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Review of Discontinuous Galerkin Finite

Element Methods for Partial Differential

Equations on Complicated Domains

Paola F. Antonietti1, Andrea Cangiani2, Joe Collis3, Zhaonan Dong2, Emmanuil H.

Georgoulis4, Stefano Giani5, and Paul Houston3

Abstract The numerical approximation of partial differential equations (PDEs)

posed on complicated geometries, which include a large number of small geomet-

rical features or microstructures, represents a challenging computational problem.

Indeed, the use of standard mesh generators, employing simplices or tensor prod-

uct elements, for example, naturally leads to very fine finite element meshes, and

hence the computational effort required to numerically approximate the underlying

PDE problem may be prohibitively expensive. As an alternative approach, in this

article we present a review of composite/agglomerated discontinuous Galerkin fi-

nite element methods (DGFEMs) which employ general polytopic elements. Here,

the elements are typically constructed as the union of standard element shapes; in

this way, the minimal dimension of the underlying composite finite element space is

independent of the number of geometrical features. In particular, we provide an

overview of hp–version inverse estimates and approximation results for general

polytopic elements, which are sharp with respect to element facet degeneration. On

the basis of these results, a priori error bounds for the hp–DGFEM approximation

of both second–order elliptic and first–order hyperbolic PDEs will be derived. Fi-

nally, we present numerical experiments which highlight the practical application of

DGFEMs on meshes consisting of general polytopic elements.

1MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133

Milano ITALY. e-mail: paola.antonietti@polimi.it · 2 Department of Mathematics, University of

Leicester, Leicester LE1 7RH, UK. e-mail: Andrea.Cangiani@le.ac.uk e-mail: zd14@le.ac.uk ·
3 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,

NG7 2RD, UK. e-mail: Joe.Collis@nottingham.ac.uk e-mail: Paul.Houston@nottingham.ac.uk ·
4 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK & School

of Applied Mathematical and Physical Sciences, National Technical University of Athens,

Athens 15780, Greece. e-mail: Emmanuil.Georgoulis@le.ac.uk · 5 School of Engineering and

Computing Sciences, Durham University, South Road, Durham, DH1 3LE, UK e-mail: Ste-

fano.Giani@durham.ac.uk

1



2 P.F. Antonietti et al.

1 Introduction

In many application areas arising in engineering and biological sciences, for exam-

ple, one is often required to numerically approximate partial differential equations

(PDEs) posed on complicated domains which contain small (relative to the size of

the overall domain) geometrical features, or so-called microstructures. The key un-

derlying issue for all classes of finite element/finite volume methods is the design

of a suitable computational mesh upon which the underlying PDE problem will be

discretized. On the one hand, the mesh should provide an accurate description of the

given geometry with a granularity sufficient to compute numerical approximations

to within desired engineering accuracy constraints. On the other hand, the mesh

should not be so fine that the computational time required to compute the desired

solution is too high for practical turn-around times. These issues are particularly per-

tinent when high–order methods are employed, since in this setting it is desirable

to employ relatively coarse meshes, so that the polynomial degree may be suitably

enriched.

Standard mesh generators typically generate grids consisting of triangular/quad-

rilateral elements in two-dimensions and tetrahedral/hexahedral/prismatic/pyramidal

elements in three-dimensions. On the basis of the mesh, in the traditional fi-

nite element setting, the underlying finite element space, consisting of (continu-

ous/discontinuous) piecewise polynomials, is then constructed based on mapping

polynomial bases defined on a canonical/reference element to the physical domain.

In the presence of boundary layers, anisotropic meshing may be exploited; how-

ever, in areas of high curvature the use of such highly-stretched elements may lead

to element self-intersection, unless the curvature of the geometry is carefully ‘prop-

agated’ into the interior of the mesh through the use of isoparametric element map-

pings. The use of what we shall refer to as standard element shapes necessitates the

exploitation of very fine computational meshes when the geometry possesses small

details or microstructures. Indeed, in such situations, an extremely large number of

elements may be required for a given mesh generator to produce even a ‘coarse’

mesh which adequately describes the underlying geometry. Thereby, the solution of

the resulting system of equations emanating, for example, from a finite element dis-

cretization of the underlying PDE on the resulting coarse mesh, may be impractical

due to the large numbers of degrees of freedom involved. Moreover, since this initial

coarse mesh already contains such a large number of elements, the use of efficient

multilevel solvers may be difficult, as an adequate sequence of coarser grids which

represent the geometry is unavailable. As an example arising in biological applica-

tions, in Figure 1, we show a finite element mesh of a porous scaffold employed

for in vitro bone tissue growth, cf. [4, 5]. Here, the mesh, consisting of 3.2 million

elements, has been generated based on µCT image data represented in the form of

voxels.

From the above discussion, we naturally conclude that, when standard element

shapes are employed, the dimension of the underlying finite element space is propor-

tional to the complexity of the given computational geometry. A natural alternative

is to consider the exploitation of computational meshes consisting of general poly-
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Fig. 1 Example of a porous scaffold used for in vitro bone tissue growth, cf. [4, 5].

topic elements, i.e., polygons in two-dimensions and polyhedra in three-dimensions.

In the context of discretizing PDEs in complicated geometries, Composite Finite

Elements (CFEs) have been developed in the articles [33, 32] and [1, 31] for both

conforming finite element and discontinuous Galerkin (DGFEM) methods, respec-

tively, which exploit general meshes consisting of agglomerated elements consist-

ing of a collection of neighbouring elements present within a standard finite element

method. A closely related technique based on employing the so-called agglomerated

DGFEM has also been considered in [7, 8, 9]. From a meshing point of view, the

exploitation of general polytopic elements provides enormous flexibility. Indeed, in

addition to meshing complicated geometries using a minimal number of elements,

they are naturally suited to applications in complicated/moving domains, such as in

solid mechanics, fluid structure interaction, geophysical problems, including earth-

quake engineering and flows in fractured porous media, and mathematical biology,

for example. Indeed, general element shapes are often exploited as transitional ele-

ments in finite element meshes, for example, when fictitious domain methods, unfit-

ted methods or overlapping meshes are employed, cf. [16, 17, 18, 36, 39], for exam-

ple. The use of similar techniques in the context of characteristic-based/Lagrange–

Galerkin methods is also highly relevant. The practical relevance and potential im-

pact of employing such general computational meshes is an extremely exciting topic

which has witnessed a vast amount of intensive research in recent years by a num-

ber of leading research groups. In the conforming setting, we mention the CFE

method [33, 32], the Polygonal Finite Element Method [45], and the Extended Fi-

nite Element Method [27]. These latter two approaches achieve conformity by en-

riching/modifying the standard polynomial finite element spaces, in the spirit of the

Generalized Finite Element framework of Babuška & Osborn in [6]. Typically, the

handling of non-standard shape functions carries an increase in computational ef-

fort. The recently proposed Virtual Element Method [11], overcomes this difficulty,

achieving the extension of conforming finite element methods to polytopic elements

while maintaining the ease of implementation of these schemes; see also the closely

related Mimetic Finite Difference method, cf. [12, 14, 22], for example.
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In this article we present an overview of CFEs, and in particular consider their

construction and analysis within the hp–version DGFEM setting. With this in

mind, we follow the work presented in [33, 32, 1]; the inclusion of general poly-

topic meshes which admit arbitrarily small/degenerate (d−k)–dimensional element

facets, k = 1, . . . ,d − 1, where d denotes the spatial dimension, will also be dis-

cussed, following [21, 20]. The structure of this article is as follows. In Section 2,

we introduce composite/agglomerated DGFEMs for the numerical approximation of

second–order elliptic PDEs. Section 3 is devoted to the stability and a priori anal-

ysis of the proposed method; in particular, we derive hp–version inverse estimates

and approximation results which are sharp with respect to element facet degenera-

tion. In Section 4 we analyze the hp–version DGFEM discretization of first–order

hyperbolic PDEs on polytopic meshes. The practical performance of the proposed

DGFEMs for application to incompressible fluid flow problems is studied in Sec-

tion 5. Finally, in Section 6 we summarize the work presented in this article and

draw some conclusions.

