
Doan, Thu Trang (2014) Meta-APL: a general language
for agent programming. PhD thesis, University of
Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/29286/1/luan-van.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Meta-APL

A general language

for agent programming

by Thu Trang Doan, MSc

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy, December 2013

Abstract

A key advantage of BDI-based agent programming is that agents can deliberate about

which course of action to adopt to achieve a goal or respond to an event. However while

state-of-the-art BDI-based agent programming languages provide flexible support for ex-

pressing plans, they are typically limited to a single, hard-coded, deliberation strategy

(perhaps with some parameterisation) for all task environments. In this thesis, we de-

scribe a novel agent programming language, meta-APL, that allows both agent programs

and the agent’s deliberation strategy to be encoded in the same programming language.

Key steps in the execution cycle of meta-APL are reflected in the state of the agent and

can be queried and updated by meta-APL rules, allowing a wide range of BDI delibera-

tion strategies to be programmed. We give the syntax and the operational semantics of

meta-APL, focussing on the connections between the agent’s state and its implementation.

Finally, to illustrate the flexibility of meta-APL, we show how Jason and 3APL programs

and deliberation strategy can be translated into meta-APL to give equivalent behaviour

under weak bisimulation equivalence.

1

Acknowledgements

Above all, I am extremely grateful to Dr. Brian Logan, my principal supervisor as

well as my primary resource for my study, for his scientific advice and knowledge, and

insightful discussion and suggestion. This thesis would not exist at all if it were not for

his tireless help and encouragement. I would also like to express my heartfelt gratitude

to Dr. Natasha Alechina for not only encouraging and constructive feedback, thoughtful

and detailed comments but also her constant support in my study as well as my life. She

is someone everybody will instantly love and never forget once they meet her.

I would like to send my thanks to Dr. Henrik Nilsson and Dr. John-Jules Ch. Meyer

for their valuable comments and suggestions on my thesis.

I would also like to thank the University of Nottingham and the School of Computer

Science for giving me the opportunity to carry out my research, for their financial support

and for providing a warm and inviting place to study.

Special thanks to my colleagues in Agent Lab, my wonderful friends in Nottingham

and Swansea, for your invaluable help and support during my last five years.

Last but not least, I would like to thank my family, especially Hoàng Ngà Nguyen, my

best friend, my soul-mate, my husband, for your unconditional and endless love, genuine

care and deep sympathy at any time and anywhere I need. Without you, I am just a dust

in the wind!

2

Contents

Abstract 1

Acknowledgements 2

List of Figures 6

1 Introduction 7

1.1 Motivation . 7

1.2 Research objectives and contributions . 12

1.3 Overview and structure of Thesis . 13

2 Background: Agents and programming agents 15

2.1 Intelligent agents . 15

2.2 BDI architecture . 17

2.3 Agent programming languages . 19

2.3.1 Logic-based languages . 20

2.3.2 Imperative languages . 24

2.3.3 Hybrid languages . 26

2.3.4 Discussion . 33

2.4 Programming deliberation strategies . 35

2.4.1 Programming selection of intentions for adoption 35

2.4.2 Programming selection of intentions for execution 36

2.5 Procedural reflection . 38

1

2.5.1 A computational view . 38

2.5.2 Reflection in programming languages 40

2.6 Simulating agent programs . 41

2.7 Summary . 42

3 The agent programming language meta-APL 44

3.1 Introduction . 44

3.2 Syntax . 48

3.2.1 Terms and atoms . 48

3.2.2 Primitive operations on atom instances 50

3.2.3 Plans . 51

3.2.4 Primitive operations on plan instances 52

3.2.5 User-defined queries and meta actions 55

3.2.6 Object-level rules . 57

3.2.7 Meta rules . 58

3.2.8 Meta-APL program . 58

3.3 Core deliberation cycle . 59

3.4 Example Deliberation Cycles . 60

3.5 Example of a meta-APL agent program . 61

3.6 Summary . 65

4 Operational semantics of meta-APL 67

4.1 Agent configuration . 67

4.1.1 Atom and plan instances . 67

4.1.2 Configurations . 72

4.2 Semantics of queries and meta actions . 74

4.2.1 Answering queries . 74

4.2.2 Determining justifications . 76

2

4.2.3 Semantics of meta actions . 76

4.3 Operational semantics . 79

4.3.1 The Sense phase . 81

4.3.2 The Apply phase . 82

4.3.3 The Exec phase . 84

4.3.4 Semantics of agents . 87

4.4 Summary . 88

5 Cycle-based Bisimulation 89

5.1 Bisimulation . 90

5.1.1 Labelled transition system . 90

5.1.2 Strong bisimulation . 90

5.1.3 Weak bisimulation . 91

5.2 Cycle-based bisimulation . 93

5.3 Summary . 100

6 Simulating Jason 101

6.1 Jason . 101

6.1.1 Syntax . 102

6.1.2 Operational semantics . 104

6.1.3 Selections in a deliberation cycle . 112

6.2 Translation . 114

6.2.1 Outline of the translation . 114

6.2.2 The static part of the translation . 117

6.2.3 Component translation functions . 121

6.2.4 Simulating selections . 125

6.3 Equivalence of trJason . 126

6.3.1 Observations . 126

3

6.3.2 Equivalence . 128

6.4 Summary . 138

7 Simulating 3APL 139

7.1 3APL . 139

7.1.1 3APL Syntax . 140

7.1.2 3APL Operational semantics . 144

7.1.3 Selections in a 3APL deliberation cycle 151

7.2 Translation . 152

7.2.1 Outline of the translation . 153

7.2.2 The static part of the translation . 155

7.2.3 Component translation functions . 158

7.2.4 The translation function tr3APL . 161

7.3 Simulating selections . 162

7.4 Equivalence by tr3APL . 163

7.4.1 Observations . 164

7.4.2 Equivalence theorem . 165

7.5 Summary . 174

8 Conclusion and future work 175

8.1 Evaluation of meta-APL . 175

8.2 Summary of Contributions . 178

8.3 Future work . 180

Bibliography 182

A Reference of meta-APL 188

B A computation run of the clean robot 192

B.1 First cycle . 193

4

B.2 Second cycle . 197

5

List of Figures

2.1 An abstract view of intelligent agents. 16

2.2 Features of hybrid agent programming languages. 35

2.3 A computational view for procedural reflection. 39

3.1 The service robot example. 62

4.1 Example of the subgoal and justification relations. 73

4.2 Phases in meta-APL deliberation cycle. 80

5.1 Conditions of Theorem 5.2.6. 96

5.2 There are more than one transitions from t. 98

6.1 The deliberation cycle of Jason. 105

6.2 The correspondence between Jason’s and meta-APL’s deliberation cycles. . 115

6.3 The translation function trJason. 116

6.4 The simulation of Jason transitions in the translation. 124

7.1 The implemented deliberation cycle in 3APL platform [Dastani et al., 2005]. 140

7.2 The deliberation cycle of 3APL platform. 146

7.3 The correspondence between 3APL’s and meta-APL’s deliberation cycles. . 153

7.4 The translation function tr3APL. 155

7.5 The simulation of 3APL transitions in the translation. 162

6

Chapter 1

Introduction

1.1 Motivation

Agent technology offers a promising approach to the development of large systems con-

sisting of distributed, intelligent agents who interact via message passing and/or by per-

forming actions in a shared environment. The Belief-Desire-Intention (BDI) approach to

designing, programming and verifying such systems has been very successful, and is per-

haps now the dominant paradigm in the field of multi-agent systems. In this architecture,

states of agents are comprised of mental attitudes such as beliefs, desires and intentions

where beliefs are the agents’ description about the world, desires specify states of affairs

about which the agents want to bring and intentions are some of the desires to which the

agents are committed. Agents use these mental attitudes to deliberate and decide which

actions to perform.

In agent programming languages based on the BDI approach, agents select plans in

response to changes in their environment or to achieve goals. In most of these languages,

plan selection follows four steps. First the set of relevant plans is determined. A plan is

relevant if its triggering condition matches a goal to be achieved or a change in the agent’s

beliefs the agent should respond to. Second, the set of applicable plans is determined. A

7

CHAPTER 1. INTRODUCTION 8

plan is applicable if its belief context evaluates to true, given the agent’s current beliefs.

Third, the agent commits to (intends) one or more of its relevant, applicable plans. Finally,

from this updated set of intentions, the agent then selects one or more intentions, and

executes one (or more) steps of the plan for that intention. This deliberation process then

repeats at the next cycle of agent execution.

Current BDI-based agent programming languages such as AgentSpeak(L) [Rao, 1996],

3APL [Hindriks et al., 1999; Dastani et al., 2003b], GOAL [Hindriks et al., 2000; de Boer

et al., 2007], Dribble [van Riemsdijk et al., 2003], Jason [Bordini et al., 2007], and 2APL [Das-

tani, 2008] provide considerable support for steps one and two (determining relevant, ap-

plicable plans). A programmer can write rule-based expressions in these languages which

include triggering conditions and belief contexts. For example, a plan in AgentSpeak(L)

contains a triggering event used to determine if the plan is relevant and a context query

used to determine if the plan is applicable.

However, with the exception of some flags for plan in Jason, the third and fourth steps

(adopting intentions and selecting one or more intentions for execution) cannot be pro-

grammed in the agent programming language itself. For example, in Jason, a plan can be

accompanied with flags such as the flag atomic meaning that if an intention generated by

the plan is selected for execution, the intention will be selected for execution in the sub-

sequent deliberation cycles until completed. In other words, a Jason agent will not select

another intention for execution if the intention which was selected to be executed in the

last cycle is accompanied with the flag atomic has not been executed completely. No sin-

gle deliberation strategy is clearly “best” for all agent task environments. For example, in

a deliberation strategy, intentions can be executed in an interleaving or non-interleaving

fashion. Interleaving can improve the performance of agents as they can achieve more

than one goals in parallel. However, it might also give rise to the contention of resource

so that no intentions were executed unsuccessfully [Thangarajah et al., 2003]. For example,

an agent has two intentions for two goals about being at two different locations which are

CHAPTER 1. INTRODUCTION 9

in opposite directions. Then, interleaving the execution of these two intentions will make

the agent to go around a position between the two locations. It is therefore important that

the agent developer has the freedom to adopt the strategy which is most appropriate to a

particular problem.

Some languages allow the programmer to override the default deliberation cycle be-

haviour by redefining “selection functions”. For example, in Jason, there are three selec-

tion functions for selecting an event to react to, an applicable plan to generate intentions

and an intention for execution. However, the redefinition of these selection functions can-

not be done in the agent programming languages since they do not provide any support

to do so. Therefore, the redefinitions of these selection functions must be done in the host

language (i.e., the language in which the interpreters of these languages are themselves

implemented). A different approach to modify the default deliberation cycle is to spec-

ify the deliberation strategy in a different language such as [Dastani et al., 2003a]. This

language provides primitive meta-statements such as for selecting a goal planning rule

and for generating a plan from a selected rule. Then, a deliberation cycle is defined by

combining these meta-statements using sequential, conditional and iterative constructs.

Clearly, both redefining selection functions in host languages and specifying deliber-

ation strategies in a different language are less than ideal. If often requires considerable

knowledge of how the deliberation cycle is implemented in the host language, for exam-

ple. Moreover, without reading additional code (usually written in a different language),

an agent developer cannot tell how a program will be executed. Therefore, it would be

better to be able to program steps three and four in the agent programming language it-

self. In other words, this agent programming language must provide facilities to query

and manipulate its first class objects (where intentions are obviously first class objects) so

that strategies of adopting new intentions and selection existing intentions for execution

can be encoded in the language.

One way to achieve such a meta agent programming language is to use procedural re-

CHAPTER 1. INTRODUCTION 10

flection. A reflective programming language [des Rivières and Smith, 1984] incorporates

a model of (aspects of) the language’s implementation and state of program execution in

the language itself, and provides facilities to manipulate this representation. Critically,

changes in the underlying implementation are reflected in the model, and manipulation

of the representation by a program results in changes in the underlying implementation

and execution of the program. Perhaps the best known reflective programming language

is 3-Lisp [Smith, 1984]. However, many agent programming languages also provide some

degree of support for procedural reflection. For example, the Procedural Reasoning Sys-

tem (PRS) [Georgeff and Lansky, 1987] incorporated a meta-level, including reflection of

some aspects of the state of the execution of the agent such as the set of applicable plans,

allowing a developer to program deliberation about the choice of plans in the language

itself. Similarly, many agent programming languages (such as Jason) provide facilities to

manipulate the set of intentions. However, the support for procedural reflection in current

state-of-the-art agent programming languages is always partial, in the sense that it is dif-

ficult to express the deliberation strategy of the agent directly in the agent programming

language.

In this thesis, we show how procedural reflection can be applied in a BDI-based agent

programming language to allow a straightforward implementation of steps three and four

in the deliberation cycle of a BDI agent. By exploiting procedural reflection an agent pro-

grammer can customise the deliberation cycle to control which relevant applicable plan(s)

to intend, and which intention(s) to execute. We argue this brings the advantages of the

BDI approach to the problem of selecting an appropriate deliberation strategy given the

agent’s state, and moreover, facilitates a modular, incremental approach to the develop-

ment of deliberation strategies.

We describe a novel agent programming language, meta-APL, that allows both agent

programs and the agent’s deliberation strategy to be encoded in the same programming

language. This is achieved by adding the ability to query the agent’s plan state and actions

CHAPTER 1. INTRODUCTION 11

which manipulate the plan state to the language. Currently, no interpreter has been im-

plemented for meta-APL. There are three key goals underlying the design of meta-APL:

• it should be possible to specify a wide range of deliberation cycles, including the

deliberation cycles of current, state-of-the art agent programming languages;

• programs of other agent programming languages should be translatable into meta-

APL in a modular fashion, namely the program of an agent programming language

should be translated to an “object program” of meta-APL and the same specification

of the agent programming language’s deliberation cycle should be used with all

such translations (resulting in a bisimilar execution); and

• programming at the object level in this language should be at least as simple and

easy as in state-of-the-art BDI agent programming languages; however, agent pro-

grammers can take advantage of specifying alternative deliberation strategies in this

language.

In order to show that programs of other agent programming languages can be translated

into meta-APL, we choose to simulate agent programs in Jason and 3APL. Although both

Jason and 3APL are based on the BDI approach, they support different features. For ex-

ample, agents in Jason generate intentions to react to events and do not repair intentions,

whereas agents in 3APL generate intentions to achieve declarative goals. 3APL agents are

also capable of repairing intentions. These differences exhibit different challenges when

translating their agent programs into meta-APL. Finally, both Jason and 3APL agents are

provided with formal semantics as transition systems. Therefore, the equivalence be-

tween these transition systems can be identified using the concept of weak bisimulation.

We believe the ability to express deliberation strategies (and other language features)

in a clear, transparent and modular way provides a flexible tool for agent design. By

expressing a deliberation strategy in meta-APL, we provide a precise, declarative opera-

tional semantics for the strategy which does not rely on user-specified functions. Key steps

CHAPTER 1. INTRODUCTION 12

in the execution cycle of meta-APL are reflected in the state of the agent and can be queried

and updated by meta-APL rules, allowing a wide range of BDI deliberation strategies to

be programmed. Furthermore, even low level implementation details of a strategy, such

as the order in which rules are fired, or intentions executed can be expressed if necessary.

1.2 Research objectives and contributions

The main research objectives of this thesis are:

• To design an agent programming language (meta-APL) with facilities that enable

the encoding of both agent programs and agent deliberation strategies;

• To define the operational semantics of meta-APL;

• To show how meta-APL encodes typical deliberation strategies;

• To illustrate the flexibility of meta-APL by simulating state-of-the-art BDI-based

agent programming languages;

• A theory to support the correctness proof of simulating in meta-APL under weak

bisimulation equivalence;

• The correctness proofs of these simulations under weak bisimulation equivalence.

The main contributions of this thesis are:

• A brief survey of existing agent programming languages; the limitations of these

languages with respect to implementing deliberation strategies are also discussed;

• An overview of procedural reflection as an approach to enable programming delib-

eration strategies in agent programming languages;

• A summary of existing results on simulating agent programming languages;

CHAPTER 1. INTRODUCTION 13

• An agent programming language, namely meta-APL, with formal operational se-

mantics which supports procedural reflection so that different deliberations strate-

gies can be implemented; the encoding of typical deliberation strategies in meta-

APL is also discussed;

• Identifying a general theory for establishing a weak bisimulation between two agent

programs through the strong bisimulation of their deliberation cycles;

• Developing the simulation of two state-of-the-art agent programming languages Ja-

son and 3APL in meta-APL; the equivalence result for each simulation is proved.

1.3 Overview and structure of Thesis

The rest of this thesis is organised as follows:

Chapter 2 is a review of the background literature. Here, we recall the notion of intelli-

gent agents, the BDI approach to designing, specifying and programming agents,

BDI-based agent programming languages and the concept of procedural reflection

in programming languages.

Chapter 3 defines the syntax of meta-APL. Meta-APL includes constructs for mental at-

titudes such as beliefs, goals, plans, intentions, facilities for enabling procedural

reflection such as querying and manipulating mental attitudes.

Chapter 4 defines the operational semantics of meta-APL. Here, we give the definition

of agent configurations in meta-APL, how agents run by transiting from one con-

figuration to another via transition rules. We also define semantics of the facilities

which enable procedural reflection in meta-APL.

Chapter 5 develops a theory for proving the correctness of simulating other agent pro-

gramming languages in meta-APL. Here, the correctness is based on weak bisimu-

CHAPTER 1. INTRODUCTION 14

lations which can be identified by showing the equivalence of operations between

deliberation cycles only.

Chapter 6 presents the simulation of Jason in meta-APL. We define a translation function

to convert a Jason agent program into a meta-APL agent program. Then, we show

that these two agents operate equivalently under weak bisimulation.

Chapter 7 presents the simulation of 3APL in meta-APL. 3APL supports several features

not found in Jason such as declarative goals and plan revision. Here we also define

a translation function to convert each 3APL agent program into a meta-APL agent

program and show the equivalence between these two programs.

Chapter 8 gives a brief conclusion about the work and results of this thesis. It also pro-

vides directions for future work.

Chapter 2

Background: Agents and

programming agents

The notion of an intelligent agent is the central to this thesis. In this chapter, we attempt to

answer a number of questions regarding agents including what intelligent agents are, how

to specify them, and how to build them by drawing on the multi-agent systems literature.

In particular, we review the definition of intelligent agents, the BDI architecture and give

a short overview of agent programming languages. At the end of this chapter, we present

a brief review of work related to procedural reflection.

2.1 Intelligent agents

In order to develop an agent programming language, it is important to understand the

concept of intelligent agents. Here, we follow Woodridge and Jenning’s definition of in-

telligent agents [Wooldridge and Jennings, 1995; Wooldridge, 2002]:

An agent is a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objectives.

15

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 16

This definition provides an abstract view of an intelligent agent, as illustrated in Fig-

ure 2.1, where the agent is situated in an environment and autonomously runs in order to

achieve its goals. Being situated in an environment means that the agent can receive sen-

sory information provided by equipment. For example, a mobile agent is equipped with

a camera in order to detect if there is an obstacle in front of the agent. The agent is also

provided with a repertoire of certain external actions which are used to change the state

of the environment. For example, a mobile agent may have effectors such as motorised

wheels which allows the agent to move forward; as the agent moves to a different place,

the state of the environment changes. In many environments, external actions may fail.

Agent

Environment

Sensory Information External actions

Figure 2.1: An abstract view of intelligent agents.

Therefore, we assume that the execution of an external action may fail to have its desired

effect.

Additionally, agents are also argued to have further properties [Wooldridge and Jen-

nings, 1995]:

Autonomy: Intelligent agents have the ability to operate autonomously. Here, autonomy

means that an intelligent agent determines which action to perform and the freedom

to decide how to satisfy its design objectives.

Pro-activeness: Intelligent agents are capable of exhibiting goal-directed behaviours. This

means that if an agent has an intention to achieve a goal, the agent will try to exploit

any opportunity to complete that intention.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 17

Reactivity: Intelligent agents are capable of reacting to changes in the state of their envi-

ronment which are recognised by perception. Reactivity requires the agents to react

to these changes in a timely fashion.

Social ability: Intelligent agents are provided with communication languages so that

they can communicate with each other (and possibly their owners). Social ability

allows the agents to exchange information, to negotiate and to cooperate.

A key challenge confronting researchers in the field of multi-agent systems is to en-

gineer intelligent agents that can achieve their design objectives. In the following sec-

tions, we briefly review some of the approaches in building and implementing intelligent

agents.

2.2 BDI architecture

One of most common approaches to designing intelligent agents is to use the Belief-

Desire-Intention (BDI) architecture. In this architecture, states of agents consist of mental

attitudes including beliefs, desires and intentions. An agent uses these mental attitudes

when deliberating and deciding which actions to perform. Intuitively, beliefs are the infor-

mation which agents have about the world. These beliefs may be incomplete or incorrect.

In contrast to beliefs, the desires of an agent are descriptions of states of affairs that the

agent wants to bring about. In general, it may not be possible to achieve all agent’s desires

since desires may be in conflict and the agent might not have enough resources to achieve

all desires. Intentions are the particular desires which an agent is committed to achieving.

Agents can apply different strategies to commit to intentions. There are three com-

monly used commitment strategies in the literature [Rao and Georgeff, 1991]:

• Blind commitment: agents with blind commitment are those who, once committed

to an intention, will maintain this intention as long as the agents believe that the

intention is not achieved;

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 18

• Single minded commitment: agents with single minded commitment are those who,

once committed to an intention, will maintain this intention as long as the agents

believe that the intention is not achieved and it is possible to achieve the intention;

and

• Open minded commitment: agents with open minded commitment are those who,

once committed to an intention for achieving a goal, will maintain this intention as

long as the agents believe that the intention is not achieved and the intention is still

one of agent’s goals.

Among the above commitment strategies, blind commitment is the most conservative:

agents with this strategy will keep an intention as long as the intention is not achieved, i.e.,

if the intention is never achieved, it will be kept forever. Single mined commitment relaxes

this condition by allowing intention can be dropped as soon as the agent knows that it is

not possible to achieve the intention. Open mined commitment relaxes the condition to

keep intentions further, by allowing an agent to drop an intention as soon as the intention

is not a goal.

The BDI architecture has been used as a basis for defining logical formalisms which al-

low the design of intelligent agents and systems of multiple agents to be specified. These

logics are usually combinations of epistemic logics and dynamic logics or temporal logics

where different modalities are used to describe mental attitudes of agents such as beliefs,

goals (for desires) and intentions and possible worlds are used to define semantics of for-

mulas. For example, Cohen and Levesque’s logic, [1990], is a combination of epistemic

and dynamic logics. In this logic, beliefs and goals are specified by modal operators BEL

and GOAL, respectively. However, intentions are described by dynamic formulas contain-

ing action expressions and formulas about beliefs and goals. Another example is Rao and

Georgeff’s logic, [1991], which adopts an alternative approach to possible world semantics

where epistemic logics are combined with computation tree logic (CTL∗). Furthermore,

intentions are treated as first-class citizens apart from beliefs and goals; i.e., there is an

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 19

operator, namely INTEND, which is used to specify intentions of agents.

The BDI architecture has also been used as a basis for defining agent programming lan-

guages that allow intelligent agents and systems of multiple agents to be implemented.

These languages provide data structures to encode beliefs, goals and intentions. Examples

of agent programming languages based on the BDI architecture include: PRS [Georgeff

and Lansky, 1987], AgentSpeak(L) [Rao, 1996], 3APL [Hindriks et al., 1999; Dastani et al.,

2003b], GOAL [Hindriks et al., 2000; de Boer et al., 2007], Dribble [van Riemsdijk et al.,

2003], Jason [Bordini et al., 2007], and 2APL [Dastani, 2008]. Interpreters of these lan-

guages are generally implemented as loops which include activities such as receiving

percepts from the environment, generating new intentions, selecting an intention and exe-

cuting it, and dropping intentions. Generating new intentions may include two steps: first

to select some desires to be achieved, then to generate intentions in order to achieve these

selected desires. The selection of intentions for execution can be implemented using two

common strategies: interleaving (which allows existing intentions to be executed in par-

allel in an interleaving fashion) and non-interleaving (which keeps selecting an intention

until it is completed or dropped). Then, the selection of intentions to be dropped are im-

plemented according to some commitment strategy such as blinded commitment, single

minded commitment or open minded commitment). Such a loop is called a deliberation

cycle which is an idealisation of components, namely generating intentions, deliberating,

executing and handling intentions, in practical reasoning [Bratman, 1999].

2.3 Agent programming languages

In this section, we present a brief survey of BDI-based languages. Our aim is to illustrate

the broad spectrum of such languages and the design ideas which underlie them. Here,

agent programming languages are listed according to categories, namely logic-based lan-

guages, imperative languages and hybrid languages, as presented in [Bordini et al., 2006].

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 20

2.3.1 Logic-based languages

Logic-based agent programming languages allow the direct specifications of intelligent

agents and systems of multiple agents to be described in a logic language. Typical ex-

amples of these languages include METATEM [Gabbay, 1987; Barringer et al., 1989, 1995;

Fisher, 2005], Golog [Levesque et al., 1997], MINERVA [Leite et al., 2001], EVOLP [Alferes

et al., 2002], and FLUX [Thielscher, 2005]. The specification of an intelligent agent in such

a language is executed by means of its interpreter, which attempts to construct a formal

model of the specification. In the remainder of this section, we review two well-known

logic-based languages: METATEM and Golog.

METATEM

Agent programs in METATEM [Gabbay, 1987; Barringer et al., 1989, 1995; Fisher, 2005]

are specifications which consist of declarative statements. These statements specify the

behaviour that agents are expected to exhibit. Each statement is a Linear Temporal Logic

(LTL) [Pnueli, 1977] formula where Linear temporal logic LTL is an extension of the propo-

sitional logic with temporal operators including:

• the next operator: ◯ϕ means that ϕ is satisfied at the next moment in time;

• the some operator: ♢ϕ means that ϕ is satisfied at some future moment in time;

• the all operator: ◻ϕ means that ϕ is satisfied at all future moments in time; and

• the until operator: ϕUψ means that ϕ is satisfied at all future moments in time until

ψ is satisfied.

LTL allows properties of an individual agent to be expressed concisely. For example, the

formula request → reply U ack describes an agent which will reply continuously to another

one whenever it receives a request from that agent until it obtains an acknowledgement

message.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 21

A METATEM agent is executed by means of iteratively constructing a temporal model

for the agent’s specification. This is equivalent to proving that the specification is satis-

fiable. The process of constructing temporal models of the specification is facilitated by

translating the statements comprising the specification into equivalent statements in Sep-

arate Normal Form. In this form, temporal statements are conjunctions of formulas of

three forms:

• initial rules which specify initial states of the agent, for example

start ⇒ (sad ∨ optimistic)

states that at the beginning, either sad or optimistic is true. Intuitively, this means

the agent is either sad or optimistic at the beginning.

• step rules which specify the relation between consecutive states of the agent, for

example

sad ∧ ¬optimistic⇒◯(sad)

states that from a state where the agent is sad and not optimistic, in the next state

the agent must remain sad.

• sometime rules which specify constraints to be satisfied by executions, for example

optimistic⇒ ♢(¬sad)

states that from any state where the agent is optimistic, any execution of the agent

will eventually lead to a state where the agent is not sad.

Golog

Golog [Levesque et al., 1997] is a logic programming language based on Situation Cal-

culus. The program of a Golog agent consists of a number of axioms specifying the pre-

conditions and the effects (post-conditions) of actions, and a strategy for executing the

agent.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 22

In general, a run of a Golog agent starts in an initial situation and moves to another

situation which is produced by applying an applicable (primitive) action at the previous

situation. The state of the world is described by fluents whose truth values may vary from

situation to situation (hence, a fluent has an argument for situations) together with other

predicates whose truth values do not depend on situations. The applicability of an action

is provided by a precondition axiom. For example, an action to move north is possible at

a situation s if and only if there is no obstacle in the north direction in this situation. This

can be expressed in the following First Order Logic (FOL) formula:

Poss(move(north), s) ≡

∀cl, nl(location(cl, s) ∧ next(cl, north, nl) → ¬obstacle(nl, s))

Recall that each fluent in the above FOL formula has an situation argument s. When all

situation arguments of fluents in a FOL formula φ are suppressed, φ is called a pseudo-

fluent logical formula andϕ(s)denotes the formula obtained from φ by adding a situation

argument s to every fluent in φ.

The axioms for the effects of actions show how actions change the truth values of flu-

ents. For each fluent, programmers provide an axiom to indicate in which situations it is

true or false and by which actions it becomes true or false. For example, the truth value

of the fluent location can be defined as follows:

Poss(a, s) ⊃ [location(l, do(a, s)) ≡

(∃cl, d.location(cl, s) ∧ a =move(d) ∧ next(cl, d, l))∨

(¬∃d.a =move(d) ∧ location(l, s))]

The set of programmer-defined axioms together with the foundational ones including

a set of axioms for unique names and a set of axioms from situation calculus is called

Axioms.

The strategy in a Golog agent program is defined inductively from primitive actions

as follows:

• if a is a primitive action, then a is a complex action;

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 23

• if φ is a pseudo-fluent logical formula , then the test action φ? is a complex action;

• if δ, δ1 and δ2 are complex actions, so is the sequence of actions δ1; δ2 ;

• if δ, δ1 and δ2 are complex actions, so is the non-deterministic choice of actions δ1∣δ2;

• if δ(x) is a complex action, so is the non-deterministic choice of action arguments

(πx)δ(x); and

• if δ, δ1 and δ2 are complex actions, so is the non-deterministic iteration of actions δ∗.

The meaning of a strategy is defined inductively through a macro Do as follows:

• Do(a, s, t) ≡ Poss(a, s) ∧ t = do(a, s)

• Do(φ?, s, t) ≡ φ(s) ∧ s = t

• Do(δ1; δ2, s, t) ≡ ∃s′.Do(δ1, s, s′) ∧Do(δ2, s′, t)

• Do(δ1∣δ2, s, t) ≡Do(δ1, s, t) ∨Do(δ2, s′, t)

• Do((πx)δ(x), s, t) ≡ ∃x.Do(δ(x), s, t)

• Do(δ∗, s, t) ≡ ∀P.{(∀s1.P (s1, s1))∧(∀s1, s2, s3.P (s1, s2)∧Do(δ, s2, s3) ⊃ P (s1, s3))} ⊃

P (s, t)

The last equivalence defines the semantics of a non-deterministic iteration in which t is

reached from s by performing the complex action δ zero or more times.

Running an agent which is defined byAxioms and a strategy δ from an initial situation

S0 is to use a theorem prover to perform the following task:

Axioms ⊧ ∃s.Do(δ, S0, s)

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 24

2.3.2 Imperative languages

Agents can also be implemented using conventional (imperative) programming languages,

such as Pascal, Java and C++. In such a language, a programmer must perform tasks in-

cluding defining data structures to represent agent’s beliefs, goals and intentions as well

as functions to decide which action to execute. Therefore, several extensions of imperative

programming languages have been proposed such as JAL [Winikoff, 2005], JADE [Bel-

lifemine et al., 2005] and Jadex [Pokahr et al., 2005] which facilitate the development of

agents and multi-agent systems. As Jadex is an extension of JADE, we only review JAL

and JADE in the following.

JAL

JAL [Winikoff, 2005] extends Java with a number of language constructs to allow agent

programmers to define a range of notions including:

• Beliefset: beliefs in JAL are stored in a small relational database which is a set of

beliefsets. Each beliefset, or relation, stores beliefs of the form name(data1,data2, ...)

which have the same name and different values for data fields.

• View: virtual beliefsets that are generated from other beliefsets.

• Event: events which indicate some changes, such as the receipt of messages, the

adoption of a new goal, the receipt of perception from from the environment.

• Plan: a plan includes indications of which event it handles, which events it gen-

erates, a context to determine in which situations it can be used, and a body that

contains Java code.

A JAL agent consists of beliefsets that the agent has, events that it handles and posts,

and plans that it has to deal with events. A plan has a method, namely relevant, which

takes an event as argument and returns true if the plan is relevant to deal with the event.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 25

The relevant method can only access data contained in the event. A plan also has another

method, namely context, which returns true if the plan is applicable. Finally, we define a

body of the plan which includes only Java code.

A JAL agent runs by repeatedly handling events. The process of handling events is as

follows:

1. Event posted;

2. Find plans that handle it;

3. Determine the relevant plans;

4. Determine the applicable plans;

5. Select a plan and run its body;

6. If plan fails, go to step 4.

As JAL is based heavily on Java, it has no formal semantics.

JADE

JADE [Bellifemine et al., 2005] is also based on the programming language Java. However,

rather than an agent programming language, JADE is a framework for building multi-

agent systems. JADE defines a set of Java classes for defining an agent such as Agent and

Behaviour. Realising an agent involves constructing a class extending the Agent class. The

internal data of agents built in JADE such as beliefs and goals are defined as variables of

the class and behaviours of the agents are inner classes which inherit from the Behaviour

class defined in JADE. Implementing a behaviour for an agent involves defining an ac-

tion method and optionally another done method to indicate whether the behaviour has

completed its execution. Like JAL, JADE also has no formal semantics.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 26

2.3.3 Hybrid languages

Hybrid languages are combinations of logical languages and imperative ones. For most

of the languages in this category, mental notions such as beliefs and goals are represented

and queried by means of logical languages, while intentions are expressed in impera-

tive languages by using conventional programming constructs including sequential state-

ments, conditional statements and iteration statements. In this section, we review some

popular hybrid agent programming languages including PRS, SPARK, AgentSpeak(L),

Jason, 3APL, GOAL and Gwendolen.

PRS

A PRS [Georgeff and Lansky, 1987] agent contains a database for storing its beliefs, a set

of goals, an ACT library and a set of intentions.

Given a set of predicate symbols, a set of function symbols and a set of variables, the

database is a set of logical formulas P which have the following syntax:

P ∶∶= (p t∗) ∣ (NOT P) ∣ (AND P+)

t ∶∶= x ∣ (f t∗)

where p is an element of the set of predicate symbols, f is an element of the set of function

symbols, and x is a variable from the set of variable. PRS has procedures to maintain the

consistency of sets of ground literals.

A goal describes a desired behaviour that an agent intends to perform. It can be one

of the following forms:

• ACHIEVE C, to obtain C;

• ACHIEVE-BY C (A1, . . . ,An), to obtain C by some procedure A1, . . . ,An from the

ACT library (see below);

• TEST C, to test the condition C

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 27

• USE-RESOURCE R to allocate a resource R which is either a name or a variable;

• WAIT-UNTIL C, to wait until C becomes true;

• REQUIRE-UNTIL G C, to check that a goal G is always true until C becomes true;

• CONCLUDE P , to add P into the database;

• RETRACT P , to delete P from the database;

where C is a well formed formula which has the following syntax:

C ∶∶= P ∣ (OR C+)

The ACT library is a set of procedure specifications, called Knowledge Area (KA), which

show how to accomplish a goal or to respond to a particular situation. Each KA consists

of a body (describing the steps to be performed of the KA), and an invocation condition

(specifying when it is suitable to use the KA). The body (also called the plot) of a KA is

described by a graph containing an initial node and one or more end nodes. Each node

on the graph is labelled with a subgoal to be archived while carrying out the KA. The

formalism for KAs supports complicated control constructs such as conditional choice,

loops and recursion.

SPARK

SPARK[Morley and Myers, 2004] is a successor of PRS. It is a framework for building

systems of agents supporting scalability and clean semantics. Compared to PRS, the lan-

guage has made a number of simplifications and improvements. A SPARK agent’s knowl-

edge base is a set of ground literals rather than a set of restricted FOL formulas as in the

database in PRS and the plot of a KA is extended with syntactical constructs for compound

task expressions. A task can be a composition of other tasks in sequence or parallel, or

can be constructed using familiar constructs from conventional imperative programming

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 28

languages such as if − then − else, try − catch, and while − do. SPARK also provides opera-

tional semantics for each construct so that programmers can understand the meaning of

compound tasks.

AgentSpeak(L)

AgentSpeak(L) [Rao, 1996] is a simplified version of PRS. An AgentSpeak(L) agent consists

of a belief base, an event base, a plan library (or the plan base) and an intention base. The

belief base consists of ground literals. The event base consists of events that occur during

the execution of the agent. Events specify changes in mental states of agents such as the

addition and deletion of beliefs and goals. There are two types of goals: achievement

goals and test goals. An achievement goal specifies a state of affairs that the agent would

like to bring about whereas a test goal simply is for checking whether a predicate is true

with respect to the current belief base of the agent. The plan library consists of plans

used to generate intentions. Each plan is comprised of a triggering event, a context query

and a body as a sequence of external actions, belief update actions, and subgoal actions

(achievement goal or test goal). Finally, the intention base consists of intentions that the

agent is committed to.

AgentSpeak(L) is provided with a formal operational semantics which is defined by a

set of transition rules. For example, there is a transition rule describing the application of a

plan when its triggering event matches an event in the event base and its query evaluates

to true with respect to the belief base. The result of applying the plan is that its body

is inserted into the intention base. In AgentSpeak(L), when an intention is created, the

agent will not drop the intention until it completes. There are also transition rules for

executing actions of intentions in the intention base. Here, executing an external action

means to perform the action on the environment. Executing a belief update action is to

add or delete beliefs to/from the belief base. Executing an achievement goal means to

generate an internal event into the event base. Executing a test goal means to evaluate it

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 29

against the belief base.

Jason

Jason [Bordini et al., 2007] is an extension of AgentSpeak(L). Details about AgentSpeak(L)

and Jason are described in detail in Chapter 6 where we show how to simulate Jason

agents in meta-APL.

3APL

3APL was first proposed by [Hindriks et al., 1999]. A 3APL agent consists of beliefs and

procedural goals (i.e., intentions) which describe what to do. In later work, 3APL was ex-

tended in [Dastani et al., 2003b] to incorporate the separation between procedural goals

and declarative goals (where a declarative goal describes what to achieve) and the ability

to revise intentions. In this extended language, a 3APL agent program consists of a belief

base, similar to a Prolog program, consisting of facts and Horn clauses, a goal base con-

sisting of goals as conjunctions of literals, and a rule base consisting of goal planning rules

for generating new intentions and plan revision rules for revising existing intentions.

The execution of 3APL agents is defined by the 3APL operational semantics comprised

of transition rules. These transition rules define how to apply goal planning rules and plan

revision rules, and how to execute intentions. 3APL is also provided with an interpreter,

namely the 3APL Platform [Dastani et al., 2005]. 3APL is described in detail in Chapter 7

where we also show how to simulate 3APL agents in meta-APL.

