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Abstract 

Modelling detailed electromagnetic interactions in Electromagnetic 

Compatibility predictions is an extremely demanding task, made more difficult by 

the increasing complexity of modem engineering problems. Over the last decade 

major innovations in numerical models and methods have been introduced to 

reduce demands on computational resources or render the simulations of large 

systems containing a diverse range of physical features possible. 

This thesis presents one of the methods of dealing with large systems which 

utilises the concept of sub-cells containing fine geometrical objects. A general 

approach to embedding fine features into a coarse numerical time-domain 

techniques such as the Transmission Line Modelling (TLM) method is proposed. 

A non-standard node has been developed that mimics the electro- magnetic 

behaviour of virtually any object or group of small objects wholly or partially 

enclosed by a volume of space represented by the numerical cell. 

The core of this scheme is to identify a suitable set of local field solutions to 

Maxwell's equations within the vicinity of the enclosed objects and, by correctly 

sampling the fields on the boundary of the cell, to integrate these with field 

solutions represented by the neighbouring nodes, ensuring both field continuity 



and power conservation. The idea whilst simple leads to an algorithm that is both 

explicitly stable and conservative as well as only incurring a minor computational 

overhead compared to a conventional TLM algorithm. It is noted that, as the 

required identification and evaluation of the local field solutions occurs as a pre-

processing stage prior to the main TLM run and that the non-standard nodes are a 

small proportion of the coarse grid, a significant overall reduction in 

computational requirements is achieved in comparison to direct fine meshing of 

the features. Another advantage of this approach lies in the fact that the local 

solutions to Maxwell's equations calculated in the pre-run process can be obtained 

by any suitable means. Analytical formulations, numerical results of another 

simulation or simply experimental measurements are some of the possibilities. 

The approach is employed to investigate a variety of EMC problems. An analysis 

of the field scattered from multiple cylindrical geometries embedded within a 

single two-dimensional cell is presented. Multiple conducting and lossy wires, 

dielectric rods and dielectric coated wires, conducting strips and slots are also 

studied. Three-dimensional simulations are shown for an arbitrarily orientated 

wires, small dielectric and conducting spheres and other canonical shapes. The 

approach is also successfully applied to other disciplines where modelling plays 

an important role. The flexibility of the algorithm is demonstrated for simulations 

of photonic structures with the primary focus placed upon photonic band-gap 

materials. 



List of Publications 

The following publications have arisen out of the work presented in this 

thesis and are listed in two categories: 

Journal Papers: 

[1] Biwojno, K., Sewell, P., Liu, Y., Christopoulos, C., "Electromagnetic 

Modelling of Fine Features in Photonic Applications", Optical and 

Quantum Electronics, Special Issue on Waveguide Theory and Numerical 

Modelling, Vol. 38, No. 1-3, pp. 187-201,2006 

[2] Liu, Y., Sewell, P., Biwojno, K., Christopoulos, C., "Accurate 

Representation Of Thin Metal Strips And Narrow Slot Apertures In 

Transmission Line Modelling (I'LMJ Simulations", Microwave and Optical 

Technology Letters, Vol. 48, No. 1, pp.178-180, 2006. 

[3] Liu, Y., Sewell, P., Biwojno, K., Christopoulos, C., "A Generalized Node 

for Embedding Sub-Wavelength Objects into 3D Transmission Line 

Models", IEEE Transactions on Electromagnetic Compatibility, Vol 47, 

No. 4, pp. 749-755,2005 



[4] Govan, D., Bekker, E., Paul, J.D., Greedy, S., Liu, Y., Biwojno, K., Wykes, 

J., Vukovic, A., Thomas, D.W.P, Benson, T.M., Sewell, P., Christopoulos, 

C., "Computational Electromagnetics: Current Applications and Future 

Trends", IEEE Microwave Review, No. 2, Vo!. 10,'pp. 16-25,2004, 

[5] Biwojno, K., Smartt, C.J., Sewell, P., Liu Y., Christopoulos, C., "General 

treatment of TLM node with Embedded Structures", accepted to 

International Journal of Numerical Modelling. 

Conference Papers: 

[6] Christopoulos, C., Thomas, D.W.P., Sewell, P., Paul, J., Biwojno, K., 

Wykes, J., Greedy, S., "Simulation Methodologies for Electromagnetic 

Compatibility (EMC) and Signal Integrity (SI) for System Design", EPTC 

2005, 7th Electronics Packaging Technology Conference, 7-9 December, 

Grand Copthorne Waterfront, Singapore. Proceedings EPTC, pp. 406-411, 

2005 

[7] Benson, T.M., Christopoulos, C., Thomas, D.W.P., Vukovic, A., Greedy, S., 

Liu, X., Biwojno, K., Liu, Y., "Simulation for Electromagnetic 

Compatibility (EMC) and Signal Integrity (SI) in an Integrated 

Environment", Euro DesignCon, Munich, Germany, Paper 5-TA2, Oct 2005 

[8] Benson, T. M., Govan, D., Wykes, J., Biwojno, K., Sewell, P., Greedy, S., 

"Time Domain Techniques for the Accurate Description of Fine Features", 

OWTNM05, Sydney Australia, pp 23, July 2005 



[9] Christopoulos, C., Sewell, P., Thomas, D.W.P., Benson, T.M., Vukovic, A., 

Biwojno, K., Liu, Y., Paul, J., "Full-Field Electromagnetic Models and 

Complexity in EMC H, 9th International Conference on Electromagnetics in 

Advanced Applications, ICEAA '05, Torino Italy, pp 375-378, 2005 

[10] Liu, Y., Biwojno, K., Sewell, P., Christopoulos, C., HA General Approach 

for Embedding Local Field Solutions into TLM Simulations H, XXVIII 

General Assembly of the Union of Radio Science (URSI), Delhi, E-

proceedings, EB.l(0433), Qct 2005 

[11] Christopoulos, C., Sewell, P., Biwojno, K., Liu, Y., Smartt, C. J., 

"Hierarchical Models of Complex Systems in Time-Domain", XXVIII 

General Assembly of the Union of Radio Science (URSI), Delhi, E-

proceedings, EB.l(0433), Oct 2005 

[12] Biwojno, K., Smartt, C.J., Sewell, P., Liu, Y., Christopoulos, C., "General 

treatment of TLM node with Embedded Structures", IEEE Proceedings of 

CEM-TD 2005, Atlanta, Georgia, USA, pp.52-54, 2005 

[13] Biwojno, K., Sewell, P., Liu, Y., Christopoulos, C., "Electromagnetic 

Modelling of Fine Features in Photonic Applications", QWTNM 2005 

Grenoble, France, Proceedings, Grenoble, France, April 2005 

[14] Biwojno, K., Sewell, P., Liu, Y., Christopoulos, C., "Embedding Multiple 

Wires Within a Single TLM Node", EUROEM, Magdburg, Germany, pp. 

173-174, July 2004 

[15] Biwojno, K., Sewell, P., Liu, Y., Christopoulos, C., "Embedding Multiple 

Wires Within a Single TLM Node ", to appear in Ultra-Wideband, Short-

Pulse Electromagnetics 7 Book (UWB SP 7) 



Other Author's Publications: 

[16] Sewell, P., Biwojno, K., Sujecki, S., Benson, T.M., "A thermal model for 

silicon-on-insulator waveguide modulators ", ICTON'02 Conference, 

Warsaw, Poland, pp. 55-58,2002 

[17] Biwojno, K., Sujecki, S., Vukovic, A., Benson, T.M., Sewell P., "Thermal 

models for silicon-on-insulator-based optical circuits", Optica Applicata, 

Vol. 34, No. 2, pp. 149-161,2004, 

[18] Biwojno, K., Sujecki, S., Sewell, P., Benson, T.M., "Analiza Przelaczania 

Termicznego W Ukladach Optyki Zintegrowanej Wykonanych Na Podlozu 

Krzemu", Elektronika, No. to pp 73-76, Nov 2002 

[19] Biwojno, K., Sujecki, S., Sewell, P., Benson, T.M." "Numerical Analysis Of 

Thermal Switching In Silicon Based Integrated Optical Devices ", 

Proceedings of SPIE: Photonics Applications m Astronomy, 

Communications, Industry, and High-Energy Physics Experiments, Vol. 

5125,pp.252-258,2003 

[20] Sewell, P., Biwojno, K., Sujecki S., Benson, T.M., "A thermal model for 

silicon-on-insulator-based waveguide modulators ", Transparent Optical 

Networks, 2002. IEEE Proceedings of the 2002 4th International 

Conference on, Vol. 1, pp 151 -154, 2002 



Awards 

Student prize awarded by The Publisher and Editorial Advisory Board of 

International Journal of Numerical Modelling, Electronic Network, Devices and 

Fields for the paper "General treatment ofTLM node with Embedded Structures" 

selected as the best student paper in Numerical Modelling at the Computational 

Electromagnetics in Time Domain (CEM-TD) Workshop in Georgia Tech, 

Atlanta, Georgia, USA, September 2005. 



Contents 

Chapter 1: Multi-Scale Modelling ................................................................... 1 

1.1. The General Nature of Multi-scale Systems ...... : ........................................... 1 

1.2. Multi-scale Problems in Electromagnetic Compatibility (EMC) .................. 2 

1.3. Areas ofEMC Applications ........................................................................... 3 

1.4. Numerical Modelling and Measurements in EMC ........................................ 6 

1.5. History of Thin Wire Models ......................................................................... 8 

1.6. Aims of the Work Described in the Thesis .................................................. 11 

1.7. Overview of the Thesis ................................................................................ 12 

1.8. References .................................................................................................... 14 

Chapter 2: Principle of Electromagnetic Field Theory and the TLM 

Method ........................................................................................... 20 

2.1. Basic Theory of Electromagnetism .............................................................. 20 

2.2. Wave Equation in Cylindrical Coordinates ................................................. 23 

2.3. Vector Potentials .......................................................................................... 25 

2.3.1. Vector Potential A ........................................................................... 25 

2.3.2. Vector Potential F ............................................................................ 26 

2.4. Modal Solutions ........................................................................................... 27 



2.4.1. Transverse Magnetic (TM) Mode .................................................... 28 

2.4.2. Transverse Electric (TE) Mode ........................................................ 29 

2.4.3. Transverse Electro-Magnetic (TEM) Mode .................................... 30 

2.5. Plane Wave Scattering from a Cylinder ....................................................... 32 

2.5.1. Boundary Conditions at the Surface of Cylinder ............................. 33 

2.6. Transmission Line Modelling (TLM) Method ............................................. 35 

2.6.1. Two-Dimensional TLM ................................................................... 36 

2.6.1.1. Shunt Node ...................................................................... 37 

2.6.1.2. Series Node ...................................................................... 43 

2.6.1.3. Boundary Conditions ....................................................... 45 

2.6.2. Time Step Criteria and Stability ...................................................... 47 

2.6.3. 3D TLM ........................................................................................... 48 

2.7. Closing Remarks .......................................................................................... 50 

2.8. References ................................................................................................... 51 

Chapter 3: A General Approach to Embedding Sub-Wavelength Objects 

into TLM ......................................................................................... 53 

3.1. General Concepts ......................................................................................... 53 

3.2. Theoretical Formulations ............................................................................. 54 

3.3. Implementation into a TLM Scheme ........................................................... 59 

3.3.1. A Modal View ofTLM .................................................................... 63 

3.4. Closing Remarks .......................................................................................... 68 

3.5. References ......................................................................... '" ....................... 68 



Chapter 4: Embedding Conducting Wires into a Single Cell of 2D TLM 

model .............................................................................................. 70 

4.1. Introduction .................................................................................................. 71 

4.2. Fields Around Wires - Analytical Formulations ......................................... 71 

4.2.1. Total Field Formulae ....................................................................... 74 

4.2.1.1. Boundary Conditions at the Surface of Wires ................. 77 

4.3. Mapping the Analytical Solution into Numerical Network ......................... 78 

4.3.1. Scattering Coefficients for a TM Polarisation ................................. 79 

4.3.2. Scattering Coefficients for a TE Polarisation .................................. 82 

4.3.3. Formulating the Admittance Relationship ....................................... 84 

4.4. A Validation for a Single Wire .................................................................... 89 

4.4.1. Electrical Equivalent Circuit for a Single Wire ............................... 89 

4.4.2. Two-Dimensional Numerical Experiment.. ..................................... 98 

4.4.3. Convergence of the Analytical Solution .......................................... 99 

4.4.4. Numerical Validations for a Single Wire ...................................... 101 

4.5. A Single TLM Node with Multiple Wires ................................................. 112 

4.6. Closing Remarks ........................................................................................ 121 

4.7. References ................................................................................................. 122 

Chapter 5: Modelling Dielectric Fine Features in a Coarse Mesh ...•..•••.•.• 123 

5.1. Formulation of Dielectric Cylindrical Boundary ....................................... 123 

5.1.1. TM Polarised Wave ....................................................................... 1 24 

5.1.2. TE Polarised Wave ........................................................................ 128 



5.2. Wires with a Single and Multi-Layered Dielectric Coating ...................... 131 

5.2.1. Dielectric Coated Perfect Conducting Wires ................................. 131 

5.2.2. Wires with Multiple Dielectric Coatings ....................................... 136 

5.3. Numerical Validation for a Cell with Multiple Dielectric Rods ................ 137 

5.4. Numerical Validation for a Cell with Dielectric Coated Wires ................. 147 

5.5. Closing Remarks ........................................................................................ 153 

Chapter 6: Generalised Multi-Feature Node •••.••••..••...•....••.....•....•..••...•...••• 154 

6.1. Wires with Losses ...................................................................................... 154 

6.1.1. Theoretical Formulation ................................................................ 155 

6.1.2. TLM Implementation ..................................................................... 156 

6.1.3. Numerical Validations ................................................................... 162 

6.2. Photonic Band-Gap Structures ................................................................... 166 

6.2.1. Photonic Crystal Devices ............................................................... 167 

6.3. Closing remarks ......................................................................................... 175 

6.4. References ................................................................................................. 175 

Chapter 7: A Special Node Containing a Strip or Slot .............................. 177 

7.1. Introduction ................................................................................................ 177 

7.2. Wave Equation in the Elliptical Coordinate System .................................. 178 

7.3. Scattering from the Strip ............................................................................ 182 

7.3 .1. Analytical Description ................................................................... 182 

7.3.2. Embedding into TLM model ................................................. · ...... · 185 



7.3.3. Numerical Validations ................................................................... 189 

7.4. Fields Penetrating Through a Narrow Slot ................................................ 191 

7.4.1. Analytical Description ................................................................... 191 

7.4.2. Mapping into TLM model ............................................................. 192 

7.4.3. Numerical Validations ................................................................... 193 

7.5. Closing Remarks ........................................................................................ 195 

7.6. References .................................................................................................. 195 

Chapter 8: 3D Simulations of Small Objects .............................................. 197 

8.1. Analytical Approximation to Local Field Solutions .................................. 198 

8.1.1. Numerical Validations ................................................................... 208 

8.1.1.1. Scattering from Vertical and Straight Dipole ................ 208 

8.1.1.2. Scattering from a Circular Wire Loop ........................... 211 

8.2. Numerical Approximation to Near Field Solutions ................................... 214 

8.3. One Point of Integration for 3D Symmetrical Problems ............................ 217 

8.3.1. Spherical Modes ............................................................................ 218 

8.3.2. Theory of Scattering from a Conductive Sphere ........................... 223 

8.3.2.1. Analytical Description ................................................... 225 

8.3.2.2. Numerical Validations ................................................... 227 

8.3.3. Scattering from Dielectric Sphere ................................................. 228 

8.3.3 .1. Numerical Val idations ................................................... 231 

8.4. Closing Remarks ........................................................................................ 232 

8.5. References ................................................................................................. 233 



Chapter 9: Conclusions ................................................................................. 234 

References ........................................................................................................... 241 

APPENDIX A ........................................................................................................ i 

APPENDIX B ...................................................................................................... iv 

APPENDIXC 

APPENDIXD 

APPENDIXE 

... 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• VIII 

...................................................................................................... ix 

.. 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• XII 



Chapter 1 

Multi-Scale Modelling 

The material presented in this thesis is primarily concerned with the 

development of modelling techniques and simulation tools for multi-scale 

environments such as those encountered in Electromagnetic Compatibility (EMC) 

predictions. An introduction to the problems found in this kind of system will now 

be given with the main focus placed upon EMC applications. The state-of-art in 

this area will be covered and the main techniques and solutions proposed to-date 

will be reviewed. Subsequently, an overview of the work described in this thesis 

will be presented. 

1.1. The General Nature of Multi-scale Systems 

A broad range of scientific and engineering problems involve multiple 

scales. Traditional mono-scale models for this kind of system have proven to be 

inadequate, even with the fast growing computational power of modem 

supercomputers. This is due to the wide variety of scales and the prohibitively 

large number of variables involved in actual systems. In addition, it is often the 

case that none of the elements in the system, regardless of their size, can be easily 

simplified nor neglected in the design, as they all contribute significantly to the 

overall response of the modelled structure. More difficulties arise when one deals 
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with a variety of scales distributed over a large system which cannot be divided 

into parts that are considered separately, and subsequently connected. Thus, there 

is a great demand to develop systematic modelling and simulation approaches for 

such large multi-scale configurations. One of the disciplines where multi-scale 

features are commonly encountered is Electromagnetic Compatibility (EMC). 

1.2. Multi-scale Problems in Electromagnetic Compatibility (EMC) 

Electromagnetic Compatibility (EMC) is the branch of electrical sciences 

which studies the unintentional generation, propagation and reception of 

electromagnetic disturbances with reference to the unwanted effects that the 

energy carried by such disturbance may induce. EMC is also defined as the ability 

of different electrical and electronic components to function together in the same 

environment without suffering the effects of mutual electromagnetic interference 

(EMI) or introducing the intolerable disturbance to that environment. Thus, this 

implies a limit on radio frequency (RF) emissions from the device or system, as 

well as a certain level of immunity (susceptibility) to interference that must be 

expected from other devices and systems in the surroundings. The susceptibility to 

EMI is determined by the strength of signals coupled into the equipment and the 

impact they have on its operation, whereas emission from the equipment is 

described by the radiation from elements of the system such as wires, circuits and 

its propagation in the external environment [1.1]. 

The proliferation of electronic devices in the modem world and constant pursuit 

of higher circuit integration and dense packaging increases the likelihood that 

2 
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sensitive and "noisy" devices are operated in close vicinity. This is especially 

observed with the rapid growth of technologies that utilise frequencies above the 

gigahertz band; broadband and wireless telecommunication and electronic 

components present in almost every aspect of everyday life and every household. 

Therefore, EMC compliance became not only a matter of increasing interest but in 

fact a practical necessity. Indeed, it has been already widely recognised in the 

defence/military, information technology (IT), rail, medicine, radio, telecoms and 

power industries, [1.2-1.5]. Due to its breadth, it is impossible to cover every 

aspect of EMC here and therefore the focus will now be placed upon a number of 

illustrative examples that are important from the point of view of the work 

presented in this thesis. 

1.3. Areas of EMC Applications 

Signal transmission at high speed and high capacity has been substantially 

increasing in the mobile communication industry over recent years. In this area, 

EMC faces challenging problem due to the coexistence of many sources utilising 

the same frequency bandwidth. One particular example is the use of the 2.45 GHz 

band, where such activity as Bluetooth, cordless phones, home RF, and 

transmissions of other systems are all present and must work with close proximity 

to each other [1.2]. 

EMI radiating from and coupling to signal transmission cables inside equipment 

cabinets is one of the particularly critical issues for compliance with EMC 

requirements. It is recognized that these cable assemblies can be EMI sources 

radiating significant electromagnetic fields often due to discontinuities between 

3 
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signal cables and terminal connectors. From the view point of providing shielding 

from these electromagnetic fields, this issue not only concerns individual 

assessment of the cable and connectors but also the influence of the equipment 

enclosures, [1.6, 1.7] . 

When operating at frequencies above 1 GHz, most structures in the system, 

including cabinets, enclosures, cabling, and others can act as effective radiators 

due to the wavelength being comparable to the size of the components [1.8]. At 

such frequencies a ventilation slot, a chassis door without correctly installed 

radio-frequency-interference (RFI) gasketing, a gap due to improper fitting or 

even a card cage can potentially become an antenna. For such scenarios little 

shielding attenuation exists, hence, once an emission from the product escapes 

through the slots or gaps, it spreads out affecting devices in both its near and far-

field region [1.8]. Similarly, the slot is a receiving aperture or antenna that passes 

RFI environmental noise into the system [1.9, 1.10]. This in effect, moves EMC 

design down to the printed circuit board (PCB) level [1.11] . 

A relatively new area of concern involves the generation of power frequency 

harmonics by electronic equipment. Due to the large number of new electronic 

equipment with switched-mode power supplies, these harmonics can be 

significant enough to propagate within the power network and cause interference 

to other equipment connected to it [1.5]. 

4 
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The aerospace industry has long been aware of EMC-related functional safety 

issues, due to their long-term use of electronics in mission-critical and safety-

critical applications such as autopilots and automatic landing systems [1.4]. The 

modem aircraft is vitally dependent on electronics, even for manual controls the 

pilot's movements of his controls are mediated by computers and servo-systems 

before being applied to the aircraft systems or control surfaces. In addition, all 

aircraft are exposed to very powerful EM disturbances, e.g. from airfield radars, 

radio broadcasting transmitters, and direct lightning strikes. The latter results in 

huge pulsed currents flowing through the airframe and therefore through the 

systems. Once again, EMC compliance necessitates the demonstration of 

continued operation of all systems during high induced pulsed currents. Military 

aircraft have the further burdens of electronic warfare and countermeasure 

equipment to take into consideration [1.4]. 

The difficulty in performing EMC or EMI predications in the aerospace area 

arises from the fact that aircraft are highly integrated. Hence, it is hard to divide 

the problem up into distinct parts from an electromagnetic point of view and be 

confident that synergistic effects have not been missed. 

An issue closely connected to dealing with large system such as aircraft or ships is 

the analysis of radiation and scattering from the thin wire structures that form a 

wide range of antennas. Such analysis is very challenging when only free space 

environment is considered. In practice, however, the problem is exacerbated as 

antennas are installed on structures which influence their ideal "free-space" 

radiation characteristics. The objective is to design antennas, determine the 

influence of the platform on the antenna's radiation characteristics and their best 

5 
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position and orientation. Also of great importance is to estimate the impact of the 

radiated beams on other elements of the platform, such as cabling systems that 

link and enable communication between components of the aircraft or ship; 

malfunction or failure of which can have irreversible consequences. 

1.4. Numerical Modelling and Measurements in EMC 

Rather than waiting for interference to happen and then fixing the problem, 

which is a very expensive process, it is advisable to specify electromagnetic 

requirements for devices before they are installed, to ensure they are compatible 

when operated in their intended environment. For this purpose, both 

measurements and numerical modelling are typically conducted to enable better 

understanding of electromagnetic interference mechanisms. For both methods size 

is a very important factor, especially in measurements since test facilities such as 

screen rooms, are very expensive to build. Immunity testing in open-field 

environments requires large test generators and produces "threats" to other 

equipment that are not under test. Even in the case of emissions testing, it can be 

difficult to establish the level of emissions from a particular piece of equipment 

after it has been installed in an operating platform. Other complications arise 

when moving to high frequencies concerning narrow emission beam widths from 

products that can be hard to identify. Measuring antennas also tend to have narrow 

beamwidths, making it hard to capture the radiated signal at the limit distance 

away from the product [1.12]. 

6 
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Numerical modelling offers the potential for obtaining accurate results for 

complex systems without the problems associated with direct measurements. 

However, the increasing demand to model fields in a large three-dimensional (3D) 

space while at the same time keeping a fine mesh resolution around small features 

(wires, slots, gaps, gaskets, etc.) makes conventional methods computationally 

expensive and in many cases prohibitive. In order to make differential equation 

methods such as Transmission Line Modelling (TLM) [1.13] or Finite Difference 

(FD) [1.14] more suitable for EMC problems, so-called compact models must be 

developed. Compact models take into account the electromagnetic presence of 

fine features without resorting to an extremely fine mesh. Since these compact 

models are often implemented locally, within a single cell, or a tube of cells, they 

are also referred to as sub-cell models. In order to maintain time synchronism with 

the rest of the problem, compact models must always be integrated into the main 

time-marching process. 

The work presented in this thesis describes new developments in numerical 

approaches for sub-cell models embedded in a coarse mesh for simulation of large 

platforms such as aircrafts and ships. Of particular interest is the modelling of thin 

wires for antenna design and for studying the phenomenon of fields scattered from 

antennas positioned on large platforms. To appreciate the scale of the difficulties 

encountered when dealing with large platforms two examples are illustrated in 

Figure 1.1. In Figure 1.1(a) a spiral antenna is positioned on a wing pod whereas 

in Figure 1.1 (b) an antenna is placed on the top of the fuselage. 

7 
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b) 

Figure 1.1. Aircraft models with different positions of antenna 

It should be clear that discretising the whole platfonn with a fine mesh that 

describes in detail the small geometry of the wire antenna will result in extensive 

computational requirements that may not be satisfied by available resources. 

Therefore, over the years a substantial effort has been made to develop models of 

thin wires that can be embedded in a coarse simulation grid. These models will be 

next briefly overviewed. 

1.5. History of Thin Wire Models 

As discussed in the previous section, Electromagnetic Compatibility (EMC) 

prediction often requires dealing with electrically large systems that are 

characterised by a diverse range of physical scales, all of which discernibly affect 

the overall behaviour of the body under consideration. A practically important and 

commonly occurring example of such a scenario arises whenever thin wires are 

present. As demonstrated above, whenever the wire is in a close proximity to 

large-scale objects, it is usually prohibitively expensive in tenns of computational 

resources to employ direct fine meshes with resolution sufficient to describe the 

geometry of the wire in detail. The difficulty is further exacerbated when a 
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number of wires, wire looms or bundles, are placed in close vicinity, each of 

different insulation. In addition, the elements of the system interact and interfere 

through a large volume of empty space, which introduces another very substantial 

level of complexity to an otherwise challenging problem. Therefore, all the 

aspects over last decade have become a factor driving innovations and new 

developments in numerical models of thin wires that can be applied to such a 

multi-scale environment utilising the best available computational resources. 

One of the techniques that have been considered and widely investigated is multi-

gridding or the use of graded meshes. These methods deploy a distortion of the 

numerical grid in the region where small wires and other small objects are highly 

concentrated to give accurate description of those features [1.13-1.18]. However, 

it is common that the extent of the finely meshed region continues to the edges on 

the computational window in order to prevail the one-to-one connection between 

the numerical cells. This is done to avoid both problems with stability and to 

maintain a structured grid, which is computationally efficient. Therefore, in the 

realm of EMC applications, the computational requirements may not actually be 

that significantly reduced. Whenever the grid is locally refined using multi-grid 

approaches, the connection of one-to-many nodes has to be considered. The issues 

regarding flexibility, stability and conservation of energy which relate to that fact, 

are not yet completely resolved but are under severe examination [1.15-1.18]. 

The use of completely unstructured meshing has also been ｰ ｲ ｯ ｰ ｯ ｾ ･ ､ for modelling 

multi-scale environments. This approach allows a significantly graded mesh to be 
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employed, albeit at the cost of computational efficiency per mesh element [1.19-

1.20]. These schemes also have the attraction of providing piecewise linear 

approximation of smooth geometrical boundaries and material interfaces to 

alleviate the staircasing that is inevitable with structured schemes. 

Separated or integrated solution techniques [1.20] or diakoptics [1.22] have also 

been employed in the past to model conducting thin wires. Here, the conductors 

are treated separately from the rest of the problem, allowing for field coupling to 

the wires by introducing equivalent sources derived from knowledge of the 

incident field. Although this method is simple, it involves several restrictions, the 

most important being that any electromagnetic interaction of the wires with the 

rest of the structure must be negligibly small thus questions of the applicability of 

such methods to EMC environment arise. 

Another scheme that has recently attracted a lot of attention is the use of the sub-

cell models previously mentioned. This results in a small number of non-standard 

nodes embedded within the large-scale model whose macroscopic behaviour is 

engineered to account for the presence of a small scale object enclosed within the 

FDTD [1.23-1.28] or TLM [1.29-1.37] cell. It is noted that using this concept, the 

majority of the computational space is described with conventional coarse nodes 

thus significantly reducing the memory consumption and calculation run-times. 

The early design of such elements or nodes for thin wires was based upon 

physical approximations and involved the use of empirically fitted parameters 

[1.24-1.26]. Specifically, for the case of the TLM method, the emphasis was on 

10 
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modifying the capacitance and inductance of the TLM node to take into 

consideration the presence of the wire. By using an arbitrarily defined outer return 

radius, the capacitance and inductance of a particular thin wire was calculated and 

then the return radius scaled using the empirical factors to recover the node step 

size [1.29-1.31]. Furthermore, for TLM, these models have also been developed to 

include thin wire junctions and multi-wire systems [1.32, 1.33]. Generally, the 

empirical factors have been determined either experimentally or by fine numerical 

meshing. 

As the use of empirical factors is neither robust nor sufficiently flexible, an 

innovative formulation, the so called macro-node, was subsequently developed 

from the theoretically known local field behaviour in the proximity of the wire. 

Taking into account an appropriate set of lowest order field solutions, a thin wire 

has been embedded within a single cell of the TLM method without the use of 

empirical factors [1.34-1.37]. In particular, this variant describes a straight wire 

placed at the centre of the node in 2D and 3D TLM. This approach has been found 

to be very accurate for applications to EMC problems, incurring only slight 

computational overheads compared to the conventional coarse TLM node and 

subsequently better that using fine meshes. It also has been extended to the case of 

a wire offset from the centre of the node for two-dimensional simulations. 

However, this previous work is restricted to straight wires orientated along one of 

the Cartesian axes. Another limitation that preludes its use for the important case 

of wires clustered in close proximity, or for modelling of wire looms, bundles and 

cables, is the fact that it allows the embedding of only one wire per numerical cell. 

11 



Chapter 1 - Multi-Scale Modelling 

1.6. Aims of the Work Described in the Thesis 

This thesis substantially extends the concept of macro-nodes or sub-cell 

models incorporated within time-domain numerical networks. It significantly 

extends the scope of the approach and removes all the restrictions and limitations 

listed above. It allows features of arbitrary geometry to be arbitrarily positioned 

within the cell. In addition these fine objects may be wholly enclosed within a 

single cell or pass across several cells. The approach also accounts for multiple 

objects inserted into a single numerical cell, recognising at the same time the 

interaction of near fields scattered from the encased bodies. The technique 

combines a rigorous field approach with the simplicity and versatility of the 

network approach, while maintaining second order accuracy which is acceptable 

for the simulation ofEMC problems. 

1.7. Overview of the Thesis 

Chapter 2 introduces the fundamentals of electromagnetic theory required to 

understand the phenomenon of waves propagating in the presence of potential 

scatterers. From a general statement of Maxwell's equations, the wave equation is 

derived. As the majority of the work presented in this thesis is concerned with 

cylindrical and circular-shaped scatterers the solution to the cylindrical wave 

equation is demonstrated. In addition, this solution is presented from the point of 

view of field decomposition into different local modes. Finally, the principles of 

TLM method are discussed, a technique widely used in electromagnetic field 

modelling and which is also employed throughout this project. 
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Chapter 3 describes the generic algorithm for embedding fine feature into a 

single cell of TLM method. The procedure for identifying a suitable set of field 

solutions so they can be incorporated within a time-domain network is detailed. 

Finally, the algorithm that maps the field solutions to passive components of a 

network consisting of short transmission lines is studied. 

A two-dimensional analysis of the generic algorithm from Chapter 3 IS 

presented in Chapter 4, based initially on the example of a single infinitely long 

conducting wire placed at the centre of numerical cell. An insight into the process 

of selecting appropriate modal solutions from the general field is given. Following 

this, the approach is employed to embed multiple conducting wires within a single 

TLM cell. In both cases the results are validated against analytical solutions. 

Chapter 5 shows the flexibility of the approach for modelling fields 

scattered from cylindrical media of various characteristics. This includes a cluster 

of dielectric rods, dielectric coated wires and conductors with multi-layered 

dielectric insulation. 

An important group of EMC problems that involves field distribution in the 

presence of cylindrical lossy wires is illustrated at the beginning of Chapter 6. 

The second part of this chapter demonstrates the applicability of macro-nodes in 

disciplines other than EMC. Of special interest is a prediction of the macroscopic 

behaviour of nanostructures in photonic applications with a primarily focus placed 

on photonic band-gap materials. 
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The two-dimensional simulations are extended in Chapter 7 to include 

objects described by elliptical coordinates. At first, the solution to the wave 

equation in an elliptical coordinate system is derived in the form of superposition 

of angular and radial Mathieu functions. Instead of presenting the canonical 

problem of field scattering from elliptical cylinder, this solution is applied to 

design a node that mimics the presence of thin conducting strips or a narrow slots. 

These particular features are of great importance in EMC problems as previously 

discussed. 

Finally, in Chapter 8 three-dimensional simulations are presented. The 

practical illustration of the power of this technique is demonstrated for the case of 

arbitrarily routed wires. Another example considers a conducting ring constructed 

from piecewise linear segments of wire. For both of these problems the local field 

solutions are evaluated analytically in a pre-processing stage. Next, the use of 

numerical estimation of the local field solutions prior to the main TLM simulation 

is demonstrated based on a canonical problem of field scattering from a small 

metal cube. A simplification of the method for scatterers of symmetrical 

geometries is given and illustrated for both conducting and dielectric small 

spheres embedded in a single 3D TLM cell. 

The work described in this thesis is summarised in Chapter 9. 
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Chapter 2 

Principles of Electromagnetic Field Theory 

and the TLM Method 

This chapter introduces the fundamentals of electromagnetic theory. In 

order to understand field scattering phenomena, the wave equation is derived from 

a general form of Maxwell's equations. Due to the fact that the majority of the 

work presented in this thesis is concerned with circular-shaped scatterers the 

solution to the cylindrical wave equation is also considered. Decomposition of this 

general field solution into different local solutions is presented. Finally, the 

principles of Transmission Line Modelling method are given as this technique is 

widely used in EMC predictions and also is the main numerical means employed 

in this thesis. 

2.1. Basic Theory of Electromagnetism 

Electromagnetic fields are time dependent fields, in the general harmonic 

time form given by: 

and H = Re {HejCJ)t} (2.1) 

where (t) is the angular frequency. The behaviour of such fields is fully described 

by the set of Maxwell's equations. In a source free and lossless region these are: 



Chapter 2 - Principles of Electromagnetic Field Theory and the TLM Method 

V·D=O 

V·B=O 

VxE=- aB =-jroJ.!H at 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The vector quantities denoted above in bold are: D (C/m) - the electric flux 

density, B (T) - the magnetic flux density, E (Vim) - the electric field intensity, 

and H (Nm) is the magnetic field intensity. Two constitutive relationships that 

provide the dependence between the fields and the medium the fields exist in, 

have been introduced in Equation (2.2) and (2.3). For linear isotropic media these 

are: 

D=EE (2.6) 

B=J.!H (2.7) 

where E is a dielectric permittivity and J.! magnetic permeability usually 

expressed as: 

(2.8) 

In Equation (2.8) Er and J.!r are the relative permittivity and permeability of the 

medium and Eo' ｊ Ｎ Ａ ｾ of the free space respectively. This work involves isotropic 

and non-magnetic materials only, hence J.!r = 1 . 

The wave equation for electric field E is readily obtained by taking the curl of 

Equation (2.4) and substituting for the curl of H on the right-hand side with 

Equation (2.5), thus 

(2.9) 
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where k = ｃ ｊ Ｉ ｾ is the wave number. 

Using the vector identity (A.I) given in Appendix A the following can be 

formulated: 

(2.10) 

Substituting Equation (2.6) into Equation (2.2) and utilising identity (A.2) it 

should be clear that in a homogenous and isotropic medium, the component of 

vV' . E from Equation (2.10) equals zero and Equation (2.9) simplifies to: 

(2.11) 

which is the Helmholtz equation [2.1]. 

In a cylindrical structure where OE = ｯ ｾ = 0 separation of the variables permits 
Oz OZ 

the substitution 0
2

2 = -P; in which case 
OZ 

(2.12) 

In the above equation ｖ ｾ (V' = ｖ ｾ + ::' ) operates now only on two variables 

(x,y) or Ｈ ｲ Ｌ ｾ Ｉ depending which coordinate system is under consideration. 

Similarly, taking the curl of Equation (2.5) and substituting on the right-hand side 

for VxE from Equation (2.4), then by analogy to the process presented above, 

the equation for H field can be derived in the form: 

(2.13) 

Equations (2.12) and (2.13) are vector Helmholtz equations in which permittivity 

and permeability are assumed to be constants. These equations are solved subject 
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to the field boundary conditions at any discontinuity surface as will be discussed 

in section 2.5.1. 

2.2. Wave Equation in Cylindrical Coordinates 

The majority of the work presented in this thesis is dedicated to systems ofa 

cylindrical configuration. Therefore, it advisable to solve the boundary-value 

problem for the E and H fields using cylindrical coordinates. Thus, Maxwell's 

equations and the Helmholtz equation presented in the previous section will be 

now expressed using cylindrical coordinates. The solution for the E field is 

considered in a source-free and lossless medium. A similar procedure can be used 

for the H field formulations. 

In cylindrical coordinates, a general solution to the vector Helmholtz equation for 

electric field and conditions mentioned above can be written as [2.2]: 

(2.14) 

where r, <1>, z are the cylindrical coordinates and ar,a.,az are unit vectors. 