2 Construction of composite finite element methods

The original idea behind the construction of CFEs, as presented in [32, 33] for con-

forming finite element methods, is to exploit general shaped element domains upon

which elemental basis functions may only be locally piecewise smooth. In partic-

ular, an element domain within a CFE may consist of a collection of neighbouring

elements present within a standard finite element method, with the basis function of

the CFE being constructed as a linear combination of those defined on the standard

finite element subdomains. The extension of this general approach to the DGFEM

setting has been considered in the series of articles [1, 30, 31]; see also [2, 29] for

their application within Schwarz-type domain decomposition preconditioners. For

related work on the application of DGFEMs on meshes consisting of agglomerated

elements, we refer to the articles [7, 8, 9]. We note that in the context of DGFEMs,

the elemental finite element bases simply consist of polynomial functions, since

inter-element conformity is not required.

For generality, we introduce CFE methods based on the construction proposed

in [33] and [1]. Here, the philosophy underlying CFE methods is to construct fi-

nite element spaces based on first generating a hierarchy of meshes, such that the

finest mesh does indeed provide an accurate representation of the underlying com-

putational domain, followed by the introduction of appropriate prolongation oper-

ators which determine how the finite element basis functions on the coarse mesh

are defined in terms of those on the fine grid. In this manner, CFEs naturally lend

themselves to adaptive enrichment of the finite element space by locally varying the

hierarchical level from which an element belongs, cf. [9, 31].

For concreteness, throughout this section, we concentrate on the numerical ap-

proximation of the Poisson equation. However, we stress that this class of methods

naturally extends to a wide range of PDEs; indeed, it is the treatment of the un-
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derlying second–order PDE operator which gives rise to a number of theoretical

and practical difficulties which we will address Section 3. With this in mind, given

that Ω is a bounded, connected Lipschitz domain in R
d , d > 1, with boundary ∂Ω ,

consider the following PDE problem: find u such that

−∆u = f in Ω , (1)

u = g on ∂Ω , (2)

where f ∈ L2(Ω) and g is a sufficiently regular boundary datum. In particular, it is

assumed that Ω is a ‘complicated’ domain, in the sense that it contains small details

or microstructures.

2.1 Composite/agglomerated meshes

The approach developed in [33], cf. also [1], is to construct the underlying physi-

cal/agglomerated meshes by first introducing a hierarchy of overlapping reference

and logical meshes, from which a very fine geometry–conforming mesh, consist-

ing of standard–shaped elements, may be defined, based on possibly moving nodes

in the finest logical mesh onto the boundary ∂Ω of the computational domain. The

coarse mesh, consisting of polytopic elements, is then constructed based on agglom-

erating elements which share the same parent within the underlying refinement tree.

More precisely, given an open bounded Lipschitz domain Ω , which potentially

contains small features/microstructures, we first define the coarsest reference mesh

RH ≡ Rh1
to be an overlapping grid in the sense that it does not resolve the bound-

ary ∂Ω of the domain Ω . In particular, we let RH = {κ̂} be a coarse conforming

shape–regular mesh consisting of (closed) standard element domains κ̂ , cf. above,

whose open intersection is empty such that

Ω ⊂ ΩH =

(

⋃

κ̂∈RH

κ̂

)◦

and κ̂◦∩Ω ̸= /0 ∀κ̂ ∈ RH ,

where, for a closed set D ⊂ R
d , D◦ denotes the interior of D.

On the basis of the coarse mesh RH , a hierarchy of reference meshes Rhi
, i =

2,3, . . . ,ℓ, are now constructed based on adaptively refining the coarse mesh RH

with a view to improving the approximation of the boundary of Ω . With this in

mind, given an input tolerance TOL, we proceed as follows:

1. Set Rh1
= RH , the mesh counter i = 1, and store the elements κ̂ ∈ Rh1

as the

root nodes of the refinement tree T̂; we assign these elements with a level number

L = 1.

2. Writing children(κ̂) to denote the number of children that element κ̂ possesses,

construct the refinement set R:
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R=
{

κ̂ ∈ T̂ : children(κ̂) = 0 ∧ κ̂◦∩∂Ω ̸= /0 ∧ hκ̂ > TOL
}

, (3)

where hκ̂ = diam(κ̂).
3. If R= /0, then STOP. Otherwise, for each κ̂ ∈R, refine the element κ̂ =

⋃nκ̂
i=1 κ̂i.

Here, we store the child elements κ̂i, i = 1, . . . ,nκ̂ , within the tree T̂, where κ̂
is their parent, level(κ̂i) = level(κ̂)+ 1, i = 1, . . . ,nκ̂ , and level(κ̂) denotes the

level of the element κ̂ in T̂. We point out that nκ̂ will depend on both the type of

element to be refined, and the type of refinement, i.e., isotropic/anisotropic. For

isotropic refinement of a quadrilateral element κ̂ in two–dimensions, we have

that nκ̂ = 4.

4. Perform any additional refinements to undertake necessary mesh smoothing, for

example, to ensure that the resulting mesh is 1–irregular, cf. [1].

5. Update mesh counter i = i+1 and construct the reference mesh Rhi
from the tree

structure T̂ in the following manner:

Rhi
=

{

κ̂ ∈ T̂ : level(κ̂) = i∨ (level(κ̂)≤ i∧ children(κ̂) = 0)
}

.

6. Return to Step 2. and continue to iterate until either the condition in 3. is satisfied,

or a maximum number of allowable refinements have been undertaken.

Remark 1. We point out that the above procedure provides a generic refinement

algorithm which may be employed to generate the sequence of reference meshes

{Rhi
}ℓi=1, though alternative sequences of hierarchical meshes may be exploited

within the CFE framework.

On the basis of the reference meshes {Rhi
}ℓi=1, we now define the corresponding

sequences of logical and physical meshes {Lhi
}ℓi=1 and {Mhi

}ℓi=1, respectively. To

this end, we first consider the finest reference mesh Rhℓ : given that the stopping

criterion in step 2. above, cf. (3), is satisfied, then vertex nodes x̂v ∈ κ̂ , κ̂ ∈ Rhℓ ,

which are close to the boundary ∂Ω in the sense that

dist(x̂v,∂Ω), hκ̂ ,

are moved onto the boundary of the computational domain. As a result of this node

movement procedure, some of the elements stored in the tree T̂ may end up lying

outside of Ω ; these are subsequently removed from T̂ to yield the cropped tree T.

On the basis of the cropped tree data structure T, the logical meshes are constructed

based on agglomerating elements which share a common parent within a given level

of the mesh tree hierarchy T. More precisely, following [30], we introduce the fol-

lowing notation: for κ̃C ∈ T, with level(κ̃C ) = j, we write F
j
i (κ̃C ), j ≥ i, to denote

the unique element κ̃P ∈ T with level(κ̃P) = i who is directly related to κ̃C in the

sense that κ̃C ⊂ κ̃P ; i.e., κ̃C has resulted from subsequent refinement of κ̃P . In the

trivial case when j = i, F
j
i (κ̃C ) = κ̃C . Thereby, the logical meshes {Lhi

}ℓi=1 may be

constructed from T as follows:
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(a) RH = Rh1
(b) Rh2

(c) Rh3

(d) LH = Lh1
(e) Lh2

(f) Lh3

(g) MCFE ≡ Mh1
(h) Mh2

(i) Mh3

Fig. 2 Hierarchy of meshes: (a)–(c) Reference meshes; (d)–(f) Logical Meshes; (g)–(i) Corre-

sponding physical meshes.