GOAL

GOAL was proposed in [Hindriks et al., 2000] to support declarative goals which were

missing in AgentSpeak(L) [Rao, 1996] and the first version of 3APL [Hindriks et al., 1999].

A GOAL agent consists of a set of actions, an initial belief base and an initial goal base.

It reasons about beliefs and goals based on Propositional Logic (PL). In the following, we

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 30

use PL to denote the set of all formulas of PL and ⊧ to denote the logical consequence

relation in PL.

Given a set of propositional variables Prop, a belief φ or goal ψ in GOAL is a formula

of PL and has the following syntax:

φ,ψ ∶∶= p ∣ ¬φ ∣ φ1 ∧ φ2

where p ∈ Prop.

In GOAL, queries are defined as follows:

ϕ ∶∶= Bφ ∣ Gψ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2

A GOAL agent is equipped with a set of basic actions, namely Bcap, which are used

to update the agent’s beliefs. Basic actions in Bcap are specified by a function T ∶ Bcap ×

℘(PL) → ℘(PL) where ℘(PL) is the set of all subsets of PL, i.e., ℘(PL) = {Σ ∣ Σ ⊆ PL}.

Then, given a basic action a ∈ Bcap and a set of formulas Σ ⊆ PL which represents the

agent’s beliefs, T (a,Σ) is the resulting set of the agent’s beliefs after executing the basic

action a.

Furthermore, a GOAL agent can also perform two special basic actions adopt(ψ) and

drop(ψ) which are used to add and to delete goals, respectively.

An action b in GOAL is defined by a query (specifying when the action is enabled) and

a basic action (specifying the effect of the action). The syntax of a is as follows:

b ∶∶= ϕ→ do(a)

where a ∈ Bcap ∪ {adopt(ψ), drop(ψ) ∣ ψ ∈ PL}. Here, adopt(ψ) and drop(ψ) are two

predefined basic actions in GOAL where the semantics is to add to the agent’s goals a

new goal ψ and to delete from the agent’s goals a goal ψ, respectively.

Then, a GOAL agent is a triple (Π,Σ0,Γ0) where Π is a finite set of actions, Σ0 is a

finite set of beliefs and Γ0 is a finite set of goals such that for all ψ ∈ Γ0, Σ0 /⊧ ψ. The

condition Σ0 /⊧ ψ on the goal set Γ0 means that goals in GOAL agents are declarative; i.e.,

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 31

the agents do not maintain goals that have been achieved (those which are consequences

of the agent’s beliefs). During execution, this condition will be checked whenever there

are changes in the agent’s beliefs and goals and maintained by removing any goal that

violates the condition.

A configuration of a GOAL agent is a pair (Σ,Γ) of the belief base Σ and the goal base

Γ. A query ϕ is evaluated against the configuration (Σ,Γ) is defined as follows:

• (Σ,Γ) ⊢ Bφ iff Σ ⊧ φ;

• (Σ,Γ) ⊢ Gψ iff ∃ψ′ ∈ Γ ∶ ψ′ ⊧ ψ;

• (Σ,Γ) ⊢ ¬ϕ iff (Σ,Γ) /⊢ ϕ;

• (Σ,Γ) ⊢ ϕ1 ∧ϕ2 iff (Σ,Γ) ⊢ ϕ1 and (Σ,Γ) ⊢ ϕ2;

The GOAL operational semantics implements the blind commitment strategy, i.e., a

GOAL agent drops a goal iff it achieves the goal. From a configuration (Σ,Γ), an action

b = ϕ → do(a) ∈ π can be performed if the condition ϕ evaluates to true, i.e., (Σ,Γ) ⊢ ϕ.

Then, the transition of an action b is defined as follows:

• If a ∈ Bcap, the transition by b is defined as (Σ,Γ)
b
Ð→ (Σ′,Γ′)where Σ′ = T (a,Σ) and

Γ′ = Γ ∖ {φ ∣ Σ′ ⊧ φ}.

• If a = adopt(ψ), the transition by b is defined as (Σ,Γ)
b
Ð→ (Σ,Γ ∪ {ψ}) if Σ /⊧ ψ or

(Σ,Γ)
b
Ð→ (Σ,Γ) otherwise. This means that adopt(ψ) only adds the goal ψ into Γ if

ψ is not already achieved; i.e., is not a consequence of Σ.

• If a = drop(ψ), the transition by b is defined as (Σ,Γ)
b
Ð→ (Σ,Γ ∖ {ψ′ ∣ ψ ⊧ ψ′}). Note

that drop(false) does not drop any goal while drop(true) removes all goals.

Gwendolen

Gwendolen [Dennis and Farwer, 2008] is a BDI-based agent programming language which

shares many features with both AgentSpeak(L) and GOAL. An agent in Gwendolen con-

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 32

sists of:

• a belief base which is a finite set of literals;

• a goal base which is also a finite set of literals; and

• a plan base which is a finite set of plans for generating new intentions and repairing

existing intentions.

Given an agent in Gwendolen, its deliberation cycles are defined by the operational

semantics of Gwendolen which consists of two selection functions:

• Sint to select an intention to be executed at each deliberation cycle,

• Splan to select a plan to apply at each deliberation cycle,

and transition rules which determine transitions in a deliberation cycle. These two func-

tions Sint and Splan are not implemented in Gwendolen but in the host language in which

the Gwendolen interpreter is implemented. Each Gwendolen deliberation cycle is organ-

ised in six consecutive stages:

Stage A: which is responsible for selecting an intention to execute at the current cycle;

Stage B: which is responsible for generating applicable plans from the plan base with

respect to existing beliefs, goals, and intentions;

Stage C: which is responsible for selecting an applicable plan to generate a new intention

or repairing an existing intention;

Stage D: which is responsible for executing the top action of the selected intention in this

cycle;

Stage E: which is responsible for updating the belief base and the goal base according to

perception received from the environment;

Stage F: which is responsible for handling messages received from other agents.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 33

2.3.4 Discussion

In this section, we briefly summarise the agent programming languages that have been

presented so far. We will concentrate on the similarities as well as the differences between

these agent programming languages in order to highlight common characteristics of BDI

agent programming languages.

The main purpose of an agent programming language is to create a practical tool for

expressing concepts in agent theories (such as the BDI-architecture). This characteristic

is shared by most of agent programming languages that we have reviewed. For example,

beliefs and desires are represented in METATEM in Propositional Logic. Similarly, Golog

expresses these notions by using fluents in the situation calculus. The obvious advan-

tage of using logical languages is that it facilitates representation of and reasoning with

beliefs and desires by inheriting the decision procedure from the corresponding logical

language. In contrast, agent programming languages such as JAL and JADE, that follow

the imperative approach, do not use logic, and beliefs and desires must be expressed in

an ad-hoc fashion. For example, JAL uses a small relational database to store beliefs of

the form name(data1, data2, . . .) which are only equivalent to atoms in logics. However,

imperative agent programming languages have their own advantages. In particular, it

allows one to reuse legacy code implemented in imperative programming languages.

Furthermore, logic-based agent programming languages suffer from several significa-

tion drawbacks [Mascardi et al., 2003] such as low in efficiency, poor in scalability and lack

of modularity. Furthermore, while these languages provide a highly expressive tool, they

are not convenient and straightforward as implementation languages [Hindriks, 2001];

therefore, they are not likely to be used in mass production of multi-agent systems. Never-

theless, logic-based agent programming languages are suitable to build small and simple

prototypes which are verifiable by rigorous methods such as model checking and theorem

proving.

From this point of view, hybrid agent programming languages belong to a different

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 34

stream of agent programming language design that strives to combine the advantages

of both logic-based and imperative agent programming languages. In particular, hy-

brid agent programming languages share the common characteristic that mental attitudes

such as beliefs, events and goals are expressed in logical languages, while intentions are

specified in an imperative manner. The connection between mental attitudes and inten-

tions are usually object rules which specify when to adopt certain intentions. Here, the

“when” conditions of these rules are determined through reasoning in the logics which

are used to express the mental attitudes. Even when intentions are generated, they are

linked to the mental information (such as events or goals) to justify the existence and pur-

pose of the behaviours. For example, in Jason, the event that triggers a plan to generate an

intention is kept as part of the intention (see Section 6 for details). Similarly, in 3APL, the

declarative goal that is used to generate an intention is added as a part of the intention.

This part is then used to justify the existence of the intention (see Section 7 for details). In

particular, if the goal is achieved, the intention is deleted (even if it has not been executed

completely).

Even though hybrid agent programming languages share the characteristics listed

above, they differ greatly in terms of the mental attitudes that they support, the logi-

cal languages that are used, and the rules that generate and repair intentions. Figure 2.2

summarises these differences, where FOL∗ means a fragment of First Order Logic where

only negation and conjunction operators are allowed; PL means propositional logic; and

FOL∗∗ means a fragment of First Order Logic where only literals are allowed.

Furthermore, hybrid agent programming languages also differ in the support they

provide for defining deliberation strategies to select intentions to adopt and execute. In

the next section, we shall discuss these differences in more detail.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 35

Mental attitudes Rules

Language Logic Belief Event Goal To generate To repair

intentions intentions

PRS/SPARK FOL∗ x x x

AgentSpeak(L)/Jason PROLOG x x x

3APL PROLOG x x x x

GOAL PL x x x

Gwendolen FOL∗∗ x x x

Figure 2.2: Features of hybrid agent programming languages.

2.4 Programming deliberation strategies

In this section, we discuss the level of support that existing agent programming languages

have for specifying a deliberation strategy for selecting intentions for adoption and exe-

cution.

2.4.1 Programming selection of intentions for adoption

In most hybrid agent programming languages, the programmer can specify which plan

to select for adoption by means of rule-based constructs which include a condition to de-

termine when they are applicable. For example, in PRS, the programmer uses KAs where

the body of a KA specifies the plan and the invocation condition of the KA determines

when it is suitable to use the plan in the KA. “Plans” in AgentSpeak(L) also allow the

programmer to specify sequences of actions to adopt where the triggering event of a plan

determines when it is relevant to consider the plan, and the context query of the plan

determines when it is applicable to use the plan with respect to the beliefs of the agent.

Goal planning rules in 3APL and actions in GOAL have a similar purpose.

However, with the exception of PRS and SPARK, most of these languages do not pro-

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 36

vide direct support for programming a strategy to select among multiple applicable plans

in the languages. Instead, such a strategy is specified by means of selection functions

which do not belong to the syntax of these agent programming languages and are de-

fined the host languages which are used to implements their interpreters. For example,

the selection function to select an applicable plan in Jason is implemented in Java, the

host language which implement the Jason interpreter. The only way to alter this selection

function is to reprogram it in Java and recompile the Jason interpreter.

PRS is an exception as it allows the programmer to define strategies to select multiple

applicable KAs. Here, the programmer can use so-called metalevel beliefs for storing meta

information about object-level KAs such as their estimated costs in time and money, their

priorities, and their success rate to realise a goal. Furthermore, she can define metalevel

KAs for reasoning about the level of importance and utility of object-level KAs so that the

“best” KA can be determined and selected.

2.4.2 Programming selection of intentions for execution

Agent programming languages provide even less support for programming strategies to

select intentions for execution. The interpreters of these languages usually implement

a default strategy for selecting a plan to execute. For example, Jason by default imple-

ments a selection strategy [Bordini et al., 2007] based on a “round-robin” scheduler. A

different strategy can be implemented by over-riding this default selection function and

recompiling the Jason interpreter. Additionally, the programmer can only change the de-

fault selection for execution slightly by setting the atomic flag for plans. For an intention

generated by a plan declared with the atomic flag, once it is selected for execution, it will

be selected for execution in subsequent cycles until completed. However, this feature of

Jason only leaves the agent programmer with a little space to change the default selection

strategy.

A different approach, presented in [Hindriks et al., 1998; Dastani et al., 2003a], is to

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 37

define a meta language for programming deliberation strategies. In such a language, the

programmer is provided with terms to define information about plans such as costs and

meta-statements for selecting plans, applying plans and executing a plan. This meta-

statements then can be combined using sequential, conditional and iterative constructs

to define a deliberation program. The language defined in [Hindriks et al., 1998] was

used to program deliberation cycles of AgentSpeak(L) and 3APL [Hindriks et al., 1999].

The language defined in [Dastani et al., 2003a] was used to program deliberation cycles

of 3APL [Hindriks et al., 1999]. Obviously, this approach requires a language (in addition

to agent programming languages) to define deliberation strategies.

No single deliberation strategy is clearly “best” for all agent task environments. For

example, in a deliberation strategy, intentions can be executed in an interleaving or non-

interleaving fashion. Interleaving can improve the performance of agents as they can

achieve more than one goals in parallel. However, it can also give rise to contention for

resources so that no intentions are executed successfully [Thangarajah et al., 2003]. For ex-

ample, an agent has two intentions that achieve two goals to be at two different locations

which are in opposite directions. Then, interleaving the execution of these two inten-

tions makes the agent to go around a position between the two locations. It is therefore

important that the agent developer has the freedom to adopt the strategy which is most

appropriate to a particular problem. To this end, it is worth looking back at the discus-

sion in [Hayes, 1977] about designing languages to program knowledge reasoners Hayes

argues it is a good engineering practice that the language to represent knowledge and the

language to specify strategies to reason about knowledge are the same. Similarly, agents

can use their own knowledge (beliefs, goals, plans, intentions, etc.) to reason about which

new plan to adopt, which existing intention to execute during deliberation. Therefore, it

is also a good engineering practice if the language to program an agent and the language

to specify the deliberation strategy for this agent are the same. One way to achieve this is

to use procedural reflection.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 38

2.5 Procedural reflection

In this section, we briefly review the notion of procedural reflection [des Rivières and

Smith, 1984] in programming languages. A reflective programming language incorpo-

rates a model of (aspects of) the language’s implementation and state of program exe-

cution in the language itself, and provides facilities to manipulate this representation.

Critically, changes in the underlying implementation are reflected in the model, and ma-

nipulation of the representation by a program results in changes in the underlying imple-

mentation and execution of the program. Perhaps the best known reflective programming

language is 3-Lisp [Smith, 1984].

2.5.1 A computational view

One way to understand procedural reflection is to view computation as relations on syn-

tactical objects and runtime objects of programming languages. Here, syntactical objects

of a programming language appear in the source code of programs which are written in

the programming language. For example, the source code of a Jason program contains

the textual representations of beliefs, events and plans which are the syntactical objects of

Jason. When the source code of a program is parsed by an interpreter, syntactical objects

in the source code are converted into internal representations which are called runtime

objects. Runtime objects are created by using suitable data structures (defined in another

programming language which implements the interpreter). For example, in the Java im-

plementation of the Jason interpreter, there is a class Plan for storing Jason plans; when

the interpreter parses a Jason agent program, each plan (a syntactical object) gives rise to

a Java object (a runtime object) of the class Plan.

In this computational view, there are two types of relations on syntactical objects and

runtime objects. First, relations from syntactical objects to runtime objects are called in-

ternalisations. This is a mapping which converts textual representations from programs of

a language into runtime objects as internal representations within an interpreter as pro-

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 39

grams are parsed. Second, relations from runtime objects to runtime objects are called

normalisations. This is a mapping which evaluates internal representations into their sim-

plest form. For example, the evaluation of query, the application of plans, and the execu-

tion of an action in Jason. In particular, the context query of a plan in Jason is evaluated

into a simplest value of truth – either true or false – in order to determine if the plan can

be applied to generate an intention or not. The application of a plan results in a new in-

tention for the agent which is a sequence of actions. Then, the execution of an action of

an intention results either changes to the environment (in case of an external action) or to

states of an agent (in case of belief update actions and subgoal actions).

position(room1)

+parcel(room2)

position(X)

+parcel(X) ∶

→ GoTo(X);

⟨Belief⟩

⟨Event⟩

⟨Query⟩

⟨Truth⟩

⟨Plan⟩
⟨Intention⟩

⟨Intention⟩

position(Y)

PickParcel

Syntactical objects Runtime objects

Figure 2.3: A computational view for procedural reflection.

Figure 2.3 illustrates the above computational view of agent programs in Jason. In the

left hand side box are examples of syntactical objects while examples of runtime objects

are grouped in the right hand side box. The notation ⟨T ⟩ denotes a runtime object of

the Java class T defined in the implementation of the interpreter Jason. Furthermore,

internalisations from syntactical objects are drawn as dashed arrows while normalisations

are drawn in solid arrows.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 40

2.5.2 Reflection in programming languages

Implementing an interpreter for a programming language can be considered as imple-

menting internalisations and normalisations in this language. Then, adding procedural

reflection to the programming language involves proving facilities to influence these inter-

nalisations and normalisations. To this end, des Rivières and Smith defined two levels of

reflection in a programming language, namely structural reflection and procedural reflection

Structural reflection: a language has structural reflection if it is provided with means to

query and modify runtime objects. For example, one can define in a Lisp program

a function which can modify the definition of other functions. When this function

is applied to another function, it changes the internal representation of the other

function. Thus, this allows one to influence internalisations.

Procedural reflection: a language has procedural reflection if it has structural reflection

and additionally is provided with means to access the execution context of a pro-

gram. Thus, this allows one to influence normalisations.

Many agent programming languages also provide support for procedural reflection.

For example, PRS [Georgeff and Lansky, 1987] incorporated a meta-level, including re-

flection of some aspects of the state of the execution of the agent such as the set of appli-

cable plans, allowing a developer to program deliberation about the choice of plans in the

language itself. Similarly, languages such as Jason provide facilities to manipulate sets

of beliefs and intentions such as belief update actions for adding and removing beliefs.

However, these languages do not provide facilities to program steps in a deliberation cy-

cle such as different strategies to select applicable plans for generating new intentions or

to select intentions for execution. Therefore, the support for procedural reflection in cur-

rent state-of-the-art agent programming languages is often up to the level of structural

reflection only.

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 41

2.6 Simulating agent programs

In this last section, we present a brief review of the notion of bisimulation [Milner, 1989]

used to compare expressive power of languages. Influenced by the work of Hindriks in

[2001] where weak bisimulation is used to show the correctness of the translation, we

will use bisimulation in order to underpin the translation of other agent programming

languages into meta-APL.

When simulating an agent programming language (called the source language) in an-

other agent programming language (called the target language), agent programs (called

the source programs) of the source language are translated into agent programs (called

the target programs) of the target language such that the source programs and the target

programs behave equivalently with respect to a weak bisimulation [Milner, 1989]. The

most recent and significant work related to simulating agent programs up to now is done

by Hindriks in [2001] and by Dennis et al. in [2008]

Simulation in 3APL

In [2001], Hindriks developed an approach to simulate a source language in a target lan-

guage by identifying a translation bisimulation which is a function translating programs

and configurations of the source language into programs and configurations of the target

language. Hindriks [2001] showed that such a translation bisimulation produces a weak

bisimulation between the configurations of the source language and the configurations of

the target language. Hence, for each run of a source program, there is an equivalent run

of the target program and vice versa. Therefore, the target agent behaves equivalently to

its source agent.

This approach is applied to the simulation of AgentSpeak(L) and Golog in the first

version of 3APL [Hindriks et al., 1999] where the operational semantics of 3APL does not

include a deliberation cycle. Therefore, it is not clear whether it is still straightforward

to apply the same approach for simulating source languages whose operational seman-

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 42

tics take into account the deliberation cycles as implemented in their interpreters such as

Jason [Bordini et al., 2007] and the 3APL platform [Dastani et al., 2005].

Simulation in AIL

At the level of implementing an interpreter for source languages, the Agent Infrastruc-

ture Layer (AIL) [Dennis et al., 2008] attempted to simulate behaviour of source programs

in languages such as 3APL, GOAL and Jason. The purpose of AIL is to provide an in-

termediate layer between different agent programming languages and a model-checking

framework Agent JPF (AJPF) – an extension of Java Path Finder [Visser et al., 2003].

AIL is a collection of data structures implemented as Java classes abstracting capa-

bilities of BDI agent programming languages into which those languages can be easily

translated. As Java has no formal semantics, implementations of interpreters of agent pro-

gramming languages are not provided with formal semantics. Hence, there is no direct

basis for establishing the equivalence of behaviours of agents running within interpreters

implemented by AIL and their formal semantics.

Currently, AIL and AJPF have been applied to implement interpreters of two lan-

guages SAAPL [Winikoff, 2007] and GOAL [Hindriks et al., 2000; de Boer et al., 2007],

and verify properties of agents implemented in these two languages. However, as stated

in [Dennis et al., 2012], there has been no proof yet to underpin the correctness of imple-

menting the operational semantics of the two languages in AIL.

2.7 Summary

In this chapter, we presented a brief review of intelligent agents and approaches to pro-

gramming them. In particular, we reviewed the BDI architecture for designing agents.

The BDI architecture has had a major impact on the development of research in the field

of multi-agent systems, such as technologies for specifying and reasoning about agents

via BDI logics, and building agent via BDI-based agent programming languages. To this

CHAPTER 2. BACKGROUND: AGENTS AND PROGRAMMING AGENTS 43

end, we also gave a brief survey of several existing agent programming languages. We

then gave a comprehensive discussion on the support provided by current agent pro-

gramming languages to program different deliberation strategies. We also reviewed the

notion of procedural reflection in programming languages and its application to existing

agent programming languages. Finally, we reviewed the result of simulating agents using

translation bisimulation which enables the comparison on the expressiveness of different

agent programming languages.

Chapter 3

The agent programming language

meta-APL

In this chapter, we introduce the agent programming language meta-APL which allows

one to encode the plans of an agent and to specify its deliberation strategy in the same

agent program. The basic building blocks of the syntax of meta-APL are atoms, plans,

and a small number of primitive operations for querying and updating the mental state

and the plan state of an agent. They are then used in the syntax of other elements of

meta-APL including clauses, macros, object-level rules, and meta rules.

3.1 Introduction

We begin with a brief introduction to the agent programming language meta-APL. Meta-

APL is a BDI-based agent programming language that follows the same approach as other

hybrid agent programming languages (like Jason and 3APL) where logical programming

and imperative programming are combined. This allows meta-APL to inherit the advan-

tages of both programming paradigms; in particular, mental attitudes can be specified and

reasoned in an expressive logical language and intentions can be specified and executed

in an imperative fashion. Furthermore, meta-APL also features procedural reflection in

44

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 45

order to allow the implementation of different deliberation strategies within the same pro-

gramming language. In order to enable querying and modifying runtime objects (such

as mental attitudes and intentions), meta-APL comes with meta queries to inspect the

internal presentations of mental attitudes (e.g., beliefs, goals and events) and intentions

as well as meta actions to manipulate them. Queries and meta actions to inspect and to

modify the execution state of intentions are also provided.

Like other hybrid agent programming languages, the state of a meta-APL agent con-

sists of two main components: a mental state and a plan state.

The mental state consists of mental attitudes, called atom instances, which represent for

example a belief about the current state of affairs, a goal that the agent wants to achieve,

or an event to which the agent should react, etc. Each atom instance encapsulates an atom

usually of the form type(p(t1, . . . , tn)) where type specifies the type of the atom (such as

belief , goal or event) and p is the predicate of the atom with possible arguments t1, . . . , tn.

Recall that in other hybrid agent programming languages such as Jason and 3APL, each

type of mental attitudes is stored in a separate base (e.g., belief base, goal base, and event

base). However, in meta-APL, atom instances are gathered in the same set. There are at

least two advantages in having such a design of meta-APL’s mental state. Firstly, it allows

us to minimise the set of queries and meta actions for atom instances where queries to

inspect atom instances and meta actions to modify them are the same for different types

of atom instances. Secondly, it allows programmers to invent their own types of mental

attitudes by using other symbols to denote the type of atom instances.

The plan state consists of a set of plan instances which encapsulate the intentions of

an agent. In other words, they play a role similar to intentions in other hybrid agent

programming languages. Similar to plans in Jason and goal planning rules in 3APL which

are used to generate intentions, plan instances in meta-APL are generated by means of

object-level rules.

The existence of a plan instance in the plan state is justified by one or more atom in-

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 46

stances in the mental state. For example, an atom instance is created in order to achieve a

goal or react to an event represented in an atom instance. Here, atom instances which are

used to justify a plan instance are called the justifications of this plan instance.

An atom instance can also be a subgoal of a plan instance. When executing a subgoal

action of a plan instance, an atom instance is created. This atom instance is called the

subgoal of the plan instance. Informally, the existence of the subgoal is because of the

existence of the plan instance. Hence, when the plan instance is deleted from the plan

state, the subgoal is also removed from the mental state.

In order to succinctly specify the above possible relationships between atom instances

and plan instances, we assign each atom instance and plan instance a distinct identifier.

In order to specify that an atom instance is a subgoal of a plan instance, the atom instance

also stores the identifier of the plan instance as a parental pointer. If the atom instance is

not a subgoal, this parental pointer has a special value nil. Similarly, in order specify that

a plan instance is justified by some atom instances, the plan instance stores identifiers of

these atom instances in a justification set. Using identifiers for atom instances and plan

instances also allows us to differentiate different atom instances and plan instances even if

their atoms or intentions are syntactically the same. Identifiers are then can also be used

in queries and meta actions in order to correctly and succinctly refer to the instances that

one needs to inspect or modify.

Atom instances and plan instances are manipulated by means of meta actions which

are organised into meta rules. Each meta rule consists of a condition describing when it

can be applied and a sequence of meta actions describing updates to the mental state and

the plan state and enabling procedural reflection in meta-APL.

In order to specify the interaction between object level and meta level in meta-APL,

object-level rules and meta rules are separated into different rule sets. Although this de-

sign decision seems to separate the object aspect and the meta aspect of meta-APL, having

both aspects in the same agent programming language meta-APL can provide a good en-

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 47

gineering practice.

In particular, object-level rules and meta rules are grouped into a list of rule sets which

determines the order in which they are applied. Therefore, we can easily define an arbi-

trary order of applying object level rules (to generate intentions) and meta rules. This

allows necessary modifications to mental attitudes and intentions to happen at several

times during the deliberation. For example, one can have a set R1 of object-level rules to

generate new plan instances for achieving goals, a set R2 of meta rules to process newly

received beliefs, and another set of meta rules R3 to select certain intentions to execute.

A reasonable order for these sets are R2, R1, then, R3 which can be organised by the list

(R2,R1,R3). This means the agent first updates its mental state according to new beliefs,

such as to remove achieved goals, etc., then, generates new plan instances to achieve the

remaining goals, and finally, selects one of its intentions to execute in a deliberation cycle.

Furthermore, as both object and meta levels in meta-APL share the same syntax for

mental attitudes (atom instances) and intentions (plan instances), this leaves no space

for ambiguity when specifying mental attitudes and intentions in both levels. Finally,

having a separate meta language (for programming deliberation strategies) and a number

of object languages where the syntax of beliefs, goals, events and intentions are different

require necessarily conversion to the syntax of equivalent objects in the meta language. As

both object and meta levels are in meta-APL, such a conversion are no longer needed. This

certainly simplifies the programming task as well as avoids mistakes when implementing

the conversion.

An agent programmer encodes an agent in meta-APL by declaring initial atoms, ad-

ditional queries, additional meta actions and a list of rule sets. The execution of the agent

is organised in cycles each of which involves updating mental attitudes according to per-

cepts received from the environment, applying object level rules and meta rules according

to the order defined by the list of rule sets, and executing scheduled intentions. Each cy-

cle is numbered incrementally where the first cycle is always numbered 0. The execution

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 48

of meta-APL agents is described in the next chapter in more detail. In the rest of this

chapter, we first detail the syntax of terms as the first essential building blocks of the lan-

guage. Then, we present primitive operations which are a small number of predefined

queries and meta actions. These primitive operations can be categorised into two groups:

one consisting of operations related to atom instances, and the other consisting of opera-

tions related to plan instances. In addition to these primitive operations, one is allowed

to define additional queries and additional meta actions by means of clauses and macros,

respectively. Finally, we introduce the syntax of object level rules and meta rules.

3.2 Syntax

3.2.1 Terms and atoms

Terms are the essential building blocks of meta-APL and can appear in every element

of the language. In particular, they are the representation of different types of mental

information such as perceptions, beliefs, goals and events, as well as the representation

of parameters in queries and meta actions. Terms are constructed by symbols from the

following disjoint sets:

• ID is a non-empty totally ordered set of identifiers (ids);

• PRED is a non-empty set of predicate symbols;

• FUNC is a non-empty set of function symbols; and

• VAR is a non-empty set of variables;

ID is the set of identifiers (ids) which are assigned to atom instances and plan instances.

They are used to differentiate between different atom and plan instances (even if they are

syntactically identical); e.g., two identical atom instances of a subgoal posted by different

plan instances. Each atom and plan instance has a unique id.

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 49

In what follows, we denote elements of ID as i, j and k, elements of FUNC as f, g, and

h, elements of PRED as p, q, and r, and elements of VAR asX,Y , and Z (like Prolog), with

subscripts if necessary.

Each element of PRED and FUNC is accompanied with a number m ∈ N which speci-

fies its arity. As usual, if a predicate p ∈ PRED has arity 0, it is called a proposition symbol.

If a function f ∈ FUNC has arity 0, it is called a constant symbol.

A term, then, is defined inductively as follows:

• A variable X ∈ VAR is a term;

• If t1, . . . , tm where m ≥ 0 are terms, then so is t1; . . . ; tm

• If f ∈ FUNC is a m-ary function and t1, . . . tm are terms, so is f(t1, . . . , tm); and

• If p ∈ PRED is a m-ary predicate and t1, . . . tm are terms, so is p(t1, . . . , tm).

In the second case, if m = 0, we denote t1; . . . ; tm by the empty sequence symbol ǫ. In

the last case, the term p(t1, . . . , tm) is also called an atom. A term (or an atom) is ground

if it does not have any variable.

In other words, the syntax of terms t and atoms a is given by:

t ∶∶= i ∣ X ∣ ǫ ∣ t(; t)∗ ∣ f[(t(, t)∗)] ∣ p[(t(, t)∗)]

a ∶∶= p[(t(, t)∗)]

where i ∈ ID, X ∈ VAR, f ∈ FUNC, and p ∈ PRED.

As in Prolog, we write a list of terms (or atoms) as [t1, . . . , tn]. Note that a list is also

a term which is defined by two predefined functions: the empty list constant [] and the

concatenation function [t∣l] which constructs a new list from two parameters: a term t as

the head of the new list and a list l as the rest of the new list. Therefore, [t1, . . . , tn] is the

abbreviation of the term [t1∣[t2∣ . . . [tn∣[]] . . .]].

Variables are bound to terms by means of substitutions. A substitution θ is a finite set

{X1/t1, . . . ,Xn/tn} where n ≥ 0, Xi’s are distinct variables in VAR and ti’s are terms such

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 50

thatXi does not occur in ti for all i ∈ {1, . . . , n}. If n = 0, θ is called the empty substitution.

The domain of θ is defined as dom(θ) = {X ∣ X/t ∈ θ}. The range of θ is defined as

ran(θ) = {t ∣ X/t ∈ θ}. If dom(θ) = ran(θ), then θ is call a renaming. For any X/t ∈ θ, we

write θ(X) to denote t.

The application of a substitution θ to a term t, denoted by tθ, is the result of replacing

simultaneously each occurrence in t of each variable X ∈ dom(θ) its corresponding term

θ(X). Formally, tθ is defined inductively on the structure of t as follows:

• If t =X where X ∈ dom(θ), then tθ = θ(X);

• If t =X where X ∉ dom(θ), then tθ =X ;

• If t = t1; . . . ; tm, then tθ = t1θ; . . . ; tmθ;

• If t = f(t1, . . . , tm), then tθ = f(t1θ, . . . , tmθ); and

• If t = p(t1, . . . , tm), then tθ = p(t1θ, . . . , tmθ).

The composition of two substitutions θ and η where n,m ≥ 0 is denoted as θη =

{X/(tη) ∣X/t ∈ θ and tη /=X} ∪ {Y /u ∣ Y /u ∈ η and Y /∈ dom(θ)}.

3.2.2 Primitive operations on atom instances

Atom instances constitute the mental state of an agent. Each atom instance consists of a

unique id from ID and an atom.

Mental state queries:

For atom instances, we have a query for retrieving the id and the atom of an atom instance

and another query for retrieving the cycle number at which the atom instance was created.

They are listed below:

• atom(i, a): true if there is an atom instance whose id is i and atom is a;

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 51

• cycle(i, n): true if there is an atom instance whose id is i and it was created at cycle n

(runs of an agent are organised in deliberation cycles which are numbered starting

from 0 (initial) and incremented at each new cycle).

We also have a query for retrieving the number of the current deliberation cycle:

• cycle(c): true if the current deliberation cycle matches c.

Mental state actions:

Besides the above queries for retrieving information about atom instances, we also have

meta actions for adding a new atom instance into the mental state, for deleting an atom

instance from the mental state, and for deleting atom instances whose atoms match an

expression. They are listed below:

• add-atom(a): create a new instance of the atom a (where a does not have to be

ground);

• delete-atom(i, a): deletes an atom instance whose id is i and atom is a. This re-

moval leads to the deletion of plan instances where the atom instance is their justi-

fication. (See Section 3.2.4 for the notions of plan instances and justifications);

3.2.3 Plans

Plans are the basic static constituents of plan states of agents. A plan is a textual rep-

resentation of a sequence of actions which an agent can execute in order to modify its

environment or its mental state. Let ActionNames be a set of external actions. Plans are

built of external actions, user-defined mental state actions and subgoal actions which are

defined as follows:

• ea ∶∶= e(t1, . . . , tn): an external action where e ∈ ActionNames, n ≥ 0, and t1, . . . , tn are

terms;

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 52

• mt ∶∶=?q: a mental state test where q is a (user-defined) mental state query (see Sec-

tion 3.2.5 for the definition of user-defined mental state queries);

• ma ∶∶=m: a (user-defined) mental state action;

• sg ∶∶=!g(u1, . . . , um): a subgoal action where g(u1, . . . , un) is a (possibly non-ground)

term, n ≥ 0.

Then, we define the syntax of a plan π as follows:

π ∶∶= ǫ ∣ (ea ∣mt ∣ma ∣ sg);π

where ǫ stands for an empty plan.

Note that plans are first class objects in meta-APL. This means one is allowed to assert

beliefs about them, such as cost(π1, high) or duration(π2,10), etc. Those beliefs can be

used to reason about plans allowing the implementation of more complex deliberation

cycles such as for the agent programming language AgentSpeak(XL) [Bordini et al., 2002].

3.2.4 Primitive operations on plan instances

Plan instances are elements of the plan state of agents. Each plan instance consists of

an unique id, an initial plan (the one assigned for the instance when it is generated), a

current suffix (the part of the instance still to be executed), one or more justifications, a

substitution, and at most one subgoal. As with atom instances, ids are used to distinguish

between different plan instances, even if they have syntactically identical plans.

A justification specifies an atom instance. Informally, a justification is a "reason" for

executing (this instance of) the plan; e.g., an atom representing a belief, a goal or an event.

In general, a plan instance may have multiple justifications, and an atom instance may be

the justification of multiple plan instances.

The substitution θ = {X1/t1, . . . ,Xn/tn} specifies the current binding of variables of

the plan to terms.

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 53

A subgoal is created by the execution of a subgoal action !g(u1, . . . , um), and is an

instance of the atom g(u1, . . . , um) which shares variables with the term in the subgoal

action of the plan instance.

The substitution of a plan instance is initiated when the plan instance is created as the

result of evaluating the head of object level rule against the atom instances and apply-

ing the rule (see the next chapter for more detail). However, it is not necessary that all

variables in the plan instance are instantiated by its substitution. If (i) this plan instance

creates a subgoal which contains one of the non-instantiated variables and (ii) the subgoal

gives rise to another plan instance, the non-instantiated variable can be instantiated (such

as by executing a test action in the second plan instance). This instantiation is now kept in

the substitution of the second plan instance and can be propagated back to the first plan

instance by the meta action set-substitution which will be introduced later.

A plan instance also has a set of execution state flags σ. σ is the subset of a set of flags

F which includes at least intended, scheduled, stepped and failed, and may contain

additional user-defined flags. For example, some deliberation strategies may require a

suspended execution flag to specify that the execution of a plan instance is suspended.

The intended flag indicates the agent is committed to executing this plan instance. The

scheduled flag indicates that the plan instance is selected to be executed at the current

cycle. The stepped flag indicates that the plan instance was executed at the last cycle.

Finally, the failed flag indicates that the plan instance has failed to execute an action.

Plan instances which have the intended flag are called intentions. An intention pmay

have a subgoal as the result of executing its subgoal action. Then, if the subgoal is the

justification of another intention p′, p′ is called the sub-intention of p. Furthermore, the

subgoal must be achieved before continuing executing p. Therefore, we call an intention

executable iff it has no subgoal.

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 54

Plan state queries

For plan instances, meta-APL includes queries for retrieving their plans, their initial plans,

their justifications, their subgoals, their substitutions, and their state flags. There is also a

query for retrieving the cycle number at which a plan instance was created. These primi-

tive queries are listed below:

• plan(i, π): true if there is a plan instance in the plan state of the agent whose id is i

and plan is π;

• init-plan(i, π): true if there is a plan instance in the plan state of the agent whose id

is i and initial plan is π;

• justification(i, j): true if there is a plan instance whose id is i and there is a justifi-

cation of the plan instance whose id is j;

• substitution(i, θ): true if there is a plan instance whose id is i and substitution is θ;

• subgoal(i, j): true if there is a plan instance whose id is i and there is a subgoal of

the plan instance whose id is j;

• state(i, s): true if there is a plan instance whose id is i and one of its flags is s; and

• cycle(i, n): true if there is a plan instance created at cycle n whose id is i. Here, we

overload the query cycle(i, n) for atom instances. However, no ambiguity can arise

as atom instances and plan instances will not share the same identifier.

Plan state actions:

For plan instances, meta-APL provides meta actions for replacing their plans, extending

their substitutions, adding and removing their state flags, and deleting plan instances.

These meta actions are listed below:

• set-plan(i, π): replaces the current suffix of a plan instance whose id is i with π,

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 55

• set-substitution(i, θ): extends the substitution of a plan instance whose id is i

with the provided substitution θ,

• set-state(i, s): adds the state flag s to the set of flags of a plan instance whose id

is i,

• unset-state(i, s): removes the state flag s from the set of flags of a plan instance

whose id is i,

• delete-plan(i): deletes a plan instance whose id is i. This also leads to the deletion

of any subgoal of the plan instance.

