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Abstract

In recent years, the emergence and development of crowd-sourced geospatial

data has provided challenges and opportunities to national mapping agencies

as well as commercial mapping organisations. Crowd-sourced data involves

non-specialists in data collection, sharing and maintenance. Compared to au-

thoritative geospatial data, which is collected by surveyors or other geodata

professionals, crowd-sourced data is less accurate and less structured, but often

provides richer user-based information and reflects real world changes more

quickly at a much lower cost.

In order to maximize the synergistic use of authoritative and crowd-sourced

geospatial data, this research investigates the problem of how to establish and

validate correspondences (matches) between spatial features from disparate

geospatial datasets. To reason about and validate matches between spatial fea-

tures, a series of new qualitative spatial logics was developed. Their soundness,

completeness, decidability and complexity theorems were proved for models

based on a metric space. A software tool ‘MatchMaps’ was developed, which

generates matches using location and lexical information, and verifies consis-

tency of matches using reasoning in description logic and qualitative spatial

logic. MatchMaps was evaluated by the author and experts from Ordnance Sur-

vey, the national mapping agency of Great Britain. In experiments, it achieved

high precision and recall, as well as reduced human effort. The methodol-

ogy developed and implemented in MatchMaps has a wider application than

matching authoritative and crowd-sourced data and could be applied wherever

it is necessary to match two geospatial datasets of vector data.



Acknowledgements

I would like to express my deep gratitude to my PhD supervisors, Dr. Natasha

Alechina and Prof. Michael Jackson, for their support and advice. They taught

me a lot during the last four years.

I would like to thank Prof. Anthony Cohn and Prof. Tony Pridmore for being

my viva examiners and providing helpful comments for improving this thesis.

I would like to thank Glen Hart, Dr. Brian Logan, Dr. Andrew Parkes, Dr. Hen-

rik Nilsson, Dr. John Goodwin, Dr. Suchith Anand, Dr. Kristin Stock, Dr. Hai

Nguyen, Dr. Hoang Nga Nguyen and all others who provided suggestions for

this work.

Many thanks to Ordnance Survey of Great Britain who part-funded my PhD,

provided test data and evaluated the tool developed during this work.

Finally, I would like to thank my family and friends for being there through

good and bad times. Thank you!

Nottingham

May, 2015

ii



Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Aim and Objectives . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions and Structure of the Thesis . . . . . . . . . . . . . . 5

2 Context of Research 8

2.1 Development of Crowd-sourced Geospatial Data . . . . . . . . . . 8

2.2 Quality of OpenStreetMap Data . . . . . . . . . . . . . . . . . . . . 13

2.3 Usability of OpenStreetMap Data . . . . . . . . . . . . . . . . . . . 22

3 Literature Review 27

3.1 Geospatial Data Matching . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Evaluating Matching Methods in Research Context . . . . 27

3.1.2 Position of this Research . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Basic Techniques for Matching Geometric Representations 33

3.1.3.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3.2 Buffer Intersection . . . . . . . . . . . . . . . . . . 36

3.1.3.3 Topology . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Ontology Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Basic Techniques for Matching Lexical Descriptions . . . . 41

3.2.2 Logical Reasoning for Ontology Matching . . . . . . . . . 43

3.2.3 Position of this Research . . . . . . . . . . . . . . . . . . . . 48

3.3 Spatial Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Region Connection Calculus . . . . . . . . . . . . . . . . . 50

3.3.2 The Egg-Yolk Theory . . . . . . . . . . . . . . . . . . . . . . 53

iii



Contents iv

3.3.3 A Logic for Reasoning about Distances . . . . . . . . . . . 55

3.3.4 Position of this Research . . . . . . . . . . . . . . . . . . . . 58

4 A Framework for Integrating Geospatial Datasets 60

4.1 Building up the Framework . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Rationale of the Framework . . . . . . . . . . . . . . . . . . . . . . 63

4.3 MatchMaps: an Implemented System . . . . . . . . . . . . . . . . 65

5 Matching Spatial Features 71

5.1 Theoretical Basis for Matching Geometries . . . . . . . . . . . . . 72

5.2 Matching Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Matching Spatial Objects . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Validating Matches using Description Logic 82

6.1 Description Logic ALCO . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Validating Terminology Matches using Description Logic . . . . . 85

6.3 Validating Object Matches using Description Logic . . . . . . . . . 87

7 A Logic of NEAR and FAR for Buffered Points 89

7.1 Syntax, Semantics and Axioms of LNF . . . . . . . . . . . . . . . . 90

7.2 Soundness and Completeness of LNF . . . . . . . . . . . . . . . . 94

7.2.1 Metric Model Lemma . . . . . . . . . . . . . . . . . . . . . 96

7.2.2 Metric Space Lemma . . . . . . . . . . . . . . . . . . . . . . 98

7.2.3 Path-Consistency Lemma . . . . . . . . . . . . . . . . . . . 111

7.3 Decidability and Complexity of LNF . . . . . . . . . . . . . . . . . 118

7.4 Interpreting L(LNF) in R2 . . . . . . . . . . . . . . . . . . . . . . . 119

8 A Logic of NEAR and FAR for Buffered Geometries 123

8.1 Syntax, Semantics and Axioms of LNFS . . . . . . . . . . . . . . . 123

8.2 Soundness and Completeness of LNFS . . . . . . . . . . . . . . . . 126

8.2.1 Metric Model Lemma . . . . . . . . . . . . . . . . . . . . . 128

8.2.2 Metric Space Lemma . . . . . . . . . . . . . . . . . . . . . . 134

8.2.3 Path-Consistency Lemma . . . . . . . . . . . . . . . . . . . 134

8.3 Decidability and Complexity of LNFS . . . . . . . . . . . . . . . . 138

8.4 Interpreting L(LNFS) in R2 . . . . . . . . . . . . . . . . . . . . . . . 139

9 A Logic of Part and Whole for Buffered Geometries 141

9.1 Syntax, Semantics and Axioms of LBPT . . . . . . . . . . . . . . . 142

9.2 Soundness and Completeness of LBPT . . . . . . . . . . . . . . . . 145

9.3 Decidability and Complexity of LBPT . . . . . . . . . . . . . . . . 149

9.4 Interpreting L(LBPT) in R2 . . . . . . . . . . . . . . . . . . . . . . . 149

10 Validating Matches using Qualitative Spatial Logic 151

10.1 Validating Matches using LNF, LNFS and LBPT . . . . . . . . . . 152

10.2 Actions for Retracting Problematic Matches . . . . . . . . . . . . . 154

iv



Contents v

11 Evaluation and Discussion 158

11.1 Developer Evaluation of MatchMaps . . . . . . . . . . . . . . . . . 158

11.1.1 Evaluation of Terminology Matching . . . . . . . . . . . . 159

11.1.2 Evaluation of Object Matching . . . . . . . . . . . . . . . . 161

11.2 User Evaluation of MatchMaps . . . . . . . . . . . . . . . . . . . . 165

11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11.3.1 Development and Performance of MatchMaps . . . . . . . 169

11.3.2 Practical Uses of MatchMaps Matches . . . . . . . . . . . . 170

11.3.3 Advantages and Limitations of MatchMaps . . . . . . . . . 171

12 Conclusion and Future Work 173

12.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A Proofs 179

B A Worked Example 183

Bibliography 186

v



List of Figures

1.1 The geometric representations of Nottingham city centre from
OSGB (left) and OSM (right) . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Prezzo Ristorante and Victoria Shopping Centre represented in
OSGB (dotted) and OSM (solid) . . . . . . . . . . . . . . . . . . . . 3

2.1 OpenStreetMap Database Statistics: Registered Users and Track
Points [OpenStreetMap Wiki, 2014h] . . . . . . . . . . . . . . . . . 11

2.2 OpenStreetMap Database Statistics: Users Uploading or Editing
Nodes [OpenStreetMap Wiki, 2014h] . . . . . . . . . . . . . . . . . 20

2.3 OSM Map Features [OpenStreetMap Wiki, 2014d] . . . . . . . . . 24

3.1 Hausdorff Distance vs. Minimal Distance . . . . . . . . . . . . . . 36

3.2 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Buffer Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 OSGB Buildings and Places Ontology [Hart et al., 2008] . . . . . . 40

3.5 Examples of RCC8 relations . . . . . . . . . . . . . . . . . . . . . . 51

3.6 In OSGB data, the Prezzo Ristorante (a1) and the Blue Bell Inn
(b1) are disconnected, whilst in OSM data, they (a2 and b2) are
externally connected. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 An Egg-Yolk structure [Cristani et al., 2000] . . . . . . . . . . . . . 53

3.8 Examples of ‘definitely connected’, ‘possibly connected’ and ‘def-
initely not connected’ [Roy and Stell, 2001] . . . . . . . . . . . . . 54

3.9 Examples of ‘definitely partOf’, ‘possibly partOf’ and ‘definitely
not partOf’ [Roy and Stell, 2001] . . . . . . . . . . . . . . . . . . . 55

4.1 Matching ‘aggregated’ geometries (left); Matching individual ge-
ometries (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 The three hatched red circles are buffered part of (BPT) the solid
blue circle (left); Buffered Equal or BEQ (right) . . . . . . . . . . . 72

5.2 BEQ matches with ‘noise’ . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Refined BEQ matches . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 All are houses except one. . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 NEAR (left); FAR (right) . . . . . . . . . . . . . . . . . . . . . . . . 90

10.1 Examples of using LNFS and LBPT for validating matches . . . . 153

vi



List of Figures vii

10.2 a1 (red) in OSGB and a2 (blue) in OSM both represent a Prezzo
Ristorante; b1 (yellow) in OSGB represents a John Lewis Depart-
ment Store in the Victoria Centre, b2 (blue) in OSM represents the
Victoria Centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.1 The geometric representations of Southampton city centre from
OSGB (left) and OSM (right) . . . . . . . . . . . . . . . . . . . . . . 162

11.2 OSM spatial objects of the Nottingham case (left) and the Southamp-
ton case (right) are classified into four categories: TP (Black),
FP (Red), TN (Yellow) and FN (Green). . . . . . . . . . . . . . . . . 164

11.3 The geometric representations of spatial features in Southampton
from OSGB (left) and OSM (right) . . . . . . . . . . . . . . . . . . . 166

B.1 Corresponding collections of spatial features represented in OSGB
data (left) and OSM data (right) . . . . . . . . . . . . . . . . . . . . 183

B.2 An Interaction Window of MatchMaps . . . . . . . . . . . . . . . . 185

vii



List of Tables

2.1 Comparison between Crowd-sourced Geospatial Data and Au-
thoritative Geospatial Data [Jackson et al., 2010] . . . . . . . . . . 9

2.2 OpenStreetMap Statistics [OpenStreetMap Statistics, 2014] . . . . 10

2.3 Comparison between OSM and OSGB . . . . . . . . . . . . . . . . 13

2.4 OSM 24276789 in Birmingham, UK [Mooney and Corcoran, 2012] 14

2.5 OSM 9782645 in Hamburg, Germany [Mooney and Corcoran, 2012] 15

2.6 Attribute Completeness Assessment of OSM data (the highway
layer for France from CloudMade, October 2009) [Girres and Touya,
2010] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 OpenStreetMap name/type coverage from 2012-2014 (the build-
ing layer for Nottinghamshire from [Geofabrik GmbH Karlsruhe,
2014]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Determining factors of data quality elements for OSM . . . . . . . 22

2.9 Summary of OSM data quality . . . . . . . . . . . . . . . . . . . . 22

2.10 Applications of OS MasterMap [Ordnance Survey, 2014e] . . . . . 23

3.1 Geospatial Data Matching Methods in Different Categories . . . . 32

6.1 Some OWL 2 axioms and their corresponding ALCO sentences . 84

11.1 OSGB Buildings and Places ontology vs. OSM ontology . . . . . . 159

11.2 Comparing terminology matches generated by MatchMaps, CODI
and LogMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11.3 ‘Ground Truth’ Evaluation of MatchMaps, CODI and LogMap . . 161

11.4 Data used for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 162

11.5 Matching OSM spatial objects to OSGB . . . . . . . . . . . . . . . 163

11.6 Comparing sameAs matches generated by MatchMaps, LogMap
and KnoFuss (Nottingham case) . . . . . . . . . . . . . . . . . . . 165

11.7 Data used for User Evaluation . . . . . . . . . . . . . . . . . . . . . 166

11.8 Matching Results of MatchMaps with Validation by Users . . . . 168

11.9 Matching Results of MatchMaps with Validation by the Developer 168

11.10Matching Results of MatchMaps without Validation . . . . . . . . 168

viii



List of Algorithms

5.1 Minimal σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 BPT-Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 BEQ-Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Refine BEQ Matches . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



Chapter 1

Introduction

Maps are commonly used in our daily life. A map usually refers to a two-

dimensional representation of spatial features, such as roads, rivers, buildings

and places. A map displays and visualizes its underlying data, such as loca-

tion information (e.g. the geometry or coordinates of a building) and lexical

information (e.g. building names). Such data for maps is referred to as geospa-

tial data. Geospatial data can be roughly classified into two categories: au-

thoritative data, which is collected by surveyors and geo-professionals, and

crowd-sourced data, which involves non-specialists in data collection. Com-

pared to crowd-sourced data, authoritative data is usually more accurate and

more formally structured. However, crowd-sourced data often contains richer

user-based information and reflects real world changes (e.g. new constructions

of buildings, impacts of extreme weather events) more quickly at a much lower

cost. With the rapid development of crowd-sourced data in recent years, it has

become increasingly desirable to use authoritative geospatial data and crowd-

sourced geospatial data synergistically.

1



Introduction 2

1.1 Research Question

In order to maximize the synergistic use of authoritative and crowd-sourced

geospatial data, it is essential to establish correspondences (matches) between

them. Matches can be classified into terminology matches and object matches.

A terminology match is a statement expressing two concepts from different ter-

minologies have the same meaning. An object match states two spatial features

represent the same real world object (sameAs match), or one spatial feature rep-

resents an object which is part of what the other spatial feature refers to (partOf

match). A mapping is a set of matches. This thesis investigates the question of

how to establish matches between authoritative and crowd-sourced geospatial

data, and in particular, how to validate matches.

In different geospatial datasets, different terminologies or vocabularies are of-

ten used to describe spatial features. For example, the same restaurant can be

classified as a Restaurant in one dataset, whilst as a Place to Eat in another

dataset. The same word can often have different meanings in different datasets.

For example, the concept College means an institution within a university in

one dataset, whilst referring to a higher education school in another.

FIGURE 1.1: The geometric representations of Nottingham city centre from
OSGB (left) and OSM (right)

2



Introduction 3

For the same geographic area or the same set of spatial features, different geospa-

tial data sources have different representative geometries, as shown by Ord-

nance Survey of Great Britain (OSGB, the national mapping agency of Great

Britain) [Ordnance Survey, 2014a] data and OpenStreetMap (OSM, a popu-

lar crowd-sourced geospatial data community) [OpenStreetMap, 2014] data in

Fig. 1.1, where the same area in Nottingham city centre is represented differ-

ently. Many buildings are only represented in one dataset, but not in the other.

In addition, geometric representations of the same location or place in differ-

ent datasets are usually not exactly the same. Moreover, objects are sometimes

represented at different levels of granularity. Consider the examples shown in

Fig. 1.2, which are parts of Nottingham city centre represented in OSGB and

OSM data. The position and shape of the Prezzo Ristorante are represented dif-

ferently in OSGB (dotted) and OSM (solid) (Fig. 1.2, left). The Victoria Shopping

Centre is represented as several shops in OSGB (Fig. 1.2, middle) but as a whole

in OSM (Fig. 1.2, right).

FIGURE 1.2: Prezzo Ristorante and Victoria Shopping Centre represented in
OSGB (dotted) and OSM (solid)

In order to use different datasets together, we need to decide, at the terminol-

ogy level, which concepts have the same meaning, and at the object level, which

spatial features are the same and sometimes (as in the example of Victoria Shop-

ping Centre) which features in one dataset are parts of features in another.

3



Introduction 4

1.2 Research Aim and Objectives

The ultimate aim of this research is to use authoritative and crowd-sourced

geospatial data synergistically. For national mapping agencies, e.g. OSGB, it is

critical but very costly to maintain a database which is highly reliable and up-

to-date. This research particularly aims to use crowd-sourced geospatial data to

help enrich and update authoritative data, and lower the cost of national map-

ping agencies. This thesis addresses the following two research objectives to

achieve the research aim:

Generating Matches To develop a generic method for generating matches be-

tween spatial features from different geospatial data sources, especially

from an authoritative geospatial dataset and a crowd-sourced geospatial

dataset.

Validating Matches To develop a formal procedure for verifying consistency

of generated matches. In particular, we focus on using description logic

and spatial logic for this validation.

When designing the generic method and validation procedure, we try to achieve

the following measurable targets:

Maximizing Precision To maximize the precision (the ratio of correctly found

matches over the total number of matches found) of output matches.

Maximizing Recall To maximize the recall (the ratio of correctly found matches

over the total number of expected matches) of output matches.

Minimizing Human Effort To automate the process of generating and validat-

ing matches as much as possible and minimize human effort.

4



Introduction 5

1.3 Contributions and Structure of the Thesis

This thesis has two main contributions:

• To validate matches, a series of new qualitative spatial logics was pro-

posed. Their soundness, completeness, decidability and complexity the-

orems with respect to a metric space were all proved. This work was

published in [Du et al., 2013c; Du and Alechina, 2014a,b] and described in

Chapters 7-9.

• A software tool MatchMaps was developed for generating matches using

lexical and location information and validating matches using reasoning

in description logic and qualitative spatial logic. This work was published

in [Du et al., 2012a, 2013a,b, 2015b,a] and described in Chapters 4-6, 10-11.

Though the matching method and the validation procedure presented in this

thesis are motivated by integrating an authoritative geospatial dataset and a

crowd-sourced geospatial dataset, they are generally applicable for any two

different geospatial datasets of vector data (in contrast to raster data or images),

since the difference between two geospatial datasets is a matter of the degree of

accuracy and completeness, as well as semantic intent.

The rest of the thesis is structured as follows.

Chapter 2 (Context of Research) sets the context of this research by explain-

ing the development of crowd-sourced geospatial data and discussing the

quality of crowd-sourced geospatial data compared to authoritative data.

Chapter 3 (Literature Review) reviews related work on geospatial data match-

ing, ontology matching and spatial logic.

5



Introduction 6

Chapter 4 (A Framework for Integrating Geospatial Datasets) provides an over-

view of this research by introducing a framework for integrating geospa-

tial datasets and its implemented system MatchMaps. MatchMaps was

developed in this work for matching spatial features from different datasets.

It consists of seven main steps, each of which is explained in detail in one

or more subsequent chapters.

Chapter 5 (Matching Spatial Features) presents a generic method for generat-

ing sameAs and partOf matches between spatial features from authorita-

tive and crowd-sourced geospatial datasets. The generated matches are

treated as assumptions, which can be retracted if found incorrect.

Chapter 6 (Validating Matches using Description Logic) explains the use of de-

scription logic for detecting problematic matches between spatial features.

Chapter 7 (A Logic of NEAR and FAR for Buffered Points) presents a qualita-

tive spatial logic, a logic of NEAR and FAR for buffered points (LNF), for

verifying consistency of sameAs matches. With respect to a metric space,

we provide a sound and complete axiomatization of it, and show its satis-

fiability problem is NP-complete. We also show its satisfiability problem

is decidable with respect to a two-dimensional Euclidean space.

Chapter 8 (A Logic of NEAR and FAR for Buffered Geometries) provides a

new semantics for the language of LNF by interpreting every individual

name as an arbitrary geometry (a non-empty set of points) rather than a

single point. This new qualitative spatial logic is called a logic of NEAR

and FAR for buffered geometries (LNFS). With respect to a metric space,

we provide a sound and complete axiomatization of it, and show its sat-

isfiability problem is NP-complete.

Chapter 9 (A Logic of Part and Whole for Buffered Geometries) presents a

more expressive qualitative spatial logic, a logic of Part and Whole for

6



Introduction 7

buffered geometries (LBPT). It could be used for validating both sameAs

and partOf matches. With respect to a metric space, we provide a sound

and complete axiomatization of it, and show its satisfiability problem is

NP-complete.

Chapter 10 (Validating Matches using Qualitative Spatial Logic) explains the

use of the new qualitative spatial logics for detecting problematic matches

between spatial features, and different kinds of actions that users can take

to remove incorrect matches.

Chapter 11 (Evaluation and Discussion) presents the evaluation of MatchMaps

by the author and experts from Ordnance Survey of Great Britain, explains

the practical uses of MatchMaps matches, and discusses the advantages

and limitations of MatchMaps.

Chapter 12 (Conclusion and Future Work) concludes the thesis by summariz-

ing its contributions and indicating possible further research.

7



Chapter 2

Context of Research

This chapter firstly explains the development of crowd-sourced geospatial data

in Section 2.1. Then it focuses on OpenStreetMap data (a representative of

crowd-sourced data), assessing its quality in Section 2.2 and usability for updat-

ing and enriching data from Ordnance Survey of Great Britain (a representative

of authoritative data) in Section 2.3.

2.1 Development of Crowd-sourced Geospatial Data

Nowadays geospatial data plays an essential role in many government, eco-

nomic and social operations, such as disaster response, urban planning and

tourism. Governments invest large amounts of money in national mapping

agencies, which act as the primary source of geospatial information in many

countries1. Over the last decade, the advancement in location-centred technolo-

gies, the widespread adoption of them (e.g. affordable hand-held GNSS/GPS

devices) and free-to-use satellite/aerial imagery have enabled the general pub-

lic to capture and share geospatial information. This has led to the emergence

1Geospatial information can also come from other government agencies and from commer-
cial or research organizations.

8



Context of Research 9

and rapid development of crowd-sourced geospatial data (CGD), challenging

the dominant institutional data collection and ownership [Jackson et al., 2010].

The concept of ‘crowd-sourced geospatial data’ is expressed in different ways

(such as citizen science, volunteered geospatial information, user-generated con-

tent and neogeography) in literature from 1990 to 2013 [Goodchild, 2007; Heipke,

2010; Comber et al., 2014]. It generally refers to the practices which involve non-

specialists in data collection, sharing and maintenance. A comparison between

crowd-sourced geospatial data and authoritative geospatial data is shown in

Table 2.1. Despite their differences in several aspects, both have informational

value for governments and citizens. It is desirable to use them to complement

each other in order to provide a more complete, up-to-date, people-centric and

richer picture of geospatial data [Jackson et al., 2010].

TABLE 2.1: Comparison between Crowd-sourced Geospatial Data and Author-
itative Geospatial Data [Jackson et al., 2010]

Crowd-sourced Geospatial Data Authoritative Geospatial Data

‘Simple’ consumer driven Web
services for data collection and
processing.

‘Complex’ institutional survey and
GIS applications.

Near ‘real-time’ data collection and
continuing data input allowing trend
analysis.

‘Historic’ and ‘snap-shot’ map data.

Free ‘un-calibrated’ data but often at
high resolution (1:10000) and
up-to-the-minute.

Quality assured ‘expensive’ data.

‘Unstructured’ and mass consumer
driven metadata and mashups.

‘Structured’ and institutional
metadata in defined but often rigid
ontologies.

Unconstrained capture and
distribution of spatial data from
‘ubiquitous’ mobile devices with
high resolution cameras and
positioning capabilities.

‘Controlled’ licensing, access policies
and digital rights.

Non-systematic and incomplete
coverage

Systematic and comprehensive
coverage

9



Context of Research 10

One of the most successful CGD projects is OpenStreetMap (OSM) [OpenStreetMap,

2014]. It is community driven and works in similar ways to Wikipedia [Wikipedia,

2004] but creates and provides free geographic data covering spatial features

all over the world. Under the Open Data Commons Open Database License

[Open Knowledge Foundation, 2014] and the Creative Commons Attribution-

ShareAlike 2.0 License [Creative Commons, 2014], all OSM data is open and

freely available in vector formats, such as OSM XML [OpenStreetMap Wiki,

2013] and shapefile [OpenStreetMap Wiki, 2014g]. In OSM data, spatial features

(e.g. roads and buildings) are represented using points, lines or polygons, and

associated with tags providing lexical information, such as names and types

[OpenStreetMap Wiki, 2014c]. Table 2.2 [OpenStreetMap Statistics, 2014] and

Fig. 2.1 [OpenStreetMap Wiki, 2014h] show the growth in numbers of contribu-

tors and data (measured in track points) of OSM from 2005 to 2014. The growth

of OSM registered users is quicker than that of OSM track points. The possi-

ble reasons are only a small percentage of the registered users really contribute

[OpenStreetMap Wiki, 2014h], and there is less room to contribute as OSM data

becomes more complete.

TABLE 2.2: OpenStreetMap Statistics [OpenStreetMap Statistics, 2014]

2005-08-12 2014-09-06
Number of contributors 444 1776539
Number of GPS track points 5387063 4188193535

In order to provide the most up-to-date maps to customers, it is essential for

national mapping agencies to update their data frequently and regularly. How-

ever, this is expensive in both time and money. Taking Ordnance Survey of

Great Britain (OSGB), Great Britain’s national mapping authority, as an exam-

ple, according to its agency performance monitors, one of the OSGB 2013-2014

targets is ‘some 99.6% of significant real-world features2 greater than six months

2OSGB does not capture buildings smaller than 5m2 [Hart et al., 2008], unless they are im-
portant, for example, monuments. OSGB did not provide any definition of ‘significant’.
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FIGURE 2.1: OpenStreetMap Database Statistics: Registered Users and Track
Points [OpenStreetMap Wiki, 2014h]

old are represented in the database’ [Ordnance Survey, 2014b]. To achieve this,

OSGB employs a number of different methods:

• Major construction companies are contracted to provide change intelli-

gence concerning where and when they will build and site plans enabling

OSGB to schedule field survey in a timely fashion. This will capture a sig-

nificant amount of change intelligence related to all major building sites,

road construction and other large construction events.

• OSGB collects planning permissions from local authorities.

• OSGB receives change reports from individual surveyors who have ob-

served any change in their local areas.

• OSGB captures further changes using aerial imagery. This can be used

to capture missed major changes, such as a single house and a farm barn

11
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(that does not require planning permission). It will also capture a lot of

minor changes, such as new or removed hedgerows and paths.

• OSGB also receives change reports (e.g. letters, emails or phone calls)

from the general public, but these reports only comprise a very small pro-

portion of all the intelligence received.

For OSGB, minor changes are the most problematic, such as small buildings

constructed by small private building companies, change of function (e.g. a

country house is changed to a hotel), natural changes (e.g. a change of vege-

tation type or coastal erosion), extensions and alterations to buildings, private

roads (either new built or modified). In summary, most major changes will

be captured by OSGB, but there is a higher likelihood that small changes in

buildings and changes to attributions (e.g. change of purpose) will be missed.

Capturing this information is becoming increasingly important as OSGB moves

from being simply a map producer to one that wishes to supply much richer ge-

ographic information.

As shown by the example of OSGB, current working methods employed by na-

tional mapping agencies leave room for improvement and are faced with chal-

lenges raised by the rapid development of crowd-sourced geospatial data. As

EuroGeographics’ President, Ingrid Vanden Berghe [Geospatial PR, 2014], says,

‘Europe’s National Mapping, Cadastral and Land Registry Authorities must

adapt their activities to become geospatial information brokers if they are to

continue to meet society’s expectations’. This indicates that national mapping

agencies will collate data rather than just collect data in future, except for areas

where only national mapping agencies have permission to collect the data.

With an increasing amount of OSM data freely accessible online, it seems promis-

ing to use OSM data to enrich and update authoritative data. We focus on OSM

12
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data, because it is the best example of crowd-sourced geospatial data. Sup-

ported by OSGB, we explore the potential of OSM data in data enrichment and

change detection for OSGB data.

The main concern is that, collected by non-specialists, OSM data may not be

very accurate and can contain an unacceptable number of mistakes. In the rest

of this chapter, we examine the quality of OSM data and assess its usability for

enriching and updating OSGB data.

2.2 Quality of OpenStreetMap Data

The quality of OpenStreetMap (OSM) data is largely determined by the prac-

tices employed in its collaborative data production process, contrasting the cen-

tralized authoritative data production in national mapping agencies, e.g. Ord-

nance Survey of Great Britain (OSGB). The collaborative data production prac-

tices consist of several main factors, which are illustrated by comparing OSM

and OSGB in Table 2.3.

TABLE 2.3: Comparison between OSM and OSGB

No. Factor OSM OSGB
1 Contributor Expertise & Training X

2 Approved Data Collection Methods & Devices X

3 Product Specification & Specified Positional Accuracy X

4 Contributors decide which features to collect or change. X

5 Validation When Data is Entered & Professional Review X

6 Multiple contributors edit a feature. X

7 Collection is informed by formal change intelligence. X

8 All locations are accessible. X

As summarized in Table 2.3, to contribute to OSM, no expertise or training is a

prerequisite and contributors (among OSM registered users) can use their own

devices (e.g. GPS embedded smartphones) to collect data. OSM has no product
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specifications or specified positional accuracy as does OSGB, but it provides

recommended guidelines or informal standards (e.g. [OpenStreetMap Wiki,

2014d] for map features). Despite this, OSM contributors are free to collect any

feature and use any tag, not restricted by the guidelines. Without any formal

validation or professional review, OSM data becomes available soon after en-

tering into the database. However, OSM data does have some ‘collaborative’

review, since a feature in OSM dataset can be edited or changed by multiple

contributors, who check and validate the correctness of it. Table 2.4 and Ta-

ble 2.5 show how ‘collaborative editing’ [Mooney and Corcoran, 2012] changes

the name and type of OSM features over time. OSM 24276789 refers to Oak-

thorpe Drive in Birmingham, UK. Unfortunately, after 19 edits, its name in OSM

data still contains small spelling errors. OSM 9782645 is a street in Hamburg,

Germany. Differing from OSGB, the OSM data collection is not informed by

any formal change intelligence, but depends on the interests of OSM contribu-

tors. OSGB has a statutory right of entry which OSM contributors do not. As

stated in [Ordnance Survey Act, 1841], all locations are accessible by OSGB for

surveying purposes.

TABLE 2.4: OSM 24276789 in Birmingham, UK [Mooney and Corcoran, 2012]

version name creation time User_ID
2 Oakthorp Drive 2008-05-08 19:39:45 35691
6 Over Green Drive 2008-05-09 08:50:30 35691
9 Oak Thorp Cr 2008-05-09 08:52:52 35691
10 Oak Thorp Dr 2008-05-09 08:53:10 35691
15 Oak Thorpe Dr 2008-05-11 13:54:37 35691
18 Oak Thorp Drive 2010-02-07 14:38:14 9065
19 Oak Thorpe Dr 2010-08-24 11:32:25 35691

According to the International Organisation for Standards (ISO) 19157 [Inter-

national Organization for Standardization, 2013], the quality of geospatial data
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TABLE 2.5: OSM 9782645 in Hamburg, Germany [Mooney and Corcoran, 2012]

version type creation time User_ID
2 Unclassified 2007-10-18 11:10:53 4902
3 Secondary 2008-01-11 15:15:07 21021
4 Unclassified 2008-01-11 15:25:52 21021
13 Construction 2009-10-22 12:47:15 124032
16 Secondary 2010-02-17 11:36:30 211280
17 Unclassified 2010-02-18 09:48:43 211280
18 Pedestrian 2010-02-22 15:21:24 211280
19 Tertiary 2010-02-25 16:09:54 44838

consists of six elements or aspects: positional accuracy, thematic accuracy, com-

pleteness, temporal quality, logical consistency and usability. The first five qual-

ity elements are usually measured and controlled for authoritative data, for ex-

ample, from OSGB. In the rest of this section, we assess the quality of OSM data

from these five perspectives by drawing on the factors presented in Table 2.3.

The usability element is discussed in the next section.

Accuracy refers to the closeness of a test result or measurement result to the true

value [International Organization for Standardization, 2013]. The accuracy (po-

sitional accuracy and thematic accuracy) of OSM data is influenced by its con-

tributors, i.e. their expertise, experience and carefulness (Factor 1 in Table 2.3).

Positional accuracy is the accuracy of the position of features within a spatial

reference system [International Organization for Standardization, 2013]. The

positional accuracy of OSM data largely depends on the methods employed

by OSM contributors to collect location information (Factor 2 in Table 2.3). The

most common way is using GPS. Others include using local knowledge and

tracing aerial imagery, for example, from Yahoo! (2007 to September 2011) and

Bing (since November 2010) [OpenStreetMap Wiki, 2014a]. The positional ac-

curacy for standard civilian GPS devices, such as those embedded in smart-

phones, is about 10 metres. The aerial imagery OSM used can have offsets of up

to 20 metres from the positions in Google maps [OpenStreetMap Wiki, 2014b].
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Haklay [2010] estimates that OSM data can represents a location within a region

about 20 metres from its absolute truth. According to a positional analysis of

streets and roads in five areas of London [Haklay, 2010], the OSM positional

representations are, on average, within about 6 metres of those in OS Meridian

2 3 [Ordnance Survey, 2014d], but for some areas, the distance can be up to 20

metres.

The work [Haklay, 2010] was extended to France by [Girres and Touya, 2010],

which compares OSM data with BD TOPO Large Scale Referential (RGE) data

from IGN [Institut Géographique National (IGN), 2014], the national mapping

agency of France. In the study region Hendaye, for road intersection points of

the road layer, the average positional accuracy is about 6.65 metres, however,

the maximum difference is up to 31.58 metres. For linear features in the road

layer of the same region, the Hausdorff distance (the maximum deviation be-

tween two polylines) and average distance (the ratio between the surface sep-

arating two polylines and their average length) are measured to estimate the

positional accuracy. The Hausdorff distance is 13.57 metres on average, but

maximally up to 38.8 metres. Most of the average distances are distributed be-

tween 0-6 metres.

Thematic accuracy or attribute accuracy is the accuracy of quantitative attributes,

the correctness of non-quantitative attributes, and the correctness of the classi-

fication of features and their relationships [International Organization for Stan-

dardization, 2013]. Attributes describe characteristics of spatial features, such

as name, type and size. In geospatial databases, a location and several attributes

are often linked together to describe a spatial feature. Attribute errors arise if

attributes are not correctly identified or their values are not correctly assigned

to locations, or a spatial feature is classified incorrectly. In OSM data, attribute

3Meridian 2 is a generalized vector dataset, whose position accuracy is 5 metres or better
for the nodes, and within 20 metres of the real-world position for the links between the nodes
[Haklay, 2010].
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errors are commonly caused by contributors’ lack of expertise and carefulness

(Factor 1 in Table 2.3) or their different use of terminologies (lack of ‘enforced’

product specification, Factor 3 in Table 2.3). As shown in Table 2.4, the name of

an OSM feature can be incorrect (e.g. Over Green Drive instead of Oakthorpe

Drive) or contain spelling errors (e.g. Oak Thorp instead of Oakthorpe). In

addition, the assessment of OSM highways in France [Girres and Touya, 2010]

shows that almost all the main roads are classified correctly (using IGN BD

TOPO data as ground truth), but owing to the underestimation of road impor-

tance by contributors (Factor 1 in Table 2.3), only 49% of the secondary roads

are correctly classified. Since OSM allows contributors to tag features using

their own words, contributors may use different terms for the same feature, or

the same term for different kinds of features, which often leads to disagree-

ments. According to the attribute accuracy analysis of lakes in l’Alpes d’Huez,

France [Girres and Touya, 2010], only 55% of the lake names in OSM data are

similar (measured by Levenstein distance [Levenshtein, 1966]) to those in BD

TOPO, IGN data.

Completeness assesses the presence and absence of features, their attributes and

relationships against specified data content [International Organization for Stan-

dardization, 2013]. The completeness of OSM data was studied by Haklay in

2008 [Haklay, 2010]. By comparing the lengths of roads from OSM and OS

Meridian 2 [Ordnance Survey, 2014d], it estimates that the OSM data coverage

was about 69% for England at that time. As OS Meridian 2 is a generalized

dataset where some small roads could be excluded, the actual OSM data cover-

age is likely to be higher. The coverage of rural or poor areas was shown to be

much less than that of urban or rich areas in OSM. Moreover, if roads without

any attributions were excluded from the evaluation, then the OSM data cover-

age fell to 24.5%, which indicates that attribute completeness of OSM data was

lower than 50% for England in 2008.
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According to the completeness analysis of OSM data for France downloaded

in 2009 [Girres and Touya, 2010], OSM data was far from complete compared

to IGN BD TOPO data at that time. The analysis also indicates that OSM data

more likely misses smaller objects, since its contributors are more interested in

capturing attractive objects or those most useful for them (Factor 4 in Table 2.3).

The density of OSM contributors (the number of OSM contributors in an area)

is another factor influencing completeness: the OSM data completeness of rich

or urban areas is usually much better than that of poor or rural areas in France,

similar to the situation in UK. For attribute completeness, the coverage for main

tags of OSM features is quite high, whilst the coverage for secondary tags is low.

As shown in Table 2.6, type is the main tag, name and oneway are the secondary

tags for OSM highways.

