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ABSTRACT 

With the help of modern technology, blindness caused by retinal diseases such as 

age-related macular degeneration or retinitis pigmentosa is now considered 

reversible. Scientists from various fields such as Neuroscience, Electrical 

Engineering, Computer Science, and Bioscience have been collaborating to design 

and develop retinal prostheses, with the aim of replacing malfunctioning parts of 

the retina and restoring vision in the blind. Human trials conducted to test retinal 

prostheses have yielded encouraging results, showing the potential of this approach 

in vision recovery. However, a retinal prosthesis has several limitations with regard 

to its hardware and biological functions, and several attempts have been made to 

overcome these limitations.  

This thesis focuses on the biological aspects of retinal prostheses: the 

biological processes occurring inside the retina and the limitations of retinal 

prostheses corresponding to those processes have been analysed. Based on these 

analyses, three major findings regarding information processing inside the retina 

have been presented and these findings have been used to conceptualise retinal 

prostheses that have the characteristics of asymmetrical and separate pathway 

stimulations. In the future, when nanotechnology gains more popularity and is 

completely integrated inside the prosthesis, this concept can be utilized to restore 

useful visual information such as colour, depth, and contrast to achieve high-quality 

vision in the blind.
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Of all the human senses, the sense of sight is considered to be the most important 

one. Vision enables human beings to interact with their surrounding environment. 

Vision is a result of sequential activity, which begins with the reflection of light 

from an object to the lens of the eyes. The lens refracts the light onto a light-

sensitive layer of tissue that lines the back of the eye called the retina. The retina 

encodes the light beam into spiking signal; thereafter, the brain �understands� the 

information sent to it by the retina through the optic nerve. The retina thus acts as 

a �recorder and encoder� in the visual perception.  

Retinal diseases such as age-related macular degeneration or retinitis 

pigmentosa damage the retina, rendering patients partially or completely blind. To 

restore vision in these cases, various approaches have been proposed and tested, 

both in vitro and in vivo (Maynard, 2001; Kien, Maul and Bargiela, 2012; Luo and 

da Cruz, 2014). Among these approaches, a retinal prosthesis can potentially restore 

basic vision in partially or completely blind patients. Moreover, it also assists 

patients with some basic activities such as navigation, reading large letters, or using 

utensils.  
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A retinal prosthesis is a device comprising various components that are 

responsible for supplying power, acquiring images, processing signals, and 

stimulating retinal cells. Through these functions, the prosthesis can replicate 

damaged parts or the whole retina. To this end, various studies have proposed 

different designs to improve prostheses in terms of visual resolution, 

biocompatibility, and quality of the implantation (Banarji et al., 2009; Karagoz and 

Ozden, 2011). At present, a retinal prosthesis can restore partial and simple vision, 

which is still far from ideal. There are two main reasons for this problem: hardware 

limitations and limited understanding of the retina. In the prosthesis currently 

available, the hardware does not allow the device to stimulate the retinal cells 

precisely, independently, and simultaneously. In particular, with current 

technologies, the size of the electrodes is not sufficiently small to stimulate one 

isolated retinal cell and this leads to the cross-talk between the stimulated retinal 

cell and its adjacent cells. This problem affects the quality of visual perception of 

the blind. Furthermore, incomplete knowledge regarding retinal processing and cell 

distribution limits the accuracy of placement of the stimulator unit. Therefore, it 

consumes more energy and causes heating of the retina.  

The next generation of retinal prostheses should be able to tackle the 

aforementioned issues, which will also require a much better understanding of 

retinal processing within the retina. To understand this pathway, it is important to 

determine how retinal cells are connected and how connectivity affects output 
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signals with different configurations. For this, the processing information and cell 

connectivity inside the retina must be examined to determine the optimal way to 

replicate it when using retinal prostheses. Therefore, a model to simulate the 

processing information and connectivity of the retinal cells is required. Using this 

retinal model, a different configuration of the retinal connectivity could be 

simulated, and the corresponding output could be evaluated to determine the 

relationship between connectivity and processing information in the retina. The 

design for the next-generation retinal prostheses could be developed by using the 

knowledge gained from simulating and evaluating various configurations of retinal 

cell connectivity in order to determine the constitution of the device, potential for 

implementation, and operation of the device. 

1.2 Currents challenges of retinal prostheses 

From the review of retina prosthesis (Kien, Maul and Bargiela, 2012), it is clear 

that both epiretinal and subretinal prostheses use the same approach for stimulating 

retinal cells, that is, they use electrodes controlled by a stimulation chip. Animal 

and human trials have shown that many prostheses using this approach operate 

satisfactorily, and they are able to restore acceptable vision in the blind after 

training. Although some prostheses have been approved for commercial purposes, 

many challenges need to be overcome in order to improve the next generation of 

prostheses. These challenges are categorized into hardware and software 
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challenges, which are discussed in this section. The most important hardware 

challenge is related to stimulation, where one electrode can stimulate many cells 

adjacent to the target cell (Asher et al., 2007; Fromherz, 2008). However, 

minimizing the number of electrodes also leads to another problem: many small 

electrodes located close together can lead to cross-talk, which decreases the 

accuracy of the stimulation signal; moreover, the electrodes themselves cause 

interference (Lorach et al., 2013). On the other hand, more electrodes require more 

energy, and the heat required to stimulate the electrodes will damage the retinal 

cells or make the user uncomfortable. Regarding implantation, more accurate 

stimulation of the retinal cells requires closer contact of the electrodes to the cells, 

making it more difficult to implant the device into the retina (Chuang, Margo and 

Greenberg, 2014; Luo and da Cruz, 2014). However, the deeper the electrodes are 

in the retina, the more complicated the surgery is. In addition, the training process 

is different for various devices; moreover, training is a time-consuming process, 

since the users need to adapt to the device in addition to allowing the retina to rest 

during training (Maidenbaum, Abboud and Amedi, 2013). In particular, the users 

need to adapt to the poor resolution of the restored vision due to the small array of 

electrodes; they have to learn and familiarize themselves with this using poor signal 

to map their environment. Moreover, the lack of detailed information regarding 

colour and depth in restored vision prevents blind users from coping in a 

complicated environment.  
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Since stimulation is an important aspect of retinal prostheses, this thesis 

focuses on stimulation. However, it focuses on the software aspect, instead of the 

hardware, because future advances in nanotechnology will make it possible to 

develop nano-scale electrodes, which would be much smaller than the micro-scale 

electrodes used in current devices. When the size of the electrodes is reduced, the 

problem of crosstalk will be solved because the nano-electrodes will be able to 

stimulate only one or two individual cells, without affecting the neighbouring cells. 

With nanotechnology, the hardware of the retinal prosthesis devices will be 

significantly upgraded, and these devices will serve patients better because of their 

longer lifespan and light weight. Consequently, an upgrade in hardware would 

require a corresponding update in software in order to allow the device to operate 

properly and efficiently. The methods used for stimulation in the current generation 

of retinal prostheses have been developed whilst keeping in mind that many cells 

are stimulated at the same time, and that this situation will not change in upgraded 

devices in the near future. Besides, the upgraded device will not work efficiently if 

the stimulations are not placed at the correct position in the retina, even if the 

electrode size is reduced to a nano scale. From these facts, a research on improving 

the stimulating precision of the retinal prostheses was conducted in order to explore 

the current limitation of retinal prostheses and provide a possible solution for the 

next generation retinal prostheses. 
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1.3 Thesis aim and objective 

From previous discussion, a research is conducted in order to propose a method to 

improve the stimulating precision of retinal prostheses in the future. In detail, this 

thesis is expected to propose a stimulating method for the next generation retinal 

prostheses thus the users of future device will be able to perceive more visual 

information than in current devices. In order to find out the capable stimulating 

method for future device, a computer model was implemented and utilized to 

simulate and analyse different connectivity inside the retina. Hence, the aim of this 

thesis is focusing on simulating different processing pathways inside the retina 

through the retinal model. 

To achieve the aim of this thesis, a retinal model would be implemented and 

in order to do that several studies about the retina, retinal processing pathways, 

retinal prostheses and retinal modelling will be completed. Firstly, a review of 

retinal prostheses will be conducted to summarize the current state-of-art of 

stimulating technologies and methods applied in the visual prosthesis devices. 

Secondly, different methods to model the retinal will be reviewed to select the best 

approach for simulating the retinal processing pathways. The next step will be to 

implement the model using methods and techniques decided from the retinal 

modelling review. After that, different experiments will be conducted to adequately 

test and verify the model and evaluate different stimulating method proposals. 
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Based on the experiments and the evaluations of the model, a stimulating pattern 

and a retinal prosthesis device concept would be proposed and discussed in term of 

possibility and validation for future usage.  

1.4 The need of a retinal model 

As discussed above, software used for retinal prostheses needs to be updated in 

order to match potentially upgraded hardware in the future. In this regard, it is 

difficult to determine an optimal method to stimulate the retinal cells, especially the 

ganglion cells, in epiretinal prostheses. By successfully stimulating specific 

ganglion cells for specific information, it may be possible to restore vision at a 

minimal cost. This leads to the question of the arrangement of the ganglion cells in 

the retina and their behaviours during firing while responding to different type of 

stimuli in the normal retina and in the stimulation of retinal prostheses. Besides, the 

processing pathway inside the retina also needs to be addressed. This thesis focuses 

on the ON and OFF pathways and their relationships with colour and contrast 

processing inside the retina. Although many other models have addressed these 

issues, they did not discuss the retinal prosthesis aspect or a complete model with 

all retinal cell layers. It is necessary to determine how different information such as 

motion, contrast, colour, or depth processed in the retina, especially at the ganglion 

level, will bring the prosthesis device one-step closer to restoring meaningful visual 

signals in the blind. To achieve this, a retinal model must be developed to simulate 
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retinal processing of the different information and the response of ganglion cells to 

that information. The responses from this model are both in the spatial and temporal 

domain for visual performance and the model also has the capability to generate a 

spiking train to analyse the behaviour of ganglion cells. This model is described in 

detail in the next chapter. 

1.5 Major contributions 

As mentioned above, next-generation retinal prostheses should be able to simulate 

the retinal cells precisely and independently, with the goal of improving the quality 

of restored vision, while reducing power consumption and heat-induced retinal cell 

damage. Considering these aspects, a model of retinal processing is proposed to 

study the information processing pathways inside the retina, through experiments 

based on different theories, especially with regard to receptive asymmetric 

processing, contrast, and colour processing. These criteria have been selected due 

to the limitations of restored visual information in current retinal prostheses. In 

detail, in current prostheses, the restored vision is perceived as a black and white 

dot matrix with low resolution, without any perception of colour, depth, or contrast. 

Although this vision is sufficient for blind users to be able to navigate after long-

term training, it prevents them from performing certain advanced activities, such as 

differentiating a real door from a sketch of a door, dodging obstacles on a pathway, 

or seeing a red �danger� label on a dangerous item. Therefore, this thesis focuses on 
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exploring retinal processing and connectivity according to these criteria in order to 

determine the relationship between visual responses and connectivity 

configurations. For the first criterion, retinal cell distribution formation has been 

examined using different configurations. Then, the visual outputs have been 

evaluated using the Hermann grid illusion. The Hermann grid was employed to 

facilitate an easy comparison between the results from the model and perception of 

the naked eye. For the second criterion, a circuit used to process contrast 

information in the retina was simulated and evaluated for both visual and neuronal 

responses. The same method was applied to the final criterion, except that the 

colour processing pathway was taken into account. The results from simulation and 

validation of the different criteria showed that asymmetrical and parallel 

simulations play an important role inside the retina, especially in restoring contrast 

and colour information. This suggests a wrap-up design for next-generation retinal 

prostheses. With the proposed design, the next generation of visual prostheses will 

be able to overcome the current issues of precise simulation. It would not only 

provide information such as contrast and colour but also improve the quality of 

restored vision. This development in retinal prostheses will help the blind perceive 

more meaningful information and perform more operations comfortably for a 

longer period and with fewer problems. 
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1.5.1 Proposed model to explain the Hermann grid illusion 

With regard to visual perception illusions such as motion, luminance, contrast, and 

colour, the Hermann grid illusion is an optical illusion that has received significant 

attention from psychologists and physiologists. The grid is an array of black squares 

that is formed by horizontal and vertical white bars on a black background. The 

illusion is described as the appearance of black or grey dots at the intersection of 

the white bars. Although many theories have been proposed to explain this illusion, 

questions regarding the underlying neural and computational causes of the illusion 

remain unanswered. Therefore, a retinal model focused on the receptive field 

structure at the outer-plexiform layer is presented, and this model is used to explain 

the illusion. The results of this thesis show that the illusion may be explained on 

the basis of the connection of the outer-plexiform layer in the retina, especially by 

changing the shape of the receptive field. According to these results, the shape of 

the receptive field in the retina is non-circular or asymmetrical. This suggests that 

the stimulation must be performed asymmetrically instead of symmetrical, circular 

stimulation as implemented in current retinal prostheses. 

1.5.2 A model to enhance contrast under mesopic lighting conditions 

Visual perception under mesopic lighting condition is the perception of the eyes in 

low-light conditions such as that during sunset, dusk, or twilight. Two possible 

pathways inside the retina, namely, cone gap junction and rod-AII amacrine cells, 
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have been proposed as the underlying process in mesopic lighting conditions. This 

thesis focuses on the second pathway and proposes a possible circuitry at the 

amacrine cell level to explain the mechanism of contrast enhancement. The findings 

show the capability of the model to process information in mesopic lighting 

conditions; moreover, they are consistent with the results of other studies with 

regard to the temporal output of the retina. The findings of this study show that a 

different circuit to enhance the contrast under low-light conditions possibly exists 

in the retina. Furthermore, this switching mechanism is helpful in next-generation 

retinal prostheses, since users may be able to perceive contrast better in low-light 

scenarios.  

1.5.3 A model to enhance colour vision 

Besides contrast enhancement, colour correction has attracted the interest of many 

researchers to explore the underlying mechanisms in the retina, although various 

researchers believe that colour correction occurs in the V4 area. In the retinal 

approach, previous studies have proposed a correction mechanism at the horizontal 

and ganglion cell levels (Heywood, Gadotti and Cowey, 1992; Kamermans, Kraaij 

and Spekreijse, 1998; Vanleeuwen et al., 2007). This thesis proposes a hypothesis 

that the non-linear circuit at the ganglion cell with midget amacrine cells plays a 

critical role in spatial and temporal response of the retina in colour correction. The 

results of this thesis clarify that the correction occurs at the ganglion�amacrine 

11 
 



INTRODUCTION

 

level, and in the temporal domain, the ganglion cells respond in a �push�pull� 

fashion. This result is consistent to observations in a recording of ganglion cells in 

the New Zealand White rabbit in another study conducted by Roska et al. (Roska, 

Molnar and Werblin, 2013). These simulations show that parallel simulation, in 

general, and ON and OFF stimulations, in particular, are possible in the retina. This 

feature should be integrated in the retinal prostheses in the future. With this feature, 

the device will be able to provide more accurate signals. Therefore, it will reduce 

the energy used, and prevent the device from heating up the retina after prolonged 

use. 

1.5.4 Conceptual design of retinal prosthesis 

The above-mentioned studies of the retinal model have led to the suggestion that 

future retinal prosthesis should be able to assist with vision during night time, 

indoor vision, and recognition of coloured objects. Based on simulations of the 

different proposed theories, a next-generation design of retinal prostheses is 

presented with an improved design with regard to stimulation. In detail, the 

arrangement of the stimulating electrodes is proposed to be mobilized, forming an 

asymmetrical receptive field, as further explored during the Hermann grid 

experiments. Application of this proposal will enable the device to more precisely 

transfer signals to the retina, thus reducing the operational energy needed. Using 

this concept, future retinal prostheses may provide more useful visual information 
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to the blind, and help them to perform activities of daily living both easily and 

comfortably. 

1.6 Thesis overview 

The remainder of this thesis is organized into nine chapters. Chapter two presents 

background studies of the retina, retinal diseases, and retinal prosthesis. The chapter 

aims to provide information about the biological structure of the retina and 

introduces the concept of the retinal prosthesis for restoring vision loss caused by 

popular retinal diseases. 

The third and fourth chapters review several related studies of the state-of-the-

art retinal prostheses and retinal modelling, respectively. In these chapters, a 

complete review of various types of retinal prosthesis devices and their current 

statuses are presented. These chapters also describe the state-of-the-art of different 

approaches in retinal modelling.  

Chapter five presents the retinal model that was developed in this thesis, and 

describes the biological and electronic aspects of this model. Analysis of the model 

structure and methodologies to create the model are also discussed in this chapter. 

Chapter six describes the application of the proposed model based on 

Hermann�s grid illusion, and discusses the results obtained from different 

configurations. This chapter focuses on the receptive field in the retina, and on how 
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the model can successfully explain the Hermann grid illusion using its receptive 

field concept. 

Chapter seven discusses another application modelling the contrast-processing 

mechanism under mesopic conditions. The results from the model show that the 

rod-AII amacrine cell pathway plays an important role in adjusting the contrast 

under specific conditions of the retina. This chapter also discusses the spatial 

responses of the model in contrast processing and assessment in order to compare 

the outputs of the model in different configurations.  

Chapter eight presents the role of amacrine cells in processing contrast and 

colour, and in generating the �push�pull� mechanism in firing of the ganglion cells 

in colour processing. This chapter also focuses on the temporal responses of the 

model, and analyses the spike train to highlight the role of amacrine cells in 

synchronizing the responses of the ON and OFF pathways.  

Chapter nine presents a conceptual design of the next-generation retinal 

prosthesis based on discoveries using the proposed model. This chapter focuses on 

further development of the prosthesis device, and what should be included in the 

next-generation prosthesis to help the blind achieve better vision for daily activities. 

Chapter ten concludes with the success of the proposed model in modelling 

different circuitries inside the retina and discusses related topics focusing on near-

future developments.
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CHAPTER 2 

BACKGROUND STUDIES 

2.1 The retina 

2.1.1 Structure of the retina 

The world is perceived through the eyes, which processes the light that is reflected 

from the objects to form images in the brain. Light stimuli enter the eyes, which are 

then converted into the electrical stimuli by the retina. The electrical patterns 

generated by the retina represent an early, yet complex, level of information 

processing. This low-level information is passed on to the higher regions of the 

brain, eventually leading to a visual understanding of the environment. As shown 

in the anatomical depiction in Figure 2.1, the retina consists of several layers, each 

with its own name and functionality. 
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Figure 2.1: Location and structure of the retina. On the left: Location of the retina 

in the eye. On the right: Retina and its cells. 

There are six main layers in the retina: the photoreceptor, outer nuclear, outer 

plexiform, inner nuclear, inner-plexiform (IPL), and ganglion cell layers. The 

layers are differentiated primarily based on their constituent cells and connections. 

In terms of the cellular composition, there are five major cells in the retina: 

• Rods and cones 

These cells are present in the photoreceptor layer; they sense the light stimuli 

and convert it into electrical signals. Rod and cones have different 

morphologies and functions. Rods primarily assist with night (scotopic) vision 

and have only one type of cell in terms of wavelength sensitivity. Cones are of 

three types (red, green, and blue), and each type responds to different 

wavelengths (i.e. long [L], medium [M], and short [S] wavelengths), which 

primarily assist with day (photopic) vision.  

• Horizontal cells 

These retinal cells are present in the inner nuclear layer. They connect to rods, 

cones, and bipolar cells. Horizontal cells receive an input primarily from 

photoreceptors, and provide lateral inhibition to both bipolar cells and 

photoreceptors. In addition, there are three types of horizontal cells called H1, 

H2, and H3. Each of these cells connect to the specific cones in the 

photoreceptor layer. H1 connects to L and M cones, H2 connects to M and S 
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cones, and H3 connects only to blue cones. Moreover, each cell provides a 

feedback signal to the cones connected to them. H1 and H2 play a role in 

distinguishing colour pathways in colour vision. Because the role of H3 cells 

remains unclear, only H1 and H2 cells will be discussed further in CHAPTER 

8. 

• Bipolar cells 

These cells are present in the inner nuclear layer, and they transfer signals from 

the rods, cones, and horizontal cells to the amacrine and ganglion cells. Due to 

the separation of photoreceptor pathways as L, M, S and rods, four different 

pathways are formed at the bipolar cell layer, namely L bipolar, M bipolar, S 

bipolar, and rod bipolar cells. These cells receive the corresponding signal from 

photoreceptors and transfer it to the IPL as an excitation or inhibition signal. If 

the signal received from the bipolar cell is an excitation signal, that bipolar cell 

is called the ON bipolar cell; in contrast, the OFF bipolar cell transmits an 

inhibition signal. This forms the ON and OFF pathway in the retina, and these 

pathways traverse the retina from the bipolar cells to the ganglion cells. 

• Amacrine cells 

Between the bipolar cells and the ganglion cells lie the amacrine cells, which 

consist of many sub-types. These cells make a network of lateral inhibition 

signals, and they alter signals primarily from the bipolar and ganglion cells. 

There are several types of amacrine cells, and most of them are not yet fully 
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understood. In this thesis, the AII and cone amacrine cells have been focused 

on. The connection between them in the retina is discussed in CHAPTER 7 and 

CHAPTER 8 later. 

• Ganglion cells 

Ganglion cells are the output cells of the retina. They mostly receive analogue 

input (i.e. graded potentials) from the bipolar and amacrine cells. They convert 

them into digital signals (i.e. action potentials or spikes) and send them to the 

higher regions of the brain via the optic nerve. Similar to the bipolar cells 

mentioned above, the ganglion cells are also classified into ON and OFF types, 

which spike differentially from each other. The pattern of ON and OFF firing 

of the ganglion cells and the differences between the ON and OFF signals will 

be discussed in CHAPTER 8. 

Beyond the retina, the visual signal travels to the brain via the optic nerve where it 

arrives at the lateral geniculate nucleus (LGN). There are six layers in the human 

LGN. The inner two layers named are called the magnocellular layers, while the 

outer layers named are called the parvocellular layers, and this layering is variable 

between primate species. On the other hand, the LGN serves to connect the optic 

nerve and occipital lobe and locates as two parts in half left and right hemispheres. 

Thus, the left visual field from both eyes is sent to the right hemisphere while the 

right visual field in both eyes connects to left hemisphere, respectively. After the 

LGN, the information is sent to visual cortex area called V1 and higher cortical 
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areas such as V2, V3, V4 and V5. In terms of visual information processing, V3 

and V4 are responsible for shape and colour, respectively, while V5 is responsible 

for motion processing. 

      As mentioned above, the ganglion cell is the primary generator of action 

potential signalling to the brain; however, several bipolar and amacrine cells have 

the ability to generate this signal. Saszik and Steven have found that ON bipolar 

cells in ground squirrels use not only graded potentials but also action potentials to 

encode light (Saszik and DeVries, 2012). Baden and colleagues also found that the 

bipolar cells in fish convert graded potentials to action potentials (Baden et al., 

2011, 2013). Heflin and Cook reported that narrow and wide dendritic field 

amacrine cells fire action potentials in two different ways�single spiking and 

repetitive spiking, respectively (Heflin and Cook, 2007). In addition, Zhou and Fain 

found that starburst amacrine cells transform from spiking to non-spiking cells 

during retinal development (Zhou and Fain, 1996). Moreover, bipolar and amacrine 

cells use spike coding simultaneously with graded potentials. Thus, two different 

types of codes are used to compute signals in these cells. The action potential in 

bipolar and amacrine cells is still attracting the attention of many scientists to 

explain the origin and mechanism behind spike generation in these cells. In this 

thesis, only the ganglion cell has been considered to generate the action potential. 

The scope of this thesis is focused on the relationship between image processing 

and retinal processing mechanisms, rather than the biological phase in the retina. 
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These types of cells responsible for these processing mechanisms are not yet fully 

understood, especially with regard to the number of subclasses of amacrine cells 

that are able to fire action potentials. In addition, the starburst amacrine cell, an 

amacrine cell that is well known for generating action potentials, is mostly used for 

the purpose of direction selectivity in the retina. Thus, image-processing 

mechanisms such as depth and motion responses in the retina are beyond the scope 

of this thesis because this information can be inferred from the visual signal in the 

current prosthesis device. In terms of depth information, Stiles et al. used phosphine 

information to determine the distance from the user to objects in front of them. In 

particular, larger phosphine indicates closer objects while further objects are 

indicated by smaller phosphine (Stiles et al., 2014). In terms of motion perception, 

other reports show that training can help patients to use utensils or even shoot a 

basketball with the current generation of retinal prostheses (Luo and da Cruz, 2014) 

and this is done by training the user to become familiar with the phosphine vision. 

On the other hand, colour and contrast information have not been inferred from 

phosphine information because the vision constructed with phosphine is black and 

white vision. Hence, finding an optimized method to stimulate the brain with colour 

and contrast information will be the focus of this thesis. 

6 
 



BACKGROUND STUDIES

 

2.1.2 Retinal connectivity 

In the retina, all the cells are connected through two different connectivity types 

called electrical and chemical synapses. In electrical synapse, the synapse between 

two abutting cells allows ions to flow from one cell to another cell, called the 

presynaptic and postsynaptic cells, respectively (Kandel, Schwartz and Jessell, 

2000). The electrical synapse is also called the gap junction between two cell 

membranes, and there are several gap junctions between cells in the nervous system 

and retina in particular. In each gap junction, there are several channels. Each 

channel has one hemi-channel on presynaptic and one hemi-channel on 

postsynaptic cells, which allows ions such as sodium and potassium to pass to 

maintain metabolic and electrical continuity (Hormuzdi et al., 2004). Additionally, 

there are gap junctions between the same types of cells such as cones, rods, 

horizontal, amacrine cells, and ganglion cells and between different cells such as 

rods and cones (Gibson, Beierlein and Connors, 2005). The chemical synapse, on 

the other hand, is a small gap between two cell membranes, which allows 

neurotransmitters to flow from the transmitter terminal in a presynaptic cell to 

receptors in a postsynaptic cell. When the action potential arrives at the cell axon 

terminal, it creates an influx of calcium ions through calcium-selected gate 

channels. This flow triggers a cascade of biochemical processes, resulting in the 

release of neurotransmitters into the transmitter terminals. When these transmitters 
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arrive at the receptor terminal, they change the concentration of ions in postsynaptic 

cells. This leads to the generation of action potential in postsynaptic cells (Bennett 

and Zukin, 2004; Palacios-Prado et al., 2013). In the retina, chemical synapses 

occur between different cell types, causing the transfer of chemical signals from 

one cell to another, such as from photoreceptor to horizontal and from horizontal 

to bipolar cells, and this mechanism is the same for transferring signals between 

bipolar, amacrine, and ganglion cells (Kandel, Schwartz and Jessell, 2000). In 

addition, in chemical synapse, chemical flow occurs only from a presynaptic cell 

to a postsynaptic cell; therefore, chemical synapse is considered unidirectional 

synapse. In contrast, in electrical synapses, ions freely move through ion gate 

channels; thus, this type of synapse is bidirectional. Moreover, the electrical 

synapse is faster than the chemical synapse, but neuronal connectivity is widely 

established by chemical synapses (Llinás, Steinberg and Walton, 1981; Lytton and 

William, 2002).  

2.2 Functions of the retina 

The retina performs several major functions such as photon transduction, data 

compression, light/dark adaptation, and spatial filtering for encoding the light 

stimulus into spiking signal. Although there are other functions, the afore-

mentioned functions are necessary for the retina to encode visual information; thus, 

only these functions are discussed in this section. 
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2.2.1 Visual photo-transduction 

The photoreceptor layer contains rods and cones, which have an outer segment that 

is composed of a membranous disk for absorbing light through the light-sensitive 

photo-pigments in cones and rhodopsin in rods. The inner segments, in contrast, 

contain a cell nucleus and connections to both the bipolar cells and horizontal cells. 

In the outer segment, the protein portion of a molecule called opsin has seven trans-

membrane domains that traverse the membrane bilayer. Besides the opsin is bound 

to the retinal, which is a type of lipid made from vitamin A that exists in two forms, 

trans and cis, indicative of the relative orientation of functional groups within a 

molecule. In the dark, the retinal is in the cis-form, absorbing the photons and 

quickly changing to the trans-form. This process is called the bleaching process 

(Hubbard, Wald and J, 1952; Hubbard and Kropf, 1958). In contrast, the cis-form 

retinal changes to the trans-form when the retina perceives the change in light 

conditions from light to dark, and this explains the temporary blindness experienced 

when entering a dark room from bright light conditions. Before the transduction 

process, one must understand the roles of the different currents in the retina. 

Basically, sodium (Na+) and potassium (K+) ions are present both inside and outside 

the membrane, and corresponding to these ions are the cGMP-gated Na+ and non-

gated K+ channels that allow only Na+ to move into the membrane and only K+ 

move out the membrane, respectively; moreover, the Na+ channel remain open in 
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the dark. This movement creates an inward Na+ current flux from the outside to the 

inside of the membrane and a contrasting outward K+ current flux from the inside 

to the outside of the membrane. In addition, Calcium (Ca+) and Chloride (Cl-) 

currents are also formed based on the flow of Ca+ and Cl- ions. In addition, the 

photoreceptor membrane is hyperpolarized by a K+ current at -70 mV and 

depolarized at -40mV by a Na+ current (Leskov et al., 2000; Ebrey and Koutalos, 

2001).  

In the dark, due to the steady Na+ current, the rod membrane is continuously 

depolarized, and this leads to the release of neurotransmitters into the synapse 

between photoreceptor and bipolar cells through an increase in Ca+ in the 

membrane. This neurotransmitter is a glutamate that binds to a glutamate receptor 

in bipolar cell synapse and renders specific channels close in ON and open in OFF 

bipolar cells. Consequently, ions move through the channels in ON bipolar cells 

and stop moving in OFF bipolar cells, leading to hyperpolarization in the ON 

bipolar cells and depolarization in the OFF bipolar cells in the dark (Baylor, Lamb 

and Yau, 1979). 

When light strikes the eye and photons approach the photoreceptors, rhodopsin 

changes from the cis form to the trans form, which initiates a cascade event that 

lowers the concentration of cGMP by converting it to GMP. As a result, the cGMP-

gated Na+ channel is closed; this leads to reduced current in the inward Na+ influx 

and the membrane is hyperpolarized. The release of glutamate decreases due to the 
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decreased calcium level, and the glutamate cannot bind to the bipolar cell receptor, 

which in turn depolarizes the ON and hyperpolarizes the OFF bipolar cells. This 

process is the same for both cone and rod cells, and the difference between them is 

the wavelength of the light that affects the rhodopsin (Baylor, Lamb and Yau, 

1979).  

2.2.2 Data compression 

In the retina, the hundred million photoreceptor cells outnumber the half a million 

ganglion cells. This gives rise to the problem of data transfer from several 

photoreceptors to a few ganglion cells, since the retina has to cover every detail in 

the scene being viewed. To overcome this issue, data compression takes place in 

the retina by creating a blurry vision in the periphery and a clearer vision in the 

point that the eyes focus on. This reduces redundant information in the surrounding 

vision but still maintains important information in the central vision for processing 

(Kelly, 1984). This compression originates from the visual eccentricity in the retina 

where the cone density is the highest at the central fovea. In particular, around 

150000 cells per mm2 are present for processing in the central fovea. This number 

is decreased to approximately 2000 cells per mm2 in the peripheral vision. In 

addition, the cones in this field connect as �one-to-one� to the bipolar cell and 

ganglion cell, which allow high visual acuity in central vision. This is because the 

signal from one cone to the ganglion cell is not combined with or affected by the 
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neighbouring cones (Tannazzo, Kurylo and Bukhari, 2014). With the data 

compression mechanism, redundant information is reduced and only useful 

information is processed; thus, the retina transfers and processes less information. 

This helps the retina cope with a large amount of information perceived from the 

environment by processing vital information and temporarily ignoring irrelevant 

data.  

2.2.3 Light/dark adaptation 

Another function of the retina is the ability to maintain vision when switching from 

dark to bright light areas and vice versa. When people move from a dark area to a 

bright area, they will perceive a change in vision, such as white light, and normal 

vision returns after few seconds. The photoreceptor layer, particularly the cones 

and rods, is responsible for this phenomenon (Bartlett and Graham, 1965). As 

discussed previously, cones are responsible for vision in day light and rods are 

responsible for vision in dark light areas; the switching of vision from cones to rods 

and vice versa is called light/dark adaptation in the retina. In light adaptation from 

dark to bright light, both rods and cones are saturated because the light level 

exceeds the maximum threshold of rods; therefore, white light is perceived initially. 

After saturation, the cones start to function while the rods are suspended, restoring 

normal vision in bright light, with the light intensity decreasing from bright light to 

normal, and this process can last for five to ten minutes. On the other hand, dark 
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adaptation is the process of switching from cones to rods when moving from bright 

light to a dark area (Bartlett and Graham, 1965). In the light area, rods are 

suspended and only cones are activated. When moving to a dark area, rhodopsin is 

regenerated in the rods, and this increases the sensitivity of rods in dark areas; thus, 

normal vision is restored (Aguilar and Stiles, 1954). In addition, during light and 

dark adaptation, the pupil reduces and enlarges in size, respectively, to allow the 

light to reach the photoreceptors where the cones and rods have the highest density 

in the fovea. Moreover, horizontal cells in the retina control the suspension of rods 

and cones while adapting to the scene through their inhibition feedback to 

photoreceptors.  

2.2.4 Spatial filtering 

As discussed in the previous section, peripheral vision is blurred to compress the 

data that needs to be processed in the retina, and this blurred vision is the result of 

a process called filtering (Morgan and Watt, 1997; Zeck, Xiao and Masland, 2005). 

Filtering, by definition, is a process that keeps only the wanted elements and 

removes the unwanted elements, and retinal filtering is performed to cope with the 

many details of perceived vision. During the compression process, peripheral vision 

is filtered out and only central vision is clearly maintained for processing. The 

mechanism underlying this function is the connection between the hundred million 

photoreceptors and the million ganglion cells, which forms a structure called 
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�receptive field� in the retina. Basically, the receptive field of a cell has been defined 

as a space that contains stimulated cells that connect and provide an output to that 

cell. In the retina, the receptive fields of the ganglion cells are divided into two 

regions�centre and surround�separated by the responses of connected 

photoreceptors to the light stimulus; thus, the receptive field is categorized into ON-

centre/OFF-surround and OFF-centre/ON-surround (Lorach et al., 2012). For the 

first type, the ganglion cells respond with more spikes when light falls on the centre 

region and less spikes in the case of the surround region. The second type is the 

reverse of the first type, which makes the ganglion cells respond with less spikes 

on centre stimulation and vice versa. The variations in the receptive field not only 

help the retina to compress processed information but also filter out the details. For 

example, when the centre�surround receptive field is involved, the retina filters out 

the details in the visual information and retains information regarding the 

boundaries of the object only (Holliday, Ruddock and Skinner, 1984). This helps 

the retina to distinguish the objects by their boundaries and eliminate other 

information that is not helpful in differentiating the object. By utilizing this 

function, the redundant information is reduced in some basic tasks and the retina 

can process more information at the same time.  

In summary, the retina is a multilayer neural tissue that converts light signals 

into electrical signals that can be decoded by the brain. There are six layers in the 

retina, and each layer consists of specific types of cells and/or connections. Retinal 
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cells are connected to each other in complex ways, forming circuits that implement 

rich information-processing channels. As the retina is a complex information-

processing system, different types of damage to its circuits lead to different types 

of vision problems, some of which are discussed in the next section. 

2.3 Retinal diseases 

Each year, millions of people succumb to blindness through eye diseases such as 

age-related macular degeneration (AMD) or retinitis pigmentosa (RP). 

Approximately 700,000 new AMD cases are diagnosed every year in the US, and 

approximately 10% of them are considered legally blind.  

AMD is caused by the abnormal aging of the retinal pigment epithelium (RPE). 

The major symptoms of AMD are the formation of yellow drusen on the RPE and 

the proliferation of leaky vessels in the subretinal space. In terms of vision, early 

AMD symptoms consist of a distorted field of view in the centre, eventually leading 

to an almost complete loss of vision in the central 30 degrees. A number of 

treatments focus on slowing the progress of AMD but no complete cure exists for 

this disease. 

Symptoms of early retinitis pigmentosa consist of poor night vision due to 

damaged rods (Berson, 1993; Sharma and Ehinger, 1999). Following this, the cones 

are gradually damaged leading to loss of vision in the mid-periphery. Complete 

peripheral vision is eventually lost. In few exceptional cases, RP patients still have 
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major vision in the foveal or parafoveal regions, whereas vision in the remaining 

parts of the retina is completely lost. The photoreceptors can be subject to over 100 

defects, and thus far, no treatment has been established for RP (Heckenlively et al., 

1988). 

Although retinal cells are destroyed due to AMD or RP, some parts of the retina 

are still intact. For instance, in RP, although only 4% of the photoreceptors remain, 

approximately 30% of the ganglion cells and 80% of the inner retinal cells remain 

intact (Kim et al., 2002). In AMD, the percentage is higher, with 90% of the inner 

retinal cells remaining intact (Weiland, Liu and Humayun, 2005). Thus, AMD and 

RP do not cause complete degeneration of the retina, and vision may be restored by 

using the remaining cells. 

2.4 Retinal prosthesis 

2.4.1 The device 

A retinal prosthesis is a device that can help the blind to restore the visual function 

of the damaged parts of the retina by stimulating the ganglion cells inside the retina 

through an electrode array implanted in the retina. In general, the device contains 

three major components: a video recorder, encoder, and electrode array, with other 

peripheral components such as battery, power, and data transmitter. The video 

recorder, encoder, and peripheral components are designed as a wearable device 

and placed outside the retina, whereas the electrode array is implanted inside the 
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retina. In particular, the video recorder is a commercial camera with a resolution of 

640 × 480 (Lytton and William, 2002; Asher et al., 2007), which is supplied by 

external power via a power cord. In many designs, the camera is mounted on a glass 

so that it can capture a scene in accordance with the head direction of the patient. 

Typically, the encoder is manufactured as an FPGA (Field-Programmable Gate 

Array) or SoC (System on Chip), with different configurations based on different 

approaches, which are also supplied via external power. On the other hand, the 

stimulation component is a 520-µm ݉ߤarray of electrodes that are located in the 

retina, such that the array of electrodes will communicate with the retinal cells, such 

as the ganglion or bipolar cells, depending on the prosthesis approach. Each 

electrode can provide a certain amount of electrical stimulus to the cell it comes in 

contact with. The data from the encoder to the electrode array can be transferred 

using a wire or by wireless technology, depending on the design of the prosthesis. 

2.4.2 Device output 

The camera will record and transfer the received signal to the encoder for 

processing. After receiving the signal, the encoder processes the signal using 

various algorithms to convert the spatial and temporal signal into spiking signals. 

The spiking signals are then transferred to the stimulation component that is 

implanted inside the retina. At this stage, depending on the algorithms and 

configurations in the encoder, the electrode array provides a sequence of stimulus 
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signals that substitute for the damaged part of the retina and stimulate the ganglion 

cell that they come in contact with. Thus, the ganglion cells are stimulated by these 

stimuli and generate action potential, propagating along the optic nerve to the brain. 

The brain receives and translates this signal into visual perception such as edge 

detail, motion, and colour, based on the format of the spike train from the ganglion 

cells, and different spike patterns provide different information to the brain. How 

the brain translates the spike into visual perception and how the format of the action 

potential affects vision remains debatable. 

Besides electrical stimulus, a retinal prosthesis based on chemical stimulation 

of the retinal cells has also been developed by a few groups of researchers. Instead 

of providing an electrical stimulus, this prosthesis uses microfluidics to inject the 

neurotransmitter glutamate into the retinal cell and modulate spike rates. In this 

type of prosthesis, the encoder and stimulation components are different from the 

electrical stimulus-based prosthesis with regard to the placement of the stimulating 

electrode and encoding for controlling the chemical flow through the chemical 

transmitters. For example, Noolandi et al. introduced a neurotransmitter retinal 

prosthesis using an inkjet print-head in 2003, whereas Finlayson and Iezzi used 

glutamate to stimulate the ganglion cells in cats (Noolandi, Peterman and Huie, 

2003; Iezzi and Finlayson, 2009). Recently, Rountree et al. developed a 

neurotransmitter prosthesis, which was tested on ganglion cells and bipolar cells in 

rats in 2013 (Rountree et al., 2013). Based on these attempts, chemical stimulation 
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has been found to have some advantages over electrical stimulation, such as no 

excitotoxic effects in the short term (Rountree et al., 2013) and lower energy 

consumption than the electrical prosthesis (Noolandi, Peterman and Huie, 2003). 

On the down side, the spiking rate of ganglion cells is limited due to the chemical 

injection durations and difficulty in stimulating ON and OFF pathways 

simultaneously. Because the neurotransmitter prostheses have only been recently 

developed, this thesis focuses only on electrical prosthesis. 

In both electrical and chemical prostheses, the two compulsory components are 

the encoder and stimulator, which convert visual information into neural signals 

and stimulate retinal cells, respectively. In an ideal retinal prosthesis, the encoder 

would be able to filter the important information in the visual scene and convert 

these visual inputs to a neural code such as a spiking signal. In this encoder, the 

accuracy of spiking outputs is affected by the algorithm to convert the visual signal 

into neuronal coding. If the algorithm is not properly optimized, the information of 

the visual signal is not fully converted to the neural code, resulting in inconsistent 

stimulation of the retinal cells. In contrast, the ideal stimulator would be placed in 

an optimized position to maximize the contact with the retinal cells through the 

electrode array. In an optimized position, the retinal cells are precisely stimulated; 

thus, the current used for stimulation is reduced. This improves the impact of the 

retinal prosthesis, because with reduced current, the power used is decreased, and 

consequently, the retinal cells receive less heat. Reducing the heat involved makes 
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the retinal cells less prone to damage, thus increasing the usage time of the device 

after implantation. In conclusion, use of proper algorithms for the encoder and 

placement of the stimulation component are important factors that should be 

considered when designing and developing an ideal retinal prosthesis. 

