.3 (continued)

† p value for trend

	Eczema never up to age 3 (N=700)				
Variables	Overall	n	Crude OR	-P-	
	N (%)	(%)new	(95% CI)	value	
		eczema	·····	<u>.</u>	
Residence					
Urban	84 (12.0)	2 (2.4)	0.38 (0.09,1.62)	0.17	
Rural	676 (88.0)	37 (6.0)	1		
Child's gender					
Male	362 (51.7)		0.88 (0.46,1.68)	0.70	
Female	338 (48.3)	19 (5.3)	1		
Maternal education					
Formal	133 (19.0)	8 (6.0)	1.11 (0.50,2.47)	0.80	
Informal	567 (81.0)	31 (5.5)	1		
Low birth weight					
(<2.5kg) vs. normal			(- (())		
Low birth	37 (7.8)	2 (5.4)	0.78 (0.18,3.41)	0.74	
weight		()	4		
Normal	440 (92.2)	30 (6.8)	1		
Cough reported at yr					
1			4	0.50	
Yes	436 (62.3)	26 (6.0)	1.22 (0.62,2.43)	0.56	
No	264 (37.7)	13 (4.9)	1		
Fast breathing at yr 1			4 4 5 (0 50 2 2 4)	0.00	
Yes	264 (37.7)	16 (6.1)	1.16 (0.60,2.24)	0.66	
No	436 (62.3)	23 (5.3)	1		
Fever reported at yr 1			4 52 (0 62 2 72)	0.24	
Yes	550 (78.6)	33 (6.0)	1.53 (0.63,3.73)	0.34	
No	150 (21.4)	6 (4.0)	1		
Exclusive breast					
feeding at 2 mo		24 (5 2)	0 70 (0 74 1 94)	0.58	
Yes	592 (84.7)		0.79 (0.34,1.84)	0.50	
No	107 (15.3)	7 (6.5)	1		
Vaccination at 2 mo		20 (4 0)		0.20	
Yes	415 (59.4)	20 (4.8)	0.75 (0.39,1.44)	0.38	
No	284 (40.6)	18 (6.3)	1		
Insecticide use in the					
home		26 (6 2)		0.14	
Yes	581 (83.0)			0.11	
No	119 (17.0)	3 (2.5)	1	0.07	
Household size			4	0.33	
1-3	81 (11.6)	6 (7.4)		0.70	
4-6	403 (57.6)	18 (4.5)	0.58 (0.22,1.52)		
7*	216 (30.9)	15 (6.9)	0.93 (0.35,2.50)		

relation to incident eczema	between	ages	3 and 5	,
-----------------------------	---------	------	---------	---

.

	Eczema never up to age 3 (N=700)			
Variables	Overall	n	Crude OR	P-
	N (%)	(%)new eczema	(95% CI)	value
No of older siblings				0.84
0	94 (13.4)	4 (4.3)	1	0.68†
1-3	397 (56.7)	23 (5.8)	1.38 (0.47,4.11)	
4-10	209 (29.9)	12 (5.7)	1.37 (0.43,4.38)	
Child's sleeping place				0.43
Bed/platform	52 (7.4)	1 (1.9)	1	
Floor	309 (44.2)	16 (5.2)	2.78 (0.36,21.6)	
Grass matting	338 (48.4)	21 (6.2)	3.38 (0.44,25.8)	
Indoor cooking				
Yes	568 (81.1)	34 (6.0)	1.62 (0.62,4.22)	0.32
Νο	132 (18.9)	5 (3.8)	1	
Indoor kerosene use				
Yes	77 (11.0)	3 (3.9)	0.66 (0.20,2.20)	0.50
Νο	623 (89.0)	36 (5.8)	1	
Smoking in the house at yr 3				
Yes	89 (12.7)	3 (3.4)	0.56 (0.17,1.85)	0.33
Νο	611 (87.3)	36 (5.9)	1	
Antibiotic use at yr 3				
Yes	200 (28.6)	16 (8.0)	1.80 (0.93,3.50)	0.08
Νο	500 (71.4)	23 (4.6)	1	
Type of roof				
Thatched roof	542 (77.4)	32 (5.9)	1.35 (0.59,3.13)	0.48
corrugated iron sheet	158 (22.6)	7 (4.4)	1	

Table 5.4 (Continued)

† p value for trend

Table 5.5 Distribution of potential confounders in the first year of life in

	Rhinitis never at the age of 3 (N=798)					
Variables	Overall N (%)	n (%)new rhinitis	Crude OR (95% CI)	p-value		
Residence						
Urban	99 (12.4)	2 (2.0)	0.48 (0.11,2.03)	0.31		
Rural	699 (87.6)	29 (4.2)	1			
Child's gender						
Male	406 (50.9)	18 (4.4)	1.35 (0.65,2.80)	0.41		
Female	392 (49.1)	13 (3.3)	1			
Maternal education						
Formal	146 (18.3)	3 (2.1)	0.47 (0.14,1.56)	0.21		
Informal	652 (81.7)	28 (4.3)	1			
Low birth weight						
Low birth weight	39 (7.2)	1 (2.6)	0.71 (0.09,5.48)	0.74		
Normal	504 (92.8)	18 (3.6)				
Cough reported at yr 1						
Yes	485 (60.8)	22 (4.5)	1.60 (0.73,3.54)	0.24		
Νο	313 (39.2)	9 (2.9)				
Fast breathing at yr 1						
Yes	296 (37.1)	14 (4.7)	1.42 (0.69,2.92)	0.34		
No	502 (62.9)	17 (3.4)	1			
Fever reported at yr 1						
Yes	625 (78.3)	29 (4.6)	4.16 (0.98,17.70)	0.04		
Νο	173 (21.7)	2 (1.2)	1			
Exclusive breast feeding at 2 mo						
Yes	670 (84.3)	26 (3.9)	0.97 (0.36,2.57)	0.95		
Νο	125 (15.7)	5 (4.0)				
Vaccination at 2 mo						
Yes	470 (59.1)	17 (3.6)	0.83 (0.40,1.72)	0.62		
No	325 (40.9)	14 (4.3)	1			
Parental allergic history						
Yes	48 (6.0)	3 (6.3)	1.71 (0.50,5.88)	0.38		
No	750 (94.0)	28 (3.7)	1			
Insecticide use in the home						
Yes	647 (83.3)	22 (3.4)	0.54 (0.23,1.24)	0.14		
No	130 (16.7)	8 (6.2)	1			

relation to incident rhinitis between ages 3 and 5

	Rhinitis never at the age of 3 (N=798)					
Variables	Overall N (%)	n (%)new rhinitis	Crude OR (95% CI)	p-value		
Household size			<u> </u>	0.17		
1-3	94 (12.1)	4 (4.3)	1	0.23†		
4-6	435 (56.0)	12 (2.8)	0.64 (0.20,2.03)			
7*	248 (31.9)	14 (5.7)	1.35 (0.43,4.21)			
No of older siblings				0.17		
0	105 (13.5)	3 (2.9)	1	0.10+		
1-3	431 (55.5)	13 (3.0)	1.06 (0.30,3.78)			
4-10	241 (31.0)	14 (5.8)	2.10 (0.59,7.49)			
Child's sleeping place				0.13		
Bed/platform	61 (7.9)	2 (3.3)	1			
Floor	329 (42.4)	18 (5.5)	1.71 (0.38,7.58)			
Grass matting	386 (49.7)	10 (2.6)	0.78 (0.17,3.68)			
Indoor cooking						
Yes	630 (81.1)	24 (3.8)	0.93 (0.37,2.32)	0.88		
No	147 (18.9)	6 (4.1)	1			
Indoor kerosene use						
Yes	87 (11.2)	5 (5.8)	1.62 (0.60,4.36)	0.33		
No	690 (88.8)	25 (3.6)	1			
Smoking in the house at yr 3						
Yes	99 (12.4)	4 (4.0)	1.05 (0.36,3.06)	0.93		
Νο	699 (87.6)	27 (3.9)	1			
Antibiotic use at yr 3						
Yes	225 (28.2)	9 (4.0)	1.04 (0.47,2.30)	0.92		
No	573 (71.8)	22 (3.8)	1			
Type of roof						
Thatched roof	609 (78.0)	24 (3.9)	1.14 (0.46,2.82)	0.79		
corrugated iron sheet	172 (22.0)	6 (3.5)	1			

Table 5.5 (Continued)

† p value for trend

Table 5.6 Distribution of potential confounders in the first year of life in

			to age 3 (N=766)	
Variables	Overall	n (%) new	Crude OR	p-
	<u>N (%)</u>	sensitization	(95% CI)	value
Residence				
Urban	89 (11.6)	1 (1.1)	0.54 (0.07,4.15)	0.55
Rural	677 (88.4)	14 (2.1)	1	
Child's gender				
Male	390 (50.9)	8 (2.1)	1.10 (0.40,3.08)	0.85
Female	376 (49.1)	7 (1.9)	1	
Maternal education	• •			
Formal	146 (19.1)	2 (1.4)	0.65 (0.14,2.91)	0.57
Informal	620 (80.9)	13 (2.1)	1	
Cough reported at yr 1				
Yes	474 (62.0)	8 (1.7)	0.70 (0.25,1.94)	0.49
No	291 (38.0)	7 (2.4)	1	
Fast breathing at yr 1				
Yes	283 (37.0)	6 (2.1)	1.14 (0.40,3.24)	0.80
No	483 (63.1)	9 (1.9)	1	
Fever reported at yr 1				
Yes	607 (79.4)	9 (1.5)	0.38 (0.13,1.09)	0.06
No	158 (20.7)	6 (3.8)	1	
Exclusive breast feeding				
at 2 mo	C 40 (04 0)	11 (1 7)	0 64 (0 10 2 25)	0.50
Yes	648 (84.9)	11 (1.7)	0.64 (0.18,2.35) 1	0.50
No Monat 2 mo	115 (15.1)	3 (2.6)	T	
Vaccination at 2 mo	448 (58.7)	8 (1.8)	0.94 (0.32,2.73)	0.90
Yes No	315 (41.3)	6 (1.9)	1	0.90
Parental allergic history	515 (41.5)	0 (1.5)	1	
Yes	49 (6.4)	1 (2.0)	1.05 (0.13,8.13)	0.97
No	717 (93.6)	14 (2.0)	1	
	/1/ (95.0)	14 (2.0)	-	
Insecticide use in the				
home	(17 (02 0)	14 (2 2)	2.93 (0.38,22.52)	0.28
Yes	617 (82.9)	14 (2.3)	•	0.20
No	127 (17.1)	1 (0.8)	1	
Household size				0.46
1-3	88 (11.8)	1 (1.1)	1	0.23
4-6	415 (55.8)	7 (1.7)	1.49 (0.18,12.32)	
4 0 7 ⁺	241 (32.4)	7 (2.9)	2.60 (0.31,21.59)	

relation to incident sensitization between ages 3 and 5

	Not sensitized up to age 3 (N=766)				
Variables	Overall N (%)	n (%) new sensitizatio	Crude OR (95% CI)	p- value	
No of older siblings		<u> </u>		0.76	
0	98 (13.2)	2 (2.0)	1	0.62†	
1-3	411 (55.2)	7 (1.7)	0.83 (0.17,4.07)		
4-10	235 (31.6)	6 (2.8)	1.26 (0.25,6.36)		
Child's sleeping place				0.96	
Bed/platform	57 (7.7)	1 (1.8)	1		
Floor	315 (42.3)	6 (1.9)	1.09 (0.13,9.23)		
Grass matting	372 (50.0)	8 (2.2)	1.23 (0.15,10.05)		
Indoor cooking		, ,			
Yes	607 (81.6)	12 (2.0)	0.90 (0.25,3.24)	0.87	
No	137 (18.4)	3 (2.2)	1		
Indoor kerosene use					
Yes	81 (10.9)	1 (1.2)	0.58 (0.08,4.47)	0.60	
No	663 (89.1)	14 (2.1)	1		
Smoking in the house					
at yr 3	102 (12 4)	2 (2 0)	1 00 (0 22 4 40)	0.99	
Yes	102 (13.4)	2 (2.0)	1.00 (0.22,4.49)	0.99	
No Antibiatio y an at yr 2	662 (86.7)	13 (2.0)	1		
Antibiotic use at yr 3	221 (28.0)	4 (1 0)	0.89 (0.28,2.83)	0.85	
Yes No	221 (28.9) 543 (71.1)	4 (1.8) 11 (2.0)	0.89 (0.28,2.85)	0.05	
	543 (71.1)	11 (2.0)	1		
Type of roof Thatched roof	584 (78.0)	12 (2.2)	1.86 (0.41,8.32)	0.41	
corrugated iron sheet	165 (22.0)	2 (1.2)	1	0.41	

Table 5.6 (continued)

† p value for trend

5.2.5.2 Early life symptoms of respiratory tract infections and association with incident wheeze, eczema, and rhinitis

Table 5.7 shows the distribution of the potential confounders, early life symptoms of respiratory infections (cough, fever and fast breathing), and their association with incident wheeze, eczema and rhinitis between ages three and five. Incident wheeze was significantly increased in those who reported cough (OR, 3.11; 95% CI, 1.40, 6.87, p<0.01), fever (OR, 6.44; 95% CI, 1.52, 27.27, p<0.01), and fast breathing (OR, 2.46; 95% CI, 1.29, 4.70, p<0.01) in the first year of life (Table 5.7). These symptoms of respiratory tract infections in the first year of life were all positively related, though not significantly so, with incident eczema (Table 5.7). Only reported fever at year one was significantly associated with incident rhinitis (OR, 4.16; 95% CI, 0.98, 17.70, p=0.04); the symptoms of cough and fast breathing were associated with slightly increased risks of incident rhinitis although ORs were not significant (Table 5.7).

Table 5.7 Symptoms of respiratory tract infections in the first year of

	Whe	eze never u	p to age 3 (N=676	5)
Variables	Overall	n (%)new	Crude OR	P-value
····	<u>N (%)</u>	wheeze	(95% CI)	
Cough reported at yr 1				
Yes	390 (57.7)	32 (8.2)	3.11 (1.40,6.87)	<0.01
No	286 (42.3)	8 (2.8)	1	
Fast breathing at yr 1				
Yes	218 (32.3)	21 (9.6)	2.46 (1.29,4.70)	<0.01
Νο	458 (67.8)	19 (4.2)	1	
Fever reported at yr 1	-			
Yes	513 (75.9)	38 (7.4)	6.44 (1.52,27.27)	<0.01
Νο	163 (24.1)	2 (1.2)	1	
			p to age 3 (N=700)
Variables	Overall	n (%)new	Crude OR	P-value
	N (%)	eczema	(95% CI)	
Cough reported at yr 1				
Yes	436 (62.3)	26 (6.0)	1.22 (0.62,2.44)	0.56
No	264 (37.7)	13 (4.9)	1	
Fast breathing at yr 1				
Yes	264 (37.7)	16 (6.1)	1.16 (0.60,2.24)	0.66
No	436 (62.3)	23 (5.3)	1	
Fever reported at yr 1				
Yes	550 (78.6)	33 (6.0)	1.53 (0.63,3.73)	0.34
No	150 (21.4)	6 (4.0)	1	
Variables	Rhinit	is never at	the age of 3 (N=79	
	Overall	n (%)new	Crude OR	p-value
	N (%)	rhinitis	(95% CI)	
Cough reported at yr 1				0.04
Yes	485 (60.8)	22 (4.5)	1.60 (0.73,3.54)	0.24
No	313 (39.2)	9 (2.9)	1	
Fast breathing at yr 1				
Yes	296 (37.1)	14 (4.7)	1.42 (0.69,2.92)	0.34
Νο	502 (62.9)	17 (3.4)	1	
Fever reported at yr 1				
Yes	625 (78.3)	29 (4.6)	4.16 (0.98,17.70)	0.04
No	173 (21.7)	2 (1.2)	1	

life in relation to incident wheeze, eczema and rhinitis

Early life symptoms of respiratory tract infections and association with sensitization Table 5.8 shows associations between symptoms of respiratory tract infections as measured in the first year of life in the disease-free cohort at age three (negative skin tests at age 3), and incident sensitization between ages three and five. Reported fever at year one was negatively associated (borderline significant) with new sensitization (OR, 0.38; 95% CI, 0.13, 1.09, p=0.06), however symptoms of cough, and fast breathing were not significantly associated with sensitization (Table 5.8).

Table 5.8 Symptoms of respiratory tract infections in the first year oflife in relation to incident sensitization

	Not sensitized at age 3 (N=766)					
Variables	Overall N (%)	n (%) new sensitization	Crude OR (95% CI)	p- value		
Cough reported at yr 1						
Yes	474 (62.0)	8 (1.7)	0.70 (0.25,1.94)	0.49		
No	291 (38.0)	7 (2.4)	1			
Fast breathing at yr 1						
Yes	283 (37.0)	6 (2.1)	1.14 (0.40,3.24)	0.80		
No	483 (63.1)	9 (1.9)	1			
Fever reported at yr 1						
Yes	607 (79.4)	9 (1.5)	0.38 (0.13,1.09)	0.06		
No	158 (20.7)	6 (3.8)	1			

5.2.6 Longitudinal associations between paracetamol use and incidence of allergic outcomes

5.2.6.1 Paracetamol exposure up to age three

Paracetamol use in the first three years of life was commonly reported, with 18% reported use at age one but not three, 23% at age three but not one and 21% at both time points. In terms of early life paracetamol dose, almost 7% of the children were classified as heavily exposed (use in past month at both time points), and 33% of them were exposed to medium dose (use in past month at age one or three).

5.2.6.2 Incident wheeze in relation to paracetamol use

In univariate analysis, incident wheeze was increased in relation to persistent exposure (reported use at ages one and three), (crude OR, 95% CI, 2.25; 0.98, 5.18), and exposure at year three but not at year one (crude OR, 95% CI, 1.77; 0.79, 3.98) compared with non users, but overall significance was not reached (overall p=0.11) (Table 5.9). A significantly increased risk, however, was seen between early life paracetamol dose and incident wheeze (crude OR, 95% CI, 4.14; 1.56, 11.06 for heavy exposure compared to low exposure in past month, overall p=0.04, p trend=0.06) (Table 5.9).

Table 5.9 Univariate analysis of incident wheeze in relation to early life

Wheeze never up to age 3					5)
Exposure at age and 3	01	verall (%)	n (%)new wheeze	Crude OR (95% CI)	P- value
Early life paraceta use [*]	imol				0.11 [‡]
Never exp	osed 287	(42.5)	13 (4.5)	1	
Exposed at	t year				
1, but not	•	(17.8)	4 (3.3)	0.73 (0.23,2.78)	
Exposed at 3, but not	•	(22.9)	12 (7.7)	1 77 (0 70 2 09)	
Persistentl	•	(22.9) (16.9)	12 (7.7)	1.77 (0.79,3.98) 2.25 (0.98,5.18)	
exposed	,	(/			
Early life paraceta	imol				0.04 [‡]
dose [†]	476	(64 5)	22 (E 2)	1	0.06 [¶]
Low expos	ure 436	(64.5)	23 (5.3)	-	0.00"
Medium ex	posure 208	(30.8)	11 (5.3)	1.00 (0.48,2.10)	
Heavy exp	osure 32	(4.7)	6 (18.8)	4.14 (1.56,11.06)	

exposure to paracetamol

*Overall p-value (likelihood ratio test).

¹ P value for trend, computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

* Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

⁺ Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes.

In multivariate analysis following adjustment for *a priori* confounders, associations were little changed. Overall, the association with the early life paracetamol use variable was not significant (p=0.18). Further adjustment for symptoms of respiratory tract infections and potential confounders in Table 5.3 brought the odds ratios for exposed at age three not one, and for persistent exposed, slightly closer to one, and the overall p value was 0.26 (Table 5.10). The positive association between early life paracetamol dose and incident wheeze remained significant with ORs little changed following control for *a priori* confounders (adjusted OR, 95% CI, 4.08; 1.51, 11.07, for heavy exposure versus low exposure in past month, overall p=0.04, and p trend=0.05) (Table

5.10). Further adjustment for infant respiratory tract infections slightly reduced the OR for heavy exposure (adjusted OR, 95% CI, 3.64; 1.34, 9.90, relative to low exposure) and there was no significant trend (p trend=0.11), but overall significance remained (p=0.05) (Table 5.10). Further adjustment for potential confounders in Table 5.3 did not materially alter the strength and the overall significance of the associations.

Table 5.10 Multivariate analysis of incident wheeze in relation to early life use of paracetamol

· · · · · · · · · · · · · · · · · · ·		Wheeze never up to age 3 (N=676)				
Exposure at ages 1 and 3		Adjusted OR [*] (95% CI)	P- value	Further adjusted OR [↑] (95% CI)	P- value	
Early life parac use [£]	etamol		0.18*		0.26 [‡]	
Never e	xposed	1		1		
1, but r Exposed	d at year lot at yr 3 d at year lot at yr 1	0.73 (0.23,2.31)		0.62 (0.20,1.96)		
Persiste	ntly	1.63 (0.72,3.70) 2.09 (0.90,4.86)		1.49 (0.65,3.39) 1.72 (0.74,4.03)		
Early life parac dose ^{\$}			0.04 [‡]		0.05 [‡]	
Low exp	osure	1	0.05¶	1	0.11 [¶]	
Medium exposur		1.04 (0.50,2.19)		0.92 (0.44,1.95)		
•	xposure	4.08 (1.51,11.07)		3.64 (1.34,9.90)		

*ORs adjusted for child's gender, area of residence and maternal education.

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections in the first year of life.

*Overall p-value (likelihood ratio test).

¹ P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

[£]Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

*Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes

5.2.6.3 Incident eczema in relation to paracetamol use

In the univariate analysis, early life paracetamol use was significantly associated with incident eczema between ages three and five such that ORs for all exposed groups were significantly increased relative to the never exposed (overall p<0.01) (Table 5.11). The highest OR was in relation to persistent exposure (crude OR, 95% CI, 4.17; 1.53, 11.36), and almost equally high for exposure at year three but not at year one (OR=3.94; 95% CI 1.47, 10.58), and exposure at year one but not year three (OR=3.12; 95% CI 1.06, 9.19) compared with never users, overall p<0.01) (Table 5.11). The early life paracetamol dose variable was also associated significantly with increased risk of incident eczema (crude OR, 95% CI, 1.73; 0.49, 6.19 for heavy dose exposure, 2.42; 1.23, 4.77 for medium dose exposure, overall p=0.04, p trend=0.04), with higher effects seen for medium exposure than heavy (Table 5.11).

		Eczema never up to age 3 (N=700)			
Exposure at ages 1 and 3		Overall N (%)	n (%)new eczema	Crude OR (95% CI)	P- value
Early use [*]	life paracetamol				<0.01*
	Never exposed	275 (39.3)	6 (2.2)	1	
	Exposed at year 1, but not at yr 3	123 (17.6)	8 (6.5)	3.12 (1.06,9.19)	
	Exposed at year 3, but not at yr 1	161 (23.0)	13 (8.1)	3.94 (1.47,10.58)	
	Persistently exposed	141 (20.1)	12 (8.5)	4.17 (1.53,11.36)	
Early dose [†]	life paracetamol				0.04 [‡]
	Low exposure	423 (60.4)	16 (3.8)	1	0.04¶
	Medium exposure Heavy exposure	230 (32.9) 47 (6.7)	20 (8.7) 3 (6.4)	2.42 (1.23,4.77) 1.73 (0.49,6.19)	

use of paracetamol

*Overall p-value (likelihood ratio test).

[¶] P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

* Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).
 * Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes.

After adjusting for *a priori* confounders, paracetamol use in the first three years of life was still significantly associated with an increased risk of incident eczema (overall p=0.01;Table 5.12). The odds ratio was still highest in the persistently exposed category, (adjusted OR, 3.96; 95% CI, 1.44, 10.89) and still significantly increased in those exposed at age three but not one (adjusted OR 3.75; 95% CI, 1.39, 10.12) and in those exposed at age one but not age three (adjusted OR 3.11; 95% CI, 1.05, 9.18) compared with those never exposed (Table 5.12). Adjustment for respiratory tract infections only marginally reduced the strength of the associations, and overall statistical significance remained (overall p=0.02) (Table 5.12). Control for *a priori* confounders had very little

effect on the associations with early life paracetamol dose, with ORs little changed and overall significance unchanged (p=0.04) (Table 5.12). Further adjustment for symptoms of respiratory tract infections in the first year of life slightly reduced the strength of the associations, and overall non-significant (p=0.08) (Table 5.12).

Further adjustment for demographic, environmental and lifestyle variables in the first years of life, in Table 5.4, made little change to the odds ratio or the level of significance (Table 5.12).

Table 5.12 Multivariate analysis of incident eczema in relation to early

life	paracet	amo	luse
------	---------	-----	------

	Eczema never up to age 3 (N=700)				
Exposure at age 1 and 3	Adjusted OR [*] (95% CI)	P- value	Further adjusted OR [†] (95% CI)	P- value	
Early life paracetamol use [£]		0.01*		0.02 [‡]	
Never exposed	1		1		
Exposed at year 1, but not at yr 3	3.11 (1.05,9.18)		3.01 (1.00,9.04)		
Exposed at year 3, but not at yr 1	3.75 (1.39,10.12)		3.70 (1.37,10.01)		
Persistently exposed	3.96 (1.44,10.89)		3.82 (1.36,10.73)		
Early life paracetamol dose ^{\$}		0.04 [*]		0.08 [‡]	
Low exposure	1	0.05 [¶]	1	0.06 [¶]	
Medium exposure Heavy exposure	2.39 (1.21,4.71) 1.65 (0.46,5.93)		2.31 (1.16,4.60) 1.59 (0.44,5.74)		

*ORs adjusted for child's gender, area of residence and maternal education

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections in the first year of life

^{*}Overall p-value (likelihood ratio test)

¹ P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

[£]Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

^{\$}Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes

5.2.6.4 Incident rhinitis in relation to paracetamol use

In the univariate analysis, early life paracetamol use was also associated with an increased risk of incident rhinitis between ages three and five. The magnitude of the odds ratios, all compared with never users, were higher for heavily exposed children (crude OR, 95% CI, 3.77; 1.24, 11.44) and those exposed at age three but not age one (OR, 95% CI, 4.04; 1.38, 11.82) than exposure at age one but not age three (OR, 95% CI, 2.85; 0.86, 9.52), (overall p=0.03; Table 5.13).

There was also a significant positive trend between paracetamol dose and incident rhinitis (crude OR, 95% CI, 2.08; 0.96, 4.50 for medium exposure, and 2.85; 0.90, 9.06 for heavy exposure vs. low exposure, p trend 0.03) (Table 5.13).

Table 5.13 Univariate analysis of incident rhinitis in relation to early life use of paracetamol

		Rhiniti	s never at	the age of 3 (N=7	98)
Exposure at ages 1 and 3		Overall N (%)	n (%) new rhinitis	Crude OR (95% CI)	P- vaiue
Early use [*]	life paracetamol				0.03 [‡]
	Never exposed	319 (40.0)	5 (1.6)	1	
	Exposed at year 1, but not at yr 3 Exposed at year	138 (17.3)	6 (4.4)	2.85 (0.86,9.52)	
	3, but not at yr 1 Persistently exposed	182 (22.8) 159 (19.9)	11 (6.0) 9 (5.7)	4.04 (1.38,11.82) 3.77 (1.24,11.44)	
Early dose⁺	life paracetamol				0.09 [‡]
	Low exposure	485 (60.8)	13 (2.7)	1	0.03 [¶]
	Medium exposure	258 (32.3)	14 (5.4)	2.08 (0.96,4.50)	
	Heavy exposure	55 (6.9)	4 (7.3)	2.85 (0.90,9.06)	

*Overall p-value (likelihood ratio test).

¹ P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

* Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

[†] Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes.

Adjusting for the *a priori* confounders made little change on the ORs for early life paracetamol use and overall significance remained (overall p=0.04) (Table 5.14). Further adjustment for symptoms of respiratory tract infections in the first year of life also reduced the odds ratios (adjusted OR, 95% CI, 3.10; 1.00,

9.57 for persistent exposure, 3.74; 1.27, 11.04 for exposure at age three but not one and 2.42; 0.72, 8.14 for exposure at age one but not three) compared to never users, and overall significance became borderline (overall p=0.07) (Table 5.14).

Following adjustment for *a priori* confounders, the significant dose-dependent trend between early life paracetamol use and incident rhinitis persisted (p trend=0.04) with little change to the ORs (Table 5.14). Further adjustment for respiratory tract infections, however, slightly reduced the strength of associations, and the significant trend became borderline (p for trend=0.07) (Table 5.14). Further adjustment for various potential confounders presented in Table 5.5 did not alter the odds ratio materially (Table 5.14).

Table 5.14 Multivariate analysis of incident rhinitis in relation to

Exposure at ages 1	Rhinitis nev	Rhinitis never at the age of 3 (N=798)			
and 3	Adjusted OR [*] (95% CI)	P- value	Further adjusted OR [↑] (95% CI)	P- value	
Early life paracetamol use [£]		0.04 [‡]		0.07 [‡]	
Never exposed	1		1		
Exposed at year 1, but not at yr 3 Exposed at year 3, but not at yr 1 Persistently exposed			2.42 (0.72,8.14) 3.74 (1.27,11.04) 3.10 (1.00,9.57)		
Early life paracetamol dose ^{\$}		0.10 [‡]		0.18 [‡]	
Low exposure	1	0.04¶	1	0.07 [¶]	
Medium exposure	e 2.07 (0.95,4.47)		1.90 (0.87,4.12)		
Heavy exposure	2.61 (0.82,8.39)		2.31 (0.72,7.46)		

paracetamol exposure early in life

*ORs adjusted for child's gender, area of residence and maternal education

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections in the first year of life

*Overall p-value (likelihood ratio test)

[¶] P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

[£]Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

^{\$}Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes

5.2.6.5 Incident sensitization in relation to paracetamol use

In univariate analysis, the effect of early life use of paracetamol on incident sensitization was not significant, with a non-significant increased risk seen in those exposed persistently compared to never users (crude OR, 95% CI, 1.78; 0.51, 6.25). However, the ORs for exposure at age three but not one (crude OR, 95% CI, 0.99; 0.23, 4.19) and exposure at age one but not three (crude OR,

95% CI, 0.87; 0.17, 4.54) were slightly closer to 1, and the overall p value was 0.76 (Table 5.15). Similarly, there was no significant dose-dependent association between early life paracetamol dose and incident sensitization, though higher odds ratios were found for the heavily exposed category (crude OR, 95% CI, 2.11; 0.44, 10.18) than for the medium exposed category (crude OR, 95% CI, 1.06; 0.34, 3.26) compared to low exposure, overall p=0.69, and p trend=0.48) (Table 5.15).

Table 5.15 Univariate analysis of sensitization in relation to paracetamolexposure early in life

		Not se	ensitized	up to age 3 (N=766	5)
Exposure at ages 1 and 3		Overall N (%)	n (%) new atopy	Crude OR (95% CI)	P- value
Early lif dose [†]	e paracetamol				0.76 [‡]
	Never exposed	290 (38.0)	5 (1.7)	1	
	Exposed at year 1, but not at yr 3	133 (17.4)	2 (1.5)	0.87 (0.17,4.54)	
	Exposed at year 3, but not at yr 1	176 (23.0)	3 (1.7)	0.99 (0.23,4.19)	
	Persistently exposed	165 (21.6)	5 (3.0)	1.78 (0.51,6.25)	
	e paracetamol				0.69 [*]
l	Low exposure	446 (58.4)	8 (1.8)	1	0.48 [¶]
I	Medium exposure	264 (34.6)	5 (1.9)	1.06 (0.34,3.26)	
H	Heavy exposure	54 (7.1)	2 (3.7)	2.11 (0.44,10.18)	

*Overall p-value (likelihood ratio test).

[¶] P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

* Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

[†] Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes.

In multivariate analyses adjusting for *a priori* confounders, the ORs for early life paracetamol use changed little (overall p=0.78) (Table 5.16). On further adjusted analysis for symptoms of respiratory tract infection at year one, the odds ratios increased for all exposure categories, in the expected direction, with higher effects seen for persistent exposure (further adjusted OR, 95% CI, 2.48; 0.63, 9.76) than exposure at age one or three alone. The confidence intervals however were wide and significance was not reached (overall p=0.59) (Table 5.16).

The ORs for early life paracetamol dose were also changed little on adjustment for *a priori* confounders, and the overall p was 0.75 (Table 5.16). Adjustment for respiratory tract infections markedly increased the odds ratio for both heavy (further adjusted OR, 95% CI, 2.59; 0.50, 13.29) and medium exposure categories (further adjusted OR, 95% CI, 1.26; 0.40, 4.04) compared to low, but the association remained non-significant (overall p=0.57, and p trend=0.31) (Table 5.16).

Adjustment for potential confounders in Table 5.6 did not alter the strength of the associations, or the level of significance (Table 5.16).

Table 5.16 Multivariate analysis of sensitization in relation to

Exposure at ages 1	Not sensi	tized up	to age 3 (N=766)	
and 3	Adjusted OR [*] (95% CI)	P- value	Further adjusted OR [†] (95% CI)	P- value
Early life paracetamol use [£]		0.78 [‡]		0.59 [‡]
Never exposed	1		1	
Exposed at year 1, but not at yr 3	0.85 (0.16,4.42)		1.13 (0.21,6.23)	
Exposed at year 3, but not at yr 1	0.98 (0.23,4.17)		1.09 (0.25,4.70)	
Persistently exposed	1.73 (0.49,6.11)		2.48 (0.63,9.76)	
Early life paracetamol		0.72 [‡]		0.57 [*]
dose ^{\$} Low exposure	1	0.51	1	0.31 [¶]
Medium exposure	1.05 (0.34,3.26)		1.26 (0.40,4.04)	
Heavy exposure	1.99 (0.41,9.70)		2.59 (0.50,13.29)	

paracetamol exposure early in life

*ORs adjusted for child's gender, area of residence and maternal education

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections in the first year of life

*Overall p-value (likelihood ratio test)

[¶] P value for trend computed for dose of paracetamol use in the past month: low exposure (never reported use in the past month), medium exposure (use in past month at age one or three), heavy exposure (use in past month at both time points).

[£]Early life paracetamol use: refers to use prior to the disease outcomes (i.e. first three years of life).

^{\$}Early life paracetamol dose: refers to dose of exposure in past month in first three years of life prior to disease outcomes

5.2.7 Cross-sectional analyses between paracetamol and allergic outcomes at age five

5.2.7.1 Prevalence of wheeze, eczema, rhinitis and sensitization at age five

Wheeze was reported at age five in 4.3% (37/852) of children, eczema in 4.2% (36/852), and rhinitis in 3.6% (31/852). Sensitization to any allergen (*D. pteronyssinus* and cockroach allergen) was found in 2.0% (17/855) of children at age five (Table 5.17). Only one child was sensitized to cockroach allergen, and merging was necessary with *D. Pteronyssinus* sensitization (Table 5.17). Wheeze was reported slightly more frequently in urban (4.8%) than rural (4.3%) areas, whilst eczema (3.8% in urban vs. 4.3% in rural), rhinitis (2.9% in urban vs. 3.8% in rural), and sensitization (1.9% in urban vs. 2.0% in rural) were more likely to be reported in rural than urban children. However, none of these differences were statistically significant (Table 5.17).

Table 5.17 Prevalence of allergic symptoms and sensitization by area of residence

Outcomes	Over all N (%)	Urban n (%)	Rural n (%)	Crude OR (95%CI)	P- value
Wheeze	37 (4.3)	5 (4.8)	32 (4.3)	1.12 (0.43,2.94)	0.82
Eczema	36 (4.2)	4 (3.8)	32 (4.3)	0.88 (0.31,2.56)	0.82
Rhinitis	31 (3.6)	3 (2.9)	28 (3.8)	0.76 (0.23,2.53)	0.65
Any sensitization⁺	17 (2.0)	2 (1.9)	15 (2.0)	0.96 (0.22,4.27)	0.96

N=852

[†]Sensitization to either *D. pteronyssinus* or cockroach allergen (N=855)

Figure 5.5 below summarises the prevalence of allergic symptoms and sensitization between age one and five and shows that the prevalence of each of the reported outcomes, and sensitization gradually decreased as the child grew up (Figure 5.5).

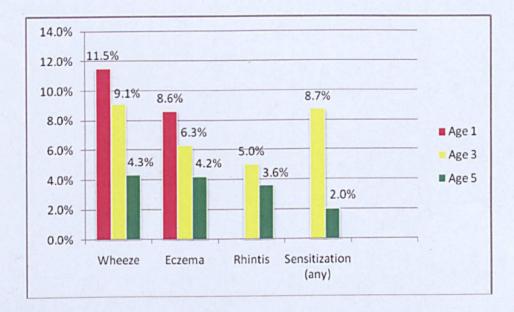


Figure 5.5 Prevalence of wheeze and allergic outcomes by age

5.2.7.2 Cross-sectional associations between allergic symptoms and sensitization at age five

Sensitization at age five increased the risk of reported eczema and rhinitis (OR, 95% CI, 3.11; 0.68, 14.21, p=0.12 for eczema, and 3.67; 0.80, 16.88, p=0.07 for rhinitis), and reached borderline significance for rhinitis but not eczema. No children with wheeze were sensitized, and therefore ORs could not be computed or further analysis performed (Table 5.18).