TABLE 2.6: Attribute Completeness Assessment of OSM data (the highway
layer for France from CloudMade, October 2009) [Girres and Touya, 2010]

number ratio
all features 886,680 100%
type 756,655 85%
name 382,896 43%
oneway 143,274 16%

More recently, the geometry completeness of OSM data was assessed compared

to OS MasterMap ITN data, which is the most accurate official dataset covering

Great Britain [Ordnance Survey, 2014e]. This work [Koukoletsos et al., 2012] as-

sesses areas of Greater London and west of Newcastle in UK. The result shows

that in urban areas, OSM data covers about 90% of ITN data, whilst ITN data

covers about 80% of OSM data; in rural areas, OSM data covers more than 50%

of ITN data, whilst ITN data covers about 85% of OSM data. From this, one

can expect that the geometry completeness of OSM data has been high in urban

areas of UK since 2012.
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From 2012 to 2014, we downloaded the OSM data (building layer) for Not-

tinghamshire from Geofabrik [Geofabrik GmbH Karlsruhe, 2014] every year, to

assess the percentage of OSM features with name or type information (name or

type coverage). This is summarized in Table 2.7. Interestingly, while the type

coverage increases rapidly from approximately 50% to 70%, the name coverage

is much lower, and grows much slower as well, staying at about 4% over the

three years.

TABLE 2.7: OpenStreetMap name/type coverage from 2012-2014 (the building
layer for Nottinghamshire from [Geofabrik GmbH Karlsruhe, 2014])

2012-08-25 2013-10-10 2014-09-12
all features 38825 74735 94453
name 1567 3061 4202
type 18164 49165 68839
name coverage 4.0% 4.1% 4.4%
type coverage 47% 66% 73%

Temporal quality of geospatial data means the quality of the temporal attributes

and temporal relationships of features [International Organization for Stan-

dardization, 2013]. It assesses the time when the data is collected by survey-

ors or recorded in databases, the time periods for data validity and the update

frequency of a dataset. It is important to note that the time of data collection

or entering into databases is different from the time when the actual changes

occur in the real world, which is more difficult to capture. The temporal quality

of OSM data can vary from area to area, from object to object, depending on the

density of OSM contributors, their interests [Girres and Touya, 2010], as well as

their data capture method (Factor 4 and Factor 2 in Table 2.3). In areas of interest

to many contributors, OSM data shows its advantages over authoritative data

in update frequency. In addition, when dealing with new and changed roads in

the real world, OSM data is often more up-to-date than other commercial maps

[OpenStreetMap Wiki, 2014f]. These are mainly because OSM data becomes
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available soon after entering into the databases without any validating proce-

dure (Factor 5 in Table 2.3). For example, new edits often appear on the OSM

main map within a few minutes [OpenStreetMap Wiki, 2014a]. The number of

new edits in OSM data per week is shown in Fig. 2.2. Another possible reason

is, without requiring any expertise or training (Factor 1 in Table 2.3), more peo-

ple are allowed to participate into the OSM data collection and to spot changes

in the real world. The number of OSM registered users is shown in Fig. 2.1.

FIGURE 2.2: OpenStreetMap Database Statistics: Users Uploading or Editing
Nodes [OpenStreetMap Wiki, 2014h]

Logical consistency of geospatial data is the degree of adherence to logical rules

of data structure, attribution and relationships [International Organization for

Standardization, 2013]. Several rules are designed for checking the validity of

geometries, conceptual or topological consistency and detecting different types

of bugs in geometries and attributions. These rules are enforced either auto-

matically or up to data contributors’ ability and interpretation. Without any
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automatic enforcement of rules and formal validation as OSGB (Factor 5 in Ta-

ble 2.3), the logical consistency of OSM data is mainly influenced by the exper-

tise and carefulness of contributors (Factor 1 in Table 2.3) and the effectiveness

of ‘collaborative’ review (Factor 6 in Table 2.3).

The logical consistency of OSM data has been assessed using different rules.

Some rules are generally applied. For example, there is a bug, if the geometries

of two spatial features (such as roads, buildings and lakes) overlap. In OSM

French data, several lakes are represented being overlapped in the same loca-

tion [Girres and Touya, 2010]. Some rules are more specific and agreed within

a data community. For example, for OSM data, a contradiction or disagree-

ment exists if a non-closed geometry is tagged as an area. According to the

consistency analysis of administrative boundaries and rivers in OSM French

data [Girres and Touya, 2010], 68% of the tested administrative boundaries are

topologically inconsistent with rivers, and local heterogeneities are large.

In the OSM-GB project [Nottingham Geospatial Institute, 2012], a collaboration

between Nottingham Geospatial Institute and 1Spatial, a set of rules is applied

to check logical consistency and detect bugs in OSM data of Great Britain. In

[Pourabdollah et al., 2013], the dynamic patterns of the OSM bugs are studied

over 50 days, from 2012-10-28 to 2012-12-17, for the whole Great Britain. The

number of detected bugs grows over time, from 97645 to 105763, since the bug

correction or removal is much slower than the bug creation.

We summarize the above data quality analysis for OSM data in Table 2.8. For

each of the five quality elements, the main determining factors are listed, most

of which are from Table 2.3.

Table 2.9 provides a summary of OSM data quality learnt from the state-of-the-

art literatures in the data quality discussion.
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TABLE 2.8: Determining factors of data quality elements for OSM

Data Quality Element Factors in Table 2.3 Additional Factors
Positional Accuracy 1, 2
Thematic Accuracy 1, 3
Completeness 4 density of OSM contributors
Temporal Quality 1, 2, 4, 5 density of OSM contributors
Logical Consistency 1, 5, 6 consistency checking rules

TABLE 2.9: Summary of OSM data quality

Positional Accuracy about 20 m in UK, about 40 m in France
Thematic Accuracy Spelling errors and misclassification are common.

Completeness
Geometry completeness is expected to be high in
urban areas of UK. Many features lack attribute
information, e.g. name.

Temporal Quality more up-to-date in urban areas
Logical Consistency The number of bugs is large and grows quickly.

2.3 Usability of OpenStreetMap Data

According to the International Organisation for Standards (ISO) 19157 [Inter-

national Organization for Standardization, 2013], usability is evaluated based

on user requirements. The five quality elements described above, as well as

any other aspects based on specific user requirements, can be used to evaluate

usability.

For OpenStreetMap (OSM) vector data, its usability in several applications,

such as navigation, geo-processing and urban planning, is limited by the prob-

lem of logical consistency, lack of completeness and attribute accuracy, strong

heterogeneity of positional accuracy and the problem of updating management

[Girres and Touya, 2010]. Regarding the aim of this research, we evaluate the

usability of OSM data for enriching and updating authoritative geospatial data,

taking Ordnance Survey of Great Britain (OSGB or OS) as an example.
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As indicated by its name (‘Ordnance’), OSGB was set up for military purposes

[Ordnance Survey, 2014g]. Over the twentieth century, OSGB’s primary focus

has been increasingly civilian and commercial. The post of Director General

of OSGB has been a civilian one since 1974. Nowadays OSGB works with a

wide range of business and government organisations and provides a range of

maps (such as OS MasterMap and AddressBase) and services [Ordnance Sur-

vey, 2014f]. Table 2.10 illustrates some applications of OS MasterMap [Ord-

nance Survey, 2014e]. OS MasterMap consists of four layers and is the most

comprehensive product of OSGB.

TABLE 2.10: Applications of OS MasterMap [Ordnance Survey, 2014e]

Layer name Applications

Topography Layer

Land management and property development,
Environmental monitoring, Site planning, Tourism
and promotional material, Citizen services, Risk
assessment, Location-based services on mobile
devices, Customer service centres, etc.

Address Layer

Identifying the locations of incidents for emergency
services, Incident analysis for emergency services,
Site location analysis for retailing, School catchment
areas for local government, Risk analysis for
insurance, financial and environmental services, etc.

Integrated Transport
Network (ITN) Layer

Accident analysis, Highway design, planning and
engineering, Real-time traffic control, Road and
highway maintenance, Road-user charging schemes,
Route planning and vehicle tracking, Scheduling and
delivery, Site location, Traffic management, etc.

Imagery Layer

Asset management, Risk evaluation for insurance,
Land use and cover analysis, Planning applications,
Site evaluation, Route planning, Property
management, Location-based services, etc.

OSM contributors collect a variety of spatial features, as shown in Fig. 2.3, cov-

ering almost all aspects of our life. This makes OSM a very rich source of user-

based information. It even includes spatial features like drinking fountains,
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ATMs, photo booths and vending machines [OpenStreetMap Wiki, 2014d], which

are widely used by people, but usually not shown in OSGB maps.

FIGURE 2.3: OSM Map Features [OpenStreetMap Wiki, 2014d]

As OSM often captures recent and rich user-based information not existing in

OSGB data, especially in areas populated or visited by many people, it is of

considerable value for both governments and business. Hence, OSGB is very

interested in exploring the potential of using OSM data to identify real world

changes, enrich classifications and attributions of OSGB data and increase its

usability [Ordnance Survey, 2014c].

OSGB data has its own standardized specifications and quality control (e.g.

[Ordnance Survey, 2011]), which, however, can not be met by OSM data (as

discussed in Section 2.2). Importing OSM data to OSGB data directly would

impact the quality of OSGB data. It is therefore more appropriate to use OSM
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data as a change indicator and detector for OSGB or to use OSM data to spot

errors or omissions in OSGB data. For either of them, it is essential to establish

correspondences (matches) between OSGB and OSM data and verify logical

consistency of matches, which are the objectives of this research (Section 1.2).

The quality of OSM data raises several challenges or requirements for gener-

ating and validating matches, as discussed below using the main results pre-

sented in Section 2.2.

Positional Accuracy Since the positional accuracy (the margin of error) of OSM

data varies from area to area, and can be as low as 20 metres even in London,

when matching OSM features and OSGB features, it should take the margin of

error into account by setting a level of tolerance for the discrepancy in geometric

representations from OSM and OSGB. For example, if the ‘difference’ between

an OSM geometry g and an OSGB geometry h is larger than 20 metres, then g

and h are not likely referring to the same real world location.

Thematic Accuracy As OSM data often contains spelling errors, the similarity

measure used for matching should be able to tolerate such small differences.

Since misclassification can be common, when OSM’s classification conflicts with

OSGB’s, there is a higher likelihood that OSGB is correct, unless strong evidence

indicates otherwise. If OSM’s classification is more specific, then it can be used

to enrich OSGB’s classification after any possible formal validation.

Completeness When information is incomplete, some features may only exist in

one dataset, having no correspondences in the other. If attribute information is

missing, determining an exact match can be difficult or impossible. The posi-

tional and attribute completeness of rural areas can be much lower than that of

urban areas. Hence, OSM data in urban areas probably contains more useful

information for enriching and updating OSGB.
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Temporal Quality The OSM data for urban areas is typically more up-to-date.

This also suggests that OSM data in urban areas probably contains more useful

information for enriching and updating OSGB data.

Logical Consistency Since the number of bugs is large and grows quickly, it is not

practical to fix all of them before using OSM data. The generation and valida-

tion of matches should be able to tolerate or deal with these bugs in OSM data.

For example, if in OSM data, two roads at the same elevation cross but have no

common vertex (Intersection Without Junction bug), then both of them should

still be correctly matched to OSGB roads. If OSM has duplicated representa-

tions for the same object, then all of them should be correctly matched to that

in OSGB. In addition, a set of new rules is required to capture large or obvious

errors in matches. For example, it is a wrong match, if a clinic is matched to a

bank, or a restaurant is matched to another restaurant far away.

To cope with these challenges, we start by reviewing state-of-the-art literature

and assessing the appropriateness and usefulness of existing methods against

the research context. This is presented in the next chapter.
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Literature Review

This chapter reviews state-of-the-art literature on three topics, geospatial data

matching (Section 3.1), ontology matching (Section 3.2) and spatial logic (Sec-

tion 3.3). Works on geospatial data matching are reviewed for the first objective

‘generating matches’, spatial logic for the second objective ‘validating matches’,

and ontology matching for both objectives.

3.1 Geospatial Data Matching

In this section, we firstly evaluate existing methods for matching geospatial

vector data in Section 3.1.1 against the research context, then explain the po-

sition of this research in Section 3.1.2, and finally review some basic matching

techniques which are relevant to this thesis in Section 3.1.3.

3.1.1 Evaluating Matching Methods in Research Context

Geospatial data matching is defined as the task of identifying corresponding

spatial features between different geospatial datasets. It is an essential step for
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data comparison, data integration or enrichment, change detection and data

update. Over the last few decades, many methods have been developed. How-

ever, none of them are widely accepted and generally applied [Koukoletsos

et al., 2012]. We do not attempt to provide a comprehensive survey of this

field, but discuss works to illustrate the problems and difficulties in matching

crowd-sourced geospatial data and authoritative geospatial data. Methods de-

signed for matching authoritative geospatial data may not be suitable for Open-

StreetMap (OSM) data, due to the incompleteness and inaccuracy of it, as well

as its informal or non-standard representations.

Walter and Fritsch [1999] introduced an automated method for matching roads

from two different authoritative data communities. They use ‘buffer growing’

to generate all potential matching pairs, then determine an optimal matching

by using geometric constraints on length and angle (distance is implicitly con-

sidered in ‘buffer growing’) and maximizing mutual information with respect

to angle, length, position, topological relation ‘connected’, etc.

Mustière and Devogele [2008] proposed a method to match networks at differ-

ent levels of detail, mainly by comparing the geometric, attribute and topolog-

ical properties of spatial features. The candidate matches for nodes are gener-

ated based on their closeness. For edges, the Hausdorff distance is used.

Tong et al. [2009] proposed a method to match points, lines and polygons by

calculating weighted average of positional, shape, directional and topologi-

cal measures. Points are matched first, based on which lines or polygons are

matched.

However, using topological measures can be problematic when information is

incomplete [Safra et al., 2006] or inaccurate, which is the case in OSM data.

More detailed explanations are provided in Section 3.1.3.3.
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Safra et al. [2010, 2013] proposed a location-based matching approach, assum-

ing that locations are given as points. For lines, their endpoints are measured.

For polygons, their centres of mass are taken as location points. They intro-

duced a series of algorithms to match location points, based on the rationale

that locations of corresponding objects should be close, even in the presence of

measurement errors. However, they assumed that each dataset does not contain

duplicated representations of the same real world object, which can be violated

in OSM data.

Li and Goodchild [2011] developed an optimisation model for matching linear

features. Their similarity measure combines the directed Hausdorff distance,

angle and name dissimilarity. By maximizing the total similarity, the model

achieves a high percentage of correctly matched features in output.

Huh et al. [2013] developed a method to match points on the boundaries of

polygons. It is assumed that the discrepancies of corresponding points could be

aligned by substitution, deletion or insertion edit operations. The cost functions

for edit operations are defined. The boundaries of polygons are represented as

sequences of points, which are matched by minimizing the total cost.

Tong et al. [2014] proposed an algorithm to match linear objects using optimiza-

tion and iterative logistic regression models. Their similarity measure takes the

Hausdorff distance and length of lines into account. Similar to [Li and Good-

child, 2011], one-to-one matches are generated by maximizing the total similar-

ity. Then all matches are refined using iterative logistic regression.

The methods based on optimization [Li and Goodchild, 2011; Huh et al., 2013;

Tong et al., 2014] may throw out correct matches in order to maximize total

similarity, for example, when incorrect matches have higher similarity scores.

This could happen in OSM data, whose accuracy may vary considerably for

different spatial features.
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With the development of crowd-sourced geospatial data, several attempts (dis-

cussed below in chronological order) have been made in order to match crowd-

sourced geospatial data and authoritative geospatial data in the last few years.

Anand et al. [2010] applied map matching techniques to match OSM and OSGB

road networks by calculating average distance and angle. However, it is com-

putationally expensive and limited to linear features.

Ludwig et al. [2011] implemented an automated procedure for matching street

networks of Navteq and OSM in Germany. Geometries and thematic attributes

are compared to generate matches. However, it is specifically designed for busi-

ness and geomarketing purpose, excluding features of no business interest.

Du et al. [2011] defined the meaning of ‘same feature’ regarding positional

closeness, name similarity, category similarity and neighbourhood similarity.

Then the probability of two spatial features being the same is calculated us-

ing a weighted function taking all these parameters into account. This work is

preliminary and leaves the task of assigning weights of parameters to users.

Du et al. [2012b] defined geometry consistency and topological consistency for

road networks. Two lines are geometrically consistent with respect to a level

of tolerance σ, if and only if they fall into the σ-buffer of each other. Topologi-

cal consistency is checked using a description logic reasoner Pellet [Sirin et al.,

2007], by comparing values of a functional data property ‘neighbour set’. A

neighbour set stores all the neighbours of an edge (two edges are neighbours

if they share a node). However, checking such topological consistency is too

strict, due to inaccuracy and incompleteness of OSM data.

Koukoletsos et al. [2012] proposed an automated matching method for linear

data in order to assess the completeness of OSM data compared to OSGB. It

consists of seven stages and uses distance, orientation and attribute (road name

and type) similarity constraints to generate and refine matches. However, with
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the existence of topological inconsistencies in OSM data, the method is not very

efficient. In addition, the method does not handle abbreviations (which exist in

OSM data) well when matching attributes.

Yang et al. [2013] proposed a heuristic probabilistic relaxation approach to match

road networks. They use buffers to obtain candidate matches, then refine them

by shape (dis)similarity (defined by distance, orientation and length) and struc-

tural similarity. The experimental results of matching OSM and authoritative

data are of high precision. However, the method is computationally expensive,

and does not use attribute data, like road names.

Yang et al. [2014] proposed a method for matching points of interest from a

crowd-sourced dataset and road networks from an authoritative dataset. It first

constructs a connectivity graph by mining linear cluster patterns from points,

then matches nodes in the graph to roads by probabilistic relaxation and a vec-

tor median filtering. The method assumes that linear patterns exist among the

points. The performance of the method mainly depends on the clustering result

of points.

Fan et al. [2014] introduced a method for matching building footprints (poly-

gons), in order to assess the quality of OSM data. Their similarity measure is

defined by the percentage of overlap area, using 30% as the threshold for match-

ing footprints. From the experimental result of the study area in Munich, the

method achieves very high precision and recall, both over 99%. However, the

similarity measure will fail, for example, when the same building is represented

as two disjoint polygons in OSM data and authoritative data.

3.1.2 Position of this Research

As summarized in Table 3.1, most of the existing geospatial data matching

methods are developed for matching roads or linear features, especially from
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two authoritative datasets, whilst many fewer are for matching polygons or

area features. Only one work [Fan et al., 2014] introduced a method for match-

ing polygons from an authoritative dataset and a crowd-sourced dataset. As

the main purpose of [Fan et al., 2014] is to assess the quality of OSM data, the

presented matching method is very simple. As discussed in Section 3.1.1, the

method can fail in some cases, and its generality and effectiveness have not been

fully evaluated. This thesis focuses on matching buildings and places (polygo-

nal features) from an authoritative dataset and a crowd-sourced dataset.

TABLE 3.1: Geospatial Data Matching Methods in Different Categories

authoritative datasets
an authoritative dataset &
a crowd-sourced dataset

Lines

Walter and Fritsch [1999];
Mustière and Devogele [2008];
Fu and Wu [2008]; Tong et al.
[2009]; Zhang [2009]; Li and
Goodchild [2011]; Safra et al.
[2013]; Tong et al. [2014]

Anand et al. [2010];
Ludwig et al. [2011]; Du
et al. [2011, 2012b];
Koukoletsos et al. [2012];
Yang et al. [2013]

Polygons

Samal et al. [2004]; Fu and Wu
[2008]; Tong et al. [2009]; Safra
et al. [2010]; Huh et al. [2011,
2013]

Fan et al. [2014]

According to the literature reviewed in Section 3.1.1, there are two main ways

to match polygons. Firstly, the problem of matching polygons is transformed to

the problem of matching lines or points, for example, by taking boundaries of

polygons, points on boundaries or the centres of mass [Samal et al., 2004; Tong

et al., 2009; Huh et al., 2011; Safra et al., 2010; Huh et al., 2013]. The second way

is to treat a polygon as an area surrounded by its boundary and make use of the

area to calculate similarity, for example, matching polygons based on the per-

centage of overlap area [Fu and Wu, 2008; Fan et al., 2014]. In either way, shape

similarity of polygons could be taken into account, for instance, by measuring

the angles between lines [Walter and Fritsch, 1999; Quddus et al., 2003; Anand
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et al., 2010; Li and Goodchild, 2011] or calculating the ratio between areas and

perimeters [Tong et al., 2009].

We follow the second way. Extracting points from polygons can only capture

very limited information. Though using boundaries takes advantages of the

more fully developed matching methods for lines, it does not distinguish points

inside and outside the boundary and loses the area property of polygons.

As shown in the literature, on the one hand, several advanced techniques, for

example optimization or heuristics, have been developed or applied for match-

ing authoritative datasets. However, these techniques may become problematic

with the existence of information incompleteness and inaccuracy. On the other

hand, several basic techniques are still effective for matching linear features in

crowd-sourced data. Therefore, to design methods for matching polygons, we

review basic matching techniques in the next section.

3.1.3 Basic Techniques for Matching Geometric Representations

In a dataset, a spatial feature has a location description usually represented as

a two-dimensional geometry (such as a point, a line and a polygon), and may

have lexical descriptions (such as names and types) and spatial relations (such

as connected, near and neighbourhood) with other spatial features. The geo-

metric representations, lexical descriptions and topological properties of spa-

tial features are often used to generate matches. In the field of geospatial data

matching, geometric and topological analysis is the main focus, whilst lexical

analysis often acts as an accessorial tool [Zhang, 2009]. This section reviews

three basic matching techniques, distance measures, buffer intersection and

topology, for geometric and topological analysis, and leaves lexical analysis in

Section 3.2, where matching lexical information is studied much more fully. Ac-

cording to [Anand et al., 2010; Haklay, 2010; Du et al., 2011, 2012b; Koukoletsos
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et al., 2012; Yang et al., 2013], distance measures and buffer intersection are still

effective for linear features in crowd-sourced data. Topology is widely used in

road network matching, but using it for crowd-sourced data can be problem-

atic. Reviewing topology helps understand the problem deeply and develop

new techniques which work similarly to topology but for crowd-sourced data.

3.1.3.1 Distance

Distance is a very important parameter to measure the similarity of geometric

representations. It can be defined in different ways. The most common one is

Euclidean distance.

Definition 3.1 (Euclidean Distance). The Euclidean distance between point p =

(px, py) and point q = (qx, qy) is:

dE(p, q) =
√

(px − qx)2 + (py − qy)2

where px, py, qx, qy are real numbers.

Definition 3.2 (Metric Space). A metric space is a pair (∆, d), where ∆ is a non-

empty set (of points) and d is a metric on ∆, i.e. a function d : ∆×∆ −→ R≥0,

such that for any x, y, z ∈ ∆, the following axioms are satisfied:

1. identity of indiscernibles: d(x, y) = 0 iff x = y;

2. symmetry: d(x, y) = d(y, x);

3. triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

By Definition 3.1, the Euclidean distance function dE satisfies all the three ax-

ioms in Definition 3.2, therefore, dE is a metric on ∆.

In daily life, the term ‘distance’ usually means the minimal distance or the

shortest distance, which is defined below.
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Definition 3.3 (Minimal Distance). For a metric space (∆, d), a non-empty set

X ⊆ ∆, a non-empty set Y ⊆ ∆, the minimal distance between X and Y is

dmin(X,Y ) = inf{d(x, y) | x ∈ X,y ∈ Y }.

The minimal distance is usually used to match a point to a closest point or a

point to a closest line, as shown in [Bernstein and Kornhauser, 1998; Quddus

et al., 2007; Safra et al., 2010]. However, it is not suitable for measuring the sim-

ilarity of lines or polygons, for which the Hausdorff distance is often applied.

Definition 3.4 (Hausdorff Distance). For a metric space (∆, d), a non-empty set

X ⊆ ∆, a non-empty set Y ⊆ ∆, the Hausdorff distance between X and Y is

dH(X,Y ) = max{d1(X,Y ), d2(X,Y )}

where d1(X,Y ) = supx∈X{infy∈Y d(x, y)} and d2(X,Y ) = supy∈Y {infx∈X d(x, y)}.

d1(X,Y ) and d2(X,Y ) are called the directed Hausdorff distance from X to Y

and from Y to X respectively.

To help readers understand the Hausdorff distance intuitively, the following

lemma is provided.

Lemma 3.5. For a metric space (∆, d), a non-empty set X ⊆ ∆, a non-empty set

Y ⊆∆, the directed Hausdorff distance d1(X,Y ) = σ holds, where σ ∈R≥0, iff for every

point x ∈X , dmin(x,Y ) ≤ σ, and there exists a point x ∈X such that dmin(x,Y ) = σ.

Proof. Follows from Definitions 3.4 and 3.3.

Differing from the minimal distance, the Hausdorff distance measures the max-

imum deviation between two sets of points. As shown in Fig. 3.1, X is a red

circle and Y is a blue circle. dH(X,Y ) = max{d1, d2} = d2. dmin(X,Y ) = 0. For

any two points, their Hausdorff distance is equal to their minimal distance.

35



Literature Review 36

FIGURE 3.1: Hausdorff Distance vs. Minimal Distance

The Hausdorff distance is sensitive to position, shape and size of measured

geometries [Min et al., 2007]. It can be used for matching all types of geometries

[Badard, 1999]. The Hausdorff distance is usually applied for matching roads,

for example, in [Mustière and Devogele, 2008; Li and Goodchild, 2011].

3.1.3.2 Buffer Intersection

The similarity of geometric representations is often measured based on the per-

centage of overlap, for example, in [Fu and Wu, 2008; Fan et al., 2014]. For

points or lines, the ‘buffer’ operator is often applied to obtain polygons, before

measuring their similarity.

Definition 3.6 (Buffer). According to ISO19107 [ISO Technical Committee 211,

2003], the buffer of a geometry g is a geometry which contains exactly all the

points within σ distance from g, where σ ∈ R≥0. This is formalized as:

buffer(g , σ) = {p | ∃q ∈ g : d(p, q) ∈ [0 , σ]}.

buffer(g , σ) and g are in the same reference system and dimension.

As shown in Fig. 3.2 (left), by buffering the solid circleX by σ, we obtain a larger

circle, denoted as buffer(X , σ), where every point is within σ distance from X .

Fig. 3.2 (right) shows the buffer (the whole red region) of a more complicated

geometry (red solid) in a real world geospatial dataset.
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FIGURE 3.2: Buffer

Every geometry can be seen as a buffered geometry, as shown by Lemma 3.7.

Lemma 3.7. For any geometry g, buffer(g ,0 ) = g .

Proof. Follows from Definition 3.6.

The main idea of the ‘buffer intersection’ similarity measure is that, for any pair

of buffered geometries, the larger their overlap is, the more similar they are. As

shown in Fig. 3.3, to compare the similarity of the red line and the blue line,

the red line is buffered by a distance and the percentage of the blue line falling

into the buffer is evaluated [Goodchild and Hunter, 1997]. This can be done in

both ways to obtain a symmetric measure. The ‘buffer intersection’ similarity

measure is widely applied, such as in [Goodchild and Hunter, 1997; Haklay,

2010] for assessing position accuracy (similarity to the ‘truth’), in [Samal et al.,

2004] for measuring shape similarity (by buffering boundaries of polygons) and

in [Walter and Fritsch, 1999; Safra et al., 2013] for generating candidate matches

of roads.

3.1.3.3 Topology

For geospatial data matching, topology means spatial relations between adja-

cent or neighbouring objects in a dataset [Zhang, 2009]. Methods using topol-

ogy are based on the rationale that corresponding spatial features have corre-

sponding neighbours.
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FIGURE 3.3: Buffer Intersection

When matching road networks, the neighbourhood relation is often defined by

‘connected’, as shown in [Walter and Fritsch, 1999; Du et al., 2012b]. A simple

way to use topology is to characterise nodes or edges by the topological rela-

tions they are involved in (see [Du et al., 2011; Safra et al., 2013]). For example,

in [Safra et al., 2013], nodes (end nodes or conjunctions of roads) are classified

into different categories by the number of edges (roads) connected to them. De-

pending on their categories and relative closeness, nodes are matched first, then

edges connecting them are matched subsequently.

Topology is also used to refine or check the correctness of matches, for example,

in [Walter and Fritsch, 1999; Du et al., 2012b]. The main idea is that correct

matches should preserve spatial relations: if spatial features a1, b1 are matched

to spatial features a2, b2 respectively, (a1, b1) ∈ R, then (a2, b2) ∈ R, where R is a

spatial relation, which is usually defined by ‘connected’.

The existing ways to define and use topology become problematic with the exis-

tence of information incompleteness and inaccuracy. For example, correspond-

ing nodes can have different degrees, because some roads (edges) are repre-

sented only in one dataset (information incompleteness), or roads exist but do

not connect to the node (information inaccuracy). For corresponding spatial

features a1 and a2, b1 and b2, it is possible that a1 and b1 in one dataset are con-

nected, whilst a2 and b2 in the other dataset are not connected but very close.
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For crowd-sourced geospatial data, it is more proper to use topology for vali-

dating matches rather than generating them, and a new way to define topology

is needed. For this purpose, different spatial relations and spatial logics are

reviewed in Section 3.3.

3.2 Ontology Matching

An ontology refers to an explicit specification of a shared conceptualization [Gru-

ber, 1993]. It plays an important role in establishing shared vocabularies. The

formal definition of ontology is stated as Definition 3.8. Fig. 3.4 illustrates a hi-

erarchy of concepts described in the Ordnance Survey of Great Britain (OSGB)

Buildings and Places ontology [Hart et al., 2008]. An arrow in Fig. 3.4 means

‘is a superclass of’ or ‘has a subclass as’. For example, the concept Building is a

subclass of Structure. In other words, for any individual, if it is a Building , then

it is a Structure.

Definition 3.8 (Ontology). An ontology consists of a TBox which describes a set

of concepts and their relationships, and an ABox which describes facts about

individuals using concepts defined in the TBox.

OpenStreetMap (OSM) also has an ‘ontology’ for its map features, as shown in

[OpenStreetMap Wiki, 2014d] and Fig. 2.3 of Section 2.3. As an informal stan-

dard, the OSM ontology describes the most commonly used1 and community-

agreed terminologies for describing different types of spatial features [Open-

StreetMap Wiki, 2014d].

In order to use OSGB data and OSM data together, it is necessary to establish

correspondences between their terminologies, especially those used to describe

1OSM contributors may use their own words, which are possibly not in the OSM recom-
mended ontology.
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FIGURE 3.4: OSGB Buildings and Places Ontology [Hart et al., 2008]

spatial objects. Ontology matching is the task of finding correspondences be-

tween entities (e.g. concepts or individuals) from different ontologies [Euzenat

and Shvaiko, 2007]. Keeping concepts in a hierarchy is useful, because a spa-

tial object of a category in one dataset can be classified into a more general or

more specific category in another, with Historic Site vs. Hill Fort as an exam-

ple. In such case, ontologies can provide useful information: if an individual

is a Hill Fort , then it is a Historic Site. Therefore, ontology matching plays a

major role in matching lexical descriptions, especially conceptual descriptions,

for spatial objects.
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The works on ontology matching are reviewed for two main purposes. Firstly,

we assess basic techniques for matching lexical information, especially names

and types, in Section 3.2.1. Secondly, in Section 3.2.2, we examine how logic is

used in ontology matching and how it can help. In Section 3.2.3, we explain the

position of this research in the field of ontology matching.

3.2.1 Basic Techniques for Matching Lexical Descriptions

Lexical information is normally represented as strings, which have meanings in

a natural language. A common way to measure the lexical similarity is through

string comparison. It is direct and simple, and can effectively deal with many

of the spelling errors existing in OSM data.

Before comparing strings, normalisations are often applied to remove noise in

data formats. A valid string in OSM data should only consist of Latin letters

(a-z) and the underscore (_) [OpenStreetMap Taginfo, 2014]. However, OSM

contributors often enter invalid strings, which contain whitespace characters or

problematic characters (such as =+ /&<> ; ? % # @). The format of strings in

OSGB data is different from that in OSM. For example, a letter can be of lower

case in OSM, but of upper case in OSGB. The following normalisation practices

described in [Euzenat and Shvaiko, 2007] are useful for matching OSM and

OSGB data.

Case normalisation converting alphabetic characters in strings into their lower

(or upper) case counterparts.

Blank normalisation removing all blank characters, such as blank, tabulation,

carriage return, or combinations of them.

Link stripping removing links between words, such as apostrophes (’) and

blank underlines (-).
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Punctuation elimination removing punctuation signs (.).

The appropriateness of a string comparison depends on what strings stand for,

for example, concept names or individual names. For matching names of spa-

tial objects, Levenshtein distance, a kind of edit distance, is often used, for ex-

ample, in [Samal et al., 2004; Mustière and Devogele, 2008].

Definition 3.9 (Levenshtein Distance [Levenshtein, 1966]). Levenshtein distance

is the minimum number of insertions, deletions and substitutions of characters

required to transform one string into another.

Being able to take into account possible spelling errors, Levenshtein distance

has been shown effective for matching individual names in OSM data [Mooney

and Corcoran, 2012; OpenStreetMap Wiki, 2014e].

For concept names or class names, even a very small difference in strings can

make a large difference in meaning, such as Pitch vs. Ditch, Dock vs. Lock ,

and Bank vs. Tank . The usefulness of string comparison is limited. To reduce

possible errors, only strict string comparisons (e.g. string equality) should be

used.

There are other ways to match types or concept names, such as using external

resources (e.g. dictionaries and lexicons) to check whether they are synonyms

(language-based techniques), comparing their common instances (extensional

techniques), and comparing their related classes (structural analysis) [Euzenat

and Shvaiko, 2007]. Unfortunately, each has its own problems when dealing

with OSM data.

The language-based techniques are not very suitable for OSM data, since the us-

ages and meanings of terminologies in OSM are often informal, differing from

those in dictionaries. In addition, most of the language-based techniques are

computationally expensive.
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The extensional techniques, such as [Volz and Walter, 2004] and [Jain et al.,

2010], infer terminology matches from instance matches. Though this approach

works well when the instance data is representative and overlapping, it uses

a very strong form of induction from the particular to the universal, and thus

lacks correctness and completeness [Bouquet, 2007].

In structural analysis, an ontology is seen as a graph where concepts are nodes,

and relationships (e.g. subClassOf) between concepts are edges [Euzenat and

Shvaiko, 2007]. Using structural analysis for matching conceptual descriptions

is like using topological analysis for matching geometric representations. Its

underlying rationale is that the more similar two concepts are, the more alike

their related concepts should be. A simple way to match two concepts based on

structure is by comparing the number of edges they are involved in. Though the

structure analysis is powerful for matching formal ontologies, it suffers from the

informal usage of terminologies in OSM data, as well as its informal structure.

Generating matches using the techniques described above, however, cannot en-

sure overall consistency of information. To verify information consistency, log-

ical reasoning plays a main role. Using logical reasoning for ontology matching

is discussed in the next section.

3.2.2 Logical Reasoning for Ontology Matching

Logical reasoning is invaluable for ensuring overall information consistency

[Euzenat and Shvaiko, 2007]. This section looks at how logical reasoning is

used in different ontology matching systems.

CtxMatch [Bouquet et al., 2003, 2004; Serafini et al., 2006] and S-Match [Giunchiglia

et al., 2004, 2007; Shvaiko et al., 2009] are early logic-based attempts for ontol-

ogy matching. Using WordNet [Miller, 1995] as an external resource, CtxMatch

translates lexical and structural information into logical formulas, and employs
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description logic reasoning to infer different kinds of matches, such as equiva-

lence and inclusion.

S-Match takes two tree-like structures (e.g. hierarchies) as input, and computes

the strongest matching relations between every pair of concepts. Relations be-

tween labels are calculated using string similarity and WordNet. The task of

matching concepts is converted into propositional validity problems. The stan-

dard DPLL-based SAT solver [Berre and Parrain, 2010] is employed to check the

satisfiability of propositional formulas. We applied S-Match to match the OSGB

Buildings and Place ontology [Hart et al., 2008] and the OSM ontology [Open-

StreetMap Wiki, 2014d]. 312 matches are generated, consisting of 10 equiva-

lence matches and 302 inclusions. However, many of them are wrong, such as

Public Building in OSM is a subclass of Publication in OSGB, Water Ski in OSM

is a subclass of Water in OSGB, Arts Centre in OSM is a subclass of Meat in

OSGB, Transport in OSGB is a subclass of Sport in OSM, etc. Several matches

are correct but not precise. For example, OSM Police is a subclass of OSGB

Police, OSM Roof is a subclass of OSGB Roof , whilst both should be equiva-

lence matches.

ASMOV [Jean-Mary et al., 2010] is an automatic ontology matching tool. En-

tities are matched by a global (weighted average) similarity based on lexical

elements, relational structure, internal structure and extension. Inconsisten-

cies are specified as five patterns: multiple entity correspondences, crisscross

correspondences, disjointness subsumption contradiction, subsumption incom-

pleteness, and domain and range incompleteness. Being verified against these

inconsistency patterns, matches which are less likely to be satisfiable will be re-

moved. Though logic is employed to obtain new entailments, the verification

of matches is mainly based on the defined inconsistency patterns, rather than

logical reasoning. Relying on these patterns to detect conflicts, however, AS-

MOV lacks a well-defined alignment semantics and notions such as correctness
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and completeness [Meilicke and Stuckenschmidt, 2009].

