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Abstract 

In this thesis the author presents a new method for the location, extraction 

and normalisation of discrete objects found in digital images. The extraction 

is by means of sub-pixcel contour following around the object. The normali-

sation obtains and removes the information concerning size, orientation and 

location of the object within an image. Analyses of the results are carried 

out to determine the confidence in recognition of patterns, and methods of 

cross correlation of object descriptions using Fourier transforms are dem-

onstrated. 
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Introduction 

The work described in this thesis has arisen from a research project 

sponsored by R.S.R.E. Great Malvern. The broad subject of the research 

is "Automatic Pattern Recognition". The research has developed from a 

long association with R.S.R.E. during which time the subjects of human 

perception and pattern recognition have been studied. The direction of 

research, however, has altered during the past few years to be directed away 

from human perception, towards that of machine perception and recogni-

tion. 

The area of research as defined by R.S.R.E. has been very wide. The 

research has been largely directed to recognition of visual images rather 

than other forms of input, partly for historical reasons, and partly to 

complement other projects. The author has chosen to limit his own area of 

research simply to allow a set goal to be dermed, thereby giving a direction 

to the study. 

Two areas of research have been investigated by the author in the three year 

research period. 

The first year was spent investigating a position independent method of 

recognition using Fourier and Walsh transforms. The test data used were 

based upon infra-red images supplied by R.S.R.E. The results show a 
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limited degree of success in extracting the location information for a single 

object in an image leaving the detail intact. The work is described in 

chapter 3. 

This led to a realisation of the importance of discarding the vast amount of 

irrelevant information in a visual scene in order to be able to extract the 

relatively small amount of information directly relevant to the object to be 

recognised. Accordingly the second and third years were spent in producing 

a recognition method based upon the shape information of an object in an 

image. The thesis describes the method used to construct a set of test data, 

the approach used in extracting the shape information in terms of a contour 

around the object, and several approaches to the recognition of the contours 

produced. Use is made ofthe work done on Fourier transforms in extracting 

a normalised description. This work is described in chapters 4 and 5. 
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General 

U The Pattern Recognition Task 

U.1 The reasons (or prttcm n:mpltlog. 

The basic reasons for most current Automatic Pattern Recognition tasks 

are to remove the need for a trained operator to perform the recognition, 

or to enable recognition tasks to be performed that would otherwise be 

impossible. The method of recognition used is determined by the task to be 

performed, and by the cost of implementation. Methods vary from simple 

very fast routines for real time evaluation of an image, to comparatively slow 

processes used to automate otherwise tedious tasks. 

To solve these Pattern Recognition problems research has been funded, 

both by public and private sector concerns. The nature of research 

undertaken is directed by the nature of problems to be solved. Many 

researchers have entered the field of Artificial Intelligence, and it can be 

argued that the fields of "Pattern Recognition" and "Artificial Intelligence" 

are one and the same; certainly there is much overlap. It should be noted, 

however, that pattern recognition includes the use of very simple template 

matching which would not in any way class as intelligence, but may 

nevertheless solve a pattern recognition problem. Conversely, Artificial 

Intelligence problems would include studies of solutions to problems of 

philosophy and machine self-awareness which would far exceed the scope 

2.1 The Pattern Recognition Task 
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of Pattern Recognition. This thesis is principally concerned with pattern 

recognition, particularly with pre-processing algorithms and has thus not 

touched on Artificial Intelligence. 

To understand the process of pattern recognition a great deal of research 

has been undertaken covering a wide variety of disciplines, all aimed 

ultimately at solving the problem of extracting recognisable information 

from the real world, or solving some part of that problem. 

Pattern recognition research has also attracted much interest in Univer-

sities where research has not always been tied to the solution of immediate 

practical problems. This has left workers free for more speculative research 

addressing problems that do not yield a complete solution to pattern 

recognition, but which may add to the knowledge of the overall field, thus 

paving the way for further advances. It is the belief of the author that this 

speculative research is as likely to lead to tangible results as any other form 

of research. 

The task of a Pattern Recognition machine is to extract specific information 

(the required detail) from a set of input data. In general the required detail 

is represented by patterns within the input data. It is usual for much of the 

input data to provide none of the required detail, and for many alternative 

patterns to validly represent the same part of the required detail. 

In practical terms the pattern recognition task is often one of identification 

of a specific object (or one object from a set), or to determine whether an 

object conforms to a predetermined shape within pre-specified tolerances. 

2.1 The Pattern Recognition Task 
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The input data is frequently based upon digitised visual images, but can also 

be taken from other transducers that may be constructed to suit specific 

tasks. 

ｾ Some parameten of the Ideal pattern m::oan1tion machige. 

In order to assess the performance of a pattern recognition machine during 

research it is important that the task be well defmed. In the most generalised 

case the required detail is not known prior to the image being seen and 

anything "interesting" is sought. This is unsatisfactory for an investigation of 

the principles of pattern recognition since it does not readily allow for the 

research to be refined on the basis of previous results. For this reason it is 

more usual for a closely defined task to be investigated, and the results of 

other research to be used if such use would be beneficial. 

Pattern recognition as a whole is too large a field for this thesis, thus the 

author has chosen to limit the study to a small subsection of the topic. The 

scope of the thesis is described fully in section 2.4, however it should be 

noted here that the research has been principally concerned with algorithms 

for shape identification. 

The following is not an exhaustive list of qualities that the ideal shape 

identification algorithm should possess, however it may be used as a guide 

for assessing the performance of any particular solution in the absence of 

any other guide. 

2.1 The Pattern Recognition Task 
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o The recognition process should be independent as far as is possible 

from the transfer characteristics of the input transducer (eg. the scan-

ning grid in digital image recognition). 

o The algorithm should be independent of the orientation of any object 

to be recognised, except where the orientation gives information that 

aids recognition. 

o The algorithm should present information suitable for further process-

ing. Those parameters such as size and location that can be represented 

by a small range of values and which are sometimes irrelevant to 

recognition should be extracted and held independently from other 

information. 

o The algorithm should concentrate data points at regions of greatest 

"busyness", where the rate of change of value over a small region is 

greatest, but should allow for the resolution to be adjusted. It should 

be noted however, that noise can cause regions to appear busy without 

containing any of the required detail, thus any a-priori knowledge about 

the noise in the image should be used. 

o The number of data items extracted in any particular class (e.g. contour 

description) should be determined by the algorithm, and not by the 

quantity of data input. 

o The algorithm should be constructed to reduce or eliminate noise, and 

should not add any significant noise of itself. In particular any signifi-

cant quantisation noise should be avoided since this is entirely under 

the control of the designer. 

2.1 The Pattern Recognition Task 



Chapter 2 General 7 

U.l Fugctiogs of the pattern extraction a1aQrithm 

The required form and accuracy of the result, when taken with fmancial 

considerations, determines the nature of the approach taken to analysis and 

also to the information gathering transducer. Since there are many different 

problems that can be grouped into the topic of pattern recognition, so there 

are many different approaches that may be taken to the subject and no single 

solution is appropriate to all problems. 

The process of pattern recognition is characterised by three operations. 

These are the data collection, data processing and data output. see ftgUI'e 

2.1. 

ｲ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾI I 

'
I nata collection 
I The real world 
! 

Enhancement .t Transformation nata Processing 

). 
2.1 Effect of local averaging on a step function 

------------------------------- --- -------------------------
2.1 The Pattern Recognition Task 
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2.1.3.1 Data Collection 

In the data collection phase a series of electrical and mechanical devices 

are used to collect information about a scene, and convert this into an image 

for subsequent processing. Some preprocessing may be performed during 

this process, either to minimise errors in data collection, or to reduce the 

quantity of data that must be stored or transmitted. 

The problem to be solved determines the type of data collection required. 

Many types of sensor have been used, varying from a single inexpensive light 

sensor, to an infra-red ccrv device launched into orbit around the earth 

by a rocket. Almost all of the more recently documented research uses 

analog sensing devices with multi-value analog to digital conversion as the 

next stage in the recognition process. 

The most common type of input transducer used is the cerv device, with 

an analog to digital converter which changes the output to a matrix of data 

values. Commercial digitisers give arrays of up to 1500 by 1500 pixcels at 50 

frames per second. Other input transducers use audio, infra-red, ultra-vi-

olet and vibration sensors to provide data values. It is rare for there to be 

more than a small number of discrete sensors (about 6) in an array other 

than in the case of video input, however the rate of data output can be large, 

and a single digitised microphone output may give a bandwidth of some tens 

of kilohertz. 

2.1 The Pattern Recognition Task 
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In some instances the image collection and processing are performed 

simultaneously, often in "real time" (i.e. at the speed determined by the need 

for results). This is done where the penalties for a late result are high, for 

example target acquisition for gun aiming in military applications. 

Similarly if the problem is dependent upon a decision before any action may 

be taken then real time analysis must also be used. This is applicable to 

inspection of goods prior to packing, and is used by exporters of soft fruits, 

and is also applicable to automated assembly. 

Other practical systems use very specialised transducers to collect and 

digitise images, which are then transferred to a mass storage medium for 

later and more convenient analysis. 

Examples of this may be found in satellite photography where the time of 

photograph is bound by the location of the satellite, and in medical imaging, 

where the patient may need to be scanned at one time, and a consultant 

supervise the analysis at another. 

2.1.3.1 Pattern atractIOD 

The first part of the pattern extraction phase is that of image enhancement. 

This is the process of increasing the signal to noise ratio of the image by 

removing some of the noise. There are many approaches to this problem, 

however all of them involve some a-priori knowledge of the image, and may 

use some form of data normalisation to distribute the data more evenly over 

the possible range of representation. 

2.1 The Pattern Recognition Task 
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In the data processing phase, pattern analysis algorithms follow a set of 

prescribed rules to deduce the required detail from images. The detail that 

is sought may be divided into two kinds. Firstly there is the global 

information that contains the required detail. By careful analysis it is hoped 

that methods may be developed to determine which parts of the input data 

may contain the required detail, and which parts do not. It is expected that 

this study will result in computer algorithms to automate the extraction of 

the required detail. 

Secondly ｴ ｨ ･ ｲ ｾ is the application of the pattern extraction algorithm to 

images. This i$ will extract the required detail that a pattern recognition 

machine is looking for. 

2.1.3.3 Data Output 

The data output phase is simply a report on the outcome of analysis, 

however it is as important as each of the other parts of the pattern extraction 

process, since it is the information that the user actually wants, either as a 

result in itself, or for further analysis and correlation with other pattern 

analysis results. The way in which the results are produced and the method 

of presentation must therefore be carefully considered. 

UA Areas or tesean:h 

The types of study that are currently being researched are many, however 

the following list covers the majority of research problems that are being 

undertaken. 

2.1 The Pattern Recognition Task 
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o Time consuming, but relatively simple interpretation of information, 

for example in blood count tests for hospitals. The importance of 

machine recognition is not in the speed, but in accuracy of result, and 

in not requiring rests or becoming bored with the problem. 

o Total automation of sensing and control of machinery by virtue of 

dangerous location such as in a battle zone. The difficulty of the 

research task in this instance is very great, however the funding for such 

research is also much less constrained than in the commercial sector, 

and more speculative research is undertaken for military than for 

commercial ends. 

o In circumstances where a human operator would interfere with the 

sensing. This is true in instances of military sensing where an operator 

would be endangered, and could possibly be detected. An automated 

recognition machine may be sufficient to provide useful information, 

such as determining the presence of a heavy vehicle on a road by sound 

without being confused by the similar sound of a heavy faU of rain etc. 

o Data compression as used in satellite transmissions or for high defini-

tion television signals. The use of pattern recognition techniques to 

code and decode signals where bandwidth is limited is a long estab-

lished field of research. 

o Automated assembly and inspection where simple guidance of a ma-

chine may be achieved in a controlled environment, and inspection of 

machined parts in a similar environment can be achieved. 

2.1 The Pattern Recognition Task 
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o Where there is no simple algorithm one may try many tests and chose 

the best. Such tasks as determining the molecular composition of a 

chemical from a gas chromatogram, or the illness of a patient from a 

number of specific symptoms. 

u.s. Classes or probIcm encougtered 

There are many problems faced by researchers in all aspects of pattern 

recognition that have not thus far been mentioned in this thesis. This list 

enumerates the problems most commonly tackled. 

2.1.5.1 Indeterminate and unique patterns 

Indeterminate and unique patterns ego faces or trees. present problems in 

derming what pattern is being sought. It is not easy to derme the features by 

which a person is recognized even though this problem is readily solved by 

human beings. 

2.1.5.2 Occlusions and incomplete patterns 

Occlusions and incomplete patterns present problems of the mUltiplicity of 

potential solutions. Attempted solutions to this problem are to extrapolate 

the missing detail or to attempt recognition of the parts and then reconstruct 

the pattern entity syntactically. 

2.1 The Pattern Recognition Task 
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2.1.5.3 11ane dlmensional data in a two dlmensional scene 

This is a common problem whereby a 3-dimensional scene is viewed using 

a conventional camera. The depth information is lost for all objects in the 

scene, thus the distance of an object from the camera can then only be 

determined by using foreknowledge, eg regard to size, in interpreting the 

image. 

Also the apparent shape of an object is dependent both upon its orientation 

relative to the camera and on the effects of perspective due to its distance 

from the camera. For this reason the number of different pattern entities 

known about by a recognition algorithm may need to be very large, even to 

recognise a single object correctly. 

2.1.5.4 Moving objects 

Information regarding the motion of an object may be crucial to the 

recognition of the object. Multiple frames must be correlated and the 

registration of moving patterns must be performed between frames. This 

information must then be turned into vectors representing the translation 

and rotation of an object in three dimensions. 

2.1.5.5 Variation In Ilghti. 

In many instances it is not possible to control the way a particular object for 

recognition is perceived. Variation in lighting conditions is such an example, 

and algorithms that are heavily dependent upon texture information for 

recognition will be particularly prone to problems. The most often used 

2.1 The Pattern Recognition Task 
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solution is to normalise for intensity of lighting by pre-processing the image 

(eg. statistically calculate a threshold for segmentation, see section 2.2.2.1 

on Thresholding by Mode Splitting). 

2.1.5.6 Noise ID collectioD 

Noise that is due to the input transducer is a problem that has no solution, 

except to purchase better image gathering equipment. It is possible to 

remove some noise by use of appropriate filters, however if the bandwidth 

of a signal is limited on input there is no amount of filtering that will improve 

the quantity of information available to the recognition algorithm. 
\ 

: I hI,: '" 

ｾ ..' 

.\ 

2.1.5.7 QuaDtisatioD Doise venul speed of calculatioD. 

A balance must be struck between the precision of representation of data 

and the speed of calculations performed on that data. The usual approach 

to this problem is to represent the data to a precision that gives satisfactory 

results, and then to attempt to increase the speed of calculation by 

appropriate modification ofthe hardware or software. It may, however, be 

acceptable to reduce the precision of calculation to speed up the algorithm. 

This is particularly true in cases where integer arithmetic can be used 

throughout a calculation because an integer result is required. To use a high 

precision representation in such cases will not necessarily improve the 

result, but may reduce the speed of processing by orders of magnitude. 

2.1 The Pattern Recognition Task 
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2.2 Standard image processing techniques. 

A number of techniques for enhancing digital images, extracting edges and 

grouping patterns into sets are documented in several text books on pattern 

recognition, and are used as the basis of further research by workers in the 

pattern recognition field. A brief survey of the relevant methods is 

presented here. 

U.1. Transformations 

Frequently the first requirement of a recognition process is to clean up the 

entire digitised image, or to enhance particular classes of features in the 

image. Such operations are applied globally to the image without regard to 

image detail, and are independent of the position of any particular pixcel 

within the matrix. In several instances (e.g. Fourier transforms) all of the 

pixq:ls in the input matrix are used to fmd the output value for each 

individual cell. 

The process of such global alteration is one of transformation. The Nearest 

Neighbour and similar operators enhance the image directly, maintaining 

the spatial relationship between pixcels. However, transforms such as 

Fourier or Walsh do not yield a recognisable image as a resulting matrix, as 

they transform to a different set of coordinate dimensions. Operations may 

be performed on such data in the transformed state, and the inverse 

transform may then be used to restore a modified form of the original image. 

The use of such transform pairs often provides a useful way of filtering or 

convolving images. 

2.2 Standard image processing techniques. 
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In this section a discussion is given of each of the more popular transforms, 

and some applications. 