3.2.5 User-defined queries and meta actions

In meta-APL, users may define additional queries and additional meta actions from prim-

itive operations by means of clauses and macros, respectively.

Clauses

User-defined queries are defined by means of Prolog-style Horn clauses. A clause has the

following form:

q ← q1, . . . , qn

where n ≥ 0 and qi is either a mental state query q, a user-defined query q or its negation

not q. Negation is interpreted as negation as failure, and we assume that the set of clauses

is always stratified, i.e., there are no cycles in predicate definitions involving negations.

Clauses are evaluated as a sequence of queries, with backtracking on failure. Note that

clauses must be “side-effect-free”, i.e., they can only contain queries, not meta actions.

We say that a user-defined query is a user-defined mental state query if it is defined

by using only (user-defined) mental state queries.

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 56

Example 3.2.1. Let us consider some clause examples. One can check if there is an atom

instance of a given atom by a user-defined query as follows:

atom(X)← atom(I,X)

In order to check whether a plan instance is an intention, one can define a query as

follows:

intention(I)← state(I,intended)

To check whether an intention is executable, i.e., has no subgoal, one can define the

following query:

executable-intention(I)← intention(I),not subgoal(I, J).

Macros

Users may define additional meta actions by means of macros. A macro has the following

form:

a = a1; . . . ;an

where n ≥ 1 and each of a1; . . . ;an is either a (user-defined) meta action or of the form ?q

where q is either a (user-defined) query or its negation. Such a sequence is called an action

sequence. The execution of a macro results in the sequential execution of meta actions or

queries ai’s. Execution terminates if an action or query fails (see the next chapter for more

detail).

A user-defined meta action is called a user-defined mental state action if it is defined

by using only (user-defined) mental state queries and (user-defined) mental state actions.

Example 3.2.2. Let us consider some macro examples. In order to add a new atom in-

stance of a belief b and an event of the new belief, as in AgentSpeak(L), we can define the

following macro:

add-belief(B) = add-atom(belief(B));add-atom(+belief(B)).

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 57

In this macro, a new instance of atom belief(B) is added into the mental state together

with another new atom instance of the event +belief(B). Obviously, this is a user-defined

mental state action.

In order to set a plan instance to become an intention, i.e., to add the intended flag

into the set of flags of the plan instance, one may define a meta action by the following

macro:

add-intention(I) = set-state(I,intended)

3.2.6 Object-level rules

The object-level rules of meta-APL are used to generate plan instances. The syntax of an

object-level rule is defined as follows:

reasons [∶ context] → π

where:

• π is a plan,

• reasons ∶∶= q1, . . . , qn

where n ≥ 1 and q1, . . . , qn are non-negated mental state queries (user-defined ones

are not allowed here).

• context ∶∶= q1, . . . , qn

where n ≥ 0 and q1, . . . , qn are (user-defined) mental state queries or their negation.

The reasons and the context parts of an object-level rule are evaluated against the mental

state of an agent. The rule, then, is applicable when both of reasons and context are true.

The result of applying the rule is a plan instance added into the plan state of the agent.

Atom instances in the mental state which are used to evaluate the reason part are called

the justifications of the plan instance. The context may be null (in which case the “:” may be

omitted), but each plan instance must be justified by at least one reason. Furthermore, it is

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 58

also important to note that object-level rules do not make use of any meta actions for plan

instances. However, we allow plans appearing in object level rules to include user-defined

mental state actions as means of making changes to mental attitudes such as beliefs. The

reasons part of an object-level rule is also called the justification query. In the rest of this

thesis, we sometimes call object-level rules object rules.

3.2.7 Meta rules

Meta rules in meta-APL make use of (user-defined) meta actions in order to manipulate

elements of the mental state and the plan state of an agent.

The syntax of meta rules is defined as follows:

meta-context →m1; . . . ;mn

where meta-context is a conjunction of (user-defined) queries, and m1, . . . ,mn are (user-

defined) meta actions or of the form ?q where q is either a (user-defined) query or its

negation.

In contrast to object-level rules, there is no restriction on the usage of queries and

meta actions in meta rules. The left hand side of a meta rule specifies a condition when

the rule can be applied. Applying a meta rule means to execute sequentially all actions on

the right hand side of the meta rule immediately. This execution terminates as soon as a

query in the body of the meta rule fails. This differs from the execution of plan instances

generated by object-level rules, where only the first steps of their plans are executed at a

time. A bigger difference is that the plan instance generated by an object rule may never

be executed.

3.2.8 Meta-APL program

A meta-APL agent program consists of a set of atoms defining the agent’s initial mental

state, e.g., beliefs, goals, events, etc., a set of clauses for defining user-defined queries, a

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 59

set of macros for defining user-defined meta actions, and a list of rule sets each of which

contains either only object-level rules or only meta rules.

The syntax of an agent program in meta-APL is as follows:

(A,Q,M,R1, . . . ,Rn)

where:

• A = {a1, . . . , am} where m ≥ 0, and a1, . . . , am are atoms.

• Q is a set of clauses.

• M is a set of macros.

• n ≥ 1 and Ri is a set of either only object-level rules or only meta rules.

Similar to Prolog, we allow the occurrence of anonymous variables, denoted by the

wildcard _, in meta-APL agent programs. These anonymous variables in a meta-APL

program are treated as distinct variables that do not occur in the program.

3.3 Core deliberation cycle

In this section, we describe informally the operation of a meta-APL agent program The

core deliberation cycle of meta-APL consists of three main phases. In the first phase,

the agent updates its mental state with atom instances resulting from perception of the

agent’s environment, messages from other agents etc. In the second phase, the rule sets

comprising the agent’s program are processed in sequence. The rules in each rule set

are run to quiescence to update the agent’s mental and plan state. Mental and plan state

actions performed by rules directly update the internal (implementation-level) represen-

tations maintained by the deliberation cycle, and can be queried using mental state and

plan state queries. Processing a set of object rules creates new plan instances. Processing

a set of meta-rules may involve updating the agent’s beliefs and goals, deleting intentions

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 60

for achieved goals, deleting unintended plan instances from the previous deliberation cy-

cle, updating the agent’s intentions or selecting which intention(s) to execute at this cycle,

etc. Finally, in the third phase, the next step of all scheduled object-level plans is executed.

The deliberation cycle then repeats.

3.4 Example Deliberation Cycles

To illustrate how meta-APL can be used to program deliberation strategies, we give sam-

ple code for three deliberation strategies commonly found in the BDI-based agent pro-

gramming language literature. We stress that these examples do not exhaust the types of

strategy that can be encoded. First, we assume to have the following queries which can

be defined by meta-APL primitive queries:

• intended-means(I, i): I is the id list of intentions which have a common justification

with id i;

• executable-intention(I): I is the id of an intention which has no subgoal;

• executable-intentions(I): I is the id list of all executable intentions.

Then, the first strategy we consider is the parallel execution of a non deterministically

chosen plan for each top-level goal. It can be programmed in meta-APL as follows:

intended-means([],R), justification(I,R)→ set-state(I,intended)

executable-intention(I)→ set-state(I,scheduled)

state(I,intended),plan(I, ǫ), justification(I, J),not subgoal(_, J)

→ delete-atom(J)

state(I,intended),plan(I, ǫ), justification(I, J), subgoal(K,J),

substitution(I, S)→ set-substitution(K,S);delete-atom(J)

The first rule selects a plan instance for each reason (goal or subgoal) and makes it an

intention. The second rule schedules each executable intention for execution at this cycle.

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 61

The third and fourth rules handle the completion of subplans. The third rule caters for

the case when an intention is executed completely (i.e., its plan’s remainder is empty) but

its justification is not a subgoal of any other plan instance: we simply delete the justifica-

tion which also leads to the deletion of the intention. The fourth rule caters for the case

when the justification is a subgoal of another plan instance. In this case, before deleting

the justification (as in the third rule), we propagate the substitution of any variables in

the subgoal by the meta action set-substitution which extends the substitution of the

parent plan K with the substitution of the plan instance I.

The second strategy we consider is the non-interleaved execution of a single intention

until completion (the rules to handle completion of subplans are as above)

not state(_,intended),plan(I,_)→ set-state(I,intended)

state(I,intended), subgoal(I, J), intended-means([], J), justification(K,J)

→ set-state(K,intended)

executable-intention(I)→ set-state(I,scheduled)

Finally, we give a simple “round-robin” strategy, which executes a single step of the

next intention in the set of intentions at this cycle (again the rules to handle completion

of subplans are as for parallel execution)

intended-means([],R), justification(I,R)

→ set-state(I,intended)

executable-intentions(I), append(_, [I1, I2∣_], I), state(I1,stepped)

→ set-state(I2,scheduled)

In the second meta rule, the append query to append to lists can be defined like in Prolog.

Many other deliberation strategies can be defined analogously.

3.5 Example of a meta-APL agent program

In this section, we give an example of a simple agent program in meta-APL. The example is

the program of a service robot, as depicted in Figure 3.1, which is responsible for cleaning

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 62

rooms and delivering one box from some room to another in a building. The robot can

move clock-wise from one room to another. Once arriving in a room, it can clean the

room, pick up a box and drop a carried box. We assume that each room in the building

is equipped with sensors for checking if the room is dirty or not, if there is a box to be

delivered to another room, and the position of the robot. Whenever the agent senses

the environment, it collects information obtained by the sensors in three rooms of the

building. Initially, the robot is in room 2, room 1 is dirty, and there is a box in room 3

which needs to be delivered to room 2.

R1

R3 R2

Figure 3.1: The service robot example.

In order to encode the mental state of the agent, we have the following predicates:

• dirty(R): states that room R is dirty;

• pos(R): states that the robot is currently in room R;

• box(R): states that the box is currently in room R;

• dest(R): states that the destination to deliver the box is R.

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 63

The robot is equipped with the following four external actions:

• Go(): moves itself to the next room;

• V acuum(): cleans the current room;

• Pick(): picks the box up;

• Drop(): puts the box the agent is carrying down.

The agent program is a tuple (A,Q,M,R1,R2,R3) where A is the initial mental state,

Q is a set of clauses, M is empty, R1 is a set of meta rules for processing new beliefs, R2

is a set of object-level rules for generating plans, and R3 is a set of meta rules for selecting

plans to execute. In the following, we present these components in detail.

The initial mental state A contains a belief atom stating that the robot is initially in

room 2 as follows:

A = {belief(pos(room2))}

The set Q of clauses contains:

atom(A)← atom(_,A). (3.1)

belief(X)← atom(belief(X)). (3.2)

goal(X)← atom(goal(X)). (3.3)

plan(I)← plan(I,_). (3.4)

subplan(I, J)← justification(J,K), subgoal(I,K). (3.5)

intention(I)← state(I, intended). (3.6)

executable-intention(I)← intention(I),not subgoal(I,_). (3.7)

scheduled-intention(I)← intention(I), state(I,scheduled). (3.8)

Most of these are straightforward. The clause (3.5) defines a query for checking the sub-

plan relationship between two plan instances where a plan instance is the sub-plan of

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 64

another if one of its justifications is the subgoal of the other plan instance. The clause (3.8)

defines a query for checking if an intention has been selected for execution, i.e., an inten-

tion with the state flag scheduled. Note that these user-defined queries are not allowed

in the reason part of an object-level rule.

R1 contains meta rules to update the mental state according to new beliefs received

from the environment. It consists of the following meta rules:

belief(dest(X)),not goal(box(X))→ add-atom(goal(box(X))). (3.9)

atom(I, belief(dest(X))), goal(box(X))→ delete-atom(I,_). (3.10)

atom(I, goal(X)), belief(X)→ delete-atom(I,_). (3.11)

plan(I, ǫ),not subgoal(I,_)→ delete-plan(I). (3.12)

The meta rule (3.9) is for the robot to generate a new goal when it has the belief belief(dest(X)).

This belief states that the box should be delivered to roomX . The new goal goal(box(X))

means that has a goal to take the box to room X . The condition not goal(box(X)) pre-

vents the rule from generating an instance of the goal goal(box(X)) if the same goal is

already in the mental state. The meta rule (3.10) removes the belief belief(dest(X))when

the robot has adopted goal(box(X)) as a goal. The meta rule (3.11) is for deleting any

achieved goal. Finally, the meta rule (3.12) is for deleting any plan instance which has an

empty plan and no subgoal.

R2 contains object-level rules to generate plans. It consists of the following object-level

rules:

atom(belief(dirty(X))) → !goal(pos(X));V acuum() (3.13)

atom(goal(box(X))) ∶ belief(box(Y))

→ !goal(pos(Y));Pick(); !goal(pos(X));Drop() (3.14)

atom(goal(pos(X))) → Go(); !goal(pos(X)) (3.15)

The first object-level rule (3.13) generates a plan to clean a dirty room whenever the robot

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 65

has a belief that there is a dirty room. The plan consists of a subgoal to go to roomX , and

then perform the external action V acuum. The second object-level rule (3.14) generates

a plan to move a box from room Y to room X . The plan consists of a subgoal to go to

room Y to pick up the box, and another subgoal to go to roomX to drop the box. The last

object-level rule (3.15) generates a plan to go to room X . The plan causes the robot to go

around, by means of the external action Go, until it arrives at the desired room.

Finally, R3 contains meta rules for adopting intentions from plan instances and for

selecting intentions to execute. It consists of the following meta rules:

not intention(_), plan(I)→ set-state(I,intended) (3.16)

intention(I), subplan(I, J),not intention(J)→ set-state(J,intended) (3.17)

not scheduled-intention(_), executable-intention(I)→ set-state(I,scheduled) (3.18)

These meta rules are for implementing a non-interleaved execution strategy. The meta

rule (3.16) adopts an intention from an arbitrary plan instance when there is no intention

in the plan state. All subplans of an intention are also intentions. This is implemented by

the second meta rule (3.17). Finally, the last meta rule (3.18) selects an executable intention,

i.e., the one without any subgoal, to execute.

An excerpt from a run of this agent is presented in Appendix B in order to give an idea

of how the agent works. Note that the agent has a formal semantics which can be seen as

a model for Computation Tree Logic (CTL). If one could formalise correctness properties

of the agent program as CTL formulas, they could be verified using a suitable theorem

prover or model checker. However, as formal verification is not in the scope of this thesis,

we do not discuss the correctness of meta-APL agents further.

3.6 Summary

In this chapter, we presented the syntax of meta-APL. Agents programmed in meta-APL

are based on the BDI architecture. Each agent is comprised of a mental state containing

CHAPTER 3. THE AGENT PROGRAMMING LANGUAGE meta-APL 66

information such beliefs, goals and events, and a plan state containing the plans of the

agent. The language includes a set of queries for retrieving information from the mental

state and the plan state, and a set of meta actions for manipulating them. These queries

and meta actions are used in object-level rules which are used to generate plans of agents.

They are also used to form meta rules for controlling the management of mental states

and plan states.

For demonstrating the language, we also present in the chapter a full program of a

robot servicing a three-room building. We informally discuss the construction and mean-

ing of elements in the agent program.

Chapter 4

Operational semantics of meta-APL

The operation of a meta-APL agent is determined by its operational semantics which is a

collection of transition rules specifying how agents modify their mental and plan states.

Before introducing these transition rules, it is necessary to define notions including con-

figurations and formal meanings of queries and meta actions.

4.1 Agent configuration

Informally, a configuration is a state of an agent. It contains static elements, such as

clauses, macros and rules from the program of the agent, as well as dynamic elements,

such as a mental state consisting of atom instances and a plan state consisting of plan in-

stances. Let us first formalise the notions of atom instances and plan instances as follows.

4.1.1 Atom and plan instances

An atom instance is defined as follows:

Definition 4.1.1 (atom instance). An atom instance is a tuple (i, a, j, n) where:

• i ∈ ID is the unique id;

• a is the atom (which need not be ground);

67

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 68

• j ∈ ID is the id of the parental plan instance; and

• n ∈ N is the cycle when the atom instance was created.

Given an atom instance (i, a, j, n), i is restricted to be unique among ids of other atom

instances and plan instances. j is the id of the plan instance which creates this atom in-

stance by means of a subgoal action. Thus, the atom instance is a subgoal of the plan

instance with id j. If an atom instance is not a subgoal of any plan instance, j = nil.

Example 4.1.1. Let us return to the example presented in Section 3.5. A belief which states

that room 1 is dirty can be stored by the following atom instance:

(6, belief(dirty(room1)),nil,3)

In this atom instance, 6 is the id. The predicate belief is used in the second component

to denote that this is an instance of a belief. The third component is nil which means that

this atom instance is not a subgoal of any plan instance. Finally, number 3 says that this

atom instance appearing since cycle number 3 in the run of the agent.

A plan instance is defined as follows.

Definition 4.1.2. (plan instance) A plan instance is a tuple (i, πinit, π, θ, fs, js, n) where:

• i ∈ ID is the unique id.

• πinit is the initial plan.

• π is the plan.

• θ is a substitution for variables in the plan.

• fs is the set of state flags.

• js is the set of ids of justifications.

• n ∈ N is the number of the cycle when the plan instance was created.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 69

Similar to atom instances, the id i of a plan instance p = (i, πinit, π, θ, fs, js, n) is unique

among ids of other plan instances and atom instances. Let r be the object-level rule which

creates the plan instance. The initial plan πinit is a copy of the plan of r. Justifications

specified by ids in js are atom instances which were used to evaluate the reason part of

r. The substitution θ is initially obtained by the evaluation of the reason and the context

of r against the set of atom instances forming the agent’s mental state. The execution

of this plan instance can give rise to a subgoal (which may not be ground). When this

subgoal becomes a justification of another plan instance p′, variables in the subgoal is

propagated to the plan instance p′ and can be instantiated (such as by the test goal action).

One can extend these instantiations to the substitution of the plan instance p (when p′ is

completely executed) by means of the meta action set-substitution. The initial plan

πinit and the set js are unchanged during the lifespan of the plan instance. Together, they

are used to prevent the same object-level rule being applied twice. If the plan instance

(i, πinit, π, θ, fs, js, n) is in the plan state of the agent, the object-level rule r will not be fired

again to generate another plan instance which shares the same initial plan πinit and the set

js of justification ids even if both reason and context parts of r are true. Only when the

plan instance is removed from the plan state, can the rule r be applied again.

Executing a plan instance means to execute the plan π. When the plan instance is

created, π is the same as πinit. When the plan instance is executed, the first action of π

will be performed and removed from π. Therefore, the plan π is sometimes called the

remainder plan of the plan instance.

Example 4.1.2. The agent in Section 3.5 may have the following plan instance, which is

generated by the object level rule (3.13), in order to clean room 1:

(8, !goal(pos(room1));V acuum(), V acuum(),{X/room1},{6},{intended,stepped},5)

The initial plan of this plan instance is the same as the plan in the object level rule (3.13)

with the variable X is bound to room1. This binding is stored in the substitution compo-

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 70

nent of the plan instance. The set of justification ids of this plan instance is the singleton

{6}, as this plan instance has only one justification with id 6. In the set of state flags there

is the flag intended, i.e., the plan instance is an intention, and the flag stepped, i.e., the

plan instance has just been executed in the last cycle.

Recall that atom instances and plan instances can be related. Their relationships are

stored in the parental id of an atom instance, specifying a subgoal relationship, and the

set of justification ids of a plan instance, specifying a justification relationship.

Each atom instance may be a subgoal of at most one plan instance since the atom

instance has at most one parental id. While a plan instance can have multiple subgoals

over time, it has at most one subgoal at a time. The reason is that if the plan instance

has a subgoal, the plan instance is not executable. The current subgoal must be therefore

achieved before it is possible to execute the plan instance again. Note that if a plan instance

is deleted from the plan state, its subgoal is also deleted from the mental state.

In contrast to subgoals, a plan instance may have several justifications. The justifica-

tions are determined when the plan instance is created by applying some object-level rule.

Conversely, an atom instance can be the justification of several plan instances. If the justi-

fication of a plan instance is deleted from the mental state, the plan instance is also deleted

from plan state. However, if a plan instance is deleted from the plan state, its justifications

are not deleted.

In order to have succinct references to components of atom instances and plan in-

stances, we define the following functions:

• Given α = (i, a, j, n), we define id(α) = i, atom(α) = a, par(α) = j, and cycle(α) = n.

• Given p = (i, πinit, π, θ, fs, js, n), we define id(p) = i, init(p) = πinit, plan(p) = π,

subs(p) = θ, flags(p) = fs, justs(p) = js, and cycle(p) = n.

Example 4.1.3. For the atom instanceα in Example 4.1.1, we have that: id(α) = 6, atom(α) =

belief(dirty(room1)), par(α) = nil, and cycle(α) = 3.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 71

Given a set of atom instancesA, we denote IDA to be the set of all ids of atom instances

in A, i.e., IDA = {id(α) ∣ α ∈ A}. Similarly, given a set of plan instances Π, we denote IDΠ

to be the set of all ids of plan instances in Π, i.e., IDΠ = {id(p) ∣ p ∈ Π}.

In order to have succinct presentation of the update of components in a plan instance

p = (i, πinit, π, θ, fs, js, n), we define the following auxiliary functions:

add-flag((i, πinit, π, θ, fs, js, n), f) = (i, πinit, π, θ, fs ∪ {f}, js, n) (4.1)

del-flag((i, πinit, π, θ, fs, js, n), f) = (i, πinit, π, θ, fs ∖ {f}, js, n) (4.2)

set-subs((i, πinit, π, θ, fs, js, n), θ
′) = (i, πinit, π, θθ

′, fs, js, n) (4.3)

update-rem((i, πinit, π, θ, fs, js, n), π
′) = (i, πinit, π

′, θ, fs, js, n) (4.4)

update-executing((i, πinit, π, θ, fs, js, n), π
′) =

update-rem(add-flag(del-flag((i, πinit, π, θ, fs, js, n),scheduled),stepped), π
′)

(4.5)

update-failing((i, πinit, π, θ, fs, js, n), π
′) =

update-rem(add-flag(del-flag((i, πinit, π, θ, fs, js, n),scheduled),failed), π
′)

(4.6)

Note that the above auxiliary functions are not meta actions available in meta-APL. They

will be used as abbreviations within definitions of transition rules later in this chapter.

add-flag is for adding a flag f in to the flag set of the plan instance p. Obviously, if f is

already in the flag set, the resulting plan instance of add-flag is the same as p. Similarly,

del-flag is for removing a flag f from the flag set of the plan instance p. set-subs extends

the substitution of p by the substitution θ′. update-rem is for replacing the current plan

with the plan π′. The last two functions update-executing and update-failing is for replacing

the flag scheduled in p with the flag stepped and the flag failed, respectively. They also

replace the plan of p with a new plan π′.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 72

4.1.2 Configurations

We have the following definition of configurations:

Definition 4.1.3. A configuration is a tuple ⟨Q,M,R1 . . .Rk,A,Π, ρ, n⟩ where:

• Q is a set of clauses.

• M is a set of macros.

• k ≥ 1 and for all 1 ≤ i ≤ k, Ri is a set of either only object-level rules or only meta rules.

• A is the mental state which is a set of (possibly non-ground) atom instances.

• Π is the plan state which is a set of plan instances.

• 0 ≤ ρ ≤ k + 2 is a phase counter.

• n ∈ N is a cycle counter.

In a configuration, the ids of atom instances and plans instances are unique, i.e., there

are no instances of either atoms or plans with the same id. Furthermore, the cycle num-

bers of these atom instances and plan instances are not greater than the cycle number of

the configuration. In addition to atom instances and plan instances, a configuration also

contains a phase counter and a cycle counter. The cycle counter is the number of the cur-

rent deliberation cycle. It also keeps track of how many deliberation cycles have elapsed.

Each cycle is divided into k+3 stages where stage 0 corresponds to the sense phase, stages

ρ ∈ {1, . . . , k} correspond to the phase of applying the rule sets, and k+1, k+2 correspond

to the phase of executing intentions. The agent operates by moving from stage 0 to k + 2

incrementally; then, returns to stage 0 of the next cycle.

Given a configuration ⟨Q,M,R1 . . .Rk,A,Π, ρ, n⟩, the set Q of clauses, the set M of

macros, and the sets R1, . . . ,Rk of object-level and meta rules are static. They do not

change during execution of the agent. However, the mental state A, the plan state Π, the

phase counter ρ and the cycle counter n are dynamic. In the interests of brevity, in the

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 73

rest of this thesis, we use ⟨A,Π, ρ, n⟩ to denote the configuration when no ambiguity can

arise.

From a given agent configuration C = ⟨A,Π, ρ, n⟩, we derive the justification binary

relation Justc and the subgoal binary relation Subc as follows:

• JustC = {(i, id(p)) ∣ p ∈ Π, i ∈ justs(p)}.

• SubC = {(par(α), id(α)) ∣ α ∈ A,par(α) /= nil}.

These relations are used later in this chapter as we define transition rules in the operational

semantics of meta-APL.

Mental state Plan state

5,nil

10,nil

27,12

12,{5,10}

81,{27}

83,{27}

Justification

Subgoal

Figure 4.1: Example of the subgoal and justification relations.

Example 4.1.4. Figure 4.1 shows an example of a configuration C where we assume that

there are three atom instances and three plan instances. In this example, each atom in-

stance is illustrated by a circle annotated with its id and its parental id. Similarly, each plan

instance is illustrated by a rectangle annotated with its id and the justification component.

Other components of the atom and plan instances are not of interest in this example, and,

are omitted. The justification relation JustC is denoted by thin arrows with direction from

atom instances to plan instances. Similarly, The subgoal relation SubC is denoted by bold

arrows with direction from plan instances to atom instances.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 74

In the following definition, given a finite set of atoms A, we denote idA to be some

injective mapping from A into ID, i.e., for all a, a′ ∈ A, if a /= a′ then idA(a) /= idA(a′). We

shall use the notation idA to initialise the ids for atoms of a meta-APL program.

Definition 4.1.4. Let Ag = (A,Q,M,R1, . . . ,Rk) be a meta-APL agent program. The initial

configuration of Ag is ⟨A0,∅,0,0⟩ where A0 = {(idA(a), a,nil,0) ∣ a ∈ A}.

The above definition means that, initially, each agent has a mental state initialised from

the set A of initial atoms, an empty plan state, a phase counter 0 and a cycle counter 0. In

other words, the agent is at the sense phase of the first cycle of its execution.

Example 4.1.5. In the example of Section 3.5, the initial configuration of the robot is as

follows:

({(1, belief(pos(room2)),nil,0)},∅,0,0)

4.2 Semantics of queries and meta actions

In this section, we formally define how information is retrieved from queries and the

effects of meta actions on mental states and plan states.

4.2.1 Answering queries

The evaluation of a query qwith respect to a configurationC is answered by a substitution

θ which is the most general unifier (mgu) of the query and some element of the configu-

ration. This evaluation is written as C ⊢ q ∣ θ. Given t1 and t2, we write t1 = t2 ∣ θ iff t1 and

t2 unify with mgu θ.

In the following, we define how each primitive query is evaluated against a given

configuration C = ⟨A,Π, ρ, n⟩. Where there are multiple answers for a query, we assume

Prolog backtracking semantics where plans are returned in the program order and atoms

in ID order.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 75

Mental state queries

• C ⊢ atom(i, a) ∣ θ iff ∃ α ∈ A : (id(α),atom(α)) = (i, a) ∣ θ.

Plan state queries

• C ⊢ init-plan(i, π) ∣ θ iff ∃p ∈ Π ∶ (id(p), init(p)) = (i, π) ∣ θ.

• C ⊢ plan(i, π) ∣ θ iff ∃p ∈ Π ∶ (id(p),plan(p)) = (i, π) ∣ θ.

• C ⊢ justification(i, j) ∣ θ iff ∃p ∈ Π, α ∈ A ∶ id(α) ∈ justs(p) ∧ (id(p), id(α)) = (i, j) ∣ θ.

• C ⊢ substitution(i, ϑ) ∣ θ iff ∃p ∈ Π, α ∈ A ∶ (id(p), subs(p)) = (i, ϑ) ∣ θ.

• C ⊢ subgoal(i, j) ∣ θ iff ∃p ∈ Π, α ∈ A ∶ id(p) = par(α) ∧ (id(p), id(α)) = (i, j) ∣ θ.

• C ⊢ state(i, s) ∣ θ iff ∃p ∈ Π, f ∈ flags(p) ∶ (id(p), f) = (i, s) ∣ θ.

Queries for cycles

• C ⊢ cycle(i, c) ∣ θ iff∃α ∈ A : (id(α), cycle(α)) = (i, c) ∣ θ or∃p ∈ Π : (id(p), cycle(p)) =

(i, c) ∣ θ.

• C ⊢ cycle(c) iff c = n.

Negation queries

• C ⊢ not q ∣ ∅ iff it does hold that C ⊢ q ∣ θ for any substitution θ.

User-defined queries

Let q be a user-defined query defined by q ← q1, . . . , qm ∈ Q. Then we define:

• C ⊢ q ∣ θ iff C ⊢ q1, . . . , qm ∣ θ

where C ⊢ q1, . . . , qm ∣ θ is defined below.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 76

Justification and context queries

Let q1, . . . , qm be a justification or a context of an object-level rule or a meta rule. Then we

define:

• C ⊢ q1, . . . , qm ∣ θ iff ∃θ1, . . . , θm such that θ = θ1 . . . θm and C ⊢ q1 ∣ θ1, . . . , C ⊢ qm ∣

θ1 . . . θm.

4.2.2 Determining justifications

When evaluating the reason part of an object-level rule with respect to a configuration,

it is important not only to find out the answering substitution but also to know which

atom instances in the configuration are used to give the answer. These atom instances

will become the justifications of the resulting plan instance when the object-level rule is

applied.

Let q1, . . . , qm be a list of mental state queries, i.e., qi is of the form either atom(j, a) or

cycle(j, c). We define a function ids((q1, . . . , qm)) = ⋃i∈{1,...,m} ids(qi) where:

ids(qi) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{j} if q = atom(j, a)

{j} if q = cycle(j, c)

This function collects all the ids of the atom instances which are used to give answer to

the mental state queries q1, . . . , qm.

4.2.3 Semantics of meta actions

We specify the effects of meta actions on configurations in terms of transition relations.

In particular, for each meta action ma, we define a binary relation
ma
ÐÐ→ on configurations

which describes the resulting configuration when ma is performed from a configuration.

Meta actions for atom instances

• ⟨A,Π, ρ, n⟩
add-atom(a)
ÐÐÐÐÐÐ→ ⟨A ∪ {(i, a,nil, n)},Π, ρ, n⟩ where i is a new id from ID, i.e.,

i ∈ ID ∖ (IDA ∪ IDΠ).

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 77

• ⟨A,Π, ρ, n⟩
delete-atom(i,a)
ÐÐÐÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩ where

– A′ = A ∖ {α ∈ A ∣ ∃α0 ∈ A ∶ id(α0) = i ∧ atom(α0) = a ∧ (id(α0), id(α)) ∈

(Sub⟨A,Π,ρ,n⟩ ∪ Just⟨A,Π,ρ,n⟩)
∗}

– Π′ = Π ∖ {p ∈ Π ∣ ∃α0 ∈ A ∶ id(α0) = i ∧ atom(α0) = a ∧ (id(α0), id(p)) ∈

(Sub⟨A,Π,ρ,n⟩ ∪ Just⟨A,Π,ρ,n⟩)
∗}

As usual, the notationR∗ denotes the reflexive transitive closure of a binary relationR. For

the effect of delete-atom(i, a), the reflexive transitive closure (Sub⟨A,Π,ρ,n⟩∪ Just⟨A,Π,ρ,n⟩)
∗

is used to determine atom and plan instances which are related to the atom instance with

id i and atom a. Then, delete-atom(i, a) deletes all these related atom and plan instances.

Example 4.2.1. Let us return to Example 4.1.4. The effect of the meta action delete-atom(5)

(or delete-atom(10)) is that not only the atom instance with id 5 (or 10) is deleted but also

all related atom instances and plan instances with ids 12, 27, 81, and 83 are deleted as well.

Conversely, the effect of the meta action delete-atom(27) only deletes the atom instance

with id 27 and the plan instances with ids 81 and 83. In this case, the plan instance with

id 12 is executable again as it has no subgoal.

Meta actions for plan instances

• ⟨A,Π, ρ, n⟩
set-plan(i,π)
ÐÐÐÐÐÐÐ→ ⟨A,Π′, ρ, n⟩ where

Π′ = Π ∖ {p ∈ Π ∣ id(p) = i} ∪ {update-rem(p, π) ∣ ∃p ∈ Π ∶ id(p) = i}

• ⟨A,Π, ρ, n⟩
set-substitution(i,θ)
ÐÐÐÐÐÐÐÐÐÐÐÐ→ ⟨A,Π′, ρ, n⟩ where

Π′ = Π ∖ {p ∈ Π ∣ id(p) = i} ∪ {set-subs(p, θ) ∣ ∃p ∈ Π ∶ id(p) = i}

• ⟨A,Π, ρ, n⟩
set-state(i,f)
ÐÐÐÐÐÐÐÐ→ ⟨A,Π′, ρ, n⟩ where

Π′ = Π ∖ {p ∈ Π ∣ id(p) = i} ∪ {add-flag(p, f) ∣ ∃p ∈ Π ∶ id(p) = i}

• ⟨A,Π, ρ, n⟩
unset-state(i,f)
ÐÐÐÐÐÐÐÐÐ→ ⟨A,Π′, ρ, n⟩ where

Π′ = Π ∖ {p ∈ Π ∣ id(p) = i} ∪ {del-flag(p, f) ∣ ∃p ∈ Π ∶ id(p) = i}

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 78

• ⟨A,Π, ρ, n⟩
delete-plan(i)
ÐÐÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩ where

– Π′ = Π ∖ {p ∈ Π ∣ (i, id(p)) ∈ (Sub⟨A,Π,ρ,n⟩ ∪ Just⟨A,Π,ρ,n⟩)
∗}

– A′ = A ∖ {a ∈ A ∣ (i, id(a)) ∈ (Sub⟨A,Π,ρ,n⟩ ∪ Just⟨A,Π,ρ,n⟩)
∗}

The above definition makes use of auxiliary functions (4.4), (4.3), (4.1) and (4.2) in or-

der to present the effect of these meta actions succinctly. As we can see, the first four

transition relations specify how components of a plan instance (with id matching i) are

modified. For example, the first translation, which describes the effect of the meta action

set-plan(i, π), is obtained by firstly removing the plan instance pwith id matching i, and

then adding the modified plan instance update-rem(p, π) where the plan of p is replaced

with π, as defined by update-rem in (4.4). Finally, the semantics of delete-plan(i) is sim-

ilar to that of delete-atom, where it also leads to the deletion of related atom and plan

instances.

Example 4.2.2. Return to Example 4.1.4. The effect of delete-plan(12) is to delete related

atom instances and plan instances with ids 12, 27, 81, and 83.

Action sequences and user-defined meta actions

In order to give semantics for meta actions defined by users, we first define the semantics

of action sequences which are used in macros and meta rules. Recall that such a sequence

contains primitive meta actions, user-defined meta actions, primitive queries, and user-

defined queries.

Definition 4.2.1. Given an action sequence ma1; . . . ;mak where k ≥ 2, we define the transition

⟨A,Π, ρ, n⟩
ma1;...;makÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩ inductively as follows:

• If ma1 is a primitive meta action, then:

⟨A,Π, ρ, n⟩
ma1;...;makÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩ iff ⟨A,Π, ρ, n⟩

ma1ÐÐ→ ⟨A′′,Π′′, ρ, n⟩ and

⟨A′′,Π′′, ρ, n⟩
ma2;...;makÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 79

• If ma1 is a user-defined meta action defined by a macro ma1 =mb1; . . . ;mbl, then:

⟨A,Π, ρ, n⟩
ma1;...;makÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩ iff ⟨A,Π, ρ, n⟩

mb1;...;mbl;ma2;...;makÐÐÐÐÐÐÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩

• If ma1 =?q where q is a primitive or user-defined query and ⟨A,Π, ρ, n⟩ ⊢ q ∣ θ, then:

⟨A,Π, ρ, n⟩
ma1;...;makÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩ iff ⟨A,Π, ρ, n⟩

(ma2;...;mak)θ
ÐÐÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩

• If ma1 =?q where q is a primitive or user-defined query and ⟨A,Π, ρ, n⟩ /⊢ q, then:

⟨A,Π, ρ, n⟩
ma1;...;makÐÐÐÐÐÐ→ ⟨A,Π, ρ, n⟩

From a given configuration ⟨A,Π, ρ, n⟩ and an action sequence, the above definition

specifies how to recursively compute the outcome configuration ⟨A′,Π′, ρ, n⟩. When the

first element of the action sequence is a primitive meta action, we simply use its seman-

tics as defined previously in this section in order to determine an intermediate configu-

ration. Then, from this intermediate configuration and the rest of the action sequence,

we recursively determine the outcome configuration. When the first element is a user-

defined meta action, we simply expand the sequence with the body of the macro defining

the meta action. Then, from the given configuration and the expanded action sequence,

we recursively determine the outcome configuration. Finally, when the first element is

a (user-defined) query, we first evaluate the query. If the evaluation is true, we apply

the result of the query, which is a substitution, to the rest of the action sequence. Then,

from the given configuration and the rest of the action sequence, we recursively deter-

mine the outcome configuration. Otherwise, the outcome configuration is the same as

the given configuration, i.e., execution finishes early and the execution of the remainder

ma2; . . . ;mak is aborted.

4.3 Operational semantics

The operational semantics of meta-APL defines possible runs of an agent programmed in

the language. Given a meta-APL agent (A,Q,M,R1, . . . ,Rk), a run of the agent consists of

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 80

consecutive deliberation cycles. Each deliberation cycle is divided into k + 3 stages which

are categorised into three phases: the “sense” phase, the “apply” phase and the “exec”

phase. Figure 4.2 illustrates stages in a deliberation cycle of agents in meta-APL. In stage

Stage 0
“Sense”

Stage 1
“Apply R1”

Stage 2
“Apply R2”

Stage k
“Apply Rk”

Stage k + 1

Stage k + 2

Sense Phase

Exec Phase

Apply Phase

Figure 4.2: Phases in meta-APL deliberation cycle.

0, the agent performs a sense action in order to collect perceptions from the environment,

then updates its mental state accordingly. After that, in the apply phase, rules from the

rule sets R1, . . . ,Rk are applied to quiescence in stages from 1 to k, respectively. Then, at

stage k+1 of the exec phase, the agent removes the flag stepped from intentions executed

from the previous cycle. Finally, it executes scheduled intentions at the last stage k + 2.