Lhi
= {κ̃ : (κ̃ ∈ T∧ level(κ̃)≤ i∧ children(κ̃) = 0)

∨(κ̃ = ∪κ̃ ′∈Tκ̃ ′ : children(κ̃ ′) = 0 ∧F
j
i (κ̃

′) = P, j = level(κ̃ ′)

∧P is identical for all members of this set)} .

We point out that in the absence of any node movement the finest reference and

logical meshes Rhℓ and Lhℓ , respectively, are identical.

Finally, the set of physical meshes {Mhi
}ℓi=1 are defined based on moving the

nodes in the respective logical meshes {Lhi
}ℓi=1. More precisely, writing ˆNℓ to de-

note the set of nodal points which define the finest logical mesh Lhℓ , the process of
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node movement naturally defines a bijective mapping

Φ : ˆNℓ → Nℓ,

where Nℓ denotes the set of mapped vertex nodes. The mapping Φ can then be

employed to map an element κ̃ ∈ Lhℓ to the physical element κ . For simplicity, we

denote this mapping by Φ also; hence, we write

Φ(κ̃) = κ.

With this notation, the physical meshes {Mhi
}ℓi=1 may be defined as follows:

Mhi
= {κ : κ = Φ(κ̃) for some κ̃ ∈ Lhi

},

i = 1, . . . ,ℓ. We point out that both the logical and physical meshes {Lhi
}ℓi=1 and

{Mhi
}ℓi=1, respectively, may consist of general polygonal/polyhedral element do-

mains. We refer to the coarsest physical mesh Mh1
as the CFE mesh, and accord-

ingly write MCFE ≡ Mh1
. As a simple example, in Figure 2, we consider the case

when Ω is the unit square, which has had both the rectangular region (1/4,3/4)×
(1/8, 3/8) and the circular region enclosed by r < 3/8, where r2 = (x−1)2 +(y−1)2,

removed. Here, we show the reference, logical, and physical meshes {Rhi
}ℓi=1,

{Lhi
}ℓi=1, and {Mhi

}ℓi=1, respectively, when ℓ= 3.

2.2 Finite element spaces

Given the set of physical (polytopic) meshes {Mhi
}ℓi=1, constructed in the previous

section, we introduce the corresponding sequence of DGFEM finite element spaces

V (Mhi
,pi), i = 1, . . . ,ℓ, respectively, consisting of piecewise discontinuous polyno-

mials. To this end, for each element κ ∈ MCFE(≡ Mh1
), we associate a positive in-

teger pκ , henceforth referred to as the polynomial degree of the element κ ∈ MCFE,

and collect the pκ in the vector p1 = (pκ : κ ∈ MCFE). The polynomial degree vec-

tors pi, i = 2, . . . ,ℓ, associated with the respective meshes Mhi
, i = 2, . . . ,ℓ, are then

defined in such a manner that the polynomial degree of the child element contained

within the refinement tree T is directly inherited from its parent element. More pre-

cisely,

pi = (pκ , κ ∈ Mhi
: pκ = pκ ′ , where κ ′ = F

j
1(κ) ∧ level(κ) = j, κ ′ ∈ MCFE).

With this in mind, we write

V (Mhi
,pi) = {u ∈ L2(Ω) : u|κ ∈ Ppκ (κ) ∀κ ∈ Mhi

},

i = 1, . . . ,ℓ, where Pp(κ) denotes the set of polynomials of degree at most p ≥ 1

defined over the general polytope κ .
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With this construction, noting that the meshes {Mhi
}ℓi=1 are nested, we deduce

that

V (Mh1
,p1)⊂V (Mh2

,p2)⊂ . . .⊂V (Mhℓ ,pℓ).

We now introduce the classical prolongation (injection) operator from V (Mhi
, p) to

V (Mhi+1
, p), 1 ≤ i ≤ ℓ−1, given by

Pi+1
i : V (Mhi

,pi)→V (Mhi+1
,pi+1), i = 1, . . . ,ℓ−1.

Hence, the prolongation operator from V (Mhi
,pi) to V (Mhℓ ,pℓ), 1 ≤ i ≤ ℓ− 1, is

defined by

Pi = Pℓ
ℓ−1Pℓ−1

ℓ−2 . . .P
i+1
i .

With this notation, we may write V (Mhi
,pi), 1 ≤ i ≤ ℓ−1, in the following alterna-

tive manner

V (Mhi
,pi) = {u ∈ L2(Ω) : u = P⊤

i φ , φ ∈V (Mhℓ ,pℓ)}, (4)

where the restriction operator P⊤
i is defined as the transpose of Pi, with respect to

the standard L2(Ω)–inner product.

Remark 2. The exploitation of the prolongation operator Pi within the definition of

the finite element spaces V (Mhi
,pi), i = 1, . . . ,ℓ, stated in (4) allows for the intro-

duction of different spaces, depending on the specific choice of Pi. Here, cf. also

[1], the finite element spaces are constructed so that on each (composite) element

κ ∈ Mhi
, i = 1, . . . ,ℓ, the restriction of a function v ∈ V (Mhi

,pi) to κ is a polyno-

mial of degree pκ . In the case when the finite element spaces consist of continuous

piecewise polynomials, cf. [33], for example, alternative prolongation operators are

employed which leads to basis functions which are piecewise polynomials on each

composite/polytopic element domain.

The space V (Mh1
,p1) ≡ V (MCFE, ppp) is referred to as the composite finite el-

ement space. We stress that the dimension of V (MCFE, ppp) is independent of the

underlying domain Ω in the sense that it does not directly depend on the number of

microstructures contained in Ω . Indeed, the dimension of V (MCFE, ppp) can be cho-

sen by the user; of course, if V (MCFE, ppp) is not sufficiently rich, then the accuracy of

any computed finite element approximation uh ∈V (MCFE, ppp) may be low. However,

given the construction of the composite finite element mesh MCFE, the underlying

numerical scheme naturally lends itself to adaptive enrichment of the finite element

space V (MCFE, ppp), cf. [31, 30].

Remark 3. As a final remark, we note that an alternative approach for the construc-

tion of the composite finite element mesh MCFE is to simply employ a standard mesh

generator to produce a fine mesh Mfine which accurately describes the domain Ω .

Then coarse agglomerated meshes may be constructed based on employing graph

partitioning algorithms. One of the most popular software packages employed for

this purpose is METIS [37], cf. [20, 29]. From a theoretical point of view, this setting

is more difficult to analyse; we shall return to this issue in Section 3.
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To define the forthcoming DGFEM, cf. Section 2.3, we define the broken Sobolev

space Hk(Ω ,MCFE) with respect to the subdivision MCFE up to composite order k

in the standard fashion:

Hk(Ω ,MCFE) = {u ∈ L2(Ω) : u|κ ∈ Hkκ (κ) ∀κ ∈ MCFE}.

Moreover, for u ∈ H1(Ω ,MCFE), we define the broken gradient ∇hu by (∇hu)|κ =
∇(u|κ),κ ∈ MCFE.

2.3 Discontinuous Galerkin methods on polytopic meshes

In this section, we consider the DGFEM discretization of the second-order elliptic

PDE model problem (1)–(2). For concreteness, we focus our attention on the hp-

version of the (symmetric) interior penalty DGFEM.

