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Abstract

Studying the dynamics of the palaeoclimate is a challenging problem. Part of the challenge

lies in the fact that our understanding must be based on only a single realisation of the climate

system. With only one climate history, it is essential that palaeoclimate data are used to their full

extent, and that uncertainties arising from both data and modelling are well characterised. This

is the motivation behind this thesis, which explores approaches for uncertainty quantification in

problems related to palaeoclimate reconstruction.

We focus on uncertainty quantification problems for the glacial-interglacial cycle, namely

parameter estimation, model comparison, and age estimation of palaeoclimate observations.

We develop principled data assimilation schemes that allow us to assimilate palaeoclimate data

into phenomenological models of the glacial-interglacial cycle. The statistical and modelling

approaches we take in this thesis means that this amounts to the task of performing Bayesian

inference for multivariate stochastic differential equations that are only partially observed.

One contribution of this thesis is the synthesis of recent methodological advances in approx-

imate Bayesian computation and particle filter methods. We provide an up-to-date overview that

relates the different approaches and provides new insights into their performance. Through sim-

ulation studies we compare these approaches using a common benchmark, and in doing so we

highlight the relative strengths and weaknesses of each method.

There are two main scientific contributions in this thesis. The first is that by using infer-

ence methods to jointly perform parameter estimation and model comparison, we demonstrate

that the current two-stage practice of first estimating observation times, and then treating them

as fixed for subsequent analysis, leads to conclusions that are not robust to the methods used

for estimating the observation times. The second main contribution is the development of a

novel age model based on a linear sediment accumulation model. By extending the target of

the particle filter we are able to jointly perform parameter estimation, model comparison, and

observation age estimation. In doing so, we are able to perform palaeoclimate reconstruction

using sediment core data that takes age uncertainty in the data into account, thus solving the

problem of dating uncertainty highlighted above.
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CHAPTER 1

Introduction

The current ice age began approximately 2.5-3.5 Myr (million years) BP (before present) during

the late Pliocene [2, 3]. Since then, the climate has fluctuated between cold periods, which see

a large increase in ice volume in the northern hemisphere, and warm periods in which these ice

sheets retreat [1, 4]. This process is called the glacial-interglacial cycle. The glacial-interglacial

cycle is observable in many palaeoclimate records. One such example is the LR04 stack [1],

shown in Figure 1.1.

A glacial period begins with a glacial inception, in which glaciers begin to advance, and

ends with a glacial termination, where glaciers start to retreat. Between a glacial termination

and a glacial inception is a warm period, called an interglacial period. In the early Pleiostocene

(approximately 2.6 Myr BP onwards) each glacial cycle would occur over approximately 40

kyr (thousand years), but during the mid-Pleistocene (approximately 800 kyr BP) this pattern

changed to a 100 kyr cycle. This shift is known as the mid-Pleistocene transition. The most

recent glacial cycles exhibit a saw-tooth shaped structure, with ice slowly advancing over 80

kyr, and melting rapidly over 20 kyr. The last glacial cycle terminated approximately 11 kyr

BP, at which point we entered an interglacial period called the Holocene. Detailed records of

the last glacial cycle indicate complex sub-millennial dynamics throughout glacial periods [5].

Dansgaard-Oeschger events are a well known example of these sub-millennial dynamics, where

by, during glaciation, the temperature can raise several degrees over a few decades, followed by

a longer cooling trend [6]. Possibly linked to Dansgaard-Oeschger events are Heinrich events,

in which glaciers around the North Atlantic rapidly collapse [7].

The most commonly accepted mechanism to explain this long term climate variation is that

changes in the Earth’s orbit alter the seasonal and spatial distribution of incoming solar radiation

(insolation). In particular Milkankovitch theory (named for geophysicist and astronomer Multin

Milankovitch) mathematically describes the variation of insolation in terms of three orbital el-

ements: obliquity, precession and eccentricity. Under the Milankovitch theory, cold northern-
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Figure 1.1: Observed δ18O, a proxy of global temperature and ice volume, from the LR04

stack corresponding to the past 1.5 Myr [1]. The LR04 stack is constructed from

57 individual records. Large values of δ18O indicate cold periods with a large ice

volume, whereas small values indicate warm periods with little ice.

hemisphere summers are necessary for a glacial inception, which requires a low insolation over

the summer season. Milankovitch measured insolation by integrating the daily mean insolation

over the caloric summer (the 180 days of highest insolation assuming a 360 day year [8]) at lati-

tude 65°N. This theory was supported by Hays et al. [9] who demonstrated that variations in the

Earth’s orbital parameters corresponded to variations in the climate over the past 500 kyr. Vari-

ation in insolation alone fails to explain a number of features of the glacial-interglacial cycle.

The dominant periods in the insolation signal are ∼21 kyr and ∼40 kyr, matching the dominant

periods of precession and obliquity respectively, but the more recent glacial cycles have a period

of ∼100 kyr. This is a major period of eccentricity, but there are no 400 kyr cycles, which is

the dominant period of eccentricity [10]. The variation in insolation also does not explain the

saw-tooth shape of the more recent cycles.

The internal dynamics of the Earth’s climate are also expected to have a large influence

on the glacial-interglacial cycle. For example, during glaciation atmospheric CO2 decreases

to approximately 200 ppm (parts per million), and during deglaciation atmospheric CO2 rises

to approximately 280 ppm. Since CO2 is a powerful greenhouse gas, these variations almost

certainly influence the glacial-interglacial cycle.

Scientists have long constructed mathematical models of the climate to understand the ef-

fects of both internal climate dynamics and the astronomical forcing on the glacial-interglacial

cycle (as well as many other climate processes). The complexity of climate models covers a

wide spectrum, from using only a handful of climate variables to attempting to model as many

physical and biochemical processes as possible [10]. Given the large timescales involved in the

dynamics of the glacial-interglacial cycle, the system is often studied using phenomenological

2
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models. Phenomenological models are low-dimensional models that are consistent with the un-

derlying dynamics, but not derived from the underlying physical processes of a system [11, 12].

By focussing on a limited number of climate variables it is possible to design models for the pur-

pose of finding out which climate processes are important over long timescales. These models

are more formally introduced in Chapter 2.

Even the most advanced climate models have no hope of capturing the full complexity of

the climate. If we are to trust in the predictions of any climate model we need to make use of

palaeoclimate data. With only one climate history, it is important to extract as much information

from the data as possible. Historically, the complexity of even the simplest climate models has

made a careful statistical analysis very difficult, and so approaches have been somewhat un-

principled. For example, model parameters are manually adjusted until a good fit to the data is

obtained [13]. This approach leaves many questions unanswered, such as whether another set of

parameters might give an equally good, or better, fit to the data, and can lead to poor character-

isation of the uncertainty in model predictions. However, with recent advances in Monte Carlo

methodology, phenomenological models are simple enough to allow palaeoclimate data to be

assimilated into models in a principled way. The primary aim of this thesis is to develop prin-

cipled data assimilation schemes for phenomenological models of the glacial-interglacial cycle,

and apply them to uncertainty quantification problems in palaeoclimate science, specifically,

parameter estimation, state estimation, and model selection.

1.1 Palaeoclimate Data

Since there are no direct observations of the palaeoclimate, the history of the climate over long

timescales needs to be inferred through proxy measurements. Proxy measurements are mea-

surements of a physical quantity that contains information about another quantity of interest. In

the context of studying the glacial-interglacial cycle, proxy measurements are often taken from

sediment and ice cores. Sediment cores are obtained by drilling into sediment using a hollow

drill, called a core drill. When the drill is raised, it extracts a long cylinder of sediment, which

is called a core section. The drill can then be lowered into the hole that was left in order to

recover additional core sections at increasing depths. The core sections are then combined to

form a single core. Finally, the core is sliced at regular intervals, within which the quantity of

interest is measured. This provides a series of measurements according to depth. For the data to

be useful in understanding the palaeoclimate, the depth scale needs to be converted into a time

scale, so that we can see how the climate evolves through time. We know that the top of the

core (depth 0) was recently deposited, and, for the most part, the ages of the measurements are

an increasing function of depth, although post-depositional effects, such as sediment shifts, can

3
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alter this. Apart from this general trend there is typically very little time information that can

be extracted from a core. Consequently, dating observations is extremely difficult. Following

Milakovitch theory this has historically been done by aligning features in the dataset, such as

glacial inceptions and terminations, with the insolation signal, the timescale of which is well un-

derstood over the past several million years from gravitational theory [14]. This approach was

taken when dating the LR04 stack [1]. However, if one of the inferences that we wish to make

is the influence of variations in the Earth’s orbit on the glacial-interglacial cycle, then using a

dataset that has been dated in this manner is undesirable; any influence that is detected could be

due to the dating assumptions. Alternatively, the timescale can be assigned by conditioning on

parts of the record that have been dated with high accuracy. For instance, geomagnetic reversals

are evident in many sediment cores, and can often be dated with relatively small uncertainty by

using, for example, radiometric dating techniques [15, 16]. The most recent geomagnetic rever-

sal was the Brunhes-Matuyama (BM) reversal, which has been dated at 780±2 kyr BP [17]. The

rarity of these events means that any inferred timescale will have considerable uncertainty. This

approach was taken when dating the H07 stack [4], in which the timescale between magnetic

reversals was inferred by fitting a deterministic piecewise linear model between reversals that

related depth to age. The dating uncertainties in both the LR04 and H07 stacks are estimated to

be approximately 10 kyr, but have yet to be accurately quantified [1, 4]. The large dating uncer-

tainties can make inferences about the palaeoclimate challenging. For example, the precession

varies quasi-periodically over approximately 21 kyr, making the precession signal almost im-

possible to distinguish in the record. Consequently, the influence of precession is difficult to

determine [4, 18].

One of the proxies most used to study the climate history is δ18O [1, 4]. This is a mea-

sure of the ratio 18O:16O, two stable isotopes of oxygen. This type of data is frequently taken

from sediment cores (divided into benthic (ocean floor) or planktic cores) containing fossilised

foraminifer shells. Foraminifera are small marine organisms that create calcium carbonate

shells through a process that requires the incorporation of oxygen from the surrounding wa-

ter. Foraminiferal δ18O (the ratio 18O:16O contained in the fossil shells) depends on the local

sea-water δ18O, salinity, and temperature at the time the foraminifera was last metabolising in

the water. In turn these quantities depend on global evaporation, precipitation, ice volume, and

temperature, indicating the conditions of the past climate [1]. However, the numerous factors

affecting foraminiferal δ18O means that it is rarely possible to assess the relative contributions

of any single quantity [19]. Alternatively, δ18O measurements can be taken from ice cores. In

contrast to foraminiferal δ18O measurements, which are indirect observations from organisms

that lived in the relevant environment, ice core measurements are made directly on the core it-

self. Other common proxies include deuterium and CO2 from ice core samples. In Figure 1.2

foraminiferal δ18O data from the LR04 stack [1] are superimposed with CO2 data from the
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Figure 1.2: Observed δ18O from the LR04 stack [1] (black) superimposed with CO2 from the

Dome C ice core [20] (red) over the past 800 kyr. Both records have been scaled

to highlight similarities.

Dome C ice core [20], where it can be seen that the two proxy datasets share many similar

features. Each of these proxy datasets is collected as a function of depth. As such, there is

uncertainty in both how the proxy measurements relate to the state of the climate and the date

they represent.

Paleoclimate data are often combined into stacks. Stacks are averages over multiple datasets

from different drill sites. By averaging over multiple datasets the signal-noise ratio of the climate

signal is improved, and if the sites represent a wide geographical area then local trends should

be suppressed. Constructing a stack typically involves correlating features in the datasets. For

instance, glacial terminations are usually well defined in individual datasets, and so the termi-

nations in each record can be aligned. However, there can be some large variations between

datasets. For example, missing data and duplicated sections are common due to sediment shifts.

There are numerous approaches to averaging over the datasets, but the most common approach,

which was used in the construction of the H07 stack [4], is to interpolate each dataset onto a

common set of time points (every 1 kyr for example), and then take the sample average at each

time point.
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1.2 Inference

Numerous phenomenological models have been proposed in the literature [21]. These models

take a set of conditions (i.e. parameter values and initial conditions) and generate the evolution

of specified climate variables according to the model. The aim of this thesis is to look at the

inverse problem. We aim to assimilate palaeoclimate data, representing the historical evolution

of climate variables through time, into the models. In doing so, we aim to learn about the best

set of conditions for a model (parameter estimation), or the best models (model selection), in

order to study the dynamics of the climate.

In this thesis we follow the Bayesian approach to statistics. In the Bayesian setting uncer-

tainty is described probabilistically. Beginning with a model parameterised by some parameter

vector, θθθ ∈ Rv, we express our initial belief about θθθ as a probability distribution, called the

prior distribution, π (θθθ). The prior distribution reflects our initial uncertainty about the value

of θθθ. When we are confident in a value for θθθ, then the prior distribution has a narrow support,

favouring a small range of values. In contrast, a prior distribution with a wide support will be

used when we are uncertain about what value θθθ takes. We then wish to update our beliefs about

θθθ through assimilation of some set of data, here assumed to be M discrete observations, YYY 1:M ,

where YYY m ∈ Rw. This is done through the likelihood function, π (YYY 1:M | θθθ), which describes

how well the data are explained for a given θθθ. Mathematically, we update our beliefs using

Bayes formula:

π (θθθ | YYY 1:M ) =
π (YYY 1:M | θθθ)π (θθθ)

π (YYY 1:M )
, (1.2.1)

where the denominator π (YYY 1:M ) is termed the model evidence, and is obtained by integrating

out θθθ,

π (YYY 1:M ) =

∫
π (YYY 1:M | θθθ)π (θθθ) dθθθ. (1.2.2)

Bayes formula is very intuitive. The values of θθθ that best match our initial beliefs, and best

explain the data, are given the highest posterior probability density.

Bayes theorem allows the assimilation of palaeoclimate data in a principled framework.

However, for the models in this thesis, the likelihood, π (YYY 1:M | θθθ), is intractable, meaning that

it is not available in analytical form. This restricts our approach to methods that either remove

the likelihood term from the necessary calculations, or methods that use some approximation of

the likelihood. Some applicable methods are introduced in Chapter 3.
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1.3 Thesis Structure and Major Contributions

This thesis studies a number of uncertainty quantification problems related to palaeoclimate

reconstruction. In particular, looking at parameter estimation, model selection, and dating un-

certainties in sediment cores. The contribution to the scientific community can be summarised

as follows:

• Numerous phenomonelogical models have been proposed. I have demonstrated how phe-

nomenological models can be embedded in a state space model framework, allowing us

to apply standard data assimilation schemes.

• The parameters in phenomonelogical models are often chosen by hand, so that the output

of the model resembles the gross structure of palaeoclimate data. I provide an overview

of approximate Bayesian computation (ABC) and particle filter methods for parameter

estimation and model selection. These methods are compared in a simulation study, which

can be considered as a benchmark.

• The design of efficient algorithms is explored. In particular I show how to design effi-

cient proposals in the particle filter, and how to adaptively choose between accuracy and

computational expense in an ABC-SMC algorithm.

• I apply these methods to palaeoclimate data using three models from the literature. In

doing so, I show how a Bayesian model selection approach can be used to investigate on-

going questions in palaeoclimate science. In particular, I show whether palaeoclimate data

support one phenomenological model over others, and whether the astronomical forcing

adds explanatory power in these models. I demonstrate that the results of these experi-

ments are sensitive to the methods in which sediment cores are dated.

• Motivated by the sensitivity of the model comparison experiments to the dating meth-

ods, I design a novel age model, and extend the particle filter to also perform filtering

on the ages of observations. This algorithm provides a statistically rigorous characterisa-

tion of age model uncertainty in sediment cores. Using a model comparison experiment,

I demonstrate that at least one dataset supports astronomically forced models when ac-

counting for age model uncertainty.
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A complete breakdown of this Thesis is as follows:

Chapter 1

We introduce the glacial-interglacial cycle and Milankovitch theory, which states that the

glacial-interglacial cycle is paced by variations in the Earth’s orbit over large timescales.

We introduce δ18O, measurements of which provide the data on which we will perform

inference. Finally, Bayes theorem is introduced, giving the foundation of the inference

methods used throughout this thesis.

Chapter 2

We discuss the phenomenological modelling approach, and show how any of the phe-

nomenological models in the literature can be embedded in a state space model (SSM)

framework. We provide an introduction to SSMs, oscillators, and stochastic differential

equations (SDEs), which are necessary to understand the phenomenological modelling

approach. An observation process is developed in order to compare phenomenological

models with observations of δ18O. We introduce three phenomenological models, which

will act as benchmarks to our inference methods in Chapter 3 and Chapter 4.

Chapter 3

We introduce Approximate Bayesian Computation (ABC) and particle filter methods for

parameter estimation for the phenomenological models of the climate discussed in Chap-

ter 2. This problem is difficult, as the likelihood term required in Bayes theorem is in-

tractable. ABC utilises repeated simulations from the model in order to remove the like-

lihood term from any analytical calculations, whereas particle filter methods provide an

unbiased estimate of the likelihood that can then be used in calculations. We design a sim-

ulation study to compare the strengths and weaknesses, in particular comparing accuracy

and computational cost, of each of these methods.

Chapter 4

We extend the inference methods introduced in Chapter 3 to perform model selection. We

use this methodology to compare phenomenological models with different underlying

dynamics. A simulation study is again used to assess the performance of each algorithm.

We apply the methods to real-world data, showing that phenomenological models that

undergo self-sustaining oscillations are more strongly supported by the data than steady-

state models.
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Chapter 5

We discuss the problems associated with using palaeoclimate data. In particular, we ad-

vocate using individual sediment cores rather than stacks. We apply the model selec-

tion methodology from Chapter 4 to investigate palaeoclimate model selection problems.

Specifically, we assess the influence of the astronomical forcing in phenomenological

models, and select between phenomenological models that have been proposed in the

literature. It is shown that different dating assumptions have a strong impact on the con-

clusions.

Chapter 6

We introduce a novel age model based on a stochastic linear sediment accumulation model

with down-core compaction. The particle filter is extended to include observation times in

the filtering distribution. The concept of age-control points is also introduced, extending

the observation process to include time information. This allows us to jointly perform

parameter estimation, model selection, and quantification of the dating uncertainty. The

new method performs well in a simulation study and is applied to two real-world datasets.

The dating results are compared with the age estimates of the LR04 and H07 stacks.

Our method gives results that are largely consistent with these estimates. A model selec-

tion experiment shows that one real-world dataset more strongly supports astronomically

forced phenomenological models over unforced models.

Chapter 7

Concludes the work in this thesis and suggests future directions of research.
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CHAPTER 2

Phenomenological Modelling of the

Palaeoclimate

The aim of this thesis is to develop methods for uncertainty quantification in problems related

to palaeoclimate reconstruction. In this chapter we discuss the wide-range of models available

to study climate dynamics, both short and long term. We motivate the use of phenomenological

models, which are relatively simple in the small number of state variables and system parame-

ters. These models are at the limit of complexity for which data can be assimilated in a formal

Bayesian framework over the necessary timescales. To do so requires extending the models in

the literature in two ways: Stochastic effects are added to account for model discrepancy, and

the phenomenological models are embedded in a state space model (SSM) framework in order

to relate the models with observations.

The chapter is set out as follows. In Section 2.1 we discuss modern approaches to climate

modelling, and explain why we are limited in our choice of models if we want to perform

inference about the evolution of the climate over millions of years. In Section 2.2 we give an

overview of SSMs and discuss how phenomenological models of the climate can be embedded

in this framework. In Section 2.3 we explain the main features of phenomenological models in

the literature. We extend the phenomenological models to account for model discrepancy, and

introduce an observation model in order to relate phenomenological models to palaeoclimate

observations. We introduce three new models as a benchmark for the inference approaches that

we will introduce in Chapter 3 and Chapter 4. In Section 2.4 we discuss the inference challenges,

and in Section 2.5 we conclude the chapter.
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2.1 Modelling the Climate

In recent decades scientists have aimed to understand the climate by constructing large numer-

ical models that include as many of the physical processes of the climate system as possible.

These models are referred to as General Circulation Models, or GCMs. GCMs work by di-

viding the Earth into a number of grid-cells. Physical processes are resolved within each cell,

and interactions are modelled between neighbouring cells. GCMs aim to have a high resolution

(a large number of cells) to enable physical processes that occur over relatively small spatial

areas to be incorporated into the simulator. Many of the processes operating over small spatio-

temporal intervals (either occurring over an area smaller than a cell, or within one integration

timestep of the model), such as turbulence and cloud dynamics, are more crudely approximated.

The complexity of GCMs means that they are computationally expensive, and so are typically

designed to simulate only a few hundred years of the climate [10]. This approach has largely

been driven by the need to understand the effect of the recent increase in the levels of green-

house gases, with the aim of assessing the impact of climate change on a regional level over the

next few decades.

The goal of palaeoclimate science is different. The aim is to understand processes that occur

over thousands or millions of years. GCMs are ill-suited to study processes that evolve over a

timescale of 100 kyr, such as the glacial-interglacial cycle. For this reason, much simpler models

known as Earth Models of Intermediate Complexity (EMICs) have been proposed to model

over longer timescales. Compared to GCMs, these models typically reduce the temporal and

spatial resolutions dramatically [10]. Huge savings in computation time are obtained with such

simplifications, allowing the study of large timescale elements of the climate. However, even

at this stage the models may be considered oversimplified. Many of the dynamical processes

that influence the glacial-interglacial cycle are poorly represented, if at all. It is impossible to

account for all of the physical processes accurately enough to reproduce the glacial-interglacial

cycles.

Since we lack the ability to exactly simulate the glacial-interglacial cycles, observations of

previous glacial cycles need to be incorporated into the models. A standard approach is to vary

the parameters of the model until the output is in good agreement with some training data [13].

This process is referred to as tuning, which is distinct from the more principled approach of

parameter estimation (sometimes referred to as model calibration). Confidence in the model is

gained if it is then able to reproduce observations that were not included in the training data.

If this is not the case then the training dataset can be extended to include more observations

before choosing a new set of parameters. There are a number of issues with the standard tuning

approach. There may be multiple sets of parameters that give a convincing fit to the data,

particularly when the data are sparse and noisy, and it can be difficult to determine if one set

12
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of parameters better explain the data than another. How the data are being incorporated, and

deciding when a model is well tuned is often not made explicit. This is a cause for concern in the

output of these models, as it can be difficult to trace conclusions back to the initial assumptions.

Finally, by only incorporating part of the available data, important information may be omitted.

Recently interest has returned to using low-dimensional dynamical models, which can be

considered as phenomenological models of the climate [11, 12]. In Figure 1.2 we can see that

the glacial-interglacial cycle has a regular structure. Rather than model all of the physical and bi-

ological processes that contribute to glacial-interglacial cycles, phenomenological models allow

us to model this regular behaviour directly. In such cases we only need to learn about processes

on the large timescales of interest, ignoring the interactions between the short timescale ele-

ments of the climate system. Low-dimensional dynamical models have been more thoroughly

explored than the large numerical climate models, and there is a huge amount of theory relating

to the assimilation of data into such models owing to the low computational expense of perform-

ing simulations. Whilst this does not solve our inability to model the climate, it does give us well

developed techniques that allow the available data to be incorporated in a principled framework.

In particular, phenomenological models enable us to perform data assimilation in such a way

as to accurately quantify our uncertainty, which is currently impossible for EMICs. A popular

approach is to use a class of models known as oscillators. This modelling approach was intro-

duced by Saltzman and Maasch, who proposed using an oscillator with three states representing

ice volume, carbon dioxide concentration and deep-ocean temperature [22, 23]. The following

decades saw the introduction of dozens of models following this approach [21, 24, 25]. Most

of these have not been calibrated in a principled framework, but rather the parameters are al-

tered until one state of the system broadly resembles observations of δ18O, much like the tuning

approach used in EMICs and GCMs.

Whilst not explicitly discussed in the palaeoclimate literature, the proposed models can be

embedded within an SSM framework. An SSM is comprised of a hidden Markov process such

as the phenomenological models of the climate, and an observation process relating the hidden

Markov process to observations. In regards to palaeoclimate inference, this observation process

relates the phenomenological models of the climate to sediment and ice-core records. This is

an ideal modelling approach, as we can relate the phenomenological models to observations

through the observation process, even when components of the phenomenological model of-

fer no physical interpretation, and we observe long-term climate variation only through proxy

records. In the next section we more formally explain SSMs, and relate this modelling approach

to phenomenological models in the literature.
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2.2 State Space Models

We represent the phenomenological models of the climate as SSMs (also called Hidden Markov

Models, HMMs, usually in the case of discrete state variables). SSMs describe the evolution

of a system, and how the system relates to observations. The evolution of the system is repre-

sented by a hidden (indirectly observed) Markov processXXX1:M = {XXX (t1) , ...,XXX (tM )}, where

t1, ..., tM represent a series of M observation times and XXXm ∈ Ru is the state of the system

at time tm. The Markov process is described by an initial density π(XXX1 | θθθ) and transition

probability density

π(XXXm+1 |XXX1:m, θθθ) = π(XXXm+1 |XXXm, θθθ), m ≥ 1, (2.2.1)

for some given static parameter θθθ ∈ Rv. The Markov process XXX1:M is observed indirectly

through a set of observations YYY 1:M = {YYY (t1) , ...,YYY (tM )}, where each YYY m ∈ Rw are assumed

to be conditionally independent given XXX1:M , and are related to the state of the system through

an observation process with probability density

π(YYY m |XXX1:M , θθθ) = π(YYY m |XXXm, θθθ), 1 ≤ m ≤ M. (2.2.2)

In the context of this thesis the glacial-interglacial cycle is represented by a dynamical

model with state XXXm = (X1 (tm) , ..., Xu (tm))T representing climate variables of interest.

Phenomenological models of the climate are typically low-dimensional, with the state of the

system containing only u = 2 or u = 3 dimensions. The observations YYY m = Y (tm) will

be measurements of δ18O obtained from sediment cores. The state is related to the obser-

vations through X1(t), representing ice volume. The unobservable components of the state

X2(t), ..., Xu(t) may have a physical interpretation, or may be physically undefined, but used

to replicate features of the glacial-interglacial cycle in the evolution of X1(t).

2.3 Phenomenological Models of the Glacial-Interglacial Cycle

Many phenomenological models of the glacial-interglacial cycle follow the modelling approach

of Saltzman and Maach [22, 23]. It is thus not surprising that they share several features:

• Only a few climate variables are explicitly included in the model.

• The climate variables evolve according to a dynamical system that exhibits self-sustaining

oscillations. These oscillations stem either from nonlinearities in the equations governing

the model [22, 23, 25], or from threshold criteria altering the system dynamics [26–28].
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• A forcing term term is included in the model to account for the variation in energy received

from the Sun due to changes in the Earth’s orbit.

The concepts required to understand the construction of these models are introduced below.

2.3.1 Preliminaries

Oscillators

Here we include only such information as is necessary to understand the models discussed in this

thesis. For the interested reader, an excellent introduction to oscillators and dynamical systems

is available in [29], while a more rigorous approach to oscillator theory is available in [30].

In the context of dynamical systems theory an oscillator is a system that exhibits self-

sustaining oscillations. Self-sustaining means that the system requires no external forcing to

oscillate. Oscillators are characterised by a stable limit cycle, which is a closed trajectory in

phase space to which all neighbouring trajectories are attracted. To demonstrate this, consider

the Van der Pol oscillator [31], which is described by the system of ordinary differential equa-

tions (ODEs)
dX1

dt
= −1

τ
X2,

dX2

dt
=

α

τ

(
X1 +X2 −

X3
2

3

)
,

(2.3.1)

where τ is the timescale of the system and α separates the timescale of the two state variables.

Dependence of X1 and X2 on t has been suppressed for notational convenience. Figure 2.1

demonstrates how trajectories progress towards the limit cycle, the shape of which depends on

the values of τ and α.

The Van der Pol oscillator is an example of a relaxation oscillator. Relaxation oscillators

are characterised by alternating relaxation and destabilisation dynamics [29]. We can see from

Equation 2.3.1 that when the state is in the vicinity of X1 =
X3

2
3 − X2 then dX2

dt
will be very

small, and the system will evolve slowly. This is the Van der Pol oscillator’s destabilisation

process, highlighted in Figure 2.1 and Figure 2.2. The two regions of destabilisation are often

referred to as the branches of the limit cycle. In the destabilisation regime, the system gradually

becomes unstable until it is ejected into a relaxation regime. During the relaxation process, the

system is attracted to a region of phase space known as a relaxation state. Unlike the destabil-

isation process, the relaxation process is very quick. Such models are said to exhibit slow-fast

dynamics. Relaxation oscillators do not necessarily need to exhibit slow-fast dynamics, but it

is a common feature. Once the system has relaxed, it once again begins to destabilise. In the

context of climate modelling, a number of relaxation oscillators are discussed in [21].
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Figure 2.2: Trajectory of the Van der Pol oscillator described by Equation 2.3.1 over 700 kyr

with τ = 31000 and α = 20.
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When an oscillator is forced by a periodic or quasi-periodic forcing function the oscillator

may become synchronised on the forcing. The forcing function will attract the trajectories of the

oscillator into specific regions of state space. This means that if many trajectories are generated

from the forced oscillator using the same parameters, but with different initial conditions, the

trajectories will merge over time until only a few distinct trajectories remain. An example is

provided in the next section. The remaining trajectories show the local pullback attractors of

the system. The number and structure of the local pullback attractors are parameter dependent.

No knowledge of pullback attractors is necessary for this thesis. It suffices to know that the as-

tronomical forcing guides trajectories of oscillating systems into specific regions of state space,

but for the interested reader a thorough discussion of pullback attractors in dynamical models

of the palaeoclimate is given in [25].

Astronomical Forcing

The astronomical theory of palaeoclimates is among the most popular ways of explaining the

glacial-interglacial cycle. We only give an introduction here, but a historical perspective on

the topic can be found in [2]. The theory holds that long-term variations in the energy re-

ceived by the Earth from the Sun has a direct effect on pacing the glacial-interglacial cycles.

These long-term spatial and seasonal variations are predominantly explained by variation in the

Earth’s orbital parameters, namely eccentricity, obliquity, and precession. These parameters are

discussed in turn below [2, 32]:

• Eccentricity (e) is a measure of how much the Earth’s orbit around the Sun differs from

a perfect circle. A perfect circle is given by e = 0, and a parabolic trajectory is given by

e = 1. For values 0 < e < 1 the orbit forms an ellipse. Over time the eccentricity of the

Earth’s orbit varies from near circular (e & 0) to slightly elliptical (e ≈ 0.07). This leads

to an increase in insolation during the Earth’s closest approach to the Sun (perihelion), as

well as altering the time spent in each season due to the Earth’s orbital velocity increasing

as the Earth-Sun distance decreases. The dominant period of eccentricity is ∼400 kyr,

with additional ∼100 kyr cycles.

• Obliquity (E) is the angle between the plane of the Earth’s orbit and the equatorial plane.

The Earth’s obliquity varies between approximately 22° (low obliquity) and 24.5° (high

obliquity). A high obliquity leads to a higher amount of insolation being received during

the summer season (for both hemispheres), and a lower amount of insolation over the

winter season. The period of obliquity is ∼41 kyr.

• Precession (Π = e sin ω̃, where e is eccentricity, and ω̃ is the longitude of perihelion,

which is a measure of the angular distance between perihelion and the vernal (spring)
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equinox) describes the variation in the direction of the Earth’s axis of rotation over time,

combining two phenomena. The first is that the Earth’s axis of rotation over time behaves

like a spinning top, such that the motion of the North pole describes a circle in space. The

second is that the elliptical orbit of the Earth rotates in the orbital plane over time. If the

Earth’s axis of rotation points towards the Sun during perihelion there is a greater discrep-

ancy between the amount of insolation received over the Northern Hemisphere summer

than over the Northern Hemisphere winter. Conversely, if the axis of rotation points away

from the Sun then there is less variation between the two seasons. The dominant period

of precession is ∼23 kyr.

The astronomical forcing terms are well approximated by trigonometric series expansions

of the form [2, 32]:

e = e∗ +

ne∑

i=1

ei cos (ωe,it+ ϕe,i) , (2.3.2)

Π =

nP∑

i=1

Pi sin (ωP,it+ ϕP,i) , (2.3.3)

E = E∗ +

nE∑

i=1

Ei cos (ωE,it+ ϕE,i) , (2.3.4)

where the values of the amplitudes (ei, Pi, Ei,), frequencies (ωe,i, ωP,i, ωE,i) and phases (ϕe,i,

ϕP,i, ϕE,i) are given in [32] and [33]. It is standard to take at least 30 components in each sum

for an accurate approximation.