Table5.18 OR for wheeze and allergic outcomes in relation tosensitization at age five

	Any sensitization (N=855) ⁺						
Reported [–] symptoms*	Over all N (%)	Yes n (%)	Crude OR (95%CI)	P- value			
Wheeze	17 (2.0)	0 (0.0)	-	-			
Eczema	17 (2.0)	2 (11.7)	3.11 (0.68,14.21)	0.12			
Rhinitis	17 (2.0)	2 (11.8)	3.67 (0.80,16.88)	0.07			

[†]Sensitization to either *D. pteronyssinus* or cockroach allergen

*2 missing data on reported symptoms outcome

5.2.7.3 Distribution of potential confounders and allergic symptoms and sensitization at age five

The distribution of potential confounders measured at age five and their association with the prevalence of allergic symptoms and sensitization are shown in Table 5.19 to Table 5.22. The *a priori* confounders residence, child's gender and maternal education were not significantly associated with wheeze, eczema, rhinitis or sensitization. Maternal history of allergy was significantly associated with an increased risk of the reported outcome sensitization (OR, 95% CI, 5.37; 2.37, 12.18, p<0.01 for wheeze, 5.58; 2.45, 12.69, p<0.01 for eczema, 6.89; 2.96, 16.04, p<0.01 for rhinitis), and a borderline significant

increased risk of sensitization (OR, 95% CI, 3.26; 0.91, 11.77, p=0.06) (Table 5.19 to Table 5.22). Similarly, paternal history of allergy increased the risks of all outcomes, significantly so for eczema (OR, 95% CI, 5.91; 2.38, 14.67, p<0.01), and rhinitis (OR, 95% CI, 4.45; 1.60, 12.39, p<0.01) (Table 5.19 to Table 5.22). Child's use of antibiotic also increased the risks of wheeze, eczema, rhinitis and sensitization, and reached statistical significance for eczema, and borderline significance for rhinitis (OR, 95% CI, 2.47; 1.16, 5.28, p=0.02 for eczema, and 2.20; 0.96, 5.06, p=0.06 for rhinitis) (Table 5.19 to Table 5.22). The other potential confounders measured at year five including household size, siblingship, child's sleeping place, insecticide use at home, indoor cooking and charcoal use, smoking in the residential house, and type of roof were not significantly associated with any of the outcomes (Table 5.19 to Table 5.22).

Table 5.19 Distribution of potential confounders measured at the age of

	Overall	Wheeze	Wheeze	P- value
Variables	N (%)	Yes n (%)	Crude OR (95% CI)	
Residence*			<u> </u>	
Urban	105 (12.3)	5 (4.8)	1.12 (0.43,2.94)	0.82
Rural	747 (87.9)	32 (4.3)	1	
Child's gender*				
Male	434 (50.9)	23 (5.3)	1.61(0.82,3.19)	0.16
Female	418 (49.1)	14 (3.4)	1	
Maternal education*				
Formal	160 (18.8)	7 (4.4)	1.01 (0.45,2.34)	0.98
Informal	692 (81.2)	30 (4.3)	1	
Maternal history of allergy				
Yes	55 (6.5)	9 (16.4)	5.37 (2.37,12.18)	<0.01
Νο	797 (93.5)	28 (3.5)	1	
Paternal history of allergy				
Yes	39 (4.6)	3 (7.7)	1.90 (0.56,6.52)	0.29
No	813 (95.4)	34 (4.2)	1	
Household size				
1-6	484 (56.8)	22 (4.6)	1	0.74
7+	368 (43.2)	15 (4.1)	0.89 (0.46,1.75)	
No of older siblings				0.94
0	122 (14.3)	6 (4.9)	1	0.74*
1-3	463 (54.3)	20 (4.3)	0.87 (0.34,2.23)	
4-10	267 (31.3)	11 (4.1)	0.83 (0.30,2.30)	
Child's sleeping place				0.19
Bed	44 (5.2)	1 (2.3)	1	
Mattress	198 (23.2)	13 (6.6)	3.02 (0.38,23.95)	
Grass matting	610 (71.6)	23 (3.8)	1.68 (0.22,12.80)	
Insecticide use in the home				
Yes	570 (66.9)	24 (4.2)	0.91 (0.46,1.82)	0.79
No	282 (33.1)	13 (4.6)	1	

five in relation to reported wheeze at year five

Table 5.19 (continued)

Variables	Overall	Wheeze	Wheeze	P-	
variables	N (%)	Yes n (%)	Crude OR (95% CI)	value	
Indoor cooking					
Yes	630 (73.9)	30 (4.8)	1.54 (0.66,3.55)	0.31	
Νο	222 (26.1)	7 (3.2)	1		
Indoor charcoal use					
Yes	160 (18.8)	7 (4.4)	1.01 (0.44,2.34)	0.98	
Νο	692 (81.2)	30 (4.3)	1		
Smoking in the house					
Yes	103 (12.1)	4 (3.9)	0.88 (0.30,2.53)	0.81	
No	749 (87.9)	33 (4.4)	1		
Antibiotic use					
Yes	120 (14.1)	7 (5.8)	1.45 (0.62,3.38)	0.39	
No	732 (85.9)	30 (4.1)	1		
Roof type					
Thatched roof	648 (77.8)	26 (4.0)	0.66 (0.32,1.37)	0.26	
Corrugated iron sheet	185 (22.2)	11 (6.0)	1		

N=852

*Demographic variables collected at during pregnancy and at birth

* p value for trend

Table 5.20 Distribution of potential confounders measured at the age of

	Overall	Eczema	Eczema	p-
Variables	N (%)	Yes n	Crude OR	value
		(%)	(95% CI)	
Residence*				
Urban	105 (12.3)		0.88 (0.31,2.56)	0.82
Rural	747 (87.7)	32 (4.3)	1	
Child's gender*				
Male	434 (50.9)	• -	0.68 (0.34,1.33)	0.26
Female	418 (49.1)	21 (5.0)	1	
Maternal education*				
Formal	160 (18.8)	5 (3.1)	0.69 (0.26,1.80)	0.44
Informal	692 (81.2)	31 (4.5)	1	
Maternal history of allergy				
Yes	55 (6.5)	9 (16.4)	5.58 (2.45,12.69)	<0.01
No	797 (93.5)	27 (3.4)	1	
Paternal history of allergy	-			
Yes	39 (4.6)	7 (18.0)	5.91 (2.38,14.67)	<0.01
No	813 (95.5)	29 (3.6)	1	
Household size				
1-6	484 (56.8)	18 (3.7)	1	0.40
7+	368 (43.2)	18 (4.9)	1.33 (0.68,2.60)	
No of older siblings			• • •	0.30
0	122 (14.3)	2 (1.6)	1	0.31*
1-3	463 (54.3)		2.99 (0.69,12.96)	
4-10	267 (31.3)	12 (4.5)		
Child's sleeping place				0.50
Bed	44 (5.2)	1 (2.3)	1	
Mattress	198 (23.2)			
Grass matting	• •	• •	1.76 (0.23,13.36)	
Insecticide use in the home	010 (71.0)	21(313)	11/0 (0120/20100)	
Yes	570 (66.9)	25 (4.4)	1.13 (0.55,2.33)	0.74
	282 (33.1)	• •	1.15 (0.55,2.55)	0.7 1
No Tadaat eacking	202 (33.1)	11 (3.3)	1	
Indoor cooking	620 (72 0)	27 (1 2)	1.06 (0.49,2.29)	0.88
Yes	630 (73.9)			0.00
No	222 (26.1)	9 (4.1)	1	

five in relation to reported eczema at year five

Table 5.20 (continued)

	Overall	Eczema	Eczema	p-
Variables	N (%)	Yes n	Crude OR	value
		(%)	(95% CI)	
Indoor charcoal use				
Yes	160 (18.8)	4 (2.5)	0.53 (0.18,1.52)	0.23
No	692 (81.2)	32 (4.6)	1	
Smoking in the house				
Yes	103 (12.1)	2 (1.9)	0.42 (0.10,1.76)	0.22
No	749 (81.9)	34 (4.5)	1	
Antibiotic use				
Yes	120 (14.1)	10 (8.3)	2.47 (1.16,5.28)	0.02
No	732 (85.9)	26 (3.6)	1	
Roof type				
Thatched roof	648 (77.8)	30 (4.6)	1.45 (0.59,3.54)	0.41
Corrugated iron sheet	185 (22.2)	6 (3.2)	1	

N=852

* Demographic variables collected at during pregnancy and at birth

* p value for trend

	Overall	Rhinitis	Rhinitis	p-
Variables	N (%)	Yes n	Crude OR	value
		(%)	(95% CI)	
Residence*				
Urban	105 (12.3)	3 (2.9)	0.76 (0.23,2.53)	0.65
Rural	747 (87.7)	28 (3.8)	1	
Child's gender*				
Male	434 (50.9)	18 (4.2)	1.35 (0.65,2.79)	0.42
Female	418 (49.1)	13 (3.1)	1	
Maternal education*	160 (19 9)	6 (2.9)	1 04 (0 47 7 59)	0.03
Formal Informal	160 (18.8)	6 (3.8)	1.04 (0.42,2.58) 1	0.93
Maternal history of allergy	692 (81.2)	25 (3.6)	T	
Yes	55 (6.5)	9 (16.4)	6.89 (2.96,16.04)	<0.01
No	797 (93.5)	22 (2.8)	1	
Paternal history of allergy	,	()		
Yes	39 (4.6)	5 (12.8)	4.45 (1.60,12.39)	<0.01
No	813 (95.4)	26 (3.2)	1	
Household size	(,			
1-6	484 (56.8)	13 (2.7)	1	0.09
7+	368 (43.2)	18 (4.9)	1.86 (0.90,3.86)	
No of older siblings				0.23
0	122 (14.3)	4 (3.3)	1	0.19*
1-3	463 (54.3)	13 (2.8)	0.85 (0.27,2.66)	
4-10	267 (31.3)	14 (5.2)	1.63 (0.52,5.08)	
Child's sleeping place				0.85
Bed	44 (5.2)	1 (2.3)	1	
	• •	• •		
Mattress	198 (23.2)	8 (4.0)	1.81 (0.23,14.95)	
Grass matting	610 (71.6)	22 (3.6)	1.61 (0.21,12.25)	
Insecticide use in the home				
Yes	570 (66.9)	21 (3.7)	1.04 (0.48,2.24)	0.92
No	282 (33.1)	10 (3.6)	1	
Indoor cooking	. ,			
Yes	630 (73.9)	21 (3.3)	0.73 (0.34,1.58)	0.42
	. ,		• • • •	V. 12
No	222 (26.1)	10 (4.5)	1	

five in relation to reported rhinitis at year five

Table 5.21 (continued)

	Overall	Rhinitis	Rhinitis	р-
Variables	N (%)	Yes n	Crude OR	value
		(%)	(95% CI)	
Indoor charcoal use				
Yes	160 (18.8)	8 (5.0)	1.53 (0.67,3.49)	0.31
No	692 (81.2)	23 (3.3)	1	
Smoking in the house				
Yes	103 (12.1)	3 (2.9)	0.77 (0.23,2.59)	0.67
No	749 (87.9)	28 (3.7)	1	
Antibiotic use				
Yes	120 (14.1)	8 (6.7)	2.20 (0.96,5.06)	0.06
No	732 (85.9)	23 (3.1)	1	
Roof type				
Thatched roof	648 (77.8)	23 (3.6)	0.94 (0.39,2.22)	0.88
Corrugated iron sheet	185 (22.2)	7 (3.8)	1	

* Demographic variables collected at during pregnancy and at birth

* p value for trend

Table 5.22 Distribution of potential confounders measured at the age of

	Overall	Sensitization	Sensitization	P-
Variables	N (%)	Yes n (%)	Crude OR (95% CI)	value
Residence*				
Urban	104 (12.2)	2 (1.9)	0.96 (0.22,4.27)	0.96
Rural	751 (87.8)	15 (2.0)	1	
Child's gender*				
Male	434 (50.8)	9 (2.1)	1.09 (0.42,2.86)	0.86
Female	421 (49.2)	8 (1.9)	1	
Maternal education*				
Formal	162 (19.0)	2 (1.2)	0.57 (0.13,2.50)	0.45
Informal	693 (81.0)	15 (2.2)	1	
Maternal history of				
allergy				
Yes	55 (6.5)	3 (5.6)	3.26 (0.91,11.7)	0.06
No	797 (93.5)	14 (1.8)	1	
Paternal history of				
allergy	/			
Yes	38 (4.5)	2 (5.3)	2.93 (0.64,13.4)	0.14
No	807 (95.5)	15 (1.9)	1	
Household size 1-6	479 (56.7)	10 (2.1)	1	0.86
7+	366 (43.3)	7 (1.9)	0.91 (0.34,2.43)	0.00
No of older siblings				0.68
0	120 (14.2)	2 (1.7)	1	0.73 [*]
1-3	459 (54.3)	11 (2.4)	1.45 (0.32,6.64)	
4-10 Child's slooping place	266 (31.5)	4 (1.5)	0.90 (0.16,5.00)	
Child's sleeping place Bed/mattress	240 (28.4)	6 (2.5)	1	0.52
Grass matting	605 (71.6)	11 (1.8)	0.72 (0.26,1.98)	
Insecticide use in the			• • •	
home				0.00
Yes	564 (66.8)	13 (2.3)	1.63 (0.53, 5.06)	0.39
No	281 (33.3)	4 (1.4)	T	
Indoor cooking				0 70
Yes	624 (73.9)	12 (1.9)	0.85 (0.29,2.43)	0.76
No	221 (26.2)	5 (2.3)	1	

five in relation to sensitization at year five

Table 5.22 (continued)

	Overall	Sensitization	Sensitization	P-
Variables	N (%)	Yes n (%)	Crude OR	value
			(95% CI)	
Indoor charcoal use				
Yes	159 (18.8)	3 (1.9)	0.92 (0.26,3.25)	0.90
No	686 (81.2)	14 (2.0)	1	
Smoking in the house				
Yes	103 (12.1)	1 (1.0)	0.44 (0.06,3.40)	0.42
No	749 (87.9)	16 (2.2)	1	
Antibiotic use				
Yes	119 (14.1)	3 (2.5)	1.32 (0.37,4.65)	0.67
No	726 (85.9)	14 (1.9)	1	
Roof type				
Thatched roof	650 (77.8)	14 (2.2)	1.34 (0.38,4.73)	0.65
Corrugated iron sheet	186 (22.3)	3 (1.6)	1	

N≠855

* Demographic variables collected at during pregnancy and at birth

* p value for trend

5.2.7.4 Paracetamol exposure up to age five

Paracetamol use in the past 12 months at year five was reported by 305 of 848 (36%) of the children in the birth cohort. Lifetime use of paracetamol (persistent use at ages one, three and five) was reported by 11.6% of the children, and 30.4% were never users up to age five. Using the lifetime dose indicator variable, 33.7% were classified as lightly exposed, 22.4% medium exposed and 13.4% heavily exposed.

5.2.7.5 Cross-sectional association between paracetamol and wheeze

In the univariate analysis in Table 5.23, lifetime use of paracetamol (use up to 188

the age of five) was associated significantly and in a dose-dependent manner with increased risk of reported wheeze at age five. The odds ratio was highest in relation to persistent use (use at ages one, three and five), and that for current exposure at age five was larger than past exposure (crude OR, 95% CI, 9.71; 3.08, 30.59 for persistent exposure, 3.22; 1.00, 10.43 for current exposure with or without past exposure, and 2.31; 0.72, 7.45 for past exposure but not current, compared to never users, overall p<0.01) (Table 5.23). Similarly, in relation to the dose variable, children who were exposed to heavy and medium doses of paracetamol were nearly nine and four times more likely to report wheezing symptoms than never exposure, 3.90; 1.22, 12.45 for medium exposure and 1.83; 0.0.54, 6.14 for light exposure) than never exposed (overall p<0.01 and p trend <0.01) (Table 5.23).

Table 5.23 Univariate analysis of wheeze in relation to paracetamol

Exposure at ages 1, _and 5 (N=852)	3 Overall N (%)	Wheeze N (%)	Crude OR (95% CI)	P-value
Lifetime paracetamol use [*]				<0.01*
Never exposed	258 (30.4)	4 (1.6)	1	
Past exposure I not current	but 285 (33.6)	10 (3.5)	2.31 (0.72,7.45)	
Current exposu ± past exposur	• • •	10 (4.8)	3.22 (1.00,10.43)	
Persistent exposure	98 (11.6)	13 (13.3)	9.71 (3.08,30.59)	
Lifetime paracetamol dose†				<0.01*
Never exposed	258 (30.4)	4 (1.6)	1	<0.01 [*]
Light exposure	286 (33.7)	8 (2.8)	1.83 (0.54,6.14)	
Medium exposu	ire 190 (22.4)	11 (5.8)	3.90 (1.22,12.45)	
Heavy exposure	e 114 (13.4)	14 (12.3)	8.89 (2.86,27.66)	

exposure up to the age of 5 year

*Overall p-value (likelihood ratio test).

^{*}P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

*Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5). *Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5 yr).

In the multivariate analyses, after adjusting for *a priori* confounders, the effects of lifetime paracetamol use and dose of exposure on wheeze outcome were little changed, and remained highly statistically significant (overall p<0.01, p trend <0.01) (Table 5.24). Adjustment for respiratory tract infections reduced the magnitude of the association, particularly for persistent and current exposures, but overall significance remained (p=0.01 and p trend<0.01) (Table 5.24). Further adjustment for potential confounders as reported at year five in Table 5.19 did not materially alter the associations (Table 5.24).

Table 5.24 Multivariate analysis of wheeze in relation to paracetamol

exposure	up t	o the	age of	5 years
----------	------	-------	--------	---------

Exposure at ages 1, 3 and 5 (N=852) Lifetime paracetamol use [£]		Adjusted OR [*] (95% CI)			P- value
			<0.01*		0.01 [‡]
	Never exposed	1		1	
	Past exposure but not current	2.38 (0.73,7.75)		2.14 (0.65,7.04)	
	Current exposure ± past exposure	3.14 (0.97,10.20)		1.81 (0.54,6.05)	
	Persistent exposure	10.29 (3.19,33.19)		5.87 (1.76,19.62)	
Lifetir dose ^{\$}	ne paracetamol		<0.01 [‡]		0.01 [‡]
	Never exposed	1	<0.01 [¥]	1	<0.01 [¥]
	Light exposure	1.83 (0.54,6.20)		1.50 (0.44,5.13)	
	Medium exposure	3.90 (1.22,12.47)		2.55 (0.78,8.35)	
	Heavy exposure	8.96 (2.85,28.23)		5.03 (1.54,16.37)	

*ORs adjusted for child's gender, area of residence and maternal education *ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted

for symptoms of respiratory infections as reported at age of 5

*Overall p-value (likelihood ratio test).

^{*}P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

⁴Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5). ^{*}Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

5.2.7.6 Cross-sectional association between paracetamol and eczema

As in the findings of wheeze at year five, lifetime paracetamol use was significantly associated with an increased risk of reported eczema symptoms (Table 5.25). The odds ratios were almost equally high for persistent exposure and current exposure, and much lower for exposure in the past (crude OR, 95% CI, 5.64; 1.66, 19.20 for persistent exposure, 5.68; 1.88, 17.16 for current

exposure with or without past exposure, and 1.60; 0.46, 5.53 for past exposure versus never users, overall p<0.01) (Table 5.25).

There was also a significant dose-dependent trend between reported eczema and lifetime paracetamol dose. The odds ratios increased in the heavy and medium exposure categories compared to light and low exposure groups (crude OR, 95% CI, 7.47; 2.35, 23.70 for heavy exposure, 3.16; 0.96, 10.41 for medium exposure, and 2.54; 0.80, 8.08 for light exposure compared with never exposed category, overall p<0.01, and p trend<0.01) (Table 5.25).

Table 5.25 Univariate analysis of eczema in relation to paracetamol

-	sure at ages 1, 3 5 (N=852)	Overall N (%)	Eczema N (%)	Crude OR (95% CI)	P-value
Lifetir use*	ne paracetamol				<0.01 [‡]
	Never exposed	258 (30.4)	4 (1.6)	1	
	Past exposure but not current	285 (33.6)	7 (2.5)	1.60 (0.46,5.53)	
	Current exposure ± past exposure	207 (24.4)	17 (8.2)	5.68 (1.88,17.16)	
	Persistent exposure	98 (11.6)	8 (8.2)	5.64 (1.66,19.20)	
	ne paracetamol				<0.01 [‡]
dose'	Maxim averaged	250 (20 4)			.0.01¥
	Never exposed	258 (30.4)	4 (1.6)	1	<0.01 [*]
	Light exposure	286 (33.7)	11 (3.9)	2.54 (0.80,8.08)	
	Medium exposure	190 (22.4)	9 (4.7)	3.16 (0.96,10.41)	
	Heavy exposure	114 (13.4)	12 (10.5)	7.47 (2.35,23.70)	

exposure up to the age of 5 year

*Overall p-value (likelihood ratio test)

^{**1**} P value for trend (computed for dose of paracetamol use in the past month: None/Light (never exposed in the past month or exposed in the past year), Medium exposure (\geq 1 tablets/month at age 1 or 3), Heavy exposure (\geq 1 tablets/month persistently at age 1 and 3)

^{*} P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

*Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5).

[†]Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

Following adjustment for *a priori* confounders and further adjustment for potential confounders in Table 5.20, the magnitude and level of significance of the associations between lifetime use of paracetamol and dose of exposure on eczema did not change materially (Table 5.26). Further controlling for respiratory tract infections slightly reduced the strength of the associations but the overall significance and trend remained (overall p<0.01, p trend<0.01) (Table 5.26).

Table 5.26 Multivariate analysis of eczema in relation to paracetamol

Exposure at ages 1, 3 and 5 (N=852)		Adjusted OR [*] (95% CI)	P-value	Further adjusted OR [†] (95% CI)	P- value	
_ Lifetin use [£]	ne paracetamol		<0.01 [‡]		<0.01*	
	Never exposed	1		1		
	Past exposure but not current	1.66 (0.48,5.76)		1.61 (0.46,5.61)		
	Current exposure ± past exposure	6.00 (1.98,18.19)		5.29 (1.67,16.80)		
	Persistent exposure	6.12 (1.77,21.13)		5.40 (1.50,19.45)		
Lifetin dose ^s	ne paracetamol		<0.01*		0.01 [‡]	
	Never exposed	1	<0.01 [¥]	1	<0.01¥	
	Light exposure	2.71 (0.85,8.66)		2.53 (0.79,8.13)		
	Medium exposure	3.26 (0.98,10.77)		2.78 (0.82,9.45)		
	Heavy exposure	8.27 (2.57,26.58)		6.70 (1.99,22.54)		

exposure up to the age of 5 year

*ORs adjusted for child's gender, area of residence and maternal education

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections as reported at age of 5

*Overall p-value (likelihood ratio test)

* P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

^cLifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5). ^sLifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

5.2.7.7 Cross-sectional association between paracetamol and rhinitis

In the univariate analysis, the risks of rhinitis were higher for persistent lifetime users of paracetamol and current users than users in the past, and these associations were significant (crude OR, 95% CI, 12.94; 2.74, 61.05 for persistent exposure, 7.18; 1.57, 32.78 for current exposure with or without past exposure, and 4.17; 0.89, 19.50 for past exposure vs. non-users, overall p<0.01) (Table 5.27). In terms of dose-response association, the risks were

higher in those exposed to heavy or medium doses than those exposed to light doses of paracetamol (crude OR, 95% CI, 15.06; 3.31, 68.47 for heavy dose, 7.11; 1.54, 32.84 for medium dose, and 3.21; 0.66, 15.60 for light exposure compared with non-users, overall p<0.01, and p trend<0.01) (Table 5.27).

Table 5.27 Univariate analysis of rhinitis in relation to paracetamolexposure up to the age of 5 years

•	sure at ages 1, 3 5 (N=852)	Overall N (%)	Rhinitis n (%)	Crude OR (95% CI)	P-value
Lifetir	ne paracetamol use [*]				<0.01 [‡]
	Never exposed	258 (30.4)	2 (0.9)	1	
	Past exposure but not current	285 (33.6)	9 (3.2)	4.17 (0.89,19.50)	
	Current exposure ± past exposure	207 (24.4)	11 (5.3)	7.18 (1.57, 32.78)	
	Persistent exposure	98 (11.6)	9 (9.2)	12.94 (2.74,61.05)	
	ne paracetamol				<0.01*
dose [†]					· · ×
	Never exposed	258 (30.4)	2 (0.9)	1	<0.01 [¥]
	Light exposure	286 (33.7)	7 (2.5)	3.21 (0.66,15.60)	
	Medium exposure	190 (22.4)	10 (5.3)	7.11 (1.54,32.84)	
	Heavy exposure	114 (13.4)	12 (10.5)	15.06 (3.31,68.47)	

*Overall p-value (likelihood ratio test).

* P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

*Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5).

[†]Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

In multivariate analyses controlling for *a priori* confounders and further adjusting for the various early life confounders included in Table 5.21, the magnitude and significance of the associations for both paracetamol variables were little changed (Table 5.28). Adjustment for symptoms of respiratory tract infections, however, reduced the odds ratios for lifetime use, and overall significance became borderline (p=0.07) (Table 5.28). In regards to doseresponse association controlling for respiratory tract infections, though the magnitude of the associations substantially reduced, the overall significance and trend remained (adjusted OR, 95% CI, 7.65; 1.63, 35.97 for heavy exposure, 4.36; 0.93, 20.55 for medium exposure and 2.48; 0.50, 12.25 for light exposure versus never, overall p=0.01, p trend<0.01) (Table 5.28).

Table 5.28 Multivariate analysis of rhinitis in relation to paracetamolexposure up to the age of 5 years

Exposure at age 1, 3 and 5 (N=852)		Adjusted OR [*] (95% CI)	P-value	Further adjusted OR [†] (95% CI)	P- value	
Lifetin use ²	ne paracetamol		<0.01*		0.07*	
	Never exposed	1		1		
	Past exposure but not current	4.10 (0.87,19.21)		3.60 (0.76,17.01)		
	Current exposure ± past exposure	7.09 (1.55,32.38)		3.82 (0.82,17.82)		
	Persistent exposure	12.58 (2.63,60.02)		6.59 (1.34,32.35)		
Lifetim dose ^{\$}	e paracetamol		<0.01 [‡]		0.01 [‡]	
	Never exposed	1	<0.01 [¥]	1	<0.01 [¥]	
	Light exposure	3.16 (0.65,15.38)		2.48 (0.50,12.25)		
	Medium exposure	7.01 (1.52,32.44)		4.36 (0.93,20.55)		
	Heavy exposure	14.66 (3.20,67.10)		7.65 (1.63,35.97)		

*ORs adjusted for child's gender, area of residence and maternal education

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections as reported at age of 5

*Overall p-value (likelihood ratio test)

^{*} P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

[£]Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5).

^{\$}Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

5.2.7.8 Cross-sectional association between paracetamol and sensitization

In the univariate analysis, lifetime use of paracetamol was associated with a non-significant increased risk of sensitization at age five, with higher odds ratios seen for persistently exposed groups compared to the other categories. However, none of these associations were statistically significant (crude OR, 95% CI; 2.66; 0.65, 10.85 for persistent exposure, 1.24; 0.31, 5.01 for current exposure with or without past exposure, 1.12; 0.30, 4.23 for past exposure versus never users, overall p=0.57) (Table 5.29). There was however a borderline significant trend between lifetime paracetamol dose and sensitization outcome, with increasing risk in heavy dose exposure (crude OR, 95% CI, 3.50; 0.97, 12.67) followed by medium exposure (crude OR, 95% CI, 1.01; 0.22, 4.56), and light exposure (crude OR, 95% CI, 0.89; 0.22, 3.59) compared with never users (p for trend=0.07), but not to the level of overall significance (p=0.15) (Table 5.29).

Table 5.29 Univariate analysis of sensitization in relation to paracetamol

-	sure at ages 1, 3 5 (N=841)	Overall N (%)	Sensiti zation n (%)	Crude OR (95% CI)	P- value
Lifetir use*	ne paracetamol				0.57 [‡]
	Never exposed	254 (30.2)	4 (1.6)	1	
	Past exposure but not current	283 (33.7)	5 (1.8)	1.12 (0.30,4.23)	
	Current exposure ± past exposure	206 (24.5)	4 (1.9)	1.24 (0.31,5.01)	
	Persistent exposure	98 (11.7)	4 (4.1)	2.66 (0.65,10.85)	
Lifetir dose†	ne paracetamol				0.15 [‡]
	Never exposed	254 (30.2)	4 (1.6)	1	0.07 [×]
	Light exposure	285 (33.9)	4 (1.4)	0.89 (0.22,3.59)	
	Medium exposure	189 (22.5)	3 (1.6)	1.01 (0.22,4.56)	
	Heavy exposure	113 (13.4)	6 (5.3)	3.50 (0.97,12.67)	

exposure up to the age of 5 years

^{*}Overall p-value (likelihood ratio test)

^{*}P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.

*Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5).

[†]Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

In multivariate analyses, adjusted for *a priori* confounders, the odds ratios for lifetime use of paracetamol and dose of exposure on sensitization, and the overall level of significance remained unchanged (Table 5.30). Adjustment for respiratory tract infections for lifetime paracetamol use slightly increased the magnitude of associations, all in the expected direction, but remained non-significant (overall p=0.46) (Table 5.30). In terms of dose-response association, however, on controlling for respiratory tract infection, the trend became statistically significant (adjusted OR, 95% CI, 4.80; 1.17, 19.68 for heavy exposure, 1.20; 0.25, 5.64 for medium exposure, 0.99; 0.24, 4.06 for never exposure versus never, p trend=0.04, overall p=0.09) (Table 5.30). Further

adjustment for potential confounders in Table 5.22 made little change to the magnitude of the odds ratio or level of significance (Table 5.30).

Table 5.30 Multivariate analysis of sensitization in relation to

Exposure at age 1, 3 and 5 (N=841)		Adjusted OR [*] (95% CI)	P-value	Further adjusted OR [†] (95% CI)	P-	
	ne paracetamol		0.54 [‡]	OK (33% CI)	<u>value</u> 0.46 [‡]	
	Never exposed	1		1		
	Past exposure but not current	1.15 (0.30,4.39)		1.19 (0.31,4.53)		
	Current exposure ± past exposure	1.26 (0.31,5.12)		1.48 (0.34,6.44)		
	Persistent exposure	2.83 (0.68,11.86)		3.35 (0.74,15.11)		
Lifetim dose ^{\$}	e paracetamol		0.13 [‡]		0.09 [‡]	
	Never exposed	1	0.06 [¥]	1	0.04 [¥]	
	Light exposure	0.93 (0.23,3.78)		0.99 (0.24,4.06)		
	Medium exposure	1.01 (0.22,4.58)		1.20 (0.25,5.64)		
	Heavy exposure	3.71 (1.01,13.68)		4.80 (1.17,19.68)		

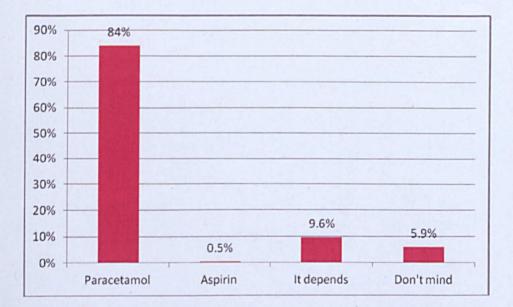
paracetamol exposure up to the age of 5 years

*ORs adjusted for child's gender, area of residence and maternal education

[†]ORs adjusted for child's gender, area of residence and maternal education and additionally adjusted for symptoms of respiratory infections as reported at age of 5

*Overall p-value (likelihood ratio test)

* P value for trend as dose of paracetamol computed using a composite score of paracetamol exposure from age 1, 3, and 5 yr as: Never exposed, Light exposure, Medium exposure, and Heavy exposure.


[£]Lifetime paracetamol use: refers to use of paracetamol up to the age of 5 (i.e. ages 1, 3 and 5).

^{\$}Lifetime paracetamol dose: refers to dose of paracetamol exposure up to the age of 5 (i.e. ages 1, 3 and 5).

5.2.8 Indications for use of paracetamol at age five

5.2.8.1 Availability and preference of paracetamol use at age five

This information was not available at ages one and three, but at year five, paracetamol was the analgesic and antipyretic drug of choice for 716 (84%) of the birth cohort mothers^d (Figure 5.6). It was also reported to be readily available 644 (75.6%) and affordable (access with low cost) 785 (92.1%) (Figure 5.7). Seventy eight percent of the mothers were able to differentiate paracetamol from aspirin (Figure 5.7). Aspirin avoidance was reported by only 1.4% of the mothers because of asthma, and 1.5% due to other allergic diseases (Figure 5.7).

^d Based on responses to the question: do you prefer to give aspirin or paracetamol for your child?

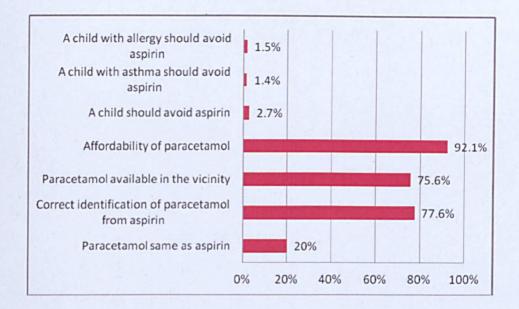
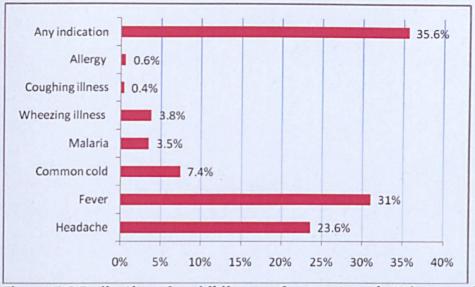
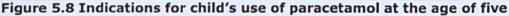




Figure 5.7 Maternal perceptions of paracetamol and aspirin use

5.2.8.2 Indications for use of paracetamol at age five

The most common indications for use of paracetamol at year five included nonrespiratory illness – headache, malaria, and any allergy (25.2%); respiratory illness – wheezing illness, coughing episode and common cold (8.5%); and fever of any origin (31%) (Figure 5.8).

*Any indication refers to use of paracetamol for one or more symptoms or illnesses.

5.3 SUMMARY

In summary, this chapter which further explores the role of paracetamol on allergic outcomes at a later follow up found significant positive dose-response effects of early life use of paracetamol on the incidence and prevalence of the reported allergic outcomes. The current study was conducted as children reached their 5th birthdays, possibly increasing the chance of capturing an intermediate and late-onset wheezing phenotype that correlated with asthma later in childhood.¹⁶

Consistent with the previous follow up of the birth cohort in chapter three, early life use and dose of paracetamol in the first three years of life was seen to increase the risk of incident wheeze, eczema and rhinitis between ages three and five (data on rhinitis were not available at age one). The associations were dose-dependent and independent of infant respiratory tract infections, and numerous other potential confounders. The effects of early life paracetamol use and dose on incident sensitization outcomes were also in the expected direction, with a non-significant increased risk seen in the persistent and heavy dose category. However confidence intervals were wide and significance not reached.

Significant dose-dependent cross-sectional associations have also been demonstrated between both lifetime use of paracetamol (use up until the age of five), and lifetime paracetamol dose (dose up to the age of five), and increased risk of wheeze, eczema, and rhinitis at the age of five. These findings were independent of the potential confounders measured. A non-significant increased risk of sensitization was seen among lifetime paracetamol users, but like the longitudinal analysis the confidence interval was wide, which could be due to the low prevalence of sensitization in the birth cohort. However, a significant dose-dependent increasing trend was also observed between sensitization and lifetime dose exposure, higher risks being in the heavily exposed category. The study has also shown that persistent and heavy use of paracetamol appears to increased the risk of allergic diseases and sensitization more than irregular use or exposure at a lower dose.

At year five, it was also found that paracetamol was easily accessible and affordable in the vicinity, and that it was the analgesic and antipyretic drug of choice of most mothers. Furthermore, over a third of the mothers could correctly differentiate paracetamol from aspirin, and fever of any origin, headache, common cold and malaria illness were the most common indications for use of paracetamol.

203

A detailed discussion of the strengths and weaknesses of this study, and consistency with previous studies along with the evaluation of the evidence against causal inference will be made in chapter seven.

6 EXPOSURE TO GASTRO-INTESTINAL INFECTIONS AND THE PREVALENCE AND INCIDENCE OF WHEEZE AND ALLERGIC OUTCOMES AT AGE FIVE

6.1 INTRODUCTION

In this chapter, analyses conducted following the five year follow-up relating to gastro-intestinal infections, the other main exposure of interest, and their associations on allergic disease outcomes are presented.

Data on geohelminth infection were available at ages one and three; and it is therefore possible to investigate the longitudinal effects of infection early in life on the incidence of allergic disease and sensitization between ages three and five. The effects of *Helicobacter pylori* and commensal microflora exposure at age three on the incidence of these outcomes were also investigated (these exposures were not measured at year one). Further cross-sectional analyses were conducted to explore the effects of current and recent infection with geohelminth and *H. pylori* at age five (data on intestinal microflora were not available at year five) on the prevalence of the outcomes; as these analyses are on larger sample sizes than the longitudinal analyses, and benefit from greater statistical power.

The aims of this chapter are therefore to:

- Determine the independent effects early life infection with geohelminths, *Helicobacter pylori*, and commensal microflora on the incidence of wheeze, eczema, rhinitis and sensitization between ages three and five.
- Determine the independent effects of geohelminth and *H. pylori* infection up to the age of five on the prevalence of allergic diseases and sensitization at age five.

In the next sections, results from longitudinal and cross-sectional analyses will be presented followed by a brief summary of the main findings.

6.2 RESULTS

6.2.1 The birth cohort at age five

The birth cohort between ages three and five has been described in chapter five (section 5.3.1) and in chapter two (Fig 2.3). In brief, 863 singleton children were available for study at year five. Of these, 852 reported disease outcome information (and geohelminth and *H. pylori* data were available in 847 of these), while 855 provided skin test data (and of these, geohelminth and *H. pylori* data were available for 854).

6.2.2 H. pylori and geohelminth infection at age five

The prevalence of each of the geohelminth parasites at ages one and three, and

of *H. pylori* and commensal infections at age three are described in chapter four. At year five, hookworm, *Ascaris lumbricoides*, and *T. trichiura* were detected in 6.3% (53/847), 4.4% (37/847), and 0.5% (4/847) of children, respectively, with an overall prevalence of any infection of 10.4% (88/847), and infections prevalence increase with age. Infection with *H. pylori* was found in 43.7% (370/847) of the children (Figure 6.1).