Details of the execution of the agent at each stage are defined by means of a set of

transition rules [Plotkin, 1981]. A transition rule has the following form:

Conditions

C Ð→ C ′
(Rule name)

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 81

On the top, the condition part specifies when the transition rule is applicable. The bottom

of the rule describes changes of the original configuration C to which the transition rule

is applied. C ′ is the resulting configuration of the transition rule.

In the rest of this section, we list transition rules of the operational semantics of meta-

APL. They are gathered into three phases of a deliberation cycle.

4.3.1 The Sense phase

This is the starting phase of a deliberation cycle where the agent updates its mental state

according to the perceptions received from the environment. Let sense be the function

which specifies how the mental state A of an agent is updated with respect to the state

env of the environment. The definition of sense depends on the nature of the agent’s inter-

action with its environment and its deliberation cycle, but typically results in the addition

and/or removal of atom instances. In particular, for any perception which indicates a

belief P is true and there is no instance of atom belief(P) is in A, a new atom instance

of belief(P) is added to A together with a new atom of +belief(P). Conversely, for any

perception which indicates a belief P is no longer true, any atom instance of belief(P) in

A is deleted from A together with a new instance of −belief(P). The main idea behind

having atom instances of atoms +belief(P) and −belief(P) is to enable one to write object

level rules to react to belief changes. Once applied, these object level rules generate plan

instances which have these atom instances of +belief(P) and −belief(P) as their justifi-

cations. When the plan instances are executed completely, these atom instances can be

deleted explicitly and only by the meta action delete-atom.

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 82

The only transition rule in this phase is defined as follows:

sense(env,A) = A′

A′′ = A′ ∖ {α′ ∈ A ∣ ∃α ∈ A ∖A′ ∶ (id(α), id(α′)) ∈ (Sub⟨A,Π,0,n⟩ ∪ Just⟨A,Π,0,n⟩)
∗}

Π′ = Π ∖ {p ∈ Π ∣ ∃α ∈ A ∖A′ ∶ (id(α), id(p)) ∈ (Sub⟨A,Π,0,n⟩ ∪ Just⟨A,Π,0,n⟩)
∗}

⟨A,Π,0, n⟩ Ð→ ⟨A′′,Π′,1, n⟩

(SENSE)

This transition rule is applied when the phase counter is 0. Then, the function sense is

used to determine the updated mental state A′ from the current mental state A and the

current state env of the environment. This update is described in the first condition of

the rule. Since some atom instances may be removed from A, i.e., elements of A∖A′, this

transition rule also deletes atom and plan instances related to atom instances in A ∖ A′

by the reflexive transitive closure (Sub⟨A,Π,0,n⟩ ∪ Just⟨A,Π,0,n⟩)
∗. These are described in the

second and third conditions of the rule. In the resulting configuration, the phase counter

is increased to 1 and the agent moves to the next phase.

4.3.2 The Apply phase

In this phase, the agent goes through a sequence of stages ρ from 1 to k. In each stage ρ,

rules in the rule set Rρ are applied to quiescence before moving to the next one. Recall

that Rρ may contain only object-level rules or only meta rules.

Application of object-level rules

If Rρ contains object-level rules, a new plan instance is generated when a rule in Rρ is

applied. The application of an object-level rule is defined by the following transition rule:

∃(r ∶ c→ π) ∈ Rρ ∶ ⟨A,Π, ρ, n⟩ ⊢ r, c ∣ θ

∄p ∈ Π ∶ init(p) = π ∧ justs(p) = ids(rθ)

inew ∈ ID ∖ (IDA ∪ IDΠ)

Π′ = Π ∪ {(inew, π, π, θ, ids(rθ), n)}

⟨A,Π, ρ, n⟩Ð→ ⟨A,Π′, ρ, n⟩
(OBJ-APPLY-1)

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 83

In OBJ-APPLY-1, an object-level rule r ∶ c → π in Rρ is applicable if its condition r ∶ c

is evaluated to be true with respect to the current configuration, and if there is no plan

instance in the plan state with exactly the same initial plan and justification. These are

the first and the second conditions of OBJ-APPLY-1. We assume that variables of r ∶ c→ π

have been replaced with fresh ones in order to avoid any conflict to the currently used

variables. When r ∶ c → π is applied, a new plan instance is added into the plan state. Its

initial plan is πθ and its justifications are specified by ids(rθ).

When no more object-level rules can be applied, i.e., no object-level rule inRρ satisfies

the first and the second conditions of OBJ-APPLY-1, the phase counter is advanced to ρ+1

and the agent moves the next stage:

∀(r ∶ c→ π) ∈ Rρ ∶ ⟨A,Π, ρ, n⟩ ⊢ r, c ∣ θ

Ô⇒ ∃p ∈ Π ∶ init(p) = π ∧ justs(p) = ids(rθ)

⟨A,Π, ρ, n⟩Ð→ ⟨A,Π, ρ + 1, n⟩
(OBJ-APPLY-2)

Application of meta rules

If Rρ contains meta rules, actions in the body of a meta rule in Rρ are executed imme-

diately when the meta rule is applied. The application of a meta rule is defined by the

following transition rule:

∃(c→ma1; . . . ;mak) ∈ Rρ ∶ ⟨A,Π, ρ, n⟩ ⊢ c ∣ θ

⟨A,Π, ρ, n⟩
(ma1;...;mak)θ
ÐÐÐÐÐÐÐÐ→ ⟨A′,Π′, ρ, n⟩

⟨A,Π, ρ, n⟩Ð→ ⟨A′,Π′, ρ, n⟩
(META-APPLY-1)

In META-APPLY-1, a meta rule c → ma1; . . . ;mak ∈ Rρ is applicable if its condition c is

evaluated to true with respect to the current configuration. This is described in the first

condition of META-APPLY-1. Then, the transition from the current configuration to the

next one is equivalent to the effect of executing actions in (ma1; . . . ;mak)θ as defined by

Definition 4.2.1.

Similar to the case of object-level rules, when no more meta rules can be applied, i.e.,

no meta rule in Rρ satisfies the first condition of (META-APPLY-1), the phase counter is

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 84

advanced to ρ + 1 and the agent moves to the next stage:

∀(c→ma1; . . . ;mak) ∈ Rρ ∶ ⟨A,Π, ρ, n⟩ /⊢ c

⟨A,Π, ρ, n⟩Ð→ ⟨A,Π, ρ + 1, n⟩
(META-APPLY-2)

4.3.3 The Exec phase

After the Apply phase, the phase counter is k + 1 and the agent is in the Exec phase. This

phase consists of two stages. In the first stage, ρ = k + 1, the state flag stepped is removed

from plan instances which were executed at the previous cycle. This guarantees that only

plan instances which are executed at the current cycle will have the state flag stepped in

the next cycle.

Then, the transition rule for removing the state flag stepped is defined by using the

auxiliary function (4.2) as follows:

Π′ = {del-flag(p,stepped) ∣ p ∈ Π}

⟨A,Π, k + 1, n⟩Ð→ ⟨A,Π′, k + 2, n⟩
(DEL-STEPPED)

In this transition rule, the phase counter is also advanced to k + 2.

In the second stage of the Exec phase, ρ = k+2, the agent executes intentions which are

scheduled in this deliberation cycle. Recall that an intention is scheduled to execute by

setting the state flag scheduled. Furthermore, only executable intentions, which have no

subgoal, are allowed to execute. This means no intention with a subgoal is executed even

if it has the state flag scheduled. If an intention with the flag scheduled is not executed

due to having a subgoal, the flag scheduled remains with the intention to the next cycles.

When its subgoal is achieved, the intention will be executed.

In the following, we list the transition rules in this stage according to types of actions

to be executed.

Executing an external action

External actions are performed in the agent’s environment. Changes to the state of the

environment by external actions can only be received by the agent through perceptions

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 85

at the Sense phase at the beginning of the next deliberation cycle. Here, we assume that

each external action can signal whether the action succeeded or failed. In case of success,

the execution of an external action is defined by the following transition rule:

∃p ∈ Π ∶ scheduled ∈ flags(p) ∧ plan(p) = ea;π

ea(subs(p)) is performed successfully

Π′ = Π ∖ {p} ∪ {update-executing(p, π)}

⟨A,Π, k + 2, n⟩ Ð→ ⟨A,Π′, k + 2, n⟩
(EXEC-EA)

In EXEC-EA, we use the the auxiliary function update-executing to describe the change of

the plan instance p after executed. In particular, the executed external action is removed

by replacing that plan of p with the remainder π. Then, update-executing deletes the flag

scheduled from p (hence, p is not executed again in this phase), and sets the flag stepped

for p to indicate that the intention is executed in the current deliberation cycle. In case of

failure, the execution of an external action is defined by the following transition rule:

∃p ∈ Π ∶ scheduled ∈ flags(p) ∧ plan(p) = ea;π

ea(subs(p)) fails

Π′ = Π ∖ {p} ∪ {update-failing(p, π)}

⟨A,Π, k + 2, n⟩Ð→ ⟨A,Π′, k + 2, n⟩
(FAIL-EA)

Here, we use the auxiliary function update-failing to replace the flag scheduled by the flag

failed.

Executing a test action

Mental state tests are evaluated against the current configuration. If the result is true, the

resulting substitution is applied to the rest of the plan of the intention. The transition rule

for this case is defined as follows:

∃p ∈ Π ∶ scheduled ∈ flags(p) ∧ plan(p) =?b;π

⟨A,Π, k + 2, n⟩ ⊢ b(subs(p)) ∣ θ

Π′ = Π ∖ {p} ∪ {set-subs(update-executing(p, π), θ)}

⟨A,Π, k + 2, n⟩Ð→ ⟨A,Π′, k + 2, n⟩
(EXEC-TEST-1)

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 86

If the result of a mental state test is false with respect to the current configuration, the

execution of the test action fails. This failure is recorded by replacing the flag scheduled

with the flag failed. The transition rule for this case is as follows:

∃p ∈ Π ∶ scheduled ∈ flags(p) ∧ plan(p) =?b;π

⟨A,Π, k + 2, n⟩ ⊢ not b(subs(p)) ∣ ∅

Π′ = Π ∖ {p} ∪ {update-failing(p, ?b;π)}

⟨A,Π, k + 2, n⟩ Ð→ ⟨A,Π′, k + 2, n⟩
(EXEC-TEST-2)

In EXEC-TEST-2, we use the auxiliary function update-failing to specify the replacement of

the flag scheduled with the flag failed. When a plan instance has the state flag failed,

agent programmers are responsible to write meta rules to handle it since meta-APL does

not implement any mechanism to deal with failed plan instances.

Executing mental state actions

Mental state actions are performed to update the mental state of the current configuration.

They can be either primitive mental state actions (add-atom and delete-atom) or user-

defined ones. The effect of executing mental state actions is the same as they are executed

when applying a meta rule. The transition rule for executing them is defined as follows:

∃p ∈ Π ∶ scheduled ∈ flags(p) ∧ plan(p) =ma;π

Π′ = Π ∖ {p} ∪ {update-executing(p, π)}

⟨A,Π′, k + 2, n⟩
ma(subs(p))
ÐÐÐÐÐÐÐ→ ⟨A′,Π′′, k + 2, n⟩

⟨A,Π, k + 2, n⟩Ð→ ⟨A′,Π′′, k + 2, n⟩
(EXEC-META)

Similar to the execution of external actions, the auxiliary function update-executing is also

used in EXEC-META to update the plan instance p where the plan of p is replaced with

the remainder π and the state flag scheduled is replaced with stepped.

Executing a sub-goal action

The execution of a subgoal action in an intention results in the creation of a new atom

instance of the goal atom. The transition rule for executing a subgoal action is defined as

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 87

follows:

∃p ∈ Π ∶ scheduled ∈ flags(p) ∧ plan(p) =!g;π

inew ∈ ID ∖ (IDA ∪ IDΠ)

A′ = A ∪ {(inew, g(subs(p)), id(p), n)}

Π′ = Π ∖ {p} ∪ {update-executing(p, π)}

⟨A,Π, k + 2, n⟩ Ð→ ⟨A′,Π′, k + 2, n⟩
(EXEC-GOAL)

In EXEC-GOAL, the new atom instance (inew, g, id(p), n) of the goal atom g is related to

the intention by storing the id of p in the parental component of the atom instance. This

creates a subgoal relation between the plan instance p with the new atom instance.

Finishing the Exec phase

When no more intentions from the plan state can be executed, i.e., no executable intention

with the state flag scheduled, the phase counter is reverted to 0 and the cycle counter is

advanced to n + 1:

∀p ∈ Π ∶ scheduled ∈ flags(p) Ô⇒ ∃α ∈ A ∶ par(α) = id(p)

⟨A,Π, k + 2, n⟩Ð→ ⟨A,Π,0, n + 1⟩
(NEW-CYCLE)

In NEW-CYCLE, the condition specifies that the rule is applicable if all intentions which

have been scheduled to be executed (i.e., with the flag scheduled) have been executed (i.e.,

their flag scheduled is replaced by the flag stepped) except those which have subgoals.

In other words, we do not execute plan instances which have subgoals even if they are

scheduled to be executed. When NEW-CYCLE is applied, the resulting configuration is

the beginning one of the next deliberation cycle as its phase counter is 0 and its cycle

counter is n + 1.

4.3.4 Semantics of agents

The semantics of an agent consists of runs on a (possibly infinite) computation tree derived

from the transition rules of meta-APL, starting from an initial configuration:

CHAPTER 4. OPERATIONAL SEMANTICS OF meta-APL 88

Definition 4.3.1. Given a meta-APL agent Ag = (A,Q,M,R1, . . . ,Rk) and its initial config-

uration C0 = ⟨A0,∅,0,0⟩, the semantics of Ag is a transition system (a computation tree) which

is generated by applying transition rules starting in the initial configuration C0.

Example 4.3.1. We illustrate the operational semantics of meta-APL by revisiting our ex-

ample in Section 3.5 of the previous chapter. The semantics of the agent program in this

example is given in Appendix B where we present a computation run consisting of the

first two cycles of the agent program.

4.4 Summary

In this chapter, we presented the operational semantics of meta-APL. In particular, we

discuss the formal definitions of atom instances, plan instances, mental states, plan states

and agent configurations. The semantics of an agent in meta-APL determines possible

computation runs derivable from the set of transition rules. Furthermore, each run con-

sists of deliberation cycles each of which contains k + 3 stages where k is the number of

rule sets that the agent possesses. Stages are grouped into three phases: the Sense phase,

the Apply phase, and the Exec phase. In the Sense phase, the agent updates its mental state

according to perceptions received from the environment. In the Apply phase, rules from

rule sets are applied to quiescence to generate plan instances. Finally, the agent executes

schedules plan instances in the Exec phase.

Chapter 5

Cycle-based Bisimulation

In order to exhibit the flexibility of meta-APL, we will show how Jason and 3APL agent

programs and their deliberation strategies can be translated into meta-APL to give equiv-

alent behaviour in the next two chapters. Our approach to proving the equivalent be-

haviours of two agents is based on weak bisimulation. This technique was introduced

in [Milner, 1989], and applied in [Hindriks, 2001] to comparing the expressiveness of agent

programming languages which are accompanied with formal, operational semantics.

As with meta-APL in the previous chapter, many BDI-based agent programming lan-

guages (such as Jason, 3APL and meta-APL) are associated with a formal semantics which

is defined as a transition system whose states correspond to agent configurations and tran-

sitions between states are derived from transition rules of the operational semantics of the

language. Without loss of generality, we assume that such a transition system is a tree.

Two agents whose semantics are defined as transition systems are equivalent under weak

bisimulation if there is a weak bisimulation (i.e., a binary relation) between states of these

two transition systems.

89

CHAPTER 5. CYCLE-BASED BISIMULATION 90

5.1 Bisimulation

Let us recall the notions of labelled transition systems, strong bisimulation and weak

bisimulation from [Milner, 1989].

5.1.1 Labelled transition system

A labelled transition system consists of states and labelled transitions between these states.

The semantics of an agent can be seen as a labelled transition system where each state of

the labelled transition system corresponds to a configuration of the agent and each tran-

sition corresponds to executing an action. An action can be either external or internal.

External actions are performed on the environment to modify it, hence they are observ-

able; internal actions happen internally and aim to change mental components of agent

states (such as updating beliefs or intentions), hence they cannot be observed. Transitions

of external actions are called visible transitions and labelled with the name of the exter-

nal actions; transitions of internal actions are called silent transitions and labelled with the

symbol τ . In the context of semantics for agent programs, we only consider tree-like la-

belled transition systems, i.e., between any two states, there is maximally one sequence of

transitions.

In this chapter, we use A to denote the set of external actions and Aτ = A ∪ {τ}. For-

mally, a transition system is a pair (S,{
a
Ð→∣ a ∈ Aτ}) where S is a set of states and

a
Ð→ is a

binary relation on S, i.e.,
a
Ð→⊆ S × S for all a ∈ Aτ .

5.1.2 Strong bisimulation

The basic idea of two states being bisimilar is that observations in these two states are

equivalent. Observations from a state consists of part of its internal elements (such as

beliefs, goals and intentions) and transitions available from the state (such as external

actions that can be performed). These observations are called stated-based observations

and action-based observations, respectively. State-based observations are defined by an

CHAPTER 5. CYCLE-BASED BISIMULATION 91

observation function observe(s) which returns observable internal elements of the state

s; while action-based observations return transitions from s to other states. The notion of

(strong) bisimulation is formally given below:

Definition 5.1.1 (Strong bisimulation). Let (S,{
a
Ð→∣ a ∈ Aτ}) and (T,{

a
Ð→∣ a ∈ Aτ}) be two

transition systems. A relation ∼⊆ S × T is a (strong) bisimulation if for any s ∼ t, it is the case

that:

1. observe(s) = observe(t),

2. if s
a
Ð→ s′, then there exists t′ ∈ T such that t

a
Ð→ t′ and s′ ∼ t′, and

3. if t
a
Ð→ t′, then there exists s′ ∈ S such that s

a
Ð→ s′ and s′ ∼ t′.

5.1.3 Weak bisimulation

In a strong bisimulation of two labelled transition systems, each transition of a system

must be simulated by exactly a transition of the other. Hence, the notion of strong bisim-

ulation is too strong for comparing agent programs in different agent programming lan-

guages. An alternative approach to comparing agent programs is to consider the notion

of weak bisimulation.

Weak bisimulation abstracts from silent transitions τ , which do not exhibit interaction

with the environment. For example, executing external actions of an agent which are used

to modify the environment of the agent corresponds to visible transitions while updating

the agent’s beliefs or intentions corresponds to silent transitions. Then, observations over

a sequence of transitions only concerns visible transitions. To this end, we define that a

label of a sequence of transitions is the sequence of labels from these transitions where the

label of an silent transition is the empty sequence. In particular, let label be the function

which yields a label for each sequence of transitions. Then, given a sequence of transitions

seq = s1
a1Ð→ s2

a2Ð→ . . .
an−1ÐÐ→ sn, label(seq) is defined inductively as follows:

CHAPTER 5. CYCLE-BASED BISIMULATION 92

label(τ) = ǫ where ǫ is the empty sequence

label(a) = a where a ∈ A

label(s1) = ǫ if n = 1

label(s1
a
Ð→ s2) = label(a) if n = 2 where a ∈ Aτ

label(s1
a1Ð→ s2

a2Ð→ . . .
an−1ÐÐ→ sn) = label(s1

a1Ð→ s2) ⋅ label(s2
a2Ð→ . . .

an−1ÐÐ→ sn) otherwise

Note that the first case in the definition of the function label (when n = 1) caters for the

empty sequence of transitions which have only a single state. Then, we have the following

definition of abstract transitions:

Definition 5.1.2 (Abstract transitions). Let (S,{
a
Ð→∣ a ∈ Aτ}) be a transition system. For any

s and s′ ∈ S, s
l
Ô⇒ s′ iff there is a sequence seq = s0

e1Ð→ s1 . . .
ekÐ→ sk where k ≥ 0, s = s0, s

′ = sk,

and label(seq) = l.

Then, a weak bisimulation only requires that the abstract transitions of two programs

are matched.

Similarly, not all elements of a state is observable. Again, weak bisimulation abstracts

from unobservable elements.

Then, the notion of weak bisimulation is given below:

Definition 5.1.3 (Weak bisimulation). Let (S,{
a
Ð→∣ a ∈ Aτ} and (T,{

a
Ð→∣ a ∈ Aτ} be two

transition systems. A relation ≅⊆ S × T is a weak bisimulation if for any s ≅ t, it is the case that:

1. observe(s) = observe(t),

2. if s
τ
Ð→ s′, then there exists t′ ∈ T such that t

ǫ
Ô⇒ t′ and s′ ≅ t′; if s

a
Ð→ s′ where a ∈ A, then

there exists t′ ∈ T such that t
a
Ô⇒ t′ and s′ ≅ t′, and

3. if t
τ
Ð→ t′, then there exists s′ ∈ S such that s

ǫ
Ô⇒ s′ and s′ ≅ t′; if t

a
Ð→ t′ where a ∈ A, then

there exists s′ ∈ S such that s
a
Ô⇒ s′ and s′ ≅ t′.

CHAPTER 5. CYCLE-BASED BISIMULATION 93

5.2 Cycle-based bisimulation

In meta-APL and many BDI-based agent programming languages, an agent is associated

with a formal semantics which is a tree-like transition system. Each branch of this tran-

sition system corresponds to a possible run of the agent. Each run is composed of con-

secutive deliberation cycles. For example, deliberation cycles of agents in meta-APL start

and end with configurations whose phase counter is 0. In order to prove that two agents

behave equivalently, we show that there is a weak bisimulation between the semantics

of these two agents. Our approach to determining the weak bisimulation is first to de-

fine a strong bisimulation between deliberation cycles of in the semantics these agents,

hence called cycle-based bisimulation, and then to derive a weak bisimulation from this

cycle-based bisimulation.

Let ag be an agent and s0 be its initial configuration which also corresponds to the

beginning of a deliberation cycle. Each transition in the semantics of ag is labelled with

either an external action a (if it corresponds to the execution of a), or a silent action τ (oth-

erwise). We denote the set of configurations in the semantics of ag, e.g., those reachable

from s0, as RC(s0).

Let SC(s0) be a subset of RC(s0) consisting of configurations which correspond the

beginning of a deliberation cycle. We assume that s0 ∈ SC(s0) and each configuration of

a BDI-based programming language has a special content marking whether the config-

uration is the beginning of a deliberation cycle. Then, configurations in SC(s0) can be

determined by a function which looks for special contents in configurations. Then, we

define the notion of a deliberation cycle below:

Definition 5.2.1 (Deliberation cycle). A deliberation cycle of RC(s0) is a finite sequence of

transitions s1
a1Ð→ . . .

an−1ÐÐ→ sn (n > 1) where:

• si ∈ RC(s0) for all 1 ≤ i ≤ n,

• ai ∈ Aτ for all 1 ≤ i < n,

CHAPTER 5. CYCLE-BASED BISIMULATION 94

• s1, sn ∈ SC(s0), and

• si ∉ SC(s0) for all 1 < i < n.

Then, we define the first configuration, the last configuration of a deliberation cycle as

follows:

Definition 5.2.2 (First and last configuration). Let c = s1
a1Ð→ . . .

an−1ÐÐ→ sn be a deliberation

cycle. We define that first(c) = s1 and last(c) = sn.

A configuration is said to be in a deliberation cycle iff it appears within the deliberation

cycle. Formally, we have the following definition:

Definition 5.2.3. Let c = s1
a1Ð→ . . .

an−1ÐÐ→ sn be a deliberation cycle. An arbitrary configuration

s is in c, written as s ∈ c, iff s = si for some i ∈ {1, . . . , n}.

When s ∈ c = s1
a1Ð→ . . .

an−1ÐÐ→ sn, i.e., s = si for some i ∈ {1, . . . , n}, we then write

label(c∣s) to denote the label of the prefix of c from first(c) until s, i.e., label(c∣s) =

label(s1
a1Ð→ . . .

ai−1ÐÐ→ si).

We also lift a binary relationR onX×Y to a relation between subsets ofX and subsets

of Y , which we will also denote by R. In particular, we define that X ′RY ′ where X ′ ⊆ X

and Y ′ ⊆ Y iff ∀x ∈ X ′, ∃y ∈ Y ′ such that xRy, and ∀y ∈ Y ′, ∃x ∈ X ′ such that xRy.

Therefore,X ′RY ′ means that any element ofX ′ is related byR to some element of Y ′ and

vice verse.

Let DC(s0) denote the set of all deliberation cycles of RC(s0). We define transitions

between consecutive deliberation cycles in RC(s0) as follows:

Definition 5.2.4 (Transitions between cycles). Given c, c′ ∈ DC(s0), c
l
Ð→ c′ iff last(c) =

first(c′) and l = label(c).

In the rest of this thesis, we assume that observations are only meaningful for configu-

rations at the beginning of deliberation cycles, i.e., configurations in SC(s0). This implies

for configurations not in SC(s0), we assume their observation is ignored (and denoted by

CHAPTER 5. CYCLE-BASED BISIMULATION 95

⊺1). Then, considering two configurations not in SC(s0) to be weakly bisimilar is done

by only determining the last two conditions of Definition 5.1.3. This relaxation increases

the space for differences between agent programming language where a transition can

be simulated by a sequence of transitions where internal components of configurations is

gradually changed over each transition in the sequence. Formally, we have observe(s) = ⊺

if s ∉ SC(s0). Then, we define the observables of a deliberation cycle as the observables

from its first configuration since most other configurations of the deliberation cycle is ⊺:

Definition 5.2.5 (Observables of a deliberation cycle). Given c ∈ RC(s0), observe(c) =

observe(first(c)).

Then, we have the following result:

Theorem 5.2.6. Let s0 and t0 be two initial configurations. If there exists a strong bisimulation

∼⊆DC(s0) ×DC(t0) where, for any c ∼ d, the following conditions hold:

1. ∀ s ∈ cwhere s /= last(c), ∃ t ∈ d such that t /= last(d), label(c∣s) = label(d∣t), observe(s) =

observe(t) and {c′ ∈ DC(s0) ∣ first(c) = first(c′), s ∈ c′} ∼ {d′ ∈ DC(t0) ∣ first(d) =

first(d′), t ∈ d′},

2. ∀ t ∈ dwhere t /= last(d), ∃ s ∈ c such that s /= last(c), label(d∣t) = label(c∣s), observe(t) =

observe(s) and {c′ ∈ DC(s0) ∣ first(c) = first(c′), s ∈ c′} ∼ {d′ ∈ DC(t0) ∣ first(d) =

first(d′), t ∈ d′} ,

then, RC(s0) and RC(t0) are weakly bisimilar.

Before proving this theorem, let us discuss the intuitive meaning, illustrated in Fig-

ure 5.1, of its conditions.

The two conditions are used to establish a weak bisimulation between configurations

in c and d. The first condition states that, for any configuration s of c, we can determine

1In logic, ⊺ usually denotes a tautology. We use it to indicate that the observation does not produce any

information.

CHAPTER 5. CYCLE-BASED BISIMULATION 96

label(c∣s)

= label(d∣t)

c d

s

t

c′

d′

∼

Figure 5.1: Conditions of Theorem 5.2.6.

a configuration t in d such that the label of transitions from first(c) to s is the same as

that from first(d) to t, observations of s and t are the same, and for any cycle c′ which

shares the prefix of c up to s (i.e., first(c) = first(c′) and s ∈ c′ 2), there exists a cycle d′

which also shares the prefix of d up to t (i.e., first(d) = first(d′) and t ∈ d′) and c′ and d′

are bisimilar and vice versa. Conversely, the second condition is for determining for any

configuration t of d a configuration s of c that satisfies the same condition as above. In the

proof, we will relate these configurations to form the weak bisimulation between RC(s0)

and RC(t0).

Proof.

Firstly, let us construct a binary relation ≅⊆ RC(s0) × RC(t0) where for any (s, t) ∈

RC(s0) ×RC(t0) we have that s ≅ t iff:

2Note that all labelled transition systems under consideration are tree-like, i.e., there is at most one path

between two configurations.

CHAPTER 5. CYCLE-BASED BISIMULATION 97

(Local) ∃(c, d) ∈DC(s0)×DC(t0) such that s ∈ c, s /= last(c), t ∈ d, t /= last(d), label(c∣s) =

label(d∣t), observe(s) = observe(t), c ∼ d, and

(Global) {c′ ∈DC(s0) ∣ first(c) = first(c′), s ∈ c′} ∼ {d′ ∈DC(t0) ∣ first(d) = first(d′), t ∈

d′}.

Let us now prove that ≅ is a weak bisimulation.

Let s ∈ RC(s0) and t ∈ RC(t0) such that s ≅ t, s
a
Ð→ s′, and a ∈ Aτ , we must show that

there exists t′ ∈ RC(t0) such that t
a
Ô⇒ t′ and s′ ≅ t′. As s ≅ t, there are c ∈ DC(s0) and

d ∈DC(t0) satisfying (Local).

Case 1: If s′ /= last(c) and s = first(c), then t = first(d) since the observation of configu-

rations which are after first(d) and before last(d) in d is ⊺ while observe(s) /= ⊺.

Let c′′ be an arbitrary cycle in {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′}, we have that

s and s′ ∈ c′′. Then, c′′ ∈ {c′ ∈ DC(s0) ∣ first(c) = first(c′), s ∈ c′}. By s ≅ t and (Global),

there exists d′′ ∈ {d′ ∈DC(t0) ∣ first(d) = first(d′), t ∈ d′} such that c′′ ∼ d′′.

Since s′ ∈ c′′ and c′′ ∼ d′′, by condition (1), there exists t′ ∈ d′′ such that:

• label(c′′∣s′) = label(d′′∣t′) and observe(s′) = observe(t′) which imply (Local) for s′

and t′, and

• {c′ ∈DC(s0) ∣ first(c′) = first(c′′), s′ ∈ c′} ∼ {d′ ∈DC(s0) ∣ first(d′) = first(d′′), t′ ∈

d′} which implies (Global) for s′ and t′.

Hence, s′ ≅ t′. Since t is the first configuration of d, t′ is after t in d. As label(d′′∣t′) =

label(c′′∣s′) = label(c∣s) ⋅ label(a) and label(d∣t) = label(c∣s), the label of the sequence of

transitions from t to t′ is label(a), hence t
label(a)
ÔÔÔ⇒ t′.

Case 2: If s′ /= last(c) and s /= first(c), then, similar to the previous case, we have that

t /= first(d).

Again, let c′′ be an arbitrary cycle in {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′}, we

have that s and s′ ∈ c′′. Then, c′′ ∈ {c′ ∈ DC(s0) ∣ first(c) = first(c′), s ∈ c′}. By s ≅ t and

(Global), there exists d′′ ∈ {d′ ∈DC(t0) ∣ first(d) = first(d′), t ∈ d′} such that c′′ ∼ d′′.

CHAPTER 5. CYCLE-BASED BISIMULATION 98

Since s′ ∈ c′′ and c′′ ∼ d′′, by condition (1), there exists t′′ ∈ d′′ such that:

• label(c′′∣s′) = label(d′′∣t′′) and observe(s′) = observe(t′′) which imply (Local) for s′

and t′′, and

• {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′} ∼ {d′ ∈ DC(t0) ∣ first(d) = first(d′), t′′ ∈

d′} which implies (Global) for s′ and t′′.

Hence, s′ ≅ t′′. Furthermore, we also have:

c d

s

t

c′′

d′′

∼

τ

s′
t′′

c d

t

c′′

d′′

∼

τ

s′

t′′
≅

≅

(a) (b)

Figure 5.2: There are more than one transitions from t.

• If a = τ and t′′ is after t in d′′, as illustrated in Figure 5.2 (a), we select t′ = t′′ and

have that s′ ≅ t′ and t
ǫ
Ô⇒ t′ (as label(c′′∣s′) = label(d′′∣t′)).

• If a = τ and t′′ is before t in d′′, as illustrated in Figure 5.2 (b), we select t′ = t. We

have:

– label(c′′∣s′) = label(c∣s) and label(c′′∣s′) = label(d∣t′′) imply that there are only

silent transitions from t′′ to t, hence label(c′′∣s′) = label(d∣t). Furthermore, since

CHAPTER 5. CYCLE-BASED BISIMULATION 99

s′ is after s in c′′ and t is after t′′ in d′′, both s′ and t are not beginning configu-

rations of a deliberation cycle, i.e., observe(s′) = observe(t) = ⊺. Hence, (Local)

is true for (s′, t).

– For any e ∈ {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′}, e ∈ {c′ ∈ DC(s0) ∣

first(c) = first(c′), s ∈ c′} since s is before s′ in c′′. Then, by s ≅ t and (Global),

there exists f ∈ {d′ ∈ DC(t0) ∣ first(d) = first(d′), t ∈ d′} such that e ∼ f .

Conversely, for any f ∈ {d′ ∈ DC(t0) ∣ first(d) = first(d′), t ∈ d′}, f ∈ {d′ ∈

DC(t0) ∣ first(d) = first(d′), t′′ ∈ d′} since t′′ is before t in d′′. Then, by s′ ≅ t′′

and (Global), there exists e ∈ {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′} such

that e ∼ f . Hence, (Global) is true for (s′, t)

Hence, s′ ≅ t. Obviously, we also have that t
ǫ
Ô⇒ t.

• If a is an external action, t′′ must be after t in d′′ since label(c′′∣s′) = label(c∣s) ⋅ a =

label(d∣t) ⋅ a. We select t′ = t′′ and have that s′ ≅ t′ and t
a
Ô⇒ t′.

Case 3: If s′ = last(c), then we select t′ = last(d). We have label(c∣s′) = label(c∣s)⋅label(a) =

label(c) = label(d) = label(d∣t) ⋅ label(a) as c ∼ d and s ≅ t; thus, t
label(a)
ÔÔÔ⇒ t′.

• Let c1 ∈ DC(s0) be a deliberation cycle such that c
l
Ð→ c1. As c ∼ d, there exists a

deliberation cycle d1 ∈DC(t0) such that d
l
Ð→ d1 and c1 ∼ d1. Then, s′ = first(c1) and

t′ = first(d1). By c1 ∼ d1 and condition (1) we have that observe(s′) = observe(t′′)

for some t′′ ∈ d1 and t′′ /= last(d1). As observe(s′) /= ⊺, t′′ = first(d1) = t′. Hence

observe(s′) = observe(t′). We also have that label(c1∣s′) = ǫ = label(d1∣t′). Therefore,

(Local) holds for s′ and t′.

• Let c′ ∈ DC(s0) such that first(c1) = first(c′). Then, we have c
l
Ð→ c′. Then, c ∼ d

implies that d
l
Ð→ d′ and c′ ∼ d′ for some d′ ∈DC(t0). Hence, first(d′) = first(d1). By

the same argument, it is also straightforward to show that for any d′ ∈DC(t0) such

that first(d1) = first(d′), there exists c′ ∈ DC(s0) such that first(c1) = first(c′)

and c′ ∼ d′. Therefore, (Global) holds for s′ and t′.

CHAPTER 5. CYCLE-BASED BISIMULATION 100

Hence, s′ ≅ t′.

Similarly, given s ∈ RC(s0) and t ∈ RC(t0) such that s ≅ t and t
a
Ð→ t′, we can show that

there exists s′ ∈ RC(s0) such that s
a
Ô⇒ s′ and s′ ≅ t′. The proof is similar to the one above

as the roles of s and t are symmetric. Hence, it is omitted here.

5.3 Summary

In this chapter, we recalled the notions of strong bisimulation and weak bisimulation.

They are powerful tools for the comparison of expressiveness of programming languages

in general and agent programming languages in particular. Two agents behave equiva-

lently if there is a weak bisimulation between their semantics. Here, we show that if there

is a so-called cycle-based bisimulation – a strong bisimulation between deliberation cycles

in the semantics of the two agents, then we can construct a weak bisimulation between

configurations of the two agents. This result will be used in the next two chapters to show

that the simulations of Jason and 3APL in meta-APL are correct.

Chapter 6

Simulating Jason

In this chapter, we demonstrate the flexibility of meta-APL by showing how Jason pro-

grams and deliberation strategy can be simulated in meta-APL. In particular, we define

a translation function for transforming an agent program written in Jason into an agent

program in meta-APL. Then, we prove that these two programs (the source program in

Jason and the target agent in meta-APL) are equivalent using the notion of cycle-based

bisimulation.

6.1 Jason

Jason [Bordini et al., 2007] is an interpreter for an extension of the agent programming

language AgentSpeak(L) [Rao, 1996]. The main purpose of extending AgentSpeak(L) in

Jason is to create a language suitable for the practical needs of the implementation of in-

telligent agents and multi-agent systems. In particular, as pointed out by [Bordini and

Hübner, 2005], the main extensions include: strong negation, default negation (or nega-

tion as failure), plan labels, events for handling plan failure and internal actions; although

most of them has not been formalised in the semantics. For the purpose of illustrating the

simulation of Jason in meta-APL, we use the simplified version of Jason presented in [Bor-

dini et al., 2007, Chapter 10] which is accompanied with a formal semantics and covers all

101

CHAPTER 6. SIMULATING JASON 102

core features and important aspects of the language. In the rest of this chapter, we refer

to this simplified version as Jason.

6.1.1 Syntax

An agent program in Jason consists of a belief base and a plan base. The syntax of an

agent ag is given below:

ag ∶∶= (bs, ps)

where bs is a belief base and ps is a plan base.

In the following, we use a to denote an atom as defined in Section 3.2.1. We use b to

denote a ground atom, that is:

b ∶∶= p(t1, . . . , tn).

where p is a predicate of n-arity in the set of predicates PRED (see Section 3.2.1) and

t1, . . . , tn are ground terms.

The belief base bs is a finite set of beliefs which are ground first order atomic formulas.

The syntax of bs is given below:

bs ∶∶= b∗

The plan base ps is a non-empty finite set of plans. The syntax of a plan base is given

below:

ps ∶∶= p+

where the syntax of p is defined as:

p ∶∶= te ∶ ct← h.