KOSIMap [Reul and Pan, 2010] is an ontology alignment framework. Descrip-

tion logic is employed to extract implicit logical consequences as background

knowledge, which is used for calculating class-based, property-based and label-

based similarities. Matches are generated based on the weighted average of

the calculated similarities. An inconsistency (actually an incoherence in logic)

arises when a concept in an ontology is matched to several disjoint concepts

in the other ontology. Inappropriate (redundant or inconsistent) matches are

removed in a refinement process. KOSIMap assumes that local ontologies are

consistent and direct siblings in a taxonomy are disjoint. However, assuming

the disjointness of siblings may lead to incoherence or inconsistency of local

ontologies.

ContentMap [Jiménez-Ruiz et al., 2009] is a semi-automatic alignment system,

which is developed as a plugin in Protege [Stanford Center for Biomedical In-

formatics Research, 2012]. Using initial matches generated by other systems

such as OLA [Euzenat and Valtchev, 2004], CIDER [Gracia et al., 2011] and

AROMA [David et al., 2006], ContentMap computes certain kinds of new entail-

ments to help users understand and evaluate logical consequences of matches.

It also exploits the dependences between entailments by calculating all the jus-

tifications for each entailment, as well as confidence values of matches, to help

users detect and correct errors in matches.

LogMap [Jiménez-Ruiz and Grau, 2011] is a logic-based and scalable ontology

matching tool. It addresses challenges in dealing with large-scale bio-medical

ontologies with tens (even hundreds) of thousands of classes. It employs lex-

ical and structural methods to compute an initial set of matches. The core of

LogMap is an iterative process which alternates repair and discovery steps. In
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the repair step, unsatisfiable classes are detected using propositional Horn rep-

resentation and satisfiability checking, and are repaired using a greedy diagno-

sis algorithm. However, since its underlying semantics is restricted to proposi-

tional logic, LogMap cannot guarantee the coherence of matches between more

expressive ontologies. In the discovery step, new matches are generated based

on the similarity of concepts which are semantically related to the matched con-

cepts. ISUB [Stoilos et al., 2005] is employed to compute the similarity scores.

The newly discovered matches are active, and only active matches can be elimi-

nated in the repair step, whilst those found in earlier iterations are seen as estab-

lished or valid. In other words, each match will be checked only once against

the information available at that time, which, however, cannot guarantee its

correctness when new information is discovered later.

CODI [Niepert et al., 2010] is a probabilistic matching system, based on Markov

logic [Richardson and Domingos, 2006]. At the terminology level, cardinality

constraints, coherence constraints and stability constraints are formalized using

logical axioms and similarity measures. The matching problem is transformed

to a maximum-a-posteriori optimization problem subject to these constraints.

The GUROBI optimizer [Gurobi Optimization Inc., 2012] is employed to solve

the optimization problem. At the instance level, CODI combines the termi-

nological structure with lexical similarity measures to generate object matches

[Huber et al., 2011]. After merging the aligned TBoxes into one, CODI follows

the work in [Noessner et al., 2010] to match objects in different ABoxes with re-

spect to the same TBox, relying on a well-defined semantic similarity measure

extending the work in [Stuckenschmidt, 2009]. CODI calculates the similari-

ties between objects belonging to the same class or connected by the same roles

[Huber et al., 2011], and generates a set of valid functional one-to-one object

matches by maximizing the weighted ABox similarity [Noessner et al., 2010].

However, valid matches can be thrown away during the optimization process

of CODI. In addition, the input coherence constraints influence the resulting
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mapping, but in practice, many ontologies are underspecified, within which

valid disjointness axioms are not always available.

L2R [Saïs et al., 2007] is a logical method for matching instances, in the case

where two data sources conform to the same schema expressed in RDFS+ (ex-

tending RDFS with some OWL-DL primitives and SWRL rules). A set of match-

ing rules is defined regarding the Unique Name Assumption, the Local Unique

Name Assumption and the schema axioms (such as disjunction between classes,

functionality of properties and discriminant properties). A set of facts includes

inferred class, relation and attribute facts, facts of the data source, synonymy

facts and non-synonymy facts of values. Matches are generated by applying

rules to facts using SLD reasoning for Horn clauses. Description logics are not

used, since they are not appropriate for expressing some of the rules and not

guaranteed to be complete for computing prime implicates. The method of

L2R is restricted to the case where two data sources conform to the same rich

schema. This does not take into account the decentralized nature of data model

development and the uncertain factors existing in the real world information.

KnoFuss [Nikolov et al., 2007a] is an architecture for knowledge fusion, focus-

ing on integrating instance-level data structured according to ontologies. Its

knowledge fusion process consists of three main subtasks: instance matching,

conflict detection and inconsistency resolution. A library of problem-solving

methods is maintained within the system. For each subtask, the appropriate

methods are selected based on their general application conditions, and the op-

timal parameters are generated by applying machine learning to the concept

hierarchy. If the results produced by the selected methods are not consistent,

then the outputs of the most reliable method are retained. The inconsistency

resolution is based on Dempster-Shafer theory of evidence [Shafer, 1976]. An

algorithm [Nikolov et al., 2007b] is designed, which translates an inconsistency
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preserving subset of ontology into a Dempster-Shafer belief network, and re-

moves the axiom with the lowest plausibility value to restore consistency. The

plausibility values are calculated using confidence values of ABox axioms.

RDF-AI [Scharffe et al., 2009] is a framework for integrating RDF datasets. It

consists of five modules: preprocessing, matching, fusing, interlinking and post-

processing datasets. The preprocessing module provides several operations,

such as checking the consistency of input datasets with respect to their on-

tologies, materializing RDF triples, translating properties from one natural lan-

guage to another, adapting datasets described by different versions of an ontol-

ogy and modifying properties values. RDF-AI matches data based on the simi-

larity values calculated using a fuzzy string matching algorithm and a word re-

lation algorithm. The output is a graph containing a set of matches or a merged

dataset, whose consistency will be checked in the post-processing process, en-

suring that no axiom in an ontology is broken.

3.2.3 Position of this Research

Summarizing Section 3.2.2, there are three ways to use logical reasoning for

ontology matching.

1. Logical reasoning is used for ‘inferring’ matches, for example, in Ctx-

Match, S-Match and L2R.

2. Logical reasoning is used for extracting implicit knowledge, for example,

in ASMOV and KOSIMap.

3. Logical reasoning is used for checking coherence or consistency of matches,

for example, in ContentMap, LogMap, CODI, KnoFuss and RDF-AI.

This research follows the third way, regarding the importance of ensuring co-

herence and consistency of the overall information. It employs basic matching
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techniques described in Section 3.2.1 to generate candidate matches, and then

uses logical reasoning to check their consistency with respect to location and

lexical information. Description logic is used, since the commonly used ontol-

ogy language OWL [W3C, 2012] is based on description logic [Baader et al.,

2007], and several description logic reasoners, for example Pellet [Sirin et al.,

2007], have been developed for reasoning with OWL ontologies. This research

did not use Markov logic because there is no good way to define probabilities

or confidence values for matches, and using it may throw away correct matches

with low confidence values.

This research involves domain experts in the validation of matches. For matches

within minimal sets of statements causing a logical contradiction, a domain ex-

pert is asked to decide which of them are wrong and should be removed. No

heuristic for making such decisions automatically gives sufficiently reliable re-

sults. The use of description logic for validating matches is described in Chap-

ter 6. Differing from other matching methods, we also uses qualitative spatial

logic to validate matches with respect to location information. Related work on

spatial logic is reviewed in Section 3.3. The performance of this semi-automatic

approach is evaluated compared to three ontology matching systems, LogMap,

CODI and KnoFuss, in Chapter 11. By using reasoning in description logic and

qualitative spatial logic, and requiring domain experts to make decisions on

which matches to withdraw, this approach achieves high precision and recall,

as well as reduced human effort.
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3.3 Spatial Logic

Spatial logic studies relations between geometrical structures and spatial lan-

guages describing them [Aiello et al., 2007]. There are a variety of spatial re-

lations, such as topological connectedness of regions, relations based on dis-

tances, relations for expressing orientations or directions, etc. In a spatial logic,

spatial relations are represented in a formal language, such as first order logic

or its fragments, and interpreted over some structures based on geometrical

spaces, such as topological spaces, metric spaces and Euclidean spaces.

This section reviews different spatial logics and spatial relations for regions

with crisp or sharp boundaries (Section 3.3.1), for regions with indeterminate

or broad boundaries (Section 3.3.2) and for reasoning about distances (Sec-

tion 3.3.3). The position of this research is explained in Section 3.3.4.

3.3.1 Region Connection Calculus

The Region Connection Calculus (RCC) [Randell et al., 1992] is a first order

formalism based on regions and the connection relation.

Definition 3.10 (Connection Relation). A connection relation C is a relation sat-

isfying the following axioms:

1. reflexivity: ∀x : C(x,x);

2. symmetry: ∀xy : C(x, y)→ C(y, x);

3. extensionality: ∀xy : (∀z : C(z, x)↔ C(z, y))→ x = y.

Two regions x, y are connected (i.e. C(x, y) holds), if their closures2 share a

point.

2The closure of a region x is the smallest closed set containing x.
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FIGURE 3.5: Examples of RCC8 relations

Definition 3.11 (RCC Spatial Relations). Based on the connection relation, the

following spatial relations are defined for regions in RCC:

Part P (x, y) ≡def ∀z : C(z, x)→ C(z, y);

Proper Part PP (x, y) ≡def P (x, y)∧¬P (y, x);

Overlap O(x, y) ≡def ∃z : (P (z, x)∧ P (z, y));

Discrete DR(x, y) ≡def ¬O(x, y);

Disconnected DC(x, y) ≡def ¬C(x, y);

Externally Connected EC(x, y) ≡def C(x, y)∧¬O(x, y);

Partially Overlap PO(x, y) ≡def O(x, y)∧¬P (x, y)∧¬P (y, x);

Equal EQ(x, y) ≡def P (x, y)∧ P (y, x);

Tangential Proper Part TPP (x, y) ≡def PP (x, y)∧ ∃z : (EC(z, x)∧EC(z, y));

Non-Tangential Proper Part NTPP (x, y)≡def PP (x, y)∧¬∃z : (EC(z, x)∧EC(z, y));

Inverse Tangential Proper Part TPPi(x, y) ≡ TPP (y, x);
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Inverse Non-Tangential Proper Part NTPPi(x, y) ≡ NTPP (y, x).

The first four relations are more primitive. They are used to define the latter

eight base relations, examples of which are shown in Fig. 3.5. These eight rela-

tions are jointly exhaustive and pairwise disjoint, i.e. for each pair of regions,

exactly one of the spatial relations holds. They are referred to as RCC8 [Randell

et al., 1992], which is well-known in the field of qualitative spatial reasoning

[Aiello et al., 2007].

The 9-intersection model is developed in [Egenhofer and Franzosa, 1991; Egen-

hofer and Herring, 1991] based on the point-set interpretation of geometries.

By comparing the nine intersections between interiors, boundaries and exteri-

ors of point-sets, it identifies 29 mutually exclusive topological relations. The

9-intersection model provides a comprehensive formal categorization of binary

topological relations between points, lines and regions. Restricting point-sets

to regions with connected boundaries, the 512 relations collapse to the RCC8

relations.

FIGURE 3.6: In OSGB data, the Prezzo Ristorante (a1) and the Blue Bell Inn (b1)
are disconnected, whilst in OSM data, they (a2 and b2) are externally connected.

As the RCC theory and the 9-intersection model both presuppose accurate ge-

ometries or regions with sharp boundaries (crisp regions), they are not very

suitable for dealing with crowd-sourced geospatial data. As shown in Fig. 3.6,
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a1 is sameAs a2, both representing a Prezzo Ristorante; b1 is sameAs b2, both re-

ferring to a Blue Bell Inn. Though the sameAs matches are correct, a topological

inconsistency still exists, since DC(a1, b1), EC(a2, b2), and the spatial relations

DC and EC are disjoint. Therefore, as already discussed in Section 3.1.3.3, re-

lations based on connection are too strict for crowd-sourced geospatial data

which is possibly inaccurate and may contain errors.

3.3.2 The Egg-Yolk Theory

The egg-yolk theory is independently developed in [Lehmann and Cohn, 1994;

Cohn and Gotts, 1996b,a; Roy and Stell, 2001] and [Clementini and Felice, 1996,

1997], by extending the RCC theory and the 9-intersection model respectively,

in order to represent and reason about regions with indeterminate boundaries.

FIGURE 3.7: An Egg-Yolk structure [Cristani et al., 2000]

In this theory, a region with an indeterminate boundary (an indeterminate re-

gion) is represented by a pair of regions, an ‘egg’ and a ‘yolk’, which are the

maximum extension and the minimum extension of the indeterminate region

respectively (similar to the upper approximation and lower approximation in

rough set theory [Pawlak et al., 2008]). The yolk is not empty and it is always

a proper part of the egg. An egg-yolk structure is shown in Fig. 3.7, where the

crisp or exact boundary (blue) of a region is uncertain or indeterminate. The

yolk (yellow solid) represents the part which is definitely within the region,
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and the white (within the red circle and outside the yolk) represents the part

which is possibly within the region.

FIGURE 3.8: Examples of ‘definitely connected’, ‘possibly connected’ and ‘def-
initely not connected’ [Roy and Stell, 2001]

Spatial relations between indeterminate regions are defined by the RCC or the

9-intersection relations between their eggs and yolks. Based on the connec-

tion relation in Definition 3.10, ‘definitely connected’, ‘possibly connected’ and

‘definitely not connected’ are defined, as shown in Fig. 3.8. Two regions are

definitely connected, if their yolks are connected. Two regions are possibly con-

nected, if their eggs are connected, but their yolks are not. Two regions are

definitely not connected, if their eggs are not connected.

Similarly, based on the ‘partOf’ relation in Definition 3.11, ‘definitely partOf’,

‘possibly partOf’ and ‘definitely not partOf’ are defined, as shown in Fig. 3.9. A

region X (dashed) is definitely part of another region Y (solid), if the egg of X

(red dashed) is part of the yolk of Y (yellow solid). A region X is possibly part

of another region Y , if the yolk of X (yellow dashed) is part of the egg of Y (red

solid), and the egg of X (red dashed) is not part of the yolk of Y (yellow solid).

A region X is definitely not part of another region Y , if the yolk of X (yellow

dashed) is not part of the egg of Y (red solid).
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FIGURE 3.9: Examples of ‘definitely partOf’, ‘possibly partOf’ and ‘definitely
not partOf’ [Roy and Stell, 2001]

The egg-yolk theory, as well as other similar formalisms considering indetermi-

nate regions (see Chapter 14 in [Aiello et al., 2007]), presupposes the existence

of a core part of a region and a more vague part. In this research, however,

we could not define a certain inner region, because the same location can be

represented using two disconnected polygons from an authoritative geospatial

dataset and a crowd-sourced geospatial dataset respectively. In other words,

we are dealing with regions with indeterminate positions. Hence, regions are

represented by entire eggs without any yolks.

3.3.3 A Logic for Reasoning about Distances

The logic MS(M) was proposed and developed by [Sturm et al., 2000; Kutz

et al., 2002, 2003; Wolter and Zakharyaschev, 2003, 2005] for reasoning about

distances. It can express sentences like ‘a region is within σ ∈ Q≥0 metres dis-

tance of another region’, which is useful for specifying spatial relations between

different geometric representations (from a crowd-sourced dataset and an au-

thoritative dataset) for the same spatial object with respect to a margin of error

σ. The syntax and semantics of the logic are described below.

Suppose M ⊆ Q≥0 is a parameter set. The alphabet of MS(M) consists of

• an infinite list of region variables X1, X2,...;

• an infinite list of location constants c1, c2,...;
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• a set constant {ci} for every location constant ci;

• binary distance (δ), equality (
.
=) and membership (∈) predicates;

• the Boolean operators ⊓, ¬ (and their derivatives ⊔, ⊤ and ⊥);

• two distance quantifiers ∃<a, ∃≤a and their duals ∀<a, ∀≤a, for every a ∈M ;

• two universal quantifiers ∃ and ∀.

An MS(M) term s is defined as

s := Xi | {ci} | ⊤ | ⊥ | ¬s | s1 ⊓ s2 | ∃
<as | ∃≤as | ∃s.

An MS(M) formula φ is defined as

φ := c ∈ s | s
.
= t | δ(c1, c2) < a | δ(c1, c2) ≤ a | ¬φ | φ1 ∧ φ2.

s ⊑ t is an abbreviation for (s⊓ t)
.
= s. s 6

.
= t is an abbreviation for ¬(s

.
= t).

An MS(M)-model B is a structure of the form:

B = 〈W,d,XB
1 ,X

B
2 , ..., c

B
1 , c

B
2 , ...〉

where 〈W,d〉 is a metric space (Definition 3.2), each XB
i is a subset of W , and

each cBi is an element of W . The value of any other MS(M)-term in B is com-

puted inductively as follows:

• ⊤B =W , ⊥B = ∅;

• {ci}
B = {cBi };

• (¬s)B =W − sB;

• (s1 ⊓ s2)
B = sB1 ∩ s

B
2 ;
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• (∃<as)B = {x ∈W | ∃y ∈ sB : d(x, y) < a};

• (∃≤as)B = {x ∈W | ∃y ∈ sB : d(x, y) ≤ a};

• (∃s)B = {x ∈W | ∃y ∈ sB}.

∀<a, ∀≤a and ∀ are dual to ∃<a, ∃≤a and ∃ respectively. For instance,

(∀<as)B = {x ∈W | ∀y ∈W : (d(x, y) < a→ y ∈ sB)}.

The truth condition of B |= φ, where φ is an MS(M)-formula, is defined as

follows:

• B |= c ∈ s iff cB ∈ sB;

• B |= s1
.
= s2 iff sB1 = sB2 ;

• B |= δ(k, l) < a iff d(kB, lB) < a;

• B |= δ(k, l) ≤ a iff d(kB, lB) ≤ a;

• B |= ¬φ iff B 6|= φ;

• B |= φ∧ ψ iff B |= φ and B |= ψ.

A finite set of MS(M) formulas Σ is satisfiable, if there exists an MS(M)-model

B such that B |= φ for every φ ∈ Σ. This is denoted as B |= Σ.

That a region g is within σ ∈ Q≥0 metres distance of another region h can be

represented as g ⊑ ∃≤σh. It has an equivalent representation using the notion

of buffer (Definition 3.6), as shown in Lemma 3.13. We are interested in the fol-

lowing lemmas, because buffer is used to model uncertainty in the new spatial

logics developed during this research.
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Lemma 3.12. Let B be an MS(M)-model. For a geometry h and a number σ ∈ Q≥0,

(∃≤σh)B = buffer(h,σ).

Proof. Follows from the truth definition of ∃≤σh and the definition of buffer

(Definition 3.6).

Lemma 3.13. For geometries g, h and a number σ ∈Q≥0, g⊑∃
≤σh iff g⊆ buffer(h,σ).

Proof. Follows from Lemma 3.12.

In [Wolter and Zakharyaschev, 2003, 2005], the following theorems are proved

for the logic MS(M).

Theorem 3.14. [Wolter and Zakharyaschev, 2003] The satisfiability problem for a fi-

nite set of MS(M) formulas in a metric space is EXPTIME-complete.

Theorem 3.15. [Wolter and Zakharyaschev, 2005] The satisfiability problem for a fi-

nite set of MS(M) formulas in a one-dimensional Euclidean space R is decidable.

Theorem 3.16. [Wolter and Zakharyaschev, 2003, 2005] The satisfiability problem for

a finite set of MS(M) formulas in a two-dimensional Euclidean space R2 is undecid-

able.

3.3.4 Position of this Research

In subsequent chapters, the notion of buffer (Definition 3.6) is used to model

the uncertainty of geometries. Differing from the egg-yolk theory, we did not

presuppose the existence of a definite part (a yolk) of a region but assume the

exact position of an object can be anywhere within a certain distance from the

geometry representing it. We cannot guarantee that a yolk always exists, be-

cause the same object can be represented as two disjoint geometries in different
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datasets. The meanings of ‘possibly connected’, ‘definitely not connected’, ‘pos-

sibly partOf’ and ‘possibly sameAs’ are redefined to fit with the intended appli-

cation of this research. Due to the close relation between the notion of σ-buffer

and the quantifier ∃≤σ in the logic MS(M) (see Lemma 3.12), all the spatial re-

lations defined in this research are expressible in MS(M). We introduce new

spatial logics, LNF, LNFS and LBPT, in Chapters 7-9 respectively.

As proved in Chapters 7-9, the logics proposed in this thesis are proper frag-

ments of MS(M). Therefore, Theorem 3.14 provides an upper bound on the

complexity of the satisfiability problems of LNF, LNFS and LBPT in a metric

space. Theorem 3.15 proved for MS(M) also holds for these logics: the LNF,

LNFS and LBPT satisfiability problems in a one-dimensional Euclidean space R

are decidable, but their complexity is unknown. By Theorem 3.16, the satisfia-

bility problem of MS(M) in a two-dimensional Euclidean space R2 is undecid-

able, whilst the satisfiability problem of its proper fragments may be decidable.

It is interesting to study proper fragments of MS(M) and explore the computa-

tional properties of them. This is what we do in Chapters 7-9.
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Chapter 4

A Framework for Integrating

Geospatial Datasets

In Chapter 3, related works are reviewed in three research fields, geospatial

data matching, ontology matching and spatial logic, and pieces of this research

are discussed from these three perspectives in the ‘position of this research’

sections 3.1.2, 3.2.3 and 3.3.4. This chapter provides an overview of this re-

search by introducing a framework for integrating geospatial datasets that do

not have shared digital identifiers for spatial features. Section 4.1 describes how

the framework is built up. Section 4.2 explains the rationale of this framework.

This framework is implemented as a system ‘MatchMaps’. Section 4.3 describes

MatchMaps briefly and provides a ‘roadmap’ for the following chapters.

4.1 Building up the Framework

To build up a framework for integrating geospatial datasets that do not have

shared digital identifiers for spatial features, there are three main questions to

be answered:
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Q1 How to generate matches?

Q2 How to ensure that the generated matches are correct and complete?

Q3 How to use the matches?

Q1 has mostly been answered by reviewing literature in geospatial data match-

ing and ontology matching. As explained in Section 3.1.3, basic techniques

based on distance or buffer are generally applicable, which could be used to

match location information. As shown in Section 3.2.1, a simple way to match

lexical information (names and types) is to use string-based techniques, such as

Levenshtein distance [Levenshtein, 1966], string equality and inclusion. There

are more advanced ways to match lexical descriptions by their semantics or

meanings. For example, Restaurant and Place to Eat could be matched or par-

tially matched by similar meanings but not by similar strings. The same word

College in different datasets may have different meanings, thus in such cases

one could not match words simply by string similarity. To summarize, matches

between concepts could be generated by using lexical information. Matches

between spatial features could be generated using both location and lexical in-

formation.

Q3 has been answered in Chapter 1. Matches are generated for information

enrichment and update. For each entity (a concept or a spatial feature) in one

dataset, a complete set of correct matches tells whether the entity has a corre-

spondence in the other dataset and what the correspondence is, if it exists. If an

entity does not have a correspondence, then it may indicate new constructions

or other real world changes, which have only been reflected in one dataset but

not in the other. For matched entities, their lexical descriptions are often not

exactly the same, for example, when a shopping centre in one dataset D1 is

matched to several small shops in the other dataset D2. In such cases, D1 may

obtain more detailed descriptions from D2, whilst D2 may obtain higher level
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or user-defined entities from D1. Such information should be extracted from

differences between matched datasets and be validated for information enrich-

ment and update.

Ensuring the correctness and completeness of generated matches is very im-

portant, which greatly affects the usability of matches. Q2 can be partially an-

swered by reviewing works using logical reasoning for ontology matching (Sec-

tion 3.2.2). The correctness of matches are checked by verifying consistency of

matches. Using description logic reasoning, consistency of matches is checked

with respect to classification information. For example, it is inconsistent to state

that spatial features a and b are the same, if a is a Bank, b is a Clinic, and the

concepts Bank and Clinic are disjoint, containing no common instances. How-

ever, this is not sufficient for validating matches between spatial features. For

example, spatial features a and b cannot be the same, if they are far away, no

matter whether they are of the same type or not. Therefore, spatial reasoning

is required to validate matches regarding location information, in addition to

description logic reasoning.

Literature on geospatial data matching and spatial logic provides some clues for

validating matches using spatial reasoning. In several geospatial data match-

ing methods (see Sections 3.1.1 and 3.1.3.3), matches are checked regarding their

neighbourhood information based on the connection relation (Definition 3.10),

but this is too strict for crowd-sourced geospatial data. If spatial features a1, b1

in one dataset correspond to a2, b2 in the other, it is possible that a1, b1 are dis-

connected, but a2, b2 are connected, as shown in Fig. 3.6. In other words, even

the connection relation may not be preserved by correct matches. As described

in Section 3.3.1, RCC8 defines eight exhaustive and mutually disjoint relations

based on the connection relation. As a consequence of the overstrictness of

the connection relation, RCC8 relations are also too strict for crowd-sourced
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geospatial data. The desirable spatial reasoning works similar to the neigh-

bourhood checking based on the connection relation, but uses a set of spatial

relations which is less strict, leaving gaps between disjoint relations (thus not

jointly exhaustive). By reviewing and assessing different spatial formalisms in

Section 3.3, it is found that ‘less strict’ spatial relations could be defined by dis-

tance. Though the logic MS(M) is expressive enough for this, it is not designed

for validating matches. Therefore, a new spatial logic is required to define ‘less

strict’ spatial relations and what counts as an error. Motivated by this, a se-

ries of new spatial logics is introduced for validating matches in Chapters 7-9,

which is the main contribution of this thesis.

By answering the questions Q1-Q3, a framework is build up for integrating

geospatial datasets. It consists of three steps:

1. Generate matches using lexical information and location information.

2. Validate matches using description logic and spatial logic.

3. Use matches for information enrichment and update.

4.2 Rationale of the Framework

The rationale of the framework is that a generated match is wrong and should

not be used if it contradicts correct information in input datasets. More detailed

explanations are provided below.

Definition 4.1 (Fact and Assumption). A fact is believed all the time, whilst an

assumption is believed by default, but may be retracted later.

Since matches generated using location information and lexical information

may contain errors, they are seen as retractable assumptions (see Definition 4.1).
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Information which is very likely to be valid (e.g. authoritative geospatial data)

can be used as facts. To make use of description logic reasoning, facts and as-

sumptions are stated as axioms in ontologies of input datasets. A set of facts is

coherent (Definition 4.2) and consistent (Definition 4.3).

Definition 4.2 (Coherence). An ontology is coherent if there is no class which

only admits an empty interpretation. Otherwise, it is incoherent.

A class or a concept describes a set of objects of the same type. For example,

Building is a class and any particular building is an individual in this class. A

class only admits an empty interpretation, if this class can be shown to be a

subclass of some class and its complement. For example, an incoherence arises

if there is a conceptGuest House that is stated as a subclass ofGuest andHouse,

which are disjoint, containing no common elements.

Definition 4.3 (Consistency). An ontology is consistent if there exists no con-

tradiction with respect to any instance. Otherwise, the ontology is inconsistent.

A contradiction arises, if there exists an instance c can be shown to belong to

a concept and to its complement, for example, when c belongs to two disjoint

classes Guest and House.

The correctness of assumptions is validated by checking whether it is coherent

or consistent with respect to facts, i.e. whether adding assumptions causes in-

coherence or inconsistency of the overall information (See Definitions 4.4 and

4.5).

Definition 4.4 (Coherence of an Assumption Set). An assumption setAs is inco-

herent with respect to an ontology O, if O∪As is incoherent, but O is coherent.

Otherwise, it is coherent with respect to an ontology O.

Definition 4.5 (Consistency of an Assumption Set). An assumption set As is

inconsistent with respect to an ontology O, if O ∪As is inconsistent, but O is

consistent. Otherwise, it is consistent with respect to an ontology O.
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If an incoherence or inconsistency arises, minimal incoherent assumption sets

(Definition 4.6) and minimal inconsistent assumption sets (Definition 4.7) are

calculated respectively to provide explanations.

Definition 4.6 (Minimal Incoherent Assumption Set). A set of assumptions C is

a minimal incoherent assumption set (MIA) iff C is incoherent and each C
′

⊂ C

is coherent.

Definition 4.7 (Minimal Inconsistent Assumption Set). A set of assumptions C

is a minimal inconsistent assumption set (MIA)1, iff C is inconsistent and each

C
′

⊂ C is consistent.

An MIA may contain more than one assumption and can be fixed by removing

one assumption from it. Most of the existing methods, such as [Meilicke et al.,

2008; Meilicke and Stuckenschmidt, 2009; Qi et al., 2009], remove the one either

with the lowest confidence value or with the least relevance. However, there

is no consensus upon the measure of the degree of confidence or relevance.

In several cases, the confidence value or the relevance degree is unavailable

or difficult to compute. As there is no good way to decide which assumption

is wrong automatically, domain experts are asked to decide the correctness of

matches within MIAs and remove the wrong ones to restore consistency. The

required human effort should be reduced as much as possible, for example, by

allowing domain experts to remove several similar incorrect matches at a time.

4.3 MatchMaps: an Implemented System

MatchMaps is an implemented system of the described framework. The input

to MatchMaps is two sets of spatial features A and B, and two ontologies TA

and TB defining concepts for describing the spatial features. The output is a set

1MIA stands for minimal incoherent/inconsistent assumption set.
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S of sameAs and partOf matches between spatial features. For spatial features

a and b from different datasets, sameAs(a, b) is true if a and b refer to the same

object in the real world. partOf (a, b) is true if the object represented by a is part

of the object represented by b in the real world. To maintain consistency with

definitions of matches for concepts and geometries2, sameAs(a, b) is seen as the

conjunction of partOf (a, b) and partOf (b, a) in this work.

MatchMaps consists of seven main steps summarised below.

1. Generate disjointness axioms between concepts in TA and TB. A disjoint-

ness axiom states that two concepts are disjoint, containing no common

elements. For example, Library and Student are disjoint. The disjoint-

ness axioms are generated automatically by assuming the disjointness of

sibling concepts in each ontology. We also manually generate a small set

of axioms that prohibit objects of one type being partOf objects of another

type. For example, if something is a School, then for all objects it is partOf ,

they are not Pubs. We use a description logic reasoner Pellet [Sirin et al.,

2007] to check that adding a set of disjointness and ‘partOf -disjointness’

axioms DA to TA does not result in incoherence (existence of provably un-

satisfiable concepts), similarly forDB ∪TB. Axioms that cause incoherence

are removed, resulting in D = DA ∪DB. This does not require human in-

teraction. This is an auxiliary step that is needed to facilitate discovering

problematic matches (such as a sameAs match between a and b where a is

a Library and b is a Pub). This step is explained in detail in Chapter 6.

2. Generate terminology matches between concepts in TA and TB. A termi-

nology match is an axiom which states that two concepts from different

datasets have the same meaning. For example, OSM : Shop (the concept

2Two concepts are equivalent iff one is a subclass of the other and vice versa. Two geometries
are buffered equal (BEQ) iff one is buffered part (BPT) of the other and vice versa. See Chapter 6
and Chapter 5 for details.
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Shop in OSM) andOSGB : Shop have the same meaning. Currently termi-

nology matches are generated automatically using a very simple heuristic

based on similarity of concept names. For example, OSGB : Shop and

OSM : Shop are matched. The set of terminology matches isM. We check

coherence of TA ∪ TB ∪ D ∪M using Pellet. For every set of statements

responsible for incoherence, we remove one of the axioms in D∪M. This

step requires human interaction, because sometimes we need to decide

whether to remove a terminology match or a disjointness axiom to restore

coherence. This step is explained in detail in Chapter 6.

3. Generate geometry matches using aggregation and buffering. This is

done using standard 2D spatial tools [Vivid Solutions, Inc., 2014; ESRI,

2014; QGIS Development Team, 2009] to aggregate, buffer and check for

inclusions of their geometries. Rather than matching every individual ge-

ometry in the input datasets, we generate matches between ‘aggregated’

geometries, each of which is obtained by aggregating a non-empty collec-

tion of adjacent individual geometries. The reason for doing the aggre-

gation step is that sometimes matching every individual geometry is dif-

ficult or impossible, for example, when individual geometries are small,

close together and have little lexical information. Matching aggregated

geometries is much easier. As shown in Fig. 4.1 (left), there is a clear cor-

respondence between aggregated geometries from OSM (solid) and OSGB

(dotted). However, for an individual OSM geometry (solid), there can be

more than one candidate from OSGB (dotted), as shown in Fig. 4.1 (right).

We cannot decide which one is correct only based on the similarity of ge-

ometries. This type of problem often occurs when matching, for example,

terraced houses or small shops in a shopping centre. This step does not

require human interaction. This step is explained in detail in Chapter 5.

4. Generate object matches (sameAs and partOf matches between spatial
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FIGURE 4.1: Matching ‘aggregated’ geometries (left); Matching individual ge-
ometries (right)

features). For each pair of matched geometries from the previous step,

we consider associated spatial features and check them for similarity of

labels using a string similarity measure. In straightforward cases, when

there are two spatial features a and b with similar geometries and similar

labels, we add sameAs(a, b) to a set of candidate matches S; or if there is

a set of spatial features {a1, . . . , an} where the union of their geometries

is similar to the geometry of a single spatial feature b in another dataset,

we add partOf (ai, b) to S for every ai. A difficult case is when there is a

match between two aggregated geometries which contain spatial features

{a1, . . . , an} in one dataset and {b1, . . . , bk} in another dataset (many-to-

many matching case). When we cannot decide the exact matches auto-

matically using labels (names and types) of spatial features, we generate

all matches which are possibly correct between the spatial features in the

two sets: for each pair of spatial features ai, bj with similar labels, we gen-

erate sameAs(ai, bj), partOf (ai, bj), partOf (bj, ai) and add them to S. The

output of this step is the set S of candidate matches. This step does not

require human interaction. This step is explained in detail in Chapter 5.

5. Validate matches using LBPT. Check S for consistency using a qualitative

spatial logic, a Logic of ParT and whole for Buffered geometries (LBPT).

LBPT is explained in Chapter 9. If an inconsistency is found, we retract

sameAs or partOf matches from S to restore consistency. This step is im-

plemented using a dedicated LBPT reasoner with an Assumption-Based

Truth Maintenance System (ATMS), and may require human interaction

68



A Framework for Integrating Geospatial Datasets 69

to decide which matches to remove. This step is explained in detail in

Chapter 10.

6. Validate matches using UNA/NPH. Check S for consistency with respect

to UNA or NPH. UNA refers to the Unique Name Assumption: for each

dataset, sameAs(a1, a2) does not hold for any a1 and a2 with different IDs

(each spatial feature is represented exactly once). NPH (No PartOf Hierar-

chy) is a stronger assumption that states that there are no spatial features

b, b′ in the same set such that partOf (b, b′) holds. UNA and NPH hold for

OSGB data. However both UNA and NPH can be violated in OSM data.

Therefore this check is ‘soft’: if in a crowd-sourced dataset some spatial

feature is represented twice, or there is a genuine partOf relationship de-

termined by human checking, we skip this ‘error’ and do not retract any

assumptions. This step is required since even after consistency checks in

the previous steps, there may be ‘too many’ matches in S. For example, a

spatial feature is stated as sameAs several different spatial features which

are close to each other. It is implemented using Pellet, and requires hu-

man interaction. This is an optional step, which could be skipped if UNA

or NPH is violated frequently in at least one input dataset. This step is

explained in detail in Chapter 6.

7. Validate matches using classification. Check for consistency of S to-

gether with TA ∪TB ∪D∪M. Restore consistency and return the resulting

set S. This step requires human interaction since either a match or a dis-

jointness axiom may be wrong. This step is explained in Chapter 6.

In addition to the Pellet description logic reasoner and the LBPT reasoner with

an ATMS, MatchMaps builds on a number of existing tools. The JTS Topology

Suite [Vivid Solutions, Inc., 2014] is used to process two dimensional geome-

tries, and the graphical user interface of MatchMaps is implemented using the

OpenJUMP libraries [JPP, 2014].
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The steps of MatchMaps are described in detail in subsequent chapters. Chap-

ter 5 shows algorithms used for generating matches in Step 3 and Step 4. Chap-

ter 6 explains the use of description logic for validating matches in Steps 1, 2,

6 and 7. Chapters 7-9 introduce a series of new qualitative spatial logics for

validating matches. Chapter 10 explains the use of qualitative spatial logic for

validating matches in Step 5. The performance of MatchMaps is evaluated in

Chapter 11. Experimental results show that MatchMaps achieves high precision

and recall, as well as reduced human effort.
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Chapter 5

Matching Spatial Features

This chapter introduces a generic method for generating candidate matches as

retractable assumptions. This method is used in Steps 3 and 4 of MatchMaps

(Section 4.3). It assumes that in each input dataset, every spatial feature has a

geometry, but may not have lexical information, such as names and types. This

assumption is reasonable regarding the incompleteness of crowd-sourced data.

As shown in Section 2.2, many OSM features lack lexical information. Spatial

features with names or types are also referred to as spatial objects.