Figure 6.1 Prevalence of geohelminths and H. pylori up to age five

6.2.3 Longitudinal associations between H. pylori, geohelminth infection and commensal bacteria and incidence of allergic outcomes

6.2.3.1 Incident wheeze in relation to geohelminth infection, H. pylori infection and commensal bacteria

In the univariate analysis, early life exposure (infection at age one or three or both) to hookworm, *A. lumbricoides* and 'any geohelminth' infection (7%, 6.1% and 12.7% respectively) was associated with a non-significant increased risk of incident wheeze (Table 6.1). For hookworm, the risk of incident wheeze was higher in those infected at ages one and three (6.5%) than uninfected (6.0%), and a similar pattern was seen for *A. lumbricoides* (9.8% vs. 5.7%), and for any geohelminth (8.1% vs. 5.6%) (Table 6.1). In multivariate analysis, adjusting for *a priori* confounders (residence, child's age and maternal education), the risk of incident wheeze was increased with geohelminth exposure, but none of these associations reached statistical significance (adjusted OR, 95%, CI, 1.06; 0.31, 3.60, p=0.93 for hookworm, 1.89; 0.63, 5.66, p=0.29 for *A. lumbricoides*, and 1.48; 0.63, 3.49, p=0.38, for any geohelminth for exposure at any age up to year three vs. never), and the confidence intervals were wide.

The relation between *H. pylori* infection at age three and incident wheeze between ages three and five was non-significant, with higher risk found among infected (6.5%) than uninfected (4.4%) children. In multivariate analysis adjusted for *a priori* confounders, *H. pylori* infection increased the risk of

incident wheeze non-significantly (adjusted OR, 95%, CI, 1.56; 0.69, 3.51, p=0.28) (Table 6.1).

Similarly, none of the intestinal microflora present at age three were significantly associated with incident wheeze between ages three and five (Table 6.1). In multivariate analysis adjusted for *a priori* confounders, the effects were negatively related but none of these reached statistical significance (adjusted OR, 95%, CI, 0.80; 0.33, 1.95, p=0.62, for enterococci, 0.84; 0.32, 2.19, p=0.71 for lactobacilli, and 0.40; 0.09, 1.75 p=0.17 for bifidobacterium) (Table 6.1).

Further adjustment for other potential confounders in Table 5.3 made little difference to the odds ratios in relation to each exposure (Table 6.1).

Table 6.1 Univariate and multivariate analysis of gastro-intestinal

		Wheez	e never up to age	3 (N=676)	
Exposures	Overall N (%)	n (%) new wheeze	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]
Early life exposure to hookworm ⁺ (N=668)					
Never exposed Exposed at any	622 (93.1)	37 (6.0)	1	1	0.93
age up to yr 3 Early life exposure to Ascaris lumbricoides ⁺ (N=668)	46 (7.0)	3 (6.5)	1.10 (0.33,3.72)	1.06 (0.31,3.60)	
Never exposed Exposed at any	627 (93.9)	36 (5.7)	1	1	0.29
age up to yr 3 Early life exposure to any geohelminth [†] (N=676)	41 (6.1)	4 (9.8)	1.77 (0.60,5.25)	1.89 (0.63,5.66)	
Never exposed Exposed at any	590 (87.3)	33 (5.6)	1	1	0.38
age up to yr 3 Helicobacter pylori exposure at year 3 (N=474)	86 (12.7)	7 (8.1)	1.50 (0.64,3.50)	1.48 (0.63,3.49)	
Yes No	201 (42.4) 273 (57.6)	13 (6.5) 12 (4.4)	1.50 (0.67,3.37) 1	1.56 (0.69,3.51) 1	0.28
Intestinal microflora exposure at year 3 (N=414) Enterococci		(,	-	-	
Yes No	162 (39.1) 252 (60.9)	8 (4.9) 15 (6.0)	0.82 (0.34,1.98) 1	0.80 (0.33,1.95) 1	0.62
Lactobacilli					
Yes No	122 (29.5) 292 (70.5)	6 (4.9) 17 (5.8)	0.84 (0.32,2.18) 1	0.84 (0.32,2.19) 1	0.71
Bifidobacteria					
Yes No	79 (19.1) 335 (80.9)	2 (2.5) 21 (6.3)	0.39 (0.09,1.69) 1	0.40 (0.09,1.75) 1	0.17

infection in relation to incident wheeze between ages 3 and 5

*ORs adjusted for child's gender, area of residence and maternal education

*Overall p-value (likelihood ratio test); †Hookworm, *A. lumbricoides*, or *Trichuris trichiura* *Early life exposure to hookworm, *A. Lumbricoides* or any geohelminth: refers to exposure prior to disease outcome (i.e. first three years of life)

6.2.3.2 Incident eczema in relation to geohelminth infection, H. pylori infection and commensal bacteria

In univariate analysis, incident eczema was more common amongst those with early lifeinfection with hookworm (7.8% among infected vs. 5.4% in uninfected), *A. lumbricoides* (12.2% among infected vs. 5.2% in uninfected), and any geohelminth (9.2% among infected vs. 5.2% in uninfected) but odds ratios were not statistically significant (Table 6.2). After adjustment for *a priori* confounders, hookworm, *A. lumbricoides*), and any geohelminth were all still associated with an increased risk of incident eczema, but only infection with *A. lumbricoides* reached borderline significance (adjusted OR, 95% CI, 2.86; 1.04, 7.86, p=0.07) (Table 6.2).

Early life exposure to *H. pylori* infection was inversely and significantly associated with incident eczema between ages three and five (2.4% among exposed and 6.1% among non-exposed, p=0.02) (Table 6.2). In multivariate analysis adjusted for *a priori* confounders and additionally for breastfeeding history in the first year of life, *H. pylori* infection was still associated with a significantly reduced risk of incident eczema (adjusted OR, 95% CI, 0.31; 0.10, 0.94, p=0.02) (Table 6.2).

None of the commensal microflora studied at year three were significantly associated with incident eczema between ages three and five (Table 6.2). In multivariate analysis, however, the odds ratios were consistently protective (adjusted OR, 95% CI, 0.59; 0.24, 1.45, p=0.24 for enterococci, 0.83; 0.34, 2.05, p=0.68 for lactobacilli, and 0.57; 0.16, 1.95 p=0.34 for bifidiobacterium),

but none of these associations reached significance (Table 6.2). Adjustment for potential confounders in the first year of life presented in Table 5.4 made little change to the odds ratio (Table 6.2).

Table 6.2 Univariate and multivariate analysis of gastro-intestinal

	Eczema never up to age 3 (N=700)							
Exposures	Overall N (%)	п (%) new eczema	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]			
Early life exposure to								
hookworm [*] (N=694)		<u> </u>						
Never exposed	643 (92.7)	35 (5.4)	1	1	0.52			
Exposed at any	51 (7.4)	4 (7.8)	1.48 (0.50,4.34)	1.45 (0.49,4.28)				
age up to yr 3 Early life exposure to								
Ascaris lumbricoides [*]								
(N=694)								
Never exposed	653 (94.1)	34 (5.2)	1	1	0.07			
Exposed at any	41 (5.9)	5 (12.2)	2.53 (0.93,6.85)	2.86 (1.04,7.86)				
age up to yr 3				,				
Early life exposure to								
any geohelminth [†]								
(N=700)	(12 (07 ()	04 (5 4)						
Never exposed	613 (87.6)	31 (5.1)	1	1	0.12			
Exposed at any age up to yr 3	87 (12.4)	8 (9.2)	1.90 (0.84,4.28)	1.97 (0.87,4.47)				
Helicobacter pylori	07 (12.4)	0 (9.2)	1.90 (0.04,4.20)	1.97 (0.07,4.47)				
exposure at year 3								
(N=498)								
Yes	205 (41.2)	5 (2.4)	0.38 (0.14,1.05)	0.31 (0.10,0.94)	0.02 [£]			
Νο	293 (58.8)	18 (6.1)	1	1				
Intestinal microflora								
exposure at year 3								
(N=439)								
Enterococci								
Yes	171 (39.0)	7 (4.1)	0.59 (0.24,1.45)	0.59 (0.24,1.45)	0.24			
No	268 (61.1)	18 (6.7)	1	1				
Lactobacilli								
	4 3 4 (3 3 5)	7 (5 3)	0.00 (0.00 0.10)	0.02 (0.24.2.05)	0.00			
Yes	134 (30.5)	7 (5.2)	0.88 (0.36,2.16)	0.83 (0.34,2.05)	0.68			
Νο	305 (69.5)	18 (5.9)	1	1				
Bifidobacteria								
Yes	81 (18.5)	3 (3.7)	0.59 (0.17,2.01)	0.57 (0.16,1.95)	0.34			
No	358 (81.6)	22 (6.2)	1	1				

infection in relation to incident eczema between ages 3 and 5

*ORs adjusted for child's gender, area of residence and maternal education

[£] Additionally adjusted for reported breast feeding history in the first years of life

*Overall p-value (likelihood ratio test); +Hookworm, A. lumbricoides, or Trichuris trichiura

*Early life exposure to hookworm, *A. lumbricoides* or any geohelminth: refers to exposure prior to disease outcome (i.e. first three years of life)

6.2.3.3 Incident rhinitis in relation to geohelminth infection, H. pylori infection and commensal bacteria

Early life exposure to hookworm, *A. lumbricoides* and any geohelminth, were all positively related to incident rhinitis between ages three and five with ORs ranging from 1.19 to 2.66, but none of these associations were significant (Table 6.3). After adjusted analysis, the effects were similar to those in the univariate analysis, with a non-significantly increased risk of incident rhinitis in relation to each infection variable (adjusted OR, 95% CI, 2.44; 0.89, 6.68, p=0.11 for hookworm, 1.21; 0.28, 5.28, p=0.81 for *A. lumbricoides*, and 2.12; 0.88, 5.09, p=0.11 for any geohelminth) (Table 6.3).

H. pylori infection at age three was also positively, though not significantly, related to incident rhinitis between ages three and five (4.4% among infected and 3.9% among non-infected children) (Table 6.3). After adjustment, the association did not change (adjusted OR, 95% CI, 1.07; 0.45, 2.57, p=0.88) (Table 6.3).

The association between incident rhinitis and presence of commensal microflora at age three did not reach significance, although a higher risk was seen among colonized than non-colonized children (Table 6.3). In the adjusted analysis, the effects were similar to those in the univariate analysis (adjusted OR, 95% CI, 1.63; 0.69, 3.86, p=0.27 for enterococci, 1.57; 0.65, 3.77, p=0.32 for lactobacilli, and 1.32; 0.47, 3.71 p=0.60 for bifidobacteria) (Table 6.3). Adjustment for potential confounders in Table 5.5 did not alter any of the associations materially (Table 6.3).

Table 6.3 Univariate and multivariate analysis of gastro-intestinal

_	Rhinitis never at the age of 3 (N=798)								
Exposures	Overall N (%)	n (%)new rhinitis	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]				
Early life exposure to									
Hookworm [‡] (N=773)		o= (o =)							
Never exposed	716 (92.6)	25 (3.5)	1	1	0.11				
Exposed at any	57 (7.4)	5 (8.7)	2.66 (0.98,7.23)	2.44 (0.89,6.68)					
age up to yr 3 Early life exposure to									
Ascaris lumbricoides [‡]									
(N=773)									
Never exposed	729 (94.3)	28 (3.8)	1	1	0.81				
Exposed at any	44 (5.7)	20 (3.0) 2 (4.6)	1.19 (0.27,5.17)	-	0.01				
age up to yr 3	(3.7)	2 (4.0)	1.1.9 (0.27, 5.17)	1.21 (0.20,5.20)					
Early life exposure to									
any geohelminth [†]									
(N=781)									
Never exposed	683 (87.5)	23 (3.4)	1	1	0.11				
Exposed at any									
age up to yr 3	98 (12.6)	7 (7.1)	2.21 (0.92,5.29)	2.12 (0.88,5.09)					
Helicobacter pylori									
exposure at year 3									
(N=559)									
Yes									
	225 (40.3)	10 (4.4)	1.15 (0.49,2.67)	1.07 (0.45,2.57)	0.88 [£]				
Νο	334 (59.8)	13 (3.9)	1	1					
Intestinal microflora									
exposure at year 3									
(N=491)									
Enterococci									
Yes	189 (38.5)	11 (5.8)	1.63 (0.69,3.85)	1.63 (0.69,3.86)	0.27				
No	302 (61.5)	11 (3.6)	1	1	0.127				
	()	()		-					
actobacilli									
Yes	153 (31.2)	9 (5.9)	1.56 (0.65,3.74)	1.57 (0.65,3.77)	0.32				
No	338 (68.8)	13 (3.9)	1	1					
Bifidobacteria									
Yes	93 (18.9)	5 (5.4)	1.27 (0.46,3.54)	1.32 (0.47,3.71)	0.60				
				1	0.00				
No	398 (81.1)	17 (4.3)	1 ice and maternal educ						

infection in relation to incident rhinitis between ages 3 and 5

*ORs adjusted for child's gender, area of residence and maternal education

⁴ Additionally adjusted for indoor cooking; ^{*}Overall p-value (likelihood ratio test)

†Hookworm, A. lumbricoides, or Trichuris trichiura

*Early life exposure to hookworm, *A. lumbricoides* or any geohelminths: refers to exposure prior to disease outcome (i.e. first three years of life)

6.2.3.4 Incident sensitization in relation to geohelminth infection, H. pylori infection and commensal bacteria

Effects of infection with the geohelminth parasites hookworm and *A. lumbricoides* in the first three years of life on new-onset sensitization to any allergen (*D. pteronyssinus* and cockroach allergen) between ages three and five were not significant, although incident sensitization was more common among infected than uninfected children (3.6% vs. 1.9% for hookworm, 2.9% vs. 2.0% for *A. lumbricoides*, and 3.5% vs. 1.8% for any geohelminth infection) (Table 6.4). In the adjusted multivariate analysis in Table 6.4, the odds ratios remained increased but not significant for hookworm (adjusted OR, 95% CI, 1.83; 0.40, 8.38, p=0.47), *A. lumbricoides* (OR, 95% CI, 1.47; 0.19, 11.67, p=0.73), and any geohelminth (OR, 95% CI, 1.88; 0.52, 6.84, p=0.37).

The effects of *H. pylori* infection at age three on incident sensitization to any allergen were similar to the geohelminth effects above, with higher risks observed among infected (2.6%) than uninfected (2.2%) children (Table 6.4). In the adjusted analysis, the effects were the same as in the univariate analysis, with a non-significant increased risk seen among exposed compared to unexposed children (adjusted OR, 95% CI, 1.23; 0.40, 3.73, p=0.72) (Table 6.4).

Similarly, the effects of the commensal microflora on incident sensitization to any allergen were non-significant. In the multivariate analysis, the effects of enterococci (adjusted OR, 95% CI, 0.72; 0.22, 2.37, p=0.58) and bifidobacteria (adjusted OR, 95% CI, 0.34; 0.04, 2.69, p=0.24) were protective, while

216

colonization with the commensal microflora lactobacilli (adjusted OR, 95% CI, 1.98; 0.65, 6.03, p=0.24) increased the risks of incident sensitization (Table 6.4).

Adjustment for various potential confounders in Table 5.6 made little effect on the associations (Table 6.4).

Table 6.4 Univariate and multivariate analysis of gastro-intestinal

inf	ection i	n relatio	on to ir	ncident	sensitization	between	ages 3 and 5
-----	----------	-----------	----------	---------	---------------	---------	--------------

	Sensitization never at age 3 (N=766)								
Exposures	Overali N (%)	n (%) new atopy	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]				
Early life exposure to									
Hookworm [‡] (N=746)									
Never exposed	690 (92.5)	13 (1.9)	1	1	0.47				
Exposed at any age up to yr 3	56 (7.5)	2 (3.6)	1.93 (0.42,8.77)	1.83 (0.40,8.38)					
Early life exposure to									
Ascaris lumbricoides [*]									
(N=746)									
Never exposed	711 (95.3)	14 (2.0)	1	1	0.73				
Exposed at any	35 (4.7)	1 (2.9)	1.46 (0.19,11.46)	1.47 (0.19,11.67)	0.75				
age up to yr 3		- ()							
Early life exposure to									
any geohelminth [†]									
(N=749)									
Never exposed	662 (88.4)	12 (1.8)	1	1	0.37				
Exposed at any		- ()							
age up to yr 3	87 (11.6)	3 (3.5)	1.93 (0.53,7.00)	1.88 (0.52,6.84)					
Helicobacter pylori									
exposure at year 3 (N=552)									
Yes					0.72				
103	234 (42.4)	6 (2.6)	1.17 (0.39,3.53)	1.23 (0.40,3.37)	0.72				
No	318 (57.6)	7 (2.2)	1	1					
Intestinal microflora	\	(/							
exposure at year 3									
(N=485)									
Enterococci									
Yes	185 (38.1)	4 (2.2)	0.71 (0.23,2.35)		0.58				
No	300 (61.9)	9 (3.0)	0.71 (0.23,2.35)	0.72 (0.22,2.37) 1	0.50				
	500 (01.9)	9 (3.0)	*	1					
Lactobacilli									
Yes	149 (30.7)	6 (4.0)	1.97 (0.65,5.97)	1.98 (0.65,6.03)	0.24				
No	336 (69.3)	7 (2.1)	1	1 1					
Bifidobacteria									
Yes	94 (19.4)	1 (1.1)	0.34 (0.04,2.64)	0.34 (0.04,2.69)	0.24				
					0.24				
No	391 (80.6)	12 (3.1)	1	1					

*ORs adjusted for child's gender, area of residence and maternal education

*Overall p-value (likelihood ratio test)

†Hookworm, A. lumbricoides, or Trichuris trichlura

*Early life exposure to hookworm, *A. Lumbricoides* or any geohelminths: refers to exposure prior to disease outcome (i.e. first three years of life)

6.2.4 Cross-sectional analysis of H. pylori and geohelminth infection, and prevalence of allergic outcomes at age five

H. pylori infection was found in 17% of the children at age three but not age five, 21% at age five but not at age three, and 25% persistently exposed at both ages. The cumulative prevalences of hookworm, *A. lumbricoides* and any geohelminth infection up to age five were 12.9%, 9.1% and 21% respectively.

6.2.4.1 Effects of geohelminth infection and H. pylori on wheeze

The effects of lifetime exposure (exposure at age one, three and five) to hookworm, *A. lumbricoides* or any geohelminth on the prevalence of wheeze were non-significant, with higher risks seen among infected than uninfected children (5.7% vs. 4.4% for hookworm, and 5.4% vs. 4.5% for *A. lumbricoides*) (Table 6.5). In analyses adjusted for the *a priori* confounders residence, child's gender and maternal education, the effects were similar to those in the univariate analysis, with a non-significant increased risk of wheeze found among lifetime exposed children vs. never (adjusted OR, 95% CI, 1.30; 0.53, 3.23, p=0.58 for hookworm, 1.23; 0.42, 3.61, p=0.71 for *A. lumbricoides*, and 1.41; 0.67, 2.97, p=0.38 for any geohelminths) (Table 6.5).

The analysis of the four level *H. pylori* infection variable representing timing of infection revealed the lowest prevalence of wheeze was among children exposed at age three but not at age five (3.0%), and the highest amongst the those infected at age 3 and 5 (6.9%), but overall the differences were not significant (adjusted OR, 95% CI, 0.62; 0.16, 2.30) (Table 6.5). In the univariate and

adjusted analyses of effects of current infection, *H. pylori* infection at year five was associated with a small but non-significant increased risk of wheeze (adjusted OR, 95% CI, 1.37; 0.71, 2.65, p=0.35) (Table 6.5).

Further adjustment for potential confounders in Table 5.19 made little change to the odds ratios (Table 6.5).

,

Table 6.5 Univariate and multivariate analysis of wheeze in relation to

Exposures	Overall N (%)	Wheeze Yes п (%)	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value ‡
Lifetime exposure to Hookworm [‡] (N=816) Never exposed	711 (87.1)	31 (4.4)	1	1	0.58
Exposed at any age up to yr 5 Lifetime exposure to Ascaris lumbricoides [‡] (N=816)	105 (12.9)	6 (5.7)	1.33 (0.54,3.27)	1.30 (0.53,3.23)	
Never exposed	742 (90.9)	33 (4.5)	1	1	0.71
Exposed at any age up to yr 5 Lifetime exposure to any geohelminth [†] (N=824)	74 (9.1)	4 (5.4)	1.23 (0.42,3.57)	1.23 (0.42,3.61)	
Never exposed	651 (79.0)	27 (4.2)	1	1	0.38
Exposed at any age up to yr 5 <i>Helicobacter pylori</i> exposure at age 5 (N=847)	173 (21.0)	10 (5.8)	1.42 (0.67,2.99)	1.41 (0.67,2.97)	
Yes	370 (43.7)	19 (5.1)	1.38 (0.71,2.67)	1.37 (0.71,2.65)	0.35
Νο	477 (56.3)	18 (3.8)	1	1	
<i>Helicobacter pylori</i> exposure at ages 3 and 5 (N=593)					
Never exposed	222 (37.4)	10 (4.5)	1	1	0.52
Exposed at age 3 but not at age 5	101 (17.0)	3 (3.0)	0.65 (0.17,2.42)	0.62 (0.16,2.30)	
Exposed at age 5 but not at age 3	126 (21.3)	5 (4.0)	0.88 (0.29,2.63)	0.89 (0.30,2.68)	
Persistent exposure	144 (24.3)	10 (6.9)	1.58 (0.64,3.91)	1.52 (0.61,3.77)	

geohelminth and H. pylori infection up to the age of 5

*ORs adjusted for child's gender, area of residence and maternal education

*Overall p-value (likelihood ratio test)

†Hookworm, A. lumbricoides, or Trichuris trichiura.

*Lifetime exposure to hookworm, A. lumbricoides or any geohelminths: refers to exposure at ages 1, 3 and 5.

6.2.4.2 Effects of geohelminth infection and H. pylori on eczema

The relation between lifetime exposure to hookworm, A. lumbricoides or any geohelminth and the prevalence of eczema was very similar to that seen for wheeze, with a non-significant increased risk among children exposed at any age compared to non-exposed children (Table 6.6). The odds ratios were little changed when adjusted for a priori confounders (adjusted ORs, 95% CI, 1.10; 0.41, 2.91, p=0.85 for hookworm, 1.62; 0.60, 4.36, p=0.36 for A. Lumbricoides, and 1.45; 0.69, 3.09, p=0.34 for any geohelminth) (Table 6.6). In univariate and multivariate analyses, the effects of *H. pylori* infection were generally protective with the lowest risks seen in those exposed at age three but not age five (adjusted OR, 95% CI, 0.29; 0.06, 1.28) and in persistently exposed children vs. never exposed (adjusted OR, 95% CI, 0.40; 0.13, 1.24), however, overall these associations did not reach statistical significance (p=16)(Table 6.6). Similarly for current *H. pylori* infection, a non-significant decreased risk of eczema was seen on exposure to H. pylori infection at age five in both univariate and multivariate analyses (adjusted OR, 95% CI, 0.63; 0.31, 1.28, p=0.19) (Table 6.6).

Further adjustment for variables in Table 5.20 did not materially alter the results (Table 6.6).

222

Table 6.6 Univariate and multivariate analysis of eczema in relation to

Exposures	Overall N (%)	Eczema Yes n (%)	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]
Lifetime exposure to Hookworm [‡] (N=816) Never exposed	711 (87.1)	31 (4.4)	1	1	0.85
Exposed at any age up to yr 5 Lifetime exposure to Ascaris lumbricoides [‡] (N=816)	105 (12.9)	5 (4.8)	1.10 (0.42,2.89)	1.10 (0.41,2.91)	
Never exposed	742 (90.9)	31 (4.2)	1	1	0.36
Exposed at any age up to yr 5 Lifetime exposure to any geohelminth [†] (N=824)	74 (9.1)	5 (6.8)	1.66 (0.63,4.42)	1.62 (0.60,4.36)	
Never exposed	651 (79.0)	26 (4.0)	1	1	0.34
Exposed at any age up to yr 5 <i>Helicobacter pylori</i> exposure at age 5 (N=847)	173 (21.0)	10 (5.8)	1.47 (0.70,3.12)	1.45 (0.69,3.09)	
Yes	370 (43.7)	12 (3.2)	0.63 (0.31,1.28)	0.63 (0.31,1.28)	0.19
Νο	477 (56.3)	24 (5.0)	1	1	
<i>Helicobacter pylori</i> exposure at age 3 and 5 (N=593)					
Never exposed	222 (37.4)	15 (6.8)	1	1	0.16
Exposed at age 3 but not at age 5	101 (17.0)	2 (2.0)	0.28 (0.06,1.26)	0.29 (0.06,1.28)	
Exposed at age 5 but not at age 3	126 (21.3)	5 (4.0)	0.57 (0.20,1.61)	0.54 (0.19,1.54)	
Persistent exposure	144 (24.3)	4 (2.8)	0.39 (0.13,1.22)	0.40 (0.13,1.24)	

geohelminths and *H. pylori* infection up to the age of 5

*ORs adjusted for child's gender, area of residence and maternal education

*Overall p-value (likelihood ratio test)

†Hookworm, A. lumbricoides, or Trichuris trichiura.

*Lifetime exposure to hookworm, *A. lumbricoides* or any geohelminths: refers to exposure at ages 1, 3 and 5.

6.2.4.3 Effects of geohelminth infection and H. pylori on rhinitis

Lifetime exposure to hookworm was associated with an increased risk of rhinitis at age five (6.7% among exposed vs. 3.1% in unexposed), whereas *A. lumbricoides* was associated with decreased risk (2.7% among exposed vs. 3.6% in unexposed), but none of these differences were statistically significant (Table 6.7). In adjusted analysis, the associations changed only slightly (adjusted OR, 95% CI, 2.13; 0.88, 5.15, p=0.12 for hookworm, 0.79; 0.18, 3.41, p=0.75 for *A. lumbricoides*, and 1.65; 0.74, 3.68, p=0.24 for any geohelminth) (Table 6.7). As in the wheeze and eczema findings, the relationship between *H. pylori* infection at ages three and five and prevalence of rhinitis was generally protective (exposure at age three but not age five vs. never exposed children, adjusted OR, 95% CI, 0.73; 0.19, 2.76), however none of these assications were to the point of significance (p=0.83) (Table 6.7). In an adjusted analysis, current *H. pylori* infection also reduced the risk of rhinitis, but did not reach significance (adjusted OR, 95% CI, 0.94; 0.45, 1.94, p=0.86) (Table 6.7).

Further adjustment for potential confounders in Table 5.21 did not alter the results (Table 6.7).

Table 6.7 Univariate and multivariate analysis of rhinitis in relation to

Exposures	Overall N (%)	Rhinitis Yes n (%)	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]
Lifetime exposure to hookworm [*] (N=816) Never exposed	711 (87.1)	22 (3.1)	1	1	0.12
Exposed at any age up to yr 5 Lifetime exposure to Ascaris lumbricoides [*] (N=816)	105 (12.9)	7 (6.7)	2.24 (0.93,5.39)	2.13 (0.88,5.15)	
Never exposed	742 (90.9)	27 (3.6)	1	1	0.75
Exposed at any age up to yr 5 Lifetime exposure to any geohelminth [†] (N=824)	74 (9.1)	2 (2.7)	0.74 (0.17,3.16)	0.79 (0.18,3.41)	
Never exposed	651 (79.0)	21 (3.2)	1	1	0.24
Exposed at any age up to yr 5 <i>Helicobacter pylori</i> exposure at age 5 (N=847)	173 (21.0)	9 (5.2)	1.65 (0.74,3.67)	1.65 (0.74,3.68)	
Yes	370 (43.7)	13 (3.5)	0.93 (0.45,1.92)	0.94 (0.45,1.94)	0.86
Νο	477 (56.3)	18 (3.8)	1	1	
<i>Helicobacter pylori</i> exposure at age 3 and 5 (N=593)					
Never exposed	222 (37.4)	9 (4.1)	1	1	0.83
Exposed at age 3 but not at age 5	101 (17.0)	3 (3.0)	0.72 (0.19,2.74)	0.73 (0.19,2.76)	
Exposed at age 5 but not at age 3	126 (21.3)	3 (2.4)	0.56 (0.15,2.18)	0.60 (0.16,2.26)	
Persistent exposure	144 (24.3)	6 (4.2)	1.03 (0.36,2.96)	1.05 (0.36,3.03)	

geohelminths and H. pylori infection up to the age of 5

'ORs adjusted for child's gender, area of residence and maternal education

*Overall p-value (likelihood ratio test)

+Hookworm, A. lumbricoides, or Trichuris trichiura.

*Lifetime exposure to hookworm, *A. lumbricoides* or any geohelminth: refers to exposure at ages 1, 3 and 5.

6.2.4.4 Effects of geohelminth infection and H. pylori on sensitization

The risk of sensitization was higher in those infected with hookworm at any age up to year five (3.8%) than in those not infected (1.8%), and there was a similar higher risk in those exposed to *A. lumbricoides* at any age (2.7%) than in unexposed children (2.0%) (Table 6.8). However, none of these differences were statistically significant. Adjusted analysis showed a comparable finding, with non-significant increased risk of sensitization seen among children with hookworm, *A. lumbricoides*, or any geohelminth (adjusted OR, 95% CI, 2.08; 0.66, 6.57, p=0.24 for hookworm, 1.31; 0.29, 5.96, p=0.73 for *A. Lumbricoides*, and 2.04; 0.74, 5.60, p=0.17 for any geohelminth) (Table 6.8).

In the univariate analysis, the risk of sensitization was lower in those currently infected with *H. pylori* (0.8%), than uninfected (2.9%) (Table 6.8), and the difference was statistically significant. In multivariate analysis adjusted for *a priori* confounders, the odds ratio was unchanged from the univariate, and showed a significantly decreased risk of sensitization in those exposed to *H. pylori* compared to unexposed children (adjusted OR, 95% CI, 0.26; 0.07, 0.92, p=0.02) (Table 6.8). The effect of previous exposure to *H. pylori* up to age five on sensitization outcome was also protective, but less stronger than current infection (adjusted OR, 95% CI, 0.62; 0.21, 1.76, p=36) (Table 6.8).

Further adjustment for potential confounders in Table 5.22 made little change to the odds ratios (Table 6.8).

226

Table 6.8 Univariate and multivariate analysis of sensitization in relation

Exposures	Overall N (%)	Any sensitizat ion Yes n (%)	Crude OR (95% CI)	Adjusted OR [*] (95% CI)	P- value [‡]
Lifetime exposure to hookworm [*] (N=822) Never exposed	717 (87.2)		1	1	0.24
Exposed at any age up to yr 5	105 (12.8)	4 (3.8)	2.14 (0.69,6.71)	2.08 (0.66,6.57)	
Lifetime exposure to Ascaris lumbricoides* (N=822)					
Never exposed	748 (91.0)	15 (2.0)	1	1	0.73
Exposed at any age up to yr 5	74 (9.0)	2 (2.7)	1.36 (0.30,6.05)	1.31 (0.29,5.96)	
Lifetime exposure to any geohelminth [†] (N=830)					
Never exposed	656 (79.0)	11 (1.9)	1	1	0.17
Exposed at any age up to yr 5 Helicobacter pylori	174 (21.0)	6 (3.5)	2.09 (0.76,5.74)	2.04 (0.74,5.60)	
exposure at age 5					
(N=854) Yes	375 (43.9)	3 (0.8)	0.27 (0.08,0.94)	0.26 (0.07,0.92)	0.02
Νο	479 (56.1)	14 (2.9)	1	1	
<i>Helicobacter pylori</i> exposure at age 3 and 5 (N=597)					
Never exposed	224 (37.5)	7 (3.1)	1	1	0.36
Exposed at any age up to yr 5	373 (62.5)	7 (1.9)	0.59 (0.21,1.71)	0.61 (0.21,1.76)	

to geohelminth and *H. pylori* infection up to the age of 5

*ORs adjusted for child's gender, area of residence and maternal education

*Overall p-value (likelihood ratio test)

†Hookworm, A. lumbricoides, or Trichuris trichiura.

*Lifetime exposure to hookworm, *A. lumbricoides* or any geohelminth: refers to exposure at ages 1, 3 and 5.

6.3 SUMMARY

This study provides important insights into the aetiologies of allergic disease and sensitization. As in the findings from the follow up at year three, the study demonstrated evidence of a protective effect of *H. pylori* on eczema and sensitization in young children in a low-income birth cohort in which confounding by social advantage or antibiotic therapy are unlikely to play a role. In the longitudinal analysis, infection with *H. pylori* was associated with a 69% decreased risk of incident eczema, and in the cross-sectional analysis, current exposure to *H. pylori* infection at year five was associated with a 74% decreased risk of sensitization.

The effects of the geohelminths hookworm and *A. lumbricoides*, either as 'early life exposure' (exposure prior to disease onset), or 'lifetime exposure' (exposure up to age five) were not found to be associated significantly with either of the reported allergic outcomes or sensitization. In both longitudinal and cross-sectional analyses the effects were largely positive, and none of these reached statistical significance. However, in the former analysis, early life exposure to *A. lumbricoides* infection was associated with a borderline-significant increased risk of incident eczema. The power of the study in relation to these exposures was low due to the mass-deworming program continued throughout the study period, which is reflected in the wide confidence interval of the findings, and may have contributed to the lack of significant associations.

Similarly, the study found no evidence of the role of the commensal microflora enterococci, lactobacilli, and bifidobacteria. Broadly, particularly in the longitudinal analysis, the effects of the commensal microflora were protective; however, none of these differences reached significance.

A detailed discussion of the findings along with the consistencies of the findings with other epidemiological studies will be presented in chapter seven.

7 DISCUSSION

In this section, the principal findings of the study will be summarized, by exposure of interest. The strengths and weaknesses of the study will be dealt with in more detail, and comparison of the study results with the available epidemiological studies, along with alternative explanations will be presented. The final section will draw an overall conclusion, and assessed, where appropriate, against the Bradford Hill criteria for causality. This will be followed by suggestions for possible future studies.

7.1 PRINCIPAL FINDINGS

7.1.1 Wheeze, allergic disease and sensitization

The findings from this study suggest that the prevalence and incidence of wheeze, eczema, rhinitis and sensitization in this young developing country population is low, with estimates all less than 10%. This can be contrasted with a 2 to 3-fold higher prevalence in developed countries,³² however it is comparable with previous studies in under five children in Ethiopia.^{97, 258} The study also showed that sensitization at the age of three increased the risk of incident wheeze (OR=1.44), eczema (OR=2.48) and rhinitis (OR=2.54), and reached statistical significance for new onset eczema and rhinitis, but not wheeze. Similarly, sensitization at age five and the reported prevalence of eczema and rhinitis were also positively associated and reached borderline significance for rhinitis but not eczema.

7.1.2 Effects of paracetamol

Paracetamol was commonly used in the study population (use in first year of life reported in over one third of infants), and significantly increased the risk of incident wheeze in a dose dependent manner between ages one and three. The effects were higher for use of more than four tablets per month, compared to never-use, with an adjusted odds ratio of 7.3. The risk of incident eczema was also increased, in the expected direction, but not to the point of significance, with an adjusted odds ratio of 1.7 for those taking more than one tablet per month compared to never users. Data on rhinitis and sensitization were not available in the first year of life; however, further, more detailed analysis of the effects of paracetamol including effects on rhinitis and sensitization and investigation of timing of exposure were explored during subsequent follow up.

In the follow up analyses of effects of early life use of paracetamol (ages one and three) on incident outcomes between ages three and five, similar significant positive associations were seen. Use in the first three years of life increased the risk of incident wheeze, eczema and rhinitis between ages three and five in a dose-dependent manner, independent of potential confounders. The effect on incident wheeze at this age was slightly weaker than the one seen between ages one and three, however that for eczema was stronger, and for incident rhinitis reached borderline significance. Early life paracetamol use and incident sensitization were positively related, and in the expected direction, but did not reach significance and the number of incident cases was very small. For all incident outcomes, there was no indication that a certain window of age, for example, exposure in the first year of life or later in life, was more critical than another.

Cross-sectional analyses were also performed, and whilst inferior to the longitudinal analyses as unable to assess temporality, they provided greater statistical power. The findings were in accordance with those from the longitudinal analyses, and showed a significant positive association between lifetime use of paracetamol (exposure at ages one, three and five) and the prevalence of the outcomes wheeze, eczema and rhinitis at age five, with adjusted odds ratios ranging up to six. The risk of sensitization at age five was also increased with lifetime exposure to paracetamol, with an adjusted odds ratio of 4.8. The associations were all dose-dependent with higher trends seen for prevalence of reported outcomes than sensitization.

Data on indications for use of paracetamol were not available at ages one and three, only at year five. Paracetamol was the analgesic and antipyretic drug of choice for 84% of the birth cohort mothers, and was readily available and affordable. Seventy eight percent of the mothers were able to differentiate paracetamol from aspirin. The most common indications for use of paracetamol at year five include headache, malaria, common cold, and fever of any origin. Use of paracetamol for wheezing illness, coughing episodes, and allergy-related diseases accounted for less than 5%. Whilst low, it was important to further explore the possibility of confounding by indication, particularly that arising from paracetamol being taken by children for respiratory tract infections in early life, who are also more susceptible to the subsequent development of allergic diseases.²⁵⁴ Analyses were therefore adjusted for the main symptoms of respiratory infections (cough, fast breathing, and fever), as reported during the child's first year of life, and the wheeze, eczema and rhinitis association reduced in magnitude but remained statistically significant. The reduction was more pronounced for prevalent outcomes than incident outcomes. However,

adjustment of incident sensitization for respiratory infection slightly increased the odds ratio.