Here, p consists of a head te ∶ ct where te is a triggering event and ct is a context query,

and a plan body h. The triggering event te is either an addition of a belief, a deletion of a

CHAPTER 6. SIMULATING JASON 103

belief, or an addition of a goal. When an agent selects an event to react to, the triggering

events of plans are used to determine whether the plans are relevant. The syntax of a

triggering event is listed below:

te ∶∶= +a ∣ −a ∣ +!a ∣ +?a

where a denotes an atom; +a denotes an event of adding a belief a, −a an event of deleting

a belief a, +!a an event of adding an achievement goal !a, and +?a an event of adding a

test goal. The context query ct is a conjunction of atoms and their negation. A relevant

plan p can be applied if the context query ct is a logical consequence of the current belief

base. The syntax of a context query is listed as follows:

ct ∶∶= true ∣ a ∣ not a ∣ ct1 & ct2

Finally, the plan body h is a sequence of external actions e, subgoals g and belief updates

u. Their syntax is given as follows:

h ∶∶= ǫ ∣ (ea ∣ g ∣ u ∣);h1

ea ∶∶= e(t1, . . . , tn)

g ∶∶= !a ∣?a

u ∶∶= +b ∣ −a

(n ≥ 0)

where ea ∈ ActionNames (for performing the external action ea on the environment); the

subgoal g is either an achievement goal !a (for generating an event of adding a subgoal) or

a test goal ?a (for reasoning about the belief base, if the test fails, an event of adding a test

goal is generated); and the belief update u is either an addition +b (for adding the belief b

into the belief base) or a deletion −a (for deleting beliefs matching a from the belief base).

The syntax presented above does not support events for handling plan failure (“−!a”

denoting a deletion of an achievement goal and “−?a” denoting a deletion of a test goal)

and communication actions. We do not consider events for handling plan failure since

Jason has not defined formal semantics for them. We also do not consider communication

CHAPTER 6. SIMULATING JASON 104

actions since the purpose of this chapter is to translate single Jason programs into single

meta-APL programs and hence communication is omitted.

6.1.2 Operational semantics

Informally, a Jason agent runs by generating intentions from its plan base and executing

these intentions. The application of plans is triggered by events. An event is a pair ⟨te, i⟩

where te is a triggering event and i is either ⊺ or an intention. An event of the form

⟨te,⊺⟩ is called an external event; an event of the form ⟨te, i⟩where i is the intention (which

generates the event by performing a subgoal) is called an internal event. An intention is

a stack of partially instantiated plans where plans in this stack are executed in the order

from the top to the bottom. In particular, the intention has the form of i = [p1] . . . [pn]

where pi are partially instantiated plans.

Deliberation cycle of Jason

The generation and execution of intentions follow the deliberation cycle as depicted in

Figure 6.1. In this figure, rectangles denote different phases in a deliberation cycle. The

double-lined rectangle marks the beginning of the cycle. Arrows illustrate possible tran-

sitions from a configuration of a phase to that of another. This deliberation cycle is com-

prised of the following phases:

1. ProcMsg: this phase processes received messages from other agents and perception

from the environment. Since we do not consider communication actions, this phase

only updates the belief base of the agent.

2. SelEv: this phase selects an event from the event base to react to. The selection is

defined by means of a function SE which returns an event from a set of events.

3. RelPl: this phase determines all plans from the plan base that are relevant to the

selected event. Such a plan has the selected event as its triggering event.

CHAPTER 6. SIMULATING JASON 105

ProcMsg

SelEv

RelPl

ApplPl

SelApplAddIM

SelInt

ExecInt

ClearInt

Figure 6.1: The deliberation cycle of Jason.

4. ApplPl: this phase checks which relevant plans are applicable according to the belief

base. A relevant plan is applicable if its context query is true in the current belief

base of the agent.

5. SelAppl: this phase selects one of the applicable plans to apply. The selection is

defined by means of a function SO
1 which returns a plan from a set of applicable

plans.

6. AddIM: this phase applies the selected applicable plan. As a result, a new intended

means is added into the set of intentions.

7. SelInt: this phase selects an intention for execution. The selection of intentions is

defined by means of a functionSI which returns an intention from a set of intentions.

1 O stands for options.

CHAPTER 6. SIMULATING JASON 106

8. ExecInt: this phase executes one step of the selected intention.

9. ClrInt: this phase deletes intended means, which has finished, from the set of inten-

tions.

Jason configuration

The operational semantics of Jason is defined by means of transition rules which allow

one to derive tree-like transition systems as the semantics of Jason agent programs. Each

branch on the tree corresponds to a run of an agent and is comprised of transitions be-

tween Jason configurations. A Jason configuration is defined as follows.

Definition 6.1.1 (Jason configurations). A configuration of a Jason agent is a tuple ⟨ag,C,T, s⟩

where:

• ag = (bs, ps) is an agent program which consists of a belief base bs and a plan base ps (as

defined by the syntax of Jason);

• C is a circumstance which is a triple (I,E,A) where:

– I is a set of intentions;

– E is a set of events; and

– A is a set of executed external actions;

• T is a tuple (R,Ap, i, ev, p) which stores temporary information, where:

– R is a set of relevant plans;

– Ap is a set of applicable plans;

– i is a selected intention;

– ev is a selected event; and

– p is a selected applicable plan;

CHAPTER 6. SIMULATING JASON 107

• s ∈ {ProcMsg,SelEv,RelPl,ApplPl,SelAppl,AddIM,SelInt,ExecInt,ClrInt} is a phase in-

dicator.

In a Jason configuration ⟨ag,C,T, s⟩ of an agent, only the plan base ps is unchanged

during the execution the agent.

Logical consequences are defined as follows. An atom a is a logical consequence of a

belief base bs (a set of positive literals) iff there exists b ∈ bs such that aθ = b for some most

general unifier θ. Then, we write bs ⊧ aθ. Conversely, we define bs ⊧ not a iff bs /⊧ a. For

a conjunction c of atoms and their negation, i.e., c = l1 ∧ . . . ∧ ln where li is either an atom

or atom’s negation, we write that bs ⊧ c iff bs ⊧ li for all i.

The set A consists of actions to be carried out in the environment. Therefore, in order

to execute an external action, it is added intoA. This addition tells the effector to perform

the added action in the environment.

Elements of T hold temporary information during the execution of an agent. For ex-

ample, when the agent selects and event to react to, it stores this event into ev which will

be used in subsequent phases. For convenience, we adopt the following subscript notation

to refer to components of ag, C and T :

• agbs is the belief base bs of the agent ag,

• CI , CE and CA refer to I , E and A, respectively, and

• TR, TAp, Ti, Te and Tp refers to R, Ap, i, ev and p, respectively. To indicate that no

intention has been selected, we write Ti = �. Similarly, we write Te = � and Tp = � to

indicate that no event and no applicable plan is selected, respectively.

In the operational semantics of Jason, plans from ps relevant to a selected event ev

are those whose triggering events match ev. Firstly, Jason defines a function TrEv which

extracts the triggering event from a plan TrEv(te ∶ ct ← h) = te, and Ctxt which extracts

the context query from a plan Ctxt(te ∶ ct ← h) = ct. Then, the set of these relevant plans

CHAPTER 6. SIMULATING JASON 108

is given as follows:

RelP lans(ps, ev) = {(p, θ) ∣ p ∈ ps ∧ θ is a substitution s.t. ev = TrEv(p) ∣ θ}

Then, plans from a set R of relevant plans are applicable if their contexts are the logical

consequences of the belief base bs. The set of applicable plans is given as follows:

ApplP lans(bs,R) = {(p, θ1θ2) ∣ ∃(p, θ1) ∈ R∧θ2 is a substitution s.t. bs ⊧ (Ctxt(p)θ1)θ2}

where θ1θ2 denotes the composition θ1 and θ2.

In the beginning, a Jason agent has no intentions, events or executed external actions.

It also does not have any temporary information. Let ag = (bs, ps) be an agent program

in Jason, then the initial configuration of this agent is given as ⟨ag,C0, T0,ProcMsg⟩where

C0 = (∅,∅,∅) and T0 = (∅,∅,�,�,�).

Transition rules

An agent in Jason runs by transiting from one configuration to another, starting from the

initial configuration. The transitions between configurations are specified by transition

rules.

At the beginning of a cycle, a Jason agent is in the ProcMsg phase where its belief base

is updated according to perception received from the environment. This update is carried

out by the belief update function which is called buf . The transition rule to update the belief

base is given as follows:

ag′bs = buf(env, agbs)

C ′E = CE ∪ {⟨+b,⊺⟩ ∣ b ∈ ag′bs ∖ agbs} ∪ {⟨−b,⊺⟩ ∣ b ∈ agbs ∖ ag
′
bs}

⟨ag,C,T,ProcMsg⟩→ ⟨ag′, C ′, T,SelEv⟩
(ProcMsg)

In this rule, apart from changes in the belief base, events about these changes (addition

and deletion of beliefs) are also added into the event base.

In the SelEv phase, the agent selects an event from the event base. If this is possible,

CHAPTER 6. SIMULATING JASON 109

i.e., the event base is not empty, the selection is given by the following transition rule:

CE /= ∅∧ T ′e = SE(CE) ∧C ′E = CE ∖ {T ′e}

⟨ag,C,T,SelEv⟩→ ⟨ag,C ′, T ′,RelPl⟩
(SelEv-1)

Otherwise, the agent skips the selection and moves to the SelInt phase to select an intention

for execution:

CE = ∅
⟨ag,C,T,SelEv⟩→ ⟨ag,C,T,SelInt⟩

(SelEv-2)

In the RelPl phase, the agent finds all plans from the plan base which are relevant to

the selected event. If there are such plans, the agent moves to the next phase to determine

applicable plans from the relevant ones:

RelP lans(agps, Te) /= ∅∧ T ′R = RelP lans(agps, Te)

⟨ag,C,T,RelPl⟩→ ⟨ag,C,T ′,ApplPl⟩
(Rel-1)

Otherwise, the agent returns to the previous phase (i.e., SelEv) to select another event:

RelP lans(agps, Te) = ∅

⟨ag,C,T,RelPl⟩→ ⟨ag,C,T,SelEv⟩
(Rel-2)

This means if the event base has no event which has relevant plans, eventually, the agent

uses (SelEv-2) to go to the SelInt phase. If the event base has some event which has relevant

plans, eventually, the agent uses (Rel-1) to go to the ApplPl phase.

In the ApplPl phase, the agent determines the set of applicable plans from TR which

are relevant to the selected event Te. If this set is not empty, it is stored in TAp. This is

given by the following transition rule:

ApplP lans(agbs, TR) /= ∅∧ T ′Ap = ApplP lans(agbs, TR)

⟨ag,C,T,ApplPl⟩→ ⟨ag,C,T ′,SelAppl⟩
(Appl-1)

Otherwise, the agent moves directly to the SelInt phase:

ApplP lans(agbs, TR) = ∅
⟨ag,C,T,ApplPl⟩→ ⟨ag,C,T,SelInt⟩

(Appl-2)

Note that if all relevant plans are not applicable, the agent does not go back to the SelEv

phase to select a different event. Instead, it carries on to the SelInt phase.

CHAPTER 6. SIMULATING JASON 110

In the SelAppl phase, the agent selects one of the applicable plans in TAp to apply. The

selected applicable plan is temporarily stored in Tp for the next phase:

SO(TAp) = (p, θ) ∧ T ′p = (p, θ)

⟨ag,C,T,SelAppl⟩→ ⟨ag,C,T ′,AddIM⟩
(SelAppl)

If the selected event Te is internal, this selected applicable plan is put on top of the

intention which generates the selected event:

Te = ⟨e, i⟩ ∧ Tp = (p, θ) ∧C ′I = CI ∪ {i[pθ]}

⟨ag,C,T,AddIM⟩→ ⟨ag,C ′, T,SelInt⟩
(IntEv)

Otherwise, the selected applicable plan forms a new intention:

Te = ⟨e,⊺⟩ ∧ Tp = (p, θ) ∧C ′I = CI ∪ {[pθ]}

⟨ag,C,T,AddIM⟩→ ⟨ag,C ′, T,SelInt⟩
(ExtEv)

In both transition rules above, the resulting configurations are in the SelInt phase where

the agent selects an intention for execution. If the intention base is not empty, the intention

selection is given by the following transition rule:

CI /= ∅ ∧ T ′i = SI(CI)

⟨ag,C,T,SelInt⟩→ ⟨ag,C,T ′,ExecInt⟩
(SelInt-1)

Otherwise, the agent finishes the current cycle and starts a new one as follows:

CI = ∅
⟨ag,C,T,SelInt⟩→ ⟨ag,C,T,ProcMsg⟩

(SelInt-2)

In the ExecInt phase, the agent executes the selected intention. This means executing

the first action in the top plan of the intention. Depending on the type of this action, we

have the following transition rules specifying the effect of its execution.

If the action is an external action, we have:

Ti = i[head← ea;h]

C ′I = CI ∖ {Ti} ∪ {i[head← h]}

C ′A = CA ∪ {ea}

⟨ag,C,T,ExecInt⟩→ ⟨ag,C ′, T,ClrInt⟩
(Action)

Note that C ′A = CA ∪ {ea} means that the agent sends the action to the effector so that it

will be performed on the environment.

CHAPTER 6. SIMULATING JASON 111

If the action is a subgoal, we have:

Ti = i[head←!g;h]

C ′I = CI ∖ {Ti}

C ′E = CE ∪ {⟨+!g, Ti⟩}

⟨ag,C,T,ExecInt⟩→ ⟨ag,C ′, T,ClrInt⟩
(AchvGl)

If the action is a test goal and the test goal is true with respect to the belief base, we

have:

Ti = i[head←?g;h]

agbs ⊧ gθ

C ′I = CI ∖ {Ti} ∪ {i[(head← h)θ]}

⟨ag,C,T,ExecInt⟩→ ⟨ag,C ′, T,ClrInt⟩
(TestGl-1)

If the test goal is not true, we have

Ti = i[head←?g;h]

agbs /⊧ g

C ′E = CE ∪ {⟨+?g, Ti⟩}

C ′I = CI ∖ {Ti}

⟨ag,C,T,ExecInt⟩→ ⟨ag,C ′, T,ClrInt⟩
(TestGl-2)

If the action is to add a belief, we have

Ti = i[head← +b;h]

ag′bs = agbs ∪ {b}

C ′E = CE ∪ {⟨+b,⊺⟩}

C ′I = CI ∖ {Ti} ∪ {i[head← h]}

⟨ag,C,T,ExecInt⟩→ ⟨ag′, C ′, T,ClrInt⟩
(AddBel)

Recall that b denotes a ground atom.

If the action is to delete beliefs, we have

Ti = i[head← −at;h]

ag′bs = agbs ∖ {b ∣ ∃θ ∶ b = atθ}

C ′E = CE ∪ {⟨−at,⊺⟩}

C ′I = CI ∖ {Ti} ∪ {i[head← h]}

⟨ag,C,T,ExecInt⟩→ ⟨ag′, C ′, T,ClrInt⟩
(DelBel)

CHAPTER 6. SIMULATING JASON 112

Recall that atdenotes an atom which may have variables. Therefore, the effect of the action

−at is to delete all beliefs which match with at.

After executing the selected intention, the agent is in the ClrInt phase. In this phase,

the agent cleans the executed intention if its plan is empty.

If the executed intention contains only one plan which is empty, this intention is deleted

from the intention base:

Ti = [head← ǫ]

C ′I = CI ∖ {Ti}

⟨ag,C,T,ClrInt⟩→ ⟨ag,C ′, T,ProcMsg⟩
(ClrInt-1)

If the executed intention has more than one plan and the top plan is empty, this top

plan is removed from the intention:

Ti = i[head′ ←!g;h][head← ǫ]

θ is a substitution s.t. +!g = TrEv(head← ǫ) ∣ θ

C ′I = CI ∖ {Ti} ∪ {i[(head′ ← h)θ]}

⟨ag,C,T,ClrInt⟩→ ⟨ag,C ′, T,ClrInt⟩
(ClrInt-2)

In the final case, when the executed intention is not empty, no cleaning is needed, the

agent starts a new cycle as follows:

Ti /= [head← ǫ] ∧ Ti /= i[head← ǫ]

⟨ag,C,T,ClrInt⟩→ ⟨ag,C,T,ProcMsg⟩
(ClrInt-3)

6.1.3 Selections in a deliberation cycle

A deliberation cycle of a Jason agent is a sequence of transitions s0
a1Ð→ s1 . . .

akÐ→ sk where

two end configurations s0 and sk are of the phase ProcMsg and transitions are derived from

the transition rules of Jason operational semantics. We will characterise a deliberation

cycle of a Jason agent in terms of selections (of an event, plan, or intention) performed

during the cycle.

The first selection is for an event which is made from a configuration whose phase

indicator is SelEv. At this configuration, there is either a transition labelled with (SelEv-1)

CHAPTER 6. SIMULATING JASON 113

or another with (SelEv-2). The latter transition corresponds to the case when the event

base is empty, thus, no event is selected in this deliberation cycle. Otherwise, the former

transition selects an event from the event base and outputs a configuration with the RelPl

phase where relevant plans from the plan base are determined. If no such plan exists, the

next transition is (Rel-2) which returns to the SelEv phase in order to select another event,

and then (SelEv-1) is repeated. This repetition only terminates when either an event which

has some relevant plans is selected, where there is a transition (Rel-2) following (SelEv-1)

and the selected event is called a relevant event, or there is no event left to select, where

there is a transition (SelEv-2). Hence, we define:

Definition 6.1.2. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a Jason agent ag. Then,

• c selects a relevant event ev if there is a transition ai = (Rel-1) for some 1 ≤ i ≤ k where

ev = Te and si−1 = (ag,C,T,RelPl),

• c does not select any relevant event if there is a transition ai = (SelEv-2) for some 1 ≤ i ≤ k.

The second selection is for an applicable plan. It is made from a configuration of the

SelAppl phase by a transition label (SelAppl). In order to arrive at the SelAppl phase, there

must be a transition (Appl-1) from a configuration of the ApplPl phase just before (SelAppl)

where the set of applicable plans is determined to be non-empty. Otherwise, there is a

transition labelled (Appl-2) instead of (Appl-1) which means that no applicable plan is

selected in this deliberation cycle. Hence, we define:

Definition 6.1.3. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a Jason agent ag. Then,

• c selects an applicable plan ap if there is a transition ai = (SelAppl) for some 1 ≤ i ≤ k where

ap = Tp and si = (ag,C,T,AddIM),

• c does not select any applicable plan if there is a transition ai = (Appl-2) for some 1 ≤ i ≤ k.

The last selection is for an intention to execute. It is made from a configuration of

the SelInt phase. If there is an intention to select, the selection for an intention is carried

CHAPTER 6. SIMULATING JASON 114

out by a transition labelled with (SelInt-1) from this configuration. Otherwise, there is a

transition (SelInt-2) from this configuration instead of (SelInt-1). Hence, we define:

Definition 6.1.4. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a Jason agent ag. Then,

• c selects an intention int to execute if there is a transition aj = (SelInt-1) for some 1 ≤ j ≤ k

where int = Ti and sj = (ag,C,T,ExecInt),

• c does not select any intention to execute if there is a transition aj = (SelInt-2) for some

1 ≤ j ≤ k.

6.2 Translation

We define a translation function to translate a Jason agent program into a meta-APL agent

program such that two agents are equivalent under the notion of weak bisimulation.

6.2.1 Outline of the translation

We define the translation function based on correspondences between phases of Jason’s

deliberation cycles and meta-APL’s deliberation cycles. These correspondences are illus-

trated as dashed, two-ended arrows in Figure 6.2.

The first correspondence is between the ProcMsg phase of Jason’s deliberation cycle

and the Sense phase of meta-APL’s deliberation cycle where agents update their belief

bases according to perception received from the environment. Note that ProcMsg gener-

ates events about changes in a belief base and so does Sense (see the transition rule Sense

in Section 4.3.1). Furthermore, completed intentions are cleared just before the ProcMsg

phase of Jason’s deliberation cycles while meta-APL’s operational semantics defines that

the Sense phase follows the Exec phase immediately. This means it is necessary for the

translation to clear completed intentions as soon as possible after Exec. This is done by

suitable meta rules which delete completed intentions. Finally, right after the ProcMsg

phase, Jason’s deliberation cycle has the SelEv phase which eventually selects an event

CHAPTER 6. SIMULATING JASON 115

Stage 0
“Sense”

Stage 1
“Apply R1”

Stage 2
“Apply R2”

Stage 3
“Apply R3”

Stage 4

Stage 5

ProcMsg

SelEv

RelPl

ApplPl

SelApplAddIM

SelInt

ExecInt

ClearInt

Figure 6.2: The correspondence between Jason’s and meta-APL’s deliberation cycles.

relevant to some plan (if a non-relevant event is selected, the Jason agent has to return to

SelEv to select another event). We will also simulate this by means of meta rules which

which look for relevant events specified by plans in the plan base of the Jason agent. The

meta rules for cleaning completed intention and selecting relevant events form the rule

set R1 in the translation.

The next correspondence is about generating relevant and applicable plans. In Jason’s

deliberation cycle, these are done in two phases RelPl and ApplPl where relevant plans

and applicable plans are generated from the plan base and the selected event. They can

be simulated by means of object-level rules in meta-APL where each plan in the Jason

plan base is translated into an object-level rule. These object-level rules comprise the next

rule set R2.

Then, the third correspondence is between the selection of an applicable plan to add

into the intention base and the selection of an intention for execution. In Jason, these are

done by a combination of three phases SelAppl, AddIM and SelInt. We simulate them by

a meta rule which promotes one of the new plan instances generated by the object level

rules in R2 to be intended and another meta rule which selects one of intentions to be

CHAPTER 6. SIMULATING JASON 116

executed in this cycle. These meta rules comprise the rule set R3.

We define a translation function trJason, illustrated in Figure 6.3 that translates a Jason

agent program into a meta-APL one. The function is defined in terms of three component

functions:

• trbel which translates beliefs into atoms,

• trrel which extracts relevant events from plans,

• trplan which translates plans into object-level rules.

bs

ps

Q

M

R1

R2

A

R3

Jason program

meta-APL program

trJason

trplan

trrel

trbel

Figure 6.3: The translation function trJason.

The result of trJason is an agent program which includes an initial atom baseA, a setQ

of clauses for defining additional queries, a set M of macros for defining additional meta

actions, and three rule sets R1, R2 and R3. The elementsQ, M , R1 and R3 are common to

all Jason agent programs. In contrast, A and R2 depends on the initial belief base and the

plan base of a Jason agent program. In particular, A is obtained by translating beliefs in

CHAPTER 6. SIMULATING JASON 117

the initial belief base and extracting relevant events from plans in the plan base; and R2

is obtained by translating plans in the plan base into object-level rules.

6.2.2 The static part of the translation

Defining additional queries

The set Q contains additional queries which will be used to construct meta rules and

object-level rules in the translation. In particular, we define queries: “relevant-event”

which checks if an atom is relevant; “selected-event” which retrieves the selected event

of the current deliberation cycle; “trigger-event” which checks if an event is relevant;

“plan-at” and “intention-at” which check if a plan instance or an intention is created at

a cycle, respectively; and “executable-intention” which checks if an intention has no sub-

goal. These queries are defined below:

relevant-event(E)← atom(_, relevantEvent(E)) (6.1)

selected-event(I)← cycle(N),atom(_, selectedEvent(I,N)) (6.2)

trigger-event(I)← atom(I,E), relevant-event(E),not justification(_, I) (6.3)

plan-at(I,N)← plan(I,_), cycle(I,N) (6.4)

intention-at(I,N)← plan-at(I,N), state(I,intended) (6.5)

executable-intention(I)← state(I,intended),not subgoal(I,_) (6.6)

The query relevant-event is defined by the query (6.1) where an atom E is relevant

if there is an an instance of the atom relevantEvent(E). Recall that in Jason an event is

relevant if it can be unified with the triggering event of a plan in the plan base. Therefore,

in the translation, we transform triggering events of plans in the plan base into instances

of atoms relevantEvent(E). This transformation is defined by a translation function call

trrel defined in Section 6.2.3.

The query selected-event is defined by clause (6.2) where we first get the numberN of

the current deliberation cycle by the query cycle(N) and then check if there is an instance

CHAPTER 6. SIMULATING JASON 118

of the atom selectedEvent(I,N). The existence of such an instance means that an event

with id I is selected in cycle N . This will be encoded by the meta rule (6.12) in R1.

The query trigger-event is defined by clause (6.3) where we use the query relevant-event

to check if an event is relevant and the query justification to check that the event has not

been used to generate an intention.

The queries plan-at and intention-at are defined by clauses (6.4) and (6.5) where we

query the cycle at which a plan instance or an intention is created. They are used to form

meta rule (6.13) in R3.

The query executable-intention is defined by clause (6.6) where we use the query state

to check if a plan instance is an intention, i.e., it has the flag intended, and the query

subgoal to check if this plan instance has no subgoal.

Defining additional meta-actions

We define in the translation two additional meta actions which simulate actions of adding

and deleting belief of Jason, i.e., actions of the form +b and −a. Therefore, the transitions

(AddBel) and (DelBel) in Jason will be simulated by the transition (EXEC-META) of these

two additional meta actions, respectively. These meta actions take the side effects of +b

and −a into account where events of belief addition and belief deletion are generated into

the event base. They are defined in M as follows:

add-belief(B) = add-atom(I, belief(B)),add-atom(J,+belief(B)) (6.7)

del-belief(A) = delete-atom(I, belief(A)),add-atom(J,−belief(A)) (6.8)

In macro (6.7), the meta action add-belief(B) add an instance of the atom belief(B)

into the atom base in order to simulate that a belief ofB is added into the belief base of the

Jason agent. Besides, an instance of the event +belief(B) describing the event of adding

a belief is also added.

Similarly, in macro (6.8), the meta action del-belief(A) removes instances of atoms

belief(A). Also, an instance of the event −belief(B) describing the event of removing

CHAPTER 6. SIMULATING JASON 119

beliefs is also added.

Note that both additional atoms +belief(B) and −belief(A) are added to simulate the

belief addition and deletion events in Jason. The role of these events will be finished when

they are selected (and deleted) in the operational semantics of Jason (see rule (SelEv-1)).

In our translation, the role of these atoms +belief(B) and −belief(A) are finished when

they are selected (see rule (6.12)).

Defining meta rules for R1

R1 contains meta rules which are responsible for removing non-intended plan instances

from the previous cycle, clearing completed intentions, and selecting a relevant event for

generating a plan instance in this deliberation cycle. These meta rules are defined below:

plan(I,_),not state(I,intended)→ delete-plan(I) (6.9)

executable-intention(I),plan(I, ǫ), justification(I, J),not subgoal(_, J)

→ delete-atom(J) (6.10)

executable-intention(I),plan(I, ǫ), justification(I, J), subgoal(K,J),

substitution(I, S)→ set-substitution(K,S),delete-atom(J) (6.11)

cycle(N),not selected-event(_), trigger-event(I)

→ add-atom(selectedEvent(I,N)) (6.12)

The meta rule (6.9) is for deleting unintended plan instances. First, it queries plan

instances which do not have the flag intended by the query “plan” and “state”. Then, it

deletes these plan instances.

The two next meta rules simulate the transition rules (ClrInt-1) and (ClrInt-2) for clear-

ing completed intentions, respectively. First, they query completed intentions, i.e., exe-

cutable intentions whose plans are empty. Recall that an intention is executable if it does

not have any subgoal. If a completed intention with id I is for reacting to an external

event, i.e., not a subgoal of another intention, the meta rule (6.10) clears the completed

CHAPTER 6. SIMULATING JASON 120

intention with id I by removing the instance of this external event. In other words, this

is a translation for the transition rules (ClrInt-1) where an intention is deleted from the

intention base. Otherwise, if a completed intention with id I is for reacting to an an in-

ternal event, i.e., a subgoal of another intention with id K, the meta rule (6.11) clears the

completed intention by first extending the substitution of the intention with id K with

that of the intention with id I and removing the instance of the internal event. This is a

translation for the transition rule (ClrInt-2) where the top plan is removed from the in-

tention and the substitution (obtained by unifying the triggering event of the top plan

and the achievement goal in the next plan in the intention) is applied to this next plan.

Here, some variables in the triggering event of the top plan may be instantiated as the

result of executing the top plan (such as by some test goals); these instantiations are then

propagated into the next plan by applying the substitution to the next plan.

Finally, the meta rule (6.12) is for selecting a relevant event, i.e., it simulates the transi-

tion (SelEv-1) in Jason. Here, we assume that the Jason function SE selects events nonde-

terministically, and that (6.12) relies on this assumption. It first queries the number N of

the current cycle, makes sure that no relevant event has been selected by using the query

“selected-event” defined by (6.2) and queries for a relevant event with id I . The selection

is done in (6.12) by adding an instance of the atom selectedEvent(I,N). Other selection

functions SE can be encoded by modifying (6.12).

Defining meta rules for R3

R3 contains meta rules which select one plan instance to become an intention, select one

intention to execute in this deliberation cycle, and revise a test action to a corresponding

subgoal action if it is scheduled to be executed. These meta rules are as follows:

CHAPTER 6. SIMULATING JASON 121

cycle(N),plan-at(I,N),not intention-at(_,N)

→ set-state(I,intended) (6.13)

not state(_,scheduled), executable-intention(I),not state(I,failed)

→ set-state(I,scheduled) (6.14)

state(I,scheduled),plan(I, ?q;P),not q → set-plan(I, !(+test(q));P) (6.15)

The meta rule (6.13) sets a new intention by first querying a plan instance with id I

which is generated in the current cycle via the query “plan-at”. Therefore, it simulates the

effect of the sequence of two transitions (SelAppl) and either (IntEv) or (ExtEv), depending

on whether the selected event is a subgoal or not. This meta rule also makes sure that no

intention has been generated in the current cycle using the query “intention-at”. Then,

this meta rule sets the flag intended of the plan instance with id I .

The meta rule (6.14) selects an intention for execution by looking for an executable

intention with id I , i.e., having no subgoal. Then, this meta rule sets the flag scheduled

of the plan instance with id I . This is equivalent to the transition (SelInt-1) in Jason.

The meta rule (6.15) revises a test action of an intention which is selected to be executed

into a subgoal action when the test action fails. This implements the way where Jason

deals with failed tests (defined in the transition rule (TestGl-2)) where a failed test goal

gives rise to an event of the form +?q. In our translation, such an event is translated into

+test(q).

6.2.3 Component translation functions

Translating a belief trbel

Each belief in the belief base is wrapped in the predicate belief by trbel as follows:

trbel(b) = belief(b)

CHAPTER 6. SIMULATING JASON 122

Extracting relevant events by trrel

The triggering event of a plan in Jason determines which event is relevant to the plan. We

extract this by trrel as follows:

trrel(te ∶ ct← h) = relevantEvent(trevent(te))

where the translation of the triggering event te depends on the type of te and is given as

follows:

trevent(+a) = +belief(a)

trevent(−a) = −belief(a)

trevent(+!a) = +goal(a)

trevent(+?a) = +test(a)

Translating a plan by trplan

Each plan in a plan base is translated into an object-level rule, i.e., trplan(te ∶ ct← h) gives

the following rule:

atom(I, trevent(te)) ∶ selected-event(I), trquery(ct)→ trbody(h)

where I is a fresh variable which does not appear in te ∶ ct ← h; the translation of the

context ct is defined as follows:

trquery(⊺) = ⊺

trquery(a) = belief(a)

trquery(not a) = not belief(a)

trquery(ct1&ct2) = trquery(ct1), trquery(ct1)

CHAPTER 6. SIMULATING JASON 123

and the translation of the plan body h is defined defined inductively on the length of h as

follows:

trbody(ǫ) = ǫ

trbody(ea) = ea if ea is an external action

trbody(!a) = !(+goal(a))

trbody(?a) = ?(belief(a))

trbody(+b) = add-belief(b)

trbody(−a) = del-belief(a)

trbody(h1;h2) = trbody(h1); trbody(h2)

The translation function trJason

Finally, we combine trbel, trrel and trplan to define the translation function trJason. Given a

Jason program ag = (bs, ps), we define trJason(ag) = (A,Q,M,R1,R2,R3)whereQ,M,R1,R3

are defined in Section 6.2.2 and

• A = {trbel(b) ∣ b ∈ bs} ∪ {trrel(p) ∣ p ∈ ps}, and

• R2 = {trplan(p) ∣ p ∈ ps}.

Note that, in the above description of the translation from Jason to meta-APL, we have

mentioned how transitions in Jason’s operational semantics are simulated. Figure 6.4

summarises these simulations. In this summary, we don’t mention the cases of (SelEv-2),

(Rel-2), (Appl-2) and (SelInt-2) as their simulations are more involved. In particular, for

(SelEv-2) and (Rel-2), we record all relevant events in atoms of the form relevantEvent(e)

as the plan base of a Jason agent is translated by the function trrel. This helps the trans-

lation agent in meta-APL avoid selecting non-relevant event. Later in the proof, we also

ignore relevant events when comparing configurations of the Jason and meta-APL agents

since they do not create new intentions, and hence, do not contribute to the behaviour

of the agents via actions they performed. For (Appl-2) and (SelInt-2), they are implicitly

CHAPTER 6. SIMULATING JASON 124

Transition Simulated by

ProgMsg SENSE

SelEv-1 META-APPLY-1 which applies (6.12)

Rel-1, OBJ-APPLY-1’s which apply trplan(r)

Appl-1 where r’s are both relevant and applicable

SelAppl, META-APPLY-1 which applies (6.13), non-selected

IntEv, ExtEv plan instances are cleaned by (6.9) in the next cycle

SelInt-1 META-APPLY-1 which applies (6.14)

Action EXEC-EA

AchvGl EXEC-GOAL

TestGl-1 EXEC-TEST-1

TestGl-2 META-APPLY-1 which applies (6.15)

AddBel, EXEC-META which executes

DelBel additional meta actions (6.7) and (6.8)

ClrInt-1 META-APPLY-1 which applies (6.10)

ClrInt-2 META-APPLY-1 which applies (6.11)

ClrInt-3 NEW-CYCLE

Figure 6.4: The simulation of Jason transitions in the translation.

simulated by the transitions (OBJ-APPLY-2) and (META-APPLY-2), respectively. When

(Appl-2) is enabled, this means no plan in the plan base of the Jason agent is applicable,

this also means none of their translations by the function trplan is applicable. Hence, in

the phase when object level rules in R2 are considered to be applied, the transition (OBJ-

APPLY-2) is enabled and it simulates (Appl-2), while no (OBJ-APPLY-1) can be performed.

When (SelInt-2) is enabled, this means there is no intention to select; therefore, the meta

rule (6.14) is not applicable. Then, in the phase when meta rules in R3 are considered to

be applied, only (META-APPL-2) is applicable and it simulates (SelInt-2).

CHAPTER 6. SIMULATING JASON 125

6.2.4 Simulating selections

A deliberation cycle of a meta-APL agent is a sequence of transitions s0
a1Ð→ s1 . . .

akÐ→ sk

where configurations s0 and sk have the Sense phase, i.e., their phase counter is 0. In the

translation of Jason, the selections of a relevant event, an applicable plan and an intention

to execute of a Jason deliberation cycle are simulated by applying the meta rule (6.12) in

R1, the meta rule (6.13) in R3, and the meta rule (6.14) in R3, respectively. These meta

rules are applied by transition labels (META-APPLY-1). Hence, we have the following

definition:

Definition 6.2.1. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a translation of a Jason

agent in meta-APL. Then,

• c selects a relevant event ev if there is a transition ai = (META-APPLY-1), for some 1 ≤

i ≤ k, of applying the meta rule (6.12) where I = id(a) for some atom instance a of si and

ev = atom(a).

• c does not select any relevant event if there is no transition (META-APPLY-1) of applying

(6.12) in the cycle.

• c selects an applicable plan ap if there is a transition ai = (META-APPLY-1), for some

1 ≤ i ≤ k, of applying the meta rule (6.13) where I = id(p) for some plan instance p of si and

ap = plan(p).

• c does not select any applicable plan if there is no transition (META-APPLY-1) of applying

(6.13) in the cycle.

• c selects an intention int to execute if there is a transition ai = (META-APPLY-1), for some

1 ≤ i ≤ k, of applying the meta rule (6.14) where I = id(p) for some plan instance p of si and

int = plan(p).

• c does not select any intention to execute if there is no transition (META-APPLY-1) of ap-

plying (6.14) in the cycle.

CHAPTER 6. SIMULATING JASON 126

6.3 Equivalence of trJason

In this section, we show that the translation into meta-APL of a Jason agent simulates the

behaviour of the Jason agent under the notion of weak bisimulation. To this end, we show

that there is a strong bisimulation between deliberation cycles of the Jason agent and that

of the translation. Furthermore, this bisimulation satisfies the two conditions specified

in Theorem 5.2.6 and, therefore, its existence entails a weak bisimulation between two

agents.

6.3.1 Observations

First of all, let us define observable properties of configurations of Jason agents and meta-

APL agents with respect to the translation trJason. Given a Jason configuration s = ⟨ag,C,T, p⟩,

we stipulate that observation of s is possible when s has the ProcMsg phase. Then, obser-

vation of s consists of beliefs in the belief base, relevant events in the event base, and

incomplete intentions in the intention base as follows:

observe(s) = ⊺ if p /= ProcMsg

observe(s) = (Bs,Es, Is) if p = ProcMsg

where Bs,Es, Is are defined as follows

• Bs = {belief(b) ∣ b ∈ agbs};

• Es = {trtrigger(te, i) ∣ ⟨te, i⟩ ∈ CE ∧ RelP lans(agps, ⟨te, i⟩) /= ∅} where the function

trtrigger converts Jason triggering events into a interleave sequence (starting with a

subgoal) of meta-APL-like subgoals and meta-APL-like intentions, and is defined

below:

– trtrigger(te,⊺) = trevent(te);

– trtrigger(+!g, [te ∶ ct←!g′;h]) = trevent(+!g)→ trbody(h)→ trevent(te);

– trtrigger(+!g, i[te ∶ ct←!g′;h]) = trevent(+!g)→ trbody(h)→ trtrigger(te, i).

CHAPTER 6. SIMULATING JASON 127

• Is = {trint(i) ∣ i ∈ CI} where the function trint converts Jason intention into an

interleaved sequence (starting with an intention) of meta-APL-like subgoals and

meta-APL-like intentions, and is defined below:

– trint([te ∶ ct← h]) = trbody(h);

– trint(i[te ∶ ct← h]) = trbody(h)→ trtrigger(te, i).

Given a meta-APL configuration t = ⟨A,Π, ρ, n⟩, we stipulate that observation of t is

possible if the value of the stage counter is 0 (i.e., of the Sense phase). Then, observation

of t consists of instances of beliefs and relevant events in the atom base, and incomplete

intentions in the intention base as follows:

observe(t) = ⊺ if ρ /= 0

observe(t) = (Bs,Es, Is) if ρ = 0

where Bs,Es, Is are defined as follows:

• Bs = {belief(b) ∣ ∃a ∈ A ∶ atom(a) = belief(b)}.