2.5 Summary 

The motivation and overview of this thesis are presented in the beginning of this 

chapter followed by introductions to the retina, retinal diseases, and retinal 

prosthesis. The retinal structure and retinal diseases are discussed to provide a better 

understanding of the concept of retinal prostheses and how they can be used for 

restoring vision. The details and variations in retinal prostheses will be further 

discussed in the next section.
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CHAPTER 3 

RETINAL PROSTHESIS REVIEW 

In general, retinal prostheses are categorized into two major types, namely 

extraocular, when the device is placed outside the eye, and intraocular, when the 

device is placed inside the eye. Cortical prosthesis is an extraocular prosthesis, 

whereas optic nerve, epiretinal, and subretinal prostheses are intraocular prosthesis. 

In detail, a cortical prosthesis replicates signals in the visual cortex directly, 

whereas an optic nerve prosthesis stimulates the optic nerve to mimic the visual 

signals to the brain. A subretinal prosthesis stimulates bipolar cells, whereas the 

epiretinal prostheses stimulate the ganglion cells in the retina. A general view of 

these prostheses is provided in Figure 3.1. This chapter will discuss each type of 

prosthesis and analyse the strength and drawbacks of the different approaches. 
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Figure 3.1: Different approaches of retinal prostheses and their placements. 

3.1  Extraocular prostheses 

3.1.1 Surface cortical prosthesis 

The visual cortex is located in the occipital lobe at the back of the brain and plays 

a role in processing visual information (Schmolesky, 2014). To restore vision in the 

blind, this area is stimulated by using an electrode array implanted in the skull, and 

the perceived visual perception, called phosphenes, allows the blind to navigate the 

world. The phosphenes emitted during the stimulation of electrodes to visual 

neurons are simple spots or flashes of light. Dobelle implanted 50 electrodes in the 

occipital lobe of volunteers to restore visual perception via the visual cortex 
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(Dobelle, 2000). After a brief training period, volunteers were able to recognize 

six-inch square characters at five feet and count fingers as well as use this device 

to travel alone on the city metro (Javaheri et al., 2006). Moreover, no epileptic 

symptoms or systemic problems were observed after implantation into six other 

volunteers, but the device had to be removed because of the risk of infection 

(Weiland and Humayun, 2003; Foerster, J and Javaheri, 2006). However, it was 

difficult for the patients to recognize large characters due to the �bottleneck� caused 

by information exceeding the limit of the visual tunnel. Other patients also 

perceived �halos� surrounding phosphenes or recognized distinct phosphenes in 

addition to being unable to control the number of phosphenes. Consequently, 

researchers in this field moved on to intracortical stimulation (Dobelle, 2000; Uhlig 

et al., 2001; Weiland and Humayun, 2003; Foerster, J and Javaheri, 2006). The 

limitations of surface cortical stimulation are expected to be overcome by means of 

two projects, namely the Illinois Intracortical Visual Prostheses project and the 

Utah Electrode Array. In these projects, smaller electrodes were used for closer 

contact with the target neurons and lower stimulating current. In particular, 152 

intraocular microelectrodes were used in the Illinois device and 100 electrodes in 

the Utah device (Uematsu et al., 1974; Maynard, Nordhausen and Normann, 1997; 

Margalit et al., 2002). In studies of animal and short-term human implants, these 

prostheses presented the ability to produce colour phosphenes and operated 
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regardless of the damaged parts of the early visual system (e.g. the retina) (Weiland 

and Humayun, 2006).  

3.1.2 Optic nerve prostheses 

This type of prosthesis compensates for the disadvantages of cortical prostheses by 

covering a large cortical area by focusing on a small area connecting the retina and 

the brain, i.e. the optic nerve. In this prosthesis, a spiral cuff is used to stimulate the 

optic nerve and create visual sensations (Brindley, 1965). This prosthesis is 

depicted in Figure 3.2: a cuff wraps around the optic nerve (A) and stimulates it 

based on the signal received by a camera (B). In practice, Veraart et al. performed 

this type of prosthesis on blind volunteers and obtained encouraging results. 

Patients were able to perceive multiple phosphenes and interact with the 

environment by demonstrating basic pattern recognition skills, such as recognition 

of different shapes, line orientations, and even letters in some cases (Veraart et al., 

1998, 2003; Troyk et al., 2003; Chader, Weiland and Humayun, 2009). 
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Figure 3.2: The optic nerve prosthesis. Reproducing with permission (Weiland, Liu 

and Humayun, 2005)  

 

Despite some encouraging advantages, the optic nerve prosthesis has one 

significant problem, i.e. it needs a large number of contacts to the optic nerve; this 
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leads to the risk of infection in the central nervous system and hinders blood flow 

inside the optic nerve. Moreover, stimulation and the implant must be operated 

precisely and properly due to the density of the axons in the optic nerve (Brindley, 

1965). 

3.2 Intraocular 

3.2.1 Epiretinal prostheses  

The intraocular prostheses are implanted inside the eye, instead of outside; this is 

done using various technologies such as microelectronics, microelectronics 

packing, power and data telemetry as well as computer vision and image 

processing. Generally, intraocular prostheses are classified into two major 

categories, epiretinal and subretinal, based on the location of the implants.  

An epiretinal prosthesis is implanted on the inner part of the retina and is in 

close contact with the ganglion cells (Oozeer et al., 2006). A processing component 

processes visual signals acquired from an external camera and converts those 

signals into electrical signals for a stimulator component to stimulate the ganglion 

cells. This procedure requires power and data telemetry to transfer data and power 

from the outside to the intraocular parts. Various designs of epiretinal prostheses 

have been proposed and tested in animal and human trials to achieve the goals of 

maximizing the functionality of the remaining retinal tissue, while minimizing 

power consumption and the number and size of devices implanted in the eye. 
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Arguably, the most mentioned epiretinal prosthesis is the intraocular retinal 

prosthesis (IRP) by Mark Humayun, from the University of Southern California 

and the private company Second Sight Medical Products, Inc. (Ahuja et al., 2008; 

Caspi et al., 2009; Weiland, Cho and Humayun, 2011). 

 

Figure 3.3: The schematic of the prosthesis. Reproducing with permission 

(Weiland, Liu and Humayun, 2005).  
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Figure 3.4: The detail of the intraocular implant. Reproducing with permission 

(Weiland, Liu and Humayun, 2005). 

 

Two major parts of the prosthesis are an external camera mounted on a pair 

of glasses, and an intraocular unit as depicted in  

Figure 3.3. The intraocular unit is an image processing unit, and its 

functionality consists of processing visual signals recorded by the camera. The 

processed data is then transmitted to the stimulator unit, which consists of 16 
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platinum microelectrodes to stimulate the inner retinal neurons (Weiland and 

Humayun, 2005; Yanai et al., 2007). This process has been illustrated in Figure 3.4. 

The first version of this prosthesis, Argus I, was tested on humans after 

experimentation on animals, which yielded some encouraging results. In terms of 

the required threshold current to elicit visual responses, 10 out of 16 electrodes 

remained constant, whereas three required an increased current and three required 

a decreased current. Interestingly, the size of the phosphenes also increased 

corresponding to the higher current (Humayun et al., 1999). In terms of visual 

responses, phosphenes were perceived, and after two and a half months of training, 

the patients were able to discriminate the perception pattern of phosphenes from 

the different stimulating patterns; thus, they were able to interact with the 

surrounding world and tackle complex tasks such as differentiating brightness 

levels or direction of motion of objects (Humayun et al., 1996; Nanduri et al., 

2008). However, the patients also noted four different colours of phosphenes and a 

perceived �halos� effect as well. 

The second version of the device (Argus II)(Ahuja et al., 2008; Chader, 

Weiland and Humayun, 2009) incorporated some significant changes in hardware. 

The improvements are listed below: 

• 60 electrodes instead of 16; 

• Wireless data transfer; and 

• MEMS components for better fixing of the device in the eye ball. 
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In addition, in this device, the visual field is increased to 20°, and human trials 

testing this device have yielded positive results, with patients capable of 

differentiating basic forms of motion, perceiving light and dark environments, and 

even shooting baskets (Humayun et al., 2012). With these results, the Argus II 

device was approved by FDA in February 2013, and it became commercially 

available in Europe in March 2011 and in USA in January 2014. The next-

generation Argus III is under development, with the number of electrodes increased 

to more than 200 units, with the aim of reducing the processing time to less than 3 

seconds as in Argus II (Weiland, Cho and Humayun, 2011; Fernandes et al., 2012; 

Humayun et al., 2012). With an increase in the number of electrodes, the future 

device is expected to provide more information that is meaningful through 

�pixelated vision� because increased stimulation in the retinal cells would lead to 

increased visual signals transferred to the brain. To achieve this, many obstacles 

need to be overcome, such as minimizing the size of the electrode, reducing the 

crosstalk effect between electrodes, or mapping the electrode to ganglion cell 

population. Based on these challenges, experiments are being conducted to 

determine the optimal method to manufacture and implement the next-generation 

devices. This thesis will focus on the last obstacle, i.e. determining the optimal 

method to map the electrodes to the ganglion cells by studying and experimenting 

with the connectivity of retina in general and the ganglion cells in particular to 
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elucidate the relationship between visual processing mechanisms and different 

patterns of connecting retinal cells.  

Joseph Rizzo and John Wyatt at the Harvard Medical School introduced 

another device in this type of prosthesis, with an external part consisting of a camera 

mounted on a pair of glasses, processing unit, and battery (Grumet, Wyatt and 

Rizzo, 2000; Rizzo et al., 2003). The intraocular prosthesis contains an electrode 

array that connects to the retinal ganglion cells, which is controlled by a stimulating 

chip. Instead of using a cable for data telemetry as in Argus I (Kelly et al., 2009), 

this prosthesis uses a laser pulse to transfer the processed signal from the processing 

unit to the stimulating chip.  

Different experiments have been conducted on three types of electrode arrays 

(Rizzo, 2003) to examine the operations of different electrode configurations:  

• 10 × 10 array of 50-µm diameter electrodes, with an inter-electrode 

spacing of 220 µm 

• 8 × 10 array of 50-µm diameter electrodes, with an inter-electrode spacing 

of 220 µm 

• 4 × 5 array of 100-µm diameter electrodes, with an inter-electrode spacing 

of 620 µm 

The results obtained in five patients in Joseph Rizzo and John Wyatt�s study 

were similar to those of Humayun et al.�s study. Three patients perceived 

phosphenes when the stimulating current was above the threshold, and higher 
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threshold was applied to stimulate the other two patients with worse vision (Rizzo, 

2003). With this device, eight hypotheses were examined in blind patients, and 

Rizzo et al. observed that consistent phosphenes were elicited in patients in whom 

the electrode array was placed above the intact retinal surface and who required 

lower threshold (Javaheri et al., 2006). However, Rizzo et al. found that the actual 

threshold range used in the blind patients was 0.16�80 mC/cm2, which was different 

from the range (0.28�2.8 mC/cm2) that their device was designed for. Moreover, 

they found that no patients matched the lower threshold range, and the retinal cells 

were subject to heat damage from using the higher threshold range. To explain this, 

Rizzo et al. pointed out some constraints such as planar electrode, sequential 

stimulation, and stimulation frequencies. Due to this disparity, Rizzo et al. have 

abandoned the epiretinal prosthesis and focused on the subretinal device (Javaheri 

et al., 2006). 

The third attempt in epiretinal prosthesis is the learning retina implant, which 

was proposed and developed by Rolf Eckmiller and his colleagues since 1995 

(Eckmiller, 1997; Eckmiller, Hünermann and Becker, 1999). This device contains 

a camera, retinal encoder part for signal processing, and retinal stimulator. The 

encoder consists of 256 tunable temporal filters in order to simulate the receptive 

field in the ganglion cells of the retina, and each receptive field receives input from 

an array of photo sensors with a resolution of approximately 340 × 290 pixels. The 

retinal stimulator (RS) is the intraocular component that is placed on the epiretinal 
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surface, where contact is established with the ganglion cells. It contains an array of 

100 electrodes with diameter ranging from 100 to 360µm to stimulate one or more 

ganglion cells. The retinal encoder is designed to be carried as a pocket processor, 

which provides an integrative perception-based dialogue between the RE and 

human subject, besides stimulating the complicated mapping operation of parts of 

the neural retina. The dialogue, which involves patients fine-tuning parameters of 

the encoding process, helps provide ganglion cells with interpretable codes for 

epiretinal stimulation (Rizzo et al., 2003). 

Some encouraging results were obtained on testing this device on animals such 

as rabbits and primates (Eckmiller, 1997; Walter et al., 1999; Hornig and Eckmiller, 

2001), but retinal detachment was found in human trials. Eckmiller et al. adopted a 

dialogue-based RE tuning approach to tackle the issue of information processing in 

the retina, the brain, and retinal prosthesis and developed an effective man�machine 

interface for blind patients (Abbott, 1999; Gutierrez and Marder, 2013). Based on 

experiments with this device, Eckmiller indicated that to achieve a good dialogue 

between the retinal encoder and the central visual system, the stimulation to elicit 

neural signals in ganglion cells must be determined properly. Besides, signals 

generated by the retinal encoder and retinal stimulator must be clear and 

unambiguous (Destexhe, 1997; Izhikevich, 2004), and the time rate course must be 

over more than 100 ms to generate the desired percepts at the central visual system. 

In particular, ganglion cells need to be stimulated properly, because the ganglion 
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cells will not be able to convert the electrical signal into visual percepts if the 

electrical stimulus is not applied at the correct location and affects neighbouring 

cells. For instance, many patients reported that they had unspecific phosphene-like 

or cloud-like percepts because it is not possible to stimulate a single ganglion cell 

without affecting its neighbouring cells. Eckmiller tackled this issue by studying 

the stimulating pattern in ganglion cells through the Retinal Encoder Dialogue 

Module that could be adjusted according to the perceived vision in normal people. 

In other words, this prosthesis addressed the question of information processing 

between the device and ganglion cells by tuning an �artificial� receptive field to 

determine the proper stimulation, and the tuning was performed by comparing 

elicited vision from stimulating signals to the percepts of a person with normal 

vision. This approach is different from other approaches, in which the receptive 

field is adjusted to create corresponding pulse trains for adaptive stimulation of 

ganglion cells. 

The last approach is EPIRET-3, developed by Klauke et al., which contains an 

extraocular and an intraocular component and data is transmitted wirelessly 

(Klauke et al., 2011; Maidenbaum, Abboud and Amedi, 2013). The intraocular part 

consists of a receiver coil, receiver chip, stimulation chip, and a microelectrode 

array. All these components are implanted inside the eye, with only the electrode 

array in contact with the retinal cells. The receiver coil is responsible for receiving 

the wireless signal, a radio signal in this case, and transferring it to the receiver chip 
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for processing. Then, these processed signals are transformed into electrical stimuli 

by the stimulation chip. These stimuli then transfer to the retinal cells via the array 

of microelectrodes, and they form the visual perception in the brain. The electrodes 

array in this design has 25 electrodes, which are arranged in a hexagonal shape; 

each electrode has a diameter of 100 µm with a gap of 500 µm between them. On 

the other hand, the extraocular part consists of a camera, computer system, and 

transmitter coil placed in front of the eye. The computer system is used for encoding 

spatial signals from the camera and transferring these signals to the coil to transmit 

to the intraocular component. The placement of this prosthesis is shown in Figure 

3.5. 

The EPIRET-3 device is now undergoing a clinical trial in Europe on six 

patients who have been blind for an average of five years, with visual acuity ranging 

from completely blind to hand movement perception. This trial is being conducted 

to examine the compatibility of the device with the eye after device implantation. 

The results show that in all cases, the retinal cells are attached to the electrode array, 

and the cornea is cleared with intraocular parts in position. Besides, only one case 

shows optic atrophy in which the optic nerve is deteriorated and no longer sends 

nerve signals to the brain. In another case, the optic disk changed to a pale colour 

from the original orange colour, and in yet another case, the vessels had become 

narrow. In terms of visual acuity, two patients have perception of hand movements, 

two others have light perception, and the rest have neither light perception nor hand 
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movement perception. After an acute clinical study, this device is now awaiting a 

chronic study, which will be followed by further improvement of the design and 

implantation. 

 

 

Figure 3.5: EPIRET-3 retinal prosthesis. Reproducing with permission (Klauke et 

al., 2011). 
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3.2.1.1 Advantages and disadvantages of epiretinal prostheses  

• Advantages 

The first advantage of the epiretinal approach is that the electrical device is mostly 

placed outside the retinal surface, keeping the heat at the retinal surface at low 

levels and making the prosthesis virtually harmless to the eye (Piyathaisere et al., 

2003).  

The second advantage is that the surgical process is easier. The surgical 

procedures involving the vitreous cavity are generally straightforward. Moreover, 

the device may be placed on the entire vitreous cavity to minimize disruption to the 

retina (Weiland and Humayun, 2006).  

The last advantage is that the approach does not require the remaining retinal 

cells (e.g. bipolar, horizontal, or amacrine cells) for information processing. This 

means this prosthesis is suitable for patients with only ganglion cells remained in 

the retina therefore the chance of using this device to restore vision in the blinds 

could be increased. 

• Disadvantages 

The first disadvantage of the epiretinal prosthesis is that the remaining retinal neural 

cells are not used to process the information (Chow et al., 2004). This generally 

means that an external camera is required to allow some degree of pre-processing 

to substitute for what would have been done automatically if the information had 
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been passed through intact neurons, such as bipolar and amacrine cells. Moreover, 

the image processing performed by the retina must be replicated in order for the 

ganglion cells to be stimulated with meaningful signals (Piyathaisere et al., 2003). 

Secondly, to increase comfort and reduce retinal damage, the shape and 

material of the electrode array substrate poses several challenges. The electrode 

array must be carefully fixed to the curved retinal surface for the stimulation to be 

consistent and to avoid retinal tearing (Piyathaisere et al., 2003).  

Finally, due to the need for an external camera and data transfer from a camera 

to the stimulation component, the epiretinal device needs more power to operate. 

Moreover, the camera is also fixed on the glass, which requires the patient to use 

their head movement to adjust the direction of vision.  

3.2.2 Subretinal prostheses 

Unlike an epiretinal prosthesis that is placed in contact with the ganglion cells, a 

subretinal prosthesis is located between the bipolar and photoreceptor cells. 

Because of the location of its placement, the structure of this device, especially the 

stimulator part, is different from that of an epiretinal device. In detail, the number 

of electrodes is higher because the number of retinal cells in the photoreceptor layer 

is higher than the number of ganglion cells. The first subretinal device�the 

Artificial Silicon Retina (ASR) (Chow et al., 2004) - was developed by Chow et al. 

It consists of a stimulator made from a thin silicon plate, approximately two to three 
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millimetres in diameter and 50�100 µm in thickness. On the silicon plate, there are 

5000 subunits with a size of 20 × 20 µm, and each subunit consists of a micro-

photodiode that is capable of converting light to electrical signals and an electrode 

to stimulate the bipolar cells. In addition, the micro-photodiodes are used to provide 

energy to the stimulating electrodes with the integrated solar cells (Chow and 

Chow, 1997; Chow and Peachey, 1998; Peyman et al., 1998; Chow et al., 2002). 

Furthermore, the subunits are arranged with a density of 1100 subunits per µm2 to 

stimulate a comparably large number of retinal bipolar cells.  

The subretinal prostheses were implanted in six patients, and the results were 

reported as follows (Javaheri et al., 2006):  

 

Table 3.1: Result from testing an Artificial Silicon Retina.Reproducing with 

permission (Chow et al., 2004). 

Patient Eye Ability Results 

1 
Light Perception in both eyes. Capable of perceiving light without 

heading to the light source. 

2 
Light Perception in left eye 

only. 

Capable of seeing shadows of 

people with the right eye. 

3 

Had visual acuity of hand 

moving. 

Capable of using night light for 

navigating and seeing movement on 

television. 

4 
Had visual acuity of hand 

moving in both eyes. 

Capable of navigating the yard and 

locating light sources. 

5 

Had visual acuity of counting 

fingers at 1 or 2 ft. in both 

eyes. 

Capable of differentiating paper 

money, using utensils for eating and 

recognizing faces. 

6 

Had a preoperative visual 

acuity of hand moving in both 

eyes and equal visual function 

in both eyes. 

Sometimes capable of recognizing 

denominations of paper money, 

distinguishing traffic lights, locating 

cars as well as finding a coffee cup 

at meals. 
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Some weaknesses of the device were noted, although encouraging results have 

been achieved in human clinical trials (Chow and Chow, 1997; Zrenner, 2002). The 

major drawback of this device is that the micro-photodiode does not transmit 

sufficient energy to stimulate the retinal cells, due to its limited light sensitivity. 

Although this limitation can be improved by using an external energy source for 

the stimulating retinal cells, Chow et al. have abandoned the notion that the ASR 

Microchip is a prosthetic device and have listed this prosthesis as a therapeutic 

device. This implies that this device can help patients when required and turned off 

after use or used in patients who are not completely blind; thus, it is not a true retinal 

prosthesis. In other words, users can use this device whenever they want but, unlike 

a visual prosthesis, they do not depend on it for performing daily activities. 

Although Chow et al.�s concept of a subretinal prosthesis has been discontinued, 

this device has been noted as the first of its kind and has inspired other researchers 

to develop better versions of subretinal prostheses. 
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Figure 3.6: The Artificial Silicon Retina (ASR). Reproducing with permission 

(Chow et al., 2004). (A) ASR compared to a penny; (B) The ASR Microchip in 

closer view; (C) An ASR electrode. 

 

Zrenner et al. developed another design for a subretinal prosthesis consisting 

of a micro-photodiode array, three millimetre in diameter and 50 µm in thickness, 

containing 7000 microelectrodes in a checker-board pattern; furthermore, each 

micro-photodiode is designed to be both insulating and permeable to light (Stett et 

al., 2000; Eckhorn et al., 2006; Wilke et al., 2011). An external source is used to 

provide sufficient power to the subretinal implant. The parameters used to define 

the micro-photodiodes were examined on various animal models of a degenerated 

retina to stimulate the retinal cells adequately. These parameters were later used to 

develop a new prosthesis to be implanted in future animal experiments. The goals 

of the latter experiments were to detect stimulation of the visual cortex (as a result 

of prosthetic stimulation) and test the long-term bio-compatibility as well as 

stability of the prosthesis (Wilke et al., 2011).  
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After 14 months of implantation, angiography and histology studies revealed 

no rejection reactions or inflammation in the tested subjects (Wilke et al., 2011). 

Zrenner et al. also recorded the cortical evoked potentials during light flash 

experiments and compared them to responses from not only subretinal but also 

epiretinal devices with regard to certain aspects of spatial resolution to determine 

the outcome of the device implanted. The results showed that the spatial resolutions 

from both devices are sufficient for blind patients to recognize objects, and these 

resolutions could be increased up to 0.5° visual angle if the electrode was made 

from a material with a higher charge transfer capacity. With this result, the implant 

is processed, and currently, in one relatively successful human trial, the blind 

patient was capable of identifying letters and a clock face, and was able to move 

around a room independently (Stingl et al., 2013). Unlike epiretinal implants, this 

approach does not require an external camera. New versions of this prosthesis have 

been focusing on gathering the device components beneath the skin and providing 

energy as well as data to the prosthesis through the skin via an external device 

(Wilke et al., 2011). The new devices are expected to provide the ability to 

recognize objects, read letters, and recognize people (Stingl et al., 2013). 

A third type of subretinal prosthesis is being developed by Rizzo and Wyatt et 

al., a research effort that goes by the name Boston Retinal Implant Project (Grumet, 

Wyatt and Rizzo, 2000; Kelly et al., 2009; Freeman, Rizzo and Fried, 2011). As 

seen in Figure 3.7, the prosthesis consists of a micro-fabricated thin-film electrode 
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array, controller microchip, power supply components, and power and data receiver 

coils. The controller microchip and the power supply components are on one 

module, and the power and data receiver coils as well as electrode array is placed 

on the other module. These two modules are connected by a biocompatible flex 

substrate. The energy and data of the prosthesis are wirelessly transferred via the 

power and data coils through inductive coupling (Kelly et al., 2009).  

However, this is just the first generation of the prosthesis and has some 

significant disadvantages, including the following (Weiland, Cho and Humayun, 

2011): 

• Small receiver coil, which makes the data and power transfer more 

difficult; 

• Silicon coating, which is not suitable for a long-term trial (e.g. 10 or 15 

years); 

• Implantation procedure is difficult as the coil is in the way; and 

• Little data is available about the long-term survivability of the electrode 

array. 

Therefore, a second-generation prosthesis was developed in order to overcome 

the drawbacks of the first-generation prosthesis. The second-generation prosthesis 

has the following advantages (Weiland, Cho and Humayun, 2011): 

• A larger coil is used, which is also more comfortable for the eye; 
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• The circuitry is enclosed in a hermetic, ceramic case; and 

• The electrode array is inserted in its own quadrant in a manner that allows 

for an easier implantation process. The number of electrodes is increased to 

200 electrodes, with the diameter reduced to 200 µm, instead of 100 

electrodes with a diameter of 400 µm in the first generation. According to 

Rizzo and Wyatt et al., the number of electrodes in this device is less than 

those in other devices, but these electrodes are fully controlled individually 

based on patient feedback, in contrast to the lack of individual control in 

other approaches.  

According to Figure 3.8, the coil is wound on a steel sphere so that it can match 

the curvature of the eye. There are two coils: the primary coil is used for power 

telemetry and the second coil is used for data transferring. The prosthesis also 

contains a CMOS chip to receive incoming stimulation data, which it then decodes 

and uses to stimulate the electrodes. The electrical stimulation is provided to the 

retinal nerve cells via a micro-fabricated array of sputtered iridium oxide film 

(SIROF) electrodes. By encasing and placing the electronic components outside the 

eye, only the electrode array inside the eye and one contact with the retina; 

therefore, a retinal tack is not required to attach the array to the retina as in the 

epiretinal approach (Rizzo, 2011). In particular, in the epiretinal approach, the 

electrode array must remain in contact with the ganglion cell layer; therefore, it is 

located in the vitreous chamber and a tack is required to keep the array in a fixed 
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position. In contrast, the electrode array for a subretinal prosthesis is inserted 

between the retina and the choroid; therefore, the array is fixed by the natural force 

of the retina and choroid. 

This prosthesis was tested on two Yucatan mini-pigs. The result showed 

consistency in electrode response and good stability over long-term pulsing (Rizzo, 

2011). Human testing has also been conducted in a series of six experiments and 

shows that the prosthesis provides sufficient electrical currents to the retina. Some 

patients are capable of seeing and distinguishing small spots of light, and perceiving 

lines, in spite of the fact that they may have been classified as legally blind for 

decades (Weiland, Cho and Humayun, 2011; Fernandes et al., 2012). 
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Figure 3.7: The first generation of the retinal prosthesis. Reproducing with 

permission (Rizzo, 2011). 

 

Figure 3.8: The hermetic implant in the second generation of the prosthesis. 

Reproducing with permission (Rizzo, 2011). 

 

On the downside, few negative effects have been reported in connection with 

the conjunctiva, which is a thin, clear, and moist membrane that coats the inner 

surfaces and the outer surface of the eye. The angle formed between the conjunctiva 

and the coil edge causes tension in the thin conjunctiva. In addition, the hermetic 
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case is placed too far on the anterior side of the eye, increasing tension in the 

conjunctiva. These issues can be addressed by redesigning the flex circuit that 

connects the coil and the case as well as the way the case is sutured to the eye in 

order to ensure that the case remains in place (Weiland, Cho and Humayun, 2011). 

The latest subretinal prosthetic device is the Alpha-IMS. An acute clinical trial 

of the first-generation Alpha-IMS was conducted in 11 subjects in 2005. Unlike 

other approaches that use a camera for recording, this device was implemented with 

a micro-photodiode array consisting of 1500 micro-photodiodes that capture and 

transform the light directly into an electrical signal. Using the micro-photodiode 

array, the signal-processing component can be integrated as an intraocular part and 

placed inside the skull with the stimulation component. This solves the problem of 

data transfer between the intraocular and extraocular components and increases the 

speed of processing as the data is now processed inside the intraocular component 

itself. Power was transferred to the intraocular component through RF telemetry 

wireless transmission. The device is shown in Figure 3.9. 
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Figure 3.9: Alpha-IMS retinal prosthesis. Reproducing with permission (Stingl 

et al., 2013). 

The first-generation Alpha-IMS device was implanted and tested on three blind 

patients. The results show that the device can help blind patients perceive light and 

reliably respond to a flash of light and recognize certain subjects such as cups or 

saucers on a table (Foerster, J and Javaheri, 2006; Benav et al., 2010; Wilke et al., 

2011; Kusnyerik et al., 2012; Stingl et al., 2013). Especially, one patient with sub-

foveal implantation of the micro-photodiode array was able to recognize the 

geometric shapes and read large letters and formulate simple words. This result not 

only encourages the use of the new prosthetic device but also demonstrates 
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potential development of the MPDA in designing the prosthesis. The second-

generation subretinal prosthetic device has an improved design and was implanted 

in 10 patients for a 3�9 month trial. With the help of this device, these patients 

could recognize individual letters spontaneously even under low-contrast 

conditions and demonstrated a visual acuity of 20/546. However, a subretinal bleed 

with high intra-ocular pressure occurred in one patient, and a damaged optic nerve 

was reported during implantation in another patient.  

In summary, subretinal prostheses include the Artificial Silicon Retina (ASR) 

with 5000 electrodes, Zrenner group�s prosthesis with 7000 micro-photodiode 

arrays, Boston Retinal Implant Project with 200 individually controlled electrode 

arrays, and Retinal Implant AG with 1500 micro-photodiodes. The stimulation 

components in all the devices are implanted in the subretinal area between the retina 

and choroid. Among these devices, only the device developed by the Boston Retinal 

Implant Project requires an external camera to acquire visual images; all other 

devices used micro-photodiodes to transform incoming light into electrical current. 

With regard to data telemetry, the Boston device used wireless data transfer, 

whereas the Alpha-IMS and Zrenner group used cables for transferring data and 

power. In addition, the ASR uses power from the current converted from the micro-

photodiode, causing a power problem, leading to the discontinuation of the device. 

Other prostheses continue to be implanted and approved for human trials or even 

commercial use, e.g. Alpha-IMS is used in Europe.  

49 
 



RETINAL PROSTHESIS REVIEW 

 

3.2.2.1 Advantages and disadvantages of subretinal prostheses 

• Advantages 

The first advantage of the subretinal prosthesis is that the remaining retinal tissues 

can be used for information processing (Javaheri et al., 2006). Apart from the 

advantages pertaining to information compatibility with the rest of the visual 

system, the use of intact retinal circuits decreases the need for external processing 

and decreases the amount of power required.  

Secondly, it is easier for a subretinal prosthesis to remain in place and avoid 

retinal detachment. This mechanical stability avoids damaging the surrounding 

tissue, maintains the prosthesis, and retains the consistency of the communication 

channels between the prosthesis and the intact neurons (Piyathaisere et al., 2003). 

• Disadvantages 

Firstly, the distribution of the nutritional supply between the choroid and the retina 

may be disrupted because of the placement of the device. In other words, if the 

electrical device is not placed properly, it may accidentally disrupt nutritional flow 

inside the eye and cause further damage to the retina (Piyathaisere et al., 2003). 

Secondly, power stability is an issue because light absorption in the solar cells 

is neither sufficient nor consistent. Therefore, an external power source must be 

provided to ensure that the prosthesis functions reliably. 
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Thirdly, the inter-neurons on which the prosthesis is relying (i.e. bipolar and 

amacrine cells) might be heavily re-organized as a consequence of retinal damage, 

and as a consequence, the information conveyed to the ganglion cells might not be 

interpretable. 

3.3 Summary 

The above retinal prosthesis review presented the concept and application of 

epiretinal and subretinal prostheses as well as the advantages and disadvantages of 

each device. Both devices consist of a stimulation component and a visual 

processing unit, with power supply depending on the design of the prosthesis. The 

epiretinal prosthesis focuses on stimulating the ganglion cell layer, whereas the 

subretinal prosthesis focuses on the bipolar cell layer. In epiretinal devices, an 

external camera is required for direct stimulation of the ganglion cells, whereas in 

subretinal devices, an external camera is optional and micro-photodiodes are used 

to convert light energy to electrical signals. Thus, in epiretinal prosthesis, a power 

source is required to supply energy to the camera as well as the stimulation and 

processing components. The epiretinal devices are suitable for eyes with significant 

retinal damage and intact ganglion cells, whereas subretinal prostheses are suitable 

for retinas with a damaged photoreceptor layer only. On the other hand, optic nerve 

and extraocular prostheses do not need the retina to operate; however, these 

prostheses are expensive, difficult to implant, and yield poor-quality vision.  
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CHAPTER 4 

RETINAL MODELING REVIEW 

In the previous chapter, different approaches in manufacturing and implanting 

retinal prostheses were reviewed. Besides retinal prosthesis, retinal modelling has 

also received the attention of many researchers in order to simulate the behaviour 

of the retina under various conditions. In general, a retinal model is a set of 

equations that describes the biological properties and connectivity inside the retina 

based on the anatomy of the retina. Through these equations, scientists can simulate 

the processing that occurs inside the retina and predict its output under different 

scenarios. The simulations focus on different levels in the retina from single cells 

such as photoreceptors (Huang and Robinson, 1998; Kourennyi et al., 2004), 

horizontal cells (Hateren, 2005; Publio, R. Oliveira and Roque, 2006), bipolar cells 

(Smith and Vardi, 1995; Publio, R. Oliveira and Roque, 2006; Paninski, Pillow and 

Lewi, 2007; Raudies and Neumann, 2010), amacrine cells (Ohshima, Yagi and 

Funahashi, 1995; Paninski, Pillow and Lewi, 2007), and ganglion cells (Lankheet, 

Molenaar and van de Grind, 1989; Destexhe, 1997; Feller et al., 1997; Abbott, 

1999; Benison et al., 2001; Izhikevich, 2004; Sheasby and Fohlmeister, 2013) to a 

group of cells such as the OPL layer (Publio, R. Oliveira and Roque, 2006; Hateren, 

2007), IPL layer (Zhijun Pei and Qingli Qiao, 2010; Decuypere and Capron, 2011; 

Suh, 2012), or the whole retina (Kenyon et al., 2005; Wohrer and Kornprobst, 

2009). Although different models are used to simulate the processing inside the 
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retina with different purposes, the purpose of all the models is the same, that is, to 

replicate the retinal cells, and this method differs between models. However, the 

models can be classified based on their characteristics: conductance-based models, 

threshold-fire models, compartment models, and white-noise models. In this 

section, each type of model and the application of these models in case of modelling 

the retina is discussed to present a state-of-the-art view of retinal modelling. 

4.1 Conductance-based models 

The name of this model is based on the fact that the opening and closing state of 

ionic channels inside the neurons may lead to a change in their conductance. These 

changes can be described using a set of differential equations. This section will 

describe the Hodgkin�Huxley model and its variations and their applications in 

retinal modelling. 

4.1.1 Hodgkin�Huxley model 

The Hodgkin�Huxley model is based on the Hodgkin�Huxley equation, which was 

proposed by Hodgkin and Huxley in 1952, to simulate the action potential of the 

neuron based on their experiments with the axon of a giant squid. They determined 

that the action potential is a combination of component currents such as Na+ and 

K+ currents, which are based on the flow of Na+ and K+ through the cell membrane. 

A leakage Cl- current is also developed, but the greatest contribution to the action 

53 
 



RETINAL MODELING REVIEW 

 

potential is the Na+ and K+ current. The Hodgkin�Huxley equation can be described 

using a set of differential equations as follows: 

 I = ܥ  ݀ ܸ݀ݐ + ݃( ܸ െ  ܸ) +  ݃ே( ܸ െ  ேܸ) +  ݃( ܸ െ  ܸ)  

 

(4.1) 

 

Where I is the total membrane current, ܥ is the membrane capacitance, ݃ 

and ݃ே are potassium and sodium conductance, respectively. ܸ and ேܸ are the 

potassium and sodium reversal potentials, respectively, and ݃ and ܸ refer to the 

leak conductance per unit area and leak reversal potential, respectively. The time-

dependent elements of this equation are ܸ,݃ே, and ݃, where the last two 

conductances depend explicitly on voltage. 

By successfully simulating the action potential of the neuron, the Hodgkin�

Huxley equation is widely used in modelling neurons as a single compartment or a 

network of compartments. Fohlmeister, Coleman, and Miller used the Hodgkin�

Huxley equation to simulate the repetitive firing of the ganglion cells in the retina 

of a tiger salamander (Fohlmeister, Coleman and Miller, 1990), after Barnes and 

Hille simulated the ionic channels of the inner segment of its cone photoreceptors 

(Barnes and Hille, 1989). Moreover, Fohlmeister and Miller and Sheasby 

developed a realistic five-channel spiking model based on the Hodgkin�Huxley 

model to replicate the bursting behaviours of the retinal ganglion cells of a tiger 

salamander (Sheasby and Fohlmeister, 2013) and its morphologies (Barnes and 
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Hille, 1989). Skaliora et al. used the model to simulate the properties of K+ 

conductances in cat retinal ganglion cells (Skaliora et al., 1995). Besides Skaliora 

and their colleagues, Benison et al. also modelled the postnatal retinal ganglion 

cells of a cat in terms of temporal behaviour using the Hodgkin�Huxley equation 

and the data from the experiments of Huang and Robinson (Huang and Robinson, 

1998; Benison et al., 2001). Besides the ganglion cells, Kourennyi and Liu et al. 

simulated the light response and the calcium dynamics in rod and cone 

photoreceptors (Kourennyi et al., 2004; Liu and Kourennyi, 2004). This work by 

Kourennyi was followed by that of Publio and Oliveira and Roque and presented a 

realistic model of rod photoreceptors and ON rod pathway in 2006, which include 

the rod, bipolar, and ganglion cells in the vertebrate retina (Publio, R. Oliveira and 

Roque, 2006; Publio, Oliveira and Roque, 2009).  

4.1.2 Morris�Lecar model 

The Morris�Lecar model is a simplified version of the Hodgkin�Huxley model, but 

it still maintains the biologically meaningful characteristics though its parameters. 

In this model, Morris and Lecar added an instantaneously responsive voltage-

sensitive Ca2+ conductance for excitation and a delayed voltage-dependent K+ 

conductance for recovery. The equations for this model are as follows: 

 CVᇱ = െ݃ܯ௦௦(V)(ܸ െ  ܸ) െ ݃W(ܸ െ  ܸ) െ ݃(ܸ െ  ܸ)    ܫ +

 Wᇱ = ( ௌܹௌ(ܸ) െܹ)/ ௐܶ(ܸ)  
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௦௦(V)ܯ  = (1 + tanh ܸ െ  ଵܸଶܸ ൨)/2 
(4.2) 

 

 ௦ܹ௦(V) = (1 + tanh ܸ െ  ଷܸସܸ ൨)/2 
 

 

 ௐܶ(V) = ܶsech [
ܸ െ ଷܸ

2 ସܸ ]  

Where V is the membrane potential, W is recovery variable, and ܫ is the 

applied current stimulus. The value ܹ is equal to the instantaneous value of the 

probability that a K+ ion channel is in its open state. The second equation is the 

relaxation process, where the protein channels undergo conformational transitions 

between ion-conducting and non-conducting states and ܯ௦௦(ܸ) and ܯ௦௦(ܸ) represent the function of open-state probability. 

Compared to the Hodgkin�Huxley equation, the Morris�Lecar model requires 

only two dynamic variables, instead of four, to describe the two voltage-gated 

channels (Na+ and K+) and a leakage current (Cl-), and this improvement reduces 

the cost for computation by up to 50% (Destexhe, 1997). Moreover, the Morris�

Lecar model also introduced the concept of voltage oscillation in the neuron due to 

the resonance. Because of this advantage, the Morris�Lecar model is used widely 

in neuroscience to simulate spiking neurons, especially fast-spiking neurons and 

spiking neurons with the property of oscillation. Siegel et al. used and modified the 

Morris�Lecar model to infer that the Ca2+ concentration depends on both electrical 

activity and cell morphology (Siegel, Marder and Abbott, 1994). Jacobs, Roska, 
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and Werblin have implemented the Morris�Lecar model to construct a cellular 

neural network and create a physiologically detailed model of the vertebrate retina 

(Jacobs, Roska and Werblin, 1996). Agmon-Snir, Carr and Rinzel later created a 

model using the Morris�Lecar equation to simulate the coincidence-detector 

neurons in the auditory system of mammals and birds and showed that the 

computational ability of these neurons depends on their cell morphology and spatial 

distribution of the inputs (Agmon-Snir, Carr and Rinzel, 1998; Murakoshi and 

Nakamura, 2001). Sekerli and Butera applied the Morris�Lecar equation to field 

programmable analogue arrays to create an electronic neuron and showed that the 

neuron is able to describe biologically relevant dynamics in real time (Sekerli and 

Butera, 2004). Breakspear and Stam modified the equation and implemented it in a 

multi-scale dynamic neural framework, and the dynamics at each scale was 

determined by the non-linear oscillators (Breakspear and Stam, 2005). Veredas, 

Vico, and Alonso simulated the two mono-synaptically connected neurons to 

measure changes in correlated firing and found that the time course of excitatory 

postsynaptic potential affected the precision of correlated firing generated by strong 

mono-synaptic connections in the visual pathway of cats (Veredas, Vico and 

Alonso, 2005). In 2006, Tsaneva-Atanasova et al. used a modified Morris�Lecar 

model to simulate the diffusion of calcium and metabolites and study the 

synchronization of the pancreatic islets. In addition, Prescott et al. have studied the 

effect of changes in conductance on spiking activity in pyramid neurons using the 
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Morris�Lecar model as a phase plane model (Prescott et al., 2006; Tsaneva-

Atanasova et al., 2006). In 2007, Behn at el. used a Morris�Lecar relaxation 

oscillator to produce a model involving the neural dynamics underlying sleep-wake 

behaviour in mice (Behn et al., 2007). In 2009, Hennig et al. studied the early-stage 

waves in the retina using a biophysically realistic model adopted from the Morris�

Lecar model (Hennig et al., 2009). In the next year, Almeida and Ledberg 

implemented a biologically plausible model that contained a set of bi-stable units 

that could switch from one state to the other at random times and showed its 

consistency with time-scale invariant behaviour over a substantial range of intervals 

(Almeida and Ledberg, 2010). In 2013, Gutierrez and Marder presented a five-cell 

model, with each cell based on the Morris�Lecar equation, to simulate a pattern-

generating neuronal network to investigate the change in behaviour of a small 

neuronal network from the rectifying electrical synapses (Gutierrez and Marder, 

2013).  