7.1.3 Effects of H. pylori

In this population-based birth cohort of young Ethiopian children, H. pylori infection was common with 41% of them infected at age three, and 44% at age five. A pattern of sero-conversion and sero-reversion with *H. pylori* infection was found such that 17% of children were infected at age three but not five, 21% at age five but not three years, and 25% at both ages, consistent with previous prevalence surveys in children in Butajira.²⁵⁹ In the longitudinal analysis, a significant inverse association between early life exposure to H. pylori infection (exposure at age three), and the risk of incident eczema between ages three and five was found (OR, 95% CI, 0.31; 0.10, 0.94), and a similar effect was seen cross-sectionally at age three (OR, 95% CI, 0.49; 0.24, 1.01). In cross sectional analysis, a borderline-significant decreased risk of D. pteronyssinus sensitization was found in relation to *H. pylori* infection at age three (OR, 95%) CI, 0.42; 0.17, 1.08), and a significant inverse association between current exposure to H. pylori, and any sensitization at age five (OR, 95% CI, 0.26; 0.07, 0.92). However, no significant associations, cross-sectionally or longitudinally, were seen for wheeze and rhinitis, and the directions of the ORs were inconsistent. No suggestion that exposure at age three was more important than current exposure or exposure after three years of life was found. This observation is a novel one in children of this age from a developing country with a high prevalence of early *H. pylori* infection.

7.1.4 Effects of geohelminth infection

The prevalence and intensity of geohelminth infection was low in the children in the birth cohort compared to previous studies within Ethiopia.^{104, 203} The cumulative prevalence of any geohelminth infection up to age three was 12%, with median infection intensity of 7 eggs (interquartile range 3-23). The prevalence of this infection however increased with age, probably as mobility and cross-contamination increased, but remained low most likely because of the deworming program in the study area.²⁴⁶ Whilst the risk of new onset wheeze was lower in those infected with any geohelminth infection in the first year of life than in those not infected, the 95% CI for this risk estimate was wide and significance not reached. No children with geohelminth infection in the first year of life reported incident eczema at age three, and therefore ORs could not be computed or further analysis performed. Similarly, no significant associations between any geohelminth infection and incident wheeze, eczema, rhinitis or sensitization between the ages of three and five were seen. However, a borderline-significant increased risk of incident eczema was seen in those exposed to A. lumbricoides infection in the first three years of life. The study found no indication that early exposure was more important than exposure later in life, but again, such analyses were limited by insufficient statistical power.

7.1.5 Effects of commensal bacteria

Children in this cohort at age three were found to be commonly colonized with enterococci (38%), lactobacilli (31%) and bifidobacteria (19%). In the cross sectional analysis, the presence of enterococci, lactobacilli and bifidobacteria in children's stools tended to be associated with an increased risk of allergic symptoms and decreased risk of allergic sensitization, but none of the observed associations were statistically significant. Moreover, in the longitudinal analysis, no significant association was found between any of the commensal bacteria and incident wheeze, eczema, rhinitis or sensitization between ages three and five.

7.2 STRENGTHS AND WEAKNESSES OF THE STUDY

7.2.1 Birth cohort design

The use of a low income setting prospective birth cohort in assessing early life determinants of wheeze and allergic diseases has several strengths. The prospective design provides information on temporal relations between the exposure and outcome, and permitted analysis of the effects of early exposures on later development of allergic diseases. Reverse causation is therefore unlikely to have played a role in this study since the longitudinal analyses were based on those children who had never reported the outcomes early in life. Furthermore, the birth cohort design meant it was possible to explore the timing of exposures, and association with allergic diseases, which has barely been explored in most previous studies; in particular, to explore the importance of exposure in the first year of life which is thought to be the important window of life in terms of immune development.¹⁴⁰ The use of an unselected birth cohort to make very early measurements of potential exposures and allergic outcomes, and approaching the mothers during pregnancy minimized recall and reporting bias.

Selection bias is not likely to be a major issue in this study primarily because the study was based on unselected population based cohort of children. The study

also demonstrated very good retention of the surviving mother-child dyads up to the age of five years, with less than 6% lost to follow-up between birth and five. The majority of the losses to follow up were due to high infant and under-5 mortality rate in Butajira,²³⁸ and Ethiopia as a whole.²²⁷ Moreover, bias associated with non-response in this birth cohort was unlikely as only five women declined to participate in the study.

7.2.2 Representativeness of the cohort

The extent of comparable data on key variables between national figures²²⁷ and this birth cohort suggests that it is highly representative of the wider population. For instance, the infant mortality rate in the birth cohort is 64 deaths per 1000 live births which compares with 59 per 1000 births for Ethiopia²²⁷, while the under-5 mortality rate of 83 deaths per 1,000 live births compares with 88 per 1,000 live births for Ethiopia.²²⁷ The demographic data including the urban-rural distribution, the proportion of literate mothers, distribution of environmental characteristics and lifestyle factors from the birth cohort are very similar to the wider Ethiopian population,²²⁰ and compare well with the source population – the Butajira DSS.²³⁶

7.2.3 The study power

The sample size of the study was originally determined to address objectives other than this thesis.^{240, 241, 251, 252} Post-hoc power calculation showed that the study has good power to detect an association between the exposures and the outcomes.^{242, 253, 260} It was demonstrated that for an outcome with 8%

prevalence, our sample of children provided approximately 80% power at the 5% significance level to detect an odds ratio of around 0.45 for gastro-intestinal exposure,²⁵³ and 2.00 for use of paracetamol.²⁴² However, relying on retrospective power calculation may introduce a degree of bias, and it may be that low study power disguised the effects seen, particularly for geohelminth infections, and other exposures related to sensitization outcomes, as seen by wide confidence interval.

7.2.4 Measurement error and information bias

7.2.4.1 Outcome reporting

Whilst the sensitization outcome was measured objectively, measures of wheeze, eczema and rhinitis were based on maternal questionnaire reporting, and are hence susceptible to reporting or information bias. The questions asked came from the widely used and validated ISAAC symptoms questionnaire,²⁵ which was administered by individuals known to the mothers, and which used common local terms (for example '*sit sit'* for wheezing symptoms, an onomatopoeic local term), all of which should reduce the degree of reporting error. In this low-income birth cohort, it was difficult to collect outcome and exposure data using daily diaries as the literacy level of many mothers was low (over 80% of the mothers had no formal education). Instead mothers were asked to recall symptoms, and poor recall may have led to a degree of error in the wheeze, eczema and rhinitis variables. Even though reported questionnaire-based symptoms were used, since most practical for a population based epidemiological study,²⁶¹ the lack of objective measures of asthma like BHR, lung function test and fractional exhaled NO (FeNO) is a limitation. Inclusion of

such measures would have likely reduced information bias, but these could not be included due to logistical issues in such a rural setting. The observation of a large proportion of children with reported wheeze ever at age one having a negative response to wheeze at ages three and five is likely to be explained by mothers not remembering wheeze symptoms experienced by their child at an early age which then resolved. This transient wheeze phenotype is thought to be infection-related and more common in those born with small airways,²⁶² and in our previous risk factor analysis of the cohort at age one, evidence of such a phenotype was found (positively associated with household size, and analgesic use during infancy).²⁴² The implications of poor recall on the findings are that some incident cases may have been missed if symptoms only occurred early in the one to three year follow-up period and did not persist up to the age of five, although such non-persistent cases are likely to be those with mild disease.

Reporting bias could also be a problem for the rhinitis outcome, particularly as a result of misclassification of symptoms of common cold and conjunctivitis. However, to reduce this bias this outcome was only measured from age three onwards and not measured at age one, consistent with other studies in very young children.^{197, 199} Moreover, the observation that symptom reporting was associated with the sensitization outcome, albeit not perfectly, suggests relatively little misclassification.

Similarly, for reported eczema, itchy skin manifestations such as scabies or other skin conditions may be misclassified as 'eczema symptoms'. Whilst it has previously shown during the one year follow up of the cohort that the symptoms being reported appear to be linked to an allergic aetiology (positively related to parental allergy, and negatively to sleeping on the floor and large household size),²⁴² some degree of misclassification cannot be ruled out. It was also seen in our group's previous validation work in Jimma in young Ethiopian children that the ISAAC criteria for eczema have a high negative predictive value (91%), taking clinical examination as a reference, but a lower positive predictive value (49%), suggesting the positive responses to the eczema question are not always true eczema.²⁵⁸ However analysis of risk factors for eczema in the same survey population resulted in similar findings (direction and size of effects) regardless of whether eczema was defined using the ISAAC question or clinical examination.¹⁰³

In general, even though the symptoms questionnaire was not validated in this cohort of children, the study utilized the same ISAAC questionnaires which have been successfully used by our group's previous work in adults in Butajira,⁴⁵ in under five children,^{97, 263} and in older age groups in Jimma, Ethiopia.^{43, 104} Moreover, incidence and prevalence of these outcomes in the study appeared to be positively related to sensitization; albeit weakly with wheeze, and also with parental allergy, suggesting that some of these are markers of allergy. Altogether, although it is difficult to completely exclude the possibility of reporting and misclassification bias in the study, which is inherent to use of symptoms-based questionnaires;⁹ it is likely that this bias is non differential,⁹ and so unlikely to affect the study findings.

Sensitization in the study was measured using skin prick testing to common household allergens previously found in Ethiopia.¹⁰⁴ However, the observation that a significant proportion of children were sensitized at ages three but not at

age five may indicate errors in measuring the wheal diameters. Reversal of sensitization status in early childhood has been reported in a range of studies.²⁶⁴⁻²⁶⁷ However, the prevalence of reversal in this study was substantially greater than that seen by Barbee *et al*,²⁶⁴ though reversal prevalences as large as 50% have been reported elsewhere.²⁶⁵ Measurement error may introduce a degree of misclassification, though this bias is likely to be random, and the interrater agreement²⁴⁷ of those individuals performing the test was reasonably good (kappa=0.75 for any sensitization).

7.2.4.2 Paracetamol reporting

Paracetamol use was also ascertained by self report in which mothers were asked about use in the past year, and additionally about consumption in the past month. Therefore maternal report of child's use of paracetamol is an issue owing to reporting bias, particularly those arising from medication taken by other siblings. However, the maximum time of recall was one year, and one month for dose exposure, designed to minimize recall bias, which has affected studies in which subjects were asked about first year paracetamol use several years later.¹⁸⁹

Another issue is misclassification of the exposure due to the availability of multiple formulations of paracetamol and other non-aspirin nonsteroidal antiinflammatory drugs (NSAIDs): in developed countries, for example in the UK, over 64 brands contain paracetamol.²¹⁸ This is unlikely to be a source of bias in this rural setting as multiple formulations of this drug are uncommon. Our group's previous qualitative and quantitative work in the same setting has shown that the study participants in Butajira were able to distinguish different analgesics, and that the majority of the general population in the study area know paracetamol to be different from aspirin, ^{203, 213} Similarly, in this birth cohort it was found that over 78% of the mothers can distinguish between strips of paracetamol and aspirin, indicating that misclassification of drugs is unlikely.

Bias arising from arbitrary classification of frequency of paracetamol use is another issue related to paracetamol exposure. This is possible, since there is no standard classification of dose of paracetamol, however we have utilized broadly similar categorization to the previous multicenter studies.^{189, 190} Since there is no reason that allergic subjects would be more or less likely to misreport paracetamol use, any reporting error is likely to be non-differential and would therefore result in the odds ratios being biased towards the null value; which contrasts with the large odds ratio observed in the study.

7.2.4.3 Geohelminth, H. pylori, and commensal bacteria measurement

Measurement of geohelminth intensity level using the sedimentation method, unlike the Kato-Katz technique,²⁶⁸ is liable to miss eggs, though the method is generally sensitive in identifying true positives.²⁶⁸ This may be due to eggs being trapped by debris or floating, resulting in eggs being lost during the sedimentation process. However, in view of the fact that the intensity of infection in the study area was generally low,⁴⁵ the chances of missing helminth eggs are small. The sediment of the concentration was also examined in three slides per sample, which should have increased the yield of the test.

H. pylori was measured objectively using stool antigen testing, an acceptably reliable means to determine current infection status in young children,²⁴⁹ although we were unable to specifically measure the strains of *H. pylori*. Other studies have shown protective associations to be particularly strong for *H. pylori* possessing cagA strains.²⁶⁹

The detection of the faecal microflora was based on stool bacteriological culture identified to the genus level using a microscope and analysed qualitatively. Even under optimal laboratory conditions with good anaerobic bacteriological techniques, only 25 to 40% of these commensals are cultivable and identified microscopically.²⁷⁰ The non-cultivable bacteria can only be identified using molecular techniques.²⁷¹ Furthermore, the selective culture media used in the study may not be completely selective, in particular, the culture of bifidobacteria using this method may underestimate the bacterial population,²⁷² However, it is important to note that previous epidemiological studies using similar approaches have shown differences in microbial composition (particularly lactobacilli and bifidobacteria species) between allergic and non allergic subjects.^{144, 150, 152} Moreover, in the study it was only measured selected commensal bacteria commonly hypothesized in the literature; and since the gut is colonized by a large number of micro-organims,²⁷³ the approach may miss other commensals.

In addition, the study has no information on the exposure status of the children younger than three years, particularly for *H. pylori* and commensal bacteria, and it is possible that considering all infections (incident and prevalent) as incident has led to an underestimation of the effects of these infections. The implication of this is that the study might have missed the effects of these exposures in the first year of life. One other issue in relation to the analysis of *H. pylori* exposure is the issue of multiple testing (the probability that one can reject the null hypothesis among multiple analyis.²⁷⁴) Even though, this may be considered in the interpretation of the findings, the consistency of the results on both crosssectional and longitudinal analysis, and that these associations were seen among different outcomes at different time points, made the likelihood of bias associated with multiple testing less likely.

7.2.5 Residual confounders

Unmeasured confounders may play a role in the study, though the study was designed to try to include most hypothesized early life risk factors common to developing countries and linked to asthma and allergy in the published literature. The collection of these potential confounders, including markers of socio-economic status and dust allergens from child's bedding, allowed an adjusted analysis to be explored. Of particular concern was confounding by socioeconomic status, as this may influence access to healthcare and health seeking behaviour. This marker was based on maternal education, and area of residence, as there is no previously validated measure of socio-economic index in the area. However, none of our markers of socioeconomic status were associated with the outcomes or with child's use of paracetamol, which make socioeconomic differences unlikely to explain these findings.

Although we have not collected information on pollution and dietary habits, both the urban district of the study area (less than 15% of the study population), and the rural districts (over 85% of the study population) have no industry, little motorized transport, and a diet based on locally produced crops. Therefore the effects seen are unlikely to be due to residual confounding by risk factors including air pollution and heterogeneity in dietary habits. Furthermore, we have no information on several exposures previously linked with asthma and allergy,^{196, 275} particularly geohelminth infection and paracetamol, during pregnancy, and hence were unable to adjust for possible prenatal exposures.

In relation to paracetamol exposure, one issue in previous studies has been confounding by indication: paracetamol may be given for a respiratory illness that increases the risk of a child developing asthma and allergic conditions.^{212, 276} The study was unable to prospectively record respiratory infection episodes, or specifically measure indications for use of paracetamol during infancy due to difficulty in ascertaining this information in this cohort. We have, however, data on symptoms of infantile respiratory tract infection in the first year of life and these effects were adjusted for in the multivariate analysis. Furthermore, information on use of non steroidal anti inflammatory drugs (NSAIDs) and use of aspirin that may be linked to wheeze and allergic diseases²⁰¹ were not collected early in life as they are not readily available or affordable in this rural community.

7.3 CONSISTENCY OF THE FINDINGS

7.3.1 Paracetamol, wheeze and allergic diseases

Most studies, that have focused on wheeze or asthma, though primarily crosssectional, have demonstrated an increased risk of asthma and allergic conditions

among paracetamol users.^{187, 189, 190, 192, 193, 195, 197-206} This study from a lowincome population based birth cohort has confirmed these previous observations, and found that persistent and heavy exposure of paracetamol increases the risk of wheeze in a dose-dependent manner, independent of symptoms of respiratory tract infections. The current findings fit with a recent meta-analysis of studies reporting a 63% increased risk of asthma associated with paracetamol use in children and adults (OR, 95% CI, 1.63; 1.46, 1.77).¹⁹³ These findings were also consistent with the ISAAC multicountry study, the largest study so far, on use of paracetamol in the first year of life, exposure later in childhood and risks of asthma at the age of six and seven years, although ORs were not as large as those seen here (OR for asthma=1.46 for use vs. non users).189 Similar exposure-dependent increased risks for current use of paracetamol and symptoms of asthma, also fitting with the current study, were reported from the ISAAC study in adolescents aged 13- to 14-years.¹⁹⁰ Despite several strengths of these studies including their multinational nature, their power, and the consistency of findings across centres, the cross-sectional nature and retrospective recall of the exposure introduce a degree of bias; 189, 190 and probably accounted for the difference in the risk estimate. The current study also concurs with our group's previous study in older children and adults in the same Butajira study area which reported a similar level of paracetamol use (42%), and a significant dose-dependent association with wheeze.²⁰³

Prospective evidence has been limited to a handful of studies showing a positive relation between paracetamol exposure in the intrauterine environment, particularly in late pregnancy, and the risk of allergic diseases in childhood.^{197-200, 211, 215} The Avon Longitudinal Study of Parents and Children (ALSPAC) study, for example, showed significant and dose-dependent associations between

frequent paracetamol use in late pregnancy (most days/daily) and wheezing in children at age 30-42 months and later at age 69-81 months, although the ORs were not as large as those seen here (2.10 and 1.86, respectively).¹⁹⁷ A recent meta-analysis of the available observational studies reporting exposure *in utero* and risk of childhood wheeze demonstrated a pooled OR of 1.21 (95% CI, 1.02, 1.44), irrespective of gestational age,¹⁹⁶ which also fits with the previous meta-analysis that reported a pooled odds ratio of 1.50.¹⁹³

The Melbourne Atopy longitudinal Cohort Study has also reported finding relating personal consumption of paracetamol with risk of asthma in children that are broadly in line with our findings.²¹² This study followed 620 children with a family history of allergic disease and documented paracetamol use from birth to two years and outcome measured at six and seven years.²¹² The study showed a crude increase in the risk of wheeze among children exposed to paracetamol early in life. However, no association remained after adjustment for respiratory tract infection (otitis media, tonsillitis and throat infection), unlike the current study in which a significant association remained. Since the study adjusted for multiple infections, bias associated with over adjustment in the model is difficult to exclude. Moreover, since the study was conducted in children with a family history of allergy, there is the possibility that parents with asthma may avoid giving their child aspirin and hence an association arises because children with genetic susceptibility are more likely to have superimposed infections, and be given paracetamol. However, in the current study in Butajira, it has previously been established that only 1% of the population in the study area reported avoidance of aspirin due to asthma risk.²¹³ The study also fits with the findings of a prospective study in adults that reported a positive relation between paracetamol use and adult-onset asthma in women.²⁰⁶

The current study also fits with the sole US-based RCT of the use of paracetamol compared to ibuprofen in febrile asthmatic children aged 6 months to 12 years, which showed an increased rate of hospitalization and out patient visits for asthma in the paracetamol arm vs. ibuprofen, reaching significance for outpatient visits (OR, 95% CI, 1.79; 1.05, 2.94).²⁰¹ However, since the study did not include a placebo arm, it is impossible to determine whether the effect came from a relative efficacy of ibuprofen or due to an adverse role paracetamol as acknowledged by the authors.²⁰¹

The study has also demonstrated a dose-dependent increased risk of eczema symptoms among children exposed to paracetamol early in life. In agreement with the current findings, studies, mostly cross-sectional, have reported similar positive associations between paracetamol use and eczema.^{189, 190, 203} The ISAAC multicountry study in children¹⁸⁹ reported that use of paracetamol for fever during infancy significantly increased the risk of eczema later in life (OR=1.35, for use vs. never). The same ISAAC Phase Three investigators also recently reported that use of paracetamol in the past 12 months was associated with an increased risk of eczema. In both studies, the associations were found in most major regions and adjusted for main confounders. The magnitudes of the ORs reported by the ISAAC studies, however, were not as large as seen in our study. This difference might be due to the different level of paracetamol intake, presence of residual confounders, for example, confounding by indication or difference in the windows of exposure.

Longitudinal studies exploring the link between paracetamol and eczema symptoms are scarce. The Melbourne Birth Cohort Study found no significant

association between use of paracetamol up to two years on eczema among children aged five to seven years controlling for infections.²¹² The ALSPAC cohort studies in pregnancy also showed no associations between paracetamol exposure *in utero* and the risk of eczema.^{197, 219} The reason why these prospective studies have not found independent associations between paracetamol use and eczema, unlike the current study, may be attributed to low statistical power or misclassification of eczema symptoms, or there may be no true effect and underlying mechanisms relate specifically to the lung.

The study also found that use of paracetamol increased the risk of rhinitis; however, the association was not as strong as seen for wheeze and eczema. Other studies have also reported similar positive associations between rhinitis and paracetamol exposure in children.^{189, 190} The ISAAC cross-sectional study demonstrated a dose-dependent increased risk of first year of life use of paracetamol and the risk of rhinoconjunctivitis in children aged six to seven years (OR=1.48, for use vs. never).¹⁸⁹ A similar dose-dependent increased risk was reported among children exposed to paracetamol aged 13 to-14 years (OR=2.39, high dose vs. never). A previous cross-sectional study in the same study population in Butajira also found a 2.5-fold increased risk of rhinitis in those using over 3 tablets per month.²⁰³

Like the other outcomes in the study, only a few longitudinal studies have explored the associations between use of paracetamol and rhinitis, and have reported conflicting findings.^{212, 219} The Melbourne Birth Cohort Study demonstrated a borderline increased risk of rhinitis in children exposed to paracetamol early in life.²¹² However, the association disappeared once adjusted

for frequency of infections;²¹² unlike the current study where the association remained significant. The prenatal longitudinal study exploring *in utero* exposure and the risk of off-spring asthma reported weak evidence between paracetamol use in late pregnancy and risk of rhinitis.²¹⁹

The study also demonstrated a borderline significant, albeit less strong, association between sensitization at age five, and lifetime exposure to paracetamol at ages one, three and five. There are few, and conflicting, reports of epidemiological studies that have investigated the effect of paracetamol on atopy.^{202, 203, 212, 219, 276, 277} Among the cross-sectional studies, an ecological study of paracetamol sales in children and adults reported some evidence of a positive association with atopy but not with total IgE.²⁰² Our group's own previous study in Butajira showed increased risk of cockroach sensitization, but not *D. pteronyssinus* sensitization with exposure to paracetamol in children and adults.²⁰³

Among the prospective studies, a study by Wickens²⁷⁷ showed paracetamol exposure in the first year of life to be associated with a 3-fold increased risk of atopy at the age of six years. However, they found no association between current use and atopy at six years of life.²⁷⁷ Although the current study found no significant associations between early exposure to paracetamol and incident sensitization, the effects seen were large and in the expected direction. This longitudinal analysis however was likely affected by power, as the incidence of sensitization in the study was very low (15 incident cases).

In conclusion, the findings of this study fit with a range of epidemiological studies in children and adults implicating exposure to paracetamol and the risk of wheeze and other allergic diseases. Unlike the longitudinal study by Lowe and colleagues,²¹² on controlling for symptoms of respiratory tract infection, the association between paracetamol and wheeze, eczema or rhinitis reduced in magnitude, but overall significance remained. Confounding by indication is therefore less likely to have been responsible for the overall consistent association seen between paracetamol and our allergic outcomes. However, as an observational epidemiological study, the possibility that residual confounding, particularly by respiratory infection at an early age, is difficult to exclude. If present, the implication for this in the study findings are that the odds ratios reported may overestimate the actual risk.

7.3.2 Gastro-intestinal infections

7.3.2.1 H. pylori, wheeze and allergic diseases

Most studies investigating the link between *H. pylori* infection and asthma and allergic disease, to date, are cross-sectional¹²¹⁻¹²⁸ or case-control.^{58, 119, 129-133} Studies in young children, particularly those from developing countries, are remarkably scarce, with only three studies reporting links in children.^{121, 122}

In this study, a significant inverse association between early life exposure to *H. pylori* infection and the risk of incident eczema between ages three and five (adjusted OR=0.31) was found and a similar effect was seen cross-sectionally at age three (adjusted OR=0.49). These findings are in agreement with the

available cross-sectional studies in children.^{121, 122} Amongst the US based studies in children (age 3-19 years), the National Health and Nutrition Examination Survey (NHANES IV), reported significant inverse association between *H. pylori* seropositivity and eczema (adjusted OR=0.73).¹²¹ Our finding is also consistent with data reported by Herbarth *et al*¹²² from Germany who found a 63% reduction in doctor-diagnosed eczema in children (mean age 6.3 years) exposed to *H. pylori*. The difference in size of the ORs could be due to variation in age, outcome ascertainment, level of infection, for example the prevalence of *H. pylori* in these studies was <10%^{121, 122} compared with 41% in ours, and difference in measurement of infection status (serology vs. rapid stool antigen test used in the current study).

Alternative explanations for the association seen in this study, such as reverse causation, are unlikely to explain the effects of *H. pylori* on eczema. Although reverse causation may be an issue in the cross-sectional analyses, replication of findings in the longitudinal analyses excludes this possibility. One other issue could be that *H. pylori* status is a proxy indicator of other infections or socio-economic conditions.^{122, 135, 278} To explore such a possibility, the findings were controlled for markers of socio-economic status which may have confounded the previous study,¹²⁶ and adjusted for other infections including geohelminth infections, and commensal bacteria, but no evidence was found to support this argument.

This study also provides some evidence, though cross-sectional, for an effect of *H. pylori* on sensitization at age three (adjusted OR=0.42) and five (adjusted OR=0.26). Most of the available observational studies in children did not

specifically explore the effects of *H. pylori* on sensitization.¹²² ¹²¹ In a study comparing Finnish and Russian children, the prevalence of atopic sensitization was higher in Finland than Russia, and it appeared that this was due to an inverse association with *H. pylori* infection.¹³³ Even though it is difficult to draw direct inference from studies in adults, our findings fit with cross-sectional studies in these age groups.^{58, 123, 130} The NHANES III survey in the US demonstrated an inverse association with sensitization to pollen and moulds, with a greater effect seen in younger (median age <43 years) and cagA⁺ subjects (OR=0.69).¹²³ However, the same group of investigators in another study reported no association between *H. pylori* infection and serum IgE.¹³⁰

One explanation for these findings might be confounding by use of antibiotics, in that use for asthma or allergy may in turn affect *H. pylori* infection, and hence reverse causation. Even though, this remains a possibility, in the current study in children from a low-income cohort with limited access to standard antibiotics and no *H. pylori* eradication program, this was less likely to be a source of bias. Moreover, though age at acquisition was not assessed in this study, the fact that *H. pylori* infection occurs in early childhood^{259, 279} and persists for life,²⁸⁰ makes it unlikely that sensitization precedes *H. pylori* infection.

The study however did not detect an effect of *H. pylori* on wheeze or rhinitis in this cohort of young children on both cross-sectional and longitudinal analyses. One previous study in children, the NHANES IV study, showed reduction in ever having had asthma (OR=0.69) and allergic rhinitis (OR=0.60) in *H. pylori* infected subjects.¹²¹ Another US based study in adults also reported inverse associations, and it appeared that the effects were strong in younger adults

(median age <43 yr), for asthma and rhinitis cases with onset during childhood (\leq 15 yr), and in those infected by cagA⁺ strains.¹²³ Contradictory findings have also been reported from most case-control studies.^{58, 119, 131-133} Two UK based case-control studies by Jarvis *et al*¹²⁴ and Bodner *et al*¹³² found no association between *H. pylori* infection and wheezing, rhinitis or atopy, including with *H. pylori* cagA⁺ strains.¹³¹ However, these inconsistencies might also be due to small number of cases and controls included in the studies or could be due to bias associated with the selection of cases and controls.

The lack of associations with the reported wheeze and rhinitis in the this study may be due to mechanisms other than those related to wheeze or asthma physiopathology, or to outcomes partly unrelated to allergic phenotype.^{14-16, 281} Another explanation may be that the effects relate mainly to *H. pylori* cagA⁺ strains, as this was reported to have strong effect on asthma,^{123, 135} and this study has no data on cagA serology. However, a previous study in Ethiopian dyspeptic patients has shown that cagA genes were detected in 79% of the study subjects,²⁸² suggesting this may be the dominant strain in the population, and perhaps also explaining the strong protective effects seen in the study.

In conclusion, this study from a low-income birth cohort in young children provides evidence for a protective role *H. pylori* on eczema and sensitization, both of which have been previously reported to be strongly linked to the risk of childhood asthma.^{23, 283}

7.3.2.2 Geohelminth, wheeze and allergic diseases

Evidence from epidemiological studies on the hypothesis that geohelminth infections may protect against asthma and allergic diseases has been summarized in two meta-analyses.^{108, 109} The first one found a strong, intensity-related reduction in asthma risk with hookworm infection (pooled OR, 0.50; 0.28, 0.90), but a significant increased risk with *A. lumbricoides*.¹⁰⁸ The second meta-analysis showed a 31% reduction in atopy among those infected with *A. lumbricoides*, and a similar reduction with *T. trichiura* and weakly associated with hookworm.¹⁰⁹ In contrast to these earlier observations, in this study however, early life exposure to geohelminth infections was not associated with incidence or prevalence of our allergic outcomes. Although, the risk of new onset wheeze was lower in those infected with any geohelminth infection in the first year of life, the 95% CI was wide and significance not reached.

Whilst this study showed no significant associations, the analyses had limited statistical power as a result of the low prevalence and intensity of geohelminth infection early in life, and small numbers with the outcomes amongst the infected children. Geohelminth infection prevalence was much lower than our group's previous studies both in Butajira, ⁴⁵ and Jimma in south west Ethiopia,⁹⁷ (prevalence up to year three: any geohelminth infection of 12.2% compared with 33.8% in Butajira five year and more olds,⁴⁵ and 69% in Jimma one to four years old children⁹⁷). Intensity of infection was also much lower (median number of eggs per gram of faeces among those positive for hookworm was 6 (range 1-134), and for *A. lumbricoides* 12 (range 1-475), vs. 30 (range 3-895) and 167 (range 2-31,378) in Jimma young children). In both children⁹⁷ and adults¹⁰⁴ in Jimma, a strong protective effect of hookworm infection was reported in relation

to wheeze (in adults, OR= 0.48, 95% CI; 0.24, 0.93¹⁰⁴) and a dissociation of allergic sensitization from the risk of wheeze was seen due a protective effect of high intensity geohelminth infection.¹⁰⁴ Whilst these findings have not been replicated in the current study, the current findings are consistent with our group's work in Butajira, southern Ethiopia, in a similar study population, with a relatively lower prevalence and intensity of geohelminth infection⁴⁵ than Jimma,^{97, 104} and showed no significant protective effect of geohelminth infection against wheeze or asthma, but a weak inverse association with cockroach sensitization.⁴⁵

Possible explanations for the low prevalence of geohelminth infection in the study area include: (1) a biannual mass de-worming programme, the Enhanced Outreach Strategy for Child Survival (EOS),²⁸⁴ a campaign similar to Child Health Days in other countries, that started in 2006, shortly after the cohort established, in under-five year olds.²⁵⁵ Indeed, almost half of the children reported having taken at least one dose of anthelminthic medication in the past 6 months at age five; (2) siblings in the household may have received the treatment which may also diminish cross-transmission and; (3) the study participants were provided with free medical care, in keeping with the Ethiopian ethics requirements, which might have promoted treatment seeking behaviour which in turn affects infection prevalence. Overall, the main consequence of deworming, which tended to be non-differential and coupled with low outcome prevalence, would be to diminish the ability to measure any effect of geohelminth infection on allergic outcomes or sensitization.

The other explanations for the lack of an association in the study may be that

the study had no data to assess the effect of *in utero* exposure to geohelminth infection on childhood allergy and sensitization. Even though it did not appear that exposure in the first year of life was more important than exposure later in life, this may have been important since infection with parasite antigens often starts *in utero*,²⁸⁵ affecting early immune programming. An intervention study during pregnancy has shown some indication that this is the case.²⁸⁶

Despite this observation, however, the study showed a borderline significant, albeit with wide CIs, increase in eczema risk in those infected with *A. lumbricoides* infection, and is consistent with a previous meta analysis that showed positive association with asthma.¹⁰⁸ Even though, this may a chance occurrence, the reason for this apparent increased risk of eczema symptoms is not clarified in the study. A possible explanation may relate to the effect of *A. lumbricoides* infection, particularly at low intensity, in triggering symptoms of asthma,¹⁰⁷ and inducing the release of inflammatory mediators.²⁸⁷ It has been documented that low intensity and transient infection with *A. lumbricoides*, also the case in the present study, may promote allergenicity, partly through stimulation of IgE synthesis,²⁸⁸ and partly through an increase in the number of circulating Th2 cytokines.²⁸⁹ High intensity and more persistent infection, in contrast, may stimulate excess polyclonal IgE capable of blocking an allergen response,²⁸⁸ and this is the case in our group's previous study in Jimma.¹⁰⁴

The lack of a protective association in the present study also fits with the findings of intervention studies among previously exposed subjects by Cooper *et* al^{105} and Elliott *et* al^{275} and among unexposed individuals by Feary *et* $al^{.106}$ Cooper and colleagues conducted a randomized controlled trial looking at the

effect of albendazole treatments on the prevalence of atopy in school children and found no evidence to support the hypothesis that deworming may increase atopy or clinical allergy.¹⁰⁵ Elliot et al's²⁷⁵ study in Uganda reported that albendazole treatment during pregnancy was associated with a non significant increased risk of infantile eczema up to 15 months of age. The first hookworm trial in the UK also showed no difference in airway responsiveness, markers of asthma morbidity or atopy between the intervention and the placebo arm.¹⁰⁶ A number of factors may explain the discrepancies in the findings between the meta-analysis and intervention studies. Firstly, consistent inverse associations between geohelminth infection and atopy,¹⁰⁸ and less consistent associations with clinical allergy²⁹⁰ have been reported mainly from cross-sectional studies in which residual confounding may partly explain these associations. The second explanation may be reverse causality: allergic disease may confer protection against helminth infection. Studies have shown that atopic children produce higher levels of IL-4 and IL-5 in response to A. lumbricoides infection,²⁸⁹ and are more resistant to hookworm infection.²⁹¹ However, longitudinal analysis, like this study, makes reverse causality less likely to be the explanation for this argument. However, other explanations including choice of the target group¹⁰⁶ (with or without established disease or with or without disease onset), target parasite and infection endemicity (particularly relevant for eradication studies)¹⁰⁵ and other residual confounders cannot be ruled out.

In conclusion, the evidence on the hypothesis that geohelminth infection protects against wheeze and allergic disease is conflicting; with strong support from observational studies, but most interventional studies to date are disappointing. The current birth cohort study does not prove or refute this hypothesis due to small numbers infected resulting in insufficient power to determine independent effects, requiring careful interpretation.

7.3.2.3 Commensal bacteria, wheeze and allergic diseases

The 'microflora hypothesis' first debated by Sepp and colleagues¹⁴³ about two decades ago, has since received support and been reviewed by Penders et al.140 Despite high prevalence of microflora colonization, our study found no significant associations between the commensals enterococci, lactobacilli or bifidobacteria and the incidence or prevalence of our allergic outcomes, but the ORs were broadly protective. The largest observational studies so far are a birth cohort study by Bisgaard et al^{153} and a multicenter comparative cross-sectional study by Ege et al.⁸⁸ The former included 411 children followed for six years and showed significant inverse associations between diverse bacterial colonization, but not specific bacterial strains, during infancy, and allergic sensitization, blood eosinophil count, and allergic rhinitis, but found no association with asthma or atopic eczema.¹⁵³ The multicenter study compared children living on farms with the reference group, and a diversity of bacterial and fungal genera were found to be protective of asthma with an odds ratios of 0.37 and 0.57 respectively.⁸⁸ Even though both studies did not identify specific microbes, the findings support a more recent notion that it is the dynamic bacterial diversity rather than a particular bacterial strain that plays a role in allergic disease. The European birth cohort study of infants followed up to 18 months in the UK, Italy and Germany however showed no association between colonization by commensal bacteria early in life and atopy or eczema.¹⁶¹

Several issues may have accounted for lack of significant association in the

current study or conflicting findings in the literature. Primarily, most of the studies that have shown a difference in microbial composition among allergic and non allergic individuals have measured exposure during the neonatal period,^{150, 154} or in the first year of life.^{140, 144, 151, 152, 155} It has been suggested that the first year of life is a critical window period for immune regulation,¹⁵⁴ and the first three months are often suggested as optimal timing for analyzing commensal bacteria.¹⁴⁰ Even though there exist legitimate arguments¹⁵⁹ about gut microbiota composition (also dependent on several factors including breastfeeding),¹⁴⁰ they remain a potential explanation for this study as the study lacks this data during infancy. Secondly, our detection of the faecal microflora based on stool culture might miss non-cultivable bacteria, particularly anaerobes which could be identified better using molecular techniques.²⁷¹ Thirdly, the other issue may relate to only investigating certain commensal bacteria as suggested in the literature.¹⁴⁴ Given the complex nature of the gut microbiota,²⁹² and the fact that the gut is colonized with more than 10¹⁴ micro-organisms,²⁷³ the study approach may have missed other important commensals. For example, the Danish large-scale birth cohort study found no significant association, like ours, between colonization with bifidobacteria in the first months of life and seroatopy and eczema at ages two,¹⁵⁴ which was also replicated in a nested study by the same group.¹⁶⁰ However, the study did find that Escherichia coli (E. coli) and Clostridium difficile (C. difficile) were positively associated with increased atopy and eczema, respectively.¹⁵⁴ Fourth, it may be that we have no data at species level, and some studies have shown that the effect of microflora on allergy may depend on the species within the genera. For example, Suzuki et a¹⁵⁵ reported different species of bifidobacteria that have distinct roles in allergy. Finally, the alternative explanation may relate to confounders, particularly those arising from antibiotic use,²⁹³ difference in dietary habits including formula feeding,¹⁴¹

and mode of delivery¹⁶¹ all of which, in one way or another, determine colonization pattern. However, these confounders are relatively unimportant in this rural low income cohort, and since the multivariate model was adjusted for potential confounders, this is an unlikely source of bias here.

Overall, this study showed no associations between selected commensal bacteria and allergic diseases in an Ethiopian birth cohort, whilst the existing literature from available large scale studies provide conflicting findings as to the role of a specific bacterial strain, and suggest bacterial diversity may be important.