2.1.1.1 Smoothing 

Smoothing operations are usually performed to reduce the effect of noise 

on an image, or to enhance the larger patterns in an image, and attenuate 

smaller patterns. Smoothing is also used to remove texture from an image 

(e.g. on grass) where there are a large number of adjacent light and dark 

points, that is where the image is "busy". In all of these cases data from 

adjacent pixcels over the entire image are merged, or compared and 

substituted, to make the average magnitude of rate of change between pixcel 

values lower. 

Nearest Neighbour 

The simplest forms of filter to implement are "Nearest neighbour" local 

filters. These filters simply replace the value recorded in each pixcel by the 

average value of a number of its (unmodified) neighbours, usually taken 

from a square grid "mask" of 9 or 25 pixcels, or a cross of adjacent pixcels. 

Examples are shown below of the mask matrix and weighting used in various 

types of filter. 

2.2 Standard image processing techniques. 
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1/8 1/8 1/8 0 ll1i 0 

1/8 1/8 1/8 1/5 ll1i ll1i 

1/8 1/8 1/8 0 ll1i 0 

(a) 9 Nearest (b) S Nearest 

Neighbour neighbour 

2.2 Near neighbour masks 

1/111 1/8 1/111 

1/8 1/4 1/8 

1/111 1/8 1/111 

(c) 9 Nearest 

neighbour 

weighted 

The averaging given by the nearest neighbour masks shows a marked 

improvement in the smoothness of the matrix, The results of averaging using 

the matrices shown in figure 2.2 a) and b) are shown in figure 2.3 c) and d). 
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2.3 Effects of near neighbour &\'Craging 
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20 
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20 

These filters are useful in reducing problems in boundary detection owing 

to noise present in individual pixcels. However, such filters tend to smooth 

edges as well as removing the incidental peaks that are produced by noise. 

This is frequently undesirable where accurate edge detec::tion is needed. 

2.2 Standard image processing techniques. 



Chapter 2 General 18 

Figure 2.4 illustrates this, the heavy shading represents a cross section of a 

matrix with a sharp step, the light shading represents the same cross section 

after nearest neighbour averaging. 

_ . Ci.\\ll 

Original data Averaged data 

2.4 The effect of averaging on a step function 

It is possible to implement very fast versions of the square mask matrices if 

they have uniform weighting, by adding values from the pixcels that· are 

included as the matrix moves across the image, and subtracting the (already 

calculated) value of pixcels that no looger belong to the matrix. 

Sigma filter 

A similar filter is the sigma filter, in which the value of a pixcel is replaced 

by the average of neighbours with values that are within a pre-specified 

tolerance range (t) around the original. The tolerance to be used can be 
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estimated by taking the standard deviation of differences between adjacent 

pixcels as a guide. A range of values proportional to this is then taken as the 

tolerance range. 

The results of application of the sigma filter to the data in ftgure 2.3 b) are 

shown in ftgure 2.S a). The repeated application of the sigma filter to that 

in ftgure 2.S a) is given in ftgure 2.5 b). 
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Median filtering goes one stage further, in that the value calculated for a 

pixcel is taken as the median value of nearest neighbours. This is the value 

of the pixcel that is nearest to (or lower than) the centre value of the set of 

nearest neighbours when sorted into numerically increasing order. This will 

tend to eliminate any great deviations from the norm in a mask region as 

they will never form the median value, and has the advantage that edges 

will be less blurred than by the averaging method. An example of the results 

of median filtering the data in figure 2.3 b) can be seen in figure 2.6. 

------------------ .. '-
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2.6 Results of median filtering 

The principal problem in using the median filter is that it takes a great deal 

longer to calculate than any of the methods described previously, since it 

requires N Logz N comparisons for an N element mask matrix. 

Low-pass ruter 

A conceptually direct method of smoothing an image is to use a low-pass 

filter. For the purpose of the following discussion a transformed image X' 

is de6ncd:-

X' -= P( H * F(X) ) 

where F( ) is the Fourier transform of an image, X is an image, F( ) is the 

inverse Fourier transform and H is a weighting matrix which attenuates the 

higher frequency components. 
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The 'Ideal' filter is one in which all components above a given cutoff 

frequency are completely removed. This is represented on a Fourier 

transform matrix for cutoff frequency fc by setting li(i, j) to zero for all 

This filter will cut off all frequencies above that defmed by fc• Noise can be 

significantly reduced by this method, but it will also introduce "ringing". This 

effect is caused by the nature of the spatial characteristic of a filtered peale.. 

The aoss section of a transformed, filtered and inverse transformed 

impulse function is shown in fIgW'e 2.7. It can be seen that if there is a 

particularly bright region in the image then there will be rings appearing 

around that point in the filtered output. Similar results may be obtained 

from square filters where H(i, j) is set to zero if both i and j are greater than 

fe. or any filter around the origin with a sharp cutoff. 

/\ A. 

2.7 Effect of ringing produced by. fdtcred impulse 
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A better filter characteristic is the Butterworth filter (see figure 2.8). The 

advantage of this characteristic is that it does not show ringing on the 

transformed matrix after inverse Fourier transformation. This is attributed 

to the components of high frequency that are retained. 

2.8 Butterworth filter characteristic 

Addition of Dlultlple frames 

A further technique for removing noise is to average multiple frames of the 

same image. This is a very simple technique and will remove a great deal of 

stochastic noise. For a signal g(x, y) composed of noise free data f(x, y). and 

noise ,,(x, ｾ ｹ Ｉ Ｎ where 

g(x. y) = (x. y) + ,,(x, y) 

if the sipal is averaged over M different examples, the standard deviation 

of i<x.y) from f(x, y) will be Clg(x, y). 

1 
o g(x, y) = yg O,,(x, y) 
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where O,,(x, y) is the variance of the noise at each point. 

It is not usual for identical images to be available for this averaging, however 

Keren, Peleg and Brada (see section 2.3.2) present an approach to 

registering frames from moving cameras, and this or similar methods may 

be used. 

Rererences:-

Rosenfeld [3] , p.88 

Gonzalez & Wlntz[6], p161-173 

Nlblack[4], p.77 

1.1.1.1 Sharpening 

Sharpening of detail in images is used in cases where blurring has caused 

exaggerated loss of fine detail. It has the drawback that it will tend to 

accentuate any high frequency noise in the image, however it is useful for 

edge detection algorithms, or where as much fme detail as possible is 

required. 

Gradient 

The most popular method of sharpening is to use a gradient transform. The 

gradient at any point is a vector representing the direction of greatest rate 

of change of intensity level, and the value is simplest to calculate at the points 

where four pixcels meet at one comer. The vector direction ofthe resultant 

matrix is largely unused in practical recognition schemes, however the 
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magnitudes of the vectors gives a very straightforward edge detection 

system and are extensively used in those studies in which noise is not a major 

problem. 

A more detailed discussion of gradient calculation algorithms is given in 

section 2.2.2.2 on the use of edge detectors. 

Laplacian 

The Laplacian transform is given by 

which approximates in digital form to 

L(/./)= 48(1.]) - (8(1-1J)+8(1+1, ])+8(1. 1-1)+8(1, 1+1) 

This corresponds to a mask centred on pixcel (i, j) of the form shown in 

figure 2.9 a), the integral of the whole being zero. It can be seen that this 

will tend to identify single peaks best, and will bring out edges to a lesser 

extent. Unvarying surfaces in an image will give a zero response. The mask 

in figure 2.9 b) is used as an alternative to that in ftgUl'e 2.9 a) by some 

authors. 

The Laplacian transform is not as good as the magnitude of the derivative 

for finding edges in an image because it is far more susceptible to point 

noise, and there appears to be little reference made to it for use in practical 

schemes. 
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High-Pass Filter 
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2.9 Laplacian filter mas\cs 
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The high-pass ruler can be used in a manner similar to that described above 

for the ideal low-pass mter and the low-pass Butterworth ruter. The 

differences are that the low frequency components are attenuated or 

removed rather than the high frequency components. 

The Butterworth mter characteristic is described by 

1 
H(/,/)= 2n 

1+ ( te ) 
'(I, j) \ 

where fc is the frequency at which the input value is halved, and n determines 

the sharpness of the response cut-off. 

References:-

De Prelst and Wegman(5), p.94-1oo 

Gonzalez and Wlntz[6]. p.81. 176-1 eo 
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2.2.1.3 Fourier Transforms 

The Fourier Transform of a signal is a continuous function giving the 

magnitude of every frequency component against frequency in the range 

minus infmity to plus infmity. 

+00+00 
F(w, v)= f f f(x,y)e -J2n:(wx +vY)dx dy 

-00-00 

The discrete form is given by 

n-1n-1 
F(x, ｹ Ｉ ］ ｾ I I f(p,q) e-J27r(PX+QyYn 0 sX,y sn-1 

p-Oq-O 

In the discrete case such as with digitised information the output consists 

of a series of values representing the magnitude of response for individual 

frequencies. 

In the two dimensional discrete Fourier transform the response frequency 

for a cell g(x, y) is proportional to the distance of the cell from the origin (V7+?). 

The direction of waves indicated by g(x, y) is the same as the direction of 

the cell (x, y) from the origin (0,0). 

A major advantage of the Fourier transform over other algorithms is that 

the properties and method of transformation are extensively documented, 

and the Fast Fourier Transform algorithm requires only N 1<>g2 N operations 

to calculate, rather than N2
• 
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As has already been seen in the sections on smoothing and sharpening 

above, the Fourier transform may be used to provide a simple filter to 

enhance an image. The filter used may be designed either by empirical 

means using graphical display of the Fourier domain and a "good guess". 

Alternatively an optimal filter may be constructed if the noise is inde-

pendent of frequency, by obtaining a good image using other means (eg. 

averaging or operator directed enhancement), and taking the Fourier 

transform of this as the filter, thus enhancing the image and reducing the 

noise. 

Another use of Fourier Transforms is for correlating two images. The 

convolution theorem gives us a means of locating the best fit in the spatial 

plane for a pattern. The method is to Fourier transform an image, and 

Fourier transform the search pattern, multiply the two resulting matrices, 

and then to inverse Fourier transform the result. This gives a peak value at 

the point of greatest registration of the search pattern with the image. 

Therefore the Fourier transform may be used as a means of efficiently 

finding the best correlation between two images. 

Rererences:-

Nlblack[41, p.95 

Gonzalez and Wlntz[8J, p.100, 307 

2.2.1.4 Walsh I Hadamard transrorms 

The Walsh transform is in many respects similar to the Fourier transform. 

The principal difference is that whilst the underlying correlating function 

in the Fourier transform is a sine wave, the correlating function in the Walsh 
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transform is a square wave, see figure 2.10 a). This has the immediate 

benefit that no floating point multiplications are needed, thus the time 

required to fmd the Walsh transform will be much less than that for the 

Fourier Transform. 

(a) Walsh Kernel, N = 8 
/ 

(b) Hadamard Kernel, N = 8 

2.10 Walsh and Hadamard Kernels 

It is not easy to fmd a use for the Walsh transform, since it is not shift 

invariant, thus it cannot be successfully used for correlation of two items, 

nor can it be used as a pseudo frequency-domain filter. 

The Hadamard filter is very similar to the Walsh transform, but the pattern 

of + 1 and -1 is shuffled with respect to the Walsh transform, this is 

illustrated in figure 2.10 b). The comments above about the Walsh trans-

form apply equally to this transform. 

References:-

Gonzalez and Wintz[6], p.111-115 
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2.2.1.5 Hough Transforms 

The Hough transform is a means of determining the best straight line that 

passes through a set of points. The equation of a straight line 

y=mx+c 

may be rearranged to give 

c=y-mx 

Thus for any point (x, y), the value of m may be varied over its permitted 

range, giving a series of values for c. These values of m and c are 

accumulated in a 2-dimensional array. The process is repeated for all points 

in the image containing a potential edge, and the accumulator cells in the 

(m, c) matrix with the highest values are those that are most likely to 

represent straight lines. 

For practical reasons it is more convenient to represent straight lines by the 

equation 

r-xcosQ)+yslnQ) 

since both Q) and r are constrained to be within known limits, and may 

conveniently be stepped linearly throughout these limits. 

The transform may be extended to include any shape that can be expressed 

parametrically in the form 
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r = g(x. Y. P1. P2 ..... Po) 

in which case an (n + 1) dimensional accumulator matrix is required. 

However, this is not usually practical for cases where n is greater than 2 

since it requires n2 calculations for each point. 

An example of this is for points lying on a circle, described by 

which would give a 3 dimensional matrix containing the most likely x 

position, y position and radius for circles in an image. 

References:-

Gonzalez and Wlntz[8]. p.130 

Ballard and Brown[2] 

UJ. SqgnentaUon 

The process of segmentation is that of dividing an image into segments. A 

segment is a region in which it is possible to go from any cell within the 

region to any other ceo, at all stages remaining inside the region. This is a 

fully connected region. It is permissible for a region to wholly contain a 

different region. The process of segmentation does not include the 

association of any meaning with segments, though some a-priori knowledge 

of the meaning of the segments is usually useful in developing the 

segmentation algorithm. 
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l.l.l.l 11aresbolcling 

The process of thresholding involves the selection of a grey level value or 

values that separates one segment from another. The most common method 

of selecting the value in research is by inspection, and in automated systems 

a great deal of effort is spent in ensuring that the threshold value is as easy 

to select as possible. However, certain applications necessitate the selection 

of a value by automatic means. 

Fixed value 

A fixed value threshold to is defmed 

F(x y) = 11 If f (x, y»to 
• 1 0 If f (x, y):sto 

It is unusual for a fixed value to be appropriate in any except the most closely 

controlled conditions, since any variation in lighting or the reflectance of 

objects within the scene is liable to cause incorrect segmentation. The fixed 

value threshold is therefore appropriate in cases where an object is 

illuminated from behind, or for a particularly bright object on a dark 

background. 

Percentile 

The percentile threshold method is suitable for cases where the ratio of 

segment to non-segment values is known in advance, e.g. because the area 

of the object is known, but not its location or orientation. The method is to 

chose the threshold such that the overall ratio of segment to non-segment 
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cells is maintained. This technique will not preserve edges perfectly if noise 

is present in the image, because no account is taken of the gradient of edges 

about the threshold value, thus for example noise of 4 units on an average 

gradient of 2 units per pixcel will be likely to give many points that are 

separated from the main region. This can, however, lead to a "correct" 

segmentation suitable for further processing (see section 2.2.2.4 Relaxa-

tion). 

Mode 

The mode method is based upon the assumption that any region to be 

segmented is the only region in the image that has a given set of grey levels. 

In the ideal case the histogram of "number of pixcels of brightness g" versus 

"brightness gil will be as shown in figure 2.11. The threshold is chosen to be 

between the peaks, thus only a relatively small number of pixcels will be 

misinterpreted. 

2.11 Histogram showing grey level modes 
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Problems with this method occur when the valley between the peaks is not 

sufficiently well defined, and when there are several peaks in the histogram. 

Several researchers have proposed methods to overcome these problems, 

by sharpening the peaks in the histogram, by ignoring pixcels close to steep 

gradients, and by moving values on the histogram to adjacent locations, 

creating better definition. 

Variable thresholds 

Using a threshold that varies over the image can overcome several 

problems. A method is described in chapter 4 that uses a-priori knowledge 

about the image to create a threshold that varies linearly across the image. 

Other techniques are to use local averaging (eg. over 1/9 of the image area 

around the pixcel) to calculate a threshold for each ｰ ｩ ｸ ｣ ･ ｾ or to compare 

the pixcel with the median of 9 or 25 nearest neighbours. The danger with 

all of these techniques is that noise imposed on a relatively flat region will 

cause a great deal of busyness that would not be selected if the threshold 

were chosen by an operator, because the threshold will tend to the value of 

the Oat area. 

Bayesian MaxlmulD UkeUhood 

The Bayesian Maximum Likelihood method is similar to the percentile 

method. The probability that any pixcel belongs to a given region is 

calculated for each ｰ ｩ ｸ ｣ ･ ｾ and does not necessarily have to remain uniform 

across the whole image for any given pixcel value. Having calculated the 

probability that a pixcel belongs to any of the possible region types (there 

may be more than two), the pixcel is then assigned to the region for which 
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the probability is highest. If the probability is dependent upon adjacent 

pixcels several iterations may be required to determine a complete result. 