For the proceeding analysis, we introduce the concept of mesh interfaces and

faces, cf. [21]. In order to admit hanging nodes/edges, which are permitted in MCFE,

the interfaces of MCFE are defined to be the intersection of the (d −1)–dimensional

facets of neighbouring elements; on the boundary an interface is simply a (d −1)–
dimensional facet of κ ∈ MCFE. In the two–dimensional setting, i.e., d = 2, the

interfaces of a given element κ ∈ MCFE simply consists of line segments ((d −1)–
dimensional simplices). For d = 3, we assume that each interface of an element κ ∈
MCFE may be subdivided into a set of co-planar triangles; we use the terminology

‘face’ to refer to a (d − 1)–dimensional simplex (line segment or triangle for d =
2 or 3, respectively), which forms part of the boundary (interface) of an element

κ ∈ MCFE. For d = 2, the face and interface of an element κ ∈ MCFE coincide.

Following [20, 21], we assume that a sub-triangulation into faces of each mesh

interface is given if d = 3, and denote by FCFE the union of all open mesh interfaces

if d = 2 and the union of all open triangles belonging to the sub-triangulation of all

mesh interfaces if d = 3. In this way, FCFE is always defined as a set of (d − 1)–
dimensional simplices. Further, we write FCFE =FI

CFE∪FB
CFE, where FI

CFE denotes

the union of all open (d−1)–dimensional element faces F ⊂FCFE that are contained

in Ω , and FB
CFE is the union of element boundary faces, i.e., F ⊂ ∂Ω for F ∈ FB

CFE.

The boundary ∂κ of an element κ and the sets ∂κ \ ∂Ω and ∂κ ∩ ∂Ω will be

identified in a natural way with the corresponding subsets of FCFE.

Given κ ∈MCFE, the trace of a function v ∈ H1(Ω ,MCFE) on ∂κ , relative to κ , is

denoted by v+κ . Then for almost every x ∈ ∂κ\∂Ω , there exists a unique κ ′ ∈ MCFE

such that x ∈ ∂κ ′; with this notation, the outer/exterior trace v−κ of v on ∂κ\∂Ω ,

relative to κ , is defined as the inner trace v+κ ′ relative to the element(s) κ ′ such that

the intersection of ∂κ ′ with ∂κ\∂Ω has positive (d −1)–dimensional measure.

Next, we introduce some additional trace operators. Let κi and κ j be two adjacent

elements of MCFE and let x be an arbitrary point on the interior face F ∈FI
CFE given

by F = ∂κi ∩ ∂κ j. We write ni and n j to denote the outward unit normal vectors

on F , relative to ∂κi and ∂κ j, respectively. Furthermore, let v and q be scalar- and
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vector-valued functions, which are smooth inside each element κi and κ j. By (vi,qi)
and (v j,q j), we denote the traces of (v,q) on F taken from within the interior of κi

and κ j, respectively. The averages of v and q at x ∈ F ∈ FI
CFE are given by

{{v}}=
1

2
(vi + v j), {{q}}=

1

2
(qi +q j),

respectively. Similarly, the jumps of v and q at x ∈ F ∈ FI
CFE are given by

[[v]] = vi ni + v j n j, [[q]] = qi ·ni +q j ·n j,

respectively. On a boundary face F ∈ FB
CFE, such that F ⊂ ∂κi, κi ∈ MCFE, we set

{{v}}= vi, {{q}}= qi, [[v]] = vini [[q]] = qi ·ni,

with ni denoting the unit outward normal vector on the boundary ∂Ω .

With this notation, the symmetric interior penalty DGFEM for the numerical

approximation of (1)–(2) is given by: find uh ∈V (MCFE, ppp) such that

BDiff(uh,vh) = FDiff(vh) (5)

for all vh ∈V (MCFE, ppp), where

BDiff(w,v) = ∑
κ∈MCFE

∫

κ
∇w ·∇vdx− ∑

F∈FCFE

∫

F

(

{{∇hv}} · [[w]]+{{∇hw}} · [[v]]
)

ds

+ ∑
F∈FCFE

∫

F
σ [[w]] · [[v]]ds,

FDiff(v) =
∫

Ω
f vdx− ∑

F∈FB
CFE

∫

F
g(∇hv ·n−σv)ds.

Here, the non-negative function σ ∈ L∞(FCFE) is the discontinuity stabilization

function; the precise definition of σ is given in Lemma 4 below.

3 Stability and approximation results

In this section we consider the stability and error analysis of the hp–version DGFEM

defined in (5). We point out that the original a priori error analysis of the DGFEM

(5) on CFE meshes was first undertaken in the article [1], based on exploiting the

work developed in both the CFE and DGFEM settings in the articles [33] and [35],

respectively. Indeed, the analysis presented in [1] was based on bounding the error

in terms of Sobolev norms of an extension, cf. Theorem 1 below, of the analytical

solution u from an element belonging to the logical mesh to its respective element in

the reference mesh, assuming the mapping Φ is sufficiently regular. This approach

is advantageous since the (coarsest) reference mesh Rh1
consists of non-overlapping
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standard–shaped elements. In order to treat general polytopes, where an underlying

reference and logical mesh may not be available, for example, on meshes generated

from graph partitioning software, cf. Remark 3, we proceed based on employing the

recent analysis developed in [21].

In contrast to the case when standard element domains are employed, the ex-

ploitation of general polytopic elements presents a number of key challenges for

the construction and analysis of stable numerical schemes. In particular, shape–

regular polytopes may admit arbitrarily small/degenerate (d − k)–dimensional el-

ement facets, k = 1, . . . ,d − 1, under mesh refinement, where d denotes the spatial

dimension. Thereby, standard inverse and approximation results must be carefully

extended to the polytopic setting in such a manner that the resulting bounds are in-

deed sharp with respect to facet degeneration. With this in mind, we now summarise

a number of key results derived in [21].

Firstly, we outline the key assumptions on the underlying CFE mesh MCFE.

Assumption 3.1 There exists a positive constant CF , independent of the mesh pa-

rameters, such that

max
κ∈MCFE

(card{F ∈ FCFE : F ⊂ ∂κ})≤CF .

In order to deal with the case of general polytopic meshes, i.e., when refer-

ence/logical meshes are not available, we need to assume the existence of the fol-

lowing coverings of the mesh.

Definition 1. A covering T♯ = {K } related to the polytopic mesh MCFE is a set of

shape-regular d–simplices K , such that for each κ ∈ MCFE, there exists a K ∈ T♯

such that κ ⊂ K . Given T♯, we denote by Ω♯ the covering domain given by Ω♯ =
(

∪K ∈T♯
¯K

)◦
.

Assumption 3.2 There exists a covering T♯ of MCFE and a positive constant OΩ ,

independent of the mesh parameters, such that

max
κ∈MCFE

Oκ ≤ OΩ ,

where, for each κ ∈ MCFE,

Oκ = card
{

κ ′ ∈ MCFE : κ ′∩K ̸= /0, K ∈ T♯ such that κ ⊂ K
}

.

Thereby,

diam(K )≤Cdiamhκ ,

for each pair κ ∈ MCFE, K ∈ T♯, with κ ⊂ K , for a constant Cdiam > 0, uniformly

with respect to the mesh size.

Remark 4. We note that for the classes of meshes constructed in Section 2.1, the

coarsest reference mesh, subject to the (potential) application of the mapping Φ ,
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may serve as the covering mesh T♯; in this setting Assumption 3.2 is trivially satis-

fied.

The proceeding hp–approximation results and inverse estimates for polytopic

elements are based on considering d–dimensional simplices, where standard results

can be applied. With this in mind, we introduce the following element submesh.

Definition 2. For each element κ in the computational mesh MCFE, we define the

family F κ
♭ of all possible d–dimensional simplices contained in κ and having at

least one face in common with κ . The notation κF
♭ will be used to indicate a simplex

belonging to F κ
♭ and sharing with κ ∈ MCFE a given face F .

Equipped with these results, we first consider the derivation of hp–version in-

verse estimates on general polytopes.