Substituting Equation (2.14) in Equation (2.11) leads to: 

(2.15) 

According to the formula (A.12) shown in Appendix A, one of the three scalar 

equations which Equation (2.15) provides is: 

(2.16) 

In the above equation the scalar Laplacian is defined in Appendix A in 

Equation (A.ll) which allows Equation (2.16) to be generalised to: 

(2.17) 
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where '" is a scalar function that can represent a field or a vector potential 

component. 

The second order partial differential equation presented in Equation (2.17) is 

highlighted as its solutions will be shown to lead to the transverse electric (TE) 

and transverse magnetic (TM) fields. 

Assuming a separable solution for Ｂ Ｌ Ｈ ｲ Ｌ ｾ Ｌ z) defined as: 

Ｂ Ｌ Ｈ ｲ Ｌ ｾ Ｌ z) = R(r) ＼ Ｑ ＾ Ｈ ｾ Ｉ Z(z) (2.18) 

it can be shown [2.2] that Equation (2.17) reduces to three independent solutions 

2d
2
R dR (A22 2) r -2 +r-+ prr -n R=O 

dr dr 
(2.19) 

(2.20) 

(2.21) 

where n, Pr and pz are separation constants and the wavenumber k equals 

(2.22) 

The general solution to Equation (2.17) is formulated as [2.2]: 

Ｂ Ｌ Ｈ ｲ Ｌ ｾ Ｌ ｺ Ｉ = R(r) ＼ Ｑ ＾ Ｈ ｾ Ｉ Z(z) 

= [A1Jn (Prr) + ｂ ｉ ｈ ｾ Ｒ Ｉ Ｈ ｐ ｲ ｲ Ｉ ] x (2.23) 

[A 2e-in+ + B2e+in+ J[ A3 cos(Pzz) + B3 sin(Pzz)] 

and n is of integer order. 

In this solution the Bessel functions In(Prr) represent radial standing waves, 

whereas the Hankel functions ｈ ｾ Ｒ Ｉ Ｈ ｐ ｲ ｲ Ｉ represent waves carrying energy away 

from the origin. It should be noted that the particular form of the solution can be 
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modified depending on the application. The exponential functions of cl> can be 

substituted by trigonometric cosine and sine functions to form a periodic wave 

solution and similarly exponential functions of z can be used to describe travelling 

waves. Also, the kind of Bessel functions can be chosen appropriately for the 

physical solution they are to represent. 

As mentioned previously the solution presented in Equation (2.23) can represent a 

vector potential function and can be applied to decoupled general field solution 

into different types of transverse modes. It is noted that general Maxwell's 

equations are valid for all space and boundary conditions. However, by deriving 

the fields from vector potential functions, the transverse modes can be expressed 

in terms of a single scalar solution which in practice is easier to obtain than the 

full vector fields. Therefore, a brief introduction to vector potentials will be given. 

2.3. Vector Potentials 

2.3.1. Vector Potential A 

In a source-free region the magnetic density B satisfies V'. B = o. It can be 

therefore represented as a curl of another vector as it obeys the vector identity 

V .(V'xA) = 0 

where A is an arbitrary vector. Thus, 

1 HA=-VxA 
/-l 

(2.24) 

(2.25) 

where the subscript A indicates the fields present due to the potential A. Hence 

Maxwell's equations can be written as: 

(2.26) 
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(2.27) 

By mathematical manipulation of the above equations and Equation (2.25) it can 

be shown that [2.2]: 

where A is the solution of 

EA =-jmA- j_l_V(V.A) 
milE 

(2.28) 

(2.29) 

Once the vector potential A is known both HA and EA can be calculated from 

Equations (2.25) and (2.28) respectively. 

2.3.2. Vector Potential F 

In a source-free region the magnetic density D satisfies V· D = O. It can be 

therefore represented as a curl of another vector as it obeys the vector identity 

V ·(-VxF) = 0 (2.30) 

where F is an arbitrary vector. Thus, 

1 
D F = -V x F or EF = - - V x F 

E 
(2.31) 

where a subscript F indicates the fields present due to the potential F. The 

Maxwell's equations can be formulated as: 

(2.32) 

(2.33) 

By mathematical arrangements of the above equations and Equation (2.31) it can 

be shown that [2.2]: 
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where F is the solution of 

HF =-jroF- j_l_V(V.F) 
roJ..1E 

(2.34) 

(2.35) 

Once the vector potential F is known both EF and HF can be obtained from 

Equations (2.31) and (2.34) respectively. 

It should be clear that the vector potentials A and F must satisfy the vector 

Helmholtz equation. It is also noted that the total fields can be expressed as a 

superposition of both vector potentials, i.e. 

(2.36) 

H = HA +HF =IVxA- jroF- j_l_V(V.F) 
J..1 roJ..1E 

(2.37) 

In practice, rather than constructing three components of A or F it is more 

convenient to use for example A = zAz or F = zFz as the unknowns. 

2.4. Modal Solutions 

The aim of this section is to present the field configurations (modes) that are 

used in this work as local field solutions. These are: Transverse ElectroMagnetic 

(TEM) modes whose electric and magnetic field components are both transverse 

to the direction of propagation; Transverse Magnetic (TM) mode whose magnetic 

field components are transverse to the direction of propagation and finally 

Transverse Electric (TE) mode with electric field components transverse to the 

direction of propagation. Again the focus is placed upon cylindrical modes. 

For any z-directed field potential defined by: 
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(2.38) 

(2.39) 

the total electric and magnetic field solutions can be derived from Equations 

(2.36) and (2.37) utilising the differential operators detailed in section 3 of 

Appendix A and are expressed by: 

'" { . 1 (k2 ii) } +a -J-- +- A 
z ID J.lE DZ2 Z 

(2.40) 

(2.41) 

Utilising this general solution for total fields the transverse modes will be next 

discussed. 

2.4.1. Transverse Magnetic (TM) Mode 

For a TM mode the magnetic field components are transverse to the 

direction of propagation. The expression that is valid for TM fields will be derived 

here for any general field in the form of ej(OlI-P,Z). To accomplish this, the 

following is assumed: 

Ｉ ｬ ］ ｡ ｺ ａ ｺ Ｈ ｲ Ｌ ｾ Ｌ ｺ Ｉ

F=O 
(2.42) 
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Recognising the fact that for exponential variation of field as described above 

(2.43) 

and furthermore that for TM mode there is no variation along z-direction, hence 

J3z = 0 , the wave equation given in Equation (2.17) that must be satisfied by the 

vector potential A reduces to: 

(2.44) 

Separating this equation to an ordinary differential equation, as shown above, the 

vector potential can be identified in the form [2.3]: 

(2.45) 

The remaining field components are found using Equation (2.40) and (2.41) and 

are respectively: 

E =0 r 

Ea =0 (2.46) 

. k2 

E =-]-A 
z ｯ Ｉ ｾ ｅ z 

H =0 z 

2.4.2. Transverse Electric (TE) Mode 

For a TE mode the electric field components are transverse to the direction 

of propagation. The TE mode can be derived by analogy to the TM polarisation 

presented above by assuming: 
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A=O 

F = ｡ ｺ ｆ ｺ Ｈ ｲ Ｌ ｾ Ｌ ｺ Ｉ
(2.47) 

Similarly, the vector F must satisfy the Helmholtz equation: 

(2.48) 

where pz = 0 and k2 = P; = W\I£ • 

Utilising the separation of variables method the following solution can be 

obtained: 

and remaining field components are found using Equation (2.40) and (2.41) 

E = _.!. oFz 

r Er ｯ ｾ

E =.!. oFz 

9 6 Or 

E =0 z 

H =0 r 

. k2 . 
H =-j-F z z 

W).1E 

2.4.3. Transverse Electro-Magnetic (TEM) Mode 

(2.50) 

The Transverse Electro-Magnetic mode is defined by existence only of 

electric and magnetic field components that are transverse to the direction of 

propagation. Hence Ez = 0 and Hz = O. From Equation (2.43) and the definition 

of z-components given in Equation (2.40) and (2.41) it is clear that the Ez and 

Hz can be forced to zero when Pr = O. Hence k2 = P; = W2
).16. The transverse 

field elements are: 
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E = ｟ ｪ ｟ ｬ ｟ ｾ oAz _.!..!. oFz 

r Ｈ ｊ Ｉ ｾ ｅ or oz E r ｯ ｾ

Ee = ｟ ｪ ｟ ｬ ｟ Ｎ Ａ Ｎ ｾ oAz +.!. oFz 

Ｈ ｊ Ｉ ｾ ｅ r ｯ ｾ oz E or 

H = ｟ ｪ ｟ ｬ ｟ ｾ oFz +!.!. oAz 

r Ｈ ｊ Ｉ ｾ ｅ or oz ｾ r ｯ ｾ

He = ｟ ｪ ｟ ｬ ｟ Ｎ Ａ Ｎ ｾ oFz _! oAz 

Ｈ ｊ Ｉ ｾ ｅ r ｯ ｾ OZ Jl or 

where Az and Fz can be proven to be in the form: 

ａ ｺ Ｈ ｲ Ｌ ｾ Ｌ ｺ Ｉ = ｆ ｺ Ｈ ｲ Ｌ ｾ Ｌ ｺ Ｉ = [ Alr n + Blr-n 
] 

x[ A 2e -jn41 + B2e+jn41 J[ A3 cos(Pzz) + B3 sin(Pzz)] 

(2.51) 

(2.52) 

It is noted that for the case of k = Pz the Helmholtz equation presented In 

Equation (2.12) or (2.13) reduces to the Laplace equation. Therefore, the solution 

presented in Equation (2.52) represents static field. Hence, the solution of R(r) is 

no longer represented by Bessel and Hankel functions as in the case of TM and 

TE mode but is given by: 

(2.53) 

It can be interpreted as a limiting case of Bessel and Hankel functions when 

ｈ ｾ (Prr) = C
2 
r-n where Cl and C2 are constants. It is also underlined that in 

Equation (2.51) only one of the vector potentials needs to be used to calculate the 

transverse field components, as in this static problem potentials A and F give rise 

to the same E and H fields. 
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2.5. Plane Wave Scattering from a Cylinder 

The aim of this section is to describe the problem of plane wave scattering 

by cylindrical structures in a homogenous space as this configuration often recurs 

in the models presented in this thesis. Consider an infinitely long cylinder is 

placed along the z-axis, as presented in Figure 2.1. A plane wave travelling in the 

+x-direction is incident normally upon the structure with electric field: 

(2.54) 

x 

Figure 2.1. Plane wave incident normally upon cylinder 

To satisfy the boundary conditions on the cylinder it is convenient to express the 

plane wave in terms of cylindrical functions. Specifically, the incident field can be 

expressed as an infinite sum of cylindrical wave functions using the Jacobi-Anger 

expansion of the form: 

co 

ｅ ｾ ］ Ｍ ｪ ｐ ｲ ｣ ｯ ｳ ｾ = I Ｈ Ｍ ｪ ｴ ｊ ｮ Ｈ ｾ ｲ Ｉ Ｍ ｪ ｮ ｾ (2.55) 
n=-co 

ｉ ｮ Ｈ ｾ ｲ Ｉ are Bessel functions of the first kind and order n and the propagation 

constant ｾ = k as the field is invariant in the z-direction, where k is the 

wavenumber of the medium, for free space assigned as ko· 
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To represent the outgoing or scattered wave the Bessel functions of the second 

kind, known also as Hankel functions are employed and the expansion takes the 

fonn: 

(2.56) 
n=--ao 

Therefore the total field, defined as the superposition of the incident field ｅ ｾ and 

the scattered field E:, is given by: 

ｅ ｾ ］ ｅ ｾ +E: = t [(-jt ｊ Ｈ ｰ ｲ Ｉ Ｋ ｂ ｮ ｈ ｾ Ｒ Ｉ Ｈ ｰ ｲ Ｉ ｊ ･ Ｍ ｪ ｮ Ｎ (2.57) 
o=--ao 

To detennine the total field, the unknown so far scattered field coefficients, BD, 

need to be calculated. To accomplish this, the boundary conditions at the surface 

of the cylinder must be applied. 

2.5.1. Boundary Conditions at the Surface of Cylinder 

Consider an infinitely long z-directed cylinder as presented in Figure 2.1. 

The surface of the cylinder divides the space into two regions of parameters 

(£\,J.l\) outside cylinder and (£2,J.l2) enclosed by the cylinder. Faraday's law for 

electric and magnetic field enforces the continuity of the tangential field 

components at the interface [2.3], which is defined as: 

(2.58) 

where the subscript t denotes tangential field and the numbers 1 and 2 regions 

outside and inside the cylinder respectively. In vector fonn the above can be 

expressed as: 

(2.59) 
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where ii is a vector nonnal to the cylinder surface. 

To sum up, the tangential components of electric and magnetic field must be equal 

on the two sides of any boundary between physical media. This condition 

however may be modified for an idealised case such as perfect conductor. In such 

model, since the electric field is zero within the perfect conducting cylinder, 

continuity of tangential electric field at the boundary requires that the surface 

tangential electric field be zero just outside the boundary, hence 

(2.60) 

From the integral fonn of Gauss's law for a charge-free region the following can 

be concluded [2.3]: 

Dol = Do2 

Bol = Bo2 

or 

or 

(2.61) 

(2.62) 

That is, nonnal components of electric and magnetic flux density are continuous 

at the boundary. For the case of perfect conductor the magnetic field vanishes 

inside the cylinder, hence 

(2.63) 

These boundary conditions will be discussed in detail when practical 

configurations are studied in the following chapters and calculations of scattered 

field coefficients will be shown. 

In the above sections the analytical solution to Maxwell's equations has been 

introduced based on the problem of electromagnetic field scattered from a 

cylindrical structure. However, in many engineering problems the analytical 

solution is intractable and Maxwell's equation can only be solved by numerical 
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means. Therefore, in the next section the numerical techniques will be discussed 

with the main focus placed on the Transmission Line Modelling method. 

2.6. Transmission Line Modelling (TLM) Method 

There are a variety of numerical methods available for obtaining the 

solution to Maxwell's equations. The two that have become widespread due to 

their flexibility and relative ease of use are the Finite Difference Time Domain 

(FDTD) [2.5] and Transmission Line Modelling (TLM) methods [2.6]. Both these 

techniques have been successfully applied to a variety of complex electromagnetic 

problems. Owing to the time-domain nature of these algorithms, a response 

containing a wide range of frequencies can be obtained in a single computational 

run. In the well-known FDTD method, the problem space is overlayed by a 

system of meshes and the derivatives in Maxwell's equations are directly 

approximated in tenns of difference quotients over a small interval [2.7]. Hence, 

field at each point of the mesh is calculated with relation to its neighbours. The 

TLM method is based on a discrete representation of Huygens' principle [2.8,2.9] 

which is implemented by the scattering of voltages impulses in a mesh of short 

commensurate transmission lines interconnected at junctions called nodes. The 

pulses are partially reflected and transmitted according to transmission line theory 

and the scattered pulses at a particular time step become incident at the adjacent 

nodes at the next time step. In this way the disturbance propagates and spreads in 

space. Therefore, the TLM method exhibits a clear isomorphism between the 

field quantities and the lumped circuit equivalents of transmission lines which 

results in an explicit scheme. 
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TLM also offers two important advantages over FDTD. Whilst in FDTD the 

electric and magnetic fields are separated in space and time by a half of the cell 

size and a half of the time step respectively, all fields in TLM coincide at the same 

point in time and space. This makes TLM highly applicable for simulations of EM 

wave propagation in complex materials, such as frequency-dependent [2.10], 

anisotropic [2.11], and nonlinear materials [2.12]. An additional advantage when 

developing TLM algorithms comes from the fact that the field quantities are 

mapped onto a passive electrical circuit equivalent which ensures that TLM is 

provably stable and conservative at a local level. Furthermore, the circuit 

representation allows a high level of hybridisation of TLM with other techniques 

[2.13] and lumped circuit models of components and devices. 

A detailed formulation of the TLM method which has been employed throughout 

this project is available in [2.6, 2.8, 2.9]. However, the necessary fundamentals 

are presented below. 

2.6.1. Two-Dimensional TLM 

In two-dimensional problem with ..£-. = 0, Maxwell's equations can be 
8z 

decoupled into two field configurations, namely Transverse Magnetic (TM) and 

Transverse Electric (TE) modes. Depending on the mode selection, two different 

nodal implementations of TLM circuit are considered, i.e. the shunt and series 

node models. 
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2.6.1.1. Shunt Node 

To maintain consistency with the notation common in TLM literature [2.8] 

and the derivations given in previous sections, the fields are taken to propagate in 

the x-y plane with no variation along the z-direction. Hence, the Transverse 

Magnetic (TM) modes comprise only three non-zero components, i.e. Hx ' Hy and 

Ez • Maxwell's equations presented in general form in section 4 of Appendix A, 

now reduce to: 

aHy aHx aEz -----=E--
ax ay at (2.64) 

The rearrangement carried out by differentiating and then eliminating the 

magnetic field component gives the 2D wave equation: 

(2.65) 

The shunt lumped element model, which is the building block or unit cell of two-

dimensional TLM network for TM polarisation is presented in Figure 

2.2(a). It will be now argued that the voltage and current in the circuit are 

analogous to electric and magnetic field in Maxwell's equations. 

Setting ｾ ｬ = ｾ ｸ = ｾ ｹ = ｾ ｺ very small compared to the shortest wavelength of 

interest, the size of each mesh element can be considered infinitesimal, then the 

voltages and currents change according to Kirchhoffs and Ampere's laws: 

avz =-L aIx , 

ax at 
av OIy 
_z =-L-, ay at 

OI x + aIy = -2C avz 

ax ay at 
(2.66) 

It is noted that the node capacitance is twice that of an individual line section due 

to the parallel connection at the node where L and C are assumed to be the 

inductance and capacitance per unit length of 1. Differentiating the above 
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equations in pairs with respect to x and t or y and t, and combining them together 

leads to a similar expression to Equation (2.65): 

(2.67) 

Thus, comparing Equation (2.67) with Equation (2.65), the following 

equivalences are established: 

As observed, the shunt node models a medium of parameters (2f:, J.l) • 

b) 

2 Vi_ 

V.-

(2.68) 

.-V' 4 
-v 

Figure 2.2. TLM shunt node (a) and its transmission line equivalent (b) 

Figure 2.2(a) shows a circuit representation of Maxwell's equations in a shunt 

configuration. In principle, this Le circuit can be solved using any circuit 

technique. However, an explicit algorithm, which is computationally simpler can 

be obtained by replacing the Le circuit with an equivalent transmission line 

model, as presented in Figure 2.2(b). To achieve this, the equivalences between 

the Le components and characteristic impedance of a transmission line need to be 

identified. 
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TLM Models of Inductor and Capacitor 

The models of capacitors and inductors that form the basic components of TLM 

network will now be developed. Let the capacitance and inductance per unit 

length of a transmission line of ｾ ｬ presented in Figure 2.3(a) be Cd and Ld and 

the propagation delay be defined as ｾ ｴ Ｌ

a) --'Y'T:- b) ___ 

L C z 
T 

Figure 2.3. A segment ofLC circuit (a) and its transmission line equivalent (b) 

The components of the LC circuit shown in Figure 2.3(b) are: 

As the velocity of propagation along the line is given by: 

ｾ ｬ 1 
u=-= 

ｾ ｴ JLdCd 

the capacitance and inductance per unit length are determined as: 

L ］ Ｈ ｾ ｴ Ｉ Ｒ ｟ Ｑ
d ｾ ｬ C 

d 

and C ］ Ｈ ｾ Ｑ Ｉ Ｒ ｟ Ｑ
d ｾ ｴ L 

d 

The transmission line characteristic impedance is: 

and 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

Hence, the capacitor can be modelled by a transmission line of characteristic 

impedance Ze but with associated inductance equal to 

L = ｌ ､ ｾ ｬ = Ｈ ｾ ｴ Ｉ Ｒ
e C (2.73) 
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whereas the inductor can be replaced by a line of impedance ZL with associated 

capacitance of 

C = C ｾ ｬ = Ｈ ｾ ｴ Ｉ Ｒ
c d L (2.74) 

Both, Le and Cc can be regarded as a modelling error and could be minimised by 

decreasing the time step ｾ ｴ Ｎ It is therefore argued that a transmission line with 

large impedance value can represent an inductor of L = ｚ ｾ ｴ Ｌ with the second 

order accurate approximation and a line with small impedance corresponds to 

a capacitor of C = ｾ ｴ I Z. Such models are known in the literature as link models. 

Based on the above discussion special cases can be derived, for instance when 

a capacitor or inductor terminates the LC circuit. In such scenarios, a capacitor is 

modelled by an open-circuited transmission line and an inductor by a short-

circuited transmission line. Such models are referred to as stubs and their 

characteristic impedances can be derived analogously to the link line impedances. 

The propagation velocity on a line is now defined as: 

ｾ ｬ 1 
u------=== 

- ｾ ｴ ｬ Ｒ - ｾ ｌ ､ ｃ ､
(2.75) 

from which 

L = Ｈ ｾ ｴ Ｉ Ｒ and 
d Ｔ ｃ ｾ Ｑ

(2.76) 

Hence, the characteristic impedances of capacitive and inductive stubs are: 

(2.77) 

with associated errors in the form of inductance and capacitance respectively 

given by: 
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L =LAt=(At)2 
e d 4C and C =CAI=(At)2 

e d 4L (2.78) 

Although identifying the corresponding series inductor-capacitor combinations 

required in the equivalent transmission line model is perfectly valid, in this thesis 

the transmission line parameters are often implemented as the input impedance to 

the stub. U sing a general formula for an input impedance of a transmission line 

loaded with impedance ZI of the form: 

Z. = Z ZI + jZo ｴ ｡ ｮ Ｈ ｾ ａ ｬ Ｉ
ID 0 Zo + jZI ｴ ｡ ｮ Ｈ ｾ ａ ｉ Ｉ

(2.79) 

and assuming open circuit termination which requires that ZI = 00 the input 

impedance looking into a capacitive stub can be calculated as: 

Z. = Zc 
ID jtan(pAI) 

(2.80) 

where 
ID At 

PAl =-AI =ID-
u 2 

(2.81) 

As for the short-circuited stub the inductor model can be examined in the 

frequency model when the input impedance for a transmission line of 

Equation (2.79) is considered with the load impedance ZI = o. Thus, the input 

impedance looking into an inductive stub model takes the form of: 

(2.82) 

Having established equivalences between LC circuit and a transmission line the 

shunt node from Figure 2.2(a) is then replaced by a model shown in Figure 2.2(b). 

A time domain algorithm is recovered using principles of transmission line theory. 
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The voltages and currents at port 1 to 4 presented in Figure 2.2(b) are defined in 

terms of the incident and reflected voltages on the transmission lines utilising: 

(2.83) 

where ｖ ｾ and V; are the incident and reflected voltages respectively on line n and 

Y;L is the link line admittance of line n; in case of free space being considered as 

a medium this admittance is YTL = (l201trl S. Computations in a shunt node are 

then performed by introducing the relationship between the incident and reflected 

voltages in the form: 

(2.84) 

where k Vi and k V r are vectors of the four incident and reflected voltages 

respectively at the ports at time step k, and scattering matrix § is defined as: 

-1 1 1 1 

1 -1 1 1 
S=O.5 (2.85) 

1 1 -1 1 

1 1 1 -1 

Pulses incident on the ports of the node defined in space by (x,y) at the time step 

k+ 1 are the pulses reflected from adjacent nodes at the previous time step k. 

Therefore, the incident voltages on node (x,y) for vacuum depend entirely on the 

nodes connected to it and the so-called connection process is described as: 

k+IVI(X,y) = kV3(x,y-l) 

k+IV2(X,y) = kV4(x-l,y) 

k+S3(X,y) = kVl(X,y+l) 

k+lV4(X,y) = kV2(x+l,y) 

(2.86) 

where x, y are the space indices of the mesh cells and this is schematically 

illustrated in Figure 2.4. 
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:-------------3 Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

i v; t ! v; i 
, , 
: ｶ ｾ ｾ ｬ
1---' 4: 

(x.y- I ) _: 
v' : 

, 1 

: __ ______ ｾ ｌ ､ ｟ ｾ ｾ ________ ｾ

(x+ I,y) 7 i . , 

Figure 2.4. A diagram illustrating connection process for empty space two-

dimensional TLM mesh 

2.6.1.2. Series Node 

The Transverse Electric (TE) modes consist of only the three non-zero 

components, i.e. Ex' Ey and Hz ' and hence, Maxwell's equations reduce to: 

8H z 8Ex --= E--, 
ay at 

oH oEy 
___ z =E--

oX at ' 
oEy oE oH __ _ __ x =-I-l -_z 
ox ay at 

(2.87) 

These can be rearranged by differentiating and eliminating the electric field 

component to give the 2D wave equation: 

(2.88) 

The structure referred to as a series node is presented in Figure 2_5(a). 
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It is desirable to devise circuits in which the variation of the circuit quantities 

exhibit isomorphic behaviour to those in Equation (2.88). From Kirchhoffs 

voltage and Ampere's current law the following can be formulated: 

OIz _ C oVx --- --, ay at 
OI oVy 
_z =-C--, 
ox at 

oVx + oVy = -2L OIz 

oy ox at (2.89) 

Differentiating the above equations in pairs with respect to x and t or y and t, and 

combining them together gives the required isomorphism to Equation (2.88): 

(2.90) 

Comparing Equation (2.90) with wave Equation (2.88) the following equivalences 

are determined: 

Thus, the series node models a medium of parameters (2J..l, E) . 

a) 

2 

3 

+ ! 

fiY! 
i 
i 

Ll2 ! 
! 
: 

b) 

! yi_ 
!4 2 Yn 
! y'-

ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ａ Ｍ Ｍ ｾ .. ｾ ｾ

ｾ
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ｾ

fix ｾ.......................................... 'i ............................................ . 

3 
Vi v' 

! f 
Yn 

Yn 

t l 
Vi v' 

I 

(2.91) 

Yn 
_Vi 

-vr 4 

Figure 2.5. TLM series node (a) and its transmission line equivalent (b) 
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Computations in a series node are performed by employing the transmission line 

equivalent shown in Figure 2.5(b) and using similar scattering and connection 

paradigm as for a shunt node with the only difference lying in the scattering 

matrix representation, which now is: 

1 1 1 -1 

1 1 -1 1 
S=O.5· 
= 1 -1 1 1 

-1 1 1 1 

The explicit algorithm has been formulated for both shunt and series node that 

calculates the EM field at each point of the mesh at an incremental time step ｾ ｴ

starting from time to at which all the initial conditions are set. The boundary 

conditions at the edges of the computational window are implemented in the 

connection phase at the appropriate port(s) for the boundary points. Typical 

examples of boundaries are illustrated in the next sub-section. 

2.6.1.3. Boundary Conditions 

Due to finite computational resources the extent of the computational 

domain is restricted in simulations by introducing numerical or physical 

boundaries. Furthermore, either symmetry or material boundaries need to be 

accounted for. Typical examples of boundary conditions are presented in 

Figure 2.6; so called short circuit (sic), open circuit (o/c) and matched boundary 

condition. 

It is noticeable that the boundaries are modelled by introducing the impulse 

reflection coefficient r in the TLM network. For sic r = -1 and the olc boundary 

sets r = 1 . Such boundaries are perfect reflecting walls of either zero or infinite 
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impedance. For the matched boundary condition of Figure 2.6(c), which is used to 

model open boundaries at the interface with an infinite region or free space, the 

reflection coefficient is defined as r = (YTL - Y) /(YTL + Y). Matching the 

admittance Y to the one of simulated media allows the outward propagating 

radiation to be absorbed and hence truncate the problem in space. This creates an 

illusion of an infinite space for unbounded field simulations, which otherwise 

would require an unlimited data storage. 

a) Vi 
n 

b) Vi 
n 

c) Vi 
n 

_-II ___ -=:4==.0 

- ___ f-----=-'O -V r 
n 

Figure 2.6. Boundary conditions: short-circuit (a), open-circuit (b) 

and matched (C) 

It should be pointed out that for 2D TLM the discretisation error called dispersion, 

which is manifested by phase velocity error for high frequencies, requires the cell 

size to be set approximately one-tenth of the smallest simulated wavelength [2.8], 

for either of the node configurations illustrated above. It is also noteworthy that 

shunt and series representations are perfectly dual. According to the Babinet's 

principle, one case can be transformed into the other by simply replacing voltages 

V with currents I, E with ｾ Ｌ and admittances Y with impedances Z, [2.10]. This 

implies that both TM and TE case can be modelled with only one of the node type 
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shown above. However, as will be shown later, both shunt and series nodes are 

applied in this work. 

2.6.2. Time Step Criteria and Stability 

In this section the time step requirements and the stability of the 2D TLM 

model will be briefly discussed. Consider a medium of (E,J!) modelled by a shunt 

node presented in Figure 2.7(a). If the time step of the calculation is chosen to be 

ｾ ｴ Ｌ the propagation time on each line presented in Figure 2.7(c) is ｾ ｴ ｬ Ｒ Ｎ It is 

now intended to identify transmission line parameters for such a node. 

Figure 2.7. Shunt node and its transmission line implementation 

The values of inductor and capacitor as discussed previously are L = Z ｾ ｴ = J! ｾ ｬ

and C = ｾ ｴ I Z = E ｾ ｬ 12 respectively. The link line impedance of the equivalent 

transmission line presented in Figure 2.7(c) is now chosen to be ｚ ］ ｊ Ａ ｾ ｬ ｉ ｾ ｴ Ｎ

Each of the link inductor models is associated with a capacitance Cc given in 

Equation (2.74). Hence, the effective capacitance to he modelled is now 

C
etT 

= 2C - 4Cc = 2C Ｍ Ｔ Ｈ ｾ ｴ Ｏ Ｒ Ｉ Ｒ IL/2. Therefore, the required value of stub 

admittance Y is: Y = CetT = (E ｾ ｬ Ｒ ｾ ･ ) I ｾ ｴ Ｎ
s s ｾ ｴ ｊ Ａ ｾ ｬ
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It is well known that the TLM model is stable provided that all components of 

transmission lines have non-negative values [2.8], thus Ys ｾ o. This places a 

constraint on the time step that has to be selected according to formula: 

ｾ ｴ ｾ EJ.l;1 . For empty space this equals ｾ ｴ ｾ E0h-ｾ ｾ ｾ and the transmission 
,,2 2 ,,2c 

line velocity u = ｾ ｬ ｾ hc where c is speed of light. 
ｾ ｴ

The last statement indicates that the wave on the transmission line cannot travel 

faster than the speed of light. It is also pointed out that in the TLM simulation it is 

required to keep the time step constant for the whole network, therefore, the only 

parameter that can be manipulated is the impedance of the line. Thus, by 

identifying the required capacitance and inductance the transmission line model 

can be designed and implemented using appropriate link and stub values 

2.6.3. 3D TLM 

Most of the problems encountered in engineering applications are three 

dimensional and cannot be meaningfully simplified to two-dimensional systems, 

therefore 3D, full-vector models are of great demand. It is intuitive that whereas 

shunt and series nodes model TM and TE modes, each consist of three field 

components, the combination of these two variations should give a full 

description, six vectors of the field, Le. three magnetic and three electric field 

elements. The appropriate topology of a 3D unit cell called Symmetrical 

Condensed Node (SCN) is shown in Figure 2.8. 
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Figure 2.8. Three-dimensional Symmetrical Condensed Node (SCN) 

The 3D node consists of 12 ports representing 2 polarisations in each coordinate 

direction. The voltages corresponding to those two configurations are carried on 

transmission line pairs highlighted in Figure 2.8 by the lines of different colours. 

Following the same approach as for the 2D nodes the equivalence between fields 

and circuit parameters is established in the form [2.8]: 

Ex == Vx' 

E y == Vy ' 

Ez == Vz' 

Hx == Ix 

Hy == Iy 

H z == I z 

(2.92) 

Computations in 3D case follow similarly to the procedure obtained for a mesh of 

transmission lines in 2D. The calculation starts by imposing initial conditions and 

excitation. The pulses propagate along transmission lines and are scattered 

according to the transmission line theory. For empty space simulation the 

scattering matrix is derived as [2.8]: 
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0 1 1 0 0 0 0 0 1 o -1 0 

1 0 0 0 0 1 0 0 0 -1 0 1 

1 0 0 1 0 0 0 1 0 0 0 -1 

0 0 1 0 1 0 -1 0 0 0 1 0 

0 0 0 1 0 1 o -1 0 1 0 0 

S=0.5 
0 1 0 0 1 0 1 o -1 0 0 0 

= 0 0 0 -1 0 1 0 1 0 1 0 0 

0 0 1 0 -1 0 1 0 0 0 1 0 

1 0 0 0 0 -1 0 0 0 1 0 1 

o -1 0 0 1 0 1 0 1 0 0 0 

-1 0 0 1 0 0 0 1 0 0 0 1 

0 1 -1 0 0 0 0 0 1 0 1 0 

The scattering matrix refers to the Figure 2.8 where the port voltages are 

numbered from 1 to 12. The connection algorithm for the empty space simulation 

is similar to the 2D approach and is expressed by simple exchanging of voltages 

between neighbouring nodes. 

2.7. Closing Remarks 

In this chapter the principles of electromagnetic field theory have been 

presented. The main focus has been placed on cylindrical waves scattered from 

the circular-shaped cylinders as this problem is widely studied in this thesis for 

different practical configurations. Therefore, the wave equation was derived from 

Maxwell's equations and its solution was discussed from the modal point of view. 

The necessary background theory of the Transmission Line Modelling (TLM) 

method was also given. Two nodal configurations, namely the shunt and series 

nodes were shown as these are frequently used throughout this project. The basic 

unit of a 3D network, the so called Symmetrical Condensed Node was also 
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demonstrated. Finally, the concept of link and stub components is described as 

these elements form fundamental building blocks of TLM networks. 
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Chapter 3 

A General Approach to Embedding Sub-

Wavelength Objects into TLM 

In this chapter the approach used in this thesis that enables arbitrarily 

shaped sub-wavelength structures to be embedded into a single 3D TLM cell will 

be presented. A special node will be derived that encloses fine objects and mimics 

the behaviour of such features under the exposure to electromagnetic fields. 

Solutions for electromagnetic fields in the presence of the small objects under 

consideration will be given in the first part of this chapter, followed by a 

description of the process of linking these solutions with the adjacent cells of a 

time-domain numerical network. A scattering algorithm for the special node 

developed will be presented at the final stage of this section. 

3.1. General Concepts 

The philosophy of the approach is to identify a suitable set of local 

frequency domain solutions to Maxwell's equations within the vicinity of the 

enclosed object and, by sampling the fields on the boundary of the TLM cell, to 

interface these with the numerical algorithm. The idea, whilst straightforward in 

principle, must yield an overall algorithm that is computationally stable and, as 
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will be shown below, this requires that the local field solutions must be sampled 

in a physically consistent manner. It is underlined that identifying the required 

local field solutions is a pre-processing activity of the proposed scheme and 

furthermore there is no requirement placed upon how these are obtained, only on 

how they are interfaced with the rest of the numerical algorithm. As will be 

demonstrated further in this thesis, in some cases it is possible to obtain a suitable 

set of local solutions by completely analytic means. However, it is equally 

permissible to use purely numerical or experimental techniques to obtain the 

required set for those structures where an analytical solution is hard to formulate 

or is unavailable. This important observation emphasizes the flexibility of this 

work and the generic nature of the special node with fine features embedded to be 

described. 

3.2. Theoretical Formulations 

Consider a small object bounded by a cuboidal surface, a 3D TLM cell, as 

shown in Figure 3.1. To clarify the terminology used in this work, a volume of 

empty space in the presence of EM fields is referred to as a cell and an equivalent 

electrical circuit model used in the TLM method to mimic the behaviour of the 

fields in that cell as a node. It is intended to map the tangential electric and 

magnetic field on each face of the cube to a voltage and current in an equivalent 

electrical network. As all passive electrical networks are reciprocal this places a 

constraint upon the relationship between the fields and the network quantities. 

However as the cubical surface, which contains a scattering object, completely 

encloses the volume of space, the tangential fields on the faces of the cube also 
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satisfy a well known reciprocity relationship, a fact that underpins the viability of 

fmding a suitable mapping from fields to voltages and currents. In practice, this 

mapping must involve discretely sampling the continuous fields and if this is not 

performed correctly, the reciprocity exhibited by the fields will not carry over to 

the electrical network as required. For instance, simply directly sampling the 

tangential electric and magnetic fields at the centre of each face, numbered from 1 

to 6 in Figure 3.1, does not, in general, maintain reciprocity. 

Figure 3.1. An example of a fine feature enclosed by a 3D TLM cell 

The fields inside the cube are represented as a superposition of local vector field 

solutions, en and hn weighted by expansion coefficients Xn• Each local solution is 

required to satisfy the boundary conditions on the enclosed object. 

(3.1) 
n n 

Here and throughout, (double) underlined quantities denote (matrices) column 

vectors and full field vectors are denoted in bold. 

It will be shown that it is possible to identify such a representation that is 

complete with respect to the tangential fields on the surfaces of the cubic cell. 

55 



Chapter 3 - A General Approach to Embedding Sub-Wavelength Objects into TLM 

A set of ports is defined as spatially non-overlapping regions of the surface 

enclosing the volume of the computational cell, in this case the faces of the cube. 

Each port corresponds to a surface denoted by Sp where p = 1,2, ... , 6. Port 

voltages can be now defined so that the tangential electric field on Sp is 

represented in the form: 

(3.2) 

where the port voltages are expressed by 

Vpm = ｊ ｦ Ｈ ｾ . EtdS (3.3) 
Sp 

and fp is a set of orthonormal vector basis functions defined for port p. In addition 

the normalisation of JI f;m . fpo dS = cSmn has also been assumed; where subscripts 
S, 

n, m denote a pair of basis functions. 