Estimates of the probability functions are required before the classification 

is carried out, and histograms such as are used in the Mode method of 

classification are frequently used in this case. (see also section 2.2.2.1 

Multiple Thresholds, below). 

Typically the probability will be based on a combination of grey level, 

percentile area, the classification of near neighbours and wherever possible 

a-priori knowledge of the image. It would also be reasonable to use 

a-posteriori knowledge in an iterative recognition scheme. 

Multiple thnsholcls 

To overcome the problems of variable and modal thresholds the use of 

multiple thresholding has been developed. Two threshold values are 

chosen, above the upper threshold a pixcel is definitely assigned to one 

region, and below the lower value the pixcel is definitely in the other region. 

These thresholds may be chosen using a-priori knowledge in the same way 

as single thresholds. 

All pixcels that fall between the two thresholds must be defmed in terms of 

probability of belonging to one region or the other by inspection of their 

neighbours, or by probability weighted by neighbours. For example it would 

be likely that a pixcel entirely surrounded by a single region also belongs to 

that region, though a pixcel surrounded by four pixcels of one region and 

four of another must be defined by other means, such as local average, 
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gradient or a-priori knowledge. It is usual that several iterations of the 

algorithm are required, firstly to fully defme any large areas, and secondly 

to avoid problems that occur due to the order in which pixcels are evaluated. 

Refereaces:-

Nlblack[4], p.113 

De Prelst and Wegman[5], p.128, 132 

Gonzalez and W1ntz[6], p.354 

Pavilctls[1J, p.66 

1.1.1.1 Edge detection 

A number of techniques approach the problem of object location by 

attempting to locate the edges of an object pattern, and then combine the 

edges that are found into a complete pattern. 

For our purposes an edge is defined as a region where the rate of change 

of value with distance across the input matrix is greater than a prespecified 

threshold. Usually the measured value is the brightness at a point, but 

texture, colour or other attnbutes that may be transformed to a matrix of 

point values, could equally be used. 

Advantages of edge detection are that it can be less sensitive to global 

variations across an image, since it is specifically concerned with local 

information, and that the object located docs not need to be a complete 

closed contour description. This latter may be considered a disadvantage 

by many researchers, however, in section 22.2.2 methods are demonstrated 

which can link edges into related sets, closing contours where required. 
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Magnitude or .... dlent 

The gradient operator is the most popular, and obvious candidate for edge 

evaluation. This arises directly from the definition of an edge being a binary 

measure of rate of change of value. 

Several methods for measuring the gradient at a point have been proposed. 

Taking the difference between a pixcel and its neighbour at a point will give 

a simple method, however this is susceptible to noise, and usually a mask of 

3 x 3 or more pixcels is employed. 

The Sobel operator is widely used for gradient evaluation, see figure 2.12. 

The response for a flat region will be zero, and the response for a gradient 

of 1 grey level per pixcel will be 8 units. It should be noted that using a 3 x 3 

mask will tend to spread the edge, and that even a simple uniform step will 

produce a response of 2 pixcels width. Using a 2 x 3 operator overcomes 

this problem, but gives a problem of combining values of gradient for the x 

and y directions that cannot be evaluated for a single point. Using 2 x 4 

operators to determine the gradient over a larger area for a single point at 

the comer of four pixcels is a reasonable alternative. 
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1 2 1 1 0 -1 
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(a) Y gradient (b) X gradient 

2.12 Sobel masks 

The magnitude (M) of the gradient is strictly M = "Ri + R1, however, it 

is common practice to simply sum the components to give 

M = IRx I + IRy I to determine the approximate gradient at a point. This 

is acceptable since it is not the precise magnitude of an edge, but the 

presence ofthe edge that is usually required_ In the worst case the measured 

gradient will be multiplied by a factor of V'I for edges that run at 4SO to the 

detector grid when compared with the same edge running parallel to the 

grid, but most edge following algorithms will locate the peak edge even if it 

is not uniform in magnitude along its length. 

Direction 

The direction of the edge is given by tan -l(RxIRy). The precision of 

direction that this affords is not often useful, and most edge following 

algorithms will cast around a known edge pixcel for the largest edge on the 

current heading and not use the measured direction of the edge at aU. The 

direction is however used by some algorithms and there is no suitable short 

cut for calculation. 
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Line detector 

The line detector operator given in figure 2.13 corresponds to the second 

derivative of the original matrix multiplied by -1. This operator is very 

straightforward to implement, but is only useful for particularly noise free 

images, since it tends to enhance noise . 

., ., . , ., 2 ·1 

2 2 2 ., 2 ., 
., ., ., ., 2 ., 

(a) Horizontal (b) Vertical 

2.13 Une detector masks 

LaplaciaD 

\ 

The Laplacian operator (also described in section b is a second derivative 
I' 

point detector. Two masks are proposed by various authors as shown in 

figure 2.9. The same problems as with the line detector occur with this 

operator, and there are few documented uses of this operator except as a 

means of verifying the presence of an edge. 
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Edge Following 

In many instances it is possible to find several partial edges but with sections 

of the edge missing, or to have determined a start point to an edge which 

should be continued. In these cases edge following or filling algorithms are 

used, or the Hough transform (see section 2.2.1.5) is applied. 

Edge following algorithms use the a-priori knowledge that most edges tend 

to extend along in the same direction with only small changes in direction 

when looked at over a small length, thus a weighting may be given at the end 

of known lines to enhance any edges that follow or deviate only slightly from 

the known edge. Thus edges that would not normally be sufficient to reach 

a threshold value on the flJ'st derivative of an image may be enhanced to do 

so. 

It is also known that the measured direction of the gradient will not vary 

rapidly, and may indicate an adjacent pixcel in a direction perpendicular to 

the direction of the gradient vector that should have its value increased to 

become the next pixcel that should be tested as an edge. If both edge 

magnitUde and direction together agree that a pixce) should be included, 

then this is further evidence for the pixcel to be included. 

An enhanced form of edge following comes from the use of a technique of 

dynamic programming presented by Ballard & Brown [1] p.137. It would 

not be practical to calculate and record the likelihood of all edges in an 

image that start at a given point and extend over a large distance, since the 

number of paths would increase exponentially with the distance from the 

start point. However it is possible to record the most probable path to any 
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intermediate point. The most probable path to a point one pixcel further 

distant may then be found using the probabilities of the paths to adjacent 

cells and the edge probability function for the new cell. 

Edge finding between points 

It is frequently found that two edge sections are co-linear, or nearly so, but 

that there is a missing edge section between them. In this case the problem 

of edge location is greatly simplified, the method is to look for the largest 

gradient vector with a direction similar to that of the known end points, that 

lies on the locus of points equidistant from the end points (see figure 2.14). 

Locuoot ....... points 

, 
\ 
; 
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2.14 Edge finding between known end points 

It is supposed that in most cases this pixcel will not be far from the line that 

connects the end points, and thus will be reasonably. easy to locate. This 

point then forms a known end point, and by determining the direction of 
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the largest slope a further approximation to the required edge may be found. 

The process of locating the edge between the known end points and the new 

point is then repeated until the entire edge section has been found. 

Use or a-priori knowledge 

Use of a-priori knowledge has also been shown to be advantageous in the 

case of edge following, however there may also be global knowledge that 

can be used. For example in medical imaging of blood cells for blood counts, 

the size of and shape of the patterns is known, thus any edge detection may 

be enhanced by convolution with the known shape. 

Rererences:-

Nlblack(4], p.117 

Gonzalez and Wlntz(S], p.256, 275-289, 333-334 

Ballard and Brown(2], p.121, 131-143 

Pavlldls(1], p.67, 142 

2.2.2.3 RegIon Descriptions 

Once a region has been found it must be represented for further processing. 

The simplest representation is a binary 1 or 0 in each cell of a matrix, giving 

the presence or absence of the region. This representation has many 

problems, however, as it is not independent of position, size or orientation, 

and is thus not easy to match with other similarly shaped patterns. The 
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storage requirements are also particularly great since it may be that the 

original image matrix is much larger than the segmented pattern, and thus 

much redundant data will be stored. 

Two approaches to pattern representation are frequently used. The ftrst is 

a description of the boundary, the second is a representation of a collection 

of pixcels within the boundary. Several schemes are described below which 

use one or other of these methods. In general the schemes for description 

in terms of boundary are less sensitive to changes in orientation than region 

descriptions, however, the regions are more suitable for subsequent 

syntactic analysis, since they retain the relationships between any separate 

identifiable parts directly. 

Chalncodes 

Chain codes represent the edge of a pattern in an image by first converting 

the contour into a series of short line segments which may lie along a limited 

number of directions. Four, six or eight directions are usually allowed, and 

each direction is denoted by a number. The pattern then may be described 

by a chain of codes representing the vectors used to approximate the edge. 

The representation may be as close as desired, but in the coding where only 

four directions are allowed, lines at 4SO to the digitising grid are replaced 

by a set of codes giving a stepped effect, thereby mis-recording the line 

length and thereby losing rotational invariance. The coding which allows 

eight directions is better in this respect, but the vector length is not the same 

for all of the vectors. In both of these codings it is possible to nearly 
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reconstruct the original figure, however, correlating the chain code repre-

senting an object with the chain code representing the same object rotated 

through less than 90° will fail to give a good correlation. 

Bearlnp and psi cones 

An extension to the strategy of chain codes is to represent a curve (not 

necessarily closed) by a series of fIXed length vectors. The angle between 

the line joining two adjacent points on the pattern boundary and a fixed 

direction is recorded as a data value for each pair of points along the curve. 

The accuracy of this description is limited only to the number of pairs of 

points used and the accuracy of representation of the measured directions. 

However, this approximation is prone to noise from incidental islands and 

voids along the periphery of the object, thus smoothing should be performed 

before and/or after the bearings have been found. It is also possible that due 

to approximations in locating points along the curve the resultant descrip-

tion will not produce a closed contour where one would be expected, 

however this does not detract from the accuracy of representation unless a 

closed contour must be produced. 

Psi curves are derived from these data values by calculating the fust 

derivative of the set of values, and coUecting together the regions where this 

is constant (or within a specific range of values). These sets then form 

regions of constant curvature including straight lines and any region may be 

represented by its length and average curvature alone. Thus a compact 

description of an object may be found to any required degree of accuracy. 
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Polygonal Approximations 

Any curve may be represented to a given degree of accuracy by a series of 

straight lines. The required accuracy may be attained by ensuring that the 

curve that must be approximated is never more than a pre-specified 

distance (do) away from the approximation, and the approximation is 

divided into two parts if the threshold is exceeded (see figure 2.15). 

Difficulties with this approach come from noise on the curve which may 

create false points when the curve comes close to exceeding the threshold. 

A solution to this would be to use a smaller threshold than ultimately 

needed, then group the vectors so found into sets that are as evenly sized as 

possible, whilst not violating the required threshold. 

A 

2.15 Polygonal approximation to a curve 
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Polynomial approximations 

The use of straight lines as approximations to curves can be extended to 

using polynomials as approximations. Methods proposed are to used 

splines to generate smooth approximations to the entire curve, or to use 

conic sections to model parts of the original. An advantage is that the 

resulting curve "looks good" as a smoothed example of a noisy original, 

however, the curves are difficult to generate mathematically, requiring 

many iterations of a long calculation. Also there is no consensus of the best 

function for calculating the splines, and authors of texts covering many fields 

of pattern recognition who have not implemented this type solution have 

tended to avoid the detailed mathematics describing the calculation and 

behaviour of these functions. 

Fourier DeIcrIptors 

Fourier descriptors are the Fourier transform components of a continuous-

ly measured parameter around the boundary of an object pattern. There 

are several useful parameters that may be used, for example the vector 

between a fixed point and points at intervals along the boundary. The author 

has used the rate of change of direction of the boundary itself, and this is 

described in chapter S. 
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Skeletons 

The skeleton of a region is produced either by determining points within a 

region where the minimum distance to the region boundary touches the 

boundary at more than one point, or by successively removing pixcels from 

the boundary until there is only one line of pixcels left. 

2.16 Skeleton or. polyJonal region 

F"JgUI'e 2.16 shows a polygon with its skeleton drawn in. The distance A-B! 

is equal to the distance A-B2, thus point A is on the skeleton of the polygon. 

Using the ｾ ･ ｴ ｨ ｯ ､ of checking each point is conceptually the easier method, 

however it can be very expensive in terms of computer time, since it involves 

finding the shortest distance to the boundary and then checking in a circle 

to verify that it touches but does not cross in at least one other place. This 

must be done for every point within the polygon. Alternatively the distance 

from every boundary pixcel to the sample point may be calculated, and the 
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two smallest tested for equality. In either case a large number of floating 

point calculations must be performed. This algorithm may be speeded up 

by determining a single point that forms part of the skeleton, and then 

"growing" the skeleton by testing all of the adjacent points. This procedure 

is then repeated for each skeleton point found until the skeleton limbs have 

all reached the boundary. 

The method of determining the skeleton by thinning the region is less 

expensive in terms of computer time, but has the disadvantage that the limbs 

of the skeleton must be artificially preserved from being truncated, and this 

requires identification of the end points of limbs prior to the thinning. 

A solution to this problem is to apply the test for a pair of shortest distances 

to the boundary for each pixcel that is a short distance inside the boundary. 

Points which are found by this test are then chosen as the end points to the 

skeleton limbs. This method will only find limbs where the radius of 

curvature of the boundary is less than the shortest distance of the tested 

point, thus it may be that not all limbs will be found. 

A significant drawback of skeletons as a method of region representation 

is that it is not always possible to reconstruct the original image. As an 

extreme example, the skeleton of a circle is a single point, and there is no 

information held about the radius of the circle. 
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1.1.1.4 Relaxation 

An improvement in the basic segmentation may be achieved by reassigning 

pixcels to segments after the initial segmentation. Usually the reason for this 

is to reduce the effects of noise in the image. These will be shown by regions 

that are isolated from the main body of a pattern, and by small holes within 

the pattern. It may also be found that a more efficient classification of 

regions can be made using the a-posteriori knowledge of the classification 

of other pixcels, rather than attempting a classification of all pixcels in a 

single pass. 

Shrink and FOW 

The shrink and grow transformation is used to remove small features from 

a pattern. The shrink is defined by setting all eight neighbours of a 

background point to a background value. The grow sets all points adjacent 

to an object pattern point to be included in the pattern. It can readily be 

seen that any object of less than 2 pixcels in width is lost, as are any convex 

features on the pattern boundary. 
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a) Growandobrink. 

b) Shrink and f10W 

2.17 Shrink and grow operations 

Grow and shrink 

The same operations as shrink and grow applied in reverse order do not 

have identical effect. In this order any small point on the border of a pattern 

is retained, but any small hole within the object is lost. 

ｾ Specific Research Studies 

UJ. A Modified Scheme lor S.,entlgr the NolsylmalP'JI. 

8 Ch [10] . anda, 8.8.Chaudhurl, D. Dutra Majumdar . 

2.3.1.1 Abstract· from the paper 

An image segmentation scheme based on gray level thresholding ;s presented. 

To reduce errors in misclassification, grey level histograms are sharpened 

before thresholding using a gray level transformation function that also leads 
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to an expression forcomputing the expected threshold. Three new thresholding 

methods are proposed that reduce the noise, smooth region boundaries, and 

preserve connectedness among different parts of objects, and are not expensive. 

2.3.1.2 Method 

The method described is suitable for image gO, k) that contains a pattern 

representing an object (Si), where the pattern and background are at 

significantly different grey levels. The segmentation aims to classify all 

pixcels in the image into two regions. The approach is a modified form of 

the Mode method of segmentation. 

The histogram of "frequency of occurrence of grey level" versus grey level 

is first produced (hg(Xi». This is then smoothed by taking the average of 

values for points of ±q grey level values each side of every point to produce 

n. 

1 +g 
Jig Ｈ ｾ ) = 2q + 1 ｾ hg (x(I + I) ) 

1- -q 

This averaging reduces the probability of local maxima interfering with the 

location of the mode maxima. It does, however, tend to reduce the ratio of 

max (sQ, k» lmin (sQ, k» thereby making the problem of finding the 

correct minimum point between the modes slightly harder. 
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2.18 Histogram or bimodal image data 

51 

End points are then chosen for the low and high end of the histogram (HL 

and HH) such that all points outside this region are defined as zero. The 

remaining region is divided into K parts of size s, where 

and K is a constant chosen a-priori, and local maxima are found within each 

part (g), such that 

+8 
fig (XI) = max"Qig (X(I+I») 

1- -8 

The location of the minimum point between the lowest and the highest grey 

level maxima is next found (Xv), and the largest maxima of grey levels less 

than this value (XmL) and greater than this value (XmH) are located. 