When the astronomical theory of the glacial-interglacial cycle was first proposed it was

thought that long cold winters and short hot summers were necessary for a glacial inception [2].

However, the prevailing viewpoint today is that long mild summers and short mild winters give

preferential conditions for inception. The reasoning is that winter ice build-up is less likely to

melt over the summer. This creates a positive feedback, as the additional sea-ice increases the

surface albedo. This is most commonly referred to as the Milankovitch viewpoint [2].

Any model of the glacial-interglacial cycle needs to take in to account the astronomical

forcing, so that the chance of an inception increases during favourable seasonal conditions. In

dynamical systems, the Milankovitch viewpoint is included by forcing the system with some

measure of the variation of insolation, known as the astronomical (or orbital) forcing. The most

common approach is to use summer solstice insolation at 65°N, but alternative measures of in-

solation have been proposed that are still in-line with the Milankovitch viewpoint. For example,

the insolation integrated over the caloric summer (defined as the half-year with the largest values

of insolation) [2, 8], and insolation integrated over all days for which insolation exceeds some

threshold [34] have both been used. These measures of insolation are well approximated by a
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Figure 2.3: Top: Normalised summer solstice insolation at 65°N obtained using Equation 2.3.5

with γP = 0.78, γC = 0, and γE = 0.38, and the orbital solutions calculated in

[32]. Middle and bottom: Trajectories of the forced Van der Pol oscillator with 20

random sets of initial conditions. The astronomical forcing attracts trajectories into

specific regions of phase space, so that after 1 Myr only three distinct trajectories

remain.

linear combination of precession, coprecession (Π = e cos ω̃, effectively controlling the phase

of precession) and obliquity [25]:

I = γP Π̄ + γCΠ̄ + γEĒ, (2.3.5)

where Π̄, Π̄ and Ē are normalised precession, coprecession and obliquity respectively, and

γP , γC and γE are adimensional scaling parameters. Eccentricity is included only through the

precession and coprecession terms. The coprecession term is often excluded, fixing the phase

of precession, in which case γC is set to 0 [25]. Summer solistice isolation at 65°N is well

approximated by γP = 0.8949, γC = 0, and γE = 0.4346 [25]. The astronomical forcing is

a complex, aperiodic signal, as can be seen in Figure 2.3. Note that the parameters have been

rescaled to γP = 0.78, γC = 0, and γE = 0.38, in order to normalise the insolation signal.

Consider the Van der Pol oscillator as a model for the glacial-interglacial cycle. We assume

that X1 represents some measure of ice volume, and X2 is left physically undefined. The os-

cillator needs to be forced in such a way that high values of insolation promote ice reduction,

and low values of insolation promote ice growth. This is achieved by including the astronomical
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forcing in the ice volume equation with a negative coefficient. The ODEs now take the form

dX1

dt
= −1

τ
(X2 + I (γP , γC , γE)) ,

dX2

dt
=

α

τ

(
X1 +X2 −

X3
2

3

)
.

(2.3.6)

In Figure 2.3 the trajectories of the forced Van der Pol oscillator with parameters τ = 31000,

α = 20, γP = 0.78, γC = 0, and γE = 0.38, are plotted with 20 random sets of initial

conditions. The oscillator synchronises on the astronomical forcing, and after 1 Myr only three

distinct trajectories remain, showing the local pullback attractors of the system.

The Van der Pol oscillator spends approximately the same amount of time on each branch

of its limit cycle. If X1 is taken to be ice volume then this model fails to capture the asymmetry

between slow ice build-up and rapid melting shown in Figure 1.2. A modified version of the

Van der Pol oscillator, dubbed CR12, included an additional asymmetry parameter [21, 25]:

dX1

dt
= −1

τ
(β +X2 + I (γP , γC , γE)) ,

dX2

dt
=

α

τ

(
X1 +X2 −

X3
2

3

)
,

(2.3.7)

where β controls the relative time spent on each branch of the limit cycle. Selecting the pa-

rameters β = 0.8, τ = 31000, α = 20, γP = 0.78, and γE = 0.38 captures the saw-tooth

shaped structure of the last 7 glacial-interglacial cycles, as shown in Figure 2.4. For the given

parameters there is only a single pullback attractor.

Stochastic Differential Equations

Phenomenological models have long been used to study the glacial-interglacial cycle [25]. Such

simple models do not correspond particularly well to reality, due to the huge number of physical

processes that are not included within them. It has previously been proposed that long timescale

“climate” variations could be modelled explicitly, while short timescale “weather” variations

could be approximated as stochastic perturbations [35]. This thesis follows the same approach,

extending the dynamical systems of the climate by including stochastic fluctuations to account

for the discrepancy between the models and real-world process. Our models are now represented

by u dimensional stochastic differential equations (SDEs) of the general form:

dXXX (t) = µµµ (XXX (t) , θθθ) dt+ΣΣΣ
1
2
X (XXX (t) , θθθ) dWWW (t) , (2.3.8)

where µµµ (XXX (t) , θθθ) ∈ Ru is called the drift function, ΣΣΣ
1
2
X (XXX (t) , θθθ) ∈ Ru×u is called the diffu-

sion function, and WWW (t) ∈ Ru is a vector of independent Brownian motions. An understanding
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Figure 2.4: Top: Normalised summer solstice insolation at 65°N obtained using Equation 2.3.5

with γP = 0.78, γC = 0, and γE = 0.38, and the orbital solutions calculated in

[32]. Middle: Observed δ18O over 700 kyr from the LR04 stack [1]. Bottom:

Observable state of CR12, as described by Equation 2.3.7, with parameters are

β = 0.8, τ = 31000, and α = 20. This set of parameters captures the structure of

the recent glacial-interglacial cycles.

of the theoretical properties of SDEs is not required to understand this thesis, but an introduction

to stochastic calculus is available in [36] for interested readers. For all cases in this thesis the

diffusion function is independent of the state of the system and uncorrelated, so that

ΣΣΣX (XXX (t) , θθθ) =




σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
u




is a u× u dimensional diagonal matrix.

Within this framework, consider adding stochastic perturbations to CR12, so that the equa-

tions become

dX1 = −1

τ
(β +X2 + I (γP , γC , γE)) dt+ σ1dW1,

dX2 =
α

τ

(
X1 +X2 −

X3
2

3

)
dt+ σ2dW2,

(2.3.9)

which now contains two additional parameters, σ1 and σ2, that dictate the strength of the

stochastic perturbations for each state variable. The model is no longer deterministic. Even
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Figure 2.5: Two trajectories from CR12 with stochastic perturbations, as described by Equa-

tion 2.3.9, with parameters β = 0.8, τ = 31000, α = 20, σ1 = 0.2, σ2 = 0.3,

γP = 0.78, γC = 0, and γE = 0.38. The two trajectories go out of phase near 400
kyr BP, but maintain the gross structure of the model.

with fixed parameters and initial conditions, two trajectories from this model will never be iden-

tical. However, when the stochastic forcing is relatively weak (small values of σ1 and σ2) the

gross structure of the model is unchanged, as shown for CR12 in Figure 2.5. This is a conse-

quence of the system’s limit cycle; if the state of the system is perturbed away from the limit

cycle then the following trajectory will be attracted back towards the limit cycle.

Since the astronomical forcing attracts the trajectory of the system into specific regions of

state-space, it should also help to preserve the gross structure of the model when stochastic per-

turbations are added. However, in regimes in which there are multiple local pullback attractors,

the stochastic perturbations may shift the trajectory from one region of attraction to another.

This is demonstrated in Figure 2.6, where the system follows the trajectory of a local pullback

attractor, undergoes a period of desynchronisation, and eventually synchronises on a different

local pullback attractor.

When σ1 and σ2 are increased, the stochastic perturbations can cause a relaxation oscillator

to enter a relaxation regime early, or cause a delay in entering one. Picturing the system’s limit

cycle, this can be seen as being ejected from a branch of the limit cycle earlier (noise-induced

escape), or later (noise-induced delay) than the deterministic model. These phenomena are

demonstrated for the Van der Pol oscillator in Figure 2.7. Typically, noise-induced escapes will

dominate, reducing the period of oscillation [12]. In the context of the glacial-interglacial cycle,

noise-induced phenomena can alter the glacial inception and termination times dramatically.
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Figure 2.6: Green and blue lines: Two local pullback attractors of the deterministic CR12

model with parameters β = 0, τ = 31000, α = 20, γP = 0.78, γC = 0, and

γE = 0.38. Red line: Realisation of the stochastic CR12 model with parameters

σ1 = 0.2, and σ2 = 0.3. Stochastic perturbations cause the trajectory to switch

synchronisation between two different local pullback attractors.
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Figure 2.7: Left: An example of a noise-induced delay on the upper-left part of the limit cycle.

Right: An example of a noise-induced escape on the upper-left part of the limit

cycle. Red line shows the limit cycle of the Van der Pol oscillator, and the green

line shows the solution to X1 =
X

3

2

3
−X2.
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Algorithm 2.1 The Euler-Murayama method.

Partition the time interval [0, T ] into J equal subintervals of width ∆t = T
J

:

(t0 = 0, t1 = ∆t, ..., tJ = J∆t) .

Select the initial conditions, XXX (t0), and parameters, θθθ.

for j = 1, ..., J do

Set

XXX (tj) =XXX (tj−1) +µµµ (XXX (tj−1) , θθθ)∆t+ΣΣΣ
1
2
X (XXX (tj−1) , θθθ)

√
∆tǫǫǫj−1,

where ǫǫǫj−1 ∈ Ru is a vector of independent standard Gaussian random variables.

end for

Simulating SDE trajectories

The inference methods in this thesis require that we are at least able to simulate from the model.

For SDEs an analytical solution is available in only a small number of cases. In recent years

exact algorithms have been proposed that offer approaches to exactly simulate from some SDEs

without analytical solutions [37, 38], but these can not be applied for the majority of the models

in this thesis. However, there are numerous methods available to approximately simulate from

an SDE. Since the inference methods introduced later in the thesis require a large number of

simulations from the model it is important to use a computationally efficient approach. We will

be using a commonly used, first order, discrete-time approximation, called the Euler-Maruyama

method [36, 39]. For a generic SDE of the form given in Equation 2.3.8, an approximate numer-

ical solution over [0, T ] is calculated according to Algorithm 2.1. As an example, a trajectory

from CR12 is generated using the discretised equations

X1 (t+∆t) = −1

τ
(β +X2 (t) + I (t; γP , γC , γE))∆t+ σ1

√
∆tǫ1 (t) ,

X2 (t+∆t) =
α

τ

(
X1 (t) +X2 (t)−

X2 (t)
3

3

)
∆t+ σ2

√
∆tǫ2 (t) ,

(2.3.10)

where ǫ1 (t) and ǫ2 (t) are independent realisations of a standard Gaussian random variable. The

Euler-Maruyama method is exact in the limit ∆t → 0, with the accuracy of the approximation

decreasing as ∆t increases. A standard method to choose the step size involves pre-generating a

Brownian motion and comparing a simulated trajectory for different step sizes, repeated over a

range of parameter values. The step size is chosen so that reducing the step size has little impact

on the resulting trajectory. On CR12 it was shown that the Euler-Maruyama method provides

suitable accuracy as long as the system is stable, in the sense that the numerical approximation

does not diverge to ±∞ [40]. This is achieved with a time-step of ∆t = 0.1 kyr.
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2.3.2 Dynamical Models of the Palaeoclimate

CR12 is a typical phenomenological model of the glacial-interglacial cycle. There are an abun-

dance of models in the literature that treat the glacial-interglacial cycle as a limit cycle syn-

chronised on the astronomical forcing. These models almost always follow the Milankovitch

viewpoint, but the dynamics of the models can differ greatly. However, it has been suggested

that any dynamical model with self-sustaining oscillations with a period of roughly 100 kyr that

is forced by the astronomical forcing can reasonably resemble the features of the last few glacial

cycles [10]. With this in mind, we introduce three models that capture much of the variety of the

models in the literature. These models were developed by Michel Crucifix, and so are referred

to as CR14-a, CR14-b, and CR14-c [41]. They will be used as a benchmark for the inference

methods introduced in Chapter 3, and allows us to test whether any one modelling approach is

better supported by the data (Chapter 4).

CR14-a

dX1 = −
(
β0 + β1X1 + β2

(
X3

1 −X1

)
+ δX2 + I(γP , γC , γE)

)
dt+ σ1dW1

dX2 = αδ

(
X1 +X2 −

X3
2

3

)
dt+ σ2dW2

(2.3.11)

CR14-a builds on the CR12 model shown in Equation 2.3.7 by adding additional dynamics

to the ice volume equation, and mirrors numerous phenomenological models exhibiting slow-

fast dynamics. The introduction of β1 adds a linear response to the ice volume, while β2 is

introduced to keep the system stable when β1 is negative. This model has ten tunable parameters,

θθθ = (β0, β1, β2, α, δ, γP , γC , γE , σ1, σ2)
T

.

CR14-b

dX1 = −
(
β0 + β1X1 + β2

(
X3

1 −X1

)
+ I(γP , γC , γE)+

δH (X2 − κ0 − κ1X1)) dt+ σ1dW1

dX2 = α (X1 −X2) dt+ σ2dW2

(2.3.12)

CR14-b represents another popular class of models in which oscillations are induced through a

threshold function. In CR14-b the threshold function is introduced through the Heaviside step

function, H, whose argument is a measure of the difference between the two state variables. Be-

yond this threshold the system loses ice volume at rate δ. This can be thought of as a “flushing”

mechanism: ice volume accumulates until a critical value is reached and the system flushes the

ice from the system, returning to low ice volume conditions. This model has twelve tunable pa-

rameters, θθθ = (β0, β1, β2, α, δ, κ0, κ1, γP , γC , γE , σ1, σ2)
T

, two more than the slow-fast model.
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It is important to note that although the parameters share the same symbols as the slow-fast sys-

tem, many of the parameters are non-comparable as they play a different role depending on the

dynamics of the system.

CR14-c

dX1 = −
(
β0 + β1X1 + β2

(
X3

1 −X1

)
+

δH (X2 − κ0 − κ1X1 + I(γP , γC , γE))) dt+ σ1dW1

dX2 = α (X1 −X2) dt+ σ2dW2

(2.3.13)

CR14-c is a minor modification to CR14-b. The forcing function is now included as part of the

threshold function, so that ice volume responds nonlinearly to insolation. As with CR14-b there

are twelve tunable parameters, θθθ = (β0, β1, β2, α, δ, κ0, κ1, γP , γC , γE , σ1, σ2)
T

. Again, note

that the astronomical forcing parameters will likely take different values than CR12-b, due to

the different responses between ice volume and insolation.

2.3.3 Relating to Observations

Phenomenological models have a limited ability to represent the climate. Even the most com-

plex numerical simulators that include as many physical processes as possible need to be tuned

using some kind of data. Using a dynamical model within an SSM framework allows us to relate

the state of the system to observations through an observation model. The observation model

is designed to represent measurement error and/or uncertainty in how observations relate to the

state of the system. By far the most common observation model is to assume that observations

are a noisy version of the observable states, that is,

YYY m = hhhTXXXm +ΣΣΣ
1
2
Y ηηηm, (2.3.14)

where hhh ∈ Ru is a vector comprised of ones for observable states and zeros for unobservable

states, ηηηm ∈ Rw is a vector of standard Gaussian random variables, and ΣΣΣY ∈ Rw×w is a

diagonal matrix scaling the measurement error.

The observations used in this thesis are measurements of δ18O, whereas the ice volume

response is modelled on a variety of different scales. For example, the models introduced in this

chapter, among many others, are adimensional (in that the components of the state vector have

no physical dimensions), aiming to capture general features observed in past glacial-interglacial

cycles. Even in models where the observable state aims to represent ice volume physically there

are multiple possible representations, such as ice volume (km3) [27], or equivalent sea-level

change (m) [28]. The observation model above needs to be extended in order to account for the
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different scales of observations and models. In vector form we use

YYY m =DDD +CCCTXXXm +ΣΣΣ
1
2
Y ηηηm, (2.3.15)

which is reduced to scalar form for most of our applications, so the observation process becomes

Ym = D +CCCTXXXm +Σ
1
2
Y ηm, (2.3.16)

where we have 3 tunable parameters: D displaces the observable component,CCCT = (C, 0, ..., 0)

rescales it, and ΣY = σ2
Y scales the measurement error.

Using an observation model that depends on a subset of the state variables allows the un-

observable variables to be physically undefined. This is common in regards to phenomenolog-

ical models of the glacial-interglacial cycle, as it allows the study of the dynamics of glacial-

interglacial cycles without the concern of linking the model to specific physical processes. For

models which explicitly include more than one climate variable, it is possible to extend the ob-

servation model to include additional data sources. Examples would be SM90 and SM91, which

explicitly model variation in CO2, and so CO2 records could be included [22, 23].

2.4 Inference Challenges

This chapter has dealt with the development and motivation of phenomenological models of the

palaeoclimate. A model allows us to specify a number of parameters and obtain a set of possible

observations. The aim of this thesis is to study the inverse problem: given a set of data we want

to determine which sets of parameters are best supported by the data. In doing so, we aim to

infer information about the dynamics of the climate over large timescales. In a Bayesian context

this means estimating the posterior distribution given in Equation 1.2.1. In an SSM, the joint

posterior distribution of the parameters θθθ and the state of the system XXX1:M at observation times

t1, ..., tM is

π (θθθ,XXX1:M | YYY 1:M ) ∝ π (θθθ)π (XXX1 | θθθ)
M∏

m=2

π (XXXm |XXXm−1, θθθ)

M∏

m=1

π (YYY m |XXXm, θθθ) , (2.4.1)

from which we obtain the marginal posterior distribution of the parameters by integrating out

the state:

π (θθθ | YYY 1:M ) =

∫
π (θθθ,XXX1:M | YYY 1:M ) dXXX1:M . (2.4.2)

Calculating the posterior distribution is non-trivial. For multivariate nonlinear SDEs the

transition density π (XXXm |XXXm−1, θθθ) is not available in closed-form, and when using palaeo-
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climate data the observations are too sparsely distributed (typically one observation every 2-

3 kyr) to approximate the transition density using the Euler-Maruyama method with inter-

val size ∆t = tm − tm−1. Estimating the transition density requires partitioning the in-

terval ∆t into further sub-intervals of length ∆τ = ∆t
J

, over which the first-order approxi-

mation provides a reasonable estimate. Doing so introduces (J − 1) × u random variables,

XXX (tm−1 +∆τ) , ...,XXX (tm−1 + (J − 1)∆τ), that need to be integrated out:

π (XXXm |XXXm−1, θθθ) ≈
∫ J∏

j=1

π (XXX (tm−1 + j∆τ) |XXX (tm−1 + (j − 1)∆τ) , θθθ)

× d (XXX (tm−1 +∆τ) , ...,XXX (tm−1 + (J − 1)∆τ)) .

To give a sense of scale, recall that u is small (usually 2-3), and note that 20-30 sub-intervals

will typically be required between every pair of observations so that ∆τ = 0.1 kyr. Monte Carlo

methods are usually necessary to evaluate this integral. These are a collection of algorithms that

use random sampling to obtain numerical solutions, some examples of which are provided in

the next chapter.

Even with a reasonable approximation to the transition density, the fact that the system is

only partially observed, and observed with measurement error, means that neither the likelihood,

π (YYY 1:M | θθθ), or the model evidence, π (YYY 1:M ), are available in closed form. Such distributions

are called intractable. This restricts the availability of methods to evaluate, or sample from,

the posterior distribution. Fortunately, with the recent growth in available computer power,

many computational approaches to sample from the posterior distribution have been proposed

in recent years [42–44]. These methods form the basis of our inference approach in this thesis.
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2.5 Chapter Summary

In this Chapter we have described modern approaches to climate modelling. In particular, we

have motivated the use of a phenomenological modelling approach. Phenomenological models

are relatively simple, modelling only a small number of climate variables explicitly. We have de-

scribed the key components in the construction of phenomenological models, and demonstrated

how these can be embedded within an SSM framework, which allows us to formally relate the

phenomenological models to palaeoclimate data. The SSM framework provides the foundation

from which we perform statistical inference using these models throughout this thesis.

Even though phenomenological models are relatively simple, performing inference on them

is extremely challenging, owing to the intractable likelihood. In the next two chapters we in-

troduce state of the art inference methods, for parameter estimation and model comparison

respectively, that can be used without the need for a tractable likelihood. We will then use three

phenomenological models: CR14-a, CR14-b, and CR14-c, introduced in this chapter, to com-

pare the relative performance of the proposed inference methods using a common benchmark.
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CHAPTER 3

Inference Methods

The focus in this chapter is parameter estimation for the class of models described in Chapter 2.

This is a complex problem, as an analytical solution to the posterior distribution is unavailable.

Statisticians have long employed Monte Carlo methods in an attempt to solve such problems.

These are a collection of computer algorithms that use random sampling to obtain numeri-

cal solutions. However, the intractable likelihood in our models means that many commonly

used Monte Carlo methods can not be applied. Fortunately, over the last decade, numerous ap-

proaches have been proposed for performing inference for models with intractable likelihoods,

owing to the recent surge in the availability of computing power. We present two of these ap-

proaches in this chapter. The first is approximate Bayesian computation (ABC), which is a

Monte Carlo approach that can be used in intractable problems where it is possible to simulate

observations from the model for a given set of parameters. The second is to use the particle filter

to estimate the likelihood, and is more tailored towards SSMs.

The chapter is divided as follows. In Section 3.1 we describe the statistical tools necessary

to understand the inference methods used in this chapter. In Section 3.2 we design a simulation

study in order to test and compare the different inference methods. In Section 3.3, we introduce

ABC, and consider a number of variants based on different sampling techniques. In Section 3.4

we describe the particle filter, as well as inference methods that make use of likelihood estima-

tion in order to sample from the posterior distribution. In Section 3.5 we summarise the chapter,

and discusses the relative strengths and weaknesses of each approach.
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3.1 Preliminaries

The inference methods introduced in this chapter expand on a number of well-known sampling

methods. These are introduced below for reference later. We present each sampling scheme as

a method to obtain a sample of size N from the posterior distribution, π (θθθ | YYY 1:M ), where the

data are assumed to be ordered in time. More general forms of each algorithm can be found in

the references provided.

3.1.1 Rejection Sampling

The rejection algorithm [45] is a Monte Carlo approach for sampling from a probability distri-

bution, which we will take to be the posterior distribution, π (θθθ | YYY 1:M ). Parameter values are

drawn from a proposal distribution q (θθθ), and accepted with probability

P =
π (θθθ | YYY 1:M )

Cq (θθθ)
,

where C is a constant such that π (θθθ | YYY 1:M ) < Cq (θθθ), for all θθθ. When the model evidence,

π (YYY 1:M ), is unknown, the sampled parameters can be accepted with probability

P =
π (θθθ)π (YYY 1:M | θθθ)

C ′q (θθθ)
,

where C ′ is a constant such that π (θθθ)π (YYY 1:M | θθθ) < C ′q (θθθ), for all θθθ. The pseudocode

is presented in Algorithm 3.1. The collection of accepted parameter values are independent

samples from the posterior distribution π (θθθ | YYY 1:M ).

The advantages of the rejection algorithm are that it is easy to implement and it provides

independent samples, so that it can be run in parallel on multiple computer cores. The major

drawback is the difficulty in designing efficient proposal distributions. For example, a common

choice when targeting the posterior distribution is to sample from the prior distribution, π (θθθ),

so that the acceptance probability is

P =
π (YYY 1:M | θθθ)

C ′
.

This choice will often lead to many proposed values in regions of low posterior probability

density, giving a very low acceptance probability. The greater the disparity between the prior

and posterior distributions, the more samples are required in order to obtain a sample of the

desired size.
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Algorithm 3.1 Rejection sampling algorithm targeting π (θθθ | YYY 1:M ).

Set n = 1.

while n ≤ N do

Sample θθθ∗ from the proposal distribution, q (θθθ).
With probability

P =
π (θθθ∗)π (YYY 1:M | θθθ∗)

C ′q (θθθ∗)

set θθθ(n) = θθθ∗ and n = n+ 1.

end while

3.1.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) [46] is among the most popular Monte Carlo approaches

for performing inference. The two most famous MCMC algorithms are the Metropolis Hastings

sampler, and the Gibbs sampler (which is a special case of the Metropolis Hastings sampler).

A Metropolis Hastings algorithm for sampling from the posterior distribution, π(θθθ | YYY 1:M ), is

presented in Algorithm 3.2.

The presented Metropolis Hastings algorithm produces a Markov chain, θθθ(1), ..., θθθ(N), which

converges to the stationary distribution, π(θθθ | YYY 1:M ), under mild conditions. A common way to

check that the posterior distribution is a stationary distribution of the Markov chain is to ensure

that the detailed balance equation is satisfied [47]. The detailed balance equations are

π (θθθ | YYY 1:M )P (θθθ∗ | θθθ) = π (θθθ∗ | YYY 1:M )P (θθθ | θθθ∗) , ∀θθθ,θθθ∗, (3.1.1)

where

P (θθθ∗ | θθθ) = λ (θθθ∗ | θθθ) q (θθθ∗ | θθθ) + (1− λ (θθθ∗ | θθθ)) δθθθ (θθθ∗) (3.1.2)

is the transition kernel of the resulting Markov chain. Satisfying the detailed balance equation is

a stronger condition than is necessary, but is a simple check, and the one most commonly used.

The stationary distribution is unique as long as the resulting Markov chain is ergodic. This is

ensured, for example, by choosing a proposal distribution so that q (θθθ∗ | θθθ) > 0, for all θθθ∗ with

posterior support, meaning π(θθθ∗ | YYY 1:M ) > 0. Note that this is a sufficient condition, but not

necessary.

These guidelines produce a Markov chain with the posterior distribution, π(θθθ | YYY 1:M ), as

the unique stationary distribution, from an arbitrary initial value, θθθ(1). However, if the initial

parameter value is in a region of low posterior probability density, then it will take time for the

chain to converge, and the initial samples might poorly represent the stationary distribution. In

this case a burn-in period will be necessary, in which a number of samples at the beginning of

the chain are discarded. It is up to the user to determine when a chain has converged to the sta-
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Algorithm 3.2 Metropolis Hastings algorithm targeting π(θθθ | YYY 1:M ).

Initialise θθθ(1).
for n = 2, ..., N do

Propose move to θθθ∗ according to proposal density q
(
θθθ | θθθ(n−1)

)
.

With probability

λ
(
θθθ∗ | θθθ(n−1)

)
= min

(
1,

π (θθθ∗)π (YYY 1:M | θθθ∗) q
(
θθθ(n−1) | θθθ∗

)

π
(
θθθ(n−1)

)
π
(
YYY 1:M | θθθ(n−1)

)
q
(
θθθ∗ | θθθ(n−1)

)
)

set θθθ(n) = θθθ∗. Otherwise set θθθ(n) = θθθ(n−1).

end for

tionary distribution, and hence, how long of a burn-in period to use. A number of convergence

diagnostics are discussed in [47]. One standard approach is to run multiple MCMC chains with

different initial values. After some burn-in period the output from each chain should appear sim-

ilar. Alternatively, it might be possible to obtain an initial sample from the posterior distribution

using another sampling scheme, avoiding the need for a burn-in period.

The Metropolis Hastings algorithm requires the user to choose a number of settings. This is

referred to as ‘tuning’ the algorithm, and is usually dependent on the specific model and dataset.

Most notably, the user is required to choose the proposal distribution, q (θθθ∗ | θθθ). Common

choices for the proposal distribution are:

• A random-walk sampler, usually with symmetric proposals, so that q (θθθ∗ | θθθ) = q (θθθ | θθθ∗).
Using a symmetric proposal has the advantage of removing the transition density from

the acceptance probability ratio. Choosing the variance of the proposal distribution can

be difficult, as a small variance can lead to the chain becoming trapped in local modes,

and a large variance can lead to many proposals in regions of low posterior probability

density, lowering the acceptance rate, and slowing convergence. Guidelines for choosing

the variance of a Gaussian proposal distribution can be found in [48].

• An independence sampler, where proposals are independent of the current state of the

Markov chain, so that q (θθθ∗ | θθθ) = q (θθθ∗). Selecting an efficient distribution can be dif-

ficult. If many proposals lie in regions of low posterior probability density, or if few

proposals lie in regions of high posterior probability density, then it will take a long time

for the chain to converge to the stationary distribution. The optimal proposal distribution

is q (θθθ∗) = π(θθθ | YYY 1:M ), for which the acceptance probability is one (direct sampling

of the posterior distribution). For situations in which MCMC is applied this choice is not

available, but choosing proposal distributions resembling the posterior distribution should

give good performance.
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The proposal distribution does not need to remain the same over the entire chain. For example,

random-walk moves can alter between low-variance and large-variance proposal distributions.

When the parameter is multidimensional, the proposal distribution can be designed to update

subsets of the parameter vector in every iteration, rather than the entire parameter vector. Updat-

ing the components of the parameter vector one at a time, using the full conditional distribution

of the parameter given all of the other parameters and the data, gives a specialised case of the

Metropolis Hastings algorithm called the Gibbs Sampler. In a Gibbs sampler the acceptance

probability is always one, so that every proposal is accepted. However, the full conditional dis-

tributions are often not available, and even when they are the mixing of the chain can be poor

[47].

Compared to the rejection algorithm, MCMC methods increase the number of proposals

in regions of high posterior probability density. However, samples from an MCMC chain are

correlated. This means that an MCMC sample of the posterior distribution will contain less

information than an independent sample of the same size. Ideally, the chain should have a

small auto-correlation, and if so, it is said that the chain is fast mixing. Conversely, a large

auto-correlation shows that the chain is slow mixing. Mixing is a consequence of the choice

of proposal distribution, and so designing an efficient MCMC algorithm often requires multiple

training runs in order to fine-tune the proposal distribution. If the chain is mixing slowly, it is

common to thin the output by taking every kth value, and so to obtain a sample of size N the

chain will need to be of length Nk following the burn-in.

3.1.3 Importance Sampling

Importance sampling (IS) [46] is used for estimating expectations with respect to some target

distribution which is known pointwise up to a normalising constant, and from which obtaining

samples is difficult. When targeting the posterior distribution, π (θθθ | YYY 1:M ), IS can be used

when π (YYY 1:M | θθθ)π (θθθ) is known pointwise, but the model evidence, π (YYY 1:M ), is unknown.

Suppose we wish to evaluate the expectation of some test function, ϕ (θθθ), with respect to the

posterior distribution. We define an an importance distribution, η (θθθ), with the property that

η (θθθ) > 0 if π (θθθ | YYY 1:M ) > 0. Then the following identities hold:

Eπ (ϕ (θθθ)) = π (YYY 1:M )−1
∫

ϕ (θθθ)π (YYY 1:M | θθθ)π (θθθ) dθθθ,

= π (YYY 1:M )−1
∫

ϕ (θθθ)w (θθθ) η (θθθ) dθθθ,

= Eη (ϕ (θθθ)w (θθθ))

(3.1.3)
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Algorithm 3.3 Importance sampling algorithm targeting π (θθθ | YYY 1:M ).

for n = 1, ..., N do

Sample θθθ(n) from the importance distribution η (θθθ).
Set the importance weight

w(n) = w
(
θθθ(n)

)
=

π
(
YYY 1:M | θθθ(n)

)
π
(
θθθ(n)

)

η
(
θθθ(n)

) .

end for

and

π (YYY 1:M ) =

∫
π (YYY 1:M | θθθ)π (θθθ) dθθθ

=

∫
w (θθθ) η (θθθ) dθθθ,

(3.1.4)

where

w (θθθ) =
π (YYY 1:M | θθθ)π (θθθ)

η (θθθ)
(3.1.5)

are called the (unnormalised) importance weights. The IS algorithm samples N parameter val-

ues (termed particles) from the importance distribution, η (θθθ), giving the Monte Carlo approxi-

mation

η̂ (θθθ) ≈ 1

N

N∑

n=1

δθθθ(n) (θθθ) , (3.1.6)

where δ (·) is the Dirac delta distribution. This Monte Carlo approximation is then substituted

into Equations 3.1.3 and 3.1.4 to obtain estimates of Eπ (ϕ (θθθ)) and π (YYY 1:M ) respectively. The

pseudocode is presented in Algorithm 3.3. The weighted particles give the following Monte

Carlo approximation of the target distribution

π̂ (θθθ | YYY 1:M ) ≈
N∑

n=1

W (n)δθθθ(n) (θθθ) , (3.1.7)

where W (n) are the normalised importance weights, defined as

W (n) =
w(n)

∑N
n=1w

(n)
. (3.1.8)

The choice of importance distribution is determined by the user, and should be given care-

ful consideration. If the importance distribution is heavy tailed with respect to the posterior

distribution, then a large number of proposals will lie in regions of low posterior probability

density and have low weights. On the other hand, if the importance distribution has light tails in

regions of large posterior probability density then any proposals from the tail of the importance

distribution will be given very large weights. In either case, the Monte Carlo approximation
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will be dominated by a small number of high-weight particles, giving a poor approximation.