Often in practice only two terms of !p will be used in Equation (3.2), each 

representing one of the orthogonal polarisations of the tangential electric field on 

each face as is the case for the conventional TLM node. This is consistent with the 

TLM cell being small compared to the smallest wavelength available in 

simulation (although modification may be needed if enclosed object is close to the 

face). For ｩ ｮ ｳ ｴ ｡ ｮ ｣ ･ ｾ when considering the Cartesian coordinate system and the 

surface p = 1 of the cubical cell illustrated in Figure 3.1, two basis functions can 

be chosen f(( = x and f12 = Y. It is noted that choosing these two terms to be the 

two unit vectors in the plane of the face allows straightforward interfacing with 

adjacent conventional TLM nodes. Nevertheless, more complex basis functions 
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could be used to allow higher order schemes to be derived, if desired or if deemed 

necessary, 'to correctly capture the physical processes involved. For example, 

when considering an object that passes through the surface Sp it might be 

necessary to increase the number of basis functions to remain consistent with the 

boundary conditions existing at that face. This scenario will be discussed later in 

this thesis based on the example of tilted wire passing through the cell. Further 

detailed consideration of these cases is omitted at this stage, as the emphasis of 

this chapter is the development of the overall framework of the model. 

Substituting Equation (3.1), the electric field formulation, into Equation (3.3) 

leads to a definition of a general voltage vector defined as: 

v = ｊ ｊ ｦ ﾷ ｾ ｔ ､ ｓ ｘ ］ ｾ ｘ (3.4) 
s 

The vector of expansion coefficients X in Equation (3.1) can be now determined 

from the port voltages as: 

X=u-1v=wv 
- ==- ==-

and hence the general tangential field solutions will be expressed in the form: 

T E=e wV - .... - and H=hTwV - .... -

(3.5) 

(3.6) 

It should be pointed out that Equation (3.5) indicates that matrix ｾ must be non-

singular and invertible-square, which in effect requires that the number of basis 

fields in Equation (3.1) is the same as the number of port voltages. It will be 

shown later in this thesis that this is not necessarily the case and consequently 

matrix w should be interpreted as the general inverse of !!, as discussed in [3.1]. .... -
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Having defined the relationship between the tangential electric fields and the port 

voltages, port currents are now defined in a similar manner, i.e. 

(3.7) 

where Sp is the unit vector normal to the surface Sp. 

Thus 

(3.8) 
Sp Sp n m m 

When mapping the fields to passive network quantities the power must be 

conserved, i.e. 

fIE· xH·dS =V H! (3.9) 
Sp 

where the superscript H denotes Hermitian, i.e. conjugate transpose. Combining 

Equations (3.6) and (3.9) the following can be derived: 

H H[II· T] H V ｾ S ｾ xh ·dS wV = V ! (3.10) 

This condition leads to a reciprocal admittance relationship between the discrete 

sets of port currents and voltages which completely characterise the response of 

the special node: 

(3.11) 

or in a general form: 

I=YV - =-
(3.12) 
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It should be clear that the reciprocity relationship satisfied by the local field 

solutions en and ho, which are used to represent the total electric and magnetic 

fields, i.e. 

(3.13) 

is embedded within Equation (3.11) in such a manner so as to ensure a 

corresponding reciprocal relationship between the port voltages and port currents. 

Equation (3.11) also holds a recipe to proceed from physical fields into an 

equivalent transmission line network. 

An alternative approach working from the magnetic field solutions leads to the 

derivation of an impedance matrix in a similar fashion. 

As mentioned previously, in the cases where local analytical solutions are not 

available for the local field solutions, en and hn, these can be obtained by a pre-

processing numerical simulation on a fine mesh, or any other method such as 

Method of Moments (Mo M) [3.1], and the integrations in Equations (3.4) and 

(3.9) are performed numerically. Having obtained the admittance relationship 

presented in Equation (3.11), the implementation into a real time-domain 
. . 

numerical network will now be addressed. 

3.3. Implementation into a TLM Scheme 

In many engineering problems the solutions to Maxwell's equation (en and 

hn) are available via the frequency domain, especially when analytical description 
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is considered. Therefore, attention will now be focused upon the implementation 

of these frequency-domain tangential field solutions into a time-domain numerical 

technique such as TLM. In order to do so the equivalent circuit elements will be 

now extracted from Equation (3.11) and the corresponding network topology 

designed. 

The TLM algorithm is derived by making an analogy between the behaviour of 

the electric and magnetic fields in a small region of space and the voltages and 

currents in an equivalent electrical network. Once the mapping between field and 

network quantities has been identified, the individual networks representing the 

different regions of space are interconnected, recognizing that continuity of the 

fields is ensured by enforcing the appropriate continuity of voltages and currents 

between adjacent nodes. A simulation then proceeds by simply solving the overall 

electrical network problem by any suitable means. As described in Chapter 2 in 

the case of a TLM method the simulations are performed in an explicit manner by 

scattering and propagating voltage impulses along short lengths of commensurate 

transmission lines. One particular attraction of developing TLM algorithms is that 

stability and energy conservation can be easily assured by inspection; if the 

equivalent electrical network only contains inductive and capacitive elements with 

positive component values, then the scheme will conserve and be stable, [3.3]. 

It is emphasised that for acceptable accuracy the size of the cubes corresponding 

to each TLM node are small, typically one tenth of the smallest wavelength of 

interest. Consequently, each element of the admittance matrix, Y, in Equation 

60 



Chapter 3 -A General Approach to Embedding Sub-Wavelength Objects into TLM 

(3.12) is approximated to a second order accuracy by a sum of two terms, one 

proportional to frequency, and the other inversely proportional to frequency. It is 

therefore simple to identify the corresponding series of inductor-capacitor 

combinations required in the equivalent circuit. However, in this work a slightly 

different approach will be presented that is believed to be more flexible and 

efficient for practical implementation. 

Decomposing the admittance matrix Y from Equation (3.12) into its 

eigensolutions defined by: 

rI., =yT., (3.14) 

the admittance relationship can be re-expressed as follows: 

(3.15) 

where T is a matrix whose columns consist of the eigenvectors of Y and y is a 
=- == = 

diagonal matrix of elements containing its eigenvalues. 

Given that THT is the identity matrix, the above equation can be equivalently ....... 
written in the following manner: 

(3.16) 

Physically the eigensolutions of X, y, correspond to the field solutions where 

electric and magnetic field samples are proportional to each other and the 

eigenvalues are proportional to the input admittance at the particular frequency. 

Those eigensolutions can be considered as modal solutions of Maxwell's 

equations. 
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It is noted that Y is reciprocal and its eigenvalues ,'Y, are all purely imaginary 

which physically means that the system is lossless. Furthermore, for the range of 

frequencies over which TLM is regarded as acceptably accurate, the eigenvectors 

are almost purely real and frequency independent, with the corresponding 

eigenvalue either proportional or inversely proportional to the frequency as has 

been pinpointed before, i.e. 

(3.17) 

In this regime the electrical network presented in Figure 3.2 can be constructed to 

embody Equation (3.11) in which the N-port transformer is defined so that: 

H x=T V - ... - and V=Tx - ;;::::-
(3.18) 

N represents the number of ports Le. 12 for three-dimensional and 4 for two-

dimensional TLM and ｾ is a vector of modal solutions with the element xn being 

an amplitude of the selected n-th mode that the total field consists of. 

VI I1 ... 'YI = jroCI 
(I) 

§ 
• ｾ • • • • § • • • • • • .l:I • • • • 1:: • • • 8-

I 
-I • L 

IN Z 'YN = Jro N 

Figure 3.2. A general equivalent circuit for the TLM node in the frequency 

domain 

The circuit of Figure 3.2 follows from the derivation of Equation (3.16) and has 

been identified in the frequency domain. An explicit time domain model is 
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recovered if the lumped capacitors and inductors are implemented using short 

commensurate lengths of open or short-circuit transmission lines and this is 

illustrated in the next section. 

3.3.1. A Modal View of TLM 

In order to recover the time domain algorithm, closer focus has to be placed 

upon what happens when the pulse from neighbouring nodes is incident upon the 

special node under consideration. As is known, TLM represents fields as voltages 

travelling along transmission lines. On all transmission lines, the relationship 

between the total voltage and current and the travelling wave amplitudes is given 

by 

(3.19) 

as shown in Figure 3.3 where superscripts i and r denote incident and reflected 

vo]tages respectively and Y L is the characteristic impedance of the transmission 

line. 

Ip . 
V Ｍ ｖ ｾ

P _Vr 
p 

Figure 3.3. Total voltage and current on the transmission line 

Combining Equation (3.19) with the general admittance relationship given by 

Equation (3.12) and rearranging gives: 

(3.20) 

where I is the identity matrix. 
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Using the definition of the N-port transformer from Equation (3.18) m 

Equation' (3.20) leads to a scattering relationship for the modal amplitudes 

travelling on each individual line of Figure 3.2: 

(3.21) 

when n denotes the nth line and n = 1, ... ,N 

It can be easily shown that the modal scattering, Equation (3.21), can be 

approximated to second order accuracy as a time delay on the individual 

transmission lines: 

(3.22) 

The sign depends on the termination; (+) for open and (-) for short-circuit. By 

comparison of Equations (3.21) and (3.22) it can be also demonstrated that 

. 2y c. d· 2YL c. h .. .. 
O'n = _J_D lor an open an O'n = -J- .lor a s ort-CIrCUlt termmatIOn. 

YL Yo .. 

YL .... Ys).1t=C) 
Cl) 

e • • ｾ.' • • Cl) • • 
ｾ

• • • • • • • • t: • • • 
8. 
I 

YL Z ｚ ｓ ｎ Ｎ Ｑ ｴ ］ ｌ ｟ ｾ

Figure 3.4. A transmission line implementation of a general equivalent circuit 

model for the special node 
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Hence, an explicit time-domain model of the circuit presented in Figure 3.2 can be 

obtained when the lumped components, capacitors and inductors are implemented 

using short-circuited or open-circuited stubs respectively, as shown in Figure 3.4. 

The eigenvalues of r, Y 0' correspond to the input admittance looking into a 

short-circuited oropen-circuited stub, as shown In Figure 3.5(a) and (b) 

respectively. 

a) b) 
0 

vi Zn sic vi Yn o/c 

0 

Figure 3.5. A Short-circuited (a) and an open-circuited termination (b) 

Thus, using transmission line properties presented in Chapter 2, the input 

impedance looking into the stub can be calculated as [3.1]: 

(3.23) 

for a short-circuit and open-circuit termination respectively. The appropriate 

values of circuit components can be then found as Lo = ｚ ｯ ｾ ｴ for a short-circuited 

and Co = ｙ ｯ ｾ ｴ for open-circuited stub, where ｾ ｴ is a round trip transit time of 

the pulses propagating along each of the transmission line. Such stubs are well 

established within the TLM algorithm and were already discussed in Chapter 2. 

F or more detailed information the reader is referred to [3.1]. 

For a better understanding of the general implementation shown in Figure 3.4 an 

additional diagram is presented in Figure 3.6. An example of a two-dimensional 
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TLM network with the special node embedded is illustrated showing the manner 

in which the link-lines from neighbouring nodes are connected to the modal 

transformer. 

b) :--- -- --- -----' ,..---, :- ------------ ' 

, E , , , , 
ｌ ｟ ｔ ｾ ｾ ｾ ｰ ｰ ｾ ｪ ｾ ..... 

Figure 3.6. 2D TLM network with a special node (SN) (a) and the connection to 

the neighbouring nodes (b) 

The model presented in Figure 3.4 is a general nodal network for the TLM 

method and the inclusion of different objects simply changes the values of the 

passive components. These values are defined by the solutions of Equation (3.11), 

the set of local field solutions ｾ Ｌ Ａ Ａ being either analytically or numerically 

determined by any means. Examples of calculations for ｾ and!! using both 

approaches will be presented further in this thesis. 

In practice, the TLM technique presented here is implemented in the time domain 

as an explicit algorithm using the scatter-connect paradigm of the conventional 

SCN node [3.4]. The overall scattering process in the special node can be 

summarised as: 
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• transform the real space port voltages into modal space amplitudes using the 

transformer matrix TH 

• scatter each mode individually 

• convert modal reflected amplitudes back to port voltages using matrix ! 

The scattering operation of the special node enclosing the small object(s) is then 

explicitly implemented as: 

(3.24) 

where the + and - signs are used for the open and short-circuited stubs 

respectively. The action of the N-port transformer in the node is described by the 

following equations: 

2y L LTnp v; (t)+2Y ｳ ｮ ｸ ｾ (t) 
Xn (t) = _---!:..P ------

YL +Ysn 

n 

(3.25) 

where Y 111 is the characteristic admittance of the nth stub, n denoting an 

eigensolution. 

Applying this scheme to the problem of fields scattered from objects positioned in 

air gives more flexibility as only the special nodes in the network contains stubs 

that in TLM algorithm contribute to the dispersion error [3.1]. As it will be 

demonstrated further in this thesis for some examples, especially for symmetrical 

structures placed centrally in the cell, it is possible to eliminate the N-port 
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transformer and construct an equivalent circuit model for a special node without 

explicit conversion from real-space voltages to modal amplitudes. 

3.4. Closing Remarks 

In this chapter the basic theoretical framework has been presented to allow 

fine-features to be embedded into a single cell of a TLM method. A set of local 

field solutions to Maxwell's equations has been derived in a manner that provides 

a robust and stable algorithm. Linking these field solutions with a real time-

domain network has also been illustrated. This approach allows features of 

different geometries to be arbitrarily located within a cell. The objects can be 

wholly enclosed by a single cell or pass across several cells. It accounts for 

multiple bodies of various characteristics to be modelled within a single cell 

provided that the tangential field solutions at the surfaces of the mesh cell can be 

identified. It is highlighted that the algorithm has been developed based upon 

implementation with the TLM method, however it can also be readily applied to 

other time-domain techniques. 
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Chapter 4 

Embedding Conducting Wires into 

a Single Cell of 2D TLM model 

In this chapter, the general methodology presented in the previous chapter 

will be applied to develop a special node, referred to in this work as a multi-

feature node, that enables various scatterers to be embedded in a single cell of a 

two-dimensional TLM model. Particular focus will be placed upon the inclusion 

of conducting wires that play a vital role in the EMC simulations. In the pre-

processing stage prior to a TLM run, the total electromagnetic fields around wires 

will be evaluated theoretically, in terms of local field solutions expressed as a 

series of cylindrical harmonics. As will be shown, the infinite number of 

harmonics (modes) must be truncated and discretised in a consistent manner to 

provide a suitable set of solutions that can be linked with the adjacent nodes of a 

time-domain numerical mesh, as has already been discussed in Chapter 3. Finally, 

the flexibility of the algorithm, its robustness and the ease of its application to 

various practical configurations will be demonstrated. This will be based on an 

example of field scattering from conducting wires clustered in a single cell of 2D 

TLM. All results will be verified against the known analytical solutions for this 

problem. 



Chapter 4 - Embedding Conducting Wires into a Single Cell of 2D TLM model 

4.1. Introduction 

In this part of the thesis the general approach to embedding small objects 

into a 3D TLM cell will be applied to two-dimensional simulations of waves 

propagating in the presence of conducting wires. In order to derive the reciprocal 

admittance relationship between the electric and magnetic fields, or 

correspondingly the relationship between the port voltages and port currents in the 

equivalent circuit model for a special node, the local field solutions will be 

formulated analytically. The behaviour of such fields is expressed as infinite 

series of cylindrical harmonics, which are in turn represented by the Bessel 

functions of the first and second kind. However the infinite number of modes that 

contribute to the total field needs to be truncated in order to maintain consistency 

with the 2D numerical network; to form a reciprocal set of solutions applicable for 

a mapping process presented in Chapter 3. The results of our multi-feature node 

will be first validated for the case of a single wire placed at the centre of the cell 

against analytical solution and the previously reputed macro-node designed for 

this scenario [4.1]. Next, the ability of the approach to mimic the behaviour of a 

cluster of wires (enclosed within a single cell) and excited by an EM field, will be 

demonstrated and the results verified against the known solution. To begin with, 

the analytical solution for a cluster of metal wires will be formulated in the next 

paragraph. 

4.2. Fields Around Wires - Analytical Formulations 

The analytical formulations of field scattering from metal wires clustered in 

a close proximity will be derived in this section for two electromagnetic field 
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polarisations, namely Transverse Electric (TE) with the electric field polarised 

perpendicular and Transverse Magnetic (TM) mode with the electric field 

polarised parallel to the axis of a cylinder. Therefore, consideration is now placed 

upon an arbitrary number of infinitely long z-directed wires in a close proximity 

so that they all lie within the scope of a single TLM cell as shown in Figure 4.1. In 

order to estimate the near field interactions between the wires and derive all the 

necessary fonnulations that govern the scattering phenomenon, it is convenient 

and most clear to focus upon the behaviour of only two wires and then to 

generalise the expressions obtained to the case of an arbitrary number of 

cylindrical wires clustered in a single TLM cell. 

Port I 

L op 

z x 

The boundary of 
a numerical ce\1-

Port 3 

Figure 4.1. A representation of a TLM cell with wires enclosed within 

Figure 4.1 shows the notation used to describe the pair of wires where the centre 

of the cell is the origin of a polar coordinate system (ro, $0) and OP indicates an 
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observation point at a distance ro from the cell centre. Similarly the wires' 

coordinate systems are denoted by radii and angles: Ｈ ｲ ｰ Ｇ ｾ ｰ Ｉ and Ｈ ｲ ｱ Ｇ ｾ ｱ Ｉ for wire p 

and wire q respectively. The distance between the wires is labelled rpq = rqp and 

the angle of rotation between the p and q coordinate systems <Xpq = <Xqp -1t • 

As has already demonstrated in section 2.5 of Chapter 2, the total field in the 

presence of any scatterers can be expressed as follows: 

(4.1) 

where the subscripts t, i and s denote the total, incident and scattered fields 

respectively and F represents either the electric field in the case of TM 

(Ez ,;: 0 and Hz = 0) polarisation being considered or the magnetic field for TE 

(Hz ,;: 0 and Ez = 0) polarisation. In the case of cylindrical scatterers each of the 

two components of the total field are expressed in terms of Bessel and Hankel 

functions, as discussed in Chapter 2. The incident field (I'; > is expanded in terms 

of cylindrical harmonics centred on the cell coordinate system, whereas the 

scattered field (Fa> is obtained as a sum of fields reflected from each scatterer. 

Each element of the sum is calculated using a series of outgoing Hankel functions 

originating at the centre of each of the scatterers. In the next two sections, these 

contributors to the total field will be examined in more detail, starting with the 

scattered field formulations. 
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4.2.1. Total Field Formulae 

Based on the approach outlined in section 2.5 of Chapter 2, the scattered 

electric and magnetic fields due to the presence of the qlh wire can be defined as a 

series of Hankel functions centred on the qlh wire in the form: 

ｾ ｾ

TM: ｅ ｚ ｳ ｱ Ｈ ｲ Ｌ ｾ Ｉ = L ･ Ｍ ｪ ｮ Ｋ ｱ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ ｱ Ｉ ｘ ｱ ｮ = L fqnXqn = f: Xq, 

ｾ ｾ

(4.2) 

TE: ｈ ｚ ｳ ｱ Ｈ ｲ Ｌ ｾ Ｉ = L ･ Ｍ ｪ ｮ Ｋ ｱ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ ｱ Ｉ ｘ ｱ ｮ = L fqnXqn = f: Xq, 

where 

f = e-jn+q H(2) (kr ) qn D q (4.3) 

and X is a vector of the yet unknown scattering coefficients, k being the 

wavenumber of the medium under consideration, in this case empty space k = ko . 

The total scattered field at wire p can be obtained as a sum of the fields reflected 

from each of the wires: 

F. = f!X p + Lf!X q (4.4) 
q .. p 

The incident field F; is given in terms of harmonics centred on the TLM node: 

T 
F =g Xo 

1 _0-
(4.5) 

where 

(4.6) 

and vector Xo contains a set of as yet unknown incident coefficients. 

Thus, the total field in the presence of a number of wires can be calculated 

according to Equation (4.1) as: 

ｾ ］ ｾ Ｚ ｘ ｯ +f!Xp + Lf:Xq (4.7) 
q .. p 
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In order to calculate scattering coefficients Xp given incident wave coefficients 

Xo, the physical boundary conditions at the surface of each wire needs to be 

imposed. However, it is observed that different coordinate systems have been 

utilised in the formulation of the total field which is inconvenient for this purpose. 

Therefore, Equation (4.7) must be re-expressed in the coordinate system of the 

particular cylindrical wire at which the boundary condition is to be imposed. 

Using the Bessel summation theorem presented in [4.2] and utilising the 

properties of the Bessel functions, Equation (B.I) in Appendix B, the components 

of the scattered field can be rearranged as follows: 

er:> 

= e -jnaqp 
"'" J (kr)H (kr )ejmr 

p L.J m p m+n qp 

er:> 

= e-jna.., L (_I)m J m (krp)Hn_m (krqp)e -jmr, 
ma-ao 

m--ao 

00 

= L e-j(D-m)a"'Jm(krp)Hn_m(lcrqp)e-jm+p 
m-_ 

(4.8) 

where rp,rq are the angles between rp,rq and rpq respectively shown in 

Figure 4.1. Hence, it is observed that the scattered field from one cylinder can be 

re-expressed in the coordinate system centred on another cylinder. Thus, in 

general, the components of the field scattered from wire are: 

(4.9) 

where [Tqp Jom is the n, m element of a matrix !qp' specifically 

[ T ] = -j(n-m)a"'H (kr) 
qp om e n-m qp 

(4.10) 
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Taking advantage of the definition presented in Equation (4.6), the following can 

be concluded. 

(4.11) 

Finally, the total scattered field is formulated entirely in the lh wire's coordinate 

system as: 

Fa = eXp + ｌ ｾ ［ ｉ ｱ ｰ ｘ ｱ (4.12) 
q .. p 

Similarly, the incident field can be evaluated in the coordinate system centred on 

the lh wire using a matrix U, derived in a similar manner to matrix T in 
= == 

Equation (4.8) . 

GO 

e-jo+qJo(krq) = L e-jm+PJ
m

(krp)[ Uqpl
o 

(4.13) 
m_ 

where [U ] is the n, m element of a matrix U ,i.e. qp om =qp 

[u ] = -j(o-m)aqp J (kr) qp om e o-m qp (4.14) 

Applying Equations (4.13) and (4.14) into (4.5) and identifying that gT = gTU -q -p-qp 

yields: 

(4.15) 

The total field introduced initially in Equation (4.1) can now be expressed in lh 

wire coordinate system only: 

(4.16) 

It should be clear that this formula accounts for all the interactions that occur 

between the wires bounded by the TLM cell. Thus, it is now possible to apply the 

boundary condition at the surface of the lh wire. 
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4.2.1.1. Boundary Conditions at the Surface of Wires 

So far no physical requirements have been imposed on the surface of the 

cylindrical wires. Assuming that they are perfect conductors, the total electric 

field is wholly reflected from the surface of the wire, which means that the 

Dirichlet or Neumann boundary condition [4.3] for perfect electric (TM) or 

perfect magnetic (TE) scattering needs to be satisfied at the surface of the lh wire. 

Thus: 

(4.17) 

Combining Equation (4.17) with (4.16) given that rp = ap' where ap is the radius 

of the lh wire leads to: 

TM: 

(4.18) 

TE: 

For convenience, Equation (4.18) can be reorganised into the form: 

,!!OpXo +ApXp + L!qpXq =0 (4.19) 
q .. p 

where the elements of the diagonal matrix A are defined as follows: 
=p 

forTMmode 

forTE mode 
(4.20) 

The boundary condition is consecutively applied at the surface of every single 

wire bounded by a TLM cell which results in a set of linear equations as detailed 

below, with the wires numbered from 1: 
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A =1 T =12 I13 .. XI U X =01-0 U =01 

I21 A2 I23 .. X2 U X U 
=- =02-0 =- =02 Xo (4.21) 

T I32 A3 .. X3 U03Xo U =31 =03 

or in general form: (4.22) 

Vector XT= [XI X2 X3 ••• r represents the scattered field coefficients. 

In principle, Equation (4.21) can be solved for the scattered coefficients X given 

the excitation coefficients Xo, which provides the reference results used to 

validate the accuracy of the multi-feature node. However, in order to implement 

the solution of Equation (4.21) into a TLM algorithm it is necessary for the 

incident and reflected waves to be expressed in terms of the coordinate system 

centred at the numerical cell and not at the centres of the wires, as Equation (4.21) 

indicates. Thus, it is necessary to seek a solution of the scattered field in the 

following form: 

(4.23) 

where XI is a vector of coefficients for the scattered field expressed in the 

coordinates centred on the numerical cell. 

4.3. Mapping the Analytical Solution into Numerical Network 

In order to discretise the analytical solution and to carry out the procedure of 

linking it with a numerical network, the scattered coefficients Xs from 

Equation (4.23) have to be determined. Therefore the solution of Equation (4.21) 

needs to be transformed back from the coordinate systems of the individual 
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scatterers to the cell-centred one. This is done by means of Green's functions. The 

process is illustrated below, the cases of TM and TE mode being considered 

separately. 

4.3.1. Scattering Coefficients for a TM Polarisation 

In the presence of a current along the wire Jz, the electric field Ez due to 

electric current source is given by [4.3] 

Ez = ... jroJ! HI dx'dy'dz'Gm(x,y,z;x',y',z')Jz(x',y',z1 (4.24) 
source 

where J..I. is a permeability of the space modelled and ro is the angular frequency. 

Here, primed quantities denote source points, unprimed observation points unless 

stated otherwise. 

In 2D the Green's function Gm is given by: 

• co 

ｾ L Jv(kro)H?) (kro') e-jv(+o-+o') 
G = v--ao (4.25) 

El • co 

ｾ L ｊ ｶ Ｈ ｫ ｲ ｯ Ｇ Ｉ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ ｯ Ｉ e-jv(+O-+o') 

V--<IO 

The current on the surface of the perfect metal wire is J z = -H., and from 

Maxwell's equations for TM polarised wave one obtains the relationship: 

. H oEz JroJ..l. =--
• Br 

The electric field has already been derived in Equation (4.16) and is 

(4.26) 

(4.27) 

Updating the expression for the electric field from Equation (4.27) into (4.26) 

yields the formulation of the ''total'' wire currents: 
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Therefore, the scattered field Ez is represented as: 

. '" 
Ez = HI dX'dY'dZ'i I ｊ ｶ Ｈ ｫ ｲ ｯ Ｇ Ｉ ｈ ｾ Ｉ Ｈ ｫ ｲ ｯ Ｉ e-jv(to-to'). 

source v--oo 
(4.29) 

Rearranging, 

'" . 
Ez = I ｈ ｾ Ｉ Ｈ ｫ ｲ ｯ Ｉ e-jV+O HI dx'dy'dz' ｾ Jv(kro') ejv+o' . 

v--oo source 
(4.30) 

which by inspection with the required solution from Equation (4.23) identifies Xs 

as: 

x = j III dx'dy'dz'''''g*o(r '-a Ｉ ｾ ｛ ｮ Ｇ ｔ ｕ X +f'TX + ""g,TT X ] 
_I 4 ｾ ｟ ｯ p p Or' ｾ ｐ ］ ｏ ｰ ｟ ｯ -p-p ｾ Ｍ ｐ ］ ｰ ｱ Ｍ ｱ

source p. P q .. p 

It should be noted that ｾ Ｚ = Ａ Ａ ｾ ｾ Ｚ by the definition of matrix U in 

Equation (4.14), so that: 

XI = ｾ I HI rp' ､ ｲ ｰ Ｇ ､ ｾ ｰ Ｇ ｕ Ｚ ｰ ｾ Ｚ o(rp' - ap) 
p source 

Ｎ ｾ ｛ ,TU X +fTx + ""g'TT X] Or' gp=op_o -p-p ｾ Ｍ ｐ ］ ｱ ｰ Ｍ ｱ
P q .. p 

(4.31) 

Applying identities (4.32) and (4.33) to Equation (4.31): 

(4.32) 
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2Ilt ､ ｾ Ｇ gO ｾ ｦ ｔ = 2
I
lt(e+jY+PJ (kr' ))(e-jn+.p ｾ ｈ Ｈ Ｒ Ｉ Ｈ ｫ ｲ Ｇ )Jd.l..' 

p _P or' -p v P or' n p 'I' p 
o pOp 

= Ｒ Ｑ ｴ Ｈ ｾ J (kr' ) ｾ H(2) (kr' )) 
VD V P!:l , D P 

urp 

(4.33) 

leads to: 

x = ｪ ｬ ｡ ｴ ｾ ｡ VH [J J' V X +J H' X +J J' ｾ ｔ X] 
-5 2 L..J P=Op =p=p =po-o =p=p -p =p=p L..J=qp-q 

p ｱ ｾ ｰ

(4.34) 

In Equations (4.34), the prime on Besse1 and Hankel functions now denotes 

J'y(kr) ］ ｾ ｊ ｶ Ｈ ｫ ｲ Ｉ Ｑ and ｈ ｾ Ｒ Ｉ '(kr) ］ ｾ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ Ｉ Ｑ respectively. Overall J and 
or r-a or r-a -P 

diagonal matrices of elements H?) (kap) and ｈ ｾ Ｒ Ｉ '(kap) . 

From Equation (4.18) for TM mode boundary condition, the following can be 

concluded: lp VopXo +lpL!qpXq = -HpXp' Therefore, Equation (4.34) is 
q .. p 

rearranged into a form: 

X = jk1t '" a VH [J H' -J' H Jx 
-8 2 L..J P=op =p=p =p=p -p 

p 

(4.35) 

Using the Bessel Wronskian Equation (B.2), shown in Appendix B, gives 

'2 
J H' - J' H = __ J_ . Hence, the vector of scattered coefficients for the field of 
=p =p =p =p 1tka 

p 

Equation (4.23) is finally derived as: 

X = "'V H X 
_5 L..J=Op-P 

p 

(4.36) 
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It is observed that the vector of scattered field coefficients for a TM mode is now 

expressed in a coordinate system centred at the TLM cell. 

Having obtained both incident and reflected fields in the coordinate system 

centred at the cell, the total field can be calculated. It can then be'discretised and 

the mapping process carried out. This will be presented later in this chapter. Prior 

to this, the focus of the next subsection is to evaluate scattering coefficients for 

the TE polarisation using a similar procedure to that presented above. 

4.3.2. Scattering Coefficients for a TE Polarisation 

In the presence of a current around the wire J., the magnetic field Hz due to 

magnetic current source is given by: 

Hz = HJ dx'dy'dz'GHJ(x,y,z;x',y',z')J.(x',y',z') (4.37) 
IOUrce 

where the Green's function G HJ is defined by: 

(4.38) 

Again, the primed quantities here denote source points and unprimed observation 

points as in previous section, unless stated otherwise. 

The currents that flow around the wire due to applied magnetic field are J. = Hz , 

where Hz = ｾ ［ Ａ ､ ｏ ｰ ｘ ｯ +f!Xp + ｌ ｾ ［ Ａ ｱ ｰ ｘ ｱ by the definition presented in 
q .. p 

Equation (4.16). Hence the wire currents are: 
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(4.39) 

Using the Green's function GHM given in Equation (4.38), the scattered field Hz is 

determined as: 

Hz = HJ dX'dY'dZ'i.i: ｡ ｾ ｊ ｹ Ｈ ｫ ｲ ｯ Ｇ Ｉ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ ｯ Ｉ ･ Ｍ ｪ ｶ Ｈ Ｋ ｏ Ｍ Ｋ ｏ Ｇ Ｉ
. source 1--00 r p 

(4.40) 

Regrouping: 

Hz = i: ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ ｯ Ｉ ･ Ｍ ｪ ｶ Ｋ Ｎ Ｌ HJ dx'dy'dz' ｾ Ｚ Ｎ Jy(kro')ejy+o, 
y_-<IO source p 

(4.41) 

which comparing to desired form of scattered field presented in Equation (4.23) 

identifies Xs as: 

By the definition of matrix 1! specified in Equation (4.14) the following can be 

a. Ha. 
assumed: - g = U - g ,so that Or _0 =op Or-p 

Similarly, employing the identities from Equations (4.32) and (4.33) gives: 

Xs = ｪ ｾ Ｗ ｴ Lap ｕ ｾ [lp!p UopXo +lpH'pXp +lp!pL!qpXq] 
p q-p 

(4.43) 

(4.44) 
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Analogously to Equations (4.34), the prime on Bessel and Hankel functions now 

denotes the derivative of those functions with respect to r when r = ap Utilising 

Equation (4.18) for a TE mode boundary condition that brings the equality of 

tp!!Op Xo + l'p LIqp Xq = -H 'p Xp into Equation (4.44), the final vector of 
q .. p 

scattering field coefficients for TE polarisation can be formulated in a coordinate 

system centred at the TLM cell 

x = ｪ ｫ Ｗ ｴ ｾ ｡ UH [J' H -J H' Jx = ｾ ｕ ｈ X 
_5 2 ｾ P=Op ... P =p =p=p -p ｾ ］ ｏ ｰ Ｍ ｰ

. p p 

(4.45) 

As has been shown for the TM mode, the incident and scattered field for a TE 

mode are now expressed in a coordinate system centred at the TLM cell. This 

formula can be substituted back into Equation (4.21), to form a complete 

analytical solution for a wave propagating in the presence of a cluster of 

conducting wires bounded by a single TLM cell. The total field formulation that is 

suitable for mapping into a TLM method is: 

(4.46) 

where Ft denotes the total electric field in the case ofa TM and total magnetic 

field in the case of a TE polarised wave. 

4.3.3. Formulating the Admittance Relationship 

In order to implement the total fields derived in the previous two sub-

sections into the TLM algorithm, the technique presented in Chapter 3 is now 

applied. As has been demonstrated, the backbone for the mapping process is to 

identify the tangential fields at the edges of the numerical node and to obtain the 
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admittance relationship in the fonn: § = YH. Therefore, the observation point 

(OP) is now placed at the points where the infonnation between two two-

dimensional TLM cells is interchanged, i.e. ports 0,1,2 or 3 as illustrated in 

Figure 4.1. The values of electric field Ez (for TM mode) and magnetic fields Hz 

(for TE mode) at those four ports, where ro =A and A is the radius of the node, 

are evaluated from the total fields derived above, Equation (4.46). The remaining 

fields components, Le. magnetic field H. (for TM) and electric field E. (for TE 

polarisation) are detennined from Maxwell's equations. Therefore, for TM fields: 

(4.47) 

= ｾ ［ (kA )Xo + ｦ ｾ (kA )Xs 

. (H H) - ｾ dJn(kA) -jn+oX ｾ ､ ｈ ｾ Ｒ Ｉ Ｈ ｫ ａ Ｉ -jn+oX 
JooJl i + 5 - ｾ e On + ｾ e so 

n--<Xl dA n--<Xl dA 

= dg; (ka) X + ､ ｦ ｾ (ka) X 
da _0 da-5 

(4.48) 

and for TE fields: 

00 00 

H + H = "" J (kA)e-jn+oX + "" H(2)(ka)e-jn+oX 
1 5 ｾ ｯ 00 ｾ ｯ so 

(4.49) 

= ｾ ｾ (kA)Xo + ｦ ｾ (kA)Xs 

(4.50) 

where the functions f(kA) , g(kA), are defined in Equations (4.3) and (4.6) 

respectively and are evaluated at the node radius a. 
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It should be noticed at this point that CPo in Equation (4.47) - (4.50) can take only 

discrete values of CPo = { 0, ; ,1t, ｾ 1t} corresponding to the four ports of the 2D 

TLM node. Thus the cylindrical harmonics (ejn+o) will be represented by a 

combination of the trigonometric functions cos(ncpo) and sin(ncpo)' Furthermore, 

to obtain compatibility with the four ports of the 2D TLM node, the infinite 

number of solutions need to be truncated and only the lowest order harmonics are 

used to calculate the fields at the link points of the node. The lowest order 

harmonics in the analytical series are those for n = -1,0,1,2 . The superposition of 

these harmonics will produce all possible combinations of discrete voltages 

incident into the node. The approximation of analytical solution to only four 

harmonics is fully justified as the series of Bessel and Hankel functions converge 

very rapidly and is consistent with second order accuracy with respect to ｾ Ｎ The 

convergence of these series will be shown later in this chapter for particular 

practical problems. 

Attention will now be focused upon the manner the eigenvalue problem is 

imposed in practice. In order to discretise the fields the vector of scattered field 

coefficients XI needs to be determined. This, according to the formula given in 

Equation (4.36) and (4.45) requires obtaining the solution of X from Equation 

(4.21) which is completely determined by the vector of incident harmonics Xo . 

This would necessitate calculating the inverse of matrix M given in = 
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Equation (4.22) which numerically might be difficult. Instead a sequence of linear 

equations is solved as described below. 