4.1.3 Advantages and disadvantages 

Through the implementation of the Hodgkin�Huxley and Morris�Lecar models, the 

conductance-based model simulates the ionic currents to help scientists investigate 

issues related to neuronal dynamics as well as determine biophysically meaningful 

parameters that could be adjusted and measured in experiments. A disadvantage of 

this model is that the cost for computation is high and it warrants knowledge about 
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the biophysical properties of a neuron to adjust the parameters of the model. 

Therefore, the conductance-based model is only suitable for simulating a small 

number of neurons, when the computational cost and time required for simulation 

is not an issue. 

4.2 Threshold-fire models 

According to its name, in this model, the post-synaptic neuron accumulates all 

signals from the pre-synaptic neuron and fires when the summation exceeds a pre-

defined threshold. After firing, the signal of the post-synaptic neuron will be reset 

to the resting state and accumulate again. The integrate-and-fire model and its 

variants are reviewed as an example.  

4.2.1 Integrate-and-fire 

The integrate-and-fire model was presented in 1907 by Lapicque (Abbott, 1999) 

and is based on the RC (resistor-capacitor) circuit, as shown in Figure 4.1: 

 

Figure 4.1: A neuron as an RC circuit. Reproducing with permission (Abbott, 

1999). 
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Using the RC circuit shown above, Lapicque described the spiking mechanism 

in the neuron by replicating the membrane resistance and capacitance with 

capacitance C and resistance R. At the resting state, the membrane potential Vmem 

is maintained stable as Vrest and under the input current I, the membrane potential 

increases until it reaches the threshold level, generating an action potential and 

subsequently resetting to a stable state. In the first model, there is no time-

dependent memory, which would increase the membrane voltage to the threshold 

point for firing when the applied current is below the threshold. Moreover, the 

variations in the Na+ and K+ current are not well utilized, thus preventing the 

production of phasic spiking or bursting spiking (Izhikevich, 2004). To overcome 

this drawback, a leakage channel has been added to the original integrate-and-fire 

model by facilitating the diffusion of ions through the membrane so that the 

membrane potential does not continue to increase. After the addition of the leakage 

channel, the leaky integrate-and-fire model assumes the following form: 

 

 

I(t) =  
ܴ(ݐ)ݑ + ܥ ݐݑ݀݀   

 

 

 ߬ ݐݑ݀݀ =  െu(t) +  (ݐ)ܫܴ
(4.3) 

 

 Where ߬ =   ܥܴ
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In terms of retinal modelling, in 1989, Lankheet, Molenaar, and van de Grind 

implemented a model to simulate the spiking neuron and explain the mechanism of 

spiking generation in cat retinal ganglion cells (Lankheet, Molenaar and van de 

Grind, 1989). In 1992, Levine used this model to simulate the spiking of ganglion 

cells in the vertebrate retina in order to examine the variability of the firing rate 

(Levine, 1992). Five years later, Feller at el. used the leaky integrate-and-fire model 

to simulate and explain the mechanisms behind the highly correlated activity 

generated by the retinal waves in the mammalian retina (Feller et al., 1997). In the 

same year, Rudd and Brown studied the gain control in the retinal ganglion cells of 

the toad Bufo marinus using the integrate-and-fire model (Rudd and Brown, 1997). 

In 2004, Jolivet, Lewis, and Gerstner presented the model using the integrate-and-

fire equation to simulate fast-spiking cortical neurons (Jolivet, Lewis and Gerstner, 

2004). In the same year, Sun, Rüttiger, and Lee used this model to compare the 

spatial-temporal precision of ganglion cell response with moving gratings (Sun, 

Rüttiger and Lee, 2004). One year later, Federici implemented the integrate-and-

fire model in a neuronal network that can regenerate and continue performing 

spiking in case of cell loss (Federici, 2005). Later, in 2007, Capela, Tomás, and 

Sousa introduced a stochastic integrate-and-fire model that included additive white 

noise in order to create a model and provide a training method to fit this model to 

the real data for simulating a human visual system (Capela, Tomás and Sousa, 

2007). In 2008, Wu et al. used the same integrate-and-fire model to implement a 
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spiking neuronal network that can segment the object and form the shapes of objects 

using local excitatory lateral connections (Wu et al., 2008). Four years later, Bichler 

et al. proposed a neural network based on this model and were able to extract 

complex and overlapping temporally correlated features from a spiking silicon 

retina (Bichler et al., 2012). In the same year, Bugmann used the leaky integrate-

and-fire model to conduct a multilayer network for fast learning along the dorsal 

pathway from primary visual areas to pre-motor cortex (Bugmann, 2012). In 2013, 

Zhou et al. utilized this model to theoretically determine the effects of the dynamics 

of the sub-threshold membrane potential in the soma on dendritic integration (Zhou 

et al., 2013). In early 2014, Cho and Choi simulated an integrated-and-fire neuron 

based on this approach to replicate the receptive field of the retinal ganglion cells 

(Cho and Choi, 2014).  

4.2.2 Spike Response Model 

In 1993, Gerstner proposed another model adapted from the integrate-and-fire 

model, called the Spike Response Model, to provide a different view of the spiking 

neurons. In this model, the concept of the integrate-and-fire model is retained, i.e., 

the neuron will fire when the accumulated voltage exceeds the threshold. The 

difference between this model and the integrate-and-fire model is that this model 

can capture the refractoriness property of the neuron, where the spiking frequency 

is reduced by preventing it from firing for a specific time (Gerstner and van 
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Hemmen, 1992; Gerstner, Ritz and van Hemmen, 1993). With this feature, the spike 

response model has an advantage over both the leaky and integrate-and-fire models 

(Jolivet et al., 2008), and this model has been proven to be a generalization of the 

leaky integrate-and-fire model (Jolivet, Lewis and Gerstner, 2004). The equation 

for the Spike Response Model is as follows: 

 u(t) =  Ʉ(t െ (Ƹݐ +  න ݐ)ߢ െஶ
 ,Ƹݐ ݐ)ܫ(ݏ െ  (4.4) ݏ݀(ݏ

Where ݐƸ is the firing time of the last spike of neuron, Ʉ describes the form of 

action potential and its spike after-potential, u(t) is the stimulating current, and K 

is the linear response to an input pulse.  

Keat et al. used this model to predict every single spike in a spike train in retinal 

ganglion cells in salamanders, rabbits, and cats (Keat et al., 2001). In 2004, 

Northmore implemented this model in a spiking neuron network that reflects the 

retino-tectal-motor system in fish and has the ability to extract the information from 

the environment for navigation with minimal resources (Northmore, 2004). Two 

years later, Jolivet et al. used this model to predict the spike timing of neocortical 

pyramidal neurons and found that a simple threshold process could capture most of 

the non-linearities (Jolivet et al., 2006). Carandini, Horton, and Sincich used this 

model in 2007 to verify that the geniculate spike train could be predicted from 

retinal spike trains on the basis of postsynaptic summation (Carandini, Horton and 

Sincich, 2007). In 2008, Pillow et al. fit the physiological data to this model to 
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provide a general framework for understanding the correlated activity in 

populations of neurons and indicated that the noise in the spike train is reduced 

when encoding at the population level compared to responses from individual 

neurons (Pillow et al., 2008). In 2010, Lazar, Pnevmatikakis, and Zhou presented 

a framework containing spiking neurons modelled with a Spike Response Model 

as an encoder for population spiking, and this framework can reconstruct a natural 

video scene (Lazar, Pnevmatikakis and Zhou, 2010). One year later, Glackin et al. 

created a supervised and fuzzy reasoning spiking neuronal network with the Spike 

Response Model approach for each neuron to develop a biologically plausible 

network that could tune itself based on biological principles (Glackin et al., 2011). 

In 2012, Ghani et al. used this model to develop a network of spiking neurons to 

evaluate the output of a CMOS-based synapse (Ghani et al., 2012). 

4.2.3 Izhikevich model 

In 2003, Izhikevich proposed a spiking neuron model to provide a flexible 

framework for neuroscientists to easily construct spiking neurons with different 

types of dynamics, using a simple differential equation with a minimal cost of 

computation (Izhikevich, 2003). In particular, the equation of this model is a 

reduction of the Hodgkin�Huxley model to a two-dimensional system of an 

ordinary differential equation: 
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ݐݑ݀݀  = ଶݑ0.04 + ݑ5 + 140െ ݓ +    ܫ

 
ݐݓ݀݀ =  a(bu െ w) (4.5) 

 ݑ ݂݅   +30ܸ݉, ቄ ݄݊݁ݐ ՚ ݑ ՚ ݓܿ ݓ + ݀  

Due to the simplification of the model, many spiking neurons have been 

constructed based on the Izhikevich model. Durackova and Grega developed a 

computational neuronal network for image processing, with each element 

implemented using the Izhikevich model (Durackova and Grega, 2006). In 2009, 

Gjorgjieva, Toyoizumi, and Eglen replicated the retinal waves in the lateral 

geniculate nucleus. They found that by integrating pre- and post-synaptic bursts, 

irrespective of their firing order, over a second-long timescale, the burst-time-

dependent plasticity can guide On/Off segregation robustly without normalization 

(Gjorgjieva, Toyoizumi and Eglen, 2009). In 2011, Rasch et al. used this model to 

simulate the response of the primary visual cortex (V1) area in the lateral geniculate 

nucleus and showed that the model can generate realistic spiking activity despite 

its simplifications and abstractions. Rast et al. implemented this model in a 

neuromimetic chip to support hetero-generous simulations of biological 

mechanisms in real time (Rasch et al., 2011). Stodilka et al. also simulated the 

cortex to examine the effect of extremely low-frequency electromagnetic fields on 

brain tissue through the transduction mechanism (Stodilka et al., 2011). In 2012, 

Wacongne, Changeux, and Dehaene presented a neuronal model of auditory cortex 
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based on predictive coding to simulate the mismatch negativity (Wacongne, 

Changeux and Dehaene, 2012). Wijekoon and Dudek also implemented the 

Izhikevich model to a Very Large Scale Integration integrated circuit to simulate 

the neocortical neuron (Wijekoon and Dudek, 2012). In 2013, Cassidy, Georgiou, 

and Andreou applied the Izhikevich model to design a neuromorphic chip that 

contains millions of spiking neurons and Spike Timing Dependent Plasticity 

learning using Field Programmable Gate Arrays (Cassidy, Georgiou and Andreou, 

2013). In the same year, Cevikbas and Yildirim used this model to develop a 

simplified visual cortex model used for digit recognition, whereas Ratnasingam and 

Robles-Kelly implemented this to create a spiking network to discriminate colours 

that was invariant to the illuminance (Cevikbas and Yildirim, 2013; Ratnasingam 

and Robles-Kelly, 2013).  

4.2.4 Advantages and disadvantages 

The advantage of the threshold-fire model is the capability to simulate a large 

number of neurons with a reasonable computational cost, as shown in Table 4.1. 

The reason for this is the simplicity of the model in which the biological firing 

properties are simulated using the time derivatives of the law of capacitance. On 

the down side, if the model receives a sub-threshold signal at any time, it will retain 

the accumulation until it gets fired again. 
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4.3 Compartment model 

A compartment model is a system that replicates the biological neuron by dividing 

the neuron into multiple components, where each neuron is treated either as one or 

multiple compartments, depending on the details of the model. Each component in 

the system can simulate the behaviour of neurons and interact with other 

compartments using appropriate differential equations. The neuron is treated as an 

electrical circuit as follows: 

 

 

Figure 4.2: A neuron cell as compartment circuitry. Reproducing with 

permission (Coelho and Gerais, 2005). 

The corresponding equation for the above circuitry is as follows: 

ܥ  ݐݑ݀݀  = ܧ) െ ܩ(ݑ + (ܧ െ ܩ(ݑ +  
ᇱݑ) െ ᇱܴ(ݑ  +  

ᇱᇱݑ) െ ܴ(ݑ + ܫ  

 

(4.6) 

 

According to the above equation, u is the membrane potential that propagates 

along the membrane capacitance C and causes a current flow through the resistance 
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Ra/Ra� into or out of the circuit. This leads to a difference in membrane potential 

between two compartments marked as u-uガガ. The membrane conductance is 

described as Gch, and the battery represents the corresponding equilibrium potential. 

In addition, the leakage conductance G and associated equilibrium E are close to 

Urest, and external input is shown as I. 

In 1995, Ohshima, Yagi, and Funahashi presented a compartment model of H1 

horizontal and red cones for simulating the spatio-temporal response of the light 

induced with regard to membrane impedance, strength of chemical synapse, and 

coupling resistance (Ohshima, Yagi and Funahashi, 1995). Smith and Vardi also 

simulated AII amacrine cells as a compartment to study noise removal in amacrine 

cells when combining the signal from rods in the mammalian retina (Smith and 

Vardi, 1995). In 1996, Kamiyama, Ogura, and Usui also studied the ionic current 

in vertebrate rod photoreceptors using the compartment model (Kamiyama, Ogura 

and Usui, 1996). In 1999, Egelhaaf and Warzechat used this model to simulate the 

receptive field of the direction-selective cells in the fly and showed its role in 

encoding the time-dependent optic flow (Egelhaaf and Warzechat, 1999). One year 

later, Protti, Flores-Herr, and Gersdorff modelled the bipolar cell in the vertebrate 

retina to study the evoked Ca2+ spike in bipolar cells under light stimulation (Protti, 

Flores-Herr and von Gersdorff, 2000), and in 2002, Marian and Reilly proposed a 

computational biological model of motor control of directions (Marian and Reilly, 

2002). Two years later, Sisak, Banin, and Blumenthal modelled the human retina 
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as a simple system with two compartments - the inner and outer retina - for 

enhancing the understanding of retinal pathologies (Sisak, Banin and Blumenthal, 

2004), whereas in 2006, Publio, Oliveira, and Roque explored deeper into this field 

by continuing to use the compartment model to create a realistic model of rod 

photoreceptors with a direct current injection instead of the photo-transduction 

process, thus reducing the computational cost of modelling (Publio, R. F. Oliveira 

and Roque, 2006). In 2007, Neumann, Yazdanbakhsh, and Mingolla created a 

single-compartment model of neurons with non-linear interaction for determining 

the mechanism of surface perception to identify and discriminate objects 

(Neumann, Yazdanbakhsh and Mingolla, 2007). In 2010, Raudies and Neumann 

also studied surface perception with regard to discriminating objects in front from 

those in the background using the compartment model and indicated the role of V1 

response variations (Raudies and Neumann, 2010). Kamppeter et al., on the other 

hand, used the compartment model to experiment with the intraocular concentration 

of triamcinolone acetonide over an 8-month period in rabbits (Kamppeter, Cej and 

Jonas, 2008), whereas Rattay, Paredes, and Leao studied the extracellular and 

intracellular stimulation of cell membranes in terms of the strength�duration 

relationship (Rattay, Paredes and Leao, 2012). In 2013, Lu and Madhukar 

developed the stimulation of synthesized photovoltaic nanoscale cellular prostheses 

to induce repetitive action potential under continuous light (Lu and Madhukar, 

2013), whereas, in early 2014, Chang and He studied the role of bipolar cell 
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terminals in response latency to light adaptation of ganglion cells using an 8-

compartment model of cone bipolar cells (Chang and He, 2014).  

4.3.1 Advantages and disadvantages 

In general, this model maintains computational accuracy in terms of biological 

meaning by treating a neuron as having multiple compartments with each 

compartment having its own membrane potentials. This allows the model to be 

tuned and fitted into different neuron types according to their biological structures. 

The limitation of this model is the number of assembled compartments to simulate 

a network of neurons because the more accurate the model the more compartments 

are required, which will increase the computation cost of the model. 

4.4 Linear-Non-linear-Poisson model 

The linear-nonlinear-Poisson (LNP) model was developed to capture the stimulus-

response relationship and relevant neuronal dynamics. As described below, in 

Figure 4.3, the LNP model contains a spatial linear filter L(x, y), temporal non-

linear filter N(t), and Poisson process P(t). The spatial linear filter is accountable 

for the spatial integration of the input stimulus, whereas the temporal non-linear 

filter used for simulating the spike rate and the Poisson process is applied to 

generate the spike train.  
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Figure 4.3: Linear-Non-linear-Poisson model. Reproducing with permission 

(Ostojic and Brunel, 2011). 

In 1986, Hunter and Korenberg proposed a linear�non-linear system and its 

variants for simulating a non-linear biological system (Hunter and Korenberg, 

1986). Shah and Levine applied the LNP model without the Poisson process to 

simulate the retina that accounts for the processing in a primate cone system and 

validated it with data from experiments conducted in monkeys, thus showing the 

role of the LNP model in simulating an artificial retina (Shah and Levine, 1993). 

Keat et al. in 2001 used this model to predict the response of ganglion neurons in 

the retinas of salamanders, rabbits, and cats (Keat et al., 2001). In 2005, Zaghloul, 

Boahen, and Demb modelled such a spike when studying the spiking behaviour in 

contrast sensitivity of ON and OFF ganglion cells (Zaghloul, Boahen and Demb, 

2005). In the same year, Kenyon et al. used this method to model the whole retina 

and found that the spiking oscillations encode the overall size of the stimulus 

(Kenyon et al., 2005). In 2006, Schwartz et al. analysed the spike-triggered stimulus 

ensemble to characterize the LNP model (Schwartz et al., 2006). In 2007, Paninski, 

Pillow, and Lewi discussed the use of the LNP model to adapt and optimize the 

stimuli presented to the cell on a trial-by-trial basis as well as suggested the optimal 
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model parameters (Paninski, Pillow and Lewi, 2007). In 2008, Shlens, Rieke, and 

Chichilnisky also simulated synchronized firing in the ON and OFF parasol cells 

in primates by using the LNP model (Shlens, Rieke and Chichilnisky, 2008). 

Haefner and Cumming also created an energy model to predict the response of 

neurons to nonphysical left and right image pairs and indicated the presence of 

multiple excitatory and suppressive spatiotemporal subunits within V1 receptive 

fields (Haefner and Cumming, 2008). Baccus et al. also used this model to simulate 

the retina, with the capability to compute object motion (Baccus et al., 2008). 

Beaudoin et al., on the other hand, simulated the �contrast gain control� mechanism 

in retinal ganglion cells using the LNP model (Beaudoin, Manookin and Demb, 

2008). In 2009, Wohrer and Kornprobst proposed a complete model of the 

biological retina with contrast gain control with all five cell types, such as 

photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells 

(Wohrer and Kornprobst, 2009). In 2010, Shinomoto used the LNP model to create 

a stochastic model of neuronal spiking and fit that model to biological data and 

found that this stochastic model can predict the precise times of individual spikes 

evoked by fluctuating current (Shinomoto, 2010). Zhijun and Qingli also used the 

LNP model to simulate the processing inside the retina, but without a contrast gain 

control mechanism (Zhijun Pei and Qingli Qiao, 2010). In contrast, in 2011, 

Decuypere et al. implemented the LNP approach in their model to simulate the 

contrast gain control mechanism in mesopic design through the rod-cone gap 
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junction (Decuypere and Capron, 2011). In 2012, Suh captured the spiking 

behaviour in parallel On and Off ganglion cells using the LNP model (Suh, 2012). 

In 2013, Maravall et al. studied the adaptation of the barrel cortex firing rate to the 

variance of a whisker stimulus, whereas Vasserman, Schneidman, and Segev 

studied the adaptation of colour-contrast coding in ganglion cells, and they found 

that the retina adjusted the red and blue stimulus inputs to balance them (Maravall 

et al., 2013; Vasserman, Schneidman and Segev, 2013). Moreover, in 2013, Garvert 

and Gollisch simulated the retina using the LNP model to explore the local and 

global contrast adaptation in retinal ganglion cells (Garvert and Gollisch, 2013). In 

early 2014, Dhruv and Carandini used this LNP model to emphasize the cascade 

effects of spatial adaptation in the lateral geniculate nucleus and V1 areas of mice 

(Dhruv and Carandini, 2014). 

4.4.1 Advantages and disadvantages 

Compared to the other models, the advantage of the LNP model is the simplification 

in implementation and computational cost, especially in spike analysis. By taking 

into account spatial and temporal filters for the responses of neurons, the 

computation is reduced but the biological meaning is still preserved at the abstract 

level for modelling retinal neurons (i.e. in simulating the centre-surround and 

saturation effect of the eyes). This advantage is also the drawback because the 

biological meaning determined from this model will lack accuracy. However, this 
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model is suitable for simulating the responses of retinal neurons because the visual 

signal is processed as spatial and temporal responses in sequence. 

4.5 Discussion 

According to the structure and function of the retina, only ganglion cells and some 

bipolar and amacrine cells have the ability to generate spiking activity, whereas 

most other cells only propagate grade potential without spiking. This leads to the 

consideration of the following spiking models for ganglion cells in conductance-

based, threshold-fire categories: Hodgkin�Huxley, Morris�Lecar, integrate-and-

fire, and Izhikevich. Among these models, Hodgkin�Huxley and Morris�Lecar 

have the advantage of being able to describe the details of the processing 

mechanism and biological parameters compared to the integrate-and-fire and 

Izhikevich models. However, the major disadvantage of these two models is that 

they cannot be implemented as a large-scale model, due to the computational cost 

and time involved. In particular, it takes 600 and 1200 FLOPS (Floating Point 

Operations per Second) for Morris�Lecar and Hodgkin�Huxley, respectively, 

compared to 5 and 13 FLOPS for the integrate-and-fire or Izhikevich approaches 

(Izhikevich, 2004). Therefore, the most suitable model for simulating the ganglion 

cells is either the integrate-and-fire and Izhikevich model. Between these two 

models, the integrate-and-fire model and its variants can simulate the spike faster 

than the Izhikevich model can. However, compared to the Izhikevich model, the 

74 
 



RETINAL MODELING REVIEW 

 

integrate-and-fire model is limited with regard to model variance as this model 

cannot simulate the tonic bursting spikes in the retina (Izhikevich, 2004). The 

Izhikevich model is better than the integrate-and-fire model in this regard and 

provides a wide range of options for simulating spiking neurons as well as lower 

computational cost (5 FLOPS compared to 13 FLOPS). Therefore, the Izhikevich 

model has been selected to simulate the ganglion cells and spiking process in the 

model proposed in this thesis. 

Model 
Tonic 

Bursting 

Mixed Firing 

(Spiking & Bursting) 

Floating Point Operations 

per Second (FLOPS) 

Hodgkin�Huxley Yes No 1200 

Morris�Lecar No No 600 

Integrate-and-fire No No 13 

Izhikevich Yes Yes 5 

Table 4.1: FLOPS comparison of different retinal models. 

For the other cells in the retina such as the photoreceptors, horizontal cells, 

bipolar cells, and amacrine cells, either the compartment or LNP approach can best 

describe the activity of these non-spiking neurons. The compartment model has the 

same problem as the conductance-based model in that the cost and time for 

computation are not conducive to large-scale modelling; moreover, this thesis does 

not focus too deeply on the biological aspect of the retina; instead, the focus is on 

the implementation of a biologically reasonable and effective model to reflect and 

explain image processing mechanisms inside the retina. Based on the above-

mentioned facts, the LNP model has been used to model the other cells in the retina. 
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The LNP model has the advantage of replicating the spatial and temporal responses 

of the retinal cells in both spiking and non-spiking phases, and the time for 

operation is acceptable for simulation in a large neuronal network (Dhruv and 

Carandini, 2014). The structure and detail of the retinal model will be described 

and explained in the methodology section. 

4.6 Summary 

In this chapter, a complete review of different approaches to model the retinal 

circuitry has been presented. In the review, the models were categorized and 

discussed based on their biological and image-processing aspects. In each category, 

the equation of the model and its applications in different fields are presented. The 

strength and drawback of each type of model have been discussed to justify the 

selection of the appropriate model to simulate the retinal circuitry in this thesis.
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CHAPTER 5 

SYSTEM MODELING 

5.1 The retinal model 

As discussed in CHAPTER 4, retinal modelling review, the LNP model (Dhruv and 

Carandini, 2014) is selected for modelling the retinal cells, except the ganglion 

cells. This was done by applying a linear filter followed by a non-linear filter to the 

spatial input to the retinal cell. This section will describe these filters in detail and 

explore the integration of these filters into a system that models retinal processing. 

5.2 Linear�non-linear system 

Dhruv and Carandini argued that the LNP model is a standard model used for 

modelling of retinal processing (Dhruv and Carandini, 2014) because of its ability 

to replicate the behaviour of the retinal cells both spatially and temporally. By 

applying a spatial filter followed by a static non-linear temporal filter, the linear 

and non-linear processing of the retinal cells is captured as observed in the 

biological retina (Schwartz and Rieke, 2011). The linearity property is an important 

factor in predicting the response of neural cells to an arbitrary spatial input by using 

the spatial response function (Shapley and Lennie, 1985).  

The mathematical description of this approach is expressed in the following 

equation: 

,ݕ,ݔ)ݐݑݐݑܱ  (ݐ = (ݕ,ݔ)ܫ)ܨܶ כ ,ݔ)ܨܵ ,(ݕ  (ݐ
5.1 
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In the above equation, I is the visual input of an image to the retina at time t, 

fully stated as I(x, y), while SF(x, y) and TF(x, y, t) are spatial and temporal filters 

applied to the input I, respectively. The symbol כ stands for the convolution 

operation to apply a filter to the input image I. From equation 5.1 above, the input 

image I is first convolved by a spatial filter SF; the corresponding result is subjected 

to another filter TF to achieve a temporal response. The equations for the spatial 

and temporal filters are as follows: 

 

(߱,ݐ)ܨܶ =  ൝    0                         ݂݅ ݐ < 0

    
1߬ ݔ݁ െ߱ݐ൨ ݐ ݂݅        > 0

 

,ݔ)ܨܵ (ߪ,ݕ =  
1

ଶߪߨ2 ݔ݁ ቈെ|ݔଶ + |ଶݕ

ଶߪ2  5.2 

 

In temporal filter equation above, ߬ is length of the filter and ߱ is the intensity 

of input signal at time t. On the other hand, the variable ߪ in spatial filter defines 

the size of the spatial filter applied to I(x,y). In detail, the spatial filter is a simplified 

version of the spatial low-pass filter or Gaussian filter, and the temporal filter is a 

variation of the exponential function. On the other hand, the exponential function 

may be applied to simulate the suppression of the retinal cell after a certain time, 

whereas the low-pass function models the distributed processing of the retinal cells 

according to their population in the retina. The retinal cells consist of different 

groups of cells and these groups respond to visual input differently based on 

different formations, and this formation was first described as a receptive field by 
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Rodieck in 1965 (Rodieck, 1965). The Gaussian filter is applied because of its 

advantage in simulating optical blur in vision and the blurring vision is a result of 

information processing of the retina as discussed in CHAPTER 2. This receptive 

field has been described in detail in the next section. 

5.3 Model receptive field 

According to Rodieck, the receptive field of the retina is separated into two types: 

centre and surround, and retinal cells inside each type respond differently, and the 

final output is the sum of both centre and surround responses (Rodieck, 1965). 

There are different types of retinal receptive fields exist, but, in general, a receptive 

field contains a centre and surround area as illustrated in Figure 5.1. 
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Figure 5.1: The response of receptive field of ganglion cells to different stimulus 

(Wohrer and Kornprobst, 2009). 

 

In the figure above, cells in the centre and those surrounding the receptive 

field respond in different ways to stimuli, depending on the coverage of the stimuli 

on the cell surface. Thus, two major types of receptive fields are categorized: ON-

centre and OFF-centre receptive fields. As illustrated in Figure 5.1 above, for the 

receptive field in ganglion cells, the ON-centre ganglion cell fires rapidly when the 

light stimulus is on the centre only and does not fire when light is projected on the 

surround area. No firing occurs when no light is projected on the whole receptive 
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field, and the cell fires with lower frequency when the light covers the whole cell. 

In contrast, no firing occurs when the light stimulus covers the centre area, but rapid 

firing occurs when the surround area is covered in OFF-centre ganglion cells. In 

case of the whole cell, covering the OFF-centre ganglion cell elicits the same 

response as the ON-centre ganglion cell, that is, it fires with normal frequency. 

Based on this property, the information entering the retinal cell is filtered and 

reduced; however, the cell can still process the input with the remaining 

information. An example for this concept is the edge detection mechanism in edge-

detecting ganglion cells (Figure 5.2), in which the receptive field functions as a 

spatial filter to extract the edges from the visual input (Huk, 2014).  

Figure 5.2: Edge detection as a result from receptive field(Corney and Lotto, 2007). 

 

The receptive field is an important factor for information processing in the 

retina, and this factor must be implemented in the proposed model. Equation 5.3 
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describes how the information is processed through the receptive field for the model 

proposed in this thesis. 

ைே ைோݎ݈ܽ݅ܤ =  ,ݔ)ݏ݁݊ܥ ௦ோೝܿ߮(ݕ
௫,௬ୀ  െ  ு௭௧ோೄೠೝೝೠݏ߮(ݕ,ݔ)݈ܽݐ݊ݖ݅ݎܪ

௫,௬ୀ  

 

ைிி ைோݎ݈ܽ݅ܤ =  ,ݔ)݈ܽݐ݊ݖ݅ݎܪ ு௭௧ோೄೠೝೝೠݏ߮(ݕ
௫,௬ୀ െ   ௦ோೝܿ߮(ݕ,ݔ)ݏ݁݊ܥ

௫,௬ୀ  

5.3 

 

From the equation above, at the OPL layer, there are photoreceptors, bipolar 

cells, and horizontal cells involved in the processing pathway, and the processed 

signals from the photoreceptors and horizontal cells are passed on to the bipolar 

cells as output. According to the biological retina, at the OPL layer, the signals from 

the horizontal cells act as surround information, whereas the signal from the 

photoreceptors act as centre information. The combined signals from the centre and 

surround information are transferred to the bipolar cells for further processing. On 

the other hand, at the IPL layer, the signals from the bipolar cells are used as centre 

signals while the surround signals are obtained from amacrine cells and the output 

signals are transmitted to the ganglion cells. In addition, the difference in the 

combination of the centre and surround signals create different processing 

pathways such as the ON and OFF pathways. The ON pathway includes centre 
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signals, without any surround signal, whereas the opposite is true for the OFF 

pathway. 

Several receptive fields have been described in the literature in addition to the 

receptive field with symmetry and circular formation for centre and surround 

signals as described below. A receptive field proposed by Conway (Conway et al., 

2010) is shown in Figure 5.3. The variations in receptive field formation show that 

the processing pathway inside the retina can differ according to the purpose. This 

shows that the role of the receptive field formation in retinal information processing 

is still an open question for many researchers. This issue is also addressed in later 

sections of this thesis by proposing a receptive field with a different weight 

distribution for centre and surround cells and verifying the proposed receptive field 

through the Hermann grid.  
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Figure 5.3: Different types of receptive fields. Obtained with permission from 

Conway et al. (Conway et al., 2010). 

5.4 ON and OFF pathways 

As mentioned above, the different combination of signals in the receptive field 

creates two different pathways called the ON and OFF processing pathways in the 
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retina. The roles of these pathways are not completely understood, and they are still 

being investigated. The �push�pull� mechanism has been proposed to explain the 

origin of the OFF pathway based on the ON pathway and vice-versa. In this 

proposal, the OFF ganglion cell signal is believed to originate from the ON pathway 

ganglion cell signal, and this mechanism is controlled by the amacrine cells in the 

retina. In a later section of this thesis, this mechanism is used to explain colour 

processing of the retinal model, with the involvement of the amacrine cells. In the 

proposed model, the ON and OFF pathways are separated, and in each pathway, 

the connection differs based on the processing involved. 

5.5 Cone and rod pathway 

In addition to separate processing in the ON and OFF pathways, two other 

important factors must be considered: the rods and cones for each pathway are 

responsible for vision under specified conditions such as night and day, 

respectively. Therefore, the roles of cones and rods in these pathways are discussed 

here in detail as well as their implementation in the proposed model. 
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5.5.1 Cone pathway 

 

Figure 5.4: Cone pathway in retina. 

 

Figure 5.4 depicts the cone system in the photoreceptor layer of the primate retina. 

Three different types of cones are found: red (long, L), green (medium, M) and blue 

(short, S). Each type of cone has its own connectivity and results in the L-on/L-off, 

M-on/M-off, and S-on pathways. For instance, the L-cone will connect to H1 

horizontal cells to form the L-on and L-off pathways, and the same connectivity is 
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applied to M-cone ON and OFF pathways. On the other hand, in the S-on pathway, 

S-cones are connected to H2 horizontal cells. As a result, this creates five different 

pathways to the ganglion cells through the bipolar cells. Another horizontal cell, 

H3, connects only to the L-cone and M-cone, but as mentioned in CHAPTER 2, 

this cell is not discussed here because of the lack of knowledge regarding it. The 

bipolar cells discussed here are the midget bipolar cells, which are shown to 

contribute to high-acuity colour vision. L, M, and S midget bipolar cells connect to 

L, M, and S cones, respectively, as well as to the H1 and H2 horizontal cells. The 

connection pattern is based on centre-surround antagonism, which determines the 

receptive fields of these bipolar cells. Photoreceptors provide centre signals, 

whereas horizontal cells provide surround feedback to bipolar cells. According to  

Figure 5.4, L and M midget bipolar cells receive centre signals from L and M cones 

and surround signals from H1 horizontal cells. In the S midget bipolar cell, a small 

change occurs, and the surround signal is obtained from H2 instead of H1. 

Corresponding to these bipolar cells are six different types of ganglion cells: Red-

ON/Green-OFF, Red-OFF/Green-ON, Green-ON/Red-OFF, Green-OFF/Red-ON, 

Blue-ON/Yellow-OFF, and Blue-OFF/Yellow-ON. These ganglion cells integrate 

photoreceptor signals via bipolar cells and project to the brain via the lateral 

geniculate nucleus in the thalamus. This pathway is responsible for processing 

colour information in the retina and is explored in detail in CHAPTER 8 in the 

model proposed for processing colour enhancement. 
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5.5.2 Rod pathway 

 

Figure 5.5: Rod pathway in retina. 

 

In contrast to the cone system, the rod system plays a role in perceiving the visual 

scene in low-light conditions such as night or mesopic conditions. Unlike the cone 

system, which comprises three different types of cones, only one type of rod is 
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present. This rod is connected to a specific bipolar cell called the rod bipolar cell as 

well as horizontal cells as described in the receptive field section. The rod bipolar 

cell then synapses to the AII amacrine cell, and this amacrine cell in turn connects 

to the cone bipolar cell through the gap junction. This pathway is responsible for 

processing visual signals in conditions of low light such as dusk or night time. In 

CHAPTER 7, this pathway is implemented in the model and utilized for processing 

contrast in low-light conditions. 

5.6 Implementation in the proposed model 

A model for retinal processing was constructed based on the linear�non-linear 

approach based on the knowledge of the receptive field, ON/OFF pathways, and 

rod/cone pathways. The details of this model are illustrated in Figure 5.6: 
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Figure 5.6: Proposed retina model 
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Figure 5.7: Rod pathway circuitry in the model. 
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Figure 5.8: The cone pathway in the model. 
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The definitions for the block diagram in the illustrations above are: 

Symbol Definition Equation 

 

Spatial filtering operation: 

Applying spatial filter to input 

signal. 

 

(߱,ݐ)ܨܶ =  ൝    0                         ݂݅ ݐ < 0

    
1߬ ݔ݁ െ߱ݐ൨ ݐ ݂݅        > 0

 

 

 

Temporal filtering: Applying 

temporal filter to input signal. 

,ݔ)ܨܵ  (ߪ,ݕ =  
1

ଶߪߨ2 ݔ݁ ቈെ|ݔଶ + |ଶݕ

ଶߪ2  

 

Receptive field computation in 

center: Compute center output 

signal of receptive field. 

ைே ைோݎ݈ܽ݅ܤ =  ௦ோೝܿ߮(ݕ,ݔ)ݏ݁݊ܥ
௫,௬ୀ  െ  ு௭௧ோೄೠೝೝೠݏ߮(ݕ,ݔ)݈ܽݐ݊ݖ݅ݎܪ

௫,௬ୀ  

 

Receptive field computation in 

surround: Compute surround 

output signal of receptive field. 

 

ைிி ைோݎ݈ܽ݅ܤ  =  ,ݔ)݈ܽݐ݊ݖ݅ݎܪ ு௭௧ோೄೠೝೝೠݏ߮(ݕ
௫,௬ୀ െ   ௦ோೝܿ߮(ݕ,ݔ)ݏ݁݊ܥ

௫,௬ୀ  

 

 

Nonlinearity computation: 

Applying non-linearity 

computation to input signals. 

(ݐ)ைேܵܦܩ =  ߮ைே כ ܵைே + ߮ைிி כ ܵைிி (ݐ)ைிிܵܦܩ   =  ߮ைே כ ܵைே + ߮ைிி כ ܵைிி 

 

Ganglion = ଶమಲೌೝ ష భݎ݈ܽ݅ܤ
 

 

 

Spiking computation: 

Applying Izhikevich model to 

input signals to generate 

spiking signals. 

 ൜ݒᇱ = ଶݒ0.04 + ݒ5 + 140െ ݑ + ᇱݑܫ = ݒܾ)ܽ െ (ݑ
 ݒ ݂݅  30 ܸ݉, ቄ ݄݊݁ݐ ՚ ݒ ՚ ݑܿ ݑ + ݀ 

 

Table 5.1: Processing block and its definition in proposed model. 

In the illustrations above, the retinal cell is indicated by a block with specific 

name such as bipolar cell, horizontal cell, ganglion cell�while processing block is 

indicated by different block as shown in Table 5.1. Initially the input image will be 

split into rod and cone signals then applied spatial and temporal filters in sequent 

to generate responding signals of horizontal cells. The applying of spatial and 

temporal filters is the convolution operation where the input image is convolved 
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with a predefined kernel. This operation is repeated to generate signals of bipolar 

and amacrine cells while the nonlinearity process is applied at amacrine cell level 

to compute contrast and colour information as discussed in later section. At 

ganglion cell level, Izhikevich spiking model is applied to bipolar output signal 

generate spiking response of ganglion cell. According to Wilson, the spatial filter 

is used to simulate the response of the retinal cells inside a receptive field, and the 

response of the spatial filter is different between cells of a different configuration 

(Wilson et al., 1981). In addition, the cell responses are weighted with different 

weights for centre and surround, since centre and surround cells respond differently, 

depending on their cell concentrations. The temporal filter is used to simulate the 

suppression of retinal cells after a certain time and the decrease in output signals 

from the retinal cells over time, before reaching the ganglion cells, are mostly 

graded potential. Although the spatial processes inside the retina are non-linear in 

major cells, spatial linear filters were used in this model for the following reasons. 

Tranchina et al. stated that the visual signals in the retina at the photoreceptor layer 

are not affected by the non-linearity distortion (Tranchina et al., 1981), whereas 

Halupka confirmed the accuracy of the linear�non-linear model in predicting the 

cortical responses with simultaneous electrical stimulation (Halupka, 2014). 

According to Rodieck, the recording made at the output of ganglion cells has shown 

that linear filters in both space and time were able to approximate their behaviours 
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and the neurons were subject to a temporal undershoot in neurophysiologic 

experiments (Rodieck, 1965). Although the linear filter is sufficient to accurately 

estimate the firing rate of a single ganglion cell, this approach fails to match the 

actual retinal output recording when more sophisticated stimuli are presented. To 

overcome this, a non-linear stage is added after the linear filter to reproduce the 

behaviour of the biological retina more accurately. Therefore, the spatial and 

temporal filters are applied repeatedly at every cell layer, except the ganglion cell 

layer as mentioned above, in this model. In terms of signal summation, excitation 

is indicated by the plus (+) symbol, whereas inhibition is indicated by the minus 

symbol (-). On the other hand, the surrounding signal is taken from the horizontal 

cells and amacrine cells in the OPL and IPL layer, respectively, and the signal is 

combined with the centre signal to form ON and OFF pathways.  

The model described here is the basic processing pathway in the retina, and 

connections for contrast and colour processing have been specified as shown in 

Figure 5.7 and Figure 5.8, respectively. In the cone pathway, the same method for 

signal integration is applied for each cell type, but there are five different streams 

for five different colour pathways, as mentioned in CHAPTER 2. A non-linearity 

step is performed to process the colour information between bipolar and amacrine 

cells at the IPL layer. The details of this non-linearity are later discussed in 

CHAPTER 8. On the other hand, the rod pathway is implemented with rod bipolar 
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cells, AII amacrine cells, and ganglion dendrites to process signals for contrast 

enhancement. This configuration will be discussed in CHAPTER 7. 