The variance of the weights is often monitored by using the effective sample size (ESS) [49],

defined as

ESS =

(
N∑

n=1

(
W (n)

)2
)−1

. (3.1.9)

The ESS takes a value between one, where a single particle has all of the weight, to N , for an

equally weighted sample. Hence, a small ESS indicates that many of the particles have very

little weight, and contain little information. This means that an importance distribution should

strongly resemble the target distribution, in order to minimise the variance of the weights [50]. In

most cases selecting an efficient importance distribution is very difficult, leading to importance

sampling approaches being less widely used than MCMC methods.

3.1.4 Sequential Importance Sampling

The difficulty in finding efficient importance distributions motivated the development of a se-

quential importance sampling (SIS) approach [50]. A sequence of intermediary distributions

πs, s = 1, ..., S, are introduced with

πs =
γs
Zs

, (3.1.10)

where each γs is known pointwise, and the normalising constant Zs is unknown. As s increases,

the intermediary distributions, πs, evolve from an initial distribution, π1, from which it is easy

to sample, to the target distribution, πS . The πs are chosen such that successive distributions

are similar. In our context, π1 will typically be the prior distribution, π (θθθ), and πS will be the

posterior distribution, π (θθθ | YYY 1:M ). A sequence of importance distributions, ηs, s = 1, ..., S,

are then used to obtain weighted samples from each target distribution using IS. By targeting the

intermediary distributions sequentially, it is possible to design efficient importance distributions

by using the previous sample. In other words, since successive distributions are similar, it is

possible to move a sample targeting πs−1 into regions of high probability density in πs.

In the first iteration of the SIS algorithm, IS is used to sample N particles (called the first

population), θθθ
(1:N)
1 , with importance weights w

(1:N)
1 , from the initial distribution π1. In the next

iteration these particles are then perturbed using a Markov transition kernel K2, with associ-

ated transition density K2 (θθθ2 | θθθ1). The new collection of particles (population two) are then

marginally distributed according to

η2 (θθθ2) =

∫
η1 (θθθ1)K2 (θθθ2 | θθθ1) dθθθ1. (3.1.11)

When η2 (θθθ) can be evaluated pointwise, it can be used as an importance distribution for target-

ing π2 (θθθ). This process repeats until a population is sampled from the target distribution, πS ,
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Algorithm 3.4 Sequential importance sampling algorithm targeting πS (θθθ).

for n = 1, ..., N do

Sample θθθ
(n)
1 from the importance distribution η1 (θθθ).

Set the importance weight

w
(n)
1 =

γ1

(
θθθ
(n)
1

)

η1

(
θθθ
(n)
1

) .

end for

for s = 2, ..., S do

for n = 1, ..., N do

Sample θθθ
(n)
s from the importance distribution

ηs (θθθs) =

∫
ηs−1 (θθθs−1)Ks (θθθs | θθθs−1) dθθθs−1.

Set the importance weight

w(n)
s =

γs

(
θθθ
(n)
s

)

ηs

(
θθθ
(n)
s

) .

end for

end for

as shown in Algorithm 3.4.

In most cases, being able to evaluate ηs (θθθ) pointwise requires independent Markov transi-

tion densities, such that Ks (θθθs | θθθs−1) = Ks (θθθs). This is highly restrictive, as in many situa-

tions it may be advantageous to use local moves, such as a random-walk proposal. Sometimes

an approximation is used in place of ηs (θθθ), for example

η̂s (θθθ) =
1

N

N∑

n=1

Ks

(
θθθ | θθθ(n)s−1

)
, (3.1.12)

which can be evaluated for random-walk proposals. However, it is not possible to evaluate

Ks (θθθs | θθθs−1) pointwise in many situations. Moreover, the approximation is computationally

expensive as the sum needs to be evaluated for every particle.

3.1.5 Sequential Monte Carlo Samplers

A Sequential Monte Carlo (SMC) approach was introduced as a way to overcome the inability

to evaluate ηs (θθθ) for s ≥ 2 in SIS [50]. Since the initial importance distribution is tractable,

SMC samplers use IS to target the extended distributions

π̃s (θθθ1:s) =
γ̃s (θθθ1:s)

Zs
, (3.1.13)
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allowing the intractable importance distributions to be related to the initial (tractable) importance

distribution through the auxiliary variables θθθ1, ..., θθθs−1. This is achieved by introducing artificial

backward Markov kernels Ls−1 with density Ls−1(θθθs−1 | θθθs), chosen by the user, so that

γ̃s (θθθ1:s) = γs (θθθs)

s∏

i=2

Ls−1 (θθθs−1 | θθθs) . (3.1.14)

Each π̃s (θθθ1:s) admits πs (θθθs) as a marginal distribution, obtained by integrating out the auxiliary

variables,

πs (θθθs) =

∫
π̃s (θθθ1:s) dθθθ1:s−1.

In the SMC algorithm, the initial population is obtained using IS, as in the SIS algorithm. In

later iterations, the path of each particle is extended using a Markov kernel Ks with transition

density Ks (θθθs | θθθs−1). That is, sample θθθ∗s ∼ Ks (θθθs | θθθs−1) and set θθθ
(n)
1:s =

{
θθθ
(n)
1:s−1, θθθ

∗
s

}
. This

gives an importance distribution, ηs

(
θθθ
(n)
1:s

)
, used to perform importance sampling on π̃s

(
θθθ
(n)
1:s

)
,

where the importance weights are given by

w(n)
s =

γ̃s

(
θθθ
(n)
1:s

)

ηs

(
θθθ
(n)
1:s

) (3.1.15)

= w
(n)
s−1

γs

(
θθθ
(n)
s

)
Ls−1

(
θθθ
(n)
s−1 | θθθ

(n)
s

)

γs−1

(
θθθ
(n)
s−1

)
Ks

(
θθθ
(n)
s | θθθ(n)s−1

) . (3.1.16)

The pseudocode is presented in Algorithm 3.5.

As s increases, it becomes harder to design a good importance distribution. As described

in Section 3.1.3, this can lead to a small number of particles with relatively large weights. In

the SMC framework this is known as degeneracy. The level of degeneracy is often monitored

by calculating the ESS (refer to Equation 3.1.9) in every iteration, before the particles are per-

turbed. If the ESS falls below some threshold (usually set as half of the sample size, N
2 ) then

a resampling step is applied. In the resampling step, N particles are sampled with replacement

from the current population, θθθ
(1:N)
1:s , according to their weights W

(1:N)
s . Possible resampling

methods are discussed in [49]. The resampled set of particles are given weights 1
N

, so that the

ESS returns to N . The resampling step adds computational expense, but by replacing particles

that poorly represent the target distribution, the approximation in later populations should be

improved (but not the current population). It is usually not optimal to resample in every pop-

ulation, as if there is little variability between the weights then a resampling step will reduce

the number of distinct particles, discarding some information. Choosing to only resample when

the ESS is below some threshold also has the effect of reducing the additional computational

expense. It is important to monitor the ESS for every population. A particularly small ESS will
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Algorithm 3.5 Sequential Monte Carlo sampling algorithm targeting πS (θθθ).

for n = 1, ..., N do

Sample θθθ
(n)
1 from the importance distribution η1 (θθθ).

Set the importance weight

w
(n)
1 =

γ1

(
θθθ
(n)
1

)

η1

(
θθθ
(n)
1

) .

end for

Normalise the weights. For n = 1, ..., N

W
(n)
1 =

w
(n)
1∑N

i=1w
(i)
1

.

for s = 2, ..., S do

if ESS<N
2 then

Resample θθθ(1:N) according to weights W
(1:N)
s−1 .

Set the importance weights. For n = 1, ..., N

W
(n)
s−1 =

1

N
.

end if

for n = 1, ..., N do

Draw θθθ
(n)
s from transition density Ks

(
θθθ | θθθ(n)s−1

)
.

Set the importance weight

w(n)
s = W

(n)
s−1

γs

(
θθθ
(n)
s

)
Ls−1

(
θθθ
(n)
s−1 | θθθ

(n)
s

)

γs−1

(
θθθ
(n)
s−1

)
Ks

(
θθθ
(n)
s | θθθ(n)s−1

) .

end for

Normalise the weights. For n = 1, ..., N

W (n)
s =

w
(n)
s

∑N
i=1w

(i)
s

.

end for
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likely mean that the approximations given in later iterations are poor. In extreme cases, if the

ESS becomes too low, then the SMC sampler should be restarted or redesigned.

The backward Markov kernels Ls−1 are arbitrary, but should be chosen to give the optimal

performance of the algorithm with respect to Ks. For example, choosing Ls−1 = Ks simplifies

the weight calculations, but leads to poor performance in most cases [50, 51]. The optimal se-

quence of backward Markov kernels Ls−1 minimises the variance of the weights. This requires

backward Markov kernels with transition densities

Ls−1 (θθθs−1 | θθθs) =
ηs−1 (θθθs−1)Ks (θθθs | θθθs−1)

ηs (θθθs)
, (3.1.17)

which give the importance weights

w(n)
s =

γs (θθθs)

ηs (θθθs)
. (3.1.18)

Recalling that this algorithm was proposed as ηs(θθθs) is typically intractable for s ≥ 2, the

optimal backwards Markov kernels are impossible to calculate in most cases. However, choos-

ing backward Markov kernels that are approximations of the optimal backward Markov kernels

should still lead to good performance [50].

One possibility is to substitute πs−1 (θθθ) in place of ηs−1 (θθθ). This gives a backwards Markov

kernel of the form

Ls−1 (θθθs−1 | θθθs) =
πs−1 (θθθs−1)Ks (θθθs | θθθs−1)∫

πs−1 (θθθs−1)Ks (θθθs | θθθs−1) dθθθs−1
, (3.1.19)

which eliminates ηs(θθθs) from the importance weight calculation, which becomes

w(n)
s = W

(n)
s−1

γs (θθθs)∫
γs−1 (θθθs−1)Ks (θθθs | θθθs−1) dθθθs−1

. (3.1.20)

Alternatively, if the forward Markov kernels, Ks, are MCMC kernels with stationary dis-

tribution πs (θθθ), then a good choice for the backward Markov kernels are the reversed MCMC

kernels associated with Ks. The backward Markov transition density then takes the form

Ls−1 (θθθs−1 | θθθs) =
πs (θθθs−1)Ks (θθθs | θθθs−1)

πs (θθθs)
, (3.1.21)

and the importance weights become

w(n)
s = W

(n)
s−1

γs (θθθs−1)

γs−1 (θθθs−1)
. (3.1.22)

Since the importance weights do not depend on θθθs, the sampling and resampling stages can
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be reversed. This is expected to be a good approximation to the optimal backwards kernel if

πs−1 (θθθ) ≈ πs (θθθ) [50].

By propagating particles through a sequence of intermediary distributions that close in on

the target distribution, SMC gives improved efficiency over rejection sampling and importance

sampling. SMC also has a number of advantages over MCMC methods:

• There is no need to assess convergence in SMC applications, which can be problematic

when using MCMC algorithms.

• SMC is less likely to become trapped in regions of low posterior probability density, or in

local modes. These are common problems in MCMC when, for instance, the variance of

proposal distribution is too small.

• Samples from π̃s−1 (θθθ1:s−1) can be informative in designing a proposal distribution for

π̃1:s (θθθs). This allows the choice of proposal distributions to be more easily automated

than in MCMC.

The main drawback is that degeneracy is often a problem, and so it is important to monitor the

ESS for every population.

3.2 Simulation Study

In this chapter we have introduced some standard Monte Carlo samplers. In the following sec-

tions we extend these samplers so that they can be used on problems with intractable likelihoods.

It is important to assess the accuracy of the proposed inference algorithms to gain confidence

in the results when they are applied to real-world data. In this chapter, the various proposed al-

gorithms will be tested in a simulation study. A dataset is generated using a model with known

parameters, and the inference methods are applied to this dataset using the correct model, but

with uncertain model parameters. We simulate the dataset using CR14-a, reproduced below,

dX1 = −
(
β0 + β1X1 + β2

(
X3

1 −X1

)
+ δX2 + I(γP , γC , γE)

)
dt+ σ1dW1

dX2 = αδ

(
X1 +X2 −

X3
2

3

)
dt+ σ2dW2,

(3.2.1)

and draw observations from the observation process

Y (t) = D + CX1 (t) + σY ηt. (3.2.2)

In order to represent a typical sediment core, we take observations every 2 kyr over a period

of 780 kyr, giving 391 observations. Since we are interested in the limit cycle and synchroni-
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Parameter True Value Prior Distribution

β0 0.65 N
(
0.4, 0.32

)

β1 0.2 N
(
0, 0.42

)

β2 0.5 exp (1�0.5)

δ 0.5 exp (1�0.5)

α 11 Γ (10, 2)

γP 0.2 exp (1�0.3)

γC 0.1 exp (1�0.3)

γE 0.3 exp (1�0.3)

σ1 0.2 exp (1�0.3)

σ2 0.5 exp (1�0.5)

σy 0.1 exp (1�0.1)

D 4.1 U (3, 5)

C 0.8 U (0.5, 2)

X1 (t1) -1.02 U (−1.5, 1.5)

X2 (t1) 0.33 U (−2.5, 2.5)

Table 3.1: List of parameters used to generate data for the simulation study, and the associ-

ated prior distributions used in the statistical analysis. The prior distributions have

been chosen in order to give a high probability of the model being in an oscillating

regime, and to ensure that the astronomical forcing parameters are positive, follow-

ing Milankovitch theory.

sation properties of the model, we begin the trajectory at 1 Myr BP and discard the first 220

kyr (called a spin-up period, similar to an MCMC burn-in period), so that the trajectory has had

time to synchronise on the astronomical forcing prior to the first observation. If the inference

methods are performing as intended then we expect that the ‘true’ parameter values (the values

used to generate the dataset) lie in regions of high posterior probability density. They may not

be the modal values, as the data may more strongly support different parameter values, the prior

density could be larger for other parameter values, and we expect Monte Carlo variation (the

sampling variability from using a finite sample size) in the results. On the other hand, if poor

estimates are obtained, then it is easier to understand where and why problems occur than if we

were using real data.

We also compare the results for the different inference schemes, where we check that each

scheme provides consistent posterior density estimates, and compare the proposed schemes for

efficiency in generating a sample from the posterior distribution. Since these algorithms have

been implemented on a variety of hardware platforms, we compare the computational efficiency

of each algorithm using the number of required simulations of the model, since this is the most

computationally expensive component in each of the algorithms.

The selected parameter values are shown in Table 3.1 along with the associated prior distri-

butions. Since palaeoclimate data are typically sparse and noisy, we ideally want to incorporate
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expert knowledge into the prior distributions to augment the limited information contained in

palaeoclimate records. This process is known as elicitation, and an overview can be found in

[52, 53]. We elicit prior distributions from an expert in dynamical systems theory [40]. This is

a difficult and imprecise process for phenomenological models. Many of the model parameters

do not represent physical quantities, and so prior distributions must be based on the experts’

knowledge of how the model response depends upon the parameters, and how the model then

relates to climate. Consequently the prior distributions are all somewhat vague. However, using

prior distributions that are less informative than we might initially have hoped for is preferable

to using overly-confident distributions. In general, the prior distributions are chosen in order to

give a high probability of the model being in an oscillating (rather than excitable) regime. The

astronomical forcing parameters are positive, following Milankovitch theory, with the possibil-

ity that the system is unforced. These choices are based on the theory that the glacial-interglacial

cycle originates from internal climate dynamics, and paced by the astronomical forcing.

3.3 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a class of methods for sampling from a posterior

distribution when the likelihood is intractable, but where it is still possible to simulate from the

model. ABC was initially developed in the field of genetics [54, 55]. Since the likelihood is not

required to be known analytically, ABC approaches are often termed “likelihood-free” methods.

ABC utilises repeated simulations from the model, which are compared with observations.

Consider the rejection sampling algorithm given in Section 3.1.1. This algorithm can not be

used in cases where the likelihood is intractable, as it is required to calculate the acceptance

probability. However, the rejection sampling algorithm can be modified to remove the need

for a tractable likelihood by using a two-step process that simulates from the model, and com-

pares the simulated values, ỸYY 1:M , with the observed dataset, YYY 1:M . Assuming parameter values

are sampled from the prior distribution, if there is equality between the simulated values and

the observed dataset then the proposed parameters are accepted, otherwise they are rejected.

The pseudocode is presented in Algorithm 3.6. As with the rejection sampling algorithm, the

accepted parameter values form a sample from the posterior distribution.

This modified rejection algorithm can only be applied in cases where equality between sim-

ulations from the model and the observed dataset occurs with non-zero probability. Even in such

situations the probability that simulated values will exactly match the observed data is typically

very small. This makes the acceptance rate of the modified rejection sampling algorithm pro-

hibitively poor, with a huge number of simulations being required to obtain a reasonably sized

sample. The first ABC algorithm was proposed to overcome these difficulties. Based on the
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Algorithm 3.6 Modified rejection sampling algorithm targeting π (θθθ | YYY 1:M ).

Set n = 1.

while n ≤ N do

Sample θθθ∗ from the prior distribution, π (θθθ).

Simulate value ỸYY
∗

1:M from the model using parameter θθθ∗.

if ỸYY
∗

1:M = YYY 1:M then

Set θθθ(n) = θθθ∗ and n = n+ 1.

end if

end while

rejection sampling algorithm, it replaces the acceptance condition in Algorithm 3.6 to accept

a proposal if the simulated values are ‘close’ to the observed dataset [55]. Closeness is deter-

mined according to some distance measure, ρ
(
ỸYY 1:M ,YYY 1:M

)
, between the simulated values and

the observed data, which needs to be less than some tolerance, ǫ ≥ 0, for an acceptance. By

setting ǫ > 0 the algorithm can be used even when equality occurs with probability zero. The

modification can be seen in Algorithm 3.7.

The accepted parameter values and corresponding simulations form a sample from the joint

posterior distribution πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
, defined by

πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
= π

(
θθθ, ỸYY 1:M | ρ

(
ỸYY 1:M ,YYY 1:M

)
≤ ǫ
)

(3.3.1)

∝ π (θθθ)π
(
ỸYY 1:M | θθθ

)
I
ρ(ỸYY 1:M ,YYY 1:M)≤ǫ

, (3.3.2)

where I denotes the indicator function

I
ρ(ỸYY 1:M ,YYY 1:M)≤ǫ

=





1 if ρ
(
ỸYY 1:M ,YYY 1:M

)
≤ ǫ,

0 if ρ
(
ỸYY 1:M ,YYY 1:M

)
> ǫ.

The simulated values can be marginalised out to give an approximate marginal posterior distri-

bution of the parameters, πǫ (θθθ | YYY 1:M ), given by

πǫ (θθθ | YYY 1:M ) =

∫
πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
dỸYY 1:M . (3.3.3)

In the ABC rejection algorithm this means that the simulated vales, ỸYY 1:M , do not need to be

stored in order to obtain an approximate sample from the marginal posterior distribution of the

parameters, greatly reducing the necessary memory requirements.

The ABC posterior is an approximation to the true posterior distribution, π (θθθ | YYY 1:M ), the

accuracy of which depends on the tolerance and distance measure used [56]. Lowering the

tolerance gives improved approximations, as the simulated values are closer to the observed

dataset. With many commonly used distance measures, for example, distance metrics, such as
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Algorithm 3.7 ABC rejection sampling algorithm targeting πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
.

Set n = 1.

while n ≤ N do

Sample θθθ∗ from the prior distribution, π (θθθ).

Simulate values ỸYY
∗

1:M from the model using parameter θθθ∗.

if ρ
(
ỸYY

∗

1:M ,YYY 1:M

)
≤ ǫ then

Set θθθ(n) = θθθ∗, ỸYY
(n)
1:M = YYY ∗

1:M , and n = n+ 1.

end if

end while

the Euclidean distance, setting ǫ = 0 indicates equality between the simulated values and the

observed dataset. In this setting, the modified rejection algorithm is recovered, and samples

are once again from the true posterior distribution. However, for low tolerances it will be too

computationally costly to obtain a sample large enough to represent the posterior distribution.

At the other extreme, setting ǫ = ∞ means that every proposal is accepted, giving a sample

from the prior distribution, π (θθθ). While it is easy to obtain a sample for large values of ǫ,

the resulting sample will be a poor approximation of the true posterior distribution. Thus, the

tolerance can be thought of as a trade-off between obtaining a good approximation and the time

taken to obtain the sample. The choice of tolerance will depend on both the user’s computer

resources and the desired accuracy. In the rejection sampling setting the choice of tolerance

can be determined after running the algorithm. First run a suitably large number of iterations

without the accept-reject step, instead recording all of the proposed parameters θθθ∗ and associated

distances ρ
(
ỸYY

∗

1:M ,YYY 1:M

)
, then the sample can be sorted by distance, and the tolerance can be

set to accept a specified proportion (say kN
N

) of the closest simulated realisations. This can be

seen as a kN -nearest neighbour algorithm [57].

Results

The ABC rejection sampling method is applied to the simulation study dataset, described in

Section 3.2, with 20 million simulations. Proposals are drawn from the prior distribution, and

we chose the Euclidean distance between the simulated values and the observed data, defined

by

ρ (YYY ∗
1:M ,YYY 1:M ) =

√√√√
M∑

i=1

(YYY ∗
i − YYY i)

2, (3.3.4)

as the distance metric. The closest 1000 simulations are accepted, giving a tolerance level of

ǫ = 128.35. The code was written in c and R, and has a runtime of approximately 10 hours on a

3 GHz processor. The marginal posterior distributions of the parameters are shown in Figure 3.1.
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Figure 3.1: Marginal posterior distributions of the parameters of CR14-a, obtained using ABC

rejection sampling in the simulation study. Vertical lines indicate the values used

to generate the data. Dashed lines show the prior distributions. In many cases

the approximate posterior distribution strongly resembles the prior distribution,

indicating that we are learning little about those parameters. We seem to detect the

influence of the astronomical forcing, as there is little posterior mass around zero

for the obliquity scaling term, γE . The estimates of the stochastic scaling terms,

σ1, σ2, and σY , are underestimated due to the ABC approximation.
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For many of the model parameters, the marginal posterior distributions do not deviate much

from the prior distribution, indicating that we are not learning much about the parameters from

the data. With a large tolerance it is not surprising that a wide range of parameter values are

accepted. A notable exception to this is the obliquity scaling term, γE , where the true value lies

near the mode of the posterior distribution. Being synchronised on the same forcing function

as the observed data should lead to a good agreement between the simulated values and the

observed dataset, so this is not surprising. The true values of the displacement and scaling terms

in the observation model, D and C, also lie in regions of relatively high posterior probability

density. These terms have a large impact on the distance between the simulated values and the

observed dataset, and are mostly insensitive to stochastic perturbations. The estimates of the

stochastic scaling terms, σ1, σ2, and σY , are underestimated due to the ABC approximation.

At sufficiently large tolerance values, near-deterministic trajectories will always be considered

close to the observed data, but a highly volatile trajectory might differ greatly. In this case, low

values of σ1, σ2, and σY , will lead to a greater acceptance probability than large values, giving a

greater posterior probability density. The opposite is true as the tolerance is lowered. Stochastic

perturbations will be necessary to simulate values sufficiently close to observations, and so

near-deterministic trajectories will usually be rejected. The true value of the initial condition

of the observable state is near the mode of the posterior distribution, but the initial condition

of the unobservable state is similar to the prior distribution. Given that X2 is unobserved,

and is quickly attracted towards the limit cycle, this is not surprising. The accepted parameter

values are mostly uncorrelated, with the exception of β0 and δ, which are strongly correlated

with a correlation coefficient of 0.76, and β0 and D, which have a correlation coefficient of

0.5. Incorporating these correlations into the proposal distribution would give a more efficient

algorithm.

3.3.1 ABC-MCMC

Since the ABC rejection sampling algorithm proposes parameters from the prior distribution,

π(θθθ), it can suffer from poor acceptance rates if many proposals lie in regions of low poste-

rior probability density. An MCMC implementation of ABC targeting πǫ (θθθ | YYY 1:M ), called

ABC-MCMC, was proposed as a more efficient sampling method [58]. ABC-MCMC replaces

the likelihood term in the Metropolis Hastings acceptance ratio with a comparison between

simulated values and the observed dataset, as in ABC rejection sampling. The pseudocode is

presented in Algorithm 3.8.

The chain is initialised with a sample obtained using the ABC rejection sampling approach.

This ensures that the chain is initialised with a value drawn from the stationary distribution,

avoiding the need for a burn-in period. The tolerance needs be chosen at initialisation, unlike
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Algorithm 3.8 ABC-MCMC algorithm targeting πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
.

Sample θθθ(1) and ỸYY
(1)
1:M from πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
using the ABC rejection sampling algo-

rithm.

for n = 2, ..., N do

Propose move to θθθ∗ according to proposal density q
(
θθθ | θθθ(n−1)

)
.

Simulate values ỸYY
∗

1:M from the model using parameter θθθ∗.

With probability

λ
(
θθθ∗, ỸYY

∗

1:M | θθθ(n−1), ỸYY
(n−1)
1:M

)
= min


1,

π (θθθ∗) q
(
θθθ(n−1) | θθθ∗

)
I
ρ(ỸYY

∗

1:M ,YYY 1:M)≤ǫ

π
(
θθθ(n−1)

)
q
(
θθθ∗ | θθθ(n−1)

)




set θθθ(n) = θθθ∗ and ỸYY
(n)
1:M = ỸYY

∗

1:M . Otherwise set θθθ(n) = θθθ(n−1) and ỸYY
(n)
1:M = ỸYY

(n−1)
1:M .

end for

with the ABC rejection sampling approach. This can be problematic, as if the tolerance is too

small the chain will suffer from slow mixing, taking a long time to explore the parameter space.

We can check that the algorithm targets the posterior distribution, πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
, by

showing that the detailed balance equation is satisfied. Assuming that ρ
(
ỸYY 1:M ,YYY 1:M

)
≤ ǫ,

and θθθ∗ 6= θθθ,

πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
P
(
θθθ∗, ỸYY

∗

1:M | θθθ, ỸYY 1:M

)

πǫ

(
θθθ∗, ỸYY

∗

1:M | YYY 1:M

)
P
(
θθθ, ỸYY 1:M | θθθ∗, ỸYY ∗

1:M

)

=




πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)

πǫ

(
θθθ∗, ỸYY

∗

1:M | YYY 1:M

)





q (θθθ∗ | θθθ)π

(
ỸYY

∗

1:M | θθθ∗
)
λ
(
θθθ∗, ỸYY

∗

1:M | θθθ, ỸYY 1:M

)

q (θθθ | θθθ∗)π
(
ỸYY 1:M | θθθ

)
λ
(
θθθ, ỸYY 1:M | θθθ∗, ỸYY ∗

1:M

)




=
π (θθθ) q (θθθ∗ | θθθ)λ

(
θθθ∗, ỸYY

∗

1:M | θθθ, ỸYY 1:M

)

π (θθθ∗) q (θθθ | θθθ∗) I
ρ(ỸYY

∗

1:M ,YYY 1:M)≤ǫ
λ
(
θθθ, ỸYY 1:M | θθθ∗, ỸYY ∗

1:M

)

=
π (θθθ) q (θθθ∗ | θθθ)π (θθθ∗) q (θθθ | θθθ∗) I

ρ(ỸYY
∗

1:M ,YYY 1:M)≤ǫ

π (θθθ∗) q (θθθ | θθθ∗)π (θθθ) q (θθθ∗ | θθθ) I
ρ(ỸYY

∗

1:M ,YYY 1:M)≤ǫ

= 1
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Parameter β0 β1 β2 δ α γP γC γE
τ 0.03 0.03 0.03 0.02 0.7 0.02 0.02 0.02

Parameter σ1 σ2 σY D C X1(t1) X2(t1)

τ 0.01 0.05 0.004 0.03 0.03 0.08 0.15

Table 3.2: Standard deviation (τ ) associated with each of the parameters in the Gaussian ran-

dom walk proposal for ABC-MCMC. These values were selected based on several

trial runs.

Results

For comparison with the ABC rejection sampling algorithm we use the distance metric given by

Equation 3.3.4, and set the tolerance to ǫ = 128.35. The ABC-MCMC algorithm is performed

with a chain length of 3 million. Since the ABC rejection algorithm has a 1 in 50 000 accep-

tance rate at this tolerance level, obtaining the initial sample is expected to add another 50 000

simulations from the model. For the proposal distribution, q (θθθ | θθθn−1), we use a multivariate

Gaussian distribution with mean θθθn−1 and a diagonal covariance matrix. The variance terms,

denoted here as τ2i for component i of the parameter vector, are provided in Table 3.2. These

were chosen based on several trial runs. The code was written in c and R, and has a runtime of

approximately 2 hours on a 3 GHz processor

The resulting chain has an acceptance rate of approximately 0.05. We thin the chain so

that we have a sample size of 1000 by taking every 3000th value. A smaller chain length

may have been acceptable, but even with 3 million iterations we have reduced the computation

time compared to the ABC rejection sampling scheme dramatically. The marginal posterior

distributions of the parameters are shown in Figure 3.2. There are strong similarities with the

posterior distributions obtained via ABC rejection sampling, as should be the case given that

both algorithms target the same distribution. The correlation between β0 and δ, and β0 and

D are slightly lower than was the case in the ABC rejection sampling case, with correlation

coefficients of 0.68 and 0.4 respectively.

3.3.2 ABC-SMC

ABC can be naturally generalised to an SMC approach, referred to as ABC-SMC. When ǫ = ∞
a sample from the prior distribution is obtained, and when ǫ = 0 the true posterior distribution

is sampled from. Everything in between is a trade-off between computability and the accuracy

of the approximation to the posterior distribution. In SMC, we select a series of tolerances

ǫ1 > ǫ2 > ... > ǫS , so that the intermediary distributions are the approximate posterior dis-

tributions πǫ1

(
θθθ, ỸYY 1:M | YYY 1:M

)
, ..., πǫS

(
θθθ, ỸYY 1:M | YYY 1:M

)
. Typically, ǫ1 = ∞ and ǫS is as

small as is computationally feasible. The transition density of the Markov kernel takes the form
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Figure 3.2: Marginal posterior distributions of the parameters of CR14-a, obtained using

ABC-MCMC in the simulation study. Vertical lines indicate the values used to

generate the data. Dashed lines show the prior distributions. These distributions

are very similar to those shown in Figure 3.1, as both algorithms target the same

approximate posterior distribution.
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Ks

(
θθθs, ỸYY 1:M,s | θθθs−1, ỸYY 1:M,s−1

)
= Ks (θθθs | θθθs−1)π

(
ỸYY 1:M,s | θθθs

)
. In other words, the pa-

rameter values are being perturbed by a Markov kernel, and a simulation is performed with the

perturbed parameters. This choice is necessary to remove the likelihood term from the impor-

tance weight calculation.

ABC-Partial Rejection Control

The first ABC-SMC algorithm used backward Markov kernels Ls−1 (θθθ | θθθ∗) = Ks (θθθ
∗ | θθθ)

[59], which is an inefficient choice in most circumstances. In the ABC framework this also

led to biased estimates [51]. The original paper was updated to use instead an approximation

to the optimal backward kernel of the form given in Equation 3.1.19, which became a popular

choice in the literature [51, 60, 61]. The importance weight is estimated using a Monte Carlo

approximation to Equation 3.1.20, as follows,

w(n)
s = W

(n)
s−1

π
(
θθθ
(n)
s

)
π
(
ỸYY

(n)
1:M,s | θθθ(n)

)
I
ρ
(
ỸYY

(n)
1:M,s,YYY 1:M

)
≤ǫs

∑N
i=1W

(i)
s−1Ks

(
θθθ
(n)
s | θθθ(i)s−1

)
π
(
ỸYY

(n)
1:M,s | θθθ(n)

)

= W
(n)
s−1

π
(
θθθ
(n)
s

)
I
ρ
(
ỸYY

(n)
1:M,s,YYY 1:M

)
≤ǫs

∑N
i=1W

(i)
s−1Ks

(
θθθ
(n)
s | θθθ(i)s−1

) .