Assume ｾ ｯ to be a vector of the same size as Xo, large enough for the summation 

theorem to converge, with all elements equals 0 except for the nth which is equal 

1. If the "incident" field Xo = ｾ ｮ which means that there is only one incident 

harmonic, then the Equation (4.21) is solved for the scattered field coefficients X 

and this solution is labelled as Y SIt' For any general vector of incident modes 

4 

Xo = ｌ ｾ ｮ ｘ ｏ ｮ the scattered field coefficients will be formulated as 
0=1 

4 

X = LY snXOn' or in the matrix form as X = [YSI Y s2 Y s3 Y s4]XO = YsXo. 
n=1 

Hence, the vector of coefficients representing scattered field in coordinate system 

centred at the cell is calculated as XI = L ｵ ｾ Xp = U 0 Y s Xo . 
p 

Thus, the fields at the ports, shown initially in Equation (4.47) to (4.50) are: 

for TM fields: 

. (H. + H ) = (dg: (kL\) + df! (kL\) u Y )X 
JOOJl I S dL\ dL\ -==0=1-0 

and for TE fields: 

(4.51) 

(4.52) 

(4.53) 

(4.54) 
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Formulating the eigenvalue problem, i.e. enforcing the total electric field at the 

node edge to be proportional to the total magnetic field at the edge of the node, 

leads to the admittance relationship: 

( ､ ｧ ｾ ｾ ｾ Ｉ + ､ ｦ ｾ ｾ ｾ Ｉ u 0 y. )Xo = r Ｈ ｾ Ｚ Ｈ ｫ ｾ Ｉ + f! Ｈ ｫ ｾ Ｉ Ａ ｬ ｯ Y.) Xo (4.55) 

The eigenvalues Y D represents the value of the admittance looking into the cell 

centre for TM polarisation and value of the impedance in case of TE polarisation. 

In addition, the eigenvalues will be purely imaginary and scaled by the intrinsic 

admittance or impedance of the medium, in this case empty space for which the 

intrinsic impedance equals Zo = ｾ ｊ ｬ ｯ I Eo ｾ 1201t n ｾ 377 n. The implementation 

of the eigensolutions into a time-domain numerical network using a short or open-

circuited stubs and voltage-to-mode port-transformer, !, has been already 

presented in Chapter 3 and will not be repeated here. Instead, in the next section 

the formulations presented above will be applied to the case of field scattering 

from a single wire placed in the centre of a TLM cell. Due to the particular 

symmetry of this problem it is also possible to design an equivalent circuit that 

mimics the behaviour of the node containing a single, centrally positioned wire 

without the use of the port-transformer. Although it is just a special case of 

proceeding multi-wire analysis, it is instructive to determine the approach for this 

simple scenario. The results of this wire node will be verified against analytical 

solutions. 
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4.4. A Validation for a Single Wire 

In order to verify the accuracy and demonstrate the results of our approach, 

consideration will now be focused upon a single wire centred in the TLM node. 

This example has been already widely studied in literature [4.1, 4.4, 4.5], 

therefore is an excellent benchmark for comparison. For the scenario described 

above it is possible to develop a simple equivalent electrical circuit that mimics 

the behaviour of the multi-feature node. The equivalent circuit for a TM polarised 

fields was already introduced in [4.1], however the necessary derivations will also 

be presented here with extension to TE field, as they help to better understand the 

overall framework of2D multi-feature model. 

4.4.1. Electrical Equivalent Circuit for a Single Wire 

In a case of electromagnetic fields in the presence of a single conducting 

wire, two different polarisations ought to be considered, namely the TM and TE 

fields. Intuitively, to model TM polarised fields a shunt node of two-dimensional 

TLM network is used and the series node for a TE configuration. Each of those 

nodes has been presented in Chapter 2. It is underlined that due to the duality of 

the network models either shunt or series node are sufficient to simulate both field 

polarisations [4.6]. However, for a single wire case, the accuracy of both models 

will be addressed below for comparison with our multi-feature approach. 

Consider a single cylindrical conductor placed at the centre of the TLM cell 

representing homogeneous and source free region of empty space. The total field 

can be obtain using the formula given in Equation (4.46). However, recognising 

the fact that now the wire coordinate system and the node coordinate system 

89 



Chapter 4 - Embedding Conducting Wires into a Single Cell of2D TLM model 

overlap each other i.e. Ｈ ｲ ｰ Ｇ ｾ ｰ Ｉ == Ｈ ｉ Ｇ ｯ Ｌ ｾ ｯ Ｉ the total field fonnulae can be obtained 

directly as discussed in Chapter 2: 

for TM fields 

GO 

Ez(r ｾ ｡ Ｌ ｾ Ｉ = I e-jn+oXOn [Jo(kor) + ｈ ｾ Ｒ Ｉ Ｈ ｫ ｯ ｲ Ｉ ｘ ｓ ｬ ｬ ｊ (4.56) a-_ 

(4.57) 

and for TE fields 

(4.58) 

(4.59) 

By applying the boundary conditions, i.e. enforcing the total electric field at the 

surface of the wire to zero, the scattering coefficients are explicitly detennined: 

(4.60) 

(4.61) 

In order to map the field solutions to 2D nwnerical network the admittance 

relationship in a fonn of !! = y . § can be now constructed: 

for TM fields: 

(4.62) 
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for TE fields: 

(4.63) 

It is clear that the admittance operator Y is frequency dependent and contains 

infonnation about the properties and geometry of the object inserted into the node. 

To maintain consistency of field solutions to MaxweIl's equations with 2D TLM 

network, the admittance relationship is now evaluated at the four positions 

corresponding to four ports of 2D TLM node. As discussed in the previous 

section, the series solution is also calculated for the four lowest order harmonics. 

The 4-port transfonner, T, that decomposes the modal field solutions to port -
voltages can be easily identified as: 

ｾ /./2 0 ｾ
cos 0 ｣ ｯ ｳ ｾ Ｑ ｳ ｩ ｮ ｾ Ｌ ｣ ｯ ｳ Ｒ ｾ Ｌ

ｾ /./2 -Ji cos 0 ｣ ｏ ｓ ｾ ｬ ｳ ｩ ｮ ｾ ｬ ｣ ｏ ｓ Ｒ ｾ ｬ
0 

(4.64) 
T= 1"1-1 • - cosO ｣ ｯ ｳ ｾ ｊ ｳ ｩ ｮ ｾ ｊ ｣ ｯ ｳ Ｒ ｾ ｊ ｾ -/./2 0 ｾ

cos 0 ｣ ｯ ｳ ｾ Ｔ sin '4 cos 2'4 
ｾ -/./2 -ｾ0 

where ! is the identity matrix and the angles ｾ ｩ are 0,; , 1t, 3
2
1t • 

The combination of port voltages that produces the appropriate modal field 

solution is presented in Table 4.1 and also illustrated symbolically in Figure 4.2. 
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n VJ V2 V3 V4 

0 I I 1 1 

1 I 0 -1 0 

-1 0 1 0 -1 

2 I -1 1 -1 

Table 4.1. Modal field solutions in terms of port voltages entering 

the 2D TLM node 

a ) 3 
, , , , , , , , 

2 
I 

• ,4 , , , , , 
' . -,' 

I 

i ur 4.2. ymb lic repre entation of2D TLM node (a) 

and its m daJ pattern (b) 

Attenti n will n w d n the implification of the mode admittances from 

qu ti n 4. 2 and 4. 3 . R placing the Bes el functions with their smaJI 

wn In quation (B.3) in Appendix B) is consistent 

with the caJ t and th frequency range of interest. As TLM is 

restrict d by it di per i n eha iour t 10% of the maximum frequency 

modelled, i.e. t n I ample per wavelength [4.7] the modal admittances can 

be red uced as 11 w 

for M m de : 

H 
Y =-::::1----n..o 

j Jl 
for n = 0 

(4.65) 

for n :;t 0 
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for TE modes: 

for n=O 

(4.66) 

for n ｾ 0 

A detailed derivation is given in section 4 of Appendix B. 

It is seen that admittances are either proportional or inversely proportional to 

frequency. Therefore. a short-circuited or an open-circuited line can be used to 

provide these frequency dependent admittances in a time-domain method. 

According to transmission line theory [4.8], the impedance of a short or open-

circuit tennination is given by: 

for a short-circuited tennination 

(4.67) 

- jZn ctan( roAt 12) = ｹ ｾ Ｑ for an open-circuited tennination 

where roAt/2 is a phase delay on each transmission line, [4.7]. 

It can easily be shown that the phase delay for 20 TLM equals koA 1 fi. By 

inspection, comparing the expressions given in Equation (4.67) with Equations 

(4.65) and (4.66) it is concluded that a short-circuit stub is required for all the 

modes representing TM polarised fields and for the n = 0 hannonic of TE 

polarised fields. For the remaining modes corresponding to n ｾ 0 for TE 

polarisation an open-circuit stub needs to be used. 

As the admittances and impedances are reciprocal quantities, only impedances 

will be employed for convenience in further analysis. 
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By assuming that for small arguments x« 1 => tan(x) ｾ x and taking into 

account the fact that for an empty space shunt node and a series node the link-line 

impedance of the numerical network ZL equals ZL = Jizo and ZL = Zo / Ji 

respectively, the input impedances looking into the stubs can be calculated as: 

for a TM mode and a shunt node: 

for n =0 

(4.68) 

for n ｾ ｯ

and for a TE mode and a series node 

for n =0 

(4.69) 

for n ｾ ｏ

Having calculated the impedances looking into the stubs, the time-domain 

network presented in Figure 4.3 for (a) TM and (b) TE modes can be designed. 

a) I 

ｾ Ｑ Z.04J 15. Zno4J 
v' 7' 
• .. .. 

4J 

Vi 1 4J 

E Ｑ ｾ z •.• ...l.. E Ｑ ｾ Zn_. 
c.c2 7" - c.c2 7' v' ell III : 

ｾg 
Vi 1 1:: 15. -L. 1:: 15. Zn __ • 

8.. z._. - 8.. 7' 7" v' I , J "O:t "O:t 

1 x' Vi 1 1 x' 7 Z •• 2 
-4 ｾ Zn_: -v' x' 

4 

Figure 4.3. Time-domain network model that mimics behaviour of 

TM (a) and TE (b) polarised wire 

94 



Chapter 4 - Embedding Conducting Wires into a Single Cell of 2D TLM model 

It is noted that in both models the impedances related to harmonics n = 1 and 

n = -1 are equal. Furthermore, for any wire radius 0 < a < A the stub impedances 

are related as: Za-o > Za_1 > Za_2 for TM polarisation, and Za_2 > ZazO > Zn_t for 

TE polarisation respectively. 

The impedances Za-o and Za_1 are the dominant terms for TM polarisation. The 

TM model can therefore be further simplified without significant loss in accuracy 

if the impedance corresponding to n = 2 is approximated to that of n = ± 1. This 

provides an advantage when developing an equivalent circuit for the TM case. To 

achieve this, first the circuit link line impedance, Z, is set to that of the line 

impedance for the mode n = ± 1 ,Le. Z = Zn_:tJ • A standard time delay can then be 

implemented for all the modal link lines and a short circuit stub is used to model a 

deficit in impedance for the mode n = 0, as shO\\1l in Figure 4.4(a). It can be seen 

that according to transmission line theory the stub impedance of Figure 4.4(a) 

Zs = Zo - Z. A similar approach can be adopted for the TE case. First the 

admittance corresponding to n = 2 is approximated to Zn_:tt • This value is used as 

a link line impedance, Z, for the node and the impedance deficit for the mode 

n = 0 is compensated by the stub Zs = Zo - Z, as shO\\1l in Figure 4.4(b). 
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a) b) 

V' 1 Ｑ ｾ Vi 1 Ｑ ｾ...L. Z Zs ...L. Z Zs - 7 - 7" v' v' I I - -
Vi 1 ｾ Vi 1 ｾ

-4 E 15. Z -4 E 15. Z - cE 7 - cE 7" v' v' 2 VI 2 VI 
C 

ｾg 
t: 15. Vi 1 t: 

Ｑ ｾZ -4 Z 8- 7 - 8- 7" , v' I 

ｾ
J ｾ

2:-1 Ｑ ｾ
Vi 1 Ｑ ｾz -4 Z 

7 - 7 v' v' 
4 4 

Figure 4.4. Standardised modal network for a conducting wire 

in a shunt node (a) and series node (b) 

Extracting a common link line impedance, Z, for all the modes in both of the 

models permits moving them before the 4-port transformer as depicted in 

Figure 4.5. 

a) b) 

ｾ Ｑ Z Ｑ ｾ z. 2:.1 Z ｬ ｾ Zs 
v' 7" v' 7 

I I 

... -
2:-1 

ｾ ｾ

Z E 15. Z E Ｑ ｾv' cE 7 cS 7 
VI VI 

2 
C 

ｾg 

2:-1 t: 15. t: 15. Z ?- 7 8. -. 
v' I XJ 

J ｾ ｾ

Vi 1 ｬ ｾ Ｑ ｾｾ Z 
v' 7" 7 

4 

Figure 4.5. A standardised network model for a single wire 

in a shunt node (a) and series node (b) 

96 



Chapter 4 - Embedding Conducting Wires into a Single Cell of 2D TLM model 

Due to symmetry of the problem and by taking into account the properties of the 

shunt and series node, the standardised model presented above can be simplified 

further into the equivalent circuits presented in Figure 4.6(a) and (b). 

a) 

z 

1 1 
V'V' 

I 

Figure 4.6. An equivalent circuit model for a centrally placed single wire in shunt 

node (a) and series node (b) 

The short circuit stub of line 1 presented in Figure 4.5(a) has been placed at the 

centre of the node, as shown in Figure 4.6(a). This is consistent with the mode 

distributions presented in Figure 4.2 as only the n = 0 modal amplitudes couple 

with the short-circuited stub. For the remaining modes, the voltage at the centre of 

the node is zero therefore those modes do not couple with the short-circuited stub. 

In addition, the stub value has been divided by four due to the parallel 

combination of the four link lines present for the n = 0 mode. An equivalent 

circuit for rE fields is shown in Figure 4.6(b). Similarly, only the current of the 

n = 0 mode will flow through the stub. 

It should be pointed out that the proposed approach is not the only way to develop 

an equivalent circuit. The expanded model can be designed by extracting a 

different common value of the link line impedance, Z, and the deficit in modal 
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impedances can be modeUed using stubs on all four modal lines. The only 

constraint in manipulating the stub impedances is that the stub value is required to 

be positive to ensure that the circuit components, i .e. lumped capacitors and 

inductor are positive. This condition also guarantees the stability of the approach 

presented as already discussed in hapter 2. 

4.4.2. wo-Dimen ion a) umerical E periment 

Before the numerical alidations are presented the experimental set-up will 

briefly be explained the majority of 2D simulations presented in this thesis are 

based on the ame ge metric c nfiguration. 

·igure 4.7 h w mputati nal wind w for tw -dimensional simulations that is 

centr d at pint O. The multi-feature n de (MN) with the feature(s) embedded 

in it is p]ae d at the entre f the wind w. The p sition of the enclosed feature(s) 

in a cell, e.g. wire i d cri d by r $) where r is the distance between the 

c ntre f the n de, iti n , and th entre f the object and $ is the angle 

b tw n th p Hi e -9 i and th radiu r. 

Incid nt 
PuIs 

y 

x 

omputational window 
'"lVUV U «<WVlVtUV««««VlV«t««<<<<<<<<<<<<<<<4 
f 

, , , 
I , 

I 

Ｈ ﾷ ﾷ ﾷ ﾷ ﾷ ﾷ ﾷ Ｍ ﾷ ｬ ､__ , ... ｾ ... (: 
ｌ ｾ Ｎ Ｎ Ｎ ｉ L?..! Ｑ Ｑ Ｍ Ｍ Ｍ Ｍ Ｎ ｦ Ｍ ｊ ｕ Ｍ Ｍ ｾ Ｑ

P MN : I 
I 

ｾ - - - - -- --' 

"""'««,««<<<<<<<<<<<<<<<'-'X<<<<<<<<<<<<<<.<<<.<<<<<<<<<<<<< 

igur 4.7. umerical configuration for 2D simulations 
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The problem is excited by an incident pulsed plane wave as indicated in 

Figure 4.7 and the fields are recorded at observation point (OP) at a distance d 

from the multi-feature node. The distance, d, will be usually expressed in terms of 

number of cells. For example, (-2,0) indicates that OP is positioned two nodes 

from the MN on the negative x-axis; (2,0) OP is positioned two nodes from the 

MN on the positive x-axis etc. The fields will be recorded and verified for two 

zones, namely the near-field zone, defined 2 nodes distant and the far-field zone at 

8 nodes distant from the MN. A matched boundary condition has been imposed on 

the edges of the computational window parallel to x-axis (half-shaded lines) and 

an open-circuit boundary condition on the edges perpendicular to the x-axis 

(dashed lines) unless stated otherwise. 

4.4.3. Convergence of the Analytical Solution 

The aim of this section is to demonstrate the convergence of the analytical 

solution represented in terms of Bessel functions and therefore to justify 

approximating the infinite series to only four harmonics, made when mapping the 

fields into a numerical network. 

The convergence of total fields for TM and TE polarisation are shown in 

Figure 4.8 at the point corresponding to one of the ports of TLM cell, 

(r = 11. = 0.5 m, ｾ = 1t) over the frequency range that would normally be applied 

for TLM simulations. The frequency is scaled to the maximum frequency in a 2D 

. I' . f (2A )-1 ·th th' At 211. 11.J2 h TLM Slmu atlOn, t.e. = ut Wl e tIme-step u = r;:; = -- were c 
max cv2 c 

is the speed of light in vacuo. 
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Figure 4.8. A convergence of analytical solution for a single wire for TM (a) and 

TE (b) polarisation 

The analytical solution for a single wire of radius a = 0.125L\ is illustrated in 

Figure 4.8 for different truncation of the series in Equations (4.56) and (4.59). 

[The Hankel and Bessel functions that the total field is represented by have been 

calculated using routines from Numerical Algorithms Group (NAG) Fortran 

Library]. 

It is noted that number of terms that must be retained increases with distance from 

the scatterer. Here, with r ｾ L\, 30 harmonic terms are sufficient for good 
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convergence which is the case labelled "Exact" in Figure 4.8. Over the frequency 

range that TLM is valid (10 samples per wavelength) which corresponds to 

f / fmu = 0.1 in both graphs, the lowest order harmonics play the dominant role 

and very good agreement is seen between the exact solution and the use of just 

four lowest order modes. This justifies the approximation of using only four 

harmonics when mapping analytically derived fields into the time-domain 

numerical network. 

4.4.4. Numerical Validations for a Single Wire 

Although the multi-feature node has been developed to mimic EM field 

behaviour in the presence of an arbitrary number of wires clustered in a single 

numerical cell, it is appropriate to verify its accuracy for a single wire centrally 

positioned within the cell, as this problem has been widely studied in literature 

[4.1, 4.4, 4.5]. Therefore the aim of this section is to validate the theory of multi-

feature node and its equivalent circuit developed above, against the analytical 

solution for this configuration. It is emphasised that two TLM nodes have been 

presented: (i) the full multi-feature node implemented in Figure 4.3 and (ii) its 

approximation referred to as an "equivalent circuit" shown in Figure 4.6. 

Consider the configuration presented in Figure 4.7, where the multi-feature node 

contains a single conducting wire placed at the centre of the TLM cell. The 

problem is excited by a Gaussian pulse of RMS width 2.5 time steps. For the 

simulations presented in this section, a computational window of 1000 by 1000 

cells is used and 2048 time-step iterations are taken to ensure,sufficient frequency 
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domain granularity, when the Fast Fourier Transform (FFT) routine is conducted 

to convert the time-domain field data. Figure 4.9 shows the total electric field 

amplitude at OPs placed in the near-field zone (2 nodes away from the MN) and 

the far-field zone (8 nodes away from the MN) in front, behind and to the sides of 

the node with a single wire. The wire radius equals a = Ｐ Ｎ Ｒ Ｕ ｾ and ｾ = 0.025 m, 

where ｾ is the radius of the TLM node. The results are presented versus 

normalised frequency. 
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Figure 4.9. Amplitude of the total electric field measured in the near and far-field 

zone in front Ca) behind Cb) and to both sides Cc) of the single TM polarised wire 

It can be seen clearly that very good agreement is achieved between the multi-

feature node its equivalent circuit and the exact solution. The results for the TE 

polarised case are illustrated in Figure 4.10. The simulation parameters are the 

same as for the M case. 
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Figure 4.10 pr ents the total electric field amplitude for OPs in near and far-field 

field are captured in front behind and to both sides of the node 

containing a ingle wir . expected the T polarised case exhibits much 

weaker scattering compar d to the TM polarised scattering. 
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Despite the small field variation for TE polarisation, the results using the multi-

feature node and its equivalent circuit are in very good agreement with the exact 

solution up to 10% of the maximum frequency. A slight discrepancy can be 

observed beyond the cut-off point due to the dispersion that occurs in the TLM 

mesh and this is much more visible for such a weak scattering. The results for the 

equivalent circuit show a marginally larger error then those for the multi-feature 

node itself, especially with the near-field zone. It is believed that the error is due 

to the impedance approximation for the mode n = 2 to that of the mode n = ±1. 

For such a weak field disturbance, the contribution of the second harmonic 

becomes of greater significance than was observed for a wave in the TM 

configuration. 

In the next two graphs the impact of the wire radius will be demonstrated for both 

polarisations. Again the simulation parameters remain unchanged with the 

numerical mesh size being 2.1 = 0.05 m. 
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Figure 4.11. Amplitude of the total electric field for a TM polarised 

wire of radius a = 0.5.1 
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Figure 4.12. Amplitude of the total electric field for a TM polarised 

wire of radius a = Ｐ Ｎ Ｗ Ｕ ｾ

It is observed in Figure 4.11 and Figure 4.12, for TM fields that the match 

between the numerical and the analytical results is extremely close and 

independent of the wire radiu . 
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A slight dependency upon radius is observed for rE polarised scattering as 

illustrated in igure 4.13 and Figure 4.14, where the results exhibits more error 

with increasing wire radius. The results for the near-field zone exhibit this error 

much more than those in the far-field zone. The maximum absolute error in that 

zone at the f / fmu = 0.1 is approximately 3-4%. It should be pointed out that the 

approach has been developed for EMC applications and such an error is typically 

acceptable. The present approach accounts for the wire geometry as is also 

confirmed by the time-domain numerical simulations presented in Figure 4.15. 

The time-domain electric fields scattered from a single wire for both polarisations 

are presented in Figure 4.15. The field is observed in the far-field region, 8 nodes 

in front of the multi-feature node for a wire radius of 0.1 t1 to 0.9 t1. It is clear 

107 



Chapter 4 - Embedding Conducting Wires into a Single Cell of 2D TLM model 

that the information about the geometry of the object is correctly embedded within 

the multi-feature node as larger field is reflected back from the wires of larger 

radii. 
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In electromagnetic field simulations it is very often required to adequately model 

not only the amplitude of the signal but also its phase. Therefore, in Figure 4.16 

the accuracy of our approach in modelling the electric field phase based on the 

example of the field scattered from a single wire of radius a = 0.25/1 is 

demonstrated. 

a) 

b) 

Ｖ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

TM polarisation 

4 ...................... Ｍ ｾ -- _ .. - -_ .. _. -_ ... -- -r ---_.- --.-.. -.. __ ... __ .. _-; -- --- -- ... --- -- ----
:2 :: 
if " 
ｾ 2 .... 
ｾ

ｾ 0 
cv 
;; -o 
5! ·2 

ｾ
Q. 

-4 

-6 
0.00 

6 

4 

!ii! 

if 
ｾ 2 .... 
cv 
== 
ｾ 0 
cv 
;; -0 j ·2 

Q. 
-4 

-6 
0.00 

·_ .. ·· .... ···f-·-·-·· .. ·-
I 

• 
0.05 0.10 

-- _ .... _ ... --_ .. _ ... p-- ------, , 
, 
: 

Analytical Solution 
TLM Multi-Feature Node 
TLM Equivalent Circuit 

0.15 flfrnu 

j 
TE polarisation 

0.20 

.. -.--.- .... Ｍ ｴ Ｍ ﾷ Ｍ ｾ .. ·-· ... ·_0· .. • ﾷ ﾷ ｾ Ｍ ﾷ ﾷ ﾷ ﾷ ﾷ Ｍ ﾷ ﾷ ﾷ ﾷ ﾷ Ｍ ﾷ Ｍ ﾷ ﾷ ﾷ ﾷ ﾷ Ｍ ﾷ ｴ Ｍ ﾷ ﾷ ﾷ ﾷ ﾷ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ﾷ

(0,2) . 

i , ·----···t···-·· .. -· .. ·· 
I 

0.05 

, ' 
! I , , . : 

Analytical Solution 
TLM Multi-Feature Node 

.... TLM Equivalent Circuit 

0.10 0.15 f/fmax 0.20 
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polarised Cb) single wire of radius a = 0.25/1 
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It can be seen in Figure 4.16 that the comparison between the numerical and 

analytical solution is exact over the frequency range of interest for both 

polarisations. 

In order to further examine the accuracy of the proposed approach the coupling 

through the near fields of two wires in different cells will be shown in the next 

experiment. 
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Figure 4.17. Numerical experiment for two multi-feature nodes in close 

proximity 

Figure 4.17 shows the configuration for the next simulation. Two multi-feature 

nodes each containing a single wire have been placed in close proximity in such a 

manner that there is a single empty node in-between them. The radii of both wires 

embedded in the cells are a = 0.5 ｾ where ｾ = 0.025 m. The fields are shown in 

Figure 4.18 and are observed at the point in line with the empty node positioned 

between the multi-feature nodes in a far and near-field zone on the negative x-

axis. 

Again, the analytical and numerical solutions are in good agreement for TM 

fields. The error for TE polarisation is similar to that exhibited by a single node 
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with a wire embedded inside. Therefore, placing two multi-feature nodes in close 

proximity does not introduce any additional errors other than that associated with 

the accuracy of the multi-feature approach and the dispersion ofTLM method. 
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Figure 4.18. Electric field amplitude 2 and 8 nodes in front of two multi-feature 

nodes placed in close proximity for TM (a) and TE (b) polarisation 
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In many practical configurations it might be very difficult to employ a uniform 

coarse mesh distribution that ensures that single wires are located at the centre of 

a cell. Additional problematic examples involve modelling wire cables, looms and 

bundles. However, such problems can easily be resolved with the multi-feature 

approach as it allows embedding of many features inside a single TLM cell. The 

results of these scenarios are the subject of the next section. 

4.5. A Single TLM Node with Multiple Wires 

In the section above, the multi-feature node has been proven to provide a 

good accuracy for the simulation of the fields scattered from a single wire 

embedded in a coarse cell of TLM mesh. This section validates the more complex 

problems for which the multi-feature node has been designed, Le. embedding 

multiple objects into a single TLM cell. Consideration will now be given to 

inserting an arbitrary number of conducting wires within a single cell, with 

arbitrary placement within the cell. It should be clear that it is not expected to be 

able to develop a universal equivalent circuit analogous to that in Figure 4.6 that 

mimics the behaviour of such a cell containing many conducting wires. Therefore, 

only the approach utilising multi-feature node can be employed to describe in 

sufficient detail the complexity of the problem. 

From the derivation presented in this chapter it should be clear that there is no 

restriction on the positions or radii of the wires, provided that they all lie within 

the scope of a TLM cell and they do not overlap one another. This method is 

applicable to a wide range of EMC problems, including a scattering from a single 
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wire placed centrally, as shown in section 4.4.4 of this chapter, scattering from a 

single wire which is offset from the centre of the cell, through wave propagation 

in the presence of cluster of wires, to simulation of the fields scattered from wire 

shields, metal cables and bundles, linear antenna arrays and so on. In this section, 

the validation of the approach will be presented for the case of fields scattered 

from a cluster of conducting wires. 

Consider the multi-feature node that is positioned at the point (0,0), at the centre 

of the computational window presented in Figure 4.7. The MN encapsulates six 

metal wires of arbitrary placement within the node and various radii, as presented 

in Figure 4.19. Details on the parameters of the wires, their positions and radii are 

specified in Table 4.2. 

No Radius Distance r ａ ｮ ｧ ｬ ･ ｾ

1 0.25£\ 0.00£\ 0° 

2 0.40£\ 0.67/). 40° 

3 O.12/). 0.50/). 130° 

4 0.10£\ 0.62/)' 1600 

5 0.35/). 0.65/). 225° 

6 0.30/). 0.60/). 3200 

Table 4.2. Parameters of the wires embedded in a single TLM cell. 

In Table 4.2, the position of each of the wires is given by Ｈ ｲ Ｌ ｾ Ｉ Ｌ where r denotes 

the distance between the wire centre and the centre of the node and ｾ is the angle 

between the node's positive x-axis and the radius r. The simulation is excited by a 

Gaussian Pulse of RMS width 2.5 time-steps and the fields are measured in a near 

and far-field region, assigned 2 and 8 nodes respectively in line with the MN and 

113 



Chapter 4 - Embedding Conducting Wires into a Single Cell of 2D TLM model 

in front of it, looking from the direction of wave propagation. A computational 

window of 1000 by 1000 nodes is used. The TLM nodes of radius ｾ = 0.025 m 

are used and the time-domain procedure iterates for 2048 time-steps. 

Computational window " , , 
ｲ ｣ Ｂ ｣ ｣ ｣ ﾫ ﾫ ﾫ ｣ ｣ ﾫ ﾫ ｣ ﾫ ﾫ ｣ ﾫ ｣ Ｌ ﾫ ﾫ ﾫ ﾫ ｣ ｣ ｣ ｣ ﾫ ﾫ Ｂ Ｌ Ｌ ﾫ ｾ Ｇ Ｍ Ｇ "" • :,' 

I _' I 
I "" I • ',' • .,' I 
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ｾ
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I ...... 1 • 

X !ccccccccccccccccccccccccccccccc:............. : 
.... ｾ __ .-:...: __ --J 

Figure 4.19. A numerical configuration for a simulation of a TLM cell 

containing multiple wires 

Before the complete numerical results are presented, justification of the 

approximation to the analytical solution for this problem to only four harmonics 

will be given in a similar fashion to that for the single wire case. 

The exact solution illustrated in Figure 4.20 was calculated using n = 20 

harmonics. It is observed that over the frequency range for which the TLM 

method is regarded as accurate, i.e. f / fmax = 0.1, the four lowest order harmonics 

closely match the exact solution. 
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Figure 4.20. A onvergence of analytical solution for a cluster of wires 

for TM (a) and TE (b) polarisation 

The results of the numerical simulations are presented in Figure 4.21 for the TM 

polarisation and Figure 4.22 for the TE polarisations. 
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containing ix wir . n th weak cattering i quite well estimated. A slightly 
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feature n d , i.. hind th MN. The near field for that scenario is more in error 
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the i ibl d viati n th ab olut err r for the near field is only 1.3% for 

The ability f a multi-fi atur node with mUltiple embedded wires to correctly 

predict the ph e of th ignal i demonstrat d in Figure 4.23. Both, TM and TE 

119 



Chapter 4 - Embedding Conducting Wires into a Single Cell ol2D TLM model 

polarisations are considered. The phase of the scattered signal is captured at 2 and 

8 nodes in front of the multi-feature node. It is observed in Figure 4.23 that the 

multi-node is capable not only of accurately modelling the amplitudes of the 

fields but also their phases. For both polarisations the analytical solution is well 

rendered by the results of the numerical simulations. 

a 

igur 

Ｖ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｌ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

TM polarisation 

4 

i 
I 
t I 

. ·_·_ .. ·_···f . --r··· .. -- .... __ .... Ｂ ｾ ｲ Ｍ Ｇ
i 
I 

I 
i i 
: I 

ｾ Analytical Solution 
* TLM Multi-Feature Node 

ｾ ｌ __ ｾ __ ｾ ____ ｾ __ ｾ ________ ｾ ｾ ______ ｾ

000 0.05 0.10 0.15 tIt 0.20 
m.x 

Ｖ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｑ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｇ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｇ

4 

I 

!-.-
TE polarisatlon 

I 

! 

I 

........ Ｍ Ｎ Ｍ Ｍ ｾ Ｍ Ｍ Ｎ Ｍ Ｎ Ｍ Ｍ Ｎ Analytical Solution I 
I TLM Multi·Feature Node 

ｾ ｌ __ ｾ __ ｾ ____ ｾ __ ｾ __ ｾ ____ ｾ __ ｾ __ ｾ
0.00 0.05 0.10 0.15 tIt 0.20 

mu 

ph f the field cattered from TM polarised (a) 

and lari d (b node with multiple wires 

120 



Chapter 4 - Embedding Conducting Wires into a Single Cell of 2D TLM model 

. 4.6. Closing Remarks 

In this chapter, the multi-feature node has been developed that enables 

multiple conducting wires to be embedded with second order accuracy into a 

single TLM cell. The approach utilises an analytical derivation to account for 

mutual interactions between the wires in close proximity. This analytical solution 

is appropriately sampled at the edges of the 2D TLM node and linked with the 

time-domain algorithm, using the mode decomposition and short length 

transmission lines with short or open-circuit terminations. 

The results of the approach was first validated for the case of a single wire, 

positioned centrally within the node before the technique was applied to cells 

enclosing multiple wires. In both scenarios the approach was proven to be 

accurate even for frequencies beyond which the TLM is regarded as 

dispersionless. Both the amplitude of the field and its phase were modelled well 

and the results were shown for two different polarisations, namely TM and TE. 

No numerical instabilities were found when employing the multi-feature approach 

to a range of engineering problems. It is underlined that the TM polarisation 

features stronger scattering which increases the level of mutual interactions and 

interference between the elements of the system, placing a greater demand for 

high EMI immunity of the body under EMC tests. Nevertheless, the results for rE 

polarisation were demonstrated to illustrate that even when a weak 

electromagnetic field variation is concerned, the proposed approach is capable of 

modelling those small deviations with the accuracy required for EMC 

applications. 

121 



Chapter 4 - Embedding Conducting Wires into a Single Cell of2D TLM model 

4.7. References 

[4.1] Choong, Y.K., Sewell, P., Christopoulos, C., "New thin wire formulation 

for Time-Domain differential-equation models ", Intern. Journal of 

Numerical Modelling, vol. IS, pp. 489-501, 2002 

[4.2] Gradshteyn, I.S., Ryzhik I.M., JetTrey Alan (Editor), "Table of Integrals, 

Series, and Products", Academic Press, San Diego, CA, pp. 879, 1993 

[4.3] Morse, P.M., Freshbach, H., "Methods of Theoretical Physics, McGraw-

Hill Book Company", Inc., New York, 1953 

[4.4] Choong, Y.K., Sewell, P., Christopouh?s, C., "Hybrid node for description 

of thin wires based on analytical field representation in EMC problems ", 

IEEE 2002 International Symposium on Electromagnetic Compatibility, 

Minncapolis, Minnesota USA, August 19-23, 2002 

[4.5] Naylor, P., and Christopoulos, C., "A new wire node for modeling thin 

wires in electromagnetic field problems solved by transmission line 

modeling", IEEE Trans. on Microwave Theory and Techniques, Vol. 38, 

No. 3, pp 328-330, 1990 

[4.6] 1I0efer, W.J.R., So, P.P.M., "The Electromagnetic Wave Simulator", John 

Wiley & Sons, Chichester, 1991 

[4.7] Christopoulos, C., "The Transmission-Line Modeling Method: TLM", 

Piscataway. NJ: IEEE Press, 1995 

[4.8] Staelin. D.lI., Morgenthaler, A.W., Kong, J.A., "Electromagnetic Waves", 

Prentice-lIall International, Inc. , New Jersey, 1994 

122 



Chapter 5 

Modelling Dielectric Fine Features 

in a Coarse Mesh 

In this chapter, the theoretical formulations for the problem of a wave 

scattered from a cluster of cylinders of different characteristics, rather than perfect 

conductors, will be presented. This includes scattering from dielectric rods, 

dielectric coated wires and wires shielded with an arbitrary number of dielectric 

layers. Initially, the necessary conditions that have to be satisfied at the surface of 

dielectric rods to maintain field continuity will be considered. Similarly to the 

case of conducting wires embedded in a single numerical cell presented in 

Chapter 4, the admittance relationship between the field quantities !! = y .,g will 

be evaluated at the edges of the cell containing the objects. The derivations will be 

delivered for both field polarisations, namely TE and TM. Validation of the theory 

given will be demonstrated for a number of practical examples. 

5.1. . Formulation of Dielectric Cylindrical Boundary 

In this section, the analytical formulations for a field scattered from a cluster 

of dielectric cylinders will be given. The derivations will be based upon the case 

of conducting wires enclosed in a single TLM cell demonstrated in Chapter 4, and 

will deal with the two field polarisations separately. 
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5.1.1. TMPolarised Wave 

This paragraph presents the field fonnulae for the case of dielectric rods 

embedded in a single TLM cell, with reference to Figure 4.1 from Chapter 4 

where now the cylindrical scatterers are dielectric rods rather than conducting 

wires. In the case of electromagnetic wave incident from free space and scattered 

from dielectric surface, two regions of interest are distinguished: 

(i) free space region of intrinsic admittance y = Yo = JEo / J.10 and the 

wavenumber k = ko = roJJ.1oEo , and 

(ii) dielectric region of parameters y 0 = JEoEo I J.1oJ.1o = yono and 

dielectric. 

Both areas consist of non-magnetic materials, therefore the penneability J.10 = 1 . 