FIgUre 2.19 illustrates the values described. 
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A measure of the bimodality of the histogram is then determined by 
. ' 

measuring the slope of each/tlult connects the peaks with the trough, marked 
r 

SL and SH on figure 2,19). If both lines rise to peaks then the histogram is 

said to be bimodal, if the gradient of the lines are both greater than a 

pre-specified minimum then the histogram is strongly bimodal. The 

pre-specified minimum gradient is dependent upon the sampling density, 

and the number of grey level available, however guidelines are not given in 

the published paper to determine appropriate values. 

In the case where one gradient is zero or negative the histogram has a 

shoulder and will not be sufficiently bimodal for determining a threshold. 

The next stage of the operation is to sharpen the histogram to improve the 

estimate of the threshold value (xt on figure 2.19). This is performed by 

nearest neighbour averaging. or by median filtering for all pixcels in gO, k) 

with grey levels in the range GOL to GOH, where GOL is the theoretical 

lowest value of the high mode (object pattern) pixcels, and GOH is the 

highest value of the low mode (background) pixcels. If the value of any 

specific pixcel is increased, then it is included in the high mode (object 

pattern) by adding a small amount to the grey level to reflect this change. 

Similarly if the value of a pixcel is reduced, a small amount is subtracted to 

draw it into the lower mode (background) region. For those cases where 

the value of the pixcel does not change with filtering, the value of the pixcel 

is compared with the grey level (Xv), and modified in the same way as for 

all other pixcels, that is it is reduced if lower than or equal to Xv, and 

increased if higher than Xv. It is probable that several iterations will be 

required to force all pixcels into one mode region or the other. 
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An alternative method of improving the histogram is also presented. This 

involves counting twice all pixcels that lie within an object or within the 

background, but that do not lie on the border. The border pixcels are 

defined as those between GOL and GOR. This in turn depends upon having 

determined values for these thresholds, thus the histogram improvement 

may only be performed as part of an iterative scheme. 

The pattern is fma1ly extracted from the image by segmenting the image 

about the threshold value (Xv) that has been determined, using the values 

for the sharpened matrix which force pixcels greater than Xt to be greater 

than Xv. and pixcels less than Xt to be less than Xv. It is suggested by the 

authors of the paper that a nearest neighbour average or a median transform 

should be performed on the image before thresholding. to reduce the 

busyness of the pattern. 

Three methods are also shown for performing the thresholding, in particu-

lar avoiding isolating parts of an object. 

The first approach is to assign pixcels to object pattern or background by 

inspection of the pixcel and its eight nearest neighbours. If four or more of 

the nine pixcels are above the threshold, then it is ascribed to the pattern, 

otherwise it is ascribed to the background. 

The second approach is an extension of the first, except for the case where 

exactly four of the eight near neighbours are below or equal to the threshold 

value. and the centre pixcel of the 3 x 3 set is below the threshold value. In 

this instance particular care is taken to avoid the problem parts of the object 
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pattern becoming separated from the main body. This is done by setting the 

centre pixcel to be part of the pattern region if there are two separate 

regions of pattern in the set of nine pixcels, and the shortest distance 

between then passes over the centre pixcel. 

The third approach is similar to the second approach, except that the centre 

pixcel of a set of nine is always ascribed to the object if there are two or 

more separate parts of object in the scene. This method will connect parts 

of the object that the second method will not, but has the problem that it 

will also tend to build isolated spikes of noise into parts of an object where 

they should belong to the background. 

1.3.1.3 Problema 

The method supposes that there is a single 'correct' threshold value. From 

the author's own work it has been found that where the single value 

threshold is used, anyone of a range of values will produce a suitable 

division of object pattern and background. Using the mode method to 

determine this threshold value gives a simple and automatic means, 

however, any further processing to change this threshold by a small number 

of grey levels is unlikely to lead to a better segmentation. 

An associated problem is the supposition that a single threshold is suitable 

for the entire image. It is more frequently found that due to variations in 

lighting or the image capture hardware the thresholding that achieves a 

uniform segmentation requires that the threshold value varies over the 
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image. The author has used a linear variation, but this has been found to 

be inadequate for many of the images studied, and further thought must be 

given to the utility of this approach. 

The use of a local filter to connect otherwise disconnected regions of an 

object is a useful technique from the experimental results presented in the 

paper, however, the third method presented suffers from a tendency to 

collect isolated points of noise near the object edge and extend the edge to 

include the noise. Similarly the second method frequently fails to connect 

regions that should be connected. 

It is the opinion of the author that if it is not known a-priori whether two 

segments should be joined, and how they should be joined, then the best 

approach is to use a-posteriori information to join them together, if 

required, and that this information will only be available when a potential 

recognition has been made. For this reason it is not likely to be useful to 

force a segmentation to link object patterns and thus the second method of 

segmentation, which only makes use of a-priori information about local 

regions is a better approach that the third method. 
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ｾ Ima&e sequence enhancements u,l.,ub-pm' displacements. 

[11] D.Keren, S.Pe/eg, R.Brsda, 

2.3.2.1 Abstract - from the paper 

Given a sequence of images taken from a moving camera, they are registered 

with sub-pixcel accuracy in respect to translation and rotation. The sub-pacel 

registration enables image enhancement in respect to improved resolution and 

noise cleaning. Both the registration and the enhancement procedures are 

described. The methods are particularly useful forimage sequences taken from 

an aiTrraft or sateaite where images in a sequence differ mostly by translation 

and rotation. In these cases the process results in images that are stable, clean 

and sharp. 

2.3.2.2 Method 

The approach taken by the author of the paper is to improve a set 

overlapping images by averaging (see also section 2.2.1.1). The method is 

first to accurately register images to a reference position, and then to 

average overlapping pixcels to produce a set of pixcels with reduced noise. 

The resulting image is then high-pass filtered to reduce the gaussian noise 

introduced by small registration errors, which tends to blur edges in the 

resulting image. A final step is to attempt to reduce the errors resulting from 

the image capture process by minimising the error with respect to a model 

of this process. 
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Sub plueI registration 

The registration process is performed by starting from the equation 

describing translation and rotation of an image. 

g(x, y) = f(xcos8 - y sin 8 + 8, x sin 8 + ycos8 + b) 

This is expanded as a Taylor series, which gives a set of linear equations to 

solve for a, b and 8. Non linear terms are ignored, thus this method will only 

work for small rotations and translations. The technique used to overcome 

this is to construct a low resolution image with a much smaller number of 

pixcels than the full image by averaging over a rectangular set of image 

pixcels to obtain the smaller image. This image is then low-pass filtered to 

improve the ability of the algorithm to register over a distance. The 

registration is then performed to find the minimum error value, and 

resulting rotation and translation distances are found. By multiplying the 

translation parameters produced by the large to small image scale factor, a 

true error distance may be found. The process is then repeated several times 

for a corrected image using a finer resolution each time until the full 

resolution image has been corrected. 

Once several images have been brought into a common registration an 

average of the images is taken. This is done by determining the centre 

position of each pixcel on the output matrix, and taking the value that 

corresponds most nearly in each of the corrected input images for the 

averaging process. 
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Improvement 

The resulting image is slightly blurred, owing to errors in position correction 

and averaging processes. To overcome this the image is high-pass fIltered 

giving a significant improvement. 

A second part to the improvement is to model the characteristics of the 

image collection apparatus. A series of corrected and averaged images are 

transformed using the ｭ ｯ ､ ･ ｾ and compared with the input images. The 

output images are then altered by 1 grey level in one pixcel and the effect 

on the transformed image is found. If the overall error is decreased then a 

source of systematic error has been found and can be corrected for. This 

process is repeated for each pixcel in the output matrix. 

DilCll88loa 

Stage one of the algorithm works reasonably well and the author of the 

paper states that images can be lined up to within 0.03 pixcels and 0.03°. 

The overall rotation must be small, however, usually less than 6°. 

The averaging and high-pass filtering is less than optimal. It is clear from 

the approach used that regardless of the precision of registration the 

averaging assumes that all images are composed of a set of uniformly light 

pixcels, rather than a digitised representation of a continuous function. A 

better approach would be to perform the averaging in the Fourier domain, 

this would have the twin advantages that the averaging would be done by a 
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method that correctly allows for the image frame, and any high-pass ftItering 

that is required can easily be performed by mUltiplying by a suitable 

weighting function in the Fourier domain. 

:.u Ed&e Detecdog by PartidoplPI 

Jong-Sen Lee [12J 

2.3.3.1 Abstract • from the paper 

The objective of an edge operator is to detect the presence and location of grey 

level changes in an image. Various edge detection algorithms have been 

developed in recent years. In this paper a new edge detector is proposed based 

on the idea of separuting pixels in a local window into two sets of similar 

intensities. Then the difference in intensity averages of these two sets is the edge 

magnitude. The technique of separatingpixels in II local window into two sets 

is motivated by the Sigma filter, which is an image noise smoothing technique 

based on averaging only pixels within two standord deviations from the 

intensity of the centre pixel. The characteristics of this edge operator are its 

flexibility in setting magnitude of edges to be detected and also its consistency 

in detecting edge stTength independent of edge orientations. Fwthennore it can 

be easily generalised for surface detection in three dimensional images. This 

algorithm is also computationally ejJicient since only simple fi:ad point 

operations are involvt:d. 

The sigma ftIter is described in section 2.2.1.1 
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1.3.3.2 Method 

The approach described in this paper is an extension of Sigma averaging to 

determine the gradient. The method used is to assign a threshold (th) at l!.. 

units above the value of the centre pixcel (xo) of a 3 x 3 matrix, and a 

threshold (t1) II units below this centre value. This gives 3 sets of pixcels 

within the matrix, those greater than th (set A), those less than or equal to 

tb and greater that t1 (set B), and those less than or equal to t1 (set C). If the 

number of pixcels in set A is smaller than the number of pixcels in set C, 

then set A is merged with set B. If set A is larger than set C then set C is 

merged with set B. In each case the two resulting sets are averaged and the 

gradient at xo is the magnitude of the difference of the two averages. 

A number of exceptions and modifications are made to the rules so far 

stated:-

;) If the number of pixcels in set A added to the number of pixcels in 

set C is less than 2, then the value of II is divided by a factor (usually 

2), and the set contents re-calculated. This step ensures that the 

value of II is of sufficient resolution to fit the approximate magni-

tude of the gradient when the mask contents are relatively flat. This 

step may be repeated a number of times untilll reaches a pre-set 

minimum value. 

ii) If the number of pixcels in set A added to the number of pixcels in 

set C is 8, then II is increased by a factor (usually 2). This ensures 

that II is appropriate to any large change in grey level that may be 

found in an image. This step may also be repeated up to a pre-set 

maximum value. 
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iii) H set B contains only one pixcel, and set A or set C is empty, leO is 

an isolated peak in the image, and the gradient is given as O. 

iv) H set A and set C contain the same number of pixcels, then either 

set may validly be merged with set B, there will be no difference 

either way. 

The approach outlined above is computationally efficient, and compares 

favourably with the Sobel operator for gradient detection. An advantage is 

that by setting the minimum A, edges below a preset value may be ignored. 

A disadvantage is that the direction of the gradient is not supplied by this 

algorithm, however, in many instances this is not required. 

The algorithm may be generalised to n x n matrices, but care must be taken 

when dealing with the connectivity of sets of points. The author of the paper 

proposes that only the largest connected region within each of the sets A, 

B and C are used, and that any other data points should be ignored. 

1d Bounds set to the current research project 

In the first year of the project only the author was working on the research 

sponsored by R.s.R.E. at Nottingham University. In order to provide as 

little restriction on the research as possible, and to avoid any potential 

problems with security classification, very little guidance was given to the 

research. 
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The research contract when continued by the author had been in existence 

for some 15 years, during which time research had largely been directed to 

problems of human visual perception. In the six month period immediately 

prior to beginning work the sponsors at R.S.R.E. Malvern changed the 

nature of research and Dr. A. Moy, the author's immediate predecessor on 

the contract, had started on initial research into the use of Sobel operators 

as an extension of his work on edge perception in the human eye. It was felt, 

however, that since the author had no experience in this field a fresh start 

should be made. 

In the first instance it was felt that an understanding of the nature of pattern 

recognition could best be gained from a detailed study of a particular 

example of pattern recognition. Since this was an initial study it was decided 

to start with a preprocessing algorithm that would also provide a further 

insight into the nature of the pattern recognition problem. To this end and 

because Professor Beurle (the project sponsor at Nottingham University) 

has some significant experience in the subject, it was decided to make a 

study of the effects and uses of Fourier transforms on image data. The 

details and results of this research are given in chapter 3. 

The equipment in use at this time was only that which was available through 

general University facilities, and this proved to be inadequate for the 

intensive computational requirements of the research. It was found that 

dedicated microcomputers available did not have sufficient memory for any 

but the smallest matrices, and that the departmental weekly time allocation 

on the University mainframes was insufficient for a full week of research 

using Fourier transforms. On one occasion the entire department CPU 
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allocation for the week on the Computer Centre VAX was expended on a 

single Monday afternoon. For this reason an application was put to R.S.R.E. 

for additional funds to purchase a microcomputer for the project, and a 

UNIX based SAGE IV micro was purchased, with 2Mbytes of memory and 

40Mbytes hard disk for storing images and programs. 

R.S.R.E. also supplied a set of test data known as the 'Alabama Database', 

containing images of a plain in Alabama, U.S.A. with various tanks, jeeps 

and buses at known locations. This set of data was transferred from the tape 

to the University VAX, and from there to the SAGE micro. All of the 

Fourier studies using real data, as opposed to artificially generated boxes 

and lines, was performed using sections of this data. 

The Alabama database provided a useful insight into the nature of types of 

data, that could be used. However, the definition of patterns within the 

image was very poor. The largest object was approximately 2S pixcels in 

total diameter, and blurring of approximately 3 to 4 pixels was present 

across the whole image. Also the images were taken using a thermal imager, 

thus the object patterns were not easily recognised as vehicles even when 

presented in an optimal way, the engine and wheels were particularly bright, 

and reflections of the sky from flat surfaces on the vehicles were particularly 

dark, thus it was very difficult to assess the performance or usefulness of 

any algorithms. The database would have been suitable for research into 

semantic pattern re<:ognition, where the visual cues available over large 

regions of the image could be useful, however this would have required 

more images than were available, and more computing power (more 

memory in particular) than was possessed by the research project at that 
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time. For this reason image capture apparatus was bought allowing simple 

visual images to be captured, and a database of suitable images was 

constructed. 

During this time Mr. M.F Daemi joined the research contract, and started 

to gather relevant information and references in a computerised database, 

and this has proved to be a significant asset to the development of the ideas 

discussed in this thesis. 

With the new image capture apparatus, and a greater understanding of the 

Pattern Recognition problem provided by the first year of research, several 

foundations had been built for the next two years of study. Fourier Domain 

techniques had proved to be useful as a tool in other research approaches, 

but seemed unlikely to provide the final answer to pattern recognition, thus 

it was decided to look at pattern recognition from the perspective of shape 

recognition for the remaining research period. This was also hoped to 

compliment Mr. Daemi's study of Pattern recognition from the perspective 

of information theory. It was considered that the author's work on image 

capture and preprocessing would provide useful raw data for analysis of 

information, and that this analysis could in tum provide clues to the 

potential usefulness of recognition methods tried by the author. The work 

on shape extraction and contour descriptions is given in chapter 4 and the 

work done in assessing methods of recognition of these contours is 

described in chapter S. 
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Transforms 

MObjectjye 

The principal reason for the study of Fourier and associated transform 

techniques made by the author was to gain an insight into the nature and 

properties of patterns as found in digital images. A secondary reason was 

to attempt to find a method of recognising patterns. 

The use of Fourier transforms in pattern recognition is a long established 

field, thus it was thought unlikely that any significant new results would 

come to light due to research by the author in his first year of work. However, 

the Fourier transform has proved to be a useful technique for showing a 

different perspective of data, and a thorough knowledge of Fourier 

transform techniques was considered beneficial. 

This having been stated, the research was not entirely indiscriminate, and 

was directed principally to determining any consistent patterns within 

images. 