(3.3.5)

Note that since we simulate from the model, the likelihood does not appear in the weight calcu-

lation. This Monte Carlo approximation is computationally costly for large N , as the sum needs

to be evaluated for every particle.

As the tolerance is lowered, the number of particles with weight zero will increase. This

will potentially lead to poor approximations at low tolerances. Partial rejection control (PRC)

is a way of resampling these particles [62]. In PRC, when a particle is proposed with an im-

portance weight below some threshold it is probabilistically either rejected or given a larger

weight. Any proposed particles with a weight above the threshold are always accepted. In

ABC, the natural choice is to accept any particle with non-zero weight and reject particles with

weight zero [51, 60]. To ensure that the sample size remains at N , particles are no longer propa-

gated systematically. Instead, particles are sampled with replacement according to their weights,

propagated, and then either accepted or rejected according to the PRC step until we have N ac-

ceptances. With PRC implementations there is no longer a resampling step if the ESS falls

below its threshold, as the PRC approach effectively resamples the particles in every popula-

tion. The ABC-PRC algorithm is reproduced in Algorithm 3.9. Note that the importance weight

in the algorithm takes a different form than Equation 3.3.5. Firstly, due to the resampling in

PRC, the importance weights, W
(1:N)
s−1 , are all set to 1

N
. Secondly, since only simulations within
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Algorithm 3.9 ABC-PRC sampling algorithm targeting πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
.

for n = 1, ..., N do

Sample θθθ
(n)
1 from the prior distribution, π (θθθ).

Simulate values ỸYY
(n)
1:M,1 from the model using parameter θθθ

(n)
1 .

Set the importance weight

W
(n)
1 =

1

N
.

end for

for s = 2, ..., S do

while n ≤ N do

Sample θθθ∗∗s from the previous population, θθθ
(1:N)
s−1 , according to weights W

(1:N)
s−1 .

Sample θθθ∗s from the transition density Ks

(
θθθ | θθθ∗∗s−1

)
.

if π (θθθ∗s) > 0 then

Simulate values ỸYY
∗

1:M,s from the model using parameter θθθ∗.

if ρ
(
ỸYY

∗

1:M,s, ỸYY 1:M

)
≤ ǫs then

Set θθθ
(n)
s = θθθ∗ and ỸYY

(n)
1:M,s = ỸYY

∗

1:M,s.

Set the importance weight

w(n)
s =

π
(
θθθ
(n)
s

)

∑N
i=1W

(i)
s−1Ks

(
θθθ
(n)
s | θθθ(i)s−1

) .

Set n = n+ 1.

end if

end if

end while

Normalise the weights. For n = 1, ...N

W (n)
s =

w
(n)
s

∑N
i=1w

(i)
s

.

end for
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the tolerance are accepted, the indicator function is removed from the numerator.

The Markov kernels, Ks (θθθ | θθθs−1), can be chosen using the population of particles at it-

eration s − 1. For example, in [51] Ks (θθθ | θθθs−1) is a multivariate Gaussian distribution with

mean θθθs−1 and a diagonal covariance matrix, where the diagonal terms are twice the empirical

variance of the corresponding components of the parameter vector. This provides a proposal

distribution that is automatically adapted for each iteration of the algorithm.

A disadvantage of this approach is that the sequence of tolerance values can not be chosen

during post-processing. Selecting a sequence of tolerances at initialisation can be challenging,

as reducing the tolerance too slowly will result in a computationally expensive algorithm, but

reducing the tolerance too quickly will lead to a poor approximation of the posterior distribution.

Fortunately, the tolerance only needs to be selected one iteration ahead, mitigating the problem.

The tolerance scheme should be chosen to limit the amount of degeneracy, measured by the ESS,

in each sample. At some point the tolerance will be lowered to a point that sampling becomes too

computationally costly, providing a convenient method for selecting the final tolerance value,

unlike ABC-MCMC.

Results

The ABC-PRC algorithm is run with 1000 particles, with the tolerance scheme shown in Ta-

ble 3.3. This tolerance scheme was selected based on several trial runs. The perturbation kernels

were taken to be multivariate Gaussian random walks, with twice the empirical variance of the

current sample.

The parameter marginal posterior distributions are shown in Figure 3.3, and the number of

simulations required in each iteration are shown in Table 3.3, showing that in later iterations it

takes a large computational cost to reduce the tolerance even a small amount. The code was

written in c and R, and has a runtime of approximately 3 hours on a 3 GHz processor. This

tolerance scheme takes approximately 2 million simulations to sample from the approximate

posterior distribution for ǫ = 125. This is much more efficient than the ABC rejection scheme,

which required 20 million simulations to sample from the approximate posterior distribution

with ǫ = 128.35. The required number of simulations is comparable to the ABC-MCMC

approach. The weight calculations in ABC-PRC leads to additional computational time in com-

parison to ABC-MCMC, but simulations from the model remain the dominant computational

expense. The ESS falls to approximately 40 early on, and recovers to near 200 in the final pop-

ulation. This means that the early sample had an effective size of 40, and the final iteration had

an effective size of 200. It is possible that this is too low to be confident that we have a good

approximation, but the posterior distributions are consistent with the previous methods. It might
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Figure 3.3: Marginal posterior distributions of the parameters of CR14-a, obtained using

ABC-PRC in the simulation study. Vertical lines indicate the values used to

generate the data. Dashed lines show the prior distributions. In comparison to

the marginal posterior distributions obtained using ABC rejection (shown in Fig-

ure 3.1), and ABC-MCMC (shown in Figure 3.2), many of the marginal posterior

distributions have closed in on the true values. This is due to reaching a lower

tolerance, meaning that simulations must be closer to the observed data in order

for the proposed parameter values to be accepted.
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Iteration 1 2 3 4 5 6 7 8 9 10

ǫ ∞ 320 220 180 160 145 130 125 120 115

Simulations
(
×103

)
1.0 3.5 7.0 11.9 12.3 43.6 641 1224 1682 1451

Table 3.3: Tolerance scheme used in ABC-PRC in the simulation study, with the number of

simulations required at each tolerance level. This tolerance scheme was selected

based on several trial runs. As the tolerance is lowered, the number of required

simulations rises sharply.

be sensible to increase the number of iterations, bringing down the tolerance more gradually to

ensure that the ESS remains higher. This would provide a better approximation, but would in-

crease the computational cost of the algorithm. The posterior variance is smaller than the ABC

rejection and ABC-MCMC posterior distributions. This can be caused by both the lower toler-

ance in the final population, and the low ESS at intermediate stages putting small mass on some

regions of the parameter space. When the degeneracy is severe, most of the posterior mass is in

a small region of parameter space, but the specific region changes between runs. On the other

hand, if the posterior variance is lower due to the smaller tolerance, repeating the experiment

should give consistent posterior density estimates. Repeating the experiment gives posterior

distributions consistent with Figure 3.3, unless the ESS falls to very low (< 10) values, sug-

gesting that the lower posterior variance is due to the lower tolerance, rather than degeneracy.

The correlation between β0 and δ is larger than our previous methods with a coefficient of 0.96,

but comparable on the 7th and 8th iterations, which are closer to the tolerance used in the ABC

rejection, and ABC-MCMC schemes.

Adaptive ABC-SMC

Alternatively, an ABC-SMC approach has been proposed that uses MCMC kernels, as in Equa-

tion 3.1.21 [63]. The MCMC proposals follow the ABC-MCMC approach, discussed in Sec-

tion 3.3.1, to target the approximate posterior distribution in each iteration. The importance

weights become

w(n)
s = W

(n)
s−1

π
(
θθθ
(n)
s−1

)
π
(
ỸYY

(n)
1:M,s−1 | θθθ(n)s−1

)
I
ρ
(
ỸYY

(n)
1:M,s−1,ỸYY 1:M

)
≤ǫs

π
(
θθθ
(n)
s−1

)
π
(
ỸYY

(n)
1:M,s−1 | θθθ(n)s−1

)
I
ρ
(
ỸYY

(n)
1:M,s−1,ỸYY 1:M

)
≤ǫs−1

= W
(n)
s−1

I
ρ
(
ỸYY

(n)
1:M,s−1,ỸYY 1:M

)
≤ǫs

I
ρ
(
ỸYY

(n)
1:M,s−1,ỸYY 1:M

)
≤ǫs−1

,

(3.3.6)

which are obtained by substituting the intermediary approximate posterior distributions into

Equation 3.1.22. The prior distributions and likelihoods cancel, leaving the ratio of the indicator

functions multiplied by the previous weights. Since the importance weights do not depend on
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the perturbed parameters, the ordering of the propagation and weighting steps can be swapped.

The tolerance scheme can then be adaptively chosen based on a controlled decline of the ESS

[63]. Hence, this method can be considered to be an adaptive SMC approach (ASMC). The

ESS of the sample at iteration s is dependant on the weights of the sample, and the tolerance

value used. A scaling parameter, a, dictates the rate at which the ESS, and hence the tolerance,

declines. Specifically, for a fixed choice of a we choose ǫs so that

ESS (Ws, ǫs) = aESS (Ws−1, ǫs−1) (3.3.7)

in every iteration. Large values of a mean that the tolerance evolves slowly, giving a good

approximation, but with a high computational cost, as more iterations are required to reach the

target. The value of a should be chosen as large as computational resources allow for the best

approximation. In the version of the algorithm given in this section the ESS is simply the number

of particles with non-zero weight (called ‘alive’ particles). The choice of ǫs is then selected to

give the proportion a closest alive particles weight 1, and the rest 0.

The acceptance rate of the MCMC kernels is monitored in each iteration, denoted as Rs. It

is suggested in [63] to terminate the algorithm when the acceptance rate falls below some set

threshold R̂. This provides an automated method to chose the final tolerance value in addition

to the intermediary tolerance values. The value of R̂ is chosen based on the available computer

resources. Smaller values of R̂ will lead to improved approximations as a lower tolerance will

be reached.

It is important to choose an appropriate Markov chain length. A small chain length will mean

few simulations are required, but the diversity of the particles (the number of unique particles)

will remain small if the chain is slow mixing. In other words, particles may be resampled

numerous times in the resampling step and are then unlikely to move in short MCMC chains,

giving a poor approximation to the target distribution. A larger chain will increase the chance of

the particles having good diversity, but will increase computational expense. Since the MCMC

acceptance rate depends on the tolerance, it makes sense to begin with a small chain length

and increase it in later populations. This can be selected adaptively by monitoring the MCMC

acceptance rate. If an MCMC chain of length L has acceptance rate Rs, then the probability of

not moving along the entire chain Q is

Q = (1−Rs)
L

An appropriate chain length can then be estimated adaptively by using the acceptance rate of
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the previous population, Rs−1, and by selecting a value for Q, such that

L =
log(Q)

log(1−Rs−1)

Since this is proportional to log(Q), it makes sense to take Q small. For example, by setting

Q = 0.001 instead of Q = 0.01, the computational expense is only increased by a factor of

1.5, yet the particle diversity is increased dramatically. This approach has been independently

developed in a similar algorithm [64], where it was suggested to set Q = 1
N

. This would mean

that, on average, only a single particles will not move along the length of the chain. In practice,

this will not be the case, as we know the acceptance rate will be lower than the previous iteration.

We advocate using a smaller value of Q, as there is a good trade-off between particle diversity

and added computational expense. The ABC-ASMC algorithm, with the addition of an adaptive

Markov chain length, is shown in Algorithm 3.10.

As well as checking that the ESS and particle diversity remain high, it is also important to

choose the proposal distribution of the MCMC kernel appropriately. A standard approach is to

use a Gaussian random walk proposal with variance proportional to the empirical variance of

the particles. If this choice is made, then it is possible to end up with a very small variance for

the proposal distribution, and the proposed particles are considered distinct even though they

are arbitrarily close. This is undesirable, and can be avoided by ensuring that the variance of the

proposal distribution remains relatively large.
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Algorithm 3.10 ABC-ASMC sampling algorithm targeting πǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
.

for n = 1, ...N do

Sample θθθ
(n)
1 from the prior distribution, π (θθθ).

Simulate values ỸYY
(n)
1:M,1 from the model using parameter θθθ

(n)
1 .

Set the importance weight

W
(n)
1 =

1

N
.

end for

while Rs > R̂ do

Set s = s+ 1.

Determine ǫs by solving ESS
(
W

(1:N)
s , ǫs

)
= aESS

(
W

(1:N)
s−1 , ǫs−1

)
, where

w(n)
s = W

(n)
s−1

I
ρ
(
ỸYY

(n)
1:M,s−1,ỸYY 1:M

)
≤ǫs

I
ρ
(
ỸYY

(n)
1:M,s−1,ỸYY 1:M

)
≤ǫs−1

.

Normalise the weights. For n = 1, ..., N

W (n)
s =

w
(n)
s

∑N
i=1w

(i)
s

.

if ESS<N
2 then

Resample θθθ(1:N) and ỸYY
(1:N)
1:M,s according to weights W

(1:N)
s .

Set the importance weights. For n = 1, ..., N

W (n)
s =

1

N
.

end if

Update Markov chain length L = Q
log(1−Rs−1)

.

for n = 1, ..., N do

Sample θθθ
(n)
s and ỸYY

(n)
1:M,s from an ABC-MCMC chain targeting πǫs

(
θθθ, ỸYY 1:M | YYY 1:M

)
.

end for

Evaluate the acceptance rate, Rs.

end while
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Iteration 1 11 21 31 41 51 61

ǫ ∞ 221.5 155.4 138.5 129.8 119.6 105.7

Chain Length 1 355 690 1154 2852 4744 8191

Simulations
(
×103

)
1.0 54.2 71.0 251 434 1242 1460

Table 3.4: Sample of the tolerance scheme (shown for every 10th iteration) obtained in ABC-

ASMC in the simulation study, with the number of simulations required at each

tolerance level, and the associated Markov chain length. As the tolerance is lowered,

the number of simulations required rises sharply.

Results

The ABC-ASMC algorithm is run with 1000 particles and terminates when when the Markov

chain acceptance rate falls below 0.001. We select a = 0.8, which seems to be a good trade

off between computational expense and accuracy. This means that a resampling step is required

every four iterations. The MCMC proposal distribution was taken to be a multivariate Gaussian

independence sampler, where the mean and covariance are calculated empirically from the cur-

rent sample. We take Q = 10−4 to ensure a good particle diversity. This gives 61 iterations,

where the tolerance and Markov chain length for every 10th iteration are given in Table 3.4.

The parameter marginal posterior distributions are shown in Figure 3.4. The marginal poste-

rior distributions are in good agreement with the previous approaches, but have a lower posterior

variance due to the lower tolerance. A total of 34 million simulations was required to reach the

final tolerance, and 9.3 million simulations were required to reach a tolerance of 128.1. The

code was written in c and R, and has a runtime of approximately 18 hours on a 3 GHz processor.

This remains much more efficient than the ABC rejection sampling scheme, but is more compu-

tationally expensive than the ABC-MCMC and ABC-PRC approaches. This is also true when

considering the cheaper weight calculations in comparison to ABC-PRC. The algorithm can be

sped up by reducing a, which was chosen to have a rather large value here. Unlike the ABC-

PRC scheme, a good ESS was maintained throughout by design. Particle diversity remained

high throughout, with only a handful of MCMC chains remaining stationary over the entire

length L. As with ABC-PRC, the correlation between β0 and δ is much stronger at lower toler-

ances, with a coefficient of 0.95, but comparable to ABC rejection sampling and ABC-MCMC

at similar tolerance levels.
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Figure 3.4: Marginal posterior distributions of the parameters of CR14-a, obtained using

ABC-ASMC in the simulation study. Vertical lines indicate the values used to

generate the data. Dashed lines show the prior distributions. In comparison to the

marginal posterior distributions obtained using ABC-PRC (shown in Figure 3.3),

the distributions have further contracted around the the true values due to reaching

a lower tolerance.
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3.3.3 ABC Extensions

Summary Statistics

As the dimension of the data increases, the probability of simulating values close to the ob-

served dataset decreases dramatically. In ABC this is problematic as the computational expense

required to generate a sample at a desired tolerance level becomes prohibitive. One solution is

to reduce the dimension of the problem by summarising datasets using a collection of summary

statistics, sss (YYY 1:M ) = {s1 (YYY 1:M ) , ..., sL (YYY 1:M )}. ABC can then be performed by considering

the distance between the collection of summary statistics for the simulated values and the ob-

served dataset. This is done by replacing the distance measure, ρ
(
ỸYY 1:M ,YYY 1:M

)
, in the above

algorithms with ρs

(
sss
(
ỸYY 1:M

)
, sss (YYY 1:M )

)
. The joint posterior density approximation becomes

πs,ǫ

(
θθθ, ỸYY 1:M | YYY 1:M

)
= π

(
θθθ, ỸYY 1:M | ρs

(
sss
(
ỸYY 1:M

)
, sss (YYY 1:M )

)
≤ ǫ
)

(3.3.8)

∝ π (θθθ)π
(
ỸYY 1:M | θθθ

)
I
ρs(sss(ỸYY 1:M),sss(YYY 1:M ))≤ǫ

. (3.3.9)

The new distance measure must be chosen carefully. For example, if the Euclidean distance be-

tween summary statistics is used then it is possible that a single summary statistic will dominate

the measure. Instead a weighted measure, such as the Mahalanobis distance [65, 66], should be

used.

Ideally the set of summary statistics should be chosen so that sss (YYY 1:M ) is a sufficient statis-

tic, satisfying π (θθθ | sss (YYY 1:M )) = π (θθθ | YYY 1:M ). In other words, the sufficient statistics con-

tains all of the information in YYY 1:M . In this case we recover the classical ABC target, and

an exact algorithm can be recovered by setting ǫ = 0. However, when the likelihood is in-

tractable there is no method to determine whether a statistic is sufficient. Instead, the sum-

mary statistics should be chosen to include the important aspects of the data, hopefully so that

π (θθθ | sss (YYY 1:M )) ≈ π (θθθ | YYY 1:M ).

How to choose such summary statistics is a challenging problem. One possible approach

is to test a large number of summary statistics, which are considered for inclusion sequentially

[67], but such schemes are often sensitive to the order in which the summary statistics are

considered, and depend on having good summary statistics in the initial set [44]. Even then the

best choice of summary statistics may be dataset dependent, and so this process would need to

be repeated every time a new dataset was introduced. Different methods of choosing between a

subset of summary statistics are discussed in [68].
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ABC with model error

In Chapter 2 we assumed that the data we observe are subject to measurement error. In the

ABC methods described above, we simulate from a phenomenological model according to

π (XXX1:M | θθθ), and then draw observations from the observation process π (YYY 1:M |XXX1:M , θθθ) in

order to make a comparison to an observed dataset. Alternatively, we can compare simulations

from the phenomenological model, X̃XX1:M , with the observed dataset directly, with the knowl-

edge that there will be a strictly positive lower bound on the tolerance. In other words, even if we

simulated the exact underlying trajectory that we are observing with noise the distance between

the simulated values, X̃XX1:M , and the observed dataset would be greater than zero. This can

be incorporated into any of the above algorithms by replacing simulations from π (YYY 1:M | θθθ)
with π (XXX1:M | θθθ), and ρ

(
ỸYY 1:M ,YYY 1:M

)
with ρ

(
X̃XX1:M ,YYY 1:M

)
. Classically, this is perceived

as performing approximate inference on the model of interest. However, it can be thought of as

exact inference where the observation error is implicitly assumed to be uniform [69]. This will

be a poor assumption in most situations. Alternatively, as our measurement error is assumed to

be Gaussian, then by weighting the simulated draws from π (XXX1:M | θθθ) according to a Gaussian

density then we can (in principle) perform exact inference on our model without knowledge of

the likelihood. However, the variance of the weights will be very high, and so an MCMC scheme

will mix poorly. An alternative approach would be to use an SMC scheme with intermediary

distributions

πκs (θθθ,XXX1:M ) ∝ π (θθθ)π (XXX1:M | θθθ)π (YYY 1:M |XXX1:M , θθθ)
1
κs ,

for κ1 = ∞, ..., κS = 1, such that the initial sample is from the prior distribution and the final

sample is from the exact posterior distribution. The observations gradually become more and

more influential as in classical ABC. This mirrors an annealed importance sampling approach,

where the likelihood is said to be ‘heated’ for κ > 1 [70]. As with classic ABC the computa-

tional cost increases dramatically as κ is lowered. From our experience, this approach performs

as well as the standard ABC approach, in that we obtain similar posterior distributions with a

similar computational cost.
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3.4 Particle Filter Approaches

ABC methods bypass the problem of intractability by simulating from the model, removing

the likelihood term from any analytical calculations. Alternatively, we can consider using ap-

proximations to the likelihood. In other words, for a given parameter vector θθθ, we want to

approximate π (YYY 1:M | θθθ), and use this approximation in place of the likelihood term. In SSMs

a particle filter can provide unbiased estimates of the likelihood. The particle filter is described

below.

There are a number of variants of the particle filter. When first proposed the particle filter

was based on sequential importance resampling (a variant of SIS with a resampling step in each

iteration) [71]. The particle filter introduced here is based on an SMC framework targeting the

the intermediary distributions

π̃m (XXX1:m) = π (XXX1:m | YYY 1:m, θθθ) , (3.4.1)

so that each successive intermediary distribution includes an additional observation. The algo-

rithm ends when all of the observations have been assimilated, so that we are left with a sample

from π (XXX1:M | YYY 1:M , θθθ). The intermediary distributions can be written

γ̃m (XXX1:m)

Zm
=

π (XXX1:m,YYY 1:m | θθθ)
π (YYY 1:m | θθθ) , (3.4.2)

giving the distributions used within an SMC framework. Note that for m = 1

π (XXX1,YYY 1 | θθθ) = π (XXX1 | θθθ)π (YYY 1 |XXX1, θθθ) , (3.4.3)

and for m ≥ 2

π (XXX1:m,YYY 1:m | θθθ) = π (XXX1:m−1,YYY 1:m−1 | θθθ)π (XXXm |XXXm−1, θθθ)π (YYY m |XXXm, θθθ) . (3.4.4)

To sample from Equation 3.4.1 using IS, we must select an appropriate importance dis-

tribution. The optimal importance distribution is π (XXX1:m | YYY 1:m, θθθ), but this is not available

in most situations. However, where possible, the importance sampling distributions should be

conditional on the next observation, otherwise there will be many proposals in regions of low

posterior probability density. When m = 1, this suggests using an importance distribution of

the form

η1 (XXX1) = r1 (XXX1 | YYY 1, θθθ) , (3.4.5)
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so that the importance weights for a set of particles numbered k = 1, ..., NX become

ω
(k)
1 =

π
(
XXX

(k)
1 | θθθ

)
π
(
YYY 1 |XXX(k)

1 , θθθ
)

r1

(
XXX

(k)
1 | YYY 1, θθθ

) . (3.4.6)

When m ≥ 2 the existing particles are resampled to avoid degeneracy. In the particle filter, this

is done by sampling the ancestor particle index, a
(k)
m−1, of particle k, where a

(k)
m−1 takes the value

1, ..., NX according to weights ω
(1:NX)
m−1 , i.e. P

(
a
(k)
m−1 = j

)
= Ω

(j)
m−1, where

Ω
(k)
m−1 =

ω
(k)
m−1∑NX

i=1 ω
(i)
m−1

, (3.4.7)

are the normalised importance weights. The resampled particles are extended using a proposal

distribution of the form an rm (XXXm |XXXm−1,YYY m, θθθ), so that the importance distribution takes

the form

ηm (XXX1:m) = π (XXX1:m−1,YYY 1:m−1 | θθθ) rm (XXXm |XXXm−1,YYY m, θθθ) , (3.4.8)

so that it is conditioned on the next observation. The importance weights are

ω(k)
m =

π

(
XXX

(a
(k)
m−1)

1:m−1 ,YYY 1:m−1 | θθθ
)
π

(
XXX

(k)
m |XXX(a

(k)
m−1)

m−1 , θθθ

)
π
(
YYY m |XXX(k)

m , θθθ
)

π

(
XXX

(a
(k)
m−1)

1:m−1 ,YYY 1:m−1 | θθθ
)
rm

(
XXX

(k)
m |XXX(a

(k)
m−1)

m−1 ,YYY m, θθθ

)

=

π

(
XXX

(k)
m |XXX(a

(k)
m−1)

m−1 , θθθ

)
π
(
YYY m |XXX(k)

m , θθθ
)

rm

(
XXX

(k)
m |XXX(a

(k)
m−1)

m−1 ,YYY m, θθθ

) .

(3.4.9)

The full pseudocode is presented in Algorithm 3.11.

The particle filter can provide an unbiased estimate of the likelihood, π (YYY 1:M | θθθ), via the

identity

π (YYY 1:M | θθθ) = π (YYY 1 | θθθ)
M∏

m=2

π (YYY m | YYY 1:m−1, θθθ) . (3.4.10)

It was shown in [72] that each component of the product, π (YYY m | YYY 1:m−1, θθθ), can be replaced

with an unbiased approximation, π̂ (YYY m | YYY 1:m−1, θθθ), to obtain an unbiased estimate of the
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Algorithm 3.11 Particle filter targeting π (XXX1:M | YYY 1:M , θθθ).

for k = 1, ..., NX do

Sample XXX
(k)
1 ∼ r1 (XXX1 | YYY 1, θθθ).

Set the importance weight

ω
(k)
1 =

π
(
XXX

(k)
1 | θθθ

)
π
(
YYY 1 |XXX(k)

1 , θθθ
)

r1

(
XXX

(k)
1 | YYY 1, θθθ

) .

end for

Normalise the weights. For k = 1, ..., NX

Ω
(k)
1 =

ω
(k)
1∑NX

i=1 ω
(i)
1

.

for m = 2, ...,M do

for k = 1, ..., NX do

Sample ancestor particle index a
(k)
m−1 according to weights Ω

(1:NX)
m−1 .

Sample XXX
(k)
m ∼ rm

(
XXXm |XXX

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

)
.

Extend particle trajectory XXX
(k)
1:m =

(
XXX

(a
(k)
m−1)

1:m−1 ,XXX
(k)
m

)
.

Set the importance weight

ω(k)
m =

π

(
XXX

(k)
m |XXX

(
a
(k)
m−1

)

m−1 , θθθ

)
π
(
YYY m |XXX(k)

m , θθθ
)

rm

(
XXX

(k)
m |XXX

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

) .

end for

Normalise the weights. For k = 1, ..., NX

Ω(k)
m =

ω
(k)
m

∑NX

i=1 ω
(i)
m

.

end for
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likelihood, denoted by π̂ (YYY 1:M | θθθ). The components of the product are given by

π(YYY m | YYY 1:m−1, θθθ)

=

∫
π (YYY m |XXXm, θθθ)π (XXXm |XXXm−1, θθθ)π (XXX1:m−1 | YYY 1:m−1, θθθ) dXXX1:m

=

∫
ωm (XXX1:m) rm (XXXm |XXXm−1,YYY m, θθθ)π (XXX1:m−1 | YYY 1:m−1, θθθ) dXXX1:m,

which can be estimated in each iteration of the particle filter via IS, specifically,

π̂ (YYY m | YYY 1:m−1, θθθ) =
1

NX

NX∑

j=1

ω(j)
m , (3.4.11)

provides an unbiased estimate of π(YYY m | YYY 1:m−1, θθθ). It is shown in [73] that the likelihood in

Monte Carlo computations can be replaced with an unbiased approximation, and the resulting

algorithm will still be a valid Monte Carlo sampler. This is known as the pseudo-marginal

approach, and has been exploited in PMCMC [43] and SMC2 [74] by replacing the likelihood

with the unbiased estimate obtained from a particle filter in an MCMC scheme and SMC scheme

respectively.

A well known draw back of the above particle filter (and SMC methods in general) is

that as M increases the joint posterior density approximations of π (XXX1:M | YYY 1:M , θθθ) become

poorer. Resampling in every iteration means that the sample at iteration M can be traced back

to a handful of ancestor particles from early iterations. In other words, the marginal density

π (XXXm | YYY 1:M , θθθ) will be approximated through only a handful of particles when m is small.

This problem will be made worse if NX is small. As a rule of thumb, NX should be greater

than M for the inference methods discussed in this chapter [43, 74] .

Designing an efficient importance distribution

When the transition density is unavailable in closed form, it is standard to choose proposal dis-

tributions rm

(
XXXm |XXX

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

)
= π

(
XXX

(k)
m |XXX

(
a
(k)
m−1

)

m−1 , θθθ

)
, so that we are simulating

from the model, and the intractable term cancels out in the importance weight calculations. This

choice will typically lead to many proposals in regions of low posterior probability density.

When using the Euler-Maruyama approximation to simulate from the underlying SDE, it is

possible to condition the proposal distribution on the next observation, increasing the number of

proposals in regions of high posterior probability density. As a reminder, the Euler-Maruyama
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approximation simulates over some time interval, ∆t, from an SDE of the general form

dXXX (t) = µµµ (XXX (t) , θθθ) dt+ΣΣΣ
1
2
X (XXX (t) , θθθ) dWWW (t) , (3.4.12)

by partitioning the time interval into J intervals of time ∆τ = ∆t
J

, giving the discrete time

equation

XXX (t+∆τ) = µµµ (XXX (t) , θθθ)∆τ +ΣΣΣ
1
2
X (XXX (t) , θθθ)

√
∆τǫǫǫt, (3.4.13)

where ǫǫǫt is vector of independent standard Gaussian random variables. Denoting XXXm,j =

XXX (tm + j∆τ), simulating from the discrete time equation between two observation times,

tm−1 and tm, introduces (J − 1) × u latent variables, XXXm−1,1, ...,XXXm−1,J−1. We can ex-

tend the importance distribution to also sample from the latent variables, by using a proposal

distribution of the form r̃m (XXXm−1,1, ...,XXXm−1,J | YYY m, θθθ). The importance weight calculation

in the particle filter becomes

ω(k)
m =

∏J
j=1 π (XXXm−1,j |XXXm−1,j−1, θθθ)π (YYY m |XXXm, θθθ)

r̃m (XXXm−1,1, ...,XXXm−1,J | YYY m, θθθ)
, (3.4.14)

where the π (XXXm−1,j |XXXm−1,j−1, θθθ) are now assumed to be Gaussian. The latent variables can

be iteratively sampled from π (XXXm−1,j |XXXm−1,j−1, θθθ), in which case the importance weights

simplify as ω
(k)
m = π (YYY m |XXXm, θθθ).

Recall that the general observation process is

YYY m = CCCXXXm +DDD +ΣΣΣY ηηηm. (3.4.15)

In order to guide the particles in to regions of high likelihood, we can consider conditioning

the value of XXXm−1,j on a future observation, YYY m, by approximating the distribution of YYY m

conditional on XXXm−1,j−1 using a single Euler-Murayama step of size ∆̃t = dt − (j − 1)∆τ .

First note that under an Euler-Murayama step of interval size ∆̃t

XXXm |XXXm−1,j−1, θθθ ∼ Nu

(
XXXm−1,j−1 +µµµm−1,j−1∆̃t,ΣΣΣm−1,j−1∆̃t

)
, (3.4.16)

and so

YYY m |XXXm−1,j−1, θθθ ∼ Nw

(
CCC
(
XXXm−1,j−1 +µµµm−1,j−1∆̃t

)
+DDD,

CCCΣΣΣm−1,j−1CCC
T ∆̃t+ΣΣΣY

)
, (3.4.17)

where µµµm,j = µµµ (XXXm,j , θθθ) and ΣΣΣm,j = ΣΣΣX (XXXm,j , θθθ). In other words, we use a single Euler-

Murayama step to predict the value of XXXm, which is assumed to be Gaussian, and then add the
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Gaussian observation error after scaling. This approach was taken in [42], but with no scaling or

displacement terms in the observation process. The joint distribution of XXXm−1,j and YYY m, given

XXXm−1,j−1, is then

(
XXXm−1,j

YYY m

)
|XXXm−1,j−1, θθθ ∼ Nu+w




 XXXm−1,j−1 +µµµm−1,j−1∆τ

CCC
(
XXXm−1,j−1 +µµµm−1,j−1∆̃t

)
+DDD


 ,

(
ΣΣΣm−1,j−1∆τ ΣΣΣm−1,j−1CCC

T∆τ

CCCΣΣΣm−1,j−1∆τ CCCΣΣΣm−1,j−1CCC
T ∆̃t+ΣΣΣY

))
. (3.4.18)

Using standard multivariate Gaussian conditioning rules [75] to condition on YYY m gives

XXXm−1,j |XXXm−1,j−1,YYY m, θθθ ∼ Nu (MMMm−1,j−1,SSSm−1,j−1) , (3.4.19)

where

MMMm−1,j−1 =XXXm−1,j−1 +µµµm−1,j−1∆τ+

BBBTAAA−1
(
YYY m −

(
CCC
(
XXXm−1,j−1 +µµµm−1,j−1∆̃t

)
+DDD

))
,

and

SSSm−1,j−1 = ΣΣΣm−1,j−1∆τ −BBBTAAA−1BBB,

with

AAA =
(
CCCΣΣΣm−1,j−1CCC

T ∆̃t+ΣΣΣY

)
,

and

BBB = CCCΣΣΣm−1,j−1∆τ.