In the presence of homogeneous dielectric posts the total electric and magnetic 

field for TM polarised fields in the region (Eo,J.1o) can be described in a polar 

coordinate system centred on the plh cylinder, as derived in Chapter 4: 

Ez(r ｾ ｡ ｰ Ｇ ｾ Ｉ = ｾ Ａ ｕ ｏ ｰ ｘ ｯ + f!X p + ｌ ｾ Ａ Ａ ｱ ｰ ｘ ｱ (5.1) 
q .. p 

(5.2) 

The elements fpn,f'pn,Spn,g'pn are specified by: 
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f = e -jn+p H(2) (kr, ) 
po D P and 

(5.3) 

The boundary condition requires continuity of the tangential field components at 

the interface rp = ap where ap is the radius of the p'h cylinder, thus: 

o 0 A 

ｲ ｮ Ｍ ｾ Ｉ ｸ ｲ ］ ｏ
(5.4) 

o 0 A 

(H -H )xr=O 

where the superscript D denotes fields in the dielectric region and 0 fields in 

empty space. Hence, the boundary condition can be formulated in the form: 

(5.5) 

(5.6) 

At the origin rp = 0, the Bessel functions of the second kind are infinite for any 

order and for that reason are not included in the final field solutions on the rods, 

hence ｘ ｾ = O. Assuming linear, homogenous and isotropic media the boundary 

conditions are finally expressed as: 

(5.7) 
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(5.8) 

It should be pointed out that having only two sets of equations for each wire it is 

impossible to obtain an explicit solution for the three unknown vectors of 

coefficients; namely ｘ ｾ Ｌ ｘ ｾ Ｌ ｘ ｾ Ｈ ｱ Ｉ Ｎ One way to resolve that problem is to 

'Construct the admittance relationship at the interface between the regions of 

different permittivity in the form of !! = y . §. Substituting the expression for the 

E and H-field given by Equations (5.1) and (5.2) yields: 

Y 
(( )T ( )T 0 ()T J _ • - 0 V O XO + fOX + 0 TO XO 

- J- ｾ ｰ ==op_o -p -p L ｾ ｰ =qp-q 
"(0 q .. p 

(5.9) 

where the functions fp' gp and their derivatives are evaluated for the argument 

krp = koap. Utilising the right-hand side of Equation (5.7) and (5.8) into (5.9) 

leads to: 

(5.10) 

Rearranging gives: 

(5.11) 

respectively. Substituting Equation (5.11) into the boundary admittance 

relationship defined in Equation (5.9) results in: 
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(5.12) 

After some mathematical arrangements one obtains: 

(5.13) 

where ｾ is determined in Equation (5.11). 

Analogously to the scheme adopted in Chapter 4, the procedure described by 

Equations (5.1) to (5.13) needs to be carried out for every single dielectric rod 

enclosed in the TLM cell and the boundary condition applied at the surface of 

each. This process will result in a set of linear equations of the form: 

AI II2 II3 .. Xo U XO 
!IOI _I =01-0 

I21 ｾ Ｒ I23 .. XO U XO U02 XO _2 =- =02-° =- (5.14) 
XO 

_0 
T I32 ｾ Ｓ

° U03 =31 .. _3 U03XO 

where the dielectric posts are numbered from 1. 

This is a similar expression to that presented in Equation (4.21) in Chapter 4, with 

the only difference lying in the components ｾ ｰ constructed as: 

(f'0)T _K(fO)T 
A - -p - -p 
- - T T 
-p Ｈ ｾ Ｇ ｾ Ｉ Ｍ ｾ Ｈ ｾ ｾ Ｉ

Thus the nth element of the diagonal matrix A is defined by: ..... 

ｙ ｏ ｈ Ｇ ｾ Ｒ Ｉ Ｈ ｫ ｯ ｡ ｰ Ｉ ｊ ｮ (koap) - YOJ'n Ｈ ｫ ｯ ｡ ｰ Ｉ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｯ ｡ ｰ Ｉ

Anp = YoJ'n(koap)Jn (koap) -YOJ'n (koap)Jn (koap) 

(5.15) 

(5.16) 
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It is clear from the foregoing derivation that each cylindrical object embedded in 

the cell can possess a different geometry and material properties. 

In order to use the solution of Equation (5.14) in the numerical scheme, the vector 

of scattered field coefficients X; = [XI X2 X3 ••• r has to be now re-

expressed in a polar coordinate system centred at the TLM cell. This is done by 

means of Green's functions. This procedure has already been demonstrated in 

Chapter 4, for the case of conducting wires encased in a TLM cell, and for brevity 

will not be repeated here. Also the algorithm to impose the eigenvalue problem, 

necessary to link the field solutions with the adjacent nodes of the TLM grid, has 

been illustrated in the Chapter 4 and is therefore omitted from this section. Instead 

in the next section, the field derivations for a cluster of dielectric posts excited by 

a TE polarised plane wave will be presented. 

5.1.2. TE Polarised Wave 

Here, the solution for the electromagnetic field behaviour in the presence of 

dielectric rods inserted in a single empty space cell of TLM model and excited by 

a plane wave with its electric field polarised perpendicular to the cylinder axis is 

derived. In the region (Eo, J.lo), the fields are described by Maxwell' s equations 

and can be expressed in a polar coordinate system centred on the cylinder p'h as: 

(5.17) 
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= g,T U X + fIT X + ｾ g,T T X 
_P=Op_o -p-p ｾ ｟ ｐ ］ ｱ ｰ Ｍ ｱ

q .. p 

(5.18) 

where Yo = ｾ ｅ ｯ / J..lo is the intrinsic admittance of the medium, ko is the empty 

space wavenumber and fpn,f'pn,gpn,g'pn have been defined in Equation (5.3). To 

ensure that the fields are continuous at the interface between empty space and the 

dielectric material, the boundary conditions formulated in Equation (5.4) have to 

be satisfied. 

Thus, for the magnetic field continuity one obtains: 

(5.19) 

and for electric field continuity: 

(5.20) 

The admittance relationship in the form of H = Y . § is now constructed for a TE 

mode from Maxwell's equations at the surface of the /h rod leading to: 

(5.21) 
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Assuming finite fields, the terms containing Hankel functions in the region where 

r = 0 are removed from Equations (5.19) and (5.20), and these two equations are 

substituted into Equation (5.21), resulting in: 

(5.22) 

Rearranging yields: 

(5.23) 

respectively. Substituting Equation (5.23) into the boundary admittance 

relationship given by Equation (5.21) leads to: 

(5.24) 

After some rearrangement, 

(5.25) 

where ｾ is defined in Equation (5.23). 

Applying the procedure described by Equation (5.19) to (5.25) for every single 

dielectric rod enclosed by a single TLM cell, the set of linear equations already 

presented in Equation (5.14) is obtained, except that the elements of diagonal 

matrix A are now identified as: 
=p 
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(fO)T _K(f'O)T 
A = -p - -p 

=p (O)T _ (,0 )T 
ｾ ｰ 1£ ｾ p 

(5.26) 

Thus the nth element of a matrix A is given by: 

A = ｙ ｯ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｯ ｡ ｰ Ｉ ｊ Ｇ ｮ (koap) -yoJ ｮ Ｈ ｫ ｄ ｡ ｰ Ｉ ｈ Ｇ ｾ Ｒ Ｉ Ｈ ｫ ｯ ｡ ｰ Ｉ

np yoJ n(koap)J'n (koap) -yoJ n(koap)J'n (koap) 
(5.27) 

The algorithm for solving for the scattered field coefficients as well as the 

mapping process has already been demonstrated in Chapter 4 for the case of TE 

polarised perfectly conducting cylinders and for brevity will not be repeated here. 

5.2. Wires with a Single and Multi-Layered Dielectric Coating 

An extension of the work discussed in the previous two sub-sections is now 

presented that allows the incorporation of an arbitrary number of conducting wires 

(or dielectric rods) with dielectric coatings within a multi-feature node. 

A derivation of TM polarised electromagnetic field in the presence of dielectric 

coated conducting wires will be given. The algorithm will be then generalised to 

the case of wires with coatings that consist of many dielectric layers of different 

permittivity Er' Although the algorithm is demonstrated based on TM polarised 

excitation, the essential aspects ofTE mode are indicated when necessary. Results· 

will be shown for both TM and TE polarisations. 

5.2.1. Dielectric Coated Perfect Conducting Wires 

Scattering from wires with dielectric coatings can be carried out using the 

same approach as scattering from simple dielectric rods. The general EM field 
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fonnulations need to be re-expressed in tenns of a polar coordinate system based 

on one of wires, e.g. the plh wire. For a TM polarized plane wave the fields can be 

assigned as: 

Ez(r > ､ ｰ Ｌ ｾ Ｉ = ｾ ［ ｕ ｏ ｰ ｘ ｾ Ｋ ｦ ［ ｘ ｾ + ｌ ｾ ［ ｲ ｱ ｰ ｘ ｾ (5.28) 
q .. p 

(5.29) 

The outstanding task is to determine the scattered field coefficients ｘ ｾ given the 

excitation coefficients ｘ ｾ Ｎ In order to achieve this, two boundary conditions have 

to be taken into account, i.e. at the conductor/dielectric interface where r = ap and 

at the dielectric/empty space interface where r = dp ' and dp is the radius of a 

dielectric coating measured from the centre of the cylinder, as shown in 

Figure 5.1. 

Figure 5.1. An example of dielectric coated wire with marked interfaces 

between the regions of different pennittivity E 

At the first interface r = a the total electric field is given by a similar fonnula to p 

that presented in Equation (5.28) 
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ｅ ｺ Ｈ ｲ ］ ｡ ｰ Ｌ ｾ Ｉ ］ ｾ Ａ ｕ ｏ ｰ ｘ ｾ Ｋ ｦ Ａ ｘ Ｚ Ｋ ｉ ｾ Ａ Ａ ｱ ｰ ｘ Ｚ =0 (5.30) 
. q .. p 

It is underlined that the excitation coefficients and scattered coefficients now have 

superscript a, compared to those for fields outside the scatterer in empty space 

denoted by 0, as in Equations (5.28) and (5.29). Recognising the fact that the 

electric field on the surface of each metal wire is zero, a set of linear equations 

will be formed, with the cylinders numbered from 1: 

AI II2 !13 
ｾ ｡

UOI .. XI 

I21 ｾ Ｒ I23 
ｾ ｡ U02 .. X2 (5.31) =-

III Il2 ｾ ｬ
ｾ ｡ U03 .. X3 

where the scattered field coefficients have been normalised by the incident wave 

coefficients i.e. Xp = Xp IXo, and elements of diagonal matrices Ap are 

evaluated in the form: 

for a TM mode: (5.32) 

and for a TE mode (5.33) 

It should be clear that given the excitation coefficients the vector of coefficients 

weighting the scattered field Xp can be explicitly calculated from 

Equation (5.31). 

At the second interface r = dp ' the continuity of the electric and magnetic field 

needs to be preserved. Hence, the following equalities have to be accounted for, as 

defined in Equation (5.5) and (5.6): 
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(5.34) 

and 

(( rO)T UO + (f'0)T XO + ｾ Ｈ rO)T TO XO) 10 ｾ ｰ =Op -p -p ｾ ｾ ｰ =qp-q 
q .. p 

=Y ((glD)T UD+(flD)T Xa+ ｾ Ｈ ｧ ｬ ｄ Ｉ ｔ ｔ ｄ ｸ ｡ Ｉ
D _p =Op -p -p ｾ _p =qp-q 

q .. p 

(5.35) 

Contrary to the case of dielectric rods, the Hankel functions cannot be ignored, 

here they do not represent fields at the origin r = o. Expanding the admittance 

relationship!! = y. § formulated at the boundary, r = dp with the expressions for 

the electric and magnetic fields given in Equation (5.28) and (5.29) yields: 

(5.36) 

The left and right-hand side of Equation (5.36) can be substituted from Equations 

(5.34) and (5.35) respectively, which leads to the following: 

TM fields: (5.37) 

TE fields: (5.38) 
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Updating and rearranging Equation (5.36) gives: 

( f'O)T _K(fO)T 
-P --P XO+""'ToXo=-Uo 

( 
lO)T (O)T -p ｾ ］ ｱ ｰ Ｍ ｱ =Op 

ｾ P - J£ ｾ ｰ q .. p 

(5.39) 

As before, a set of linear equations is derived as follows: 

Al II2 113 
-0 
XI UOI 

I21 A2 I23 
-0 V

02 
.. X2 =- (5.40) 

I3'1 I32 A3 -0 V
03 

.. X3 

where for TM fields: 
(f'O)T -K (fO)T 

A = -p - -p 

=p ('O)T _ ( O)T 
ｾ ｰ K ｾ ｰ

(5.41) 

and for TE fields: (5.42) 

and J£ has been defined in Equation (5.37) and (5.38) for TM and TE polarisation 

respectively. In order to solve Equation (5.40) a set of linear equations from 

Equation (5.31) needs to be calculated for the scattered coefficients X: and the 

vector J£ obtained. As was shown in Chapter 4, the scattered coefficients can be 

then redefined in a coordinate system centred at the TLM cell by means of the 

Green's function and the final fields for the TM fields formulated as: 

(5.43) 

(5.44) 

These solutions can be used to construct the admittance relationship between the 

electric and magnetic field at the edge of the node, which is essential for the 
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process of integrating the multi-feature node with the time-domain TLM 

algorithm. 

5.2.2. Wires with Multiple Dielectric Coatings 

The extension to problems of scattering from cluster of wires or dielectric 

rods with m dielectric coating layers of radii d1,d2, ••• ,dm is now very 

straightforward. The algorithm starts at the interface r = ap between the inner 

conducting wire (or dielectric rod) of radius ap and the first dielectric coating 

layer of radius d1 • At this interface, the vector of scattering coefficients X: is 

obtained directly by solving the set of linear equations discussed in the previous 

section. Then the algorithm proceeds in the same fashion for consecutive 

interfaces r = dj where i = 1,2, ... , m -1 : 

1. Apply the appropriate boundary conditions at the interface r = dj which 

preserves continuity of the fields at the ;'h dielectric interface 

2. Construct the admittance relationship H = Y· E at the interface r = dj 

3. Calculate the vector of normalised scattered coefficients X:i taking into 

account the vector of scattered coefficients obtained in the previous step, 

i.e. for X: for i = 1, and X:I for i > 1 

4. Follow points 1-3 until the interface r = dm between the last dielectric 

layer and the free space is reached 
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The condition at interface r = dm enables the last vector of normalised scattering 

ｾ ｏ

coefficients Xp to be calculated in the same manner as for the case of a wire with 

a single dielectric coating. 

Clearly, the algorithm accounts for the boundary conditions separately at the 

surface of every single scatterer enclosed within a TLM cell. Therefore, it is 

possible to change the material properties or geometries of a scatterer without 

redefining the whole procedure. Thus, the approach allows embedding scatterers 

of various radii and properties in one TLM cell without restriction to a particular 

class of objects, e.g. a cell with only conducting wires or with only dielectric rods, 

which can be very beneficial in simulations of waves scattered from cable looms 

and cable bundles. 

5.3. Numerical Validation for a Cell with Multiple Dielectric Rods 

In this section the numerical validation of the theory given above will be 

presented. As for the case of metal wires embedded in a single TLM cell, an 

illustration that practically justifies the truncation of analytical solution to four 

incident harmonics will first be provided for each simulation. 

Consider the single square TLM cell containing four dielectric rods of material 

permittivity Er = 10, shown in Figure 5.2. The positions of the cylinders within 

the cell and their geometries are randomly chosen assuring that all of them lie 

completely within the cell and that they do not overlap one another; details are 

listed in Table 5.1. For the time-domain numerical simulation the node radius was 
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selected to be ｾ = 0.025 m, the computational window 1000 by 1000 nodes and 

the number of iterations is 2048. The multi-feature node (MN) enclosing the 

dielectric cylinders is illuminated with a plane wave Gaussian pulse of RMS 

width 2.5 time-steps. The fields are captured in both near and far-field regions and 

the accuracy is verified with the exact solution. 

No Radius Distance r Angle cl» 

1 0.40.1 0.5.1 450 

2 0.30.1 0.4.1 3000 

3 0.20.1 0.5.1 1300 

4 0.25.1 0.5.1 1900 

Table 5.1. Position and geometry of dielectric rods clustered in a TLM cell 

Computational window " 
,«««««<<<<"<<<<<<<<<<<<<<<<<<<<<<<<<<<' " 

ｾ Ｇ
: "","" I 
I I 

ｬ ｮ ｣ Ｍ ､ Ｍ ｮ ｾ ｴ Ｍ Ｋ Ｍ Ｍ -.0.; d ｲ ｾ Ｍ Ｍ ｛ Ｍ Ｇ I 

Pulse: l!J .. ｾ Ｚ Ｎ Ｚ Ｎ Ｎ Ｌ : 

ｾ
ｉ OP MN ' " I 
I .......... I 

X t ••••••••••••••••••• < •• < •••••• ::!"" 

- 1 . , ---e---i---
" ......... -----'-----' 

Figure 5.2. The numerical set-up for a simulation of a TLM cell with multiple 

dielectric rods 

For the scenario described above an explicit justification of the truncation of the 

cylindrical harmonic series within the TLM node is presented in Figure 5.3. Here, 

the total electric field is observed at the boundary of the node containing the rods 

(point (-.1,0) corresponding to port 2 of Figure 4.1 in Chapter 4) for different 

degrees of truncation. It is clear that four terms give a very good approximation to 

the exact solution over the normalised frequency range (f / fmax < 0.1) . 
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It is noted that to ensure convergence of the analytic result at larger distances from 

the scatterer, 40 harmonic terms have been selected for that purpose and is 

labelled in Figure 5.3 as "Exact". 
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Figure 5.3. Convergence of analytical solution for a cluster of dielectric rods for 

TM (a) and TE (b) polarisation 
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Figure 5.4. Amplitude of the total electric field measured in near and far-field 

zones in front (a), behind (b) and to both sides (c), (d) ofTM polarised MN 

The comparison presented in Figure 5.4 between the analytical and numerical 

solution for a cluster of dielectric cylinders illuminated by a TM polarised plane 

wave shows excellent agreement for observation points placed in front of, behind 

and to both sides of the multi-feature node in the near and far-field zones. 

Moreover, the good agreement is observed well beyond f / fmax = 0.1. 

Figure 5.5 shows a similar comparison for a TE polarised case. As observed, the 

analytical and numerical results for scattering from a cluster of dielectric cylinders 

correspond very closely notwithstanding the relatively weak scattering that occurs 

in this case. Again, the agreement extends beyond f / fmax = 0.1. 
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Figure 5.5. Amplitude of the total electric field measured in near and far-field 

zones in front (a), behind (b) and to both sides (c), (d) ofTE polarised MN 

In order to further investigate the behaviour of the node with dielectric cylinders 

embedded within, the influence of dielectric constant will be studied for the same 

cluster of posts and both field polarisations. 
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Figure 5.6. Amplitude of electric field 2 and 8 nodes in front of the MN 

containing TM polarised dielectric rods of permittivity: 

8
r 
= 50 (a) and 8 r = 100 (b) 
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Figure 5.7. Amplitude of electric field 2 and 8 nodes in front of the MN 

containing TE polarised dielectric rods of permittivity 

Gr == 50 (a) and er = 100 (b) 

Figure 5.6 and Figure 5.7 demonstrate the capability of the approach to model 

dielectric cylindrical rods of different material properties. The increase in the 

value of pennittivity does not incur additional errors for TM polarisation and good 

agreement is achieved between the exact solution and the numerical 

approximation. An increase in a value of pennittivity for a TE case leads to a 

slight overestimation in the numerical prediction, especially visible in the near-

field region. The near-field errors in both cases can be explained by the limited 

number of sample points available when observing field in the near-field, since 

the field around the object, although modelled accurately by the analytical 

expansion, is sparsely sampled by the small number of TLM nodes in close 

vicinity to the objects. 
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Finally, it is shown that in the case of dielectric rods enclosed by a single TLM 

cell, the approach discussed in this work is capable of accurately identifying the 

phase of the signal under investigation for both field polarisations. Excellent 

matching is observed for a wide range of frequencies in the near and far-field 

regions as seen in Figure 5.8. 
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Figure 5.S. The phase of the field scattered from TM (a) and TE (b) TE polarised 

cluster of dielectric rods of permittivity Er = 10 captured 

2 and 8 nodes in front of MN 
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5.4. Numerical Validation for a Cell with Dielectric Coated Wires 

In this section, the multi-feature node is applied to modelling dielectric 

coated wires. In order to explore the flexibility of the approach in simulating such 

objects, three coated wires of different material properties and geometries 

embedded within a single TLM cell are investigated, as demonstrated in Figure 

5.9(a). 

aw ae Er r ｾ
1 Ｐ Ｎ Ｓ Ｐ ｾ Ｐ Ｎ Ｓ Ｕ ｾ 10 Ｐ Ｎ Ｗ Ｐ ｾ 45° 
2 ｏ Ｎ ｬ Ｕ ｾ Ｐ Ｎ Ｔ Ｕ ｾ 35 Ｐ Ｎ Ｔ Ｕ ｾ 315° 
3 Ｐ Ｎ Ｒ Ｐ ｾ Ｐ Ｎ Ｓ Ｐ ｾ 75 Ｐ Ｎ Ｕ Ｐ ｾ 175° 

Table 5.2. Parameters of the wires embedded in a single TLM cell 

a) Computational window 
<'«<'«<'«""«'«'«'«""1 

.r 
• I 
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ｾ
I OP MN ｾ ｾ ｾ ｾ ｾ ｾ ｾ I 

X !CCCCCCCCChChhhhhhhcCCCCJ ｾ

b) 

----t-------... ---,e 
Figure 5.9. Numerical set-up for a simulation of a TLM cell containing multiple 

dielectric coated wires (a), illustration of wires parameters (b) 

The characteristics of the coated wires are listed in Table 5.2, where Ｈ ｲ Ｌ ｾ Ｉ denotes 

the position of the wires within the MN, aw being the radius of the conductor, ac 

and Er are radius and dielectric permittivity of the coating layers respectively. 
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Figure 5.10. Amplitude of electric field 2 and 8 nodes in front (a), behind (b) and 

to both sides (c) (d) of the MN containing TM polarised dielectric coated wires 

For TM fields the comparison between the analytical solution and the numerical 

prediction for a cluster of multiple wires with dielectric coatings is presented in 

Figure 5.10 and is excellent for a wide range of frequencies. As expected, the 

influence of the dielectric layers is minor; as the field hits the dielectric boundary 

only a small part is reflected from the surface of dielectric, the majority of the 

field penetrating inside is totally scattered from the surface of the perfect 

conductor. Thus one expects that for a wave propagating in a presence of coated 

wires the scattered field should resemble that for perfect conductors. 
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Figure 5.11. Amplitude of electric field 2 and 8 nodes in front Ca), behind Cb) and 

b th side (c), (d) front of the MN containing 

p Jari d diel ctric coated wires 

As ob erv d in igur 5.11 or a cell with multiple dielectric coated WIres 

illuminat d by a p lan ed wave, the results in the far-field zone are in good 

agreement with th analytical olution up to 10% of maximum frequency of the 

TLM simulation. yond that pint the dispersion of numerical method causes 

greater deviati n b tween tho e two solutions especially when such weak 

scattering i c n id r d. umerical estimation for the near-field becomes more 

erroneou compared to the far-field zone due to the number of available sampling 

points in cl e vicinity of the multi-feature node. As the distance from the 

scatterer increase the M grid pro ides better numerical resolution of the 

reflected wavefr n which I ad to a more accurate field description. 
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Validation for phase is illustrated in Figure 5.12 for both field illuminations. 

Again excellent matching is observed for a wide range of frequencies for 

observation points placed in both the near and far-field regions. 
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Figur 5.12. The phase of the field scattered from TM (a) and TE (b) polarised 

cluster fcoated wire captured 2 and 8 nodes in front ofMN 

152 



Chapter 5 - Modelling Dielectric Fine Features in a Coarse Mesh 

5.5. Closing Remarks 

In this chapter the approach for embedding small objects into a time-domain 

numerical algorithm has been presented based on the example of dielectric 

cylinders and dielectric coated conducting wires. The results were verified against 

exact solutions and show excellent agreement even for frequencies beyond the 

conventional operating range of TLM. Having presented the approach for a 

variety ofEMC application, the next chapter explores possible application in other 

areas. 
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Chapter 6 

Generalised Multi-Feature Node 

In this chapter attention will be focused upon the implementation of the 

multi-feature node in simulations of various practical configurations. This will be 

carried out by dividing the examples into two categories. The first section 

explores further opportunities for employing the proposed scheme in EMC 

analysis, such as predictions of fields scattered from lossy wires. The second part 

focuses mainly on photonic applications and presents a description of the 

macroscopic behaviour of photonic systems. 

6.1. Wires with Losses 

Consideration has so far been focused on waves propagating in lossless . . 

media and incident upon lossless cylindrical structures. Therefore, it was assumed 

that the cylinder was either a perfect conductor whose conductivity a -. 00 or else 

a lossless (perfect) dielectric in which case a = o. Here, the application of the 

approach for embedding cylindrical wires that exhibit losses will be demonstrated. 

Generallossy round dielectric structures are now studied from which special cases 

such as lossy wires can be derived. It should be noted that a lossy dielectric can be 

alternatively regarded as a partially conducting medium (imperfect dielectric or 
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imperfect conductor) in which an EM wave loses power as it propagates due to 

a finite conductivity a ｾ 0 . 

6.1.1. Theoretical Formulation 

To incorporate losses within the system one needs to start with Maxwell's 

equations. Consider a linear, isotropic, homogeneous, lossy dielectric medium that 

is charge-neutral. Suppressing the time factor ejmt
, Maxwell's equations become: 

V·D=O 

V·B=O 

Vx E = -jroJ.lH 

V x H = jroEE + J 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where E = EoE, and J.l = J.loJ.l, are real values where Eo, J.lo and E" J.lr characterise 

the permittivity and permeability of empty space and the material respectively. 

Comparison with Maxwell's equations in Chapter 2 reveals that there is an 

additional element in the form of conduction current density J (A / m2
) present 

in Equation (6.4). This current occurs due to the drift of charge carriers when an 

electric field is applied to conductor, which in the low velocity case is modelled 

by: 

J=aE 

where a is the conductivity of the material expressed in Siemens per metre. 

Substituting Equation (6.5) into (6.4) leads to: 

Vx H = (jroE+a)E 

This equation can be rearranged to the form: 

(6.5) 

(6.6) 
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(6.7) 

where an effective permittivity is identified as: 

(6.8) 

Finally, Equation (6.4) is fonnulated as: 

v x H = jO)f:effE (6.9) 

From Equation (6.9) it is clear that embedding lossy dielectric(s) into the 

proposed multi-feature node should not significantly differ from the 

implementation of perfect dielectric(s) case. However, the fact that the effective 

dielectric constant appears in Equation (6.8) is now complex needs to be 

addressed; this effective pennittivity equals: 

(6.10) 

where c is the speed of light in vacuo and ko is the empty space wavenurnber. 

Having obtained this complex relative pennittivity the scheme for embedding 

lossy scatterers is similar to the approach presented in Chapter 5. A brief 

description will now be given for the case of a TM polarised wave incident upon 

round lossy conductors clustered within a single TLM cell. 

6.1.2. TLM Implementation 

In the presence of homogeneous dielectric posts the behaviour of the total 

electric and magnetic can be described in a polar coordinate system centred on the 

p'h cylinder as shown in Chapter 5: 
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Ez(r ｾ ｡ ｰ Ｇ ｾ Ｉ = ｾ Ａ ｕ ｏ ｰ ｘ ｯ + f!X p + ｉ ｾ Ａ Ａ ｱ ｰ ｘ ｱ (6.11) 
q .. p 

(6.12) 

where 10 = ｾ ｅ ｯ I J.lo is the intrinsic admittance of the medium and ko is the 

wavenumber. The elements fpn,f'pn,gpn,g'pn are specified by: 

(6.13) 

dj' (kr ) dH,(2)(kr ) 
where J' (kr ) = • P and 11'(.2)(krp) = • P, and the matrices Vo and 

D p d(kr
p

) d(kr
p

) = p 

!qp have been already introduced in Chapter 4. 

The boundary condition at the interface between the dielectric post ,and the 

surrounding homogeneous medium has to be taken into account. In the lossy 

dielectric the intrinsic admittance 10 and wavenumber ko now are both complex 

quantities. 

Continuity of tangential field components at the interface rp = ap' where ap is the 

radius of the p cylinder, requires that: 

o 0 ,. 
(.E -.E ) x r = 0 

(6.14) 
00" (!! -H )xr= 0 

where the superscript D denotes fields in the Jossy dielectric region and 0 fields in 

the homogeneous space. Explicitly, the boundary condition can be formulated as 

in Chapter 5 as: 

(6.15) 
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(glO)T UO XO +(f'O)T XO + ｾ Ｈ ｧ ｬ ｏ Ｉ ｔ ｔ ｏ XO =y-Iy (glO)T VD XO 
_ P ==<>p_O - P -p L.. _ p =qp-q 0 ° _ P =Op-O 

q .. p 

(6.16) 

As before the concept of the admittance relationship at the interface between the 

regions of different permittivity in the form of !! = y . § is now investigated. 

Substituting the expression for the E and H-fields given by Equations (6.11) and 

(6.12) into the admittance relationship yields: 

(6.17) 

where the functions fp' gp and their derivatives are evaluated for the argument 

krp = koap. Utilising the right-hand side of Equation (6.15) and (6.16) in (6.17) 

leads to: 

(6.18) 

Rearranging yields 

(6.19) 

respectively. Substituting Equation (6.19) into the boundary admittance 

relationship defined in Equation (6.17) results in: 

(6.20) 
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After some mathematical arrangements one obtains: 

(6.21) 

where ｾ is detennined in Equation (6.19). 

As studied in Chapter 4 and 5, the boundary conditions need to be applied at the 

surface of every lossy cylinder enclosed in a TLM cell and the procedure 

described by Equations (6.11) to (6.21) carried out for each of them. As a result, a 

set of linear equations is fonned: 

ｾ ｉ II2 !J3 .. XO U XO U -I _01-0 _01 

!21 ｾ Ｒ I23 .. XO U XO U 
XO -2 =- ==02-0 =- =02 (6.22) 

XO _0 

I31 III ｾ Ｓ
0 U .. _3 !!03 XO =03 

where the lossy cylinders are numbered from 1. The components A are 
=p 

constructed in the same way as in Equation (5.15) and (5.16) presented in 

Chapter 5. 

Similarly to the procedure presented in previous two chapters, the vector of 

scattered field coefficients X: = [XI X2 X3 000 r from Equation (6.22) is 

now calculated and the fields are re-expressed back from the wire coordinate 

systems to the node coordinates by the means of Green's functions. Also the 

algorithm to impose the eigenvalue problem, necessary to link the field solutions 

with the adjacent nodes of TLM grid, has already been given in Chapter 4 and for 

brevity is not repeated here. 

However, an important point needs to be highlighted when implementing the local 

field solutions into a TLM model. Solving the eigenvalue problem !!Xo = r§Xo 
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(Equation (4.54) in Chapter 4) at the edges of the node will this time result in 

complex eigenvalues. As discussed in Chapter 3 and 4, the vector of 

eigenvalues,!, represents input impedances looking into the multi-feature node. 

In addition to components that are proportional or inversely proportional to 

frequency, the eigenvalues, i.e. modal admittances also possess a frequency-

independent element. Thus, the circuit model reflecting the character of these 

admittances is formulated as y:1 = jc.oLj + Ri or Yj = jc.oCj + G j , where Ri and Gi 

denote resistance and conductance on the ;'h line respectively. In previous chapters 

circuit models were implemented in the time-domain model using open or short-

circuited transmission lines. Modifications to that model are now devised to 

account for this extra, frequency-independent behaviour and are shown in Figure 

6.1. Therefore. additional components in the form of conductances that represent 

the losses the wave encounters while propagating on the transmission line are now 

incl uded in the line model. 

ｾ ｦ ｦ ｾ VI 

v' 7" 
I 

... 
4) 

E f5. Y2 ca 7" ." 
c: 
ｾ
1:: f5. YJ 8. 7" I 

'<t 

Vi 1 15. -t. Y. - 7" v' • 

Figure 6.1. General transmission line implementation of non-standard node 

for embedding lossy scatterers 
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The value of each conductance can be calculated using transmission line theory. 

The input admittance for a transmission line of characteristic admittance Y 

terminated by a conductance G equals: 

y = y Gj + jY; tan(kA) 
m I Y; + jG

j 
tan(kA) 

(6.23) 

where k is the wavenumber in the transmission line of length ｾ Ｎ

After some mathematical rearrangements shown in Appendix C this admittance 

can be expressed for low frequencies as: 

'I'''G (Y G,] Y =0, Ｋ ｊ ｾ , _I __ I 

In I I G, Y 
I I 

(6.24) 

On the other hand the complex admittance calculated from the eigenvalue 

problem can be written in the form: 

(6.25) 

By direct inspection of the two above equations, the values of network elements 

are evaluated: 

(6.26) 

(6.27) 

Equation (6.27) is a quadratic equation of 

, 
y2_.1..Ly _(¥,.)2=0 

I A I I 
LJ.¥o 

(6.28) 

which is solved for the value of Yj • 

(6.29) 
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Only the positive value of the two solutions presented in Equation (6.29) is used. 

Having calculated the values of Y; and Gj for all the i = 1,2,3,4 lines, the 

network model presented in Figure 6.1 is considered, where Y; is a link line 

admittance terminated by conductance Gj • The computations in the multi-feature 

node will differ slightly from those presented in Chapter 3. The connection 

process remains unchanged and is described by Equation (3.25), however the 

scattering in the node is now expressed by: 

(6.30) 

where r. is a reflection coefficient: 

(6.31) 

6.1.3. Numerical Validations 

In this section numerical results will be validated against the analytical 

solutions presented in Equations (6.11) and (6.12) where the scattered coefficients 

were obtained by solving the boundary condition formulated in Equation (6.22). 

The numerical set-up is shown in Figure 6.2. The multi-feature node (MN) 

contains a single lossy wire positioned at the centre of the node. The set-up is 

excited by a plane wave with the electric field polarised in the z-direction, i.e. 

parallel to the cylinder's axis. The field is observed 2 and 8 nodes in front and in 

line with the wire embedded in the node on the negative x-axis. The remaining 

simulation parameters are: the computational window 60m x 60m, TLM node size 

2,1 = O.OSm and the radius of the wire a = O.S,1. Three different values of 
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conductivity are considered as presented in Figure 6.3, I.e. cr = 1, cr = 50 and 

cr = 100 Im. 

Computational window 

Ｇ ｾ ﾫ Ｑ ｊ
ｾ ｌ x 
ｾ ｉ D 
ｾ r---+- III ｾ

ｾ I : ｌ ｾ Ｚ Ｚ ｊ fcult d J §I OP ｾ ｵ ｮ ､ ｡ ｲ ｹ Ｚ
""" Open-Circuit 

I ___ Matched 

ur 6.2. xp rimental s t-up for the analysis of lossy wires 

It is clear that ery g d agreement between the analytical and numerical 

achie d. he xc llent match extends over the full frequency range 

over which M di p rsi n i negligible, that is f / fma:< < 0.1 or in other words to 

10 ampl p rwa I ngth. 
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tric field amplitude observed 2 and 8 nodes in front on the 

multi-feature n d c ntaining a los y wire for different values 

W)r nductivity: (a) cr=1 Cb) cr = 50 (c) cr = 100 

It is noted that for a conducti ity larger than 100 fm results tend to the solutions 

obtained for a perfi t onducting wire and only a small difference in the low 

frequency range di tingui he between imperfect and perfect conductors. To 
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verify accuracy in this range the solutions from Figure 6.3 are also presented in 

Figure 6.4. 
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ur 6.4. tal electric field from Figure 6.3 presented in a low 

fr quency range 

It is b rv d th t in thi range the numerical appr ximation strictly adheres to the 

exact analytical luti n and furth rmor more accurate results are obtained for 

incr ing aJu f c nducti ity. 

In th next ction the p ibility of employing the multi-feature node for 

simulati n in ther ar rath r than M modelling will be examined. 
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6.2. Photonic Band-Gap Structures 

In this section the possibility of implementing the 2D multi-feature node for 

simulations of photonic systems will be explored. Of significant interest is the 

ability to predict the performance of photonic band-gap materials that have 

already attracted a lot of attention over the last decade [6.1-6.5]. These kind of 

structures are often constructed from a lattice of dielectric rods or air holes etched 

into a substrate and possess frequency stop-bands in which the propagation of 

energy through the material is forbidden [6.1, 6.2]. The conventional approach to 

nwnerical modelling of PBG lattice utilises direct discretisation with fine meshes, 

notably smaller than the size of the individual rods or holes. This guarantees 

correct representation of the scatterer geometry and provides high accuracy. 

However this approach results in very long computational run-times and huge 

memory conswnption. Therefore, such direct nwnerical approaches to PBG 

characterisation are only suited to the analysis of single unit cells or for 

benchmarking. In practice, the computational overheads significantly increase 

when one deals with an array of cells or when modelling the global response of a 

large nwnber of devices integrated on a single substrate. For this reason many 

simulations of PBG structures are so intensive as to render the possibility of their 

application for modelling sub-system performance. impossible. Hence, the 

objective here is to produce simulations of the macroscopic behaviour of PBG 

devices, recovering the essential features of their characteristics, albeit without 

providing resolution of all the fine detail. 

For this purpose the 2D multi-feature node approach seems to be very suitable as 

it employs meshes much larger than the geometry of individual scatterer. In the 
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previous chapters it proved to be a very powerful tool for predicting the 

performance of sub-system models for EMC applications. In the following 

sections the algorithm will be scaled to micro-wavelength operation and its use in 

simulations of photonic devices will be demonstrated. 