3.1 Inverse estimates

Inverse estimates, which bound a norm of a polynomial on an element face by a

norm on the element itself, are fundamental for the study of the stability and er-

ror analysis of DGFEMs. In order to derive bounds which are sharp with respect

to small/degenerate (d − k)–dimensional element facets, k = 1, . . . ,d − 1, we first

introduce the following definition.

Definition 3. Let ˜MCFE denote the subset of elements κ , κ ∈ MCFE, such that

each κ ∈ ˜MCFE can be covered by at most mMCFE
shape-regular simplices Ki,

i = 1, . . . ,mMCFE
, such that

dist(κ ,∂Ki)<Cas diam(Ki)/p2
κ ,

and

|Ki|≥ cas|κ|

for all i = 1, . . . ,mMCFE
, for some mMCFE

∈N and Cas,cas > 0, independent of κ and

MCFE.

We now state the main result of this section; see [21] for details of the proof.

Lemma 1. Let κ ∈ MCFE, F ⊂ ∂κ denote one of its faces, and ˜MCFE be defined as

in Definition 3. Then, for each v ∈ Pp(κ), we have the inverse estimate

∥v∥2
L2(F) ≤CINV(p,κ,F)

p2|F |

|κ |
∥v∥2

L2(κ)
, (6)

with
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CINV(p,κ ,F) :=Cinv

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min

{

|κ |

supκF
♭
⊂κ |κ

F
♭
|
, p2d

}

, if κ ∈ ˜MCFE,

|κ |

supκF
♭
⊂κ |κ

F
♭
|
, if κ ∈ MCFE\ ˜MCFE,

and κF
♭ ∈ F κ

♭ as in Definition 2. Furthermore, Cinv is a positive constant, which if

κ ∈ ˜MCFE depends on the shape regularity of the covering of κ given in Definition 3,

but is always independent of |κ |/supκF
♭
⊂κ |κ

F
♭ | (and, therefore, of |F |), p, and v.

Remark 5. Loosely speaking, the proof of Lemma 1 is based on exploiting standard

inverse inequalities, cf. [43], for example, together with Definition 3. Indeed, for

κ ∈ ˜MCFE, the essential idea is to derive two bounds, one based on extending results

from [28], and one based on employing an L∞(κ) bound. Taking the minimum of

these two bounds gives rise to an inverse inequality which is both sharp with respect

to the polynomial degree p, and moreover is sensitive with respect to the measure

of the face F relative to that of the element κ .

We finish this section by recalling the inverse estimate for the H1-(semi)norm

derived in [20], cf. also [3]. In this setting, the shape regularity assumption on the

covering T♯, cf. Definition 1, must be strengthened as follows.

Assumption 3.3 The subdivision MCFE is shape regular in the sense of [24], i.e.,

there exists a positive constant Cshape, independent of the mesh parameters, such

that:

∀κ ∈ MCFE,
hκ

ρκ
≤Cshape,

with ρκ denoting the diameter of the largest ball contained in κ .

Following, [20], we also require the following assumption.

Assumption 3.4 Every polytopic element κ ∈ MCFE\ ˜MCFE, admits a sub-triang-

ulation into at most nMCFE
shape-regular simplices ki, i = 1,2, . . . ,nMCFE

, such that

κ̄ = ∪
nMCFE

i=1 k̄i and

|ki|≥ ĉ|κ |

for all i = 1, . . . ,nMCFE
, for some nMCFE

∈N and ĉ > 0, independent of κ and MCFE.

Lemma 2. Given Assumptions 3.3 and 3.4 are satisfied, for each v ∈ Pp(κ), the

following inverse inequality holds

∥∇v∥2
L2(κ)

≤ C̃inv

p4

h2
κ

∥v∥2
L2(κ)

, (7)

where C̃inv is a positive constant, independent of the element diameter hκ and the

polynomial order pκ , but dependent on the shape regularity of the covering of κ , if

κ ∈ ˜MCFE, or the sub-triangulation of κ , if κ ∈ MCFE\ ˜MCFE.
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3.2 Approximation results

Functions defined on Ω can be extended to the covering domain Ω♯ based on em-

ploying the following extension operator, cf. [44].

Theorem 1. Let Ω be a domain with a Lipschitz boundary. Then there exists a linear

extension operator E : Hs(Ω)→ Hs(Rd), s ∈ N0, such that E v|Ω = v and

∥E v∥Hs(Rd) ≤C∥v∥Hs(Ω),

where C is a positive constant depending only on s and Ω .

We point out that the assumptions stated in Theorem 1 on the domain Ω may be

weakened. Indeed, [44] only requires that Ω is a domain with a minimally smooth

boundary; the extension to domains which are simply connected, but may contain

microscales, is treated in [42].

With the above notation, we now quote Lemma 4.2 from [21].

Lemma 3. Let κ ∈ MCFE, F ⊂ ∂κ denote one of its faces, and K ∈ T♯ denote the

corresponding simplex such that κ ⊂K , cf. Definition 1. Suppose that v ∈ L2(Ω) is

such that E v|K ∈ Hkκ (K ), for some k ≥ 0. Then, given Assumption 3.2 is satisfied,

there exists Π̃v, such that Π̃v|κ ∈ Ppκ (κ), and the following bounds hold

∥v− Π̃v∥Hq(κ) ≤C
h

sκ−q
κ

p
kκ−q
κ

∥E v∥Hkκ (K ), kκ ≥ 0,

for 0 ≤ q ≤ kκ , and

∥v− Π̃v∥L2(F) ≤C|F |1/2 h
sκ−d/2
κ

p
kκ−1/2
κ

Cm(pκ ,κ,F)1/2∥E v∥Hkκ (K ), kκ > d/2,

where

Cm(pκ ,κ ,F) = min

{

hd
κ

supκF
♭
⊂κ |κ

F
♭
|
,

1

p1−d
κ

}

.

Here, sκ = min{pκ + 1,kκ} and C is a positive constant, which depends on the

shape-regularity of K , but is independent of v, hκ , and pκ .

3.3 Error analysis of the DGFEM

On the basis of the results stated in Sections 3.1 & 3.2, we now proceed with the

stability and error analysis of the DGFEM defined in (5). To this end, following the

work presented in [40], we begin by defining the following extensions of the forms

BDiff(·, ·) and FDiff(·):
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B̃Diff(w,v) = ∑
κ∈MCFE

∫

κ
∇w ·∇vdx+ ∑

F∈FCFE

∫

F
σ [[w]] · [[v]]ds

− ∑
F∈FCFE

∫

F

(

{{ΠΠΠ 2(∇hv)}} · [[w]]+{{ΠΠΠ 2(∇hw)}} · [[v]]
)

ds,

F̃Diff(v) =
∫

Ω
f vdx− ∑

F∈FB
CFE

∫

F
g(ΠΠΠ 2(∇hv) ·n−σv)ds,

respectively. Here, ΠΠΠ 2 : [L2(Ω)]d → [V (MCFE, ppp)]d denotes the orthogonal L2-

projection onto the finite element space [V (MCFE, ppp)]d . Thereby, face integrals in-

volving the terms {{ΠΠΠ 2(∇hw)}}, {{ΠΠΠ 2(∇hv)}} and ΠΠΠ 2(∇hv) are well defined for

all v,w ∈ S = H1(Ω)+V (MCFE, ppp), as these terms are now traces of elementwise

polynomial functions. Moreover, it is clear that

B̃Diff(w,v) = BDiff(w,v) for all w,v ∈V (MCFE, ppp),

and

F̃Diff(v) = FDiff(v) for all v ∈V (MCFE, ppp).