• Es = {cvevent(a, t) ∣ a ∈ A,RelP lans(agps, ⟨tr−1event(atom(a)),⊺⟩) /= ∅ ∧ ¬∃p ∈ Π ∶

id(a) ∈ justs(p)} where the conversion functions cvevent and cvint simplify instances

of events and intentions and are defined as follows:

– cvevent(a, t) = atom(a) if ¬∃p ∈ Π ∶ id(p) = par(a);

– cvevent(a, t) = atom(a)→ cvint(p, t) if ∃p ∈ Π ∶ id(p) = par(a);

– cvint(p, t) = plan(p)θ → cvevent(a, t) where θ = subs(p) and a ∈ A such that

id(a) ∈ justs(p);

Recall that functions atom(a), plan(p) and subs(p) were defined in Page 70.

• Is = {j ∣ ∃i ∈ Π ∶ (¬∃a ∈ A ∶ id(p) = par(a)) ∧ j = clear(cvint,subst(i, t)) ∧ j /= ǫ}

where the function cvint,subst(i, t) is defined similar to cvint(i, t) except keeping the

substitutions along with plan bodies as follows:

CHAPTER 6. SIMULATING JASON 128

– cvint,subst(p, t) = (plan(p), subs(p)) → cvevent,subst(a, t) where a ∈ A such that

id(a) ∈ justs(p);

– cvevent,subst(a, t) = atom(a) if ¬∃p ∈ Π ∶ id(p) = par(a);

– cvevent,subst(a, t) = atom(a)→ cvint,subst(p, t) if ∃p ∈ Π ∶ id(p) = par(a);

and the functions clear is used for clearing completed intentions and is defined –

similarly to Jason’s transition rules (ClrInt-1) and (ClrInt-2) – as follows:

clear((ǫ, θ)→ e) = ǫ

clear((ǫ, θ)→ e0 → (π0, θ0)→ e1) = π0θ0θ → e1

clear((ǫ, θ)→ e0 → (π0, θ0)→ e1 → (π1, θ1) . . .→ en) = π0θ0θ → e1 → π1θ1 . . .→ en

clear((π, θ)→ e0 → (π1, θ1)→ . . .→ en) = πθ → e0 → π1θ1 . . .→ en if π /= ǫ

6.3.2 Equivalence

Theorem 6.3.1. Given a Jason agent ag = (bs, ps), let (A,Q,M,R1,R2,R3) = trJason(ag) be its

translation in Meta-APL, we have that (bs, ps) and (A,Q,M,R1,R2,R3) are weakly bisimilar.

Proof.

Let s0 be the initial configuration of the Jason agent (bs, ps).

Let t0 be the initial configuration of the translated agent (A,Q,M,R1,R2,R3).

We construct in this proof a strong bisimulation, denoted by ∼, between deliberation

cycles of ag and trJason(ag), which satisfies conditions (1) and (2) of Theorem 5.2.6. This

strong bisimulation ∼ is constructed inductively with the help of an auxiliary binary re-

lation ∼Sense between configurations of phases ProcMsg and Sense in RC(s0) and RC(t0),

respectively.

Let c ∈ DC(s0) be a deliberation cycle of ag and d ∈ DC(t0) be a deliberation cycle of

trJason(ag).

We say that:

CHAPTER 6. SIMULATING JASON 129

• c and d select the same relevant event if c selects a relevant event ⟨e, i⟩ and d selects

a relevant event a where trevent(e) = atom(a),

• c and d select the same applicable plan if c selects an applicable plan head ← h and

d selects an applicable plan p where trbody(h) = plan(p),

• c and d select the same intention to execute if c selects an intention i[head← h] and

d selects an intention p where trbody(h) = plan(p).

Then, we say that c and d select bisimilar items if they select (i) the same relevant event

or no relevant event, (ii) the same applicable plan or no applicable plan, and (iii) the same

intention to execute or no intention to execute.

Given two configurations s ∈ RC(s0) and t ∈ RC(t0), we define the set of pairs of

deliberation cycles which select bisimilar items and start from s and t, respectively, as

follows:

eq(s, t) = {(c, d) ∈DC(s0) ×DC(t0) ∣ first(c) = s, first(d) = t,

c and d select bisimilar items}

Below, we define binary relations:

• ∼k, where k ∈ N, between deliberation cycles of the Jason agent and the meta-APL

agent (intuitively, if we number deliberation cycles in a run starting from 1,2, . . .,

then ∼k relates kth deliberation cycles);

• ∼k
Sense

, where k ∈ N, between configurations of the Jason agent and the meta-APL

agent (intuitively, ∼k
Sense

relates the beginning configurations of (k+1)th deliberation

cycle); and

• ∼ between deliberation cycles of the Jason agent and the meta-APL agent.

CHAPTER 6. SIMULATING JASON 130

These binary relation is defined inductively as follows:

∼0= ∅

∼0
Sense
= {(s0, t0)}

∼n+1= {(c, d) ∈DC(s0) ×DC(t0) ∣ ∃ s ∼nSense
t ∶ (c, d) ∈ eq(s, t)}

∼n+1
Sense
= {(s, t) ∈ RC(s0) ×RC(t0) ∣ ∃ c ∼n+1 d ∶ last(c) = s ∧ last(d) = t}

∼= ⋃n≥0 ∼
n

In the following, we establish and prove Claims 6.3.2, 6.3.3, 6.3.4, 6.3.5, and 6.3.6. The

results from these claims will be used to prove that the binary relation ∼ constructed above

satisfies the conditions of Theorem 5.2.4.

Claim 6.3.2. Let s ∈ RC(s0) be a configuration in the ProcMsg phase of ag and t ∈ RC(t0) be a

configuration in the Sense phase of trJason(ag), if observe(s) = observe(t) and (c, d) ∈ eq(s, t),

then observe(last(c)) = observe(last(d)) .

Proof. As (c, d) ∈ eq(s, t), c and d select the same items, i.e., they select the same event, the

same applicable plan, and the same intention to execute. We show that observe(last(c)) =

observe(last(d)) by analysing the change of configurations along c and d.

If a relevant event e is selected by c, then phases RelPl and ApplPl generates all relevant

plans and applicable plans from the selected events. Then, d also selects the same event e

which generates all plan instances which correspond to applicable plans generated in c.

If c selects an applicable plan ap in SelAppl, then d also selects the corresponding plan

instance and sets it to become an intention.

If c selects the intention i to execute, then d also selects the corresponding intention i

to execute. Then, they both perform the same actions and produce the same effect on the

environment (if the action is an external one) or on the mental state of the internal state

(if the action is an internal action).

Thus, changes occurred between s and last(c) are equivalent to those between t and

last(d):

CHAPTER 6. SIMULATING JASON 131

• For any new (or deleted) belief in last(c), it must be caused by either a new percep-

tion or the effect of performing a belief update action. Equivalently, its correspond-

ing atom instance is also new in last(d) because we have the same new perception

or the same belief update action performed resulting the same effect to the atom

base.

• For any new intention in last(c)which is created by a plan p, then the corresponding

intention is also created in last(d) by trplan(p).

Therefore, observe(last(c)) = observe(last(d)).

Claim 6.3.3. Given (s, t) ∈∼n
Sense

, then observe(s) = observe(t).

Proof. The base case is trivial.

In the induction step, assume s ∼n+1
Sense

t. Then, there exists c ∼n+1 d such that last(c) = s

and last(d) = t. Then, there exists s′ ∼n
Sense

t′ such that (c, d) ∈ eq(s′, t′). By induction hy-

pothesis, we have that s′ ∼n
Sense

t′ implies observe(s′) = observe(t′). Then, by Claim 6.3.2,

we have that observe(last(c)) = observe(last(d)), i.e., observe(s) = observe(t).

Claim 6.3.4. If (c, d) ∈ eq(s, t), then label(c) = label(d).

Proof. As (c, d) ∈ eq(s, t), they select bisimilar items.

• If c contains a transition corresponding to the execution of an external action a, as

other transitions are silent, then, label(c) = a. Since c and d select bisimilar items, d

also executes a. Thus, label(d) = a. Hence, label(c) = label(d).

• If c does not contain any transition corresponding to the execution of an external

action, all transitions in c are silent. Then, label(c) = ǫ. Since c and d select bisimilar

items, d does not execute any external action. Thus label(d) = ǫ. Hence, label(c) =

label(d).

CHAPTER 6. SIMULATING JASON 132

Claim 6.3.5. For any s ∼n
Sense

t and any cycle c from s, there exists a cycle d from t such that

(c, d) ∈ eq(s, t) and observe(last(c)) = observe(last(d)).

Proof. We shall construct d along transitions of c.

If c selects a relevant event ev, this event is either already in the event base prior to c

or a new event (caused by changes in the belief base according to the update by the tran-

sition (ProcMsg) at the beginning of c). In the former case, as s ∼n
Sense

t, by Claim 6.3.3,

observe(s) = observe(t). Thus, there is an atom instance a such that atom(a) = trevent(e)

in t. In the latter case, changes in the belief base after the transition (SENSE) give rise

to atom instances of events about these changes by the definition of the transition rule

(SENSE). Therefore, there is also a new atom instance a such that atom(a) = trevent(e)

after the phase of applying meta rules in R1 from t. Therefore, there is a deliberation cy-

cle de from twhich applies the meta rule (6.12) to a and generates an instance of the atom

selectedEvent(id(a),N)whereN is the current cycle counter. Then d is constructed from

the beginning of de to the configuration obtained by applying the meta rule (6.12). Note

that during this beginning of de, the meta rules (6.9), (6.10) and (6.11) may have been ap-

plied. (6.9) clears intentions corresponding to applicable plans from the previous cycle

which are not selected. (6.10) clears intentions which are completely executed and are

not justified by some subgoals; this implements the transition rules (ClrInt-1) of Jason.

Finally, (6.11) clears intentions which are completely executed and are justified by some

subgoals; this implements the transition rules (ClrInt-2) of Jason where the substitution

of the complete intentions are used to extend the substitution of the direct parental inten-

tions. Although in Jason, this is done at the end of the previous cycle of c, this does not

effect the equivalence between observations at the beginning configurations of c and d as

in the way we define the function observe(t), we ignore the intentions removed by (6.9),

(6.10) and (6.11) already.

Conversely, if c does not select any relevant event, there are no deliberation cycles from

t which apply the meta rule (6.12). Let de be an arbitrary deliberation cycle from t. Then

CHAPTER 6. SIMULATING JASON 133

d is constructed from the beginning of de to the configuration obtained by the transition

labelled (META-APPLY-2) in the phase of applying meta rules in R1.

If c selects an applicable plan ap, this applicable plan is one of the applicable plans aps

generated by the selected event. Since d (constructed so far) also has the same beliefs (as

observe(s) = observe(t)) and selects the same event as c, we also obtain plan instances by

applying object-level plans which are the translation of the applicable plans aps. Hence,

there is a deliberation cycle da extending d and containing the transition (META-APPLY-

1) of applying the meta rule (6.13) to the plan instance by applying the translation of ap.

Then, the construction of d continues with de until the transition (META-APPLY-1) where

(6.13) is applied.

If c does not select any applicable plan, then there is no applicable plan generated in

this cycle because either no relevant event is selected or the selected relevant event has no

applicable plan. In both cases, no object-level rules inR2 can be applied on d (constructed

so far), hence, there is no cycle which extends d and has the transition (META-APPLY-2)

of applying the meta rule (6.13). Let da be an arbitrary cycle extending d, the construction

of d continues with de until the transition (META-APPLY-2), where the phase of applying

object-level rules in R2 completes.

If c selects an intention int to execute, this intention either exists at the beginning of

c or is generated from the selected applicable plan in c. In both cases, the equivalent

intention i of int exists in the last configuration of d constructed so far as they have the

same intention at the beginning of c and d (as observe(s) = observe(t)) and select the same

applicable plan. Hence, there exists a deliberation cycle di extending d and containing the

transition (META-APPLY-1) of applying the meta rule (6.14) to the intention i equivalent

to int, i.e., trint(i) = int. Then, the construction of d completes by di. As di selects the same

intention to execute as c, it executes the same action and causes equivalent changes to the

environment (in case of an external action) or to the atom base (otherwise). However, if

the intention int begins with a test goal which will fail according to the belief base, there

CHAPTER 6. SIMULATING JASON 134

is a transition (META-APPLY-1) of applying the meta rule (6.15) in di, which replaces the

test action ?belief(b) by a subgoal action ! + test(b). Hence, by executing this subgoal

action, a new atom instance of +test(b) is generated. This simulates the effect of failing a

test goal in Jason as described by the transition (TestGl-2).

However, if c does not select any intention to execute, this means that there is no in-

tention at the beginning of c and no applicable plan is selected in c. Then, as observe(s) =

observe(t), d has no executable intentions at the beginning and also no new executable

intention is generated in d, as constructed so far. Hence, any cycle that extends di cannot

select an intention to execute. We complete the construction of d by di. Then, in d, changes

to the atom base are made in phases Sense and of applying R1 to add new instances of

events.

According to the construction of d, we have that c and d select bisimilar items. Hence,

(c, d) ∈ eq(s, t). Then, by Claim 6.3.2, observe(last(c)) = observe(last(d)).

Applying an analogous argument, we can also show the following result:

Claim 6.3.6. For any s ∼n
Sense

t and any cycle d from t, there exists a cycle c from s such that

(c, d) ∈ eq(s, t) and observe(last(c)) = observe(last(d)).

Finally, we show that ∼defined above is a strong bisimulation satisfying Conditions (1)

and (2) of Theorem 5.2.6.

Let c ∼ d, then there exists n > 0 such that c ∼n d, then there exists s ∼n−1
Sense

t such

that (c, d) ∈ eq(s, t). Note that in the following argument, we ignore the condition on

observations as it is straightforward by the result of Claim 6.3.3.

We show that ∼ is a bisimulation:

• We have that

observe(c) = observe(first(c)) = observe(s)

observe(d) = observe(first(d)) = observe(t)

By Claim 6.3.3, we also have observe(s) = observe(t). Hence, observe(c) = observe(d).

CHAPTER 6. SIMULATING JASON 135

• Assume that c
l
Ð→ c′ where l = label(c), we have last(c) = first(c′). Obviously, c ∼n d

implies last(c) ∼n
Sense

last(d) by the definition of ∼n
Sense

. By Claim 6.3.5, there is a

cycle d′ from last(d) such that (c′, d′) ∈ eq(last(c), last(d)), i.e., c′ ∈∼n+1 d′. Then, we

have that c′ ∼ d′. As first(d′) = last(d) and label(c) = label(d) = l (by Claim 6.3.4),

we also have that d
l
Ð→ d′.

• Similarly, we also have that if d
l
Ð→ d′ where l = label(d), by Claim 6.3.6, there is a

cycle c′ such that c
l
Ð→ c′ and c′ ∼ d′.

We show that ∼ satisfies conditions (1) and (2) of Theorem 5.2.6:

• For (1): let s′ be a configuration along c and s′ /= last(c). Note that c fixes the selec-

tions of a relevant event, an applicable plan, and an intention to be executed.

In the following, we denote K = {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′} and

H = {d′ ∈DC(t0) ∣ first(d) = first(d′), t′ ∈ d′}.

– If s′ = first(c), we select t′ = first(d).

As c ∼n d, first(c) ∼n−1
Sense

first(d), i.e., s′ ∼n−1
Sense

t′. By Claim 6.3.3, observe(s′) =

observe(t′).

For any c′ ∈ K, by Claim 6.3.5, there is a d′ in DC(t0) such that first(d′) = t′

and (c′, d′) ∈ eq(s′, t′). Then, c′ ∼n d′, i.e., c′ ∼ d′. Thus, d′ ∈H .

Similarly, we have for any d′ ∈H there exists c′ ∈K such that c′ ∼ d′.

Thus, K ∼H .

– If s′ /= first(c) and appears in c before the relevant event is selected, cycles

through s′ correspond to all possible selections of relevant events, applicable

plans to apply and intentions to execute. We choose t′ to be a configuration be-

tween first(d) and the configuration immediately after the transition (META-

APPLY-1) for (6.12) (hence t′ /= last(d)). Then, cycles through t′ correspond

to all possible selections of relevant events, applicable object-level rules and

intentions. Hence, we have that observe(s′) = observe(t′) = ⊺.

CHAPTER 6. SIMULATING JASON 136

As no external action is selected at s′ and t′, label(c′∣s′) = label(d′∣t′) = ǫ.

Let c′ ∈ K, then first(c) = first(c′). By Claim 6.3.5, there exists d′′ ∈ DC(t0)

such that first(d′′) = first(d) and (c′, d′′) ∈ eq(first(c), first(d)).

∗ If t′ ∈ d′′ (i.e., t′ ∈ both d and d′′, then we select d′ = d′′, hence d′ ∈ H and

(c′, d′) ∈ eq(first(c), first(d)). Thus, by definition of ∼n and ∼, we obtain

c′ ∼n+1 d′ and c ∼ d.

∗ If t′ ∉ d′′, we construct d′ which has the same selections as d′′ yet passing

t′.

Let t′′1 and t′1 be the configurations right before the transition (META-APPLY-

1) for (6.12) in d′′ and d, respectively. Then, atom instances representing

events in t′′1 are the same as in t′1. Thus, there is a deliberation cycle d′1

which passes t′1 (hence also t′) and selects the same event as d′′.

Similarly, let t′′2 and t′2 be the configurations right before the transition

(META-APPLY-1) for (6.13) in d′′ and d′1, respectively. Then, new plan in-

stances representing applicable plans in t′′2 are the same as in t′2. Thus,

there is a deliberation cycle d′2 which passes t′2 (hence also t′) and selects

the same applicable plan as d′′.

Similarly, let t′′3 and t′3 be the configurations right before the transition

(META-APPLY-1) for (6.14) in d′′ and d′2, respectively. Then, plan instances

representing intentions in t′′3 are the same as in t′3. Thus, there is a deliber-

ation cycle d′3 which passes t′3 (hence also t′) and selects the same intention

to execute as d′′.

Then, we select d′ = d′3 and have that (c′, d′) ∈ eq(first(c), (d)) and first(d) =

first(d′). As t′ ∈ d′, d′ ∈H .

Thus, for any c′ ∈K there exists d′ ∈H such that c′ ∼ d′.

Similarly, we have for any d′ ∈ H there exists c′ ∈ K such that c′ ∼ d′. Hence,

K ∼H .

CHAPTER 6. SIMULATING JASON 137

– Similarly, if s′ appears in c after the relevant event is selected but before the

applicable plan is selected to apply, cycles through s′ correspond to all possible

selections of applicable plans to apply and intentions to execute. We choose t′

to be the configuration in d resulting from the transition (META-APPLY-1) of

applying the meta rule (6.12) in R1 (hence t′ /= last(d)). This transition selects

the relevant event, which is the translation of the selected event in c. Then,

cycles through t′ correspond to all possible selections of applicable plans and

intentions. Hence, we have that observe(s′) = observe(t′) = ⊺, label(c∣s′) =

label(d∣t′) = ǫ. Then, applying the same argument as the previous case, we also

have K ∼H .

– Similarly, if s′ appears in c after the applicable plan is selected but before the

intention is selected to execute, cycles through s′ correspond to all possible

selections of intentions to execute. We choose t′ to be the configuration in d

resulting from the transition (META-APPLY-1) of applying the meta rule (6.13)

in R3 which selects an applicable plan in d (hence t′ /= last(d)). Then, cycles

through t′ correspond to all possible selections of intentions. Hence, we have

that observe(s′) = observe(t′) = ⊺, label(c∣s′) = label(d∣t′) = ǫ. Then, applying

the same argument as the previous case, we also have K ∼H .

– Similarly, if s′ appears in c after the intention is selected but before it is exe-

cuted, cycles through s′ correspond to the execution of the selected intention.

We choose t′ as the configuration in d resulting from the transition (META-

APPLY-1) of applying the meta rule (6.14) in R3 which selects an intention to

execute (hence t′ /= last(d)). Then, cycles through t′ correspond to the execution

of the selected intention. Hence, we have that observe(s′) = observe(t′) = ⊺,

label(c∣s′) = label(d∣t′) = ǫ. Then, applying the same argument as the previous

case, we also have K ∼H .

– Similarly, if s′ appears in c after the intention is executed, through s′ correspond

CHAPTER 6. SIMULATING JASON 138

to the clearing of empty intentions. We choose t′ to be the configuration in d just

after the transition which executes first step a of the selected intention (hence

t′ /= last(d) since there is at least a transition label (NEW-CYCLE) in d). Then,

d is only one cycle through t′. Hence, we have that observe(s′) = observe(t′) =

⊺, label(c∣s′) = label(d∣t′) = a if a is an external action or ǫ otherwise. Then,

applying the same argument as the previous case, we also have K ∼H .

• For (2): let t′ be a configuration a long d such that t′ /= last(d). Applying a similar

argument as for (1), we can also show that there exists s′ ∈ c such that label(c∣s′) =

label(d∣t′) and {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′} ≅ {d′ ∈ DC(t0) ∣ first(d) =

first(d′), t′ ∈ d′}..

Thus, by Theorem 5.2.6, we have that ag and trJason(ag) are weakly bisimilar.

6.4 Summary

In this chapter, we presented how to simulate Jason agents in meta-APL. We first reviewed

the syntax and operational semantics of Jason. Then, we defined a translation which pro-

duces for each agent program in Jason a meta-APL program. The idea behind the transla-

tion is that each deliberation cycle of the Jason agent is simulated by a deliberation cycle of

the meta-APL agent. Therefore, selections of relevant events, applicable plans and inten-

tions to execute are simulated. Then, we showed that the Jason agent and the meta-APL

agent operate equivalently according to the notion of weak bisimulation.

Chapter 7

Simulating 3APL

In this chapter, we show how to simulate 3APL agents in meta-APL. 3APL is a BDI-based

agent programming language. However, it differs from Jason in important respects, in-

cluding providing support for declarative goals and plan revision. We first review the

syntax and the operational semantics of 3APL. Then, we define a translation function to

transform a 3APL agent program into a meta-APL agent program. Finally, we prove that

these two programs are equivalent under the notion of weak bisimulation.

7.1 3APL

In 3APL, agents are considered as individuals which have a state comprised of mental

elements such as beliefs and goals. These mental elements provide a basis for making

decisions about their behaviour. There are several versions of 3APL [Hindriks et al., 1999;

Dastani et al., 2003b, 2005]. In the first version of 3APL presented in [Hindriks et al., 1999],

goals are procedural where a goal is a sequence of basic actions such as external actions

and belief tests, achievement goals are similar to function calls of imperative program-

ming languages, and control statements include the conditional choice operator (if-then-

else) and the iteration operator (while-do). Inspired by Dribble [van Riemsdijk et al., 2003],

3APL was extended in [Dastani et al., 2003b] to incorporate both declarative and proce-

139

CHAPTER 7. SIMULATING 3APL 140

dural goals. This extended version of 3APL also incorporates reflective features which

allow programmers to specify how agents should revise their goals and plans. However,

there are no deliberation cycles defined for this version of 3APL. In the latest implemen-

tation of an interpreter for 3APL, namely the 3APL platform [Dastani et al., 2005], some

features of 3APL (such as goal revision) were removed and a deliberation cycle is defined,

as depicted in Figure 7.1.

yes

no

Rule

selected?

Rule

selected?
Rules

found?

Rules

applied

or

plans

executed?

Start

Find PGrules

matching goals

Select PGrules

matching beliefs

Apply

PGrule

Apply

PRrule

Select PRrules

matching beliefs

Find PRrules

matching plans

Select

plan

Execute

plan

Plan

selected?

Rules

found?

Sleep

until a

message

arrives

yes

yes yes

yes

no no

no no

no
yes

Applying Goal Planning Rules

Applying Plan Revision Rules

Executing Plans

Figure 7.1: The implemented deliberation cycle in 3APL platform [Dastani et al., 2005].

In this chapter, we show how to simulate the version of 3APL which is implemented

in the 3APL platform. To simplify the presentation, we omit communication actions, two

plan constructs “if - then - else” and “while - do”. Before introducing the simulation, we

first review the syntax and the operational semantics of 3APL.

7.1.1 3APL Syntax

An agent program in 3APL consists of a set of capabilities, a initial belief base, a initial

goal base, a set of goal planning rules (PG-rules) and a set of plan revision rules (PR-rules).

CHAPTER 7. SIMULATING 3APL 141

The syntax of an agent ag is as follows:

ag ∶∶= (Cap, σ, γ,PG,PR)

where Cap denotes the set of capabilities, σ the initial belief base, γ the initial goal base,

PG is the set of goal planning rules and PR is the set of plan revision rules.

Terms and atoms

Given a set PRED of predicates, a set FUNC of function and a set VAR of variables, a term

t and an atom a in 3APL have the following syntax:

t ∶∶= X ∣ f([t(, t)∗])

a ∶∶= p([t(, t)∗])

where X ∈ VAR, p ∈ PRED and f ∈ FUNC. As usual, ground terms do not contain vari-

ables. In the following, we use a to denote an atom and b to denote a ground atom.

Beliefs

The belief base σ is a finite set of ground atoms and Horn clauses. The syntax of σ is

defined as follows:

σ ∶∶= bel∗

bel ∶∶= b. ∣ a :- lit(, lit)∗.

lit ∶∶= a ∣ not a

Here, negation in a Horn clause is interpreted as negation as failure.

Goals

The goal base γ is a finite set of atoms or conjunctions of atoms. The syntax of γ is defined

as follows:

γ ∶∶= κ∗

κ ∶∶= a ∣ κ1 and κ2

CHAPTER 7. SIMULATING 3APL 142

The difference between two individual goals “κ1” and “κ2” and the conjunctive goal

“κ1 and κ2” is that “κ1” and “κ2” can be achieved individually at different times while

“κ1 and κ2” is achieved if both “κ1” and “κ2” are achieved at the same time.

Capabilities

The set Cap of capabilities defines belief update actions bu of the agent ag for adding and

deleting beliefs. Given a set PRED of predicates, a set FUNC of function and a set VAR of

variables, the syntax of Cap is as follows:

Cap ∶∶= bu∗

bu ∶∶= (wff, belup, lit∗)

wff ∶∶= ⊺ ∣ lit ∣ wff and wff ∣ wff or wff

belup ∶∶= a

Each belief update action is defined in Cap by a belief query (or the precondition) wff, a

name belup, and a list of literals (which are called postconditions). In this list, a positive

literal of the form b indicates that b is added into the belief base, a negated literal of the

form not a indicates that atoms matching a are deleted from the belief base.

Note that in the precondition wff of a belief update action, the “or” operator can be

omitted without reducing the expressiveness of 3APL. However, we do need the “or”

operator for the case of test actions (see below). In order for postconditions to be definable

in terms of add and delete lists of literals, the following assumptions need to be made:

• Horn clauses are never changed by any action;

• literals in the belief base (or in the postcondition of any belup) are not defined by

Horn clauses (they never occur as a head of a clause)

CHAPTER 7. SIMULATING 3APL 143

Plans

Plans are sequences of external actions, belief update actions, abstract plans and test ac-

tions. The syntax of plans are given below:

h ∶∶= ǫ ∣ act ∣ h1;h2

act ∶∶= ea ∣ belup ∣ absplan ∣ wff ?

ea ∶∶= e(t(, t)∗)

absplan ∶∶= a

where absplan is an abstract plan. An abstract plan can be seen as a place holder for a plan

during execution. Abstract plans cannot be executed directly and should be modified into

plans by means of plan revision rules (see below).

Plan revision rules

The rule set PR contains plan revision rules which are used to modify intentions. The

syntax of PR is as follows:

PR ∶∶= r∗

r ∶∶= h1 ← wff ¦ h2

Given a PR rule h1 ← wff ¦ h2, h1 is called the head of the rule, wff is called the query

of the rule, and h2 is called the body of the rule.

Goal planning rules

The rule set PG contains goal planning rules which are used to create intentions for real-

ising a goal derived from the goal base or reacting. The syntax of PG is as follows:

PG ∶∶= p∗

p ∶∶= κ← wff ¦ h ∣ ← wff ¦ h

Given a PG rule κ ← wff ¦ h, κ is called the goal of the rule, wff is called the query of

the rule, and h is called the body of the rule. Similarly, given a PG rule← wff ¦ h, we say

that its goal is empty, its query is wff and its body is h.

CHAPTER 7. SIMULATING 3APL 144

To simplify the presentation of the simulation, we omit two plan constructs “if wff then

h1 else h2” and “while wff do h1” which form part of the syntax of 3APL as defined in

[Dastani et al., 2005]. However, the omission of these constructs does not reduce the ex-

pressiveness of 3APL. A plan “if wff then h1 else h2” can be transformed into an abstract

plan absif wff then h1 else h2
together with the following two plan revision rules:

absif wff then h1 else h2
← wff ¦ h1

absif wff then h1 else h2
← not(wff) ¦ h2

where not(wff) is defined inductively as follows:

• not(a) = not a;

• not(not a) = a;

• not(wff
1

and wff
2
) = not(wff

1
) or not(wff

2
); and

• not(wff
1

or wff
2
) = not(wff

1
) and not(wff

2
).

A plan “while wff do h1” can be similarly transformed into an abstract plan abswhile wff do h1

together with the following two plan revision rules:

abswhile wff do h1
← wff ¦ h1;abswhile wff do h1

abswhile wff do h1
← not(wff) ¦ ǫ

7.1.2 3APL Operational semantics

Given an agent defined in 3APL, it operates by generating new intentions from goal plan-

ning rules, modifying existing intentions by plan revision rules, and executing existing

intentions. In this section, we review 3APL operational semantics presented in [Das-

tani et al., 2005] and extended with transition rules for steps “Execute plan” and “Apply

PGrule” in 3APL deliberation cycle as depicted in Figure 7.1.

CHAPTER 7. SIMULATING 3APL 145

Phases in 3APL deliberation cycle

In order to present 3APL operational semantics as defined by the deliberation defined in

3APL platform, we define the following phases corresponding to the main steps in the

3APL deliberation cycle, indicated by the dashed boxes in Figure 7.1:

1. Message: this phase processes percepts from the environment and updates the belief

base and the goal base (as some goals might be achieved after the belief base is

updated).

2. Apply-PG: this phase applies a goal planning rule and produces a new intention for

the intention base.

3. Apply-PR: this phase applies a plan revision rule which modifies the plan of an in-

tention.

4. Execute-Int: this phase executes an intention.

Then, the relation between these phases is depicted in Figure 7.2. where arrows illus-

trate possible transitions from a phase to another as presented in Figure 7.1.

3APL configuration

The operational semantics of 3APL is defined by a set of transition rules that go from one

configuration to another. In [Dastani et al., 2005], a configuration is defined to consist of

an agent id, a belief base, a goal base, an intention base and the state of the agent’s en-

vironment represented by a set of ground atoms. This definition is not enough to define

the operational semantics with ordered steps in the deliberation cycle as depicted in Fig-

ure 7.1. We therefore extend each 3APL configuration with a phase indicator to specify

which phase the configuration is in. As we are only interested in systems of a single agent

in this thesis, the agent id are not needed and will be omitted.

A 3APL configuration is defined as follows:

CHAPTER 7. SIMULATING 3APL 146

Message

Apply-PG

Apply-PR

ExecInt

Figure 7.2: The deliberation cycle of 3APL platform.

Definition 7.1.1 (Extended 3APL configuration). An extended 3APL configuration is a tuple

⟨σ, γ, I, ph,E⟩ where:

• σ is a belief base which consists of ground atoms and Horn clauses;

• γ is a goal base which consists of atoms and conjunctions of atoms;

• I is a intention base which consists of intentions; each intention is a pair of (κ,h) where κ

is a goal and h is a partially instantiated plan;

• ph ∈ {Message,Apply-PG,Apply-PR,Execute-Int} is a phase indicator;

• E is a state of the agent’s environment which is a set of ground atoms.

In the following, we refer to extended 3APL configurations as 3APL configurations.

Let C = ⟨σ, γ, I, ph,E⟩ be a 3APL configuration. In 3APL, the query of a PG rule or a

PR rule is evaluated with respect to the belief base σ as in Prolog. If the query succeeds,

the result of the query is a substitution θ and we write σ ⊧B wff ∣ θ. This evaluation is

defined inductively as follows:

CHAPTER 7. SIMULATING 3APL 147

• σ ⊧B a ∣ θ iff:

– there exists b ∈ σ such that b = a ∣ θ for some substitution θ; or

– there exists a Horn clause a′ :- l1, . . . , ln such that a′ = a ∣ θ′ and

σ ⊧B (l1θ′ and . . . and lnθ
′) ∣ θ;

• σ ⊧B not a ∣ ∅ iff σ /⊧B a ∣ θ′ for any θ′;

• σ ⊧B wff
1

and wff
2
∣ θ iff σ ⊧B wff

1
∣ θ′ and σ ⊧B wff

2
θ′ ∣ θ; and

• σ ⊧B (wff
1

or wff
2
) ∣ θ iff σ ⊧B wff

1
∣ θ or σ ⊧B wff

2
∣ θ.

The goal κ of a PG rule is evaluated against the goal base γ of the configure C by

looking for a goal κ′ in γ where κ′ entails κ. If the evaluation succeeds, the result is a

substitution θ and we write γ ⊧G a ∣ θ. The definition of this evaluation is given below:

• γ ⊧G a ∣ θ iff there exists κ = (a1 and . . . and an) ∈ γ such that {a1, . . . , an} ⊧B a ∣ θ;

• γ ⊧G (κ1 and κ2) ∣ θ iff there existsκ = (a1 and . . . and an) ∈ γ such that {a1, . . . , an} ⊧B

κ1 ∣ θ′ and {a1, . . . , an} ⊧B κ2θ
′ ∣ θ.

Given a 3APL agent ag = (Cap, σ, γ,PG,PR) and the initial state of the environment

E0, the initial configuration of ag is ⟨σ, γ,∅,Message,E0⟩. This means that the initial belief

base is σ, the initial goal base is γ, the initial intention base is empty, there is no temporary

information and the initial phase is Message.

Transition rules of 3APL

In the following, we review the transition rules for 3APL. The transition rules for applying

PG rules and executing intentions are based from [Dastani et al., 2005]. As there is no

transition rule describing the application of PR rules in [Dastani et al., 2005], we use the

transition rule for applying PR rules from Dastani et al. [2003b].

The Message phase is the first phase in a deliberation cycle of a 3APL agent. Here, the

agent updates its beliefs according to percepts from the environment. It is assumed that

CHAPTER 7. SIMULATING 3APL 148

this update is modelled by a function update(E,σ) which returns an updated belief base

from a given belief base σ and a state E of the environment. The transition rule to update

the belief base is given below:

σ′ = update(E,σ)

γ′ = γ ∖ {κ ∈ γ ∣ σ′ ⊧B κ ∣ θ}

⟨σ, γ, I,Message,E⟩→ ⟨σ′, γ′, I,Apply-PG,E⟩
(Update)

In this transition rule, since the update of the belief base can achieve certain goals, achieved

goals are also removed from the goal base.

In the Apply-PG phase, the agent applies a goal planning rule p ∈ PG.

Given a goal planning rule p = κ ← wff ¦ h, we define head(p) = κ which denotes the

head of the rule p, query(p) = wff which denotes the query of the rule p and body(p) = h

which denotes the body of the rule p. p is relevant to some goals in γ if head(p) is derivable

from γ. Similarly, given a reactive goal planning rule p =← wff ¦ h, we define head(p) = ⊺,

query(p) = wff and body(p) = h.

A PG rule can be applied iff it is relevant to a goal in the goal base and its query

is evaluated to true against the belief base. In other words, a PG rule is applied in the

Apply-PG phase iff head(p) is derivable from the goal base γ and query(p) is derivable

from the belief base σ. This application generates a new intention from body(p). The

transition of applying p is given below:

∃p ∈ PG ∶ γ ⊧G head(p) ∣ θ ∧ σ ⊧B query(p)θ ∣ θ′

I ′ = I ∪ {(head(p)θ, body(p)θθ′)}

⟨σ, γ, I,Apply-PG,E⟩→ ⟨σ, γ, I ′,Apply-PR,E⟩
(Apply-PG-1)

If there are no such PG rules, no PG rule is applied in the Apply-PG phase. The transi-

tion in this case is as follows:

¬(∃p ∈ PG ∶ γ ⊧G head(p) ∣ θ ∧ σ ⊧B query(p)θ ∣ θ′)

⟨σ, γ, I,Apply-PG,E⟩→ ⟨σ, γ, I,Apply-PR,E⟩
(Apply-PG-2)

In the Apply-PR phase, the agent applies a plan revision rule r ∈ PR to modify an

intention.

CHAPTER 7. SIMULATING 3APL 149

Similar to goal planning rules, given a plan revision rule r = h1 ← wff ¦ h2, we define

head(r) = h1 to denote the head of the rule r, query(r) = wff to denote the query of the

rule r and body(r) = h2 to denote the body of the rule r. Then, a rule r ∈ PR is relevant to

an intention in I when head(r) is unifiable with a prefix of the plan of the intention.

A PR rule r can be applied iff it is relevant to the plan of an intention in the intention

base and its query is evaluated to be true against the belief base. In other words, head(r)

is unifiable with a prefix of the plan of an intention in the intention base I and query(r)

is derivable from the belief base σ. This application replaces the prefix with body(r). The

transition is given below:

∃r ∈ PR, (κ,h1;h) ∈ I ∶ head(r) = h1 ∣ θ ∧ σ ⊧B query(r)θ ∣ θ′

I ′ = I ∖ {(κ,h1;h)} ∪ {(κ, body(r)θθ′;h)}

⟨σ, γ, I,Apply-PR,E⟩→ ⟨σ, γ, I ′,ExecInt,E⟩
(Apply-PR-1)

If there are no such PR rules, no PR rule is applied in the Apply-PR phase. The transi-

tion for this case is as follows:

¬(∃r ∈ PR, (κ,h1;h) ∈ I ∶ head(r) = h1 ∣ θ ∧ σ ⊧B query(r)θ ∣ θ′)

⟨σ, γ, I,Apply-PR,E⟩→ ⟨σ, γ, I,ExecInt,E⟩
(Apply-PR-2)

In the Execute-Int phase, the agent executes the first action of the an intention in the

intention base. Here, only executable intentions are eligible for execution. This means

they must start with either an external action, a belief update action, or a test action which

succeeds with respect to the current belief base. In other words, intentions that start with

an abstract plan or a test action which fails with respect to the current belief base are not

executed. The execution then depends on the type of the action to be executed.