5.7 Spiking neurons 

CHAPTER 2 stated that the output signals in the retina are graded potential and 

action potential, with action potential generated at the ganglion cell layer and 

graded potential at the other cells. Furthermore, as discussed in CHAPTER 4, the 

ganglion cells in this model are simulated with the Izhikevich model, and this 

spiking generation is added after the linear�non-linear processing in the previous 

layer of the model. This method is similar to the linear-non-linear-Poisson model 

for generating action potential, but here, spiking generation is replaced by the 

Izhikevich model and the linear�non-linear processing step occurs in previous 

layers as described above. The model for spiking based on the Izhikevich model is 

described below: 

 

൜ݒᇱ = ଶݒ0.04 + ݒ5 + 140 െ ݑ + ᇱݑܫ = ݒܾ)ܽ െ (ݑ
 ݒ ݂݅  30 ܸ݉, ቄ ݄݊݁ݐ ՚ ݒ ՚ ݑܿ ݑ + ܽ ݁ݎ݄ܹ݁ ݀ = 0.02, ܾ = 0.2, ܿ =  െ65 ܸ݉ ܽ݊݀ ݀ = 2 

 

5.4 

 

 

According to Izhikevich, equation 5.4 is a two dimensional system of ordinary 

differential equations that is reduced from Hodgkin-Huxley model using 

bifurcation methodologies (Izhikevich, 2003). In this equation, parameter ܽ is the 

time scale of the recovery variable ݑ, ܾ is the sensitivity of the recovery variable ݑ 
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to the membrane potential ݒ, ܿ is the after-spike reset value of membrane potential  ݒ and ݀ is the after-spike reset of the recovery variable ݑ caused by slow high-

threshold Na+ and K+ conductances. 

As shown in the model diagram, the outputs from spatial and temporal filters 

are fed to the Izhikevich model as input current I, and from this, the voltage V is 

integrated through time to obtain the corresponding spikes. Similar to the bipolar 

cells, the ganglion cells are also gathered into a group and form the receptive field 

in ganglion cell layers with the centre derived from bipolar and surroundings 

derived from amacrine cells. This forms a spike train from the ganglion cell 

networks, and these spikes are analysed to assess the response of the retina in 

encoding information in different situations. The analysis of the ganglion cell 

spiking activity is presented in CHAPTER 7 and CHAPTER 8 in experiments of 

contrast and colour encoding of the retinal model in specific cases. 

5.8 Model simulation 

The model is implemented in C/C++ language and uses libraries such as OpenCV 

(Open Computer Vision) (Bradski, 2000) and CUDA (Compute Unified Device 

Architecture) platforms for image acquisition and parallel processing, respectively 

(Bradski and Kaehler, 2008; Nickolls et al., 2008). OpenCV is an open source 

library for computer vision that is created by Intel and supports many programming 

languages, while CUDA is a framework to utilize a GPU (Graphics Processing 
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Unit) for computing information in parallel instead of just the CPU (Central 

Processing Unit). Both OpenCV and CUDA support C/C++; therefore, various 

mathematical functions provided in these frameworks can be invoked directly 

without using any code wrappers. On the other hand, parallel computing is useful 

for processing many visual signals at the same time, as described in Figure 5.7 and 

Figure 5.8. This reduces the operating time, and thus, the visual output can be 

observed continuously during the operation of the model. In this model, the visual 

inputs are acquired as still images and converted to an OpenCV structure called 

cv:Mat for computation. By using this structure, the visual inputs with dimension 

W×H are treated as matrices with W columns and H rows; thus, the computations 

function as matrix computations in mathematics. This model differs in that all the 

proposed algorithms are designed to run on a GPU by passing the matrices to the 

GPU for computing and transferring them back to the CPU for the purpose of being 

displayed. This is made possible by copying data from the CPU memory to GPU 

memory repeatedly, using functions implemented in the CUDA library.  

Another feature of this model is the spiking generation function that converts 

visual inputs to neuronal spikes using the differential equation stated in section 5.7. 

To achieve this, the model is simulated using iteration for integrating the potentials 

in ganglion cells and the pseudo code for this iteration is as follows: 
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As a result, the computing cost of the model running on GPU is reduced and 

the processing time is speeded up and this allows the model to be simulated many 

times within the same time compared to CPU. With this advantage, the model can 

be trained to compute optimized parameters in specific experiments as described in 

CHAPTER 6, CHAPTER 7 and CHAPTER 8. 

5.9 Summary 

This chapter provides a closer look of the proposed model and describes the model 

components in a mathematical way with regard to the linear�non-linear approach. 

In this model, the spatial and temporal filters are utilized to simulate the responses 

of the retinal cells with graded potential output. On the other hand, the Izhikevich 

model is used to simulate the action potential output in ganglion cells for analysing 

the encoding of the model. The receptive field concept is utilized in the model at 

the OPL and IPL layers to form the ON and OFF pathways, in addition to the rod 
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and cone pathways. In addition, the model is modified in cell connectivity for 

processing in specific cases such as contrast and colour processing. These 

modifications are presented in the next chapter. 
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CHAPTER 6 

OUTER PLEXIFORM LAYER RECEPTIVE FIELDS AS UNDERLYING 

FACTORS OF THE HERMANN GRID ILLUSION 

6.1 Introduction 

A perceptual illusion occurs when a perceived vision contradicts physical 

measurements consistently in different people. This phenomenon is also known as 

an optical illusion, and various types of these illusions have been defined, such as 

motion illusions, luminance and contrast illusions, colour illusions, and geometric 

and angle illusions (Baumgartner and Levine, 1971). Among them, luminance and 

contrast illusions have received significant interest from physiologists and 

psychologists through a famous experiment called the Hermann grid illusion 

(Schiller and Carvey, 2005). When looking at the Hermann grid, which is an array 

of equidistant black-filled squares on a white background, one can perceive black 

or grey dots at the intersections of white bars. This phenomenon is interesting 

because the illusion is perceived at the peripheral field of the centre of view. 

Additionally, when inverting the colour of the grid, the perceived illusion is 

inverted as well; i.e. white or grey dots will appear instead of black or grey dots. 

The grid and its illusion are illustrated in Figure 6.1.  

101 



OPL RF AS UNDERLYING FACTORS OF THE HERMANN GRID ILLUSION 

 

 

(A) (B) 

Figure 6.1: The original Hermann grid (A) and its inverted colour version (B). 
 

The underlying neural and computational causes of the illusion have still not 

been completely determined, although many theories have been proposed (De 

Lafuente and Ruiz, 2004; Schiller and Carvey, 2005; Geier et al., 2008). This 

chapter proposes an explanation for the illusion, wherein the outer-plexiform layer 

(OPL) plays a fundamental role by simulating the retinal response to the Hermann 

grid, and described different experiments to test this hypothesis. Specifically, the 

geometric shape of the receptive field in the OPL is proposed to be the factor that 

forms the illusion. Unlike the circular receptive field used in other works, the 

proposed receptive field has an asymmetrical shape, and the connectivity through 

this receptive field is distributed heterogeneously. Various experiments are 

conducted and discussed on the possibility of this proposed receptive field. The 

results from these experiments show that this formation can explain the Hermann 
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grid illusion, thus raising some novel concepts for retinal prosthesis design in terms 

of stimulating electrode placement.  

6.2 The Hermann grid illusion 

In 1960, Baumgartner proposed a theory based on the lateral inhibition in the retina 

to explain the Hermann grid illusion (Baumgartner and Levine, 1971). He also 

argued that centre-surround antagonism played a major role in creating the illusion, 

because the ON-centre ganglion cells were more inhibited when placed over the 

intersection compared to placment over the bar portion of the grid or away from the 

intersection. One explanation for this finding, illustrated in Figure 7.2, is that the 

total inhibitory surround area of the receptive field is larger than the total excitatory 

centre area at the intersection, and therefore the total inhibition signal overwhelms 

the total excitation signal. This argument is also applied in the inverted colour grid 

and results in brighter smudges at the intersections. It further explains why people 

don�t perceive the illusion in the centre of the gaze, due to the small receptive fields 

of the fovea. If the receptive fields are small enough, balance can be achieved 

between inhibition and excitation, thus abolishing the illusion (Bodkin, 2008).  

 

Figure 6.2: Baumgartner�s explanation for the Hermann grid illusion. 
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Although Baumgartner�s theory has considerable explanatory power, it breaks 

down in the face of more recent experiments involving variations of the Herman 

grid. These variations belong to three main categories, namely orientation, 

luminance, and distortion. 

(A) (B) 

Figure 6.3: The original Hermann grid (A) and grid rotated by 45° (B). 

 

In the first category, Spillmann and Levine observed that the illusion is reduced 

when rotating the grid by 45° (Spillmann and Levine, 1971), as illustrated in Figure 

6.3. This evidence does not support Baumgartner�s theory, in which rotation should 

not affect the inhibition/excitation imbalance that produces the smudge effect. 

Recent research shows that when the grid is rotated by 45°, the illusion is at its 

weakest, which is explained by the involvement of orientation-selective neurons in 

the cortex according to Hubel and Wiesel (Hubel and Wiesel, 1968; Ash et al., 

2003).  

104 
 



OPL RF AS UNDERLYING FACTORS OF THE HERMANN GRID ILLUSION 

 

In the second category, luminance, the grid is created such that the horizontal 

and vertical bars are filled with different colours (McCarter, 1979; Levine, 

Spillmann and Wolf, 1980). In this case, the illusion is still elicited, but the colours 

of the spots are replaced by the colour of the bars. From this observation, McCarter 

proposed that the illusion is produced by the double-opponent cell, where the 

distribution of receptive fields consists of red-ON/green-OFF centre and red-

OFF/green-ON surround ganglion cells (McCarter, 1979). According to this theory, 

the illusion will be stronger if the receptive field is placed at the intersection of 

green bars on a red background, because excitation is stronger due to more red-on 

stimulation, and the situation will be reversed with a green background. Oehler and 

Spillmann also predicted that, in terms of photoreceptors, the illusion is based on 

red and green cones only; their experiment showed that the intensity of the illusion 

does not substantially depend on blue cones (Oehler and Spillmann, 1981). Figure 

6.4 illustrates how the illusion varies with bar colour. 

 

(A) (B) 

Figure 6.4: Colour variant (A) and distorted (B) versions of the Hermann grid. 
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In the last category, the Hermann grid is geometrically distorted in different 

ways, such as the bars taking on a curved shape resulting in a sinusoid grid as in 

the illustration on the right in Figure 6.4. Based on the finding that the illusion 

disappears at the intersections of sinusoid bars, Geier et al. concluded that the 

Hermann grid illusion also depends on straightness. These authors claimed that the 

role of ON and OFF ganglion cells was not important to the illusion and proposed 

a new theory to explain the Hermann grid illusion that could account for the 

elimination of the effect in the distorted case. At the core of this theory lies the 

�radiating edge hypothesis�, which states that a segment of a white-black edge will 

radiate darkness and lightness on its dark and light side, respectively, with the 

magnitude of the radiation directly proportional to the straightness of the edge and 

the direction of the radiation perpendicular to the orientation of the edge (Geier et 

al., 2008).  

Through various versions of the Hermann grid, many theories have been 

proposed to explain the origin of the illusion, but there is still no unified model to 

explain the Hermann grid in all variations (Schrauf, Lingelbach and Wist, 1997; De 

Lafuente and Ruiz, 2004; Schiller and Carvey, 2005; Cembrowski et al., 2012). 

This chapter proposes such a unified theory to explain the Hermann grid illusion in 

which the OPL receptive field plays a fundamental role. This theory shows that the 

classic receptive field explanation of Baumgartner is still useful after taking into 

consideration the OPL and a more detailed model of retinal processing.  
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6.3 A unified model based on Hermann grid illusion 

Data is transferred from photoreceptos to ganglion cells by bipolar cells via 

chemical and electrical synapses. The OPL of many retinas includes complex 

circuitry involving photoreceptors, horizontal cells, and bipolar cells, exhibiting 

feedforward, lateral, and feedback computations; mediated via chemical and 

electrical connections; and implementing diverse computational functions 

including contrast enhancement, centre-surround antagonism, and colour 

correction (Barlow and Levick, 1965; Enroth-Cugell and Robson, 1966; Dowling 

and Ripps, 1973; Barlow, 1981). This chapter focuses on the centre-surround 

antagonism that was first discovered by Kuffler in ganglion cells and has been 

claimed to exist in bipolar cell as well (Kuffler, 1953; Werblin and Dowling, 1969; 

Kaneko, 1970). This study shows that changing the receptive field shape from 

circular to geometrically heterogeneous can account for some of the modern 

variations of the effect, in addition to explaining the classic effect. Additionally, the 

ganglion cell would be able to elicit visual signals when connections between 

photoreceptors and bipolar cells are limited. 

In the retina, small diffuse bipolar cells collect information from 5�7 cones 

in the centre and 12�14 cones in the surround to form a centre-surround receptive 

field (Kolb, Nelson and Mariani, 1981). The questions that need to be answered 

here include �How do the connectivity properties of bipolar cells with respect to 
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photoreceptors affect their receptive field properties?� and �How do bipolar cell 

receptive fields explain the Hermann grid effect?� Using the proposed retinal model 

in this thesis to simulate Hermann grid processing by the retina, tentative answers 

for these questions and suggestions for future investigations have been developed. 

6.4 Proposed model 

The model described in CHAPTER 5 encompassing both the OPL and the inner-

plexiform layer (IPL) was used to simulate the responses of retinal cells to the 

Hermann grid and observe whether the outputs from ganglion cells were consistent 

with the Hermann grid illusion. 
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Figure 6.5: Simplified illustration of receptive field integration in the retina model. 

The original version of the Hermann grid and several variants pertaining to 

orientation, colour, and geometrical distortion were simulated. The spatial 

integration of a simplified model between different cell layers involving 

photoreceptor, bipolar, horizontal, amacrine, and ganglion cells is represented in 

Figure 6.5. Here, only the major layers involving photoreceptors, bipolar cells, and 

ganglion cells are illustrated. From top to bottom, the first layer is the photoreceptor 

layer, which receives the stimulus image and transfers information to horizontal 

cells (not shown here) and bipolar cells. Horizontal cells feed back to 

photoreceptors, while bipolar cells, which are in the second layer, receive 

information from both photoreceptors and horizontal cells and pass the results of 

their own computations to ganglion cells in the third layer. The ganglion cell layer 

also receives information from amacrine cells (not shown in this figure), which in 

turn process information originating from bipolar cells. Note that the highlighted 

circles in each layer are the cells covered in one receptive field. The Hermann grid 

images at each layer represent example outputs for each layer. There are two 

outputs for each of the bipolar and ganglion cell layers, which correspond to ON 

and OFF cells. 

A probability matrix was used to determine the connection between bipolar 

cells and photoreceptors. In this matrix each value determines the probability of a 

connection at the corresponding coordinate as:  
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In this equation, ௫ܲ and ௬ܲ are the probabilities of a connection existing between a 

specific bipolar cell and a photoreceptor at coordinates (x, y). This study used a 

10×10 matrix, meaning that the probability of a connection was 10% for each 

coordinate. This retionale is selected after running the model with different 

connection probabilities from 0 to 100 to see what is the minimum probability that 

the model is still able to generate output at bipolar and ganglion cells while 

maintaining the asymmetrical connectivity pattern. In detail, if the probability is 

under 10%, there is no ouput at bipolar and ganglion cells while higher probability 

leads to uniform pattern as in cicular receptive field. On the other hand, if the 

probability is 100%, the connectivity will be uniformed and the receptive field will 

have circular shape. Thus, this 10% ratio maintains an average of 10 input 

connections to each bipolar cell as well as the asymmetrical connectivity pattern in 

the receptive field. 

All ganglion cells exhibit circular receptive fields and can be either ON or OFF. 

As described in section 5.3, equation 5.3 is used to compute the integration of ON 

and OFF pathways at bipolar and ganglion receptive fields. The input to the model 

consists of the original Hermann grid stimulus and its variants. The Hermann grid 

was generated using Adobe Illustrator. The bar width consisted of 6 pixels and the 

square was 3 times larger than the bar, as suggested by Schiller and Carvey (Schiller 
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and Carvey, 2005). In order to make the output images clearer and easy to observe, 

their contrast was enhanced using histogram normalization and equalization. 

6.5 Experiments and results 

6.5.1 Line width ratio 

This experiment was conducted to examine the spatial responses of the retina to 

Hermann grids of different sizes. In this experiment, the width of the white bar was 

changed, while the receptive field size was maintained and vice-versa. The 

experimental conditions are listed in Table 6.1. 

Receptive field size 
Ratio 

1:1 1:3 

Hermann grid size Hermann grid size 

Centre Surround Line Square Line Square 

1�5 2�10 2 2 2 6 

1�5 2�10 4 4 4 12 

1�5 2�10 6 6 6 18 

1�5 2�10 8 8 8 24 

1�5 2�10 10 10 10 30 

Table 6.1: Ratio test cases 

 

The ratio between the widths of the white bars and black squares was changed 

from 1:1 to 1:3. The receptive field centre radius was varied from 1 to 5, and the 

surround radius from 2 to 10. These parameters were selected according to the 

report by Dacey et al. that the centre radius of diffuse ganglion cells was 2 to 5 

times smaller than the surround (Dacey et al., 2000). Additionally, Schiller and 
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Carvey stated that the effect was reduced for the 1:1 case, compared to the standard 

1:3 ratio of the Hermann grid (Schiller and Carvey, 2005). Hence, the Hermann 

grid ratio was varied from 1:1 to 1:3 while the centre radius was set to two. 

Figure 6.6 and Figure 6.7 depict the results of models with and without bipolar 

cells connected, respectively. The Hermann grid is only visible in the bottom right 

image in Figure 6.6, where the involvement of bipolar cells in the processing 

pathway creates a darkening smudge at the intersection of bars. The smudges 

appear when the grid is set to a 1:3 ratio, and the illusion is strongest when the 

receptive field centre diameter matches the width of the white bars. The illusion is 

not visible at the 1:1 ratio, regardless of receptive field size. 

 

Figure 6.6: The Hermann grid output from the model at different receptive field 

sizes and a line-width ratio of 1:1 (top row) or 1:3 (bottom row) with bipolar cells 

connected. At each ratio, the centre:surround receptive field size was changed in 

range from 1:2 to 2:4 and 3:6, shown from left to right. 
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Figure 6.7: The Hermann grid output from the model at different receptive field 

sizes and a line- width ratio of 1:1 (top row) and 1:3 (bottom row) with no bipolar 

cells connected. At each ratio, the centre:surround receptive field size was changed 

in range from 1:2 to 2:4 and 3:6, shown from left to right. 

6.5.2 Orientation 

The Hermann grid in this experiment was rotated to various angles, namely 15°, 

30°, 45°, and 60°. Based on the results of the line-width ratio analysis, the size of 

the receptive field was established as 6 pixels for the centre and 18 pixels for 

surround diameters and followed the 1:3 ratio to make the illusion visible for 

observation, because large white gaps can generate large smudges that are visible 

to the naked eye. Figure 6.8 and Figure 6.9 depict the spatial outputs from OFF-

ganglion cells for circular and non-circular receptive fields, respectively. The 

intensity of the illusion decreased when the rotated angle was increased up to 45°. 

At 45°, the intensities of the smudges were smallest, as observed by the naked eye. 
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When there was no connection from bipolar cells, the illusion did not occur, as in 

previous experiments. 

Figure 6.8: Output from the model for grids rotated at 15°, 30°, 45°, and 60° with 

connectivity calculated using a probability matrix. The output for each angle 

corresponds to each column in the figure. The top row contains images output from 

a model with bipolar cells involved, while in the bottom row bipolar cells were not 

involved. When bipolar cells were not involved (bottom row), the outputs of the 

model were the same for the original and rotated grids. The receptive field of the 

bipolar cells in this case was circular. 

 

 

Figure 6.9: The output with the same orientations as in Figure 6.8 but with a non-

circular receptive field of the bipolar cells. 
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6.5.3 Luminance 

In this experiment, the white bars in the Hermann grid is changed to different colour 

to see the responses of the model to colour changes of the grid. The colour of the 

grid is changed by changing the colours of the white bars and background in 

sequent. There are eight alternatives for the grid colours in this experiment as 

described in Table 6.2. These colours pattern are selected to examine the responses 

of model to single and combined colours in the grid. 

Colour 
Test case 

1 2 3 4 5 6 7 8 

Bar Red Green Blue Yellow Red Green Blue Yellow 

Background Black Green Red Yellow Blue 

Table 6.2: Colour test cases 

The responses of the model to different colour grids are described in Figure 6.10. 

The analyses of these outputs will be discussed in discussion section later. 

 

Figure 6.10: The output of model with colour grids.Top row illustrates eight 

different grids as inputs while bottom row depicts their corresponding outputs. The 

results show that the model is able to generate smudge with general colour depend 

on the colour of the grids. 
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6.5.4 Distortion 

In the final experiment, the grid was distorted geometrically to examine the role of 

the bipolar receptive field in eliciting a Hermann grid illusion with non-straight 

bars. The distorted Hermann grid and outputs of the model are depicted in Figure 

6.11. The input and configuration settings of the model were the same used in the 

orientation test to maintain the observability of the effect when seen by human eyes. 

The distortion was set to the same parameters reported by Geier and colleagues 

(Geier et al., 2008).  

 

Figure 6.11: Distorted Hermann grid as input to and output from the model. The 

top right image is the input to the model while the top left is an example of distorted 

grid, and bottom images correspond to outputs from the model with (bottom left) 

and without bipolar cell involvement (bottom right). 
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6.6 Discussion 

Based on these experiments on the Hermann grid, some conclusions can be drawn 

regarding different factors involved in generating the illusion. The first factor is the 

square-to-bar ratio, which at 1:3 allows the illusion to be easily observed by the 

human eye. Second, this experiment confirmed the role of bipolar cells in forming 

the illusion. Specifically, when bipolar cells were disconnected from the model, 

smudges were no longer present at the output from the ganglion cell layer. Even 

with the classic Hermann grid, as in Figure 6.6, no smudge appeared when bipolar 

cells were disconnected, which provides positive evidence of the critical role 

bipolar cells play in producing the Hermann grid response as seen at the ganglion 

cell layer. 

In rotation experiments, the �orientation modulation� effect of rotated Hermann 

grids can also be explained by the proposed model, thus emphasizing the critical 

role of the OPL in the illusion as well as in the spatial responses of ganglion cells. 

Without bipolar cell involvement, the outputs of the model at the ganglion cell layer 

show no trace of the �orientation modulation� effect, as discussed by Schiller and 

Carvey as well as Geier et al. (Schiller and Carvey, 2005; Geier et al., 2008), and 

when bipolar cells are involved, the �orientation modulation� effect is clearly 

visible. To emphasize this experimental result, the mean square error (MSE) was 
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used to measure the difference between the output from the rotated grid and the 

rotated output from the original grid (Table 6.3). 

Orientation Mean Square Error 

15° 2.1840 

30° 16.9023 

45° 27.8667 

60° 15.12146 

 

Table 6.3: MSE between the output from a rotated Hermann gridand the rotated 

output from the original grid. 

 

The MSE results imply that the sparse connectivity between photoreceptors 

and bipolar cells, which in turn leads to heterogeneous and asymmetrically shaped 

receptive fields, can explain the orientation modulation effect. This thesis at the 

very least provides strong evidence in favour of the previously unrecognized critical 

role of bipolar cells and suggests that the effect is due to the heterogeneous shape 

of bipolar cell receptive fields. However, the precise relationship between the 

orientation modulation effect and the geometrical properties of bipolar cell 

receptive fields is still open for further investigation. Figure 6.12 depicts an 

example of receptive field connectivity, in which white pixels represent the 

presence of a connection between a photoreceptor and bipolar cell. 
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Figure 6.12: Binary maps of connectivity in bipolar receptive field. 

 

The output from the rotation experiment shows the impact of a non-circular 

receptive field, illustrating how responses differ according to the use of receptive 

fields with circular and non-circular shapes. In the event that receptive fields are 

perfectly circular, the orientation modulation effect is completely obliterated. For 

the circular case, the orientation modulation effect is absent, whereas for the non-

circular case, the effect is significant, as in the present experiments with bipolar cell 

receptive fields. This circular vs. non-circular explanation appears to support the 

hypothesis that bipolar cells contribute towards the orientation modulation effect 

due to the non-circularity of their receptive fields. The precise geometrical 

relationships, as mentioned, require further investigation, especially when the 

overall effect of multiple receptive fields with different shapes is considered. 

The heterogeneously shaped receptive field can also explain the appearance of 

�diagonal smudges� in a 45°-rotated Hermann grid. This phenomenon was first 

discussed by Geier et al., as 5�10% of viewers can see these �diagonal smudges� in 
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the original position, but most subjects see them only in the 45° rotation case (Geier 

et al., 2008). The responses from the model are consistent with this observation, as 

depicted in Figure 6.9. While the circular smudges are weak and harder to observe 

in the 45° rotated grid, the diagonal smudges are visible. These diagonal smudges 

are not visible when using a circular receptive field. Combining this result and the 

MSE result above, these results indicate that the rotated Hermann grid illusion can 

be explained using Baumgartner�s theory if bipolar cells with a heterogeneously 

shaped receptive field are involved. 

In the colour experiment, the outputs show that the model is able to generate 

the smudges at the intersections as well as the colours of the outputs. The colours 

of the outputs are the mix between the grid colours and background colours as can 

be seen in Figure 6.10. In particular, the colours of the outputs are the mixed colours 

of the grids and the background in the grids. For instance, in test case number 5 and 

6, the colours of the outputs are mixed between red and green colours and results 

the yellow colour for the output. The same response is applied for test case number 

7 and 8 where white colour is the mixture of blue and yellow colours in the input 

grids. On the other hand, in first four test cases the colours are mixed between single 

colour of the grids and black colours of the background thus results in darker 

colours of red, green, blue and yellow. This result shows that the colours of the 

smudges are depending on the colours of the grids and the correction of model 

implementation. 
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In the final experiment, responses from the model are consistent with visual 

observations. The role of bipolar cells in the retinal processing pathway is again 

highlighted through these outputs. When the bipolar cell receptive field is involved, 

the responses show visible smudges at the intersection in the original grid only. 

Without involvement of the bipolar cell receptive field, there are no smudges at the 

intersection, as in the bottom right image in Figure 6.11. According to hypothesis 

from Geier et al., the straightness of the white bar in the grid determines the 

appearance of the illusion but that hypothesis did not cover the case where the 

illusion appear when the grid is rotated 45 degree. This study on the other hand 

indicates that the asymmetrical connectivity pattern at bipolar cell layer is a main 

factor underlying the illusion and this hypothesis is valid not only in normal grid 

but also in 45 degree rotated grid. From this fact, the asymmetrical connectivity 

pattern hypothesis from this study can be a unifying hypothesis to explain the 

Hermann grid illusion in term of normal and distorted grid.  

The experiments and results in Hermann grid illusion described above show 

that the retina is still able to process information with least connectivity in the 

receptive field. The results from orientation experiment indicates that the sparse 

connectivity receptive field is the factor to make the illusion maintained instead of 

circular receptive field. These findings have at least two important medical 

implication with regard to new designs for retinal prostheses (Kien, Maul and 

Bargiela, 2012). First, the results indicate that by using a receptive field with sparse 

121 
 



OPL RF AS UNDERLYING FACTORS OF THE HERMANN GRID ILLUSION 

 

connectivity, spatial responses can be formed at the ganglion cell layer. Therefore, 

future retinal prostheses may be able to stimulate ganglion cells with fewer 

electrodes by placing these electrodes precisely in optimal positions. The second 

advantage is the implication that stimulation with fewer electrodes can resolve the 

issue of crosstalk as well as reduce the heat from electrodes as inter-electrode 

distances are increased.  

One limitation of this model is that it pertains to shading variations of the 

Hermann grid in which the outputs are not consistent with what human eyes see 

when the background of the bar is shaded to grey while the intersections remain 

white. This omission warrants further research in the future and may be addressed 

by adding more detail to the retinal model to increase its realism. 

6.7 Summary 

This chapter presents experiments on the Hermann grid in terms of line-width ratio, 

orientation, and distortion, aimed at determining the effect of bipolar receptive 

fields on the output from ganglion cells. When bipolar cell receptive fields are not 

involved, the outputs of the model ganglion cells are consistent with the reports of 

other researchers and therefore exhibit several subtle innacuracies. When bipolar 

cells are added to the model, the outputs of ganglion cells are highly consistent with 

what human eyes perceive when looking at the Hermann grid. Although the model 

is still far from matching the richness of the real retina and more test cases are 
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needed, these experiments show that Baumgartner�s explanation of the Hermann 

grid illusion, when considered in conjunction with a more detailed model of the 

retina (e.g. OPL and IPL mechanisms), deserves further investigation.
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CHAPTER 7 

A RETINAL MODEL OF CONTRAST ADJUSTMENT IN MESOPIC 

CONDITIONS 

7.1 Introduction 

In the previous chapter, the concepts of asymmetrical and heterogeneous 

receptive fields were introduced, as well as the role of bipolar cells in the 

processing pathway inside the retina. These concepts underscore the importance 

of placing and distributing electrodes to contact ganglion cells efficiently in 

order to restore spatial vision with minimal damage to the retina. Consequently, 

retinal prostheses can take advantage of this finding to improve the precision of 

stimulation in restoring spatial vision. However, many more issues must also be 

addressed in order to restore vision to the blind with acceptable resolution and 

quality. As discussed in the review of retinal prostheses in CHAPTER 3, the 

current device only provides low resolution with black and white �pixel-like� 

vision due to hardware limitations. In future devices, the resolution may be 

increased, but this improvement might bring more challenges because the 

perceived quality must match the high resolution of vision to provide a good 

experience to users.  

One issue highlighted in this thesis is the performance of retinal 

prostheses in low-light conditions with low contrast sensitivity. It is difficult to 

perform tasks in low light, because objects with a dim background and low 
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contrast sensitivity are not distinguishable from background. Contrast 

sensitivity is related to visual acuity; it is easier to differentiate two points as 

being separate if those points have high contrast to the background rather than 

low contrast. Thus, perceiving vision with high acuity under conditions of dim 

light and low contrast sensitivity is challenging even with high resolution. By 

enhancing contrast, especially in low-light conditions, retinal prostheses can 

help to increase visual acuity and thus provide precise information in dim light 

conditions with low contrast. In this chapter, contrast processing in the retina is 

explored in the context of connectivity and temporal responses at the ganglion 

cell layer. The results show that different processing pathways such as the ON 

and OFF pathways in the retina are utilized to process contrast in mesopic 

conditions with the involvement of AII amacrine cells.  

7.2 Contrast processing in the retina 

The role of the retina is to convert visual signals to patterns of spikes by 

processing, compressing, and encoding the perceived visual signals and then 

transferring this information to the brain for further processing, ultimately 

leading to high-level understanding visual information. Colour, luminance, 

edges, motion, and contrast are examples of the types of information processed 

and encoded by the retina. This chapter focuses on contrast, i.e. the difference 

between the brightest and darkest regions in an image spatially or temporally. 

The bigger this difference, the higher the contrast and vice-versa. Thus the 

process of enhancing contrast involves increasing the gap between the brighter 
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and darker portions of a scene in order to differentiate objects with different 

brightness levels more effectively.  

In the context of retinal processing, various cells mediate the contrast 

enhancement process including cones, rods, horizontal and bipolar cells in the 

outer-plexiform layer (OPL) and bipolar, amacrine, and ganglion cells in the 

inner-plexiform layer (IPL). Although some aspects of the contrast 

enhancement process have been clarified in the previous studies, the detailed 

roles of various cells involved are still under investigation (Lindsay and 

Andrew, 1999; Decuypere and Capron, 2011; Maul, Bargiela and Ren, 2011). 

As introduced in the previous section, this thesis focused on contrast processing 

in dim light, or mesopic conditions, as opposed to photopic (bright light, e.g. 

daytime) or scotopic (darkness, e.g. night) conditions. In mesopic conditions 

both cones and rods are activated. By contrast, although some rods and cones 

are still activated in both photopic and scotopic conditions, in photopic 

conditions most cones are activated while rods are de-activated, whereas in 

scotopic conditions most rods are activated while cones are �disabled� (Stabell, 

1967; Sugita and Tasaki, 1988). Although both cones and rods are utilized in 

mesopic conditions, the findings from this chapter indicate that rods and AII 

amacrine cells are important factors in processing contrast information through 

separated ON and OFF pathways.  

The role of bipolar cells in contrast processing was discussed by Burkhardt 

and Fahey, while Baccus and Meister discussed several types of retinal cells 

besides bipolar cells, such as amacrine and ganglion cells in this type of 
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information processing (Baccus and Meister, 2002; Burkhardt, 2011). Sharpe 

and Stockman suggested that rods are involved in contrast control via two 

distinct circuitries: one consisting of the processing pathway from rods to 

bipolar cells through AII amacrine cells and the other consisting of the interface 

between cones and rods in the photoreceptor layer (Sharpe and Stockman, 

1999). On the other hand, Zaghloul and Burkhardt stated that ON and OFF 

pathways are important factors in contrast adaptation (Zaghloul, Boahen and 

Demb, 2005; Burkhardt, 2011). In particular, Zaghloul and his colleagues stated 

that there are different circuits for ON and OFF pathways involved in contrast 

processing, while Burkhardt found that these distinct circuits lie at the level of 

bipolar cells. Moreover, Decuypere utilized the interface between cones and 

rods in the photoreceptor layer to model mesopic vision (Decuypere and 

Capron, 2011). In this chapter, a model of the retina including the rod pathway 

is described, which was constructed based on the current state of knowledge 

regarding contrast control summarized above. The aim of this model was to 

investigate and simulate the role of the rod pathway with regard to contrast 

processing. This model is an updated version of an earlier model containing 

only an outer retinal layer, which was developed by Maul et al. and shown to be 

effective in terms of visual functions pertaining to noise, brightness, contrast, 

saturation, and colour (Maul, Bargiela and Ren, 2011). Kien et al. later 

developed an outer retinal model with a receptive field concept based on this 

early version to propose an explanation of the Hermann grid illusion (Kien et 

al., 2012). Therefore, the model reported in this thesis not only complements 
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the work of Decuypere et al. on mesopic vision through its inclusion of the rod-

AII pathway instead of the interface between cones and rods, but also serves as 

an extension of earlier retinal models whose main aim was to understand the 

neural substrates of retinal visual functions.  

The results from this model show that contrast adjustment in both low- and 

high-contrast conditions can be achieved by contributions from the rod-AII 

amacrine pathway and combined ON/OFF pathways (Sharpe and Stockman, 

1999; Zaghloul, Boahen and Demb, 2003). These encouraging results indicate 

that the retinal model has the capability to modulate contrast in both low- and 

high-contrast conditions thanks to non-linear computations in the rod pathway, 

and also has the capability to unify previous researchers� discoveries in contrast 

control. 

7.3 The rod pathway in the retina 

Figure 8.1 depicts five major layers in the biological retina with ON and OFF 

pathways. The function of each cell type is described in section 2.1; thus, this 

section focuses only on the ON, OFF, and rod pathways in the retina. 

According to Figure 7.1, there are certain types of bipolar, amacrine, and 

photoreceptor cells involved in the contrast control mechanism. This chapter 
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focuses on rods and the separation of ON and OFF pathways, which have major 

roles in processing contrast sensitivity in mesopic conditions. 

Figure 7.1: The rod pathway in the retina. 
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In the context of the rod pathway, as mentioned in the previous section, 

Decuypere et al. constructed a model involving gap junctions between cones 

and rods in the photoreceptor layer, while the present study has chosen a 

different circuitry that involves AII amacrine cells (Decuypere and Capron, 

2011). According to Decuypere et al., the interface between cones and rods 

implemented in the previous model provided faster integration but less 

sensitivity compared to the rod-AII pathway. Hence, in this analysis, the rod-

AII circuit was simulated, and the ON and OFF pathways were taken into 

account in order to elucidate a new contrast control mechanism and a more 

accurate process, with implications for retinal prostheses and even image 

processing. On the other hand, the retina has a specific mechanism for switching 

between these two pathways to deal with contrast in each specific condition. As 

described in CHAPTER 2, the retina has a mechanism to switch from cone to 

rod and vice-versa when light is changing from light to dark and this allows the 

contrast processing changing from rod-cone to rod-AII pathway and vice-versa. 

Thus, although these two pathways exist in the retina but contrast information 

is processed in only one of these pathways to maintain the processing transition 

from cone to rod. 

Both cones and rods are implemented with their own pathways in the 

proposed model. The cone pathway is seperated into ON and OFF pathways 

with cones, horizontal, bipolar, and AII amacrine cells in each pathway. The rod 

pathway consists only of rods and rod bipolar cells. The ON cone pathway 

consists of cones, horizontal cells, ON bipolar cells, and ON ganglion cells. 
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Cones receive light and convert and transfer signals to horizontal and ON 

bipolar cells. As discussed in section 5.3, the signals from horizontal cells are 

transferred to the surround receptive field of ON bipolar cells as inhibitatory 

signals (Siminoff, 1980; Curlander and Marmarelis, 1983). By contrast, the 

centre receptive field of ON bipolar cells receives signals from cones. The 

information originally embodied in cone signals eventually reaches AII 

amacrine cells, which generate an inhibitory signal (much like horizontal cells 

do in the OPL). In the OFF cone pathway, the same type of connectivity is 

represented, but instead of processing signals in ON cone bipolar cells, signals 

from cones are passed to OFF bipolar cells. Rod bipolar cells receive signals 

from rods and then transfer these signals to AII amacrine cells and eventually 

to ON cone and OFF cone bipolar cells through gap junctions and synapses. 

Consequently, ON and OFF ganglion cells integrate signals from corresponding 

bipolar cells and fire to generate spiking signals that are transferred to the brain. 

7.4 Rod pathway modelling 

The rod pathway is summarized in section 5.5.2 and explored in detail in this 

section. Figure 5.5 illustrates the different processing pathways of the proposed 

retinal model. The model takes an input image and processes it through different 

paths and in different stages, culminating in the final results found in ganglion 

cells. 

Equation 7.1 was used to compute the feedback from AII amacrine cells to 

OFF cone bipolar cells. This equation simulates the chemical synapses between 
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OFF bipolar and AII amacrine cells as observed in the biological retina. Besides 

this synapse, the AII amacrine cells also connect to ON cone bipolar cells via 

gap junctions, and this connection is depicted in the lower right side of the ON 

cone block in Figure 5.5. These chemical and electrical synapses are believed 

to control the hyperpolarization and depolarization of the OFF and ON cone 

bipolar cells, respectively, in the rod pathway (Wilson and Kim, 1998; Meylan, 

Alleysson and Süsstrunk, 2007).  

 ܵைிி(ݐ)  =   
(ݐ)ைிி ைோݎ݈ܽ݅ܤ(ݐ)ைிி ைோݎ݈ܽ݅ܤ  + ݊݅ݎܿܽ݉ܣ  ݁ூூ(ݐ) 

 

7.1 

 

In equation 7.1, ݎ݈ܽ݅ܤைிி ைோ(ݐ) refers to the output from OFF cone 

bipolar cells, and ݊݅ݎܿܽ݉ܣ ݁ூூ(ݐ) refers to the output from AII amacrine cells. ܵைிி(ݐ) refers to the output signal in the OFF pathway before reaching ganglion 

cells through ganglion cell dendrites. Equation 7.1 is considered to reflect the 

non-linear interaction between amacrine cells, bipolar cells, and ganglion cells 

in the IPL layer (Graham, Hood and Finkelstein, 1979; Geisler, 1981; Adelson, 

1982; Walraven et al., 1984; Hood, Finkelstein and Boff, 1986; Webster and 

Mollon, 1991; Wilson and Kim, 1998; Field and Rieke, 2002; Valeton, van 

Norren and van Wyk, 2006; Demb, 2007; Naka and Rushton, 2012). Moreover, 

some authors have also utilized this type of equation for the circuitry in the OPL 

and even in the photoreceptor layer (Meylan, Alleysson and Süsstrunk, 2007; 

Decuypere and Capron, 2011). The parameter used in this chapter was set to 1, 

as in other works of Meylan et al. and Decuypere (Meylan, Alleysson and 

Süsstrunk, 2007; Decuypere and Capron, 2011). 
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This thesis proposes a model of interaction between signals from ON and 

OFF pathways prior to the generation of spiking signals. This proposal is 

supported by Schnapf et al., who mentioned the different mechanisms of 

contrast adaptation in higher mesopic light (Verweij, Hornstein and Schnapf, 

2003; Hornstein, Verweij and Schnapf, 2004; Hornstein et al., 2005). Schnapf 

et al. indicated that besides the feedback from horizontal cells coupling to 

photoreceptors, the contrast processing mechanism occurred through either gap 

junction coupling between rod and cone or electrical coupling between red and 

green cones. Kim and Rieke also stated that adaptation occurs at the ganglion 

cell dendrite level before the generation of spikes (Kim and Rieke, 2001). Based 

on these findings, the adjustment of the weight between ON and OFF signals at 

the dendrites of ganglion cells is believed to generate different contrast outputs. 

 

(ݐ)ைேܵܦܩ =  ߮ைே כ ܵைே + ߮ைிி כ ܵைிி ܵܦܩைிி(ݐ)  =  ߮ைே כ ܵைே + ߮ைிி כ ܵைிி 

 

7.2 

 

Equation 7.2 indicates the combination of different weights of ON and OFF 

pathways to create signals at ganglion cell dendrites for ON and OFF ganglion 

cells (symbolized as ܵܦܩைே(ݐ) and ܵܦܩைிி(ݐ)), respectively. ߮ைே and ߮ைிி 

are the weights of the ON and OFF pathways, respectively, and ܵைே and ܵைிி 

are the ON and OFF pathway signals, as depicted in Figure 5.5.  