Hence, we may rewrite the discrete problem (5) in the following equivalent manner:

find uh ∈V (MCFE, ppp) such that

B̃Diff(uh,vh) = F̃Diff(vh) ∀vh ∈V (MCFE, ppp). (8)

Given the discrete nature of the L2–projection operator ΠΠΠ 2, the DGFEM formulation

(8) is no longer consistent.

For the proceeding error analysis, we introduce the DG-norm |∥·|∥Diff by

|∥w|∥Diff =
(

∑
κ∈MCFE

∫

κ
|∇w|2 dx+ ∑

F∈FCFE

∫

F
σ |[[w]]|2 ds

)1/2

,

for w ∈ S and σ > 0.

With this notation, we recall the following coercivity and continuity properties

of the bilinear form B̃Diff(·, ·) derived in [21].

Lemma 4. Let σ : FCFE → R+ be defined facewise by

σ(x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Cσ max
κ∈{κ+,κ−}

{

CINV(pκ ,κ ,F)
p2

κ |F |

|κ|

}

, x ∈ F ∈ FI
CFE, F = ∂κ+∩∂κ−,

CσCINV(pκ ,κ ,F)
p2

κ |F |

|κ |
, x ∈ F ∈ FB

CFE, F = ∂κ ∩∂Ω ,

(9)

with Cσ > 0 large enough, depending on CF , and independent of p, |F |, and |κ |.
Then, given Assumption 3.1 holds, we have that

B̃Diff(v,v)≥Ccoer|∥v|∥2
Diff for all v ∈ S ,
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and

B̃Diff(w,v)≤Ccont|∥w|∥Diff |∥v|∥Diff for all w,v ∈ S ,

where Ccoer and Ccont are positive constants, independent of the discretization pa-

rameters.

Remark 6. We point out that Lemma 4 assumes that the number of element faces re-

mains bounded under mesh refinement, cf. Assumption 3.1. However, based on the

computations undertaken in [3], in practice we observe that Ccoer remains uniformly

bounded on sequences of agglomerated polygons which violate this condition. In-

deed, for Cσ = 10 numerical experiments suggest that Ccoer ≥ 0.8.

Given the definition of the discontinuity stabilization function σ stated in Lemma 4,

we now state the following a priori error bound.

Theorem 2. Let Ω ⊂ R
d , d = 2,3, be a bounded polyhedral domain, and let

MCFE = {κ} be a subdivision of Ω consisting of general polytopic elements sat-

isfying Assumption 3.1. Further, T♯ = {K } denotes the associated covering of

Ω consisting of shape-regular d–simplices as in Definition 1, satisfying Assump-

tion 3.2. Let uh ∈V (MCFE, ppp) be the DGFEM approximation to u ∈ H1(Ω) defined

by (5) with the discontinuity stabilization parameter given by (9), and suppose that

u|κ ∈ Hkκ (κ), kκ > 1+d/2, for each κ ∈MCFE, such that E u|K ∈ Hkκ (K ), where

K ∈ T♯ with κ ⊂ K . Then, the following bound holds:

|∥u−uh|∥
2
Diff ≤C ∑

κ∈MCFE

h
2(sκ−1)
κ

p
2(kκ−1)
κ

(1+Gκ(F,CINV,Cm, pκ))∥E u∥2
Hkκ (K )

,

where

Gκ(F,CINV,Cm, pκ) = pκ h−d
κ ∑

F∈FCFE

Cm(pκ ,κ ,F)σ−1|F |

+ p2
κ |κ |

−1 ∑
F∈FCFE

CINV(pκ ,κ,F)σ−1|F |+h−d+2
κ p−1

κ ∑
F∈FCFE

Cm(pκ ,κ ,F)σ |F |,

with sκ = min{pκ + 1,kκ} and pκ ≥ 1. Here, C is a positive constant which is

independent of the discretization parameters.

Proof. See [21] for details.

Remark 7. For uniform orders pκ = p ≥ 1, h = maxκ∈MCFE
hκ , sκ = s, s = min{p+

1,k}, k > 1+d/2, under the assumption that the diameter of the faces of each ele-

ment κ ∈ MCFE is of comparable size to the diameter of the corresponding element,

the a priori error bound stated in Theorem 2 coincides with the bounds derived

in [35, 41], for example, for DGFEMs defined on standard element domains. In

particular, this bound is optimal in h and suboptimal in p by p1/2.
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4 Hyperbolic PDEs

In this section we consider the generalization of CFE/DGFEMs posed on general

polytopic meshes for the numerical approximation of first–order hyperbolic PDEs.

To this end, we consider the following model problem: find u such that

∇ · (bu)+ cu = f in Ω , (10)

u = g on ∂−Ω , (11)

where c ∈ L∞(Ω), f ∈ L2(Ω), and b = (b1,b2, . . . ,bd)
⊤ ∈ [W 1

∞(Ω)]d . Here, the in-

flow and outflow portions of the boundary ∂Ω are defined, respectively, by

∂−Ω =
{

x ∈ ∂Ω : b(x) ·n(x)< 0
}

, ∂+Ω =
{

x ∈ ∂Ω : b(x) ·n(x)≥ 0
}

,

where n denotes the unit outward normal vector to the boundary ∂Ω . Through-

out this section, we assume that the following (standard) positivity condition holds:

there exists a positive constant γ0 such that

c0(x)
2 = c(x)+

1

2
∇ ·b(x)≥ γ0 a.e. x ∈ Ω . (12)

The DGFEM approximation to (10)-(11) is then given by: find uh ∈V (MCFE, ppp)
such that

BHyp(uh,vh) = FHyp(vh) (13)

for all vh ∈V (MCFE, ppp), where

BHyp(w,v) = ∑
κ∈MCFE

{

∫

κ

(

−wb ·∇v+ cwv
)

dx+
∫

∂κ
H (w+

κ ,w
−
κ ,nκ)v

+
κ ds

}

,

FHyp(vh) =
∫

Ω
f vh dx.

Here, H (w+
κ ,w

−
κ ,nκ)|∂κ , which depends on both the inner– and outer–trace of w

on ∂κ , κ ∈ MCFE, and the unit outward normal vector nκ to ∂κ , is a numerical

flux function; this serves as an approximation to the normal flux (bu) · nκ on the

boundary of each element κ ∈ MCFE. The numerical flux function H (·, ·, ·) may be

chosen to be any two-point monotone Lipschitz function which is both consistent

and conservative; see [38, 46], for example. In the current setting, the most natural

choice of numerical flux is the standard upwind flux given by

H (u+h ,u
−
h ,nκ)|F =

{

b ·nκ lims→0+ uh(x− sb) F ⊂ ∂κ\∂−Ω , κ ∈ MCFE,

b ·nκ g F ⊂ ∂κ ∩∂−Ω , κ ∈ MCFE,

for all F ∈ FCFE, cf. [26].
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Using the above definition of the numerical flux function H (·, ·, ·), the DGFEM

(13) can be rewritten in the following equivalent form: find uh ∈ V (MCFE, ppp) such

that

B̃Hyp(uh,vh) = F̃Hyp(vh)

for all vh ∈V (MCFE, ppp), where

B̃Hyp(w,v) = ∑
κ∈MCFE

∫

κ

(

−wb ·∇v+ cwv
)

dx

+ ∑
κ∈MCFE

{

∫

∂+κ
b ·nκ w+

κ v+κ ds+
∫

∂−κ\∂−Ω
b ·nκ w−

κ v+κ ds

}

,

F̃Hyp(vh) =
∫

Ω
f vh dx− ∑

κ∈MCFE

∫

∂−κ∩∂−Ω
b ·nκ gv+κ ds.