The method consists of two main steps: matching geometries and matching

spatial objects. The geometry matching is based on the concepts of ‘possibly

partOf’ and ‘possibly sameAs’ formalized in Section 5.1. Algorithms used for

matching geometries are explained in Section 5.2. Section 5.3 describes a proce-

dure following which spatial objects are matched using geometry matches and

lexical information.
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FIGURE 5.1: The three hatched red circles are buffered part of (BPT) the solid
blue circle (left); Buffered Equal or BEQ (right)

5.1 Theoretical Basis for Matching Geometries

Since geometries in a crowd-sourced dataset may not be very accurate, when

matching them to geometries in an authoritative dataset, a level of tolerance or

margin of error is needed to tolerate slight difference in geometric representa-

tions for the same feature. With respect to a level of tolerance σ, two new spatial

relations BPT and BEQ are defined in Definition 5.1 and illustrated in Fig. 5.1.

They formalize ‘possibly partOf’ and ‘possibly sameAs’ respectively.

Definition 5.1 (BPT and BEQ). Let σ ∈ R≥0 denote a level of tolerance. For two

geometries g1 and g2, BPT (g1, g2) (g1 is buffered part of g2), iff g1 ⊆ buffer(g2 , σ);

BEQ(g1, g2) (g1 and g2 are buffered equal), iff BPT (g1, g2) and BPT (g2, g1).

The spatial relationsBEQ andBPT are closely related to the buffer intersection

method (Section 3.1.3.2) and the Hausdorff distance (Section 3.1.3.1), which are

widely applied for matching geometries.

The way of defining theBPT relation is similar to the buffer intersection method

described in Section 3.1.3.2, but requires that the overlap area is one of the input

geometries. BEQ is symmetric and defined by BPT relations.

The spatial relations BEQ and BPT can be expressed directly using the Haus-

dorff distance and the directed Hausdorff distance (Definition 3.4) respectively.

This is stated in Lemma 5.2.
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Lemma 5.2. Let σ ∈ R≥0 denote a level of tolerance. For two geometries X and Y ,

BPT (X,Y ) iff d1(X,Y ) ≤ σ, where d1(X,Y ) is the directed Hausdorff distance from

X to Y . BEQ(X,Y ) iff dH(X,Y ) ≤ σ, where dH(X,Y ) is the Hausdorff distance

between X and Y .

Proof. Follows from Definition 3.4 and Definition 5.1.

The BPT relation is different from the ‘possibly partOf’ (see Fig. 3.9) in the

egg-yolk theory (Section 3.3.2). This is stated in Lemma 5.3.

Lemma 5.3. Suppose the egg of a geometry X is buffer(X,σ), where σ ∈ R≥0. BPT

is defined using the same σ. DPT and PPT denote ‘definitely partOf’ and ‘possibly

partOf’ in the egg-yolk theory respectively. Then, DPT ( BPT ( (DPT ∪ PPT ).

Proof. Let X and Y be geometries. L(X),U(X) are a yolk and an egg of X

respectively, then L(X) ⊆ X ⊆ U(X). Similarly, L(Y ) ⊆ Y ⊆ U(Y ).

According to the egg yolk theory, DPT (X,Y ) iff U(X) ⊆ L(Y );

PPT (X,Y ) iff L(X) ⊆ U(Y ) and U(X) 6⊆ L(Y ).

(DPT ∪ PPT )(X,Y ) iff L(X) ⊆ U(Y ).

By Definition 5.1 and the definition of an egg, BPT (X,Y ) iff X ⊆ U(Y ).

If DPT (X,Y ), then X ⊆ U(X) ⊆ L(Y ) ⊆ U(Y ), hence BPT (X,Y ).

It is possible BPT (X,Y ) but not DPT (X,Y ), for example, when U(X) = X ,

X ⊆ U(Y ), X 6⊆ L(Y ).

If BPT (X,Y ), then L(X) ⊆ X ⊆ U(Y ), hence (DPT ∪ PPT )(X,Y ).

It is possible (DPT ∪ PPT )(X,Y ) but not BPT (X,Y ), when L(X) ⊆ U(Y ) but

X 6⊆ U(Y ). Therefore, DPT ( BPT ( (DPT ∪ PPT ).
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5.2 Matching Geometries

If BEQ and BPT are defined by an appropriate level of tolerance σ ∈ R≥0, then

for geometries X and Y , if BEQ(X,Y ), then X and Y possibly represent the

same real world location, otherwise, they represent different locations. Simi-

larly, if BPT (X,Y ), then X represents a location which is possibly part of what

Y refers to. The geometry matching method presented in this section is based

on this rationale, and takes a level of tolerance σ as input for matching two sets

of geometries. This σ denotes the maximal difference between geometric repre-

sentations of the same spatial features from input datasets. The value of σ can

be established empirically by looking at two datasets side by side and matching

geometries of features (e.g. landmarks) which are known to be the same.

The geometry matching method consists of two main algorithms, Algorithm 5.2

and Algorithm 5.3, which generate BPT and BEQ matches respectively, by

calculating and comparing the minimal σs (Definition 5.4).

Definition 5.4 (Minimal σ). A level of tolerance σ ∈ R≥0 is minimal with respect

to geometries g1 and g2, iff g1 ⊆ buffer(g2, σ) and for any σ′ ∈ R≥0 and σ′ < σ,

g1 6⊆ buffer(g2, σ
′). The minimal σ respect to g1 and g2 is denoted as minσ(g1, g2).

Though defined independently, the minimal σ is a measure equivalent to the

directed Hausdorff distance (see Lemma 5.5). As the (directed) Hausdorff dis-

tance is a generic measure for geometries (Section 3.1.3.1), the minimal σ is also

generally applicable.

Lemma 5.5. For two geometries X and Y , minσ(X,Y ) = d1(X,Y ), where d1(X,Y )

is the directed Hausdorff distance from X to Y .

Proof. Follows from Definition 5.4, Definition 3.6 and Definition 3.4.
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Algorithm 5.1 provides a way to calculate the minimal σ with respect to ge-

ometries g1 and g2 approximately. The input real numbers l and u denote a

lower bound and an upper bound of σ ∈ R≥0 respectively: σ ∈ [l, u], l ∈ R≥0,

u ∈ R≥0. The number α ∈ R≥0 denotes the accuracy level, such that the absolute

difference between the calculated value and the actual value of σ is no larger

than α. Algorithm 5.1 does a ‘binary search’ between the lower bound l and

the upper bound u of σ. It terminates and returns a calculated value m for

the minimal σ, if m is accurate enough (Line 3) or a boundary case is reached,

where g1 ⊆ buffer(g2 ,m) and the boundaries of g1 and buffer(g2 ,m) are con-

nected (Line 8, g1 and buffer(g2 ,m) are equal or g1 is a tangential proper part of

buffer(g2 ,m)).

Algorithm 5.1 Minimal σ

1: function minσ(g1, g2, l, u, α)
2: m = (l+ u)/2
3: if (u− l) ≤ α then return m
4: end if
5: if g1 ⊆ buffer(g2 ,m) then
6: b1 = boundary(g1 )
7: b2 = boundary(buffer(g2 ,m))
8: if b1 ∩ b2 6= ∅ then return m
9: end if

10: return minσ(g1, g2, l,m,α)
11: else
12: return minσ(g1, g2,m,u,α)
13: end if
14: end function

Algorithm 5.2 takes two sets of geometries G1, G2 and a level of tolerance σ ∈

R≥0 as input. For each geometry g1 inG1, it calculates the best candidate h inG2,

and addBPT (g1, h) to the set of output matchesMG1→G2
, if such an h exists. The

minimal σ is used as the criterion to select the best candidates (Definition 5.6).

Definition 5.6 (Best Candidate). For a geometry g, a set of geometries S, a

level of tolerance σ ∈ R≥0, the geometry h1 ∈ S is the best candidate for g, iff

minσ(g, h1) < σ, and for any h ∈ S, minσ(g, h) ≥minσ(g, h1).
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Algorithm 5.2 BPT-Match

1: function BPT-MATCH(G1, G2, σ)
2: MG1→G2

= {}
3: for g1 ∈ G1 do
4: h = null
5: for g2 ∈ G2 do
6: if minσ(g1, g2) < σ then
7: σ =minσ(g1, g2)
8: h = g2
9: end if

10: end for
11: if h! = null then
12: add BPT (g1, h) to MG1→G2

13: end if
14: end for
15: return MG1→G2

16: end function

Algorithm 5.3 BEQ-Match

1: function BEQ-MATCH(G1, G2, σ)
2: MG1→G2

=BPT-MATCH(G1,G2, σ)
3: Mbeq = {}
4: for g2 ∈ G2 do
5: S = {g1 ∈ G1|BPT (g1, g2) ∈MG1→G2

}
6: Gs =

⋃

g∈S g
7: if BPT (g2,Gs) then
8: if Gs is multiple then
9: Gs = refine(Gs, g2, σ)

10: end if
11: add BEQ(g2,Gs) to Mbeq

12: end if
13: end for
14: return Mbeq

15: end function

FIGURE 5.2: BEQ matches with ‘noise’
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Algorithm 5.3 calculates BEQ matches using BPT matches generated by Algo-

rithm 5.2. For every geometry g2 ∈ G2, Algorithm 5.3 matches it to a geometry

Gs which is a union of geometries in G1, such that g2 and Gs are buffered equal,

if such a Gs exists. This is done as follows. For every geometry g2 ∈ G2, we first

obtain a set S containing every g1 ∈G1 such thatBPT (g1, g2) is inMG1→G2
(Lines

2-5). Since each geometry g ∈ S is buffered part of g2, their union Gs is buffered

part of g2. If g2 is also buffered part of Gs (Line 7), then g2 and Gs are buffered

equal. Generating BEQ matches between g2 and Gs directly may have some

side effects or noise, especially when Gs consists of several disconnected parts

(Gs is multiple, Line 8). Three examples are shown in Fig. 5.2, where in each,

the blue solid geometry is buffered equal to the union of several red dotted ge-

ometries. Algorithm 5.4 is designed to refineGs in such case, by calculating and

comparing the minimal σs (Definition 5.4).

Algorithm 5.4 Refine BEQ Matches

1: function refine(Gs, g2, σ)
2: s =minσ(g2,Gs)
3: for g ∈ Gs.getGeometries() do
4: if g2 contains g then continue
5: end if
6: remain = Gs \ g
7: if (g2, remain) 6∈ BPT then continue
8: end if
9: sr =minσ(g2, remain) // sr ≥ s

10: if s = sr then return refine(remain, g2 , σ)
11: end if
12: t =minσ(Gs, g2)
13: tr =minσ(remain, g2)
14: if (s+ t) ≥ (sr + tr) then return refine(remain, g2 , σ)
15: end if
16: end for
17: return Gs

18: end function

Algorithm 5.4 takes two geometries Gs, g2 as input, where Gs is multiple and g2

is not. Gs and g2 are buffered equal with respect to the level of tolerance σ. Al-

gorithm 5.4 refinesGs toG′
s,G

′
s ⊆Gs, and maintains the buffered equal relation,
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FIGURE 5.3: Refined BEQ matches

i.e. BEQ(g2,G
′
s), as an invariant during the refining process. This is done as fol-

lows. For every geometry g contained in Gs, if g is not fully covered by g2, then

we obtain remain, which is Gs without g (Line 6). To maintain the invariant, we

check whether BEQ(remain, g2) holds. Since BPT (Gs, g2) and remain ⊂ Gs,

BPT (remain, g2) already holds. Thus, we only need to check whether g2 is

buffered part of remain. If yes, the next steps in the for-loop are followed. We

calculate the minimal σ (Definition 5.4) with respect to g2 and Gs (Line 2), g2

and remain (Line 9) as s, sr respectively. By Definition 5.4, Definition 3.6 and

remain ⊂ Gs, sr ≥ s. If s and sr are equal, then we can remove g from Gs with-

out changing the required buffer size (Line 10). After applying this, the extra

red geometries in Fig. 5.2 (left and middle) are removed, as shown in Fig. 5.3

(left and middle) respectively. However, the extra geometries in Fig. 5.2 (right)

cannot be removed, because the boundary of the blue geometry is close to the

red geometries outside, the existence of which make the required buffer size

smaller. For such cases, we calculate the minimal σ with respect to Gs and g2

(Line 12), remain and g2 (Line 13), as t, tr respectively. If (s + t) ≥ (sr + tr),

then we can remove g from Gs without making the sum of required buffer sizes

larger (Line 14). Applying this removes the extra geometries in Fig. 5.2 (right),

as shown in Fig. 5.3 (right). Algorithm 5.4 recursively removes one part from

Gs and returns the remaining parts, until no parts can be removed.

After applying Algorithm 5.4, Algorithm 5.3 generates and adds refined BEQ

matches to its output mapping Mbeq.
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5.3 Matching Spatial Objects

In this section, we describe a method for matching spatial objects, making use

of BEQ matches generated by Algorithm 5.3 and lexical descriptions (names

and types) of spatial objects. The output is a set of sameAs and partOf matches

between spatial objects. The method does not directly use BPT matches gener-

ated by Algorithm 5.2, mainly because spatial objects and their parts may not

have any similar lexical information.

As a function, objects(g) maps every geometry g to a set of spatial objects, where

the geometry of each object gi ⊆ g. For any pair of geometries g1, g2 which are

BEQ-matched, we match objects(g1) and objects(g2) based on the similarity of

lexical information (names and types represented by strings).

The similarity measure for lexical information is described as follows. For

strings s1 and s2, similar(s1, s2) is true, if s1, s2 are equal, one contains the other,

one is an abbreviation of the other, or their Levenshtein edit distance is smaller

than length(s1)/2 or length(s2)/2. For any spatial object o, let names(o) denote

its set of names, types(o) denote its set of types. For any pair of spatial ob-

jects o1, o2, similarNames(o1, o2) is true, if there exist n1 ∈ names(o1) and n2 ∈

names(o2) such that similar(n1, n2). Otherwise, similarNames(o1, o2) is false.

similarTypes(o1, o2) is defined in the same way as defining similarNames(o1, o2).

For type similarity, using string comparison is not sufficient, and more sophisti-

cated similarity measures should be used to recognize different words express-

ing the same type, for example, house, dwelling and residential. Currently, such

information is only hard-coded for houses. For spatial object o, house(o) is true,

if the type of o is house, dwelling or residential. Otherwise, house(o) is false.

For any pair of geometries g1, g2 which are BEQ-matched by Algorithm 5.3,

objects(g1) and objects(g2) are matched as follows:
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Case 1: If |objects(gi)| = 0, i ∈ {1,2}, then there are no objects to match.

Case 2: If |objects(gi)| = 0, |objects(gj)| > 0, i 6= j, then objects in objects(gj) do

not have any corresponding objects.

Case 3: If |objects(gi)| = 1, i ∈ {1,2}, oi ∈ objects(gi), similarNames(o1, o2) is

true, or names(o1) is empty, or names(o2) is empty, then we generate a

sameAs match between o1 and o2.

Case 4: If |objects(gi)| = 1, |objects(gj)| > 1, {i, j} = {1,2}, then:

1. If there exists exactly one object oj ∈ objects(gj), such that for oi ∈

objects(gi), similarName(oi, oj) is true, then we generate a sameAs

match between oi and oj .

2. Otherwise, for each object oj ∈ objects(gj), we generate a partOf match

from oj to oi ∈ objects(gi).

Case 5: If |objects(gi)| > 1, i ∈ {1,2}, then:

1. If there exists at most one object o in objects(gi) such that house(o) is

false, and for any other object oi in objects(gi), house(oi) is true, then

we create an abstract object Oi corresponding to the aggregation of

all objects in objects(gi). For every object oj ∈ objects(gj), i 6= j, we

generate a partOf match from oj to Oi.

As shown in Fig. 5.4, there is only one spatial object1 (yellow) which

is not labelled as a house, and all others are houses. Matching every

spatial object is not interesting but requires much more effort than

creating and matching an abstract object for them.

2. If no abstract object is created, then we match objects by their names

first and then by their types.

1It is represented in OSM data. No type information is provided for it.
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FIGURE 5.4: All are houses except one.

(a) For objects o1 ∈ objects(g1), o2 ∈ objects(g2), if similarNames(o1, o2),

then we generate all possible matches: a sameAs match between

o1 and o2, partOf matches from o1 to o2 and from o2 to o1.

(b) For ‘not-matched’ objects o1 ∈ objects(g1), o2 ∈ objects(g2), if at

least one of names(o1) and names(o2) is empty, and at least one

of similarTypes(o1, o2) and (house(o1) ∧ house(o2)) is true, then

we generate a sameAs match between o1 and o2, partOf matches

from o1 to o2 and from o2 to o1.

In Case 5 above, all possible matches are generated to maximize the recall of the

output, but at the cost of precision (wrong matches could be generated as well).

Description logic reasoning (Chapter 6) and spatial logic reasoning (Chapter 10)

are used in the next steps in order to detect errors in the generated matches.

The precision can be increased to a high level after fixing all errors detected by

logical reasoning (see Chapter 11).
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Chapter 6

Validating Matches using

Description Logic

In Chapter 5, a method for generating candidate matches is described, but the

generated matches could contain errors. This chapter explains the use of de-

scription logic reasoning to detect problematic matches. The use of descrip-

tion logic reasoning follows the rationale of the framework described in Sec-

tion 4.2, where errors are located by logical contradictions. Using descrip-

tion logic, matches are checked with respect to classification information, the

Unique Name Assumption (UNA) and ‘No PartOf Hierarchy’ (NPH). This has

been described briefly in MatchMaps Steps 1, 2, 6 and 7 in Section 4.3. More

detailed explanations are provided in this chapter.

This chapter consists of three sections. Section 6.1 describes the syntax and se-

mantics of a description logic ALCO which is used in this research. Section 6.2

and Section 6.3 explain how description logic reasoning is used to validate ter-

minology matches (MatchMaps Steps 1, 2) and object matches (MatchMaps

Steps 6, 7) respectively.
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6.1 Description Logic ALCO

Description logics are a family of knowledge representation formalisms [Baader

et al., 2007]. To represent the knowledge of an application domain, they first

define relevant concepts of the domain, and then specify properties of objects

or individuals in the domain using the defined concepts. In this section, we

describe a basic description logic ALCO. In this thesis, it is used to represent

information in different datasets and matches between them.

Concept descriptions in ALCO are formed using the following syntax rule:

C,D −→ A | ⊤ | ⊥ | C ⊓D | ¬C | ∀R.C | {o}

where A is an atomic concept, R is an atomic role, and o is an individual name.

An ALCO sentence φ is defined as follows:

φ := C ⊑ D | C ≡ D | C(a) | R(a, b)

where C,D are concept descriptions, a, b are individual names, and R is an

atomic role. A knowledge base is a set of sentences.

An interpretation (∆,I) consists of a non-empty set ∆ as the interpretation do-

main and an interpretation function I, which assigns every atomic concept A

to a set AI ⊆∆, every atomic role R to a binary relation RI ⊆∆×∆, and every

individual name o to an element oI ∈∆. The interpretation function is extended

to concept descriptions as follows:

• ⊤I = ∆, ⊥I = ∅;

• (C ⊓D)I = CI ∩DI ;

• (¬C)I = ∆ \CI ;
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• (∀R.C)I = {a ∈ ∆ | ∀b.(a, b) ∈ RI → b ∈ CI};

• {o}I = {oI}.

The truth conditions for sentences are as follows:

• (∆,I) |= C ⊑ D iff CI ⊆ DI ;

• (∆,I) |= C ≡ D iff CI = DI ;

• (∆,I) |= C(a) iff aI ∈ CI ;

• (∆,I) |= R(a, b) iff (aI , bI) ∈ RI .

A sentence is valid iff it is true in every interpretation. A knowledge baseKB |=

φ, iff φ is true in every interpretation where all the sentences in KB are true.

TABLE 6.1: Some OWL 2 axioms and their corresponding ALCO sentences

OWL 2 axiom ALCO sentence
SubClassOf (C ,D) C ⊑ D
EquivalentClasses(C ,D) C ≡ D
DisjointClasses(C ,D) C ⊑ ¬D
ClassAssertion(C ,a) C(a)
ObjectPropertyAssertion(R,a, b) R(a, b)
SameIndividual(a, b) {a} ≡ {b}
DifferentIndividuals(a, b) {a} ⊑ ¬{b}

We often call a description logic sentence an axiom in this thesis, since the data

to be reasoned with is stated as axioms in OWL 2 [W3C, 2012], a web ontology

language. The OWL 2 axioms that we are interested in and their correspond-

ing ALCO sentences are shown in Table 6.1. Reasoning with these axioms in

OWL 2 is essentially description logic reasoning. We employ the description

logic syntax in this thesis for simplicity: each ALCO sentence can be seen as an

abbreviation of its corresponding OWL 2 axiom.
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6.2 Validating Terminology Matches using Descrip-

tion Logic

A terminology match can be represented as an equivalence axiom, which states

two concepts have the same meaning. It is written as:

C ≡ D

whereC andD are concepts from different datasets. For instance, OSM : Clinic ≡

OSGB : Clinic is a terminology match. This means that every object which is

classified as a Clinic in OSM data is also a Clinic in OSGB data and vice versa.

An inclusion axiomC ⊑D can also represent a terminology match, which means

any instance of C is an instance of D. This thesis focuses on generating equiva-

lence matches. Each equivalence match corresponds to two inclusion matches:

C ≡D iffC ⊑D andD ⊑ C. For example, if OSM : Clinic ≡OSGB : Clinic, then

OSM : Clinic ⊑ OSGB : Clinic and OSGB : Clinic ⊑ OSM : Clinic.

This section explains the use of description logic for validating terminology

matches, expanding the descriptions of MatchMaps Steps 1, 2 in Section 4.3.

Terminology matches can be verified using concept hierarchies and disjointness

axioms within ontologies. A disjointness axiom states that two or more con-

cepts are pairwise disjoint, having no common element. For example, Person

and Place are disjoint, i.e. Person ⊑ ¬Place. If a concept is a subclass of two

disjoint concepts, then incoherence exists, indicating possible errors in matches.

Disjointness axioms play an important role in validating matches, as shown in

Example 6.1.

Example 6.1 (The importance of disjointness axioms). Suppose matches i : Sport≡

j : Sport and i : RaceHorse≡ j :HorseRacing are generated between ontologies i, j,
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and we check their consistency using description logic. In ontologies i, j respectively,

there exist relevant axioms i : RaceHorse ⊑ i : Animal and j : HorseRacing ⊑ j :

Sport. Without disjointness axioms, no incoherence exists. With the disjointness axiom

i : Animal ⊑ ¬(i : Sport) in ontology i, incoherence arises, indicating the existence of

problematic matches.

Disjointness axioms usually do not exist in ontologies. For each input ontology

Ti, i ∈ {1,2}, we generate a set of disjointness axioms D0i by assuming disjoint-

ness of siblings and use a subset Di ⊆ D0i, which is maximally coherent with

respect to Ti, for validating matches. Di is generated automatically. Like termi-

nology matches, disjointness axioms are also retractable assumptions, as some

of they can be too strict, for example, Clinic ⊑ ¬HealthCentre.

For a set of terminology matches M between ontologies T1 and T2, we use the

description logic reasoner Pellet [Sirin et al., 2007] to check the coherence of T1 ∪

T2∪D1∪D2∪M , and calculate minimal incoherent assumption sets (MIAs, Def-

inition 4.6), if any incoherence exists. An MIA can be fixed by removing one as-

sumption from it. In Example 6.1, if using axioms in input ontologies as facts, a

calculated MIA consists of i : Sport≡ j : Sport, i : RaceHorse≡ j :HorseRacing

and i : Animal ⊑ ¬(i : Sport). i : RaceHorse ≡ j : HorseRacing is wrong and

should be removed. There are other cases, where terminology matches are

correct and a disjointness axiom is wrong. For instance, i : Swimming ≡ j :

Swimming, i : Sport ≡ j : Sport, i : Swimming ⊑ i : Purpose, j : Swimming ⊑

j : Sport, i : Purpose ⊑ ¬(i : Sport). The decision about which statements in

an MIA are incorrect and should be retracted is made by a domain expert, as

no heuristic for making such decisions automatically gives sufficiently reliable

results.
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6.3 Validating Object Matches using Description Logic

An object match can be represented as a sameAs axiom or a partOf axiom, as

follows:

{a} ≡ {b} partOf (a, b),

where a, b are individual names, partOf is a role in description logic or an object

property in OWL 2. A sameAs axiom {a} ≡ {b} states that a and b refer to the

same object in the real world. A partOf axiom partOf (a, b) states that the object

represented by a is part of the object represented by b in the real world. We use

a = b as an abbreviation for the sameAs axiom {a} ≡ {b} and use a 6= b for the

different individual axiom {a} ⊑ ¬{b} in this thesis. We also use sameAs(a, b)

to refer to a sameAs match between a and b.

This section explains the use of description logic for validating object matches

generated in different matching cases described in Section 5.3, expanding the

descriptions of MatchMaps Steps 6 and 7 in Section 4.3.

Like a terminology match, an object match can be verified using concept hier-

archies and disjointness axioms. An object match sameAs(a, b) is wrong, if a

or b can be shown to belong to a concept C and its complement ¬C. To vali-

date partOf matches, for each input ontology Ti, we manually generate ‘partOf-

disjointness’ axioms and add them to Di, i ∈ {1,2}. A ‘partOf-disjointness’ ax-

iom C ⊑ ∀partOf .¬D prohibits objects of one type C being partOf objects of

another typeD. For example, if School ⊑ ∀partOf .¬Pub, School(a), Pub(b), then

partOf (a, b) is wrong. For a set of object matches S, such errors in object matches

can be detected and removed by checking the consistency of T1 ∪T2 ∪D1 ∪D2 ∪

M ∪ S using Pellet, calculating minimal inconsistent assumption sets (MIAs,

Definition 4.7), and following a similar validation process as described for ter-

minology matches.
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Definition 6.1 (UNA & NPH). In a dataset, the Unique Name Assumption

(UNA) holds, if for any two individual names a and b in the dataset, a 6= b;

‘No PartOf Hierarchy’ (NPH) holds, if there exist no individual names a, b in

the dataset such that partOf (a, b).

Differing from a terminology match, an object match can also be checked with

respect to the Unique Name Assumption (UNA) and ‘No PartOf Hierarchy’

(NPH) in each input dataset. This is motivated by the facts that there is usu-

ally no duplicated representation of the same individual in a dataset and an

individual is not represented as a whole and as parts of it at the same time.

Similar to disjointness axioms, we could generate different individual axioms as

retractable assumptions, and use them to check object matches. However, this

makes the data too large to be reasoned with. Instead, for any pair of individual

names a and b in the same dataset, we use Pellet to check whether a = b or

partOf (a, b) is entailed, and compute sets of axioms as explanations (similar to

MIAs), if UNA/NPH is violated. Since we do not add any axioms like a 6=

b, no inconsistency arises. If in a crowd-sourced dataset some spatial feature

is represented twice, or there is a genuine partOf relationship determined by

human checking, we skip this ‘error’ and do not retract any assumption.

The described validation of object matches requires domain experts to make ul-

timate decisions. To minimize human effort, several heuristics are designed to

allow users to retract ‘similar’ statements at a time, and spatial logic reasoning

is employed to detect and remove obvious errors before checking UNA/NPH.

As explained in Chapter 4, spatial logic reasoning complements description

logic reasoning, and helps validate object matches using location information.

The use of spatial logic for validating matches, as well as the heuristics provided

to users for removing wrong matches, is explained in Chapter 10. Before that,

Chapters 7-9 introduce a series of new qualitative spatial logics for validating

object matches using location information.
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Chapter 7

A Logic of NEAR and FAR for

Buffered Points

From this chapter to Chapter 9, a series of new qualitative spatial logics is

introduced to reason about ‘possibly sameAs’ and ‘possibly partOf’ relations

between geometries represented in different geospatial datasets, in particular

crowd-sourced datasets. In Section 5.1, BEQ and BPT are defined to formalize

‘possibly sameAs’ and ‘possibly partOf’ relations respectively. In the new spa-

tial logics, two additional spatial relations NEAR and FAR are defined, which

mean ‘possibly connected’ and ‘definitely disconnected’ respectively. The in-

tuition is, for any geometry X in one dataset, its corresponding geometry X ′

in another dataset is somewhere within buffer(X,σ). As shown in Fig. 7.1, two

geometries X,Y are NEAR, if their corresponding geometries X ′, Y ′ could be

connected, i.e. distance(X,Y ) ∈ [0,2σ]. Two geometries X,Y are FAR, if their

corresponding geometries X ′, Y ′ are not NEAR, i.e. distance(X,Y ) ∈ (4σ,+∞).

The logic of NEAR and FAR for buffered points (LNF) presented in this chap-

ter is for points, whilst the logics in Chapter 8 and Chapter 9 are for arbitrary
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FIGURE 7.1: NEAR (left); FAR (right)

geometries (non-empty sets of points). For any two points X,Y , by Defini-

tion 5.1, BEQ(X,Y ) iff BPT (X,Y ). Therefore, this logic includes BEQ but not

BPT as a predicate. We start with this logic for points, because it is easier and

has simpler proofs, which could be reused and extended to more complicated

cases for arbitrary geometries. LNF can be used for reasoning about points

(several geospatial datasets only have point geometries). The syntax, seman-

tics and axiomatisation of LNF are introduced in Section 7.1. Section 7.2 shows

that the axiomatisation is sound and complete for models based on a metric

space. Section 7.3 shows that the LNF satisfiability problem in a metric space is

NP-complete. In Section 7.4, a new semantics based on a two-dimensional Eu-

clidean space R2 is introduced for LNF, and we show that the LNF satisfiability

problem in R2 is still decidable, and its complexity is in PSPACE.

7.1 Syntax, Semantics and Axioms of LNF

The language L(LNF ) is defined as

φ,ψ := BEQ(a, b) | NEAR(a, b) | FAR(a, b) | ¬φ | φ∧ ψ.

φ→ ψ =def ¬(φ∧¬ψ).

L(LNF ) is interpreted over models based on a metric space (Definition 3.2).
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Definition 7.1 (Metric Model). A metric model M is a tuple (∆, d, I, σ), where

(∆, d) is a metric space, I is an interpretation function which maps each indi-

vidual name to an element in ∆, and σ ∈ R≥0 is a margin of error. The notion of

M |= φ (φ is true in model M ) is defined as follows:

M |= BEQ(a, b) iff d(I (a), I (b)) ∈ [0 , σ];

M |= NEAR(a, b) iff d(I (a), I (b)) ∈ [0 ,2σ];

M |= FAR(a, b) iff d(I (a), I (b)) ∈ (4σ,+∞);

M |= ¬φ iff M 6|= φ;

M |= φ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names, φ,ψ are formulas in L(LNF ).

The notions of validity and satisfiability in metric models are standard. A for-

mula is satisfiable if it is true in some metric model. A formula φ is valid (|= φ)

if it is true in all metric models (hence if its negation is not satisfiable). The logic

LNF is the set of all valid formulas of L(LNF ). It is proved below that LNF is a

proper fragment of the logic MS(M) described in Section 3.3.3. Strictly speak-

ing, this only holds when σ ∈ Q≥0, but later we will show that a finite set of

LNF formulas is satisfiable when σ ∈ R≥0, if it is satisfiable when σ = 1. In other

words, σ acts as a scaling factor.

Lemma 7.2. For individual names a, b, the MS(M) formula {a} ⊑ ¬{b} is not ex-

pressible in LNF.

Proof. Let M1,M2 be metric models1. M1 = (∆1, d, I1, σ), where ∆1 = {o1, o2},

d(o1, o2) = σ. I1(a) = o1, I1(b) = o2. For any x differing from a, b, I1(x) = o1.

1Note that we can construct models in a one-dimensional or two-dimensional Euclidean
space in similar way and prove the lemma.
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M2 = (∆2, d, I2, σ), where ∆2 = {o}. I2(a) = o, I2(b) = o. For any x differing from

a, b, I2(x) = o. For any individual name y, Ii({y}) = {Ii(y)}, i ∈ {1,2}.

By the definitions of M1,M2, for any individual names x, y, d(I1(x), I1(y)) ∈

[0, σ], d(I2(x), I2(y)) = 0. If φ is an atomic LNF formula about x, y, then by Def-

inition 7.1, M1 |= φ iff M2 |= φ. By an easy induction on logical connectives, for

any LNF formula φ, M1 |= φ iff M2 |= φ.

Since I1({a}) = {o1}, I1({b}) = {o2} and I2({a}) = I2({b}) = {o}, by the truth

definition of MS(M) formulas, M1 |= ({a} ⊑ ¬{b}), M2 6|= ({a} ⊑ ¬{b}). Hence,

{a} ⊑ ¬{b} is not equivalent to any LNF formula.

Lemma 7.3. The logic LNF is a proper fragment of the logic MS(M).

Proof. Every atomic LNF formula is expressible in MS(M):

• BEQ(a, b) ≡ (0 ≤ δ(a, b) ≤ σ);

• NEAR(a, b) ≡ (0 ≤ δ(a, b) ≤ 2σ);

• FAR(a, b) ≡ (δ(a, b) > 4σ).

LNF and MS(M) both have logical connectives ¬ and ∧. Hence every LNF

formula is expressible in MS(M). By Lemma 7.2, LNF is a proper fragment of

MS(M).

The following calculus (which we will also refer to as LNF) will be shown to be

sound and complete for LNF:

Axiom 0 All tautologies of classical propositional logic

Axiom 1 BEQ(a, a);

Axiom 2 BEQ(a, b)→ BEQ(b, a);
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Axiom 3 NEAR(a, b)→ NEAR(b, a);

Axiom 4 FAR(a, b)→ FAR(b, a);

Axiom 5 BEQ(a, b)∧BEQ(b, c)→ NEAR(c, a);

Axiom 6 BEQ(a, b)∧NEAR(b, c)∧BEQ(c, d)→ ¬FAR(d, a);

Axiom 7 NEAR(a, b)∧NEAR(b, c)→ ¬FAR(c, a);

MP Modus ponens: φ, φ→ ψ ⊢ ψ.

The notion of derivability Γ ⊢ φ in LNF is standard. A formula φ is LNF-

derivable if ⊢ φ. A set Γ is (LNF) inconsistent if for some formula φ it derives

both φ and ¬φ.

We have the following derivable formulas (which we will refer to as facts in the

completeness proof):

Fact 8 NEAR(a, b)∧BEQ(b, c)∧BEQ(c, d)→ ¬FAR(d, a);

Fact 9 BEQ(a, b)→ NEAR(a, b);

Fact 10 NEAR(a, b)→ ¬FAR(a, b);

Fact 11 NEAR(a, b)∧BEQ(b, c)→ ¬FAR(c, a);

Fact 12 BEQ(a, b)→ ¬FAR(a, b);

Fact 13 BEQ(a, b)∧BEQ(b, c)→ ¬FAR(c, a);

Fact 14 BEQ(a, b)∧BEQ(b, c)∧BEQ(c, d)→ ¬FAR(d, a);

Fact 15 BEQ(a, b)∧BEQ(b, c)∧BEQ(c, d)∧BEQ(d, e)→ ¬FAR(e, a).

As shown by Facts 12-15, a chain of at most four BEQs implies the negation of

FAR, because FAR is defined as being > 4σ distance away in Definition 7.1.
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7.2 Soundness and Completeness of LNF

This section shows that the LNF calculus is sound and complete for metric mod-

els, namely that

⊢ φ ⇔ |= φ

(every derivable formula is valid and every valid formula is derivable).

Theorem 7.4 (Soundness of LNF). Every LNF derivable formula is valid:

⊢ φ⇒ |= φ

Proof. The proof is by an easy induction on the length of the derivation of φ.

Axioms 1-7 are valid (by the truth definition of BEQ, NEAR and FAR) and

modus ponens preserves validity.

In the rest of this section, we prove completeness:

|= φ⇒ ⊢ φ

We will actually prove that given a finite consistent set of LNF formulas, there

is a metric model satisfying it. This shows that 6⊢ φ⇒6|= φ and by contraposition

we get completeness.

The completeness theorem is proved by constructing a metric model for a max-

imal consistent set (Definition 7.5) of any finite consistent set of LNF formulas

(Lemma 7.7).

Definition 7.5 (MCS). A set of formulas Γ in the language L(LNF ) is maximal

consistent, if Γ is consistent, and any set of LNF formulas over the same set

of individual names properly containing Γ is inconsistent. If Γ is a maximal

consistent set of formulas, then we call it an MCS.
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Proposition 7.6 (Properties of MCSs). If Γ is an MCS, then,

• Γ is closed under modus ponens: if φ, φ→ ψ ∈ Γ, then ψ ∈ Γ;

• if φ is derivable, then φ ∈ Γ;

• for all formulas φ: φ ∈ Γ or ¬φ ∈ Γ;

• for all formulas φ,ψ: φ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ;

• for all formulas φ,ψ: φ∨ ψ ∈ Γ iff φ ∈ Γ or ψ ∈ Γ.

Lemma 7.7 (Lindenbaum’s Lemma). If Σ is a consistent set of formulas in the lan-

guage L(LNF ), then there is an MCS Σ+ over the same set of individual names such

that Σ ⊆ Σ+.

Let φ0, φ1, φ2, ... be an enumeration of LNF formulas over the same set of indi-

vidual names as that in Σ. Σ+ can be defined as follows:

• Σ0 = Σ;

• Σn+1 = Σn ∪ {φn}, if it is consistent, otherwise, Σn+1 = Σn ∪ {¬φn};

• Σ+ =
⋃

n≥0Σn.