Again, a concentric receptive field was implemented at the ganglion cell 

layer for ON and OFF ganglion cells. A simple model for generating spiking 

signals was applied after this step as described in equation 7.3. This model was 

employed in this chapter because it is robust, and the spiking signals are easy 
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and efficient to compute. Moreover, as mentioned above, this study focuses on 

how contrast is processed at the bipolar-ganglion cell dendritic interface, rather 

than how the spiking mechanism affects the contrast process. 

(ݐ)ௌூா݈݊݅݃݊ܽܩ   =  ቐ < ݐοݎ ݂݅  1 ௗݔ  
  ݐοݎ  ݂݅  0   ௗݔ  

 

7.3 

 

In this equation, ݎοݐ is the probability of firing within a short interval, and ݔௗ 

is a random number from zero to one. 

7.5 Experimental setups 

In order to investigate the contrast enhancement mechainsm of the proposed 

retinal model, four experiments were conducted, and four images were used as 

input to each experiment. These images were created from one sample image 

obtained in RAW format from Bychkovsky et al. (Bychkovsky et al., 2011) 

using Adobe Bridge Camera Raw to adjust image contrast, thus producing four 

different versions with the following contrast levels: low, medium low, medium 

high, and high. Each input image of a specified contrast level was fed into the 

model to generate output signals from bipolar and ganglion cells. The contrast 

levels in sample images were already calibrated, which provided ideal images 

for comparison purposes. 

A contrast measurement method called Retinal-like Sub-sampling Contrast 

(RSC) was adopted from Rizzi et al. to compare the contrast between output 

images and ideal images.  This method is selected because of its abalibity to 
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measure the perceptual contrast of digital image with high accuracy (Rizzi, 

Simone and Cordone, 2008). In other words, this method is able to convert the 

contrast to a number thus makes it is easier to compare contrast in output 

images. Equation 7.4 indicates the measurement of contrast intensity.  

ோௌܥ  = ߙ  ή ோௌכܥ + ߚ  ή ோௌכܥ + ߛ  ή  ோௌכܥ

 

7.4 

 

In equation 7.4, ߚ,ߙ, and ߛ are the weight for each colour channel, and ܥோௌ is the local contrast measurement based on a DOG (Difference of 

Gaussian) neighborhood. A DOG model was used due to its success in 

describing the receptive field and responses of retinal ganglion cells (Simone, 

Pedersen and Hardeberg, 2012). The ܥோௌ value was used to determine the 

contrast of output images. This value is high in the case of low contrast and 

vice-versa. Hence, the aim of the experiments was to reduce this value in the 

case of low contrast, and increase it in the case of overly high contrast. 

In the first simulation, the dataset was applied with different contrast levels; 

these results are depicted in Figure 7.4 and Table 7.1. The second simulation 

focused on the optimization/tuning of parameters. The optimal parameters were 

then applied to the model and simulated in the third experiment, which focused 

on the spatial and temporal output from ganglion cells, with results depicted in 

Table 7.2 and Figure 7.5. Additionally, a dataset containing 10 images was used 

to simulate and compare the contrast levels between inputs, outputs, and ideal 

images in the first and second simulations. Image number 5 in that dataset is 

shown in Figure 7.4, Figure 7.5, and Figure 7.6. 
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7.6 Results 

Figure 7.4 depicts the spatial responses of ON and OFF pathways compared to 

ideal responses. The results indicated that outputs from the OFF and ON 

pathways provided better contrast for the low- and high-contrast inputs, 

respectively. In the case of low contrast inputs, contrast was visibly increased, 

and the details in the images could be seen clearly, especially in the OFF 

pathway (in which the grey fog is reduced). This effect was measured and 

confirmed by the RSC values, as shown in Table 7.1. In the case of high-contrast 

inputs, the contrast was not reduced significantly, and differences between the 

outputs and ideal images were not readily apparent. The RSC values in this case 

were consistent with these observations, with only the values for case number 5 

increased at medium-high and high contrast (Table 7.1). To determine whether 

the ON and OFF pathways were separately responsible for high- and low-

contrast inputs, both ON and OFF pathways were examined using two 

parameters, ߮ைே and ߮ைிி, in equation 7.3 to adjust the integration in each 

pathway. The second simulation was conducted in order to find the optimal 

values for these parameters.  

In the second simulation, the integration of ON and OFF pathways at 

ganglion cell dendrites was examined. The model was simulated exhaustively 

in order to select suitable values for ߮ைே and ߮ைிி in the range of -1.0 to 1.0 to 

verify whether the output from cone and rod bipolar cells was visible or not. All 

visible outputs were compared using the above-mentioned measurement 
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technique in order to select the optimal values for ߮ைே and ߮ைிி. This selection 

was made based on the root mean square error (RMSE) distance between RSC 

values in output images and corresponding values in ideal images. After running 

simulations on eight sets of images (with each set containing four different 

contrast levels), the optimal parameters for ߮ைே and ߮ைிி were found to be 1.0 

and -0.1 for ON ganglion cells with high-contrast images and 0.0 and 1.0 for 

OFF ganglion cells with low-contrast images. The RMSE for each value from -

1 to 1 pertaining to ON and OFF bipolar cell weights for each of the image 

contrast levels used in Figure 7.4 is illustrated in Figure 7.2 and Figure 7.3. The 

circles indicate the error for each pair of ߮ைே and ߮ைிி values. Figure 7.5 and 

Table 7.2 illustrate the results of dendritic integration in ON and OFF ganglion 

cells, with the optimal weights mentioned above, and their corresponding RSC 

contrast measurement. 
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Figure 7.2: The root mean square error pertaining to ON ganglion cells for 

contrast levels 3 (left) and 4 (right) (i.e. medium-high and high contrast levels). 

The x-axis corresponds to ߮ைே, and the y-axis refers to ߮ைிி. 

 

Figure 7.3: The root mean square error pertaining to OFF ganglion cells for 

contrast levels 1 (left) and 2 (right) (i.e. low and medium-low contrast levels). 

The x-axis refers to ߮ைே, and the y-axis refers to ߮ைிி. 
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Figure 7.4: Without ON/OFF integration. Outputs from the ON and OFF 

pathways for the following contrast levels (from top to bottom): low, medium-

low, medium-high, and high. The �ideal images� in the right-most column 

consist of pre-calibrated images with ideal scene contrast. At first glance, the 

model outputs in the ON and OFF pathways appear the same, and both achieve 

better contrast in low-contrast conditions. For the high-contrast case, it is 

difficult to note, by visual inspection alone, any changes in either the ON or 

OFF pathways. The images shown in this figure correspond to test case number 

5 in the dataset. 
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Figure 7.5: With ON/OFF integration. The results of dendritic integration in ON 

and OFF ganglion cells for the following contrast levels (from top to bottom): 

low, medium-low, medium-high, and high. Applying the weights to the ON and 

OFF pathways led to significant changes in the high-contrast case. The 

improvement in contrast in the ON pathway compared to the outputs in Figure 

7.4 can be easily seen. The images shown in this figure correspond to test case 

number 5 in the dataset. 

The main finding of this simulation was that the ON outputs enhance contrast 

under medium-high- and high-contrast conditions. For example, the detail of 

the building behind the electronic panel can be noted by visual inspection in 

Figure 7.5. This result was then evaluated again in the data listed in Table 7.2. 

From the RSC table, one can easily see that the RSC values are increased, 

bringing them closer to the RSC values of ideal images, for most images with 

the highest contrast levels in the ON pathway compared to the OFF pathway. 

For the medium-high-contrast case, improvement also occurred in the ON 

pathway, but not as significantly as in the high-contrast case (case number 1, 3, 
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5 and 7). For the low-contrast cases, the RSC values from both ON and OFF 

pathways were decreased, but the decrease in the OFF pathway was closer to 

the RSC values of the ideal images.  

In the third experiment, the integration of ON and OFF bipolar cell inputs 

at ganglion cell dendrites was used to determine how the relative weights of 

these bipolar cell inputs can lead to different contrast processing results. 

Dendritic computation in ganglion cells can be seen as occurring in two �stages�, 

the first being responsible for contrast modulation and the second for edge 

detection. Van Wyk et al. reported this type of edge detection ganglion cell as 

X-cells/く-cells with the smallest receptive field in rabbit (van Wyk, Taylor and 

Vaney, 2006), cat, mouse, guinea pig (Xu et al., 2005; Zeck, Xiao and Masland, 

2005; van Wyk, Taylor and Vaney, 2006; Berry et al., 2013), and primate 

retinas (Rodieck and Watanabe, 1993). 
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Table 7.1: Without ON/OFF integration.RSC contrast measurements corresponding to the ON and OFF pathway outputs from 10 test 

images varying from low to high contrast. The green cells indicate an increase, while red cells indicate a decrease of RSC compared to 

that of the input images. The scope of the model is to improve contrast by decreasing the RSC value in low-contrast images and 

increasing it in high-contrast images, but both ON and OFF RSC values are nearly the same for all cases shown here. For example, in 

low and medium-low contrast, the changes between RSC values in input and model output are significant with 1 failure case (highlighted 

in red cell) while in medium-high and high contrast there are only 4 pass cases (highlighted in green cell). 

 

 

Test 

Cases 

Low contrast Medium-low contrast Medium-high contrast High contrast 

Ideal 

Images Input 

ON 

Pathwa

y 

OFF 

Pathway 
Input 

ON 

Pathway 

OFF 

Pathway 
Input 

ON 

Pathway 

OFF 

Pathway 
Input 

ON 

Pathway 

OFF 

Pathway 

1 51.943 44.409 44.381 49.255 43.690 43.759 44.126 42.335 42.355 41.997 41.269 41.261 46.659 

2 60.054 52.384 52.293 58.616 52.367 52.229 55.115 52.062 52.046 53.521 50.636 50.637 56.945 

3 44.340 40.325 40.315 42.038 39.953 39.972 38.908 38.697 38.661 37.932 38.111 38.005 40.305 

4 54.678 50.247 50.306 53.408 50.273 50.186 51.251 49.504 49.434 50.570 49.034 49.193 52.266 

5 43.666 41.371 41.341 41.361 40.121 40.200 37.748 37.757 37.750 36.777 37.321 37.329 39.323 

6 52.493 47.803 47.855 49.889 47.854 47.906 45.230 46.370 46.468 43.651 45.187 45.254 47.582 

7 52.262 49.911 49.880 49.549 49.387 49.316 43.851 48.268 48.260 41.503 47.064 47.121 46.595 

8 50.137 48.074 48.048 48.479 47.310 47.320 45.851 44.859 44.829 45.039 44.060 44.029 47.040 

9 54.587 50.506 50.491 53.355 50.501 50.642 51.155 49.882 49.890 50.319 49.522 49.511 52.213 

10 65.131 56.750 56.732 64.079 57.253 57.297 61.489 57.793 57.808 60.185 56.426 56.408 62.881 
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Table 7.2: With ON/OFF integration.RSC contrast measurements corresponding to the ON and OFF pathway outputs from 10 test 

images varying from low to high contrast. From the table one can see that the outputs from the ON and OFF pathways significantly 

changed after applying the ON/OFF integration weights. The rate of success (improvement) for medium-high contrast increased 

significantly to 60%, whereas for high cases it increased to 80%.

Test 

Cases 

Low contrast Medium low contrast Medium high contrast High contrast 
Ideal 

Images Input 
ON 

Pathway 

OFF 

Pathway 
Input 

ON 

Pathway 

OFF 

Pathway 
Input 

ON 

Pathway 

OFF 

Pathway 
Input 

ON 

Pathway 

OFF 

Pathway 

1 51.943 42.950 45.012 49.255 42.331 44.509 44.126 43.501 40.971 41.997 42.571 39.966 46.659 

2 60.054 49.387 54.666 58.616 49.255 54.816 55.115 55.770 48.314 53.521 54.091 46.719 56.945 

3 44.340 39.952 40.607 42.038 39.557 40.283 38.908 39.353 38.046 37.932 38.805 37.414 40.305 

4 54.678 48.576 52.014 53.408 48.359 51.817 51.251 51.476 46.993 50.570 51.516 46.453 52.266 

5 43.666 40.792 41.905 41.361 39.678 40.685 37.748 38.319 37.296 36.777 38.218 36.677 39.323 

6 52.493 45.932 47.676 49.889 44.002 46.903 45.230 48.116 42.283 43.651 46.351 41.290 47.582 

7 52.262 44.805 48.089 49.549 43.683 47.157 43.851 44.139 40.171 41.503 42.261 39.056 46.595 

8 50.137 46.636 48.913 48.479 45.571 48.000 45.851 45.944 42.878 45.039 45.534 42.157 47.040 

9 54.587 49.460 51.932 53.355 49.357 52.070 51.155 51.549 48.225 50.319 51.817 47.092 52.213 

10 65.131 53.496 59.284 64.079 53.484 59.907 61.489 62.243 52.601 60.185 60.969 51.233 62.881 
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Figure 7.6: ON and OFF ganglion cell processing results for contrast control 

and edge detection. 

Figure 7.6 depicts both these stages in both ON and OFF ganglion cells. 

According to the model diagram in Figure 5.5, the first �stage�, which deals with 

contrast processing, is mediated by the integration of ON and OFF bipolar cell 

inputs at ganglion cell dendrites, whereas the second �stage�, which deals with 

edge detection, is mediated by centre-surround antagonism. Although these 

different computations are discussed here as distinct and sequential stages, their 

spatial and temporal relationships in ganglion cell dendrites may be much more 

complex than what this study implies. In the proposed model, the result from 

edge detection was used to compute spike patterns at the final stage. 
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Figure 7.7: Responses from ON ganglion cells for each contrast level from 1 

(top) to 4 (bottom) (i.e. low contrast, medium-low contrast, medium-high 

contrast, and high contrast). 

 

 

Figure 7.8: Responses from OFF ganglion cells for each contrast level from 1 

(top) to 4 (bottom) (i.e. low contrast, medium-low contrast, medium-high 

contrast, and high contrast). 

 

In the final experiment, the spike train responses from ON and OFF ganglion 

cells for all contrast levels are illustrated in Figure 7.7 and Figure 7.8. This 

spiking responses are generated using equation 7.4 at ganglion cell level. After 
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applying the nonlinearity equation to bipolar and amacrine processing 

pathways, the output from this equation is applied to equation 7.4 to simulate 

the responses of ganglion cells in ON and OFF pathways as can be seen in 

Figure 7.7 and Figure 7.8.  

7.7 Discussion 

7.7.1 Different processes in ON and OFF pathways for contrast control 

In the second simulation, in case of high-contrast inputs, the outputs from the 

ON pathway exhibited more detail (i.e. better contrast) than the outputs from 

the OFF pathway, while with low-contrast inputs, the dendritic integration 

results of OFF ganglion cells were closer to the corresponding ideal images 

compared to the integration results of ON ganglion cells. These results were 

confirmed through the RSC measurements for both pathways, as seen in Table 

7.2. For the low-contrast inputs, the RSC values of the OFF pathway were closer 

to those of the corresponding ideal images, while, conversely, for the high-

contrast images, the RSC values in the ON pathway were increased significantly 

compared to those from the OFF pathway. The non-linearity of AII amacrine 

cells may be one explanation for these enhancements.  

Due to this non-linearity, the rod pathway allows signals from rod 

bipolar cells to manipulate signals from OFF cone bipolar cells in the case of 

both low and high contrast. In the low-contrast case, rod bipolar cell non-

linearity is limited due to the fact that light levels are decreased and cone 

information is relatively suppressed, while rods and AII amacrine signals are 
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stronger. According to equation 7.3, the increase of rod signals and decrease of 

OFF cone bipolar signals will lead to the decrease of signals in the OFF 

pathway, because AII amacrine cell signals are inversely proportional to the 

OFF pathway output. This result is consistent with findings from other authors 

regarding hyperpolarization in the OFF pathway and depolarization in the ON 

pathway at low contrast (Famiglietti and Kolb, 1975; Pourcho and Goebel, 

1985; Muller, Wassle and Voight, 1988; Wässle et al., 1995). However, these 

findings correspond to photopic conditions. Therefore, under mesopic vision, 

the present study hypothesizes that due to the non-linearity of equation 7.3, the 

OFF pathway signals are still decreased but not completely hyperpolarized, 

which will lead to both ON and OFF pathway signals being present and adjusted 

with their corresponding weights in later processing (which is discussed in next 

section). For a high-contrast case, the rod signals will be relatively suppressed, 

and thus from equation 7.3 the signals in the OFF pathway will tend to become 

saturated (i.e. closer to 1). This saturation will in turn lead to the contrast 

modulation role being passed to the ON pathway. In other words, when mean 

light levels are higher and therefore image contrast tends to be higher 

(Famiglietti and Kolb, 1975; Bühren et al., 2006; Werblin, 2010), the retina has 

lower contrast sensitivity, whereas when mean light levels are lower (darker 

mesopic conditions) and image contrast tends to be lower, retinal contrast 

sensitivity is higher. Retinal non-linearities as expressed by equation 7.3 have 

been studied by other researchers in rod bipolar (Field and Rieke, 2002) and 

cone bipolar cells (Werblin, 2010) using psychophysical paradigms, and the 
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current study expands this approach to AII amacrine cells in the rod pathway, 

as mentioned by Freed et al. and Demb et al. and tested under pharmacological 

conditions by Zaghloul et al. (Demb et al., 2001; Freed, Smith and Sterling, 

2003; Zaghloul, Boahen and Demb, 2003). 

7.7.2 ON and OFF pathway ratio for contrast processing 

One can see the difference in RSC values of the ON pathway between Table 7.1 

and Table 7.2. As mentioned above, the OFF pathway receives more 

information from OFF cone bipolar cells in low-contrast conditions, and vice-

versa for the ON pathway. A weight function in cone and rod pathways was 

utilized to construct these pathways. The optimal weights for the integration of 

information from ON and OFF bipolar cells in experiment 2 at ON ganglion cell 

dendrites (i.e. 1.0 and -0.1) can be explained as the signals in the OFF cone 

pathway being dominated by the ON pathway for the high-contrast case, as 

described in the previous section. On the other hand, future studies needed to 

focus and explore these ratio although this study presents optimum weights for 

contrast processing pathway. One reason is that the training dataset for heuristic 

optimization as mentioned above is limited to 8 sets and the contrast level is 

categorized to 4 levels. Besides increasing contrast level and number of datasets, 

future studies also can focuses on the switching mechanism between contrast 

processing pathway cone-rod and rod-AII to explore the transition inside the 

retina for contrast processing.   
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The edge detection results of processing at ganglion cell dendrites are based 

on preliminary contrast-related integration in the third simulation. With the 

contrast enhancement, in the third experiment, the edge detection result of 

ganglion cell dendritic processing was based on preliminary contrast-related 

integration. The intensity of edges in ganglion cell outputs was stronger in ON 

ganglion cells for high-contrast conditions, whereas it was stronger in OFF 

ganglion cells for low-contrast conditions. This edge intensification is a direct 

result of the aforementioned contrast modulation.  

7.7.3 Different temporal responses in ganglion cells for contrast 

processing 

The final experiment presented the spiking signals from ON and OFF ganglion 

cells. For the low-contrast cases (i.e. contrast levels 1 and 2 in Figure 7.7 and 

Figure 7.8), the responses of OFF ganglion cells were shorter than those of ON 

ganglion cells, indicating that OFF ganglion cells achieved a faster response for 

low-contrast cases. By contrast, ON ganglion cells achieved faster response 

times in the case of high-contrast signals (i.e. contrast levels 3 and 4 in Figure 

7.7 and Figure 7.8 ). This result reinforces the finding of the first experiment 

that low- and high-contrast signals are processed in separate pathways and 

reflect the temporal responses from ganglion cells, as reported by other 

researchers (Tsukada, Terasawa and Hauske, 1983; Chander and Chichilnisky, 

2001; Kim and Rieke, 2001; Field et al., 2010). From the retinal prosthesis 

stimulation point of view, this finding implies that the stimulation at ganglion 
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cells for contrast processing may be different for low and high contrast. The 

OFF ganglion cells may need stimulation with higher frequency while ON cells 

may need a lower stimulation frequency. This would allow future prostheses to 

stimulate ganglion cells more precisely and efficiently by using differing 

amounts of energy to stimulate ON or OFF cells, respectively, in contrast 

processing. 

7.7.4 Analysis summary 

In summary, the proposed model exhibits the capability to adjust contrast 

from low to high levels through the involvement of the rod pathway in mesopic 

vision. It is important for cones and rods to work together in mesopic vision for 

the proper adjustment and integration of signals from both ON and OFF 

pathways. Moreover, the model also hints at the complexity of the dendritic 

computations taking place in ganglion cell contrast modulation and highlights 

the need for models to simulate retinal processing under high mesopic light as 

well as models to replicate the adaptation of the retina, especially in temporal 

and spatial domain processing under changing light conditions (Cao and Lu, 

2012; Zele et al., 2014). 

Although this model specifically targets mesopic conditions, it contains 

aspects that are relevant to photopic and scotopic conditions as well. In the case 

of photopic vision, most rods are �disabled�, and most cones are active in the 

photoreceptor layer. A small number of rods remain functional, but the signals 

are not as strong as in the mesopic or scotopic conditions (Stabell, 1967; Sugita 
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and Tasaki, 1988). As discussed with regard to equation 7.3 in the previous 

section, the ON pathway signals address contrast adjustment in this case, which 

is consistent with the fact that in photopic vision, contrast tends to be higher 

(Bühren et al., 2006). In the case of scotopic vision, in which mean light levels 

are low and contrast tends to be low, the signals from the OFF pathway, which 

contains rod information, would be utilized to adjust contrast, since primarily 

rods are active in this condition. 

7.8 Summary 

This chapter presents a model of the retina for enhancing contrast automatically 

with the involvement of the rod pathway. The results from the model suggest 

that ON and OFF pathways in the retina have different mechanisms for 

processing signals from the photoreceptor layer. The ON pathway appears to be 

responsible for high contrast, while the OFF pathway appears to be the primary 

agent for low-contrast signals. In mesopic vision, this mechanism includes the 

rod pathway, in which AII amacrine cells play a role as transmitters of the rod 

bipolar signal to cone bipolar cells. Additionally, the scaling of the signals from 

the ON and OFF pathways is also an important factor underlying retinal contrast 

enhancement.  

Through this model, this study hopes to have clarified one important aspect 

of contrast adjustment, with regard to the relative effectiveness of the ON and 

OFF pathways and their integration. Furthermore, this study is expected to 

provide some insight into how the contrast control mechanism can be 
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reconstructed in the damaged retina via retinal prostheses. New epiretinal 

prosthetic designs should take into account the different natures and roles of ON 

and OFF pathways when stimulating ganglion cells in the hope of emulating 

accurate dendritic integration.
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CHAPTER 8 

A RETINAL MODEL OF COLOUR ADJUSTMENT 

8.1 Introduction 

In previous chapters, the roles of receptive field heterogeneity and contrast 

enhancement were highlighted and examined through different simulations. The 

aim of these simulations is to inform the development of retinal prostheses in the 

near future, wshen high-resolution vision will be possible and contrast adjustment 

will help the blind to recognize and differentiate objects under conditions of low 

light. In this chapter, the aim is redirected to colour enhancement, in order to 

improve colour perception in future retinal prostheses whereby the blind will be 

able to perceive colour vision. In order to achieve this goal, the connectivity and 

mechanism of colour correction must be addressed by simulating the colour 

processing circuit in the retina. This section will give a brief review on colour 

correction, and the later sections will describe the colour pathway in the retina, the 

proposed model used, model simulation, and the simulation results. Finally, the 

results will be discussed from the perspective of how colour correction can be 

realized in future retinal prostheses. 

In the last decades, colour correction has received considerable attention from 

vision researchers for the purpose of restoring images (distorted due to different 

light conditions) back to their original colour (Young and Kelland, 1845; 
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Helmholtz, 1867; von Frey, 1903; von Kries and In, 1905; Helson and Jeffers, 1940; 

Judd, 1940; Hering et al., 1964; Land and McCann, 1971; Kuehni, 1997). To 

achieve this goal, many different approaches have been developed, both from the 

image processing perspective with algorithms such as Grey World (Buchsbaum, 

1980; Barnard, Ciurea and Funt, 2002), max-RGB (Maloney, 1986; Maloney and 

Wandell, 1986), Shades of Grey (Horn, 1974; Finlayson, 1996), Grey-Edge (West 

and Brill, 1982; Lebedev and Marshak, 2007), and weighted Grey-Edge (Finlayson, 

Drew and Funt, 1994; Gijsenij, Gevers and van de Weijer, 2012) and from the 

biologically inspired perspective with algorithms such as Retinex and extended-

Retinex (Land and McCann, 1971; Hurlbert, 1989; Barnard and Funt, 1999; Funt 

and Ciurea, 2001; Spitzer and Semo, 2002; Funt and Xiong, 2004; Meylan and 

Süsstrunk, 2004; Gao et al., 2013; Ureña, Morillas and Pelayo, 2013). In this 

chapter, a model for colour correction in the retina was developed following the 

biological approach to explore the connectivity of the colour pathway involving 

cone; red, green, and blue bipolar; amacrine; and ganglion cells. This model focuses 

on the spatial and temporal responses of ganglion cells in order to establish the 

relationship between the colour correction mechanism and the spiking behaviours 

of ganglion cells. As described in the previous chapters, the model was 

implemented with receptive field and contrast processing pathways to examine the 

Hermann grid (Kien et al., 2012) and adjust contrast in mesopic conditions, 

respectively. From this �foundational� model, the colour pathway was added to 
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restore colour in different lighting conditions in the spatial domain and to encode 

that signal in the temporal domain.  

Apart from the model�s colour correcting capabilities, its response in the 

temporal domain also emphasizes the origin of the blue-OFF signal in colour 

coding. Initially, the blue-OFF signal was believed to be absent from the colour 

pathway, but later studies have shown that it may exist as a simple inversion of the 

blue-ON signal (Roska, Molnar and Werblin, 2013). An overview of the retinal 

colour pathway will be summarized in the next section, followed by a description 

of the model, experiments, results, and discussion in subsequent sections. 

8.2 Colour pathway and colour correction in the retina 

A high-level understanding of the colour pathway in the primate retina is illustrated 

in Figure 8.1. As described in CHAPTER 5, the retina encodes colour information 

and then transfers this information to the brain at the lateral geniculate nucleus 

through the optic nerve. These signals are then decoded by an area called V4 in 

human cortex, which is believed to restore the original colour of objects under 

various light conditions such as outdoor, indoor, moonlight, or light bulb. Midget 

amacrine cells that receive signals from bipolar cells and send inhibitory signals to 

midget ganglion cells are also involved in correcting colour information in the 

retina. The signal integration at ganglion cells was based on the receptive field 

concept, in which the centre receptive field cells receive signals from midget 
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bipolar cells and midget amacrine cells and convey them to cells in the surround 

receptive field. Note that receptive fields vary across species, both in terms of type 

and shape. For instance, goldfish have double-opponent receptive fields, while 

humans have concentric double-opponent receptive fields. 

 

Figure 8.1: The retinal colour pathway. 

 

Some evidence suggests that the colour correction process also occurs in the 

retina, although V4 has been strongly believed to play a major role participate in 

this function. Van Leeuwen et al. discussed colour correction at the horizontal cell 
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layer (van Leeuwen M T, Numan R, 2004; Vanleeuwen et al., 2007), while Spitzer 

and Rosenbluth and Maksimova discussed this mechanism at the ganglion cell layer 

(Maksimova, 1977; Spitzer and Rosenbluth, 2002). In this study, a hypothesis for 

colour correction is proposed based on a non-linear circuit at the ganglion cell level, 

with midget amacrine cells as critical factors for known spatial and temporal 

responses. 

8.3 Colour correction hypothesis 

As mentioned above, midget amacrine cells are the focus of this chapter due to the 

contribution of their non-linear synapses to the colour correction process. Lebedev 

and Marshak stated that ON and OFF amacrine cells are involved in establishing 

colour constancy in the retina. The theory presented in this thesis extends this claim 

and hypothesizes that midget amacrine cells may adjust the signal from long (L), 

medium (M), and short (S) pathways to adjust the colour information via their 

circuitry to ganglion cells. Based on the fact that ON and OFF midget amacrine 

cells synapse on both ON and OFF ganglion cells and bipolar cells, the present 

thesis proposes that the non-linear connection originating from these amacrine cells 

is critical to the modulation of the proposed colour correction mechanism. This 

non-linearity is applied to all synapses between bipolar, amacrine, and ganglion 

cells, where ganglion cell receptive field centres result from bipolar cell signals and 

receptive field surrounds from amacrine cells, and where each receptive field-
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contributing cell is affected by adjacent cells via gap junctions. According to 

Schwartz and Rieke, such non-linearity is important for producing inhibitory 

signals from amacrine cells to ganglion cells compared to linear spatial integration 

(Schwartz and Rieke, 2011). The next section will describe this non-linear synapse 

between midget amacrine and midget ganglion cells.  

8.4 The model of colour processing in the retina 

In previous chapters, the �foundation� of this model is presented, consisting of 

photoreceptor, horizontal, bipolar, amacrine, and ganglion cell layers and with each 

cell in each layer connected to other cells in the same layer as well as to cells in 

other layers. In CHAPTER 7, a rod pathway was also developed to demonstrate 

retinal processing under mesopic conditions, and the results demonstrated that the 

model was capable of contrast enhancement in both low- and high-contrast 

conditions. In particular, AII amacrine cells were connected to the OFF cone 

pathway via chemical synapses and the ON cone bipolar cells via gap junctions. In 

this chapter, the model has been extended by adding a colour pathway involving 

midget bipolar, midget amacrine, and ganglion cells. Furthermore, the rod pathway 

has been disabled, as rods are deactivated in colour vision according to Sugita et al. 

(Sugita and Tasaki, 1988). Figure 5.8 illustrates the details of the implemented 

colour pathway in the retinal model. As shown in Figure 5.8, the model contains 

spatial (SF) and temporal filters (TF) to generate spatial responses at each layer. 
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The spatial filters are applied to generate outputs at photoreceptors, horizontal cells, 

and bipolar cells, and the temporal filters are applied to simulate the suppression of 

the output at each layer (Decuypere and Capron, 2011). The spatial and temporal 

filters are described in sections 5.2. 

Photoreceptor, bipolar, amacrine and ganglion layers were implemented in this 

model to process different connectivity patterns for colour vision. The input signal 

was split into three different signals for corresponding channels such as L, M, and 

S, which were then fed to bipolar cells after going through SF and TF, as in equation 

5.2. At the bipolar cell layer, these cone signals were used as excitatory inputs in 

bipolar receptor fields for different types of bipolar cell. The inhibitory signals were 

taken from horizontal cells, which in turn were generated from photoreceptor inputs 

using different sets of parameters. For colour vision, H1 and H2 horizontal cells 

were implemented to receive input from L and M cones and from M and S cones, 

respectively. The excitatory and inhibitory signals were used to compute the output 

from bipolar cells according to equation 5.3, as also described in sections 5.2. 

Applying this equation to different cone pathways in colour vision as in Figure 5.8, 

L and M bipolar cells received excitatory signals from L and M cones, respectively, 

and inhibitory signals from H1 horizontal cells, while S bipolar cells integrated 

signals from S cones and H2 cells. This arrangement resulted in six types of bipolar 

cells, as described in section 5.5 was also used to generate signals from ganglion 

cells, with excitatory signals taken from bipolar cells and inhibitory signals from 
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amacrine cells. As can be seen in Figure 5.8, the signals from amacrine cells were 

generated from bipolar cells and used in the IPL layer primarily as surround signals 

for ganglion cell receptor fields. 

As mentioned in previous sections, the synapses between bipolar, ganglion, 

and amacrine cells were hypothesized to be a crucial factors behind the retinal 

colour correction mechanism. Maloney and Wandell and other authors (Maloney, 

1986; Maloney and Wandell, 1986; Gomila Salas and Lisani, 2011) stated the 

equation for recovering surface reflection as 

 Output = )ଶ(ݐݑ݊ܫ)
భమఴషಾభమఴ )

  
 

8.1 

In equation 8.1, the input refers to an image, and M refers to a mask generated by 

applying a Gaussian filter to the inverted input image. The mask is defined by 

equation 8.2: 

 
(ݕ,ݔ)ܯ = (ݕ,ݔ)݊ܽ݅ݏݏݑܽܩ כ (255െ   ((ݕ,ݔ)ܫ

 

8.2 

 

The Gaussian filter was applied to the inverted version of the input image in order 

to adjust the light and dark regions of the image: dark regions were lightened while 

light regions were darkened. 

In equation 8.1 the range of colour values can range from 0 to 255, but in the 

proposed model the range is from 0 to 1. Hence equation 8.1 becomes: 

 
Output = ଶቌభమషಾభమ(ݐݑ݊ܫ) ቍ

 

 

 

  Output = ଶ(భషమಾ)(ݐݑ݊ܫ)
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  Output = ((భషೠ)כಸೌೠೞೞೌ)ଶ(భషమ(ݐݑ݊ܫ)
 

  

  Output = ((ೠכభషಸೌೠೞೞೌ)భషమ)ଶ(ݐݑ݊ܫ)
 

8.3 

  Output = (ೠషభכಸೌೠೞೞೌכమ)ଶ(ݐݑ݊ܫ)
 

 

  Output =   ଶ൫మಾᇲషభ൯(ݐݑ݊ܫ)

 

where M′ is the mask image generated from convolving the Gaussian filter with the 

input image. Finally, the equation for adjusting surface reflection can be written in 

the form of equation 8.4: 

 Output = ଶమಾᇲషభݐݑ݊ܫ   
 

8.4 

 

As above, M′ is defined as a masked image resulting from convolving a Gaussian 

filter with the input image. In the proposed model, M′ corresponds to the signal 

originating from midget bipolar cells that synapse onto ganglion cells. As explained 

by Gomila Salas and Lisani (Gomila Salas and Lisani, 2011), the M′ mask image 

is a blurred version of the input image using a Gaussian filter. The purpose of this 

filter is to ignore redundant features in the image, which is consistent with the report 

of Bloomfield and Völgyi (Bloomfield and Völgyi, 2009) stating that the lateral 

inhibition provided by midget amacrine cells leads to a reduction of unnecessary 

details. After mapping the equation to the underlying retinal circuitry, equation 8.4 

becomes equation 8.5: 

 Ganglion = ଶమಲೌೝ ష భݎ݈ܽ݅ܤ
 

 

8.5 
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where the input signals are mapped to inputs from bipolar and amacrine cells and 

output signals are mapped to ganglion cells.  

In this chapter, a spiking network at the ganglion cell layer was also 

implemented to study the temporal responses of different types of ganglion cells in 

colour vision, as can be seen in Figure 5.8. The network was constructed based on 

a neuron model by Izhikevich (Izhikevich, 2003), which was chosen for its 

computational efficiency and sufficient realism based on the objectives of this 

thesis. The spiking model was based on equation 5.4. For the spatial domain, all 

ganglion cells were connected with centre-surround antagonism for red-green, 

green-red, and blue-yellow ganglion cells, as depicted in Figure 5.8 . These cells 

were used to analyse the temporal responses of ganglion cells in colour correction 

as mentioned above. 

8.5 Experimental setups 

Four different experiments were conducted to simulate the colour correction 

capabilities of the model. In the first simulation, the spatial outputs of the model 

were compared to colour-deficient images. In this test, the colour channel in the 

model was deactivated successively from red, green, and blue in order to simulate 

different forms of colour blindness. This experiment acted somewhat as a �reality 

check� to verify that the model was correctly implemented and validate that the 

model did indeed possess the necessary rudiments for colour representation and 
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therefore colour processing. The input was taken from Ishihara colour-blindness 

test patterns (Ishihara, 1943), and the dichromatic outputs were produced using an 

image-processing tool called Fiji (Schindelin et al., 2012). In general there are three 

main types of colour blindness, protanopia, deuteranopia, and tritanopia. 

Protanopia results from missing red cones, and people with this disease only see 

green and blue. People with deuteranopia, in turn, see only red and blue, and in 

tritanopia, the perception of blue is lacking (Ishihara, 1943). In this experiment, 

deuteranopia was examined because it is easier to observe the effects of this 

condition using Ishihara plates. In the second experiment the colour correction 

capability of the model was verified by visually observing and comparing the 

outputs from the model to the reference outputs generated from other algorithms 

including Grey-World, Shades of Grey, Grey-Edge, Weighted Grey-Edge, and 

Retinex. To make the comparison clearer, root mean square error (RMSE) was used 

to measure the difference between model outputs and ideal images as well as 

reference images and ideal images. The ideal images were generated using 

histogram equalization for each colour channel. The final experiment focused on 

the response properties of ganglion cells in the temporal domain, which included 

an examination of the spiking synchronization of ON and OFF blue ganglion cells. 
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8.6 Results 

In the first experiment, the pattern plates from Ishihara�s book (Ishihara, 1943) were 

inputted into the model to simulate colour-blind vision, and the simulated outputs 

were visually compared to outputs from Fiji software. Figure 8.2 depicts the inputs, 

the proposed model simulated outputs, outputs from Fiji, and visual outputs by the 

human naked eye from top to bottom for comparison.  

In Figure 8.2, only number 2, number 4, and the upper half of the line pattern 

are visible with sufficient intensity and contrast in the outputs from the simulated 

model, which is consistent with the output from Fiji. This result provides some 

preliminary verification and validation that the colour circuitry inside the model is 

correctly implemented and adequate for modelling colour processing. 

Figure 8.3 depicts the resulting outputs that were generated by simulating the 

model with input images under different lighting conditions. Input images resulting 

from scenes under different lighting conditions (top row) were transformed into 

model outputs (middle row), which were verified by visual inspection. The results 

show that the simulated outputs were more similar to the ground truth images 

(bottom row), meaning that colour correction did indeed occur in the model. 

For instance, the colour of leaves (first column) and the surface of papers 

(second column) were adjusted to their original colour under �white� light. The 

same observation applies to the third and fourth columns, where the reddish and 
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yellowish walls were adjusted to white, as would be expected from colour 

constancy in human perception. 

 

Figure 8.2: Results for simulated deuteranopia. The top row corresponds to the 

input images, consisting of three Ishihara plates (26, 42, and a line pattern from left 

to right). The second row depicts the model outputs, whereas the third row depicts 

outputs from Fiji. The last row depicts what should be perceived with normal 

vision. In this experiment, subjects with normal vision can see the complete pattern 
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on each plate (26, 42, and line pattern from left to right), whereas subjects with 

deuteranopia can see only limited content in the plates. 

 

 

Figure 8.3: Colour correction output from the model. Four different input images 

are shown in the first row. The second row depicts the output from the model, and 

the third row depicts the original image without colour distortion. 

 

Figure 8.4 compares output images from the model and other standard 

algorithms in the field of colour correction. In this figure, two images were selected 

from the dataset: the garden and Mondrian-style scenes. This experiment tested the 

capacity of the model to adjust colour under outdoor and indoor lighting conditions 

(i.e., the garden and Mondrian scenes, respectively) and generate colour perception 

similar to other approaches. This capacity was confirmed using a dataset of 100 
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images acquired from Gehler et al. (Gehler et al., 2008), as shown in Figure 8.5 and 

Figure 8.6, which illustrate the RMSE between the output and ideal images for the 

proposed retinal model and seven other algorithms Bayesian Estimation, Gamut 

Mapping, Grey World, Shades of Grey, Grey-Edge, weighted Grey-Edge, and 

Retinex).  

 

Figure 8.4: Comparison of the proposed model outcomes with output images from 

other approaches. The first two rows display the outputs generated using the garden 

scene as input. From left to right, the outputs of the proposed model, Grey World, 
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Shades of Grey, and Grey-Edge approaches are shown in the first row, and those of 

the weighted Grey-Edge and Retinex approaches and the ideal image are shown in 

the second row. The next two rows display the outputs generated using the 

Mondrian-style scene as input. The relative positions of various approaches are the 

same as in the first two rows. For each input image, the root mean square error 

distances from each output image to the ideal images are also included. 

 

 

 

Figure 8.5: The root mean square error (RMSE) from several standard algorithms 

compared to that of the proposed model. The dataset consists of a set of 100 images 

acquired from Gehler et al. (Gehler et al., 2008). Apart from the proposed model, 

seven algorithms were utilized to generate the RMSE curves (from top to bottom): 

Bayesian Estimation, Gamut Mapping, Grey World, Shades of Grey, Grey-Edge, 

weighted Grey-Edge, and Retinex. The last row corresponds to the RMSE of the 

proposed retinal model. The x-axis indicates image index. Note that the first 50 

images are indoor images, and the remaining 50 are outdoor images. The y-axis 

indicates the error of the output images compared to the corresponding ground 

truths, which is scaled for visualization purposes. 

 

Figure 8.6 illustrates the number of outputs for which each algorithm had the 

lowest RMSE. The outputs of the proposed retinal model had the lowest RMSE 

from ideal images in 56% of indoor scenes (28/50) and 36% of outdoor scenes 

(18/50) compared to the outputs of the other seven algorithms.  
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Figure 8.6: Comparison of RMSE across eight different algorithms, derived from 

Figure 8.5. The chart shows the percentage of lowest RMSE across all datasets (i.e. 

a bar at 10% indicates that 10% of output images (5/50) have the lowest RMSE 

using that approach). According to these results, Retinex was the overall best colour 

correction algorithm, followed closely by the proposed model. 