To understand why this is a more efficient proposal distribution than simulating from the

model, we consider an alternative derivation of the above. Consider the case in this chapter,

where our observations are scaled and noisy versions of the observable state, X1. For X1, if we

simulate from the model under the Euler-Murayama approximation,

X1;m−1,j | X1;m−1,j−1 ∼ N
(
X1;m−1,j−1 + µ1;m−1,j−1∆τ, σ2

1∆τ
)
. (3.4.20)

Also consider predicting the value of X1 at observation time tm using a single Euler-Murayama

step over the interval ∆̃t. Denoting the predicted value as X̂m,

X̂m | X1;m−1,j−1 ∼ N
(
X1;m−1,j−1 + µ1;m−1,j−1∆̃t, σ2

1∆̃t
)
. (3.4.21)
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Scaling X̂m allows us to compare our prediction with the observation, and the difference is

given by

Ym −
(
CX̂m +D

)
. (3.4.22)

We can then consider adjusting the mean of the proposal distribution through a small perturba-

tion of the form

KC−1
(
Ym −

(
CX̂m +D

))
, (3.4.23)

so that we propose X1;m−1,j from

X1;m−1,j | X1;m−1,j−1, Ym ∼ N (X1;m−1,j−1 + µ1;m−1,j−1∆τ+

KC−1
(
Ym −

(
CX̂m +D

))
, σ2

1∆τ
)
, (3.4.24)

where K determines the size of the perturbation. The optimal choice of K will depend on

the relative difference of the model discrepancy variance over one time step and the observation

error. Considering a perturbation over one step of size ∆̃t, it is desired that K → 1 as
σ2
Y

C2σ2
1∆̃t

→

0, and K → 0 as
C2σ2

1∆̃t

σ2
Y

→ 0. In other words, when the observation error is relatively small,

the perturbation should give proposals closer to the observation, and when the observation error

is relatively large the proposals do not deviate strongly from the model. A suitable choice is

K =
C2σ2

1∆̃t

C2σ2
1∆̃t+ σ2

Y

, (3.4.25)

which is the ratio of the variance from the model, and the combined variance of the model and

observation process. In each iteration of step size ∆τ , we scale the perturbation by ∆τ

∆̃t
to give

the correct proportion, giving

K =
C2σ2

1∆τ

C2σ2
1∆̃t+ σ2

Y

. (3.4.26)

This suggests using a proposal distribution of the form

X1;m−1,j | X1;m−1,j−1, Ym ∼ N (X1;m−1,j−1 + µ1;m−1,j−1∆τ+

C2σ2
1∆τ

C2σ2
1∆̃t+ σ2

Y

C−1
(
Ym −

(
CX̂m +D

))
, σ2

1∆τ

)
, (3.4.27)

For the unobservable states, proposals are made by simulating from the model under the Euler-

Murayama approximation. This can be considered as a scalar version of Equation 3.4.19, giving

insight in to why conditioning on a future observation in a proposal distribution leads to im-

proved efficiency.

70



CHAPTER 3: INFERENCE METHODS

Note that through a formal conditioning on the observation,YYY m, the variance of the proposal

distribution is reduced as the observation time is neared. For the observable state the proposal

variance becomes

C2σ2
1

(
∆̃t−∆τ

)
+ σ2

Y

C2σ2
1∆̃t+ σ2

Y

σ2
1∆τ, (3.4.28)

which can be considered as scaling the proposal variance by the variance remaining after the

integration step has been performed relative to the total variance. This ratio is close to 1 for

∆τ ≪ ∆̃t, and for C2σ2
x∆̃t ≪ σ2

y . Whereas in the case ∆τ = ∆̃t, and Σy ≪ C2Σx∆t,

the proposal variance is approximately the observation variance. This is expected to be ben-

eficial for informative observations, as ensuring the state of the system is near an observation

before reaching it prevents rapid state changes, which have low likelihoods and thus lead to poor

acceptance rates in MCMC, and a poor ESS in IS.

3.4.1 Particle MCMC

Particle MCMC (PMCMC) samplers are a collection of methods embedding the particle fil-

ter into an MCMC algorithm. We focus on a PMCMC algorithm designed to sample from

π (θθθ,XXX1:M | YYY 1:M ), called the particle marginal Metropolis Hastings (PMMH) sampler [43].

Consider the case where it is possible to sample from π (XXX1:M | YYY 1:M , θθθ), and note that

π (θθθ,XXX1:M | YYY 1:M ) = π (θθθ | YYY 1:M )π (XXX1:M | YYY 1:M , θθθ) . (3.4.29)

In this situation it makes sense to use proposal distributions of the form

q (θθθ∗,XXX∗
1:M | θθθ,XXX1:M ) = q (θθθ∗ | θθθ)π (XXX∗

1:M | YYY 1:M , θθθ∗) . (3.4.30)

The acceptance rate of the Metropolis Hastings acceptance ratio is then

π (θθθ∗,XXX∗
1:M | YYY 1:M ) q (θθθ,XXX1:M | θθθ∗,XXX∗

1:M )

π (θθθ,XXX1:M | YYY 1:M ) q
(
θθθ∗,XXX∗

1:M | θθθ,XXX1:M

) =
π (θθθ∗)π (YYY 1:M | θθθ∗) q (θθθ | θθθ∗)
π (θθθ)π (YYY 1:M | θθθ) q (θθθ∗ | θθθ) , (3.4.31)

showing that the algorithm is sampling θθθ from the correct marginal distribution π (θθθ | YYY 1:M ).

It can also be shown that this algorithm satisfies detailed balance [43]. It is rarely possible to

sample from π (XXX1:M | YYY 1:M , θθθ), and in our case the likelihood, π (YYY 1:M | θθθ), is intractable.

PMMH uses the particle filter approximations of these quantities, denoted π̂ (XXX1:M | YYY 1:M , θθθ)

and π̂ (YYY 1:M | θθθ). Despite using the particle filter approximations, the resulting Markov chain

leaves the posterior distribution, π (θθθ,XXX1:M | YYY 1:M ), invariant. This has given rise to the term

“exact-approximations” to describe such algorithms.

In each iteration of the algorithm, XXX∗
1:M is sampled by sampling particle index bM ac-
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cording to weights Ω
(1:NX)
M , from the particle filter. The ancestry of this particle can then

be defined deterministically through the recursive relation bm−1 = a
(bm)
m−1, where the a

(k)
m are

the ancestor particle indices. The proposed trajectory is then given by the combined ancestry

b1:M = {b1, ..., bM} as XXX
(bM )
1:M =

{
XXX

(b1)
1 , ...,XXX

(bM )
M

}
.

Formally, the PMMH algorithm is an MCMC algorithm leaving the extended distribution

π
(
θθθ, bM ,XXX1:NX

1:M , a1:NX

1:M−1

)
invariant, where the extended distribution is defined as

π
(
θθθ, bM ,XXX1:NX

1:M , a1:NX

1:M−1

)
=

π
(
θθθ,XXX

(bM )
1:M | YYY 1:M

)

NM
X

×





{∏NX

i=1 r1

(
XXX

(i)
1 | YYY 1, θθθ

)}{∏M
m=2

∏NX

i=1Ω

(
a
(i)
m−1

)

m−1 rm

(
XXX

(i)
m |XXX

(
a
(i)
m−1

)

m−1 ,YYY m, θθθ

)}

r1

(
XXX

(b1)
1 | YYY 1, θθθ

)∏M
m=2Ω

(bm−1)
m−1 rm

(
XXX

(bm)
m |XXX(bm−1)

m−1 ,YYY m, θθθ
)





,

(3.4.32)

which admits π (θθθ,XXX1:M | YYY 1:M ) as a marginal distribution. The extended proposal distribution

is given by

q
(
θθθ, bM ,XXX1:NX

1:M , a1:NX

1:M−1 | θθθ∗, b∗M ,XXX∗1:NX

1:M , a∗1:NX

1:M−1

)
= q (θθθ | θθθ∗) Ω(bM )

M

×
{

NX∏

i=1

r1

(
XXX

(i)
1 | YYY 1, θθθ

)}{ M∏

m=2

NX∏

i=1

Ω

(
a
(i)
m−1

)

m−1 rm

(
XXX(i)

m |XXX
(
a
(i)
m−1

)

m−1 ,YYY m, θθθ

)}
, (3.4.33)

so that

π
(
θθθ, bM ,XXX1:NX

1:M , a1:NX

1:M−1

)

q
(
θθθ, bM ,XXX1:NX

1:M , a1:NX

1:M−1 | θθθ∗, b∗M ,XXX∗1:NX

1:M , a∗1:NX

1:M−1

) ∝
π (θθθ)

∏M
m=1

1
NX

∑NX

i=1w
(i)
m

q (θθθ | θθθ∗) .

In other words, the target distribution of the Markov chain is extended to include all of the

random variables used in the particle filter. Under mild assumptions
∏M

m=1
1

NX

∑NX

i=1w
(i)
m is

a consistent estimator for π (YYY 1:M | θθθ), and the PMMH acceptance probability tends to Equa-

tion 3.4.31 as NX → ∞. For any number of particles, NX ≥ 1, the PMMH algorithm leaves

π (θθθ,XXX1:M | YYY 1:M ) invariant. The pseudocode is presented in Algorithm 3.12.

There are a number of decisions that the user needs to make. The number of iterations to be

performed, the length of the burn-in period, and the proposal distributions for the parameters

are typical MCMC tuning parameters. Additionally, it is up to the user to decide the number of

particles. A rule of thumb is to choose NX = O(M) for a well mixing algorithm [43].
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Algorithm 3.12 PMCMC sampler targeting π (θθθ,XXX1:M | YYY 1:M ).

Initialise θθθ(1).
Run the particle filter targeting π

(
XXX1:M | θθθ(1),YYY 1:M

)
. Sample trajectory XXX

(1)
1:M from

π̂
(
XXX1:M | θθθ(1),YYY 1:M

)
and record the marginal likelihood estimate π̂

(
YYY 1:M | θθθ(1)

)
.

for n = 2, ..., Nθ do

Propose move to θθθ∗ according to proposal density q
(
θθθ | θθθ(n−1)

)
.

Run the particle filter targeting π (XXX1:M | θθθ∗,YYY 1:M ). Sample trajectory XXX∗
1:M from

π̂ (XXX1:M | θθθ∗,YYY 1:M ) and record the likelihood estimate π̂ (YYY 1:M | θθθ∗).
With probability

λ
(
θθθ∗ | θθθ(n−1)

)
= min

(
1,

π (θθθ∗) π̂ (YYY 1:M | θθθ∗) q
(
θθθ(n−1) | θθθ∗

)

π
(
θθθ(n−1)

)
π̂
(
YYY 1:M | θθθ(n−1)

)
q
(
θθθ∗ | θθθ(n−1)

)
)

set θθθ(n) = θθθ∗ and XXX
(n)
1:M =XXX∗

1:M . Otherwise set θθθ(n) = θθθ(n−1) and XXX
(n)
1:M =XXX

(n−1)
1:M .

end for

Results

The PMCMC algorithm is performed over 45000 iterations, and the first 15000 samples are

discarded as a burn-in. We choose NX = 1000, so that in total the algorithm requires the

equivalent of 45 million simulations from the model. The code was written in c and R, and has

a runtime of approximately 24 hours on a 3 GHz processor. While this is more computationally

expensive than ABC-MCMC, PMCMC is targeting the posterior distribution, rather than an

approximation to it.

The proposal distribution, q
(
θθθ | θθθ(n−1)

)
, is a multivariate Gaussian distribution with mean

θθθ(n−1) and a diagonal covariance matrix where the variance terms are provided in Table 3.5.

These values were selected based on several trial runs. Within the particle filter, values of

X2 (t1) are proposed from the prior distribution, and values of X1 (t1) are proposed from a

Gaussian distribution with mean 1
C
(Y1 −D) and variance

σ2
Y

C2 . These proposal distributions en-

sure a good agreement with the first observation, whereas drawing X1 from the prior distribution

would lead to many low-weight particles. For m ≥ 2 the proposal distributions are conditioned

on the next observation, as described in the previous section.

The resulting MCMC chain has an acceptance rate of 0.38 after burn-in. The chain is thinned

to give a sample size of 1000 by taking every 20th value. The parameter marginal distributions

are shown in Figure 3.5. The posterior variance is much lower than the ABC posteriors, which is

to be expected given that ABC is targeting an approximation to the posterior distribution. Most

of the true values of the parameters are in regions of high posterior probability density. In this

case the values of the coprecession scaling term γC and the stochastic scaling term σ1 are in

the tails of the posterior distribution, but this seems to be a feature of the particular simulated

dataset. The posterior variance of X2 (t1) is still quite large. The start of the simulated dataset
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Figure 3.5: Marginal posterior distributions of the parameters of CR14-a, obtained using PM-

CMC in the simulation study. Vertical lines indicate the values used to generate

the data. Dashed lines show the prior distributions. Comparing these distributions

with the approximate posterior distributions obtained using ABC methods, shown,

for example, in Figure 3.4, suggests that we are learning more about the parame-

ters using PMCMC. It appears that using the likelihood approximation in PMCMC

extracts more information from the observations than using the ABC approxima-

tion. The values of the coprecession scaling term γC and the stochastic scaling

term σ1 are in the tails of the posterior distribution, but this seems to be a feature

of the particular simulated dataset.
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Parameter β0 β1 β2 δ α γP γC
τ 0.014 0.023 0.03 0.009 0.71 0.005 0.005

Parameter γE σ1 σ2 σY D C

τ 0.006 0.004 0.02 0.001 0.005 0.01

Table 3.5: Standard deviation (τ ) associated with each of the parameters in the Gaussian ran-

dom walk proposal for PMCMC. These values were selected based on several trial

runs.

is undergoing a transition from the positive branch of X2 to the negative branch. As such any

trajectories from negative values of X2 (t1) are quickly drawn to the limit cycle, so that it is easy

to detect if X2 (t1) is positive or negative, but difficult to find the true value used.

As the PMCMC algorithm targets a different distribution than ABC methods, the correla-

tions in the accepted sample are different. In the PMCMC sample β0 is still strongly correlated

with δ and D, with coefficients 0.93 and 0.54 respectively, but also with α and C, with correla-

tion coefficients -0.65 and -0.61. Furthermore β1 is correlated with β2 (0.84), δ (0.52), and C

(0.72); δ with α (-0.72), and C (-0.68); α with C (0.73); and γE with C (-0.61).

3.4.2 SMC2

The SMC2 algorithm embeds the particle filter within an SMC algorithm targeting the sequence

of intermediary distributions π0, ..., πM defined by

π0 = π(θθθ), πm = π(θθθ,XXX1:m | YYY 1:m), m ≥ 1.

This is achieved by sampling Nθ parameter particles from the prior distribution when initialising

the algorithm. A particle filter is then attached to each parameter particle, giving a total of

Nθ×NX particles. In every iteration the particle filter is performed up until the next observation

[74]. Formally the target density in each iteration is given by

πm

(
θθθ,XXX1:NX

1:m , a1:NX

1:m−1

)
=

π (θθθ | YYY 1:m)

Nk
X

NX∑

j=1

π
(
XXX

(bjm)
1:m | YYY 1:m, θθθ

)

r1

(
XXX

(bjm)
1 | YYY 1, θθθ

)∏m
k=2Ω

(bj
k−1)

k−1 rk

(
XXX

(bj
k
)

k |XXX(bj
k−1)

k−1 ,YYY k, θθθ

)×

{
NX∏

i=1

r1

(
XXX

(i)
1 | YYY 1, θθθ

)}{ m∏

k=2

NX∏

i=1

Ω

(
a
(i)
k−1

)

k−1 rk

(
XXX

(i)
k |XXX

(
a
(i)
k−1

)

k−1 ,YYY k, θθθ

)}
, (3.4.34)
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where bj1, ..., b
j
m denotes the ancestry of particle XXXj

m. Note that this distribution differs from

the target distribution of the PMCMC algorithm as bm is not sampled. The proposal density is

given by

ηm

(
θθθ,XXX1:NX

1:m , a1:NX

1:m−1

)
= π (θθθ)×

{
NX∏

i=1

r1

(
XXX

(i)
1 | YYY 1, θθθ

)}{ m∏

k=2

NX∏

i=1

Ω

(
a
(i)
k−1

)

k−1 rk

(
XXX

(i)
k |XXX

(
a
(i)
k−1

)

k−1 ,YYY k, θθθ

)}
, (3.4.35)

so that

πm

(
θθθ,XXX1:NX

1:m , a1:NX

1:m−1

)

ηm

(
θθθ,XXX1:NX

1:m , a1:NX

1:m−1

) ∝
m∏

k=1

1

NX

NX∑

i=1

w
(i)
k .

A resampling step is added when the ESS falls below Nθ

2 . As the parameter particles are

not perturbed between iterations, resampling causes a diminished particle diversity. The parti-

cle diversity is improved by running a PMCMC algorithm targeting π(θθθ,XXX1:m | YYY 1:m) after

each resampling step. Note that resampling effectively alters the proposal distribution, as rather

than being distributed according to the prior distribution, the parameter particles are distributed

according to the mixture distribution

Nθ∑

n=1

W
(n)
m−1π

(
θθθ(n)

)
, (3.4.36)

where Wm are the normalised weights of the parameter particles in iteration m. The pseudocode

is presented in Algorithm 3.13.

The user choices are the number of particles, Nθ and Nx, the length of the PMCMC chain

in the resampling steps, and the proposal distributions in the PMCMC steps. Typically, Nθ will

be decided by the available computational resources and desired sample size. It is not necessary

to keep NX fixed. It has been suggested that NX should be O(m), implying that few state

particles are required in early iterations. This means that NX can be automatically calibrated,

for example by doubling NX whenever the acceptance rate of the PMCMC algorithm falls below

some set tolerance [74]. Having a collection of parameter particles in iteration m also allows

the PMCMC proposal distributions to be automatically calibrated by using the sample mean and

covariance to design a random-walk proposal, or independent Gaussian proposals, for example.

A notable property of SMC2 is the memory cost involved when storing the complete tra-

jectory of every particle, which is O (MNθ ×NX). When interest lies only in the parameter

marginal distribution, XXX1:m−2 can be discarded, as for iteration m only XXXm−1 are required due

to the Markov property of the model. This reduces the memory requirements to O (NθNX).
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Algorithm 3.13 SMC2 algorithm targeting π (θθθ,XXX1:M | YYY 1:M ).

for n = 1, ..., Nθ do

Sample θθθ(n) from the prior distribution, π (θθθ).
Set the importance weight

W
(n)
0 =

1

Nθ

.

end for

for m = 1, ...,M do

if ESS< Nθ

2 then

for n = 1, ..., Nθ do

Sample θθθ∗(n) and XXX
∗(1:NX ,n)
1:m−1 from θθθ(1:Nθ) and XXX

(1:NX ,1:Nθ)
1:m−1 , according to weights

W
(1:Nθ)
m−1 .

Sample θθθ∗∗(n) and XXX
∗∗(1:NX ,n)
1:m−1 from a PMCMC algorithm initialised with θθθ∗(n) and

XXX
∗(1:NX ,n)
1:m−1 , and targeting π (θθθ,XXX1:m−1 | YYY 1:m−1).

end for

Set θθθ(1:Nθ) = θθθ∗∗(1:Nθ) and XXX
(1:NX ,1:Nθ)
1:m−1 =XXX

∗∗(1:NX ,1:Nθ)
1:m−1 .

Set the importance weights. For n = 1, ..., Nθ

W
(n)
m−1 =

1

Nθ

.

end if

for n = 1, ..., Nθ do

Sample XXX
(1:NX ,n)
1:m by performing iteration m of the particle filter, and record estimates

of π̂
(
YYY m | YYY 1:m−1, θθθ

(n)
)

and π̂
(
YYY 1:m | θθθ(n)

)
.

Set the importance weights

w(n)
m = w

(n)
m−1π̂

(
YYY m | YYY 1:m−1, θθθ

(n)
)
.

end for

Normalise the weights. For n = 1, ..., Nθ

W (n)
m =

w
(n)
m

∑Nθ

i=1w
(i)
m

.

end for
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Results

The SMC2 algorithm is performed with Nθ = 1000 parameter particles and NX = 1000 state

particles, giving 1 million particles in total. The parameter proposal distribution in the PMCMC

resampling steps is taken to be independent Gaussian, with mean and variance equal to the

mean and variance of the resampled values. We choose a PMCMC chain length of 10, which

seems sufficient to maintain a good particle diversity. When the particle filter is first initialised

we sample initial conditions in the same manner as the PMCMC algorithm. In the resampling

stages the initial conditions are sampled from an independent Gaussian distribution, with the

same mean and variance as the current sample, so that our proposal distributions are adaptive.

The full algorithm required the equivalent of 120 million simulations, making it the most

expensive algorithm in this chapter. The code was written in c and R, and has a runtime of

approximately 60 hours on a 3 GHz processor. The final sample had 984 distinct particles,

suggesting that the chain length could be reduced while keeping a large number of distinct

particles, which would reduce the number of required simulations.

The parameter marginal distributions are shown in Figure 3.6. There is very strong agree-

ment between the SMC2 posterior and PMCMC posterior, as would be expected as both algo-

rithms target the same distribution. The interpretation of the posterior sample is therefore not

repeated. There is also a strong agreement with the correlation in the posterior sample. β0 is

correlated with δ (0.95), α (-0.73), D (0.52), and C (-0.66); β1 is correlated with β2 (0.85), δ

(0.6), and C (0.77); δ with α (-0.78), and C (-0.72); α with C (0.78); and γE with C (-0.6).
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Figure 3.6: Marginal posterior distributions of the parameters of CR14-a, obtained using

SMC2 in the simulation study. Vertical lines indicate the values used to generate

the data. Dashed lines show the prior distributions. These distributions strongly

resemble those obtained using PMCMC, shown in Figure 3.5.
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3.5 Chapter Summary

In this chapter we introduced ABC and particle filter methods for sampling from a posterior

distribution when the likelihood term is intractable. Despite being presented as two separate

entities, the methodologies are related. The proposal distributions in the particle filter can be

simulations from the model, as in ABC methods. With a single particle these algorithms become

ABC approaches with a Gaussian error distribution, as discussed in Section 3.3.3.

ABC methods were introduced from their inception to recent developments. ABC is one

of the most useful tools for performing inference in models where the likelihood function is

intractable and has applications in a wide array of fields. Developments such as ABC-MCMC,

ABC-SMC, and post-processing techniques have improved the efficiency of ABC dramatically.

However, some important issues still need to be addressed. Both the choice of tolerance, ǫ,

and distance metric, ρ, affect the posterior approximation in complex ways. This problem is

amplified with the use of summary statistics, as it is often the case that sufficiency can not be

determined, and it is difficult to assess if the summary statistics capture all of the important

aspects of the data, or if valuable information is being discarded. How the various choices im-

pact the ABC approximation remains an open question. At this point, there is also no satisfying

way to automate the construction of useful summary statistics, but this is an active topic in the

literature [76, 77].

PMCMC and SMC2 were introduced as two recent methods that make use of the unbiased

likelihood estimate of the particle filter. Unlike ABC approaches, these methods target the

correct posterior distribution, but this comes at a potentially greater computational expense.

From our simulation study it seems that SMC2 has a greater computational cost than PMCMC.

However, one benefit of SMC2 is that it is easy to design adaptive proposal distributions for

both the parameter particles and state particles. Given the large number of phenomenological

models of the glacial-interglacial cycle, and the number of available datasets from sediment

cores, SMC2 has the advantage that it can be applied with little user input. PMCMC on the

other hand would require tuning for each model and each dataset.

It should be stressed that the aim in this chapter was to demonstrate how ABC and particle

filter based methods can be applied to parameter estimation problems, with a focus on the mod-

els discussed in Chapter 2. As such, this is by no means a complete account of ABC and particle

methods. Thorough discussions can be found in the references given throughout this chapter.

Additionally, recent reviews are available for both ABC [44] and particle methods [78].

A comparison of the marginal posterior distributions of the parameters, obtained using ABC

rejection, ABC-ASMC, and SMC2, is shown in Figure 3.7. There is a visible benefit to using

ABC-ASMC over ABC rejection, as reaching a lower tolerance causes the posterior distribu-
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tions to narrow in on the true parameters. However, ABC performs poorly in comparison to

SMC2. The loss of information due to using the ABC approximation gives poor approximations

to the posterior distributions. The choice of algorithm therefore depends on the problem. The

comparative benefits of ABC methods are that they are easy to implement, and are not restricted

to performing inference on SSMs. It should also be stressed that the particle filter methods per-

form less well when only inefficient proposal distributions, such as simulations from the model,

are available. In such cases, either the number of particles, or the Markov chain length, will

need to be increased, adding computational expense. To conclude, in situations in which only

approximate samples of the posterior distribution are required it will be much quicker to design

and implement an ABC algorithm than it will a particle filter algorithm. On the other hand, if

samples from the correct posterior distribution are required then particle filter methods should

be used.

This chapter has shown how state of the art inference methods can be used to estimate

parameters in phenomenological models using palaeoclimate data. The algorithms as presented,

however, do not indicate which models are most supported by the data, nor do they formally

test whether the model parameters have explanatory power. These can be considered as model

comparison problems. In the next chapter we build on the inference methods introduced here,

in order to perform model comparison experiments.
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Figure 3.7: Comparison of the marginal posterior distributions obtained using ABC rejection

(green), ABC-ASMC (blue), and SMC2 (red). ABC-ASMC is improving the ap-

proximation to the posterior distribution over the ABC rejection scheme, as it is

able to use a lower tolerance value. However, the approximate posterior distri-

butions targeted by ABC seem to be poor approximations in comparison to the

posterior distributions obtained using SMC2.
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Model Comparison

In this chapter we consider the problem of model comparison for phenomenological models

of the glacial-interglacial cycle. In a Bayesian setting, model comparison is often done by

evaluating the normalising constant in Equation 1.2.1, π (YYY 1:M ), termed the model evidence,

for each model under consideration. The ratio of the model evidence terms between two models,

termed the Bayes factor, indicates which model is more strongly supported by the data.

Evaluating the model evidence is a challenging problem, as it requires integration over the

entire parameter space. As with the likelihood, the model evidence is intractable in our models

of interest. Fortunately, the inference methods introduced in Chapter 3 can be extended to

perform model comparison via estimation of the Bayes factors, without the need for a tractable

likelihood.

We focus on SMC implementations, which provide estimates of normalising constants, such

as the model evidence, with relative ease [79]. As discussed in Chapter 3, SMC approaches also

allow automated calibration of many tuning parameters, such as proposal distributions. This is

a useful feature when numerous models are under consideration, as it would take time to design

efficient implementations of an algorithm for each model by hand.

The chapter is divided as follows. In Section 4.1 we discuss how model comparison is

performed in a Bayesian setting. We introduce Bayes factors, and the different approaches that

can be taken to evaluate them. In Section 4.2 we design a new simulation study to compare

different model comparison approaches on synthetic data, where we know the true model. We

compare two different approaches that are extensions to the inference methods introduced in

Chapter 3. The first is an extension to the ABC-PRC algorithm that jointly targets all models

under consideration, and the second utilises an estimate of the model evidence from SMC2 for

each model. In Section 4.4 we repeat the experiment on real-world data in order to test if the data

more strongly support oscillators than steady-state models. Finally, in Section 4.5 we conclude

the chapter with a discussion of the results.
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4.1 Bayes Factors

In model comparison problems we have a collection of models Ml, where l = 1, ..., L, which

aim to explain a set of data, YYY 1:M . Each model, Ml, has parameters θθθl ∈ Rvl . Prior proba-

bilities, π (Ml), are assigned to the models, and prior distributions, π (θθθl | Ml), are assigned

to the parameters for each model. The goal is to evaluate the posterior model probabilities,

π (Ml | YYY 1:M ), showing which models are more strongly supported by the data. Using Bayes

theorem, we aim to evaluate

π (Ml | YYY 1:M ) =
π (YYY 1:M | Ml)π (Ml)

π (YYY 1:M )
, (4.1.1)

where

π (YYY 1:M | Ml) =

∫
π (YYY 1:M | θθθl,Ml)π (θθθl | Ml) dθθθl (4.1.2)

is the model evidence for model Ml. The normalising constant,

π (YYY 1:M ) =

L∑

i=1

π (YYY 1:M | Ml)π (Ml) , (4.1.3)

is easily calculated if the model evidence for each model can be evaluated.

Models are often compared by evaluating the ratio of the posterior model probabilities be-

tween each pair of models. For example, if we have two competing models, M1 and M2, then

we aim to calculate the ratio

π (M1 | YYY 1:M )

π (M2 | YYY 1:M )
=

π (YYY 1:M | M1)

π (YYY 1:M | M2)

π (M1)

π (M2)
, (4.1.4)

which is the ratio of the prior model probabilities multiplied by

B12 =
π (YYY 1:M | M1)

π (YYY 1:M | M2)
. (4.1.5)

The ratio of the model evidence terms, B12, is termed the Bayes factor for model M1 against

M2 [80]. When the models have equal prior probability, then the Bayes factor is equal to the

ratio of the posterior model probabilities of the two models. Note that since the model evidence

evaluation requires integration over the parameter space, Bayes factors tend to penalise the

model with the larger number of parameters, particularly if the additional parameters add little

explanatory power.

The Bayes factor summarises the support from the data in favour of one model over another,

and in doing so allows competing scientific hypotheses, represented by different models, to be

compared against one another. A common interpretation of Bayes factors is given in Table 4.1.
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B12 Evidence against M2

1 to 3 Barely worth mentioning

3 to 20 Worth mentioning

20 to 150 Strong

> 150 Decisive

Table 4.1: Interpretation of Bayes factors [80]

This interpretation is intended as a rough guide, rather than to strictly categorise results as

significant, or non-significant, as in frequentist hypothesis testing. An advantage of a Bayesian

model comparison approach is that it indicates which models are more strongly supported by the

data, whereas in hypothesis testing one model is considered as the null hypothesis, and evidence

is only ever weighed against it. In hypothesis testing, a large p value does not indicate that the

null model is more strongly supported by the data, or that two models are equally well supported,

but only that there is insufficient evidence to choose between them. Likewise, smaller p values

do not indicate that models are more strongly supported by the data, only that the null model

lacks explanatory power in comparison. A Bayesian approach can also be used in cases where

the models are not nested, unlike the commonly used frequentist likelihood ratio test. This is

an essential property to be able to select between the numerous proposed phenomenological

models in the literature.

There are three distinct approaches for estimating Bayes factors [79]. These are:

• All-in-one approach: Calculate the posterior model probabilities, π (Ml | YYY 1:M ).

• Evidence calculation approach: Calculate the model evidence, π (YYY 1:M | Ml), for each

model.

• Evidence ratio calculation approach: Directly calculate the Bayes factor for every pair of

models.

Each approach is described in more detail below, along with some of the advantages and disad-

vantages of each method.

All-in-One Approach

The all-in-one approach aims to sample from the joint posterior distribution

π (Ml, θθθl | YYY 1:M ) ∝ π (Ml)π (θθθl | Ml)π (YYY 1:M | θθθl,Ml) . (4.1.6)

Targeting the joint posterior distribution allows inter-model relationships to be exploited. For

example, reversible-jump MCMC (RJMCMC) [81] uses the Metropolis Hastings algorithm on
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an extended space that admits the posterior distribution of both the models and model parame-

ters. When inter-model relationships exist, say two models share one or more parameters, then

more efficient proposal distributions can be designed to transition between the two models than

if the relationship was ignored. The construction of efficient proposal distributions for RJM-

CMC is discussed in [82]. Likewise, exploiting inter-model relationships allows the design of

efficient proposal distributions in many other Monte Carlo methods, such as SMC. Addition-

ally, computation time is not spent on improbable models. This is beneficial in the sense that the

algorithms sample from the posterior distribution more quickly, but with the downside that the

posterior distributions of the parameters are poorly characterised for improbable models (the

sample size will be too small to accurately resemble the posterior distribution). This can be

problematic in SMC methods. If a model has low posterior probability in early iterations, then

the accuracy of the posterior distribution of the parameters might remain poor in later iterations,

even if the posterior probability of the model increases. For example, a small sample in an

early iteration can lead to the design of poor importance sampling distributions when proposal

distributions are automated, impacting the accuracy of later iterations.