For a consistent set of formulas Σ, we construct a metric model satisfying a

maximal consistent set Σ+ containing it, by transforming Σ+ to a set of distance

constraints D(Σ+) and proving the following lemmas.

Lemma 7.8 (Metric Model Lemma). Let Σ+ be an MCS. If a metric space satisfies

D(Σ+), then it can be extended to a metric model satisfying Σ+.

Lemma 7.9 (Metric Space Lemma). Let Σ+ be anMCS. IfD(Σ+) is path-consistent,

then there is a metric space (∆, d) such that all the constraints in D(Σ+) are satisfied.
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Lemma 7.10 (Path-Consistency Lemma). Let Σ+ be an MCS. D(Σ+) is path-

consistent.

Using these three lemmas, the completeness of LNF is proved as follows.

Theorem 7.11 (Completeness of LNF). If a finite set of formulas Σ is LNF-consistent,

there exists a metric model satisfying it.

Proof. From a consistent set of formulas Σ, by Lindenbaum’s Lemma (Lemma

7.7), we can construct an MCS Σ+ containing Σ. By the Path-Consistency

Lemma (Lemma 7.10) and the Metric Space Lemma (Lemma 7.9), there is a

metric space (∆, d) such that all the constraints in D(Σ+) are satisfied. By the

Metric Model Lemma (Lemma 7.8), the metric space can be extended to a model

M of Σ+. Since Σ ⊆ Σ+, M satisfies all formulas in Σ.

The detailed proofs of the Metric Model Lemma, Metric Space Lemma and

Path-Consistency Lemma are provided in Section 7.2.1, Section 7.2.2 and Sec-

tion 7.2.3 respectively.

7.2.1 Metric Model Lemma

This section starts with explaining what a distance constraint is by Definition 7.12

and Definition 7.13, then shows how to construct a set of distance constraints

D(Σ+) from Σ+ by Lemma 7.14 and Definition 7.15. Finally, it presents the proof

of the Metric Model Lemma.

Definition 7.12 (Non-negative Interval). An interval h is non-negative, if h ⊆ [0,+∞).

Definition 7.13 (Distance Constraint, Distance Range). A distance constraint is

a statement of the form d(p, q) ∈ g, where p, q are constants representing points,

d(p, q) stands for the distance between p, q, and g is a non-negative interval,

which stands for the distance range for p, q.
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Lemma 7.14. If Σ+ be an MCS, then for any pair of individual names a, b occurring

in Σ, exactly one of the following cases holds:

1. BEQ(a, b) ∈ Σ+;

2. ¬BEQ(a, b)∧NEAR(a, b) ∈ Σ+;

3. ¬NEAR(a, b)∧¬FAR(a, b) ∈ Σ+;

4. FAR(a, b) ∈ Σ+.

Proof. For any pair of individual names a, b occurring in Σ, we have:

⊢ (B ∧N ∧ F )∨ (B ∧N ∧¬F )∨ (B ∧¬N ∧ F )∨ (B ∧¬N ∧¬F )∨ (¬B ∧ N ∧

F )∨ (¬B ∧N ∧¬F )∨ (¬B ∧¬N ∧ F )∨ (¬B ∧¬N ∧¬F )

whereB,N,F stand forBEQ(a, b),NEAR(a, b), FAR(a, b) respectively. By Facts

9, 10 and 12, we have ⊢ ⊥∨B ∨⊥∨⊥∨⊥∨ (¬B ∧N)∨ F ∨ (¬N ∧¬F ), this is,

⊢ B ∨ (¬B ∧N)∨ (¬N ∧¬F )∨ F .

Definition 7.15 (D(Σ+)). Let Σ+ be an MCS. To every individual name a in Σ,

we assign it a new point pa. We construct a set of distance constraints D(Σ+)

as follows. Initially, D(Σ+) = {}. For every individual name a in Σ, we add

d(pa, pa) ∈ {0} to D(Σ+). For every pair of different individual names a, b, if

1. BEQ(a, b) ∈ Σ+: add d(pa, pb) = d(pb, pa) ∈ [0, σ] to D(Σ+);

2. ¬BEQ(a, b)∧NEAR(a, b) ∈Σ+: add d(pa, pb) = d(pb, pa) ∈ (σ,2σ] toD(Σ+);

3. ¬NEAR(a, b)∧¬FAR(a, b)∈Σ+: add d(pa, pb) = d(pb, pa)∈ (2σ,4σ] toD(Σ+);

4. FAR(a, b) ∈ Σ+: add d(pa, pb) = d(pb, pa) ∈ (4σ,+∞) to D(Σ+).

Lemma 7.16. Let Σ+ be an MCS. For every pair of constants in D(Σ+), there is only

one distance range for them.
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Proof. Follows from Lemma 7.14 and Definition 7.15.

Lemma 7.17 (Metric Model Lemma). Let Σ+ be an MCS. If a metric space satisfies

D(Σ+), then it can be extended to a metric model satisfying Σ+.

Proof. Suppose a metric space (∆, d) satisfies D(Σ+). We extend it to a metric

model M by interpreting every individual name a in Σ as its corresponding

constant pa in D(Σ+). By Definition 7.15 and Definition 7.1, M satisfies Σ+.

7.2.2 Metric Space Lemma

Before proving the Metric Space Lemma, this section firstly explains the notion

of path-consistency by Definition 7.18 and Definition 7.19, then characterizes

distance constraints in D(Σ+) (Definition 7.23) and those appearing in the pro-

cess of enforcing path-consistency on D(Σ+) (Lemma 7.37).

Definition 7.18 (Composition). If d1, d2 are non-negative real numbers, then the

composition {d1} ◦ {d2}= [|d1− d2|, d1+ d2]
2. If g1, g2 are non-negative intervals,

then their composition is an interval which is the union of all {d1} ◦ {d2}, where

d1 ∈ g1, d2 ∈ g2, this is,

g1 ◦ g2 =
⋃

d1∈g1,d2∈g2
{d1} ◦ {d2}.

Definition 7.19 (Path Consistency). For a set of distance constraints D, for ev-

ery pair of constants a, b involved in D, their distance range is strengthened by

enforcing path-consistency as follows until a fixed point is reached:

∀c : g(a, b)← g(a, b)∩ (g(a, c) ◦ g(c, b))

where c is a constant inD, and g(a, b) denotes the distance range for a, b. If at the

fixed point, for every pair of constants a, b, g(a, b) 6= ∅, then D is path-consistent.

2Based on d(x, z) ≤ d(x, y) + d(y, z) (Property 3 of Definition 3.2).
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Lemmas 7.20-7.21 follow from Definition 7.18.

Lemma 7.20. Let g1, g2 be non-negative intervals. If d3 ∈ g1 ◦ g2, then there exist

d1 ∈ g1, d2 ∈ g2 such that d3 ∈ [|d1 − d2|, d1 + d2].

Lemma 7.21 (Calculation of Composition). If (m,n), (s, t), (m,∞), (s,∞), {l},

{r} are non-negative non-empty intervals, H1, H2, H are non-negative intervals, then

the following holds:

1. {l} ◦ {r} = [l− r, l+ r], if l ≥ r;

2. {l} ◦ (s, t) = (s− l, t+ l), if s ≥ l;

3. {l} ◦ (s, t) = [0, t+ l), if l ∈ (s, t);

4. {l} ◦ (s, t) = (l− t, t+ l), if t ≤ l;

5. {l} ◦ (s,+∞) = (s− l,+∞), if s ≥ l;

6. {l} ◦ (s,+∞) = [0,+∞), if s < l;

7. (m,n) ◦ (s, t) = (s− n, t+ n), if s ≥ n;

8. (m,n) ◦ (s, t) = [0, t+ n), if (m,n)∩ (s, t) 6= ∅;

9. (m,n) ◦ (s,+∞) = (s− n,+∞), if s ≥ n;

10. (m,n) ◦ (s,+∞) = [0,+∞), if s < n;

11. (m,+∞) ◦ (s,+∞) = [0,+∞);

12. H1 ◦ ∅ = ∅;

13. H1 ◦H2 = H2 ◦H1;

14. (H1 ∪H2) ◦H = (H1 ◦H)∪ (H2 ◦H).

15. (H1 ◦H2) ◦H = H1 ◦ (H2 ◦H).
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For an interval h of the form (l, u), [l, u), (l, u] or [l, u], let us call l the lower

bound of h, represented as lower(h), and u the upper bound of h, represented

as upper(h).

Lemma 7.22. For any non-negative non-empty intervals g, h, the following properties

hold

1. upper(g ◦ h) = upper(g) + upper(h);

2. lower(g ◦ h) ≤max(lower(g), lower(h)).

Proof. Follows from Lemma 7.21.

Now let us characterize distance constraints which appear in the process of

enforcing path-consistency on D(Σ+).

Definition 7.23 (Primitive, Composite, Definable Intervals). Let h be a non-

negative interval. h is primitive, if h is one of [0, σ], (σ,2σ], (2σ,4σ], (4σ,+∞). h

is composite, if it can be composed using at least two primitive intervals. h is

definable, if it is primitive or composite.

Lemma 7.24. If an interval occurs in D(Σ+), then it is an identity interval ({0}) or a

primitive interval.

Proof. Follows from Definition 7.23 and Definition 7.15.

Lemma 7.25. If h is a definable interval, then h 6= ∅.

Proof. Follows from Definition 7.23 and Definition 7.18.

Lemma 7.26. For any identity or definable interval h, h ◦ {0} = h.

Proof. Follows from Definition 7.23 and Definition 7.18.

Lemma 7.27. If an interval h is definable, then the following properties hold:
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1. lower(h) = nσ,n ∈ {0,1,2,3,4};

2. upper(h) = +∞ or upper(h) =mσ,m ∈ N>0.

Proof. Let us prove by induction on the structure of h.

Base case: h is primitive. n ∈ {0,1,2,4}, upper(h) = +∞ or m ∈ {1,2,4}.

Inductive case: Suppose Properties 1,2 hold for any interval ht which can be

composed by t primitive intervals, we will show Properties 1,2 hold for any

interval ht+1 which can be composed by (t+ 1) primitive intervals.

For any ht+1, there exist an ht and a primitive interval hp such that ht+1 = ht ◦hp.

By hypothesis, lower(ht) = ntσ, nt ∈ {0,1,2,3,4}; upper(ht) = +∞ or upper(ht) =

mtσ, mt ∈ N>0. From the base case, lower(hp) = npσ, np ∈ {0,1,2,4}; upper(hp) =

+∞ or upper(hp) =mpσ,mp ∈ {1,2,4}. By Lemma 7.22, upper(ht+1) = upper(ht)+

upper(hp). Thus, Property 2 holds. By Lemma 7.21, if

• upper(ht) < lower(hp), then lower(ht+1) = lower(hp)− upper(ht);

• upper(hp) < lower(ht), then lower(ht+1) = lower(ht)− upper(hp);

• otherwise, lower(ht+1) = 0.

Since upper(ht) and upper(hp) are positive, lower(ht+1) < 4σ.

In each case, lower(ht+1) = nt+1σ,nt+1 ∈ {0,1,2,3} (Property 1 holds).

Lemma 7.28. If an interval h is identity or definable, then:

1. upper(h) = 0, iff h = {0};

2. upper(h) = σ, iff h = [0, σ];

3. lower(h) = 4σ, iff h = (4σ,∞).

Proof. Follows from Lemmas 7.27 and 7.22.
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Definition 7.29 (DS(Σ+)). We define the set of distance constraints which ap-

pear in the process of enforcing path-consistency onD(Σ+), denoted asDS(Σ+),

as follows:

• Any distance constraint in D(Σ+) is in DS(Σ+);

• If distance constraints d(a, b)∈ h and d(b, c)∈ g are inDS(Σ+), then d(a, c)∈

h ◦ g is in DS(Σ+);

• If distance constraints d(a, b)∈ h and d(a, b)∈ g are inDS(Σ+), then d(a, b)∈

h∩ g is in DS(Σ+),

where a, b, c are constants in D(Σ+).

Lemma 7.30. If a distance constraint d(a, b) ∈ h is in DS(Σ+), then h is a non-

negative interval.

Proof. For any distance constraint d(a, b) ∈ h in D(Σ+), by Definitions 7.15, h is

a non-negative interval. By Definitions 7.12, 7.18 and the definition of intersec-

tion, applying composition or intersection on non-negative intervals, we obtain

non-negative intervals. By Definition 7.29, h is a non-negative interval.

A non-empty interval h is right-closed, iff h = [x, y] or h = (x, y]. h is right-open,

iff h = [x, y) or h = (x, y). h is right-infinite, iff h = [x,∞) or h = (x,∞). h is

left-closed, iff h = [x, y] or h = [x, y). h is left-open, iff h = (x, y] or h = (x, y).

Lemma 7.31. If a distance constraint d(a, b) ∈ h is in DS(Σ+) and h 6= ∅, then h is

either right-infinite or right-closed.

Proof. Let n denote the total number of times of applying composition or inter-

section to obtain h, n ≥ 0. We prove by induction on n.

Base case: n= 0, then d(a, b) ∈ h is inD(Σ+). By Lemma 7.24 and Definition 7.23,
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h is either right-infinite or right-closed. Inductive step: Suppose the statement

holds for any non-empty h which can be obtained by applying composition or

intersection no more than n times (Inductive Hypothesis). We will show it also

holds for any non-empty h which can be obtained by applying composition or

intersection (n+ 1) times.

• If the last step to obtain h is intersection, then by Definition 7.29, there

exist non-empty h1, h2 such that h = h1 ∩ h2. By induction hypothesis, for

each hi, i ∈ {1,2}, hi is either right-infinite or right-closed. By intersection

rules, h is either right-infinite or right-closed.

• If the last step to obtain h is composition, then by Definition 7.29, there

exist non-empty h1, h2 such that h = h1 ◦ h2. By induction hypothesis, for

each hi, i ∈ {1,2}, hi is either right-infinite or right-closed. By composition

rules (Lemma 7.21), h is either right-infinite or right-closed.

Lemma 7.32. For a distance constraint d(a, b)∈ h inDS(Σ+) and h 6= ∅, if lower(h) 6=

0, then h is left-open.

Proof. Let n denote the total number of times of applying composition or inter-

section to obtain h, n ≥ 0. We prove by induction on n.

Base case: n = 0, then d(a, b) ∈ h is in D(Σ+). By Lemma 7.24 and Definition

7.23, if lower(h) 6= 0, then h is left-open. Inductive step: Suppose the statement

holds for any non-empty h which can be obtained by applying composition or

intersection no more than n times (Inductive Hypothesis). We will show it also

holds for any non-empty h which can be obtained by applying composition or

intersection (n+ 1) times.

• If the last step to obtain h is intersection, then by Definition 7.29, there

exist non-empty h1, h2 such that h = h1 ∩ h2. By induction hypothesis, for
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each hi, i ∈ {1,2}, if lower(hi) 6= 0, then hi is left-open. By intersection

rules, if lower(h) 6= 0, then h is left-open.

• If the last step to obtain h is composition, then by Definition 7.29, there

exist non-empty h1, h2 such that h = h1 ◦ h2. If lower(h) 6= 0, then by com-

position rules (Lemma 7.21), h1 ∩ h2 = ∅. Suppose upper(h1) ≤ lower(h2),

then lower(h) = lower(h2)− upper(h1). By Lemma 7.30 and lower(h) 6= 0,

lower(h) > 0, thus lower(h2) > upper(h1). By Lemma 7.30, upper(h1) ≥ 0,

thus lower(h2) > 0. By induction hypothesis and lower(h2) 6= 0, h2 is left-

open. By composition rules (Lemma 7.21), h is left-open. Similarly, this

also holds if upper(h2) ≤ lower(h1).

We are now going to characterise all possible distance constraints occurring in

DS(Σ+). Eventually, we will show that all those distance constraints are left

and right definable in the sense given below.

If a non-empty interval h is left-open, then its lower bound is represented as

lower−(h). If h is left-closed, then its lower bound is represented as lower+(h).

If h is right-open, then its upper bound is represented as upper−(h). If h is right-

closed, then its upper bound is represented as upper+(h).

Definition 7.33 (Left-Definable). A distance constraint d(c1, cn) ∈ hs (n > 1) is

left-definable, iff hs 6= ∅ and there exists a sequence of distance constraints

d(ci, ci+1) ∈ hi (0< i < n) inD(Σ+), such that form= h1 ◦ ... ◦hn−1, the following

holds:

1. If hs is left-open, then m is left-open and lower−(m) = lower−(hs);

2. If hs is left-closed, then m is left-closed and lower+(m) = lower+(hs);

3. hs ⊆m.
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Definition 7.34 (Right-Definable). A distance constraint d(c1, cn) ∈ hs (n > 1)

is right-definable, iff hs 6= ∅ and there exists a sequence of distance constraints

d(ci, ci+1) ∈ hi (0< i < n) inD(Σ+), such that form= h1 ◦ ... ◦hn−1, the following

holds:

1. If hs is right-open, then m is right-open and upper−(m) = upper−(hs);

2. If hs is right-closed, then m is right-closed and upper+(m) = upper+(hs);

3. hs ⊆m.

Lemma 7.35. Let h, g be non-negative intervals. If distance constraints d(a, b) ∈ h and

d(b, c) ∈ g are left-definable and right-definable, then d(a, c) ∈ h ◦ g is left-definable and

right-definable.

Proof. Since d(a, b) ∈ h and d(b, c) ∈ g are right-definable, then by Definition 7.34,

h 6= ∅, g 6= ∅. By Definition 7.18, h ◦ g 6= ∅.

By Definition 7.34, in D(Σ+), there exist a sequence of distance constraints

d(a,x2) ∈ h1, ..., d(xn−1, b) ∈ hn−1 for d(a, b) ∈ h and a sequence of distance con-

straints d(b, y2) ∈ g1, ..., d(yt−1, c) ∈ gt−1 for d(b, c) ∈ g respectively satisfying the

three properties. Let us take the union of the two sequences as a new one, this

is, d(a,x2) ∈ h1, ..., d(xn−1, b) ∈ hn−1, d(b, y2) ∈ g1, ..., d(yt−1, c) ∈ gt−1. By composi-

tion rules (Lemma 7.21), the new sequence satisfies the properties in Definition

7.34 for d(a, c) ∈ h ◦ g. Hence, d(a, c) ∈ h ◦ g is right-definable.

By composition rules (Lemma 7.21), if h∩ g 6= ∅, then lower+(h ◦ g) = 0. We can

use the same new sequence above. Let s1 = (h1 ◦ ...◦hn−1), s2 = (g1 ◦ ...◦ gt−1). By

Definition 7.34, h⊆ s1, g ⊆ s1. Then s1 ∩ s2 6= ∅, therefore, lower+(s1 ◦ s2) = 0. By

Definition 7.18, h ◦ g ⊆ s1 ◦ s2. By Definition 7.33, d(a, c) ∈ h ◦ g is left-definable.

If h∩ g = ∅, let us suppose lower(h)≥ upper(g). Since d(a, b) ∈ h is left-definable

and d(b, c) ∈ g is right-definable, by Definitions 7.33 and 7.34 respectively, in
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D(Σ+), there exist a sequence of distance constraints for d(a, b) ∈ h and a se-

quence of distance constraints for d(b, c) ∈ g, satisfying the corresponding prop-

erties. Then by composition rules (Lemma 7.21), the union of the two sequences

satisfies the properties in Definition 7.33 for d(a, c) ∈ h ◦ g. Hence, d(a, c) ∈

h ◦ g is left-definable. Similarly, we can show d(a, c) ∈ h ◦ g is left-definable,

if lower(g) ≥ upper(h).

Lemma 7.36. Let h, g be non-negative intervals. If distance constraints d(a, b) ∈ h

and d(a, b) ∈ g are left-definable and right-definable, h ∩ g 6= ∅, then d(a, b) ∈ h ∩ g is

left-definable and right-definable.

Proof. As applying intersections does not generate any new bound and h∩ g 6=

∅, the left/right bound of h ∩ g is the same as that of h or g. If the left bound of

h ∩ g is the same as that of h, then by Definition 7.33, the same sequence used

for showing d(a, b) ∈ h is left-definable can be used to show d(a, b) ∈ h ∩ g is

left-definable. Other cases are similar.

Lemma 7.37. If a distance constraint d(a, b) ∈ h is in DS(Σ+) and h 6= ∅, then it is

left-definable and right-definable.

Proof. Let n denote the total number of times of applying composition or inter-

section to obtain h, n ≥ 0. We prove by induction on n.

Base case: n = 0, then d(a, b) ∈ h is in D(Σ+). By Definitions 7.33 and 7.34,

d(a, b) ∈ h is left-definable and right-definable.

Inductive step: Suppose the statement holds for any non-empty h which can

be obtained by applying composition or intersection no more than n times (In-

ductive Hypothesis). We will show it also holds for any non-empty h which

can be obtained by applying composition or intersection (n+ 1) times. By Def-

inition 7.29, the last operation to obtain h is either composition or intersection.

In the former case, there exist d(a, c) ∈ g1 and d(c, b) ∈ g2 in DS(Σ+), such that

g1 ◦ g2 = h. As h 6= ∅, by Definition 7.18, gi 6= ∅, i ∈ {1,2}. Since g1 and g2 are
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obtained by applying composition or intersection no more than n times, then

by hypothesis, d(a, c) ∈ g1 and d(c, b) ∈ g2 are left-definable and right-definable.

By Lemma 7.35, d(a, b) ∈ h is left-definable and right-definable. In the latter

case, there exist d(a, b) ∈ g1 and d(a, b) ∈ g2 in DS(Σ+), such that g1 ∩ g2 = h. As

h 6= ∅, by intersection rules, gi 6= ∅, i ∈ {1,2}. By hypothesis, d(a, b) ∈ g1 and

d(a, b) ∈ g2 are left-definable and right-definable. By Lemma 7.36, d(a, b) ∈ h is

left-definable and right-definable.

In the following, we show there is a metric space satisfying D(Σ+), if D(Σ+) is

path-consistent (Metric Space Lemma).

Lemma 7.38. Let t be the number of constants in D(Σ+). If d(a, b) ∈ h is in DS(Σ+),

h 6= ∅ and h is right-closed, then upper+(h) ≤ 4tσ.

Proof. By Lemma 7.37, d(a, b) ∈ h is right-definable. By Definition 7.34, there

exists a right-closed m = h1 ◦ ... ◦ hn−1 and upper+(m) = upper+(h). The largest

possible upper+(m) generated over t constants is 4tσ, where for every hi (0 <

i < n, n− 1 = t), upper+(hi) = 4σ.

Lemma 7.39. Let t be the number of constants in D(Σ+). Enforcing path-consistency

on D(Σ+), a fixed point can be reached in O(t3).

Proof. By Definition 7.19, Lemmas 7.27, 7.26 and the fact that intersection does

not generate new bounds, for any interval s appearing in the process of enforc-

ing path-consistency on D(Σ+), we have

1. lower(s) = nσ,n ∈ {0,1,2,3,4};

2. upper(s) = +∞ or upper(s) =mσ,m ∈ N.

For any interval h appearing in D(Σ+), by enforcing path-consistency (Defini-

tion 7.19), h can only become an h′ ⊆ h. By Lemma 7.31, h is either right-closed

or right-infinite, h′ is ∅, right-closed or right-infinite.
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• If h is right-closed, then h′ = ∅ or h′ is right-closed. If h′ is right-closed,

then by Lemma 8.15, upper(h′) ≤ upper(h) ≤ 4σ. By Properties 1, 2, there

are finitely many possibilities for h′.

• If h is right-infinite, then h′ is ∅, right-closed or right-infinite.

– If h′ is right-closed, then by Lemma 7.38, upper(h′) ≤ 4tσ. By Proper-

ties 1, 2, there are finitely many possibilities for h′.

– If h′ is right-infinite, then by Properties 1, there are finitely many pos-

sibilities for its lower bound, thus for h′.

Since in each case, there are finitely many possibilities for h′, a fixed point is

always reached.

Suppose the widest non-negative interval [0,∞) appears in the process of en-

forcing path-consistency on D(Σ+). In the worst case, firstly, [0,∞) is strength-

ened to [0, u], where u ≤ 4tσ (by Lemma 7.38), then [0, u] is strengthened by σ

each time. Hence, [0,∞) can be strengthened at most (4t+ 1) times. For any

interval h appearing in D(Σ+), h ⊆ [0,∞). Over t constants, there are O(t2) dis-

tance constraints in D(Σ+). Therefore, the total time of strengthening all the

distance constraints is O(t3).

Lemma 7.40. Let g1, g2, g3 be non-negative non-empty right-closed intervals, if g1 ⊆

g2 ◦ g3, then upper(g1) ≤ upper(g2) + upper(g3).

Proof. Suppose g1 ⊆ g2 ◦ g3. Since upper(g1) ∈ g1, upper(g1) ∈ g2 ◦ g3. By Lemma

7.20, there exist d2 ∈ g2, d3 ∈ g3, such that upper(g1)≤ d2+d3. Since d2 ≤ upper(g2),

d3 ≤ upper(g3), upper(g1) ≤ upper(g2) + upper(g3).

Lemma 7.41. Let g1, g2, g3 be non-negative non-empty intervals, g1 ⊆ g2 ◦ g3. If g1 is

right-infinite, then g2 or g3 is right-infinite.
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Proof. Suppose g1 is right-infinite. Since g1 ⊆ g2 ◦ g3, g2 ◦ g3 is right-infinite. By

Definition 7.18 and Lemma 7.21, g2 or g3 is right-infinite.

Lemma 7.42. Let t be the number of constants in D(Σ+), Df (Σ+) be a fixed point of

enforcing path consistency onD(Σ+). IfD(Σ+) is path-consistent, Ds(Σ
+) is obtained

from Df (Σ+) by replacing every right-infinite interval with {5tσ}, every right-closed

interval h with {upper(h)}, then Ds(Σ
+) is path-consistent.

Proof. SupposeD(Σ+) is path-consistent. By Definition 7.29,Df (Σ+)⊆DS(Σ+).

By Definition 7.19, for every interval h in Df (Σ+), h 6= ∅. By Lemma 7.31, any

interval h appearing in Df (Σ+) is either right-infinite or right-closed. To prove

Ds(Σ
+) is path-consistent, we only need to show that for any three distance

ranges, {nab},{nbc},{nac} in Ds(Σ
+) over three constants a, b, c, we have

1. nab ≤ nbc + nac;

2. nbc ≤ nab + nac;

3. nac ≤ nab + nbc.

Let hab, hbc, hac denote the corresponding distance ranges of {nab},{nbc},{nac}

respectively in Df (Σ+), by Definition 7.19, we have

• hab ⊆ hbc ◦ hac;

• hbc ⊆ hab ◦ hac;

• hac ⊆ hab ◦ hbc.

We prove Ds(Σ
+) is path-consistent by cases:

• If every hi (i ∈ {ab, bc, ac}) is right-closed, then, ni = upper(hi). By Lemma

7.40, 1-3 hold.
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• Otherwise, not all of them are right-closed. By Lemma 7.41, at least two

of them are right-infinite.

– If all of them are right-infinite, then ni = 5tσ. Since 5tσ ≤ 5tσ + 5tσ,

1-3 hold.

– Otherwise, only one of them is right-closed. Let hab be right-closed.

Then, nab = upper(hab), nbc = 5tσ, nac = 5tσ. By Lemma 7.38 and σ ∈

R≥0, upper(hab) ≤ 4tσ < 5tσ. By Lemma 7.30, upper(hab) ≥ 0. Since

upper(hab) < 5tσ + 5tσ and 5tσ ≤ 5tσ + upper(hab), 1-3 hold.

Lemma 7.43 (Metric Space Lemma). Let Σ+ be anMCS. IfD(Σ+) is path-consistent,

then there is a metric space (∆, d) such that all the constraints in D(Σ+) are satisfied.

Proof. SupposeD(Σ+) is path-consistent. Let ∆ be the set of constants inD(Σ+),

which is used to interpret individual names occurring in Σ, as shown in Defi-

nition 7.15. The number of constants in ∆ is denoted by t. By Lemma 7.39, a

fixed pointDf (Σ+) can be reached by enforcing path-consistency onD(Σ+). Let

Ds(Σ
+) be a set of distance constraints obtained fromDf (Σ+) by replacing every

right-infinite interval with {5tσ}, every right-closed interval h with {upper(h)}.

By Definition 7.15 and Lemma 7.42, for any pair of constants x, y, if x = y, then

d(x, y) = 0 holds in Ds(Σ
+); if x 6= y, d(x, y) ≥ σ > 0 holds in Ds(Σ

+). Thus, we

have d(x, y) = 0 iff x = y in Ds(Σ
+). By Definitions 7.15 and 7.19, for any pair

of constants x, y, d(x, y) = d(y, x) holds in Ds(Σ
+). By Lemma 7.42, Ds(Σ

+) is

path-consistent. Thus, for any constants x, y, z, d(x, z) ≤ d(x, y) + d(y, z) holds

in Ds(Σ
+). By Definition 3.2, there is a metric space (∆, d) such that all the con-

straints in D(Σ+) are satisfied.
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7.2.3 Path-Consistency Lemma

This section proves the Path-Consistency Lemma by contradiction. Suppose

D(Σ+) is not path-consistent. We examine every case where the first ∅ inter-

val is obtained by enforcing path-consistency. In each case, we show that ⊥ is

derivable from the corresponding LNF formulas in Σ+ using LNF axioms. This

contradicts the assumption that Σ+ is consistent.

Knowing an upper bound or a lower bound of a definable interval h, Lemmas

7.44-7.50 show all possibilities of h. Lemma 7.44 and Lemma 7.47 are proved

below. Proofs for the other lemmas are similar and omitted.

Lemma 7.44. If an interval h is definable, upper(h) = 2σ, then h = (σ,2σ] or h =

[0, σ] ◦ [0, σ].

Proof. If h is primitive, then by Definition 7.23, h = (σ,2σ].

If h is composite, then there exist two definable intervals g1, g2 such that g1 ◦ g2 =

h. By Lemma 7.22, upper(g1) + upper(g2) = 2σ. upper(g1) = 2σ − upper(g2). By

Lemma 7.27, upper(g1) ≥ σ, then upper(g2) ≤ σ. By Lemma 7.27, upper(g2) ≥

σ, then upper(g2) = σ. Similarly, upper(g1) = σ. By Lemma 7.28, h = [0, σ] ◦

[0, σ].

Lemma 7.45. If an interval h is definable, upper(h) = 3σ, then h is composed by one

[0, σ] and one (σ,2σ] or h = [0, σ] ◦ [0, σ] ◦ [0, σ].

Lemma 7.46. If an interval h is definable, upper(h) = 4σ, then h = (2σ,4σ], or h =

(σ,2σ] ◦ (σ,2σ], or h is composed by two [0, σ] and one (σ,2σ], or h = [0, σ] ◦ [0, σ] ◦

[0, σ] ◦ [0, σ].

Lemma 7.47. If an interval h is definable, lower(h) = 3σ, then h is composed by one

[0, σ] and one (4σ,∞).
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Proof. By Definition 7.23, h cannot be primitive.

If h is composite, then there exist two definable intervals g1, g2 such that g1 ◦ g2 =

h. g1 ∩ g2 = ∅, otherwise, by Lemma 7.21, lower(h) = 0.

Let upper(g1) ≤ lower(g2). By Lemma 7.21, lower(g2) − upper(g1) = 3σ. By

Lemma 7.27, lower(g2) ≤ 4σ,upper(g1) ≥ σ, then lower(g2) = 4σ, upper(g1) = σ.

By Lemma 7.28, h is composed by one [0, σ] and one (4σ,∞).

Lemma 7.48. If an interval h is definable, lower(h) = 2σ, then h = (2σ,4σ], or h

is composed by one (σ,2σ] and one (4σ,∞), or h is composed by two [0, σ] and one

(4σ,∞).

Lemma 7.49. If an interval h is definable, lower(h) = σ, then h = (σ,2σ], or h is

composed by one [0, σ] and one (2σ,4σ], or h is composed by one [0, σ], one (σ,2σ] and

one (4σ,∞), or h is composed by three [0, σ] and one (4σ,∞).

Lemma 7.50. If an interval h is definable and left-open, lower(h) = 0, then h has the

following possibilities:

• h is composed by one [0, σ] and one (σ,2σ];

• h is composed by two [0, σ] and one (2σ,4σ];

• h is composed by two [0, σ], one (σ,2σ] and one (4σ,∞);

• h is composed by four [0, σ] and one (4σ,∞);

• h is composed by one (σ,2σ] and one (2σ,4σ];

• h is composed by two (σ,2σ] and one (4σ,∞);

• h is composed by one (2σ,4σ] and one (4σ,∞).

Lemma 7.51 (Path-Consistency Lemma). Let Σ+ be an MCS. D(Σ+) is path-

consistent.
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Proof. Suppose D(Σ+) is not path-consistent. By Definitions 7.19 and 7.29,

d(p, q) ∈ ∅ is in DS(Σ+), for some constants p, q. By Definition 7.15, for any

distance range g occurring in D(Σ+), g 6= ∅. By Definitions 7.29, 7.18, and inter-

section rules, the last operation to obtain the first ∅ interval is intersection. By

Definition 7.29, there exist d(p, q) ∈ h and d(p, q) ∈ g in DS(Σ+), h 6= ∅, g 6= ∅,

and h ∩ g = ∅. By Lemma 7.30, h, g are non-negative intervals. Without loss of

generality, let us suppose upper(h) ≤ lower(g).

By Lemma 7.37, d(p, q) ∈ h and d(p, q) ∈ g are left-definable and right-definable.

Since d(p, q) ∈ h is right-definable, then by Definition 7.34, there exists an h′ such

that h and h′ have the same upper bound (including both value and openness)

and h⊆ h′. Since d(p, q) ∈ g is left-definable, then by Definition 7.33, there exists

a g′ such that g and g′ have the same lower bound (including both value and

openness) and g ⊆ g′. Then h′ and g′ are identity or definable intervals. By

properties of identity or definable intervals (Lemma 7.27), lower(g′) ≤ 4σ, thus,

upper(h′) ≤ 4σ. By properties of intervals in DS(Σ+) (Lemmas 7.31, 7.32), h is

right-closed; g is left-open, if lower(g) 6= 0. Then all the possible cases where

h∩ g = ∅ are listed below:

• upper(h) = 0, lower(g) ∈ {σ,2σ,3σ,4σ} or lower−(g) = 0;

• upper(h) = σ, lower(g) ∈ {σ,2σ,3σ,4σ};

• upper(h) = 2σ, lower(g) ∈ {2σ,3σ,4σ};

• upper(h) = 3σ, lower(g) ∈ {3σ,4σ};

• upper(h) = 4σ, lower(g) = 4σ.

We will check whether ⊥ can be derived in every case using axioms (or deriv-

able facts). By Axioms 2-4, BEQ, NEAR,FAR are symmetric.

113



A Logic of NEAR and FAR for Buffered Points 114

1. upper(h) = 0: by Definition 7.34 and Lemma 7.28, h′ = {0}, d(pa, pa)∈ {0} is

inD(Σ+), for some individual name a. By Definition 7.15,BEQ(a, a)∈Σ+.

(a) lower(g) = σ: by Definition 7.33 and Lemma 7.49, g′ has the following

possibilities:

i. g′ = (σ,2σ]: by Definition 7.15, ¬BEQ(a, a) ∈ Σ+.

By Axiom 1, ¬BEQ(a, a)→⊥.

ii. g′ is composed by one [0, σ] and one (2σ,4σ]:

by Definition 7.15, BEQ(a, b) ∈ Σ+ and ¬NEAR(b, a) ∈ Σ+.

By Fact 9, BEQ(a, b)∧¬NEAR(b, a)→⊥.

iii. g′ is composed by one [0, σ], one (σ,2σ] and one (4σ,∞):

by Definition 7.15, in Σ+, we have BEQ(x1, x2), NEAR(x2, x3)

and FAR(x3, x1), {x1, x2, x3} = {a, b, c}.

By Fact 11, BEQ(x1, x2)∧NEAR(x2, x3)∧ FAR(x3, x1)→⊥.

iv. g′ is composed by three [0, σ] and one (4σ,+∞):

by Definition 7.15, in Σ+, we have BEQ(x1, x2), BEQ(x2, x3),

BEQ(x3, x4), FAR(x4, x1), where {x1, x2, x3, x4} = {a, b, c, d}.

By Fact 14, BEQ(x1 , x2 )∧BEQ(x2 , x3 )∧BEQ(x3 , x4 )∧ FAR(x4 , x1 )→⊥.

(b) lower(g) = 2σ: by Definition 7.33 and Lemmas 7.48, g′ has the follow-

ing possibilities:

i. g′ = (2σ,4σ]: ¬NEAR(a, a), using Axiom 1 and Fact 9.

ii. g′ is composed by one (σ,2σ] and one (4σ,+∞) :

NEAR(a, b) and FAR(b, a), using Fact 10.

iii. g′ is composed by two [0, σ] and one (4σ,+∞):

BEQ(x1, x2), BEQ(x2, x3) and FAR(x3, x1), where {x1, x2, x3} =

{a, b, c}, using Fact 13.

(c) lower(g) = 3σ: by Definition 7.33 and Lemma 7.47,

g′ is composed by one [0, σ] and one (4σ,+∞).

BEQ(a, b) and FAR(b, a), using Fact 12.
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(d) lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞).