 

In the final experiment, the model was set up to generate temporal responses 

from 29 ganglion cells within a 7×7 centre-surround receptive field configuration, 

which is illustrated in Figure 8.7. The temporal outputs from ganglion cells in the 

final experiment are shown in Figure 8.8 and Figure Figure 8.9. Figure 8.8 

illustrates the ON and OFF responses of blue ganglion cells in general, while Figure 

8.9 provides more detail pertaining to the temporal response patterns of these cells. 

In Figure 8.8, the surround cells are highlighted in red rectangles while the centre 
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cells are green, and these ganglion cells were used to analyse spiking 

synchronization in Figure 8.9. 

 

Figure 8.7: Connective topology of ganglion cell receptive fields. On the left, 29 

ganglion cells are arranged in a 7×7 grid according to a centre-surround receptive 

field configuration. The middle diagram illustrates centre-to-centre synapses (blue 

line) and centre-to-surround synapses (purple line), while the diagram on the right 

depicts connections in the opposite direction. 

 

In Figure 8.7, the middle map describes connections from centre cells to 

surround cells, while the map on the right displays connections from surround cells 

to centre cells. The blue lines in both diagrams indicate connections from one cell 

to its neighbouring cells within the central region of a receptive field, while purple 

lines represent connections with cells in the surround regions of the receptive field. 

Note that these connections are bi-directional for both centre-centre and centre-

surround cases. Receptive field surround cells consist of amacrine cells, and 

therefore the connections between centre and surround cells consist of synapses and 

gap junctions between ganglion cells and amacrine cells. Centre-centre connections 

involve synapses and gap junctions involving either bipolar or ganglion cells. 
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Figure 8.8 illustrates responses from 29 ganglion cells in the receptive field as 

depicted in Figure 8.7. In this figure, the red rectangles indicate blue ganglion cells 

in the surround regions of a central ganglion cell, as illustrated by the cells in red 

squares in Figure 8.7. Green lines indicate ganglion cell responses with inhibition 

from amacrine cells, whereas blue lines indicate responses without amacrine cell 

involvement. The x-axis depicts the timeline in milliseconds, and the y-axis 

indicates the index of different spiking neurons. From top to bottom, there are 29 

lines and each line presents the spiking frequency of one ganglion cell. The 

ganglion cells illustrated in this experiment are Blue-ON/Yellow-OFF and Blue-

OFF/Yellow-ON. These cells are the major output pathways from the retina for 

colour processing. All spikes are aligned in order to compare the responses of 

ganglion cells when there are amacrine cells and no amacrine cells involved in 

processing colour information. In particular, green spike trains indicate the 

responses of ganglion cells with amacrine cells involved, while blue spikes 

represent responses with amacrine cells connected to the surround receptive field. 

Conversely, Figure 8.9 illustrates the analysis of 16 ganglion cells in the surround 

receptive field. The spiking neurons are taken from Figure 8.8 and aligned for 

comparison purposes. The ON and OFF ganglion cells are depicted in blue and red 

rectangles, respectively. Green lines indicate responses with inhibition from 

amacrine cells, whereas blue lines depict responses without amacrine cell 

involvement. The green and red shaded columns indicate the firing periods of ON 
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and OFF ganglion cell respectively. The x-axis depicts the timeline in milliseconds, 

and the y-axis indicates the index of different spiking neurons. Here only 16 cells 

from surround regions are depicted. Here this study just depicts only 16 cells from 

surround regions for analysis. This figure implies that the delay between with and 

without amacrine cells involved in ON and OFF pathways are highlighted by red 

and blue shading, respectively. 

8.7 Discussion 

In the first simulation, the model made plausible predictions regarding normal and 

abnormal perception and was verified using Ishihara patterns as inputs. Thus, the 

model faithfully reflected the perceptual symptoms experienced by people with   

colour blindness, providing a critical verification and preliminary validation step 

for subsequent experiments. According to Solomon and Lennie, amacrine cells are 

involved in signal inhibition of ganglion cells as a �mixed surround� (Solomon and 

Lennie, 2007), and Lebedev and Marshak confirmed that amacrine cells are also 

involved in forming colour opponency in ganglion cells (Lebedev and Marshak, 

2007), especially in the red and green opponency pathway. In addition, colour 

opponency is the core function of early colour correction in the retina (Gao et al., 

2013). Together, all these findings suggest that amacrine cells have a critical role 

in colour correction at ganglion cells via surround inhibition. The role of the retina  
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Figure 8.8: Temporal responses of blue ganglion cells from the proposed retinal model with ON and OFF responses on the left and right 

sides, respectively.  
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Figure 8.9: Spike synchronization analysis of ganglion cellswith and without amacrine cell involvement. 
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in general and the inner retina in particular are emphasized, thus strengthening the 

evidence supporting a crucial role of amacrine cells in colour correction. 

This result is consistent with the results of Roska et al. (Roska, Molnar and 

Werblin, 2013), who described a �push�pull� mechanism in ON and OFF ganglion 

cells whereby the ganglion cells simultaneously excite ON cells and inhibit OFF 

cells via an amacrine cell-dependent mechanism. In addition, Masland et al. 

reported an interneuron that is responsible for converting ON signals to OFF signals 

to generate the retinal blue-OFF signal. The results in this chapter indicate that 

amacrine cells control this mechanism by creating a delay in spike timing for the 

synchronization of signals between ON and OFF ganglion cells, and this finding 

may further support the hypothesis of Masland et al. to resolve the mystery behind 

the creation of blue-OFF signals in the retina (Masland, 2012).  

The results generated by different simulations in this chapter present the 

connectivity of colour correction, with amacrine cells playing a crucial role in 

mediating the signals from bipolar and ganglion cells in a �push�pull� fashion. This 

finding is helpful in terms of understanding information processing in the retina, 

because if the behaviours of ganglion cells are understood properly, the simulations 

of ganglion cells can be more precise and efficient. Specifically, blue-OFF signals 

can be generated by stimulating only ON signals, thus necessitating the use of fewer 

stimulating electrodes and saving more energy. Although more exploration in the 

area of colour correction in the retina is needed, this result gives futuristic vision to 
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research in the development of retinal prostheses that can make colour vision 

possible for the blind. 

Although the model is successful in simulating and also highlights the role of 

amacrine cells in processing colour in the retina, future works are needed to 

improve the complement of the model. In particular, the ratio between L, M, and S 

cones as well as the ratio between rods and cones in this study was set to uniform; 

thus the outputs will be affected while set to a different ratio. More research is 

needed to address the relationship between this distribution and the asymmetrical 

connectivity pattern in the receptive field. 

8.8 Summary 

In summary, the proposed model provides supporting evidence for the hypothesis 

that colour correction mechanisms do indeed take place in the retina, particularly 

in the IPL and with the crucial involvement of amacrine cells. The effect of 

amacrine cells can be seen mainly in ON ganglion cells, where specific connectivity 

patterns cause ganglion cells to respond in a �push�pull� fashion. Together with 

previous retinal modelling studies, this chapter provides a deeper understanding of 

information processing up to the level of retinal ganglion cells. Based on the 

knowledge gained from this and all previous simulations, design concepts for next-

generation retinal prostheses are introduced in the next chapter.
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Discussion 

In the previous sections, the functionalities of the proposed model were 

validated for aspects of information processing by using alternative receptive 

field formations and computing contrast and colour under different conditions. 

These experiments demonstrate that the model is able to operate as a retina in a 

biological context by encoding visual inputs to spike trains and adjusting the 

contrast and colour of input signals through image processing. Notably, the 

model was able to replicate the Hermann grid illusion and produced visual 

outputs similar to those perceived by the naked eye when a non-circular 

processing distribution was applied to the receptive field. With this 

asymmetrical processing formation, the illusion created by the Hermann grid 

can be fully explained in the case of various geometrical transformations such 

as scaling, rotating, and distorting the grid.  

In addition, the model is also able to process contrast and colour 

information to generate spatial and temporal outputs by simulating information 

processing circuits that involve different types of amacrine cells. The results 

from these simulations show that in order to process contrast and colour 

information under specific light conditions such as mesopic and photopic, the 
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retina must process information in different ON and OFF pathways, and this 

process occurs in parallel with the inhibition of amacrine cells. These visual and 

temporal results imply that asymmetrical and parallel processing approaches are 

necessary for the retina to elicit visual perception properly and precisely. 

Furthermore, these results are helpful for the design of the next-generation 

prostheses, because devices in the future may be able to assist the blind to 

perceive and interact with objects in colour. This chapter will introduce a 

conceptual design for next-generation retinal prostheses in three sections: the 

device concept in general, and the hardware and software implementation in 

detail.  

9.1.1 Device concept 

The major function of a retinal prosthesis is to restore vision to the blind, and 

this device should operate comfortably over a long term without causing any 

damage to the user. In order to achieve this goal, the conceptual device must 

fulfil some compulsory requirements: 

• First, the prosthesis device, especially the external part, should have a 

compact size to be easily wearable or comfortably carried throughout all 

daily activities. 

• Second, the power to supply the device must be long lasting for 

continuous usage.  

• Third, the implanted component inside the eye must be comfortable and 

should not cause any side effects after implantation. 
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The retinal prosthesis consists of intraocular and extra-ocular parts, which 

are placed inside and outside the eye, respectively. The intraocular part is 

responsible for stimulation, while the extra-ocular part is for processing, 

powering the device, and transferring data to the intraocular part. Due to this 

arrangement, users need to carry both parts while using the device, making its 

size and weight important factors. Since users will carry the external component 

throughout their daily activities, a lighter-weight device will be more 

comfortable and easier to carry. Thus, the first criterion is a lightweight and 

wearable device that can be attached or placed inside users� clothing and that 

operates using a wireless power supply, so that it can be worn without 

interfering with daily activities.  

This leads to the second requirement, that the power capacity of the device 

be sufficiently large, and the charging time sufficiently short, to allow the device 

to operate for a long time and be easy to use whenever desired. For the purpose 

of portability, the power source of the prosthesis should be a rechargeable 

battery with a large capacity but small in size. This battery will be attached to 

the external device and supply power to both the internal and external parts of 

the prosthesis. Such a lightweight design combined with a high-capacity battery 

should be sufficient for the prosthesis to operate continuously over a long period 

without recharging and for users to have no difficulty carrying the device in 

daily activities. On the other hand, the intra-ocular part of the device must be 

improved not only in the design level but also in the manufacture level in order 
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to provide comfort to the user and not damage the retina over the long-term use. 

The next section will describe the concept of the intraocular part and discuss 

possibilities to implement these concepts in the near future. 

9.1.2 Intraocular part 

In the retinal prosthesis review in CHAPTER 3, different prosthesis approaches 

were reviewed with respect to the design and the implantation positions in the 

blind. Currently, only epiretinal and subretinal prostheses are approved for 

human trials and commercial purposes; hence this chapter focuses on these 

devices for the possible development of the proposed concept prosthesis in the 

future. In epiretinal prostheses, the intraocular part consists of an electrode array 

that is implanted to contact the ganglion cell layer, while in subretinal prostheses 

it contacts the bipolar cell layer. This section will discuss the intraocular part, 

consisting of an electrode array to stimulate the retinal cells, and the placement 

of this part inside the retina as well as the arrangement of electrodes in the array.  

As discussed in the previous section, nanotechnology could be a key to 

solving the problems in the design and manufacturing of a prosthesis electrode 

array. Using nanotechnology, the size of one electrode can be minimized, and 

thus more electrodes can be placed in the array to increase the resolution of the 

image perceived by the user. In the current prostheses, the resolution is 60 pixels 

in the Argus II epiretinal prosthesis and 1500 pixels in the Alpha-IMS subretinal 

prosthesis. In addition to improving the resolution of the future devices, smaller 

electrodes have many other advantages. The reduced size of electrodes will help 
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them penetrate further to make better contact with the ganglion cells, thus 

reducing the cross-talk effect in the stimulation. Smaller electrodes will also 

help to stimulate ganglion cells more precisely and also to reduce the 

stimulation current, thus improving the overall usage time of the device. 

Moreover, precise stimulation will help to reduce damage to retinal cells 

because only the necessary cells are stimulated. Based on these advantages, 

nanotechnology is a compulsory technology in the concept design.  

In the current retinal prostheses, the electrodes are designed symmetrically 

in an array as a grid with fixed gaps between electrodes. In our proposed device, 

the electrodes will be placed dynamically on an array, and each electrode will 

be movable to change the grid topology. Thus, depending on the patient�s retinal 

cell population, the position of each electrode can be configured to match the 

distribution of stimulated cells. This concept arises from the fact that the retinal 

cells are distributed differently among people and from the modelling results in 

the previous chapters. In particular, the results of the experiment assessing the 

receptive field of the proposed model with the Hermann grid (CHAPTER 6) 

demonstrated that it was possible for the receptive field to be a shape other than 

circular, and this issue has been emphasized by other authors as well (Gijsenij, 

Gevers and van de Weijer, 2012). With a position-configurable mechanism, the 

electrodes could more easily penetrate the ganglion cell or bipolar cell layer 

with a custom shape and thus stimulate only the necessary cells. For example, 

at the initial stage, the electrodes of the prosthesis may be immobile and form a 
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standard shape, but upon contact with the retinal cells each electrode can be 

moved to a position corresponding to the cell population. Thus the electrode 

grid will match the receptive field shape formed by the retinal cells. The 

rearrangement of electrodes can be processed as a precise speed in order to 

reduce the cell damage and migration in the ganglion cell layer. This concept is 

illustrated in Figure 9.1 and Figure 9.2. 

In Figure 9.1, the prosthesis consists of two major parts: internal and 

external. The external part is a small pocket-sized device that can be worn on 

the arm or carried in the pocket (number 1). The internal part is a contact lens 

that can be placed on the eyeball and consists of: a circular antenna for wireless 

transmission of energy and data between internal and external parts (number 2); 

three different sensors, an RGB colour sensor, depth sensor, and retinal health 

sensor (number 3); and an electrical stimulation array at the back that attaches 

to the retina (number 4). Number 5 depicts a close look at one electrode placed 

on the electrode array. 

In Figure 9.2, one can see that the electrodes are allowed to move not only 

on the electrode plane but also in the depth direction. This functionality helps 

the electrodes to penetrate deeper into the retinal cells and thus provides better 

contact with the retinal cells. In this manner, the electrode piles remain stable in 

the retina, and the retinal cell movement or migration is reduced after electrodes 

are implanted. On the left is the array of electrodes at an initial position, and on 

the right are the same electrodes but with the position of each one re-arranged  
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Figure 9.1: The conceptual prosthesis. 

 

Figure 9.2: The electrode array in operation. 

to match the population of ganglion cells in an epiretinal prosthesis or bipolar 

cells in a subretinal prosthesis. Consequently, the device will operate for a 

longer period of time without causing damage to the retina. Furthermore, with 

the small and mobilized electrodes, the energy required for stimulation is 

reduced, as the electrodes contact and stimulate retinal cells precisely, and less 
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power is required to the intraocular part, thus improving battery life for the 

whole device.  

The green and red hexagons on the right side indicate electrodes that 

stimulate centre and surround cells to form the receptive field, respectively. The 

advancement of this concept in the near future is predicated on the development 

of nanotechnologies, especially research in nano-mechanical systems (NEMS) 

and the discovery of the carbon nanotube (CNT), along with nano-wires, nano-

coils, nano-walls, and other nano-materials (Iijima, 1991; Morales and Lieber, 

1998; Pan, Dai and Wang, 2001). Currently, with the help of these technologies, 

some approaches have been introduced in the last decade for developing 

nanoscale mechanical systems. In 1999, Baughman et al. introduced a NEMS 

actuator assembled from billions of individual nanoscale actuators with muscle-

like material strength, low operating voltages, and longer usage life (Baughman 

et al., 1999). Fennimore et al. in 2003 and Dong et al. in 2006 presented a 

rotational actuator and linear servomotor, respectively, assembled from multi-

walled CNTs that were able to perform motions like rotating and protruding 

(Dong, Nelson and Fukuda, 2006; Nelson et al., 2007). The same avenue was 

explored by Bailey et al. in 2008 when they proposed a driving mechanism 

called a CNT electron windmill that rotates a nanotube using the torque 

generated from a flux of electrons, a mechanism that could be applied to make 

a nanoscale motor (Bailey, Amanatidis and Lambert, 2008). In 2012, Hao et al. 

applied single-walled CNTs to make more efficient and robust solar cells with 
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a lower cost compared to traditional silicon-based solar cells (Hao et al., 2012). 

Most directly relevant to retinal prosthesis development, Andrew and his team 

in 2006 developed a nano-electrode array assembled from multiwall CNTs in 

order to provide deep brain stimulation as well as more precise electrical signals 

(Andrews et al., 2006).  

From this brief review on the recent advances and applications of 

nanotechnology, the reality of a reconfigurable electrode array in the future is 

possible with CNTs and variant materials. Specifically, a nano-electrode will be 

placed on a three-axis servo made from CNTs, with the servo direction 

controlled by a nanoscale motor using electron flux. With the aid of this 

servomotor, the electrode will be able to penetrate deeper to the retinal cells to 

provide more precise stimulation and minimize damage. 

In terms of visual quality, the current prostheses provide resolution of 60 

pixels in total, and users are able to perceive only 2D vision in black and white 

dots (Ahuja and Behrend, 2013). In the next generation of devices, different 

visual information such as depth and colour will be acquired, processed, and 

then sent to the brain to improve users� visual perception. Recently, different 

approaches have been proposed by Stiles et al. and McCarthy et al. to solve the 

problem of depth perception (McCarthy and Barnes, 2011; McCarthy, Barnes 

and Lieby, 2011; Stiles et al., 2014). Stiles and colleagues used ground surface 

segmentation and visualized depth information based on the intensity of elicited 

phosphenes (i.e. closer objects elicit larger phosphenes) to visualize depth and 
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obstacles in low resolution, while McCarthy and his team applied image 

processing algorithms such as pixelation and filtering to visualize depth 

information. In the next-generation device, a depth sensor will be integrated as 

a visual acquisition component to transfer depth information to the processing 

component and ultimately to the brain by stimulating both Parvo and Magno 

ganglion cells (i.e. midget and parasol ganglion cells). In terms of colour 

information, colour correction results from experiments using the proposed 

model suggest that ON and OFF channels play an important role in altering 

colour information through inhibition of the OFF channel and excitation of the 

ON channel via amacrine cells. In current prostheses, only the ON or OFF 

channel is stimulated due to limited hardware, but in the conceptual prosthesis, 

with help from nanotechnology, this obstacle can be overcome by stimulating 

ON and OFF channels concurrently. As discussed earlier, an increased number 

of stimulating electrodes, and thus increased coverage area of the electrode 

array, will help to achieve concurrent stimulation.  

9.1.3 Extra-ocular part 

In current epiretinal and subretinal prostheses, a camera is used to acquire visual 

scenes and mounted on a glass for users to wear. In this conceptual design, the 

camera size is reduced and mounted on a contact lens instead of a glass. This 

lens consists of three sensors: an RGB sensor for image, a depth sensor for 

stereo information, and a retinal health care sensor to check the condition of the 

retina. With the depth information from the depth sensor, users will be able to 
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receive a stereo signal about the surrounding environment and use this 

information to dodge obstacles while navigating. The last type of sensor which 

is used to observe and inform the user about the health status of the retina so 

that users can stop using the prosthesis when the retina is diagnosed as needing 

a rest. It can also provide information about the status of the retina to doctors to 

detect any possible issues. This concept is based on the current state of research 

in embedding technology into the optic lens in order to monitor glucose levels 

and pressure in the eye, according to Google (Suzanne, 2014). With the visual 

acquisition component on the lens, users will be able to control the gaze of the 

eye and thus increase their comfort and convenience while using the device. 

Data and energy transfer between this lens and external components will occur 

through wireless communication. 

9.1.4 Informational configuration components 

As mentioned in the previous sections, the results of simulating different types 

of information processing inside the retina imply that asymmetrical and parallel 

processing approaches are required in the future retinal devices to improve the 

quality of perceived vision. To achieve this goal without changing the hardware 

in the prostheses, the mapping process of electrical signals to the electrode array 

will be taken into account. Specifically, in the retinal prostheses that are built 

with current technologies, the electrodes are placed statically with a constant 

gap between electrodes; thus, the electrode array will provide a constant map of 

stimulation to the retinal cells. Although the electrodes are immobile, the 
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intensity of current applied to each electrode can be controlled through a 

software or hardware interface. Based on this technique, this thesis proposes a 

next-generation retinal prosthesis capable of information reconfiguration to 

match the electrical stimulation map to the target cells. The adjustment of 

electrical signals will be processed by the external hardware, and the user 

feedback will be used to improve the adjusted parameters.  

This approach was first introduced by Rolf Eckmiller and his team using 

a tunable retinal encoder and stimulator, as described in CHAPTER 3 

(Eckmiller, 1997; Eckmiller, Hünermann and Becker, 1999). The difference 

between this concept and the work of Eckmiller and colleagues is the electrode 

array used, together with the information configuration component. In the 

Eckmiller device and current prostheses, the electrode array consists of fixed 

electrodes, and thus the customization of stimulation is actually completed 

before reaching the electrode. The concept proposed in this thesis changes this 

system by introducing a reconfigurable electrode array that is able to provide 

different stimulation maps to the retinal cells. By using positioning 

reconfigurable electrodes, the conceptual device is expected to provide more 

precise stimulation to retinal cells and thus elicit the perception of useful visual 

information such as colour and depth for the blind.  

9.2 Conclusions 

In this thesis, a model of the retina is proposed with respect to receptive field 

processing and contrast and colour adjustment based on the knowledge gained 
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from existing retina prostheses and modelling results. In CHAPTER 3, different 

types of prostheses such as epiretinal, subretinal, optic nerve, and visual cortex 

prostheses are introduced, and their advantages and disadvantages are 

compared. CHAPTER 4 introduces various retinal modelling approaches from 

different authors that replicate visual processing pathways inside the retina. In 

this chapter, methods used to model retinal processing pathways are reviewed, 

along with their applications to both image processing and biological 

simulation. The next four chapters present the proposed model and theories 

about receptive field processing, contrast, and colour processing in the retina as 

well as experiments to evaluate the model responses and verify the theories 

proposed. The results from model simulations are then used to propose a design 

for next-generation prostheses. 

The key of this design is inspired by results from simulating receptive 

field responses of the model in the Hermann grid illusion showing that a non-

circular receptive field is possible for retinal processing and affects the spatial 

responses of ganglion cells. In the simulations of contrast and colour adjustment 

using the model, the role of ON and OFF channels in retinal processing was 

highlighted as a factor in enhancing contrast under mesopic conditions and 

adjusting colour under photopic conditions. Especially in colour adjustment 

experiments, the ON and OFF signals were generated simultaneously, with the 

ON signal excited and the OFF signal inhibited during the colour-adjusting 

process.  
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These results indicate that parallel and asymmetric stimulation affect the 

responses of ganglion cells, and these findings are major factors in the proposed 

concept for next-generation retinal prostheses. Thus, the retinal prosthesis 

design proposed in CHAPTER 9 is focused on the asymmetric and parallel 

stimulation characteristics of the device and how it can be implemented in the 

near future. The proposed concepts for retinal prostheses highlight the roles of 

asymmetrical and parallel stimulation as factors in designing the devices of the 

future. Although it will be a long time before the concept retinal prosthesis 

described in this thesis becomes a realistic device for human testing, this 

concept is expected to provide new avenues for other researchers in this field to 

explore more deeply in terms of device software, hardware, and bioengineering 

aspects. Using the proposed design, future retinal prostheses will be able to 

provide better visual perception through precise stimulation as well as restore 

colour and depth information to help the blind operate more flexibly but still 

feel comfortable when using the device over a long term. 

9.3 Future work 

This thesis presents a conceptual design of next generation retinal prostheses 

from various discoveries in processing pathways inside the retina. These 

explorations were based on the different experiments in connectivity, contrast, 

and colour processing in the retina through a retinal model. Although the results 

from the experiments using this model show the potential concept for next 

generation prostheses, there are limitations that need to be addressed, which are 
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the focus of future work. In the Hermann grid experiment, the response of the 

model to colour needs further exploration to examine the relationship between 

asymmetrical connectivity and the colour processing pathway. In the contrast 

processing experiment, the parameters can be optimized by increasing the 

number of contrast levels. In the colour processing experiment, the distribution 

of rods and cones in the photoreceptor layer can be adjusted to the ratio in 

humans to achieve results that are more accurate. By making these 

improvements, the future model may provide more evidence toward the concept 

of creating next-generation retinal prostheses that are more realistic and 

applicable. 

9.4 Summary 

In summary, this chapter presents a conceptual design for next-generation 

prostheses based on the knowledge gained through various experiments on the 

proposed model. Nanotechnology will play a key role in overcoming hardware 

limitations for manufacturing the device including both intraocular components 

and power supply. A small, compact, and powerful battery is required to provide 

sufficient energy to operate the device and aid users throughout their daily 

activities without recharging. Furthermore, nanotechnology will permit the 

construction of a shape-customizable stimulating electrode array used in the 

intraocular part to maximize stimulation efficiency. This concept originated 

from experimentation with the proposed model using the Hermann grid, with 

results indicating the feasibility of a retinal receptive field of non-circular shape. 
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A shape-customizable electrode array will provide better contact between 

electrodes and retinal cells, thus reducing adverse effects on retinal cells. 

Furthermore, this reconfigurable electrode array is combined with a 

reconfigurable electrical mapping tool to map the stimulating currents to target 

cells depending on the information provided to users such as depth, contrast, or 

colour. Moreover, peripheral components such as the image processing 

component are intended to be wearable and easily carried by users in order not 

to disturb them while using the device continuously in daily life. When device 

resolution is sufficiently increased, depth information, contrast, and colour can 

be provided to prosthesis users, to allow the blind to better experience their 

surrounding environment.  

192 
 



 

 

 

 

 

 
 

CHAPTER 10 

REFERENCES 

Abbott, L. . (1999) �Lapicque�s introduction of the integrate-and-fire model neuron (1907)�, Brain Research 

Bulletin, 50(5-6), pp. 303�304. doi: 10.1016/S0361-9230(99)00161-6. 

Adelson, E. H. (1982) �Saturation and adaptation in the rod system.�, Vision research, 22(10), pp. 1299�

1312. 

Agmon-Snir, H., Carr, C. and Rinzel, J. (1998) �The role of dendrites in auditory coincidence detection�, 

Nature, 393(May), pp. 268�272. 

Aguilar, M. and Stiles, W. S. (1954) �Saturation of the rod mechanism of the retina at high levels of 

stimulation.�, Opt Acta Lond, 1, pp. 59�65. 

Ahuja, A. K. and Behrend, M. R. (2013) �The ArgusTM II retinal prosthesis: factors affecting patient selection 

for implantation.�, Progress in retinal and eye research. Elsevier Ltd, 36, pp. 1�23. doi: 

10.1016/j.preteyeres.2013.01.002. 

Ahuja, A. K., Behrend, M. R., Kuroda, M., Humayun, M. S. and Weiland, J. D. (2008) �An in vitro model of 

a retinal prosthesis.�, IEEE transactions on bio-medical engineering, 55(6), pp. 1744�53. 

Almeida, R. and Ledberg, A. (2010) �A biologically plausible model of time-scale invariant interval timing.�, 

Journal of computational neuroscience, 28(1), pp. 155�75. doi: 10.1007/s10827-009-0197-8. 

Andrews, R., Li, J., Cassell, A., Koehne, J., Meyyappan, M., Nguyen-Vu, B., Huang, N. and Chen, L. (2006) 

�The NASA Nanoelectrode Array for Deep Brain Stimulation: Monitoring Neurotransmitters and Electrical 

Activity Plus Precise Stimulation�, in Kanno, T. and Kato, Y. (eds) Minimally Invasive Neurosurgery and 

Multidisciplinary Neurotraumatology SE  - 33. Springer Japan, pp. 212�215. doi: 10.1007/4-431-28576-

8_33. 

Ash, J., Comerford, J., Thorn, F. and Science, E. (2003) �The effect of head tilt on orientation tuning of the 

Hermann Grid Illusion�. Investigative Ophthalmology & Visual Abstract 4090, .�, 44 SRC  - . 

Asher, A., Segal, W. a, Baccus, S. a, Yaroslavsky, L. P. and Palanker, D. V (2007) �Image processing for a 

high-resolution optoelectronic retinal prosthesis.�, IEEE transactions on bio-medical engineering, 54(6 Pt 1), 

pp. 993�1004. doi: 10.1109/TBME.2007.894828. 

Baccus, S. a, Olveczky, B. P., Manu, M. and Meister, M. (2008) �A retinal circuit that computes object 

motion.�, The Journal of neuroscience竺: the official journal of the Society for Neuroscience, 28(27), pp. 

6807�17. doi: 10.1523/JNEUROSCI.4206-07.2008. 

193 



 REFERENCES 

 

Baccus, S. A. and Meister, M. (2002) �Fast and slow contrast adaptation in retinal circuitry.�, Neuron. 

Elsevier, 36(5), pp. 909�919. 

Baden, T., Berens, P., Bethge, M. and Euler, T. (2013) �Spikes in mammalian bipolar cells support temporal 

layering of the inner retina.�, Current biology竺: CB. Elsevier Ltd, 23(1), pp. 48�52. doi: 

10.1016/j.cub.2012.11.006. 

Baden, T., Esposti, F., Nikolaev, A. and Lagnado, L. (2011) �Spikes in retinal bipolar cells phase-lock to 

visual stimuli with millisecond precision.�, Current biology竺: CB. Elsevier Ltd, 21(22), pp. 1859�69. doi: 

10.1016/j.cub.2011.09.042. 

Bailey, S., Amanatidis, I. and Lambert, C. (2008) �Carbon Nanotube Electron Windmills: A Novel Design for 

Nanomotors�, Physical Review Letters, 100(25), p. 256802. doi: 10.1103/PhysRevLett.100.256802. 

Banarji, B. A., Gurunadh, C. V. S., Patyal, C. S., Ahluwalia, C. T. S., Gen, M. and Vats, D. P. (2009) �Visual 

Prosthesis鳥: Artificial Vision’, pp. 348�352. 

Barlow, H. B. (1981) �The Ferrier Lecture, 1980. Critical limiting factors in the design of the eye and visual 

cortex.�, Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. 

Royal Society (Great Britain), 212(1186), pp. 1�34. 

Barlow, H. B. and Levick, W. R. (1965) �The mechanism of directionally selective units in rabbit�s retina.�, 

The Journal of physiology, 178(3), pp. 477�504. 

Barnard, K., Ciurea, F. and Funt, B. (2002) �Sensor sharpening for computational color constancy.�, Journal 

of the Optical Society of America. A, Optics, image science, and vision. Computer Division, University of 

California, Berkeley, 94720-1776, USA. SRC - Pubmed ID2 - 11688863 FG - 0, 18(11), pp. 2728�2743. 

Barnard, K. and Funt, B. (1999) �Investigations into Multi-Scale Retinex�, in Color Imaging in Multimedia. 

Technology, (Wiley, pp. 9�17. 

Barnes, S. and Hille, B. (1989) �Ionic channels of the inner segment of tiger salamander cone 

photoreceptors.�, The Journal of general physiology, 94(4), pp. 719�43. 

Bartlett, N. R. and Graham, C. H. (1965) Dark and light adaptation. 

Baughman, R., Cui, C., Zakhidov, A. and Iqbal, Z. (1999) �Carbon nanotube actuators�, Science, 284, pp. 

1340�1344. 

Baumgartner, G. and Levine, J. (1971) Micheal Bach,  online document, retrieved at 

http://www.michaelbach.de/ot/. ‘Indirekte grossenbestimmung der rezeptiven Felder der retina beim 
Menschen mittels der Hermannschen Gittertauschung�. Pflugers Archiv fur die gesamte, Physiologie, vol. 

272, pp. 

Baylor, D. A., Lamb, T. D. and Yau, K. W. (1979) �Responses of retinal rods to single photons.�, The Journal 

of physiology, 288, pp. 613�634. 

194 
 



 REFERENCES 

 

Beaudoin, D. L., Manookin, M. B. and Demb, J. B. (2008) �Distinct expressions of contrast gain control in 

parallel synaptic pathways converging on a retinal ganglion cell.�, The Journal of physiology, 586(Pt 22), pp. 

5487�502. doi: 10.1113/jphysiol.2008.156224. 

Behn, C. G. D., Brown, E. N., Scammell, T. E. and Kopell, N. J. (2007) �Mathematical model of network 

dynamics governing mouse sleep-wake behavior.�, Journal of neurophysiology. Department of Mathematics 

and Center for BioDynamics, Boston University, MA, USA. cbehn@bidmc.harvard.edu DOI - 

10.1152/jn.01184.2006 SRC - Pubmed ID2 - 17409167 FG - 0, 97(6), pp. 3828�3840. 

Benav, H., Bartz-Schmidt, K. U., Besch, D., Bruckmann, A., Gekeler, F., Greppmaier, U., Harscher, A., 

Kibbel, S., Kusnyerik, A., Peters, T., Sachs, H., Stett, A., Stingl, K., Wilhelm, B., Wilke, R., Wrobel, W. and 

Zrenner, E. (2010) �Restoration of useful vision up to letter recognition capabilities using subretinal 

microphotodiodes.�, Conference proceedings竺: ... Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2010, pp. 

5919�22. doi: 10.1109/IEMBS.2010.5627549. 

Benison, G., Keizer, J., Chalupa, L. M. and Robinson, D. W. (2001) �Modeling temporal behavior of 

postnatal cat retinal ganglion cells.�, Journal of theoretical biology. Institute of Theoretical Dynamics, 

University of California, Davis, CA 95616, USA. DOI - 10.1006/jtbi.2000.2289 SRC - Pubmed ID2 - 

11371174 FG - 0, 210(2), pp. 187�199. 

Bennett, M. V. . and Zukin, R. S. (2004) �Electrical Coupling and Neuronal Synchronization in the 

Mammalian Brain�, Neuron, 41(4), pp. 495�511. doi: 10.1016/S0896-6273(04)00043-1. 

Berry, M. J., Proceedings, M. E. A., Stett, A., Burkhardt, D. A. and Fahey, P. K. (2013) Studying the 

population code of the retina”. In: meeting  ( ed), pp . Stuttgart, Germany: GmbH. Contrast Enhancement 
and Distributed Encoding by Bipolar Cells in the Retina�, 1070-1081. 

Berson, E. L. (1993) �Retinitis pigmentosa. The Friedenwald Lecture.�, Investigative ophthalmology & visual 

science, 34(5), pp. 1659�1676. 

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P. and Gamrat, C. (2012) �Extraction of temporally 

correlated features from dynamic vision sensors with spike-timing-dependent plasticity.�, Neural networks竺: 
the official journal of the International Neural Network Society, 32, pp. 339�48. doi: 

10.1016/j.neunet.2012.02.022. 

Bloomfield, S. a and Völgyi, B. (2009) �The diverse functional roles and regulation of neuronal gap junctions 

in the retina.�, Nature reviews. Neuroscience. Nature Publishing Group, 10(7), pp. 495�506. doi: 

10.1038/nrn2636. 

Bodkin, D. B. (2008) �COLOR , TILT , AND THE HERMANN GRID ILLUSION A thesis presented to the 

graduate faculty of The New England College of Optometry in partial fulfillment of the requirements for the 

degree of Master of Science.� 

Bradski, D. G. R. and Kaehler, A. (2008) Learning Opencv, 1st Edition. First. O�Reilly Media, Inc. 

Bradski, G. (2000) �The OpenCV Library�, Dr. Dobb�s Journal of Software Tools. 

195 
 



 REFERENCES 

 

Breakspear, M. and Stam, C. J. (2005) �Dynamics of a neural system with a multiscale architecture.�, 

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360(1457), pp. 

1051�74. doi: 10.1098/rstb.2005.1643. 

Brindley, G. (1965) �The number of information channels needed for efficient reading�, 44, 177. 

Buchsbaum, G. (1980) �A spatial processor model for object colour perception�, Journal of the Franklin 
Institute, 310(1), pp. 1�26. doi: 10.1016/0016-0032(80)90058-7. 

Bugmann, G. (2012) �Modeling fast stimulus-response association learning along the occipito-parieto-frontal 

pathway following rule instructions.�, Brain research, 1434, pp. 73�89. doi: 10.1016/j.brainres.2011.09.028. 

Bühren, J., Terzi, E., Bach, M., Wesemann, W. and Kohnen, T. (2006) �Measuring contrast sensitivity under 

different lighting conditions: comparison of three tests.�, Optometry and vision science竺: official publication 
of the American Academy of Optometry. Department of Ophthalmology, Johann Wolfgang Goethe-

University, Frankfurt am Main, Germany. DOI - 10.1097/01.opx.0000216100.93302.2d SRC - Pubmed ID2 - 

16699441 FG - 0, 83(5), pp. 290�298. 

Burkhardt, D. a (2011) �Contrast processing by ON and OFF bipolar cells.�, Visual neuroscience, 28(1), pp. 

69�75. doi: 10.1017/S0952523810000313. 

Bychkovsky, V., Paris, S., Chan, E. and Durand, F. (2011) �Learning Photographic Global Tonal Adjustment 

with a Database of Input / Output Image Pairs�. The Twenty-Fourth on Computer Vision and Pattern 

Recognition.� 

Cao, D. and Lu, Y. H. (2012) �Lateral suppression of mesopic rod and cone flicker detection.�, Journal of the 

Optical Society of America. A, Optics, image science, and vision. Department of Ophthalmology and Visual 

Sciences, University of Illinois at Chicago, 1905 W. Taylor Street, Room 149, Chicago, Illinois 60612, USA. 

dcao98@uic.edu SRC - Pubmed ID2 - 22330377 FG - 0, 29(2), pp. A188�93. 

Capela, S., Tomás, P. and Sousa, L. (2007) �Stochastic integrate-and-fire model for the retina�, Proc. of the 

15th European Signal �, (Eusipco), pp. 2514�2518. 

Carandini, M., Horton, J. and Sincich, L. (2007) �Thalamic filtering of retinal spike trains by postsynaptic 

summation�, Journal of Vision, 7, pp. 1�11. doi: 10.1167/7.14.20.Introduction. 

Caspi, A., Dorn, J. D., Mcclure, K. H., Humayun, M. S., Greenberg, R. J. and Mcmahon, M. J. (2009) 

�Feasibility Study of a Retinal Prosthesis�, 127(4), pp. 398�401. 

Cassidy, A. S., Georgiou, J. and Andreou, A. G. (2013) �Design of silicon brains in the nano-CMOS era: 

spiking neurons, learning synapses and neural architecture optimization.�, Neural networks竺: the official 
journal of the International Neural Network Society. Elsevier Ltd, 45, pp. 4�26. doi: 

10.1016/j.neunet.2013.05.011. 

Cembrowski, M. S., Logan, S. M., Tian, M., Jia, L., Li, W., Kath, W. L., Riecke, H. and Singer, J. H. (2012) 

�The mechanisms of repetitive spike generation in an axonless retinal interneuron.�, Cell reports. The 

Authors, 1(2), pp. 155�66. doi: 10.1016/j.celrep.2011.12.006. 

196 
 



 REFERENCES 

 

Cevikbas, I. and Yildirim, T. (2013) �Digit recognition in a simplified visual cortex model�, Innovations in 

Intelligent Systems and �, pp. 3�5. 

Chader, G. J., Weiland, J. and Humayun, M. S. (2009) Artificial vision: needs, functioning, and testing of a 
retinal electronic prosthesis., Progress in brain research. Elsevier. doi: 10.1016/S0079-6123(09)17522-2. 

Chander, D. and Chichilnisky, E. J. (2001) �Adaptation to temporal contrast in primate and salamander 

retina.�, The Journal of neuroscience竺: the official journal of the Society for Neuroscience. Systems 

Neurobiology, The Salk Institute, La Jolla, California 92037-1099, USA. SRC - Pubmed ID2 - 11739598 FG 

- 0, 21(24), pp. 9904�9916. 

Chang, L. and He, S. (2014) �Light adaptation increases response latency of alpha ganglion cells via a 

threshold-like nonlinearity.�, Neuroscience, 256, pp. 101�16. doi: 10.1016/j.neuroscience.2013.10.006. 

Cho, M. W. and Choi, M. Y. (2014) �A model for the receptive field of retinal ganglion cells.�, Neural 

networks竺: the official journal of the International Neural Network Society. Elsevier Ltd, 49, pp. 51�8. doi: 

10.1016/j.neunet.2013.09.005. 

Chow, a Y. and Chow, V. Y. (1997) �Subretinal electrical stimulation of the rabbit retina.�, Neuroscience 

letters, 225(1), pp. 13�6. 

Chow, A. Y., Chow, V. Y., Packo, K. H., Pollack, J. S., Peyman, G. a and Schuchard, R. (2004) �The 

artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa.�, Archives of 

ophthalmology, 122(4), pp. 460�9. doi: 10.1001/archopht.122.4.460. 

Chow, A. Y., Pardue, M. T., Perlman, J. I., Ball, S. L., Chow, V. Y., Hetling, J. R., Peyman, G. A., Liang, C., 

Stubbs, E. B. and Peachey, N. S. (2002) �Subretinal implantation of semiconductor-based photodiodes: 

durability of novel implant designs.�, Journal of rehabilitation research and development, 39(3), pp. 313�

321. 

Chow, A. Y. and Peachey, N. S. (1998) �The subretinal microphotodiode array retinal prosthesis.�, 

Ophthalmic research, 30(3), pp. 195�198. 

Chuang, A. T., Margo, C. E. and Greenberg, P. B. (2014) �Retinal implants: a systematic review.�, The 

British journal of ophthalmology. doi: 10.1136/bjophthalmol-2013-303708. 