U Fourier transforms 

l.U Representation 

The result of Fourier transformation of an image is a matrix of vectors which 

may be represented using real and imaginary components, or using vector 
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magnitude (modulus plane), and vector phase angle (phase plane). It is the 

latter description which has led to the most interesting results. 

Figure 3.1 a) shows the location of the origin and transformed data points 

as described in the results in this thesis. Figure 3.1 b) shows the relationship 

used between the real (Re) and imaginary (1m) vector components, and 

modulus (M) and phase (8) components for individual vectors. 

Origin 
F(O, .r:0) ___ _ 

ｾ ｉ ｭ
x 

y 

Re 

(a) (b) 

3.1 nata representations used in this thesis 

The number of vectors produced by the transformation is equal to the 

number of original input points, however the algorithm assumes that the 

input values are complex vectors, whereas digitised images usually consist 

of a set of real components only. To overcome this difficulty all of the 

imaginary components of image matrices to be transformed are set to zero, 

thus only half of the data in the output matrix will be information. This shows 

up as a duplication of the data in element (x, y), which also appears in 

complex conjugate form in element (N-x, N-y). 

3.2 Fourier transforms 



Chapter 3 Transforms 67 

The Fourier transform is the decomposition of a signal that varies with time 

or space, into its components of frequency or spatial frequency. In the case 

of a discrete Fourier transform it can be shown that only discrete 

frequencies need be used. This can be deduced from the continuous Fourier 

transform by considering that the discrete case may be represented by a 

sampled continuous waveform. Since the sampling process is repetitive, of 

theoretically infinitesimal duration at each sample point, and of faxed 

repetition rate, the continuous output matrix will be multiplied by the 

Fourier transform of this sampling process, giving a series of values at 

discrete frequencies. The maximum discrete frequency discernible with a 

Fourier transform is directly proportional to the number of samples taken 

per second, hence the number of output points is proportional to the 

number of samples. 

An important property of the Discrete Fourier transform is its periodicity. 

H a signal is sampled at intervals T, the sampling frequency f, is lIf, and 

this signal has a periodic spectrum that repeats at intervals of fa. This effect 

is a consequence of the sampling. and occurs because a sine wave of 

frequency to when sampled at frequency fa gives the same result as a 

sampling a sine wave of frequency (fo + i· fa), where i is an integer. 

Intuitively, it can be seen that it does not matter how many whole sine wave 

excursions (i) take place benwen one sample and the next, it is only the 

partial sine waves due to fa that will be measured. For the purposes of the 

research the fact that frequency components outside the Fourier domain 

3.2 Fourier transforms 
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matrix may be considered as periodic repetitions of the Fourier plane, and 

therefore non-zero will be ignored. 

A further property of Discrete Fourier transforms is that of aliasing. This 

states that a signal of frequency (i.e. f(x, y» where i is an integer, will appear 

at the position of frequency f(x, y). Normally the bandwidth of the input 

signal is limited to fJ2 to avoid the appearance of such signals, however in 

this case the bandwidth of the image signals is known to be limited, thus no 

filtering has been necessary. 

a.a Phase Plane Tilt 

l.3.l. Introduction 

The first tests that were performed were on artificially generated images. A 

Gaussian bell centred on the origin was used to verify implementation of 

the algorithm, since this does not change shape under Fourier transforma-

tion. An 8 by 8 pixcel rectangle was used to verify the observation of ringing 

(see section 2.2.2.1, p.21), and further test the computer programs, 

including the translation of cosine and sine components into modulus and 

phase components. During this latter test a pattern consisting of low valued 

elements on diagonallincs repeated across the phase plane and further 

study was undertaken. An example of transforming the 8 by 8 rectangle in 

a 64 by 64 image plane shown in appendix A.1 is given in appendix A.2 and 

A.3. A further example of the phase plane tilt for an image with the same 

rectangle at a different location is given in appendix A.4. 

3.3 Phase Plane Tilt 
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It was found that for the Fourier transform of a simple object pattern on a 

noise free background in the image plane, the cell values on the modulus 

plane do not change with the position of the object pattern in the image. 

Since the Fourier transform is a linear transform, it is also true that the 

modulus plane will contain this same invariant pattern of data for any given 

object, irrespective of the amount of noise present. However, there will be 

other information related only to the noise, which will be superimposed on 

the pattern information, and this will tend to obscure the object pattern. 

The results also show that the position of any prominent component of an 

image may be derived from the phase plane information. For a single point 

the phase difference ("step") between the phasor describing one frequency 

component and the phasor for the next higher frequency component is 

constant for all such pairs of &equencies. This occurs because the phase 

angle of the vector representing any frequency has a component that is 

directly proportional to the distance of the object pattern from the origin. 

The apparent exception to this occurs when the step from one phase 

component would take the next phase component above 3U.f. In this case 

the transform algorithm calculates the phase value less 300°. 

The theory governing the phase step can be shown by referring to the 

definition of the Fourier transform. In figure 3.2 a) a simple one dimen-

sional pattern is shown. Also shown are the rust two Fourier harmonics. 

3.3 Phase Plane Tilt 



Chapter 3 

+. 
o _. 
+ • 

• 
-f 

"" • -. 

Transforms 70 

3.2 Effects of pattern movement in the Fourier domain 

Since the object is centred on the origin, and is symmetrical about the origin, 

the phase of both frequency components is zero. If, however, the object is 

shifted by a distance dx to the right as shown in figure 3.2 b), the Fourier 

components will also be moved to the right, and this is represented by a 

change in the phase of the nth frequency !p(n) such that:-

dx !p(n)=--x2 :7t 
cu(n) 

where cu(n) is the wavelength of frequency n. We also have that 

cu(n) = !£ill 
n 

Thus the phase change !p(n) is given by:-

Thus cWlU(l) is the per unit distance across the frame, or the number of 

pixcels to distance dx from the origin, divided by the frame width. It can be 
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seen that since the phase change is proportional to the harmonic number 

of the component, the phase difference between two adjacent components 

will be proportional to the distance moved across the frame, since:-

d'P = 'P(n + 1)x2n" - 'P(n)x2n 

dx 
= w(1)x(n + 1 - n)x2Jt 

dx 
= w(1)X2Jt 

This means that the phase plane is "tilted", that is, it has a constant gradient 

which may be detected and possibly removed, thereby shifting the object in 

the frame to the origin. 

This simple relation is only true for symmetrical objects where the average 

of the cells that compose the object have the same effect as for a single point 

object. Non-symmetrical objects will have a component of phase angle due 

to their asymmetry that is not constant for all spatial frequencies, and this 

will tend to distort the tilt. However, when using real images these 

asymmetric components will normally be independent of frequency, thus 

they will tend to cancel if taken over a sufficient range of frequency 

components. 

It is also clear that the deviation in phase angle due to asymmetry will be 

relatively large for high frequency components of the transformed image, 

when compared with those of the low frequency components. This occurs 

because the high frequency components are influenced by a large number 
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of small variations, rather than the small number of significant influences 

on the low frequency components. Thus low frequency components, of a 

wavelength comparable with the width of object patterns in the image will 

be largely influenced by those object patterns, whilst high frequency 

components will be influenced by small details on the object. 

In practical images, object patterns are generally brighter near the centre. 

The low frequency components may therefore be used to determine object 

location, and if required a constant tilt may be removed from the phase 

plane to place an object at a known position in the image plane. Very large 

object patterns in images with a significant degree of asymmetry win cause 

the tilt to be influenced by features inside the object, and these types of 

image should not be used with this algorithm. 

3.3.l Phase plape tilt detedloa resulg 

The phase plane tilt detection algorithm works by producing the histogram 

of frequency of occurrence of step, versus step, and determining which step 

occurs most often. The results for a bright rectangular pattern on a noise 

free background are given in AppendixA.6 a). It is clear from this that there 

is no difficulty in determining the best step for this simple pattern, and the 

result of removing this step from the entire phase plane is to centre the 

rectangle on the origin. 

The histograms in appendix A.6 b) and c) are for practical images taken 

from the Alabama database. The histogram in appendix A.6 c) is a 
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thresholded version of that in A.6 b). The detail of the image in appendix 

A.6 c) is given in appendixA.5 a) and b). 

From these histograms it is clear that the noise imposed by real images is 

significant but not overwhelming. 

The results of removing the phase plane tilt that is indicated by these 

histograms were disappointing. An example of removing the tilt for the 

image given in appendix A.5 (step histogram shown in appendix A.6 c», is 

given in appendix A.7. The histogram itself required some smoothing to 

obtain a reliable result, however, the result obtained was influenced more 

by the edges of the image than by the object. As has already been indicated, 

the Fourier transform is repetitive, thus the transform is constructed as 

though the right hand edge were immediately adjacent to the left hand edge, 

and this will be the dominant feature in the phase step histogram. 

At this time it was felt that the study had proceeded sufficiently to have 

achieved the objective of understanding the nature of noise in images, and 

some useful experience had been gained in the development of compu-

terised routines for algorithm modelling. It was noted, however, that using 

the phase plane to determine the location of an object could only work for 

a single pattern in an image, even under ideal circumstances of noise and 

background grey level variation. For this reason a new line of researc:b was 

started, and no further study of phase plane tilt took place. 

3.3 Phase Plane 1'"tlt 
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3.3A Fourier trans(onnatiog o( phase Ig(nngatinQ 

As outlined in the previous section, the phase angle of frequency domain 

vectors in a Fourier transformed image gradually steps up in value across 

the phase plane, until it reaches 2n" radians, whereupon the phase angle 

value at the next higher frequency has returned to just over 0, having gone 

through a full circle. If a cross section of the phase plane is considered, it 

can be seen that the angles will follow a repetitive ramp function such as is 

shown in fIgUre 3.3. 

Ｗ ｲ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

8 

" 
3 

2 

o 

3.3 Tilt in tbe Fourier pbase plane 

If this wave shape is subject to a further process of Fourier transformation, 

it would be possible to determine the frequency corresponding to the 

repetition rate of the ramp function, and this is related to the tilt of the phase 

plane, and hence the position of an object by a simple relationship, which 

may be determined as follows. 

3.3 Phase Plane Tilt 
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Let dx be the distance of the object pattern from the origin. It has been 

shown that the phase step dfP between adjacent frequencies is 

The wavelength (WI) in pixcels across the frame is given by 

1 w.=-
dfP 

Ｍ ｾ-dx 

Thus the frequency (fs) may be found from the relation 

w. xf. ,. w(1) )( f(1) 

Thus 

f. = dx X f(1) 

This represents a frequency which appears approximately in the same 

position within the frame as the original input object pattern. The effect will 

only work if the step in the phase angles is constant for a significant number 

of steps, this is true for small sharply defined edges as found around a object 

pattern, thus it is expected that this technique will highlight the location of 

an object, providing it is symmetrical. 

A further consideration is the case of a object pattern which contains 

Fourier components with negative coefficients, either because the object 

33 Phase Plane Tilt 
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pattern itself is a dark object on a light background, or because the object 

pattern contains some comparatively dark features. In this case the phase 

angles will be displaced by 1C from the expected position, and may 

destructively interfere with each other. However the coefficients of the 

second harmonic will interfere additively. For this reason it is supposed that 

the second harmonic may be a better indication of the location of an object 

pattern than the first. The position of this harmonic will be at twice the 

distance from the origin as the frrst harmonic, that is 

2xfa=(2XdX)xf(1) 

u.! Walsh-Hadamard tnDSrong. 

3.3.5.1 Introduction 

The similarities between Fourier transforms and Walsh-Hadamard trans-

forms are not fully apparent on frrst inspection, however it is noted that the 

methods of construction are very similar. The Walsh-Hadamard transform 

is similar in nature to the Fourier transform if only the sign of the cosine 

wave is used as a multiplication factor during summation. Also the spectrum 

produced by the Walsh-Hadamard transform may be very similar to that of 

the Fourier transform under certain circumstances. 

The most notable difference is that Walsh-Hadamard transforms do not use 

complex representation, only scalar representation. This is achieved by 

interleaving the equivalent to the cosine components and the sine compo-

nents throughout the matrix. If the output "sequencies" (analogous to 

frequencies) are considered it is found that sequency 0 corresponds to 
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Chapter 3 Transforms 77 

frequcncyO in the Fourier domain, sequency 1 corresponds to a square wave 

version of the fundamental sine component, and sequency 3 corresponds 

to the Fourier cosine component. Sequency pairs 2 and 6 correspond to 

the second harmonic of the Fourier transforms in the same way. Other 

sequencies are composed of harmonics which do not conveniently fit in one 

frame width (eg. third harmonic), and are thus apparently random in 

distnbution. 

3.3.5.2 AJaorithm 

Although the Walsh-Hadamard transform may be constructed in a very 

similar way to a Fourier transform, this is not the most efficient method. 

The Fourier transform requires that each element is multiplied by a phase 

factor before summation for each output element, and the Fast Fourier 

transform makes use of the fact that each element is frequently multiplied 

by one factor for summation into many separate output clements. The order 

of dealing with elements is chosen such that the phase product is found only 

once and added to the necessary output elements in several consecutive 

program steps, this part of the algorithm is generally known as the 

"Butterfly". 

Since no multiplication need take place in the Walsh-Hadamard transform 

it is possible to simplify the process by building the addition and subtraction 

implied by the factors of + 1 and -1 into the program itself, instead of 

obtaining them from a lookup table. By this means the process time may be 

reduced. The order of output element calculation is the same as for the Fast 

Fourier transform. 
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A routine was developed by the author which would perform Walsh-Hada-

mard transforms in optimal order, overcoming the problem of matrix 

reordering which is involved in the transformation. The concepts behind 

the routine are very similar to those governing the Fast Fourier transform. 

The order of transformation is such that only a minimum number of 

additions and subtractions are performed. However, since there is no 

multiplication factor other than plus or minus one used in this transform, 

the addition and subtraction are performed within the routine, giving a 

further time saving overall. 

3.3.5.3 Walsh-Hadamard transrorm Test Results 

The most significant problem with the Walsh-Hadamard transform is the 

dependence of the output spectrum upon the position of an object in the 

frame. In Fourier transforms it has been seen that all of the information 

relating to the position of features is contained within the phase plane, 

however there is no equivalent plane in Walsh-Hadamard transforms. 

Therefore a test was performed to transform a one dimensional pulse and 

compare the results with the equivalent Fourier transform. 

A rectangular pulse of value 2S6 and width 21 elements was placed in an 

array and Fourier transformed. The modulus part was found and displayed 

on a printout. Alongside were displayed the results of Walsh-Hadamard 

transforming similar pulses which started at elements 1, 26, 51, 16, 101, 126, 

151, 176, 201 and 226, that is, at intervals of 2S cells giving a spread across 

the range of possible positions. A portion of the results of this test is given 

in appendix A.10. 
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In all cases the results show high values at the low frequency/sequency 

positions and lower values at the high sequency positions. All of the values 

from the Walsh-Hadamard transform were integral multiples of 256, as a 

consequence of all input values being 256 and there being no sub-division 

of this value within the algorithm. It was also noted that the values for any 

particular sequency in the Walsh-Hadamard transform output varied 

greatly as the pulse was moved across the array, and that patterns were 

formed in the output matrices which are not easily related to each other. 

The region around the origin of a two dimensional Walsh transform result 

for an 8 by 8 square on a 64 by 64 image plane is given in appendix A.9 a). 

A similar image with the square in a different place in the image plane is 

given in appendix A.9 b). It is clear from these images that the transformed 

result varies significantly with object position. For this reason the Walsh 

transform was not pursued as a fast method of transformation. 

3..3.6. Comblnlnl Fourier planes from different 1m ... 

It had been noted during the research that the modulus planes of various 

images did not show any significant difference on flJ"st inspection. All of the 

digitised images tended to be a peak around the origin that dropped in an 

approximately ben shaped curve to small values at some distance from the 

origin. The distance is determined by the size of the object that has been 

transformed. A test was therefore tried that combined the modulus plane 

of a rectangle with the phase plane taken from the Fourier transform of one 

of the Alabama database images. The results in Appendix A.8 show a 

tendency to highlight the regions in the image that most conform to the 

pattern in the modulus plane. 

3.3 Phase Plane Tilt 
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It is supposed that if this line of research were pursued a novel method of 

thresholding images may be found, that could be particularly immune to 

noise. However. due to the constraints of time. and other associated 

research projects this was not continued. 

3..l.7 Concluslog to work on Fogrler tngsfQngl 

The objective of determining the nature of image data that may be used for 

pattern recognition has been adequately met. however. the use of Fourier 

transforms as investigated in the research has proved less fruitful. 