Remark 8. We note that, upon application of integration by parts elementwise, the

bilinear form B̃Hyp(·, ·) may be written in the familiar form:

B̃Hyp(w,v) = ∑
κ∈MCFE

∫

κ

(

∇ · (bw)v+ cwv
)

dx

− ∑
κ∈MCFE

{

∫

∂−κ\∂−Ω
b ·nκ (w

+
κ −w−

κ )v
+
κ ds+

∫

∂−κ∩∂−Ω
b ·nκ w+

κ v+κ ds

}

,

cf. [35, 20], for example.

4.1 Error analysis

The analysis of the DGFEM (13) in the hp–version setting may be tackled by a num-

ber of different approaches. In the articles [13, 34], additional streamline–diffusion

terms are included within the underlying discretization method; in this setting, opti-

mal hp–error bounds may then be derived in a straightforward manner. However, as

noted in [34], the streamline–diffusion stabilization offers very little, if any, practi-

cal advantage over the standard DGFEM (with no stabilization), and is mainly em-

ployed for analysis purposes. In the absence of streamline–diffusion stabilization,

under the assumption that

b ·∇hξ ∈V (MCFE, ppp) ∀ξ ∈V (MCFE, ppp), (14)

holds, together hp–optimal approximation results for the local L2–projector, optimal

hp–bounds for (13) have been derived in the article [35] for meshes consisting of

shape-regular d–parallelepipeds. For hp–optimal approximation results of the L2–

projector on d–simplices, we refer to [23].
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Following [20], for the case when general polytopic elements are admitted, in the

absence of optimal hp–approximation results for the local L2–projection operator,

we prove an inf-sup condition for the bilinear form B̃Hyp(·, ·), with respect to the

following streamline DGFEM-norm:

|∥v|∥2
SD = |∥v|∥2

Hyp+ ∑
κ∈MCFE

τκ∥b ·∇v∥2
L2(κ)

, (15)

where

|∥v|∥2
Hyp = ∑

κ∈MCFE

(

∥c0v∥2
L2(κ)

+
1

2
∥v+κ ∥

2
∂κ∩∂Ω +

1

2
∥v+κ − v−κ ∥

2
∂−κ\∂Ω

)

.

Here, c0 is defined as in (12) and ∥ · ∥τ , τ ⊂ ∂κ , denotes the (semi)norm associ-

ated with the (semi)inner product (v,w)τ =
∫

τ |b ·n|vwds. Finally, the streamline–

diffusion parameter τκ , κ ∈ MCFE, is given by

τκ =
1

∥b∥L∞(κ)

1

p2
κ

min
F⊂∂κ

supκF
♭
⊂κ |κ

F
♭ |

|F |
d ∀κ ∈ MCFE, (16)

for d = 2,3 and pκ ≥ 1, and κF
♭ is as defined in Definition 2. In the case when

pκ = 0, τκ is formally defined to be zero.

Under the assumption that (14) holds, the following inf-sup condition for the

bilinear form B̃Hyp(·, ·), with respect to the streamline DGFEM-norm (15), may be

established, cf. [20]; this represents a generalization of the results in [15, 19].

Theorem 3. Given Assumptions 3.1, 3.3, and 3.4 hold, there exists a positive con-

stant Λs, independent of the mesh size h and the polynomial degree p, such that:

inf
ν∈V (MCFE,ppp)\{0}

sup
µ∈V (MCFE,ppp)\{0}

B̃Hyp(ν ,µ)

|∥ν |∥SD|∥µ |∥SD
≥ Λs. (17)

On the basis of the inf-sup condition stated in Theorem 3, together with the ap-

proximation results given in Lemma 3, we deduce the following a priori error bound

for the DGFEM (13).

Theorem 4. Let Ω ⊂ R
d , d = 2,3, be a bounded polyhedral domain, and MCFE =

{κ} be a subdivision of Ω consisting of general polytopic elements satisfying As-

sumptions 3.1, 3.3, and 3.4. Further, let T♯ = {K } denote the associated covering

of Ω consisting of shape-regular d–simplices as in Definition 1, which satisfies As-

sumption 3.2. Let uh ∈ V (MCFE, ppp) be the DGFEM approximation to u ∈ H1(Ω)
defined by (13) and suppose that u|κ ∈ Hkκ (κ), kκ > 1+ d/2, for each κ ∈ MCFE,

such that E u|K ∈ Hkκ (K ), where K ∈ T♯ with κ ⊂ K . Then, the following error

bound holds:

|∥u−uh|∥
2
SD ≤ C ∑

κ∈MCFE

h
2sκ
κ

p
2kκ
κ

Gκ(F,Cm, pκ ,τκ)∥E u∥2
Hkκ (K )

, (18)
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where

Gκ(F,Cm, pκ ,τκ) = ∥c0∥
2
L∞(κ)

+ γ2
κ + τ−1

κ + τκ β 2
κ p2

κ h−2
κ

+βκ pκ h−d
κ ∑

F⊂∂κ

Cm(pκ ,κ ,F)|F |, (19)

sκ = min{pκ + 1,kκ} and pκ ≥ 1. Here, γκ = ∥c1∥L∞(κ), with c1(x) = c(x)/c0(x),
c0 as in (12), and βκ = ∥b∥L∞(κ). The positive constant C is independent of the

discretization parameters.

Remark 9. For uniform orders pκ = p ≥ 1, h = maxκ∈MCFE
hκ , sκ = s, s = min{p+

1,k}, k > 1+d/2, under the assumption that the diameter of the faces of each ele-

ment κ ∈ MCFE is of comparable size to the diameter of the corresponding element,

the error bound stated in Theorem 4 reduces to

|∥u−uh|∥Hyp ≤ |∥u−uh|∥SD ≤C
hs− 1

2

pk−1
∥u∥Hk(Ω);

which is optimal in h and suboptimal in p by p1/2. This generalizes the error esti-

mate derived in [35] to general polytopic meshes under the same assumption (14).

Remark 10. On the basis of the error analysis undertaken in both the current section

and Section 3, a priori error bounds for the DGFEM discretization of second–order

PDEs with non-negative characteristic form on general polytopic meshes may be

established; for details, we refer to our recent article [20].

5 Numerical experiments

In this section we present a series of computational examples to illustrate the perfor-

mance of the DGFEM on general classes of polytopic meshes. The computational

validation of the error bounds derived in Theorems 2 and 4 have been presented in

[21] and [20], respectively; cf., also, [1]. Thereby, for the purposes of this section

we consider the numerical approximation of incompressible flows in complicated

geometries, cf. [30]. Throughout this section, we select Cσ = 10, cf. Lemma 4.

5.1 Example 1: Flow through a complicated T–pipe domain

In this first example we consider the application of goal–oriented dual–weighted–

residual mesh adaptation for the DGFEM discretization of the incompressible

Navier–Stokes equations, cf. [10]. To this end, the computational domain Ω is de-

fined to be an upside–down T –shaped pipe, which has had a series of randomly lo-

cated, randomly sized, holes removed from both the vertical and horizontal sections.
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(a)

(b)

Fig. 3 Example 1. (a) Initial composite finite element mesh consisting of 128 polygonal elements;

(b) Composite mesh after 9 adaptive refinements with 13356 elements.

Figure 3(a) depicts the initial composite mesh, constructed based on employing the

algorithm outlined in Section 2, which consists of only 128 polygonal elements.

Here, the inflow boundary is specified at the top of the vertical section of the pipe,

i.e., along y = 6, 4 ≤ x ≤ 8, where Poiseuille flow enters Ω ; the left-hand and right-

hand side boundaries of the horizontal portion of the pipe, located at x= 0, 0≤ y≤ 3

and x = 12, 0 ≤ y ≤ 3, respectively, are defined to be outflow Neumann boundaries.

No slip boundary conditions are imposed on the remaining walls of the T–pipe ge-

ometry, together with the boundaries of the circular holes; finally, we set Re = 100.