Evidence Calculation Approach

The evidence calculation approach evaluates the model evidence of each model, from which we

can obtain the Bayes factors. This requires estimating the posterior distribution,

π (θθθl | YYY 1:M ,Ml) ∝ π (YYY 1:M | θθθl,Ml)π (θθθl | Ml) , (4.1.7)

for each model, and then integrating over the parameter space to obtain the model evidence,

π (YYY 1:M | Ml) =

∫
π (YYY 1:M | θθθl,Ml)π (θθθl | Ml) dθθθl. (4.1.8)

The evidence calculation approach targets the posterior distribution of each model separately,

and so inter-model relationships can not be exploited. However, a benefit of this is that proposal

distributions are not required for transitions between models. Designing such proposal distribu-

tions can be difficult, and so this approach offers relatively simple implementations. A further

benefit of this approach is that whenever a new model needs to be considered, then only the

model evidence for the new model needs to be evaluated (in contrast to the all-in-one approach,

where the entire extended distribution would need to be targeted). This can save computational

expense in situations in which new models are frequently introduced. Additionally, the posterior

distributions of the parameters are well characterised for every model (in that every model has

a large number of samples, giving a good approximation to the posterior distribution), at the

cost of additional computational expense compared to the all-in-one approach. Whether this is
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considered as an advantage or a disadvantage depends on the specific problem.

Evidence Ratio Calculation Approach

The final approach is to evaluate the Bayes factors directly for each pair of models. That is, for

i, j = 1, ..., L, with i 6= j, evaluate

Bij =
π (YYY 1:M | Mi)

π (YYY 1:M | Mj)
, (4.1.9)

which is the Bayes factor in favour of model Mi against model Mj . This approach allows inter-

model relationships to be exploited, as in the all-in-one approach, but the proposal distributions

are only required to support transitions between the two models under evaluation, making the

proposal distributions easier to design. When a new model is considered, the Bayes factor needs

to be evaluated in favour of the new model against each of the existing models. Hence, adding a

new model will have a lower computational cost than the all-in-one approach, but a greater cost

than evaluating each of the model evidence terms individually. As with the evidence calculation

approach, the posterior distributions of the parameters are well characterised for every model.

4.1.1 Model Comparison with Intractable Likelihoods

The methods used to evaluate the Bayes factors that are described in Section 4.1 each require the

likelihood , π (YYY 1:M | θθθl,Ml), and the model evidence, π (YYY 1:M | Ml). For phenomenological

models of the glacial-interglacial cycle, both of these terms are intractable. Performing model

comparison with these models requires inference methods that either simulate from the model,

or approximate the likelihood, such as the methods introduced in Chapter 3. Both ABC and

particle filter methods admit extensions to perform model comparison. We study two extensions

in this chapter: An extension to ABC-PRC, discussed in Section 4.3.1, and an extension to

SMC2, discussed in Section 4.3.2. Before reviewing these methods, we introduce a simulation

study with which the performances of the model comparison approaches will be compared.

4.2 Simulation Study

In this chapter we extend the inference approaches introduced in Chapter 3 to perform model

comparison. As in Chapter 3, we design a simulation study to assess the accuracy and perfor-

mance of the proposed inference methods. We use the same simulated dataset from CR14-a, as

discussed in Section 3.2. The models under consideration are the three oscillators described in

Section 2.3.2 (which includes the true model), as well as two steady-state models [41]. Here,
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steady-state refers to the deterministic (ΣΣΣX = 000), unforced (γE = γP = γC = 0), component

of the model. A steady-state is a value of XXX for which dXXX
dt

= 000, so that the system remains at

the steady-state unless perturbed, by stochastic perturbations or a forcing function, for example.

A steady-state is called a stable steady-state if the system is attracted to the steady-state, and

an unstable steady-state if it is non-attracting. Below, we consider a model with a single stable

steady-state, and a model with two stable steady-states [41].

Energy Balance Model (EBM)

dX1 = − (β0 + β1X1 + I(γP , γC , γE)) dt+ σ1dW1 (4.2.1)

EBM has a single state variable, X1, representing ice volume. Considering the deterministic

(σ1 = 0), unforced (γE = γP = γC = 0) case, the system has a single steady-state at X1 =

−β0

β1
, which is stable as long as β1 > 0. The system is constantly perturbed from the steady-state

by the astronomical forcing and the Brownian motion. The astronomical forcing promotes ice

growth at low values of insolation, and ice reduction at large values of insolation. EBM has 6

tunable parameters, θθθ = (β0, β1, γP , γC , γE , σ1)
T

, which is fewer than the oscillators described

in Section 2.3.2.

Two Stable Steady-State Model (TSS)

dX1 = −
(
β1X1 + β2

(
X3

1 −X1

)
+ I(γP , γC , γE)

)
dt+ σ1dW1 (4.2.2)

As with EBM, there is only a single state variable, X1, representing ice volume. However, in

the absence of the astronomical forcing (γE = γP = γC = 0) and stochastic perturbations

(σ1 = 0), there are three steady-states, which are X1 = 0 and X1 = ±
√

β1+β2

β2
. The steady-

state at X1 = 0 is an unstable steady-state, and the two non-zero solutions are stable steady-

states as long as β2 > 0 and β1 > −β2. If the system is at X1 = 0, a positive perturbation

will cause the state of the system to be attracted to the positive steady-state, and vice versa. The

astronomical forcing promotes crossing towards negative values of X1 (ice reduction) when the

insolation is high, and towards positive values (ice growth) when the insolation is low. TSS has

6 tunable parameters, θθθ = (β0, β2, γP , γC , γE , σ1)
T

.

The prior distributions for each of the models are given in Table 4.2. We assess the accuracy

of the model comparison methods by their ability to favour the correct model, and to recover the

true parameters in the correct model (as in Chapter 3).
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Parameter 1. CR14-a 2. CR14-b 3. CR14-c 4. TSS 5. EBM

β0 N
(
0.4, 0.32

)
N
(
0, 0.42

)
N
(
0, 0.42

)
N
(
0, 0.42

)

β1 N
(
0, 0.42

)
N
(
0, 0.42

)
N
(
0, 0.42

)
N
(
0, 0.32

)
exp (1�0.4)

β2 exp (1�0.5) exp (1�0.5) exp (1�0.5) exp (1�0.5)

δ exp (1�0.5) Γ (10, 0.1) Γ (10, 0.1)

α Γ (10, 2) exp (1�0.5) exp (1�0.5)

κ0 exp (1�0.3) exp (1�0.3)

κ1 exp (1�0.3) exp (1�0.3)

γP exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3)

γC exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3)

γE exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3)

σ1 exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3) exp (1�0.3)

σ2 exp (1�0.5) exp (1�0.5) exp (1�0.5)

σy exp (1�0.1) exp (1�0.1) exp (1�0.1) exp (1�0.1) exp (1�0.1)

D U (3, 5) U (3, 5) U (3, 5) U (3, 5) U (2.5, 4.5)

C U (0.5, 2) U (0.5, 2) U (0.5, 2) U (0.5, 2) U (0.5, 2)

X1 (t1) U (−1.5, 1.5) U (−1.5, 1.5) U (−1.5, 1.5) U (−1.5, 1.5) U (−1.5, 1.5)

X2 (t1) U (−2.5, 2.5) U (−2.5, 2.5) U (−2.5, 2.5)

Table 4.2: List of prior distributions for the model comparison experiment.

To simplify notation when presenting the Bayes factors, we number the models as follows:

1. CR14-a 2. CR14-b 3. CR14-c

4. TSS 5. EBM

4.3 Model Comparison Methods

We now present extensions to two of the algorithms introduced in Chapter 3, in order to perform

model comparison. The first is an extension to the ABC-PRC algorithm [60], which follows the

all-in-one approach to estimating Bayes factors, and the second extends SMC2 [74], which eval-

uates unbiased estimates of the model evidence for each model. These methods are compared in

the simulation study designed in Section 4.2. Note that many more extensions are available, but

with these two approaches we can compare the advantages and disadvantages of using an all-in-

one approach over a model evidence calculation approach, and of using the ABC approximation

over a likelihood estimation scheme.

4.3.1 ABC-PRC

The ABC-PRC algorithm [60] can be extended to perform model comparison by including a

discrete model-parameter, Ml, where l = 1, ..., L . Following the all-in-one approach, the
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algorithm targets the extended posterior distribution πǫ

(
Ml, θθθl, ỸYY 1:M,l | YYY 1:M

)
, where πǫ rep-

resents the ABC posterior distribution discussed in Section 3.3.

The proposal distribution is extended to include the model-parameter, Ml. Specifically,

Ml is sampled from the prior model probabilities, π (Ml), in every proposal. If a model has

zero weight then it is excluded, and only the remaining models are considered. In the first

iteration of the algorithm, parameters are then sampled from the prior distribution, π (θθθl | Ml).

In later iterations the parameters are sampled from the particles associated with the proposed

model, and perturbed according to a Markov kernel with transition density Kl,s (θθθl,s | θθθl,s−1),

which depends on the proposed model, Ml, and the iteration number, s. Finally, simulated

values are generated and compared with observations. The importance weights are the same

as in the implementation presented in Section 3.3. An ABC approximation to the posterior

model probabilities, πǫ (Ml | YYY 1:M ), is obtained in each iteration by summing the normalised

importance weights of the particles associated with each model.

The pseudocode is presented in Algorithm 4.1. The notation in the algorithm follows the

notation introduced in Section 3.3. Additionally, we introduce ‘counters’, Nl,s, which track how

many particles are associated with model Ml in population s.

As with the implementation of the ABC-PRC algorithm presented in Section 3.3, certain

choices can be automated. For example, the perturbation kernels Kl,s (θθθl,s | θθθl,s−1) can be cho-

sen based on the current particles for each model, and the tolerance scheme can be chosen one

iteration ahead until the computational cost becomes too high.

The more strongly favoured models will typically contain the highest number of particles,

giving a good approximation of the posterior distributions of the parameters. For other models,

the ABC-PRC algorithm needs to be run for every model independently to obtain the posterior

distributions. It is also important to monitor the number of particles associated with each model

in every iteration. If there is strong evidence against models in early iterations, then the number

of particles will be small, and the resulting approximate posterior distribution might be a poor

approximation to the true posterior distribution in later iterations.

An alternative implementation was presented in [83], in which the model-parameter is sam-

pled from the ABC posterior model probabilities, πǫs (Ml | YYY 1:M ), in each iteration, rather than

the prior probabilities. This can give improved performance when models have low posterior

probabilities in every iteration, as more particles are proposed for the more strongly supported

models. However, in cases where models have low posterior probability in early iterations, but

large posterior probability in later iterations, the alternative proposal distribution might be less

efficient.
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Algorithm 4.1 ABC-PRC sampling algorithm targeting πǫ

(
Ml, θθθl, ỸYY 1:M,l | YYY 1:M

)
.

Set N1,1, ..., NL,1 = 0.

for n = 1, ..., N do

Sample Ml from π (Ml), and set Nl,1 = Nl,1 + 1.

Sample θθθ
(Nl,1)
l,1 from the prior distribution, π (θθθl | Ml).

Simulate values ỸYY
(Nl,1)
1:M,l,1 from model Ml using parameter θθθ

(Nl,1)
l,1 .

end for

Set the importance weights. For l = 1, ..., L and j = 1, ..., Nl,1 set

W
(j)
l,1 =

1

Nl,1
.

for s = 2, ..., S do

Set N1,s, ..., NL,s = 0.

while n ≤ N do

Sample Ml from π (Ml).
if Nl,s−1 > 0 then

Sample θθθ∗∗ from the previous population, θθθ
1:Nl,s−1

l,s−1 , according to weights W
1:Nl,s−1

l,s−1 .

Sample θθθ∗ from the transition density Kl,s (θθθl,s | θθθ∗∗).
if π (θθθ∗ | Ml) > 0 then

Simulate values ỸYY
∗

1:M from model Ml using parameter θθθ∗.

if ρ
(
ỸYY

∗

1:M , ỸYY 1:M

)
≤ ǫs then

Set Nl,s = Nl,s + 1, θθθ
(Nl,s)
l,s = θθθ∗, and ỸYY

(Nl,s)
1:M,l,s = ỸYY

∗

1:M .

Set the importance weight

w
(Nl,s)
l,s =

π
(
θθθ
(Nl,s)
l,s

)

∑Nl,s−1

i=1 W
(i)
l,s−1Kl,s

(
θθθ
(Nl,s)
l,s | θθθ(i)l,s−1

) .

Set n = n+ 1.

end if

end if

end if

end while

for l = 1, ..., L do

Evaluate

πǫs (Ml | YYY 1:M ) =

∑Nl,s

j=1 w
(j)
l,s∑L

i=1

∑Ni,s

j=1 w
(j)
i,s

.

end for

Normalise the weights. For l = 1, ..., L and j = 1, ..., Nl,s set

W
(j)
l,s =

w
(j)
l,s

∑Nl,s

i=1 w
(i)
l,s

.

end for
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Iteration 2 3 4 5 6 7 8 9 10

ǫ 320 220 180 160 145 130 125 120 115

Simulations
(
×103

)
23.8 25.0 33.8 45.0 136 2408 2315 3456 18422

Table 4.3: Tolerance scheme used in ABC-PRC in the model comparison simulation study,

with the number of simulations required at each tolerance level.

Results on the Simulation Study Data

We run the ABC-PRC algorithm with 5000 particles, where the tolerance scheme is shown in

Table 4.3. The Markov kernels are multivariate Gaussian random walks, with zero mean and

variance equal to twice the sample variance of the current sample for each model. The prior

model probabilities are uniformly distributed.

The model posterior probabilities are shown in Figure 4.1. Recall that the true model is

CR14-a, and so we would hope that the Bayes factors favour this model. There is a lot of

variation in the Bayes factors in early iterations, but by the final population the correct model

is preferred with the Bayes factors β12 = 2.35, β13 = 25.3, β14 = 6.27, β15 = 17.6. Hence,

CR14-a is only slightly more preferred than CR14-b. A possible reason for this is that both

models are oscillators in which the ice volume responds linearly to the astronomical forcing,

making them the most similar models. The forcing in CR14-c is in the threshold function, and

so ice volume responds nonlinearly to the forcing. TSS is slightly preferred over EBM.

The parameter marginal posterior distributions of CR14-a are shown in Figure 4.2. The re-

sulting posterior distributions strongly resemble the posterior distributions shown in Figure 3.3.

There are 2054 particles associated with CR14-a in the final population, and so the marginal

posterior distributions of the parameters should be well characterised. This number fell to 304

in the third iteration, but this seems to have had little impact on the final distribution.

The total number of simulations in each iteration is given in Table 4.3. Naively, since we

are using five times the number of particles as in the simulation study in Chapter 3, we might

expect to need five times the number of simulations. However, the number of simulations re-

quired is influenced by a number of factors. For example, including models that are more likely

to generate simulated values close to the observations means that the acceptance rate should be

improved. On the other hand, including models that are less likely to generate simulated values

close to the observations lowers the acceptance rate. In the final iteration, all of the additional

models are less likely to generate trajectories that are close to the data than the true model, in-

creasing the number of simulations required. Additionally, designing the proposal distributions

on an existing sample of particles can lead to poorly designed proposal distributions if the sam-

ple is small. For example, if there are too few particles in regions of high posterior probability

density, then exploration of the parameter space may be slowed down.
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Figure 4.1: Posterior model probabilities for the model comparison simulation study obtained

using ABC-PRC. CR14-a is the correct model. These results show that the cor-

rect model is favoured at lower tolerances. However, the posterior probability for

CR14-a drops to low values in early iterations of the algorithm, which will impact

the accuracy of the approximate posterior distributions of the parameters. CR14-b

is second most probable model, and most resembles CR14-a. The steady-state

models have a high posterior probability in early iterations, but a very low poste-

rior probability in the final iteration, showing that they rarely simulate values very

close to the observed data. Repeated experiments all favour the correct model in

the final iteration, but favour different models in earlier iterations.
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Figure 4.2: Marginal posterior distributions of the parameters of CR14-a, obtained using

ABC-PRC in the model comparison simulation study. Vertical lines indicate the

values used to generate the data. Dashed lines show the prior distributions. These

results are consistent with running the ABC-PRC algorithm using only CR14-a, as

shown in Figure 3.3.
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4.3.2 SMC2

As discussed in Section 3.4, as each observation is assimilated the particle filter provides an un-

biased estimate of π (YYY m | YYY 1:m−1, θθθ). Using this property, an unbiased estimate of the model

evidence can be obtained in SMC2 [74]. The model evidence can be decomposed as

π (YYY 1:M ) = π (YYY 1)

M∏

m=2

π (YYY m | YYY 1:m−1) . (4.3.1)

SMC2 gives an unbiased estimate, π̂ (YYY m | YYY 1:m−1), of each component of the product by

averaging over the parameter particles in each iteration, i.e.

π̂ (YYY m | YYY 1:m−1) =

Nθ∑

i=1

W (i)
m π̂

(
YYY m | YYY 1:m−1, θθθ

(i)
)
, (4.3.2)

where W
(i)
m are the normalised importance weights. The product of these terms provides an

unbiased estimate of the model evidence [74]. The pseudocode is presented in Algorithm 4.2,

where the notations are described in Section 3.4.

Results on the Simulation Study Data

We run the SMC2 algorithm with Nθ = 1000 parameter particles and NX = 1000 state par-

ticles for every model. A PMCMC chain length of 10 is used in the resampling steps, and the

parameter proposal distribution is independent Gaussian, with mean and variance equal to the

mean and variance of the resampled parameters.

The model evidence for each model is given in Table 4.4. The true model is preferred, with

the Bayes factors β12 = O(104), β13 = O(1027), β14 = O(1026), β15 = O(1028). Rerunning

the algorithm 20 times on CR14-a shows that the model evidence varies by a factor of 10 due

to Monte Carlo error (the sampling variability from using a finite sample size). Hence, we need

to update the interpretation given in Table 4.1. In this case we say that, as a rule of thumb, a

result is worth mentioning if the Bayes factor is over 103. With this interpretation the correct

model is the most strongly favoured by the data. As in the ABC-PRC results, CR14-b is the next

favoured model. Taking the Monte Carlo variability into consideration means that it is difficult

to order the remaining models, which are potentially equally well supported by the data. These

Bayes factors are much larger than those obtained by the ABC-PRC algorithm. The ABC-PRC

algorithm ranks models by how likely they are to generate values close to the observations. At

large tolerances, the incorrect models still have a reasonable chance of generating values close

to the observations, which is reflected in the Bayes factors. On the other hand, SMC2 estimates

how likely the observations are to have come from the model under evaluation, and is able to
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Algorithm 4.2 SMC2 algorithm targeting π (θθθ,XXX1:M | YYY 1:M ).

for n = 1, ..., Nθ do

Sample θθθ(n) from the prior distribution, π (θθθ).
Set the importance weight

W
(n)
0 =

1

Nθ

.

end for

for m = 1, ...,M do

if ESS< Nθ

2 then

for n = 1, ..., Nθ do

Sample θθθ∗(n) and XXX
∗(1:NX ,n)
1:m−1 from θθθ(1:Nθ) and XXX

(1:NX ,1:Nθ)
1:m−1 , according to weights

W
(1:Nθ)
m−1 .

Sample θθθ∗∗(n) and XXX
∗∗(1:NX ,n)
1:m−1 from a PMCMC algorithm initialised with θθθ∗(n) and

XXX
∗(1:NX ,n)
1:m−1 , and targeting π (θθθ,XXX1:m−1 | YYY 1:m−1).

end for

Set θθθ(1:Nθ) = θθθ∗∗(1:Nθ) and XXX
(1:NX ,1:Nθ)
1:m−1 =XXX

∗∗(1:NX ,1:Nθ)
1:m−1 .

Set the importance weights. For n = 1, ..., nθ

W
(n)
m−1 =

1

Nθ

.

end if

for n = 1, ..., Nθ do

Sample XXX
(1:NX ,n)
1:m by performing iteration m of the particle filter, and record estimates

of π̂
(
YYY m | YYY 1:m−1, θθθ

(n)
)

and π̂
(
YYY 1:m | θθθ(n)

)
.

Set the importance weights

w(n)
m = w

(n)
m−1π̂

(
YYY m | YYY 1:m−1, θθθ

(n)
)
.

end for

Normalise the weights. For n = 1, ..., Nθ

W (n)
m =

w
(n)
m

∑Nθ

i=1w
(i)
m

.

Evaluate

π̂ (YYY m | YYY 1:m−1) =

Nθ∑

i=1

W (i)
m π̂

(
YYY m | YYY 1:m−1, θθθ

(i)
)
.

end for
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Model Evidence

CR14-a 9.1× 1084

CR14-b 2.1× 1080

CR14-c 3.5× 1057

TSS 7.8× 1058

EBM 2.3× 1056

Table 4.4: The model evidence for each model obtained using SMC2 in the simulation study.

The favoured model is shown in red. In this case, we favour the correct model.

give much stronger results.

The number of simulations for each model was 120 million for CR14-a, 134 million for

CR14-b, 131 million for CR14-c, 101 million for TSS, and 93 million for EBM, which seems

to scale with the number of parameters in each model. The total, 579 million, far exceeds the

∼27 million required in our ABC-PRC implementation. However, all of the marignal posterior

distributions of the parameters are well characterised (with over 900 distinct particles in the final

iteration for each model), and the correct posterior distributions are being targeted, rather than

ABC approximations. Since the marginal posterior distributions of the parameters for CR14-a

are shown in Figure 3.6, this figure is not reproduced here.

4.4 An Experiment on Real-World Data

In this chapter we have compared different model comparison approaches in a simulation study,

and shown that the true model is favoured. When using real-world data, no model will be the true

model, but the data may more strongly support some models over others. Here, we repeat our

experiments on a real-world dataset to highlight the additional challenges of performing infer-

ence on real-world data. Since many of the phenomenological models of the glacial-interglacial

cycle in the literature are oscillators, we are also interested in testing whether real-world data

more strongly support oscillators over steady-state models.

There are hundreds of possible datasets derived from sediment cores from which we can

choose. We can also choose between stacks (averages over multiple datasets) and the individual

datasets. The observation times of a dataset depend on the age model used to convert observation

depths to time. In some cases datasets have been assigned multiple age models, prompting an

additional choice. A discussion of different datasets, stacks, and age models is included in the

next chapter. For now we use ODP677 [84], which has been dated without astronomical tuning

assumptions [4]. ODP677 includes a marker for the Brunhes-Matuyama (BM) reversal, which

occurred around 780 kyr BP (±2 kyr). There are 363 observations between the BM reversal and

the present, which is similar in number to our simulation study data.
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Iteration 2 3 4 5 6 7 8 9 10

ǫ 320 220 180 160 145 130 125 120 115

Simulations
(
×103

)
24.8 27.5 30.5 36.6 60.8 269 686 4311 17530

Table 4.5: Tolerance scheme used in ABC-PRC for ODP677, with the number of simulations

required at each tolerance level.

4.4.1 ABC-PRC Results on ODP677

The ABC-PRC algorithm is implemented on ODP677 with 5000 particles. The sequence of

tolerances used in the simulation study seems to work well on ODP677, and is given in Table 4.5.

This is likely a consequence of choosing parameters for the simulation study based on previous

studies. The Markov kernels are again taken to be multivariate Gaussian random walks, with

zero mean and twice the sample variance of the current sample for each model. The prior model

probabilities are uniformly distributed.

The model posterior probabilities are shown in Figure 4.3. TSS has the largest posterior

probability in early iterations, but CR14-c becomes the most supported model in the later iter-

ations. The Bayes factors for CR14-c are β31 = 7.25, β32 = 11.2, β34 = 12.9, β35 = 65.6.

The Bayes factors indicate that the data support a nonlinear response to the astronomical forc-

ing. CR14-a, CR14-b, and TSS seem to have equal support from the data. However, the Bayes

factors vary between repeated experiments due to Monte Carlo error. The general trend between

independent trials is large Bayes factors against EBM, but the favoured model varies between

the alternative models.

For comparison, the parameter marginal posterior distributions of CR14-a are shown in

Figure 4.4. Since the parameters used in the simulation study were based on previous trials, the

posterior distributions are similar. The posterior distributions appear to have a lower variance

than in the simulation study (particularly noticeable for δ and γC). This could be because a

narrower range of parameters are likely to generate trajectories that are close to the data, or

because of poor exploration of the parameter space. The number of particles associated with

CR14-a fell to 297 in iteration four, and recovered to 1586 in the final iteration. This is similar

to the simulation study, in which the posterior distributions were consistent with the parameter

estimation results from the simulation study in chapter 3, suggesting that 300 particles can be

sufficient to explore the parameter space. Additionally, repeating the experiment yields similar

posterior distributions, and the discrepancy can be accounted for by Monte Carlo error. Hence,

we conclude that the lower posterior variance is due to the data, rather than degeneracy.

The required number of simulations in each iteration are given in Table 4.5. The total num-

ber of simulations is comparable to the simulation study.
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Figure 4.3: Posterior model probabilities for ODP677 obtained using ABC-PRC. These results

show that CR14-c is favoured in the final iteration. The other oscillators have a

low posterior probability. The fact that they have a low posterior probability in

early iterations might mean that the parameter space is poorly explored, which

could prevent them being favoured in later iterations. EBM has a low posterior

probability throughout the algorithm, but TSS is favoured in early iterations. The

results are not consistent when repeating the experiment. Any of the models, with

the exception of EBM, can be favoured between trials, but usually by a small

margin.
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Figure 4.4: Marginal posterior distributions of the parameters of CR14-a, obtained using

ABC-PRC for ODP677. Dashed lines show the prior distributions. The numerous

local maxima indicate highly weighted particles, showing degeneracy. In com-

parison to the posterior distributions obtained in the simulation study, shown in

Figure 4.2, many of the distributions appear to have a lower variance. Repeated

trials yield consistent posterior distributions.
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Model Evidence

CR14-a 1.8× 1028

CR14-b 3.9× 1027

CR14-c 1.8× 1026

TSS 8.4× 1020

EBM 1.1× 1021

Table 4.6: The model evidence for each model obtained using SMC2 for ODP677. The

favoured models, with consideration of the Monte Carlo error, are shown in red.

Each of the oscillators seem to be equally supported by the data.

4.4.2 SMC2 Results on ODP677

The SMC2 algorithm is implemented on ODP677 with Nθ = 1000 parameter particles and

NX = 1000 state particles for every model. The parameter proposal distributions are inde-

pendent Gaussian, with mean and variance equal to the mean and variance of the resampled

parameters. The PMCMC chain length in the resampling step is 10.

The model evidence estimates for each model are given in Table 4.6. The Bayes factors

for CR14-a are β12 = O(10), β13 = O(102), β14 = O(107), β15 = O(107). Accounting

for Monte Carlo error, each of the oscillators seem to have roughly equal support from the

data. However, the oscillators have a much larger posterior model probability than the steady-

state models. This conclusion differs from that of the ABC-PRC results, which suggest equal

support for TSS. It is possible that the tolerance is large enough so that simulations from TSS are

frequently considered close to the data, and that reducing the tolerance further would lead to the

oscillators being more strongly supported than TSS. Since SMC2 targets the correct posterior

distributions, and doesn’t suffer from the problems associated with the all-in-one approach to

estimating Bayes factors, we consider the SMC2 conclusions to be more reliable. The results

support the use of oscillators in phenomenological modelling of the glacial-interglacial cycle.

The marginal posterior probabilities for CR14-a are shown in Figure 4.5. The posterior dis-

tributions are mostly consistent with the posterior distributions generated by the ABC-PRC algo-

rithm. The scaling terms for the Brownian motions and the observation error are centred around

larger values than in ABC-PRC. This is a result of the ABC approximation, which favours lower

values for these parameters at large tolerances, as discussed in Chapter 3. The values of β0 and

δ are also larger in comparison, which may also be a result of the ABC approximation. Finally,

the astronomical forcing terms are all close to zero. In the next chapter we demonstrate that this

is influenced by the choice of age model.

The number of required simulations for each model was 121 million for CR14-a, 133 million

for CR14-b, 131 million for CR14-c, 95 million for TSS, and 90 million for EBM, which are

very close to the number required in the simulation study. Each model had at least 835 distinct
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Figure 4.5: Marginal posterior distributions of the parameters of CR14-a, obtained using

SMC2 for ODP677. Dashed lines show the prior distributions. In comparison

to the posterior distributions obtained in the simulation study, shown in Figure 3.6,

we seem to be learning less about the parameters.
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particles in the final iteration, so that the posterior distributions are well characterised for every

model.

4.5 Chapter Summary

In this chapter we have introduced Bayes factors as a method to perform model comparison.

Two of the inference methods in Chapter 3 have been extended to evaluate Bayes factors for phe-

nomenological models of the glacial-interglacial cycle. We have focussed on SMC approaches,

which naturally provide estimates of normalising constants, such as the model evidence, from

which we can compute Bayes factors.

We designed a simulation study to assess the performance of the proposed inference meth-

ods, specifically ABC-PRC and SMC2, which give results consistent with each other. The SMC2

algorithm targets the correct posterior distribution for each model, but has a much greater com-

putational expense than ABC-PRC. Applied to real-world data, the two methods give slightly

different results. The output of SMC2 suggests that the data more strongly support oscillators

over steady-state models, but does not distinguish between oscillators. The ABC-PRC results

suggest that the data gives equal support to the oscillators and a two stable steady-state model,

but weak support to a single steady-state model. The discrepancy likely lies in the nature of

the ABC approximation to the posterior distribution. With a sufficiently large tolerance, every

model is likely to generate simulated values that are considered close to the observations. In our

implementation, it seems that the tolerance has been lowered to the point that EBM is less likely

to generate trajectories that are close to the data than the other models. Reducing the tolerance

further would likely result in TSS being less likely to generate accepted simulations than the

oscillators.

Alternative extensions to the methods described in Chapter 3 are possible. The MCMC ap-

proaches can be extended to perform model comparison by using RJMCMC [81], which targets

an extended distribution that includes all models and model parameters. RJMCMC can also be

used to design an ABC-ASMC algorithm for model comparison, or to design an SMC2 algo-

rithm that uses the all-in-one approach to evaluate Bayes factors. However, designing efficient

proposal distributions in an RJMCMC algorithm can be difficult, whereas the SMC approaches

we have discussed allow this process to be easily automated. Finally, ABC-SMC extensions to

estimate the model evidence are described in [64].

We conclude that SMC algorithms, modified to perform inference with intractable likeli-

hoods, are promising inference tool to study model comparison problems in palaeoclimate sci-

ence. The fact that the selection of the tuning parameters in these algorithms can be automated

is extremely beneficial, due to the large number of phenomenological models and palaeoclimate
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datasets that can be used. However, the approximation used in ABC approaches seems to dis-

card a lot of information in comparison to the likelihood estimation approach used in SMC2.

In the following chapter we study two important model comparison problems in palaeoclimate

science using SMC2.
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Model Comparison Problems in

Palaeoclimate Science

In this chapter we study two model comparison problems in palaeoclimate science. Specifi-

cally, we aim to test whether palaeoclimate data support some phenomenological models more

strongly than others, and whether the data favour astronomically forced models over unforced

ones. As a results of the experiments in Chapter 4, we decide to use SMC2 to evaluate the

model evidence of each model, as the correct posterior distribution is targeted, the posterior

distributions are well characterised for every model, and little tuning is required when applying

the algorithm to different models and datasets.

The chapter is divided as follows. In Section 5.1 we discuss the model comparison problems

of interest, and give an overview of previous studies. In Section 5.2 we give an overview of the

models that will be used in this chapter. In Section 5.3 we design a simulation study in order

to test our ability to study the specified model comparison problems. In Section 5.4 we discuss

palaeoclimate data, and motivate using individual datasets rather than stacks. We then repeat

the model comparison experiment on real-world data. Finally, in Section 5.5 we conclude the

chapter, and give a discussion of the results.
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5.1 Topical Model Comparison Problems

Phenomenological models of the glacial-interglacial cycle are mathematical representations of

hypotheses about long-term climate dynamics. Through the model comparison methods de-

scribed in Chapter 4, we can test competing hypotheses. We focus on two topical problems:

selecting between competing phenomenological models of the glacial-interglacial cycle, and

assessing the impact of the astronomical forcing. The problems are discussed in more detail

below.