The algorithm for locating a symmetric object using the tilt of the phase 

plane fails; not because of noise, but due to the nature of the background 

to the images to be transformed. The method is also fundamentally flawed, 

in that it cannot deal with more than one object in the field of view. 

Taking the Fourier transform of the phase information is a potentially useful 

method of object location. Results show easily identifiable peaks around 

the location of the object, however, it is not clear that this approach is any 

better than simply thresholding the original image. 

The use of Walsh transforms has shown that although they are particularly 

efficient in terms of speed of processing, the drawbacks of variation with 

shift means that they do not lend themselves to any of the approaches for 

image transformation tried by the author. 
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Using the modulus plane from a noise free square and the phase plane from 

a real image shows some promising results. The results show a tendency to 

highlight the parts of the image that most conform to the size of the 

rectangle, whilst retaining the shape information virtually intact. It is 

thought that with further investigation, this approach may give a method of 

thresholding an image with a great deal of noise immunity. 

3.3 Phase Plane Tilt 
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Contour Following 

In the second part of the research period the author chose to investigate 

patterns in terms of their shape, in an attempt to find a method of describing 

shapes that was both economical in terms of data, whilst retaining as much 

shape information as possible. The approach chosen was to describe the 

object in terms of the path followed about its periphery, and base further 

recognition algorithms upon this. 

ｾ The information content of sbape 

The reason for assuming that the shape is relevant to recognition comes 

from information theory. It is clear that in a fully utilised data array all data 

elements can carry the same quantity of information, that is each data 

element is as important as any of the others. If, however, it is known that a 

particular data element always has the same value then the data element 

carries no information additional to that which is already known. Similarly, 

if the value of a data element is constrained to be within a specific sub-range 

of all possible values then the amount of information is correspondingly 

reduced. This holds for images that have been reversibly transformed in 

some way, thus knowledge about the gradient and other measurable 

parameters of regions may reduce the amount of information held in an 

image. 

In many cases the objects seen within an image consist of regions of small 

variation in value, bounded by regions at a different grey level. The regions 
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within the bounds are therefore constrained, and carry relatively small 

amounts of information, whereas the boundary (i.e. shape) data elements 

may take any value, and thus carry the majority of the information. 

The maximum amount of information that can be obtained from any static 

data is defined by the number of binary digits that are required to describe 

the data. From this it is known that the maximum amount of information 

that can be obtained from a 32 by 32 pixcel image with 8 bits of information 

per pixcel is 8192 bits. However, it will be shown in chapter 5 that for objects 

described in terms of their peripheral paths alone the amount of data can 

be reduced to 10 bits, and yet still retain much of the information associated 

with pattern identity, position and orientation. 

ｾ Use ofAssumptiops 

4.ZJ. Igtroductlog 

It is posstble to include assumptions in systems which evaluate information 

by including knowledge within the system that is not intrinsic to the 

information presented by the data, for example by limiting the range of valid 

values for a data element. The assumptions built in to the recognition 

algorithm restrict the number of choices of result, i.e. they reduce the 

"channel capacity" of the algorithm, and thereby increase the efficiency of 

the algorithm in recognising useful information. 

4.2 Usc of Assumptions 
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ｾ ASSllmptlops llsed 

In the research the author has used a number of assumptions about the 

image data to simplify the problem. Without this the task of analysis would 

be virtually impossible (i.e. all turn. images would be equally valid). The 

assumptions used, however, are not unrealistic, and it is hoped that from 

the basis of these assumptions more complex images may be analysed using 

similar techniques by improving the segmentation method. Since literature 

on the study of segmentation is now widespread a number of approaches to 

advancing the techniques suggest themselves for future work. 

The a priori knowledge that is additional to the information in the images 

used is as follows:-

;) The "background" is "dark", i.e. the object pattern is completely 

surrounded by a region of pixcels that will always be less than any 

chosen object pattern to background threshold value. 

ii) The "object" is "light". The pixcels encompassed completely by the 

object are saturated with light, and register a value that is the 

maximum that the digitising system is capable of outputting. This 

value is numerically 23610 (ECI6). 

iii) The object as seen by the camera has sharply defmed edges, and 

is well focussed. 

iv) The object does not overlap or touch the edges of the field of view. 

4.2 Usc of Assumptions 
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v) The object is a three dimensional object, not symmetrical about aU 

axes. 

From practical knowledge of objects and the images used it is also assumed 

that:-

vi) There is no "special" place on the periphery of the object. Thus the 

point at which the contour is first traced is not used in the recog-

nition of the object. This arises directly from the assertion that the 

algorithm should be independent of the grid used to digitise the 

image. 

vii) All images used contain only one object. 

ｾ meet o(BsspmpUops psed 

It is clear from i) and iv) that if a point on the object is known, then the 

closed set of zero valued elements immediately adjacent to the object serve 

to define the background, and that all pixcels outside this region do not give 

any additional information. Appendix B.l shows the complete set of data 

points for a typical image from the captured set. Appendix B.2 shows the 

same data after removal of the zero valued elements described above. 

By similar logic the largest area of peak values that is within the region 

described above is already given by 0) and therefore also supplies no 

additional information. Appendix B.3 shows the effect of removing these 

data elements. 

4.2 Use of Assumptions 
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The exceptions to the foregoing are pixcel boundaries that have a zero 

valued pixcel on one side, and a peak valued pixcel on the other. In these 

cases both pixcels are required to mark the location of the boundary. 

The information given by iii) is useful in determining the number of pixcels 

around the periphery of the object that must be considered. It is known by 

observation of the characteristic of noise introduced on the background, 

and on the peak regions of images, that there is a small amount of noise 

introduced into the images by the camera and digitiser. This does not 

generally amount to an enor in the illumination intensity value of more than 

4 parts in 236. It is also known from the algorithm used to reduce noise in 

the digitised images that each pixcel in the image represents the mean value 

of a light detector of approximately uniform sensitivity over the whole area 

of the pixceL This is given by the use of averaging over a rectangular array 

of 15 photocells to obtain each pixcel value. Therefore it is shown that the 

minimum width of the edge of the object as found on the digitised image 

will be negligible, and the maximum apparent width will be two pixcels, 

horizontally, vertically or diagonally. 

The assumption in vii) has been used to simplify the segmentation, however 

the algorithm used could cope with many non-overlapping objects within 

one image, each object found would be treated as independent of any others 

in the image. 

The diagram in appendix B.4 illustrates for a sample image the amount of 

actual information that can be obtained from the image after the data that 

supplies no additional information has been discarded. 

4.2 Use of Assumptions 
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To be sure that no information bas been lost, it must be possible to rebuild 

the original image from the information available in the image that has been 

simplified by use of assumptions, taken with the information about the 

image that is built into the algorithm. In the case illustrated in appendix B.4 

it is possible to rebuild the image, and thus in using the assumptions above 

no information has been lost. In several of the other images from the set 

there are non-zero points on the background These represent lost data in 

strict terms, however knowledge of the original digitised scene indicates that 

the data is due to noise within the camera or digitiser. and therefore no 

investigation into methods of eliminating this data loss bas been carried out. 

It can be seen from the diagram in appendix B.4 that the information given 

by the selected object is much less than the potential information that could 

be ｾ ｮ using all of the available data points. This is a most desirable result 

since at best the length of time taken to recognise an object is directly 

proportional to the number of binary digits needed to represent the object. 

Thus the assumptions used have significantly improved the recognition 

process for this class of object. 

4.U An eumplc oftbc de oftbc ulumptlonl 

The diagrams in appendix B show the effect upon an image of the 

assumptions built in and the algorithm used. Appendix B.l shows the 

original data in its entirety. The data is given as two digit hexadecimal 

numbers for convenience of representation. In appendix B.2 the zero 

valued pixcels that are entirely outside the object and not touching any nOD 

4.2 Use of Assumptions 
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zero pixcels are shown removed. This is a realisation of item i) of the 

assumptions. It can be seen from this that much of the peripheral shape of 

the object can be determined simply from the pixcels that have zero value 

and are touching non zero pixcels. 

The diagram in appendix 83 shows the effect of removing the peak valued 

pixcels, which are already known about from item ii) of the assumptions. 

The remaining pixcels carry the shape information of the object. It should 

be noted, however, that there are also pixcels remaining inside the pattern 

that are not part of the edge of the pattern. These represent the shadow 

cast by the aeroplane fuselage over the wing, and therefore appear only on 

one side of the fuselage. Consideration was given to producing more 

uniform digitised images when this shadowing was fust identified, however 

the segmentation used has proved adequate for the purpose of shape 

recognition, and further tests of segmentation techniques could be carried 

out on the same data at a later date if the shadowing is retained. The lines 

a-a', b-b', c-c' and d-d' show the lines of the cross-sections illustrated in 

shown in figure 4.1 a) to d). 

The diagram in appendix B.4 is illustrative of the shape of the aircraft. It is 

similar to appendix 83, but bas had all zero valued pixcels removed. The 

engine on the port wing, and structure of the tailplane can clearly be seen 

in this figure, and this gives an indication of the resolution that can be 

achieved on the pixcelleveL 

The diagram in appendix 8.5 shows the data items that have actually been 

used to segment the image. The segmentation method used is an enhanced 

4.2 Use of Assumptions 
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thresholding operation, and the pixcels shown are those pixcels that are 

immediately adjacent to the contour given by the threshold value. It should 

be noted that the threshold contour follows the line of the grid between the 

pixcels, and no lines running across the diagonal of pixcels are included. 

It can be seen that the segmentation fails to include 50 of the 212 pixcels 

from the image, and includes 4 other pixcels that are not given in the ideal 

image. Of the 50 pixcels 31 have the value 0 and are adjacent to pixcels lower 

than the threshold value, 12 have a value greater than 190 (BE16) and are 

near to the central sections of the aeroplane, 6 are within the shadow region 

of the port wing and the remaining pixcel has value 7 and is near the tip of 

the port wing. This single pixcel is separated from the object by a pixcel 

that is also lower than the threshold value. 

Theory predicts the edges of the aircraft as seen by the digitiser will not be 

ideally sharp in most circumstances, because the edges of the object will 

rarely pass along the edges of the scanning grid. This can be seen to be the 

case in practice. The majority of differences between the segmented image 

and the ideal segmentation occur where zero valued pixcels do not touch 

periphery, because pixcels with values less than the threshold value form 

part of the periphery. The ideal segmentation is a segmentation that takes 

non-zcro cells as bclongiag to the object, and zcro valued cells as part of 

the background. That the ideal edge is occasionally found has been shown 

by the inclusion of 4 peak value pixcels adjacent to the edge. 

4.2 Use of Assumptions 
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For these reasons it is considered that although the segmentation method 

does not follow the theoretical ideal, it is nevertheless a good approximation 

for the limited sub-set of images that have been chosen for study. 

The final figure of the set (appendix B.6) shows the coarse contour that is 

given by the segmentation. The approximate outline of the aeroplane can 

be seen from this diagram, however the problems inherent in using such a 

simple segmentation technique are also clear where the "steps" occur 

instead of the straight diagonal lines of the original, for example from the 

starboard engine to the starboard wing tip. This is the problem already 

indicated for chain codes in section . 

ｾ The practical pre-processing algorithm 

The algorithm used to obtain the diagram in appendix B.6 is well described 

by the foregoing paragraphs, however, a few details are noted here. 

LJJ. 1m,. Capture 

4.3.1.1 Apparatus 

The objects used for study were a toy aeroplane, a toy car, a wooden ball, 

and a number of solid geometric shapes constructed from paper, e.g. a cube 

and a cone. For the purposes of testing the contour following algorithm only 

the aeroplane and the car were used, though all objects were used in testing 

the segmentation techniques. 

4.3 The practical pre-processing algorithm 
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The aeroplane was painted white over all of its surface with the exception 

of a set of black plasticwbeels. The wheels were attached using a large metal 

stud, and reflections from this stud initially presented problems in segmen-

tation. The principle cause of the problem was the automatic sensitivity 

control within the ccrv camera. If a particularly bright spot on the object 

was found then the camera would dim the overall image to compensate. 

This in turn causes shadows to deepen, and thus the range of possible 

threshold values becomes smaller. A discussion of the problem of shadows 

on the aircraft is given later in this section. 

The problems were overcome firstly by carefully adjusting the lens aperture 

control to give maximum contrast, thus saturating most illuminated pixccls, 

and secondly by carefully selecting the threshold values by which images 

were segmented. Some consideration was given to simply cutting the wheels 

from the aeroplane, however, it was felt that by making the image too easy 

to segment could cause the author to overlook some important and 

unforseen aspect of the recognition. 

The aeroplane was mounted on a turntable, which was in turn held by a 

clamp stand. The camera was mounted pointing directly at the centre of the 

turntable, thus any view of the aircraft from above, front, back or side could 

be presented to the camera. 

Illumination was provided by natural daylight from the window. This source 

was used since it was found that other more controlled sources such as 

lamps cast sharp shadows and irregular patterns over the aeroplane even 

when reflected from white card acting as a diffuser. 

4.3 The practical pre-processing algorithm 
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The camera itself was a low cost ecrv camera with a built-in automatic 

sensitivity adjuster and a diaphragm lens aperture control. The output 

signal from the camera is sent to a low cost digital sampling circuit 

controlled by a BBC micro computer. 

4.3.1.2 Sampling hardware 

The digital sampling was pedormed using very low cost hardware, and it is 

felt that this section of the process could easily be improved. The sampler 

was controlled by a BBC micro, and was thus relatively easy to control once 

the software to do so had been written. However, because the communica-

tion between the sampler and micro was also of very low cost, it was not 

completely reliable. Loss of frame synchronisation, and of data points if the 

BBC micro was interrupted, was not uncommon. For this reason some 

effort was spent in ensuring that the images captured were useable, and the 

control software was written to this end. 

ｾ ｃ ｏ ｄ ｴ ｲ ｯ ｉ ｉ ｑ ｾ

The control software was written to request and accept a set of data points, 

one from each frame line, for each frame scan of a scene. The process of 

obtaining a column of light intensity values was repeated a total of three 

times, and then the sum of values in 3 by 5 sample points was taken and 

stored as the result for a single output pixcel. 

The choice of this scheme was based upon a number of factors. Firstly the 

BBe micro bas only 32k bytes of random access memory. To store all 

4.3 The pradical pre-proceuing algorithm 
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possible sample points would require 67k of memory. To store only the 

32·32·15 points used requires 15k of memory, but including the program, 

operating system and screen display memory the total memory requirement 

is in excess of the 32k available. The scheme used requires only 15k of 

memory for data storage, and is therefore feasible. 

The use of a 5 by3 set of sample points to produce an output pixcel improves 

the signal to noise ratio of the resultant data byte by nearly 2 bits. It also 

enlarges the region OYer which the scene is scanned, and improves the 

aspect ratio of the image to approximately 1.05:1 from 3.15:5. This 

imprOYement is most important for experiments where the object rotates 

with respect to the camera. 

4.3.l ａ ｮ Ｇ ｉ ｾ ｬ ｳ SQfbran 

Once the values of the output pixcels had been determined and stored for 

the column each value was used to present a screen display of the image. 

The 6 most significant bits of the value were used as an index to a look-up 

table of display dots, index 0 produced a pixcel display output with no screen 

dots, index 1 produced 1 dot etc. up to index 63. The screen display dots 

were placed onto the screen in the correct position relative to the output 

matrix, thus as the scene was digitised an image was produced of the output 

matrix. 

This feature prOYed invaluable for a number of reasons. Firstly it facilitated 

the location and sizing of the object within the frame, secondly it assisted in 

the correct setting of the lens aperture. This was made difficult since the 



Chapter 4 Contour Following 94 

automatic sensitivity feature of the camera tended to negate any changes 

made using the aperture control, and the automatic contrast control in the 

monitor would not allow any changes to be seen. Thirdly the display showed 

that the system was working correctly. A loss of line or frame sync after 

startup was a regular occurrence, probably due to inadequately shielded 

connections. This was not detected by the software used, due to time 

constraints imposed by the line sync period, and a simple visual check 

ensured that the system was running. Similarly the digitiser would occa-

sionally produce a number of frames that were out of synchronization with 

respect to the rest of the image, giving a narrow vertical band of pixcels that 

were shifted by four or five pixcel heights. Ensuring that the image captured 

was not affected by this extraneous noise was most useful. 