6.2.1. Photonic Crystal Devices 

Consider a periodic structure consisting of dielectric rods distributed within 

a region of empty space with periodicity G, as presented in Figure 6.5(a). 

a) Computational window 
• • • • • • • • • • • • • • • - .............. . - .............. . - • • • • • • • • • • • • • • • 

ｾ . . . . . . . . . . . . . . . 
ｾ : : : : : : : : : : : : : : : 
.... -d • • • • • • • • • • • • • • • 

ｾｾ . . . . . . . . . . . . . . . 
'0-
..5_ · · · · · · · · · · · · · · · • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • 
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Figure 6.5. Numerical set-up: Lattice of 15 x 15 dielectric rods (a) and a segment 

of lattice presenting mesh fitting and lattice parameters (b) 

It has been found that when the refractive index contrast between the dielectric 

material and the surrounding space is high enough, a range of wavelengths exists 

for which propagation is forbidden in all directions [6.1]. A straightforward 

method for determining the band-gap is to calculate the transmission of a broad-

band electromagnetic signal through the structure in all dimensions for the 

reduced Brillouin Zone (BZ). To achieve this, a TLM method with multi-feature 

nodes is utilised. The square lattice of 15x15 dielectric rods in Figure 6.5(a) is 
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discretised so that there are two empty TLM nodes in between multi-feature nodes 

each containing a centrally placed dielectric cylinder, as shown in Figure 6.5(b). 

The lattice parameters are chosen after [6.3] and with reference to Figure 6.5(b) 

these are: a=0.6pm, d=0.15/lm, refractive index n=Ji: =3.4 and the TLM 

mesh radius is .1 = O.1Jlffi. 

Prior to the TLM simulation, the band-gap for the structure described above is 

first calculated using a planewave-based block-iterative algorithm [6.5] available 

commercially in [6.6] as a benchmark. 

1.8 r--------------, 
TE 

1.8 r------------, 
TM 

0." ........ !7IM ....... . 
·····ILJ····· r x 

0.2 

0.0 '"'--__ ｾ ｟ .......... _-'--_""'----.lI 

r M x r M x 

Figure 6.6. Diagrams of photonic band structure from Figure 6.5 for TE and TM 

polarisation. 

Figure 6.6 shows the diagram of the band structure presented in Figure 6.5 for TE 

and TM illumination calculated by the MIT Photonic Band package [6.6]. In these 

diagrams the dispersion is calculated along the high-symmetry line r-X-M-r, 

where r = (0,0), X = (1t / a, 0) and M = (1t / a, 1t / a) are the high-symmetric 

points in the first BZ. It can be observed that the lattice from Figure 6.5 exhibits 

a forbidden frequency band only for TM polarised waves. This band-gap is 
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estimated to lie in the frequency range from 0.375 to 0.485 (c/a), where c is the 

speed of light in vacuum and a is the periodicity of the lattice. 

Similar results are obtained using the TLM method. A TM polarised, pulse of 

RMS width 1.5 time-steps. short enough so that the resulting electromagnetic 

wave contains a wide range of wavelengths, is injected into bottom corner of the 

left-hand side of the structure, position r in the diagram in Figure 6.7. The Fast 

Fourier transform is performed for the transmitted fields recorded at the right-

hand side of the lattice for a range of propagation angles, between 0 and 45° that 

covers the reduced BZ of the square lattice. 
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Figure 6.7. Frequency spectrum for a TM illuminated square lattice of d = 0.15a 

output at point M of band diagram. 

Plotting out the frequency responses in the first BZ allows the band-gap to be 

evaluated. This band-stop is confirmed and clearly visible in Figure 6.7, where the 
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frequency response for a lattice from Figure 6.S(a) is observed at point M of the 

first BZ. 

By creating a defect in a lattice which consequently breaks its periodicity, 

photonic devices in various configurations can be designed [6.3]. As an example, 

a waveguide can be formed by simply eliminating a row of rods from the lattice. 

Modulating the input signal with the frequency from the band-gap the light is 

confined within the waveguide. Similarly, other configurations can be created; 

some of them are illustrated in Figure 6.8. These include: a straight waveguide, a 

sharp-bend waveguide, a beam splitter and a coupler shown in Figure 6.8(a), (b), 

(c) and (d) respectively. In each of the designs presented in Figure 6.8, the TLM 

mesh was illuminated with a TM polarised Gaussian Pulse modulated with a 

frequency of 0.4 (cia) and the time-domain electric field was plotted out after 300 

time-steps. An impedance absorbing boundary condition was assumed at the 

edges of the computational window enclosing the lattice. 

It should be pointed out that light with a frequency outside the stop-band does not 

provide light confinement within the wave guide. In such a scenario conventional 

scattering phenomenon occurs; the wave is scattered from particular dielectric 

rods throughout the whole lattice. 
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Figure 6.8. Photonic devices based on a lattice of dielectric rods: 

straight waveguide (a), sharp-bend waveguide (b), 

beam splitter ( c) and coupler (d) 

The results presented above indicate that the multi-feature node is highly 

applicable for the simulation of photonic band-gap devices. As the number of 

mesh nodes is significantly reduced compared to a fine mesh discretisation, the 

performance of the photonic component can be obtained within a short period of 

computational time. Furthermore, embedding dielectric rods within a TLM model 

incurs only slight additional overheads compared to the conventional TLM cells. 
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The extra quantities that have to be stored In the node are typically stub 

impedances and stub voltages, as pointed out in Chapter 3. 

Although only canonical examples have been presented above it should be 

underlined that the multi-feature scheme is very attractive for the simulation of 

practical systems. The fact that it allows objects of different characteristics to be 

arbitrarily placed within the numerical cells is very advantageous for models 

where the periodicity of the lattice does not coincide with that of the numerical 

grid. 

In summary, the approach provides a rapid assessment of photonic crystal devices 

in the context of larger sub-systems and circuits. The ability to assess the global 

performance of many elements integrated on a single chip is illustrated in 

Figure 6.9. 

In terms of the design and optimisation process, it is very desirable to simulate 

a system consisting of many elements integrated on a single chip. This gives 

an opportunity to verify whether or not the system responds as predicted based on 

a single device, account for factors such as mutual interference caused by high-

levels of integration and generally to improve the model. An example of such 

an integrated system is presented in Figure 6.9 which shows a 1 x 16 beam splitter 

designed on a lattice of 81 x 51 dielectric rods with lattice parameters as specified 

in the previous examples. It is clear that simulation of such a system with a mesh 

of a fine granularity would be very expensive in terms of computational resources. 
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Figure 6.9. 1 x 16 beam splitter based on a lattice of dielectric posts 

In the next example presented in Figure 6.10, the multi-feature node is used to 

simulate another computationally demanding configuration, the Mach-Zehnder 

interferometer. The Mach-Zehnder interferometer is a simple device which is used 

for many purposes in integrated optics. A light beam is ftrst split into two parts by 

a beam splitter and then recombined by a second beam splitter (not shown in 

Figure 6.10). Depending on the relative phase acquired by the beam along the two 

paths the output from second beam splitter will lie between 0 and 100% of the 

input power. In a design of this seemingly simple device, many parameters have 

to be taken into account, amongst which the following can be included: the 

necessary length of the arms so that the phase shift can be applied to one of them; 

angle of alignment and the minimum distance between the arms that guarantees 
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transmission of the two signals propagating down the arms with the lowest 

possible interference. In order to estimate those optimal working characteristics, it 

is required to model a slightly over-designed configuration, at least at the early 

stage. Hence, a lattice of large dimensions can be used for such purpose, as 

presented in Figure 6.10 where the interferometer is incorporated in a periodic 

material built from 101 x 45 dielectric cylinders. 
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Figure 6.10. Mach-Zehnder interferometer design on a lattice of dielectric rods 

It is clear that with growing complexity of the systems, simulations involving 

techniques based on a direct meshing can be hard, if at all feasible, to implement 

for such large problems. Therefore there is a great demand for approaches such as 

the one presented above to deal with complex structures utilising best the 

available resources to provide a quick and yet accurately enough assessment. 

More information about the implementation of the 2D multi-feature node m 

photonic applications including different practical examples can be found in the 

author's paper [6.7]. 
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6.3. Closing remarks 

In this chapter the multi-feature node has been extended to simulate an 

important group of problems as scattering from a lossy wires and lossy dielectric 

rods. It was shown that the multi-feature node is very suitable for application to 

such practical configurations. By changing slightly the derivation in order to 

account for a new boundary-value problem, a lossy wire was embedded in a single 

TLM cell and the numerical results demonstrate excellent agreement with the 

known solution. It was also demonstrated that EMC problems are not the only 

ones that can be solved using this technique. As shown, it was successfully 

employed in photonics where the macroscopic behaviour of microstructures like 

photonic band-gap materials can be easily estimated without the need to 

characterise in detail every single feature. 
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Chapter 7 

A Special Node Containing a Strip or Slot 

The aim of the work discussed in this chapter is to demonstrate the 

applicability of the general approach presented in Chapter 3 in combination with 

an elliptical coordinate system which can characterise non circular objects 

embedded in a TLM model. The set of local field solutions to Maxwell's 

equations that fonns the key component of our technique will be obtained by 

analytical means. The problem of an electromagnetic wave incident upon 

homogeneous elliptic cylinders will be derived in tenns of Mathieu functions. The 

analytical solutions for wave scattered from a small conducting strip or 

penetrating through a narrow slot will be presented. Finally, numerical results will 

be shown for both a strip and a slot embedded in a single cell of a coarse TLM 

mesh. 

7.1. Introduction 

The flexibility of the approach introduced in Chapter 3 will now be 

demonstrated in its application to various scattering objects described 

mathematically by different coordinate systems. Particular attention will be 

focused on the elliptical coordinate system. The fundamental reason for selecting 

this system lies in geometrical considerations. Owing to the fact that elliptic cross-
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sections can be modified by changing the axes ratio, elliptical cylinders can be 

effectively used to approximate a variety of important geometrical shapes. Indeed, 

the example scattering problems illustrated in this chapter will not be restricted to 

canonical diffraction from elliptic cylinders but also encompass thin metallic 

strips, which are often encountered as tracks on Printed Circuit Boards (PCB) and 

narrow slots in metal planes that form ground plane slotlines or enclosure 

apertures for cooling. Both of these models are very useful in their own right and 

also pave the way for the future development of accurate 3D modelling of multi-

track and multi-layer PCBs. The technique starts with a formulation of the wave 

equation in elliptical coordinates systems and identifies its solutions by the 

separation of variables. Appropriate boundary conditions are imposed at the 

surface of the small feature under consideration and the infinite number of 

elliptical harmonics is approximated to form a set of solutions that is suitable for 

linking the multi-feature node with the adjacent nodes of the TLM model ensuring 

continuity of the fields and conservation of the power in the network. 

7.2. Wave Equation in the Elliptical Coordinate System 

In this section, the elliptical coordinate system will be introduced and 

analytical solutions for the fields in the presence of an elliptical cylinder will be 

obtained. For brevity, only the necessary theory will be demonstrated here and for 

more details the reader is referred to the literature [7.1-7.7]. The elliptical 

coordinate system in the (x,y) plane is presented in Figure 7.1. The surfaces 

u = constant represent a family of elliptic cylinders having the same foci at 

x = ±d on the x-axis and v = constant represent a family of confocal hyperbolic 
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cylinders. The transformation from the elliptic to the Cartesian (x,y,z) coordinate 

system is given by: 

d 
x =- coshu cosv 

2 
d·nh . 

y='2 SI U smv 

'z=z 

where d is the distance between foci of the ellipse as shown in Figure 7.1. 

Figure 7.1. Elliptic cylinder coordinate 

In order to facilitate the derivation additional variables are introduced: 

ｾ =coshu 

Tl = cosv 

(7.1) 

(7.2) 

(7.3) 

The inverse transformation from Cartesian to elliptic coordinates is given by [7.1]: 

Time-harmonic fields are considered and the time-dependence ejrot is suppressed 

for clarity. Two illuminations will be discussed, i.e. (i) a uniform plane wave of 
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transverse magnetic type with the electric field vector polarised along z-axis'; and 

(ii) a uniform plane wave of transverse electric with magnetic field vector 

orientated along z-axis. It is assumed that the elliptical object is surrounded by a 

volume of empty space (&0,1.10)' 

In all coordinate systems, the field solutions obey the Helmholz equation: 

where Fz denotes Ez for TM and Hz for TE polarisation. 

In elliptical coordinates, this equation is expressed in the form [7.4]: 

Equation (7.6) can be solved by separation of the variables: 

Fz = U(u)V(v)Z(z) 

Substituting Equation (7.7) into Equation (7.6) leads to: 

Defining the separation constant C so that: 

then U and V must satisfy: 

z· 
-+C=O 
Z 

U· - (a -1/2c2 cosh2u)U = 0 

V· + (a + 1/2c2 cos2v)V = 0 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

where c = .Jkl + C d/2, [7.4], and k is the wavenumber, k = ko' In exploiting 

Equation (7.10) and (7.11) it will be assumed that there is no z-dependence and 

therefore in Equation (7.9) C -+ O. Equation (7.10) is known as Mathieu equation 
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and Equation (7.11) as the modified Mathieu equation. Equation (7.11) is a linear 

second-order differential equation that has two families of independent solutions, 

namely the even and odd angular Mathieu functions (AMF): 

m = 0,1,2, ... , 

m = 1,2,3, ... , 
(7.12) 

The cosine-elliptic Ce(c, T) and sine-elliptic Se(c, T) functions are analogous to 

trigonometric cosine and sine functions and with vanishing c they become 

trigonometric functions. The symmetry and periodicity of these functions is the 

same as for their trigonometric counterparts; the corresponding expansions fall 

into four classes: even solution of period of 1l: Ce2r (c, T) , even solution of period 

of 21l: Ce2r+1 (c, T), odd solution of period of 1l: Se2r (c, T) and finally odd 

solution of period of 21l: Se2r+l (c, T), where r = 0,1,2, ... ,. In addition, any even 

AMF is orthogonal to any odd AMF on the interval of (0,21t), thus, 

(7.13) 

The solution to Equation (7.10), is expressed in the form of even ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ｱ Ｉ and 

odd ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ｾ Ｉ radial Mathieu functions (RMF), where i denotes the kind and m 

the order of the RMF. In elliptic coordinates the RMF play a similar role to the 

Bessel functions in circular cylindrical coordinates. Analogously to the Bessel 

functions, the family of radial Mathieu functions splits into four independent 

solutions, odd and even RMF of the first and the second kind. Further analysis of 

Mathieu functions is out of the scope of this work and the reader is referred to 

[7.S] where a visualisation of those functions is given and [7.6] where a full study 

is carried out. 
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7.3. Scattering from the Strip 

Here, the expansion of a plane wave in the form of elliptic-cylinder 

harmonics will be considered and applied to the problem of a wave scattered from 

a thin conducting strip. In elliptic cylindrical coordinates the strip is defined by 

u = 0 and the strip width is denoted as d. Both TM and TE illuminations will be 

analysed simultaneously. 

7.3.1. Analytical Description 

The z-directed, electric and magnetic, field incident at an angle ｾ ｯ from the 

positive x-axis, in terms of elliptical harmonics is expressed as a rapidly 

converging series of Mathieu functions [7.7]: 

ｾ ｾ

TM: ｅ ｾ ｮ ｣ = ｉ ｡ Ｚ Ｚ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ｾ Ｉ ｃ ･ ｭ Ｈ ｣ Ｌ Ｇ ｬ Ｉ Ｋ ｉ ｢ Ｚ ｣ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ｾ Ｉ ｓ ･ ｭ Ｈ ｣ Ｌ Ｇ ｬ Ｉ (7.14) 
ｭ ｾ ｭ ｾ

ｾ ｾ

TE: ｬ ｉ ｾ ｮ ｣ = ｉ ｡ Ｚ Ｚ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ｾ Ｉ ｃ ･ ｭ Ｈ ｣ Ｌ Ｇ ｬ Ｉ + ｉ ｢ Ｚ ｣ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ｾ Ｉ ｓ ･ ｭ Ｈ ｣ Ｌ Ｇ ｬ Ｉ (7.15) 
m-O m-I 

where 

ainc =.rs;(_j)m Ce(c cos"") 
m N(e) ,\"o 

m 

bine = J8; ( - j)m Se(c COS"" ) 
m N(O) , \"0 

m 

(7.16) 

and N(e) and N(O) are functions of c defined as: 
m m 

(7.17) 

(7.18) 

These two functions are usually presented as a Fourier series of c and the 

recurrence formula for calculating them is given in [7.6]. 
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The scattered field can be expressed in tenns of Mathieu functions of the fourth 

kind, ｍ ｣ ｾ Ｉ and ｍ ｳ ｾ Ｉ Ｌ which represent outgoing waves similar to the Hankel 

functions for the circular case discussed in Chapter 2. As for Hankel functions 

these fourth kind functions are linear combinations of the corresponding RMF of 

the first and second kinds, i.e. ｍ ｣ ｾ Ｉ = ｍ ｣ ｾ Ｉ - ｪ ｍ ｣ ｾ Ｉ and ｍ ｳ ｾ Ｉ = ｍ ｳ ｾ Ｉ - ｪ ｍ ｳ ｾ Ｉ . 

Thus, the scattered field is written in the fonn: 

ｾ ｾ

TM: ｅ ｾ = ｌ ｡ Ｚ Ｍ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ｃ ･ ｭ Ｈ ｣ Ｌ Ｑ Ｗ Ｉ Ｋ ｌ ｢ Ｚ ｭ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ｓ ･ ｭ Ｈ ｣ Ｇ Ｑ Ｗ Ｉ (7.19) 
ｭ ｾ ｭ ｾ

ｾ ｾ

TE: ｈ ｾ = ｌ ｡ Ｚ Ｍ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ｃ ･ ｭ Ｈ ｣ Ｌ Ｑ Ｗ Ｉ Ｋ ｌ ｢ Ｚ ｭ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ｓ ･ ｭ Ｈ ｣ Ｇ Ｑ Ｗ Ｉ (7.20) 
ｭ ｾ ｭ ｾ

where the scattering coefficients a:st and b:m are yet to be detennined. 

The total fields are now: 

GO 

ｅ ｾ ｡ ｃ = L Cem(C,17)[ ｡ Ｚ Ｚ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ + ｡ Ｚ ｡ ｴ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ] 

TM: m-O (7.21) 

+ f ｓ ･ ｭ Ｈ ｃ Ｌ Ｑ Ｗ Ｉ ｛ ｢ Ｚ ｣ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ Ｋ ｢ Ｚ ｭ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ｊ
m-I 

GO 

11:- = L Cem(c,17)[ ｡ Ｚ ｾ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ Ｋ ｡ Ｚ Ｚ ｴ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ] 

TE: 
ｭ ｾ (7.22) 

+ f ｓ ･ ｭ Ｈ ｃ Ｇ Ｑ Ｗ Ｉ ｛ ｢ Ｚ ｣ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ｾ Ｉ Ｋ ｢ Ｚ ｭ ｍ ｳ ｾ Ｉ Ｈ ｣ Ｌ ［ Ｉ ｊ
m-I 

The total magnetic and electric fields follow from Maxwell's equations [7.1]: 

TM: IltaC 1 (- im:- - ｯ ｅ ｾ ｯ ｴ J c = u--+v-
jcoJloh Ou Cv 

(7.23) 

TE: (7.24) 
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where h = d .J cosh2 
U - cos2 

V • 
2 

Accounting for the fact that the electric field is entirely reflected from the surface 

of a conducting strip (E'ot = 0) and comparing tenns in the tangential electric 

field expansion, the scattered field coefficients are: 

TM: (7.25) 

TE: (7.26) 

where ｾ Ｎ = 1 and the derivative given in ｍ ｣ ｾ ﾷ Ｔ Ｉ Ｇ Ｈ ｣ Ｇ ｾ ｡ Ｉ is calculated with respect 

to u, i.e . . 
M ()(1.4)r( ):) = ｡ ｍ ｣ Ｈ ｳ Ｉ ｾ ﾷ Ｔ Ｉ Ｇ Ｈ ｣ Ｌ ｾ Ｉ ｡ ｾ

c s m C, ". ｡ ｾ au ｉ ［ ］ ｾ
(7.27) 

Thus, the fields in the final form are expressed as: 

ｾ ｾ

TM: ｅ ｾ = La:c Cem (c,7])fcm(c,;)+ L b:c Sem(c,7])fsm(c,;) (7.28) 
ｭ ｾ ｭ ｾ

ｾ ｾ

TE: ｈ ｾ ｯ ｴ = La:c Cem(e,71)gcm(c,;)+ L b:c Sem(c,71)gsm(c,;) (7.29) 
ｭ ｾ ｭ ｾ

where 

fc (c J:)=Mc(l)(c ｊ Ｚ Ｉ ｟ ｍ ｣ ｾ Ｉ Ｈ ｣ Ｇ ［ ﾷ Ｉ ｍ ｣ Ｈ Ｔ Ｉ Ｈ ｃ J:) 
ｭ Ｇ ｾ ｭ Ｇ ｾ M (4)( ):) m ,':! Cm c,':!. 

(7.30) 

fs (c J:) = Ms(l)(c J:) _ ｍ ｳ ｾ Ｉ Ｈ c,;.) MS(4)(C J:) 
m'':! m'':! M (4)( J:) m '':! 

Sm e,,:!. 
(7.31) 

gc (c J:) = Mc(l)(c J:)_ ｍ ｣ ｾ Ｉ Ｇ Ｈ ｣ Ｌ ［ Ｎ Ｉ MC(4)(C J:) 
m'':! m'':! M (4)r( J:) m ,':! cm c,o,. 

(7.32) 
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Ms(J),(c J: ) 
gs (c J:)=Ms(l)(c J:)_ m '':la MS(4)(C J:) 

m ' ':! m' ':! M (4) '( J:) m ' ':! 
Sm C'':!. 

(7.33) 

It is noted that each term of the field series intrinsically exhibits the known 

singular field behaviour at the metal edges so that even a single term of the correct 

symmetry is a good representation of the fields near to the feature. Having 

obtained the general analytical description of electromagnetic waves in the 

presence of the conducting strip, the procedure of linking these solutions with real 

time-domain network will be now discussed. 

7.3.2. Embedding into TLM model 

The process of embedding the analytical solutions into a time-domain 

numerical technique was first introduced in Chapter 3 and described in detail 

. whilst considering a conducting wire placed centrally in the node in Chapter 4. 

The study of the latter revealed that the key component of the mapping process 

lies in constructing the admittance relationship between the port voltages and port 
ｾ

r 

currents, or equivalently between the electric and magnetic fields, by selecting 

a suitable set of tangential field solutions at the edges of the node. The node 

containing the strip in the TM configuration is presented in Figure 7.2(a) showing 

also the sampling points at the edges of the 2D TLM cell. 

The outstanding task is to evaluate the tangential field components (Hx' Hy) and 

(Ex,Ey) for TM and TE illumination respectively. To achieve this the infinite 

expansion of fields is approximated to the four lowest order symmetrical 

harmonics only m = -1,0,1,2, as discussed in Chapter 4. 
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b) ,----------, , , , , , , , , , 
, , , , , , , , , 
,----------

----------, , , , , , , , , , 

• • • • • • , 
• • ----------, 

Figure 7.2. Thin strip geometry and field sampling points at the edges of the 

node (a). The equivalent electrical circuit of the non-standard TLM node (b) 

Thus truncating the series in fields from Equations (7.28) and (7.29) results in: 

fco Ｈ ｣ Ｌ ｾ Ｉ Ceo (c, ,,), 

TM: E = fc. Ｈ ｣ Ｌ ｾ Ｉ Ce. (c, ,,), 
_z 

fs. Ｈ ｣ Ｌ ｾ Ｉ Se. (c, ,,), 
(7.34) 

fC2 Ｈ ｣ Ｌ ｾ Ｉ Ce2 (c,,,) 

gco Ｈ ｣ Ｌ ｾ Ｉ Ceo (c, ,,), 

H = gc. Ｈ ｣ Ｌ ｾ Ｉ Ce. (c, ,,), 
_I 

gs. Ｈ ｣ Ｌ ｾ Ｉ Se. (c, ,,), 
lE: (7.35) 

gC2 Ｈ ｣ Ｌ ｾ Ｉ Ce2 (c,,,) 

The remaining tangential field components can be derived from Maxwell's 

equations, for TM: 

(7.36) 

(7.37) 

and forTE: 

(7.38) 
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(7.39) 

Restricting Equation (7.36), (7.37), (7.38) and (7.39) to the permissible harmonics 

only yields: 

(7.40) 

Ougc'o(q,u)Ceo(q,v)+ Ov gco(q, u)Ce'o(q, v), 
ay ay 

Ou gc'.(q,u) Ce.(q, v)+ Ov gc.(q,u)Ce\(q, v), 
ay ay 

Ou gs\(q, u) Se.(q, v) + Ov gs.(q,u) Se\(q, v), 
ay ay 

(7.42) 

Ou gc'2(q, u)Ce2(q, v)+ Ov gc2(q, u)Ce'2(q, v), 
ay ay 

and 
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: gc'o(q, u)Ceo(q, v) + : gco(q,u)Ce'o(q, v), 

: gc'l(q, u)Cel(q, v) + : gcl(q, u)Ce\(q, v), 

: gs\(q,u)Sel(q, v) + : gSI(q,u)Se'l(q, v), 

: gc'2(q,U)Ce2(q, V)+: gC2 (q,u)Ce'2 (q, v), 

h th d · . OU ou OV d OV d' d' d' were e envatIves -, - ,- an - are enve In Appen IX D. 
OX ay OX ay 

(7.43) 

The use of the lowest order cosine-elliptic and sine-elliptic functions results in 

a 4-port transfonner which is identical to that presented in Chapter 4 for a single 

wire embedded at the centre of the node. 

The tangential field components can be identified using Equations (7.34), (7.35) 

and (7.40), (7.41), (7.42), (7.43) depending on the port at which they are 

evaluated, as indicated in Figure 7.2. The general admittance relationship 

E=YH - - .... (7.44) 

is constructed as before. The eigenvalue analysis yields a purely inductive or 

a capacitive relationship between the tangential electric and magnetic fields at the 

sample points in the limiting case of large wavelengths with respect to the node 

size for each of the elliptic harmonics. In the equivalent circuit shown in Figure 

7.2(b) the voltage on each of the stub transmission lines corresponds to the 

amplitude of one of the eigensolutions and the stub is either open or short 

circuited respectively to produce the required capacitive or inductive behaviour. 

The transfonner T simply maps the sampled field values onto the eigensolution 

amplitudes. It is noted that stability is ensured as the new node corresponds to 
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a passive electrical network with non-negative component values and that the 

simulation time step remains the same as for the conventional TLM node. 

The approach of embedding the tangential field solution into a time-domain 

model was discussed in detail in Chapter 3 and repeated in Chapter 4 for the case 

of a single conducting wire placed in the node. Therefore, for brevity is omitted at 

this point. Instead, numerical results will be presented to validate the model 

discussed above. 

7.3.3. Numerical Validations 

In this section, numerical results are presented to support the theory of 

wave scattering from a small conductive strip presented above. The results for that 

section were prepared in cooperation with Dr Y. Liu of the GGIEMR at The 

University of Nottingham. 

The numerical set-up for this experiment is shown in Figure 7.3. In this case, the 

total mesh area is 60m by 60m. with the TLM node size ofO.05m and the width of 

the strip is O.04m. The problem is illuminated by a TM polarised plane wave 

travelling in the +x direction. The total field is observed at a distance O.3m in line 

and in front of the strip node. 

The AMF and RMF necessary to obtain the field solutions were calculated using 

FORTRAN routines for computation of special functions [7.8]. 
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Computational window 

Boundary: 
.... " ....... Open-Circuit 
- - - Matched 

Ｎ ｾ Ｌ ﾫ ﾫ ﾫ ﾫ ﾫ ﾫ ﾫ ﾫ ﾫ ＼ ＼ Ｎ ＼ ＼ ＼ ＼ Ｎ ＼ ＼ ＼ ＼ ＼ ＼ ｾ

Figure 7.3. This strip simulation configuration 

In Figure 7.4, the amplitude of the total field observed in front of the conducting 

strip is plotted against frequency normalised to the maximum frequency in the 

simulation (fmu = (26tt, 6t being the simulation time step). The results of the 

multi-feature node with strip embedded inside are compared to both the analytic 

solution as well as the simulation of a round cross section wire inserted into 

a single TLM node presented in Chapter 4, where the diameter of the round wire 

equals the width of the metal strip. 

It is clear that the accuracy obtained with the TLM simulation of the strip model is 

excellent over a wide range of frequencies. Furthermore, it is noted that the large 

scale consequences of the different nature of the fields close to the wire and strip 

are clearly apparent at even moderate frequencies. Attention is particularly drawn 

to the fact that at higher frequencies the small difference in the phase of the 

reflected field due to the fact that the front of the wire is slightly closer to the 

observation point is detected, even though this distance is smaller than the node 

size. 
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Figure 7.4. Results of the thin strip simulations for the set-up from Figure 7.3 

7.4. Fields Penetrating Through a Narrow Slot 

In this section the elliptical coordinate system is used to describe the fields 

penetrating through a slot in a zero thickness conductor. Similar to the analysis of 

the strip presented above the analytical solution will be first derived, followed by 

the results of numerical simulatiollS. 

7.4.1. Analytical Description 

The study of the fields penetrating through a narrow slot is performed based 

on the field derivation carried out for a conducting strip presented in the previous 

section. The only difference in the description accounts for a new boundary 

condition that requires the total electric field to be zero at the edges of the slot. 

Thus, the total fields are described by Equation (7.28) and (7.29) for TM and TE 

polarisations respectively, where the functions fm Ｈ ｣ Ｌ ｾ Ｉ and gm Ｈ ｣ Ｌ ｾ Ｉ are now 

defined with respect to the new boundary condition as: 
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lim ｍ ｣ ｾ Ｉ ( c, ｾ ｡ Ｉ
fc (c J:) = MC(I)(C J:)_ ｾ ｡ Ｍ Ｋ Ｇ Ｂ MC(4)(C J:) 
ｭ Ｇ ｾ ｭ Ｇ ｾ 1· M (4)( J:) m Ｌ ｾIm Cm ｣ Ｇ ｾ ｡

ｾ ..... .., 
(7.45) 

lim ｍ ｳ ｾ Ｉ ( c, ｾ ｡ Ｉ
fs (c J:) = MS(I)(C J:) _ ｾ ｡ Ｂ Ｂ Ｇ Ｂ MS(4)(C J:) 
ｭ Ｇ ｾ m ,'=' 1· M (4)( J:) m ,'=' Im sm ｣ Ｇ ｾ ｡" .... .., 

(7.46) 

lim ｍ ｣ ｾ Ｉ Ｇ Ｈ ｣ Ｇ ［ ｡ Ｉ
gc (c J:) = MC(I)(C J:) - ｾ ｡ Ｂ Ｂ Ｇ Ｂ MC(4)(C J:) 
ｭ Ｇ ｾ ｭ Ｇ ｾ 1· M (4),( J:) m Ｌ ｾIm Cm ｣ Ｌ ｾ Ｎ

ｾ Ｎ Ｂ Ｂ Ｇ Ｂ

(7.47) 

lim Ms(!) '( c,;, ) 
( J:) _ M (1)( J:) ｾ ｡ Ｍ Ｋ Ｇ Ｂ m a M (4)( J:) gSm C,,=, - Sm C,,=, - 1. M (4),( J:) Sm ｃ Ｌ ｾ

Im Sm ｃ Ｇ ｾ ｡
ｾ Ｎ Ｂ Ｂ Ｇ Ｂ

(7.48) 

and the derivatives ofRMF ｍ ｣ Ｈ ｳ Ｉ ｾ Ｌ Ｔ Ｉ Ｇ Ｈ ｣ Ｇ ｾ ｡ Ｉ are defined in Equation (7.27). 

7.4.2. Mapping into TLM model 

The TLM slot node is illustrated in Figure 7.5 with ｴ ｨ ｾ field sampling points 

shown. It is observed that compared to the conducting strip, only two of the field 

sample points of the TLM slot n?de are not on the conducting surfaces. Hence, 

only a pair of Mathieu functions, the lowest order functions of each symmetry, is 

used to interpolate the tangential field values at these points. Therefore, at points 

corresponding to 11 = 0 and 11 = 1t the tangential fields are zero. Taking into 

account the form of the functions fm Ｈ ｣ Ｌ ｾ Ｉ and gm (c,;) defined in Equations 

(7.45) and (7.48), the remaining field components necessary to construct the 

admittance relationship are obtained from Equations (7.36)-(7.43) by analogy to 

the conducting strip case presented above. 
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Figure 7.5. Thin slot geometry and field sampling points at the edges of the node. 

7.4.3. Numerical Validations 

A simple test is now conducted to verify the model of waves penetrating 

through a narrow slot given in the previous two sections. The numerical set-up for 

this experiment is presented in Figure 7.6. 

Computational window 

d ii' "'J ....... 

D 

Boundary: 
ｾ ... "'" Open-Circuit 
- - - Matched 

Figure 7.6. This slot simulation configuration. 

The simulation parameters used in this example are a total mesh area of 60m by 

60m, where the TLM node size is O.OSm. The problem is excited by a plane wave 

travelling in the +x direction and the fields are observed in line with and behind 
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the slot at observation points O.5m distant from the slot. The tests are carried out 

for two slot widths, 0.04m and O.OIm. 
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Figure 7.7. Results of the narrow slot simulations for the set-up from Figure 7.6 

In Figure 7.7 the electric field that penetrates through a narrow slot is plotted 

against normalised frequency expressed in the form of the shielding effectiveness. 

The shielding effectiveness is defined as -20logIEI, where E is the observed field 

for unit amplitude excitation. To demonstrate how accurate the approach is, 

results are also shown for the case where the slot is modelled without the special 

slot node, simply by just using one full width conventional TLM node to model 

the slot. It is seen that even for the 4cm wide slot (80% of the node width) the 

special node model clearly provides more accurate results than when the slot is 

quantised to a full node width. This effect is far more dramatic for the case of a 

Icm wide slot (20% of the node width). For that case the multi-feature node 
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model still demonstrates extremely good agreement with the analytical results and 

now the full node width approximation is 8dB in error. 

7.5. Closing Remarks 

In this chapter, the general approach for embedding small features in a 

single cell of numerical method has been applied to objects described by an 

elliptical coordinate system. Verification of the model for thin conducting flat 

strips and narrow slots in conducting planes with analytical results proved the 

approach to be extremely accurate. Very good matching is observed for 

frequencies even beyond the range of TLM dispersionless operation (10 samples 

per wavelength). The significance of this technique is that it allows substantial 

savings in both run time and memory to be achieved over simulations that directly 

resolve these features by fine meshing. This is of particular importance in the 

realm ofEMC where a wide range of physical scales is a common occurrence. 
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Chapter 8 

3D Simulations of Small Objects 

In this chapter further modelling of the behaviour of small objects exposed 

to electromagnetic fields is presented based upon the approach introduced in 

Chapter 3. The simulations here are dedicated to three-dimensional models 

seeking to utilise a uniform coarse mesh throughout the problem space with a 

small number of non-standard nodes containing the scatterers. As demonstrated in 

Chapter 3 the backbone of the proposed technique is to identify a suitable set of 

local field solutions and interface them with a numerical network that represent 

the empty space. It has been underlined that the set of local field solutions to 

Maxwell's equations can be obtained by any means; the key possibilities being: (i) 

analytical formulations of the local problem or (ii) numerical approximation to the 

local fields. Both representations will be explored in this chapter. Initially, the 

analytical approach is illustrated for the example of tilted conducting wires and 

rings, each built from small linear segments of thin cylindrical wire. Numerical 

analysis of the local fields is investigated for the canonical problem of a small 

conducting cubic box embedded within a 3D TLM cell. In the final section, the 

potential to apply the spherical coordinate system with our approach is studied 

and validations are presented for the fields scattered from small conducting and 

dielectric spheres. 
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8.1. Analytical Approximation to Local Field Solutions 

In this section, the analytical approach is adopted to derive an appropriate 

set of local field solutions to Maxwell's equations within a 3D cubic cell 

containing an arbitrarily routed conducting wire. The analytical description of the 

wire embedded in 3D TLM was previously proposed [8.1], although there the · 

method was restricted to only a single, centrally placed infinitely long z-directed 

wire. Here, a significant extension will be given to enable simulation of a wire 

passing arbitrarily througb the cell. This goal is achieved by applying a piecewise 

linear segmentation of the wire in each cell of the 3D mesh. The canonical node 

required to model such a piecewise linear approximation of the arbitrarily routed 

wire is illustrated in Figure 8.1. 

r' 

z 

x 

Figure 8.1. A piecewise linear wire segment within a single 3D TLM cell 

Each non-standard node contains only a segment of straight wire which is 

arbitrarily oriented with respect to the node and passes through two of the 

bounding surfaces, as demonstrated in Figure 8.2. 
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Figure 8.2. Unfolded cubic node with the wires passing through two faces Ca), 

face 1 with the wire description Cb) 

Similarly to the case of the centred, straight wire in [8.1], four different types of 

modes have been utilised in the analytical solutions to represent the fields in the 

vicinity of the wire segment 

a) Transverse Magnetic" TM, with Ez' :;:. 0, Hz' = 0 and no variation in the z' 

direction. 

b) Transverse Electric, TE, with Hz':;:' 0 , Ez' = 0 and no variation in the z' 

direction. 

c) Transverse Electromagnetic, TEM, with Ez' = 0 , Hz' = 0 and even 

symmetry along z' -axis. 

d) Transverse Electromagnetic, TEM, with Ez' = 0 , Hz' = 0 and odd symmetry 

along z' -axis. 