FAR(a, a), using Axiom 1 and Fact 12.

(e) lower−(g) = 0: by Definition 7.33 and Lemma 7.50, g′ has the follow-

ing possibilities:

i. g′ is composed by one [0, σ] and one (σ,2σ]:

one BEQ and one ¬BEQ, using Axiom 2.

ii. g′ is composed by two [0, σ] and one (2σ,4σ]:

two BEQ and one ¬NEAR, using Axiom 5.

iii. g′ is composed by two [0, σ], one (σ,2σ] and one (4σ,∞):

two BEQ, one NEAR and one FAR, using Axiom 6, Fact 8.

iv. g′ is composed by four [0, σ] and one (4σ,∞):

four BEQ and one FAR, using Fact 15.

v. g′ is composed by one (σ,2σ] and one (2σ,4σ]:

one NEAR and one ¬NEAR, using Axiom 3.

vi. g′ is composed by two (σ,2σ] and one (4σ,∞):

two NEAR and one FAR, using Axiom 7.

vii. g′ is composed by one (2σ,4σ] and one (4σ,∞):

one ¬FAR and one FAR, using Axiom 4.

2. upper(h) = σ: by Definition 7.34 and Lemma 7.28, h′ = [0, σ], d(pa, pb) ∈

[0, σ] is in D(Σ+), for some individual names a, b. By Definition 7.15,

BEQ(a, b) ∈ Σ+.

(a) lower(g) = σ: by Definition 7.33 and Lemma 7.49, g′ has the following

possibilities:

i. g′ = (σ,2σ]: ¬BEQ(b, a) ∈ Σ+, using Axiom 2.

ii. g′ is composed by one [0, σ] and one (2σ,4σ]:

one BEQ and one ¬NEAR, using Axiom 5.
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iii. g′ is composed by one [0, σ], one (σ,2σ] and one (4σ,+∞)

one BEQ, one NEAR and one FAR, using Axiom 6, Fact 8.

iv. g′ is composed by three [0, σ] and one (4σ,+∞):

three BEQ and one FAR, using Fact 15.

(b) lower(g) = 2σ: by Definition 7.33 and Lemma 7.48, g′ has the follow-

ing possibilities:

i. g′ = (2σ,4σ]: ¬NEAR(b, a), using Fact 9.

ii. g′ is composed by one (σ,2σ] and one (4σ,+∞):

one NEAR and one FAR, using Fact 11.

iii. g′ is composed by two [0, σ] and one (4σ,+∞):

two BEQ and one FAR, using Fact 14.

(c) lower(g) = 3σ: by Definition 7.33 and Lemma 7.47,

g′ is composed by one [0, σ] and one (4σ,+∞).

one BEQ and one FAR, using Fact 13.

(d) lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞).

FAR(b, a), using Fact 12.

3. upper(h) = 2σ: by Definition 7.34 and Lemma 7.44, h′ has the following

possibilities:

(a) h′ = (σ,2σ]: one NEAR

i. lower(g) = 2σ: by Definition 7.33 and Lemma 7.48, g′ has the fol-

lowing possibilities:

A. g′ = (2σ,4σ]: ¬NEAR(b, a), using Axiom 3.

B. g′ is composed by one (σ,2σ] and one (4σ,+∞) :

one NEAR and one FAR, using Axiom 7.

C. g′ is composed by two [0, σ] and one (4σ,+∞):

two BEQ and one FAR, using Axiom 6, Fact 8.
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ii. lower(g) = 3σ: by Definition 7.33 and Lemma 7.47,

g′ is composed by one [0, σ] and one (4σ,+∞).

one BEQ and one FAR, using Fact 11.

iii. lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞).

FAR(b, a), using Fact 10.

(b) h′ = [0, σ] ◦ [0, σ]: two BEQ

i. lower(g) = 2σ: by Definition 7.33 and Lemma 7.48, g′ has the fol-

lowing possibilities:

A. g′ = (2σ,4σ]: one ¬NEAR, using Axiom 5.

B. g′ is composed by one (σ,2σ] and one (4σ,+∞) :

one NEAR and one FAR, using Axiom 6, Fact 8.

C. g′ is composed by two [0, σ] and one (4σ,+∞):

two BEQ and one FAR, using Fact 15.

ii. lower(g) = 3σ: by Definition 7.33 and Lemma 7.47,

g′ is composed by one [0, σ] and one (4σ,+∞).

one BEQ and one FAR, using Fact 14.

iii. lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞).

one FAR, using Fact 13.

4. upper(h) = 3σ: by Definition 7.34 and Lemma 7.45, h′ has the following

possibilities:

(a) h′ is composed by one [0, σ] and one (σ,2σ]: oneBEQ and oneNEAR

i. lower(g) = 3σ: by Definition 7.33 and Lemma 7.47,

g′ is composed by one [0, σ] and one (4σ,+∞).

one BEQ and one FAR, using Axiom 6, Fact 8.

ii. lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞).

one FAR, using Fact 11.

(b) h′ = [0, σ] ◦ [0, σ] ◦ [0, σ]: three BEQ
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i. lower(g) = 3σ: by Definition 7.33 and Lemma 7.47,

g′ is composed by one [0, σ] and one (4σ,+∞).

one BEQ and one FAR, using Fact 15.

ii. lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞).

one FAR, using Fact 14.

5. lower(g) = 4σ: by Definition 7.33 and Lemma 7.28, g′ = (4σ,+∞), FAR(a, b).

(a) upper(h) = 4σ: by Definition 7.34 and Lemma 7.46, h′ has the follow-

ing possibilities:

i. h′ = (2σ,4σ]: ¬FAR(b, a), using Axiom 4.

ii. h′ = (σ,2σ] ◦ (σ,2σ]: two NEAR, using Axiom 7.

iii. h′ is composed by two [0, σ] and one (σ,2σ]:

two BEQ and one NEAR, using Axiom 6, Fact 8.

iv. h′ = [0, σ] ◦ [0, σ] ◦ [0, σ] ◦ [0, σ]:

four BEQ, using Fact 15.

In each case, ⊥ is derivable using the corresponding axioms or facts, which

contradicts the assumption that Σ+ is consistent. Therefore, D(Σ+) is path-

consistent.

7.3 Decidability and Complexity of LNF

By Lemma 7.3 and Theorem 3.14, the LNF satisfiability problem in a metric

space is decidable in EXPTIME. In this section, we prove a lower complexity of

the LNF satisfiability problem, provided NP ( EXPTIME .

Theorem 7.52. The LNF satisfiability problem in a metric space is NP-complete.
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Proof. NP-hardness of the LNF satisfiability problem follows from NP-hardness

of the satisfiability problem for propositional logic, which is included in LNF.

To prove that the LNF satisfiability problem is in NP, we show that given a finite

satisfiable set of LNF formulas Γ, we can guess a model for Γ and verify that

this model satisfies Γ, both in time polynomial in the combined size of formulas

occurring in Γ (the sum of the sizes of all formulas in Γ).

Suppose Γ is a finite set of LNF formulas, and the number of constants in Γ is n.

The completeness proof shows that, if Γ is satisfiable, it is satisfiable in a metric

model M of size which is polynomially bounded by the number of constants in

Γ. By Definition 7.15, the set of constants in M is also n. By Lemma 7.42 and the

proof of Lemma 7.43, in such a model M , every value assigned by the distance

function is of the formmσ, m ∈ N, m≤ 5n. So if Γ is satisfiable, it is satisfiable in

a model where the carrier set of the metric space is of size bounded by n and the

distance function has a fixed finite range. We guess a model like this. To check

whether it is a proper model, we need to check whether it is a metric space by

Definition 3.2. The time complexity of this is O(n3).

To check whether M satisfies Γ, we need to check this for each formula in Γ.

This can be done in time which is polynomial in the combined size of formulas

in Γ and in the size of M .

7.4 Interpreting L(LNF) in R2

In this section, we interpret L(LNF ) over models based on a two-dimensional

(2D) Euclidean space R2 rather than an abstract metric space, and show that the

LNF satisfiability problem is still decidable.
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Definition 7.53 (2D Euclidean space). A 2D Euclidean space is a pair (R2, d),

where d is a metric on R2, i.e. a function d : R2 ×R2 −→ R≥0, such that for any

pair of points p = (px, py), q = (qx, qy) of R2, d(p, q) =
√

(px − qx)2 + (py − qy)2.

Definition 7.54 (2D Euclidean model). A 2D Euclidean modelM is a tuple (R2, d, I, σ),

where (R2, d) is a 2D Euclidean space, I is an interpretation function which

maps each individual name to an element of R2, and σ ∈ R≥0 is a margin of

error. The notion of M |= φ (φ is true in model M ) is defined as follows:

M |= BEQ(a, b) iff d(I (a), I (b)) ∈ [0 , σ];

M |= NEAR(a, b) iff d(I (a), I (b)) ∈ [0 ,2σ];

M |= FAR(a, b) iff d(I (a), I (b)) ∈ (4σ,+∞);

M |= ¬φ iff M 6|= φ;

M |= φ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names, φ,ψ are formulas in L(LNF ).

The notions of validity and satisfiability in 2D Euclidean models are standard.

A formula is satisfiable if it is true in some 2D Euclidean model. A formula φ is

valid (|= φ) if it is true in all 2D Euclidean models (hence if its negation is not

satisfiable).

The decidability theorem is proved by translating LNF formulas to a sentence

of elementary algebra. The basics of elementary algebra is as follows.

In elementary algebra, a variable is one of the symbols x,x1, x2, ..., y, y1, y2, ...,

z, z1, z2, ..., ranging over the set of real numbers. An algebraic constant is one of

the three symbols 1,0,−1.

Every variable or algebraic constant is an algebraic term. If α and β are algebraic

terms, then α× β, α+ β are algebraic terms.
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If α and β are algebraic terms, then α = β, α > β are atomic formulas. Every

atomic formula is a formula. If φ and ψ are formulas, then ¬φ, ∃x : φ, φ ∧ ψ

are formulas. A formula containing no free variables is called a sentence, for

example, ∃x∃y : y > x. A sentence is either true or false.

Lemma 7.55. For a non-empty set of distance constraints D over n constants, there

is a sentence of elementary algebra φ of size polynomial in the size of D, such that φ is

true iff D is satisfiable in R2.

Proof. For any distance constraint d(p, q) ∈ g, where g is a non-negative interval,

it can be rewritten as d(p, q) > l, d(p, q) = l, d(p, q) ≥ l, d(p, q) < u, d(p, q) = u,

d(p, q) ≤ u or their conjunctions, where l = lower(g) and u = upper(g). For ex-

ample, d(p, q) ∈ [0, σ] is rewritten as d(p, q) ≥ 0 ∧ d(p, q) ≤ σ. A non-empty set

fo distance constraints D and the conjunction of all distance constraints in D,

denoted as C, are equi-satisfiable. Now we translate C into a sentence of ele-

mentary algebra φ.

We construct C ′ from C by Definition 7.53: every constant p in C is a point

(px, py) in R2. For any pair of constants p, q, d(p, q) =
√

(px − qx)2 + (py − qy)2.

Since d(p, q) ≥ 0 and σ ∈ R≥0, we transform d(p, q) ≤ σ to its equi-satisfiable

formula (px − qx)
2 + (py − qy)

2 ≤ σ2 in elementary algebra. Other distance con-

strains are transformed similarly. Then φ is of the form: ∃px∃py...∃qx∃qy : C ′,

such that for any constant p in C, there are px, py in C ′ and ∃px∃py in φ. The

number of constants in φ is 2n, and every distance constraint in D has a corre-

sponding distance constraint (expressed in elementary algebra) involved in φ.

By Definition 7.53, φ is true iff D is satisfiable in R2.

Theorem 7.56. [Tarski, 1951] There is a decision method for the class of all true sen-

tences of elementary algebra.

Theorem 7.56 is for the general decision problem for the first order theory of

the reals, where existential quantifiers and universal quantifiers are allowed. A
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special case of the general problem is when all the quantifiers are existential,

which is often referred to as the existential theory of the reals.

Theorem 7.57. [Canny, 1988] The existential theory of the reals is decidable in PSPACE.

Theorem 7.58 (Decidability & Complexity of LNF in R2). The LNF satisfiability

problem in R2 is decidable in PSPACE.

Proof. By Definition 7.54, each of BEQ, NEAR and FAR can be rewritten as a

distance constraint, then a finite set of LNF formulas Σ can be rewritten as a

set of distance constraints D. If D is empty, then Σ is satisfiable. Otherwise,

by Lemma 7.55, there is a sentence of elementary algebra φ of size polynomial

in the size of D such that φ is true iff D is satisfiable in R2. φ only involves

existential quantifier ∃. By Theorem 7.57, the LNF satisfiability problem in R2 is

decidable in PSPACE.

In Section 7.2, we showed that the calculus LNF is sound and complete for

metric models. For 2D Euclidean models, the soundness of LNF can be easily

proved, whilst proving the completeness is more difficult and is left for future

work.
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Chapter 8

A Logic of NEAR and FAR for

Buffered Geometries

Chapter 7 introduces a logic of NEAR and FAR (LNF) where each individual

name is interpreted as a point. The logic (a logic of NEAR and FAR for Buffered

Geometries, LNFS) presented in this chapter has the same syntax as LNF, but

different semantics, where individual names are interpreted as arbitrary geome-

tries (non-empty sets of points) in models based on a metric space.

The syntax, semantics and axiomatisation of LNFS are introduced in Section 8.1.

Section 8.2 shows that the axiomatisation is sound and complete for models

based on a metric space. Section 8.3 shows that the LNFS satisfiability problem

in a metric space is NP-complete.

8.1 Syntax, Semantics and Axioms of LNFS

The language L(LNFS) is the same as the language L(LNF ):

φ,ψ := BEQ(a, b) | NEAR(a, b) | FAR(a, b) | ¬φ | φ∧ ψ.
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L(LNFS) is interpreted over models based on a metric space, where every in-

dividual name is mapped to an arbitrary geometry or a non-empty set of points.

Definition 8.1 (Metric Model). A metric model M is a tuple (∆, d, I, σ), where

(∆, d) is a metric space, I is an interpretation function which maps each indi-

vidual name to a non-empty set of elements in ∆, and σ ∈ R≥0 is a margin of

error. The notion of M |= φ (φ is true in model M ) is defined as follows:

M |= BEQ(a, b) iff ∀pa ∈ I(a)∃pb ∈ I(b) : d(pa, pb) ∈ [0, σ] and

∀pb ∈ I(b)∃pa ∈ I(a) : d(pa, pb) ∈ [0, σ];

M |= NEAR(a, b) iff ∃pa ∈ I(a)∃pb ∈ I(b) : d(pa, pb) ∈ [0,2σ];

M |= FAR(a, b) iff ∀pa ∈ I(a)∀pb ∈ I(b) : d(pa, pb) ∈ (4σ,∞);

M |= ¬φ iff M 6|= φ;

M |= φ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names, φ,ψ are formulas in L(LNFS).

The logic LNFS is the set of all valid formulas of L(LNFS). It is proved below

that LNFS is a proper fragment of the logic MS(M) described in Section 3.3.3.

Strictly speaking, this only holds when σ ∈ Q≥0, but later we will show that a

finite set of LNFS formulas is satisfiable when σ ∈ R≥0, if it is satisfiable when

σ = 1. In other words, σ acts as a scaling factor.

Lemma 8.2. For individual names a, b, the MS(M) formula a ⊑ ¬b is not expressible

in LNFS.

Proof. Let M1,M2 be metric models1. M1 = (∆1, d, I1, σ), where ∆1 = {o1, o2},

d(o1, o2) = σ. I1(a) = {o1}, I1(b) = {o2}. For any x differing from a, b, I1(x) = {o1}.

1Note that we can construct models in a one-dimensional or two-dimensional Euclidean
space in similar way and prove the lemma.
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M2 = (∆2, d, I2, σ), where ∆2 = {o}. I2(a) = {o}, I2(b) = {o}. For any x differing

from a, b, I2(x) = {o}.

If φ is an atomic LNFS formula about x, y, then by Definition 8.1, M1 |= φ iff

M2 |= φ. By an easy induction on logical connectives, for any LNFS formula φ,

M1 |= φ iff M2 |= φ.

By the truth definition of MS(M) formulas, M1 |= (a ⊑ ¬b) and M2 6|= (a ⊑ ¬b).

Hence, a ⊑ ¬b is not equivalent to any LNFS formula.

Lemma 8.3. The logic LNFS is a proper fragment of the logic MS(M).

Proof. Every atomic LNFS formula is expressible in MS(M):

• BEQ(a, b) iff (a ⊑ (∃≤σb))∧ (b ⊑ (∃≤σa));

• NEAR(a, b) iff (a⊓ (∃≤2σb) 6
.
= ⊥);

• FAR(a, b) iff (a⊓ (∃≤4σb)
.
= ⊥).

The MS(M) formula for expressing BEQ(a, b) follows directly from the truth

definition ofBEQ (Definition 8.1). By the definition of the minimal distance and

the truth definition of NEAR and FAR (Definitions 3.3 and 8.1), NEAR(a, b)

and FAR(a, b) state that 0 ≤ dmin(a, b) ≤ 2σ and dmin(a, b) > 4σ respectively,

where dmin denotes the minimal distance. TheMS(M) formulas forNEAR(a, b)

and FAR(a, b) follow from the MS(M) formalism of the minimal distance in

[Wolter and Zakharyaschev, 2005]. LNFS and MS(M) both have logical con-

nectives ¬ and ∧. Hence every LNFS formula is expressible in MS(M). By

Lemma 8.2, LNFS is a proper fragment of MS(M).

The following calculus (which we will also refer to as LNFS) will be shown to

be sound and complete for LNFS:
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Axiom 0 All tautologies of classical propositional logic

Axiom 1 BEQ(a, a);

Axiom 2 BEQ(a, b)→ BEQ(b, a);

Axiom 3 NEAR(a, b)→ NEAR(b, a);

Axiom 4 FAR(a, b)→ FAR(b, a);

Axiom 5 BEQ(a, b)∧BEQ(b, c)→ NEAR(c, a);

Axiom 6 BEQ(a, b)∧NEAR(b, c)∧BEQ(c, d)→ ¬FAR(d, a);

Axiom 7 NEAR(a, b)∧BEQ(b, c)∧BEQ(c, d)→ ¬FAR(d, a);

MP Modus ponens: φ, φ→ ψ ⊢ ψ.

Axiom 7 of the calculus LNF only holds for points, but not for arbitrary geome-

tries, because a geometry can have a length. Fact 8 of LNF becomes Axiom 7 in

LNFS, since it is not derivable any more after removing LNF Axiom 7. All other

axioms and facts in LNFS are the same as those in LNF.

8.2 Soundness and Completeness of LNFS

This section shows that the LNFS calculus is sound and complete for metric

models.

Theorem 8.4 (Soundness of LNFS). Every LNFS derivable formula is valid:

⊢ φ⇒ |= φ

Proof. The proof is by an easy induction on the length of the derivation of φ.

Axioms 1-7 are valid (by the truth definition of BEQ, NEAR and FAR) and

modus ponens preserves validity.
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We show the completeness of LNFS by constructing a metric model satisfying a

maximal consistent set Σ+ containing a consistent set of formulas Σ, following

the similar steps of LNF. Firstly, we equivalently transform Σ+ to B(Σ+), which

is a set of sets of basic quantified formulas {B1(Σ
+), ...,Bn(Σ

+)} (n ≥ 1), such

that if a metric model satisfies anyBi(Σ
+) ∈B(Σ+), then it satisfies Σ+. Then we

construct a set of distance constraintsDi(Σ
+) fromBi(Σ

+), and prove the Metric

Model Lemma, Metric Space Lemma and Path-Consistency Lemma, which are

similar to those presented in Section 7.2 for LNF.

Lemma 8.5 (Metric Model Lemma). Let Σ+ be an MCS. If a metric space satisfies

Di(Σ
+), then it can be extended to a metric model satisfying Σ+.

Lemma 8.6 (Metric Space Lemma). Let Σ+ be anMCS,B(Σ+) be its corresponding

set of basic quantified formula sets. If there exists a Bi(Σ
+) ∈ B(Σ+) such that Di(Σ

+)

is path-consistent, then there is a metric space (∆, d) such that all the constraints in

Di(Σ
+) are satisfied.

Lemma 8.7 (Path-Consistency Lemma). Let Σ+ be an MCS, B(Σ+) be its corre-

sponding set of basic quantified formula sets. Then, there exists a Bi(Σ
+) ∈ B(Σ+),

such that Di(Σ
+) is path-consistent.

Similar to LNF, the completeness of LNFS is proved using these three lemmas.

Theorem 8.8 (Completeness of LNFS). If a finite set of formulas Σ is LNFS-consistent,

there exists a metric model satisfying it.

Proof. From a consistent set of formulas Σ, by Lindenbaum’s Lemma (Lemma

7.7), we can construct an MCS Σ+ containing Σ. By the Path-Consistency

Lemma (Lemma 8.7) and the Metric Space Lemma (Lemma 8.6), there is a met-

ric space (∆, d) such that all constraints in Di(Σ
+) are satisfied. By the Metric

Model Lemma (Lemma 8.5), the metric space can be extended to a model M of

Σ+. Since Σ ⊆ Σ+, M satisfies all formulas in Σ.
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The detailed proofs for the Metric Model Lemma, Metric Space Lemma and

Path-Consistency Lemma are provided in Section 8.2.1, Section 8.2.2 and Sec-

tion 8.2.3 respectively.

8.2.1 Metric Model Lemma

Before proving the Metric Model Lemma, this section explains the construction

of Di(Σ
+). From Definition 8.9 to Definition 8.11, LNFS formulas are trans-

formed to their equi-satisfiable first order formulas by discussing cases pre-

sented in Lemma 7.14, which still holds for LNFS formulas.

Definition 8.9 (case(a, b)). For any pair of individual names a, b occurring in Σ,

case(a, b) is defined for each case of Lemma 7.14:

1. case(a, b) = BEQ(a, b);

2. case(a, b) = ¬BEQ(a, b)∧NEAR(a, b);

3. case(a, b) = ¬NEAR(a, b)∧¬FAR(a, b);

4. case(a, b) = FAR(a, b).

Definition 8.10 (Basic Quantified Formula). For LNFS formulas, there are first

order quantified formulas corresponding to their truth definition in Definition

8.1. Observe that

• BEQ(a, b) is satisfiable iff both formulas ∀pa ∈ a∃pb ∈ b : d(pa ,pb) ∈ [0 , σ]

and ∀pb ∈ b∃pa ∈ a : d(pa ,pb) ∈ [0 , σ] are satisfiable;

• NEAR(a, b) and ∃pa ∈ a∃pb ∈ b : d(pa ,pb) ∈ [0 ,2σ] are equi-satisfiable;

• FAR(a, b) and ∀pa ∈ a∀pb ∈ b : d(pa ,pb) ∈ (4σ,∞) are equi-satisfiable.
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We refer to these first order quantified formulas as basic quantified formulas, and

use the following abbreviations for them:

• ∀(a, b, g) ≡ (∀pa ∈ a∀pb ∈ b : d(pa ,pb) ∈ g);

• ∃(a, b, g) ≡ (∃pa ∈ a∃pb ∈ b : d(pa ,pb) ∈ g);

• χ(a, b, g) ≡ (∀pa ∈ a∃pb ∈ b : d(pa ,pb) ∈ g);

• ξ(a, b, g) ≡ (∃pa ∈ a∀pb ∈ b : d(pa ,pb) ∈ g),

where g is a non-negative interval.

Definition 8.11 (Bi(Σ
+)). For an MCS Σ+, its corresponding set of basic for-

mula sets B(Σ+) is constructed as follows. For every pair of individual names

a, b, we translate case(a, b) into quantified formulas:

• translate(BEQ(a, b)) = {χ(a, b, [0, σ]), χ(b, a, [0, σ])};

• translate(¬BEQ(a, b)∧NEAR(a, b)) = {ξ(a, b, (σ,∞))∨ ξ(b, a, (σ,∞)),

∃(a, b, [0,2σ]),∃(b, a, [0,2σ])};

• translate(¬NEAR(a, b)∧¬FAR(a, b)) = {∀(a, b, (2σ,∞)),∀(b, a, (2σ,∞)),

∃(a, b, [0,4σ]),∃(b, a, [0,4σ])};

• translate(FAR(a, b)) = {∀(a, b, (4σ,∞)),∀(b, a, (4σ,∞))}.

Let names(Σ) be the set of individual names occurring in Σ. Then,

translate(Σ+) =
⋃

a∈names(Σ),b∈names(Σ) translate(case(a, b)).

B(Σ+) = {B1(Σ
+), ...,Bn(Σ

+)}, n ∈ N>0. Bi(Σ
+) ∈ B(Σ+) is a set of basic quan-

tified formulas where,

• for every basic quantified formula φ ∈ translate(Σ+), φ ∈ Bi(Σ
+);
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• for any disjunctive quantified formula (φ∨ψ) ∈ translate(Σ+), φ ∈Bi(Σ
+)

or (exclusive) ψ ∈ Bi(Σ
+),

such that Σ+ is equivalent to the disjunction of all Bi(Σ
+)s in B(Σ+).

In the following, for a set of basic quantified formulas Bi(Σ
+), we construct a

set of distance constraints Di(Σ
+), and then show that if there is a metric space

satisfying Di(Σ
+), then it can be extended to a model of Σ+.

For any individual name a, let us predict how many particular constants in

points(a) (points assigned to an individual name a) can be specified by the finite

set of formulas about a in Bi(Σ
+). points(a) contains at least one constant. If a

formula in Bi(Σ
+) says ‘there exists a constant in points(a)’, then this constant

is a particular constant within points(a). If both ∃(a, b, g) and ∃(b, a, g) are in

Bi(Σ
+), we only count one of them. If χ(a, b, g) is in Bi(Σ

+), we map all the

constants in points(a) to the same constant in points(b). By Lemma 7.14 and

Definition 8.11, in Bi(Σ
+), for any a, b and R ∈ {∃, ξ, χ}we never have R(a, b, g1)

and R(a, b, g2), where g1 6= g2, at the same time. The cardinality of points(a) is

specified as follows in Definition 8.12.

Definition 8.12 (num(a,Bi(Σ
+))). Let names(Σ) be the set of individual names

occurring in Σ. For any individual name a ∈ names(Σ),

num(∃a,Bi(Σ
+)) = |{b ∈ names(Σ ) | ∃g : ∃(a, b, g) ∈ Bi(Σ

+)}|

num(ξa,Bi(Σ
+)) = |{b ∈ names(Σ ) | ∃g : ξ(a, b, g) ∈ Bi(Σ

+)}|

num(χa,Bi(Σ
+)) = |{b ∈ names(Σ ) | ∃g : χ(b,a, g) ∈ Bi(Σ

+)}|

Then num(a,Bi(Σ
+)) = num(∃a,Bi(Σ

+)) + num(ξa,Bi(Σ
+))+num(χa,Bi(Σ

+)).

Definition 8.13 (Witness for a formula). A witness for a formula ∃(a, b, g) is a

pair of constants pa ∈ points(a), pb ∈ points(b) such that d(pa, pb) ∈ g. A witness

for a formula ξ(a, b, g) or χ(b, a, g) is a constant pa ∈ points(a), such that for any
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constant pb ∈ points(b), d(pa, pb) ∈ g. A constant is clean for a formula, if it is not

a witness for any other formula.

Definition 8.14 (Di(Σ
+)). LetB(Σ+) be the corresponding set of basic quantified

formula sets of an MCS Σ+, Bi(Σ
+) ∈ B(Σ+). To every individual name a in

Σ, we assign a fixed set of new constants, points(a) = {p1a, . . . , p
n
a}, where n =

num(a,Bi(Σ
+)). We construct a set of distance constraints Di(Σ

+) as follows,

by iterating through quantified formulas in Bi(Σ
+) and eliminating quantifiers

on new constants. Initially, Di(Σ
+) = {}. For every individual name a in Σ, for

every constant pa ∈ points(a), we add d(pa, pa) ∈ {0} toDi(Σ
+). Then χ(a, a,{0})

always holds. For every pair of different individual names a, b, if

• ∃(a, b, g) ∈ Bi(Σ
+), then we take clean constants pa ∈ points(a), pb ∈ points(b),

and add d(pa ,pb) = d(pb ,pa) ∈ g to Di(Σ
+), so pa, pb become a witness for

∃(a, b, g);

• ξ(a, b, g) ∈ Bi(Σ
+), then we take a clean constant pa ∈ points(a), for every

pb ∈ points(b), we add d(pa ,pb) = d(pb ,pa) ∈ g to Di(Σ
+), so pa becomes a

witness for ξ(a, b, g);

• ξ(b,a, g) ∈ Bi(Σ
+), then we take a clean constant pb ∈ points(b), for every

pa ∈ points(a), we add d(pa ,pb) = d(pb ,pa) ∈ g to Di(Σ
+), so pb becomes a

witness for ξ(b,a, g);

• χ(a, b, g) ∈ Bi(Σ
+), then we take a clean constant pb ∈ points(b), for every

pa ∈ points(a), we add d(pa ,pb) = d(pb ,pa) ∈ g to Di(Σ
+), so pb becomes a

witness for χ(a, b, g);

• χ(b,a, g) ∈ Bi(Σ
+), then we take a clean constant pa ∈ points(a), for every

pb ∈ points(b), we add d(pa ,pb) = d(pb ,pa) ∈ g to Di(Σ
+), so pa becomes a

witness for χ(b,a, g);

• ∀(a, b, g) ∈ Bi(Σ
+), then for every pair of constants pa ∈ points(a), pb ∈ points(b),

we add d(pa ,pb) = d(pb ,pa) ∈ g to Di(Σ
+).
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For every pair of different constants p, q involved in Di(Σ
+),

we add d(p, q) = d(q ,p) ∈ [0 ,∞) to Di(Σ
+), then repeatedly replace

d(p, q) = d(q ,p) ∈ g1 and d(p, q) = d(q ,p) ∈ g2 with d(p, q) = d(q ,p) ∈ (g1 ∩ g2 ),

until there is only one distance range for each pair of p, q in Di(Σ
+).

Di(Σ
+) and Bi(Σ

+) are not equi-satisfiable because of the way we assign wit-

nesses for χ formulas, but we will show that if Σ+ is consistent (thus Bi(Σ
+) is

also consistent) then Di(Σ
+) can be satisfied in a metric space by proving the

Metric Space Lemma and Path-Consistency Lemma in the following sections.

Lemma 8.15 and Lemma 8.16 follow from Definitions 8.11 and 8.14 easily.

Lemma 8.15. For any distance range g occurring in Di(Σ
+),

g ∈ {{0}, [0, σ], (σ,∞), [0,2σ], (2σ,∞), (2σ,4σ], (4σ,∞), [0,∞)}.

Lemma 8.16. If p ∈ points(a), q ∈ points(b), and a 6= b, then d(p, q) ∈ {0} is not in

Di(Σ
+).

Lemma 8.17. For any individual name a, points(a) covers all the clean constants

needed for constructing Di(Σ
+).

Proof. By Definition 8.11, for any individual name a, χ(a, a, [0, σ]) is in Bi(Σ
+).

By Definition 8.12, num(a,Bi(Σ
+)) ≥ 1.

If a is not involved in any formula of the form ∃(a, b, g), ξ(a, b, g) or χ(b, a, g), for

any other individual name b, then by Definition 8.12, num(a,Bi(Σ
+)) = 1. By

Definition 8.14, we need no clean constants from points(a).

Otherwise, by Lemma 7.14 and Definition 8.11, in Bi(Σ
+), for any pair of dif-

ferent individual names a, b and R ∈ {∃, ξ, χ}, we never have R(a, b, g1) and

R(a, b, g2), where g1 6= g2, at the same time. By Definition 8.14, for each ∃(a, b, g)∈

Bi(Σ
+), we take one clean constant from points(a), so num(∃a,Bi(Σ

+)) clean
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constants are needed in total for all formulas of this form. Similarly, num(ξa,Bi(Σ
+))

and (num(χa,Bi(Σ
+)) − 1) clean constants are needed for formulas of forms

ξ(a, b, g) and χ(b, a, g) respectively, where a, b are different individual names.

We do not need any other clean constant from points(a) for formulas in other

forms. By Definition 8.12, num(a,Bi(Σ
+)) is enough.

Lemma 8.18. The number of constants in Di(Σ
+) is finite.

Proof. It is assumed that Σ is a finite consistent set of formulas over n (a finite

number) individual names. Then Σ+, an MCS containing Σ, is also a finite

consistent set of formulas over n individual names. By Definition 8.11, Bi(Σ
+)

contains at most f = (n + 2n(n − 1)) formulas over n individual names. By

Definition 8.12, for any individual name a, num(a,Bi(Σ
+)) ≤ f . By Definition

8.14, the number of constants in Di(Σ
+) is at most nf .

Lemma 8.19 (Metric Model Lemma). Let Σ+ be an MCS. If a metric space satisfies

Di(Σ
+), then it can be extended to a metric model satisfying Σ+.

Proof. Suppose a metric space satisfies Di(Σ
+). We extend it to a metric model

M by interpreting every a occurring in Σ+ as points(a), a’s corresponding set of

constants of size num(a,Bi(Σ
+)) (Definition 8.12 and Definition 8.14).

By Definition 8.14, every ∃, ξ or χ formula has a witness. By Lemma 8.17, all

of the witnesses are considered when calculating the number of constants by

Definition 8.12. By Definition 8.14, all ∀ formulas are also satisfied by M . M

makes all the formulas inBi(Σ
+) true. Therefore,M is a metric model ofBi(Σ

+).

By Definition 8.11, M is a metric model of Σ+.
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8.2.2 Metric Space Lemma

To prove the Metric Space Lemma, we redefine primitive intervals (Defini-

tion 8.20), such that any interval occurred in Di(Σ
+) is an identity interval ({0})

or a primitive interval.

Definition 8.20 (Primitive, Composite, Definable Intervals). Let h be a non-

negative interval. h is primitive, if h is one of [0, σ], (σ,∞), [0,2σ], (2σ,∞),

(2σ,4σ], (4σ,∞), [0,∞). h is composite, if it can be composed using at least

two primitive intervals. h is definable, if it is primitive or composite.

With the new definition of definable intervals (Definition 8.20), lemmas and def-

initions in Section 7.2.2 forD(Σ+) can be restated forDi(Σ
+). All of the lemmas,

including the Metric Space Lemma, can be proved in very similar ways.

Lemma 8.21 (Metric Space Lemma). Let Σ+ be an MCS, B(Σ+) be its correspond-

ing set of basic quantified formula sets. If there exists a Bi(Σ
+) ∈ B(Σ+) such that

Di(Σ
+) is path-consistent, then there is a metric space (∆, d) such that all the con-

straints in Di(Σ
+) are satisfied.

Proof. Almost the same as the proof of Lemma 7.43, just replacing D(Σ+) by

Di(Σ
+), which is defined in Definition 8.14.

8.2.3 Path-Consistency Lemma

This section proves the Path-Consistency Lemma by contradiction, supposing

that for everyBi(Σ
+) ∈B(Σ+),Di(Σ

+) is not path-consistent. We examine every

case where the first ∅ interval is obtained by enforcing path-consistency. In each

case, we show that⊥ is derivable from the corresponding LNFS formulas in Σ+

using LNFS axioms. This contradicts the assumption that Σ+ is consistent.
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Knowing an upper bound or a lower bound of a definable interval h, Lem-

mas 8.22-8.28 show all possibilities of h. Their proofs are omitted here since

they are very similar to those for Lemmas 7.44-7.50 respectively.

Lemma 8.22. If an interval h is definable, upper(h) = 2σ, then h = [0,2σ] or h =

[0, σ] ◦ [0, σ].

Lemma 8.23. If an interval h is definable, upper(h) = 3σ, then h is composed by one

[0, σ] and one [0,2σ] or h = [0, σ] ◦ [0, σ] ◦ [0, σ].

Lemma 8.24. If an interval h is definable, upper(h) = 4σ, then h = (2σ,4σ], or h =

[0,2σ] ◦ [0,2σ], or h is composed by two [0, σ] and one [0,2σ], or h = [0, σ] ◦ [0, σ] ◦

[0, σ] ◦ [0, σ].

Lemma 8.25. If an interval h is definable, lower(h) = 3σ, then h is composed by one

[0, σ] and one (4σ,∞).

Lemma 8.26. If an interval h is definable, lower(h) = 2σ, then h = (2σ,∞), or h =

(2σ,4σ], or h is composed by one [0,2σ] and one (4σ,∞), or h is composed by two [0, σ]

and one (4σ,∞).

Lemma 8.27. If an interval h is definable, lower(h) = σ, then h = (σ,∞), or h is

composed by one [0, σ] and one (2σ,∞), or h is composed by one [0, σ] and one (2σ,4σ],

or h is composed by one [0, σ], one [0,2σ] and one (4σ,∞), or h is composed by three

[0, σ] and one (4σ,∞).

Lemma 8.28. If an interval h is definable and left-open, lower(h) = 0, then h has the

following possibilities:

• h is composed by one [0, σ] and one (σ,∞);

• h is composed by one [0,2σ] and one (2σ,∞);

• h is composed by two [0, σ] and one (2σ,∞);

• h is composed by one [0,2σ] and one (2σ,4σ];
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• h is composed by two [0, σ] and one (2σ,4σ];

• h is composed by one (2σ,4σ] and one (4σ,∞);

• h is composed by two [0,2σ] and one (4σ,∞);

• h is composed by two [0, σ], one [0,2σ] and one (4σ,∞);

• h is composed by four [0, σ] and one (4σ,∞).