This test case represents a modification of the test problem considered in [30].

Here we consider goal–oriented control of the error in the target functional J, de-

fined by J(u, p) = p(10,1.5)≈ 3.49924E-3, where u and p denote the velocity and

pressure of the underlying flow, respectively. More precisely, following the notation

in [30], we may establish an (approximate) error representation formula of the form



DGFEM for PDES on Complicated Domains 23

No of Eles No of Dofs J(u, p)− J(uh, ph) ∑κ∈MCFE
ηκ θ

128 1920 -2.207E-2 -1.583E-2 0.72

206 3090 -4.720E-3 -2.478E-3 0.52

356 5340 -3.720E-3 -1.909E-3 0.51

618 9270 -1.620E-3 -8.014E-4 0.49

1079 16185 -8.216E-4 -4.427E-4 0.54

1749 26235 -3.929E-4 -1.965E-4 0.50

2996 44940 -1.707E-4 -7.457E-5 0.44

4861 72915 -8.728E-5 -7.197E-5 0.82

8000 120000 -2.164E-5 -2.324E-5 1.07

13356 200340 -5.073E-6 -5.073E-5 1.00

Table 1 Example 1: Adaptive algorithm. We present the number of elements in the compos-

ite mesh MCFE and the corresponding number of degrees of freedom in V (MCFE, ppp) (first two

columns), the computed error in the target functional (third column), the sum of the (weighted)

error indicators (fourth column), and the effectivity index (last column) at each step of the adaptive

algorithm.

Degrees of Freedom
10

3
10

4
10

5
10

6

|J
(u

,p
)-

J
(u

h
,p

h
)|

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Adaptive Refinement
Uniform Refinement

Fig. 4 Example 1: Comparison between uniform and adaptive mesh refinement.

J(u, p)− J(uh, ph)≈ ∑
κ∈MCFE

ηκ ,

where uh and ph denote the DGFEM approximation to u and p, respectively, and

ηκ , κ ∈ MCFE, denote the corresponding (weighted) error indicators, which depend

on both uh and ph, as well as the approximate solution of a corresponding dual

problem; for full details, see [30].

In Table 1, we demonstrate the performance of exploiting an adaptive mesh re-

finement strategy based on marking elements for refinement according to the size
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of the local error indicators |ηκ |. Here, set the polynomial degrees for the approxi-

mation of the velocity field equal to 2, and employ piecewise discontinuous linear

polynomials for the approximation of the pressure. In Table 1 we show the number

of elements in the composite mesh MCFE, the number of degrees of freedom in the

underlying finite element space, the true error in the functional J(u, p)− J(uh, ph),
the computed error representation formula ∑κ∈MCFE

ηκ , and the effectivity index

θ = ∑κ∈MCFE
ηκ/(J(u, p)− J(uh, ph)). Here, we see that, even on such coarse fi-

nite element meshes, the quality of the computed error representation formula is

relatively good, in the sense that the effectivity indices are not too far away from

unity. Indeed, as the mesh is refined, we observe that θ improves and approaches

one. We note that practical/engineering accuracy can be attained using a very small

number of degrees of freedom; indeed, fewer degrees of freedom are necessary than

what would be required to accurately mesh the domain Ω using standard element

shapes. The results presented in Table 1 are plotted in Figure 4; here, we also com-

pare the performance of the adaptive mesh refinement strategy with uniform mesh

refinement. We observe that initially both strategies lead to a comparable error in the

computed target functional of interest J, for a given number of degrees of freedom;

however, as both refinement procedures continue, the adaptive algorithm leads to

over an order of magnitude improvement in the error in J for a comparable number

of degrees of freedom.

5.2 Example 2: Flow past a 3D scaffold geometry

In this final example, we consider incompressible flow past the three–dimensional

scaffold geometry shown in Figure 1. More precisely, the domain Ω is defined to be

the elliptical cylinder {(x,y) : (x− x0)/a2 +(y− y0)
2/b2 < 1}× (0.015,1.14), with

the scaffold removed; here (x0,y0) = (4.1325,4.1625), a = 4.1175, and b = 4.1475.

Based on the work undertaken in the article [25], we model a Newtonian fluid with

density ρ = 1000kg/m3 and viscosity µ = 8.1×10−4Pa · s. Prescribing a flow rate

of 53µms−1 yields a Reynolds number, Re = 2× 10−3. The fine mesh which ac-

curately describes Ω is generated based on image data supplied by Prof. El Haj &

Dr. Kuiper. Here, only a coarse model has been employed; a more detailed descrip-

tion of the scaffold geometry is presented in the articles [4, 5]. However, even for

this ‘coarse’ model, the underlying fine finite element mesh consists of 15.8 million

elements. To demonstrate the exploitation of general polytopic elements generated

by agglomeration, we employ METIS [37] to generate a very coarse mesh consist-

ing of only 32,000 elements. We prescribe an inlet Poiseuille flow on the top of the

geometry, where z = 1.14, together with no-slip wall boundary conditions on both

the outer vertical walls of the elliptical cylinder, as well as on the scaffold itself.

The bottom portion of the geometry located at z = 0.015 is identified as an outflow

Neumann boundary. In Figure 5 we plot the iso-surface of the magnitude of the ve-

locity field; for the purposes of visualization, it was necessary to split the upper and

lower regions of the computational domain. Clearly, by employing such a coarse
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(a)

(b)

Fig. 5 Example 2. Plot of the norm of the velocity field: (a) Upper section; (b) Lower section.

agglomeration, we cannot expect that the computed DGFEM solution is sufficiently

accurate, even within engineering constraints. However, this example clearly high-

lights a key issue we mentioned in Section 1: by employing polytopic elements, the

dimension of the underlying finite element space is no longer proportional to the

complexity of the geometry. Indeed, by exploiting a posteriori error estimation, cf.

Example 1 above, then agglomerated elements may be marked for refinement; these

can then be refined by again employing graph partitioning algorithms to the set of

fine elements which form each marked (agglomerated) element. In this way, adap-

tive refinement of agglomerated elements, without the need to store mesh refinement

trees, may be undertaken in a relatively simple manner, in order to automatically de-

sign polytopic meshes to yield reliable error control in quantities of interest. This

will be investigated as part of our future programme of research.
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6 Concluding remarks

In this article, we have studied the application of DGFEMs on general finite ele-

ment meshes consisting of polytopic elements. This class of methods is particularly

attractive for a number of important reasons: (i) In the context of PDEs posed on

complex domains Ω , the dimension of the underlying finite element space is in-

dependent of the number of small scale features/microstructures present in Ω ; (ii)

Adaptivity can easily be employed to enhance the error in the computed numerical

solution by only refining regions of the domain which directly contribute to the er-

ror in given quantities of interest; (iii) High-order/hp–finite elements are naturally

admitted; (iv) The construction of coarse grid solvers for multilevel iterative solvers

can easily be handled, cf. [2, 29]. In our present work, see, in particular, our recent

articles [21, 20], great care has been taken to derive both inverse estimates and ap-

proximation results which are sharp with respect to element facet degeneration. This

is particularly important for the definition of the interior penalty stabilization arising

in the discretization of second–order elliptic PDEs. We believe this class of meth-

ods has huge potential for a wide variety of application areas, and in particular for

problems arising in geophysics and biology. Indeed, as we have shown in Section 5,

very complicated geometries can be treated, and with the use of general agglomer-

ated refinement strategies, efficient and reliable computations may be undertaken.

However, work on developing efficient quadrature and evaluation of appropriate

stable polynomial bases on general polytopes still needs further work. Other future

areas of research also include exploiting mesh partitioning algorithms for mesh re-

finement purposes, as well as the design and analysis of multilevel iterative solvers

on polytopic meshes, for a wider range of application areas.
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