7.4 CONCLUSIONS AND CLINICAL RELEVANCE

7.4.1 Paracetamol, wheeze and allergic disease

This thesis prospectively explored the effects of paracetamol, and provides evidence for its role in the pathogenesis of wheeze and allergic diseases in children. Together with previous studies and taking into account the Bradford Hill criteria,²⁹⁴ this study may suggest a cause-effect relationship.

First, the reported strength of association is large with an odds ratio of up to four. Secondly, the evidence for this association is remarkably consistent *in utero*, during infancy, in childhood, and in adults irrespective of differences in socio-economic and cultural variations.^{189-191, 202} The increased risk was also seen consistently with wheeze, eczema, rhinitis and to a lesser extent with sensitization, and consistency was seen across different analyses at different

time points. Third, the association found in this study (particularly for lifetime paracetamol exposure), and elsewhere by others,^{189, 190} is dose-dependent with higher risk seen among frequent and heavier users which support the biological gradient. Fourth, the longitudinal nature of this study excludes, albeit not perfectly, the possibility of reverse causation and suggests that exposure precedes the outcome. This is also consistent with the findings that suggest *in utero*^{197-199, 214, 215} exposure to paracetamol increases the risk of asthma. Fifth, the finding supports the hypothesis that the temporal increase in asthma³² corresponds to widening use of paracetamol in most developed countries,^{187, 189-191} and elsewhere in Africa.⁴⁷

Finally, the finding fits with plausible mechanisms from in vivo and in vitro investigations. Therapeutic doses of paracetamol have been shown to reduce serum antioxidant capacity within 14 days,²⁹⁵ possibly through a reduction in Glutathione (GSH) levels,^{216, 295} with the lung bearing the brunt of this depletion.²⁹⁶ Glutathione is an antioxidant that metabolizes N-acetyl-pbenzoquinoneimine (NAPQI) - an active free-radical or reactive oxygenproducing compound of paracetamol,²⁹⁷ which contributes to oxidative stress, and inflamation.^{298, 299} Glutathione depletion may also cause a shift from Th₁ to Th₂ cytokine production, favouring allergic disorders.³⁰⁰ Other observations have shown that therapeutic concentrations of paracetamol decrease GSH levels in human pulmonary macrophages in vitro, and in animal alveolar macrophages, and type 2 pneumocytes.²¹⁷ Paracetamol may also contribute to the increased risk of asthma, via NAPQI through transient receptor potential ankyrin-1 (TRPA1) channel, and neurogenic pathways.³⁰¹ This study showed that NAPQIdependent TRPA1 releases proinflamatory cytokines not only in the airways, but also in the skin, suggesting involvement beyond the airways, for instance, in

eczema.³⁰¹ A study has also shown that glutathione is present in nasal fluid, and therefore depletion via active metabolites of paracetamol (NAPQI), could explain the increased risk of rhinitis and rhinoconjuctivitis.³⁰²

Overall, this study provides further and much needed prospective evidence that paracetamol may be involved in wheeze and allergic disease aetiology. The findings are congruent with other studies which are larger, and making a causal explanation increasingly likely.

7.4.2 H. pylori, wheeze and allergic disease

Among the studied gastro-intestinal infections, this study provides some evidence for a protective effect of *H. pylori* on allergic disease but careful consideration is necessary in drawing causality. This finding is consistent with a range of epidemiological studies that showed inverse associations between *H. pylori* and allergic diseases,¹³⁵ and with a secular trend that as *H. pylori* has declined,^{118, 119, 303} asthma prevalence has risen.³² But, most of the findings to date are derived from cross-sectional or case control studies, and based in developed countries, in which reverse causation is difficult to exclude, and hence are less coherent. Moreover, this study did not demonstrate an effect on wheeze or rhinitis and therefore lacks specificity among Hill's criteria.²⁹⁴ The large odds ratios found in this study, however, suggest a strong association, and are unlikely to have arisen by chance or due to alternative explanations including confounding by social advantage or antibiotic therapy. Moreover, the use of a birth cohort and the longitudinal analyses provide evidence that exposure to *H. pylori* precedes eczema.

Plausible mechanisms in support of these observations also exist. Studies have shown that *H. pylori*-induced inflammatory response is associated with Th1mediated cellular responses,^{137, 269, 304, 305} with higher expression of interferon- γ (IFN- γ),¹³⁷ IL-10, and IL-12.³⁰⁴ Particularly strong effects were seen in those possessing the pathogenic cagA⁺ strains.^{269, 304} Work by D'Elios and colleagues has shown that administration of purified neutrophil-activating protein of *H. pylori* (HP-NAP) can inhibit Th2 responses, eosinophilia and IgE in an OVA mouse allergy model.¹³⁴ The protective effects of *H. pylori* against allergy are also mediated by secretion of regulatory T-cells (Tregs)^{269, 306} that suppress immunity and inflammation via bystander effects of IL-10.^{138, 306, 307}

Overall, the observation is a novel one in children of this age from a developing country with a high prevalence of early *H. pylori* infection, and suggests that *H. pylori* may be involved in the aetiology of allergic disease, and also warrant further investigation.

7.4.3 Geohelminth, wheeze and allergic diseases

The study however found no significant association between early life exposure to geohelminth infections and incidence and prevalence of allergic disease and sensitization; and has not been able to much advance our knowledge on this relation. The prevalence and intensity of geohelminth infection in these young children were much lower than levels previously reported to confer protection against asthma,¹⁰⁴ and the observation that infection with *A. lumbricoides* marginally increased the risk of eczema symptoms supports the notion that low infection intensity may induce symptoms,¹⁰⁷ while heavy and chronic exposure

may promote protection against asthma and allergy.¹⁰⁴ Therefore, it is possible that the lack of a significant association in this study can be attributed to its low statistical power, probably due to the de-worming programme, and a case for future study.

7.4.4 Commensal bacteria, wheeze and allergic diseases

Similarly, the study found no evidence to support the etiological role of the intestinal microflora enterococci, lactobacilli and bifidobacteria in allergic diseases or sensitization. However, given the timing of the measurements of these commensal bacteria in the study (age three), and the methodological limitations of a culture-dependent bacteriological technique; the relation between commensal bacteria and allergic disease remains worthy of further investigation.

7.5 SUGGESTIONS FOR FUTURE RESEARCH

The role of paracetamol in the aetiology of asthma is intriguing, and this enigma in asthma clearly merits further investigation. As most of the evidence to date comes from observational studies, a randomized clinical trial (RCT) is needed to generate definitive evidence before reviewing public use in children. The questions that need to be addressed in RCTs are whether paracetamol causes asthma, and whether paracetamol exacerbates asthma. Designs for these might present ethics dilemmas, since the former ideally requires a controlled trial in pregnancy (or in children) and the latter a design in which the hypothesis is that active treatment makes asthma worse; the alternative might therefore be trial designs involving withdrawal of paracetamol in relevant groups using non-aspirin NSAIDs analgesics, for instance codeine phosphate, as placebo. However, such a trial should be adequately powered with good length of follow-up to allow accumulation of the primary outcomes. Study of mechanisms and genetic variants would be important additional areas of investigation, since studies have reported involvement of GSTP1 genetic variants in the causal pathway.^{215, 308}

Even though a RCT would provide important insight into the role of paracetamol in the development of asthma, if it is impossible to take forward due to ethical concerns, the study findings need to be replicated in a well-powered birth cohort study primarily aiming at investigating such a link. Such a birth cohort should consider first, prospective documentation of indications for use of paracetamol, including respiratory tract infections. Second, the length of follow-up should be longer, to account for different wheezing phenotype since it has now been widely acknowledged that transient wheezing early in life may represent an infection phenotype, and may not be a predictor of later asthma.¹⁴⁻¹⁶ There should also be stringent ascertainment of outcomes, using combinations of methods including objective measurements. Finally, the possibility of confounding by other NSAIDs should be minimised, through using a population unlikely to access them or through following prescription and over-the-counter use patterns.

The inverse association between *H. pylori* and allergy observed in the study and elsewhere also clearly requires further investigation. Almost exclusively the evidence to date comes from cross-sectional and case-control studies, and reverse causation is difficult to exclude. Hence, future investigation using a prospective birth cohort study is warranted. Such a birth cohort should be

adequately powered and include information on: (1) *H. pylori* virulence including cagA⁺ strains; (2) age at acquisition of *H. pylori* infection; (3) objective measures of asthma, and allergy, and (4) potential confounders including antibiotic use which could help to exclude confounding by indication. One other possible study could be a quasi-experiment comparing areas receiving *H. pylori* eradication therapy and areas without the program. However, the problem of this kind of intervention study is that antibiotics may be given for other infections.³⁰⁹ Further investigations of the immunological mechanisms behind this effect might have therapeutic and preventive value.

The role of geohelminth infections in asthma and atopy also requires further investigation. Further detailed prospective birth cohort studies, possibly followed starting from pregnancy, as infection with parasite antigens often starts in *utero*;²⁸⁵ would provide important insight into this relationship. These studies should take into account deworming programmes (and areas with sufficient prevalence) and potential confounders, and that also include objective outcome measurements. Longer follow-up of a birth cohort may help for two reasons: firstly, infection with geohelminths increases with age, particularly hookworm,³¹⁰ adding to the power of the study and; second, the longer follow-up may help to delineate the late-onset asthma phenotype from the infection-related phenotype. An intervention study in a developing country might also be undertaken by comparing areas with a parasite eradication program and those without, although lack of baseline data on potential confounders, and contamination of the reference group might limit interpretation. However, a randomised controlled trial among previously uninfected study subjects, with less advanced disease, with adequate power and longer periods of follow-up,

along with measurement of the immunological mediators, might provide better evidence.

Even if this study has provided no support for the 'microflora hypothesis,' given the dynamic and complex nature of the gut microbiota, further study is required. As described previously, the best way to gain more insight into this relationship is through a well powered birth cohort study using culture-independent molecular technique, and objective assessment of the outcomes, and collecting data on potential confounders. It seems likely that the timing of exposure assessment is critical, and future studies should aim to assess exposure from the neonatal period through to infancy. Periodic examination of faecal samples may provide additional information particularly in regard to the role of persistent colonization on allergic outcomes.

REFERENCES

- 1. Wong GWK, Chow CM. Childhood asthma epidemiology: Insights from comparative studies of rural and urban populations. Pediatric Pulmonology 2008; 43(2):107-116.
- 2. Sears MR. Epidemiology of childhood asthma. The Lancet 1997; 350(9083):1015-1020.
- 3. Sears MR. Descriptive epidemiology of asthma. The Lancet 1997; 350(Supplement 2):S1-S4.
- 4. Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy 2004; 59(5):469-478.
- Bousquet J, Bousquet PJ, Godard P, Daures JP. The public health implications of asthma. Bulletin of the World Health Organization 2005; 83:548-554.
- Beyhun NE, Soyer &, zge U et al. A multi-center survey of childhood asthma in Turkey I: The cost and its determinants. Pediatric Allergy and Immunology 2009; 20:72-80.
- 7. National Institutes of Health. Global initiative for asthma (Natl Heart Lung Blood Inst Publ no 95-3659). 1995. Bethesda, MD: NHLBI.
- Johansson SGO, Bieber T, Dahl R et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. Journal of Allergy and Clinical Immunology 2004; 113(5):832-836.
- 9. Pekkanen J, Pearce N. Defining asthma in epidemiological studies. Eur Respir J 1999; 14(4):951-957.
- 10. Peat JK, Toelle BG, Marks GB, Mellis CM. Continuing the debate about measuring asthma in population studies. Thorax 2001; 56(5):406-411.
- 11. Sistek D, Tschopp JM, Schindler C et al. Clinical diagnosis of current asthma: predictive value of respiratory symptoms in the SAPALDIA study. Eur Respir J 2001; 17(2):214-219.
- Luyt D, Burton PR, Simpson H. Epidemiological study of wheeze, doctor diagnosed asthma, and cough in preschool children in Leicestershire. BMJ 1993; 306:1386-90.
- 13. Kemp T, Pearce N, Crane J, Beasley R. Problems of measuring asthma prevalence. Respirology 1996; 3:183-188.
- Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. New England Journal of Medicine 1995; 332(3):133-138.

- Henderson J, Granell R, Heron J et al. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax 2008; 63(11):974-980.
- 16. Savenije OE, Granell R, Caudri D et al. Comparison of childhood wheezing phenotypes in 2 birth cohorts: ALSPAC and PIAMA. Journal of Allergy and Clinical Immunology 2011; 127(6):1505-1512.
- Sly PD, Boner AL, Bjorksten B et al. Early identification of atopy in the prediction of persistent asthma in children. The Lancet 2008; 372(9643):1100-1106.
- 18. Weinmayr G, Weiland SK, Bjorksten B et al. Atopic Sensitization and the International Variation of Asthma Symptom Prevalence in Children. Am J Respir Crit Care Med 2007; 176(6):565-574.
- 19. Pearce N, Pekkanen J, Beasley R. How much asthma is really attributable to atopy? Thorax 1999; 54(3):268-272.
- Lodge CJ, Lowe AJ, Gurrin LC et al. House dust mite sensitization in toddlers predicts current wheeze at age 12 years. Journal of Allergy and Clinical Immunology 2011; 128(4):782-789.
- Shaaban R, Zureik M, Soussan D et al. Rhinitis and onset of asthma: a longitudinal population-based study. The Lancet 2008; 372(9643):1049-1057.
- Rochat M, Illi S, Ege M et al. Allergic rhinitis as a predictor for wheezing onset in school-aged children. J Allergy Clin Immunol 2010; 126(6):1170-1175.
- 23. van der Hulst AE, Klip H, Brand PLP. Risk of developing asthma in young children with atopic eczema: A systematic review. Journal of Allergy and Clinical Immunology 2007; 120(3):565-569.
- Burgess JA, Dharmage SC, Byrnes GB et al. Childhood eczema and asthma incidence and persistence: A cohort study from childhood to middle age
 Journal of Allergy and Clinical Immunology 2008; 122(2):280-285.
- 25. Asher MI, Keil U, Anderson HR et al. International Study of Asthma and Allergies in Childhood (ISAAC): Rationale and methods. Eur Respir J 1995; 8:483-491.
- 26. Weiland SK, Bjorksten B, Brunekreef B et al. Phase II of the International Study of Asthma and Allergies in Childhood (ISAAC II): rationale and methods. Eur Respir J 2004; 24(3):406-412.
- 27. Janson C, Anto J, Burney P et al. The European Community Respiratory Health Survey: what are the main results so far? Eur Respir J 2001; 18(3):598-611.
- Beasley R. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet 1998;

351(9111):1225-1232.

- 29. Schernhammer ES, Vutuc C, Waldhor T, Haidinger G. Time trends of the prevalence of asthma and allergic disease in Austrian children. Pediatric Allergy & Immunology 2008; 19(2):125-131.
- Bjorksten B, Clayton T, Ellwood P, Stewart A, Strachan D, ISAAC Phase III Study Group. Worldwide time trends for symptoms of rhinitis and conjunctivitis: Phase III of the International Study of Asthma and Allergies in Childhood. Pediatric Allergy & Immunology 2008; 19(2):110-124.
- Patel S, Jarvelin MR, Little M. Systematic review of worldwide variations of the prevalence of wheezing symptoms in children. Environmental Health 2008; 7(57):e1-10.
- 32. Asher MI, Montefort S, Bjorksten B et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet 2006; 368(9537):733-743.
- 33. Motika CA, Papachristou C, Abney M, Lester LA, Ober C. Rising prevalence of asthma is sex-specific in a US farming population. Journal of Allergy and Clinical Immunology 2011; 128(4):774-779.
- 34. Gupta R, Sheikh A, Strachan DP, Anderson HR. Time trends in allergic disorders in the UK. Thorax 2007; 62(1):91-96.
- 35. Chinn S, Jarvis D, Burney P et al. Increase in diagnosed asthma but not in symptoms in the European Community Respiratory Health Survey. Thorax 2004; 59(8):646-651.
- Bollag U, Capkun G, Caesar J, Low N. Trends in primary care consultations for asthma in Switzerland, 1989–2002. Int J Epidemiol 2005; 34(5):1012-1018.
- Anderson HR, Ruggles R, Strachan DP et al. Trends in prevalence of symptoms of asthma, hay fever, and eczema in 12-14 year olds in the British Isles, 1995-2002: questionnaire survey. BMJ 2004; 328(7447):1052-1053.
- Fleming DM, Sunderland R, Cross KW, Ross AM. Declining incidence of episodes of asthma: a study of trends in new episodes presenting to general practitioners in the period 1989ΓÇô98. Thorax 2000; 55(8):657-661.
- 39. Burney P. The changing prevalence of asthma? Thorax 2002; 57(90002):ii36-ii39.
- 40. Addo-Yobo EOD, Woodcock A, Allotey A, Baffoe-Bonnie B, Strachan D, Custovic A. Exercise-Induced Bronchospasm and Atopy in Ghana: Two Surveys Ten Years Apart. PLoS Med 2007; 4(2):e70.
- 41. Perzanowski MS, Ng'ang'a LW, Carter MC et al. Atopy, asthma, and

antibodies to Ascaris among rural and urban children in Kenya. The Journal of Pediatrics 2002; 140(5):582-588.

- 42. Keeley DJ, Neill P, Gallivan S. Comparison of the prevalence of reversible airways obstruction in rural and urban Zimbabwean children. Thorax 1991; 46(8):549-553.
- 43. Yemaneberhan H, Bekele Z, Venn A, Lewis S, Parry E, Britton J. Prevalence of wheeze and asthma and relation to atopy in urban and rural Ethiopia. The Lancet 1997; 350(9071):85-90.
- 44. Dagoye D, Bekele Z, Woldemichael K et al. Domestic risk factors for wheeze in urban and rural Ethiopian children. Qjm 2004; 97(8):489-498.
- 45. Davey G, Venn A, Belete H, Berhane Y, Britton J. Wheeze, allergic sensitization and geohelminth infection in Butajira, Ethiopia. Clinical and Experimental Allergy 2005; 35(3):301-307.
- Yemaneberhan H, Flohr C, Lewis SA et al. Prevalence and associated factors of atopic dermatitis symptoms in rural and urban Ethiopia. Clinical and Experimental Allergy 2004; 34(5):779-85.
- 47. Matthias Wjst DB. Asthma in Africa. PLoS Med 2007; 4(2):e72.
- Miller RL, Ho SM. Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 2008; 177(6):567-573.
- 49. Martinez FD. Gene-environment interactions in asthma: with apologies to William of Ockham. Proc Am Thorac Soc 2007; 4(1):26-31.
- Skadhauge LR, Christensen K, Kyvik KO, Sigsgaard T. Genetic and environmental influence on asthma: a population-based study of 11,688 Danish twin pairs. Eur Respir J 1999; 13(1):8-14.
- 51. Sandford AJ, Pare PD. The genetics of asthma. The important questions. Am J Respir Crit Care Med 2000; 161(3 Pt 2):S202-S206.
- 52. Castro-Giner F, Kauffmann F, de Cid R, Kogevinas M. Gene-environment interactions in asthma. Occup Environ Med 2006; 63(11):776-786.
- Devereux G. The increase in allergic disease: environment and susceptibility. Proceedings of a symposium held at the Royal Society of Edinburgh, 4th June 2002. Clinical & Experimental Allergy 2003; 33(3):394-406.
- 54. Dizier MH, Bouzigon E, Guilloud-Bataille M et al. Evidence for gene [times] smoking exposure interactions in a genome-wide linkage screen of asthma and bronchial hyper-responsiveness in EGEA families. Eur J Hum Genet 2007; 15(7):810-815.
- 55. Meyers DA, Postma DS, Stine OC et al. Genome screen for asthma and bronchial hyperresponsiveness: Interactions with passive smoke exposure. Journal of Allergy and Clinical Immunology 2005;

115(6):1169-1175.

- 56. Leynaert B, Guilloud-Bataille M, Soussan D et al. Association between farm exposure and atopy, according to the CD14 C-159T polymorphism. Journal of Allergy and Clinical Immunology 2006; 118(3):658-665.
- 57. Barr RG, Cooper DM, Speizer FE, Drazen JM, Camargo CA. Adrenoceptor Polymorphism and Body Mass Index Are Associated With Adult-Onset Asthma in Sedentary but Not Active Women. Chest 2001; 120(5):1474-1479.
- Pessi T, Virta M, Adjers K et al. Genetic and Environmental Factors in the Immunopathogenesis of Atopy: Interaction of Helicobacter pylori Infection and IL4 Genetics. International Archives of Allergy and Immunology 2005; 137(4):282-288.
- 59. Gerrard JW, Gedder CA, Reggin PL, Gerrard CD, Horne S. Serum IGE levels in white and Metis Communities in Saskatcherwan. Annals of Allergy 1976; 37(2):91-100.
- 60. Strachan DP. Hay fever, hygiene, and household size. British Medical Journal 1989; 299:1259-1260.
- von Hertzen LP, Haahtela TMDP. Disconnection of man and the soil: Reason for the asthma and atopy epidemic? Journal of Allergy & Clinical Immunology 2006; 117(2):334-344.
- 62. Hertzen LC. The hygiene hypothesis in the development of atopy and asthma-still a matter of controversy? Qjm 1998; 91(11):767-771.
- 63. Strachan DP. Family size, infection and atopy: the first decade of the 'hygiene hypothesis'. Thorax 2000; 55(90001):S2-10.
- 64. Wickens K, Crane J, Pearce N, Beasley R. The magnitude of the effect of smaller family sizes on the increase in the prevalence of asthma and hay fever in the United Kingdom and New Zealand, . Journal of Allergy and Clinical Immunology 1999; 104(3):554-558.
- Bodner C, Godden D, Seaton A. Family size, childhood infections and atopic diseases. The Aberdeen WHEASE Group. Thorax 1998; 53(1):28-32.
- 66. Kinra S, vey Smith G, Jeffreys M, Gunnell D, Galobardes B, McCarron P. Association between sibship size and allergic diseases in the Glasgow Alumni Study. Thorax 2006; 61(1):48-53.
- 67. Karmaus W, Botezan C. Does a higher number of siblings protect against the development of allergy and asthma? A review. Journal of Epidemiology & Community Health 2002; 56(3):209-217.
- 68. Hertzen LC, Haahtela T. Asthma and atopy: the price of affluence? Allergy 2004; 59(2):124-137.
- 69. Holt PG, Sly PD, Bjorksten B. Atopic versus infectious diseases in

childhood: a question of balance? Pediatric Allergy and Immunology 1997; 8(2):53-58.

- 70. Holt PG. Programming for responsiveness to environmental trigger allergic respiratory disease in adulthood is initiated during the perinatal period. Environmental Health Perspectives 1998; 106 Suppl 3:795-800.
- 71. Douwes J, Pearce N. Commentary: The end of the hygiene hypothesis? Int J Epidemiol 2008; 37(3):570-572.
- 72. Pearce N, Douwes J. Commentary: Asthma time trends--mission accomplished? Int J Epidemiol 2005; 34(5):1018-1019.
- 73. Ponsonby AL, Glasgow N, Pezic A et al. A temporal decline in asthma but not eczema prevalence from 2000 to 2005 at school entry in the Australian Capital Territory with further consideration of country of birth.[see comment]. Int J Epidemiol 2008; 37(3):559-569.
- 74. Heaton T, Rowe J, Turner S et al. An immunoepidemiological approach to asthma: identification of in-vitro T cell response patterns associated with different wheezing phenotypes in children. The Lancet 2005; 365(9454):142-149.
- Lewis S, Britton J. Measles infection, measles vaccination and the effect of birth order in the aetiology of hay fever. Clinical & Experimental Allergy 1998; 28:1493-1500.
- 76. Shaheen SO, Barker DJP, Heyes CB et al. Measles and atopy in Guinea-Bissau. The Lancet 1996; 347(9018):1792-1796.
- 77. Paunio M, Peltola H, Virtanen M, Leinikki P, Makela A, Heinonen OP. Acute infections, infection pressure, and atopy. Clinical & Experimental Allergy 2006; 36(5):634-639.
- Miyake Y, Arakawa M, Tanaka K, Sasaki S, Ohya Y. Tuberculin reactivity and allergic disorders in schoolchildren, Okinawa, Japan.[see comment]. Clinical & Experimental Allergy 2008; 38(3):486-492.
- 79. Anderson HR, Poloniecki J.D, Strachan D, Beasley R, Bjorksten B, Asher I. Immunization and symptoms of atopic disease in children: results from the International Study of Asthma and Allergies in Childhood. Am J Public Health 2001; 91(7):1126-1129.
- 80. Hagerhed-Engman L, Bornehag CG, Sundell J, Aberg N. Day-care attendance and increased risk for respiratory and allergic symptoms in preschool age. Allergy 2006; 61(4):447-453.
- Caudri D, Wijga A, Scholtens S et al. Early Daycare Is Associated with an Increase in Airway Symptoms in Early Childhood but Is No Protection against Asthma or Atopy at 8 Years. Am J Respir Crit Care Med 2009; 180(6):491-498.
- 82. Prescott SL. Allergy: the price we pay for cleaner living? Annals of Allergy, Asthma, & Immunology 2003; 90(6) Supplement(3):S64-S70.

- 83. Sinchez-Solis M, Garca-Marcos L. Do vaccines modify the prevalence of asthma and allergies? Expert Review of Vaccines 2006; 5(5):631-640.
- 84. Ege MJ, Frei R, Bieli C et al. Not all farming environments protect against the development of asthma and wheeze in children. Journal of Allergy & Clinical Immunology 2007; 119(5):1140-1147.
- 85. Koskela HO, Happonen KK, Remes ST, Pekkanen J. Effect of farming environment on sensitisation to allergens continues after childhood. Occup Environ Med 2005; 62(9):607-611.
- 86. Douwes J, Travier N, Huang K et al. Lifelong farm exposure may strongly reduce the risk of asthma in adults. Allergy 62(10):1158-65, 2007.
- 87. Douwes J, Cheng S, Travier N et al. Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 2008; 32(3):603-611.
- 88. Ege MJ, Mayer M, Normand ACc et al. Exposure to Environmental Microorganisms and Childhood Asthma. New England Journal of Medicine 2011; 364(8):701-709.
- 89. Platts-Mills TAE, Erwin EA, Heymann PW, Woodfolk JA. Pro: The Evidence for a Causal Role of Dust Mites in Asthma. Am J Respir Crit Care Med 2009; 180(2):109-113.
- van Schayck OCP, Maas T, Kaper J, Knottnerus AJA, Sheikh A. Is there any role for allergen avoidance in the primary prevention of childhood asthma? Journal of Allergy and Clinical Immunology 2007; 119(6):1323-1328.
- 91. O'Connor GT. Allergen avoidance in asthma: What do we do now? Journal of Allergy and Clinical Immunology 2005; 116(1):26-30.
- 92. Stev M, Eliz BC. Parasites and asthma-Predictive or Protective? Epidemiol Rev 1985; 7(1):49-58.
- 93. Rodrigues LC, Newcombe PJ, Cunha SS et al. Early infection with Trichuris trichiura and allergen skin test reactivity in later childhood. Clinical & Experimental Allergy 2008; 38(11):1769-1777.
- 94. Cooper PJ, Chico ME, Rodrigues LC et al. Risk factors for atopy among school children in a rural area of Latin America. Clinical and Experimental Allergy 2004; 34(6):845-852.
- Cooper PJ, Chico ME, Bland M, Griffin GE, Nutman TB. Allergic symptoms, atopy, and geohelminth infections in a rural area of Ecuador.[see comment]. American Journal of Respiratory & Critical Care Medicine 2003; 168(3):313-317.
- Flohr C, Tuyen LN, Lewis S et al. Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: A crosssectional study. Journal of Allergy and Clinical Immunology 2006; 118(6):1305-1311.

- 97. Dagoye D, Bekele Z, Woldemichael K et al. Wheezing, Allergy, and Parasite Infection in Children in Urban and Rural Ethiopia. Am J Respir Crit Care Med 2003; 167(10):1369-1373.
- Nyan OA, Walraven GEL, Banya WAS et al. Atopy, intestinal helminth infection and total serum IgE in rural and urban adult Gambian communities. Clinical & Experimental Allergy 2001; 31(11):1672-1678.
- Palmer LJ, Celedon JC, Weiss ST, Wang B, Fang Z, Xu X. Ascaris lumbricoides Infection Is Associated with Increased Risk of Childhood Asthma and Atopy in Rural China. Am J Respir Crit Care Med 2002; 165(11):1489-1493.
- 100. Wordemann M, Diaz RJ, Heredia LM et al. Association of atopy, asthma, allergic rhinoconjunctivitis, atopic dermatitis and intestinal helminth infections in Cuban children. Tropical Medicine & International Health 2008; 13(2):180-186.
- 101. Karadag B, Ege M, Bradley JE et al. The role of parasitic infections in atopic diseases in rural schoolchildren. Allergy 2006; 61(8):996-1001.
- Schafer T, Meyer T, Ring J, Wichmann HE, Heinrich J. Worm infestation and the negative association with eczema (atopic/nonatopic) and allergic sensitization. Allergy 2005; 60(8):1014-1020.
- 103. Haileamlak A, Dagoye D, Williams H et al. Early life risk factors for atopic dermatitis in Ethiopian children. Journal of Allergy & Clinical Immunology 2005; 115(2):370-6.
- 104. Scrivener S, Yemaneberhan H, Zebenigus M et al. Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control study. The Lancet 2001; 358(9292):1493-1499.
- 105. Cooper PJ, Chico ME, Vaca MG et al. Effect of albendazole treatments on the prevalence of atopy in children living in communities endemic for geohelminth parasites: a cluster-randomised trial. The Lancet 2006; 367(9522):1598-1603.
- 106. Feary JR, Venn AJ, Mortimer K et al. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clinical & Experimental Allergy 2010; 40(2):299-306.
- 107. Neil L, Migu P, Isab H, Mari D. Clinical Improvement of Asthma after Anthelminthic Treatment in a Tropical Situation. Am J Respir Crit Care Med 1997; 156(1):50-54.
- Leonardi-Bee J, Pritchard D, Britton J, the Parasites in Asthma Collaboration. Asthma and Current Intestinal Parasite Infection: Systematic Review and Meta-Analysis. Am J Respir Crit Care Med 2006; 174(5):514-523.
- 109. Feary J, Britton J, Leonardi-Bee J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy 2010;

66(4):569-78.

- 110. van den Biggelaar AH, van Ree R, Rodrigues LC et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. The Lancet 2000; 356(9243):1723-1727.
- 111. Turner JD, Jackson JA, Faulkner H et al. Intensity of Intestinal Infection with Multiple Worm Species Is Related to Regulatory Cytokine Output and Immune Hyporesponsiveness. Journal of Infectious Diseases 2008; 197(8):1204-1212.
- 112. van den Biggelaar AHJ, Rodrigues LC, van Ree R et al. Long-Term Treatment of Intestinal Helminths Increases Mite Skin-Test Reactivity in Gabonese Schoolchildren. Journal of Infectious Diseases 2004; 189(5):892-900.
- 113. Cooper PJ, Chico ME, Rodrigues LC et al. Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. Journal of Allergy and Clinical Immunology 2003; 111(5):995-1000.
- 114. Karen Robinson, John C.Atherton. Helicobacter pylori. 2009 p. 107-134.
- 115. Malaty HM, El-Kasabany A, Graham DY et al. Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. The Lancet 2002; 359(9310):931-935.
- 116. Parsonnet J, Shmuely H, Haggerty T. Fecal and Oral Shedding of Helicobacter pylori From Healthy Infected Adults. JAMA: The Journal of the American Medical Association 1999; 282(23):2240-2245.
- 117. Bantavala N, Mayo K, Megraud F, Jennings R, Deeks JJ, Feldman RA. The cohort effect and *Helicobacter pylori*. Journal of Infectious Diseases 1993; 168(1):219-221.
- 118. Perez-Perez GI, Salomaa A, Kosunen TU et al. Evidence that cagA+Helicobacter pylori strains are disappearing more rapidly than cagA- strains. Gut 2002; 50(3):295-298.
- 119. Kosunen TU, Hook-Nikanne J, Salomaa A, Sarna S, Aromaa A, Haahtela T. Increase of allergen-specific immunoglobulin E antibodies from 1973 to 1994 in a Finnish population and a possible relationship to Helicobacter *pylori* infections. Clinical & Experimental Allergy 2002; 32(3):373-378.
- 120. Harvey RF, Spence RW, Lane JA et al. Relationship between the birth cohort pattern of Helicobacter pylori infection and the epidemiology of duodenal ulcer. Qjm 2002; 95(8):519-525.
- Chen Y, Blaser M. Helicobacter pylori Colonization Is Inversely Associated with Childhood Asthma. The Journal of Infectious Diseases 2008; 198(4):553-560.
- 122. Herbarth O, Bauer M, Fritz GJ et al. Helicobacter pylori colonisation and eczema. Journal of Epidemiology and Community Health 2007;

61(7):638-640.

- 123. Chen Y, Blaser MJ. Inverse Associations of Helicobacter pylori With Asthma and Allergy. Arch Intern Med 2007; 167(8):821-827.
- 124. Jarvis D, Luczynska C, Chinn S, Burney P. The association of hepatitis A and Helicobacter pylori with sensitization to common allergens, asthma and hay fever in a population of young British adults. Allergy 2004; 59(10):1063-1067.
- 125. McCune A, Lane A, Murray L et al. Reduced risk of atopic disorders in adults with Helicobacter pylori infection. European Journal of Gastroenterology & Hepatology 2003; 15(6):637-640.
- 126. Fullerton D, Britton JR, Lewis SA et al. Helicobacter pylori and lung function, asthma, atopy and allergic disease--a population-based cross-sectional study in adults. Int J Epidemiol 2009; 38(2):419-426.
- 127. Janson C, Asbjornsdottir H, Birgisdottir A et al. The effect of infectious burden on the prevalence of atopy and respiratory allergies in Iceland, Estonia, and Sweden. Journal of Allergy and Clinical Immunology 2007; 120(3):673-679.
- 128. von Hertzen LC, Laatikainen T, Mkel MJ et al. Infectious Burden as a Determinant of Atopy - A Comparison between Adults in Finnish and Russian Karelia. International Archives of Allergy and Immunology 2006; 140(2):89-95.
- 129. Tsang KW, Lam WK, Chan KN et al. Helicobacter Pylori sero-prevalence in asthma. Respiratory Medicine 2000; 94(8):756-759.
- Reibman J, Marmor M, Filner J et al. Asthma Is Inversely Associated with Helicobacter pylori Status in an Urban Population. PLoS ONE 2008; 3(12):e4060.
- 131. Jun ZJ, Lei Y, Shimizu Y, Dobashi K, Mori M. Helicobacter pylori Seroprevalence in Patients with Mild Asthma. The Tohoku Journal of Experimental Medicine 2005; 207(4):287-291.
- 132. Bodner C, Anderson WJ, Reid TS, Godden DJ. Childhood exposure to infection and risk of adult onset wheeze and atopy. Thorax 2000; 55(5):383-387.
- 133. Seiskari T, Kondrashova A, Viskari H et al. Allergic sensitization and microbial load a comparison between Finland and Russian Karelia. Clinical and Experimental Immunology 2007; 148(1):47-52.
- 134. D'Elios MM, Codolo G, Amedei A et al. Helicobacter pylori, asthma and allergy. FEMS Immunology Medical Microbiology 2009; 56:1-8.
- 135. Blaser MJ, Chen Y, Reibman J. Does Helicobacter pylori protect against asthma and allergy? Gut 2008; 57(5):561-567.
- 136. Schulz KF, Grimes DA. Case-control studies: research in reverse. The

Lancet 2002; 359(9304):431-434.

- 137. Oderda G, Vivenza D, Rapa A, Boldorini R, Bonsignori I, Bona G. Increased Interleukin-10 in Helicobacter pylori Infection Could Be Involved in the Mechanism Protecting From Allergy. Journal of Pediatric Gastroenterology and Nutrition 2007; 45(3):301-305.
- Harris PR, Wright SW, Serrano C et al. Helicobacter pylori Gastritis in Children Is Associated With a Regulatory T-Cell Response. Gastroenterology 2008; 134(2):491-499.
- 139. Cam S, Ertem D, Bahceciler N, Akkoc T, Barlan I, Pehlivanoglu E. The Interaction Between Helicobacter pylori and Atopy: Does Inverse Association Really Exist? Helicobacter 2009; 14(1):1-8.
- Penders J, Stobberingh EE, Brandt PA, Thijs C. The role of the intestinal microbiota in the development of atopic disorders. Allergy 2007; 62(11):1223-1236.
- 141. Kirjavainen PV, Apostolou E, Arvola T, Salminen SJ, Gibson GR, Isolauri E. Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunology & Medical Microbiology 2001; 32(1):1-7.
- 142. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatrica 441; 92:48-55.
- Sepp E, Julge K, Vasar M, Naaber P, Bjorksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatrica 1997; 86(9):956-961.
- 144. Bjorksten B, Naaber, Sepp, Mikelsaar. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clinical & Experimental Allergy 1999; 29(3):342-346.
- 145. Stsepetova J, Sepp E, Julge K, Vaughan EE, Mikelsaar M, Vos WM. Molecularly assessed shifts of Bifidobacterium spp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunology and Medical Microbiology 2007; 51(2):260-269.
- 146. Forno E, Onderdonk A, McCracken J et al. Diversity of the gut microbiota and eczema in early life. Clinical and Molecular Allergy 2008; 6(1):11.
- 147. Watanabe S, Narisawa Y, Arase S et al. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. Journal of Allergy and Clinical Immunology 2003; 111(3):587-591.
- 148. Wang M, Karlsson C, Olsson C et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 2008; 121(1):129-134.
- 149. Sjorgren YM, Jenmalm MC, B+¦ttcher MF, Bjorksten B, Sverremark-Ekstrom E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clinical & Experimental Allergy 2009;

39(4):518-526.