5.1.1 Selecting Between Phenomenological Models

Numerous phenomenological models of the glacial-interglacial cycle have been proposed over

the last few decades. The performance of these models is often assessed by superimposing

the output of the model onto observations from sediment cores over the timescales of interest.

While this approach demonstrates that each model can reproduce much of the climate variation

over long timescales, it offers no insight into the relative explanatory power between models.

A formal approach to select between competing models was taken in [24]. Six models were

considered as representatives of different modelling approaches. All of the models were deter-

ministic, and the residuals were modelled as an autoregressive process. The model parameters

were chosen to give the best fit to the data, which was interpolated on to a 5 kyr grid. The mean

square prediction error was then evaluated for each model, in order to determine which of the

models provide a better fit to the data. An F-test was then constructed to investigate whether

there was significant evidence to reject each model in favour of the best fitting model. The

conclusion was that the data does not support any one model over another.

The Bayesian model comparison framework described in Chapter 3 has several advantages

when compared with the frequentist approach used in [24]. Firstly, we characterise parame-

ter uncertainty, rather than choosing the best parameters for each model. Models with large

likelihoods over a wide range of parameters are more strongly supported than those with large

likelihoods over a narrow range of parameters, due to averaging over the parameter space. We

can also include expert knowledge in the prior probabilities of the models, and prior distribu-

tions of the parameters. It is concluded in [24] that since the data does not support any particular

model, that they need to be considered on physical grounds. For example, the authors rejected

one model (a linear combination of the orbital parameters) as the optimal parameter choice is

unrealistic. A Bayesian approach allows this knowledge to be formally incorporated into the

procedure.
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5.1.2 Assessing the Impact of the Astronomical Forcing

There has been considerable interest in determining whether Milankovitch theory, which sug-

gests that the glacial-interglacial cycle is paced by variation in the Earth’s orbital parameters

over time, is supported by palaeoclimate data, and if it is, which of the orbital parameters are

most influential in pacing the glacial-interglacial cycle [4, 18, 85, 86]. This problem has recently

been studied using frequentist hypothesis testing. Some examples are reviewed below.

An early experiment reduced a palaeoclimate dataset to seven termination times, with the

aim of testing for correlation in the phase of obliquity at those times [4, 18]. The stability of the

phase was measured by Rayleigh’s R, defined as

R =
1

N

∣∣∣∣∣

N∑

n=1

cosφn + i sinφn

∣∣∣∣∣ , (5.1.1)

where φn is the phase of obliquity at termination n. Rayleigh’s R takes a value between 0 and

1, where a value of 1 indicates that the phase is equal at each termination time. The intuition

behind using R was that if obliquity drives the glacial-interglacial cycle, then the terminations

would likely occur at a similar point in the obliquity phase, which would be indicated by a

large value of R. In order to determine if the observed R value was large, a null model was

proposed in which the terminations are independent of obliquity. The observed R value was

then be compared with R values under the null hypothesis to determine if it was significantly

larger. In [18], the distribution of R under the null hypothesis was estimated using the random

walk model

Vt+1 = Vt + ηt, (5.1.2)

where Vt is the ice-volume at time t, and ηt ∼ N
(
1, 22

)
. One time step is 1 kyr. At some

predefined threshold the ice volume returns to 0 linearly over 10 kyr. The random walk model

was used to generate 104 values of R, which were used to form a histogram approximating the

probability distribution of R under the null hypothesis. This distribution was then used to decide

whether the observed R value provides significant evidence to reject the null hypothesis.

The null hypothesis was rejected in the case of obliquity, but further hypothesis tests for

precession and eccentricity gave a negative result in each case. These results also held when the

distribution under the null hypothesis was generated by drawing phases from a uniform distri-

bution at each termination time [4, 18]. Additional insight was gained through the construction

of the distribution of R under the alternative hypothesis. This was done by considering the age

model uncertainty at the termination times, which was assumed to be 10 kyr (although the distri-

bution was not specified). Realisations of R under the alternative hypothesis were generated by

perturbing the glacial termination times according to the age model uncertainty. The distribution
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of R under the alternative hypothesis was then approximated by generating a histogram using

104 realisations. The alternative distribution allowed the power of the test to be evaluated. The

power was high for obliquity and eccentricity, but very small for precession. This was because

the age model uncertainty was approximately half of the period of precession. In other words,

even if the glacial-interglacial cycle is strongly influenced by precession, this test would likely

not reject the null hypothesis.

Similar experiments have since been performed. For example, in [85], cross-wavelet anal-

ysis was used in place of phase measurements at instantaneous termination times. With this

alteration, the null hypothesis was rejected for eccentricity. In [86], obliquity and precession

were linearly combined into an insolation function, similar to Equation 2.3.5. Focus was shifted

to the magnitude of insolation peaks associated with glacial terminations, rather than the phase

of the orbital parameters. The conclusion was that both parameters are influential, and that the

combination of precession and obliquity has significantly more explanatory power than either

of the parameters individually.

We assess the influence of the astronomical forcing by selecting between forced and un-

forced phenomenological models within a Bayesian model comparison framework. While this

does not single out each parameter, the same approach can be used with phenomenological

models forced purely by obliquity or precession. The main benefit of our approach is that we

use all of the data, rather than summarising the data as a series of termination times as in the

described frequentist methods. In this chapter we assume that the observation times are known.

Incorporating age model uncertainty is discussed in Chapter 6.

5.2 Models

Here we consider three phenomenological models from the literature. The reader is referred to

the original papers for interpretations of the parameters.

SM91

SM91 was among the first models that represented the glacial-interglacial cycle as an oscillating

system synchronised on the astronomical forcing [23]. SM91 explicitly models three climate

variables: Ice-volume (X1), carbon dioxide concentration (X2), and deep-ocean temperature
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(X3). The full system of equations are

dX1 = − (X1 +X2 + vX3 + I(γP , γC , γE)) dt+ σ1dW1,

dX2 =
(
rX2 − pX3 − sX2

2 −X3
2

)
dt+ σ2dW2,

dX3 = −q (X1 +X3) dt+ σ3dW3.

Nonlinearity is introduced through the carbon dioxide equation, which is the cause of the os-

cillations. Similar variants of this model exist with different carbon dioxide equations, such

as SM90 [22]. The astronomical forcing, I(γP , γC , γE), is included in the ice-volume equa-

tion, pacing the oscillations. The unit of time is 10 kyr. SM91 has a total of eleven tunable

parameters, θθθ = (p, q, r, s, v, γP , γC , γE , σ1, σ2, σ3)
T

.

T06

T06 is a hybrid model, in that the system is a combination of continuous and discrete state

variables [27]. The continuous state variable (X1) represents ice-volume (in units of 1015 m3),

and the discrete state variable (X2) represents the absence (X2 = 0) or presence (X2 = 1) of

Arctic sea-ice. The system of equations is

dX1 = ((p0 −KX1) (1− αX2)− (s+ I(γP , γC , γE))) dt+ σ1dW1,

X2 : switches from 0 to 1 when X1 exceeds some threshold Xu,

X2 : switches from 1 to 0 when X1 decreases below Xl.

This model was used to demonstrate nonlinear phase locking to the astronomical forcing, and

to highlight that a good fit to the ice volume record can be obtained as long as the glacial mech-

anism is strongly nonlinear. As with SM91, the unit of time is 10 kyr. T06 contains the fewest

parameters of the models considered in this chapter, with a total of ten tunable parameters,

θθθ = (p0,K, s, α, xl, xu, γP , γC , γE , σ1)
T

.

PP12

PP12 models distinct glaciation and deglaciation phases [28]. During the glaciation phase the

ice-volume (expressed as equivalent sea-level) slowly increases. The build-up is influenced by

the astronomical forcing, with lower values of insolation increasing the rate of ice accumula-

tion. During the deglaciation phase the ice-volume decreases rapidly. The phase changes occur

mainly due to the astronomical forcing. The system is described below.
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Define a truncation function:

f(x) =

{
x+

√
4a2 + x2 − 2a if x > 0,

x otherwise,

with parameter a. Define rescaled precession and coprecession parameters

Π† = (f(Π̄)− 0.148)�0.808,

Π† = (f(Π̄)− 0.148)�0.808,

and a rule defining the transition between glacial states (g) and interglacial states (d)

{
d → g if κP Π̄ + κCΠ̄ + κEŌ < v1,

g → d if κP Π̄ + κCΠ̄ + κEŌ +X1 > v0.

The ice-volume then evolves according to

dX1 = −(γPΠ
† + γCΠ

† + γEŌ −A)dt+ σ1dW1,

where

A =

{
−ad − X1

τ
if in state d,

ag if in state g.

Due to the truncation of the forcing in the ice volume equation, this model responds nonlin-

early to variation in insolation. The unit of time is 1 kyr. PP12 has the greatest number

of parameters out of the models considered here, with a total of thirteen tunable parameters,

θθθ = (a, ad, ag, κP , κC , κE , τ, v0, v1, γP , γC , γE , σ1)
T

.

5.3 Simulation Study

We design a simulation study to assess our ability to study the model comparison problems

described above. We generate two datasets from SM91, one which has been obtained using

the forced model, and one which has been obtained from the unforced model. These are de-

noted SM91-f and SM91-u respectively. The observation model takes the same form as Equa-

tion 2.3.16, which scales and displaces the state representing ice-volume. The selected param-

eter values are: p = 0.8, q = 1.6, r = 0.6, s = 1.4, v = 0.3, σ1 = 0.2, σ2 = 0.3, σ3 = 0.3,

γP = 0.3, γC = 0.1, γE = 0.4, D = 3.8, C = 0.8, σY = 0.1. To generate a dataset from the

unforced model we set γP = γC = γE = 0, thus giving no astronomical forcing. Observations

are taken every 3 kyr over the past 780 kyr, giving 261 observations in each dataset. This is
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SM91 T06 PP12

γP exp(1�0.3) γP exp(1�0.6) γP exp(1�1.5)

γC exp(1�0.3) γC exp(1�0.6) γC exp(1�1.5)

γE exp(1�0.3) γE exp(1�0.6) γE exp(1�1.5)

p Γ(2, 1.2) p0 exp(1�0.3) a Γ(8, 0.1)

q Γ(7, 3) K exp(1�0.1) ad exp(1)

r Γ(2, 1.2) s exp(1�0.3) ag exp(1)

s Γ(2, 1.2) α Beta(40, 30) κP exp(1�20)

v exp(1/0.3) xl exp(1�3) κC exp(1�20)

σ1 exp(1�0.3) xu Γ(90, 0.5) κE exp(1�20)

σ2 exp(1�0.3) σ1 exp(1�2) τ exp(1�10)

σ3 exp(1�0.3) v0 Γ(220, 0.5)

v1 exp(1�5)

σ1 exp(1�5)

D U(3, 5) D U(2.5, 4.5) D U(2.5, 4.5)
S U(0.25, 1.25) S U(0.02, 0.05) S U(0.01, 0.03)
σY exp(1�0.1) σY exp(1�0.1) σY exp(1�0.1)

X1(t1) U(−1.5, 1.5) X1(t1) U(3, 45) X1(t1) U(0, 120)
X2(t1) U(−1.5, 1.5)

X3(t1) U(−1.5, 1.5)

Table 5.1: List of prior distributions for each model in the model comparison experiment. Sec-

tions indicate parameters used to scale the astronomical forcing (absent in unforced

models), parameters of the phenomenological model, observation model, and initial

conditions respectively.

equivalent to a reasonably low resolution sediment core.

A total of five models are considered: SM91 (forced and unforced), T06 (forced and un-

forced), and PP12. An unforced variant of the PP12 model is not considered, as the deglaciation-

glaciation switch is controlled entirely by the astronomical forcing. This is not the case for

SM91 and T06, which both oscillate in the absence of any external forcing. The prior distribu-

tions used for each model are summarised in Table 5.1.

The goals of the simulation study are to determine whether we are able to select the correct

model for each dataset, and whether the forced variant of the T06 model is favoured when the

dataset has been generated using the forced variant of the SM91 model. In other words, we

are interested in determining whether the astronomical forcing adds explanatory power to the

model, even when the model is wrong.
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Model Evidence

SM91-u SM91-f

SM91 Forced 5.6× 1028 1.4× 1041

Unforced 1.1× 1030 2.4× 1018

T06 Forced 3.6× 1020 2.6× 1030

Unforced 1.1× 1022 2.9× 1014

PP12 Forced 2.8× 108 2.1× 1018

Table 5.2: The estimated model evidence for each model for different datasets in the simulation

study. In the left-hand column the dataset was generated using the SM91 model with

no astronomical forcing. In the right-hand column the dataset was generated using

the forced SM91 model. The largest model evidence for each dataset is shown in

red, indicating the favoured model. In both cases we select the correct model. Note

that in the right-hand column, the evidence for the forced T06 model (shown in

blue) is greater than the unforced T06 model. In other words, we are able to detect

the influence of the astronomical forcing, even when the wrong model is used.

5.3.1 Results on the Simulation Study Data

We run the SMC2 algorithm with NX = 1000 state particles and Nθ = 1000 parameter particles

for each model. The proposal distribution in the PMCMC chain is a Gaussian independence

sampler with mean and covariance equal to that of the current sample. The PMCMC chain

length in the resampling stages is set to 10, which gives a good particle diversity.

The estimated model evidence of each model, for both datasets, is given in Table 5.2. The

correct model is preferred in both cases. For the dataset generated using the forced model, the

forced version of SM91 is strongly preferred, with the model evidence eleven orders of magni-

tude greater than the next best model. The forced version of T06 is more strongly supported by

the data than the unforced variant, showing that we favour forced models even when the model

is wrong. For the dataset generated using the unforced model, the unforced variant of the SM91

model is only slightly more strongly supported than the forced variant. This is because the

unforced model is nested within the forced model, and so the forced model is being penalised

for having extra parameters that add little explanatory power. The same is true for T06. PP12

is relatively weakly supported by the data in each case. This is likely because SM91 and T06

are both oscillators paced by the astronomical forcing, whereas the glacial-interglacial switch in

PP12 is controlled by the astronomical forcing.

The parameter marginal posterior distributions for the forced SM91 model are shown in

Figure 5.1 for SM91-f, and Figure 5.2 for SM91-u. The true values lie in regions of large

posterior probability density in each case.

In Figure 5.3 we compare the posterior distributions of the ratios of the astronomical forcing

scaling parameters for SM91 and T06. Since these models use different measures for the ice

volume (the ice volume state variable is adimensional in SM91, and has units of 1015 m3 in

112



CHAPTER 5: MODEL COMPARISON PROBLEMS IN PALAEOCLIMATE SCIENCE

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

p

0 1 2 3 4 5

0.
0

0.
2

0.
4

q

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

r

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

1.
2

s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

v

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

γP

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

γC

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

γE

0.0 0.5 1.0 1.5

0
1

2
3

4
5

σ1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

σ2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

1.
0

2.
0

σ3

0.0 0.1 0.2 0.3 0.4 0.5

0
5

15
25

35

σy

3.0 3.5 4.0 4.5 5.0

0.
0

1.
0

2.
0

3.
0

D

0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

C

Figure 5.1: Marginal posterior distributions of the parameters of the SM91 model for the

SM91-f dataset. Dashed lines show the prior distributions. Vertical lines show

the values used to generate the data. The true values lie in regions of high poste-

rior probability density.
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Figure 5.2: Marginal posterior distributions of the parameters of the SM91 model for the

SM91-u dataset. Dashed lines show the prior distributions. Vertical lines show

the values used to generate the data. The true values lie in regions of high poste-

rior probability density.
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Figure 5.3: The posterior distributions for the ratio of the astronomical forcing terms for the

SM91-f dataset. The red lines show the posterior distributions from the SM91

model, and the blue lines show the posterior distributions from the T06 model.

The posterior distributions between the two models are similar enough to suggest

that both models are synchronising on the same forcing function. The PP12 model

is omitted as the ice volume equation responds nonlinearly to the astronomical

forcing, making the parameters non-comparable.

T06), it is expected that the scaling parameters for the astronomical forcing scale accordingly.

However, if the models synchronise on the same forcing signal, then the ratio between any pair

of parameters should be identical, since the ratio of the astronomical forcing scaling parameters

defines the shape of the forcing function. The posterior distributions are similar, suggesting

that this could be the case. PP12 is omitted as the ice volume responds nonlinearly to the

astronomical forcing, and so the parameters are not comparable.

5.4 Palaeoclimate Data

We have demonstrated that, in a simulation study, our methodology is able to select the correct

phenomenological model, and determine whether or not the data are from a forced model, even

when the wrong model is used. We now return to using real-world data to address the motivating

scientific questions.

As described in Section 1.1, ice volume and temperature during the palaeoclimate are often

studied using records of δ18O, which is a measure of the ratio 18O:16O. Datasets from individual

drill sites often provide sparse and noisy data, and are also influenced by local climate varia-

tion. For these reasons, datasets from sediment cores are often combined into stacks, which are

averages over multiple datasets. Two recent stacks are described below.
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LR04

The LR04 stack is an average of 57 datasets extending over 5.3 Myr [1]. The first step in the

stack’s construction was to correlate each of the datasets, for example, by aligning peaks. This

process was mostly automated, but required user input to identify missing or repeated data. The

data were dated by aligning the stack to a phenomenological model of ice volume, which was

forced by summer solstice insolation at 65°N. The stacking procedure involved dividing the

time domain into small time intervals. Within each interval the observations from every dataset

were averaged. It should be noted that, due to the sparsity of the data, each point in the stack

was generated by averaging over a different subset of datasets. In other words, at any point in

the stack, information has been discarded from multiple cores.

H07

The H07 stack is an average of 14 datasets extending over 2 Myr [4]. The motivation behind

H07 was to reconstruct long-term climate variation without astronomical tuning assumptions.

The times of the geomagnetic reversals and the last glacial termination were treated as known,

and denoted as age control points (ACPs). At first, each dataset was assigned a deterministic

piecewise linear age model accounting for compaction (this is discussed in Chapter 6) between

the ACPs. The piecewise linear age model provided dating estimates of common events (glacial

terminations, peaks, etc.) that were identifiable in each of the datasets, and which were assumed

to have occurred synchronously in each dataset. Whilst individual estimates of the event times

are likely to be poor, it was assumed that averaging the estimates from multiple datasets gives

a reasonable approximation. The average event ages were then fixed and treated as additional

ACPs. A deterministic piecewise linear age model between the new ACPs was then assigned

to each dataset. The stacking procedure was done by linearly interpolating each dataset onto a

1 kyr grid, before averaging over each of the datasets. It should be noted that interpolation can

cause problems when there are large sections of missing data in a dataset, as interpolation over

large timescales will poorly represent the missing data. In other words, at any point in the stack,

false information is being included.

Both of the stacking procedures described above alter the information contained in the

palaeoclimate datasets, potentially affecting any inference about the dynamics of the palaeo-

climate. For this reason, we choose to use individual datasets to study the model comparison

problems. However, it is reasonable to assume that dating palaeoclimate datasets as part of a

stack provides better estimates than dating each dataset individually, as missing and repeated

data are more easily identified. In this chapter we use ODP677 [84], which has been dated as

part of the LR04 and H07 stacks. The Brunhes-Matuyama (BM) reversal can be identified, and
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Model Evidence

ODP677-u ODP677-f

SM91 Forced 4.0× 1024 1.1× 1028

Unforced 3.5× 1026 1.6× 1018

T06 Forced 3.3× 1025 4.5× 1029

Unforced 1.7× 1028 3.3× 1021

PP12 Forced 1.5× 1022 1.8× 1034

Table 5.3: The estimated model evidence for each model for the ODP677-u and ODP677-f

datasets using SMC2. The largest model evidence for each dataset, with considera-

tion of the Monte Carlo error, is shown in red, indicating the favoured model. When

using ODP677-u, we prefer unforced models, but it is not possible to confidently

select a single best model due to the Monte Carlo error. When using ODP677-f,

PP12 is strongly favoured. However, note that for the other models, the forced vari-

ants are more strongly supported by the data (shown in blue). Our results are highly

sensitive to the age model used to estimate the observation times.

so we use the latest 780 kyr of the dataset, in which there are 363 observations. As well as

the model comparison goals described earlier in this chapter, we aim to test whether the dating

method influences which models are more strongly supported by the data. We denote the dataset

dated as part of the LR04 stack as ODP677-f, and the dataset dated as part of the H07 stack as

ODP677-u, highlighting whether or not the dataset has been astronomically tuned.

5.4.1 Results on ODP677

We run the SMC2 algorithm using the settings given in Section 5.3.1. The model evidence of

each model is given in Table 5.3.

For ODP677-u the unforced T06 model is the most strongly supported model, followed by

the unforced SM91 model. The Bayes factor in favour of the unforced T06 model against the

unforced SM91 model is ∼50, which, as described in Section 4.3.2, cannot be seen as conclusive

due to our Monte Carlo error. The forced variants of these models are less strongly supported,

due to containing additional parameters that have little explanatory power. Both SM91 and T06

are more strongly supported than PP12. This same dataset was used in Section 4.4, where it was

shown that CR14-a, CR14-b, and CR14-c have comparable support.

For ODP677-f PP12 is the most strongly supported model. The explanation may lie in how

the astronomical forcing affects each model. In SM91 and T06, the astronomical forcing acts in

a similar fashion to a pullback attractor, attracting the state of the system into specific regions

of state space. In PP12, the astronomical forcing controls the transition from the glaciated state

to the deglaciated state. As such, we might expect the output of PP12 to be more strongly

correlated to the astronomical forcing than SM91 and T06, giving better agreement to a dataset

that has been astronomically tuned. Additionally, the forced variants of SM91 and T06 are more
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Figure 5.4: Marginal posterior distributions for the SM91 model for ODP677-u (blue) and

ODP677-f (red). Dashed lines show the prior distributions. The two sets of distri-

butions are similar, except for the astronomical forcing scaling terms, γP , γC , and

γE , for which larger estimates are preferred for ODP677-f, where astronomical

tuning assumptions were used in the age model.
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Figure 5.5: The posterior distributions for the ratio of the astronomical forcing terms for the

ODP677-f dataset. The red lines show the posterior distributions from the SM91

model, and the blue lines show the posterior distributions from the T06 model.

The posterior distributions between the two models are similar enough to suggest

that both models are synchronising on the same forcing function. The PP12 model

is omitted as the ice volume equation responds nonlinearly to the astronomical

forcing, making the parameters non-comparable.

strongly supported than the unforced variants. As with ODP677-u, it is difficult to determine if

T06 is more strongly supported than SM91 due to the Monte Carlo error.

These results show that inference is strongly affected by the age model used, and that mod-

elling assumptions in the dating methods should be understood when performing inference on

palaeoclimate data. In other words, the results are not robust across different dating strategies,

and, in particular, using astronomical tuning assumptions leads to astronomically forced models

(perhaps wrongly) being strongly supported by the data.

The marginal posterior distributions of the parameters of the forced SM91 model are shown

in Figure 5.4. The marginal posterior distributions are similar for both ODP677-u and ODP677-f

for many of the parameters. The scaling terms for obliquity (γE) and precession (γP ) are

larger in ODP677-f, since it has been astronomically tuned. The scaling term σ1 is larger for

ODP677-u, suggesting that larger stochastic perturbations are required to fit the model output

to the dataset. This is partly a trade-off with a reduction in σY , suggesting that the trajectory of

the model tends to be closer to the observations.

The posterior distributions of γP
γE

and γC
γE

for SM91 and T06 on ODP677-f are shown in

Figure 5.5. The posterior distributions are similar enough to suggest that both models are syn-

chronising on the same forcing signal. The scaling term for obliquity is greater than that of

precession and coprecession, suggesting that obliquity is the dominant term in the insolation

signal. For both γE and γP there is little posterior mass near zero, suggesting that both obliq-
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uity and precession add explanatory power. The posterior distribution of γC suggests that it is

very small, or possibly zero. A model comparison experiment will likely favour a forced model

without coprecession.

5.4.2 A Note on Utilising Multiple Datasets

In this chapter we choose to use an individual dataset rather than a stack, due to standard stacking

approaches having the potential to influence information from paleaoclimate records. However,

individual datasets contain observations that are sparsely distributed in time, and subject to

local variation in climate. Where possible, it is beneficial to average over multiple datasets to

improve the signal-noise ratio, and to better represent global climate conditions. In an ideal

setting, such as in a simulation study, where each dataset is generated using the true model, it is

trivial to extend SMC2 (or any of the inference methods discussed in this thesis) to assimilate

observations from multiple sediment cores. The observation model is extended to

Y (n)
m = Dn +CCCT

nXXXm +Σ
1
2
Y,nηm, (5.4.1)

where Y
(n)
m is observation m from sediment core n. Dn, CCCn, and Σ

1
2
Y,n are the displacement,

scaling, and observation error terms for core n respectively. Hence, each additional dataset

requires the estimation of three additional parameters. In SMC2, the particle filter is run until the

next observation time, and compared to the observation using the observation model parameters

associated with the same core as the observation. If there are multiple observations at the same

point in time then they can be assimilated simultaneously. However, reality is very different,

as datasets from different sediment cores represent local climate variation, rather than global

variation. Thus, while it is possible that our approach could be used across multiple sediment

cores, doing so would require extending the phenomenological models to account for local

effects. This is beyond the scope of this thesis, but a brief discussion is given in Chapter 7.
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5.5 Chapter Summary

We have demonstrated how a Bayesian model comparison approach can be used to study model

comparison problems in palaeoclimate science. In a simulation study, we have shown that we

are capable of finding the true model from a collection of phenomenological models, and of

detecting the influence of the astronomical forcing, even when using the wrong model.

Our major scientific finding from this chapter is that, when using real-world data, the results

depend strongly on the approach used to date observations. Forced models are more strongly

supported by a dataset that has been astronomically tuned, whereas unforced models are pre-

ferred when the ages of the observations are depth-derived. The favoured model also depends

on the chosen age model, with PP12 being favoured when the dataset has been astronomically

tuned, and SM91 and T06 having roughly equal support when the depth-derived age model has

been used. It is noted in the original publications of both the LR04 and H07 stacks that the

observation times are subject to age model uncertainty, which is estimated to be ∼10 kyr [1, 4].

With this uncertainty in mind, it is possible that the LR04 and H07 observation times are re-

alisations of the same posterior distribution. To study these model comparison problems more

thoroughly requires that this age model uncertainty is well characterised and accounted for.

This has important implications for how we believe these experiments should be performed.

The results show that the current practice of performing each stage of the analysis independently

of the others can lead to incorrect conclusions. In this case, obtaining the observation time

estimates first, and then treating them as fixed for subsequent analysis, leads to conclusions that

are not robust to the methods used in the first stage of the analysis. This suggests that a better

approach would be to solve the full joint Bayesian problem of simultaneously estimating the

observations times, parameters, and model evidence. This extension is developed in the next

chapter.
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CHAPTER 6

Quantifying Chronological

Uncertainty

In this chapter we study the problem of quantifying age model uncertainty in sediment cores.

Up until now we have assumed that the observation times are known. However, in the previous

chapter we showed that our model selection approach is sensitive to the choice of age model,

which relates the depth of an observation to the time at which the sediment was deposited. In

order to overcome this problem we extend our modelling approach to include a novel age model,

which allows us to estimate the ages of observations from a sediment core. Whilst it is common

in palaeoclimate science to identify factors contributing age model uncertainty, our approach

allows us to characterise age model uncertainty in a statistically principled framework.

The chapter is divided as follows. In Section 6.1 we demonstrate how our modelling and

inference approaches can be extended to estimate the observation times in a sediment core. We

introduce a novel age model based on a linear sediment accumulation model with compaction

adjustment. We then extend the particle filter to perform filtering on the observation times using

the age model. In Section 6.2 we design a simulation study to test our inference approach. In

Section 6.3 we repeat the experiment on two real-world datasets. Finally, in Section 6.4, we

conclude the chapter with a discussion of the scientific implications.
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6.1 Dating a Single Sediment Core

We begin by extending the state of the models to include a state variable representing time. We

let Tm, where m = 1, ...,M , denote the time that the sediment in observation m was laid down.

We then target the extended distribution

π (θθθ, T1:M ,XXX1:M |YYY 1:M ) = π (θθθ|YYY 1:M )π (T1:M ,XXX1:M |YYY 1:M , θθθ)

= π (θθθ|YYY 1:M )π (T1:M |YYY 1:M , θθθ)π (XXX1:M |T1:M ,YYY 1:M , θθθ) ,
(6.1.1)

so that we are estimating the parameters of the model, the state of the system at observation

times, and the observation times. This is a far more challenging problem than we have dealt with

so far in this thesis, as the dimension of the problem has increased dramatically. To target this

extended distribution we need to extend our modelling approach to describe how observation

times change according to depth in a sediment core (an age model), and also extend our inference

approach to include the new state variables. We describe these extensions below.

6.1.1 Constructing an Age Model

Bayesian age models are widely used to infer the chronologies of sediment cores in which age

estimates of some of the core slices are available from radiocarbon dating [87–90]. Radiocarbon

dating requires that the ages are no older than 50 kyr [90], and so in comparison to the benthic

cores we are interested in, the core depth and associated timescale are much shorter. Addition-

ally, a greater proportion of core slices will have age estimates. Despite these differences many

of these age models could be used in the inference approach described in this chapter. Notable

Bayesian age models include BChron [87], which constructs a monotone Markov process via a

discrete renewal process, giving a piecewise linear model, P Sequence in Oxcal [88, 89], which

models sediment accumulation as a Poisson process, and Bacon [90], which uses an autore-

gressive gamma process to control sediment accumulation rates. However, we instead develop

a novel age model based on a continuous stochastic sediment accumulation model. Our age

model, described below, has many of the desired features described in [87], in that it is continu-

ous, age increases monotonously with depth, and age uncertainty increases away from observed

age estimates.

It is more natural to think of sediment changes over time than it is to think about how time

changes throughout a sediment core. We begin by considering a linear sediment model where

the amount of sediment (in metres), S, varies over time according to

dS = µsdT + σsdWs, (6.1.2)
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Figure 6.1: Demonstration of core sampling. The change in sediment over time has been plot-

ted. The horizontal lines are the sampling depths, and the vertical lines are the

sampled times.

where µs > 0 is the mean sediment accumulation rate, Ws is a standard Brownian motion, and

σs scales the Brownian motion. In this model, sediment accumulates over time, but can undergo

periods of erosion as a result of stochastic perturbations. Since we are interested in the history of

the sediment, we model sediment variation backwards in time. The reverse process is governed

by the equation

dS = −µsdT + σsdWs, (6.1.3)

where dT > 0 is now a step backwards in time. We set T = 0 to be the present, T < 0 to be

times before present (BP), and S(T = 0) = 0 to be the present level of sediment.

Deriving an age model from a sediment accumulation model requires consideration as to

how a dataset is constructed from a sediment core. A dataset is constructed by taking a series of

measurements, Y1:M , at core depths H1:M . We assume that the final observation in time, YM ,

is sampled from the top of the core, so that HM = 0. Consider a realisation of Equation 6.1.2,

shown in Figure 6.1. It can be seen that when a core is sampled at depth Hm, the recorded

climate information corresponds to the latest time at which S = −Hm (noting that a positive

change in depth corresponds to a negative change in the level of sediment). If the sediment accu-

mulated beyond this level at a previous time, then the information it contained has been eroded

away. Hence, considering the problem backwards in time, we have a first passage time problem.

Given depth Hm corresponds to time Tm, the distribution of Tm−1, the time at which S first

passes Hm−1, follows the inverse Gaussian distribution (also known as the Wald distribution)
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[91],

Tm−1|Tm ∼ Tm − IG

(
Hm−1 −Hm

µs
,
(Hm−1 −Hm)2

σ2
s

)
. (6.1.4)

Combined with the initial condition π(TM ) = δTM
(0), the age model is fully described. How-

ever, in order to include the observation times in the target distribution of the particle filter,

we require a model going forward in time. This can be achieved with an application of Bayes

theorem, so that

π(Tm|Tm−1) =
π(Tm−1|Tm)π(Tm)

π(Tm−1)
, (6.1.5)

where

Tm ∼ −IG

(
Hm

µs
,
H2

m

σ2
s

)
(6.1.6)

is simply an application of Equation 6.1.4 conditional on TM = 0. This model is not entirely

realistic. In practice, sediment is affected by a number of post-depositional effects, such as

bioturbation (mixing of sediment by plants and animals), sediment shifts, and core compaction.

We consider the inclusion of core compaction in the next section, but do not consider additional

modelling extensions in this chapter.