The modes listed above have already been discussed in Chapter 2, however a brief 

summary is given below for the case of a single conducting wire. 
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The total electric and magnetic field around the wire is described in wIre 

coordinate system Ｈ ｲ Ｇ Ｌ ｾ Ｇ Ｌ ｺ Ｇ Ｉ as presented in Figure 8.1 and 8.2(b), and as derived 

in Chapter 2 and also studied in Chapter 4 in section 4.1 these are: 

for TM fields: Elot = ｾ X (J (k r') _ In (koa) H(2)(k rl»)e-in., (8.1) 
z LJ On n 0 H(2)(k) n 0 

n--«> n oa 

for TE fields: H lot = - jy ｾ X (J (k r') _ J' n (koa) H(2)(k rl») e -jo+' (8.2) 
z 0 ｾ 00 D 0 H,(2)(k) n 0 

D--«> D oa 

where ko and a is the wavenwnber in free space and the radius of the wire 

. respectively. Asswning 

(8.3) 

and 

(8.4) 

these fields take the fonn of: 

for TM fields: (8.5) 

GO 

for TE fields: H!ot = -jyo L XOn gn(r')e-M ' (8.6) 

The remaining field components can be calculated from Maxwell' s equations 

given in Appendix A in Equation (A.l4) taking into account the properties of the 

modes discussed in section 2.4 in Chapter 2: 
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forTMmode: 

Er =0 

E. =0 

H z =0 

H = __ l_.!.oEz 

r jCO/-lo r ｯ ｾ

H =_l_oEz 

• jco /-lo or 

forTE mode: 

Hr =0 

H. =0 

Ez =0 

E =_l_.!.oHz 
r jCOEo r ｯ ｾ

E = __ l_oH z 

• jCOEo or 

(8.7) 

For TEM fields, introduced in section 2.4.3 in Chapter 2 the Maxwell's Equations 

can be written as follows: 

. oE. 
Jco/-loHr = -oz 
. H oE 
JCO/-lo + = - ozr 

o(rE.) = oEr 

or ｯ ｾ

. oH. 
JcoEOEr = -Tz 

. H oHr 
JCOEo • = oz 
o(rH.) = oHr 

or ｯ ｾ

(8.8) 

The TEM mode is a solution for transverse static fields and can be determined by 

introducing a vector potential which is evaluated in the form of cylindrical 

harmonics as: 

(8.9) 

The coefficient X: is explicitly determined by. the boundary condition that 

requires tangential electric field be zero at the surface of the wire, i.e. 

E.(r = ｡ Ｌ ｾ Ｌ ｺ Ｉ = o. 
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Utilising Equation (2.51) shown in Chapter 2 in section 2.4.3 and Maxwell's 

equations for the TEM mode defined in Equation (8.8) the field components can 

be identified. Those solutions are evaluated for the low order modes, 

i.e. n = -2,-1,0,1,2 as listed in Tables 8.1 and 8.2 . 

From the discussion given in section 2.4 of Chapter 2 it is clear that the TM and 

TE mode are selected under the condition that there is no variation of the field 

along the z' -direction. As shown in the same section, the TEM mode provides 

a link to the three-dimensional case where the z' -directed variation is considered 

with the transverse wavenumber approaching zero. Such a solution describes the 

static transverse fields on the surface of the wire. 

Both, the even and odd solutions with respect to z' -direction are selected for the 

TEM configuration. Compared to the modes derived for the two-dimensional wire 

case presented in Chapter 4 an additional harmonic appears in the form of sin 2$ . 

This is because the wire is not placed at the centre of the cell and therefore this 

solution is not zero at the sampling points as in the centred wire case. Overall, 

a set of 20 modes is selected that provides a physically realistic, second order 

accurate description of the fields around the wire offset from the centre of the cell. 
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MODE E. E. Er 

TMo fo(r') 0 0 

TMI(c) fl (r') cos 9' 0 0 

TMI(s) f l(r')sin9' 0 0 

TM2(c) f2 (r') cos 29' 0 0 

TM2(s) f2 (r') sin 29' 0 0 

TEo 0 goer') 0 

TEI(c) 0 gl(r')cos9' g.( r') sin 9' 
r' 

TEI(I) 0 gl(r')sin9' _ 81(r') cosS' 
r' 

TE2(c) 0 82(r')cos2S' 2 g2 (r') sin 2S' 
r' 

TE2(I) 0 82 (r') sin 29' -2 g2(r') cos2S' 
r' 

ｔ ｅ ｍ ｾ Ｇ Ｉ
a 

0 0 -;;cos(koz') 

ｔ ｅ ｍ Ｚ ｾ ｾ Ｉ 0 Ｍ ｾ Ｈ Ａ Ｎ Ｍ ｾ Ｉ ｳ ｩ ｮ ｓ Ｇ ｣ ｯ ｳ Ｈ ｫ z') 
2r' r' a 0 

a (a r') - -+- cos9'cos(koz') 
2r' r' a 

ｔ ｅ ｍ Ｚ ｾ Ａ Ｉ 0 ｾ Ｈ Ａ Ｎ Ｍ ｾ ｽ ｏ ｓ Ｙ Ｇ ｃ ｏ ｓ Ｈ ｫ ｯ ｚ Ｇ Ｉ
2r' r' a 

a (a r') 2r' -;;+; sin9'cos(koz') 

ｔ ｅ ｍ ｾ ｾ Ａ ｊ 0 Ｍ ｾ Ｈ Ｈ Ａ Ｎ ｊ Ｍ Ｈ ｾ ｊ ｽ ｩ ｮ Ｒ Ｙ Ｇ ｣ ｯ ｳ Ｈ ｫ z') 2r' r' a 0 
Ｒ Ｚ Ｇ Ｈ Ｈ ｾ J + (fJ}OS29'COS(koZ') 

ｔ ｅ ｍ ｾ ｾ Ａ Ｉ 0 ［ Ｌ Ｈ Ｈ ｾ Ｉ Ｒ -(fJ}OS29'COS(koZ') Ｒ Ｚ Ｇ Ｈ Ｈ ｾ J+(fJ}in29'COS(koZ') 

ｔ ｅ ｍ ｾ ｏ Ｉ 0 0 !.sin(koz') 
r' 

ｔ ｅ ｍ Ｚ ｾ ｾ Ｉ 0 -- --- sm9 sm(koz) a (a r')' ,. , 
2r' r' a 

- -+- cos9'sin(koz') a (a r') 
2r' r' a 

ｔ ｅ ｍ Ｚ ｾ ｾ Ｉ 0 ｾ Ｈ Ａ Ｎ Ｍ ｾ ｽ ｯ ｳ Ｙ Ｇ ｳ ｩ ｮ Ｈ ｫ ｯ ｺ Ｇ Ｉ
2r' r' a 

ｾ Ｈ Ａ Ｎ Ｋ ｾ Ｉ ｳ ｩ ｮ Ｙ Ｇ ｓ ｩ ｮ Ｈ ｫ ｯ ｺ Ｇ Ｉ
2r' r' a 

ｔ ｅ ｍ ｾ ｾ Ａ Ｉ 0 - ［ Ｌ Ｈ Ｈ ｾ J -(fJ}in29'Sin(koZ') Ｒ Ｚ Ｇ Ｈ Ｈ ｾ )2+ (;J}Os29'Sin(koZ') 

ｔ ｅ ｍ ｾ ｾ Ａ Ｉ 0 2:'( Ｈ ｾ ｊ -(;J}Os29'Sin(koz') Ｒ Ｚ Ｇ Ｈ Ｈ ｾ J + (fJ}in29'Sin(koZ') 

Table 8.1. A 'set TM, TE and TEM modes of electric field. The subscript s and c 

denote sine and cosine function for angular dependence. For the TEM modes (e) 

and (0) denote even and odd solution with respect to z. 
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MODE jro"oH. jw".H. jro".Hr 

TMo 0 f'.(r') 0 

TMl(c) 0 f\(r')cose' ｾ Ｈ ｲ Ｇ Ｉ . 0' 
-Sin 

r' 

TM,(s) 0 f',(r')sin 0' ｾ Ｈ ｲ Ｇ Ｉ e' - cos 
r' 

TMuc) 0 f'z(r')cos2e' 2 f2 (r') sin 2e' 
r' 

TMus) 0 f'z(r')sin2e' -2 f2(r') cos2e' 
r' 

TEo ｫ ｾ ｧ ｯ Ｈ ｲ Ｇ Ｉ 0 0 

TE,(c) k;g,(r')cos9' 0 0 

TE,(s) k; g, (r') sin e' 0 0 

TEuc) k!gl(r')cos2e' 0 0 

TEus) k!gl(r')sin 2e' 0 0 

ｔ ｅ ｍ ｾ Ｇ Ｉ 0 -ko .!sin (koZ') 
r' 0 

ｔ ｅ ｍ ｾ Ｚ Ｚ Ｉ 0 Ｍ ｫ ｯ ｾ Ｈ Ｎ Ａ Ｋ ｾ ｽ ｯ ｳ ･ Ｇ ｓ ｩ ｮ Ｈ ｫ ｯ ｚ Ｇ Ｉ2r' r' a ｫ ｯ ｾ Ｈ Ｎ Ａ Ｍ ｾ ｽ ｩ ｮ ･ Ｇ ｓ ｩ ｮ Ｈ ｫ ｯ ｚ Ｇ Ｉ2r' r' a 
, 

Ｍ ｫ ｯ ｾ Ｈ Ａ Ｋ ｾ ｽ ｩ ｮ ･ Ｇ ｓ ｩ ｮ Ｈ ｫ ｯ ｺ Ｇ Ｉ -ko..!..( .!_!:)COS9'Sin(koZ') TEM:::) 0 
2r' r' a 2r' r' a 

ｔ ｅ ｍ ｩ ｾ ｾ Ｉ 0 -ko 2:'((;' J+ (;J)cos2e'Sin (koZ') ko 2:'((;' J -(;J}in2e'Sin(koZ') 

ｔ ｅ ｍ ｩ ｾ Ｚ Ｉ 0 -ko 2:'((;' J + (;J}in20'Sin(koZ') -ko 2:'((;' J -(;J)COS2e'Sin(koz') 

ｔ ｅ ｍ ｾ ｏ Ｉ 0 ko.!cos(koZ') 
r' 

0 

ｔ ｅ ｍ ｾ ［ Ｚ Ｉ 0 ｫ ｯ ｾ Ｈ Ｎ Ａ Ｋ ｾ Ｉ ｃ ｏ ｓ ｏ Ｇ ｃ ｏ ｓ Ｈ ｫ ｯ ｚ Ｇ Ｉ
2r' r' a 

ｫ ｯ ｾ Ｈ Ｎ Ａ Ｍ ｾ ｽ ｩ ｮ ｏ Ｇ ｃ ｏ ｓ Ｈ ｫ ｯ ｚ Ｇ Ｉ2r' r' 8 

ｔ ｅ ｍ ｾ ｾ Ａ ｽ 0 ko- -+- sin9'cos(koz') a (a r') 
2r' r' a 

Ｍ ｫ ｯ ｾ Ｈ Ｎ Ａ Ｍ ｾ Ｉ ｃ ｏ ｓ ｏ Ｇ ｣ ｯ ｳ Ｈ ｫ ｯ ｚ Ｇ Ｉ
2r' r' 8 

ｔ ｅ ｍ ｩ ｾ Ａ Ｉ 0 ko 2:'((;' J +(;)2 ) cos2e'cos(koz') ko 2
a
r'( (;. J -(;J}in29'COS(koZ') 

ｔ ｅ ｍ ｩ ｾ Ａ Ｉ 0 ko 2:'((;' J Ｋ Ｈ ｾ ｊ ｽ ｩ ｮ Ｒ ･ Ｇ ｃ ｏ ｓ Ｈ ｫ ｯ ｺ Ｇ Ｉ -ko 2:'((;' J-(;J}OS29'COS(koZ') 

Table 8.2. A set TM, TE and TEM modes of magnetic field. The subscript sand c 

denote sine and cosine function for angular dependence. For the rEM modes (e) 

and (0) denote even and odd solution with respect to z. 
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It is further underlined that the selected set of modes is not the only one possible. 

The general algorithm allows the use of a larger or smaller number of modes 

provided that a sufficient description of the fields around the wire is given. 

Intuitively, only low order harmonics should be taken into account. However 

with 20 modes and only 12 field sample points this system is underdetermined 

and physical reasoning argues that the modal amplitudes determined are such that 

the total energy stored in the cell is minimised. 

Having obtained the solution for the total electric and magnetic field, the 

algorithm for interfacing these fields with the numerical network will be 

presented. However, the aim here is to provide more insight into the 

implementation, rather than repeating the formulae given in Chapter 3. 

As presented in Chapter 3, Equation (3.1), the total fields inside the cell are 

expressed as: 

(8.10) 
D D 

where the vectors E, H consist of components: 

(8.11) 

To start with, the fields of the 20 modal solutions are evaluated on each surface of 

the cubic node at a number of quadrature points. It is clear that in order to utilise 

the formulae defined in Tables 8.1 and 8.2, the cell coordinate system (x,y,z) 

must be translated into the wire coordinate system Ｈ ｲ Ｇ Ｌ ｾ Ｇ Ｌ ｺ Ｇ Ｉ Ｎ This is achieved by 

using Euler's rotation theorem [8.2] and is mathematically described by: 
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(8.12) 

where A is a rotation matrix and I = [Tx' Ty.Tz ] is a translation vector. Next, the 

point (x',y',z') is re-expressed in the polar coordinates Ｈ ｲ Ｇ Ｌ ｾ Ｇ Ｌ ｺ Ｇ Ｉ [8.3]. 

Hence, each quadrature point on the surface of the cell is first re-expressed in 

terms of the wire coordinate system in which the modal fields are easily 

evaluated. At each face of the cell the tangential field is calculated and 

represented in a local Cartesian coordinate system centred on the cell in order to 

enable straightforward connection with neighbouring nodes. 

Prior to the numerical evaluation of the integral appearing in the definition of 

matrix u in Equation (3.4) of Chapter 3, a set of basis functions is also evaluated 
= 

at each point belonging to each surface. Due to the fact that the tangential fields 

are evaluated in Cartesian system, one of the two unit vectors tangential to the 

face is used to represent each basis function. These are: 

llx = (x, 0, 0), llY = (0, 'Y, 0) 

12y =(O,'Y,O), 121 = (0, 0, z) 

IJx =(x,O,O), 131 = (0, 0, z) 
(8.13) 

I4Y = (0, 'Y, 0), 14. = (0, 0, z) 

15x = (x, 0, 0), Is. = (0, 0, z) 

16x = (x, 0, 0), 16Y = (0, 'Y, 0) 
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Integration of the 20 modal solutions over the 6 surfaces with 2 basis functions 

defined at each of them results in matrix u of size 12 x 20. This matrix describes 
= 

the relationship between 12 port voltages and 20 modal solutions as defined in 

Chapter 3. The matrix ｾ is then inverted in a generalised sense using for instance 

the Singular Value Decomposition (SVD) method [8.5], to construct a matrix 

ｾ = ｾ -1 from Equation (3.5). The fact that matrix ｾ is treated as a general 

inverse of matrix u allows to utilise an arbitrary number of modes that provides a 
= 

sufficient description of the field. As Equation (3.10) of chapter 3 ｩ ｮ ､ ｩ ｣ ｡ ｴ ･ ｾ Ｌ the 

expression ｦ ｊ ｾ Ｇ XhT ·dS needs to be evaluated which is performed numerically 
s 

[8.4], 

(8.14) 

where the normal vectors to the cell faces are defined in a rectangular coordinate 

system as: 

S. :.1. =(0,0,-1), 

S4 : "4= (-1,0,0), 

Sz : "z= (1,0,0), S3 : "3= (1,0,0), (8.15) 
S5:"5=(-1,0,0), S6:"6=(0,0,1) 

The integration defined in Equation (8.14) will result in the matrix 

[!f!' xl!T .dS] of size 20x20. 

Finally, the eigenvalue problem, Equation (3.11) in Chapter 3 

(8.16) 

is solved relating the port voltages to the port currents by an admittance 

relationship. At this point implementation of the admittance relationship is 
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straightforward and the algorithm to link the solutions obtained with the adjacent 

nodes of TLM algorithm was studied in Chapter 3 and therefore will not be 

repeated here. Instead, in the next section the numerical validation will be 

illustrated. 

8.1.1. Numerical Validations 

In this section, a munber of simple test problems will be investigated to 

demonstrate the accuracy provided by the new wire nodes. These new nodes are 

used in conjunction with the conventional SCN node for the remaining problem 

space. It is emphasised that as only relatively small number of the nodes in the 

overall simulation are non-standard, the improvements in accuracy incur 

negligible computational penalty. The results presented in this sub-section were 

prepared in cooperation with Dr Y. Liu of the GGIEMR at The University of 

Nottingham. 

8.1.1.1. Scattering from Vertical and Straight Dipole 

The first example involves a plane wave incident normally upon a straight 

and slightly tilted wire dipole, which is shown in Figure 8.3. The incident pulse 

has a Gaussian profile in time of RMS width 6.6 time steps. Initially both the 

dipole and the vector of incident electric field are orientated in the z-direction and 

subsequently the dipole is tilted slightly. In the case of a vertical dipole, the ends 

of the dipole are positioned at the points (x = 20m, y = 20m, z = O.Sm) and 

(x = 20m, y = 20m, z = l.Sm) , whereas for tilted wire these are 

(x = 20m, y = 20m, z = O.Sm) and (x = 20.4m, y = 20.2m, z = 1.5m). A TLM 
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node ｳ ｩ ｺ ･ Ｌ Ｒ ｾ Ｌ of O.lm is used and the wire radius is O.OIm. The computational 

window applied is 60mx60mx3m and the simulation run-time is 512 time-steps. 

The simulation region forms a TEM waveguide supporting propagation of a plane 

wave and is truncated by short-circuit, open-circuit and matched boundary 

conditions on the top and bottom, sides and ends respectively. It is noted that no 

special treatment is required at the ends of the wire, a conventional TLM node is 

simply connected to the last wire node. 

z 

!ill] Short circuit 

Figure 8.3. A tilted thin wire dipole excited by a vertically polarised plane 

Figure 8.4 shows the frequency dependence of the vertically polarised electric 

field observed O.2m (2 nodes) in front of the wire for the vertical and tilted 

dipoles. The frequency is normalised to the maximum :fi::equency of the TLM 

simulation, i.e. f
max 

= (2.Mr1 and tlt = ｾ / c, c being speed of light in vacuo. For 

the vertical dipole the TLM results are seen to agree remarkably well with those 

from a Method of Moments (MoM) solution [8.6], both in terms of the resonant 

frequency and the shape of the curve. 
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Figure 8.4. Amplitude of the scattered field observed in front of the wire for 

vertical and tilted dipoles lying in the x-z plane versus the normalised frequency 
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Figure 8.5. Variation of the resonant frequency with the angle of tilt in the x-z 

plane 
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The slight increase in the length of the tilted dipole compared to the vertical 

dipole causes a drop in the resonant frequency and Figure 8.5 shows that this shift 

compares very well with that predicted from the moments method. This is 

significant as staircased approximations to tilted wires can often resonate at 

a frequency corresponding to the total length of the staircase, not the true length 

of the wire. 

8.1.1.2. Scattering from a Circular Wire Loop 

In the second example the circular wire loop shown in Figure 8.6 is 

considered. The loop is placed in the plane y = 15rn of a computational region 

60rnx30mx30m discretised by a TLM mesh of size O.lm. The same boundary 

conditions at the edges are assumed as described in the previous test. The loop has 

a diameter of 1.2m and a wire radius of O.Olm. A plane wave of a Gaussian 

profile of RMS 6.6 time-steps propagating in the y-direction whose electric field 

is polarised in the z-direction is incident on the loop and the back-scattered field 

observed O.2m in front of the loop. 

z 

x 
qp Short circuit WiJ 

Figure 8.6. A circular wire loop excited by vertically polarised plane wave 
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Figure 8.7. The amplitude of the scattered field for a circular wire loop versus 

normalised frequency 
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Figure 8.8. Variation of the resonant frequency with the loop diameter; the wire 

radius a = 1 cm 
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Figure 8.9. Variation of the resonant frequency with the wire radius for a loop 

diameter d = 1.2 m 

Figure 8.7 shows the frequency dependent scattering from the loop and it is clear 

that excellent results are provided by the new node. Figure 8.8 and Figure 8.9 

show the dependence of the loop's resonant frequency on the radius of the wire 

and the diameter of the loop, relative to the reference case in Figure 8.7. In both 

cases, agreement with the moments solution is remarkably close. 

As seen, the analytical description of local fields combined with the general 

procedure of embedding small objects in 3D TLM model gives very good 

approximation in both cases presented above. In the next section, the procedure to 

obtain the solutions to local fields by numerical means will be demonstrated. 
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8.2. Numerical Approximation to Near Field Solutions 

A canonical example of a small metal cube embedded into a coarse 

numerical grid of 3D TLM will be presented in this section. The novelty here lies 

in the pre-processing stage, in which the numerical approximation is utilised to 

obtain solutions to the local fields. 

Consider a small cubic metal box embedded in a single 3D TLM cell as illustrated 

in Figure 8.10(a). It is desirable to seek a suitable set of numerical modal solutions 

to Maxwell's equations which satisfy the boundary conditions on the surface of 

the scatterer, in this case the conducting box. These solutions come from TLM 

simulations with the problem space directly meshed by a fine grid, as shown for 

two-dimensional cross-section position in xz-plane in Figure 8.1 O(b). The mesh 

employed must be much smaller or at least, as in our case, of the same size as the 

conducting cube under consideration. A number of such fine mesh TLM 

simulations is carried out, each with different field illuminations. Consequently, 

the problem is excited by a series of plane waves in either direction along each 

coordinate axis for each of the two orthogonal polarisations in turn. For instance 

a plane wave is used that propagates in the +z-direction with electric field 

polarised in x-direction, or a plane wave travelling in +z-direction with electric 

field vector polarised in the y-direction, etC. This gives a combination of 12 modal 

solutions in total and for illustration purpose the analytical representation of these 

plane waves is given in Table 8.3. 
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Polarisation Direction of Electric Field Magnetic Field 
Propagation Component Component 

1 x -z E = E e+jkoZ 
x H = -YoHye+jkCjZ 

2 x +z E = E e-jkCjZ 
x H= ｙ ｯ ｈ ｹ ･ Ｍ ｪ ｾ ｚ

3 x -y E = E e+ikoy 
x H= r H ･ Ｋ ｪ ｾ ｹo z 

4 x +y E = E e-jkoy 
x H = Ｍ ｙ ｯ ｈ ｺ ･ Ｍ ｪ ｾ ｹ

5 y -x E = Eye+jkox H = -YoHze+jkoX 

6 y +x E = ｅ ｶ ･ Ｍ ｪ ｾ ｸ H= Y H ･ Ｍ ｪ ｾ ｸo z 
7 y -z E = Eye+jkCjZ 

H= Y H e+jkCjZ 
o x 

8 y +z E = Eye-jkCjZ 
H = -YoHxe-

jkCjZ 

9 z -y E = E ･ Ｋ ｪ ｾ ｹz H = -YoHxe+jkoy 

10 z +y E = E ･ Ｍ ｪ ｾ ｹz H= Y H ･ Ｍ ｪ ｾ ｹo x 
11 z -x E = E ･ Ｋ ｪ ｾ ｸz H= Y H ･ Ｋ ｪ ｾ ｘo 'y 
12 z +x E = E e-jkox 

z H = -YoHze-jkoX 

Table 8.3. Analytical representation of the 12 combinations of plane wave used to 

illuminate the numerical simulation with fine meshes 

For each of the possible excitation the fields, en and hn, are recorded at the 

surfaces 1 to 6 shown in Figure 8.l0(a), at frequency much lower than 10% of the 

maximum frequency available in TLM run. Those six surfaces at which the fields 

are captured in turn form a coarse node in which the small cube will be modelled 

in the main coarse mesh TLM simulation, see Figure 8.1 O(b) for details. The 

output fields at a chosen frequency are next integrated over the surfaces in 

a similar fashion to that presented above for the case when the local fields are 

obtained analytically and the admittance relationship is constructed. The only 

difference in the approach lies in the number of modal solutions, here 12 instead 

of 20 modes. At the final stage using the admittance relationship and the scheme 

presented in Chapter 3, the solution from the fine mesh simulations are embedded 
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into the coarse TLM model. Both results, obtained with an explicitly (fme) 

meshed node of the cube and the coarse node with small cube embedded within 

are presented in Figure 8.11. 

1 - Scattered Field Region 
2 - Total Field Region 
3 - Coarse TLM node with object 

embedded 

b) plane wave launch surface 

coarse node surface 
(fields recording surface) 

Figure 8.10. The experimental set-up: TLM coarse node with object embedded 

(a) and computational window for local field pre-processing in xz plane (b) 

Figure 8.11 shows the scattered electric field observed at three different locations 

in front of the x-face of the conducting cube. In this particular case the incident 

field has a Gaussian profile in time of RMS width 3.6 time steps. The simulations 

are performed with mesh sizes of 0.3m for the coarse and O.lm for the fme grid 

with the calculation area consisting of 33 cells in each direction for the coarse and 

99 cells in each direction for the fme mesh respectively. The observation points 

are placed 13, 10 and 7 nodes for points labelled in Figure 8.11 as 1, 2 and 3 

respectively for a coarse mesh and 40, 31 and 22 cells for a fme mesh. This 

corresponds to a distance from the non-standard node of 4.05m for point 1, 3.l5m 

for point 2 and 2.25m for point 3 in both cases. 
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Figure 8.11. Scattered electric field output at three different points in front of the 

x-face of conducting cube for coarse and fine mesh 

Good overall agreement is observed between the two solutions. The far field 

solution exhibits less error in comparison with the near field results. To explain 

this it is noted that there will be a contribution to the error from the different 

dispersion characteristics of the two grid sizes. The small errors in a near field are 

however compensated by a saving in computational resources. For that particular 

configuration a run time for a large mesh was decreased by a factor of 20 

compared to the fine grid simulation. 

8.3. One Point of Integration for 3D Symmetrical Problems 

To complete the description of 3D models of objects embedded in a single 

cell, symmetrical problems will be now considered. In these scenarios, certain 

simpJifications can be adopted and only one point of integration utilised for local 

field solutions, similarly to the single wire case placed centrally in a 2D cell. This 
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is specifically shown for the example of wave scattering from spherical objects 

such as conducting and dielectric spheres. In these cases a decomposition of EM 

field into spherical modes is exploited to developed the spherical node' s scattering 

parameters. 

8.3.1. Spherical Modes 

Prior to embedding small spherical objects the evaluation of empty non-

standard node in spherical coordinate system will be given for comparison. 

Spherical modes are studied and the impedance relationship between the port 

voltages and the port currents is evaluated. An expansion of electromagnetic field 

can be written with reference to the spherical coordinate system shown in section 

1 in Appendix E in the following form [8.7]: 

where: 

mmn = 

and 

c,o 

A m m sin '" 
8e x±-.-zn(kr)Pn (cose) m", 

sme cos 

a cos 
i. x-zn(kr)-Pnm(cose) . ｭ ｾae sm 

(8.17) 

(8.18) 
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nmn = " n(n+ 1) cos 
ar x zo(kr)Pom(cos9) . mlj» 

kr sm 

" 1 0 0 cos 
ao x+--[rzo(kr)]-P:(cos9) . mlj» 

kR or ae sm 
(8.19) 

" m 0 sin a. x ±. [rzo (kr) ] pom (cos 9) mlj» 
krsm9 or cos 

and k denotes the wavenumber, that in the present case equals k = ko, Zo (kr) 

represents a spherical Bessel functions of order n, pom denotes Legendre 

polynomials with respect to the angle dependency with 9 and trigonometric 

functions denote odd and even solutions with respect to the angle dependency 

with Ij». The field weighting coefficients a and bare: amn:t 0, bmo = 0 for TE 

modes and bmo;t:. 0, amn = 0 for TM modes. 

In order to derive the admittance relationship necessary to link the non-standard 

node with the real-time numerical network, it is desirable to identify the tangential 

electric and magnetic field at each face of the cubical node enclosing the volume 

of empty space. The tangential field components are formulated for both field 

illuminations, 
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for TE modes: 

(8.20) 

and for TM modes: 

Ea=-II hma--[rzn(kr)]-P:(cos9) . ｭ ｾ ejrot GO n ( 1 0 0 cos) 
a-I m-O kr or 00 sm 

c,o 

c,o 
(8.21) 

It is clear that in order to employ the scheme presented in Chapter 3 the infinite 

summation needs be truncated to the lowest order harmonics and can possess only 

discrete values at the points corresponding to the ports of standard SCN node 

[8.8]. Due to the character of the problem it is intuitive to seek 12 modal 

solutions that are symmetrical and also orthogonal, as required by the approach 

presented in Chapter 3. Taking into account the values and properties of the 

Legendre polynomials and values of trigonometric functions at the ports, listed in 
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section 2 of Appendix E, twelve low order spherical modes are selected which are 

illustrated in Figure 8.12. 

TEnm 
TM"", 

z 

x 

Figure 8.12. A selection of spherical symmetrical modes of the lowest order; the 

arrows represent the E-field direction 

Using this selection the 12-port transformer, presented in Chapter 3, necessary to 

decompose the incoming voltages into modal amplitudes is constructed as: 

o 0 0 0 0 0 0 0 1 1 1 1 
o 0 1 -1 -1 1 0 0 0 0 0 0 
o 0 0 0 0 0 1 -1 -1 1 0 0 
-1 1 0 0 0 0 0 0 0 0 1 -1 
1 1 1 100 0 0 0 0 0 0 

T 000011110000 
! = 0.5 0 0 0 0 -1 -1 1 1 0 0 0 0 

-1 -1 1 1 0 0 0 0 0 0 0 0 
-1 1 0 0 0 0 0 0 0 0 -1 1 
o 0 0 0 0 0 -1 1 -1 1 0 0 
o 0 0 0 0 0 0 0 -1 -1 1 1 
o 0 -1 1 -1 1 0 0 0 0 0 0 

(8.22) 

E E' 
The values of admittances at the ports are evaluated as Y = _9 = -+ which by 

H. He 

decomposition of the series to particular terms results in: 
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TE: yTE = 1 
D • 

JO>J.lr 

TM: ｙ ｾ = _ ｾ Ｒ ｲ 0 jn(kr) 

JO>J.l_[rj (kr)] or n 

(8.23) 

(8.24) 

For an empty space node zn(kr) = jn(kor) and the admittances are evaluated at 

r = Il, where Il is the radius of the TLM node. 

Using a small value approximation to the Bessel function, detailed in section 3 of 

Appendix E, it can be demonstrated that those admittances are, for the low order 

modes, equal to: 

yTE =_1_2. 
\ jO>J.l1l ' 

yTE = ｟ Ｑ ｟ ｾ Ｎ yTM = J'O>E Il. Y2™ = J'O>E Il 
2 jO>J.lIl' \ 2 ' 3 

(8.25) 

Implementing these values as a scattering relationship on each individual modal 

line, given in Equation (3.21) in Chapter 3, the time delay from Equation (3.22) 

can be estimated as: 

Ｎ Ｒ Ｈ Ｉ Ｉ ｅ ｾ
-1:;-

y\TM: e 3 Yo . 

Ell 
Ilt t =-

Yo 

2 Ell . 
Ilt =--

2 3 Yo 

where Yo is the intrinsic admittance of empty space (E = Eo,J.l = J.lo)· 

(8.26) 

It should be clear that the lines representing TE mode must use a short-circuit 

termination and the open-circuited stub is applied for lines corresponding to TM 

modes. The time-delay for the whole non-standard node can be simplified and 
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made exactly the same as SCN case by approximating the impedance of mode 

n = 2 to that of line n = 1, analogously to the 2D symmetrical fonnulation for 

conducting wires in Chapter 4. It was found that such approximation reduces 

significantly the computations in the non-standard node without compromising 

the accuracy. The admittances obtained and the 12-port transfonner developed for 

the non-standard node based on spherical coordinate system can be then 

embedded into a time-domain TLM model by employing the approach presented 

in Chapter 3. 

8.3.2. Theory of Scattering from a Conductive Sphere 

Having established the framework for symmetrical problems described in 

spherical coordinate system, a simple test is carried out to verify the accuracy of 

the technique. As a first example, a small conductive sphere is embedded in 

a coarse mesh ofTLM model as shown in Figure 8.13. 

x 

Figure 8.13. Small sphere embedded in a 3D TLM cell 

The modal impedances are now modified by taking into account fields scattered 

from the object and these are 

223 



Chapter 8 - 3D Simulations of Small Objects 

fr[r(j,(kor) + AiEy,(kor) )] 

i, (kor) + AiEYt (kor) 

y
t
™ =_ Ha = H. =_ k2

r j,(kor)+ AfMy,(kor) 

E. Ea jroll ! [r(j,(kor) + ａ ｾ ｙ ｴ Ｈ ｫ ｯ ｲ ﾻ Ｉ ｝

for TE and TM modes respectively. 

(8.27) 

(8.28) 

On the surface of the conducting sphere the total tangential electric field is forced 

to zero, thus the scattered field coefficients are calculated as follows: 

= 
j, (koa) + koaj\(koa) 
y,(koa) + koay\ (koa) 

where ' denotes the derivative, i.e. 0 and a is the radius of the sphere. 
o(koa) 

(8.29) 

(8.30) 

Utilising a small value approximation to Bessel functions it can be shown that at 

r =!l the admittances are: (the complete derivation is given in Appendix E 

section 4) 

(8.31) 

vTM _ • !la3 + 2a3 

I, - JroE 3 3 
2 !l -a 

(8.32) 

It is noted that as the sphere radius a -+ 0, the values of the modal admittances 

for a conducting sphere will approach the admittances for empty-space node 

presented in Equation (8.25). It should be clear that the distribution of the modes 

and the modal transfonner remain unchanged compared to the spherical empty-

224 



Chapter 8 - 3D Simu/ations of Small Objects 

space node. The theory derived above will be now validated for an example of 

small conducting sphere inserted into a coarse 3D TLM node. The numerical 

results will be verified against the analytical solution that is given below. 

8.3.2.1. Analytical Description 

The analytical description for the problem of plane wave scattering from the 

conducting sphere will be briefly discussed in this sub-section. For detailed 

information and full derivation the reader is referred to [8.3]. As demonstrated in 

the reference provided the total field potentials can be formulated as: 

(8.33) 

h ··d fi Id ffi· ·-0 2n + 1 d J" (k ) H" (2)(kr) were mCI ent le coe IClents are ao = J an 0 r, 0 are 
n(n+l) 

modified Bessel functions defined in Appendix E in section 5. The remaining 

field components are related by the following sets of equations [8.3]: 

Et =_1_( 0
2 

+k2)At 
r jrof.lE ar2 r 

ｅ ｴ ］ ｟ ｉ ｟ Ａ Ｐ Ｒ ａ ｾ ｟ Ａ __ 1 __ Ｐ ｾ
e jroJ.18 r oroS 8 rsinS ｡ ｾ

(8.34) 

1 1 02 A t 110Ft Et = _____ r + ___ r 
• jrof.lE rsin9 ｡ ｲ ｡ ｾ Er 09 

Ht =_1_( a
2 

+k2)Frt 
r jroJ.18 or2 

1 1 oAt 1 102Ft 
ｈ ｾ = ______ r + _____ r 

f.l r sin 9 ｡ ｾ jrof.lE r ora9 
(8.35) 

1 1 aAt 1 102Ft Ht = ____ r + ________ r 
• f.l r as jroJ.1E r sin 9 ｯ ｲ ｡ ｾ
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To determine the unknown coefficients bo'co the boundary conditions at the 

surface of the conducting sphere are enforced: 

ｅ ｾ Ｈ ｲ = a,O S; 9 S; 1t,O S; ｾ S; 21t) = ° 
ｅ ｾ Ｈ ｲ = a,O S; 9 S; 1t,O S; ｾ S; 21t) = ° 
which requires that: 

(8.36) 

(8.37) 

Finally the total electric field components, incident and scattered, used for 

validation purpose in the following sections can be determined as: 

incident electric field: 

ｅ ｾ = Ｍ ｪ ｣ ｯ ｳ ｾ faD [J"o(kr) + Jo(kr) ｊ ｰ ｾ Ｈ ｣ ｯ ｳ ･ Ｉ
0-1 

(8.38) 

scattered electric field: 

E: = Ｍ ｪ ｣ ｯ ｳ ｾ fbo ｛ ｈ Ｂ ｾ Ｒ Ｉ Ｈ ｫ ｲ Ｉ Ｋ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ Ｉ ｊ ｰ ｾ Ｈ ｣ ｯ ｳ ･ Ｉ
0-1 

El = ｣ ｯ ｳ ｾ f-[J'b H ,(2)(kr)sin9p,1 (cos 9) -c H(2)(kr) ー ｾ Ｈ ｣ ｯ ｳ ･ Ｉ ｝ (8.39) 
9 kr ｾ 0 0 0 0 0 sin e 

0-1 

ｅ ｾ = ｳ ｩ ｮ ｾ ｦ ｛ ｪ ｢ ｯ ｈ Ｇ ｾ Ｒ Ｉ Ｈ ｫ ｲ Ｉ ｰ ｾ Ｈ ｾ ｯ ｳ ･ Ｉ Ｍ ｃ ｯ ｈ ｾ Ｒ Ｉ Ｈ ｫ ｲ Ｉ ｓ ｩ ｮ ･ ｰ Ｇ ｾ Ｈ ｃ ｏ ｓ Ｙ Ｉ ｝
kr 0-1 sme 

It is noted that a large number of terms used in the analytical expansion is taken to 

guarantee the convergence of the series. 
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8.3.2.2. Numerical Validations 

A simple verification test will now be provided for a small conducting 

sphere embedded within a single TLM cell. The problem is excited by a plane 

wave with Gaussian profile of 2.5 time-steps RMS width and travelling in the +z 

direction with +y polarisation. The sphere radius selected for this simulation is 

a = Ｐ Ｎ Ｕ ｾ where the radius of the TLM node is ｾ = 0.05m. A perfect TEM 

waveguide was created to support the plane wave propagation in a computational 

region of 61 x 61 x 61 numerical nodes, i.e. a short-circuit boundary is assumed at 

the surfaces 5,3; an open-circuit at 2,4; and a matched boundary is at the surfaces 

1,6 from Figure 8.13. 