- 150. Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. Journal of Allergy and Clinical Immunology 2001; 108(4):516-520.
- 151. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. Journal of Allergy and Clinical Immunology 2001; 107(1):129-134.
- 152. Sepp E, Julge K, Mikelsaar M, Bjorksten B. Intestinal microbiota and immunoglobulin E responses in 5-year-old Estonian children. Clinical & Experimental Allergy 2005; 35(9):1141-1146.
- 153. Bisgaard H, Li N, Bonnelykke K et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. Journal of Allergy and Clinical Immunology 2011; 128(3):646-652.
- 154. Penders J, Thijs C, van den Brandt PA et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 2007; 56(5):661-667.
- 155. Suzuki S, Shimojo N, Tajiri Y, Kumemura M, Kohno Y. Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clinical & Experimental Allergy 2007; 37(4):506-511.
- 156. Rautava S, KalliomΣki M, Isolauri E. New therapeutic strategy for combating the increasing burden of allergic disease: Probiotics--A Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota (NAMI) Research Group report. Journal of Allergy and Clinical Immunology 2005; 116(1):31-37.
- 157. Christensen HR, Frokiar H, Pestka JJ. Lactobacilli Differentially Modulate Expression of Cytokines and Maturation Surface Markers in Murine Dendritic Cells. J Immunol 2002; 168(1):171-178.
- 158. Lopez P, Gueimonde M, Margolles A, Su+írez A. Distinct Bifidobacterium strains drive different immune responses in vitro. International Journal of Food Microbiology 2010; 138(1-2):157-165.
- 159. Murray CS, Tannock GW, Simon MA et al. Fecal microbiota in sensitized wheezy and non-sensitized non-wheezy children: a nested case-control study. Clinical & Experimental Allergy 2005; 35(6):741-745.
- 160. Penders J, Stobberingh EE, Thijs C et al. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clinical & Experimental Allergy 2006; 36(12):1602-1608.
- 161. Adlerberth I, Strachan DP, Matricardi PM et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. Journal of Allergy and Clinical Immunology 2007; 120(2):343-350.

- 162. Bolte G, Schmidt M, Maziak W et al. The relation of markers of fetal growth with asthma, allergies and serum immunoglobulin E levels in children at age 5-7 years. Clinical & Experimental Allergy 2004; 34(3):381-388.
- 163. Katz KA, Pocock SJ, Strachan DP. Neonatal head circumference, neonatal weight, and risk of hayfever, asthma and eczema in a large cohort of adolescents from Sheffield, England. Clinical & Experimental Allergy 2003; 33(6):737-745.
- 164. Villamor E, Iliadou A, Cnattingius S. Is the Association Between Low Birth Weight and Asthma Independent of Genetic and Shared Environmental Factors? American Journal of Epidemiology 2009; 169(11):1337-1343.
- 165. Turner S, Prabhu N, Danielian P et al. First and Second Trimester Fetal Size and Asthma Outcomes at Age Ten Years. Am J Respir Crit Care Med 2011;201012-2075OC.
- 166. Chan K.N, Elliman A, Bryan E, Silverman M. Respiratory symptoms in children of low birth weight. Arch Dis Child 1989; 64(9):1294-1304.
- 167. Mai XM, Nilsson L, Axelson O et al. High body mass index, asthma and allergy in Swedish schoolchildren participating in the International Study of Asthma and Allergies in Childhood: Phase II. Acta Paediatrica 2003; 92(10):1144-1148.
- Beuther DA, Sutherland ER. Overweight, Obesity, and Incident Asthma: A Meta-analysis of Prospective Epidemiologic Studies. Am J Respir Crit Care Med 2007; 175(7):661-666.
- 169. Lowe A, Br+Ñb+ñck L, Ekeus C, Hjern A, Forsberg B. Maternal obesity during pregnancy as a risk for early-life asthma. J Allergy Clin Immunol 2011; 128(5):1107-1109.
- 170. Shaheen SO, Sterne JAC, Montgomery SM, Azima H. Birth weight, body mass index and asthma in young adults. Thorax 1999; 54(5):396-402.
- 171. Kim JH, Ellwood P, Asher MI. Diet and asthma: looking back, moving forward. Respiratory Research 2009; 10(1):49.
- 172. Devereux G. The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol 2006; 6(11):869-874.
- 173. Seaton A. From nurture to Nature the story of the Aberdeen asthma dietary hypothesis. Qjm 2008; 101(3):237-239.
- 174. Litonjua AA, Weiss ST. Is vitamin D deficiency to blame for the asthma epidemic? J Allergy Clin Immunol 2007; 120(5):1031-1035.
- 175. Patel BD, Welch AA, Bingham SA et al. Dietary antioxidants and asthma in adults. Thorax 2006; 61(5):388-393.
- 176. Allen S, Britton J, Leonardi-Bee J. Association between antioxidant vitamins and asthma outcome measures: systematic review and meta-

analysis. Thorax 2009; 64:610-619.

- 177. Paul G, Brehm J, Alcorn JF, Holguin F, Aujla S, Celedon JC. Vitamin D and Asthma. Am J Respir Crit Care Med 2011;201108-1502CI.
- 178. Gupta A, Sjoukes A, Richards D et al. Relationship between Serum Vitamin D, Disease Severity, and Airway Remodeling in Children with Asthma. Am J Respir Crit Care Med 2011; 184(12):1342-1349.
- 179. Michael S Kramer, Lidia M, Irina V et al. Effect of prolonged and exclusive breast feeding on risk of allergy and asthma: cluster randomised trial. BMJ 2007; 335(7624):815-820.
- Bronwyn K.Brew, C.Wendy Allen, Brett G.Toelle, Guy B.Marks. Systematic review and meta-analysis investigating breast feeding and childhood wheezing illness. Paediatr Perinat Epidemiol 2011; 25:507-518.
- 181. Ram FS, Rowe BH, Kaur B. Vitamin C supplementation for asthma. Cochrane Database of Systematic Reviews 2004; 3:CD000993.
- 182. Anderson H, Favarato G, Atkinson R. Long-term exposure to outdoor air pollution and the prevalence of asthma: meta-analysis of multicommunity prevalence studies. Air Quality, Atmosphere & Health 2011; 4(1):1-12.
- 183. Weinmayr G, Romeo E, De Sario M, Weiland SK, Forastiere F. Short-Term Effects of PM10 and NO2 on Respiratory Health among Children with Asthma or Asthma-like Symptoms: A Systematic Review and Meta-Analysis. Environ Health Perspect 2010; 118(4):449-457.
- Cook DG, Strachan DP. Summary of effects of parental smoking on the respiratory health of children and implications for research. Thorax 1999; 54(4):357-366.
- 185. Baena-Cagnani CE, Gomez RM, Baena-Cagnani R, Canonica GW. Impact of environmental tobacco smoke and active tobacco smoking on the development and outcomes of asthma and rhinitis. Current Opinion in Allergy and Clinical Immunology 2009; 9(2):136-140.
- 186. Burke H, Leonardi-Bee J, Hashim A et al. Prenatal and Passive Smoke Exposure and Incidence of Asthma and Wheeze: Systematic Review and Meta-analysis. Pediatrics 2012; 129(4):735-744.
- 187. Varner AE, Busse WW, Lemanske RF. Hypothesis: decreased use of pediatric aspirin has contributed to the increasing prevalence of childhood asthma. Ann Allergy Asthma Immunol 1998; 81(4):347-351.
- 188. Hutson S. Painkiller concerns grow ahead of new guidelines. Nat Med 2010; 16(1):10.
- 189. Beasley R, Clayton T, Crane J et al. Association between paracetamol use in infancy and childhood, and risk of asthma, rhinoconjunctivitis, and eczema in children aged 6-7 years: analysis from Phase Three of the ISAAC programme. The Lancet 2008; 372(9643):1039-1048.

- 190. Beasley RW, Clayton TO, Crane J et al. Acetaminophen Use and Risk of Asthma, Rhinoconjunctivitis, and Eczema in Adolescents: International Study of Asthma and Allergies in Childhood Phase Three. Am J Respir Crit Care Med 2011; 183(2):171-178.
- 191. Shaheen S, Potts J, Gnatiuc L et al. The relation between paracetamol use and asthma: a GA2LEN European case-control study. Eur Respir J 2008; 32:1231-1236.
- 192. Farquhar H, Stewart A, Mitchell E et al. The role of paracetamol in the pathogenesis of asthma. Clinical and Experimental Allergy 2010; 40:32-41.
- 193. Etminan M., Sadatsafavi M., Jafari S., Doyle-Waters M, FitzGerald JM. Acetaminophen use and the risk of Asthma in children and adults. A systematic review and Meta analysis. Chest 2009; 136:1316-1323.
- 194. Farquhar H, Crane J, Mitchell EA, Eyers S, Beasley R. The acetaminophen and asthma hypothesis 10 years on: A case to answer. J Allergy Clin Immunol 2009; 124(4):649-651.
- 195. Eneli I, Sadri K, Camargo C, Barr RG. Acetaminophen and the risk of asthma. Chest 2005; 127(2):604-612.
- 196. Eyers S, Weatherall M, Jefferies S, Beasley R. Paracetamol in pregnancy and the risk of wheezing in offspring: a systematic review and metaanalysis. Clinical & Experimental Allergy 2011; 41(4):482-489.
- 197. Shaheen SO, Newson RB, Sherriff A et al. Paracetamol use in pregnancy and wheezing in early childhood. Thorax 2002; 57(11):958-963.
- 198. Shaheen SO, Newson RB, Henderson AJ et al. Prenatal paracetamol exposure and risk of asthma and elevated immunoglobulin E in childhood. Clinical & Experimental Allergy 2005; 35(1):18-25.
- 199. Rebordosa C, Kogevinas M, Sorensen HT, Olsen J. Pre-natal exposure to paracetamol and risk of wheezing and asthma in children: A birth cohort study. Int J Epidemiol 2008; 37(3):583-590.
- 200. Persky V, Piorkowski J, Hernandez E et al. Prenatal exposure to acetaminophen and respiratory symptoms in the first year of life. Annals of Allergy, Asthma and Immunology 2008; 101:271-278.
- 201. Lesko SM, Louik C, Vezina RM, Mitchell AA. Asthma Morbidity After the Short-Term Use of Ibuprofen in Children. Pediatrics 2002; 109(2):e20.
- 202. Newson RB, Shaheen SO, Chinn S, Burney PG. Paracetamol sales and atopic disease in children and adults: an ecological analysis. Eur Respir J 2000; 16(5):817-823.
- 203. Davey G, Berhane Y, Duncan P et al. Use of acetaminophen and the risk of self-reported allergic symptoms and skin sensitization in Butajira, Ethiopia. Journal of Allergy & Clinical Immunology 2005; 116(4):863-868.

- 204. McKeever TM, Lewis SA, Smit HA, Burney P, Britton JR, Cassano PA. The Association of Acetaminophen, Aspirin, and Ibuprofen with Respiratory Disease and Lung Function. Am J Respir Crit Care Med 2005; 171(9):966-971.
- 205. Shaheen SO, Sterne JAC, Songhurst CE, Burney PGJ. Frequent paracetamol use and asthma in adults. Thorax 2000; 55(4):266-270.
- 206. Barr RG, Wentowski CC, Curhan GC et al. Prospective Study of Acetaminophen Use and Newly Diagnosed Asthma among Women. Am J Respir Crit Care Med 2004; 169(7):836-841.
- 207. Vlaski E, Stavric K, Isjanovska R, Seckova L, Kimovska M. Acetaminophen intake and risk of asthma, hay fever and eczema in early adolescence. Iranian Journal of Allergy Asthma & Immunology 6(3):143-9, 2007.
- 208. BE Del-Rio-Navarro, JA Luna-Pech, A Berber et al. Factors Assoiated with Allergic Rhinitis in children from Northern Mexico City. Journal of Investigational Allergology & Clinical Immunology 2007; 17(2):77-84.
- 209. Cohet C, Cheng S, MacDonald C et al. Infections, medication use, and the prevalence of symptoms of asthma, rhinitis, and eczema in childhood. Journal of Epidemiology and Community Health 2004; 58(10):852-857.
- 210. Barragan-Meijueiro MM, Morfin-Maciel B, Nava-Ocampo AA. A Mexican Population-based study on exposure to paracetamol and the risk of wheezing, rhinitis, and eczema in childhood. Journal of Investigational Allergology & Clinical Immunology 2006; 16(4):247-252.
- 211. Riece K, Huak CY, Nging TT, Bever HPV. A matched patient-sibling study on the usage of paracetamol and the subsequent development of allergy and asthma. Pediatric Allergy and Immunology 2007; 18(2):128-134.
- 212. Lowe AJ, Carlin JB, Bennett CM et al. Paracetamol use in early life and asthma: prospective birth cohort study. BMJ 2010; 341(c4616).
- 213. Duncan P, Aref-Adib G, Venn A, Britton J, Davey G. Use and misuse of Aspirin in Rural Ethiopia. East African Medical Journal 2006; 83(1):31-36.
- 214. Garcia-Marcos L, Sanchez-Solis M, Perez-Fernandez V, Pastor-Vivero MD, Mondejar-Lopez P, Valverde-Molina J. Is the Effect of Prenatal Paracetamol Exposure on Wheezing in Preschool Children Modified by Asthma in the Mother? International Archives of Allergy and Immunology 2009; 149(1):33-37.
- 215. Perzanowski MS, Miller RL, Ali DB et al. Prenatal Acetaminophen Use is a Risk for Wheeze at Age 5 Years in a Low Income Urban Population with a High Risk for Asthma. Journal of Allergy and Clinical Immunology 2008; 121(2, Supplement 1):S231.
- 216. Nuttall SL, Williams J, Kendall MJ. Does paracetamol cause asthma? Journal of Clinical Pharmacy & Therapeutics 2003; 28(4):251-257.

- 217. Dimova S, Hoet PHM, Dinsdale D, Nemery B. Acetaminophen decreases intracellular glutathione levels and modulates cytokine production in human alveolar macrophages and type II pneumocytes in vitro. The International Journal of Biochemistry & Cell Biology 2005; 37(8):1727-1737.
- Kang EM, Lundsberg LS, Illuzzi JL, Bracken MB. Prenatal Exposure to Acetaminophen and Asthma in Children. Obstetrics & Gynecology 2009; 114(6).
- Shaheen SO, Newson RB, Henderson AJ et al. Prenatal paracetamol exposure and risk of asthma and elevated immunoglobulin E in childhood. Clinical & Experimental Allergy 2005; 35(1):18-25.
- 220. Federal Democratic Republic of Ethiopia, Central Statistical Agency (CSA). Summary and statistical report of the 2007 population and housing census: population size by age and sex 2008. Addis Ababa: Central Statistical Agency.
- 221. Population Department Ministry of Finance and Economic Development. Ethiopia population images 2007. Addis Ababa, Ethiopia.
- 222. World Bank. African Development Indicators 2011. Washington D.C.
- 223. Central Statistical Authority. Statistical abstract of Ethiopia. Central Statistical Authority 2000. Addis Ababa, Ethiopia.
- 224. Central Statistical Agency. Ethiopian crop production survey 2009. Addis Ababa, Ethiopia.
- 225. Federal Ministry of Health. Health and health related indicators 2007. Addis Ababa, Ethiopia.
- 226. Federal Democratic Republic of Ethiopia. Health and health related indicators 2005. Addis Ababa, Ethiopia.
- 227. Central Statistical Agency (CSA) and ORC Macro. Ethiopian Demographic and Health Survey 2011. Addis Ababa, Ethiopia, and Calverton, Maryland: CSA and ORC Macro.
- Federal Democratic Republic of Ethiopia, The Federal HIV/AIDS Prevention and Control Office. Single Point HIV Prevalence Estimate.
 2007. Addis Ababa, Ethiopia.
- 229. Federal Democratic Republic of Ethiopia. Ethiopian National Malaria Indicator Survey 2007: Technical Summary 2007. Addis Ababa, Ethiopia.
- Central Statistical Agency (CSA). Ethiopian demographic and health survey 2005. Addis Ababa, Ethiopia, and Calverton, Maryland: CSA and ORC Macro.
- 231. Guthold R, Louazani SA, Riley LM et al. Physical Activity in 22 African Countries: Results from the World Health Organization STEPwise Approach to Chronic Disease Risk Factor Surveillance. American Journal

of Preventive Medicine 2011; 41(1):52-60.

- 232. Tesfaye F, Nawi NG, Van Minh H et al. Association between body mass index and blood pressure across three populations in Africa and Asia. J Human Hypertens 2007; 21:28-37.
- 233. Tesfaye F, Byass P, Wall S. Population based prevalence of high blood pressure among adults in Addis Ababa: uncovering a silent epidemic. BMC Cardiovascular Disorders 2009; 9(1):39.
- 234. Tesfaye F, Byass P, Berhane Y, Bonita R, Wall S. Association of smoking and Khat (Catha edulis Forsk) use with high blood pressure among adults in Addis Ababa, Ethiopia. Prev Chronic Dis 2008; 5(3):1-11.
- 235. Tesfaye F, Byass P, Wall S. Concurrent comparison of energy intake and expenditure among adults in Butajira District, Ethiopia. Public Health Nutrition 2008; 11(07):675-683.
- 236. Berhane Y, Wall S, Kebede D et al. Establishing an epidemiological field laboratory in rural areas - potentials for public health research and interventions. The Butajira Rural Health Programme 1987-1999. Ethiop J Health Dev 1999; 13:1-47.
- 237. Shamebo D, Sandstrom A, Wall S. The Butajira rural health project in Ethiopia: epidemiological surveillance for research and intervention in primary health care. Scand J Prim Health Care 1992; 10(3):198-205.
- 238. Byass P, Fantahun M, Mekonnen W, Emmelin A, Berhane Y. From birth to adulthood in rural Ethiopia: the Butajira Birth Cohort of 1987. Paediatric and Perinatal Epidemiology 2008; 22(6):569-574.
- 239. Fantahun M, Berhane Y, Hogberg U, Wall S, Byass P. Young adult and middle age mortality in Butajira demographic surveillance site, Ethiopia: lifestyle, gender and household economy. BMC Public Health 2008; 8(1):268.
- 240. Hanlon C, Medhin G, Alem A et al. Impact of antenatal common mental disorders upon perinatal outcomes in Ethiopia: the P-MaMiE population-based cohort study. Trop Med Int Health 2009; 14(2):156-166.
- 241. Hanlon C, Medhin G, Alem A et al. Detecting perinatal common mental disorders in Ethiopia: Validation of the self-reporting questionnaire and Edinburgh Postnatal Depression Scale. Journal of Affective Disorders 2008; 108:251-262.
- 242. Belyhun Y, Amberbir A, Medhin G et al. Prevalence and risk factors of wheeze and eczema in one year old children: the Butajira birth cohort, Ethiopia. Clinical and Experimental Allergy 2010;(40):619-626.
- 243. Davey G, Venn A, Belete H, Berhane Y, Britton J. Wheeze, allergic sensitization and geohelminth infection in Butajira, Ethiopia. Clinical and Experimental Allergy 2005; 35(3):301-307.
- 244. Denboba W, Venn A, Britton J, Davey G. Repeatability and validity of

IUATLD Respiratory Questionnaire responses as a measure of asthma in an Ethiopian population. East African Medical Journal 2008; 85(12):582-588.

- 245. WHO. Basic laboratory methods in medical parasitology. World Health Organization, Geneva 1991.
- 246. Belyhun Y, Medhin G, Amberbir A et al. Prevalence and risk factors for soil-transmitted helminth infection in mothers and their infants in Butajira, Ethiopia: a population based study. BMC Public Health 2010; 10(21).
- 247. Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 1960; 20(1):37-46.
- 248. Calvet X, Lario S, Ramirez- lazaro MJ et al. Comparative Accuracy of 3 Monoclonal Stool Tests for Diagnosis of Helicobacter pylori Infection among Patients with Dyspepsia. Clinical Infectious Diseases 2010; 50(3):323-328.
- 249. Calvet X, Sanchez Delgado J, Montserrat An et al. Accuracy of Diagnostic Tests for Helicobacter pylori: A Reappraisal. Clinical Infectious Diseases 2009; 48(10):1385-1391.
- INDOOR Biotechnologies. INDOOR Biotechnologies dust sample extraction procedure. patent © 2009-2011 INDOOR Biotechnologies Inc. 2009.
- 251. Servili C, Medhin G, Hanlon C et al. Maternal common mental disorders and infant development in Ethiopia: the P-MaMiE Birth Cohort. BMC Public Health 2010; 10(693):e1-12.
- 252. Medhin G, Hanlon C, Dewey M et al. The effect of maternal common mental disorders on infant undernutrition in Butajira, Ethiopia: The P-MaMiE study. BMC Psychiatry 2010; 10(1):32.
- 253. Amberbir A, Medhin G, Erku W et al. Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clinical & Experimental Allergy 2011; 41(10):1422-1430.
- 254. Illi S, von Mutius E, Lau S et al. Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ 2001; 322(7283):390-395.
- 255. Federal Minstry of Health. Guidelines for the Enhanced Outreach Strategy (EOS) for child survival interventions. Addis Ababa, Ethiopia 2004.
- 256. von Mutius E. Environmental factors influencing the development and progression of pediatric asthma. Journal of Allergy & Clinical Immunology 2002; 109(6 Suppl):S525-S532.
- 257. Butajira Woreda Health Office. Results of the 10th round mass deworming for Enhanced Outreach Strategy for child survival interventions

in 41 districts of Meskan Woreda 2008.

- 258. Haileamlak A, Lewis SA, Britton J et al. Validation of the International Study of Asthma and Allergies in Children (ISAAC) and U.K. criteria for atopic eczema in Ethiopian children. British Journal of Dermatology 2005; 152(4):735-741.
- 259. Lindkvist P, Enquselassie F, Asrat D, Nilsson I, Muhe L, Giesecke J. Helicobacter pylori Infection in Ethiopian Children: A Cohort Study. Scandinavian Journal of Infectious Diseases 1999; 31:475-480.
- 260. Amberbir A, Medhin G, Hanlon C, Britton J, Venn A, Davey G. Frequent Use of Paracetamol and Risk of Allergic Disease Among Women in an Ethiopian Population. PLoS ONE 2011; 6(7):e22551.
- 261. Neil P, Rich B, Juha P. Role of bronchial responsiveness testing in asthma prevalence surveys. Thorax 2000; 55(5):352-354.
- 262. Martinez FD, Wright AL, Taussig LM et al. Asthma and Wheezing in the First Six Years of Life. N Engl J Med 1995; 332(3):133-138.
- Haileamlak A, Dagoye D, Williams H et al. Early life risk factors for atopic dermatitis in Ethiopian children. J Allergy Clin Immunol 2005; 115(2):370-376.
- 264. Barbee RA, Halonen M, Kaltenborn W, Lebowitz M, Burrows B. A longitudinal study of serum IgE in a community cohort: Correlations with age, sex, smoking, and atopic status. Journal of Allergy and Clinical Immunology 1987; 79(6):919-927.
- 265. Stern DA, Lohman IC, Wright AL, Taussig LM, Martinez FD, Halonen M. Dynamic changes in sensitization to specific aeroallergens in children raised in a desert environment. Clinical & Experimental Allergy 2004; 34(10):1563-1669.
- 266. Sheehan WJ, Rangsithienchai PA, Baxi SN et al. Age-Specific Prevalence of Outdoor and Indoor Aeroallergen Sensitization in Boston. Clinical Pediatrics 2010; 49(6):579-585.
- 267. LeMasters GK, Wilson K, Levin L et al. High prevalence of aeroallergen sensitization among infants of atopic parents. The Journal of Pediatrics 2006; 149(4):505-511.
- 268. Ebrahim A, El-Morshedy H, Omer E, El-Daly S, Barakat R. Evaluation of the Kato-Katz Thick Smear and Formal Ether Sedimentation Techniques for Quantitative Diagnosis of Schistosoma mansoni Infection. Am J Trop Med Hyg 1997; 57(6):706-708.
- 269. Shu-Kui Wang, Hui-Fang Zhu, Bang-Shun He et al. CagA+ H pylori infection is associated with polarization of T helper cell immune response in gastric carcinogenesis. World Journal of Gastroenterology 2007; 13(21):2923-2931.
- 270. Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J, Gopal PK.

Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosusDR20. Appl Environ Microbiol 2000; 66(6):2578-2588.

- 271. Tannock GW. Analysis of the intestinal microflora using molecular methods. Eur J Clin Nutr 2002; 56 Suppl 4:S44-S49.
- 272. Apajalahti JHA, Kettunen A, Nurminen PH, Jatila H, Holben WE. Selective Plating Underestimates Abundance and Shows Differential Recovery of Bifidobacterial Species from Human Feces. Appl Environ Microbiol 2003; 69(9):5731-5735.
- 273. Bjorksten B. The gut microbiota: a complex ecosystem. Clinical & Experimental Allergy 2006; 36(10):1215-1217.
- 274. Bland JM, Douglas GA. Multiple significance tests: the Bonferroni method. BMJ 1995; 310:170.
- 275. Elliott AM, Mpairwe H, Quigley MA et al. Helminth Infection During Pregnancy and Development of Infantile Eczema. JAMA: The Journal of the American Medical Association 2005; 294(16):2032-2034.
- 276. Schnabel E, Heinrich J. Respiratory tract infections and not paracetamol medication during infancy are associated with asthma development in childhood. J Allergy Clin Immunol 2010; 126(5):1071-1073.
- 277. Wickens K, Beasley R, Town I et al. The effects of early and late paracetamol exposure on asthma and atopy: a birth cohort. Clinical & Experimental Allergy 2010; 41(3):399-406.
- 278. Ford AC, Forman D, Bailey AG, Goodman KJ, Axon ATR, Moayyedi P. Effect of sibling number in the household and birth order on prevalence of Helicobacter pylori: a cross-sectional study. Int J Epidemiol 2007; 36(6):1327-1333.
- Hussein NR, Robinson K, Atherton JC. A study of Age-Specific Helicobacter pylori Seropositivity Rates in Iraq. Helicobacter 2008; 13(4):306-307.
- Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 2009; 119(9):2475-2487.
- 281. von Mutius E. Trajectories of childhood wheeze. J Allergy Clin Immunol 2011; 127(6):1513-1514.
- 282. Asrat D, Nilsson I, Mengistu Y et al. Prevalence of Helicobacter pylori vacA and cagA Genotypes in Ethiopian Dyspeptic Patients. J Clin Microbiol 2004; 42(6):2682-2684.
- 283. Halken S, Halken S. Early sensitisation and development of allergic airway disease risk factors and predictors. Paediatric Respiratory Reviews 2003; 4(2):128-134.

- 284. Tadesse Z, Hailemariam A, Kolaczinski JH. Potential for integrated control of neglected tropical diseases in Ethiopia. Transactions of the Royal Society of Tropical Medicine and Hygiene 2008; 102(3):213-214.
- 285. Cooper PJ. The potential impact of early exposures to geohelminth infections on the development of atopy. [Review] [116 refs]. Clinical Reviews in Allergy & Immunology 2004; 26(1):5-14.
- 286. Webb EL, Mawa PA, Ndibazza J et al. Effect of single-dose anthelmintic treatment during pregnancy on an infant's response to immunisation and on susceptibility to infectious diseases in infancy: a randomised, double-blind, placebo-controlled trial. The Lancet 2011; 377(9759):52-62.
- 287. Stoten A, Huntley J, Mistry H et al. Nonatopic allergen-independent mast cell activation in parasitized eosinophilic athymic rats. Parasite Immunology 2005; 27(12):431-438.
- 288. Lynch NR, Hagel IA, Palenque ME et al. Relationship between helminthic infection and IgE response in atopic and nonatopic children in a tropical environment. Journal of Allergy & Clinical Immunology 1998; 101(2:Pt 1):t-21.
- 289. Cooper PJ, Chico ME, Sandoval C, Nutman TB. Atopic Phenotype Is an Important Determinant of Immunoglobulin E-Mediated Inflammation and Expression of T Helper Cell Type 2 Cytokines to Ascaris Antigens in Children Exposed to Ascariasis. Journal of Infectious Diseases 2004; 190(7):1338-1346.
- 290. Flohr C, Quinnell RJ, Britton J. Do helminth parasites protect against atopy and allergic disease? Clinical & Experimental Allergy 2009; 39(1):20-32.
- 291. Quinnell R, Pritchard D, Raiko A, Brown A, Shaw M. Immune Responses in Human Necatoriasis: Association between InterleukinΓÇÉ5 Responses and Resistance to Reinfection. The Journal of Infectious Diseases 2004; 190(3):430-438.
- 292. Blaser MJ, Kirschner D. The equilibria that allow bacterial persistence in human hosts. Nature 2007; 449(7164):843-849.
- 293. Hall MA, Cole CB, Smith SL, Fuller R, Rolles CJ. Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child 1990; 65(2):185-188.
- 294. Hill B. The environment and disease: association or causation? Proc R Soc Med 1965; 58:295-300.
- 295. Nuttall SL, Khan JN, Thorpe GH, Langford N, Kendall MJ. The impact of therapeutic doses of paracetamol on serum total antioxidant capacity. Journal of Clinical Pharmacy and Therapeutics 2003; 28(4):289-294.
- 296. Micheli L, Cerretani D, Fiaschi A, Gioorgi G, Romeo R, F.Runci R. Effect of Acetaminophen on Glutathione Levels in Rat Testis and Lung. Environmental Health Perspectives 1994; 102(Supp 9):63-64.

- 297. Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proceedings of the National Academy of Sciences 1984; 81(5):1327-1331.
- 298. Barnes PJ. Reactive oxygen species and airway inflammation. Free Radical Biology and Medicine 1990; 9(3):235-243.
- 299. Henricks PAJ, Nijkamp FP. Reactive Oxygen Species as Mediators in Asthma. Pulmonary Pharmacology & Therapeutics 2001; 14(6):409-420.
- 300. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proceedings of the National Academy of Sciences of the United States of America 1998; 95(6):3071-3076.
- 301. Nassini R, Materazzi S, Andr+¿ E et al. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J 2010; 24(12):4904-4916.
- 302. Blomberg A, Sainsbury C, Rudell B et al. Nasal Cavity Lining Fluid Ascorbic Acid Concentration Increases in Healthy Human Volunteers Following Short Term Exposure to Diesel Exhaust. Free Radic Res 1998; 28(1):59-67.
- 303. Kosunen TU, Aromaa A, Knekt P et al. Helicobacter antibodies in 1973 and 1994 in the adult population of Vammala, Finland. Epidemiol Infect 1997; 119:29-34.
- 304. Hida N, Shimoyama T, Neville P et al. Increased expression of IL-10 and IL-12 (p40) mRNA in Helicobacter pylori infected gastric mucosa: relation to bacterial cag status and peptic ulceration. Journal of Clinical Pathology 1999; 52(9):658-664.
- 305. Trujillo C, Erb KJ. Inhibition of allergic disorders by infection with bacteria or the exposure to bacterial products. International Journal of Medical Microbiology 2003; 293(2-3):123-131.
- 306. Robinson K, Kenefeck R, Pidgeon EL et al. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 2008; 57(10):1375-1385.
- 307. Rad R, Brenner L, Bauer S et al. CD25+/Foxp3+ T Cells Regulate Gastric Inflammation and Helicobacter pylori Colonization In Vivo. Gastroenterology 2006; 131(2):525-537.
- 308. Shaheen SO, Roger BN, Susan MR, Matthew JR-Z, John WH, Henderson AJ. Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma. J Allergy Clin Immunol 2010; 126(6):1141-1148.
- 309. Peterson WL, Graham DY, Marshall B et al. Clarithromycin as monotherapy for eradication of Helicobacter pylori: a randomized,

double-blind trial. Am J Gastroenterol 1993; 88(11):1860-1864.

310. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. Hookworm Infection. N Engl J Med 2004; 351(8):799-807. APPENDICES

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

PAGE/PAGES EXCLUDED UNDER INSTRUCTION FROM THE UNIVERSITY

Appendix II Year three follow up questionnaire, Butajira birth cohort,

Ethiopia

Section I: Child characteristics

G01	Has your child ever had wheezing or	Yes	1	→ G02	WHZL3A
	whistling in their chest?	No	2	→ G05	
G02	In the past 12 months, has your child had wheezing or whistling in their chest?	Yes	1	· · · · · · · · · · · · · · · · · · ·	WHZ3A
		No	2		
G03	When was the first time that your child had		<u> </u>		WHZAGE3A
	wheezing or whistling in their chest?	1 [] [] [nonth(s)	
G04			1		WHZFRQ3A
	child had an attack of wheezing?	1-3	2		
		4-12	3		
		>12	4		
G05	Has your child ever had Asthma?	Yes	1	→ G06	ASTL3A
			2	→ G08	
G06	06 Has your child had ASTHMA in the last		1		AST3A
	year?	No	2	→ G08	

G07	Has this been confirmed by a doctor?	Yes	1	Γ		ASTHDR3A	
			No	2	1		
G08	Has Your child ever had an itchy skin	Yes	1	→ (509	RASHL3A	
	rash which has affected the skin creases (eg, the folds of the elbow or behind the knees)?				→ 0	510	
G09	In the last 1 year, has your child had a itchy skin rash which has affected the	Yes	1	→	G09A	RASH3A	
-	skin creases (eg, the folds of the elbow or behind the knees)?	v	No	2	 →	G10	
G09A	IF YES, has this rash affected any	The elbow folds				1	RASHL3AA
	of the following places? (Multiple Answer possible)					2	
		Be	Behind the knees			1	RASHL3AB
	In					2	
			In front of the			1	RASHL3AC
		an	kles			2	

Under the	1	RASHL3AD
buttocks	2	
Around the neck	1	RASHL3AE
	2	
Around the	1	RASHL3AF
eyes/ears	2	

G10	Has your child ever had hay fever or	Yes	1	→ G11	HAYFL3A
	persistent sneezing attacks?	No	2	→ G12	1
G11	In the last year, has the child had	Yes	1		НАҮҒЗА
	hay fever or persistent sneezing attacks?	No	2		
G12	Has your child taken any	Yes	1	→ G13	PARA3A
paracetamol/panadol in the last year?		No	2	→ G14	
G13	How many tablets of paracetamol/panadol have your child took in the last month?			PARAFR3A	
G14	Has your child taken any drug prescribed by the health institution	Yes	1	→ G15	ANTIB3A
	for any illnesses other than paracetamol/panadol?	No	2	→ G16	
G15	If yes, please observe the drug and write the name and type of the drug.		_	L	ANTIBM3A
G1	How many people were living in your home now?	[][]		РЕОРЗА
G1	How many older brothers/sisters does your child have who are alive?	[][]		SIBS3A

G18A	Is there anyone who smoke cigarette	Yes 1		→ G18B	HCIGR3A	
	in your home?	No	2	→ G19	1	
G18B	If yes, please write the total number of people who smoke cigarette?	[]		·	HCIGRN3A	
G19	G19 What does your child sleep on?			1	CHSLP3A	
		Medeb		2	-	
		Floor		3		

			`Jibba'		4	
			`Sigaja'		5	-
			Other (Specify)		9	-
G20	What does your child bed made of?	Iron m	etal	1	L	CHBED3A
		Wood		2		
			etal	3		-
		Rope		4		
	leather No bed Other (Specify)		r	5	·····	
			t	6		
			Other (Specify)			
G20A	What does your child mattress	Cotton		1		СНМАТЗА
	made of?	Spong	e	2		-
		Greass	;	3		
		Kapoak		4		
		No ma	tress 5			
		Other (Specify)		9		
G20 B	What does your child pillow made of?	Cotton		1		CHPIL3A
		Spong	8	2		
		Grass		3		
		kapoak		4		
		Cloth		5		
		No pille	w	6		4
		Other	(Specify)	9		

Section 2: Maternal characteristics

G21	Have you had asthma in the last 1 year?	Yes	1	MOAS3A
		No	2	
G21A	Was this confirmed by a doctor?	Yes	1	MOASSDR3A
		No	2	-1

G22	Has the baby's father had asthma in the	Y	es		1	FAAS3A
	last 1 year?	N	0		2	-
		N.	A		9	-
G22A	Was this confirmed by a doctor?	Ye	es		1	FAASDR3A
		N	0		2	
G23	In the last 1 year have you had hay fever?	Ye	Yes			МОНАҮЗА
		N	No			
G24	In the last 1 year has the baby's father had	Ye	es	******	1	FAHAY3A
	hay fever?	No	0		2	-1
		N/	4		9	
G25	Have you had eczema in the last 1 year? Yes		'es 1		1	MOEZC3A
		No	D		2	
G26	Has the baby's father had eczema in the		Yes			FAEZC3A
	last 1 year?	No	No			
		NA			9	
G27	Have you taken paracetamol/panadol in	Ye	Yes			MOPAR3A
	the last year?	No			2	
G28	How many tablets of paracetamol/panadol have you taken in the last month?	[][]	1	MOPAF3A
G29	29 Have you taken any drug prescribed by the health institution for any illnesses other ther than paracetamol/panadol)		Yes		1	GANTIB3A
			No			-
G30	If yes, please observe the drug and write name and type drug.				·	GANBTY3A

Section 3: Housing characteristics

G32	What type of roof does your house have?	Thatched	1	GROOF3A
	nouse nave.	Corrugated iron	2	
		Other (specify)	9	-
G33	What are the walls of your	Wood	1	GWALL3A
	house made of?	Wood and grass	2	
		Cement	3	-

		Brocket	4	
		Bricks	5	
		Corrugated iron	6	
		Other (specify)	9	
G34	How many rooms your house had (observe and fill)	[]		GROOM3A
G35	What type of floor does your	Cement	1	GFLOOR3A
	house have?	Wood	2	
		Bricks	3	
		Mud	4	
		Other (specify)	9	
G35A	Is the floor covered?	Yes	1	GCOVER3A
		No	2	1

G36	of your coo	of your cooking? (tick area					1	GCOOK3A
		,,,,,		e the house the main livi	2			
			Outside the house in a separate 3 building					
			Outsi	de the house	e in the open a	air	4	
G37	How often	do you use th	he follo	wing for coo	king?			GFUEL3A
		Fuel		Never	Someti mes	Eve day	· 1	
		1. Charcoal		1	2	3		
		2. Wood		1	2	3		
		3. Leaves		1	2	3		
		4. Dung	1 2 3					
		5. Nafta/Lan	iba 1 2 3					
		6. Gas		1	2	3		