The observation model also needs to be extended to include information regarding the ob-

servation times. An example that we have previously discussed (see Section 1.1 and Section 5.4)

is the Brunhes-Matuyama (BM) reversal, which occurred 780 ± 2 kyr BP [17]. In this chapter

we use the BM reversal to define the start of the dataset. Hence, the initial observation, YYY 1, is

extended to include the 780 kyr BP estimate, and the observation model is extended as

YYY 1 ∼
(

N
(
D +CCCXXX, σ2

Y

)

N
(
−780000, 22

)
)
. (6.1.7)

Beginning the dataset at the BM reversal is not necessary, but offers two benefits. Firstly, since

the BM reversal occurred later than the mid-Pleistocene transition, we can continue using phe-

nomenological models that were designed to capture the behaviour of the 100 kyr cycle. If the

dataset was extended, we would need to extend the phenomenological models to incorporate the

mid-Pleistocene transition. Secondly, if the BM reversal occurred part way along our dataset,

then it would be a possible source of degeneracy in the particle filter. Hence, we would need to

design proposal distributions conditioned on the time of the BM reversal.
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6.1.2 Compaction Adjustment

The above model assumes that sediment remains undisturbed once deposited, other than the

possibility of being eroded away over time. In reality, sediment is subject to numerous post-

depositional effects. In particular, core compaction is where sediment is compressed due to the

weight of the sediment above it [92]. As we go deeper, the volume, and hence weight, of above

sediment increases, and so the amount of compaction also tends to increase with depth. Hence,

at large depths, a specified depth interval will reflect a larger change in time than at shallower

depths. Using a linear model that does not account for compaction will, therefore, typically give

biased estimates.

A consequence of core compaction is the expulsion of pore water from the sediment. This

can be seen in the porosity profile of the core, in which porosity tends to decrease with depth.

In the construction of H07, simple models of porosity were tuned using porosity measurements

to evaluate the level of compaction in each sediment core [4, 93]. We take a similar approach in

this chapter. Phenomenological models of porosity suggest a linear decline at small depths, and

an exponential decline at large depths [92]. Since we use data from sediment cores over only

780 kyr (corresponding to depths < 40 m), we model the porosity using the linear model

φm = φ0 − cHm, (6.1.8)

where φm is the porosity at depth Hm. This model has two parameters that need to be estimated:

The intercept, φ0, and the gradient, c. In H07 these parameters are estimated by finding the line

of best fit for the porosity measurements over 400 m. Here, we incorporate them into our pa-

rameter estimation framework. Note that we use no measurements of porosity, as measurements

are sparse, noisy, and not available in many cores. In principle, were porosity measurements

available, they could be included by further extending the state vector and observation model.

However, it should be emphasised that we are not aiming to model porosity explicitly, but rather

to use a phenomenological model of porosity to adjust the linearity assumption in our age model.

Following the approach in [93], we apply a compaction correction based on conservation of

dry sediment volume, so that

Ĥm =
1− φm

1− φ0
Hm, (6.1.9)

where Ĥm is the uncompacted depth of observation m. Note that ĤM = HM = 0. Substituting

in Equation 6.1.8 yields

Ĥm = Hm +
c

1− φ0
H2

m. (6.1.10)
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Therefore, a depth interval Hm−1 −Hm increases to

Ĥm−1 − Ĥm = Hm−1 +
c

1− φ0
H2

m−1 −
(
Hm +

c

1− φ0
H2

m

)

= (Hm−1 −Hm) +
c

1− φ0
(H2

m−1 −H2
m).

(6.1.11)

Applying our previous age model to the uncompacted depth scale gives the compaction adjusted

age model

Tm−1|Tm ∼ Tm − IG

(
Ĥm−1 − Ĥm

µs
,
(Ĥm−1 − Ĥm)2

σ2
s

)
, (6.1.12)

so that, on average, there is a larger change in time for a specified depth interval at large depths

than small depths.

6.1.3 Extending The Particle Filter

Having developed an age model, we are now interested in inferring the observation times us-

ing the statistical methodology developed in this thesis. We achieve this by modifying the

particle filter to target the extended distribution π (T1:M ,XXX1:M | YYY 1:M , θθθ). The proposal dis-

tribution in each iteration is extended to follow a two step process. First, Tm is sampled

from a new proposal distribution, bm (Tm | Tm−1,YYY m, θθθ), and second, Xm is sampled from

rm (Xm | Tm−1, Tm, Xm−1,YYY m, θθθ), which is now conditional on the random variables Tm and

Tm−1. The pseudocode is presented in Algorithm 6.1.

The extended particle filter can be embedded in PMCMC or SMC2, in order to jointly esti-

mate the model parameters and observation times. SMC2 can also be used to estimate the model

evidence, allowing us to perform model comparison. We test this approach in a simulation study

in the next section, and then apply it to real-world data in Section 6.3.
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Algorithm 6.1 Particle filter targeting π (T1:M ,XXX1:M | YYY 1:M , θθθ).

for k = 1, ..., NX do

Sample T
(k)
m ∼ bm (Tm | YYY m, θθθ).

Sample XXX
(k)
m ∼ rm

(
XXXm | T (k)

m ,YYY m, θθθ
)

.

Set the importance weight

ω(k)
m =

π
(
T
(k)
m | θθθ

)
π
(
XXX

(k)
m | T (k)

m , θθθ
)
π
(
YYY m | T (k)

m ,XXX
(k)
m , θθθ

)

bm

(
T
(k)
m | YYY m, θθθ

)
rm

(
XXX

(k)
m | T (k)

m ,YYY m, θθθ
) .

end for

Normalise the weights. For k = 1, ..., NX

Ω
(k)
1 =

ω
(k)
1∑NX

i=1 ω
(i)
1

.

for m = 2, ...,M do

for k = 1, ..., NX do

Sample ancestor particle index a
(k)
m−1 according to weights Ω

(1:NX)
m−1 .

Sample T
(k)
m ∼ bm

(
Tm | T

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

)
.

Sample XXX
(k)
m ∼ rm

(
XXXm | T

(
a
(k)
m−1

)

m−1 , T
(k)
m ,XXX

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

)
.

Extend particle trajectory
{
T
(k)
1:m,XXX

(k)
1:m

}
=

{(
T
(a

(k)
m−1)

1:m−1 , T
(k)
m

)
,

(
XXX

(a
(k)
m−1)

1:m−1 ,XXX
(k)
m

)}
.

Set the importance weight

ω(k)
m =

π

(
T
(k)
m | T

(
a
(k)
m−1

)

m−1 , θθθ

)
π

(
XXX

(k)
m |XXX

(
a
(k)
m−1

)

m−1 , T
(k)
m , T

(
a
(k)
m−1

)

m−1 , θθθ

)
π
(
YYY m |XXX(k)

m , θθθ
)

bm

(
T
(k)
m | T

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

)
rm

(
XXX

(k)
m | T

(
a
(k)
m−1

)

m−1 , T
(k)
m ,XXX

(
a
(k)
m−1

)

m−1 ,YYY m, θθθ

) .

end for

Normalise the weights. For k = 1, ..., NX

Ω(k)
m =

ω
(k)
m

∑NX

i=1 ω
(i)
m

.

end for
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Parameter True Value Prior Distribution

β0 0.65 N
(
0.4, 0.32

)

β1 0.2 N
(
0, 0.42

)

β2 0.5 exp (1�0.5)

δ 0.5 exp (1�0.5)

α 11 Γ (10, 2)

γP 0.2 exp (1�0.3)

γC 0.1 exp (1�0.3)

γE 0.3 exp (1�0.3)

σ1 0.2 exp (1�0.3)

σ2 0.5 exp (1�0.5)

σY 0.1 exp (1�0.1)

D 4.2 U (3, 5)

C 0.8 U (0.5, 2)

µs 4.5× 10−5 Γ
(
180, 1�4× 106

)

σs 2× 10−3 exp(500)

φ0 0.8 β(45, 15)

c 3.5× 10−4 exp(4000)

X1(t1) −1 U (−1.5, 1.5)

X2(t1) −1.5 U (−2.5, 2.5)

Table 6.1: List of parameters used to generate data for the simulation study, and the associated

prior distributions used in the statistical analysis.

6.2 Simulation Study

We design a simulation study to assess our ability to infer observation times from a sediment

core. Observation times were drawn from a core of length 32 m, sampled at 0.1 m intervals,

giving M = 321 observations. Observations were generated using CR14-a, described in Sec-

tion 2.3.2, and the observation process described in Section 2.3.3. The first observation contains

a noisy measurement of the true time, where the noise is sampled from a Gaussian distribu-

tion with mean zero and a standard deviation of 2 kyr, representing the dating of a geomagnetic

reversal. The chosen parameter values are shown in Table 6.1, along with the prior distributions.

6.2.1 Results on the Simulation Study Data

We run the SMC2 algorithm with NX = 1000 state particles and Nθ = 1000 parameter par-

ticles. The proposal distribution in the PMCMC chain is an independent Gaussian distribution

with mean and covariance equal to that of the current sample. The PMCMC chain length in the

resampling stages is set to 10. In the particle filter, we propose T1 from a Gaussian distribution

centred on the observation time of the simulated geomagnetic reversal with a standard deviation
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of 2 kyr. In later iterations we propose new times by drawing Tm from

Tm ∼ Tm−1 + IG

(
Ĥm−1 − Ĥm

µs
,
(Ĥm−1 − Ĥm)2

σ2
s

)
, (6.2.1)

and sample XXXm using the proposal distribution developed in Section 3.4.

The sequence of estimated 95% highest density region (HDR) intervals for the observation

times are shown in Figure 6.2. Since it is difficult to discern features along the time axis, we

also show the 95% HDR intervals with the trend removed. Observe that the generated sequence

of observation times differs greatly from a linear age-depth relationship. In particular, there is a

large period of time in which little sediment is deposited in the middle of the dataset. Despite

this, the true observation times are in regions of high posterior probability density throughout the

dataset, showing that we are able to recover the observation times. The standard deviation of the

filtering distribution oscillates over time. This could be a result of CR14-a being more sensitive

to the astronomical forcing (which provides time information) at some points more than others.

There is a large spike in the posterior variance in the middle of the record, corresponding to the

period in which little sediment was deposited.

The generated observations, and a sequence of 95% HDR intervals for the state of the system

are shown in Figure 6.3. The true values for both the observable and unobservable state variables

lie within the 95% HDR intervals throughout the core. As would be expected, the posterior

variance for the unobservable state is larger than the observable state, particularly when the

system switches between glacial and interglacial periods.

The marginal posterior distributions of the parameters are shown in Figure 6.4. The true

parameter values lie in regions of high posterior probability density. The posterior distribution

of the gradient of the porosity model, c, supports a wide range of values, suggesting that it is

difficult to determine porosity trends using our modelling approach.

We repeat the analysis using an unforced variant of CR14-a. The Bayes factor in favour of

the forced model against the unforced model is O(109). Even with the age model uncertainty,

the data strongly support the forced model.

To conclude, we have shown that in an ideal setting, it is possible to jointly perform param-

eter estimation, observation age estimation, and model comparison. Somewhat to our surprise,

we are able to determine the influence of the astronomical forcing, even with the added uncer-

tainty of the age model.
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Figure 6.2: Top: Sequence of 95% HDR intervals for the observation times in the simulation

study. Points show the true values. The black line shows the mean values of the

marginal posterior distributions of the observation times, and grey lines show the

95% HDR intervals. Middle: Sequence of 95% HDR intervals for the observation

times with the trend removed. The majority of the points lie within the credible re-

gions. Note that a linear sediment-depth relationship would be a line through zero.

Bottom: Sequence of standard deviations of the marginal posterior distributions of

the observation times.
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Figure 6.3: Top: Generated dataset in the simulation study. Middle and bottom: Sequence of

95% HDR intervals for the state of CR14-a for the observable and unobservable

states respectively. Points show the true values. The black line shows the mean

values of the marginal posterior distributions of the states, and grey lines show the

95% HDR intervals. The majority of the points lie within the credible regions.
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Figure 6.4: Marginal posterior distributions of the parameters of CR14-a in the simulation

study. Dashed lines show the prior distributions, and vertical lines show the true

values. The true values lie in regions of high posterior probability density.
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6.3 Dating ODP677 and ODP846

Having demonstrated our methodology in a simulation study, we now analyse two real-world

datasets. We use ODP677 [84] in order to compare the posterior distributions of the parameters

with those obtained in Chapter 4. Additionally, we use ODP846 [94], in which compaction

has previously been measured using a linear porosity model [4, 93], giving a point of compar-

ison. The BM reversal is identifiable in both ODP677 (at 30.4 m) and ODP846 (at 28.7 m).

The number of observations since the BM reversal are 363 and 308, for ODP677 and ODP846

respectively.

6.3.1 Results on ODP677 and ODP846

We run the SMC2 algorithm with NX = 1000 state particles and Nθ = 1000 parameter particles

for each dataset, using the same settings as in the simulation study.

The sequence of 95% HDR intervals for the observation times are shown in Figure 6.5 for

ODP677 and Figure 6.8 for ODP846. The dating uncertainties are larger than in the simulation

study, and again oscillate over time. The posterior variance is larger in ODP846 (mean stan-

dard deviation of ∼6.5 kyr) than ODP677 (mean standard deviation of ∼3.5 kyr). These dating

uncertainties are smaller than previous estimates [1, 4, 93]. Additionally, the most uncertain

estimates are not necessarily at the mid-point between ACPs (such as the present, or geomag-

netic reversals), which has previously been assumed [4, 93]. Rather, the ACPs only seem to

affect the posterior variance within a few metres. The 95% HDR intervals obtained for the

observation times of ODP677 seem consistent with the LR04 estimates, which lie in credible

intervals throughout the sediment core. On the other hand, the H07 estimates deviate greatly

from our estimates between 11 m and 16 m. The 95% HDR intervals obtained for ODP846

seem consistent with both estimates, partly due to the increased posterior variance. However,

the LR04 estimates are closer to the posterior means. A notable discrepancy with LR04 is the

rapid decrease in age at 26 m, suggesting little sediment was deposited over a large time period.

Comparing the ODP846 dataset to the LR04 reconstruction, shown in Figure 1.1, suggests that

a section of data is missing at this depth, validating the LR04 estimate. Since we are dating a

single core, rather than correlating multiple cores, recognising when data are missing is a more

difficult problem. For both datasets it can be seen that using a linear age-depth relationship,

even when accounting for compaction, will lead to poor estimates of observation times.

The sequence of 95% HDR intervals for the state of the system are shown in Figure 6.6

for ODP677, and Figure 6.9 for ODP846, along with the observations. The two sets of state

reconstructions are broadly similar, but X2 switches between positive and negative values more

often in ODP846 than ODP677, showing that the state reconstruction can differ somewhat be-
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tween datasets. As with the estimates of the observation times, the posterior variance is greater

in ODP846 than ODP677.

The marginal posterior distributions of the parameters are shown in Figure 6.7 for ODP677,

and Figure 6.10 for ODP846. The two sets of posterior distributions are similar, but there are

notable differences for some of the parameters. For example, larger values for the obliquity

scaling term, γE , are favoured for ODP677, which indicates a stronger synchronisation to the

astronomical forcing in ODP677 than ODP846. However, the posterior distributions for both

datasets have little mass around γE = 0 and γP = 0, suggesting that the astronomical forcing

adds some explanatory power. This explains the strong agreement with the LR04 age model,

which uses the astronomical forcing to constrain observatiom times, and gives a possible ex-

planation for the smaller variance in the filtering results for ODP677. Specifically, since the

astronomical forcing provides time information, and attracts the system into specific regions of

state-space, we expect the uncertainty around these quantities to be smaller the more strongly

the system is forced. For both sets of data, large values of c are supported, indicating large

changes in porosity, and hence, a large amount of compaction in the sediment over ∼30 m. The

value used in H07 was ∼5 × 10−4, which seems to be consistent with the porosity profile over

200 m [4, 93]. The large values indicated by our posterior distributions seem to be physically

unrealistic in comparison. However, we again note that our porosity model is used as a phe-

nomenological approach to modify a linear sediment model, rather than to model porosity ex-

plicitly. Comparing the marginal posterior distributions of the parameters obtained for ODP677

with Figure 4.5 shows an increase in posterior variance due to the added uncertainty of having

unknown observation times. Additionally, there are some notable differences between the two

sets of posterior distributions. For example, larger values of δ are supported when the obser-

vation times have been fixed using the depth-derived age model. Hence, fixing the observation

times can alter inference about the model parameters.

Repeating the experiment using an unforced variant of CR14-a yields Bayes factors in favour

of the forced model against the unforced model of O(105) in ODP677, and O(1) in ODP846.

In other words, the forced model is more strongly supported by ODP677, but both models are

equally well supported by ODP846.
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Figure 6.5: Top: Sequence of 95% HDR intervals for the observation times for ODP677. The

black line shows the mean values of the marginal posterior distributions of the

observation times, and grey lines show the 95% HDR intervals. The pink line

shows the linear sediment-age relationship accounting for compaction used in [4],

and the red line shows the estimates from complete depth-derived age model. The

blue line shows the estimates from the LR04 stack [1]. Middle: Sequence of

95% HDR intervals for the observation times with the trend removed. Note that

a linear sediment-depth relationship would be a line through zero. Our estimates

agree strongly with the LR04 estimates, but there are large deviations with the H07

estimates between 9 and 16 metres. Bottom: Sequence of standard deviations of

the marginal posterior distributions of the observation times.
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Figure 6.6: Top: The ODP677 dataset. Middle and bottom: Sequence of 95% HDR intervals

for the state of CR14-a for the observable and unobservable states respectively.

The black line shows the mean values of the marginal posterior distributions of the

states, and grey lines show the 95% HDR intervals.
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Figure 6.7: Marginal posterior distributions of the parameters of CR14-a for ODP677. Dashed

lines show the prior distributions.
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Figure 6.8: Top: Sequence of 95% HDR intervals for the observation times for ODP846. The

black line shows the mean values of the marginal posterior distributions of the

observation times, and grey lines show the 95% HDR intervals. The pink line

shows the linear sediment-age relationship accounting for compaction used in [4],

and the red line shows the estimates from complete depth-derived age model. The

blue line shows the estimates from the LR04 stack [1]. Middle: Sequence of 95%

HDR intervals for the observation times with the trend removed. Note that a linear

sediment-depth relationship would be a line through zero. Our estimates agree

strongly with both the LR04 and H07 estimates. Bottom: Standard deviation of

the posterior distribution.
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Figure 6.9: Top: The ODP846 dataset. Middle and bottom: Sequence of 95% HDR intervals

for the state of CR14-a for the observable and unobservable states respectively.

The black line shows the mean values of the marginal posterior distributions of the

states, and grey lines show the 95% HDR intervals.
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Figure 6.10: Marginal posterior distributions of the parameters of CR14-a for ODP846.

Dashed lines show the prior distributions.
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6.4 Chapter Summary

We have introduced a novel age model and extended our inference approach to quantify the

chronological uncertainty in dating sediment cores. Our approach performed well in a simula-

tion study, and we were able to detect the influence of the astronomical forcing with the added

dating uncertainty.

We applied our methodology to two real-world datasets, and showed that our results are

consistent with previous age models. Whereas previous age models determined sources of un-

certainty, and estimated the uncertainty for each component, we were able to quantify the age

model uncertainty in a principled statistical framework. A forced model was strongly supported

by the data in favour of an unforced model when using ODP677, but not when using ODP846,

showing significant variation between datasets. Therefore, when testing hypotheses about cli-

mate dynamics, multiple datasets should be considered. Ideally, observations from multiple

cores should be used in a single experiment. A discussion about extending our work in this

direction is given in Chapter 7.
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Conclusions

Studying the dynamics of the palaeoclimate is a difficult problem. The climate is a highly

complex system. Modelling every process on a sufficiently refined spatio-temporal scale to

reconstruct the climate over millions of years is far beyond our capabilities. Even the most

advanced numerical simulators in use today require tuning on palaeoclimate data, in order to

reconstruct the history of the climate. Many of the methods in use today, such as tuning param-

eters by hand, make poor use of the information from palaeoclimate datasets, and usually lead

to poor characterisation of the uncertainty in the simulator predictions. In this thesis we have fo-

cussed on using relatively simple models, termed phenomenological models, which are simple

enough to enable data assimilation to be performed through statistically rigorous approaches,

characterising the uncertainty arising from the data and modelling approaches.

Even with such relatively simple models, performing statistical inference in this setting is

a challenging problem. The likelihood of these models is intractable, requiring state of the art

statistical methods in order to perform inference. Many of these methods were published only

very recently, and remain relatively untested in challenging real-world settings. A consistent

theme maintained in this thesis was assessing the performance of our inference approaches in

simulation studies, in which the correct model, and model parameters, are known. The fact that

they are shown to perform well in this idealised setting lends confidence to the results obtained

on real-world data.

There are a number of key scientific contributions from this thesis. The first is that palaeo-

climate records seem to contain more information than is typically assumed. The prevailing

viewpoint is that palaeoclimate data do not contain enough information to select between com-

peting phenomenological models [24]. In our model comparison experiments, it is often the

case that the data support some models more strongly than others. In some cases, a limitation

in drawing strong conclusions has been the Monte Carlo variation encountered when estimat-

ing Bayes factors, which is a direct result of having limited computational resources. Given
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that our current implementations of SMC2 require between 3 and 8 days runtime, depending

on the model used and whether the age model is included, it seems unlikely that the Monte

Carlo variation can be significantly reduced whilst still obtaining Bayes factor estimates within

a reasonable time. However, the constant growth in the availability of computer power offers

the possibility that these experiments can be repeated, with stronger conclusions, within a few

years. With SMC methods, it is also possible to employ parallel processing. For example, we

were able to obtain a 25× speedup of SMC2 using a Tesla K20 GPU.

The second contribution is that we have demonstrated that estimating observation times in-

dependently of any further analysis leads to strong sensitivity in the results of future analyses on

the assumptions made when estimating the observation times. For example, model comparison

experiments on data that have been dated using astronomical tuning assumptions consistently

found strong support in favour of forced models. This was not the case when the age estimates

were obtained without astronomical tuning assumptions.

The third is that we have developed a method to jointly estimate the model parameters,

model evidence, and observation times, in individual sediment cores. Whilst our approach gave

age estimates consistent with previous age models, our approach fully characterises the age

model uncertainty, unlike previous methods. We have shown in a model selection experiment

that one palaeoclimate dataset more strongly supports a forced phenomenological model over

an unforced phenomenological model. This reinforces recent findings that palaeoclimate data

support Milankovitch theory [18, 86].

A summary of each chapter and the major conclusions is given below.

7.1 Thesis Summary

In Chapter 2 we discussed approaches to climate modelling, and justified the use of phenomeno-

logical models to study the glacial-interglacial cycle. The key concepts necessary to understand

the phenomenological modelling approach, such as relaxation oscillators, the astronomical forc-

ing, and synchronisation, were explained. We demonstrated that phenomenological models,

embedded in an SSM framework, enable us to perform inference on the dynamics of the glacial-

interglacial cycle via the assimilation of proxy data from sediment cores. We highlighted the

inference challenges of using this approach.

In Chapter 3 we compared ABC and particle filter approaches to performing parameter

estimation in SSMs. ABC can be used in any situation in which the model can be simulated

from, and is not restricted to SSMs. We gave an overview of ABC methods, leading up to

recent developments, such as ABC-SMC, which reduce the computational cost in comparison

to the original ABC rejection algorithm. The particle filter is an SMC algorithm targeting the
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posterior distribution of the state of an SSM, from which we can obtain unbiased likelihood

estimates. We gave an overview of two pseudo-marginal approaches, PMCMC and SMC2,

that embed the particle filter in an MCMC algorithm and SMC algorithm respectively, in order

to sample from the posterior distribution of the parameters. We described the statistical tools

utilised by these inference methods, and designed a simulation study as a way to compare the

relative performance between the different approaches. In each case, we focussed on developing

computationally efficient implementations, such as adaptively selecting the Markov chain length

in ABC-ASMC, and designing efficient proposal distributions in the particle filter. We showed

that the ABC approaches gave a poor approximation to the posterior distribution in comparison

to PMCMC and SMC2.

In Chapter 4 we extended the inference methods introduced in Chapter 3, in order to perform

model comparison. We gave an overview of Bayes factors as a method to perform model com-

parison, and described the different approaches that can be used for evaluating Bayes factors.

We focussed on SMC approaches, which naturally provide estimates of normalising constants,

such as the model evidence. In particular, we extended an ABC-SMC approach to target the

joint posterior distribution of all models, and model parameters, under consideration, and ex-

tended SMC2 to evaluate the model evidence for each model independently. We developed a

simulation study to compare each approach, and once again found that ABC performed poorly

in comparison to SMC2. Repeating the experiment on real-world data showed that oscillators

were more strongly supported by the data than one-dimensional steady-state models.

In Chapter 5 we applied the methodology developed throughout the thesis to two model

comparison problems in palaeoclimate science. Specifically, we aimed to select between com-

peting phenomenological models of the glacial-interglacial cycle, and to test whether forced

models are more strongly supported by the data than unforced models. We designed a simula-

tion study to assess our ability to solve these problems, and found that we selected the correct

model, both when the astronomical forcing had influenced the data, and when it had not. Ad-

ditionally, we discovered that forced models were preferred when the model used to generate

the data was forced, demonstrating that we are able to detect the influence of the astronomi-

cal forcing, even when the model is wrong. We gave an overview of different dating methods

for sediment cores, and chose to repeat our experiment on a dataset with two sets of age esti-

mates. The first had been obtained with astronomical tuning assumptions, whereas the second

was purely depth-derived. We discovered that the results were not robust to the age model used.

The astronomically tuned data more strongly supported forced models, and the depth derived

data more strongly supported unforced models. In some cases it was difficult to determine if

the data more strongly supported particular models due to Monte Carlo variation. However, the

partial positive result indicates that palaeoclimate data holds more information than is typically
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assumed, as a prevailing viewpoint is that palaeoclimate datasets are too sparse and noisy to

select between competing phenomenological models.

In Chapter 6 we extended the modelling and inference approaches, in order to jointly esti-

mate the observation times, model parameters, and model evidence. We developed a novel age

model based on a linear sediment accumulation model. This model was then adjusted to ac-

count for down-core compaction. We extended the particle filter to jointly target the observation

times and the state-space of the phenomenological model. We designed a simulation study to as-

sess our ability to recover the observation times, and demonstrated that our algorithm performs

well, even when the age-depth relationship is highly nonlinear. We then applied our inference

approach to two sediment cores. In each case, our age estimates agreed strongly with the astro-

nomically tuned LR04 age estimates, but had a slight discrepancy with the depth-derived H07

age estimates. Whereas previous approaches gave point estimates for the observation times, and

described possible sources for age model error, our approach generates a sample from a poste-

rior distribution, characterising the age model uncertainty. These results also suggest that the

amount of information in sediment cores is often underestimated. The previous studies obtained

age estimates by averaging over dozens of cores, whereas we obtained strong agreements using

only a single sediment core in each case. The posterior variance was also smaller than previ-

ously predicted. We repeated our model comparison experiment between a forced and unforced

phenomenological model on each sediment core. One of the cores more strongly supported the

forced model, providing some evidence in favour of Milankovitch theory.

7.2 Directions for Future Research

When using real-world data, we have only employed our inference approaches on individual

sediment cores. Ideally, this should be extended to perform inference jointly over multiple sed-

iment cores, so that local variation is averaged out. However, there are a number of challenges

in doing so. The first is that the local climate variations need to be modelled in each core, re-

quiring a significant modelling extension. The second is that the order of the observations in

time is unknown. In the particle filter, if the next observation to be assimilated occurred previ-

ously in time, the transition density of the phenomenological model will be required. That is,

if tn−1 < tn+1 < tn, where observation n + 1 is to be assimilated, then the target distribution

is proportional to π (XXXn+1 |XXXn−1)π (XXXn |XXXn+1), whereas the proposal distribution is pro-

portional to π (XXXn |XXXn−1). With a single transition density we can extend the particle filter’s

proposal distribution to also target the auxiliary variables, but this is not possible with the ratio

of two transition densities. ABC methods offer a possible solution, as it will always be possible

to simulate a sequence of observation times for each sediment core, and then simulate from the
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phenomenological model for the sampled times. However, obtaining an accurate approximation

will require a large computational expense.

Additionally, when we have used real-world data, we have constrained ourselves to the

last 780 kyr, marked by the Brunhes-Matuyama (BM) reversal. Many sediment cores have

observations stretching back over millions of years, with indications of previous geomagnetic

reversals present. It is trivial to extend any of our methods over this time period. However,

the phenomenological models used must then account for the mid-Pleistocene transition at ap-

proximately 800 kyr BP. It is plausible that inference methods that assimilate observations se-

quentially, such as PMCMC and SMC2, will perform poorly in this situation, primarily due to

model error, as some of the parameter space might be ruled out during the 40 kyr cycle, which is

then necessary in explaining the 100 kyr cycle. The inference methods developed in this thesis

also suffer from the curse of dimensionality, in that the computational cost required to obtain

accurate results scales nonlinearly with increases in the number of data points.

We have also used observations of only a single proxy variable, δ18O. As demonstrated in

Figure 1.2, other proxy variables, such as CO2, show variation over the glacial-interglacial cycle.

These variables can be included in our inference approach by extending the observation model.

Suitable phenomenological models will need to be used, such as SM90 and SM91 [22, 23], for

example, when jointly assimilating observations of both δ18O and CO2. The model comparison

methods developed in this thesis present a way to select between hypothesised relationships

between climate variables, by formulating those hypotheses into phenomenological models.

Choosing suitable prior distributions is essential if we are to trust in the results of our in-

ference schemes. In our experience, the posterior distributions of the parameters are robust to

changes in the prior distributions, so long as there is non-negligible mass in regions of posterior

support. The exceptions are those parameters for which we learn little from the data, as the

posterior distributions will always strongly resemble the prior distributions. Bayes factors, on

the other hand, are often sensitive to the prior distributions, as they require integration over the

parameter space. This is a problem for relatively small Bayes factors, where altering the prior

distributions can easily alter the conclusions. In this thesis we have elicited prior distributions

from an expert in dynamical systems theory. Ideally, prior distributions should be elicited from

a number of experts, and sensitivity analyses carried out to assess the robustness of the results

to changes in the prior distributions.

Owing to computational limitations we have focussed on using phenomenological models

of the glacial-interglacial cycle. There is a wide spectrum of models, ranging from simple linear

combinations of the astronomical forcing terms, to GCMs. The inference approaches developed

in this thesis are quite general, and can be used with any of these models. Currently, the com-

plexity of the models that can realistically be used is limited by the availability of computational
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resources. Thus, as time progresses, and more computational power becomes readily available,

more complex models can be considered.

A further modelling extension can be made regarding the observation errors. A standard

approach, as used in this thesis, is to assume that observation errors are Gaussian. This is

often unrealistic. Alternative observation error models can be considered in any of the inference

approaches developed here.

There are a number of sources of uncertainty that have not been considered in this thesis.

In Chapter 6 we treated the observation depths as known. In reality, there is a small amount of

error when measuring the depth of an observation. Since these measurement errors do not alter

the order of the observations, they can be included in any of the inference schemes described in

the thesis. On a related note, the depths of geomagnetic reversals are not precisely known, and

so quantifying the depth uncertainty will likely lead to time estimates that are less constrained

than in Chapter 6.

The variation of eccentricity and precession through time are also treated as known, whereas

small errors are present. This can be observed in the discrepancies between different orbital

solutions [32, 33, 95–97]. There is very strong agreement between the different orbital solutions

over the past 1 Myr, and so the assumption that the variation of the orbital parameters are known

is unlikely to invalidate the conclusions of this thesis. However, the discrepancy grows over

time, and so care should be taken when performing inference over longer timescales. A possible

solution is to explicitly model the orbital parameters, and include small stochastic perturbations

to account for model discrepancy. Alternatively, a model comparison experiment can be carried

out on competing orbital solutions to test whether palaeoclimate data more strongly support one

solution over others. However, given the minor variation between the different orbital solutions,

obtaining a positive result seems unlikely.

7.3 Concluding Remarks

Ultimately, it will be straight forward for palaeoclimate experts to criticise our results on the

basis of our choices of models, data, and prior distributions. However, that would miss the point

of this thesis. We have shown that statistical methodology can be developed to allow careful

statistical inference in these problems, and demonstrated what we believe is the appropriate

way to perform analysis, hopefully adding a valuable tool to the scientist’s armoury. The work

can be extended and improved in many ways, and we hope that there is sufficient interest from

researchers in the field that this will be done.
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