If this action is an external action, it is performed on the environment. [Dastani et al.,

2005] assumes that the effect of ea is modelled by a functionGea(E) which returns a new

state of the environment state after ea is executed. The transition of executing ea is given

CHAPTER 7. SIMULATING 3APL 150

below:

∃i = (κ, ea;h) ∈ I

γ ⊧G κ

E′ = Gea(E)

I ′ = I ∖ {i} ∪ {(κ,h)}

⟨σ, γ, I,Execute-Int,E⟩→ ⟨σ, γ, I ′,Message,E′⟩
(Exec-EA)

If the action is a belief update action, performing this action changes the belief base

according to the declaration of the action. Let (wff, belup,L) be a belief update action de-

fined in Cap. We define pre(belup) = wff to denote the precondition of belup, del(belup) =

{not a ∈ L} to denote beliefs to be removed by belup and add(belup) = {a ∈ L} to denote

beliefs to be added by belup. The transition of applying belup is given below:

∃i = (κ, belup;h) ∈ I

γ ⊧G κ

I ′ = I ∖ {i} ∪ {(κ,h)}

σ′ = σ ∖ {b ∈ σ ∣ σ ⊧B pre(belup) ∣ θ,∃b′ ∈ del(belup) ∶ b′θ = b}∪

{b ∣ σ ⊧B pre(belup) ∣ θ,∃b′ ∈ add(belup) ∶ b = b′θ}

γ′ = γ ∖ {κ ∈ γ ∣ σ′ ⊧B κ ∣ θ}

⟨σ, γ, I,Execute-Int,E⟩→ ⟨σ′, γ′, I ′,Message,E⟩
(Exec-BU)

If the action is a test action, performing this action tests the belief base. The transition

is given below:

∃i = (κ,wff ?;h) ∈ I

γ ⊧G κ

σ ⊧ wff ∣ θ

I ′ = I ∖ {i} ∪ {(κ,h)θ}

⟨σ, γ, I,Execute-Int,E⟩→ ⟨σ, γ, I ′,Message,E⟩
(Exec-Test)

If there are no executable intentions, no intention is executed in the ExecInt phase. The

CHAPTER 7. SIMULATING 3APL 151

transition rule for this case is as follows:

∀i ∈ I ∶ (i = (κ,h) ∧ γ /⊧G κ)∨

i = (κ, absplan;h)∨

(i = (κ,wff?;h) ∧ σ /⊧B wff)

⟨σ, γ, I,Execute-Int,E⟩→ ⟨σ, γ, I,Message,E⟩
(No-Exec)

where absplan denotes an abstract plan.

7.1.3 Selections in a 3APL deliberation cycle

A deliberation cycle of a 3APL agent is a sequence of transitions s0
a1Ð→ s1 . . .

akÐ→ sk where

only s0 and sk are of the Message phase and transitions are derived from the transition

rules of 3APL operational semantics. In this section, we analyse the characteristics of the

3APL deliberation cycle based on the selections which are made within the cycle.

The 3APL deliberation cycle contains at most three selections. The first selection is for

a goal planning rule which is made in a configuration with phase Apply-PG. From this

configuration, there are two possible transitions, one labelled with (Apply-PG-1) and the

other labelled with (Apply-PG-2). The former transition corresponds to the application of

a goal planning rule whose head is derivable from the goal base and its belief query is a

logical consequence of the belief base. In the latter case, no goal planning rule is applied.

Hence, we define:

Definition 7.1.2. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a 3APL agent ag. Then,

• c selects a goal planning rule (p, θ) if there is a transition ai = (Apply-PG-1) for some

1 ≤ i ≤ k where p is applied by ai and si = (σ, γ, I,Apply-PG),

• c does not select a goal planning rule if there is a transition ai = (Apply-PG-2) for some

1 ≤ i ≤ k.

The second selection is for a plan revision rule which is made in a configuration with

phase Apply-PR. There are two possible transitions from this configuration, one labelled

CHAPTER 7. SIMULATING 3APL 152

with (Apply-PR-1) which means that a plan revision rule is applied and the other labelled

with (Apply-PR-2) which means that no plan revision rule is applied in this deliberation

cycle. Hence, we define:

Definition 7.1.3. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a 3APL agent ag. Then,

• c selects a plan revision rule (p, θ) if there is a transition ai = (Apply-PR-1) for some 1 ≤ i ≤ k

where p is applied by ai and si = (σ, γ, I,Apply-PR),

• c does not select a plan revision rule if there is a transition ai = (Apply-PR-2) for some

1 ≤ i ≤ k.

The last selection is for an intention to execute which is made in a configuration with

phase ExecInt. There are two possible transitions from this configuration. One is labelled

with (Exec-EA), (Exec-BU) or (Exec-Test), which means that an intention is executed and

the other transition is labelled with (No-Exec) which means that no intention is executed

in this deliberation cycle. Hence, we define:

Definition 7.1.4. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of a 3APL agent ag. Then,

• c selects an intention int to execute if there is a transition ai = (Exec-EA), (Exec-BU) or

(Exec-Test) for some 1 ≤ i ≤ k where int is executed by ai and si = (σ, γ, I,ExecInt),

• c does not select an intention to execute if there is a transition ai = (No-Exec) for some

1 ≤ i ≤ k.

7.2 Translation

In this section, we construct a translation function to translate a 3APL agent program into

a meta-APL agent program such that two agents are equivalent under the notion of weak

bisimulation.

CHAPTER 7. SIMULATING 3APL 153

7.2.1 Outline of the translation

Before diving into the details of the translation, we first present an outline of the transla-

tion function. As in the translation of Jason into meta-APL, this translation is also defined

by following the correspondences between phases in deliberation cycles of 3APL agents

and meta-APL agents. Figure 7.3 illustrates these correspondences as dashed, two-ended

arrows.

Stage 0
“Sense”

Stage 1
“Apply R1”

Stage 2
“Apply R2”

Stage 5
“Apply R5”

Stage 6

Stage 7

Stage 3
“Apply R3”

Message

Apply-PG

Apply-PR

ExecInt

Stage 4
“Apply R4”

Figure 7.3: The correspondence between 3APL’s and meta-APL’s deliberation cycles.

The first correspondence is between the Message phase of the 3APL deliberation cycle

and the Sense phase of meta-APL’s deliberation cycles. In these phases, agents update

their belief bases according to percepts received from the environment. Furthermore,

3APL agents also remove achieved goals and intentions for achieved goals due to changes

in the belief base. Since this removal does not happen in the phase Sense of meta-APL

agents, it is necessary to have meta rules which check for achieved goals and then delete

them. These meta rules are collected in a rule set R1 which is active after the phase Sense.

The next correspondence involves applying goal planning rules for generating new

intentions. In the 3APL deliberation cycle, this is done in the Apply-PG phase where a goal

planning rule with both goals and queries evaluating to be true is applied to generate a

CHAPTER 7. SIMULATING 3APL 154

new intention in the order of PR rules’ occurrence. The application of the PG rule can be

simulated in meta-APL by means of object-level rules which are the translations of goal

planning rules. They are collected in a rule setR2. Here, in order to simulate the selection

and application of one goal planning rules, we define meta rules which set only one of

the new plan instances generated by rules inR2 to be an intention. These meta rules form

the rule set R3.

The third correspondence involves applying plan revision rules for repairing existing

intentions. In the 3APL deliberation cycle, this is done in the Apply-PR phase where one of

the plan revision rules with heads matching with a prefix and their queries are evaluated

to be true is applied and its application in the Apply-PR phase replaces the matched prefix

with the body part of the rule. We simulate the selection and application of PR rules in

meta-APL by meta rules which are the translations of plan revision rules. The selection

of one plan revision rules is encoded in the translations of plan revision rules so that only

one of them can be applied in a cycle. These meta rules form the rule set R4.

The last correspondence involves executing an intention. In the 3APL deliberation

cycle, this is done in the ExecInt phase. We simulate this execution by a meta rule which

picks an intention and sets its scheduled flag. This meta rule is defined in a rule set R5.

Given the correspondences between a 3APL deliberation cycle and a meta-APL delib-

eration cycle, we now define a translation function tr3APL as illustrated in Figure 7.4 which

converts a 3APL agent program into a meta-APL one. This function is defined in terms

of the following component functions:

• tract which translates belief update actions into meta actions;

• trfact and trclauses which translates beliefs from the belief base into atoms and clauses;

• trgoal which translates goals into atoms;

• trP which translates goal planning rules into object-level rules;

• trR which translates plan revision rules into meta rules.

CHAPTER 7. SIMULATING 3APL 155

Cap

PR

Q

M

R1

R2

A

R3

3APL program

meta-APL program

tr3APL

trP

trgoal

tractσ

γ

PG

R4

R5

trfact

trR

trclause

Figure 7.4: The translation function tr3APL.

Given a 3APL agent program, the translation function tr3APL returns a meta-APL agent

program contains an initial atom baseA, a setQ including, a setM of user-defined macros

and five rule setsR1,R2,R3,R4 andR5. The user-defined queries inQ, the the meta rule

sets R1, R3 and R5 are static and common to all 3APL agent programs.

7.2.2 The static part of the translation

Defining additional common queries

The set Qstatic contains additional queries which are used in meta rules and object-level

rules in the translation. In particular, we have a query belief(b) which checks if there is

an instance of an atom belief(b), a query abstractP lan which checks if a plan starts with

a subgoal action, and a query failedTest which checks if a plan starts with a failed test

action. These queries are defined as follows:

CHAPTER 7. SIMULATING 3APL 156

belief(B)← atom(I, belief(B)) (7.1)

belief(not(B))← not belief(B) (7.2)

belief(and(B1,B2))← belief(B1), belief(B2) (7.3)

belief(or(B1,B2))← belief(B1) (7.4)

belief(or(B1,B2))← belief(B2) (7.5)

goal(G)← atom(I, goal(G′)), subgoal(G,G′) (7.6)

subgoal(G,G). (7.7)

subgoal(and(G1,G2),G)← subgoal(G1,G), subgoal(G2,G) (7.8)

subgoal(G,and(G1,G2))← subgoal(G,G1) (7.9)

subgoal(G,and(G1,G2))← subgoal(G,G2) (7.10)

abstractP lan(!_;_). (7.11)

failedTest(?q;_)← not q (7.12)

Defining meta rules for R1

The setR1 contains meta rules to remove goals which are believed, non-intended plan in-

stances from the last cycle and completed intentions. These meta rules are defined below:

goal(G), belief(G)→ delete-atom(goal(G)) (7.13)

plan(I,P),not state(I,intended)→ delete-plan(I) (7.14)

plan(I, ǫ), state(I,intended)→ delete-plan(I) (7.15)

Here, the meta rule (7.13) simulates the effect of deleting achieving goals, i.e., the

deletion of goals which are achieved during the transition (Update) of 3APL or the tran-

sition (Exec-BU) in the previous cycle. Then, the meta rule (7.14) removes plan instances

generated in the last cycle but not promoted to be intentions as only one of these plan

instances will be selected to become an intention as specified by (7.16) below. Hence, to-

gether with (7.16), (7.14) simulates the transition (Apply-PG-1) of 3APL. Note that these

CHAPTER 7. SIMULATING 3APL 157

non-intended plan instances won’t effect the observation since we shall define not to ob-

serve non-intended plan instances. Finally, (7.15) takes care of completely executed inten-

tions. Although 3APL does not delete completely executed intentions, this will not effect

the establishment of a strong bisimulation later in this chapter since we will define not to

observe empty intentions.

Defining meta rules for R3

The set R3 contains a meta rule which will set one of the plan instances – generated by

object-level rules inR2 in the same cycle – to become an intention. The meta rule is defined

below:

cycle(N),plan(I,P),not state(I,intended),not atom(_, selectedPG(_,N))

→ set-state(I,intended),add-atom(_, selectedPG(I,N)) (7.16)

In this meta rule, we use an atom selectedPG to keep track of which plan instances are

set to be intentions at each cycle. The condition of the meta rule (7.16) checks for a new

plan instance and no plan instance has been set to be an intention in the current cycle yet.

Then, the meta rule sets the plan instance to be an intention and records that an intention

has been set in this cycle by adding an instance of the atom selectedPG.

As stated in the previous section, (7.16) (together with (7.14)) simulates the transition

(Apply-PG-1) of 3APL.

Defining meta rules for R5

The setR5 contains a meta rule which is responsible for selecting an intention to execute. It

simulates the Select-Int phase in deliberation cycles of 3APL agents where only intentions

starting with external actions, belief update actions and test actions (that evaluate to true

against the belief base) are eligible to be selected. The meta rule is as follows:

CHAPTER 7. SIMULATING 3APL 158

not state(_,scheduled),plan(I,P), state(I,intended),

not abstractP lan(P),not failedTest(P)

→ set-state(I,scheduled) (7.17)

In this meta rule, the condition not state(_,scheduled) is used to check if no intention

has been selected for execution in this cycle. Then, the rule selects one of intentions in the

intention base to be executed by setting the flag scheduled of the intention. Here, the two

tests not abstractP lan(P) and not failedTest(P) make sure that only eligible intentions

are selected. abstractP lan and failedTest are two user-defined queries. Together with

the transitions (EXEC-EA), (EXEC-TEST-1) and (EXEC-META), this meta rule simulates

the transitions (Exec-EA), (Exec-Test) and (Exec-BU) of 3APL, respectively.

7.2.3 Component translation functions

Translating belief update actions by tract

Each belief update action bu = (wff, belup,{l1, . . . , ln}) is translated into a macromawhere

tract(bu) gives:

belup =?belief(trquery(wff)); trbact(l1); . . . ; trbact(ln)

where trquery(wff) translate each query wff into a query in meta-APL as follows where a

is an atom:

trquery(a) = a

trquery(not a) = not(a)

trquery(wff
1

and wff
2
) = and(trquery(wff

1
), trquery(wff

2
))

trquery(wff
1

or wff
2
) = or(trquery(wff

1
), trquery(wff

2
))

and trbact(l) translates each literal into a meta action of adding or deleting an atom instance

as follows where a is an atom:

trbact(a) = add-atom(belief(a))

trbact(not a) = delete-atom(belief(a))

CHAPTER 7. SIMULATING 3APL 159

In this translation, the query wff of bu forms the first action of ma which is evaluated

against the belief base, the list of literals {l1, . . . , ln} of bu defines the rest ofma for adding

and deleting corresponding atoms.

Furthermore, note that the syntax of wff is more general than that of goals κ, therefore,

we shall see that trquery is also used to translate goal expressions in PG rules, queries in

PG and PR rules and test actions in plan bodies of PG and PR rules.

Translating beliefs by trfact and trclause

Given a belief base σ, we write σfact to denote the set of facts in σ. The translation function

trfact wraps each fact in σfact into an atom in meta-APL as follows:

trfact(a) = belief(a)

Given a belief base σ, we write σclause to denote the set of Horn clauses in σ. The

translation function trclause transforms each clause in σclause into a user-defined query as

follows:

trclause(a :- l1, . . . , ln) = belief(a)← belief(trquery(l1)), . . . , belief(trquery(l1))

Translating goals by trgoal

The translation trgoal translates each goal in 3APL into an atom instance of the goal in

meta-APL. This translation is defined as follows:

trgoal(κ) = goal(trquery(κ))

Translating goal planning rules by trP

Each goal planning rule is translated into an object-level rule by the translation function

trP . Let r1 = g ← wff ¦ h and r2 =← wff ¦ h, the results of trp(r1) and trP (r2) are defined

CHAPTER 7. SIMULATING 3APL 160

as:

trp(r1) = goal(trquery(g)) ∶ belief(trquery(wff))→ trplan(h)

trp(r2) = goal(trquery(top)) ∶ belief(trquery(wff))→ trplan(h)

where top is a special atom which stands for empty goal, the translation function trplan is

defined inductively on h as follows:

• trplan(ǫ) = ǫ,

• trplan(ea) = ea where ea is an external action,

• trplan(ap) =!ap where ap is an abstract plan,

• trplan(wff ?) =?belief(trquery(wff)),

• trplan(belup) = belup where belup is a belief update action, and

• trplan(h1;h2) = trplan(h1); trplan(h2).

In this translation, the head g of a goal planning rule p is directly transformed into

the reason part of an object-level rule trP (p); the test wff of p becomes the context query

of trP (p); and that body of p is translated into meta-APL where external actions are kept

unchanged, abstract plans are translated into subgoal action, test actions are converted

into test actions of meta-APL and belief update actions are converted into mental meta

actions of the same names.

Translating plan revision rules by trR

Each plan revision rule r = h1 ← wff ¦ h2 is translated into a meta rule by trR where trR

gives:

cycle(N),not atom(_, selectedPR(_,N)),plan(I, trplan(h1);X), state(I,intended),

belief(trquery(wff))→ set-plan(I, trplan(h2);X);add-atom(selectedPR(I,N))

(7.18)

CHAPTER 7. SIMULATING 3APL 161

In this translation, we use an atom selectedPR to keep track of which intentions are

revised at a cycle. In the context query, cycle(N) and not atom(_, selectedPR(_,N)) check

that no intention has been revised in the current deliberation cycle. In the rest of the

context query, we then use plan(I, trplan(h1);X) to look for a plan instance with the body

matching with the translation of h1 and the translation of wff to match the condition when

the rule can be applicable. When the translation of r is applied, the body of the intention

is replaced with trplan(h2);X and an instance of selectedPR(I,N) is added into the atom

base.

Here, the application of a meta rule (7.18) simulates the transition (Apply-PR-1) of

3APL.

7.2.4 The translation function tr3APL

Finally, we combine the above component translation functions to define tr3APL. Given a

3APL program ag = (Cap, σ, γ,PG,PR), tr3APL(ag) = (A,Q,M,R1,R2,R3,R4,R5) where

Qstatic, R1, R3 and R5 are defined in Section 7.2.2 and:

• Q = Qstatic ∪ {trclause(b) ∣ b ∈ σclause},

• M = {tract(belup) ∣ belup ∈ Cap},

• A = {trfact(b) ∣ b ∈ σfact} ∪ {top},

• R2 = {trP (p) ∣ p ∈ PG}, and

• R4 = {trR(r) ∣ r ∈ PR}.

Figure 7.5 summaries the simulation of transitions in 3APL’s operational semantics.

Note that although the meta rule (7.15) does not simulate any 3APL’s transition, it shall

not effect the equivalence of the translation. The reason is that (7.15) is used to clean

completed intentions. As these completed intentions are empty, they do not contribute to

the behaviour of the agent any more, and hence, they are not considered in the equivalence

between the configurations of a 3APL agent and its translation in meta-APL.

CHAPTER 7. SIMULATING 3APL 162

Transition Simulated by

Update SENSE and

META-APPLY-1 which applies (7.13) to remove achieved goals

Apply-PG-1 OBJ-APPLY-1 which applies the translation of PG rules,

META-APPLY-1 which applies (7.16) to select one, and

META-APPLY-1 which applies (7.14) to clean

non-selected ones in the next cycle

Apply-PG-2 OBJ-APPLY-2 when applying object rules in R2

Apply-PR-1 META-APPLY-1 which applies the translation of a PR rule (7.18)

Apply-PR-2 META-APPLY-2 when applying meta rules in R4

Exec-EA META-APPL-1 which applies (7.17) to select one intention, and

EXEC-EA

Exec-BU META-APPL-1 which applies (7.17) to select one intention,

EXEC-META of the corresponding macro defined by the function tract,

and META-APPLY-1 which applies (7.13) to remove achieved goals

Exec-Test META-APPL-1 which applies (7.17) to select one intention, and

EXEC-TEST-1

No-Exec NEW-CYCLE

Figure 7.5: The simulation of 3APL transitions in the translation.

7.3 Simulating selections

In this section, let us discuss the simulation of selections of a goal planning rule, a plan

revision rule and an intention for execution in 3APL deliberation cycle in the translation

into meta-APL. Recall that a meta-APL deliberation cycle is a sequence of transitions s0
a1Ð→

s1 . . .
akÐ→ sk where only s0 and sk are of the Sense phase. In our translation of 3APL into

meta-APL, these selections are simulated by transitions labelled with (META-APPLY-1)

in a meta-APL deliberation cycle where suitable meta rules are applied. In particular, the

selection of a goal planning rule is simulated by applying the meta rule (7.16) in R3; the

selection of a plan revision rule is simulated by applying the meta rule trR(r) for some

r ∈ PR; finally, the selection of an intention for execution is simulated by applying the

CHAPTER 7. SIMULATING 3APL 163

meta rule (7.17) in R5 in R5. Therefore, we have the following definition:

Definition 7.3.1. Let c = s0
a1Ð→ s1 . . .

akÐ→ sk be a deliberation cycle of the translation tr3APL(ag)

of an 3APL agent ag. Then,

• c selects an object-level rule r if, in c, there is a transition ai = (META-APPLY-1) , for some

1 ≤ i ≤ k, of applying the meta rule (7.16) where I = id(j), j is a plan instance in si and is

generated by applying the object-level rule r.

• c does not select an object-level rule if, in c, there is no transition (META-APPLY-1) of

applying the meta rule (7.16).

• c selects a meta rule r to repair some intention if, in c, there is a transition ai = (META-

APPLY-1), for some 1 ≤ i ≤ k, of applying the meta rule (7.18) r = trR(r′) for some plan

revision rule r′.

• c does not select a meta rule to repair some intention if, in c, there is no transition (META-

APPLY-1) of applying a meta rule (7.18).

• c selects an intention j of a goal a to execute if, in c, there is a transition ai = (META-

APPLY-1), for some 1 ≤ i ≤ k, of applying the meta rule (7.17) where I = id(j), int is an

intention of si and a is a justification of int in si (i.e., id(a) ∈ justs(j)).

• c does not select a plan revision rule if, in c, there is no transition (META-APPLY-1) of

applying the meta rule (7.17).

7.4 Equivalence by tr3APL

In this section, we show that our translation of a 3APL agent in Meta-APL is equivalent

to the 3APL agent one under the notion of weak bisimulation. The proof is similar to the

simulation of Jason in Theorem 6.3.1 where we show that there is a strong bisimulation

between deliberation cycles of the 3APL agent and that of its translation in meta-APL.

CHAPTER 7. SIMULATING 3APL 164

Furthermore, we will show that this strong bisimulation satisfies the two conditions in

Theorem 5.2.6 which entails a weak bisimulation between states of two agents.

7.4.1 Observations

Similar to the simulation of Jason in meta-APL, we first define observable properties of

3APL and meta-APL configurations in the translation tr3APL.

Let s = ⟨σ, γ, I, ph,E⟩ be a 3APL configuration where σ is a belief base, γ is a goal

base and Ps is an intention base, T is a temporal storage and ph is a phase indicator. We

stipulate that s is observable when it is of the Message phase. Then, the observation of s

includes beliefs in the belief base, goals in the goal base and intentions in the intention

base.

observe(s) = ⊺ if ph /=Message

observe(s) = (σ′, γ′, I ′) if ph =Message

where

• σ′ = {trfact(b) ∣ b ∈ σfact};

• γ′ = {goal(trquery(κ)) ∣ κ ∈ γ};

• I ′ = {trplan(h) ∣ ∃i ∶ i = (κ,h) ∈ I, γ ⊧G κ,h /= ǫ}.

Let t = ⟨A,Π, ρ, n⟩ be a meta-APL configuration, we also stipulate that t is observable

if its counter is 0, i.e., t is of the Sense phase. Then, it is possible to observe beliefs in the

atom base, goals in the atom base, and uncompleted intentions in the intention base. We

define the observations of meta-APL configurations in the translation of 3APL as follows:

observe(t) = ⊺ if ρ /= 0

observe(t) = (Bs,Gs, Is) if ρ = 0

where Bs,Es, Is are defined as follows:

• Bs = {belief(b) ∣ ∃a ∈ A ∶ atom(a) = belief(b)};

CHAPTER 7. SIMULATING 3APL 165

• Gs = {goal(g) ∣ ∃a ∈ A ∶ atom(a) = goal(g), t /⊢ belief(g)};

• Is = {πθ ∣ ∃p ∈ Π, a ∈ A ∶ plan(p) /= ǫ, subs(p) = θ, id(a) ∈ justs(p),atom(a) =

goal(g), t /⊢ belief(g)}.

7.4.2 Equivalence theorem

Theorem 7.4.1. Given a 3APL agent ag = (Cap, σ, γ,PG,PR), let (A,Q,M,R1,R2,R3,R4,R5) =

tr3APL(ag) be its translation in meta-APL, we have that ag and tr3APL(ag) are weakly bisimilar.

Proof.

Let s0 be the initial configuration of (Cap, σ, γ,PG,PR).

Let t0 be the initial configuration of (A,Q,M,R1,R2,R3,R4,R5).

Similar to the proof of Theorem 6.3.1, we construct a strong bisimulation between

cycles of ag in DC(s0) and cycles of tr3APL(ag) in DC(t0) which satisfies condition (1)

and (2) of Theorem 5.2.6.

Let c ∈DC(s0) be a deliberation cycle of ag and d be a deliberation cycle of tr3APL(ag).

We say that:

• c and d select the same goal planning rule if c selects a goal planning rule r and d

selects an object-level rule r′ and r′ = trP (r).

• c and d select the same plan revision rule if c selects a plan revision rule r and d

selects an meta rule r′ to repair some intention and r = trR(r′).

• c and d select the same intention for execution if c selects an intention (g, h) and d

selects an intention i for a goal a where h = trint(i) and goal(g) = atom(a).

Then, we say that c and d select bisimilar items if they select the same goal planning

rule or no goal planning rule, the same plan revision rule or no plan revision rule, and

the same intention for execution or no intention.

CHAPTER 7. SIMULATING 3APL 166

Given two configurations s ∈ RC(s0) and t ∈ RC(t0), we define the set of pairs of

cycles which select bisimilar items and start from s and t, respectively, as follows:

eq(s, t) = {(c, d) ∈DC(s0) ×DC(t0) ∣ first(c) = s, first(d) = t,

c and d select bisimilar items}

Then, we define a relation ∼ as follows:

∼
0
= ∅

∼
0
Start= {(s0, t0)}

∼
n+1
= {(c, d) ∈DC(s0) ×C(t0) ∣ ∃ s ∼

n
Start t ∶ (c, d) ∈ eq(s, t)}

∼
n+1
Start= {(s, t) ∈ RC(s0) ×RC(t0) ∣ ∃ c ∼

n+1 d ∶ last(c) = s and last(d) = t}

∼= ⋃
n≥0

∼
n

In the following, we establish and prove a series of claims which will be used to prove

that the relation ∼ constructed above satisfies the two conditions of Theorem 5.2.6.

Claim 7.4.2. Let s ∈ SC(s0) be a configuration in the Message phase of ag and t ∈ SC(t0) be a

configuration in the phase of Sense of trJason(ag), if observe(s) = observe(t) and (c, d) ∈ eq(s, t),

then observe(last(c)) = observe(last(d)) .

Proof. As (c, d) ∈ eq(s, t), c and d select bisimilar items, i.e., they select the same goal

planning rule, the same plan revision rule, and the same intention for execution. We

show that observe(last(c)) = observe(last(d)) are effectively equivalent by analysing the

change of configurations along c and d.

If a goal planning rule r ∈ PG is applied in c, a new plan (g, h) is generated in c as

well. Since c and d apply the same goal planning rule, this mean trP (r) ∈ R2 is applied in

d and generates a new plan instance i such that plan(i) = trplan(h), and there must be an

atom instance a such that atom(a) = goal(g) before trP (r) is applied and id(a) ∈ justs(i)

after tr(r) is applied.

CHAPTER 7. SIMULATING 3APL 167

If a plan revision rule r′ ∈ PR is applied in c (after r), it repairs some plan (g1, h1)

to (g1, h′1). As c and d apply the same plan revision rule, trR(r1) ∈ R4 is also applied

within d to repair an intention i1 where plan(i1) = trplan(h1) and its justification is an

atom instance of g1. Then, the result of applying trR(r1) is to repair the body of i1 such

that plan(i1) = trplan(h′1).

Finally, if an intention (g2, h2) is selected for execution in c, d selects an intention i2

where plan(i2) = trplan(h2) and its justification is an atom instance of g2 as c and d select

the same intention for execution. If h2 starts with an external action, so is plan(i2) and

hence the effects to the environment of executing (g2, h2) and i2 are the same. If h2 starts

with a belief update action bu, plan(i2) starts with a mental meta action corresponding

to bu, and hence the effects to the belief base of executing (g2, h2) and i2 are the same. If

h2 starts with a test action, plan(i2) starts with an equivalent test action, and hence the

effects of executing (g2, h2) and i2 to these intentions themselves are the same.

In total, changes between s and last(c) are equivalently occurred between t and last(d):

• For any new (or deleted) belief in last(c), it must be caused by either perception

or the effect of performing a belief update action. Equivalently, its corresponding

atom instance is also new in last(d) because we have the same new perception or

the same belief update action performed resulting the same effect to the atom base.

• For any deleted goal in last(c), it must be caused by perception or the effect of pre-

forming a belief update action which makes the goal achieved. Then, the same per-

ception or the equivalent mental meta action is received or performed in d, which

generates the same change to the belief base and hence achieved the same goals.

• For any new intention in last(c) which is created by a goal planning rule r, then the

corresponding intention is also created by trP (r) in last(d).

• For any intention in last(c) which is repaired by a plan revision rule r or executed,

then the corresponding intention is also repaired by trR(r) or executed in last(d)

CHAPTER 7. SIMULATING 3APL 168

Therefore, observe(last(c)) = observe(last(d)).

Claim 7.4.3. For all s ∼nStart t, observe(s) = observe(t).

Proof. We prove by induction on n. The base case, where n = 0, is trivial.

In the induction step, assume s ∼n+1Start t. Then, there exists c ∼n+1 d such that last(c) = s

and last(d) = t. Then, there exists s′ ∼nStart t
′ such that (c, d) ∈ eq(s′, t′). By induction hy-

pothesis, we have that s′ ∼n
Sense

t′ implies observe(s′) = observe(t′). Then, by Claim 7.4.2,

we have that observe(last(c)) = observe(last(d)), i.e., observe(s) = observe(t).

Claim 7.4.4. If (c, d) ∈ eq(s, t), the label(c) = label(d).

Proof. As (c, d) ∈ eq(s, t), they select bisimilar items.

• If c contains a transition corresponding to the execution of an external action a, as

other transitions are silent, then, label(c) = a. Since c and d select bisimilar items, d

also executes a. Thus, label(d) = a. Hence, label(c) = label(d).

• If c does not contain any transition corresponding to the execution of an external

action, all transitions in c are silent. Then, label(c) = ǫ. Since c and d bisimilar items,

d does not execute any external action. Thus label(d) = ǫ. Hence, label(c) = label(d).

Claim 7.4.5. For any s ∼nStart t and c ∈ DC(s0) such that first(c) = s, there exists d ∈ DC(t0)

such that first(d) = t, (c, d) ∈ eq(s, t) and observe(last(c)) = observe(last(d)).

Proof. We shall construct d along with transitions in c.

The first transition in c is labelled with (Message) where the belief base of s is updated

with respect to perception received from the environment. Together with this update,

some goals are achieved which leads to the update of the goal base and the intention base

accordingly. The result of this transition is a configuration s1 where the phase indicator

of s1 is Apply-PG.

CHAPTER 7. SIMULATING 3APL 169

For any cycle d1 starting from t, the first transition is labelled with (SENSE) where

beliefs in the atom base, i.e., instances of atoms belief(b), are also updated with respect to

perception received from the environment. As observe(s) = observe(t), after the update,

the set of beliefs in the atom base is equivalent to the belief base of s1. Also in d1, achieved

goals and intentions of achieved goals are removed from the atom base and the plan base

by applying the meta rule (7.13) in R1. Let t1 be the first configuration in d1 where the

phase counter of t1 is 2. Therefore, we have that beliefs and goals in the atom bases of t1

are equivalent to beliefs and goals in the belief base and the goal base of s1. We construct

the first part of d as the sequence of transitions from t to t1 in d1.

If c selects a goal planning rule r, head(r) is derived from the goal base of s1 and

query(r) is a logical consequence of the belief base of s1. Let s2 be the configuration in

c labelled with Apply-PR. Then, in s2, there is a new intention generated by r. This also

means trP (r) is also applicable with respect to beliefs and goals in t1. Therefore, there is

a cycle d2 from t1 where trP (r) is applied when rules from R2 are applied and is selected

by the meta rule (7.16) of R3. Let t2 be the first configuration in d2 such that the phase

counter of t2 is 4, then only the plan instance generated by trP (r) is set to be an intention.

This intention is equivalent to the new intention in s2. We continue constructing d from

t1 by the sequence of transitions from t1 to t2 in d2.

If c does not select any goal planning rule, we have that for any rule r, either head(r)

is not derivable from the goal base of s1 or query(r) does not hold in the belief base of s1.

This also means trP (r) is not applicable with respect to the atom base of t1. Therefore,

from t1, there is only a transition labelled with (META-APPLY-2) to a configuration t2.

Here, we extend d from t by this transition to t2.

If c selects a plan revision rule r, head(r) is matched with a prefix of an intention in

the intention base of s2 and query(r) is a logical consequence of the belief base of s2. Let

s3 be the configuration in c labelled with ExecInt. Then, in s3, an intention is repaired by

r. This also means that trR(r) is also applicable with respect to plan instances in the plan

CHAPTER 7. SIMULATING 3APL 170

base of t2 and beliefs in the belief base of t2. Therefore, there is a cycle d3 from t2 where

trR(r) is applied when rules from R4 are applied. Let t3 be the first configuration in d3

such that the phase counter of t3 is 5. Then, only one intention is repaired by trR(r). This

intention is equivalent to the repaired intention in s3. We extend d from t2 by the sequence

of transitions in d3 to t3.

If c does not select any plan revision rule, we have that for any plan revision rule r,

either head(r) does not match with any prefix of an intention from the intention base of s1

or query(r) does not hold in the belief base of s1. This also means trP (r) is not applicable

with respect to the atom base and the plan base of t1. Therefore, from t2, there is only a

transition labelled with (META-APPLY-2) to a configuration t3. Here, we extend d from

t2 by this transition to t3.

If c selects an intention (g, h) for execution, then (g, h) is an intention in s3 which does

not start with a test action which will fail or an abstract plan. Then there is an intention i

in the plan base of t3 whose justification is an atom instance a in the atom base of t3 such

that goal(g) = atom(a) and trint(plan(i)) = h. Then, i does not start with a test action

which will fail or a subgoal action. Therefore, there is a cycle d4 from t3 which applies the

meta rule (7.17) which selects i for execution. Then, we complete the construction of d by

extending it from t3 to the last configuration of d4.

According to the construction of d, we have that c and d are select bisimilar items.

Hence, (c, d) ∈ eq(s, t). Then, by Claim 7.4.2, observe(last(c)) = observe(last(d)).

Similar to the proof of Claim 7.4.6, we can also show the following result:

Claim 7.4.6. For any s ∼nStart t and d ∈ DC(t0) such that first(d) = t, there exists c ∈ DC(s0)

such that first(c) = s, (c, d) ∈ eq(s, t) and observe(last(c)) = observe(last(d)).

Let us now return to the proof that ∼ is a strong bisimulation which satisfies condi-

tions (1) and (2) of Theorem 5.2.6.

First, show that ∼ is a bisimulation. Let c ∼ d, then there is n > 0 such that c ∼n d. Thus,

CHAPTER 7. SIMULATING 3APL 171

there also exists s ∼n−1Start t such that (c, d) ∈ eq(s, t).

• We have

observe(c) = observe(first(c)) = observe(s)

observe(d) = observe(first(d)) = observe(t)

By Claim 7.4.3, we have observe(s) = observe(t), hence observe(s) = observe(t).

• Assume that c
l
Ð→ c′ where l = label(c), we have last(c) = first(c′). Obviously,

last(c) ∼nStart last(d) by the definition of ∼nStart. By Claim 7.4.5, there is a cycle d′ from

last(d) such that (c′, d′) ∈ eq(last(c), last(d)), i.e., c′ ∈∼n+1 d′. Then, we have that

c′ ∼ d′. As first(d′) = last(d) and label(c) = label(d) = l (by Claim 7.4.4), we also

have that d
l
Ð→ d′.

• Similarly, we also have that if d
l
Ð→ d′, by Claim 7.4.6, there is a cycle c′ such that

c
l
Ð→ c′ and c′ ∼ d′.

We show that ∼ satisfies conditions (1) and (2) of Theorem 5.2.6:

• For (1): let s′ be a configuration along c and s /= last(c). Note that c fixes the selec-

tions of a goal planning rule, a plan revision rule and an intention for execution.

In the following, we denote K = {c′ ∈ DC(s0) ∣ first(c) = first(c′), s′ ∈ c′} and

H = {d′ ∈DC(t0) ∣ first(d) = first(d′), t′ ∈ d′}.

– If s′ = first(c), we select t′ = first(d).

As c ∼n d, first(c) ∼n−1Start first(d), i.e., s′ ∼n−1Start t
′. By Claim 7.4.3, observe(s′) =

observe(t′).

For any c′ ∈ K, by Claim 7.4.5, there is a d′ in DC(t0) such that first(d′) = t′

and (c′, d′) ∈ eq(s′, t′). Then, c′ ∼n d′, i.e., c′ ∼ d′. Thus, d′ ∈H .

Similarly, we have for any d′ ∈H there exists c′ ∈K such that c′ ∼ d′.

Thus, K ∼H .

CHAPTER 7. SIMULATING 3APL 172

– If s′ /= first(c) and is before a goal planning rule is selected in c, cycles through

s′ correspond to all possible selections of goal planning rules, plan revision

rules and intentions for execution. Then, we choose t′ between first(d) and

before the transition (Apply-PG-1), (thus, t′ /= last(d)). Hence, cycles through

t′ correspond to all possible selections of goal planning rules, plan revision

rules and intentions for execution.

As no external action is selected at s′ and t′, label(c′∣s′) = label(d′∣t′) = ǫ.

Let c′ ∈ K, then first(c) = first(c′). By Claim 7.4.5, there exists d′′ ∈ DC(t0)

such that first(d′′) = first(d) and (c′, d′′) ∈ eq(first(c), first(d)).

∗ If t′ ∈ d′′ (i.e., t′ ∈ both d and d′′, then we select d′ = d′′, hence d′ ∈ H and

(c′, d′) ∈ eq(first(c), first(d)). Thus, by definition of ∼n and ∼, we obtain

c′ ∼n+1 d′ and c ∼ d.

∗ If t′ ∉ d′′, we construct d′ which has the same selections as d′′ yet passing

t′.

Let t′′1 and t′1 be the configurations right before the transition (META-APPLY-

1) for (7.16) in d′′ and d, respectively. Then, atom instances representing

beliefs and goals in t′′1 are the same as in t′1. Thus, there is a deliberation

cycle d′1 which passes t′1 (hence also t′) which selects the same PG rule as

d′′.