As the proof of the Path-Consistency Lemma is similar to that of Lemma 7.51,

only a sketch is provided here, to show the main structure of the proof and how

it differs from the proof of Lemma 7.51. See Appendix A for a complete proof.

Lemma 8.29 (Path-Consistency Lemma). Let Σ+ be an MCS, B(Σ+) be its corre-

sponding set of basic quantified formula sets. Then, there exists a Bi(Σ
+) ∈ B(Σ+),

such that Di(Σ
+) is path-consistent.

Proof. (sketch) Suppose for everyBi(Σ
+)∈B(Σ+),Di(Σ

+) is not path-consistent.

By Definitions 7.19 and 7.29, d(p, q) ∈ ∅ is in DS(Σ+), for some constants p, q. By

Lemma 8.15, for any distance range g occurring in Di(Σ
+), g 6= ∅. By Defini-

tions 7.29, 7.18, and intersection rules, the last operation to obtain the first ∅

interval is intersection. By Definition 7.29, there exist d(p, q) ∈ h and d(p, q) ∈ g

in DS(Σ+), h 6= ∅, g 6= ∅, and h ∩ g = ∅. By Lemma 7.30, h, g are non-negative

intervals. Without loss of generality, let us suppose upper(h) ≤ lower(g).

By Lemma 7.37, d(p, q) ∈ h and d(p, q) ∈ g are left-definable and right-definable.

Since d(p, q) ∈ h is right-definable, then by Definition 7.34, there exists an h′ such

that h and h′ have the same upper bound (including both value and openness)

and h⊆ h′. Since d(p, q) ∈ g is left-definable, then by Definition 7.33, there exists

a g′ such that g and g′ have the same lower bound (including both value and

openness) and g ⊆ g′. Then h′ and g′ are identity or definable intervals. By

properties of identity or definable intervals (Lemma 7.27), lower(g′) ≤ 4σ, thus,
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upper(h′) ≤ 4σ. By properties of intervals in DS(Σ+) (Lemmas 7.31, 7.32), h is

right-closed; g is left-open, if lower(g) 6= 0. All the possible cases where h∩ g = ∅

are listed below:

• upper(h) = 0, lower(g) ∈ {σ,2σ,3σ,4σ} or lower−(g) = 0;

• upper(h) = σ, lower(g) ∈ {σ,2σ,3σ,4σ};

• upper(h) = 2σ, lower(g) ∈ {2σ,3σ,4σ};

• upper(h) = 3σ, lower(g) ∈ {3σ,4σ};

• upper(h) = 4σ, lower(g) = 4σ.

Lemmas 8.22-8.28 show that given an upper bound or a lower bound of a de-

finable interval, there is a limited number of possibilities of it. For example, if

upper(h′) = 2σ, then h′ = [0,2σ] or h′ = [0, σ] ◦ [0, σ]. Thus, by Definitions 7.33

and 7.34, there are finitely many possibilities for the corresponding sequences

of d(p, q) ∈ h and d(p, q) ∈ g and every distance constraint in the sequences is

in Di(Σ
+). For each distance constraint in Di(Σ

+), Definitions 8.11 and 8.14 tell

which formula in Σ+ it comes from. For example, if d(p, q) ∈ (σ,∞) is in Di(Σ
+)

and p ∈ points(a), q ∈ points(b), then ¬BEQ(a, b) ∈ Σ+.

Differing from the proof of Lemma 7.51, there are three ‘invalid’ cases:

• h′ = {0}, g′ is composed by two [0,2σ] and one (4σ,∞);

• h′ = [0,2σ], g′ is composed by one [0,2σ] and one (4σ,∞);

• h′ = (4σ,∞), g′ = [0,2σ] ◦ [0,2σ].

In each case, by Definitions 7.33 and 7.34, Di(Σ
+) contains d(pa, pb) ∈ [0,2σ],

d(pb, pc) ∈ [0,2σ] and d(pa, pc) ∈ (4σ,∞), where pa ∈ points(a), pb ∈ points(b), pc ∈

points(c), for individual names a, b, c. By Definitions 8.11 and 8.14, d(pa, pb) ∈
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[0,2σ] and d(pb, pc) ∈ [0,2σ] cannot come from NEAR(a, b) and NEAR(b, c) in

Σ+ (it is clear that they cannot come from other formulas as well), because for

∃(a, b, [0,2σ]) and ∃(b, c, [0,2σ]), two different constants are taken from points(b).

In each valid case, we can show ⊥ is derivable using axioms, which contradicts

the assumption that Σ+ is consistent. Therefore, there exists a Bi(Σ
+) ∈ B(Σ+),

such that Di(Σ
+) is path-consistent.

8.3 Decidability and Complexity of LNFS

By Lemma 8.3 and Theorem 3.14, the LNFS satisfiability problem in a metric

space is decidable in EXPTIME. In this section, we prove a lower complexity of

the LNFS satisfiability problem, provided NP ( EXPTIME .

Theorem 8.30. The LNFS satisfiability problem in a metric space is NP-complete.

Proof. NP-hardness of the LNFS satisfiability problem follows from NP-hardness

of the satisfiability problem for propositional logic, which is included in LNFS.

To prove that the LNFS satisfiability problem is in NP, we show that given a

finite satisfiable set of LNFS formulas Γ, we can guess a model for Γ and verify

that this model satisfies Γ, both in time polynomial in the combined size of

formulas occurring in Γ.

Suppose Γ is a finite set of LNFS formulas, and the number of constants in Γ

is n. The completeness proof shows that, if Γ is satisfiable, it is satisfiable in

a metric model M of size which is polynomially bounded by the number of

constants in Γ. To recap the construction of the model for Γ, first we construct

B(Γ+), the corresponding set of basic quantified formula sets from an MCS Γ+

containing Γ, and then construct a model for Bi(Γ
+) ∈ B(Γ+). By Definition
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8.11, the number of formulas in Bi(Γ
+) is at most f = (n+ 2n(n− 1)). By Defi-

nitions 8.12 and 8.14, to every individual name a in Σ, we assign a fixed set of

new constants, points(a) = {p1a, . . . , p
x
a}, where x = num(a,B(Σ+)). All of such

new constants are included in M . Since x ≤ f , the number of constants in M is

at most t = nf . By Lemma 7.42 and proofs of Lemma 8.6, in such a model M ,

every value assigned by the distance function is of the form mσ, m ∈ N, m ≤ 5t.

So if Γ is satisfiable, it is satisfiable in a model where the carrier set of the metric

space is of size bounded by t and the distance function has a fixed finite range.

We guess a model like this. To check whether it is a proper model, we need to

check whether it is a metric space by Definition 3.2. The time complexity of this

is O(t3). Hence the check is in O(n9).

To check whether M satisfies Γ, we need to check this for each formula in Γ.

This can be done in time which is polynomial in the combined size of formulas

in Γ and in the size of M .

8.4 Interpreting L(LNFS) in R2

In this section, we interpret L(LNFS) over models based on a 2D Euclidean

space R2 (Definition 7.53).

Definition 8.31 (2D Euclidean Model). A 2D Euclidean modelM is a tuple (R2, d, I, σ),

where (R2, d) is a 2D Euclidean space, I is an interpretation function which

maps each individual name to a non-empty set of elements of R2, and σ ∈ R≥0

is a margin of error. The notion of M |= φ (φ is true in model M ) is defined as

follows:

M |= BEQ(a, b) iff ∀pa ∈ I(a)∃pb ∈ I(b) : d(pa, pb) ∈ [0, σ] and

∀pb ∈ I(b)∃pa ∈ I(a) : d(pa, pb) ∈ [0, σ];

M |= NEAR(a, b) iff ∃pa ∈ I(a)∃pb ∈ I(b) : d(pa, pb) ∈ [0,2σ];
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M |= FAR(a, b) iff ∀pa ∈ I(a)∀pb ∈ I(b) : d(pa, pb) ∈ (4σ,∞);

M |= ¬φ iff M 6|= φ;

M |= φ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names, φ,ψ are formulas in L(LNFS).

For 2D Euclidean models, the soundness theorem of LNFS can be easily proved,

whilst proving the completeness theorem and decidability theorem is more dif-

ficult. This is left for future work.
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Chapter 9

A Logic of Part and Whole for

Buffered Geometries

In Chapters 7 and 8, we interpret the same languageL(LNF ) (same asL(LNFS))

using points and non-empty sets of points respectively. The language L(LNF )

consists of three binary predicates,BEQ,NEAR and FAR. This chapter presents

a Logic of ParT and whole for Buffered geometries (LBPT). It has a more expres-

sive language which contains BPT instead of BEQ as a binary predicate. For

any individual names a, b, BEQ(a, b) is defined as BPT (a, b)∧BPT (b, a).

The syntax, semantics and axiomatisation of LBPT are introduced in Section 9.1.

Section 9.2 shows that the axiomatisation is sound and complete for models

based on a metric space. Section 9.3 shows that the LBPT satisfiability problem

in a metric space is NP-complete.
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9.1 Syntax, Semantics and Axioms of LBPT

The language L(LBPT ) is defined as

φ,ψ := BPT (a, b) | NEAR(a, b) | FAR(a, b) | ¬φ | φ∧ ψ.

φ→ ψ =def ¬(φ∧¬ψ).

L(LBPT ) is interpreted over metric models, replacing BEQ with BPT in Def-

inition 8.1.

Definition 9.1 (Metric Model). A metric model M is a tuple (∆, d, I, σ), where

(∆, d) is a metric space, I is an interpretation function which maps each indi-

vidual name to a non-empty set of elements in ∆, and σ ∈ R≥0 is a margin of

error. The notion of M |= φ (φ is true in model M ) is defined as follows:

M |= BPT (a, b) iff ∀pa ∈ I (a)∃pb ∈ I (b) : d(pa ,pb) ∈ [0 , σ];

M |= NEAR(a, b) iff ∃pa ∈ I(a)∃pb ∈ I(b) : d(pa, pb) ∈ [0,2σ];

M |= FAR(a, b) iff ∀pa ∈ I(a)∀pb ∈ I(b) : d(pa, pb) ∈ (4σ,∞);

M |= ¬φ iff M 6|= φ;

M |= φ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names, φ,ψ are formulas in L(LBPT ).

The logic LBPT is the set of all valid formulas of L(LBPT ). It is proved below

that LBPT is a proper fragment of the logic MS(M) described in Section 3.3.3.

Strictly speaking, this only holds when σ ∈ Q≥0, but later we will show that a

finite set of LBPT formulas is satisfiable when σ ∈ R≥0, if it is satisfiable when

σ = 1. In other words, σ acts as a scaling factor. The proof of Lemma 9.3 is
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similar to that of Lemma 8.3. It uses Lemma 9.2, whose proof is almost the

same as that of Lemma 8.2.

Lemma 9.2. For individual names a, b, the MS(M) formula a ⊑ ¬b is not expressible

in LBPT.

Proof. Let M1,M2 be metric models1. M1 = (∆1, d, I1, σ), where ∆1 = {o1, o2},

d(o1, o2) = σ. I1(a) = {o1}, I1(b) = {o2}. For any x differing from a, b, I1(x) = {o1}.

M2 = (∆2, d, I2, σ), where ∆2 = {o}. I2(a) = {o}, I2(b) = {o}. For any x differing

from a, b, I2(x) = {o}.

If φ is an atomic LBPT formula about x, y, then by Definition 9.1, M1 |= φ iff

M2 |= φ. By an easy induction on logical connectives, for any LBPT formula φ,

M1 |= φ iff M2 |= φ.

By the truth definition of MS(M) formulas, M1 |= (a ⊑ ¬b) and M2 6|= (a ⊑ ¬b).

Hence, a ⊑ ¬b is not equivalent to any LBPT formula.

Lemma 9.3. The logic LBPT is a proper fragment of the logic MS(M).

Proof. Every atomic LBPT formula is expressible in MS(M):

• BPT (a, b) iff (a ⊑ (∃≤σb));

• NEAR(a, b) iff (a⊓ (∃≤2σb) 6
.
= ⊥);

• FAR(a, b) iff (a⊓ (∃≤4σb)
.
= ⊥).

The MS(M) formula for expressing BPT (a, b) follows directly from the truth

definition ofBPT (Definition 9.1). By the definition of the minimal distance and

the truth definition of NEAR and FAR (Definitions 3.3 and 9.1), NEAR(a, b)

and FAR(a, b) state that 0 ≤ dmin(a, b) ≤ 2σ and dmin(a, b) > 4σ respectively,

1Note that we can construct models in a one-dimensional or two-dimensional Euclidean
space in similar way and prove the lemma.
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where dmin denotes the minimal distance. TheMS(M) formulas forNEAR(a, b)

and FAR(a, b) follow from the MS(M) formalism of the minimal distance in

[Wolter and Zakharyaschev, 2005]. LBPT and MS(M) both have logical con-

nectives ¬ and ∧. Hence every LBPT formula is expressible in MS(M). By

Lemma 9.2, LBPT is a proper fragment of MS(M).

The following calculus (which we will also refer to as LBPT) will be shown to

be sound and complete for LBPT:

Axiom 0 All tautologies of classical propositional logic

Axiom 1 BPT (a,a);

Axiom 3 NEAR(a, b)→ NEAR(b,a);

Axiom 4 FAR(a, b)→ FAR(b,a);

Axiom 5.1 BPT (a, b)∧BPT (b, c)→ NEAR(c,a);

Axiom 5.2 BPT (b,a)∧BPT (b, c)→ NEAR(c,a);

Axiom 6 BPT (b,a)∧NEAR(b, c)∧BPT (c,d)→ ¬FAR(d ,a);

Axiom 7 NEAR(a, b)∧BPT (b, c)∧BPT (c,d)→ ¬FAR(d ,a);

MP Modus ponens: φ, φ→ ψ ⊢ ψ.

The calculus LBPT is similar to the calculus LNFS, as shown by their corre-

sponding axioms. Since BPT is not symmetric, the LNFS Axiom 2 does not

have a corresponding axiom in LBPT, and the LNFS Axiom 5 corresponds to

two LBPT axioms, Axiom 5.1 and Axiom 5.2.

The following derivable formulas are provided to help readers understand the

LBPT calculus:
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Fact 9 BPT (a, b)→ NEAR(a, b);

Fact 10 NEAR(a, b)→ ¬FAR(a, b);

Fact 11 NEAR(a, b)∧BPT (b, c)→ ¬FAR(c, a);

Fact 12 BPT (a, b)→ ¬FAR(a, b);

Fact 13.1 BPT (a, b)∧BPT (b, c)→ ¬FAR(c, a);

Fact 13.2 BPT (b, a)∧BPT (b, c)→ ¬FAR(c, a);

Fact 14.1 BPT (a, b)∧BPT (b, c)∧BPT (c, d)→ ¬FAR(d, a);

Fact 14.2 BPT (b, a)∧BPT (b, c)∧BPT (c, d)→ ¬FAR(d, a);

Fact 15.1 BPT (a, b)∧BPT (b, c)∧BPT (c, d)∧BPT (d, e)→ ¬FAR(e, a);

Fact 15.2 BPT (b, a)∧BPT (b, c)∧BPT (c, d)∧BPT (d, e)→ ¬FAR(e, a);

Fact 15.3 BPT (b, a)∧BPT (c, b)∧BPT (c, d)∧BPT (d, e)→ ¬FAR(e, a).

9.2 Soundness and Completeness of LBPT

This section shows that the LBPT calculus is sound and complete for metric

models.

Theorem 9.4 (Soundness of LBPT). Every LBPT derivable formula is valid:

⊢ φ⇒ |= φ

Proof. The proof is by an easy induction on the length of the derivation of φ.

Axioms 1-7 are valid (by the truth definition of BPT , NEAR and FAR) and

modus ponens preserves validity.
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We show the completeness of LBPT by constructing a metric model satisfying

a maximal consistent set Σ+ containing a consistent set of formulas Σ, follow-

ing the similar steps of LNF and LNFS. First, we equivalently transform Σ+ to

B(Σ+), which is a set of basic quantified formulas. Then we construct a set of

distance constraints D(Σ+) from B(Σ+), and prove the Metric Model Lemma,

Metric Space Lemma and Path-Consistency Lemma, the same as those stated in

Section 7.2 for LNF. The completeness theorem is proved using these lemmas,

and its proof is almost the same as that for Theorem 7.11, just replacing LNF by

LBPT.

Theorem 9.5 (Completeness of LBPT). If a finite set of formulas Σ is LBPT-consistent,

there exists a metric model satisfying it.

In the rest of this section, we show the proofs for the LBPT lemmas, which

are similar to those for LNFS but simpler (since we do not need to deal with

disjunctions of basic quantified formulas).

Lemma 9.6 (Metric Model Lemma). Let Σ+ be an MCS. If a metric space satisfies

D(Σ+), then it can be extended to a metric model satisfying Σ+.

The Metric Model Lemma is proved following the same way as that for LNFS.

The main difference is the construction of B(Σ+), as shown by Lemma 9.7, Def-

inition 9.8 and Definition 9.9 below.

Lemma 9.7. If Σ+ be an MCS, then, for any pair of individual names a, b occurring

in Σ, exactly one of the following cases holds:

1. BPT (a, b)∧BPT (b, a) ∈ Σ+;

2. BPT (a, b)∧¬BPT (b, a) ∈ Σ+;

3. ¬BPT (a, b)∧BPT (b, a) ∈ Σ+;

4. ¬BPT (a, b)∧¬BPT (b, a)∧NEAR(a, b) ∈ Σ+;
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5. ¬NEAR(a, b)∧¬FAR(a, b) ∈ Σ+;

6. FAR(a, b) ∈ Σ+.

The proof of Lemma 9.7 is similar to that of Lemma 7.14.

Definition 9.8 (case(a, b)). For any pair of individual names a, b occurring in Σ,

case(a, b) is defined for each case of Lemma 9.7:

1. case(a, b) = BPT (a, b)∧BPT (b, a);

2. case(a, b) = BPT (a, b)∧¬BPT (b, a);

3. case(a, b) = ¬BPT (a, b)∧BPT (b, a);

4. case(a, b) = ¬BPT (a, b)∧¬BPT (b, a)∧NEAR(a, b);

5. case(a, b) = ¬NEAR(a, b)∧¬FAR(a, b);

6. case(a, b) = FAR(a, b).

Definition 9.9 (B(Σ+)). For an MCS Σ+, its corresponding set of basic formulas

B(Σ+) is constructed as follows. For every pair of individual names a, b, we

translate case(a, b) into basic quantified formulas:

• translate(BPT (a, b)∧BPT (b, a)) = {χ(a, b, [0, σ]), χ(b, a, [0, σ])};

• translate(BPT (a, b)∧¬BPT (b, a)) = {χ(a, b, [0, σ]), ξ(b, a, (σ,∞))};

• translate(¬BPT (a, b)∧BPT (b, a)) = {ξ(a, b, (σ,∞)), χ(b, a, [0, σ])};

• translate(¬BPT (a, b)∧¬BPT (b, a)∧NEAR(a, b)) = {ξ(a, b, (σ,∞)),

ξ(b, a, (σ,∞)),∃(a, b, [0,2σ]),∃(b, a, [0,2σ])};

• translate(¬NEAR(a, b)∧¬FAR(a, b)) = {∀(a, b, (2σ,∞)),∀(b, a, (2σ,∞)),

∃(a, b, [0,4σ]),∃(b, a, [0,4σ])};
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• translate(FAR(a, b)) = {∀(a, b, (4σ,∞)),∀(b, a, (4σ,∞))}.

Let names(Σ) be the set of individual names occurring in Σ. Then,

B(Σ+) =
⋃

a∈names(Σ),b∈names(Σ) translate(case(a, b)).

Differing from that in LNFS proofs, B(Σ+) is not a set of Bi(Σ
+)s but acts as a

Bi(Σ
+), since no disjunction is involved in the translation specified in Defini-

tion 9.9. D(Σ+) is constructed from B(Σ+), using the same way as constructing

Di(Σ
+) from Bi(Σ

+). Lemmas 8.15-8.18 for Di(Σ
+) can be restated and proved

similarly for D(Σ+). The proof of the Metric Model Lemma for LBPT is almost

the same as that of Lemma 8.19, but using the D(Σ+) constructed from B(Σ+).

The Metric Space Lemma is proved reusing definitions and lemmas in Sec-

tion 7.2.2. Definition 8.20 can be reused for LBPT.

Lemma 9.10 (Metric Space Lemma). Let Σ+ be anMCS. IfD(Σ+) is path-consistent,

then there is a metric space (∆, d) such that all the constraints in D(Σ+) are satisfied.

Proof. Almost the same as the proof of Lemma 7.43, but using the D(Σ+) con-

structed from B(Σ+).

Since Definition 8.20 is reused, Lemmas 8.22-8.28 are still valid. They are used

to prove the Path-Consistency Lemma.

Lemma 9.11 (Path-Consistency Lemma). Let Σ+ be an MCS. D(Σ+) is path-

consistent.

The proof of the Path-Consistency Lemma is similar to that of Lemma 8.29, as

the same Lemmas 8.22-8.28 are used to generate all possible cases. As BPT is

not symmetric, this proof discusses more subcases in the LBPT formula level.

See Appendix A for a complete proof.
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9.3 Decidability and Complexity of LBPT

By Lemma 9.3 and Theorem 3.14, the LBPT satisfiability problem in a metric

space is decidable in EXPTIME. In this section, we prove a lower complexity

of the LBPT satisfiability problem, provided NP ( EXPTIME . As the proof is

very similar to that for Theorem 8.30, a sketch is provided here.

Theorem 9.12. The LBPT satisfiability problem in a metric space is NP-complete.

Proof. (sketch) NP-hardness of the LBPT satisfiability problem follows from

NP-hardness of the satisfiability problem for propositional logic, which is in-

cluded in LBPT.

To prove that the LBPT satisfiability problem is in NP, we show that given a

finite satisfiable set of LBPT formulas Γ, we can guess a model for Γ and verify

that this model satisfies Γ, both in time polynomial in the combined size of

formulas occurring in Γ.

The completeness proof shows that, if Γ is satisfiable, it is satisfiable in a metric

model M whose size is polynomially bounded by the number of constants in

Γ, and distance function has a fixed finite range. We guess a model like this.

To check whether it is a proper model, we need to check whether it is a metric

space by Definition 3.2. This can be done in time which is polynomial in the size

of M . To check whether M satisfies Γ, we need to check this for each formula

in Γ. This can be done in time which is polynomial in the combined size of

formulas in Γ and in the size of M .

9.4 Interpreting L(LBPT) in R2

In this section, we interpret L(LBPT ) over models based on a 2D Euclidean

space R2 (Definition 7.53).
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Definition 9.13 (2D Euclidean Model). A 2D Euclidean modelM is a tuple (R2, d, I, σ),

where (R2, d) is a 2D Euclidean space, I is an interpretation function which

maps each individual name to a non-empty set of elements of R2, and σ ∈ R≥0

is a margin of error. The notion of M |= φ (φ is true in model M ) is defined as

follows:

M |= BPT (a, b) iff ∀pa ∈ I (a)∃pb ∈ I (b) : d(pa ,pb) ∈ [0 , σ];

M |= NEAR(a, b) iff ∃pa ∈ I(a)∃pb ∈ I(b) : d(pa, pb) ∈ [0,2σ];

M |= FAR(a, b) iff ∀pa ∈ I(a)∀pb ∈ I(b) : d(pa, pb) ∈ (4σ,∞);

M |= ¬φ iff M 6|= φ;

M |= φ∧ ψ iff M |= φ and M |= ψ,

where a, b are individual names, φ,ψ are formulas in L(LBPT ).

For 2D Euclidean models, the soundness theorem of LBPT can be easily proved,

whilst proving the completeness theorem and decidability theorem is more dif-

ficult, very similar to proving those for LNFS. This is left for future work.
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Chapter 10

Validating Matches using

Qualitative Spatial Logic

In Chapters 7-9, three new qualitative spatial logics, LNF, LNFS and LBPT, are

introduced. This chapter explains the use of them for detecting problematic

matches between spatial features. Similar to description logic reasoning, the

use of these logics follows the rationale of the data integration framework de-

scribed in Section 4.2, where errors are located by logical contradictions. Logi-

cal contradictions are detected using qualitative spatial logic, and matches are

checked with respect to location information.

This chapter consists of two sections. Section 10.1 explains how LNF, LNFS,

LBPT are used to validate object matches. The use of LBPT has been described

briefly in MatchMaps Step 5 in Section 4.3. Section 10.2 describes several heuris-

tics allowing domain experts to remove several similar wrong matches at a time

to restore consistency.
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10.1 Validating Matches using LNF, LNFS and LBPT

In this section, we explain the use of qualitative spatial logics LNF, LNFS and

LBPT for validating object matches, i.e. sameAs and partOf matches between

spatial features. For spatial features a and b from different datasets, sameAs(a, b)

states that a and b refer to the same object in the real world; partOf (a, b) states

that the object represented by a is part of the object represented by b in the real

world. Note that partOf here does not mean ‘proper part of’. sameAs(a, b) is

seen as the conjunction of partOf (a, b) and partOf (b, a).

To validate matches between spatial features with respect to location informa-

tion, we verify consistency of their corresponding BEQ and BPT relations be-

tween the geometries of spatial features against relative location information

(NEAR or FAR) in each input dataset, as explained below.

Let A, B be two sets of spatial features, S be a set of object matches between

A and B. For any spatial feature o, let g(o) denote its geometry. For any pair

of spatial features a ∈ A, b ∈ B, we assume that if sameAs(a, b) is true, then

BEQ(g(a), g(b)) holds; if partOf (a, b) is true, then BPT (g(a), g(b)) holds, where

BEQ and BPT are defined using an appropriate level of tolerance σ. BEQ

and BPT relations are generated from sameAs and partOf matches in S as re-

tractable assumptions. We also generate NEAR and FAR relations as facts for

geometries of spatial objects in the same dataset.

We reason about BEQ and BPT relations together with NEAR and FAR facts

using axioms of LNF, LNFS or LBPT. If for each spatial feature o in input datasets,

g(o) is a point, then we apply LNF, otherwise, we apply LNFS or LBPT. As

shown in Chapters 8 and 9, LNFS cannot deal with BPT relations, whilst LBPT

is more expressive and can reason about both BEQ and BPT relations (for

any pair of geometries a, b, BEQ(a, b) is defined as BPT (a, b) and BPT (b, a)).

In the current version of MatchMaps, LBPT axioms and the axiom BEQ(a, b)↔
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BPT (a, b)∧BPT (b, a) are implemented in a dedicated LBPT reasoner integrated

with an assumption-based truth maintenance system (ATMS) [de Kleer, 1986],

as this project focuses on matching spatial features with polygonal geometries.

The implementation of the LBPT reasoner with an ATMS is explained in [Du

et al., 2015b]. If every spatial feature has a point geometry, then an additional

axiom NEAR(a, b) ∧ NEAR(b, c) → ¬FAR(a, c) (LNF Axiom 7) needs to be

added to the reasoner.

FIGURE 10.1: Examples of using LNFS and LBPT for validating matches

The LBPT reasoner is used to check the consistency of BEQ and BPT rela-

tions together with NEAR and FAR facts. If any contradiction exists, all the

minimal sets of statements for deriving it are calculated. If a minimal set of

statements contains more than one retractable assumption, a domain expert is

needed to decide the correctness of the retractable assumptions and remove the

wrong one(s) to restore consistency. Location information is visualized and pro-

vided to domain experts for making such decisions, as shown in Fig. 10.1, where

a1, b1, c1, d1 (red) are from OSGB data and a2, b2, c2, d2 (blue) are from OSM data.

In the left example, by LNFS Axiom 6 (or by LBPT Axiom 6 and BEQ(a, b)↔

BPT (a, b) ∧ BPT (b, a)), a minimal set of statements for deriving an inconsis-

tency consists ofBEQ(a1, a2),BEQ(b1, b2),NEAR(a1, b1), FAR(a2, b2). It is clear

that BEQ(b1, b2) is wrong. In the right example, BPT (d2, d1) is wrong, because

it contradicts BPT (c2, c1), NEAR(c2, d2), FAR(c1, d1) by LBPT Axiom 6. As a
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consequence, the sameAs and partOf matches corresponding toBEQ(b1, b2) and

BPT (d2, d1) respectively are also incorrect and removed by domain experts.

The spatial logics LNF, LNFS and LBPT are generally applicable to reason with

spatial features whose locations are represented at different levels of accuracy

or granularity in different datasets. Locations of spatial features can be rep-

resented using vector data (coordinates) or raster data (images). Sometimes,

for spatial features in different datasets, measuring whether their locations are

buffered equal directly is difficult or impossible, for example, when locations

are represented as images without knowing their coordinates. In such cases,

spatial features may be matched by comparing shapes in images or using lexi-

cal information. No matter how the matches between spatial features are gen-

erated, the LNF/LNFS/LBPT reasoning can be used to verify consistency of

matches, regarding relative locations (NEAR/FAR facts) between spatial fea-

tures in the same dataset, which are often reliable and easy to capture.

10.2 Actions for Retracting Problematic Matches

MatchMaps uses reasoning in qualitative spatial logic and description logic (see

Section 10.1 and Chapter 6) to check the consistency of matches together with

location information and classification information. If any inconsistency exists,

minimal sets of statements for deriving it are generated. Users are asked to

decide the correctness of matches involved in such minimal sets of statements

and remove the wrong ones. MatchMaps allows users to take four types of

actions, as explained below.

• Retract: If a match is found to be incorrect, then it is appropriate to retract

it. A retracted match will be removed from the output. If a partOf c is

retracted, then a sameAs c will be retracted automatically. Similarly, a
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BEQ match could be retracted automatically as a result of retracting a

related BPT match.

• Confirm: If a match is found to be correct, then it is appropriate to con-

firm it. A confirmed match will be used to validate the correctness of

other matches, i.e. any match which contradicts a confirmed match will

be removed automatically. If a sameAs c is confirmed, then a partOf c

and c partOf a will be confirmed automatically. Similar rules apply when

confirming BEQ matches.

• Strong Retract: If a match is found to be incorrect and all matches ‘similar’

to it are also incorrect, then it is appropriate to use ‘strong retract’ to retract

all of these wrong matches at a time. The consequences of ‘strong retract’

different kinds of matches are as follows.

– If a partOf c is strongly retracted, then a partOf x is retracted for any

feature x differing from a (a is not partOf any other feature x).

– If a sameAs c is strongly retracted, then a sameAs x is retracted for

any feature x differing from a (a is not sameAs any other feature x),

c sameAs x is retracted for any feature x differing from c (c is not

sameAs any other feature x).

– If a BPT c is strongly retracted, then a BPT x is retracted for any

geometry x differing from a (a is not BPT any other geometry x).

– If a BEQ c is strongly retracted, then a BEQ x is retracted for any

geometry x differing from a (a is not BEQ any other geometry x), c

BEQ x is retracted for any geometry x differing from c (c is not BEQ

any other geometry x).

For example, in the case shown in Fig. 10.2, if MatchMaps asks whether

b2 is partOf b1 (the Victoria Centre is part of the John Lewis Department

Store), then an effective action is ‘strong retract’. As a consequence, the
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FIGURE 10.2: a1 (red) in OSGB and a2 (blue) in OSM both represent a Prezzo
Ristorante; b1 (yellow) in OSGB represents a John Lewis Department Store in

the Victoria Centre, b2 (blue) in OSM represents the Victoria Centre.

Victoria Centre will not be stated as partOf any other feature in output

matches. Users need to be careful not to overuse ‘strong retract’. For ex-

ample, if a partOf c is found to be wrong, but it is possible that a is partOf

some other feature in input data, then it is appropriate to use ‘retract’

rather than ‘strong retract’. If a is definitely not partOf any other feature

in input data, then ‘strong retract’ is appropriate.

• Strong Confirm: If an exact correct match (a match which is correct and

it entails all other correct matches) is found, then it is appropriate to use

‘strong confirm’. The consequences of ‘strong confirm’ different kinds of

matches are as follows.

– If a partOf c is strongly confirmed, then a partOf c is confirmed, and

all matches involving a except for a partOf x (x is c or a) will be

retracted (a is not partOf any feature other than c and itself).

– If a sameAs c is strongly confirmed, then a sameAs c is confirmed,

and all matches involving a or c except for a sameAs c, a partOf c and

c partOf a will be retracted (a is only sameAs c and vice versa).

– If a BPT c is strongly confirmed, then a BPT c is confirmed, and all

matches involving a except for a BPT x (x is c or a) will be retracted

(a is not BPT any geometry other than c and itself).
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– If a BEQ c is strongly confirmed, then a BEQ c is confirmed, and all

matches involving a or c except for a BEQ c, a BPT c and c BPT a

will be retracted (a is only BEQ c and vice versa).

For example, in the case shown in Fig. 10.2, if MatchMaps asks whether

a1 sameAs a2 is correct, then an effective action is ‘strong confirm’.

From Chapter 5 until now, we have looked at each step of MatchMaps in de-

tail. MatchMaps Steps 1, 2, 6 and 7 are based on description logic reasoning as

explained in Chapter 6. Candidate matches between spatial features are gener-

ated in Steps 3 and 4 using methods described in Chapter 5. Chapter 10 explains

the use of qualitative spatial logics LNF, LNFS and LBPT introduced in Chap-

ters 7-9 for validating matches (MatchMaps Step 5) and provides heuristics to

help human experts retract several similar problematic matches at a time. In

the next chapter, the performance of MatchMaps is evaluated by the developer

(the author) and experts from Ordnance Survey of Great Britain, regarding the

research objectives and targets set in Section 1.2.
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Chapter 11

Evaluation and Discussion

In this chapter, the performance of MatchMaps is evaluated by the developer

(the author) and experts from Ordnance Survey of Great Britain, regarding the

research objectives and targets set in Section 1.2. This chapter consists of three

sections. In Section 11.1, the precision and recall of output matches generated

by MatchMaps are calculated and compared to those generated by three other

fully-automated ontology matching systems LogMap, CODI and KnoFuss. Sec-

tion 11.2 describes a user evaluation study conducted with Ordnance Survey of

Great Britain to determine the amount of human effort required to perform a

matching task using MatchMaps. The overall performance of MatchMaps is

summarized and discussed in Section 11.3.

11.1 Developer Evaluation of MatchMaps

This section consists of Section 11.1.1 describing the evaluation of terminology

matching of MatchMaps and Section 11.1.2 describing the evaluation of object

matching. The latter is the focus, since MatchMaps matches terminologies us-

ing a very simple heuristic based on string similarity. More advanced semantic
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matching techniques may be used to replace MatchMaps’ current terminology

matching method to achieve better performance.

11.1.1 Evaluation of Terminology Matching

We use MatchMaps, CODI [Noessner and Niepert, 2010] and LogMap [Jiménez-

Ruiz and Grau, 2011] to match the Ordnance Survey of Great Britain (OSGB)

Buildings and Places ontology [Hart et al., 2008] and the OpenStreetMap (OSM)

ontology. The OSM ontology is generated automatically from OSM map fea-

tures [OpenStreetMap Wiki, 2014d]. For example, the fact that ‘Restaurant’ is

a value under the key ‘Amenity’ in the OSM classification is represented as

OSM : Restaurant⊑ OSM : Amenity in the OSM ontology. Both ontologies are

written in the OWL 2 Web Ontology Language [W3C, 2012]. The statistics of

them are shown in Table 11.1.

TABLE 11.1: OSGB Buildings and Places ontology vs. OSM ontology

OSGB Buildings and Places ontology OSM ontology
Logical Axiom 1204 677
Class 686 663

The experiments are performed on an Intel Dual Core1 2.00 GHz, 3.00 GB RAM

personal computer from the command line. Times are in seconds, averaged

over 5 runs. The experimental results are summarized in Table 11.2.

The MatchMaps time in Table 11.2 is for generating equivalence matches for

same-named concepts from different ontologies and checking coherence using

the description logic reasoner Pellet [Sirin et al., 2007]. The total time includ-

ing human interaction (choosing which assumption(s) to be retracted, time on

average is 105.6 seconds) is 124.4 seconds. Based on manual evaluation, the

1MatchMaps only uses one core.
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TABLE 11.2: Comparing terminology matches generated by MatchMaps,
CODI and LogMap

MatchMaps CODI LogMap
Time 18.8s (automatic part) 167.72s 8.65s
Output 84 105 91
Precision 0.89 0.76 0.70
Recall 0.71 0.76 0.41

precision rates of the MatchMaps, CODI and LogMap mappings (a mapping is

a set of matches) are 89%, 76% and 70% respectively. The recall is calculated as

the ratio of correctly found matches over the total number of expected matches

in a small set of ‘ground truth’, i.e. equivalence matches provided by domain

experts from OSGB, as shown in Table 11.3. In Table 11.3, ‘1’ means the mapping

contains that match in the ground truth, ‘0’ means not. ‘-1’ means the mapping

contains a corresponding ‘wrong’ match. For example, the CODI mapping con-

tains an incorrect matchOSGB : Parking ≡OSM : Parking rather thanOSGB :

CarPark ≡ OSM : Parking. ‘0.5’ means the mapping contains an inclusion

match (partially correct but incomplete). For example, the LogMap mapping

contains OSGB : Shop ⊑ OSM : Shop instead of OSGB : Shop ≡ OSM : Shop.