Consideration was given to disabling the automatic sensitivity control of the 

camera. However, the camera was under warranty, and the time scale of 

obtaining money or equipment (usually several months of waiting) from 

R.S.R.E. should the camera be broken was felt to be good reason for leaving 

it intact. 

The final reason for requiring some form of image display was that in the 

early stages of research it was particularly time consuming to convert images 

from the BBC micro-computer floppy disk format to other systems. This 

problem was solved by the purchase of a KERMIT communication and 

terminal emulation ROM, however the effort involved in transferring the 

images at the start of the research meant that it was important to ensure 

that the data being transferred was usable. 

4.3 The practical pre-processing algorithm 
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The summation of data points was performed using two byte integer 

arithmetic as readily provided by the 6502 processor within the BBC. The 

product of the maximum value of a single sample point (1111112) and the 

number of sampled points in one 3 by 5 point pixcel is 36116. This cannot 

conveniently 6t within one byte, and it is shifted right by 2 bits to give a peak 

value of EC16 (236to). It is this value that appears as the peak pixcel value 

in the examples given in appendix B. 

The image scan process was made to repeat continuously to facilitate setup 

of scenes, however. a keystroke caused the scanning to stop at the end of 

the current scan. The image captured could then be analysed by a short 

BASIC program to determine the distribution of pixcel values, and could 

also be saved as a binary image to disk for subsequent transfer to the SAGE 

computer. 

" Pre-processlpg 

The algorithm used to obtain the coarse contour around the principle object 

in an image consists of the stages of gradient removal, thresholding, contour 

description and best object evaluation. 

"-1 Gndlegt mgo'" 

Due to imperfections in the manufacture of the ccrv camera the 

background of the images captured were not always perfcaly dark. If too 

much light was used to illuminate the object then the material used as a 

background gave some reflection. If too little light Was used then the 

4.4 Pre-processing 
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sensitivity control within the camera would cause pixcels to have non zero 

values even if they were perfectly dark. For example if the lens cap were on 

the camera then most pixcels would have a non zero value, and the average 

value of pixcels would be between 8 and 12. This effect was not uniform over 

the whole of the digitised region, the top left hand comer being raised by 

up to 20, whilst the bottom right hand comer was usually unaltered giving 

a gradient to the whole image. 

For these reasons the image was filtered using a gradient removing program. 

The program calculates the average value of the left and right hand columns 

of pixcels separately, and applies a reversing gradient as appropriate to 

make the difference in the two values close to zero. The program then 

repeats for the top and bottom values of pixcels to remove any vertical 

gradient. 

The removal of gradient using this approach is not ideal since in practice 

the original slope is not uniform, and does not affect pixcels that were 

initially saturated with light, thus compensations on the object apply an 

amount ofimage degradation. However the result obtained was satisfactory. 

To improve this section of the algorithm it is recommended that a local 

gradient transform is used since this would overcome many of the problems 

associated with the addition of absolute values to the image, such as are 

imposed by a light background, or non uniform camera sensitivity. The 

difficulty of this approach for our purpose is that the contours produced 

are not unconditionally closed. 

4.4 Prc-processing 
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"-l Thresholdlnlr 

The process of thresholding bas been used to locate a closed contour 

around an object that best follows the edges of the object. As has already 

been seen this reasonably approximates to finding the non zero edges to the 

object. However, it has also been noted that there is noise present on the 

image, and also features of approximately one pixcel in width, thus using a 

threshold value of between 0 and 1 is not reliable. 

The first threshold value tried was simply the mean value of all pixcels in 

the image, however this tended to give too low a threshold due to the 

relatively large number of zero valued pixcels. This therefore lost any small 

features on the periphery of the object pattern as they were swamped by 

noise introduced by the camera. 

The second method used was to take the mean value of all non zero pixcels. 

This gave too high a threshold value since it was greater than the pixcel 

values of shadows on the wings of many of the images, thus a number of 

contours were produced of aircraft with missing wings, which were located 

as separate objects. 

The method that was used was to take ODe third of the mean value of all non 

zero pixcels, this produced a satisfactory contour in all cases except image 

00/060. The image that failed to give a suitable contour using this algorithm 

has particularly bright reflections from the aeroplane wheel studs. In this 

case the solution used was a trial-and-error method. Even with the best 

(subjective) contour the resulting object does not correlate well with any 

4.4 Pre-processing 
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other, and can be taken as an example of a potential pitfall in this method 

of pattern recognition. 

This approach to finding the rule governing best threshold value used has 

been unsatisfactory. Part of the problem lies in the need to have recognized 

the type of object being segmented at this very early stage of processing. 

Other solutions are to usc the rate of change of pixcels approach as 

previously mentioned, or to use an iterative solution whereby the threshold 

value used is modified after some further initial processing has taken place. 

An adjunct to this would be to base the description of objects upon multiple 

contours taken at different threshold values. Clearly in this case the amount 

of processing required would ina-ease greatly with the number of contours, 

and it is not clear that the benefits gained in the majority of cases would 

warrant the extra processing involved. 

4Al Contonr dcacdptlDP 

HaYing determined the method of finding a threshold, and evaluated a 

threshold value for a given image, a closed contour can be produced around 

any objects within the image. At this stage there is no means of knowing how 

many objects are apparent in the image, thus all closed contours must be 

extracted and evaluated. It is known from assuption vii) that for this study 

there will only be one recognisable object within the image, however there 

may be more than one closed contour due to noise in the original digitised 

image. 

4.4 Pre-proceasing 
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A matrix pair is constructed that records all pixcel edges that lie between a 

pixcel above the threshold value, and one below the value. For practical 

reasons two matrices are held, one records the horizontal boundaries and 

has 31 • 32 data elements, the other records vertical boundaries and has 32 

• 31 elements. The edges of the image always show as an object boundary 

to ensure that all contours are closed, however other matrix elements are 

only set if they are actually on a boundary, and are reset when the boundary 

is noted as belonging to a specific object. By this means no boundary is made 

to belong simultaneously to two separate objects. It should also be noted 

that at this stage the information about specific pixcel values is not used, 

thus a dark object on a light background and a light object on a dark 

background will be treated identically. 

The algorithm next repeatedly searches row by row for a vertical boundary. 

U none is found then the contour extraction section is finished and any 

contours located can be processed further. U a vertical boundary is found 

the routine searches for connecting boundaries in a clockwise sense about 

a light object. Left turns are favoured above straights or right turns around 

the boundary to ensure that the longest possible connected contour is found. 

When no more COIlDCCtions can be made the contour must be a closed one, 

and the routine begins searching for another starting position. 

Lf..4 Best Contour Sclr£tlon 

The contours are held as linked lists of boundary position records attached 

to linked header records. For each boundary element traversed a counter 

in the header record is incremented. U the boundary element is on the edge 

4.4 Pre-processing 
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of the image then the counter in the header record is decreased by 10, this 

has proved sufficient to ensure that any small object touching the edge will 

be disregarded, and that any large object that just touches the edge of the 

image may nevertheless be selected. By this method the largest object wholly 

within the image and not touching, or only just touching, the edge of the 

image is selected. A high valued pixcel due to noise at the top left hand 

comer of the image would give a contour that encompassed the entire image 

frame, and thus be comparatively long, however, this is not selected as the 

best contour since a great many of the elements will decrease the recorded 

length rather than increase it. Note that the algorithm could easily be altered 

to include several objects for further analysis, but assumption vii) makes this 

unnecessary at this stage. 

The boundary described by the interstices between pixcels when the value 

is greater than or equal to the threshold value on one side, and less than the 

value on the other side is not an adequate description of an object if a 

contour description is to be used. A number of problems can be identified. 

F'ustly a line drawn at 4SO relative to the digitiser grid will be .f1. times longer 

in total length than a line drawn parallel to the axes. This is the same problem 

as has been identified with chain codes in chapter p.42. 

The second problem is the significant loss of resolution in the resultant 

image. Information is available which gives an indication of the exact 

position of the object boundary from the values of the pixcels adjacent to 

the lines. In the ideal b1acklwhite image where the boundary does not follow 

the grid axes the value of each digitised pixcel is directly proportional to the 

amount of its area that is illuminated by the object. By using information 

4.4 Pre-processing 
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from adjacent pixcels the point at which the best contour crosses the centre 

line of the pixcel can be found. 

The effect of this can be seen in a practical object from the charts shown in 

figure 4.1. The charts represent a graph of illumination versus distance for 

each of the lines shown on the figure in appendix B.3. Part of the effect seen 

is due to shadow and poor focus, however it is clearly seen that even at the 

most sharply defined edges there are pixcels that lie between zero and the 

maximum intensity value. By selecting an appropriate threshold value it is 

possible to chose the steepest part of the rise for an image over as much of 

the boundary as possible, and thus have the most exactly defined edge 

possible. 

4a4.! InterpoIatiOD 

Assuming that the object boundary passing through each pixcel is approxi-

mately straight allows a more precise definition of the position of the 

boundary. F"lgUte 4.3 shows adjacent pixcels of digitised value A and B. 

Assuming that the intensity varies linearly over the whole pixcel the centre 

point of the pixcel will have the exact value measured. Shown below the 

pixcels in figure 4.2 is a table of actual intensity at specific points between 

the pixcel centres. The intensity crosses the threshold intensity value T at 

point t. From the theorem of similar triangles we have that:-

t-b T-8 ---8-t A-T 

4.4 Pre-processing 
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T-B 
Let .A. _ T be Q 

Then 

t - b = (8 - t)Q 

t (1 + Q) = Q 8 + b 

H a - b, the width of a pixcel, is denoted as length X, then 

8-b =x 

8 =x+b 

t (1 + Q) = Q (x + b) + b 

=xQ+Qb+b 

t 
xQ+Qb+b 

= l+Q 

_ xQ + (l+Q) b 
l+Q 

x(T - B) 
A-T 

= --(=T----:8::-) + b 
1 + A- T 

x(t - B) 
=A-T+T-B+ b 

_x(T-B) +b 
A-B 

From this we can deduce a closer approximation to the position of a point 

on the boundary. The assumptions that the centre of a pixcel has 

approximately the mean value of the whole pixcel means that the point 

4.4 Pre-processing 
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determined lies on a line connecting the pixcel centres. This assumption is 

not justified for all points, however it is correct for regions where the 

boundary is not sharply curved, and it is these regions where it is most 

important that the exact position of the boundary is found. 

ｾ Data gormalisigg 

ｾ ImalC Select10g 

In order to test the algorithms with an adequate set of data the model 

aircraft was viewed and digitised from a large number of angles. The first 

views were all taken from directly above the aircraft, perpendicular to the 

plane of the wings; this set is denoted by90/nnn in any diagrams. The aircraft 

was digitised with the nose pointing to the left of the image giving sample 

90/000. The turntable was then rotated through 1SO to give image 90/015. 

The process was repeated for each J.Sl interval, giving a total of 24 images. 

The turntable was then tilted through J.Sl away from the port wing. and a 

second set of images was digitised denoted as 75/000 through to 75/345. The 

process was repeated for elevations of 60,45,30,15 and 0 degrees, thus a total 

of 168 views of the aircraft evenly distributed in a hemisphere above the 

aircraft were available for test purposes. 

LU MEnlar Descriptloa 

The points located on the contour form a better approximation to the 

original image. Further improvement may be pined by careful rutering of 

the resulting image to straighten the long edges of the object, however this 

4.5 Data normalising 
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would require very detailed knowledge of the position of the edges in the 

original image which is not available from the digitisation used. 

Problems associated with the points describing the contour are that they 

are not evenly spaced around the object boundary, the number of points 

may vary depending upon the apparent size of the object and the point 

coordinates are in terms of the absolute position within the matrix. 

The apparent size of the object to be recognized is not necessary for shape 

recognition, also pattern matching is greatly facilitated if the size of the 

pattern and template are the same. For this reason the number of data items 

describing the contour is normalised. 

To remove the absolute location and orientation information the absolute 

position information is converted to relative vector information. Each 

vector should have the same length and thus the lines connecting the known 

points are first divided into a number of separate sections. In this case one 

eighth of a pixcel width bas been used as the section length, with any 

remainder rounded to one whole length or zero. The angle between each 

section and the next is then recorded, thus the absolute orientation 

information is extracted. The absolute angle of the starting vector is 

recorded to retain all available information. 

ｾ S'7& Nonnallgdon 

The number of short sectioDs was counted as they were produced and 

therefore the number of short vectors required to produce a normalised 

4.5 Data normalising 
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length vector may be calculated. The sum of the relative angles and a 

proportion of any intermediate vectors composing a normalised length 

vector is calculated. The resulting set of vectors describe the boundary of 

the object and do not include any position, orientation or size information. 

The number of vectors used for the normalised contour was chosen to be 

128. Appendix C shows the effects of chosing various numbers of vectors, 

the choice of 128 vectors was made since there seemed to be little 

appreciable improvement in the images by using more than this number. 

4.5A Pimmit;)' of nonnallytioa 

This method produces an approximation to the object contour, however it 

should be noted that the results of this algorithm have included an inherent 

error. It can be seen from figure 5.2 that the ends of the contour produced 

by this method do not meet up. The cause of this arises from the cumulative 

effect of the discrepancyio length between the line drawn through the points 

defining the start and end of groups of a short section lines, and the length 

of the vectors. The sum of lengths of groups of short sections is equal to the 

length of a normalised vector. However the distance between end points of 

the group will clearly be shorter if there are a number of sharp turns in the 

group than if the group is part of a straight line. There is usually only a single 

turn within any group since the number of output vectors is of the same 

order of magnitude as the number of original input vectors, and the effect 

tends to cancel out over a closed contour as any extension when moving 

away from the contour start is cancelled by an extension in moving back to 

clOlC the contour. 

".5 Data normalising 
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The underlying cause of the problem comes from assuming that the overall 

length of the contour remains constant when the number of vectors 

comprising the contour are changed, even if the product of [number of 

vectors] • [length of vector] is maintained constant. This assumption makes 

calculation of a normalised vector set simple and allows for the calculation 

of the set at one pass through the short vectors and is most useful in this 

respect. 

A solution to the problem can be found using an iterative method to 

determine the correct length of the normalised vectors. By estimating the 

length of the required vectors a contour set may be constructed by stepping 

round the contour as shown in figure 4.5. The advantage of this method is 

that each turning point found defining the vectors must be on the contour, 

and after a small number of repeated attempts it is expected that the 

normalised vector set will by very close to defining the shape of the original 

contour with small error. 

The disadvantages of the approach are firstly that it requires several passes 

through the contour, where for cadl short contour a sine and cosine 

calculation are required. This in turn means that the points must be 

calculated using more precise mathematics than hitherto. Secondly it can 

be shown that the method will not produce a result unconditionally. 

Consider the diagram in figure 4.6. It can be seen that if the contour starts 

at point A and has estimated length b then the next step in the contour will 

start at point B. If this length were found to require too many steps then the 

step length would be iDc:teascd, perhaps to 1ength Co This would then give a 

step point at C and thus step OYer many more of the short vectors than in 

4.5 Data normalising 
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the previous iteration thus requiring the vector to be shortened. It is 

conceivable that the method would produce a situation that has no possible 

solution. However, the error involved will be less than one vector length, 

and will therefore generally be much smaller than given by the method 

currently used. 
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4.3 Adjacent cells 
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4.4 Assumed intensity variation between two cells 
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4.5 Iterative contour tracing 
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4.6 Pitfall in the iterative solution to normalised contour matching 
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Recognition Processes 

M Introduction 

A length normalised contour is obtained for an image as described in the 

chapter 4. Figure 5.1 illustrates a typical example of the contour around a 

test image, and figure 5.2 shows the normalised contour that has been 

obtained from this pattern. 
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S.l Original image 90015, showing sub-pixcel data points 

5.1- Introduction 
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5.2 Contour extracted for 90015 

Once a normalised description has been obtained it must be compared with 

a library of patterns to determine the type of the described pattern and 

ascribe some label to it. A number of points arise from this problem. 

;) The number of patterns required to compose a complete library of 

patterns is unknown. 

;;) The resolution of details required to adequately define a pattern 

is unknown. 

iii) The orientation of a test pattern relative to any member of the 

library of patterns is undefined. 

;l 
;v) The required ､ ･ ｧ ｲ ･ ･ ｴ ｾ ｲ ｲ ･ ｬ ｡ ｴ ｩ ｯ ｮ of test pattern and pattern library 

member to define a match or non-match is unknown. 

v) The best method of comparison must be found. 