Similarly, let t′′2 and t′2 be the configurations right before the transition

(META-APPLY-1) for (7.18) in d′′ and d′1, respectively. Then, atom instances

representing beliefs and goals and plan instances representing intentions

in t′′2 are the same as in t′2. Thus, there is a deliberation cycle d′2 which

passes t′2 (hence also t′) which selects the same PR rule as d′′.

Similarly, let t′′3 and t′3 be the configurations right before the transition

(META-APPLY-1) for (7.17) in d′′ and d′2, respectively. Then, plan instances

representing intentions in t′′3 are the same as in t′3. Thus, there is a de-

CHAPTER 7. SIMULATING 3APL 173

liberation cycle d′3 which passes t′3 (hence also t′) which selects the same

intention to execute as d′′.

Then, we select d′ = d′3 and have that (c′, d′) ∈ eq(first(c), (d)) and first(d) =

first(d′). As t′ ∈ d′, d′ ∈H .

Similarly, we have for any d′ ∈ H there exists c′ ∈ K such that c′ ∼ d′. Hence,

K ∼H .

– Similarly, if s′ after a goal planning rule r1 is selected but before a plan revision

rule is selected, cycles through s′ correspond to the selection of r1, all possible

selections of plan revision rules, intentions for execution. Then, we choose t′

to be the configuration in d resulting from the transition (META-APPLY-1) of

applying the meta rule (7.16) in R3 (thus, t′ /= last(d)). This transition selects

the plan instance generated by trP (r) in d to be an intention. Hence, cycles

through t′ correspond to the selection of the goal planning rule r1, all possible

selections of plan revision rules and intentions for execution. Thus, we have

that label(c′∣s′) = label(d′∣t′) = ǫ.

Similar to the previous case, we can also prove that K ∼H .

– Similarly, if s′ is the selection of a goal planning rule r1, and the selection of

a plan revision rule r2, but before the selection of a intention for execution in

c, cycles through s′ correspond to the selections of r1 and r2, and all possible

selections of an intention for execution. Then, we choose t′ to be the configura-

tion in d resulting from the transition (META-APPLY-1) of applying a meta rule

in R4 (thus, t′ /= last(d)). Hence, cycles through t′ correspond to the selection

of trP (r1) and trR(r2), and all possible selections of an intention for execution.

Hence, we have that label(c′∣s′) = label(d′∣t′) = ǫ.

Similar to the previous case, we can also prove that K ∼H .

– Similarly, if s′ is after the selections of a goal planning rule r1, a plan revision

rule r2 and an intention i for execution, cycles through s′ correspond to the

CHAPTER 7. SIMULATING 3APL 174

execution of the selected intention. Then, we choose t′ to be the configuration

resulting from the transition (META-APPLY-1) of applying the meta rule (7.17)

which selects the corresponding intention of i in d. Hence, cycles through t′

correspond to the selections of trP (r1) and trR(r2), and the corresponding in-

tention of i. Hence, we have that label(c′∣s′) = label(d′∣t′) = ǫ.

Similar to the previous case, we have for any d′ ∈H there exists c′ ∈K such that

c′ ∼ d′. Hence, K ∼H .

• For (2): let t′ be a configuration a long d such that t′ /= last(d). Applying a similar

argument as for (1), we can also show that there exists s′ ∈ c such that label(c∣s′) =

label(d∣t′) and {c′ ∈ DC(s0) ∣ first(c) = first(d), s′ ∈ c′} ∼ {d′ ∈ DC(t0) ∣ first(d) =

first(d′), t′ ∈ d′}.

Thus, by Theorem 5.2.6, we have that ag and tr3APL(ag) are weakly bisimilar.

7.5 Summary

In this chapter, we presented our simulation of 3APL agents in meta-APL. We showed that

3APL agents and their translations in meta-APL are equivalent under the notion of weak

bisimulation. Here, we define a translation function so that each deliberation cycle of

3APL is simulated by a deliberation cycle of the translated agent in meta-APL. While the

idea of simulating deliberation cycles of 3APL is similar to simulation of Jason, features of

3APL such as declarative goals and plan revision present new challenges. The success of

simulating 3APL shows that meta-APL is a flexible language for simulating other agent

programming languages with different sets of features.

Chapter 8

Conclusion and future work

This thesis has developed a BDI-based agent programming language meta-APL which

supports procedural reflection. In this final chapter, we present an evaluation of the agent

programming language meta-APL, then provide a summary of the contributions of the

thesis, and finally draw directions and suggestions for future work.

8.1 Evaluation of meta-APL

The main purpose of the agent programming language meta-APL proposed in this the-

sis is to allow programmers to encode agent programs and deliberation strategies in the

same language. In order to design such an agent programming language, we follow the

approach proposed by des Rivières and Smith [1984] in including procedural reflection

features in meta-APL. In particular, meta-APL includes predefined queries and meta ac-

tions which enable reasoning about the metal attitudes and intentions of the agents as

well as modifying them and manipulating the execution state of intentions.

While it is the best to have meta-APL evaluated by agent programmers (i.e., the actual

users of the language), we here provide an initial and preliminary evaluation of meta-

APL:

• As mentioned at the beginning of the thesis (Section 1.2), once meta-APL is defined,

175

CHAPTER 8. CONCLUSION AND FUTURE WORK 176

the main objectives are (i) to show that typical examples of deliberation strategies

can be encoded in meta-APL and (ii) to highlight the flexibility of meta-APL by

showing how to simulate agent programs in state-of-the-art BDI agent program-

ming languages.

Regarding encoding typical deliberation strategies, Section 3.4 has provided the en-

coding of three typical deliberation strategies. The first deliberation strategy, namely

parallel execution, executes intentions of an agent program in an interleaving fash-

ion where each deliberation cycle selects a top-level executable intention to execute

non-deterministically. This deliberation strategy is mainly used when defining for-

mal operational semantics of most state-of-the-art agent programming languages

such as AgentSpeak(L), Jason, 3APL, 2APL, etc. In contrast, the second delibera-

tion strategy, called non-interleaved execution, executes intentions of an agent pro-

gram in a non-interleaving fashion where each intention is executed until comple-

tion before another intention is selected to executed. This deliberation strategy is

used in the interpreter of the agent programming language Jason to execute inten-

tions generated by plans which are accompanied with the atomic flag. Finally, the

third deliberation strategy, namely the round-robin strategy, executes intentions in

a round-robin fashion so that every intention has the chance to be executed. This is

the deliberation strategy that is implemented in the Jason interpreter.

Regarding the flexibility of meta-APL, we have simulated two state-of-the-art BDI

agent programming languages, Jason and 3APL, in Chapters 6 and 7, respectively.

For each of these agent programming languages, we define a translation function

to translate each agent program in the source language into another agent program

in meta-APL. These translation functions are defined in a modular manner, and we

believe it will be easy to adapt for other BDI agent programming languages. In par-

ticular, initial mental attitudes of the source agents are translated into initial atoms of

the target agents in meta-APL. Objects which define how intentions are generated,

CHAPTER 8. CONCLUSION AND FUTURE WORK 177

such as plans in Jason and PG rules in 3APL, are translated into object level rules

in meta-APL. To this end, the translation at the object level from Jason to meta-APL

is rather straightforward. As 3APL has PR rules to revise intentions, they serve as

a reflective feature which modifies the internal representation of intentions, there-

fore, they are translated into meta rules which use meta action set-plan to revise

the plan body of intentions in meta-APL. Furthermore, these translations also in-

clude meta rules to implement the deliberation strategies of Jason and 3APL which

are defined in their formal operational semantics. In particular, in terms of selecting

intentions to execute, the operational semantics of both languages adopt the parallel

execution strategy; therefore, we find the similarity between the second meta rule

of the implementation of this strategy in Section 3.4 and the two meta rules (6.14)

and (7.17) in the translations of Jason and 3APL, respectively. The translations also

include other meta rules to implement the selection of which intention to adopt in

a deliberation cycle. Selection strategies such as those implicit in the formal opera-

tional semantics of Jason and 3APL, where a single intention is adopted randomly,

can be straightforwardly implemented as a meta rule of meta-APL where the rule

queries for a plan instance which is generated in the current cycle and sets it to be

an intention. Here, we also see a similarity between the meta rules (6.13) and (7.16)

which implements the above idea.

• From the use of meta-APL in Section 3.4 as well as Chapters 6 and 7, we would argue

that the encoding typical deliberation strategies to select intention to execute (such

as parallel execution and non-interleaved execution) and to selection intention to

adopt (such as randomly adopting an intention) are fairy easy and straightforward.

Furthermore, we also show that common features such as the atomic flag in Jason

and the round-robin strategy in the Jason interpreter can also be implemented in

meta-APL. Therefore, we hope that meta-APL will be flexible enough to encode

other deliberation strategies in a straightforward way.

CHAPTER 8. CONCLUSION AND FUTURE WORK 178

• At the object level, the straightforward translation (from beliefs, goals and events

in Jason and 3APL to atoms in meta-APL and from plans in Jason and PG rules in

3APL into object level rules in meta-APL) shows that meta-APL is as simple to use

as other BDI agent programming languages such as Jason and 3APL.

Obviously, the above evaluation are still preliminary and subjective. Therefore, a

meaningful and valuable direction for the future work is to have an extensive and in-

depth evaluation of meta-APL. In particular, we will look at other deliberation strategies

in existing agent programming languages and find out how to implement them in meta-

APL.

8.2 Summary of Contributions

In this thesis, we have argued that there is a need for a BDI-based agent programming

language which enables deliberation strategies to be programmed in the language itself.

A deliberation strategy specifies how an agent selects plans for adoption and execution.

We gave a brief review of existing agent programming languages and analysed the cur-

rent support within these languages for programming different deliberation strategies.

Here, we argued that existing languages provide a limited support. For example, KAs in

PRS [Georgeff and Lansky, 1987], goal planning rules in 3APL [Hindriks et al., 1999; Das-

tani et al., 2005] and plans in Jason [Bordini et al., 2007] only allow the agent programmer

to specify conditions when plans are applicable. With the exception of PRS, the selection

when there are more than one applicable plans is carried out by selection functions which

are implementable in the host languages of the interpreters of these agent programming

languages. The support is even more limited for programming different strategies of se-

lecting plans for execution where only Jason leaves a limited space for customising the

default strategy. We also argued that a promising approach to this open problem is to

develop an agent programming language which supports procedural reflection [des Riv-

CHAPTER 8. CONCLUSION AND FUTURE WORK 179

ières and Smith, 1984]. In Chapter 2, we gave a brief overview of procedural reflection and

analysed the current appearance of procedural reflection in several agent programming

languages.

Then, in Chapters 3 and 4 we presented the syntax and the operational semantics of

meta-APL, a BDI-based agent programming language which supports procedural reflec-

tion. Meta-APL is a very simple rule-based language. However it contains all the compo-

nents necessary to implement a wide variety of BDI-based agent programming language

features, deliberation cycles and commitment strategies, including beliefs, procedural and

deliberative goals, events, plan selection and intention scheduling, blind commitment and

various forms of open minded commitment. We conjecture that the built-in features of

meta-APL at least approximate a “core specification” of what constitutes a BDI agent pro-

gramming language. From this perspective, the key distinguishing feature of BDI lan-

guages (compared to other rule based languages) are plans and intentions (persistent plan

instances). Everything else is definable in terms of these primitives.

We demonstrated the flexibility of meta-APL by showing how to simulate Jason and

3APL (referred to as “source languages” in what follows) in meta-APL. The equivalence of

these simulations is based on the notion of strong and weak bisimulations [Milner, 1989]

which have been used for multi-agent systems in [Hindriks, 2001]. In Chapter 5, we de-

fined a notion of strong bisimulation between deliberation cycles of two agent programs

(also referred to as cycle-based bisimulation). We showed that if such a cycle-based bisim-

ulation exists, it gives rise to a weak bisimulation between configurations of the agent in

the source languages and the agent in meta-APL; hence the two agents have equivalent

behaviours.

Based on the result of cycle-based bisimulation, we presented the simulations of Ja-

son and 3APL in meta-APL in Chapters 6 and 7, respectively. In each chapter, we gave

a detailed review of the corresponding source agent programming language including

its syntax, its semantics and the deliberation cycle that its interpreter implements. We

CHAPTER 8. CONCLUSION AND FUTURE WORK 180

then analysed the key steps and the order that these steps appear in the deliberation cycle

of the source language. Based on this analysis, we defined a translation function which

translates agent programs in the source language into an agent program in meta-APL. In

general, such a translation will convert elements in the agent program in the source lan-

guage into parts of the agent program in meta-APL. The other parts of the agent program

in meta-APL are static and common to all agent programs in the source language. They

are used to implement the deliberation strategy which is implemented in the deliberation

cycle of the source language. This is natural as all agent programs in the source language

share the same deliberation strategy. Then, at the end of both chapters, we presented the

proof to show that the agent in the source language and its translation in meta-APL have

equivalent behaviours. The proof is carried out by constructing a bisimulation between

deliberation cycle of the agent program in the source language and its translation and

show that this bisimulation is a cycle-based bisimulation.

8.3 Future work

The results of this thesis have raised a number of potential directions of research for future

work. In this section, we highlight two of them, namely: implementation of an interpreter

for meta-APL, and application of meta-APL in verification of heterogeneous multi-agent

systems.

Currently, no interpreter has been implemented for meta-APL. Obviously, it would be

useful and interesting to implement an interpreter for meta-APL where agent programs

in meta-APL can be executed. This will be a practical tool for the agent designer and the

agent programmer to design and to encode agent programs of an application domain as

well as to examine different deliberation strategies in order to look for a “best” one in the

application domains.

Another promising direction of research is to use meta-APL for verifying heteroge-

neous systems of multiple agents. The idea here is to translate agent programs in other

CHAPTER 8. CONCLUSION AND FUTURE WORK 181

languages into agent programs in meta-APL with equivalent behaviours, and to define a

translation from meta-APL programs into the specification language of a model-checker.

The results of this thesis showed that it is possible to translate Jason and 3APL programs

into meta-APL. Preliminary experiments have been carried out where agent programs of

Jason and 3APL are translated into meta-APL using the translations defined in this thesis

and then these agent programs in meta-APL are encoded in Maude [Clavel et al., 1996].

Their properties are checked in the Maude LTL model checker. However, this direction

also requires further extensions of meta-APL such as adding features for communication

between agents and extending the simulation results in meta-APL to other agent pro-

gramming languages.

Finally, an important direction of future work is to carry out an in-depth and objective

evaluation of meta-APL. One way to do this is to use meta-APL to simulate other agent

programming languages as well as their deliberations strategies. By investigating a wide

range of agent programming languages and deliberation strategies, it would be possible

to show the limits of meta-APL, and precisely specify the border between deliberation

strategies that can be defined and those that cannot be defined in meta-APL. Through

these activities, the comparison of the implementation of different deliberation strategies

in meta-APL and other programming languages (such as the ones that implement in-

terpreters of other agent programming languages) will provide a qualitative evaluation

about the design objectives of meta-APL such as its simplicity and ease of use.

Bibliography

José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luís Moniz Pereira. Evolving

Logic Programs. In Logics in Artificial Intelligence (JELIA), pages 50–61, 2002.

Howard Barringer, Michael Fisher, Dov M. Gabbay, Graham Gough, and Richard Owens.

METATEM: A Framework for Programming in Temporal Logic. In J. W. de Bakker,

Willem P. de Roever, and Grzegorz Rozenberg, editors, REX Workshop, volume 430 of

Lecture Notes in Computer Science, pages 94–129. Springer, 1989. ISBN 3-540-52559-9.

Howard Barringer, Michael Fisher, Dov M. Gabbay, Graham Gough, and Richard Owens.

METATEM: An Introduction. Formal Asp. Comput., 7(5):533–549, 1995.

Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. JADE - A Java

Agent Development Framework. In Bordini et al. [2005], pages 125–147. ISBN 0-387-

24568-5.

Rafael H. Bordini and Jomi Fred Hübner. BDI Agent Programming in AgentSpeak Using

Jason (Tutorial Paper). In Francesca Toni and Paolo Torroni, editors, CLIMA, volume

3900 of Lecture Notes in Computer Science, pages 143–164. Springer, 2005. ISBN 3-540-

33996-5.

Rafael H. Bordini, Ana L. C. Bazzan, Rafael de Oliveira Jannone, Daniel M. Basso,

Rosa Maria Vicari, and Victor R. Lesser. AgentSpeak(XL): efficient intention selection in

182

BIBLIOGRAPHY 183

BDI agents via decision-theoretic task scheduling. In AAMAS, pages 1294–1302. ACM,

2002.

Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni. Multi-

Agent Programming: Languages, Platforms and Applications, volume 15 of Multiagent Sys-

tems, Artificial Societies, and Simulated Organizations. Springer, 2005. ISBN 0-387-24568-5.

Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni, Jorge J.

Gómez-Sanz, João Leite, Gregory M. P. O’Hare, Alexander Pokahr, and Alessandro

Ricci. A Survey of Programming Languages and Platforms for Multi-Agent Systems.

Informatica (Slovenia), 30(1):33–44, 2006.

R.H. Bordini, J.F. Hübner, and M. Wooldridge. Programming multi-agent systems in AgentS-

peak using Jason. Wiley-Interscience, 2007.

Michael E. Bratman. Intention, Plans, and Practical Reason. CSLI Publications, 1999.

Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of Maude.

Electr. Notes Theor. Comput. Sci., 4:65–89, 1996.

Philip R. Cohen and Hector J. Levesque. Intention is Choice with Commitment. Artif.

Intell., 42(2-3):213–261, 1990.

Mehdi Dastani. 2APL: a practical agent programming language. Autonomous Agents and

Multi-Agent Systems, 16(3):214–248, 2008.

Mehdi Dastani, Frank S. de Boer, Frank Dignum, and John-Jules Ch. Meyer. Programming

agent deliberation: an approach illustrated using the 3APL language. In AAMAS, pages

97–104. ACM, 2003a. ISBN 1-58113-683-8.

Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and John-Jules Ch. Meyer. A Pro-

gramming Language for Cognitive Agents Goal Directed 3APL. In Mehdi Dastani, Jür-

BIBLIOGRAPHY 184

gen Dix, and Amal El Fallah-Seghrouchni, editors, PROMAS, volume 3067 of Lecture

Notes in Computer Science, pages 111–130. Springer, 2003b. ISBN 3-540-22180-8.

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer. Programming Multi-

Agent Systems in 3APL. In Bordini et al. [2005], pages 39–67. ISBN 0-387-24568-5.

Frank S. de Boer, Koen V. Hindriks, Wiebe van der Hoek, and John-Jules Ch. Meyer. A

verification framework for agent programming with declarative goals. J. Applied Logic,

5(2):277–302, 2007.

Louise A Dennis and Berndt Farwer. Gwendolen: A BDI language for verifiable agents.

In AISB 2008 Convention Communication, Interaction and Social Intelligence, 2008.

Louise A. Dennis, Berndt Farwer, Rafael H. Bordini, and Michael Fisher. A flexible frame-

work for verifying agent programs. In Lin Padgham, David C. Parkes, Jörg P. Müller,

and Simon Parsons, editors, Proceedings of the 7th international joint conference on Au-

tonomous agents and multiagent systems, pages 1303–1306. IFAAMAS, 2008. ISBN 978-0-

9817381-2-3.

Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H. Bordini. Model

checking agent programming languages. Automated Software Engineering, 19(1):5–63,

2012.

Jim des Rivières and Brian Cantwell Smith. The Implementation of Procedurally Reflec-

tive Languages. In LISP and Functional Programming, pages 331–347, 1984.

Michael Fisher. MetateM: The Story so Far. In Rafael H. Bordini, Mehdi Dastani, Jürgen

Dix, and Amal El Fallah-Seghrouchni, editors, PROMAS, volume 3862 of Lecture Notes

in Computer Science, pages 3–22. Springer, 2005. ISBN 3-540-32616-2.

Dov M. Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic

for Interactive Systems. In Behnam Banieqbal, Howard Barringer, and Amir Pnueli,

BIBLIOGRAPHY 185

editors, Temporal Logic in Specification, volume 398 of Lecture Notes in Computer Science,

pages 409–448. Springer, 1987. ISBN 3-540-51803-7.

Michael P. Georgeff and Amy L. Lansky. Reactive Reasoning and Planning. In Kenneth D.

Forbus and Howard E. Shrobe, editors, AAAI, pages 677–682. Morgan Kaufmann, 1987.

Patrick J. Hayes. In Defense of Logic. In R. Reddy, editor, IJCAI, pages 559–565. William

Kaufmann, 1977.

Koen V. Hindriks. Agent programming languages: programming with mental models. PhD

thesis, Universiteit Utrecht, 2001.

Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer. Con-

trol Structures of Rule-Based Agent Languages. In Jörg P. Müller, Munindar P. Singh,

and Anand S. Rao, editors, ATAL, volume 1555 of Lecture Notes in Computer Science,

pages 381–396. Springer, 1998. ISBN 3-540-65713-4.

Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer. Agent

Programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer. Agent

Programming with Declarative Goals. In Cristiano Castelfranchi and Yves Lespérance,

editors, Intelligent Agents VII Agent Theories Architectures and Languages, volume 1986 of

Lecture Notes in Computer Science, pages 228–243. Springer, 2000. ISBN 3-540-42422-9.

João Alexandre Leite, José Júlio Alferes, and Luís Moniz Pereira. MINERVA - A Dynamic

Logic Programming Agent Architecture. In John-Jules Ch. Meyer and Milind Tambe,

editors, ATAL, volume 2333 of Lecture Notes in Computer Science, pages 141–157. Springer,

2001. ISBN 3-540-43858-0.

Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B.

Scherl. GOLOG: A Logic Programming Language for Dynamic Domains. The Journal

of Logic Programming, 31(1-3):59–83, 1997.

BIBLIOGRAPHY 186

Viviana Mascardi, Maurizio Martelli, and Leon Sterling. Logic-based specification lan-

guages for intelligent software agents. CoRR, cs.AI/0311024, 2003.

Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice

Hall, 1989. ISBN 978-0-13-115007-2.

David N. Morley and Karen L. Myers. The SPARK Agent Framework. In Proceedings of the

Third International Joint Conference on Autonomous Agents and Multiagent Systems, pages

714–721. IEEE Computer Society Washington, DC, USA, IEEE Computer Society, 2004.

ISBN 1-58113-864-4.

Gordon D Plotkin. A structural approach to operational semantics. Technical report,

Computer Science Department, Aarhus University Denmark, 1981.

Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57. IEEE Computer

Society, 1977.

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI Reasoning

Engine. In Bordini et al. [2005], pages 149–174. ISBN 0-387-24568-5.

Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.

In Walter Van de Velde and John W. Perram, editors, MAAMAW, volume 1038 of Lecture

Notes in Computer Science, pages 42–55. Springer, 1996. ISBN 3-540-60852-4.

Anand S. Rao and Michael P. Georgeff. Modeling Rational Agents within a BDI-

Architecture. In James F. Allen, Richard Fikes, and Erik Sandewall, editors, KR, pages

473–484. Morgan Kaufmann, 1991. ISBN 1-55860-165-1.

Brian Cantwell Smith. Reflection and Semantics in Lisp. In Ken Kennedy, Mary S. Van

Deusen, and Larry Landweber, editors, POPL, pages 23–35. ACM Press, 1984. ISBN

0-89791-125-3.

BIBLIOGRAPHY 187

John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting & avoiding interfer-

ence between goals in intelligent agents. In Georg Gottlob and Toby Walsh, editors,

International Joint Conference on Artificial Intelligence, pages 721–726. Morgan Kaufmann

Publishers, Morgan Kaufmann, 2003.

Michael Thielscher. FLUX: A logic programming method for reasoning agents. Theory

and Practice of Logic Programming, 5(4-5):533–565, 2005.

Birna van Riemsdijk, Wiebe van der Hoek, and John-Jules Ch. Meyer. Agent programming

in Dribble: from beliefs to goals using plans. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, pages 393–400. ACM New York,

NY, USA, 2003.

Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda.

Model Checking Programs. Autom. Softw. Eng., 10(2):203–232, 2003.

Michael Winikoff. JACKTM Intelligent Agents: An Industrial Strength Platform. In Bor-

dini et al. [2005], pages 175–193. ISBN 0-387-24568-5.

Michael Winikoff. Implementing commitment-based interactions. In Edmund H. Durfee,

Makoto Yokoo, Michael N. Huhns, and Onn Shehory, editors, Proceedings of the 6th in-

ternational joint conference on Autonomous agents and multiagent systems, page 128. ACM,

IFAAMAS, 2007. ISBN 978-81-904262-7-5.

M. Wooldridge. An introduction to multiagent systems. Wiley, 2002.

M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. Knowledge

engineering review, 10(2):115–152, 1995.

Appendix A

Reference of meta-APL

In the following, ID is a non-empty totally ordered set of ids; PRED is a non-empty set of

predicate symbols; FUNC is a non-empty set of function symbols; and VAR is a non-empty

set of variables.

Terms and atoms

t ∶∶= i ∣X ∣ t1; . . . ; tm ∣ f(t1, . . . , tm) ∣ p(t1, . . . , tm)

a ∶∶= p(t1, . . . , tm)

where i ∈ ID, X ∈ VAR, f ∈ FUNC and p ∈ PRED.

Plans

π ∶∶= ǫ ∣ (ea ∣?q ∣ma ∣!a);π

Flags

Flag Meaning

intended The plan instance is an intention

scheduled The plan instance will be executed in the current cycle

stepped The plan instance has been executed in the last cycle

failed The last execution of the plan instance has failed

188

APPENDIX A. REFERENCE OF meta-APL 189

Queries

Query Meaning

atom(i, a) There is an atom instance with id i and atom a

cycle(n) The current cycle is n

plan(i, π) There is a plan instance with id i and its plan remain-

der is π

init-plan(i, π) There is a plan instance with id i and its initial plan is

π

justification(i, j) There is a plan instance with id i and an atom instance

with j where the atom instance is the justification of

the plan instance

substitution(i, θ) There is a plan instance with id i and its substitution

is θ

subgoal(i, j) There is a plan instance with id i and an atom instance

with j where the atom instance is the subgoal of the

plan instance

state(i, s) There is a plan instance with id i and its substitution

is θ

cycle(i, n) There is an atom or plan instance existed since cycle n

with id i

APPENDIX A. REFERENCE OF meta-APL 190

Meta actions

Meta action Meaning

add-atom(a) To add a new atom instance of an atom a

delete-atom(i, a) To delete atom instance(s) of which id is i and

atom is a

set-plan(i, π) To replace the plan remainder of a plan instance

(with id i) with π

set-substitution(i, θ) To extend the subsitution of a plan instance

(with id i) with θ

set-state(i, s) To add the flag s to the state of a plan instance

with id i

unset-state(i,s) To delete the flag s from the state of a plan in-

stance with id i

delete-plan(i) To delete a plan instance with id i

Clauses

q ← [not]q1, . . . , [not]qn

Macros

a = a1; . . . ;an

Object level rules

reason[∶ context]→ π

reason ∶∶= q1, . . . , qn

where qi’s are primitive mental states queries (i.e., queries of the from atom(i, a) or cycle(i, a)).

APPENDIX A. REFERENCE OF meta-APL 191

context ∶∶= [not]q1, . . . , [not]qn

where qi’s are mental states queries (i.e., queries of the from atom(i, a) or cycle(i, a) or

user-defined queries by clauses using only primitive queries atom(i, a) or cycle(i, a)).

Meta rules

context→ π

context ∶∶= [not]q1, . . . , [not]qn

where qi’s are queries.

Meta-APL agent

A meta-APL agent is a tuple:

(A,Q,M,R1, . . . ,Rn)

whereA is a finite set of atoms,Q is a finite set of clauses,M is a finite set of macros, n ≤ 1

and Ri’s are sets of either object level rules or meta rules.

Appendix B

A computation run of the clean robot

We illustrate the operational semantics of meta-APL by revisiting our example in Sec-

tion 3.5 of the previous chapter. In particular, we present a short computation run of the

first two cycles of the agent program for the service robot.

From Example 4.1.5, we know that the initial configuration of our service robot is as

follows:

C0 = ⟨{(1, belief(pos(room2)),nil,0)},∅,0,0⟩

We represent configurations as the following table:

Mental state C0

(1, belief(pos(room2)),nil,0)

Plan state

– empty –

Phase counter: 0 Cycle counter: 0

On the top right corner is the name of the configuration. The second row of the table

is the content of the mental state. Then, on the fourth row, we have the content of the

192

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 193

plan state. Finally, the last line is for showing the values of the phase counter and the

cycle counter. In the following, we show the run by listing a sequence of configurations

as they appear, where some uninteresting ones are omitted. We also highlight differences

between consecutive configurations in bold.

B.1 First cycle

From C0, as the phase counter is 0, SENSE is the only transition from C0. Its effect is

for the robot to perform sense() which collects information from the environment. We

assume that, at this point, through perceptions, the robot knows that room room1 is dirty

and there is a box at room room3 to be delivered to room room2. Hence, this transition

leads to the following configuration:

Mental state C1

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(4, belief(dest(room2)),nil,0)

Plan state

–empty–

Phase counter: 1 Cycle counter: 0

The phase counter is now 1 in C1. The agent starts applying meta rules in R1. Here,

only the meta rule (3.9) is applicable in C1. The result of the transition META-APPLY-

1 is a new atom instance of goal(box(room2)). Thus, the new atom enables the meta

rule (3.10) and applying this meta rule corresponds to another transition META-APPLY-1

which deletes the atom instance with id 4. After that, no other meta rules in R1 are appli-

cable, which makes the transition META-APPLY-2 applicable where the phase counter is

increased. We obtain the following configuration:

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 194

Mental state C2

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

Plan state

–empty–

Phase counter: 2 Cycle counter: 0

Note that we ignore intermediate configurations between C1 and C2 as it is similar to

C2 except of the value of the phase counter. InC2, the phase counter now is 2. This means

the agent will try to apply as many object-level rules in R2 as possible. Here, the object

level rules (3.13) and (3.14) are applicable because of atom instances with id 2, 3 and 5.

They can be applied fromC2 by following two consecutive transitions OBJ-APPLY-1 which

generates two following plan instances:

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),{X/room2, Y /room3},∅,{5},0)

Then, no more rules from R2 are applicable which enables OBJ-APPLY-2 as the next tran-

sition, and yields the following configuration:

Mental state C3

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

Plan state

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 195

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2,Y /room3},∅,{5},0)

Phase counter: 3 Cycle counter: 0

Notice that in C3, the atom instance with id 2 is the justification of the plan instance

with id 6, and the atom instance with id 5 is the justification of the plan instance with id

7.

As the phase counter is 3 inC3, the agent now tries to apply meta rules fromR3. Recall

that R3 is for selecting an intention to be executed in the current cycle. Since there is no

intention in the plan state, we have that (3.16) is applicable for both plan instances with

ids 6 and 7, which enables two META-APPLY-1 transitions from C3. After transition, this

meta rule is not applicable anymore since we will set either the plan instance with id 6

or 7 to be an intention. In this example, we assume that the run of the agent selects the

plan instance with id 7 to apply (3.16). Then, we only have (3.18) applicable because of

the intention with id 7. By another META-APPLY-1 transition, we obtain a configuration

where no other meta rule is applicable. This enables the META-APPLY-2 transition, and

we arrive at the following configuration:

Mental state C4

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

Plan state

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 196

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended, scheduled},{5},0)

Phase counter: 4 Cycle counter: 0

At C4, the agent is in the first stage of the Exec phase where there is only a transition

DEL-STEPPED. Since no intention was executed in the previous cycle, i.e., plan instances

with the flag stepped, we arrive at the same configuration except that the phase counter

is increased by 1:

Mental state C5

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended,scheduled},{5},0)

Phase counter: 5 Cycle counter: 0

As the phase counter is 5, we are at the final phase of the first cycle which is to execute

selected intentions. In the plan state, there is only one intention with id 7 is selected, i.e.,

having the flag scheduled. We execute the first action of its plan which is a subgoal action.

The effect is a new subgoal linked back to the intention. After that, there are no more

intentions to execute, hence, the next transition is labelled NEW-CYCLE which resets the

phase counter and increases the cycle counter. We obtain the following configuration:

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 197

Mental state C6

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended, stepped},{5},0)

Phase counter: 0 Cycle counter: 1

As the cycle counter increases, C6 is now the beginning of the second deliberation

cycle.

B.2 Second cycle

From C6, there is a transition SENSE to the following cycle:

Mental state C7

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

(9, belief(dest(room2)),nil,0)

Plan state

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 198

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended,stepped},{5},0)

Phase counter: 1 Cycle counter: 1

Note that we still receive a belief from the environment as the box has not arrived at the

expected room yet. Therefore, inC7, we have a new atom instance of belief(dest(room2)).

It is the same as the atom instance with id 4 which was deleted in the previous cycle. The

agent at C7 tries to apply rules from R1 as the phase counter is 1. There is only (3.10)

is applicable which effectively deletes the new atom instance as there is already an atom

instance with the form goal(box(room2)) in the mental state. By two transitions labelled

META-APPLY-1 and META-APPLY-2, we arrive at the following configuration:

Mental state C8

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended,stepped},{5},0)

Phase counter: 2 Cycle counter: 1

Now, the agent tries to apply rules in R2. The object-level rule (3.15) is applicable

because of the new subgoal of goal(pos(room3)). Therefore, we have a transition labelled

OBJ-APPLY-1 from C8. Then, there is no other object-level rule in R2 is applicable, the

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 199

next transition is OBJ-APPLY-2 which leads to the following configuration:

Mental state C9

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended,stepped},{5},0)

(10,Go(); !goal(pos(room3)),Go(); !goal(pos(room3)),

{X/room3},∅,{9},1)

Phase counter: 3 Cycle counter: 1

FromC9, the agent is in phase 3 where it tries to apply meta rules fromR3. Since there

is already an intention in the plan state, the meta rule (3.16) is not applicable. However,

(3.17) is applicable because of the new plan instance with id 10 and the subgoal with id

8. Then, there is a transition labelled META-APPLY-1, which adds the flag intended to

the plan instance with id 10. After that, there is another transition also labelled META-

APPLY-1 corresponding to the application of the meta rule (3.18) which schedules the plan

instance with id 10 to be executed in this deliberation cycle. Then, there is no other rules

applicable, which enables a transition labelled META-APPL-2 and gives us the following

configuration:

Mental state C10

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 200

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended,stepped},{5},0)

(10,Go(); !goal(pos(room3)),Go(); !goal(pos(room3)),

{X/room3},{intended, scheduled},{9},1)

Phase counter: 4 Cycle counter: 1

FromC10, the agent is in the Prepare phase. There is a transition labelled DEL-STEPPED

which removes all flags stepped from the plan state. We obtain the following configura-

tion:

Mental state C11

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended},{5},0)

(10,Go(); !goal(pos(room3)),Go(); !goal(pos(room3)),

{X/room3},{intended,scheduled},{9},1)

Phase counter: 5 Cycle counter: 1

APPENDIX B. A COMPUTATION RUN OF THE CLEAN ROBOT 201

Since the phase counter of C11 is 5, the agent is now in the Exec phase for the second

time. It will execute the only intention with the flag scheduled which has id 10. The first

action of the plan of the intention with id 10 is the external action Go() which will effec-

tively move the position of the agent in the building from room2, where it is currently, to

room3, which is the next one. This corresponds to a transition labelled EXEC-EA. As there

are no more intentions to execution, there is the next transition labelled NEW-CYCLE re-

sets the phase counter and increases the cycle counter. We arrive that the following con-

figuration:

Mental state C12

(1, belief(pos(room2)),nil,0)

(2, belief(dirty(room1)),nil,0)

(3, belief(box(room3)),nil,0)

(5, goal(box(room2)),nil,0)

(8, goal(pos(room3)),7,0)

Plan state

(6, !pos(room1);V acuum(), !pos(room1);V acuum(),{X/room1},∅,{2},0)

(7, !pos(room3);Pick(); !pos(room2);Drop(),

!pos(room3);Pick(); !pos(room2);Drop(),

{X/room2, Y /room3},{intended},{5},0)

(10,Go(); !goal(pos(room3)), !goal(pos(room3)),

{X/room3},{intended, stepped},{9},1)

Phase counter: 0 Cycle counter: 2

This configuration is the end of the second cycle, and also the beginning of the new

cycle. Note that the effect of the external actionGo() has not been known by the robot yet.

The agent will get its new position after the first transition in the third cycle.

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Motivation
	Research objectives and contributions
	Overview and structure of Thesis

	Background: Agents and programming agents
	Intelligent agents
	BDI architecture
	Agent programming languages
	Logic-based languages
	Imperative languages
	Hybrid languages
	Discussion

	Programming deliberation strategies
	Programming selection of intentions for adoption
	Programming selection of intentions for execution

	Procedural reflection
	A computational view
	Reflection in programming languages

	Simulating agent programs
	Summary

	The agent programming language meta-APL
	Introduction
	Syntax
	Terms and atoms
	Primitive operations on atom instances
	Plans
	Primitive operations on plan instances
	User-defined queries and meta actions
	Object-level rules
	Meta rules
	Meta-APL program

	Core deliberation cycle
	Example Deliberation Cycles
	Example of a meta-APL agent program
	Summary

	Operational semantics of meta-APL
	Agent configuration
	Atom and plan instances
	Configurations

	Semantics of queries and meta actions
	Answering queries
	Determining justifications
	Semantics of meta actions

	Operational semantics
	The Sense phase
	The Apply phase
	The Exec phase
	Semantics of agents

	Summary

	Cycle-based Bisimulation
	Bisimulation
	Labelled transition system
	Strong bisimulation
	Weak bisimulation

	Cycle-based bisimulation
	Summary

	Simulating Jason
	Jason
	Syntax
	Operational semantics
	Selections in a deliberation cycle

	Translation
	Outline of the translation
	The static part of the translation
	Component translation functions
	Simulating selections

	Equivalence of trJason
	Observations
	Equivalence

	Summary

	Simulating 3APL
	3APL
	3APL Syntax
	3APL Operational semantics
	Selections in a 3APL deliberation cycle

	Translation
	Outline of the translation
	The static part of the translation
	Component translation functions
	The translation function tr3APL

	Simulating selections
	Equivalence by tr3APL
	Observations
	Equivalence theorem

	Summary

	Conclusion and future work
	Evaluation of meta-APL
	Summary of Contributions
	Future work

	Bibliography
	Reference of meta-APL
	A computation run of the clean robot
	First cycle
	Second cycle