		7. Electrici	ity	1		2		3	
		9. Other		1	<u>.</u>	2	<u>.</u>	3	
G37A	How often do other than co					hous	e for pur	poses	GFUELA3A
								T =	
		Fuel		Ne	ver		ometi es	Every day	
		1. Charcoa	il	1		2		3	
		2. Wood		1		2		3	-
		3. Leaves		1		2		3	-1
		4. Dung		1		2		3	
		5. Nafta/La	anba	1		2		3	
		6. Gas		1	1			3	
			. Electricity			2		3	
	1	8. A locally made battery		1		2		3	
		9. Other		1		2		3	-
G38	Which of the (Multiple ans			lo yc	ou or your	hou	sehold ke	ep?	GANIM3A
	ANIM	IAL	Not availab	le	Inside		Outside		
	1. Cat		1		2		3		
	2. Dog		1		2		3		
	3. Hen		1		2		3		
	4. Cow/o	x	1		2		3		
	5. Sheep		1	- · ·	2		3		
	6. Horse		1		2		3		
	7. Pig		1		2		3		
	8. Goat		1		2		3		

10. Mule/donkey	1	2	3	
9 Other	1	2	3	

	What is your main source of drinking water?	Pipe	d into compound		1	GWATER3A
G39	(Tick one that apply) Pi		d outside compound		2	
		Oper	n well or spring		3	
		Cove	ered well or spring		4	
		Rive	r, pond or dam		5	
		Rain	water		5	
G40	What type of toilet	Flust	n toilet	:	L	GTOILET3A
	facility do you use? (Tick one which apply)	Vent	ilated improved pit		2	
		Trad	itional pit		3	
		None	e/bush/field		1	
G41	How do you dispose your waste?		Pit	I	1	GSAND3A
			Open field		2	
			Burning		3	-
			Garbage bin		4	
			Other(Specify)	_	9	
G42	Do you use any of the		DDT	Yes	1	GINSE3AA
	following insecticides in your house? (Multiple answer			No	2	
	possible)		Malathion Yes		1	GINSE3AB
				No	2	
			Flit	Yes	1	GINSE3AC
				No	2	-1
			Application of dung	Yes	1	GINSE3AD
				No	2	
			Other(specify)	Yes	1	GINSE3AE

			No	2	
1 1	Where do you place insecticides in your house?	Reach out of children		1	PROT3A
	(observe)	Reach of children		2	

Appendix III Year three follow up questionnaire (Amharic translated),

Butajira birth cohort, Ethiopia

ከፍል ስንድ

ስሁን ሰጅም ስሳጋጠመው የደረት ህመምና ተመሳሳይነት ይሳቸውን ንዳዮች አጠይቅምታስሁ። አባክምን ባስፉት ጊዜይቶች ውስጥ ይጋጠመውንና ከዚህ ጋር ተይያጅነት ይሳቸው ችግሮች በማስታወስ ይንፖራኝ።

1.1 ህፃኑን/ኗን የተመሰከተ

G1 01	ሀየ৮/ኗ ከተወሰደ/ች ጀምሮ በየትኛውም ጊዜ ቢሆን በደረቱ/ትዋ ውስጥ ሲጥ ሲጥ የሚል ወይም	አዎን	1		WHEZEVE36
	የፉጨት ድምፅ ኖሮት ያውቃል/ታውቃስች?	የሰም	2	1	
G1 02	ባለፉት 12 ወራት ዉስጥ በሕፃኦ/ኗ ደረት ውስጥ ሲዋ ሲጥ የሚል ወይም የፉጨት ድምፅ ተስምቶ	አዎን	1		WHEEZE36
	ያውቃል/ታውቃስች?	የሰም	2	1	
G103	ህየ≻/ና በደረቱ/ትዋ ውስጥ ሲጥ ሲጥ የሚል ወይም የፉጨት ድምፅ ለመጀመሪያ ጊዜ የታየበት/ባት መቼ ነበር? (ይህንን ጥደቄ በተቻሰ	[][] አመት			WEZEAGE36
	ማጠን ጊዜውን እንዲያስታውሱ በመርዳት ወሩን ወይም አመቱን እንዲነግሩሽ አድርጊ)	[][] øc			
G1 04	በአለፉው ዓመት - ህየኦ/ፍ ደረት ውስጥ ሲጥ ሲጥ የሚል ወይም የፋጨት ድምፅ ተስምቶ	0			WHZFRQ36
	የንበረዉ ስንት ጊዜ ነበር?	1-3		1	
		4-12		1	
		ከ13 በሳይ	+	1	
G1 05	ህግን-/ኗ ከተወሰደ/ች ጀምሮ በየተኛውም ጊዜ ቢሆን አስም ኖሮት ያውቃል/ታውቃስች?	አዎን	1		ASTHEVE36
		የስም	2	1	
G1 06	ባለፉት 12 ወራት ዉስፕ ህየኦ/ኗ አስም ኖሮት ያውቃል/ታውቃስች?	አዎን	1	→ G106	ASTHMA36
		የለም	2	\rightarrow G107	
G107	ህፃን/ኗ አስም አንዳለበት/ባት በሐኪም ተረጋጧል?	አዎን	1		ASTHDR36
		የለም	2	1	
G1 08	ህዓን-/ኗ ስተወሰደ/ች ጀምሮ በየትኛውም ጊዜ ቢሆን በአጥንት መታጠቆያ ቦታዎቹ(ቿ) (በክርን	አዎን	1		RASHEVE36
	መታጠፍይ፤ከንልበቱ ኃላ ባለዉ መታጠፍይ) የሚያሳክክ ሽፍታ ወጥቶበት(ወጥቶባት) ነበር?	የሰም	2		
G1 09	ባለፉት 12 ወራት ዉስፕ ልጁ(ልጅቷ) በአጥንት መታጠፊያ ቦታዎቹ(ቿ) (በክርን	አዎን	1		RASH36
	መታጠፍያ ነን ምጥርያ) (በቤን መታጠፍያ ከንልበቱ ኋላ ባለዉ መታጠፍያ) የሚያሳክክ ሽፍታ ወጥቶበት(ወጥቶባት) ነበር?	የሰም	2	→ G110	
G1 10	መልሱ አምን ከሆነ፡ ሸፍታዉ የነበረዉ በየትኛ ዎቹ ቦታዎች ላይ ነዉ?	በክርን መታ	ጠፊያ	1	RASHLOC36
		ከጉልበትዎ :	ኋሳ	2	
	(መልሱ ይነበብ፣ ክአንድ በላይ መልስ መስጠት ይቻሳል)	በቁሮ ምም ፊትለፈት	ሚት	3	

		ከመቀመጫ በታች	4	
		በአንንትዎ ዙሪያ	5	
		በአይንና በጆሮዎች ዙሪያ	6	
G111	ህዓን/5 ከተወሰደ/ች ጀምሮ በየትቸውም ጊዜ ቢሆን	አዎን	1	CHAYEVE36
	ንፍጥ የሚያበዛ ትንፋን፤የማያቋርጥ ማስነጠስ፤አፍንጭ ወይም ዐይንን የሚያቃጥል ሕመም ነበረበት(ባት)?	የለም	2	
G112	ባለፉት 12 ወራት ዉስጥ ልጅዎ ንፍጥ የሚያበዛ	አዎን	1	CHAY36
	ጉንፋን፤የማያቋርጥ ማስነጠስ፤አፍንጫ ወይም ዐይንን የሚያቃጥል ሕመም ነበረበት(ባት)?	የሰም	2	
G113	ሕጻት(ኗ) ባሰሬዉ ዓመት ፓራሴታምል/ፓናዶል	አዎን	1	PARACET36
	ወስዶ(ዳ) ያዉቃል(ታዉቃስች)?	የሰም	2	
G114	ህየ፦/ና በላፌው ወር ስንት የፓራሴታሞል ወይም ፓናዶል ኪኒኖች ወስዶዋል? (በቁዋር ይንለፅ)	[][] መስዶዋል/ሰች፡፡		PARAFRQ36
G115	<u> ሀየኦ/ኗ ሰሳንባ (ደረት) በሽታ የሚስጥ ማንኛውም</u>	አዎን	1	ANTIB36
	መድኃኒት በሕክምና በቅርብ ጊዜ ታዞስት/ሳት ያውቃል(ሰች)?	የሰም	2	1
G116	መልስዎ አዎ ከሆነ የሚወስዱትን መድሂኒት አይነቱንና ስሙን በማየት ይሞላ			ANTIBTY36
G117	በቤት ውስጥ ምን ይህል ሰዎች ይኖራሱ?	[][]		PEOP36
G118	ህየን/ኗ ስንት ታሳቅ ወንድምና አህቶች በሕይወት አሉት/አሏት?	[][]		SIBS36
G119	ህፃን-/ና, በሚኖርበት/በምትኖርበት ቤት ውስጥ	አዎን	1	HCIGR36
	ስ <i>.ጋራ/ትምባሆ የሚያ</i> ጨስ ሰው አለ?	የለም	2	-

1.2 የህግኑ/ኗ እናትን/ስባትን የተመሰከተ

G120	ባለፉት 12 ወራት አስም ነበረብዎት?	አዎ	1	MOAS36
		የሰም	2	
G121	ባሰፉት 12 ወራት የልጃ(ልጅቷ) አባት አስም	አዎ	1	FAAS36
	ነበረባቸዉ?	የ ∩ 9	2	
G122			MOHAY36	
	የማያቋርጥ ማስነጠስ፤ አፍንጫ ወይም ዓይን ማቃጠል ነበረብዎት?	የሰም	2	
G123	ባለፉት 12 ወራት ዉስጥ የልጆ(ልጅቷ) አባት፤	ት 12 ወራት ዉስጥ የልጃ(ልጅቷ) አባት፤ አዎ 1 FA	FAHAY36	
	ንፍጥ የበዛበት ጉንፋን፣ የማይቋርጥ ማስነጠስ፣ አፍንጫ ወይም ዓይን ማቃጠል ነበረባቸዉ?	የስም	2	
G124	ባለፉት 12 ወራት የሚያሳክክና ፤በተለይም የአጥንት መታጠቆያ አካባቢዎች ያሉትን	አዎ	1	MOEZC36
	የሰውንት ክፍሎችን/ለምሳሌ የክንድ፤ ከጉልበት በስተኋላ ታጣራ ቆዳዎችን/ የሚያጠቃ የቆዳ ሸፍታ ነበረብዎት?	የሰም	2	
G125	ባሰፉት 12 ወራት የልጄ(ልጅቷ) አባት ፤በተሰይም የአጥንት መታጠራያ አካባቢዎች ያሱትን	አዎ	1	FAEZC36

	የሰውነት ክፍሎችን/ለምሳሌ የክንድ፤ ከትልበት በስተኋላ ታጣፊ ቆዳዎችን/ የሚያጠቃ የቆዳ ሽፍታ ነበረባቸዉ?	የስም	2	
G126	ባሳፈው ዓመት ፓራሴታምል/ፓናዶል ወስደው	አዎ	1	MOPAR36
,90	ያውቃሉ?	የሰም	2	
G127	በሳሬው ወር ሰንት የፓራሴታምል ወይም ፓናዶል ኪኒኖች ዉጠዋል?	[][] መስዳሰች።	MOPAFR36
G128	ለሳንባ (ደረት) በሽታ የሚሰጥ ማንኛውም መድኃኒት በሕክምና በቅርብ ጊዜ ታዞልዎት	አዎን	1	MANTIB36
	መድጋጊተ በሐዝምና በዋርብ ርቤ ያካልዎተ ያውቃል?	የስም	2	
G129	መልስዎ አዎ ከሆነ የሚወስዱትን መድዛኒት አይነቱንና ስሙን በማየት ይሞላ።			MANBTY36

ክፍል ሁለት፡ በትምን የተመስከተ

G201	የቤትዎ ጣራ የተስራው	ЧC		1	GR	200F36
	ከምንድን ነው?	ቆርቆሮ		2	1	
		ሴሳ (ይንስጽ)		9		
G202	ግድግዳው ከምን የተሠራ ነው ?	እንጨትና <i> </i>		1	GV	VALL36
		እንጨት፣ ጭራሮና ሳር		2	1	
		ድ <i>ንጋ</i> ይና ሲ <i>ሚንቶ</i>		3	1	
		ብሎኬት		4	1	
		ሙብ		5	1	
		ቆርቆሮ		6	1	
		ሌሳ (ይ <i>ግ</i> ስጽ)		9		
G203	የህየ৮/ኗ <i>መኖሪያ</i> ቤት ወለል የተስራው ክምንድን ነው?		ተሸፍኗል	አልተ ሽሬ.ንም	GF	LOOR36
		1. ክሲሚንቶ	1	2		
		2. ከጣውሳ ወይም እንጨት	1	2	1	
		3. hõba	1	2	1	
		4. ከአራር	1	2	1	
		9. ሴሳ(ይማሰጹ)	1	2		
G204	<u> ሀ</u> ዓ৮/ኗ በምን ላይ ነዉ የሚተኛ	<u>አል</u> 2			1	CHSLP3 6
	ዉ(የምትተኛዉ)?	መደብ			2	
		ወሰል			3	
		ጅባ			4	
		ስጋጃ			5	

		ሴሳ (ይማሰጹ)			9	Ι
G205	ሀየኦ/ኗን ለመኝታ	ክሽቦ			1	CHBED
	የሚጠቀሙዉ/የምትጠቀመዉ አል,2	ከአንጨተ			2	36
	ከሆነ የተሠራው ከምንድ ነው?	ከቦንዳ			3	1
		ከገመድ	<u> </u>		4	{
		<u>ከቁርበት</u>			5	-
		አል <i>ጋ</i> የሰኝም			6	i
		ሴሳ (ይማሰጹ)			9	1
G205A	ህየኮ/ኗን ለመኝታ	ስጥጥ			1	СНМАТ
	የሚ ጠቀሙዉ/የምትጠቀመዉ ፍራሽ	<u> ከስፖን</u> ጅ			2	36
	ከሆን የተሠራው ከምንድ ነው?	ክሳር			3	
		ክአበባ የሚገኝ ሳ	ፐፕ መሰል ነ	16	- 4	
		ፍራሽ የለኝም			5	
		ሴሳ (ይማለጹ			9	
G205B	ሀየን/ኗን ለመኝታ የሚጠቀሙዉ/የምትጠቀመዉ	ክጥጥ			1	CHPIL3
	ትራስ ከሆን የተሠራው ከምንድ ነው?	ስስፖንጅ			2	6
		ክሳር			3	i .
		ከአበባ የሚገኝ ሳ	ዮፕ	IC	4	
		ጨርቅ ወይም 6	አብስ		5	
		ከጨርቅ የተሰራ	ትራስ		6	
		ፍራሽ የሰኝም			7	
		ሌኅ (ይማስጹ			9	
G206	ቤተሰቡ ምግብ በብዛት የሚያበስሉ			1	_ 6000	K36
	የተ ነው?	እቤት ውስጥ ቤት ሌላ	ሆኖ ስዋናው	2		
	(አንዱ ላይ ብቻ ምልክት አድርጊ)	ከቤት ውጭ	ማዕድ ቤት	3	-	
		ክቤት ውጭ ነ	ነፍት ቦታ	4	1	
G206A	የህየን/ኗን ቤተስበ ከሚከተሱት የø	<u> </u>	ንብ ሰማብሰል	በየስንት		
	ጊዜው እንድ <mark>ሚ</mark> ጠቀሙ ቢገልፁልኝ	?			FUEL3	6
	ማገጹክዳጅ	አልጠቀምም	አንዳንድ 2ዜ	በየቀኑ		
	1. ከሥል		2	3		
			<u> </u>		1	

		102		1 •		or
		ነንጨት	1	2	3	
	3. 4	ካጠል	1	2	3	
	4. h	rበት 	1	2	3	
	5. 9	ፍጣ/ሳንባ	1	2	3	
	6. ()	トナ <i>フ</i> ዝ	1	2	3	
	7. 0	ወብራት/ኮርንቲ	1	2	3	
	9. 1	ላ (ይማሰጹ)	1	2	3	
G206B	የህፃን/ኗ ቤተስብ ክወ	<u> </u>	ዓይነቶች ምግኅ	በ ከማብሰል	ውጭ	FUELOH36
	ለሴሳ ጉዳይ ይጠቀ″	ፃል (ሳምሳሌ ሰመ	ቀትና ለመብራ	ት)?		
	697.	ደ/ንዳጅ	አልፎቀምም	አንዳንድ	ምየቀጉ	
				216		
		ሥል	1	2	3	
		ንጨት	1	2	3	
		ንጠ ል	1	2	3	
	4. h	በት	1	2	3	
	5. 9	ፍጣ/ሳንባ	1	2	3	
	6. ()	トナ<i>フ</i>ዝ	1	2	3	
	7. 9	ትሪ ድንጋይ	1	2	3	
	8. 0	◎ብራት/ኮርንቲ	1	2	3	
	9. ሰ	ላ (ይማለጹ)	1	2	3	
G207	የሀፃን/ኗ ቤተሰብ ክኖ	<u> የ</u> ከተሱቶ እንስሳቶ	ና ከብቶች ዓይ	ነቶች የትሞክ	አሏችው?	ANIM36
		አንስሳ	በቤት ውስግ ይጠበቃሉ/ያ ሱ		^Ի ውጪ በቃሱ	
		1. ድመት	1	2		
		2. ውሻ	1	2		
		3. P.C.	1	2		
		4. 197/116	1	2		
		5. 07	1	2		
		6. LLA	1	2		
		L				

				1
	7. አሳማ	1 2		
	8. ፍየል	1 2		
	10. በቅሎ/አህ;	e 1 2		
	9. ሴሳ	1 2		
		-		
G208	የህየኑ/ኗን ቤተስብ የመጠጥ ውሃ በዋነኝነት የሚያገኙት ከየት ነው?	በ ግቢው ውስ ጥ ከሚንኝ ቧ <i>ን</i> ቧ	1	WAT36
		ክፇቢ ውጪ ከሚገኝ ቧንቧ	2	
		ክንድንድ ወይም ምን ጭ	3	1
		ስተጠበቀ ጉድጓድ ወይም ምንጭ	4	1
		ከወንዝ፣ ከኩሬ፣ከዮድንድ	5	-
		ከዝናብ ውሃ	6	-
G209	የህየ৮/ኗን ቤተስብ የሚገለገልበት	በውሃ የሚሰራ ሽንት ቤት	1	SANIT36
	መፀዳጀ ቤት ምን አይነት ነው?	ሽታ አልባ መጸዳጃ	2	1
		የተለመደ ዓይነት የሽንት ቤት ጉድንድ	3	
		ሜዳ ላይ ወይም ጫካ	4	
G 210	አሁን ቤትዎ ውስጥ ሳሙና	አዎ	1	SOAP36
0210	አስዎት? እንዲያሳዩሽ ጠይቂያቸው	የለም	2	
G211	ምን ያህል ጊዜ ነው ሳሙና	አልጠቀምም	1	
	የምትጠቀሙት?	በየቀን	2	SOAPFR36
		ቢያንስ በሳምንት አንድ ጊዜ	3	1
	ሳሙና የሚጠቀሙት ሰማንኛውም ዓይነት የንጽህና መጠበቅ ሲሆን	ቢያንስ በ15 ቀን አንድ ጊዜ	4	1
	ይችሳል	በበዓል ቀን ወይንም ለየት ባለ ቀን	5	1
		አሳውቅም	6	1
		መልስ መስጠት አልራስንም	7	
G212	የህፃን/ኗ ቤተሰብ ከሚከተሱት	先先齐	1	GINSECT36
	የተባይ ማጥፊያ መድኃኒቶች በቤቱ	ማላታይን	2	
	ውስጥ የትኛውን ይጠቀማሉ?	ፍሊት	3	
	(ስአንድ በሳይ መልስ መስጠት	ሌሳ (ይማለጹ)	9	-
	ይቻሳል) (መልሱ ይነበብ)			
	አንደ ፊሊት የመሳሰሱ ጸሪተባይ መድሀኒቶች የት ነው		-	

እንዲያሳዩሽ ጠይቂያቸዉ)	ልጆች ሲደርሱበት በማይችሉበት ቦታ		
አሁን ቤት ውስጥ ጸረተባይ		2	
መድኃኒቶች ክሌላቸው ቢኖ ኖሮ የት እንደሚያስቀምጡ	ራቸው		
ጠይቂያቸው			

Appendix IV Year five follow up questionnaire, Butajira birth cohort,

Ethiopia

Section 1: Child characteristics

G01	Has your child ever had wheezing or		1		WHZL6A
	whistling in their chest?	No	2	ĺ	
G02	In the last 2 years, has your child had	Yes	1		WHZT6A
	wheezing or whistling in their chest?	No	2	1	
G03	In the last 1 year, has your child had	Yes	1	→ G04	WHZ6A
	wheezing or whistling in their chest?	No	2	→ G05	
G04	How many times in the last year has	0	1	<u> </u>	WHZFRQ6A
	your child had an attack of wheezing?	1-3	2		
		4-12	3		
		>12	4		
G05	Has your child ever had Asthma?	Yes	1		ASTL6A
		No	2		
G06	In the last 2 years, has your child had	Yes	1		ASTT6A
	Asthma?	No	2		
G07	Has your child had Asthma in the last	Yes	1	→ G08	AST6A
	year?	No	2	→ G09	

G08	Has this been confirmed by a	Yes	1		ASTHDR6A
	doctor?	No	2	1	
G09	Has your child ever had an itchy ski	n Yes	1		RASHL6A
	rash which has affected the skin	No	2		
	creases (eg, the folds of the elbow				
	or behind the knees)?	_			
G10	In the last 2 years, has your child	Yes	1		RASHT6A
	had an itchy skin condition affecting	No	2		
	the skin creases (front of the elbow,				
	behind the knees, the front of the				
	ankles, around the neck, or around				
	the eyes?				
G11	In the last 1 year, has your child had an itchy skin condition affecting the	d Yes	1	→G11A	RASH6A
	skin creases (front of the elbow,	No	2	\rightarrow G12	
	behind the knees, the front of the			/ 012	
	ankles, around the neck, or around				
	the eyes?				
G11A		he elbow	folds	5 1	RASHL6AA
	any of the following places?			2	

	(Multiple Answers possible)	Behind the	1	RASHL6AB
		knees	2	
÷		In front of the	1	RASHL6AC
		ankles	2	
		Under the	1	RASHL6AD
		buttocks	2	
		Around the neck	1	RASHL6AE
			2	
		Around the	1	RASHL6AF
		eyes/ears	2	

G12	Has your child ever had hay	Yes	1		HAYFL6A
	fever or persistent sneezing	No	2]	
	attacks?				
G13	In the last 2 years, has your	Yes	1		HAYFT6A
	child had hay fever or persistent				
	sneezing with sneezing or	No	2		1
	running nose (excluding colds or				
	flu), or problems with itchy				
	watery eyes?				
G14	In the last year, has your child	Yes	1	•	HAYF6A
	had hay fever or persistent	No	2		
	sneezing with sneezing or				
	running nose (excluding colds or				
	flu), or problems with itchy				
	watery eyes?				
G15	How many people are living in	[][]		PEOP6A
	your home now? [] []			1	
G16	How many older brothers/sisters	[][]]		SIBS6A
	does your child have who are				
	alive now?				

G17	Is paracetamol the same as	Yes	1	→ G18	PARASP6A
	aspirin?	No	2	→ G19	
G18	Can you tell me which one of	Correct		1	PARADIF6A
	these is paracetamol and which	identifica	tior	1	
,	aspirin? (show medication	Incorrect		2	
	strip)	identifica	tion		
G19	Has your child taken any paracetamol/panadol in the last	Yes	1	→ G20	PARA6A
	year?	No	2	→ G21	
G20	How many tablets of paracetamol/panadol has your child taken in the last month?	[][]		PARAFR6A

					<u> </u>		<u> </u>
G21	Can you name any symptoms	Headad	he		Yes	1	PAHED6A
	for which you have given your				No	2	
	child paracetamol? (Multiple answers possible)	Fever			Yes	1	PAFEV6A
	(Hunciple answers possible)				No	2	
		Malaria			Yes	1	PAMAL6A
					No	2	
		Commo	on co	a	Yes	1	PACOLD6A
		Dime			No	2	
		Birrd			Yes	1	PABIRD6A
					No	2	
		Wheeze	9		Yes	1	PAWHEZ6A
		Court			No	2	
		Cough			Yes	1	PACOU6A
		Charter			No	2	-
		Shortne breath	ess of		Yes	1	PASOB6A
			- 1		No	2	
		Sneezin	-		Yes	1	PASNEZ6A
		ng nose	, itch	У	No	2	
		eyes Skin ras	h in		Yes	1	PARASH6A
		the crea			No	2	PARASHOA
		Other (s	-	Fv)		<u> </u>	PAOTHE6A
G22	Is paracetamol available close	Yes	1	$\overline{\Gamma}$	L		PAVAIL6A
	to where you live?	No	2	╎──			1
G23	Is paracetamol affordable to	Yes	1	1			PAFORD6A
	you?	No	2				
G24	Do you avoid giving your child	Yes	<u> </u>	1			ASAVOD6A
	aspirin?	No		2			
G25	Should any people NOT take	Children		Ye	s 1		ASCHIL6A
	aspirin? (PW – people		-	No			
	with)	PW gast	ritis	Ye			ASGAS6A
				No			
		PW asth	ma	Ye			ASASTH6A
				No			
		PW hay		Ye			ASHAY6A
		fever		No			
		Don't kn	ow	•	9		ASAVDK6A
G26	Do you prefer to give aspirin or	Aspirin		1			ASPREF6A
	paracetamol for your child?	Paraceta	mo	2			
		1					
		Depends	5	3	1		
		Don't mi		4			

G27	Has your child taken any drug prescribed by the health	Yes	$\begin{array}{c c} \text{es} & 1 \\ \hline \end{array} \rightarrow \text{G2} \end{array}$		ANTIB6A	
	institution for any illnesses currently? (Other than paracetamol/panadol/aspirin)	No	2	→ G28		
G27A	If yes, please observe the drug and write the name and type the child currently taking.				ANTIBM6A	
G28	Has your child taken any de-	Yes	1		DEWOR6A	
	worming medication in the last 6 months? (De-worming refers to antihelmintics treatment given by the heath office free of charge without stool examination)	No	2			

G29	Is there anyone who smoke	s	Yes	1	→ G29	A HCIGR6A
	cigarettes in your home?					
			No	2	→ G30	
G29A	If yes, please write the total		[]			HCIGRN6A
	number of people who smok					
	cigarettes in the home wher	e the				
	child living?					
G30	What does your child sleep of	on?	Bed		1	CHSLP6A
			Medeb		2	
			Floor		3	
			`Jibba'		4	
			`Sigaja'		5	[
			Other		9	
			(Specify)		
G31	What is your child's bed	Iron	metal		1	CHBED6A
	made of?	Woo	d		2	
		Flat	metal		3	
		Rope	2		4	
		leath	ner		5	
		No b	ed		6	
		Othe	r (Specify)		9	
G32	What is your child's	Cotto	on		1	CHMAT6A
	mattress made of?	Spor	ige		2	
		Gras	S		3	
	1	Каро	k		4	
		No m	nattress		5	
		Othe	r (Specify)		9	
G33	What is your child's pillow	Cotto	n		1	CHPIL6A

made of?	Sponge	2	
	Grass	3	
	kapok	4	1
	Cloth	5	
	No pillow	6	
	Other (Specify)	9	

Section 2: Maternal characteristics

G34	Have you had wheezing or	Yes	1	→ G35	MOWHZ6A
	whistling in your chest in the last 1 year?	No	2	→ G36	
G35	How many times in the last year	0	1		MOWHFR6A
	have you had an attack of	1-3	2		
	wheezing?	4-12	3		
		>12	4		
G36	Have you had asthma in the last 1	Yes	1	→ G37	MOAS6A
	year?	No	2	→ G38	
G37	Was this confirmed by a doctor?	Yes	1		MOASSDR6A
		No	2		1
G38	Has the baby's father had	Yes	1		FAWHEZ6A
	wheezing or whistling in the chest in the last 1 year?	No	2		
G39	Has the baby's father had asthma	Yes	1	→ G40	FAAS6A
	in the last 1 year?	No	2	→ G41	
		NA	9		
G40	Was this confirmed by a doctor?	Yes	1		FAASDR6A
		No	2		
G41	In the last 1 year have you had	Yes	1		MOHAY6A
	hay fever?	No	2		
G42	In the last 1 year has the baby's	Yes	1		FAHAY6A
	father had hay fever?	No	2		
		NA	9]
G43	Have you had eczema in the last 1	Yes	1		MOEZC6A
	year?	No	2		
G44	Has the baby's father had eczema	Yes	1		FAEZC6A
	in the last 1 year?	No	2		
		NA	9		
G45	Have you taken	Yes	1		MOPAR6A
	paracetamol/Panadol in the last	No	2		
	year?				
G46	How many tablets of	[]	1		MOPAF6A
	paracetamol/Panadol have you				

	taken in the last month?			
G47	Have you taken any drug prescribed	Yes	1	GANTIB6A
	by the health institution for any problem currently? (Other than Paracetamol/Panadol)	No	2	
G48	If Yes, please observe the drug and write the name and type the mother currently taking.			GANBTY6A

Section 3: Housing characteristics

G49	What type of roof does	Thatched	1	GROOF6A
	your house have?	Corrugated iron	2	-
		Other (specify)	9	7
G50	What are the walls of your	Wood	1	GWALL6A
	house made of?	Wood and grass	2	
		Cement	3	
		Brocket	4	
		Bricks	5	
		Corrugated iron	6	
		Other	9	
		(specify)		
G51	How many rooms does	[]		GROOM6A
	your house have? (observe			
	and fill the no of rooms)			
G52	What type of floor does	Cement	1	GFLOOR6A
	your house have?	Wood	2	
		Bricks	3	
		Mud	4	
		Other	9	
		(specify)	-	
G53	Is the floor covered by any	Yes	1	GCOVER6A
	material?	No	2	

G54	Where do you do most of your cooking? (tick	Inside the house in the main living area	1	GCOOK6A
	one that applies)	Inside the house in a room other than the main living area	2	
		Outside the house in a separate building	3	
		Outside the house in the open air	4	
G55	How often do you use t	GFUEL6A		

	T			·		
	Fu	el	Never	Sometii	mes Every	
					day	_]]
		Charcoal	1	2	3	
		Wood	1	2	3	
	3.	Leaves	1	2	3	
	4.	Dung	1	2	3]
	5.	Nafta/Lanba	1	2	3	
	6.	Gas	1	2	3	7)
	7.	Electricity	1	2	3	7
	9.	Other	1	2	3	
G56	How often do yo	ou use the follo	wing insid	le the ho	use for	GFUELA6A
	purposes other		-			0.012.0.1
	Fue		Never	Som		-, I I
		5 1	never	es	etim Every day	
		Charcoal	1	2	3	
		Wood	1	2	3	-
			1	2	3	4
	Ⅰ ⊢	Leaves				-
		Dung	1	2	3	-
		Nafta/Lanba	1	2	3	41 1
		Gas Flootricity	1	2	3	41 1
		Electricity	1	2	3	41 1
		A locally de battery	1	2	3	
		Other	1	2	3	
	9.0	Uner	T	2	3	
G57	Which of the foll	lowing animals	do you or	your ho	usehold	GANIM6A
	keep? (Multiple	-	•			
	Animal	Not	Inside		utside	
		availabl		`		
		e				
	1. Cat	1	2	3		
	2. Dog	1	2	3		
	3. Hen	1	2	3		
	4. Cow/ox	1	2	3		
	5. Sheep	1	2	3		
	6. Horse	1	2	3		
	7. Pig	1	2	3		
	8. Goat	1	2	3		
	10. Mule/dor		2	3		
	9 Other	1	2	3		
L		L				<u>ا</u>

	What is your main	Piped into compound	1	GWATER6A
G58	source of drinking	Piped outside compound	2]
	water? (Tick one	Open well or spring	3	

	which applies)	Cov	ered well or spring		1	
			er, pond or dam		5	
			water		5	
G59	What type of toilet		h toilet		2	
659						GTOILET6A
	facility do you use?	<u> </u>	tilated improved pit			
	(Tick one which		litional pit toilet		3	
	applies)	Non	e/bush/field	4		
G60	0 How do you dispose your Pit				1	GSAND6A
	waste?		Open field		2	
			Burning		3	7
		Garbage bin				7
		Other(Specify)		9	7	
G61	Do you use any of the		DDT	Yes	1	GINSE6AA
	following insecticides in			No	2	
	your house? (Multiple		Malathion	Yes	1	GINSE6AB
	answers possible)			No	2	
			Flit	Yes	1	GINSE6AC
				No	2	
			Application of dung	Yes	1	GINSE6AD
				No	2	
			Other(specify)	Yes	1	GINSE6AE
				No	2	7
G61	Where do you place Out of reach of children				1	PROT6A
	insecticides in your hous	se?	Within reach of childre	en	2	
	(observe)					

Appendix V Year five follow up questionnaire (Amharic translated),

Butajira birth cohort, Ethiopia

ስሁን ሰጅም ሰሳጋጠመው የደረት ህመምና ተመሳሳይነት ይሳቸውን ጉዳዮች እጠይቅምታሰሁ። እባክዎን ባስፉት ጊዜዎቶች ውስጥ ይጋጠሙንን ከዚህ ጋር ተያይጅነት ይሳቸው ችግሮች በማስታወስ ይንንረኝ።

G01	ህየ፦/ኗ ከተወለደ/ች ጀምሮ በየትኛውም ጊዜ	አዎን	1		
	ቢሆን በደረቱ/ትዋ ውስጥ ሲጥ ሲጥ የሚል ወይም የፉጨት ድምፅ ኖሮት	የሰም	0	1	WHZL6A
	ያውቃል/ታውቃለች?		_	all second second	
G02	ባለፉት ሁለት አመታት በየትኛውም ጊዜ ቢሆን በደረቱ/ትዋ ውስጥ ሲጥ ሲጥ የሚል ወይም	አዎን	1		WHZT6A
	የፉጨት ድምፅ ኖሮት ያውቃል/ታውቃስች?	የሰም	0	1	
G03	ባለፉት 12 ወራት ዉስጥ በሕየታ/ኗ ደረት	አዎን	1	→ G04	WHZ6A
	ውስጥ ሲጥ ሲጥ የሚል ወይም የ ፋ ጨት ድምፅ ተሰምቶ ያውቃል/ታውቃለች?	የለም	0	→ G05	
G04	ባለፉት 12 ወራት ህፃኑ/ኗ ደረት ውስጥ ሲጥ	0	0	Contraction of the	WHZFRO6A
	ሲጥ የሚል ወይም የፋጨት ድምፅ ተስምቶ	1-3	1		
	የነበረዉ ስንት ጊዜ ነበር?	4-12	2	1	
		h13 nae	3	1	
G05	ህፃኑ/ኗ ከተወለደ/ች ጀምሮ በየትኛውም ጊዜ	አዎን	1	The state of the state	ASTL6A
	ቢሆን አስም ኖሮት ያውቃል/ታውቃሰች?	የለም	2		
G06	ባለፉት ሁለት አመታት በየትኛውም ጊዜ ቢሆን	አዎን	1	design of the second second	ASTT6A
	ህየዮ/ኗ አስም ኖሮት/ሯት ያውቃል/ታውቃስች?	የለም	0	1.1.0 0 0 0 0	
G07	ባለፉት 12 ወራት ዉስጥ ህየኮ/ኗ አስም ኖሮት	አዎን	1	→G08	AST6A
007	ያውቃል/ታውቃለች?	የሰም	0		1.0.0
G08	ህየ৮/ኗ አስም እንዳለበት/ባት በሐኪም	አዎን	1		ASTHDR6A
	ተረጋግጧል?	የሰም	0		a second
G09	ህየ፦/5 ከተወለደ/ች ጀምሮ በየትኛውም ጊዜ	አዎን	1		RASHL6A
	ቢሆን በአጥንት መታጠራያ ቦታዎቹ(ቿ) (በክርን መታጠፍያ፤ስንልበቱ ኋላ ባለዉ መታጠፍያ፤በቁርጭምጭሚት ራት ሰራት፤ በአንንት ዙሪያ፤ እና በአይን አካባቢ) የሚያሳክክ	የለም	0		
	ሽፍታ ወፕቶበት (ወፕቶባት) ነበር?	1 2000		1.2.3	1.30,000
G10	ባሰፉት ሁለት አመታት በየትኛውም ጊዜ ቢሆን ህየ৮/ኗ በአጥንት መታጠፊያ ቦታዎቹ(ቿ)	አዎን	1	Time	RASHT6A
	(በክርን መታጠፍይ፤ከትልበቱ ኋላ ባለዉ መታጠፍይ፤በቁርጭምጭሚት ራት ሰራት ፤ በአንንት ዙሪይ፤ እና በአይን አካባቢ) የሚይሳክክ ሽፍታ ወጉቶበት (ወጉቶባት) ነበር?	የለም	0		
G11	ባለፉት 12 ወራት ዉስጥ ልጆ(ልጅቷ) በአጥንት	አዎን	1	→G11A	RASH36
	መታጠፊያ ቦታዎቹ(ቿ) (በክርን መታጠፍያ፤ከንልበቱ ኋላ ባሰዉ	የለም	0		111111
	መታጠፍይ፤በቁርጭምጭሚት ፊት ለፊት፤ በአንገት ዙሪይ፤ እና በአይን አካባቢ) የሚያሳክክ ሽፍታ ወጥቶበት (ወጥቶባት) ነበር?		100		
G11A	መልሱ አዎን ከሆነ፡ ሽፍታዉ የነበረዉ በየትኛ ዎቹ በታዎች ላይ ነዉ?	በክርን መታ	ጠራያ	1 0	RASH6AA
	(መልሱ ይነበብ: ከአንድ በላይ መልስ መስጠት	ከትልበትዎ	70	1	RASH6AB