1.004 ,.-----------------,------, 

_ 1.002 

E 
2. 

0.996 

TLM EXACT : 
OP (-5,0) -+-
OP (-10,0) -.-
OP (-20,0) -y-

0.994 -4-----..--..,..----.---...----..---..---......----1 
0.000 0.045 0.090 0.135 f/fmax 0.180 

Figure 8.14. Total electric field calculated 5, 10 and 20 nodes on the negative z-

axis in front of the non-standard node containing a conductive sphere 

Figure 8.14 shows the total electric field observed 5, 10 and 20 nodes on the 

negative z-axis in front of the non-standard node containing the conducting 

sphere. The frequency for the experiment is normalised against the maximum 
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frequency of the TLM run, i.e. fmax = Ｈ Ｒ ｾ ｴ ｲ ｬ Ｎ Very good agreement is achieved 

between the analytical solution, labelled as exact, and numerical results for each 

of the points presented, even beyond the 10% of maximum frequency, the limit 

below which TLM is regarded as accurate [8.9]. Similarly to the single wire case 

studied in Chapter 4, the curves representing far field solutions exhibit excellent 

agreement. This is due to improved numerical resolution at the wavefront 

curvature that enables the solution to converge rapidly. A slight error is observed 

for a near field, however, with such weak scattering those errors are negligible 

when EMC applications are considered. 

8.3.3. Scattering from Dielectric Sphere 

An extension to the problem of wave scattering from a dielectric sphere is 

straightforward. It requires updating the values of admittances taking into account 

a new boundary between air and a dielectric material. At such interfaces it is 

necessary to maintain continuity of all the tangential electric and magnetic field 

components. However, the interface considered here is generalised to the 

boundary between two dielectric materials, one for a medium of El = EOErl and the 

second E2 = EOEr2 of the object inserted in the medium. This concept covers 

a much greater range of engineering problems. By simply assuming the 

permittivity Erl = 1 and Er2 = Er' where Er is the dielectric constant of the sphere, 

the result for the problem of wave scattered from a dielectric sphere placed in the 

empty space medium will be generated. 
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Thus, at the boundary r = a, where a is the radius of the sphere, the condition of 

those expressions using the field expansions given in Equation (8.20) and (8.21) 

for TE and TM modes leads to: 

for TE modes: 

and for TM modes: 

(8.42) 

(8.43) 

where k
l

, k2 are the wavenumbers in the dielectric materials and '111' '112 are their 

intrinsic impedances. 

It should be noted that the Neumann function Yn(k2r) has been excluded from the 

solutions, since the fields are required to be finite and continuous and the function 

Y n (k2r) is infinite at r = o. Calculating derivatives in Equation (8.41) and (8.42) 

yields: 

k2'112 Ｈ ａ ｾ (jn(kla) + klaj'n(k1a») + ａ ｾ ｉ (y n(kla) + klaY'n(kla»)) 
kllll 

= ａ ｾ Ｒ (jn(k2a) + k2aj'n(k2a») 

(8.44) 

(8.45) 
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Dividing simultaneously Equation (8.40) by (8.44) and Equation (8.45) by (8.43) 

and rearranging the normalised scattering coefficients are obtained in the form, 

for TE modes: 

A:1 _ k21l2jn (k2a) (jn(k1a)+ktaj'n(kta) )-ktlltjn(k ta)(jn (k2a)+k2aj'n (k2a» 

ａ ｾ - ktlltY .(kta) (j.(k2a)+k2aj'.(k2a) )-k21l2jn(k2a)(y. (kta)+ktay'. (kta» 

for TM modes: 

A:J kJ1l2jn (kJa)(jn(k2a)+k2aj'n(k2a) )-k21ltjn (k2a)(jn (kJa)+kJaj'n (kta» 

ａ ｾ k21lljn (k2a)(y n (k1a )+kJay' n (k1a) )-kl1l2Y n (k1a) (jn (k2a)+ k2a j'n (k2a) ) 

(8.46) 

(8.47) 

Thus, the scattered field coefficients necessary to evaluate the admittances at the 

faces of the node, as demonstrated in Equations (8.27) and (8.28) for TE and TM 

modes respectively are: 

ATE ａ ｾ ｊ k21l2j.(k2a) (jt (k1a)+ktaj\(kta) )-k l llljt (k1a)(jt(k2a)+k2aj\(k2a» 

• A: I k.llIY. (k1a) (j. (k2a )+k2a j\ (k2a) )-k21l2j. (k2a) (y. (k.a )+k1a y\ (kJa) ) 

ATM A:· kl1l2jl (k.a)Ot (k2a)+k2aj'.(k2a) )-k2Thjt(k2a) (jJ(k.a)+ktaj\(k.a) ) 

J A;I k21ltjl (k2a)(YJ (kJa)+kJay\(kJa) )-kJ1l2YJ(k.a) (j. (k2a)+k2aj\(k2a» 

Utilising a small value approximation to Bessel functions detailed in Appendix E 

section 3 the above can be written as: 

(8.48) 

(8.49) 

Substituting Equation (8.48) and (8.49) into Equation (8.27) and (8.28) 

respectively and approximating the Bessel functions, the final form of the 

admittances can be derived. For more details see Appendix E section 6: 

(8.50) 
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(8.51) 

For the case of waves propagating in air and scattering from a dielectric sphere of 

permittivity Er the admittances are: 

and 

Having derived the admittances looking into the node centre for both TE and TM 

modes, the numerical results will be validated against an analytical solution. 

8.3.3.1. Numerical Validations 

A verification test will be carried out to demonstrate the accuracy of the 

above description when modelling scattering from a dielectric sphere using coarse 

meshes. The simulations parameters are chosen as in the previous example when 

conducting sphere were considered. The sphere consists of material of 

permittivity Er = 10. 

Figure 8.15 shows the total field output 5, 10 and 20 nodes in from of the non-

standard node with the dielectric sphere and the observation points are positioned 

on the negative z-axis. It is seen that much weaker scattering is observed when 

compared to the conducting sphere case. Again the results in the near-field are 

slightly more in error compared to the far-field results. However, very good 

overall agreement is achieved between the analytical and numerical solutions. 
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Figure 8.15. Total electric field calculated 5, 10 and 20 nodes on the negative z-

axis in front of the node containing a dielectric sphere of Er = 10 

8.4. 10 ing Remarks 

In this chapter the approach presented in Chapter 3 that allows TLM nodes 

to be designed in the presence of small-scale scatterers wholly or partially 

contained witrun the volume of space the node represents, has been verified by 3D 

practical tests. Identification of the parameters of the non-standard nodes require 

local field solutions in the presence of the scatterers and as was shown, those may 

be obtained by either exact field analysis or by purely numerical means. Both 

concepts were investigated. Analytical description of the tilted dipole and the wire 

loop and numerical approximation to a small conducting cube was used to 

demonstrate the power of the approach. In both cases excellent agreement with 

reference results were obtained at a fraction of the computational effort required 

to directly mesh the specific problems. Finally, a study of spherical geometries 
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was given to present a quick and efficient implementation of our approach to 

embedding objects analysed in spherical coordinate system. 
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Chapter 9 

Conclusions 

The aim of the work presented in this thesis was to develop techniques that 

would enable efficient and accurate description of fine features present in multi-

scale systems, such as EMC environments within large-scale numerical 

simulations. The novel approach proposed here provides a stable and robust 

algorithm that embeds groups of arbitrarily-shaped small objects clustered in close 

proximity within a single cell of TLM method, or a combination of cells if 

necessary. Hence, it allows large and highly-integrated platforms such as aircraft 

and ships to be accurately modelled without utilising explicit fine meshing which 

is prohibitive in terms of computational requirements. This chapter will review the 

work presented in this thesis and draw conclusions and suggestions for 

improvements where appropriate. 

Electromagnetic field simulations of multi-scale environments have been proven 

to be a very challenging task. The difficulty in modelling such systems is due to 

the large volume of space over which small and large elements interfere and 

interact with one another, all of them often being equally important from an 

electromagnetic point of view. Traditional numerical approaches resulting in 
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direct sampling of the problem space with the grid resolution required by the 

smallest component lead to prohibitive computational demands. 

The review of possible practical problems encountered in structures comprising 

a variety of physical scales was given with the main focus being placed on EMC 

applications. In the realm of EMC, the prediction of fields scattered from thin 

wires is of great importance. Such features are fundamental components of a wide 

range of antennas and are commonly used in cables and bundles that link and 

provide communication between elements and systems. In order to familiarise the 

reader with the impact that radiated or scattered fields from thin wires have on 

surrounding systems, the necessary background electromagnetic theory was 

provided. A detailed description of the field behaviour in the presence of such 

cylindrical scatterers was also given. 

Several different attempts were proposed in the past to model thin wires. These 

were discussed and the pros and cons of their application to EMC problems were 

highlighted. One of the particular techniques based on a sub-cell approach utilises 

the so called macro-node [9.1-9.3]. In this concept the problem space is 

discretised with a coarse mesh and the response of a large computational cell is 

engineered to mimic the behaviour of the fine feature enclosed within it. This 

results in a significant reduction in computational memory requirements and 

simulation run-times, as the number of those non-standard nodes containing wires 

is relatively small compared to the total number of spatial cells. The macro-node 

approach is stable and robust. It utilises known analytical solutions for the fields 
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around the wire to account for the presence of such a feature and is not based on 

any empirical factors. However, before this work it was limited to embedding 

only one wire that is placed at the centre of numerical cell which restricts its 

applicability to modeling fine features clustered together. Such scenarios are often 

encountered when modelling for EMC and would again necessitate the use of 

relatively small grids. 

Consequently, a novel extension to this approach was presented that removes the 

limitations of its predecessor. In the proposed method no restriction is placed 

upon the geometry of the object or its position and orientation within the cell. In 

addition, the fine feature may be wholly enclosed within a single cell or pass 

across several cells. A significant improvement was made so that the algorithm 

accounts also for multiple objects/wires inserted into one TLM cell coupled by 

their near fields with each other and the surrounding space. Furthermore, the local 

field solutions around the features that form a key component of the algorithm, do 

not have to be calculated analytically. They can alternatively be obtained from 

numerical simulations or simply measurements thus ensuring the versatility of the 

approach and its applicability to many engineering problems for which an 

analytical solution is intractable. 

Initially, the accuracy of the approach was verified for a two-dimensional problem 

of wave scattering from a single conducting wire placed centrally in the cell. 

A comparison was made with analytical solutions, the multi-feature node yielding 

very good agreement for the field intensity in both the near and far-field regions. 
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Furthermore, the approach was applied to modelling a cluster of conducting wires 

in a single TLM cell. Again, very good agreement was found with the exact 

solution. As was shown this good accuracy even goes beyond the 10% of the 

maximum simulation frequency, a limit that guarantees almost dispersionless 

operation of schemes such as TLM [9.4]. The wire model presented here can be 

widely utilised in many examples, for instance to model linear array antennas with 

the flexibility of employing different mesh periodicity compared to the periodicity 

of antenna's elements. 

Of great importance in EMC simulations is the modelling of wire bundles and 

cables comprising conducting wires, dielectric rods and wires coated with 

dielectric insulation. Examples of such features embedded in TLM cells were also 

investigated and again very good agreement with the known behaviour of the 

scattered field was found. As discussed, the approach allows use of a cell that 

contains cylindrical structures of different material characteristics. This is 

implemented by simply applying the appropriate boundary conditions at the 

surface of the cylinders in the pre-processing stage. Similarly, losses can be 

incorporated in the system as was demonstrated when a single lossy wire was 

studied. 

Models of conducting thin strips or narrow slots in conducting planes embedded 

in a single 2D cell were also examined. Here, the fields in the vicinity of the 

feature were decomposed into· elliptical harmonics which were in turn used to 

construct the admittance relationship between the magnetic and electric field 
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necessary to connect the multi-feature node with the rest of the numerical grid. 

The node with such features performed exceedingly well when validated against 

analytical solutions. 

It was also shown that not only EMC predictions can benefit from the advantages 

the proposed technique offers. As presented, it was successfully employed in 

photonics where the macroscopic behaviour of microstructure photonic band-gap 

materials were easily estimated without the need to grade the mesh so that it 

characterised in detail every single feature of the photonic lattice. This is 

especially practically important when a high degree of integration of devices on 

a single substrate is involved. 

It is observed that the 2D models reviewed above were developed for EMC 

applications, hence only second order accuracy was considered. However. for 

certain areas such accuracy may not be sufficient. In this case the methodology 

needs to be adjusted to include a higher order scheme. One possible concept for 

achieving higher accuracy is to replace the traditional communication between the 

nodes that is conventionally conducted through one point, with two points on each 

edge of the 2D node. Hence, the new 2D node would consist of eight ports in 

total. Such a configuration would allow incorporating higher order harmonics, up 

to eight, and the near fields around the wires would be approximated by eight 

points instead of four. This would increase the accuracy of the approach, however 

at the cost of computational resources, as the number of variables stored per cell, 

with or without objects inside, would double. Nevertheless such a trade-off may 
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be profitable when better resolution is required and only a part of a large system is 

analysed so that the volume of space that needs to be discretised is reasonably 

small. 

Another area where the approach could be employed is a modelling of materials 

with complex frequency-dependent characteristics. As far as the geometry is 

concerned, special attention is placed upon cylindrical nanowires [9.5] and the 

phenomenon of surface plasmons [9.6] that are excited in response to applied 

electromagnetic field whenever such nanoparticles are placed in closed proximity. 

Preliminary calculations revealed that the admittances obtained from the general 

eigenvalue problem representing relationship between the tangential electric and 

magnetic field at the edges of the node possess complex frequency-dependent 

characteristics. They are no longer simply proportional or inversely proportional 

to frequency due to the material, silver for example [9.7]. Therefore the equivalent 

circuit model is no longer valid and cannot be used to implement the admittance 

relationship into the time-domain method. Instead digital filters [9.8] can be 

utilised to enable the frequency-dependent characteristics of the admittances to be 

embedded in TLM. In order to conduct such a process the admittance 

characteristics have to be represented in a form of a Pade approximation [9.8]. 

Hence, the vector fitting technique [9.9] or Prony's method [9.10] can be used to 

identify the necessary poles and zeros and construct formulae that can be applied 

in time domain schemes by the means of Z - transform [9.8]. 
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The true potential and power of the approach was presented in 3D simulations. 

Thin dipoles obliquely orientated to the nodal axes as well as circular thin wire 

loops evaluated by linear piecewise approximation were considered. In both cases 

excellent agreement with reference results were obtained. Not only are these 

examples suitable test problems for the general approach, but also important 

practical configurations in their own right. In both those tests the fields around the 

features were still calculated using analytical expansion in terms of cylindrical 

harmonics. However, as pointed out at the pre-processing stage, a numerical 

approximation can be used to estimate such fields. This was shown for fields 

scattered from a small cube. Very good agreement was ·achieved between fine 

mesh simulations and coarse mesh results. For that particular configuration the 

run time for a large mesh was reduced by a factor of 20 compared to the fine grid 

simulation. Finally, the possibility of embedding objects characterised by 

a spherical coordinates was demonstrated. The results of numerical simulations of 

field scattered from small conducting or dielectric spheres matched very well with 

the analytical solutions, again well beyond 10% of the maximum frequency. 

The 3D approach could be easily extended to account for multiple wires passing 

through a cell as was done for the two-dimensional case. However, it should be 

recognized that a number of independent wire-to-wire voltages will exist and that 

these ought to be explicitly present in the algorithm to allow interfacing with 

lumped circuit components. This is achieved by simply choosing sufficient 

additional ports on the appropriate cell surfaces each of which represents an 

independent local, quasi-static field that gives rise to inter-wire voltages. This 
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would necessitate an increase in the number of basis functions fp on each surface 

of the cell to remain consistent with the boundary conditions placed on the 

tangential electric field around the wires and ensure continuity of the fields at the 

interface. 

In summary, this thesis presented a stable and robust approach to model sub-

wavelength features in a coarse grid simulation without placing any restriction on 

the geometry or position of the object(s) inside the cell. The technique was 

successfully implemented to many practical problems and the results verified 

showing second order accuracy. 
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Appendix A 

1. Vector Formulae 

VxVxA=V(V·A)-V 2A (A.l) 

(A.2) 

2. Vector Differential Operations in Rectangular Coordinates 

Assuming a rectangular coordinate system (x,y,z) and defining a scalar 

function <I> = <I>(x,y,z) and a vector A = iAx +yAy +zAz the following can be 

written.: 

A O<I> A O<l> A O<I> 
V<I>=x-+y-+z-

OX oy OZ 
(A.3) 

(A.4) 

(A.S) 

(A.6) 

(A.7) 

i 



Appendix A 

3. Vector Differential Operations in Cylindrical Coordinates 

Assuming a cylindrical coordinate system Ｈ ｲ Ｌ ｾ Ｌ ｺ Ｉ and defining a scalar 

written.: 

V 
A O<I> .i. O<I> A O<I> 

<I>=r-+",-+z-or ｯ ｾ oz 

2 A (2 2 oA. Ar ) A (2 2 oAr A. ) A ( 2 ) V A=r V A ----- +cj) V A.+----- +z V A 
r r2 ｯ ｾ r2 r2 ｯ ｾ r2 z 

4. Maxwell's Equations in Rectangular Coordinates 

(A.8) 

(A.9) 

(A. 10) 

(A.1I) 

(A. 12) 

In a homogenous, source-free and isotropic medium described via 

rectangular coordinate system Maxwell's equations are: 

oH 
VxE=-J!-at 

oE oEy oH" -Z--=-J!--ay az at 
aE aE aHy 
_" __ z =-Jl--
oz ox at 

aEy aE" aHz ---=-Jl-
OX ay at 

BE 
VXH=E-at 

oHz oHy BEr 
-----=E-
oy oz at 

oH" aHz _ aEe ------E-oZ ox at 
oHy oH" oEz -----=E-
oX ay at 

(A.13) 

ii 
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5. Maxwell's Equations in Cylindrical Coordinates 

In a homogenous, source-free and isotropic medium described VIa 

cylindrical coordinate system Maxwell's equations are: 

v x E = -jroJ.1H 

IoE cm. . 
__ z -- = -JroJ.1H 
r ｯ ｾ oz r 

oEr oEz • H 
---= -JroJ.1 
oz or • 

I 0 ( E) I oEr • H' -- r --- = -JroJ.1 
r or • r ｯ ｾ z 

6. Jacohi-Anger Expansion 

VxH = jroEE 

IoH oH. . 
___ z - --= JroEE 
r ｯ ｾ oz r 

oH r oHz • E 
----- = JroE 
oz or • 

.!..£. (r H ) -.!. oH r = jroEE 
r or • r ｯ ｾ z 

(A.l4) 

(A.IS) 

Hi 



Appendix B 

1. Bessel's function properties 

l_n(z) = (-It In(z) for n = 0,1,2, .... (B.l) 

2. Bessel Wronskian 

In(Z)'! ｈ ｾ Ｒ Ｉ Ｈ ｚ Ｉ Ｍ ｈ ｾ Ｒ Ｉ Ｈ ｚ Ｉ Ｇ Ａ In(z) = 

= In(z), ! (In(z)- j. Nn (z»)-! In (z) .(In(z)-j. Nn(z») (B.2) 

= Ｍ ｪ Ｈ ｬ ｡ Ｈ ｚ Ｉ ｾ ｎ ｡ Ｈ ｚ Ｉ ｎ ｮ Ｈ ｚ Ｉ ｾ ｬ ｮ Ｈ ｚ ﾻ Ｉ = _j2. 
Oz Oz 1tZ 

3. Small Argument Approximation to Cylindrical Bessel's Functions 

for n * 0 I (z)=_I_zlol and Na(z) =-
(1nl-I)! 2101 

a 2° 1n l! 7t zlol 
(B.3) 

for n =0 
Z2 

and 
2 

lo(z)=I-- No(z)=-ln(yz/2) 
4 7t 

4. A Derivation of Modal Admittances for a Single Wire 

4.1. TM polarisation 

Form Equation (4.61) for a TM polarised single wire the admittance 

relationship can be formulated as follows. 

Utilising the small argument approximation to the Bessel functions detailed in the 

section above yields; 

for n =0 

iv 
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XTM_ 
sO -

and 

｟ Ａ ｫ Ｒ ｾ Ｗ ｴ Ｈ Ｔ Ｍ ｫ ｾ ｡ Ｒ Ｉ 2 
y _ 1 2 0 Sln(ykoa/2) Ｗ ｴ ｾ _ 

0- jCOJ.lo 1- ｫ ｾ ｾ Ｒ _ Ｗ ｴ Ｈ Ｔ Ｍ ｫ ｾ ｡ Ｒ Ｉ 2 ln(yk ｾ Ｏ Ｒ Ｉ -
4 Sln(ykoa/2) 7t 0 

Ｍ Ｒ ｫ ｾ ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｈ Ｔ Ｍ ｫ ｾ ｡ Ｒ Ｉ

1 4Aln(ykoa/2) 
jCOJ.lo Ｈ Ｔ Ｍ ｫ ｾ ｾ Ｒ Ｉ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｈ Ｔ Ｍ ｫ ｾ ｡ Ｒ Ｉ ｬ ｮ Ｈ ｹ ｫ ｯ ｾ Ｏ Ｒ Ｉ = 

4ln( ykoa /2) 

1 Ｍ Ｒ ｫ ｾ ａ Ｒ Ｑ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｈ Ｔ Ｍ ｫ ｾ ｡ Ｒ Ｉ _ 
ｪ ｃ ｏ ｊ Ｎ ｬ ｯ ｾ Ｈ Ｔ Ｍ ｫ ｾ ｾ Ｒ Ｉ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｈ Ｔ Ｍ ｫ ｾ ｡ Ｒ Ｉ ｬ ｮ Ｈ ｹ ｫ ｯ ｾ Ｏ Ｒ Ｉ -

1 Ｍ Ｒ ｫ ｾ ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｔ Ｋ ｫ ｾ ｡ Ｒ

ｪ Ｈ ｪ Ｉ ｊ Ｎ ｬ ｯ ｾ 4ln(ykoa/2) - ｫ ｾ ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｔ Ｑ ｮ Ｈ ｹ ｫ ｯ ａ Ｏ Ｒ Ｉ + ｫ ｾ ｡ Ｒ Ｑ ｮ Ｈ ｹ ｫ ｯ ｾ Ｏ Ｒ Ｉ

1 Ｍ Ｒ ｫ ｾ ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｔ Ｋ ｫ ｾ ｡ Ｒ _ 
ｪ Ｈ ｪ Ｉ ｊ Ｎ ｬ ｯ ｾ 41n(ykoa/2)-ｫ ｾ ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ -4ln(ykoA/2) + ｫ ｾ ｡ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｾ Ｏ Ｒ Ｉ -

I Ｍ Ｒ ｫ ｾ ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ Ｍ Ｔ Ｋ ｫ ｾ ｡ Ｒ 1 1 

ｪ Ｈ ｪ Ｉ ｊ Ｎ ｬ ｯ ｾ -4ln(o/a') + ｫ ｾ [a2 ln(YkoA/2) - ｾ Ｒ ｬ ｮ Ｈ ｹ ｫ ｯ ｡ Ｏ Ｒ Ｉ ] ｾ jcollo ｾ ｬ ｮ Ｈ ｾ Ｏ ｡ Ｉ

for n;t 0 

XTM =_ 
III 

and 

(koa)lnl 

2lnllnl! _ 7t (koa )21nl 

2Inl (lnl-l)! - 22Inllnl!(lnl_l)! 

1t(koa)lnl 

v 
/ 
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ｫ ｯ Ｈ ｫ ｯ ｾ Ｉ Ｏ ｮ Ｏ Ｍ ｉ + 1t(koa)2Inl ko2/DI/n/! 

y = 1 2/
n
/Qn/_I)! 22In//n/!(/n/_I)! 1t Ｈ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｋ Ｑ

D jWJlo Ｈ ｫ ｯ ｾ Ｉ Ｏ ｮ Ｏ _ 1t(koa)2/n/ 2/0 /(/n/-l)! = 

2/nl /n/! 22°/n/!(/n/_I)! 1tz/nl 

ｫ ｯ Ｈ ｫ ｯ ｾ Ｉ Ｏ ｮ Ｏ Ｍ ｬ ［ (koa)2/n/ ko 

1 2\n\(lnl_I)1 2\n\(lnl-l)1 Ｈ ｫ ｯ ｾ Ｉ ｜ ｮ ｜ Ｋ ｬ

Ｈ ｫ ｯ ｾ Ｉ Ｏ ｮ ｬ (koa)2/n/ 1 = 

2/nl /n/! 2/0//n/! Ｈ ｫ ｯ ｾ Ｉ Ｏ ｯ ｬ

k (k ｾ Ｉ Ｒ ｉ ｮ ｬ . (k a)2In\ k 
o 0 + 0 0 

1 Ｒ Ｏ Ｐ Ｏ Ｈ ｬ ｮ Ｏ Ｍ ｬ Ｉ Ａ Ｈ ｫ ｯ ｾ Ｉ ｮ Ｋ ｬ 2/nl(lnl-I)! Ｈ ｫ ｯ ｾ Ｉ Ｏ ｮ ｬ Ｋ Ｑ
= 

Ｈ ｫ ｯ ｾ Ｉ Ｏ ｯ Ｏ Ｈ ｫ ｯ ｾ ｴ (koa)2/n/ 1 JWJlo 
Ｒ ｉ ｮ ｬ Ｏ ｮ ｬ Ａ Ｈ ｫ ｯ ｾ Ｉ ｮ 2Inl /nl! Ｈ ｫ ｯ ｾ Ｉ ｉ ｄ ｉ

ｫ ｾ Ｏ ｯ ｬ Ｋ Ｑ Ｈ ｾ Ｒ Ｐ Ｑ + a 2101) 

1 Ｒ ｉ ｮ ｬ Ｈ ｬ ｮ Ｏ Ｍ ｬ Ｉ Ａ Ｈ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｋ ｬ _ 1 /n/ Ｈ ｾ Ｒ Ｏ ｮ ｬ +a2Inl ) 

JWJlo ｫ ｾ Ｏ ｮ Ｏ Ｈ ｾ Ｒ Ｏ ｮ ｬ ｟ ｡ Ｒ Ｏ ｮ ｬ Ｉ - jWJlo ｾ Ｈ ｾ Ｒ Ｏ ｮ ｬ ｟ ｡ Ｒ Ｏ ｮ ｬ Ｉ

Ｒ Ｏ ｮ ｬ ｬ ｮ Ｏ Ａ Ｈ ｫ ｯ ｾ Ｉ ｉ ｄ ｉ

4.2. TE polarisation 

Form Equation (4.62) for a TE polarised single wire the admittance 

relationship can be formulated as follows. 

Utilising the small argument approximation to the Bessel functions leads to: 

for n =0 

and 

. 
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for n ;!: 0 

1 (k )Inl-I 
X™ = _ 2Inlqnl_l)! oa = (koa)lnl-1 1t(koa)lnl+1 = _ 1t (koa)2Inl 

III 21nllnp 2Inl(lnl_l)! 21nllnl! Inl!(lnl-I)! 221nl 

7t (koa )lnl+1 

and 

y = jroEo ｉ ｮ Ｈ ｫ ｯ ｲ Ｉ Ｋ ｘ ｾ ｮ ｅ ｎ ｮ Ｈ ｫ ｯ ｲ Ｉ = 
o ko JIO (kor) + ｘ ｾ ｅ ｎ Ｇ ｮ (kor) 

1 11 7t (k a)2lnl 2Inl (lnl-I)' --(k ｾ Ｉ ｮ + 0 • 

2lnllnl! 0 1nl !Clnl-l)! ilnl 7t (koMlnl 
jroEo ｟ ｬ Ｎ Ｎ Ｎ Ｎ Ｎ Ａ Ｍ ｾ Ｍ ［ Ｍ Ｚ Ｍ Ｍ Ｍ Ａ Ｍ Ｎ Ｎ Ｎ Ｚ Ｎ Ｍ Ｚ Ｎ Ｎ Ｎ Ｎ Ｎ Ａ Ｎ Ｍ Ｍ ］ Ｍ Ｍ ｟ ｾ Ｍ Ｍ ］ Ｚ Ｌ Ｌ Ｚ Ｚ Ｎ Ｍ Ｎ Ｚ Ｎ Ｎ Ｎ Ｎ

k ｃ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｍ Ｑ ko7t Ckoa)2lnl 2lnllnl! 

o 2InIClnl-I)! InpClnl-I)! 221nl Ｗ ｴ Ｈ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｋ Ｑ

Ｈ ｫ ｯ ｾ Ｉ Ｒ ｉ ｮ ｬ + (koa )21nl 

. Ｒ ｉ ｮ ｬ ｬ ｮ ｬ Ａ ｃ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ
JroE -

o ｫ ｯ ｃ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｍ ｉ ｃ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｋ Ｑ -ko(koa)2Inl -

21nl Clnl-l) Ａ ｃ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｋ Ｑ

ｫ ｾ ｬ ｮ ｬ Ｈ ｾ Ｒ ｉ ｮ ｬ + a 21nl ) 

Ｒ ｉ ｮ ｬ ｬ ｮ ｬ Ａ Ｈ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ . ｾ ｃ ｾ Ｒ Ｑ ｮ ｬ + a2lnl ) 
ｫ ｾ ｬ ｮ ｬ Ｋ ｉ Ｈ ｾ Ｒ ｉ ｮ ｬ ｟ ｡ Ｒ ｉ ｮ ｬ Ｉ = JroEo 1nl ｃ ｾ Ｒ ｉ ｮ ｬ ｟ ｡ Ｒ ｉ ｮ ｬ Ｉ

Ｒ ｉ ｮ ｬ Ｈ ｬ ｮ ｬ Ｍ ｬ Ｉ Ａ ｃ ｫ ｯ ｾ Ｉ ｬ ｮ ｬ Ｋ ｬ
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Appendix C 

The input admittance of a transmission line of characteristic admittance Y , length 

t,. and terminated by a conductance G is: 

y = Y G + jY tan(kt,.) Y - jG tan(kt,.) 
mput Y + jGtan(kt,.) Y - jGtan(kt,.) 

= Y GY + jy2 tan(kt,.) - jG2 tan(kt,.) + YG tan2(kt,.) 
y2 + G2 tan2(kt,.) 

(C.1) 

For low frequencies, so that the argument of the tangent function is small, this can 

be approximated to second order accuracy as: 

Yinput 1:::1 G + jY tan(kt,.) - j ｾ tan(kt,.) 

= G + ｪ ｇ ｴ ｡ ｮ Ｈ ｫ ｴ Ｌ Ｎ ＾ Ｈ ｾ - ｾ Ｉ (C.2) 

］ ｇ Ｋ ｪ ｫ ｴ Ｌ Ｎ ｇ Ｈ ｾ Ｍ ｾ Ｉ

i 
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The elliptical coordinate system is defined with reference to Figure 7.1 of Chapter 

7 as: 

d 
x = - coshu cosv 

2 

d 'nh . y=2' SI U smv 

Z=Z 

Form the above Equations the following can be formulated: 

Using the properties of trigonometric functions: 

Rearranging, 

One of the solutions to the quadratic equations is given by: 

Define 

Thus, Equation (D.S) is in the form: 

sinhu=JA 

(DJ) 

(D.2) 

(D.3) 

(D.4) 

(D.6) 

(D.7) 

ix 
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Therefore the variable u is obtained as: 

u = arcsinhJA =In( JA Ｋ ｾ ａ Ｋ Ｑ Ｉ (D.8) 

The derivatives ou and ou are calculated as follows: ox ay 

ou ou oA 1 oA 
-=--= 
ay oA ay Ｒ ｾ ａ Ｈ ａ + 1) ay (0.10) 

where 

(0.11) 

(0.12) 

From Equation (D. 1 ) the following can be formulated: 

2 4x2 

cosh u = 2 2 
d cos v 

(D.13) 

Using the cosh2u - sinh2u = 1 leads to: 

(0.14) 

This after some mathematical rearrangements yields: 

(0.15) 

One of the solutions to the above quadratic equations can be found as follows: 

sinv= 

Define 

d2 -4x2 _4y2 Ｋ ｾ Ｈ Ｔ ｘ Ｒ +4y2 _d2)2 + 16y2d2 

2d2 
(0.16) 

x 
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Equation (D.t6) can be written as: 

sinv=JB 

From Equation (D.t8) the variable v can be calculated in the form: 

v =arcsinJB 

Thus, the derivatives ov and ov are found from: ox oy 

where 

oB 

ov ovoB 1 oB 
ox = oB ox Ｒ ｾ ｂ Ｈ ｬ B) ox 

ov ovoB t oB 
oy = oB oy Ｒ ｾ ｂ Ｈ ｬ B) oy 

4x(4x2 +4y2 _d2) 4x 

-o-x = ､ Ｒ ｾ Ｈ Ｔ ｸ Ｒ +4y2 _d2)2 +t6y2d2 d2 

oB 4y(4x2 +4y2 +d2) 4y 

oy = ､ Ｒ ｾ Ｈ Ｔ ｸ Ｒ +4y2 _d2)2 +t6y2d2 -df 

(D.l7) 

(D.t8) 

(D.l9) 

(D.20) 

(D.2t) 

(D.22) 

(D.23) 
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1. Spherical Coordinate System 

z 

y 

2. Possible Combinations of Spherical Modes. 

The discrete values of angles at the points corresponding to the ports on 

each of the 6 surfaces of the cubic TLM node. 

SI: (8 = 1t); Sl: (8 = Ｑ ｴ Ｏ Ｒ Ｌ ｾ = 0); SJ: (8 = Ｑ ｴ Ｏ Ｒ Ｌ ｾ = 1t/2); 

ｓ Ｔ Ｚ Ｈ Ｘ ］ Ｑ ｴ Ｏ Ｒ Ｌ ｾ ］ Ｑ ｴ Ｉ ｓ Ｕ Ｚ Ｈ Ｘ ］ Ｑ ｴ Ｏ Ｒ Ｌ ｾ ］ Ｓ Ｑ ｴ Ｏ Ｒ Ｉ ［ S,:(8=0) 
(E.1) 

The fields at the ports are either proportional to A or B, where A = ｾ P: (cos 8) 
sm8 

The values of A and B for the lowest order hannonics are given as: 

A m=O m=l m=2 B m=O m= 1 m=2 
n=l 0 1 0 n=l -sine co se 0 
n=2 0 3eose 6sin8 n=2 -3I2sin28 3eos2e 3sin2e 
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It should be noted that 

m>n (E.2) 

3. Small Argument Approximation to Spherical Bessel Functions 

for x« 1 

J
. Ｈ ｸ Ｉ ｾ xn and () -1·3·5· ... ·(2n-1) 
n 1.3.5 ..... (2n + 1) Y n X :=::: xn+1 

(E.3) 

4. Derivation of Admittances for a Conductive Sphere 

A
TE _ (ka)3 d 
I - ,an 

3 

TE 1 Ｈ ｪ ｬ Ｈ ｫ ｯ ｾ Ｉ + ａ ｩ ｅ ｙ ｉ Ｈ ｫ ｯ ｾ ﾻ Ｉ + ｫ ｒ Ｈ ｪ ｜ Ｈ ｫ ｯ ｾ Ｉ + ａ ｩ ｅ ｹ ｜ Ｈ ｫ ｯ ｾ ﾻ Ｉ _ 

YI = ｪ ｲ ｯ ｊ Ｎ ｬ ｾ ｪ ｬ Ｈ ｫ ｯ ｾ Ｉ Ｋ ａ ｩ ｅ ｙ ｉ Ｈ ｫ ｯ ｾ Ｉ -

(
!kR_(koa)3 1 ｊ Ｋ ｫ ｾ Ｈ Ａ Ｋ Ｈ ｫ ｯ ｡ Ｉ Ｓ 2 J 

1 3 0 3. Ｈ ｫ ｯ ｾ Ｉ Ｒ 0 3 3 Ｈ ｫ ｯ ｾ )3 _ 

ｪ ｲ ｯ ｊ Ｎ ｬ ｾ ! k ｾ _ (koa)3 1 -
3 0 3 Ｈ ｫ ｯ ｾ ｩ

1 jk.+-f, J+jkoA(1+2f, J _ 1 (2+f, J_ 

ｪ ｲ ｯ ｊ Ｎ ｬ ｾ !k ｾ Ｈ ｬ Ｍ ｾ ｊ - ｪ ｲ ｯ ｊ Ｎ ｬ ｾ Ｈ ｬ Ｍ ｾ ｊ
3 0 ｾ Ｓ ｾ Ｓ

1 Ｈ Ｒ ｾ Ｓ +a3) 

ｪ ｲ ｯ ｊ Ｎ ｬ ｾ Ｈ ｾ Ｓ ｟ ｡ Ｓ Ｉ
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5. Modified Bessel Function 

A g; J¥kr Zn{kr) = krzn{kr) = kr -Zn+1/2{kr) = -Zn+1/2{kr) 
2kr 2 

(E.4) 

where zn{kr) is a spherical and Zn{kr) a cylindrical Bessel function. 

6. Derivation of Admittances for a Dielectric Sphere 

ForTE mode 

yTE = 2 klt'lI{2A3+a3)+k2t'l2{A3-a3) = 2 

1 jroJl1A k1t'l1{2A 3 -2a3)+k2TJ2{A3 +2a3) jroJl1A 
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ForTMmode 
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