Coelho, R. and Gerais, M. (2005) �A Review of Spiking Neuron Models�, (November). 

Conway, B. R., Chatterjee, S., Field, G. D., Horwitz, G. D., Johnson, E. N., Koida, K. and Mancuso, K. 

(2010) �Advances in color science: from retina to behavior.�, The Journal of neuroscience竺: the official 
journal of the Society for Neuroscience, 30(45), pp. 14955�63. doi: 10.1523/JNEUROSCI.4348-10.2010. 

Corney, D. and Lotto, R. B. (2007) �What are lightness illusions and why do we see them?�, PLoS 

computational biology, 3(9), pp. 1790�800. doi: 10.1371/journal.pcbi.0030180. 

Curlander, J. C. and Marmarelis, V. Z. (1983) �Processing of visual information in the distal neurons of the 

vertebrate retina," Systems, Man and Cybernetics, on , vol.SMC- no.�, 5 pp934943 SeptOct  doi 

101109TSMC6313089, 13 SRC  - . 

197 
 



 REFERENCES 

 

Dacey, D., Packer, O. S., Diller, L., Brainard, D., Peterson, B. and Lee, B. (2000) Center surround receptive 

field structure of cone bipolar cells in primate retina�. Vision research, vol. , pp. , . Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10837827. 

Decuypere, J. and Capron, J. (2011) �Implementation Of Model Extended To Mesopic Vision�, 27th Session 

of the �, pp. 1�9. 

Demb, J. B. (2007) �Cellular mechanisms for direction selectivity in the retina.�, Neuron, 55(2), pp. 179�86. 

doi: 10.1016/j.neuron.2007.07.001. 

Demb, J. B., Zaghloul, K., Haarsma, L. and Sterling, P. (2001) �Bipolar cells contribute to nonlinear spatial 

summation in the brisk-transient (Y) ganglion cell in mammalian retina.�, The Journal of neuroscience竺: the 
official journal of the Society for Neuroscience. Department of Neuroscience, University of Pennsylvania 

School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA. demb@retina.anatomy.upenn.edu SRC - 

Pubmed ID2 - 11567034 FG - 0, 21(19), pp. 7447�7454. 

Destexhe, a (1997) �Conductance-based integrate-and-fire models.�, Neural computation, 9(3), pp. 503�14. 

Dhruv, N. T. and Carandini, M. (2014) �Cascaded effects of spatial adaptation in the early visual system.�, 

Neuron. The Authors, 81(3), pp. 529�35. doi: 10.1016/j.neuron.2013.11.025. 

Dobelle, W. H. (2000) �Artificial vision for the blind by connecting a television camera to the visual cortex.�, 

ASAIO journal (American Society for Artificial Internal Organs竺: 1992), 46(1), pp. 3�9. 

Dong, L., Nelson, B. J. and Fukuda, T. (2006) �Towards Nanotube Linear Servomotors�, 3(3), pp. 228�235. 

Dowling, J. E. and Ripps, H. (1973) �Effect of magnesium on horizontal cell activity in the skate retina.�, 

Nature, 242(5393), pp. 101�103. 

Durackova, D. and Grega, P. (2006) �Image Processing by Using a Novel Neural Network Simulator�, 2006 

Sixth International Conference on Hybrid Intelligent Systems (HIS�06). Ieee, pp. 61�61. doi: 

10.1109/HIS.2006.264944. 

Ebrey, T. and Koutalos, Y. (2001) �Vertebrate Photoreceptors�, Progress in Retinal and Eye Research, 20(1), 

pp. 49�94. doi: 10.1016/S1350-9462(00)00014-8. 

Eckhorn, R., Wilms, M., Schanze, T., Eger, M., Hesse, L., Eysel, U. T., Kisvárday, Z. F., Zrenner, E., 

Gekeler, F., Schwahn, H., Shinoda, K., Sachs, H. and Walter, P. (2006) �Visual resolution with retinal 

implants estimated from recordings in cat visual cortex.�, Vision research, 46(17), pp. 2675�90. doi: 

10.1016/j.visres.2006.01.034. 

Eckmiller, R. (1997) �Learning retina implants with epiretinal contacts.�, Ophthalmic research, 29(5), pp. 

281�289. 

Eckmiller, R., Hünermann, R. and Becker, M. (1999) �Exploration of a dialog-based tunable retina encoder 

for retina implants�, Neurocomputing, 27, pp. 1005�1011. 

Egelhaaf, M. and Warzechat, A. (1999) �Encoding of motion in real time by the fly visual system�, Current 

opinion in neurobiology, pp. 454�460. 

198 
 



 REFERENCES 

 

Enroth-Cugell, C. and Robson, J. G. (1966) �The contrast sensitivity of retinal ganglion cells of the cat.�, The 

Journal of physiology. Biomedical Engineering Center, Technological Institute, Northwestern University, 

Evanston, Illinois, USA. SRC - Pubmed ID2 - 16783910 FG - 0, 187(3), pp. 517�552. 

Famiglietti, E. V and Kolb, H. (1975) �A bistratified amacrine cell and synaptic cirucitry in the inner 

plexiform layer of the retina.�, Brain research, 84(2), pp. 293�300. 

Federici, D. (2005) �A regenerating spiking neural network.�, Neural networks竺: the official journal of the 
International Neural Network Society, 18(5-6), pp. 746�54. doi: 10.1016/j.neunet.2005.06.006. 

Feller, M. B., Butts, D. a, Aaron, H. L., Rokhsar, D. S. and Shatz, C. J. (1997) �Dynamic processes shape 

spatiotemporal properties of retinal waves.�, Neuron, 19(2), pp. 293�306. 

Fernandes, R. a B., Diniz, B., Ribeiro, R. and Humayun, M. (2012) �Artificial vision through neuronal 

stimulation.�, Neuroscience letters. Elsevier Ireland Ltd, 519(2), pp. 122�8. doi: 

10.1016/j.neulet.2012.01.063. 

Field, G. D., Gauthier, J. L., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H., Shlens, J., Gunning, D. 

E., Mathieson, K., Dabrowski, W., Paninski, L., Litke, A. M. and Chichilnisky, E. J. (2010) �Functional 

connectivity in the retina at the resolution of photoreceptors�, Nature. Nature Publishing Group, 467(7316), 

pp. 673�677. doi: 10.1038/nature09424. 

Field, G. D. and Rieke, F. (2002) �Nonlinear signal transfer from mouse rods to bipolar cells and implications 

for visual sensitivity.�, Neuron, 34(5), pp. 773�85. 

Finlayson, G. D. (1996) �Color in perspective�, Pattern Analysis and Machine Intelligence, IEEE 

Transactions on. IEEE, 18(10), pp. 1034�1038. 

Finlayson, G. D., Drew, M. S. and Funt, B. V (1994) �Spectral sharpening: sensor transformations for 

improved color constancy.�, Journal of the Optical Society of America. A, Optics, image science, and vision. 

School of Computing Science, Simon Fraser University, Vancouver, B.C., Canada. SRC - Pubmed ID2 - 

8006721 FG - 0, 11(5), pp. 1553�1563. 

Foerster, O., J, , and Javaheri, M. (2006) �Beitrage zur pathophysiologie der sehbahn und der spehsphare.�, 

Neurol 39 In Retinal prostheses for the blind Annals of the Academy of Medicine Singapore pp13744, 35(3), 

pp. 435�463. 

Fohlmeister, J. F., Coleman, P. A. and Miller, R. F. (1990) �Modeling the repetitive firing of retinal ganglion 

cells�, Brain Research, 510(2), pp. 343�345. doi: 10.1016/0006-8993(90)91388-W. 

Freed, M., Smith, R. G. and Sterling, P. (2003) �Timing of quantal release from the retinal bipolar terminal is 

regulated by a feedback circuit�, Neuron, 38(1), pp. 89�101. 

Freeman, D. K., Rizzo, J. F. and Fried, S. I. (2011) �Encoding visual information in retinal ganglion cells 

with prosthetic stimulation.�, Journal of neural engineering, 8(3), p. 035005. doi: 10.1088/1741-

2560/8/3/035005. 

Von Frey, M. (1903) �Theoretische Studien ber Umstimmung des Sehorgans�, Zeitschrift Psychologie und 

Physiologie der Sinnesorgane, 32, pp. 146�148. 

199 
 



 REFERENCES 

 

Fromherz, P. (2008) �Joining microelectronics and microionics: Nerve cells and brain tissue on 

semiconductor chips�, Solid-State Electronics, 52(9), pp. 1364�1373. doi: 10.1016/j.sse.2008.04.024. 

Funt, B. and Ciurea, F. (2001) �Control parameters for Retinex�, in Proc. 9th Cong. Intl. Color Assoc, pp. 

287�290. 

Funt, B. V and Xiong, W. (2004) �Estimating Illumination Chromaticity via Support Vector Regression�, in 

Color Imaging Conference. IS&T - The Society for Imaging Science and Technology, pp. 47�52. 

Gao, S., Yang, K., Li, C. and Li, Y. (2013) �A Color Constancy Model with Double-Opponency 

Mechanisms�, in Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, 

DC, USA: IEEE Computer Society (ICCV �13), pp. 929�936. doi: 10.1109/ICCV.2013.119. 

Garvert, M. M. and Gollisch, T. (2013) �Local and global contrast adaptation in retinal ganglion cells.�, 

Neuron. Elsevier Inc., 77(5), pp. 915�28. doi: 10.1016/j.neuron.2012.12.030. 

Gehler, P. V, Rother, C., Blake, A., Minka, T. and Sharp, T. (2008) �Bayesian colour constancy revisited.�, 

on Computer Vision and Pattern Recognition, pp. 0�1. 

Geier, J., Bernáth, L., Hudák, M. and Séra, L. (2008) �Straightness as the main factor of the Hermann grid 

illusion�, Perception, 37(5), pp. 651�665. doi: 10.1068/p5622. 

Geisler, W. S. (1981) �Effects of bleaching and backgrounds on the flash response of the cone system.�, The 

Journal of physiology, 312, pp. 413�434. 

Gerstner, W. and van Hemmen, J. L. (1992) �Associative memory in a network of �spiking� neurons. 

Network�, 3 SRC  - G, pp. 139�164. 

Gerstner, W., Ritz, R. and van Hemmen, J. L. (1993) �Why spikes? Hebbian learning and retrieval of time-

resolved excitation patterns.�, Biological cybernetics. Physik-Department der TU München, Garching bei 

München, Germany. SRC  - Pubmed ID2 - 7903867 FG - 0, 69(5-6), pp. 503�515. 

Ghani, a., McDaid, L., Belatreche, a., Hall, S., Huang, S., Marsland, J., Dowrick, T. and Smith, a. (2012) 

�Evaluating the generalisation capability of a CMOS based synapse�, Neurocomputing. Elsevier, 83, pp. 188�

197. doi: 10.1016/j.neucom.2011.12.010. 

Gibson, J. R., Beierlein, M. and Connors, B. W. (2005) �Functional properties of electrical synapses between 

inhibitory interneurons of neocortical layer 4.�, Journal of neurophysiology, 93(1), pp. 467�80. doi: 

10.1152/jn.00520.2004. 

Gijsenij, A., Gevers, T. and van de Weijer, J. (2012) �Improving color constancy by photometric edge 

weighting.�, IEEE transactions on pattern analysis and machine intelligence, 34(5), pp. 918�29. doi: 

10.1109/TPAMI.2011.197. 

Gjorgjieva, J., Toyoizumi, T. and Eglen, S. J. (2009) �Burst-time-dependent plasticity robustly guides 

ON/OFF segregation in the lateral geniculate nucleus.�, PLoS computational biology, 5(12), p. e1000618. 

doi: 10.1371/journal.pcbi.1000618. 

200 
 



 REFERENCES 

 

Glackin, C., Maguire, L., McDaid, L. and Sayers, H. (2011) �Receptive field optimisation and supervision of 

a fuzzy spiking neural network.�, Neural networks竺: the official journal of the International Neural Network 
Society. Elsevier Ltd, 24(3), pp. 247�56. doi: 10.1016/j.neunet.2010.11.008. 

Gomila Salas, J. G. and Lisani, J. L. (2011) �Local Color Correction�, Image Processing On Line, 1. doi: 

10.5201/ipol.2011.gl_lcc. 

Graham, N., Hood, D. C. and Finkelstein, M. A. (1979) Visual pattern analyzers, New York: Oxford 
University Press�.  Comparison of changes in sensitivity and sensation: implications for the response-

intensity function of the human photopic system”. Journal of Experimental Psychology: Human Perceptual 
Perform. 

Grumet, a E., Wyatt, J. L. and Rizzo, J. F. (2000) �Multi-electrode stimulation and recording in the isolated 

retina.�, Journal of neuroscience methods, 101(1), pp. 31�42. 

Gutierrez, G. J. and Marder, E. (2013) �Rectifying Electrical Synapses Can Affect the Influence of Synaptic 

Modulation on Output Pattern Robustness�, 33(32), pp. 13238�13248. doi: 10.1523/JNEUROSCI.0937-

13.2013. 

Haefner, R. M. and Cumming, B. G. (2008) �Adaptation to natural binocular disparities in primate V1 

explained by a generalized energy model.�, Neuron, 57(1), pp. 147�58. doi: 10.1016/j.neuron.2007.10.042. 

Halupka, B. M. C. (2014) �A linear-nonlinear model accurately predicts cortical responses to simultaneous 

electrical stimulation with a retinal implant.�, 15Suppl 1P95. 

Hao, F., Dong, P., Zhang, J. and Zhang, Y. (2012) �High electrocatalytic activity of vertically aligned single-

walled carbon nanotubes towards sulfide redox shuttles�, Scientific reports, 2, p. 368. doi: 

10.1038/srep00368. 

Hateren, H. Van (2005) �A cellular and molecular model of response kinetics and adaptation in primate cones 

and horizontal cells�, Journal of Vision, 5, pp. 331�347. doi: 10.1167/5.4.5. 

Hateren, J. Van (2007) �A model of spatiotemporal signal processing by primate cones and horizontal cells�, 

Journal of Vision, 7, pp. 1�19. doi: 10.1167/7.3.3.Introduction. 

Heckenlively, J. R., Boughman, J., Friedman, L., Philadelphia, P. A. and JR, , (1988) Diagnosis and 

classi?cation of retinitis pigmentosa. 

Heflin, S. J. and Cook, P. B. (2007) �Narrow and wide field amacrine cells fire action potentials in response 

to depolarization and light stimulation�, Visual Neuroscience, pp. 197�206. 

Helmholtz, H. (1867) Handbuch der physiologischen Optik, Karsten, G. (ed.). Allgemeine Encyklopädie der 

Physik. 

Helson, H. and Jeffers, V. B. (1940) �Fundamental Problems in Color Vision. II. Hue, Lightness, and 

Saturation of Selective Samples in Chromatic Illumination�, Journal of Experimental Psychology, 26(1), p. 1. 

Hennig, M. H., Adams, C., Willshaw, D. and Sernagor, E. (2009) �Early-stage waves in the retinal network 

emerge close to a critical state transition between local and global functional connectivity.�, The Journal of 

201 
 



 REFERENCES 

 

neuroscience竺: the official journal of the Society for Neuroscience, 29(4), pp. 1077�86. doi: 

10.1523/JNEUROSCI.4880-08.2009. 

Hering, E., Hurvich, L. M., Jameson, D., Cambridge, M. A. and Hering, E. (1964) Outlines of a theory of the 

light sense. 

Heywood, C. a, Gadotti, a and Cowey, a (1992) �Cortical area V4 and its role in the perception of color.�, The 

Journal of neuroscience竺: the official journal of the Society for Neuroscience, 12(10), pp. 4056�65. 

Holliday, I. E., Ruddock, K. H. and Skinner, P. (1984) �Spatial Filtering Of Retinal Images By the Human 

Visual System And Its Consequences For Visual Thresholds�, in Williams, T. L. (ed.) Image Assessment 

Infrared and Visible. International Society for Optics and Photonics, pp. 2�6. doi: 10.1117/12.941575. 

Hood, D. C., Finkelstein, M. A. and Boff, L. (1986) �Sensitivity to light.�, Handbook of Perception and 

Human Processes and Perception KR Kaufman  JP Thomas Eds John Wiley Sons Toronto, 1 SRC  - G. 

Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H. and Bruzzone, R. (2004) �Electrical 

synapses: a dynamic signaling system that shapes the activity of neuronal networks.�, Biochimica et 

biophysica acta, 1662(1-2), pp. 113�37. doi: 10.1016/j.bbamem.2003.10.023. 

Horn, B. K. P. (1974) �Determining lightness from an image�, Computer Graphics and Image Processing, 

3(4), pp. 277�299. doi: 10.1016/0146-664X(74)90022-7. 

Hornig, R. and Eckmiller, R. (2001) �Optimizing stimulus parameters by modeling multi-electrode electrical 

stimulation for retina implants�, Neural Networks, 2001. Proceedings. �, pp. 860�865. 

Hornstein, E. P., Verweij, J., Li, P. H. and Schnapf, J. L. (2005) �Gap-junctional coupling and absolute 

sensitivity of photoreceptors in macaque retina.�, The Journal of neuroscience竺: the official journal of the 
Society for Neuroscience. Department of Ophthalmology, University of California, San Francisco, California 

94143-0730, USA. DOI - 10.1523/JNEUROSCI.3416-05.2005 SRC - Pubmed ID2 - 16319320 FG - 0, 

25(48), pp. 11201�11209. 

Hornstein, E. P., Verweij, J. and Schnapf, J. L. (2004) �Electrical coupling between red and green cones in 

primate retina.�, Nature neuroscience. Department of Ophthalmology, University of California, 10 Kirkham 

Street, San Francisco, California 94143-0730, USA. ehorn@phy.ucsf.edu DOI - 10.1038/nn1274 SRC - 

Pubmed ID2 - 15208634 FG - 0, 7(7), pp. 745�750. 

Huang, S. J. and Robinson, D. W. (1998) �Activation and inactivation properties of voltage-gated calcium 

currents in developing cat retinal ganglion cells.�, Neuroscience. Department of Biochemistry, University of 

California, Davis 95616, USA. SRC - Pubmed ID2 - 9607715 FG - 0, 85(1), pp. 239�247. 

Hubbard, R. and Kropf, A. (1958) �The Action of Light on Rhodopsin.�, Proceedings of the National 

Academy of Sciences of the United States of America, 44(2), pp. 130�139. 

Hubbard, R., Wald, G. and J, , (1952) �Cis-trans isomers of vitamin A and retinene in the rhodopsin system.�, 

Physiol, 36(2), pp. 269�315. 

Hubel, D. H. and Wiesel, T. N. (1968) �Receptive fields and functional architecture of monkey striate 

cortex.�, The Journal of physiology, 195(1), pp. 215�243. 

202 
 



 REFERENCES 

 

Huk, A. (2014) Visual Pathways. Available at: http://www-

psych.stanford.edu/~lera/psych115s/notes/lecture3/figures1.html. 

Humayun, M. S., Dorn, J. D., da Cruz, L., Dagnelie, G., Sahel, J.-A., Stanga, P. E., Cideciyan, A. V, Duncan, 

J. L., Eliott, D., Filley, E., Ho, A. C., Santos, A., Safran, A. B., Arditi, A., Del Priore, L. V and Greenberg, R. 

J. (2012) �Interim results from the international trial of Second Sight�s visual prosthesis.�, Ophthalmology, 

119(4), pp. 779�88. doi: 10.1016/j.ophtha.2011.09.028. 

Humayun, M. S., de Juan, E., Dagnelie, G., Greenberg, R. J., Propst, R. H. and Phillips, D. H. (1996) �Visual 

perception elicited by electrical stimulation of retina in blind humans.�, Archives of ophthalmology, 114(1), 

pp. 40�46. 

Humayun, M. S., de Juan, E., Weiland, J. D., Dagnelie, G., Katona, S., Greenberg, R. and Suzuki, S. (1999) 

�Pattern electrical stimulation of the human retina.�, Vision research, 39(15), pp. 2569�2576. 

Hunter, I. W. and Korenberg, M. J. (1986) �The identification of nonlinear biological systems: Wiener and 

Hammerstein cascade models.�, Biological cybernetics, 55(2-3), pp. 135�144. 

Hurlbert, A. C. (1989) The Computation of Color. 

Iezzi, R. and Finlayson, P. (2009) �Microfluidic neurotransmiter-based neural interfaces for retinal 

prosthesis�, Engineering in Medicine �, 2009, pp. 4563�5. doi: 10.1109/IEMBS.2009.5332694. 

Iijima, S. (1991) �Helical microtubules of graphitic carbon�, Nature, 354(6348), pp. 56�58. doi: 

10.1038/354056a0. 

Ishihara, S. (1943) Ishihara Tests for Colour Blindness. Sydney: Shephard & Newman. 

Izhikevich, E. M. (2003) �Simple model of spiking neurons.�, IEEE transactions on neural networks / a 
publication of the IEEE Neural Networks Council, 14(6), pp. 1569�72. doi: 10.1109/TNN.2003.820440. 

Izhikevich, E. M. (2004) �Which model to use for cortical spiking neurons?�, IEEE transactions on neural 

networks / a publication of the IEEE Neural Networks Council, 15(5), pp. 1063�70. doi: 

10.1109/TNN.2004.832719. 

Jacobs, A., Roska, T. and Werblin, F. (1996) �Methods for constructing physiologically motivated 

neuromorphic models in CNNs�, International Journal of Circuit Theory and Applications, 24(3), pp. 315�

339. 

Javaheri, M., Hahn, D. S., Lakhanpal, R. R., Weiland, J. D. and Humayun, M. S. (2006) �Retinal prostheses 

for the blind.�, Annals of the Academy of Medicine, Singapore, 35(3), pp. 137�44. 

Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S. and Gerstner, W. (2008) �A benchmark test 

for a quantitative assessment of simple neuron models.�, Journal of neuroscience methods, 169(2), pp. 417�

24. doi: 10.1016/j.jneumeth.2007.11.006. 

Jolivet, R., Lewis, T. J. and Gerstner, W. (2004) �Generalized integrate-and-fire models of neuronal activity 

approximate spike trains of a detailed model to a high degree of accuracy.�, Journal of neurophysiology, 

92(2), pp. 959�76. doi: 10.1152/jn.00190.2004. 

203 
 



 REFERENCES 

 

Jolivet, R., Rauch, A., Lüscher, H.-R. and Gerstner, W. (2006) �Predicting spike timing of neocortical 

pyramidal neurons by simple threshold models.�, Journal of computational neuroscience, 21(1), pp. 35�49. 

doi: 10.1007/s10827-006-7074-5. 

Judd, D. B. (1940) �Hue saturation and lightness of surface colours with chromatic illumination�. Journal of 

the Optical Society of America,  . .�, 30 SRC  - , pp. 2�32. 

Kamermans, M., Kraaij, D. a and Spekreijse, H. (1998) �The cone/horizontal cell network: a possible site for 

color constancy.�, Visual neuroscience, 15(5), pp. 787�97. 

Kamiyama, Y., Ogura, T. and Usui, S. (1996) �Ionic current model of the vertebrate rod photoreceptor.�, 

Vision research, 36(24), pp. 4059�68. 

Kamppeter, B. a, Cej, A. and Jonas, J. B. (2008) �Intraocular concentration of triamcinolone acetonide after 

intravitreal injection in the rabbit eye.�, Ophthalmology, 115(8), pp. 1372�5. doi: 

10.1016/j.ophtha.2008.01.019. 

Kandel, E. R., Schwartz, J. H. and Jessell, T. M. (2000) Principles of Neural Science. 4th edn. McGraw-Hill 

Medical. 

Kaneko, A. (1970) �Physiological and morphological identification of horizontal, bipolar and amacrine cells 

in goldfish retina.�, The Journal of physiology, 207(3), pp. 623�633. 

Karagoz, I. and Ozden, M. (2011) �Adaptive artificial retina model to improve perception quality of retina 

implant recipients�, 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). 

Ieee, pp. 91�95. doi: 10.1109/BMEI.2011.6098353. 

Keat, J., Reinagel, P., Reid, R. C. and Meister, M. (2001) �Predicting every spike: a model for the responses 

of visual neurons.�, Neuron, 30(3), pp. 803�17. 

Kelly, D. H. (1984) �Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity.�, Journal of the Optical 

Society of America. A, Optics and image science, 1(1), pp. 107�113. 

Kelly, S. K., Shire, D. B., Doyle, P., Gingerich, M. D., Drohan, W. a., Rizzo, J. F., Chen, J., Cogan, S. F. and 

Wyatt, J. L. (2009) �The boston retinal prosthesis: A 15-channel hermetic wireless neural stimulator�, 2009 

2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies. Ieee, pp. 

1�6. doi: 10.1109/ISABEL.2009.5373638. 

Kenyon, G. T., George, J., Travis, B. and Blagoev, K. (2005) �Models of the Retina with Application to the 

Design of a Visual Prosthesis�, Los Alamos Science, (29), pp. 110�123. 

Kien, T. T., Maul, T. and Bargiela, A. (2012) �A review of retinal prosthesis approaches�, International 

Journal of Modern Physics: Conference Series, 9, pp. 209�231. 

Kien, T. T., Ren, L. J., Maul, T. and Bargiela, A. (2012) �Outer plexiform layer receptive fields as underlying 

factors of the Hermann grid illusion�, in Biomedical Engineering and Sciences (IECBES), 2012 IEEE EMBS 

Conference on, pp. 34�39. doi: 10.1109/IECBES.2012.6498072. 

204 
 



 REFERENCES 

 

Kim, K. J. and Rieke, F. (2001) �Temporal Contrast Adaptation in the Input and Output Signals of 

Salamander Retinal Ganglion Cells�, 21(1), pp. 287�299. 

Kim, S. Y., Sadda, S., Pearlman, J., Humayun, M. S., de Juan, E., Melia, B. M. and Green, W. R. (2002) 

�Morphometric analysis of the macula in eyes with disciform age-related macular degeneration.�, Retina 

(Philadelphia, Pa.), 22(4), pp. 471�7. 

Klauke, S., Goertz, M., Rein, S., Hoehl, D., Thomas, U., Eckhorn, R., Bremmer, F. and Wachtler, T. (2011) 

�Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans.�, 

Investigative ophthalmology & visual science, 52(1), pp. 449�55. doi: 10.1167/iovs.09-4410. 

Kolb, H., Nelson, R. and Mariani, a (1981) �Amacrine cells, bipolar cells and ganglion cells of the cat retina: 

a Golgi study.�, Vision research, 21(7), pp. 1081�1114. 

Kourennyi, D. E., Liu, X., Hart, J., Mahmud, F., Baldridge, W. H. and Barnes, S. (2004) �Reciprocal 

modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide.�, Journal of 

neurophysiology. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 

44106, USA. DOI - 10.1152/jn.00606.2003 SRC - Pubmed ID2 - 14985410 FG - 0, 92(1), pp. 477�483. 

Von Kries, J. and In, W. (1905) Gesichtsempndungen. Nagel (Ed.), Handbuch der Physiologie des Menschen 

(pp. ). . 

Kuehni, R. G. (1997) �Memoir concerning certain phenomena of vision by M. Monge �Memoire sur quelques 

phénomènes de la vision� Annales de Chimie 3 131�147 (1789)�, Color Research & Application. Wiley 

Subscription Services, Inc., A Wiley Company, 22(3), pp. 199�203. doi: 10.1002/(SICI)1520-

6378(199706)22:3<199::AID-COL8>3.0.CO;2-M. 

Kuffler, S. W. (1953) �Discharge patterns and functional organization of mammalian retina�, Neurophysiol, 

16 SRC - G, pp. 37�68. 

Kusnyerik, A., Greppmaier, U., Wilke, R., Gekeler, F., Wilhelm, B., Sachs, H. G., Bartz-Schmidt, K. U., 

Klose, U., Stingl, K., Resch, M. D., Hekmat, A., Bruckmann, A., Karacs, K., Nemeth, J., Suveges, I. and 

Zrenner, E. (2012) �Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through 

multimodal assessment of retinal structures.�, Investigative ophthalmology & visual science, 53(7), pp. 3748�

55. doi: 10.1167/iovs.11-9409. 

De Lafuente, V. and Ruiz, O. (2004) �The orientation dependence of the Hermann grid illusion.�, 

Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 154(2), pp. 255�60. 

doi: 10.1007/s00221-003-1700-5. 

Land, E. H. and McCann, J. J. (1971) �Lightness and retinex theory.�, Journal of the Optical Society of 

America, 61(1), pp. 1�11. 

Lankheet, M. J., Molenaar, J. and van de Grind, W. a (1989) �The spike generating mechanism of cat retinal 

ganglion cells.�, Vision research, 29(5), pp. 505�17. 

Lazar, A. a, Pnevmatikakis, E. a and Zhou, Y. (2010) �Encoding natural scenes with neural circuits with 

random thresholds.�, Vision research. Elsevier Ltd, 50(22), pp. 2200�12. doi: 10.1016/j.visres.2010.03.015. 

205 
 



 REFERENCES 

 

Lebedev, D. S. and Marshak, D. W. (2007) �Amacrine cell contributions to red-green color opponency in 

central primate retina: a model study.�, Visual neuroscience, 24(4), pp. 535�47. doi: 

10.1017/S0952523807070502. 

Van Leeuwen M T, Numan R, K. M. (2004) �Colour-constancy is coded in the retina�, Perception ECVP. 

Pion Ltd., 33. doi: 10.1068/v040155. 

Leskov, I. B., Klenchin, V. A., Handy, J. W., Whitlock, G. G., Govardovskii, V. I., Bownds, M. D., Lamb, T. 

D., Pugh, E. N. and Arshavsky, V. Y. (2000) �The gain of rod phototransduction: reconciliation of 

biochemical and electrophysiological measurements.�, Neuron, 27(3), pp. 525�537. 

Levine, J., Spillmann, L. and Wolf, E. (1980) �Saturation enhancement in colored Hermann grids varying 

only in chroma.�, Vision research, 20(4), pp. 307�313. 

Levine, W. (1992) �Modeling the Variability of Firing Rate of Retinal Ganglion Cells here are concerned 

with this variability , with an emphasis on how the noise may be introduced . The thesis of this paper is that 

neural impulses are generated by a mechanism that can be ap�, 242. 

Lindsay, T. and Andrew, S. (1999) �Rod pathways: the importance of seeing nothing�, Trends in 

Neurosciences, 22(11, 1 November), pp. 0166�2236. 

Liu, X.-D. and Kourennyi, D. E. (2004) �Effects of tetraethylammonium on Kx channels and simulated light 

response in rod photoreceptors.�, Annals of biomedical engineering. Department of Biomedical Engineering, 

Case Western Reserve University, Cleveland, OH 44106, USA. SRC - Pubmed ID2 - 15535060 FG - 0, 

32(10), pp. 1428�1442. 

Llinás, R., Steinberg, I. Z. and Walton, K. (1981) �Relationship between presynaptic calcium current and 

postsynaptic potential in squid giant synapse.�, Biophysical journal, 33(3), pp. 323�351. doi: 10.1016/S0006-

3495(81)84899-0. 

Lorach, H., Benosman, R., Marre, O., Ieng, S.-H., Sahel, J. a and Picaud, S. (2012) �Artificial retina: the 

multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light 

acquisition device.�, Journal of neural engineering, 9(6), p. 066004. doi: 10.1088/1741-2560/9/6/066004. 

Lorach, H., Marre, O., Sahel, J.-A., Benosman, R. and Picaud, S. (2013) �Neural stimulation for visual 

rehabilitation: advances and challenges.�, Journal of physiology, Paris. Elsevier Ltd, 107(5), pp. 421�31. doi: 

10.1016/j.jphysparis.2012.10.003. 

Lu, S. and Madhukar, A. (2013) �Inducing repetitive action potential firing in neurons via synthesized 

photoresponsive nanoscale cellular prostheses.�, Nanomedicine竺: nanotechnology, biology, and medicine. 

Elsevier Inc., 9(2), pp. 293�301. doi: 10.1016/j.nano.2012.07.001. 

Luo, Y. H.-L. and da Cruz, L. (2014) �A review and update on the current status of retinal prostheses (bionic 

eye).�, British medical bulletin, 109(February), pp. 31�44. doi: 10.1093/bmb/ldu002. 

Lytton and William, W. (2002) �From Computer to Brain: Foundations of Computational Neuroscience.�, 

Springer p 28 ISBN 387955261, pp. 970�978. 

206 
 



 REFERENCES 

 

Maidenbaum, S., Abboud, S. and Amedi, A. (2013) �Sensory substitution: Closing the gap between basic 

research and widespread practical visual rehabilitation.�, Neuroscience and biobehavioral reviews. Elsevier 

Ltd, pp. 1�13. doi: 10.1016/j.neubiorev.2013.11.007. 

Maksimova, E. M. (1977) �Cellular mechanisms of colour constancy [proceedings].�, Activitas nervosa 

superior, 19(3), pp. 199�201. 

Maloney, L. T. (1986) �Evaluation of linear models of surface spectral reflectance with small numbers of 

parameters.�, Journal of the Optical Society of America. A, Optics and image science, 3(10), pp. 1673�1683. 

Maloney, L. T. and Wandell, B. A. (1986) �Color constancy: a method for recovering surface spectral 

reflectance.�, Journal of the Optical Society of America. A, Optics and image science, 3(1), pp. 29�33. 

Maravall, M., Alenda, A., Bale, M. R. and Petersen, R. S. (2013) �Transformation of Adaptation and Gain 

Rescaling along the Whisker Sensory Pathway.�, PloS one, 8(12), p. e82418. doi: 

10.1371/journal.pone.0082418. 

Margalit, E., Maia, M., Weiland, J. D., Greenberg, R. J., Fujii, G. Y., Torres, G., Piyathaisere, D. V, 

O�Hearn, T. M., Liu, W., Lazzi, G., Dagnelie, G., Scribner, D. A., de Juan, E. and Humayun, M. S. (2002) 

�Retinal prosthesis for the blind.�, Survey of ophthalmology, 47(4), pp. 335�356. 

Marian, I. D. and Reilly, R. G. (2002) �A computational biologically inspired model of motor control of 

direction.� 

Masland, R. H. (2012) �Another blue neuron in the retina.�, Nature neuroscience, 15(7), pp. 930�931. 

Maul, T. H., Bargiela, A. and Ren, L. J. (2011) �Cybernetics of Vision Systems: Toward an Understanding of 

Putative Functions of the Outer Retina�, IEEE Transactions on Systems Man and Cybernetics - Part A 

Systems and Humans, pp. 398�409. doi: http://dx.doi.org/10.1109/TSMCA.2010.2085432. 

Maynard, E. M. (2001) �Visual prostheses.� 

Maynard, E. M., Nordhausen, C. T. and Normann, R. A. (1997) �The Utah intracortical Electrode Array: a 

recording structure for potential brain-computer interfaces.�, Electroencephalography and clinical 

neurophysiology, 102(3), pp. 228�239. 

McCarter, A. (1979) �Chromatic induction effects in the Hermann grid illusion.�, Perception, 8(1), pp. 105�

114. 

McCarthy, C. and Barnes, N. (2011) �Surface extraction from iso-disparity contours�, Computer Vision�

ACCV 2010, pp. 1�12. 

McCarthy, C., Barnes, N. and Lieby, P. (2011) �Ground surface segmentation for navigation with a low 

resolution visual prosthesis.�, Conference proceedings竺: ... Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual 

Conference, 2011, pp. 4457�60. doi: 10.1109/IEMBS.2011.6091105. 

207 
 



 REFERENCES 

 

Meylan, L., Alleysson, D. and Süsstrunk, S. (2007) �Model of retinal local adaptation for the tone mapping of 

color filter array images.�, Journal of the Optical Society of America. A, Optics, image science, and vision, 

24(9), pp. 2807�16. 

Meylan, L. and Süsstrunk, S. (2004) �Bio-Inspired Color Image Enhancement�, in IN PROCEEDINGS OF 
SPIE: HUMAN VISION AND ELECTRONIC IMAGING, pp. 46�56. 

Morales and Lieber (1998) �A laser ablation method for the synthesis of crystalline semiconductor 

nanowires�, Science (New York, N.Y.). A. M. Morales, Department of Chemistry and Chemical Biology, 

Harvard University, Cambridge, MA 02138, USA. C. M. Lieber, Department of Chemistry and Chemical 

Biology, and Division of Engineering and Applied Sciences, Harvard University, Cambridg. SRC - Pu, 

279(5348), pp. 208�211. 

Morgan, M. and Watt, R. (1997) �The combination of filters in early spatial vision: a retrospective analysis of 

the MIRAGE model�, PERCEPTION-LONDON-. 

Muller, F., Wassle, H. and Voight, T. (1988) �Pharmacological modulation of rod pathway in the cat retina�. 

鳥;.�, 59 SRC  - , pp. 1657�1672. 

Murakoshi, K. and Nakamura, K. (2001) �Firing patterns depending on model neurons�, IEICE 

TRANSACTIONS on Information �, (3), pp. 394�402. 

Naka, K. I. and Rushton, W. (2012) �S-Potentials from luminosity units in the retina of fish�, Cyprinidae 

JPhysiol London, 185 SRC -, pp. 587�599. 

Nanduri, D., Humayun, M. S., Greenberg, R. J., McMahon, M. J. and Weiland, J. D. (2008) �Retinal 

prosthesis phosphene shape analysis.�, Conference proceedings竺: ... Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 

Conference, 2008, pp. 1785�8. doi: 10.1109/IEMBS.2008.4649524. 

Nelson, B., Dong, L., Subramanian, A. and Bell, D. (2007) �Hybrid nanorobotic approaches to NEMS�, 

Robotics Research. 

Neumann, H., Yazdanbakhsh, A. and Mingolla, E. (2007) �Seeing surfaces: The brain�s vision of the world.�, 

Physics of Life Reviews  doi101016jplrev09001, 4(3 SRC  - GoogleScholar FG - 0), pp. 189�222. 

Nickolls, J., Buck, I., Garland, M. and Skadron, K. (2008) �Scalable Parallel Programming with CUDA�, 

Queue. New York, NY, USA: ACM, 6(2), pp. 40�53. doi: 10.1145/1365490.1365500. 

Noolandi, J., Peterman, M. and Huie, P. (2003) �Towards a neurotransmitter-based retinal prosthesis using an 

inkjet print-head�, Biomedical �, pp. 195�199. 

Northmore, D. P. M. (2004) �A network of spiking neurons develops sensorimotor mechanisms while guiding 

behavior�, Neurocomputing, 58-60, pp. 1057�1063. doi: 10.1016/j.neucom.2004.01.166. 

Oehler, R. and Spillmann, L. (1981) �Illusory colour changes in Hermann grids varying only in hue.�, Vision 

research, 21(4), pp. 527�541. 

208 
 



 REFERENCES 

 

Ohshima, S., Yagi, T. and Funahashi, Y. (1995) �Computational studies on the interaction between red cone 

and H1 horizontal cell.�, Vision research, 35(1), pp. 149�60. 

Oozeer, M., Veraart, C., Legat, V. and Delbeke, J. (2006) �A model of the mammalian optic nerve fibre based 

on experimental data.�, Vision research, pp. 2513�24. doi: 10.1016/j.visres.2006.01.021. 

Ostojic, S. and Brunel, N. (2011) �From spiking neuron models to linear-nonlinear models.�, PLoS 

computational biology, 7(1), p. e1001056. doi: 10.1371/journal.pcbi.1001056. 

Palacios-Prado, N., Hoge, G., Marandykina, A., Rimkute, L., Chapuis, S., Paulauskas, N., Skeberdis, V. a, 

O�Brien, J., Pereda, A. E., Bennett, M. V. L. and Bukauskas, F. F. (2013) �Intracellular magnesium-

dependent modulation of gap junction channels formed by neuronal connexin36.�, The Journal of 

neuroscience竺: the official journal of the Society for Neuroscience, 33(11), pp. 4741�53. doi: 

10.1523/JNEUROSCI.2825-12.2013. 

Pan, Z. W., Dai, Z. R. and Wang, Z. L. (2001) �Nanobelts of semiconducting oxides.�, Science (New York, 
N.Y.). School of Materials Science and Engineering, School of Chemistry and Biochemistry, Georgia Institute 

of Technology, Atlanta, GA 30332-0245, USA. DOI - 10.1126/science.1058120 SRC - Pubmed ID2 - 

11239151 FG - 0, 291(5510), pp. 1947�1949. 

Paninski, L., Pillow, J. and Lewi, J. (2007) �Statistical models for neural encoding, decoding, and optimal 

stimulus design.�, Progress in brain research, 165, pp. 493�507. doi: 10.1016/S0079-6123(06)65031-0. 

Peyman, G., Chow, A. Y., Liang, C., Chow, V. Y., Perlman, J. I. and Peachey, N. S. (1998) �Subretinal 

semiconductor microphotodiode array.�, Ophthalmic surgery and lasers, 29(3), pp. 234�241. 

Pillow, J., Shlens, J., Paninski, L. and Sher, A. (2008) �Spatio-temporal correlations and visual signalling in a 

complete neuronal population�, Nature. 

Piyathaisere, D. V, Margalit, E., Chen, S.-J., Shyu, J.-S., D�Anna, S. A., Weiland, J. D., Grebe, R. R., Grebe, 

L., Fujii, G., Kim, S. Y., Greenberg, R. J., De Juan, E. and Humayun, M. S. (2003) �Heat effects on the 

retina.�, Ophthalmic surgery, lasers & imaging竺: the official journal of the International Society for Imaging 
in the Eye, 34(2), pp. 114�120. 

Pourcho, R. G. and Goebel, D. J. (1985) �A combined Golgi and autoradiographic study of (3H)glycine-

accumulating amacrine cells in the cat retina.�, The Journal of comparative neurology, 233(4), pp. 473�480. 