	ይቻሳል)	1			0				
		በቁ(e op op op og	1	1			RASH6AC	
		67	ስራት		0			INSTITUTE	
		ho	ቀመጫ በታ	Ť	1			RASH6AD	
					0			IN SHOAD	
		073	779 11-6	P	1			RASH6AE	
					0			IN STICKL	
		056	275 N.C.2	呼	1			RASH6AF	
		11-6		•	0			KASHOAF	
G12	ህየ৮/ፍ ከተወሰደ/ች ጀምሮ በየትኛውም ጊዜ	1p		1	10			HAYFL6A	
012	ቢሆን ንፍጥ የሚያበካ ጉንፋን፤የማያቋርጥ	809		0	-			HATFLOA	
	ማስነመስ፤አፍንጫ ወይም ዐይንን የሚያቃጥል	1							
	ሕመም ነበረበት(ባት)? (እንኚህ ምልክቶች								
	የታዩት ህፃኑ በጉንፋን ሳይያዝ መሆን አለበት)።								
G13	ባለፉት ሁለት አመታት በየትኛውም ጊዜ ቢሆን	አዎ	3		1				
613	ህግን/ኗ ንፍጥ የሚያበዛ ጉንፋን፤የማያቋርጥ	PA9			0		-	HAYFT6A	
	ማስነጠስ፤አፍንጫ ወይም ዐይንን የሚያቃጥል	1 102			0				
	ስመም ነበረበት(ባት)?								
	(አንኚህ ምልክቶች የታዩት ህየት በጉንፋን								
	ሳይያዝ መሆን አለበት)።					$(-, -)_{i_1}$			
G14	ባለፉት 12 ወራት ዉስፕ ልጅዎ ንፍፕ	10	a			1.1			
G14	የሚያበዛ ጉንፋን፤የማያቋርጥ ማስካጠስ፤አፍንሚ	አዎን			1		. 1	HAYF6A	
ወይም ዐይንን የሚያቃጥል ሕመም			የሰ ም						
	ነበረበት(ባት)? (አንኚህ ምልክቶች የታዩት ህፃን								
1.1.2.	በንንፋን ሳይ <i>ያዝ መሆን</i> አለበት)። ካንን/ኗ በታመሙ ጊዜ ፓራሴታምልና የመሳሰሉትን	0.1	10 100 5 1.0	x 1/	10.0	10	100	1011	
		1000		1 /		122	λΩ)		
G15	ፓራሴታሞል ክአስፕሪን <i>ጋ</i> ር አንድ ነው?		አዎን		1	1	_	PADIF6A	
			የሰም		0	\rightarrow	G17		
G16	ከነዚህ ከሁለቱ መካከል ፓራሴታምልና አስፕሪንን		ትክክለኛ		1			PADFA6A	
	ልትሰይልን ትችያሰሽ ? መስያ								
			የተሳሳተ		0				
			መለያ	1	-				
G17	ሕጻት(ኗ) ባለፈዉ ዓመት ፓራሴታምል/ፓናዶል		አዎን		$1 \rightarrow G18$		G18	PARA6A	
	ወስዶ(ዳ) ያዉቃል(ታዉቃስች)?	C 1	የስም		0 →G20		G20	North Carl	
G18	ህየኮ/ኗ በሳራው ወር ስንት የፓራሴታምል ወይም		[][]		1 1020			PARAFR6A	
010	ፓናዶል ኪኒኖች ወስዶዋል? (በቁጥር ይንለፅ)		1 11	1				- TANAI KUA	
G19	ፓራሴታሞል ስሕጻኑ(ኗ) የስጡበት የሕመም		60 90 27		አዎ	31	1	PAHED6A	
017	ምልክቶች/በሽታዎች ከሚከተሉት የትኞቹ ናቸው?				809		0		
	(መልሱ ይነበብ፤ ከአንድ በላይ መልስ መስጠት		ትኩሳት	-	20		1	PAFEV6A	
	ይቻሳል)				PAS		0	FAILVOA	
		ł	Ø	-	አዎ	_	1	PAMAL6A	
					P09		0	PAMALOA	
		ł	7.34.3	-	<u>አ</u>		1	DACOLDC	
	· 教育的工作。如果在10月前,在10月前,10月前,10月前,10月前,10月前,10月前,10月前,10月前,				P09	_	0	PACOLD6A	
		ł	000			_			
			ብርድ		አዎ		1	PABIRD6A	
					PA9	-	0	Mary Anna	
	all and hear pages 2 where the set		ሳል		አዎ		1	PACOU6A	
			2010/02		የስ9	_	0	1.2.1.2.1	
		[ሲጥ ሲጥ		አዎ	3	1	PAWHEZ6	
			ሲልበት/ባት	•	የስ9		0	A	
		H	87.340		አዎ	3	1	PASOB6A	

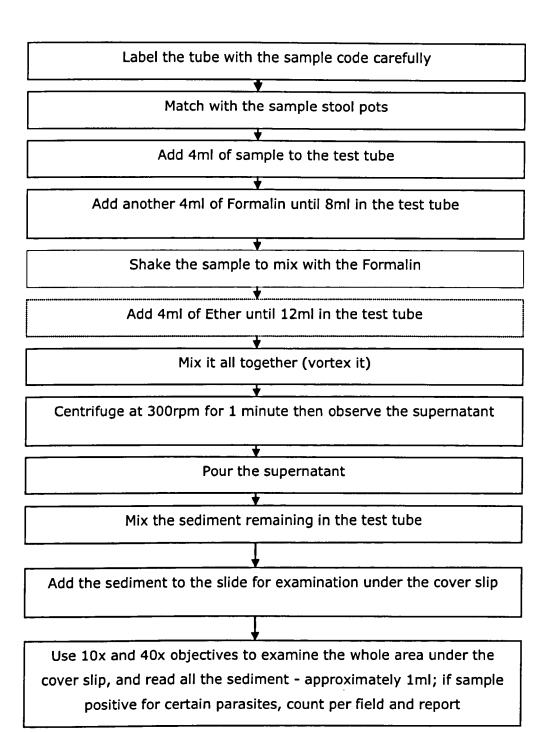
		ማጠር	1909	10	0	1	
		ማስነጠስ/	አዎ	3	1	PAS	SNEZ6A
		<i>እንደ ን</i> ፍጥ	209	10	0	1	
		ያስ በአፍንጫ					
		ሲወርድ/የአይ					
		<i>ን ማ</i> ሳክክ					
		ሲኖር					
		የቆዳ ሽፍታ	አዎ	3	1	DAI	RASH6A
		በመታጠፊያ	809	_	0	PA	CASITION
		አካባቢዎች	1.00		U		
		ሲኖር					
		AA (87A) _				PA(OTHE6A
G20	በሚኖሩበት አካባቢ ፓራሴታምልን በቅርበት ያገኘ	<u>አ</u> ምን		1			PARA
620	-ታል?	የስም		0			V6A
G21	አርስዎ ፓራሴታምልን ለመግዛት ዋጋውን	አዎን		1	-	-	PAFO
021	ይቸሱታል?	የሰም		0	1.		RD6A
G22	አስፕሪን ለልጅዎ ሳለመስጠት ይሞክራሱ?	አዎን		1	18		ASAV
022		የለም		0	1		OD6A
G23	አስፕሪን መውሰድ የሌለባቸው ሰዎች አሉ?	ሕፃናት		አዎ	3	1	ASCHI
625	(መልሱ ይነበብ፤ ክአንድ በላይ መልስ መስጠት			80	_	0	
	ይቻሳል)	ጨንራ ያለባቸው			3	1	ASGA
	(a) - 104)	666-76- 311-171	100 10° pining 10				
		LLan alor -				0	0011
		አስም ያሰባቸው		አዎ የስያ		1	ASAS
					100	_	1110/1
					3	1	ASHA
		ያስባቸው	የስያ		0	Y6A	
		አሳውቅም	አዎ	_	1		
				የሰያ	10	0	DK6A
		11					
		(ይ?ለ∂)			_		
				1		le ses	
G24	አርስዎ ለልጅዎ ለመስጠት የሚመርጡት አስፕሪንን	አስፕሪን	1	-	-	AS	PREF6A
	ነው ወይንስ ፓራሴታምልን?	ፓራሴታሞል	2	1 march			
		እንደ ሁኔታው	3	10-10	1]	
		9°39° 9°CA	4	1 mil	de ²		
		የለኝም		-			
G25	<u>ሀፃን-/ዓ. ሰማን</u> ኛውም አይነት	አዎን	1		G2	AN	TIB6A
	መድኃኒት ለየትኛውም አይነት በሽታ		-	5A			
	በሕክምና በቅርብ ጊዜ ታዞለት/ሳት	የለም	0		G2	hered	
	ይው ቃል(ለች)?			6		1.1	
	(ይህን ጥያቄ ለማኝኛውም አይነት በሽታ			-		1.1	
	የታዘዘስትን/ሳትን መድዛኒት ያካትታል ነገር ግን						
	ፓራሴንታምል/ፓናዶልን ወይም አስፑሪንን			133		1.6	
	አይጨምርም።)	and the second second	-	19.			
G25A	መልስዎ አዎ ከሆነ የሚወስዱትን መድዛኒት	1			•	BA	VTA6A
	አይነቱንና ስሙን በማየት ይምላ።					1 Maria	
	and the second	2				BANTBEA	
	the second second second second	2				BA	I BOA
		3		-		BA	NI BOA

G26	ሀየጉ/ኗ ባለፉት ስድስት ወራት ለ	ሆድ ትሳትል	አዎን		1		DEWOR6A		
	መከላከያ መድሃኒት ወስዶአል? (የሆድ ትሳትል መከላከያ ሲባል በ ባለሙያ በአመት ሁለት ጊዜ ቤት የሚታደል ማስት ነው።)		የሰም		0				
G27	በቤት ውስጥ ምንያህል ሰዎች ይኖራሉ? [][]					1.1	PEOP6A		
G28	ህፃን-ን/ኗ ስንት ታላቅ ወንድምና ነ አሱት/አሏት?	አህቶች በሕይወ ት	1 1]			SIBS6A		
G29	ህቁ፦/ኗ በሚኖርበት/በምትኖርበት ሲ.ጋራ/ትምባሆ የሚያጨስ ሰው ነ		አዎን የስም	1	→G A		HCIGR6A		
			[][0	→G	30			
G29A	መልሱ አዎ ክሆን የሚያጨስ ሰው ብዛት ጠይቀሽ መዝግቢ				HCIGRN6A				
G30	ህየኮ/ኗ በምን ላይ ነዉ የሚተኛ	λA.2					CHSLP6A		
	ዉ(የምትተኛዉ)?	መደብ	37			2			
		ወሰል				3			
0.0		ጅባ ስ <i>2</i> ጃ			4				
		1.1.1.1.1		7.1.1	5				
		ሴሳ (ይማሰጹ)				9			
G31	U97-/53 Am3+	አሸቦ	1 T T			1	CHBED6A		
	የሚጠቀሙዉ/የምትጠቀመዉ	ከአንጨት	1.1	2	1985 A. 19				
	አልጋ ከሆነ የተሠራው ከምንድ	ከቦንዳ		3 4					
	ንው-?	ከገመድ							
		ከቁርበት	Section Section			5			
		አል.2 የሰኝም							
		ሴሳ (ይማሰጹ)	1			9			
G32	U97-53 Amit	ከጥጥ	A. 4.			1	CHMAT6A		
	የሚጠቀሙ-ዉ/የምትጠቀመዉ	ክስፖንጅ		-		2			
	ፍራሽ ከሆነ የተሠራው ከምንድ	ስሳር		144		3 4			
	ነው?		ክአበባ የሚገኝ ጥጥ መሰል ነገር						
		ፍራሽ የሰኝም	and the		1.	5			
	101 /Ca 1 - 8 1		ሉሳ (ይማስጹ						
G33	ህየኮ/ኗን ሰመኝታ የሚጠቀሙዉ/የምትጠቀመዉ	ስጥጥ ከስፖንጅ				1	CHPIL6A		
	ትራስ ከሆነ የተሠራው ከምንድ		and the second			2	and the second		
	ነው?	ስሳር ከአበባ የሚገኝ ጥ				3 4			
	10.1			•	-	4 5			
	participants of physical states	ጨርቅ ወይም ልብስ ከጨርቅ የተሰራ ትራስ							
	Contraction of the States	760 PAD-90/0-				6 7			
	servers to the sector of the	A1 (8708-	.,			9			
10		THE CO MAR	0.000			,	Statistics in the		

1.2 2095/5 3573/8973 210051

G34	ባለፉት 12 ወራት በደራትዎ ዉስፕ ሲጥ	አዎ	1	→G35	MWHZ6A
	ሲጥ የሚል ወይም የፋጨት ድምፅ ክገሬብዎት?	የለም	0	→G36	STATISTICS.
G35	335 ባለፉት 12 ወራት በደራትዎ ዉስፕ ሲፕ		0		MWHFR6A
	ሲጥ የሚል ወይም የፋጨት ድምፅ	1-3	1		ter en
ተስምቶዎት የነበረዉ ስንት ጊዜ ነበር?	4-12	2			
		ከ13 በሳይ	3		

G36	ባለፉት 12 ወራት አስም ነበረብዎት?	አዎ	1	→G37	MOAS6A	
		የሰም	0	→G38	1	
G37	እርስዎ አስም እንዳስብዎት በሐኪም	አዎ	1		MASDR6A	
	<i>ተረጋ</i> ጧል?	የሰም	0			
G38	ባለፉት 12 ወራት የልጃ(ልጅቷ) አባት	አዎ	1		FWHZ6A	
	በደረታቸው ዉስጥ ሲጥ ሲጥ የሚል	የስም	0			
	ወይም የፋጨት ድምፅ ነበረባቸው?	አይመለክትም				
G39	ባለፉት 12 ወራት የልጃ(ልጅቷ) አባት	አዎ	1	→G40	FAAS6A	
	አስም ነበረባቸዉ?	የስም	0	→G41]	
		አይመስክትም	9		1	
G40	የልጃ(ልጅቷ) አባት አስም እንዳለባቸው	አዎ	1		FASDR6A	
040	በሐኪም ተረጋጧል?	የሰም	0			
G41	ባለፉት 12 ወራት ዉስጥ ንፍጥ የበዛበት	አዎ	1		MOHAY6A	
641	ጉንፋን፤ የማያቋርጥ ማስነጠስ፤ አፍንጫ ወይም ዓይን ማቃጠል ነበረብዎት?	የሰም	0			
G42	ባለፉት 12 ወራት ዉስጥ የልጁ(ልጅቷ)	አዎ	1		FAHAY6A	
0.2	አባት፤ ንፍጥ የበዛበት ጉንፋን፤ የ <i>ማይ</i> ቋርጥ ማስነጠስ፤ አፍ <i>ንጫ</i> ወይም	የስም	0			
	ዓይን <i>ማቃ</i> ጠል ነበረባቸዉ?	አይመስከትም	9			
G43	ባለፉት 12 ወራት የሚያሳክክና ፤በተለይም የአጥንት መታጣፊያ	፤በተለይም የአጥንት መታጠራያ አካባቢዎች ያሉትን የሰውነት የሰም 0 ክፍሎችን/ስምሳሌ የክንድ፤ ክጉልበት በስተኋሳ ታጣፊ ቆዳዎችን/ የሚያጠቃ			MOEZCA6A	
	አካባቢዎች ይሎትን የሰውነት ክፍሎችን/ለምሳሌ የክንድ፤ ከጉልበት					
G44	ባለፉት 12 ወራት የልጃ(ልጅቷ) አባት ፤በተለይም የአጥንት መታጠራያ	አዎ	1		FAEZC6A	
	አካባቢዎች ያሉትን የሰውንት ክፍሎችን/ለምሳሴ የክንድ፤ ከጉልበት	የሰም	0	- e		
	በስተኋላ ታጣፊ ቆዳዎችን/ የሚያጠቃ የቆዳ ሽፍታ ነበረባቸዉ?	አይመለክትም 9				
G45	በሳፊው ዓመት ፓራሴታምል/ፓናዶል	አዎ	1	TT - 191	MOPAR6A	
045	ወስደው ያውቃሉ?	የሰም	0			
G46	በሳራው ወር ሰንት የፓራሴታምል ወይም ፓናዶል ኪኒኖች ዉጠዋል?	[][]	°eÇK<∷		MOPAFR6A	
G47	ማንኛውም አይነት መድኃኒት ለየትኛ	አዎን	1	- 1	MANTIB6A	
	ውም አይነት በሽታ በሕክምና በቅርብ ጊዜ ታዞልዎት ያውቃል? (ይህን ዋያቂ ስሞኝኛውም አይነት በሽታ የታዘዘልዎትን መድሃኒት ይካትታል ነገር ግን ፓራሴንታሞል/ፓናዶልን ወይም አስፕሪንን አይጨምርም።)	የለም	0			
G48	መልስዎ አዎ ከሆነ የሚወስዱትን	1			MANTA6A	
040	መድሃኒት አይነቱንና ስሙን በማየት ይምላ።	2			MANTREA	
	107-10				MANTB6A	
	1 States and the second	3		-	MANTC6A	


1.3 ቤትዎን የተመሰከተ

G49	የቤትዎ	ጣራ የተሰራው	14C			1	GROOF6A
017	ከምንድ	ን ነው?	ቆርቆሮ			2	
			ሴሳ (ይገለጽ)			9	
G50	79.940	ው ከምን የተሥራ	አንጨትና ሞታ	, ,		1	GWALL6A
	ነው ?		እንጨት፣ ምሪ	ድና ሳር		2	
			ድንጋይና ሲሚ			3	
			ብሎኬት			4	
			ጡብ			5	
			ቆርቆሮ			6	
			ሴሳ (ይንለጽ)				
G51		መኖሪያ ቤት ወሰል					GFLOOR6A
	84000	ው ከምንድን ነው?	<u> ከሲሚንቶ</u>			1	
			ከጣውሳ ወይም	እንጨት		2	
			ከሽክሳ			3	
			ከአራር		4		
055	0.00		ሴሳ(ይግሰጹ)			9	
G52		. <i>መኖሪያ</i> ቤት ወሰል ፑ ወይም በሌሳ ነገር	አዎን			1	GCOVER6A
		a na estado lateradoren la succeo	የሰም			0	24 T 12 T
G53	ተሸፍኗ፤	ምግብ በብዛት	በዋናው ቤት	ሙስጥ	1	L	CCOOKCA
653	and the second second second	ነሱት የት ነው?		ሆኖ ከዋናው	2		GCOOK6A
		ህይ ብቻ ም ልክ ት	ቤት ሴሳ	0111110-	1		
	አድርጊ)	Constraint of the operation of the second seco	ከቤተ ውጭ	ማዕድ ቤት	3	-	
			ከቤተ ውጭ		4		
G54		ን ቤተስበ ከሚከተሱት ጊዜው እንድሚጠቀመ		ጅ ም ግብ ስማብ	ሰል	2	
	1						
		ማገዶ/ነዳጅ	አልፎቀምም	አንዳንድ	9094	7	
		1. ከሥል		2.11.	3		0515141
		2. እንጨት	1	2	3		GFUEL6AA
		3. ቅጠል	1	2	3	_	GFUEL6AB
		4. h0t	1	2	3		GFUEL6AC
		5. ናፍጣ/ሳንባ	1	2	3		GFUEL6AD
		6. A.J. 271	1	2	3		GFUEL6AE
	1.00	7. 00-16-7/2072	1	2	3		GFUEL6AF
	diam'r a'r	9. ሴሳ (ይማለጹ)	1	2	3		GFUEL6AG
	1000		-2.38 -6- E	10 0112-56			GFUEL6AH
G55		ን ቤተስበ ከሚከተሱት			10 0	P	
	10.1 2.	<u>ዳይ</u> ይጠቀማል (ለምሳ	ሴ ለሙቀትና ለወ	ወብራት)?			
		978/78E	አልጠቀምም	አንዳንድ	0847		
			The second second	211			
	1	1. hua	1	2	3		GFUEL6AAA
	Concess.	2. እንጨት	1	2	3		GFUEL6AAB
		3. ቅጠል	1	2	3		GFUEL6AAC
		4. h-07	1	2	3		and the second se
		5. ናፍጣ/ሳንባ	1	2	3		GFUEL6AAD
					3		GFUEL6AAE
	1000-00	6. ルナンオ	1	2	3	11	
	181.9	6. ቡታ <i>ጋዝ</i> 7. ባትሪ ድን <i>ጋ</i> ይ	1 1	2 2	3	-1	GFUEL6AAF GFUEL6AAG

2.1	ሳ (ይግሰጹ)	1	2	3		GFUEL6AAH GFUEL6AAI
L						GFUELOAAI
የህፃ፦/ኗን ብተሰ አሏችው?	ነብ ከሚከተሱት እ	ነንሳሳትና ከተ	ነቶች ዓይ	ንቶች የትሻ	۶Ę.	
	አንስሳ	ይጠበቃሉ		100000 U.S. 100	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	1. ድመተ	1		2		GANIM6AA
		-		-		GANIM6AB
		-		-		GANIM6AC
	5. 07	1		2		GANIM6AD
	6. 6.41	1		2		GANIM6AE
	7. ፍየል	1		2		GANIM6AF
	8. በቅሎ/አህያ	1		2		GANIM6AG
	9. ሴሳ	1		2		GANIM6AH
						GANIM6AI
					1	WAT6A
	1-151 PT				-	4
11.1.10.1					-	-
		5	1			
					6	1
		በውሃ የሚሰ	ነራ ሽንት	ቤት	1	SANIT6A
የሚንስንልበት ‹					2	
አይነት ነው?					3]
						4
			ት የይ	9		4
			134 13	P 7H	-	4
					-	4
						1
		አሳውቅም			6	1
		መልስ መስ	ጠት አል	ራስኩም	7	1
			ኮስጥ		1	GSAND6A
	ሚባስንሱበት				-	
ምንድን ነው?				ግቃጠል	-	4
						-
2095/C 0 +0	በ ከማከተሉት		,		-	GINSE6AA
					0	SINGLOAA
		ማሳታይን			1	GINSE6AB
ይጠቀማሉ?					0	
		ፍሊት		1215123	1	GINSE6AC
ይቻላል) (መልሰ	ተ ይነበብ)				0	
		ሴሳ (ይማሰጸ	r)	1.4.1.5.	1	GINSE6AD
		ልጆች ሲደር	40.41		1	PROT6A
81.498 080						
	ትሏችው? የሀዓን/ኗን ቤተሰ ውሃ በዋንኝነት ክየት ነው? የሀዓን/ኗን ቤተሰ የሚንስንልበት ‹ ኢይነት ነው? የሀዓን/ኗ ቤተሰሳ ስሙጣይነት የ‹ ምንድን ነው? የሀዓን/ኗ ቤተሰሳ የተባይ ማጥራያ በቤቱ ውስጥ የ· ይጠቀማሉ? (ከአንድ በላይ « ይቻላል) (መልሰ	 አሏችው? አንስሳ ድመት መሻ ድመች መሻ ዶሮ ላም/በሬ በግ ሬረስ ፍዮል በቅስ-/አህይ ሴላ የሀየኑ/ኗን ቤተስብ የመጠጥ ውሃ በዋንኝነት የሚያገኙት ክዮት ነው? የሀየኑ/ኗን ቤተስብ የመጠጥ የሚገለገልበት መፀዳጀ ቤት ምን አይነት ነው? የሀየኑ/ኗ ቤተስብ ቆሻሻ ለመጣያነት የሚገለገሉበት ምንድን ነው? የሀየኑ/ኗ ቤተስብ ክሚክተሉት የተባይ ማጥሯያ መድኃኒቶች በቤቱ ውስጥ የትኛውን 	አሏቸው? አንስሳ በቤት ው. ይጠበቃሉ ሉ 1. ድሙት 1 2. ውሽ 1 3. ዶሮ 1 4. ላም/በራ 1 5. በ7 1 6. ፊረስ 1 7. ፍዮል 1 8. በቅሎ/አሁይ 1 9. ሴላ 1 10. ውን? 1 10. ውን? 1 10. ውን? 1 11. ወን? 1 11. ወን?<	λሏችው? λንስሳ በቤት ውስጥ ይጠበቃስ/ይድራ ሱ 1. ድመት 1 2. ውሻ 1 3. ዶሮ 1 3. ዶሮ 1 4. ላም/በራ 1 5. በ7 1 6. ፊሪስ 1 7. ፍዮል 1 8. በቅሎ/አህይ 1 9. ስላ 1 0. ስላ 1 10. ጥብ ይን እ. ስላ 1 11	λλλά 0.6.7 ΦΛΥ h.6.7 ΦΛΥ λλά 0.6.7 ΦΛΥ h.6.7 ΦΛΥ 1. £ συ? 1 2 2. Φ.Ϋ 1 2 3. \$C\$ 1 2 4. Λ9°/0.6 1 2 5. 07 1 2 6. & Lħ 1 2 7. \$P\$A 1 2 8. 0ħ/r/λU\$ 1 2 9. ΛΛ 1 2 1. Δ 1 1 <td>$\lambda \bar{\gamma} \bar{n} \bar{n}$ $00.\bar{r}$ $00.\bar{r}$ $00.\bar{r}$ $00.\bar{r} \bar{n}$ $00.\bar{r} \bar{n}$ 1. $\pm \sigma \bar{r} \bar{r}$ 1 2 $\bar{r} \bar{r}$ 1 2 3. $\mathcal{R} \mathcal{C}$ 1 2 $\bar{r} \bar{r}$ 1 2 4. $\Lambda \mathcal{P}^{\sigma} / h \mathcal{C}$ 1 2 $\bar{r} \bar{r} \bar{r} \bar{r}$ $\bar{r} \bar{r} \bar{r} \bar{r} \bar{r}$ 5. $\bar{n} \bar{r}$ 1 2 $\bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r}$ $\bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r}$</td>	$\lambda \bar{\gamma} \bar{n} \bar{n}$ $00.\bar{r}$ $00.\bar{r}$ $00.\bar{r}$ $00.\bar{r} \bar{n}$ $00.\bar{r} \bar{n}$ 1. $\pm \sigma \bar{r} \bar{r}$ 1 2 $\bar{r} \bar{r}$ 1 2 3. $\mathcal{R} \mathcal{C}$ 1 2 $\bar{r} \bar{r}$ 1 2 4. $\Lambda \mathcal{P}^{\sigma} / h \mathcal{C}$ 1 2 $\bar{r} \bar{r} \bar{r} \bar{r}$ $\bar{r} \bar{r} \bar{r} \bar{r} \bar{r}$ 5. $\bar{n} \bar{r}$ 1 2 $\bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r}$ $\bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} \bar{r} $

እንዲያሳዩሽ ጠይቂያቸዉ)	ልጆች ሲደርሱበት በማይችሉበት	0	
	ቦታ		
አሁን ቤት ውስጥ ጸረተባይ			
መድኃኒቶች ክሌላቸው			
ቢኖራቸው ኖሮ የት			
አንደሚያስቀምጡ ጠይቂያቸው			

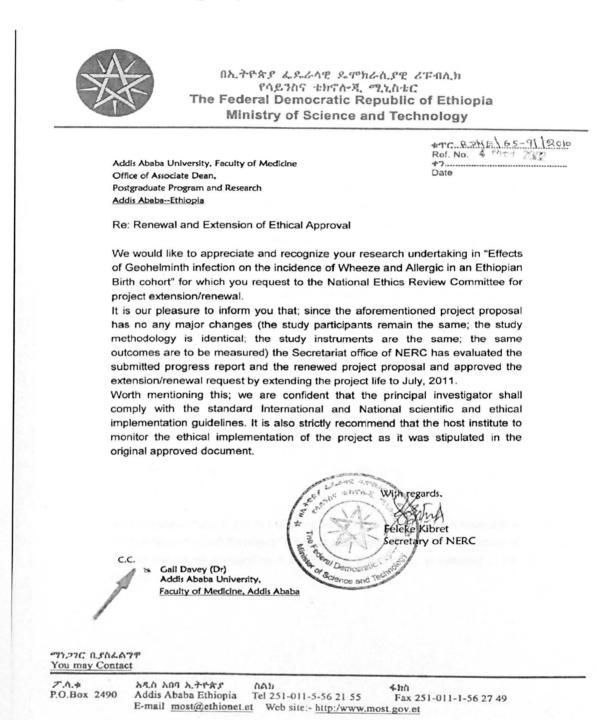
Appendix VI Formol Ether Concentration technique for geohelminth analysis, Butajira birth cohort, Ethiopia

Appendix VII Rapid test on card to determine Helicobacter pylori antigen in the stool sample, Butajira birth cohort, Ethiopia

Procedures:

- Liquid stool: Open the bottle with the extraction liquid and drop 6-7 drops of the stool sample in the bottle, and for solid stool use 3 or 4 grains of rice.
- 2. Mix the stool thoroughly (vortex mixer can be used).
- 3. Wait at least 5 minutes after dissolving well.
- 4. Drop 4 drops of the mixture in to the sampling window.
- 5. Read within 2-3 minutes (maximum within 10 minutes).
- 6. Report using *H. pylori* reporting format

Interpretation:


- Negative: Only one transversal BLUE line (CONTROL) appears in the test window.
- Positive: Beside the control transversal blue line, there will be another transversal RED line in the area near the test window.

Appendix VIII Field skin test protocol for sensitization test, Butajira birth cohort, Ethiopia

Skin Test Protocol

- Seat the study subject as comfortable as possible and ask them to hold their left forearm towards you, resting it on their leg.
- 2. Explain that you are going to measure the skin's response to some solutions, which this will not hurt but that occasionally it can be itchy.
- Use a biro and the ruler to draw an 8cm line longways down the middle of the palmar side of the fore-arm.
- Label sections from the top: S (saline); D (Dermatophagoides); H (histamine); C (cockroach).
- 5. Use the dropper in the bottle to put a TINY drop of each solution at the correct label.
- 6. Place the skin prick lancet into the drop of solution almost parallel with the skin, press the tip in lightly so it just catches, then lift the skin for 2 seconds and release. Use a skin prick lancet for each drop of solution, or the solution from one may contaminate the next.
- Wait 15 minutes. You may use this time to start filling in the questionnaire.
- 8. For each section, use the ruler to measure the BIGGEST diameter where the skin is raised as well as red. Record this as 'D1' on the sheet. Then measure the diameter at right angles to the first. Record this as 'D2'. Don't forget to record the participant's project identification number.

Appendix IX Ethics approval certificate, Ethiopian Science and Technology Ministry, Addis Ababa University Institutional Review Board and University of Nottingham, UK.

Material Transfer Agreement

This Material Transfer Agreement (MTA) has been prepared for use by The University of Nottingham, represented in this instance by its School of Community Health Sciences ("The Recipient") and Addis Ababa University, P.O. Box 9086 Addis Ababa, Ethiopia, in this instance represented by its School of Public Health ("The Provider"), and relates to the transfer of dust samples arising from the project entitled: "Effects of geohelminth infection on the incidence of wheeze and allergic sensitization in an Ethiopian birth cohort".

1. The Provider agrees to transfer to the Recipient a maximum of 1000 dust samples collected from the houses of research participants living in and around Butajira, southern Ethiopia in 2008/2009, and a maximum of 1000 dust samples collected in 2010/2011. The research material will only be used for research purposes as described in the protocol attached hereto in the designated laboratory, under suitable containment conditions. The research material will not be used for commercial purposes such as screening, production or sale for which a commercial licence may be required. The Recipient agrees to comply with all National and International guidelines and regulations applicable to the research project and to the handling of the research material.

a) Are the research materials of human origin?

Yes

Yes

No

No

b) If Yes, are the materials collected according to the details in the protocol and in adherence to National Health Research Ethics Review Committee (NERC) recommendations? (N/A)

2. This research material and its derivatives will be used by the Recipient investigators solely in connection with the project "Effects of geohelminth infection on the incidence of wheeze and allergic sensitization in an Ethiopian birth cohort", as described in the protocol.

2

3. Je all presentations or written publications concerning the research project, the Recipient will seek agreement of the Provider and acknowledge the Provider's contribution of this research material unless requested otherwise.

4. This research material represents a significant contribution on the part of the Provider and is considered proprietary to the Provider. The Recipient therefore agrees to retain control over this research material and further agrees not to transfer it to other people not under his/her direct supervision without advance written approval of the Provider. The research material will be disposed of as agreed at the end of the Project.

5. The Provider does not take any responsibility for loss, damage, wastage or spoilage of the research material during or after shipment to the address provided by the Recipient under conditions of shipment agreed to in the attached protocol. This research material is provided as a service to the research community. It is being supplied to the Recipient with no warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose. The Provider makes no representations that the use of the research material will not infringe any patent or proprietary right of third parties.

6. The Recipient shall notify the Provider in writing of any invention, improvement, modification, discovery or development to the material or the information arising from it, herein after referred to as the Invention. Nothing in the agreement shall however be construed as conveying to the Provider any rights under any patents related to such an Invention. At its option, the Provider shall be entitled to receive samples of materials derived from the research materials for its own research and evaluation purposes only.

The under-signed Provider and Recipient expressly certify that the contents of any statements made here are truthful and accurate.

8. Any additional terms: N/A

 The Provider maintains ownership right of the research material and its derivatives unless stated otherwise.

2

Signature Page For the Recipient

Recipient Investigator (Name) Professor John Britton

(Signature)

6.10.08 Date

Mailing Address: University of Nottingham School of Community Health Sciences Division of Epidemiology and Public Health Clinical Sciences Building Nottingham City Hospital Nottingham NG5 1PB United Kingdom Tel:0115 823 1708 Fax:0115 823 1946

For the Provider: Provider Investigator (Name) Dr Fikre Enqueselassie (Signature) Date Mailing Address: PO Box 9806 Addis Ababa, Ethiopia Tel: +00-251-911-233131 Fax: +00-251-115-513099 Duly Authorized (Name) Mr. Paul N Cartledge

(Signature) Rall

Date 1100P Mailing Address: University of Nottingham Research Innovation Services King's Meadow Campus Lenton Lane Nottingham NG7 2NR

Tel: 0115 951 5679 Fax:0115 951 3633

United Kingdom

Duly Authorized (Name) Dr Damen HaileMariam

(Signature)

3

Ad	lis Ababa University Medical Faculty Institutional Review Board		SOPP AAUMP 008 Version 1.0 Effective date:		
Title		y Assessment Form	1 Jan 2007 Page 6 of 17		
	1	RB's Decision	ANI Form AAUMF (
Meeting No: 020/2009 Protocol number: 077/0	9/SPH	Date (D/M/Y): Augus Assigned No.:			
		nth infection on the in a Ethiopia Birth	the second se		
Principal Investigators:	Dr. Gale Dave	and the second se			
Institute:	nstitute: AAU -MF School of Public Health				
Elements Reviewed (A	AUMF 01-008)	Attached INot attached			
Review of Revised App	lication] No	Date of Previous review:	the second s		
Decision of the meeting.	Approved Approved with Recommendation Resubmission Disapproved				
2 3, 4. II. Obligations of the PI- 1. Should comply wi 2. All amendments i 3. The PI should rep	Protocol Version Da Informed consent V Informed Consent V th the standard infer- ind changes made in set SAE within 10 da	o. are ersion No. 'ersion Date national & national scientific ar protocol and consent form need sys of the event s and thesis works should be re	d ethical guidelines Is IRB approval		
	(IRB) Approval	Period from 17/08/09.to	16/08/2011		
Follow up report expecte			De la presidencia de		
	nonths	9 monthsone ye	ar		
Jate: 17/08/09 A.V.	P.1. ITC/1-1: P.1. ITC/1-1: (IRB) (IRB) Markense Research (IRB) (I	Associate De Postgraduat Signature Date _19/08	and Refrestas Am		

The University of Nottingham

Please quote ref no: G/9/2007

Direct line/e-mail +44 (0) 115 8231063 Louise.Sabir@nottingham.ac.uk

Professor John Britton Head of Division of Epidemiology and PH Division of Epidemiology and Public Health Clinical Sciences Building City Hospital Campus Nottingham University Hospitals Trust Hucknall Road NG5 1PB Faculty of Medicine and Health Sciences

Medical School Research Ethics Committee Division of Therapeutics & Molecular Medicine D Floor, South Block Queen's Medical Centre Nottingham NG7 2UH

Tel: +44 (0) 115 8231063 Fax: +44 (0) 115 8231059

19 November 2007

Dear Professor Britton

Ethics Reference No: G/9/2007 - Please quote this number on all correspondence

Study Title: Effects of intestinal parasite infection on the incidence of wheeze and allergic sensitization in an ethopian birth cohort.

Lead Investigator: Professor John Britton, Head of Division of Epidemiology and PH

Co Investigators: Dr Gail Davey, Associate Professor/Hon Senior Lecturer Division of Epidemiology & PH UoN, Dept of Community Health, Addis Ababa University Ethiopia, Dr Charlotte Hanlon, Wellcome Trust Research Training Fellow, Dept of Health Services Research Institute of Psychiatry, Kings College London, Dr Andrea Venn, Associate Professor in Epidemiology, Division of Epidemiology & Public Health, School of Community Health Sciences.

Thank you for your letter 15th October responding to the issues raised by the Committee and were considered at tits meeting on 15th November 2007. The following revised documents were reviewed:

Information sheet (English) Aug 2007

The Committee felt reassured by your responses and this study was approved.

Approval is given on the understanding that the Conditions of Approval set out below are followed.

Conditions of Approval

You must follow the protocol agreed and any changes to the protocol will require prior Ethic's Committee approval.

This study is approved for the period of active recruitment requested. The Committee also provides a further 5 year approval for any necessary work to be performed on the study which may arise in the process of publication and peer review.

You promptly inform the Chairman of the Ethic's Committee of

- Deviations from or changes to the protocol which are made to eliminate immediate hazards to the research subjects.
- Any changes that increase the risk to subjects and/or affect significantly the conduct of the research.
- (iii) All adverse drug reactions that are both serious and unexpected.
- (iv) New information that may affect adversely the safety of the subjects or the conduct of the study.

Statement of Compliance (from May 2004 only)

The University of Nottingham Medical Research Ethics Committee is constituted in accordance with the Governance Arrangements for Research Ethics Committees (July 2001) and complies fully with the Standard Operating Procedures for Research Ethics Committees in the UK.

Yours sincerely

Professor R C Spiller Chairman, Nottingham University Medical School Ethics Committee