When calculating the recall, each equivalence match is counted as two inclusion

matches, in order to take such partially correct matches into account.

The precision of the MatchMaps mapping is higher than those of the other two,

because domain experts are involved to make ultimate decisions. CODI pro-

duces more correct matches, such asOSGB :NurserySchool≡OSM :Kindergarten

and OSGB : PublicHouse ≡ OSM : Pub, since it uses more advanced lexical

matching techniques. Such techniques can be incorporated into MatchMaps to

achieve better recall.

The experimental results show that domain experts are indispensable when

matching terminologies in order to obtain 100% precision and recall. Mappings
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TABLE 11.3: ‘Ground Truth’ Evaluation of MatchMaps, CODI and LogMap

Ground Truth MatchMaps CODI LogMap
OSGB : Bank ≡ OSM : Bank 1 1 1
OSGB : Chapel ≡ OSM : Chapel 1 1 0
OSGB : Church ≡ OSM : Church 1 1 0
OSGB : FireStation ≡ OSM : Fire_Station 1 1 1
OSGB : Hotel ≡ OSM : Hotel 1 1 0
OSGB : House ≡ OSM : House 1 1 1
OSGB : NurserySchool ≡ OSM : Kindergarten 0 1 0
OSGB : Library ≡ OSM : Library 1 1 1
OSGB :Market ≡ OSM :Marketplace 0 0 0
OSGB :Museum ≡ OSM :Museum 1 1 1
OSGB : CarPark ≡ OSM : Parking 0 -1 0
OSGB : PoliceStation ≡ OSM : Police 0 -1 -1
OSGB : PublicHouse ≡ OSM : Pub 0 1 0
OSGB : Restaurant ≡ OSM : Restaurant 1 1 1
OSGB : Shop ≡ OSM : Shop 1 0 0.5
OSGB : TownHall ≡ OSM : Townhall 1 1 1
OSGB :Warehouse ≡ OSM :Warehouse 1 1 0
Score 12 11 6.5

produced by fully automatic methods, such as CODI and LogMap, require fi-

nal validation by experts, which is difficult and time-consuming. Human effort

is reduced by MatchMaps, as it only asks experts to decide the correctness of

matches involved in a minimal set of statements for deriving incoherence.

11.1.2 Evaluation of Object Matching

In this section, we report the use of MatchMaps to match OSM data (building

layer) [OpenStreetMap, 2014] to OSGB MasterMap data (Address Layer and

Topology Layer) [Ordnance Survey, 2014a]. The study areas are in city centres

of Nottingham and Southampton, UK, as shown in Fig. 1.1 and Fig. 11.1 re-

spectively. The Nottingham data was obtained in 2012, and the Southampton

data in 2013. The numbers of spatial objects in the case studies are shown in

Table 11.4. The number of OSM objects is smaller in each case, because OSM
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data often describes a collection of OSGB objects as a whole, for example, OSGB

shops as a shopping centre in OSM.

FIGURE 11.1: The geometric representations of Southampton city centre from
OSGB (left) and OSM (right)

TABLE 11.4: Data used for Evaluation

OSM spatial objects OSGB spatial objects

Nottingham 281 13204
Southampton 2130 7678

We chose these two datasets for evaluation because they have a reasonable rep-

resentation in OSM (city centres usually attract more attention from OSM con-

tributors, and a variety of buildings and places are represented there) and are of

reasonable size. In both cases, we set the value of σ used in geometry matching

to be 20 metres.

The main objective of evaluation was to establish the precision and recall of

MatchMaps. Given the size of the case studies, it was infeasible for domain

experts to produce a complete set of ground truth matches manually. Instead,

we computed the ground truth as follows. For each OSM object a, we check

all matches which involve a (either a single sameAs(a, b) match with some

b in the OSGB dataset, or several partOf matches involving a) produced by
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TABLE 11.5: Matching OSM spatial objects to OSGB

TP FP TN FN Precision Recall

Nottingham 177 19 64 21 0.90 0.84
Southampton 1997 21 71 41 0.98 0.97

MatchMaps. If the match or matches were determined by a human expert to be

correct, a was classified as ‘Correctly Matched’ (True Positive or TP ), otherwise

it was classified as ‘Incorrectly Matched’ (False Positive or FP ). For a ∈ FP ,

a check was made whether a correct match for a existed; if yes, a was labelled

FPsbm. If a was not involved in any matches, a check was made whether a cor-

rect match for it existed. If there was no correct match, then a was placed in

‘Correctly Not-matched’ (True Negative or TN ), otherwise in ‘Incorrectly Not-

matched’ (False Negative or FN ). Straightforward matches were checked by

a non-expert using guidelines developed in conjunction with a subject matter

expert from the Nottingham Geospatial Institute. A subject matter expert at

Ordnance Survey (Great Britain’s National Mapping Authority) classified non-

straightforward cases (approximately 10% of the total output of the system for

the given datasets). In this way, OSM spatial objects in the Nottingham case

and the Southampton case were classified into categories, as shown in Fig. 11.2.

Note that the size of each group is the number of OSM spatial objects in it. For

example, for the Victoria Centre in OSM, though there are hundreds of partOf

matches involving it, it is only counted as one element in ‘Correctly Matched’.

Precision was computed as the ratio of |TP | to |TP |+ |FP |, and recall as the

ratio of |TP | to |TP |+ |FN |+ |FPsbm|. As shown in Table 11.5, for both Not-

tingham and Southampton cases, precision is ≥ 90% and recall ≥ 84%.

Most OSM spatial objects in the ‘Incorrectly Matched’ category were incorrectly

stated as being partOf some other spatial objects nearby. It is difficult to prevent

such mistakes because spatial objects and their parts may not have any similar

lexical information and therefore partOf matches are generated mostly based
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FIGURE 11.2: OSM spatial objects of the Nottingham case (left) and the
Southampton case (right) are classified into four categories:

TP (Black), FP (Red), TN (Yellow) and FN (Green).

on geometry matching. Though the generated matches will be verified using

reasoning in spatial logic and description logic, not all mistakes can be detected.

For example, wrong partOf matches will not be detected by spatial logic, if

spatial objects involved in them are all close to each other. Some wrong partOf

matches cannot be detected by description logic, because several OSM spatial

objects do not have any type information and the use of description logic for

verifying consistency of partOf matches is limited by a small set of manually

generated ‘partOf -disjointness’ statements.

MatchMaps failed to match OSM spatial objects in the ‘Incorrectly Not-matched’

category, mainly because its lexical matching method cannot match different

names (represented by non-similar strings) of the same spatial object. For exam-

ple, the OSGB spatial object labelled as ‘Nottinghamshire Constabulary, Police

Services’ and the OSM spatial object labelled as ‘Central Police Station’ cannot

be matched but they actually represent the same object in the real world.

We compare the performance of MatchMaps with two ontology matching (in-

stance matching) systems, LogMap [Jiménez-Ruiz and Grau, 2011] and Kno-

Fuss [Nikolov et al., 2007a], for matching the study area in Nottingham city
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TABLE 11.6: Comparing sameAs matches generated by MatchMaps, LogMap
and KnoFuss (Nottingham case)

MatchMaps LogMap KnoFuss
number of sameAs matches 115 119 102
number of correct matches 115 28 18

precision 1 0.24 0.18
recall 0.84 0.20 0.13

centre. We did not compare MatchMaps to geometry matching systems be-

cause MatchMaps uses standard geometry matching techniques (See Chap-

ter 5). More advanced geometry matching methods may work better than

MatchMaps for matching geometries, but for matching spatial features with

meaningful labels, they do not make effective use of lexical information and

do not verify consistency of matches using spatial logic as MatchMaps does.

We only compare the generated sameAs matches, as LogMap and KnoFuss do

not generate any partOf matches, but the evaluation of MatchMaps using the

whole ground truth (containing both sameAs matches and partOf matches) has

also been provided in Table 11.5. In the ground truth established above, 137

sameAs matches should be generated. As shown in Table 11.6, the precision

and recall of MatchMaps are much higher than those of LogMap and KnoFuss.

This is mainly because LogMap and KnoFuss do not make effective use of loca-

tion information.

11.2 User Evaluation of MatchMaps

The user evaluation of MatchMaps aims to determine how much human ef-

fort and time is required to produce a mapping between two small (about 100

buildings) datasets using the tool. As shown in Fig. 11.3, the datasets used

for this evaluation are from OSGB and OSM and describe buildings in a small

area in Southampton, UK. The statistics of the input datasets are summarized
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in Table 11.7. Participants are recruited from the University of Nottingham and

Ordnance Survey in Southampton. These participants are referred to as users

of MatchMaps in this thesis. They are asked to use the tool and decide whether

matches generated by MatchMaps are correct or not, and take actions to remove

incorrect ones. The time required to make such decisions and take actions is au-

tomatically logged. This time is referred to as decision time in this section. The

only information kept from the study is an automatically produced log of times

and users’ decisions. Before being timed, users are asked to watch a video and

run a demo to learn how to use MatchMaps. See Appendix B for a worked

example illustrating how the verification system in MatchMaps affects the user

experience.

FIGURE 11.3: The geometric representations of spatial features in Southamp-
ton from OSGB (left) and OSM (right)

TABLE 11.7: Data used for User Evaluation

OSM geometries OSGB geometries OSM spatial objects OSGB spatial objects

119 417 62 933

The ground truth is a subset of the ground truth established in Section 11.1.2.

For the study area, the ground truth contains 632 sameAs and partOf matches

(sameAs(a, b), partOf (a, b) and partOf (b, a) are counted as one). Based on the
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ground truth, each OSM object is classified into one of the four groups: ‘Cor-

rectly Matched’ (True Positive or TP), ‘Incorrectly Matched’ (False Positive or

FP), ‘Correctly Not-matched’ (True Negative or TN) and ‘Incorrectly Not-matched’

(False Negative or FN). The size of each group is the number of OSM spatial ob-

jects in it.

The minimal amount of effort required for manually matching the spatial ob-

jects in the same study area is estimated as follows. Assuming that an expert

generates every match in the ground truth one by one by clicking two spatial

objects on the maps (Fig. 11.3) taking 3 seconds (1 second for each click, one for

deciding the type of match), then the total time for generating all the matches

in the ground truth is 31.6 minutes, about half an hour. This estimate is very

optimistic, without taking into account the time spent in checking and compar-

ing lexical information. The real time for matching the objects manually can be

much longer, depending on the experience and knowledge of experts.

For the same set of inputs shown in Fig. 11.3, Table 11.8 summarizes the statis-

tics of matching results generated by MatchMaps involving different users in

the validation process. There are 12 users in total, 9 of them are experts from

Ordnance Survey of Great Britain. Precision and recall are calculated in the

same way as described in Section 11.1.2.

For comparison, the statistics of matching results generated by MatchMaps

with validation by the developer (the author) and without any validation (only

using geometry matching and object matching described in Chapter 5) are sum-

marized in Table 11.9 and Table 11.10 respectively, where the time is counted

from loading input data to the completion of saving output matches. The exper-

iments were performed by the developer on an Intel(R) Core(TM)2 Duo CPU

E8400 @ 3.00 GHz, 4.00 GB RAM desktop computer. Times are in seconds, av-

eraged over 5 runs.
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TABLE 11.8: Matching Results of MatchMaps with Validation by Users

User TP FP TN FN Precision Recall Interaction Decision Time
1 49 6 4 3 0.89 0.84 13 311s
2 48 8 3 3 0.86 0.83 47 409s
3 46 10 3 3 0.82 0.79 18 390s
4 48 8 3 3 0.86 0.83 13 250s
5 50 6 3 3 0.89 0.86 34 925s
6 50 6 3 3 0.89 0.86 12 104s
7 47 8 3 4 0.85 0.81 32 574s
8 48 8 3 3 0.86 0.83 42 203s
9 48 8 3 3 0.86 0.83 32 363s

10 49 7 3 3 0.88 0.84 19 388s
11 48 8 3 3 0.86 0.83 29 301s
12 49 7 3 3 0.88 0.84 13 230s

Average 48 8 3 3 0.87 0.83 25 371s

TABLE 11.9: Matching Results of MatchMaps with Validation by the Developer

TP FP TN FN Precision Recall Interaction Decision Time Time
50 4 4 4 0.92 0.86 12 71s 118s

TABLE 11.10: Matching Results of MatchMaps without Validation

TP FP TN FN Precision Recall Time
44 12 3 3 0.78 0.75 11s

As shown in Table 11.8, though the number of actions taken (interaction) and

decision time spent vary from user to user, the precision and recall do not vary

much. Most users obtained a precision within a range of 0.86 to 0.89 and a

recall within a range of 0.83 to 0.86. On average, users generate matches with a

precision of 0.87 and a recall of 0.83 by taking 25 actions using about 6 minutes.

Compared to the results without any validation in Table 11.10, the precision

and recall are improved by 9% and 8% respectively. The time spent is much

less than the estimated minimal amount of time required by a fully manually

matching process (31.6 minutes). The best matching results generated by users
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are almost as good as those generated by the developer (see User 6), where a

precision of about 0.9 and a recall of 0.86 are obtained, taking only one or two

minutes to decide the correctness of matches.

11.3 Discussion

In this section, we summarize the development and performance of MatchMaps

regarding the research objectives and targets set in Section 1.2, explain the prac-

tical uses of matches generated by MatchMaps, and discuss the advantages and

limitations of MatchMaps compared to the state-of-the-art.

11.3.1 Development and Performance of MatchMaps

The development of MatchMaps achieved the two research objectives, gener-

ating matches and validating matches, raised in Section 1.2. MatchMaps im-

plements a generic method for generating matches described in Chapter 5, and

uses description logic reasoning and spatial logic reasoning to detect problem-

atic matches. In the established formal validation procedure of MatchMaps,

domain experts are involved to decide the correctness of matches which cause

a logical contradiction and take actions to remove incorrect matches.

Based on the evaluation of MatchMaps by the developer and users, MatchMaps

achieved a precision of about 90% and a recall of above 80% on average. The hu-

man effort varies from one minute to a quarter of an hour, but it is still much less

than that required by a fully manually matching process. The precision and re-

call may be improved further by using more advanced geometry matching and

lexical matching methods. The amount of human effort could be reduced fur-

ther by implementing more heuristics to resolve logical conflicts, for example,

treating objects sharing the same geometry similarly.
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11.3.2 Practical Uses of MatchMaps Matches

The matches generated by MatchMaps have several practical uses. Firstly, the

matches can help validate the correctness of corresponding data in input datasets.

If similar records of a spatial feature exist in both input datasets which are de-

veloped independently, then the records have a higher chance of being correct.

In addition, the matches facilitate information exchange and enrichment, as one

dataset may contain more detailed lexical descriptions or more user-based in-

formation than the other. For example, classification descriptions of spatial

features in OSM data can be more precise and more understandable by non-

specialists. There are several spatial features in OSM data, such as shopping

centres, hospitals and schools, which correspond to collections or aggregations

of spatial features in OSGB.

Using the matches, spatial features which are not matched can be found. These

‘not matched’ spatial features possibly indicate new constructions or other changes

in the real world. A spatial feature is not matched either because its geometry

is not matched or because its lexical information, if it has any, is not matched.

According to such different reasons, unmatched spatial features can be classi-

fied into different categories and visualized by MatchMaps. Since data about

unmatched spatial features may contain errors, to know whether the indicated

‘changes’ actually have occurred, further verification (e.g. by mining informa-

tion on the web) is needed to filter out errors and other misleading information.

As explained in Section 2.1, OSGB collects information about real world changes

from a variety of sources, such as major construction companies, local author-

ities, individual surveyors, aerial imagery, as well as reports from the general

public. The unmatched OSM spatial features detected by MatchMaps comprise

a complementary source of change intelligence. This OSM change intelligence

may not be as accurate as the others, but it is free and can capture not only major
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changes but also many minor changes in buildings and roads noticed by OSM

contributors, as well as changes in function or purpose. It is difficult for OSGB

to capture such minor changes and functional changes using current methods.

Using the OSM change intelligence seems promising but needs more advanced

techniques for validating crowd-sourced data and to be tested in practice.

11.3.3 Advantages and Limitations of MatchMaps

MatchMaps has several advantages. Firstly, MatchMaps combines geospatial

data matching and ontology matching techniques to generate matches between

spatial features from disparate geospatial datasets. The experimental results

show that MatchMaps outperforms several other ontology matching tools (which

do not make effective use of location information) for matching geospatial data.

In addition, MatchMaps is the only tool which uses qualitative spatial reason-

ing and description logic reasoning to verify consistency of matches. The ex-

perimental results show that this validation procedure improves precision and

recall of output matches.

The main limitation of MatchMaps is its spatial reasoning does not use dif-

ferent levels of tolerance for spatial features of different sizes and types (such

as buildings, roads, rivers and lakes) and does not make use of direction in-

formation. In the experiments above, the level of tolerance σ = 20m, which

is not always appropriate. For example, if a1, a2, b1, b2 are small shops of size

less than 5m squared represented in two datasets, sameAs(a1, a2) is correct,

d(a1, b1) = 5m, d(a2, b2) = 30m, then sameAs(b1, b2) is wrong, but cannot be de-

tected using σ = 20m, because NEAR(a1, b1), NEAR(a2, b2). MatchMaps may

fail to detect wrong matches even varying σ values for different spatial features.

For example, if sameAs(a1, a2) is correct, b1 is NEAR and to the south of a1, and
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b2 is NEAR and to the north of a2, then sameAs(b1, b2) is wrong but cannot be

detected by the spatial reasoning of MatchMaps.

In experiments, MatchMaps is used to match buildings and places. Though

MatchMaps can match geometries and spatial objects, it does not actually dis-

tinguish buildings and premises within buildings. For example, a named build-

ing and premises within it are both treated as spatial objects. However, this

issue is very complicated and out of the main focus of this thesis.

Other limitations include that MatchMaps cannot generate ‘partOf-disjointness’

axioms automatically, does not make use of temporal information from input

data for information update, and has not automated the process of using matches

for information enrichment and update. The limitations of MatchMaps indicate

possible further works which are explained in the next chapter.
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Chapter 12

Conclusion and Future Work

This chapter concludes this thesis by summarizing its contributions and indi-

cating possible directions for future work.

12.1 Conclusion

As EuroGeographics’ President, Ingrid Vanden Berghe [Geospatial PR, 2014],

says, ‘Europe’s National Mapping, Cadastral and Land Registry Authorities

must adapt their activities to become geospatial information brokers if they are

to continue to meet society’s expectations’. This indicates that national map-

ping agencies need to collate data rather than just collect data in future, except

for areas where only national mapping agencies are able to collect the data. The

rapid development of crowd-sourced geospatial data has provided challenges

and opportunities to national mapping agencies. Compared to authoritative

data, crowd-sourced data often contains richer user-based information and re-

flects real world changes more quickly at a much lower cost, but it can be less

accurate and less structured. In order to use crowd-sourced and authoritative
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geospatial data synergistically, it is essential to establish matches between spa-

tial features from different datasets.

This thesis is on matching disparate geospatial datasets and validating matches

using qualitative spatial logic. It is built upon the state-of-the-art literature on

geospatial data matching, ontology matching and spatial logic. Existing spatial

logics and formalisms such as RCC8 are not appropriate for reasoning about

crowd-sourced data. To reason about and debug sameAs and partOf matches

between spatial features from different geospatial datasets, especially crowd-

sourced datasets, a series of new qualitative spatial logics, LNF, LNFS and

LBPT, was developed in this thesis. Previously, no spatial logic was developed

for this purpose. The main technical results in the thesis are the soundness,

completeness, decidability and complexity theorems for the new spatial logics

with respect to a metric space (Chapters 7-9): a sound and complete axiomati-

sation is provided and corresponding theorems are proved for each logic; the

LNF, LNFS and LBPT satisfiability problems are all shown to be NP-complete.

The spatial logics are proved to be proper fragments of the logic MS(M) de-

scribed in Section 3.3.3 for reasoning about distances, but have lower computa-

tional complexity (provided NP ( EXPTIME ). It is also proved that the LNF

satisfiability problem is decidable in PSPACE with respect to a 2D Euclidean

space in Chapter 7, whilst the MS(M) satisfiability problem in a 2D Euclidean

space is undecidable.

Another contribution of the thesis is a software tool MatchMaps (described

in Chapter 4) for generating and validating matches between spatial features

from different geospatial datasets. It generates candidate matches using loca-

tion and lexical information (Chapter 5), and validates matches using reasoning

in description logic and the qualitative spatial logic LBPT (Chapter 6 and Chap-

ter 10). Previously, no matching tool used spatial logic for validating matches.

Description logic has been used in several ontology matching systems, but not
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for reasoning about crowd-sourced geospatial data. MatchMaps is the only sys-

tem which combines spatial logic reasoning and description logic reasoning to

check the consistency of matches with respect to location information and clas-

sification information. Description logic is used to validate matches regard-

ing classification information, more specifically, to exclude sameAs matches be-

tween spatial features in disjoint categories or classifications, and also to reason

about for which types of spatial features partOf matches cannot hold. Quali-

tative spatial logic is applied to validate matches regarding location informa-

tion. For example, for spatial features a1, b1 in one dataset and a2, b2 in another

dataset, a contradiction arises if sameAs(a1, a2), sameAs(b1, b2), NEAR(a1, b1),

FAR(a2, b2). As NEAR and FAR statements are treated as facts, at least one

of the sameAs matches is wrong and should be removed to restore consistency.

MatchMaps involves domain experts in the process of validating matches to de-

cide the correctness of such matches (which cause a contradiction) and remove

incorrect ones, as no heuristic for making such decisions automatically gives

sufficiently reliable results. The performance of MatchMaps was evaluated by

the author and experts from Ordnance Survey of Great Britain (Chapter 11).

Experimental results show that MatchMaps achieved high precision and recall,

as well as reduced human effort. MatchMaps outperformed several ontology

matching systems mainly because they cannot make effective use of location

information.

Though the work presented in this thesis is motivated by the development of

crowd-sourced geospatial data and aims to use crowd-sourced and authori-

tative geospatial data synergistically, the methodology developed and imple-

mented in MatchMaps has wider applications in matching geospatial datasets

containing vector data, not limited to a crowd-sourced dataset and an authori-

tative dataset.
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12.2 Future Work

In this thesis, a series of qualitative spatial logics was developed in Chapters 7-

9, and their soundness, completeness, decidability and complexity theorems

were proved with respect to a metric space. However, models based on a met-

ric space may not be realizable in a 2D Euclidean space, which is more realistic

for geospatial data. Suppose there are four points pi, where i ∈ {1,2,3,4}. For

each point pi, d(pi, pi) = 0. For any pair of them, d(pi, pj) = d(pj, pi) = 1. It is

clear that there is a metric space satisfying all the distance constraints, but there

is no such 2D Euclidean space. It is proved that the satisfiability problem of

MS(M) in a 2D Euclidean space R2 is undecidable [Wolter and Zakharyaschev,

2003, 2005], whilst the satisfiability problem of its proper fragments may be de-

cidable. We have proved that the LNF satisfiability problem in a 2D Euclidean

space is decidable in PSPACE in Chapter 7, but whether the LNFS/LBPT satis-

fiability problem in a 2D Euclidean space is decidable is still unknown. It also

remains open that whether the LNF/LNFS/LBPT calculus is complete for mod-

els based on a 2D Euclidean space. If not, a theoretical challenge is to design

logics which are complete for 2D Euclidean spaces, and hence provide more

accurate debugging of matches than the logics of metric spaces.

In this thesis, a software tool MatchMaps was developed. Though MatchMaps

achieved high precision and recall in experiments, there is still room to improve

its performance, for example, by using or developing more advanced geome-

try matching and lexical matching techniques, developing methods to generate

‘partOf-disjointness’ axioms automatically used for validating partOf matches

regarding classification information, and developing mechanisms to reduce hu-

man effort further. The performance of MatchMaps is also influenced by the

level of tolerance σ used in the spatial logic reasoning. If σ is too large, then

MatchMaps may fail to detect many wrong matches. The value of σ should
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vary by the size of the spatial feature being checked. This motivates the devel-

opment of new spatial logics which reason about the sizes of spatial features,

in addition to their relative locations. To provide more accurate validation of

matches, the qualitative spatial logics could also be extended to reason about

directions (or shapes). For example, if sameAs(a1, a2) is correct, b1 isNEAR and

to the south of a1, and b2 is NEAR and to the north of a2, then sameAs(b1, b2) is

wrong.

The aim of this work is to use crowd-sourced and authoritative geospatial data

synergistically, in particular, to use crowd-sourced geospatial data to help en-

rich and update authoritative data. This thesis focuses more on generating and

validating matches, but less on using matches for information enrichment and

update, which is the operational objective that this research is contributing to.

Brief discussions about using matches were provided in Chapter 4 and Chap-

ter 11. But the process of using matches to extract useful information from in-

put datasets has not been formalized and automated yet. The work presented in

this thesis could be extended by adding a temporal dimension to the qualitative

spatial logics, to enable reasoning about changes in the classifications and loca-

tions of spatial features. In addition, different verification approaches should

be combined and used for validating matches and crowd-sourced geospatial

data which indicate different types of real world changes. The new validation

process should be automated as much as possible to minimize human effort.

This work could also be extended to allow matching and reasoning about geospa-

tial data at different levels of abstraction. The same set of spatial features can be

represented at different levels of abstraction, regarding their location informa-

tion. For instance, a shopping centre is a higher level abstraction or an aggre-

gation of many shops within it (this has already been handled by MatchMaps).

A very small isolated spatial feature may be abstracted away at a higher level,

thus matching it to any higher level spatial feature is not necessary. Abstraction
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can also be used for conceptual descriptions of spatial features. For example, a

spatial feature is, from the most specific to more general, a Tesco, a Supermarket ,

a Self Service Shop and a Shop. In this work, every spatial feature is defined at

its most specific level by its location and lexical information in input datasets.

Therefore, a Tesco and a Sainsbury ′s cannot be matched. However, it is use-

ful to match them at a higher level Supermarket , indicating the function of the

building is not changed. A technical challenge is to model spatial features at

different levels of abstraction properly and develop new methods to generate,

validate and use matches. This may motivate the development of new logics

for reasoning about geospatial data at different levels of abstraction.

In this work, the methodology implemented in MatchMaps was evaluated us-

ing data from Ordnance Survey of Great Britain and OpenStreetMap for de-

scribing buildings and places with polygonal geometries. Theoretically, the

methodology is able to match spatial features with linear or point geometries

or those from other geospatial data sources. As future work, the generality of

this methodology will be tested in practice, using a variety of geospatial data.
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Appendix A

Proofs

The complete proof of the Path-Consistency Lemma of LBPT is presented here.

It also proves the Path-Consistency Lemma of LNFS, as LNFS is a proper frag-

ment of LBPT. Note that the proof is simplified by using Lemma A.1. The proof

of the Path-Consistency Lemma of LNF (Proof 7.51) can be simplified similarly.

Lemma A.1. Let g, h be non-negative intervals. g ∩ h = ∅ iff (g ◦ h)∩ {0} = ∅.

Proof. If g ∩ h 6= ∅, then by Definition 7.18, 0 ∈ (g ◦ h).

If 0 ∈ (g ◦ h), then by Lemma 7.20, there exist d1 ∈ g, d2 ∈ h such that 0 ∈ [|d1 −

d2|, d1 + d2]. Thus, d1 = d2. Therefore, g ∩ h 6= ∅.

As g ∩ h 6= ∅ iff 0 ∈ (g ◦ h), we have g ∩ h = ∅ iff (g ◦ h)∩ {0} = ∅.

Lemma A.2 (Path-Consistency Lemma of LBPT). Let Σ+ be an MCS. D(Σ+) is

path-consistent.

Proof. Suppose D(Σ+) is not path-consistent. Then by Definitions 7.19 and 7.29,

d(p, q) ∈ ∅ is inDS(Σ+), for some constants p, q. By Lemma 8.15, for any distance

range g occurring in D(Σ+), g 6= ∅. By Definitions 7.29, 7.18, and intersection

rules, the last operation to obtain the first ∅ interval is intersection. By Definition

7.29, there exist d(p, q)∈ g1 and d(p, q)∈ g2 inDS(Σ+), g1 6= ∅, g2 6= ∅, and g1∩g2 =
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∅. By Lemma 7.30, g1, g2 are non-negative intervals. By Lemma A.1, g1 ∩ g2 = ∅

iff (g1 ◦ g2)∩ {0} = ∅.

By the definition of D(Σ+) and Definition 7.29, d(q, p) ∈ g2 is in DS(Σ+). Since

d(p, q) ∈ g1 is in DS(Σ+), by Definition 7.29, d(p, p) ∈ (g1 ◦ g2) is in DS(Σ+). By

Definition 7.18, g1 ◦ g2 6= ∅. By Lemma 7.37, d(p, p) ∈ (g1 ◦ g2) is left-definable

and right-definable. Let h = g1 ◦ g2. Since d(p, p) ∈ h is left-definable, then by

Definition 7.33, there exists an h′ such that h′ is an identity or definable interval,

h and h′ have the same lower bound (including both value and openness) and

h⊆ h′. By Lemma 7.27, lower(h′) ∈ {0, σ,2σ,3σ,4σ}. Therefore, (g1 ◦ g2)∩{0}= ∅

iff one of the following holds:

• lower(h) ∈ {σ,2σ,3σ,4σ};

• h is left-open and lower−(h) = 0.

We will check whether ⊥ can be derived in every case using axioms (or deriv-

able facts) in LBPT calculus. By Axiom 3 and Axiom 4, NEAR,FAR are sym-

metric. Without loss of generality, let us suppose p ∈ points(a) for some indi-

vidual name a.

1. lower(h) = σ: by Definition 7.33 and Lemma 8.27, h′ has the following

possibilities:

(a) h′ = (σ,+∞): by Definition 9.9 and the definition of D(Σ+),

¬BPT (a, a) ∈ Σ+. By Axiom 1, ¬BPT (a, a)→⊥.

(b) h′ is composed by one [0, σ] and one (2σ,∞) or one [0, σ] and one

(2σ,4σ]: by Definition 9.9 and the definition of D(Σ+), BPT (a, b) ∈

Σ+ or BPT (b, a) ∈ Σ+, ¬NEAR(a, b) ∈ Σ+ and ¬NEAR(b, a) ∈ Σ+.

By Fact 9, BPT (x1, x2)∧¬NEAR(x1, x2)→⊥, {x1, x2} = {a, b}.
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(c) h′ is composed by one [0, σ], one [0,2σ] and one (4σ,∞): by Defini-

tion 9.9 and the definition of D(Σ+), in Σ+, we have BPT (x2, x1),

NEAR(x2, x3) and FAR(x3, x1), {x1, x2, x3} = {a, b, c}, ensuring no

different constants will be taken from the same points(xi), i∈ {1,2,3}.

By Fact 11, BPT (x2, x1)∧NEAR(x2, x3)∧ FAR(x3, x1)→⊥.

(d) h′ is composed by three [0, σ] and one (4σ,+∞): by Definition 9.9 and

the definition of D(Σ+), we have three BPT and one FAR over four

individual names a, b, c, d. All valid cases are listed below.

i. BPT (x1, x2),BPT (x2, x3),BPT (x3, x4), FAR(x4, x1), where

{x1, x2, x3, x4}= {a, b, c, d}. By Fact 14.1,BPT (x1, x2)∧BPT (x2, x3)∧

BPT (x3, x4)∧ FAR(x4, x1)→⊥;

ii. BPT (x2, x1),BPT (x2, x3),BPT (x3, x4), FAR(x4, x1), where

{x1, x2, x3, x4}= {a, b, c, d}. By Fact 14.2,BPT (x2, x1)∧BPT (x2, x3)∧

BPT (x3, x4)∧ FAR(x4, x1)→⊥;

In the following proof, BPT refers to one of BPT (x, y) and BPT (y, x), which

will make the corresponding case valid. NEAR and FAR are symmetric, thus

the order of x, y does not matter.

2. lower(h) = 2σ: by Definition 7.33 and Lemmas 8.26, h′ has the following

possibilities:

(a) h′ = (2σ,∞) or h′ = (2σ,4σ]: ¬NEAR(a, a), using Axiom 1 and Fact 9.

(b) h′ is composed by one [0,2σ] and one (4σ,+∞) :

one NEAR and one FAR, using Fact 10.

(c) h′ is composed by two [0, σ] and one (4σ,+∞):

two BPT and one FAR, using Fact 13.1 and Fact 13.2.

3. lower(h) = 3σ: by Definition 7.33 and Lemma 8.25,

h′ is composed by one [0, σ] and one (4σ,+∞).

one BPT and one FAR, using Fact 12.
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4. lower(h) = 4σ: by Definition 7.33 and Lemma 7.28,

h′ = (4σ,+∞). FAR(a, a), using Axiom 1 and Fact 12.

5. lower−(h) = 0: by Definition 7.33 and Lemma 8.28, h′ has the following

possibilities:

(a) h′ is composed by one [0, σ] and one (σ,∞): by the definition of

D(Σ+), ensuring no different constants taken from the same points(x),

BPT (x1, x2) ∈ Σ+ and ¬BPT (x1, x2) ∈ Σ+, {x1, x2} = {a, b}.

BPT (x1, x2)∧¬BPT (x1, x2)→⊥.

(b) h′ is composed by one [0,2σ] and one (2σ,∞) or one [0,2σ] and one

(2σ,4σ]: one NEAR and one ¬NEAR, using Axiom 3.

(c) h′ is composed by two [0, σ] and one (2σ,∞) or two [0, σ] and one

(2σ,4σ]: two BPT and one ¬NEAR, using Axiom 5.1 and Axiom 5.2

(d) h′ is composed by one (2σ,4σ] and one (4σ,∞):

one ¬FAR and one FAR, using Axiom 4.

(e) h′ is composed by two [0,2σ] and one (4σ,∞):

two NEAR and one FAR. This case is invalid1.

(f) h′ is composed by two [0, σ], one [0,2σ] and one (4σ,∞):

two BPT , one NEAR and one FAR, using Axioms 6 and 7.

(g) h′ is composed by four [0, σ] and one (4σ,∞):

four BPT and one FAR, using Fact 15.1, Fact 15.2 and Fact 15.3.

In each valid case, ⊥ is derivable using the corresponding axioms or facts,

which contradicts the assumption that Σ+ is consistent. Therefore, D(Σ+) is

path-consistent.

1See Proof 8.29 for explanations about invalid cases.
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A Worked Example

A worked example is provided here to illustrate how the verification system in

MatchMaps affects the user experience.

FIGURE B.1: Corresponding collections of spatial features represented in OSGB
data (left) and OSM data (right)

When matching spatial objects, MatchMaps identifies corresponding collections

of spatial objects represented in OSGB and OSM data using geometry matching.

An example is shown in Fig. B.1. Then MatchMaps generates matches between

spatial objects within corresponding collections using lexical matching which

is based on string similarity of names and types. Whilst using lexical matching

in this way works effectively in general, it may generate some wrong matches.

For instance, an OSGB spatial object labelled as ‘J J B SPORTS PLC’ is incorrectly

matched to an OSM spatial object ‘JD Sports’.
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For spatial features shown in Fig. B.1, 255 sameAs and partOf matches are gen-

erated. The first 5 matches in the output list are as follows.

OSGB#OSGBo774 sameAs OSM#o171779228

OSGB#OSGBo773 sameAs OSM#o171779229

OSM#o171779229 partOf OSGB#OSGBo6539

OSGB#OSGBo6551 partOf OSM#o171779229

OSGB#OSGBo6544 partOf OSM#o171779229

Without the verification system in MatchMaps, users will need to go through

the list and verify the matches manually, which is expensive in both time and

human effort. For example, to check whether the OSM spatial feature with

ID 171779228 is sameAs the OSGB spatial feature with ID 774, users need to

search them in datasets, look at and compare their lexical information (names

and types) and location information. If any other spatial feature is involved

in a sameAs/partOf match with either of them, users also need to examine the

matches together to ensure no logical contradiction exists. Such checking is

difficult, boring and error-prone, even for domain experts.

Using the verification system in MatchMaps, consistency of matches is checked

automatically by reasoning in the spatial logic LBPT and description logic. If

any contradiction exists, then minimal sets of statements for deriving it will be

generated. Matches involved in such sets will be shown to users for checking

their correctness. When validating matches in the example above, the verifica-

tion system in MatchMaps detects an inconsistency and shows the interaction

window in Fig. B.2 to users. Users are asked to check the correctness of the

following two matches, which are within the statements for deriving the con-

sistency.

OSM#171779229 BPT OSGB#OSGB3016

OSGB#OSGB3062 BPT OSM#171779229
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FIGURE B.2: An Interaction Window of MatchMaps

Note that users do not need to understand how the inconsistency is derived1.

The correctness of BEQ/BPT matches can be checked by comparing geome-

tries of spatial features involved in the matches2. It is clear thatOSM#171779229

BEQOSGB#OSGB3016 is correct and should be ‘strongly confirmed’ by users.

Validating matches in this way is much easier than doing it manually.

1It is derived using LBPT Axiom 7 (NEAR(a, b)∧BPT (b, c)∧BPT (c,d)∧FAR(d ,a)→⊥).
2For sameAs/partOf matches, lexical information is provided by ‘Info’ buttons.
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