Prescott, S. a, Ratté, S., De Koninck, Y. and Sejnowski, T. J. (2006) �Nonlinear interaction between shunting 

and adaptation controls a switch between integration and coincidence detection in pyramidal neurons.�, The 

Journal of neuroscience竺: the official journal of the Society for Neuroscience, 26(36), pp. 9084�97. doi: 

10.1523/JNEUROSCI.1388-06.2006. 

Protti, D. a, Flores-Herr, N. and von Gersdorff, H. (2000) �Light evokes Ca2+ spikes in the axon terminal of a 

retinal bipolar cell.�, Neuron, 25(1), pp. 215�27. 

Publio, R., Oliveira, R. F. and Roque, A. C. (2006) �A realistic model of rod photoreceptor for use in a retina 

network model.� 

209 
 



 REFERENCES 

 

Publio, R., Oliveira, R. F. and Roque, A. C. (2009) �A computational study on the role of gap junctions and 

rod Ih conductance in the enhancement of the dynamic range of the retina.�, PloS one, 4(9), p. e6970. doi: 

10.1371/journal.pone.0006970. 

Publio, R., Oliveira, R. and Roque, a (2006) �A realistic model of rod photoreceptor for use in a retina 

network model�, Neurocomputing, 69(10-12), pp. 1020�1024. doi: 10.1016/j.neucom.2005.12.037. 

Rasch, M. J., Schuch, K., Logothetis, N. K. and Maass, W. (2011) �Statistical comparison of spike responses 

to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a 

patch of V1.�, Journal of neurophysiology, 105(2), pp. 757�78. doi: 10.1152/jn.00845.2009. 

Ratnasingam, S. and Robles-Kelly, A. (2013) �A spiking neural network for illuminant-invariant colour 

discrimination�, The 2013 International Joint Conference on Neural Networks (IJCNN). Ieee, pp. 1�8. doi: 

10.1109/IJCNN.2013.6706929. 

Rattay, F., Paredes, L. P. and Leao, R. N. (2012) �Strength-duration relationship for intra- versus extracellular 

stimulation with microelectrodes.�, Neuroscience. IBRO, 214, pp. 1�13. doi: 

10.1016/j.neuroscience.2012.04.004. 

Raudies, F. and Neumann, H. (2010) �A neural model of the temporal dynamics of figure-ground segregation 

in motion perception.�, Neural networks竺: the official journal of the International Neural Network Society. 

Elsevier Ltd, 23(2), pp. 160�76. doi: 10.1016/j.neunet.2009.10.005. 

Rizzi, A., Simone, G. and Cordone, R. (2008) �A Modified Algorithm for Perceived Contrast Measure in�, 

(l), pp. 249�252. 

Rizzo, J. F. (2003) �Methods and Perceptual Thresholds for Short-Term Electrical Stimulation of Human 

Retina with Microelectrode Arrays�, Investigative Ophthalmology & Visual Science, 44(12), pp. 5355�5361. 

doi: 10.1167/iovs.02-0819. 

Rizzo, J. F. (2011) �Update on retinal prosthetic research: the Boston Retinal Implant Project.�, Journal of 

neuro-ophthalmology竺: the official journal of the North American Neuro-Ophthalmology Society, 31(2), pp. 

160�8. doi: 10.1097/WNO.0b013e31821eb79e. 

Rizzo, J. F., Wyatt, J., Loewenstein, J., Kelly, S. and Shire, D. (2003) �Perceptual efficacy of electrical 

stimulation of human retina with a microelectrode array during short-term surgical trials.�, Investigative 

ophthalmology & visual science, 44(12), pp. 5362�5369. 

Rodieck, R. W. (1965) �Quantitative analysis of cat retinal ganglion cell response to visual stimuli.�, Vision 

research, 5(11), pp. 583�601. 

Rodieck, R. W. and Watanabe, M. (1993) �Survey of the morphology of macaque retinal ganglion cells that 

project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus.�, The 

Journal of comparative neurology. Department of Ophthalmology, University of Washington, Seattle 98195. 

DOI - 10.1002/cne.903380211 SRC - Pubmed ID2 - 8308173 FG - 0, 338(2), pp. 289�303. 

Roska, B., Molnar, A. and Werblin, F. S. (2013) �Parallel Processing in Retinal Ganglion Cells鳥: How 
Integration of Space-Time Patterns of Excitation and Inhibition Form the Spiking Output Parallel Processing 

in Retinal Ganglion Cells鳥: How Integration of Space-Time Patterns of Excitation and Inhibition�, (March 

2006), pp. 3810�3822. doi: 10.1152/jn.00113.2006. 

210 
 



 REFERENCES 

 

Rountree, C. M., Inayat, S., Troy, J. B. and Saggere, L. (2013) �Development of a chemical retinal prosthesis: 

Stimulation of rat retina with glutamate.�, Conference proceedings竺: ... Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 

Conference, 2013, pp. 3134�7. doi: 10.1109/EMBC.2013.6610205. 

Rudd, M. E. and Brown, L. G. (1997) �A model of weber and noise gain control in the retina of the toad Bufo 

marinus�, Vision Research, 37(17), pp. 2433�2453. doi: 10.1016/S0042-6989(96)00321-5. 

Saszik, S. and DeVries, S. H. (2012) �A mammalian retinal bipolar cell uses both graded changes in 

membrane voltage and all-or-nothing Na+ spikes to encode light.�, The Journal of neuroscience竺: the official 
journal of the Society for Neuroscience, 32(1), pp. 297�307. doi: 10.1523/JNEUROSCI.2739-08.2012. 

Schiller, P. H. and Carvey, C. E. (2005) �The Hermann grid illusion revisited�, 34. doi: 10.1068/p5447. 

Schindelin, I., Frise, V., Longair, T., Preibisch, C., Saalfeld, B., Tinevez, D., White, V., Eliceiri, P., Johannes, 

E., Mark, S., Stephan, J.-Y. and Kevin and Albert Cardona (2012) �Fiji: an open-source platform for 

biological-image analysis, Nature Methods�, Nature Methods 9(7), 9, pp. 676�682. 

Schmolesky, M. (2014) The Primary Visual Cortex. Available at: http://webvision.med.utah.edu/book/part-

ix-psychophysics-of-vision/the-primary-visual-cortex/ (Accessed: 4 December 2014). 

Schrauf, M., Lingelbach, B. and Wist, E. R. (1997) �The scintillating grid illusion.�, Vision research, 37(8), 

pp. 1033�8. 

Schwartz, G. and Rieke, F. (2011) ‘Nonlinear spatial encoding by retinal ganglion cells: when 1+ 1≠ 2’, The 

Journal of general physiology, pp. 283�290. doi: 10.1085/jgp.201110629. 

Schwartz, O., Pillow, J. W., Rust, N. C. and Simoncelli, E. P. (2006) �Spike-triggered neural 

characterization.�, Journal of vision, 6(4), pp. 484�507. doi: 10.1167/6.4.13. 

Sekerli, M. and Butera, R. J. (2004) �An implementation of a simple neuron model in field programmable 

analog arrays.�, Conference proceedings竺: ... Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 6, pp. 4564�

7. doi: 10.1109/IEMBS.2004.1404266. 

Shah, S. and Levine, M. (1993) �Information processing in primate retinal cone pathways: A model.� 

Shapley, R. and Lennie, P. (1985) �Spatial frequency analysis in the visual system.�, Annual review of 

neuroscience, 8, pp. 547�583. 

Sharma, R. K. and Ehinger, B. (1999) �Management of hereditary retinal degenerations: present status and 

future directions.�, Survey of ophthalmology, 43(5), pp. 427�444. 

Sharpe, L. T. and Stockman, A. (1999) �Rod pathways: the importance of seeing nothing.�, Trends in 

neurosciences, 22(11), pp. 497�504. 

Sheasby, B. W. and Fohlmeister, J. F. (2013) �Impulse Encoding Across the Dendritic Morphologies of 

Retinal Ganglion Cells Impulse Encoding Across the Dendritic Morphologies of Retinal Ganglion Cells�, pp. 

1685�1698. 

211 
 



 REFERENCES 

 

Shinomoto, S. (2010) �Fitting a stochastic spiking model to neuronal current injection data.�, Neural 

networks竺: the official journal of the International Neural Network Society. Elsevier Ltd, 23(6), pp. 764�9. 

doi: 10.1016/j.neunet.2010.04.004. 

Shlens, J., Rieke, F. and Chichilnisky, E. (2008) �Synchronized firing in the retina.�, Current opinion in 

neurobiology, 18(4), pp. 396�402. doi: 10.1016/j.conb.2008.09.010. 

Siegel, M., Marder, E. and Abbott, L. F. (1994) �Activity-dependent current distributions in model neurons.�, 

Proceedings of the National Academy of Sciences of the United States of America, 91(24), pp. 11308�12. 

Siminoff, R. (1980) �Modeling of the vertebrate visual system. I. Wiring diagram of the cone retina.�, Journal 

of theoretical biology, 86(4), pp. 673�708. 

Simone, G., Pedersen, M. and Hardeberg, J. Y. (2012) �Measuring perceptual contrast in digital images�, 

Journal of Visual Communication and Image Representation. Elsevier Inc., 23(3), pp. 491�506. doi: 

10.1016/j.jvcir.2012.01.008. 

Sisak, S., Banin, E. and Blumenthal, E. Z. (2004) �A two-compartment model of the human retina.�, Medical 

hypotheses, 62(5), pp. 808�16. doi: 10.1016/j.mehy.2003.11.035. 

Skaliora, I., Robinson, D. W., Scobey, R. P. and Chalupa, L. M. (1995) �Properties of K+ conductances in cat 

retinal ganglion cells during the period of activity-mediated refinements in retinofugal pathways.�, The 

European journal of neuroscience. Section of Neurobiology, Physiology and Behavior, University of 

California, Davis 95616, USA. SRC - Pubmed ID2 - 7551182 FG - 0, 7(7), pp. 1558�1568. 

Smith, R. G. and Vardi, N. (1995) �Simulation of the AII amacrine cell of mammalian retina: functional 

consequences of electrical coupling and regenerative membrane properties.�, Visual neuroscience, 12(5), pp. 

851�60. 

Solomon, S. G. and Lennie, P. (2007) �The machinery of colour vision.�, Nature reviews. Neuroscience. 

Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences and Bosch Institute, 

Anderson-Stuart Building F13, The University of Sydney, New South Wales 2006, Australia. DOI - 

10.1038/nrn2094 SRC - Pubmed ID2 - 17375040 FG - 0, 8(4), pp. 276�286. 

Spillmann, L. and Levine, J. (1971) �Contrast enhancement in a Hermann grid with variable figure-ground 

ratio.�, Experimental brain research, 13(5), pp. 547�59. 

Spitzer, H. and Rosenbluth, A. (2002) �Colour constancy: The role of low-level mechanisms�, Spatial vision. 

Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Israel. 

hedva@eng.tau.ac.il SRC  - Pubmed ID2 - 12116991 FG - 0, 15(3), pp. 277�302. 

Spitzer, H. and Semo, S. (2002) �Color constancy: a biological model and its application for still and video 

images�, Pattern Recognition, 35(8), pp. 1645�1659. doi: 10.1016/S0031-3203(01)00160-1. 

Stabell, U. (1967) �Rods as color receptors in photopic vision.�, Scandinavian journal of psychology, 8(2), pp. 

139�144. 

Stett, a, Barth, W., Weiss, S., Haemmerle, H. and Zrenner, E. (2000) �Electrical multisite stimulation of the 

isolated chicken retina.�, Vision research, 40(13), pp. 1785�95. 

212 
 



 REFERENCES 

 

Stiles, N. R., McIntosh, B., Tanguay, A. R. and Humayun, M. S. (2014) �Intraocular Retinal Prostheses: 

Monocular Depth Perception in the Low Resolution Limit�, in Frontiers in Optics 2014. Washington, D.C.: 

OSA, p. JW3A.38. doi: 10.1364/FIO.2014.JW3A.38. 

Stingl, K., Bartz-Schmidt, K. U., Besch, D., Braun, A., Bruckmann, A., Gekeler, F., Greppmaier, U., Hipp, 

S., Hörtdörfer, G., Kernstock, C., Koitschev, A., Kusnyerik, A., Sachs, H., Schatz, A., Stingl, K. T., Peters, 

T., Wilhelm, B. and Zrenner, E. (2013) �Artificial vision with wirelessly powered subretinal electronic 

implant alpha-IMS.�, Proceedings. Biological sciences / The Royal Society, 280(1757), p. 20130077. doi: 

10.1098/rspb.2013.0077. 

Stodilka, R. Z., Modolo, J., Prato, F. S., Robertson, J. a., Cook, C., Patrick, J., Beuter, A., Thomas, A. W. and 

Legros, A. (2011) �Pulsed magnetic field exposure induces lasting changes in neural network dynamics�, 

Neurocomputing. Elsevier, 74(12-13), pp. 2164�2175. doi: 10.1016/j.neucom.2011.01.025. 

Sugita, Y. and Tasaki, K. (1988) �The activation of cones in scotopic and rods in photopic vision.�, The 

Tohoku journal of experimental medicine. Department of Physiology, Tohoku University School of 

Medicine, Sendai, Japan. SRC - Pubmed ID2 - 3245038 FG - 0, 156(4), pp. 311�317. 

Suh, B. (2012) ON and OFF Pathways of Ganglion Cells in the Salamander Retina, cs229.stanford.edu. 

Sun, H., Rüttiger, L. and Lee, B. B. (2004) �The spatiotemporal precision of ganglion cell signals: a 

comparison of physiological and psychophysical performance with moving gratings�, Vision Research, 44(1), 

pp. 19�33. doi: 10.1016/j.visres.2003.08.017. 

Suzanne, J. (2014) What Else Could Smart Contact Lenses Do?, MIT Technology Review. Available at: 

http://www.technologyreview.com/news/529196/what-else-could-smart-contact-lenses-do/. 

Tannazzo, T., Kurylo, D. D. and Bukhari, F. (2014) �Perceptual grouping across eccentricity.�, Vision 

research, 103, pp. 101�108. doi: 10.1016/j.visres.2014.08.011. 

Tranchina, D., Gordon, J., Shapley, R. and Toyoda, J. (1981) �Linear information processing in the retina: a 

study of horizontal cell responses.�, Proceedings of the National Academy of Sciences of the United States of 

America, 78(10), pp. 6540�2. 

Troyk, P., Bak, M., Berg, J., Bradley, D., Cogan, S., Erickson, R., Kufta, C., McCreery, D., Schmidt, E. and 

Towle, V. (2003) �A model for intracortical visual prosthesis research.�, Artificial organs, 27(11), pp. 1005�

15. 

Tsaneva-Atanasova, K., Zimliki, C. L., Bertram, R. and Sherman, A. (2006) �Diffusion of calcium and 

metabolites in pancreatic islets: killing oscillations with a pitchfork.�, Biophysical journal, 90(10), pp. 3434�

46. doi: 10.1529/biophysj.105.078360. 

Tsukada, M., Terasawa, M. and Hauske, G. (1983) �Temporal pattern discrimination in the cat�s retinal cells 

and Markov system models�, Systems, Man and Cybernetics, IEEE Transactions on, SMC-13(5), pp. 953�

964. doi: 10.1109/TSMC.1983.6313091. 

Uematsu, S., Chapanis, N., Gucer, G., Konigsmark, B. and Walker, A. E. (1974) �Electrical stimulation of the 

cerebral visual system in man.�, Confinia neurologica, 36(2), pp. 113�124. 

213 
 



 REFERENCES 

 

Uhlig, C. E., Taneri, S., Benner, F. P. and Gerding, H. (2001) �[Electrical stimulation of the visual system. 

From empirical approach to visual prostheses].�, Der Ophthalmologe竺: Zeitschrift der Deutschen 
Ophthalmologischen Gesellschaft, 98(11), pp. 1089�1096. 

Ureña, R., Morillas, C. and Pelayo, F. J. (2013) �Real-time bio-inspired contrast enhancement on GPU�, 

Neurocomputing. Elsevier, 121, pp. 40�52. doi: 10.1016/j.neucom.2012.09.035. 

Valeton, J. M., van Norren, D. and van Wyk, M. (2006) Light adaptation of primate cones: An analysis based 
on extracellular data�. Vision Research,  . Local edge detectors in the rabbit retina�. Ph The University of 

Queensland. 

Vanleeuwen, M. T., Joselevitch, C., Fahrenfort, I. and Kamermans, M. (2007) �The contribution of the outer 

retina to color constancy: a general model for color constancy synthesized from primate and fish data.�, 

Visual neuroscience, 24(3), pp. 277�90. doi: 10.1017/S0952523807070058. 

Vasserman, G., Schneidman, E. and Segev, R. (2013) �Adaptive colour contrast coding in the salamander 

retina efficiently matches natural scene statistics.�, PloS one, 8(10), p. e79163. doi: 

10.1371/journal.pone.0079163. 

Veraart, C., Raftopoulos, C., Mortimer, J. T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, a, Parrini, S. and 

Wanet-Defalque, M. C. (1998) �Visual sensations produced by optic nerve stimulation using an implanted 

self-sizing spiral cuff electrode.�, Brain research, 813(1), pp. 181�6. 

Veraart, C., Wanet-Defalque, M.-C., Gérard, B., Vanlierde, A. and Delbeke, J. (2003) �Pattern recognition 

with the optic nerve visual prosthesis.�, Artificial organs, 27(11), pp. 996�1004. 

Veredas, F. J., Vico, F. J. and Alonso, J.-M. (2005) �Factors determining the precision of the correlated firing 

generated by a monosynaptic connection in the cat visual pathway.�, The Journal of physiology, 567(Pt 3), 

pp. 1057�78. doi: 10.1113/jphysiol.2005.092882. 

Verweij, J., Hornstein, E. P. and Schnapf, J. L. (2003) �Surround antagonism in macaque cone 

photoreceptors.�, The Journal of neuroscience竺: the official journal of the Society for Neuroscience. 

Department of Ophthalmology, University of California, San Francisco, California 94143-0730, USA. SRC - 

Pubmed ID2 - 14614083 FG - 0, 23(32), pp. 10249�10257. 

Wacongne, C., Changeux, J.-P. and Dehaene, S. (2012) �A neuronal model of predictive coding accounting 

for the mismatch negativity.�, The Journal of neuroscience竺: the official journal of the Society for 

Neuroscience, 32(11), pp. 3665�78. doi: 10.1523/JNEUROSCI.5003-11.2012. 

Walraven, J., Valeton, J. M., van Doorn, A. J., de Grind, W. A. and Koenderink, J. J. (1984) Visual 

adaptation and response saturation�. In  van and Ed. 

Walter, P., Szurman, P., Vobig, M., Berk, H., Lüdtke-Handjery, H. C., Richter, H., Mittermayer, C., 

Heimann, K. and Sellhaus, B. (1999) �Successful long-term implantation of electrically inactive epiretinal 

microelectrode arrays in rabbits.�, Retina (Philadelphia, Pa.), 19(6), pp. 546�552. 

Wässle, H., Grünert, U., Chun, M. H. and Boycott, B. B. (1995) �The rod pathway of the macaque monkey 

retina: identification of AII-amacrine cells with antibodies against calretinin.�, The Journal of comparative 

neurology. Max-Planck-Institut für Hirnforschung, Frankfurt, Federal Republic of Germany. DOI - 

10.1002/cne.903610315 SRC - Pubmed ID2 - 8550898 FG - 0, 361(3), pp. 537�551. 

214 
 



 REFERENCES 

 

Webster, M. and Mollon, J. D. (1991) �Changes in colour appearance following post-receptoral adaptation�, 

Nature, 349(6306), pp. 235�238. 

Weiland, J. D., Cho, A. K. and Humayun, M. S. (2011) �Retinal prostheses: current clinical results and future 

needs.�, Ophthalmology. Elsevier Inc., 118(11), pp. 2227�37. doi: 10.1016/j.ophtha.2011.08.042. 

Weiland, J. D. and Humayun, M. S. (2003) �Past, present, and future of artificial vision�, Artificial organs, 

27(11), pp. 961�962. 

Weiland, J. D. and Humayun, M. S. (2005) �A biomimetic retinal stimulating array.�, IEEE engineering in 

medicine and biology magazine竺: the quarterly magazine of the Engineering in Medicine & Biology Society, 

24(5), pp. 14�21. 

Weiland, J. D. and Humayun, M. S. (2006) �Intraocular retinal prosthesis�, IEEE Engineering in Medicine 

and Biology Magazine, 25(5), pp. 60�66. doi: 10.1109/MEMB.2006.1705748. 

Weiland, J. D., Liu, W. and Humayun, M. S. (2005) �Retinal prosthesis.�, Annual review of biomedical 

engineering, 7, pp. 361�401. doi: 10.1146/annurev.bioeng.7.060804.100435. 

Werblin, F. S. (2010) �Six different roles for crossover inhibition in the retina: correcting the nonlinearities of 

synaptic transmission.�, Visual neuroscience. Department of Molecular and Cell Biology, University of 

California at Berkeley, Berkeley, California 94720, USA. werblin@berkeley.edu DOI - 

10.1017/S0952523810000076 SRC - Pubmed ID2 - 20392301 FG - 0, 27(1-2), pp. 1�8. 

Werblin, F. S. and Dowling, J. E. (1969) �Organization of the retina of the mudpuppy, Necturus maculosus. 

II. Intracellular recording.�, Journal of neurophysiology, 32(3), pp. 339�355. 

West, G. and Brill, M. H. (1982) �Necessary and sufficient conditions for Von Kries chromatic adaptation to 

give color constancy.�, Journal of mathematical biology, 15(2), pp. 249�258. 

Wijekoon, J. H. B. and Dudek, P. (2012) �VLSI circuits implementing computational models of neocortical 

circuits.�, Journal of neuroscience methods. Elsevier B.V., 210(1), pp. 93�109. doi: 

10.1016/j.jneumeth.2012.01.019. 

Wilke, R., Gabel, V. P., Sachs, H., Bartz, S., Gekeler, F., Besch, D., Szurman, P., Stett, A., Wilhelm, B., 

Peters, T., Harscher, A., Greppmaier, U., Kibbel, S., Benav, H., Bruckmann, A., Stingl, K., Kusnyerik, A. 

and Zrenner, E. (2011) �Spatial resolution and perception of patterns mediated by a subretinal 16-electrode 

array in patients blinded by hereditary retinal dystrophies�, Investigative ophthalmology & visual science, 

52(8), pp. 5995�6003. 

Wilson, H. R., Cambridge, M. A., Tranchina, D., Gordon, J. and Sci, U. S. A. (1981) �Pattern discrimination, 

Visual Filters, and Spatial Sampling Irregularity, in M.�, S Landy and JA Movshon Eds Computational 

Models of Visual Processing pp  Linear information processing in the retina a study of horizontal cell 
responses Proc Natl Acad 65402, 78 SRC  - , pp. 153�168. 

Wilson, H. R. and Kim, J. (1998) �Dynamics of a divisive gain control in human vision.�, Vision research. 

Visual Sciences Center, University of Chicago, IL 60637, USA. hrw6@midway.uchicago.edu SRC - Pubmed 

ID2 - 9775322 FG - 0, 38(18), pp. 2735�2741. 

215 
 



 REFERENCES 

 

Wohrer, A. and Kornprobst, P. (2009) �Virtual Retina: a biological retina model and simulator, with contrast 

gain control.�, Journal of computational neuroscience, 26(2), pp. 219�249. doi: 10.1007/s10827-008-0108-4. 

Wu, Q. X., McGinnity, T. M., Maguire, L. P., Belatreche, A. and Glackin, B. (2008) �Processing visual 

stimuli using hierarchical spiking neural networks�, Neurocomputing, 71(10-12), pp. 2055�2068. doi: 

10.1016/j.neucom.2007.10.020. 

Van Wyk, M., Taylor, W. R. and Vaney, D. I. (2006) �Local edge detectors: a substrate for fine spatial vision 

at low temporal frequencies in rabbit retina.�, The Journal of neuroscience竺: the official journal of the Society 
for Neuroscience, 26(51), pp. 13250�63. doi: 10.1523/JNEUROSCI.1991-06.2006. 

Xu, Y., Dhingra, N. K., Smith, R. G. and Sterling, P. (2005) �Sluggish and brisk ganglion cells detect contrast 

with similar sensitivity.�, Journal of neurophysiology. Department of Neuroscience, University of 

Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA. ying@retina.anatomy.upenn.edu DOI 

- 10.1152/jn.01088.2004 SRC - Pubmed ID2 - 15601731 FG - 0, 93(5), pp. 2388�2395. 

Yanai, D., Weiland, J. D., Mahadevappa, M., Greenberg, R. J., Fine, I. and Humayun, M. S. (2007) �Visual 

performance using a retinal prosthesis in three subjects with retinitis pigmentosa.�, American journal of 
ophthalmology, 143(5), pp. 820�827. doi: 10.1016/j.ajo.2007.01.027. 

Young, T. and Kelland, P. (1845) A course of lectures on natural philosophy and the mechanical arts. (A 

course of lectures on natural philosophy and the mechanical arts). 

Zaghloul, K. a, Boahen, K. and Demb, J. B. (2003) �Different circuits for ON and OFF retinal ganglion cells 

cause different contrast sensitivities.�, The Journal of neuroscience竺: the official journal of the Society for 
Neuroscience, 23(7), pp. 2645�54. 

Zaghloul, K. a, Boahen, K. and Demb, J. B. (2005) �Contrast adaptation in subthreshold and spiking 

responses of mammalian Y-type retinal ganglion cells.�, The Journal of neuroscience竺: the official journal of 
the Society for Neuroscience, 25(4), pp. 860�8. doi: 10.1523/JNEUROSCI.2782-04.2005. 

Zeck, G. M., Xiao, Q. and Masland, R. H. (2005) �The spatial filtering properties of local edge detectors and 

brisk-sustained retinal ganglion cells.�, The European journal of neuroscience, 22(8), pp. 2016�26. doi: 

10.1111/j.1460-9568.2005.04390.x. 

Zele, A. J., Maynard, M. L., Joyce, D. S. and Cao, D. (2014) �Effect of rod-cone interactions on mesopic 

visual performance mediated by chromatic and luminance pathways.�, Journal of the Optical Society of 

America. A, Optics, image science, and vision, 31(4), pp. A7�A14. 

Zhijun Pei and Qingli Qiao (2010) �An Approximate Retina Model with Cascade Structures�, Biomedical 

Engineering, (Icnc), pp. 2009�2012. 

Zhou, D., Li, S., Zhang, X. and Cai, D. (2013) �Phenomenological incorporation of nonlinear dendritic 

integration using integrate-and-fire neuronal frameworks.�, PloS one, 8(1), p. e53508. doi: 

10.1371/journal.pone.0053508. 

Zhou, Z. J. and Fain, G. L. (1996) �Starburst amacrine cells change from spiking to nonspiking neurons 

during retinal development.�, Proceedings of the National Academy of Sciences of the United States of 

America, 93(15), pp. 8057�62. 

216 
 



 REFERENCES 

 

Zrenner, E. (2002) �Will retinal implants restore vision?�, Science (New York, N.Y.), 295(5557), pp. 1022�5. 

doi: 10.1126/science.1067996.  

 

217 
 


	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1 INTRODUCTION 1
	1.1 Motivation 1
	1.2 Currents challenges of retinal prostheses 3
	1.3 Thesis aim and objective 6
	1.4 The need of a retinal model 7
	1.5 Major contributions 8
	1.5.1 Proposed model to explain the Hermann grid illusion 10
	1.5.2 A model to enhance contrast under mesopic lighting conditions 10
	1.5.3 A model to enhance colour vision 11
	1.5.4 Conceptual design of retinal prosthesis 12

	1.6 Thesis overview 13

	CHAPTER 2 BACKGROUND STUDIES 1
	2.1 The retina 1
	2.1.1 Structure of the retina 1
	2.1.2 Retinal connectivity 7

	2.2 Functions of the retina 8
	2.2.1 Visual photo-transduction 9
	2.2.2 Data compression 11
	2.2.3 Light/dark adaptation 12
	2.2.4 Spatial filtering 13

	2.3 Retinal diseases 15
	2.4 Retinal prosthesis 16
	2.4.1 The device 16
	2.4.2 Device output 17

	2.5 Summary 20

	CHAPTER 3 RETINAL PROSTHESIS REVIEW 21
	3.1 Extraocular prostheses 22
	3.1.1 Surface cortical prosthesis 22
	3.1.2 Optic nerve prostheses 24

	3.2 Intraocular 26
	3.2.1 Epiretinal prostheses 26
	3.2.2 Subretinal prostheses 38

	3.3 Summary 51

	CHAPTER 4 RETINAL MODELING REVIEW 52
	4.1 Conductance-based models 53
	4.1.1 Hodgkin–Huxley model 53
	4.1.2 Morris–Lecar model 55
	4.1.3 Advantages and disadvantages 58

	4.2 Threshold-fire models 59
	4.2.1 Integrate-and-fire 59
	4.2.2 Spike Response Model 62
	4.2.3 Izhikevich model 64
	4.2.4 Advantages and disadvantages 66

	4.3 Compartment model 67
	4.3.1 Advantages and disadvantages 70

	4.4 Linear-Non-linear-Poisson model 70
	4.4.1 Advantages and disadvantages 73

	4.5 Discussion 74
	4.6 Summary 76

	CHAPTER 5 SYSTEM MODELING 77
	5.1 The retinal model 77
	5.2 Linear–non-linear system 77
	5.3 Model receptive field 79
	5.4 ON and OFF pathways 84
	5.5 Cone and rod pathway 85
	5.5.1 Cone pathway 86
	5.5.2 Rod pathway 88

	5.6 Implementation in the proposed model 89
	5.7 Spiking neurons 96
	5.8 Model simulation 97
	5.9 Summary 99

	CHAPTER 6 OUTER PLEXIFORM LAYER RECEPTIVE FIELDS AS UNDERLYING FACTORS OF THE HERMANN GRID ILLUSION 101
	6.1 Introduction 101
	6.2 The Hermann grid illusion 103
	6.3 A unified model based on Hermann grid illusion 107
	6.4 Proposed model 108
	6.5 Experiments and results 111
	6.5.1 Line width ratio 111
	6.5.2 Orientation 113
	6.5.3 Luminance 115
	6.5.4 Distortion 116

	6.6 Discussion 117
	6.7 Summary 122

	CHAPTER 7 A RETINAL MODEL OF CONTRAST ADJUSTMENT IN MESOPIC CONDITIONS 124
	7.1 Introduction 124
	7.2 Contrast processing in the retina 125
	7.3 The rod pathway in the retina 128
	7.4 Rod pathway modelling 131
	7.5 Experimental setups 134
	7.6 Results 136
	7.7 Discussion 146
	7.8 Summary 151

	CHAPTER 8 A RETINAL MODEL OF COLOUR ADJUSTMENT 153
	8.1 Introduction 153
	8.2 Colour pathway and colour correction in the retina 155
	8.3 Colour correction hypothesis 157
	8.4 The model of colour processing in the retina 158
	8.5 Experimental setups 162
	8.6 Results 164
	8.7 Discussion 172
	8.8 Summary 176

	CHAPTER 9 CONCLUSIONS AND FUTURE WORK 177
	9.1 Discussion 177
	9.1.1 Device concept 178
	9.1.2 Intraocular part 180
	9.1.3 Extra-ocular part 186
	9.1.4 Informational configuration components 187

	9.2 Conclusions 188
	9.3 Future work 190
	9.4 Summary 191

	CHAPTER 10 REFERENCES 193

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	INTRODUCTION
	1.1 Motivation
	1.2 Currents challenges of retinal prostheses
	1.3 Thesis aim and objective
	1.4 The need of a retinal model
	1.5 Major contributions
	1.5.1 Proposed model to explain the Hermann grid illusion
	1.5.2 A model to enhance contrast under mesopic lighting conditions
	1.5.3 A model to enhance colour vision
	1.5.4 Conceptual design of retinal prosthesis

	1.6 Thesis overview


	CHAPTER 2
	BACKGROUND STUDIES
	2.1 The retina
	2.1.1 Structure of the retina
	Figure 2.1: Location and structure of the retina.

	2.1.2 Retinal connectivity

	2.2 Functions of the retina
	2.2.1 Visual photo-transduction
	2.2.2 Data compression
	2.2.3 Light/dark adaptation
	2.2.4 Spatial filtering

	2.3 Retinal diseases
	2.4 Retinal prosthesis
	2.4.1 The device
	2.4.2 Device output

	2.5 Summary


	CHAPTER 3
	RETINAL PROSTHESIS REVIEW
	3.1  Extraocular prostheses
	3.1.1 Surface cortical prosthesis
	3.1.2 Optic nerve prostheses
	Figure 3.2: The optic nerve prosthesis.
	Reproducing with permission (Weiland, Liu and Humayun, 2005)


	3.2 Intraocular
	3.2.1 Epiretinal prostheses
	Figure 3.3: The schematic of the prosthesis.
	Reproducing with permission (Weiland, Liu and Humayun, 2005).
	Figure 3.5: EPIRET-3 retinal prosthesis.
	3.2.1.1 Advantages and disadvantages of epiretinal prostheses

	3.2.2 Subretinal prostheses
	Figure 3.6: The Artificial Silicon Retina (ASR).
	3.2.2.1 Advantages and disadvantages of subretinal prostheses


	3.3 Summary


	CHAPTER 4
	RETINAL MODELING REVIEW
	4.1 Conductance-based models
	4.1.1 Hodgkin–Huxley model
	4.1.2 Morris–Lecar model
	4.1.3 Advantages and disadvantages

	4.2 Threshold-fire models
	4.2.1 Integrate-and-fire
	4.2.2 Spike Response Model
	4.2.3 Izhikevich model
	4.2.4 Advantages and disadvantages

	4.3 Compartment model
	4.3.1 Advantages and disadvantages

	4.4 Linear-Non-linear-Poisson model
	4.4.1 Advantages and disadvantages

	4.5 Discussion
	Table 4.1: FLOPS comparison of different retinal models.

	4.6 Summary


	CHAPTER 5
	SYSTEM MODELING
	5.1 The retinal model
	5.2 Linear–non-linear system
	5.3 Model receptive field
	Figure 5.1: The response of receptive field of ganglion cells
	to different stimulus (Wohrer and Kornprobst, 2009).
	Figure 5.2: Edge detection as a result from receptive field
	(Corney and Lotto, 2007).
	Figure 5.3: Different types of receptive fields.
	Obtained with permission from Conway et al. (Conway et al., 2010).

	5.4 ON and OFF pathways
	5.5 Cone and rod pathway
	5.5.1 Cone pathway
	Figure 5.4: Cone pathway in retina.
	Figure 5.4 depicts the cone system in the photoreceptor layer of the primate retina. Three different types of cones are found: red (long, L), green (medium, M) and blue (short, S). Each type of cone has its own connectivity and results in the L-on/L-o...

	5.5.2 Rod pathway
	Figure 5.5: Rod pathway in retina.


	5.6 Implementation in the proposed model
	Figure 5.7: Rod pathway circuitry in the model.
	Table 5.1: Processing block and its definition in proposed model.

	5.7 Spiking neurons
	5.8 Model simulation
	5.9 Summary


	CHAPTER 6
	OUTER PLEXIFORM LAYER RECEPTIVE FIELDS AS UNDERLYING FACTORS OF THE HERMANN GRID ILLUSION
	6.1 Introduction
	Figure 6.1: The original Hermann grid (A) and its inverted colour version (B).

	6.2 The Hermann grid illusion
	Figure 6.2: Baumgartner’s explanation for the Hermann grid illusion.
	Figure 6.3: The original Hermann grid (A) and grid rotated by 45  (B).
	Figure 6.4: Colour variant (A) and distorted (B) versions of the Hermann grid.

	6.3 A unified model based on Hermann grid illusion
	6.4 Proposed model
	Figure 6.5: Simplified illustration of receptive field integration
	in the retina model.

	6.5 Experiments and results
	6.5.1 Line width ratio
	Table 6.1: Ratio test cases
	Figure 6.6: The Hermann grid output from the model
	at different receptive field sizes and a line-width ratio of 1:1 (top row) or 1:3 (bottom row) with bipolar cells connected. At each ratio, the centre:surround receptive field size was changed in range from 1:2 to 2:4 and 3:6, shown from left to right.
	Figure 6.7: The Hermann grid output from the model
	at different receptive field sizes and a line- width ratio of 1:1 (top row) and 1:3 (bottom row) with no bipolar cells connected. At each ratio, the centre:surround receptive field size was changed in range from 1:2 to 2:4 and 3:6, shown from left to ...

	6.5.2 Orientation
	Figure 6.8: Output from the model for grids rotated at 15 , 30 , 45 , and 60
	with connectivity calculated using a probability matrix. The output for each angle corresponds to each column in the figure. The top row contains images output from a model with bipolar cells involved, while in the bottom row bipolar cells were not in...
	Figure 6.9: The output with the same orientations as in Figure 6.8
	but with a non-circular receptive field of the bipolar cells.

	6.5.3 Luminance
	Table 6.2: Colour test cases
	Figure 6.10: The output of model with colour grids.

	6.5.4 Distortion
	Figure 6.11: Distorted Hermann grid as input to and output from the model.
	The top right image is the input to the model while the top left is an example of distorted grid, and bottom images correspond to outputs from the model with (bottom left) and without bipolar cell involvement (bottom right).


	6.6 Discussion
	Table 6.3: MSE between the output from a rotated Hermann grid
	and the rotated output from the original grid.
	Figure 6.12: Binary maps of connectivity in bipolar receptive field.

	6.7 Summary


	CHAPTER 7
	A RETINAL MODEL OF CONTRAST ADJUSTMENT IN MESOPIC CONDITIONS
	7.1 Introduction
	7.2 Contrast processing in the retina
	7.3 The rod pathway in the retina
	7.4 Rod pathway modelling
	7.5 Experimental setups
	7.6 Results
	Figure 7.4: Without ON/OFF integration
	. Outputs from the ON and OFF pathways for the following contrast levels (from top to bottom): low, medium-low, medium-high, and high. The “ideal images” in the right-most column consist of pre-calibrated images with ideal scene contrast. At first gla...
	Figure 7.5: With ON/OFF integration.
	The results of dendritic integration in ON and OFF ganglion cells for the following contrast levels (from top to bottom): low, medium-low, medium-high, and high. Applying the weights to the ON and OFF pathways led to significant changes in the high-co...
	Table 7.1: Without ON/OFF integration.
	Table 7.2: With ON/OFF integration.
	RSC contrast measurements corresponding to the ON and OFF pathway outputs from 10 test images varying from low to high contrast. From the table one can see that the outputs from the ON and OFF pathways significantly changed after applying the ON/OFF i...
	Figure 7.7: Responses from ON ganglion cells
	for each contrast level from 1 (top) to 4 (bottom) (i.e. low contrast, medium-low contrast, medium-high contrast, and high contrast).
	for each contrast level from 1 (top) to 4 (bottom) (i.e. low contrast, medium-low contrast, medium-high contrast, and high contrast).

	7.7 Discussion
	7.7.1 Different processes in ON and OFF pathways for contrast control
	7.7.2 ON and OFF pathway ratio for contrast processing
	7.7.3 Different temporal responses in ganglion cells for contrast processing
	7.7.4 Analysis summary

	7.8 Summary


	CHAPTER 8
	A RETINAL MODEL OF COLOUR ADJUSTMENT
	8.1 Introduction
	8.2 Colour pathway and colour correction in the retina
	Figure 8.1: The retinal colour pathway.

	8.3 Colour correction hypothesis
	8.4 The model of colour processing in the retina
	8.5 Experimental setups
	8.6 Results
	Figure 8.2: Results for simulated deuteranopia.
	The top row corresponds to the input images, consisting of three Ishihara plates (26, 42, and a line pattern from left to right). The second row depicts the model outputs, whereas the third row depicts outputs from Fiji. The last row depicts what shou...
	Figure 8.3: Colour correction output from the model.
	Four different input images are shown in the first row. The second row depicts the output from the model, and the third row depicts the original image without colour distortion.
	Figure 8.4: Comparison of the proposed model outcomes
	with output images from other approaches. The first two rows display the outputs generated using the garden scene as input. From left to right, the outputs of the proposed model, Grey World, Shades of Grey, and Grey-Edge approaches are shown in the fi...
	Figure 8.5: The root mean square error (RMSE)
	from several standard algorithms compared to that of the proposed model. The dataset consists of a set of 100 images acquired from Gehler et al. (Gehler et al., 2008). Apart from the proposed model, seven algorithms were utilized to generate the RMSE ...
	Figure 8.6: Comparison of RMSE across eight different algorithms
	, derived from Figure 8.5. The chart shows the percentage of lowest RMSE across all datasets (i.e. a bar at 10% indicates that 10% of output images (5/50) have the lowest RMSE using that approach). According to these results, Retinex was the overall b...
	Figure 8.7: Connective topology of ganglion cell receptive fields.
	On the left, 29 ganglion cells are arranged in a 7(7 grid according to a centre-surround receptive field configuration. The middle diagram illustrates centre-to-centre synapses (blue line) and centre-to-surround synapses (purple line), while the diagr...

	8.7 Discussion
	with and without amacrine cell involvement.

	8.8 Summary


	CHAPTER 9
	CONCLUSIONS AND FUTURE WORK
	9.1 Discussion
	9.1.1 Device concept
	9.1.2 Intraocular part
	Figure 9.2: The electrode array in operation.

	9.1.3 Extra-ocular part
	9.1.4 Informational configuration components

	9.2 Conclusions
	9.3 Future work
	9.4 Summary


	CHAPTER 10
	REFERENCES