S.l-Introduction 
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Wben all of these problems have been resolved it will be possible to 

recognise simple patterns within the set defmed by the assumptions in 

chapter 4. 

ｾ Correlation Methods 

5.U CQrreIatIOQ by mBlD'tudea of d1trmom 

The first method used to determine the correspondence between two vector 

descriptions Ct and q was to take the sum of the magnitudes of differences 

between corresponding vectors on the contours. This gives a resulting value 

Fwhere 

N-1 
F - ｾ Icd/) - Ct[/) I 

1-0 

For all examples used N in the above formula is 128 and c,c[iJ is the value of 

the ith element of the contour x. This matching process takes no account of 

the starting point from which contour extraction takes place, thus a 

modified form was used for matching contours. 

N -1 
F - min (f [/) 

1-0 

where 

N-1 
f [I) - ｾ Icoo] - C1[ (/ + /)mooN]) I 

)-0 

S.2-Correlation Methods 
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In this case the test contour is compared with the reference contour for each 

of the 128 possible contour starting points. It should be noted that no 

attempt has been made to remove the mean value at this stage. It is known 

from the algorithm used to extract the contours that all contours tum 

through exactly 3fIJl, thus the mean turn for every contour description is 

360/N, which is 2.81°. As the mean is the same for all contours it is removed 

by the correlating algorithm, thus no other processing is required. 

The function as described has the advantage that it is comparatively fast 

since it uses integer arithmetic at all stages, and only involves mathematics 

which can be performed wholly within the CPU of all popular micro-com-

puters. It is also complete, in that it obtains the best correlation result, 

regardless of the starting point of contours. It is therefore supposed that for 

many applications this method would be the most appropriate. 

The drawbacks with this method are that it is comparatively insensitive to 

significant deviations of a small number of vectors, and that the value of the 

correlation function output is not set within any fIXed scale. 

A solution to the problem of scaling would be to divide the result by the 

correlation of the reference contour with the contour defined by Jli] = 2J1'Aol. 

This would then normalise the correlation function to give a value 1 when 

correlated against a circle. If the test contour were circular the problem of 

inaceuracywould arise, since a small change in the contour difference would 

produce a large change in the correlation function output, however in 

practical images this problem will rarely arise. 

S.2-Correlation Methods 
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5.Z.1 ComlaUoQ coc:flldent 

The second correlation function used is the more usual function dermed by 

N-1 
l:C't[1] xc'llk] 

fU] 1-0 
= N - 1 N-1 

( l:C'I[I]2 X l:c'tlk]2 ) ｾ
1-0 1-0 

where k = (i + j) mod N 

and F = max(r[O].r[l] ..... r[N-l]) 

The function c' x[] is defmed as being the function t«[] with the mean value 

of all ex£) subtracted. Subtraction of the mean value is not strictly necessary 

since it is the same for all contours, being a total of one full circle over the 

sum of all vectors. Removing the mean value does, however, improve the 

discrimination of the function. It should be noted that this function differs 

from the previous function in that it gives a value of similarity in the range 

1 to -1, not the value for djffcrcpce. 

A graph of the correlation coefficients r[O] to r[N-l] (i.e. for each 

correlation starting point) for 90/015 (ct[]) correlated with 90/090 (q[])is 

given in figure S.12. The fint differential of this graph is given in fIgUre S.13. 

This shows that at the point of best match the slope of the fltst difference 

is large, thus accurate registration of the two patterns is possible. 

5.2-Correlation Methods 
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The correlation function given above was applied to a range of contour 

images, using the image 00/090 as the reference contour. The values of the 

peak correlation (F), and a value the position at which the peak occured 

(d) were recorded. The value d was used to produce a set of normalised 

images whereby the start point was the same for all patterns within the set. 

Similar tests were performed using 00/000 and 00/090 as references for a 

sub-set of patterns, and the resulting contours were used for subsequent 

tests. 

ｾ Iptegratiop 

5.l.l. Flat IP ...... 

One problem anticipated in the contour length normalisation procedure is 

that the overall contour tends to fonow a sct of absolute vectors. This in tum 

means that if the contour deviates from its defined position at one step, an 

equal and opposite deviation wiD be imposed in the next step. This wiD be 

in addition to any error introduced in this further step. 

A solution to this problem can be found by integrating the relative vector 

set to produce a normalised absolute vector sct. In the process of following 

a closed c:urve a complete circle wiD be described, imposing a ramp function 

upon the output of the absolute vectors, as shown in figure 5.3. 

5.3- Integration 
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5.3 Bearing around contour 

This in tum re-introduces arbitrary orientation information to the contour 

description. Removing this ramp function by subtracting 2IN from each 

element of the contour description before integration will remove this 

absolute orientation information (fIgUre 5.4). The resulting description can 

therefore have its start position moved simply by redefming which element 

of the description is considered to be the first element of the contour. 

s .• Bearinp around contour with circle removed 

5.3- Integration 
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The constant of integration introduced by the above step approximates to 

the distance by which the start position of the contour deviates from a 

normalised contour description of a perfect circle. It depends only upon the 

shape of the curve at the start position, and thus imparts no additional 

information. For this reason it is removed. 

The output of the algorithm descn'bed is therefore suitable for arbitrary 

rotation and simple correlation in the same way as the relative vector set, 

but has the advantage that cumulative errors are minimised. 

5.3..1 Second lntcanl 

The first integral of the relative vector set corresponds to the absolute 

bearing of each item of data, in the same way the second integral 

approimately corresponds to the position of the end points of vectors. It has 

been argued that much of the information in an image is associated with tbe 

shape of objects within the scene, and it is this shape information that has 

been extracted by the algorithm described so far. It was also felt by the 

author that certain features of an object may carry more information than 

others, for example the intricate turning pattern of the tailplane of the 

aircraft may carry sufficient information for recognition, whereas the 

straight leading edge of a wing would not, even though both sections might 

have the aame number of data elements. In order to assist with the 

assessment of this the second integral of the relative vector set was used. 

Whilst the second integral is not exact shape information, features can be 

recognised from plots of it against number of data elements. True position 

information is obtained from 

5.3- Integration 
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fei8d8, 

that is f(cosB + isinB)d6, whereas we have used fOdO.1t can be seen that 

if all 6 is small, and therefore f cosBd6 is approximately 0, then the 

approximation of f6d8 to f ei8 d8 is good. Figure 5.5 shows the graph of the 

second integral using the complex method. 

5.s Integrated contour using complex representation 

In practice the integral of is made to be zero by removing the ramp function 

associated with turning a full circle. The value of may be large in a number 

of individual instances around the contour, thus the first condition above 

does not hold. The graphs in fagure 5.6 and 5.7 show the difference between 

the two types of plot. Although there are significant differences between 

the plots it can be seen that the principle features are clearly visible in both 

plots, thus it is proposed that the simple calculation of f8d8 should be used. 

S.3- Integration 
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5.6 Complex contour with constant of integration removed 

5.7 Integral of contour using real components only 

This also has the advantages that the simple integral is a single valued 

function whereas the exponential function gives a complex result, and that 

the high frequency component of the contour is attenuated reducing the 

overall noise. In the choice of simple integral, exponential integral or no 

integration at all, all approaches have merits, and as there is a reversible 

transform to obtain each from either of the others, there is no information 

lost. It is believed that simple integration is most suitable for research 

5.3- Integration 
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purposes, but that this step may be omitted once analysis and comparison 

techniques are better understood. 

M CouclatioQ 

Three test patterns were chosen from the sample set as references against 

which all patterns within the sample were correlated. The sample set is 

shown in figure 5.14, with the reference patterns highlighted by a label. Each 

pattern was correlated against each reference in each of the 128 possible 

positions of start point. The peak value of each of these tests is given in the 

table in fJgUre 5.15. The graph in fJgUre 5.8 shows the values of correlation 

against the reference 901090. It can be seen that all of the aeroplanes seen 

from above, and the 6 in the set ee/nnn, where ee is 00 or 90 and DOD is any 

of 075, 060 or 045, have correlation coefficients of greater than 0.9. This is 

illustrated in figure S.11 by the line labelled (1), where all points above the 

line represent the patterns which have a corrlelation coefficient of greater 

than 0.9. In a similar manner the test patterns c10seley matching the library 

patterns (2) 00lO0O (figure 5.9) and (3) 00/090 (figure 5.10), are also 

illustrated on this diagram. 

5.4-Correlation 
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,------------------

\ 
5.8 Maximum correlation of sample set with 90/090 

5.9 Maximum correlation of sample set with 00/000 

5.4-Correlation 
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S.10 Maximum correlation of sample set with 001090 

S.11 Maximum correlation of sample set with all rererences 

The mean correlation of all patterns in the range 9O/nnn with 90/090 is 0.973, 

having a standard deviation of 0.022. This gives an indication of the amount 

of noise that has been introduced by the digitiser and the algorithms. 

By allowing a correlation of greater than 0.9 to identify a test pattern with 

a reference pattern we have included 19 of the 24 views of the object into 

just 3 sets. With the segmentation technique used at least 3 morc sets win 

5.4-Correlation 
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be required to describe the remaining 5 objects, however the objects in 

00/060 and 001075 have been significantly altered by the presence of wheel 

studs as detailed in chapter 4, and it may be that an improved segmentation 

technique would include these in adjacent sets. 

The mean and standard deviation of the test object correlations with their 

respective reference objects are:-

reference set 
standard de-

mean viation 

901090 1 0.967 0.022 

00/000 2 0.970 0.034 

001090 3 0.952 0.0690 

From this it can be seen that the mean correlation is generally much greater 

than the 0.900 used as a threshold. For example the resolution of the 

reference set could be increased by using a threshold correlation value of 

0.92. This would increase the discrimination of the system at the expense of 

increasing the number of tests required to fmd the correct match, and 

increasing the number of h'brary samples. It is clear from the mean 

correlation values and standard deviations from these means tbat noise 

associated with image processing would not unduly influence the discrimi-

nation of the system using this threshold. 

5.4-Correlation 
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It is supposed that improving the digitiser hardware by increasing accuracy 

of sampling and by using many more cells the amount of noise introduced 

will be reduced. The calculation of the normalised contour will take 

proportionately longer, however since the contour is normalised to a fIXed 

number of elements, any processing after this will be unaffected. It has also 

been noted that the method of scaling the length of the contour is far from 

ideal, and this may also be a source of noise which could be improved upon. 

S.12 Correlation coefficient versus relative rotation 

5.13 Rate of change of correlation coefficient 

5.4-Correlation 
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FJgW'e 5.12 shows a plot of the correlation values obtained by relating the 

pattern 90/015 to the reference pattern 90/090. There are three starting 

positions that produce correlation coefficients very close to the peak value. 

This suggests that the number of vectors used to describe this particular 

object is greater than required, and that as few as one third as many (43) 

may be sufficient. The effect of such a reduction may be sufficient to cause 

some sma1I features on the aeroplane to be lost (e.g. the wing engines). A 

halving of the number of vectors may, however, be acceptable, and would 

cause an increase in speed of correlation by a factor of 8. Since the 

correlation is the most time consuming of any of the processing sections, 

this benefit would be most desirable. 

Supporting evidence for this is given by the differential of the contour 

coefficients with respect to start position (f1gUl'e 5.13). It can be seen that 

the graph has a very well defined and linear differential over the region near 

the peak, and this in tum indicates that a smaller number of points will serve 

to define the peak location and height. 

SoU ComIaUQn AlllP'megt 

The most time consuming part of the algorithm described is finding the peak 

correlation. This occurs because it is necessary to correlate all of the 

potential test contour starting positions with the reference contour. There 

is no possible absolute starting position for a contour, firstly because such 

a concept is meaningless in most cases, and secondly because for any 

arbitrarily defined start position to be used the object in question must rust 

be identified. 

5.4-Correlation 
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5.4.1 Fourier traDsforms for l!OrrelatJon p1danee 

Tests were made which could potentially provide a short cut using Fourier 

Transforms. The contour descriptions are single valued continuous sets, 

and are thus most amenable to Fourier Transformation. The physical 

meaning of this transformation is difficult to describe, however, the Olh 

harmonic will contain the information associated with the loop nature of 

contours, and thus for the first integral of the relative vector set it will always 

have the value 2.81 (360/128). The fllSt harmonic is related to the position 

of the centre of gravity of the pattern, and indicates any bias in the density, 

and hence complexity of vectors on one side of the pattern with respect to 

the other side. 

The second harmonic contains information about the length versus breadth 

of an object, and it is this information that may improve the speed of the 

correlation process. If the object is longer in one dimension than the other 

then the magnitude of the second harmonic phasor will be non zero. The 

phase of the second harmonic vector will determine the orientation of the 

object, and thus by causing all suitable reference patterns to have contour 

start positions synchronised with the phase of the second harmonic, any 

corresponding test images need only be checked against a limited number 

of reference contour start positions. 

The table in Appn. D shows the value of the phase of the second harmonic 

for all patterns in the set 90/nnn (i.e. seen from above). The vector set start 

positions haw been normalised with respect to 90/090 using the correlation 

coefficient method already described, thus any value in the second 

S.4-Correlation 
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harmonic represents the error in using this method with respect to the 

correlation coefficient method. The correlation coefficient method is 

known to be accurate to within one position. It can be seen that whilst the 

mean value of error is small the standard deviation is large-approximately 

4 positions, thus it is clear that this method is not nearly as accurate as the 

correlation coefficient method. However, in the worst case the Fourier 

method is 31 degrees in error, this reprcscnts 10 vectors, thus 10 vectors to 

each side of the two possible indicated orientations must be searched. This 

gives 40 correlation coefficients that must be calculated instead of 128 which 

would be a worthwhile saving. It is supposed that the magnitude of the 

second harmonic pbasor will give some indication as to the reliability of the 

phase information, however this has not been tested and would be a most 

interesting topic for further investigation. 

M Fourier CorrelatloQ 

5..U Phase AnIle Dllfmgca 

A further set of tests were performed to discover if the Fourier Transform 

of the doubly integrated vector sets could itself be used for correlation, or 

give an indication of the scale of features that were correlating. 

The correlation coefficient is given by the cosine of the differencc in phase 

angle for a pair of Fourier components. The results givcn in table 5.16 show 

that for similar images the correlation coefficients are close to 1 for 

harmonics as high as the 20th• Instances in a correlated pair of patterns 

where the correlation coefficient is very low have been shown to be due to 

5.S- Fourier Correlation 
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the magnitude of the phasor being small, and thus far more susceptible to 

noise. 

It can be seen that the correlation coefficient is always greater than 0.4 up 

to the 8th harmonic, and that cases of matching harmonics up to the 20th or 

above can be found. The implications of this are that the Fourier Transform 

of the vector sets may supply a more robust measure of correlation. Also 

the most appropriate filter for noise reduction will be given by the phasor 

magnitude for each harmonic of a reference pattern. This allows for 

automatic filterin& and supplies a measure of the reliability of the 

correlation. A further implication is that by using a number of harmonics, 

possibly with weigbtings supplied by the magnitude of the phasors, it is a 

comparativcly simple matter to calculate the relative orientation of a test 

object with respect to a reference object. 

This can be done by dividing the difference between the test phase angle 

and reference phase angle by the harmonic number for each harmonic. The 

mean of the values given represents the mean phase difference between the 

two patterns, and this is directly proportional to relative orientation. 

5.U MlnlmlslDI !h'v ADaIa 

An alternative strategy would be to minimise the mean value of phase angle 

for reference and test patterns. The logic for this closely follows that for 

normalisation using only the second harmonic as described in the previous 

subsection, however it is felt that by appropriate weighting of results using 

the magnitude information and low pass (low harmonic only) mtering this 

5.5-Fourier Correlation 
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method will yeild more accurate results. Also it has been noted that 

correlation is only good up to 20 harmonics, thus only 20 data values need 

to be correlated for optimal results. Part of the reason for this is found in 

the nature of the noise introduced to the contour. 

Types of Noise 

The first type of noise is that described previously as due to an error carried 

from one bearing to the next. Although the integration process will reduce 

this, there will nevertheless be some ripple at the contour step scale, and 

this will be found in harmonics greater than the 70th
. 

The second type of noise is due to the interpolation. Noise introduced by 

the camera that increases the value of a cell or pair of adjacent cells will 

cause a bump in an otherwise straight line. This will appear as noise in 

harmonks lower than the 30th if two or three cells in a row have similar 

noise. 

5.5.2.1 DIrect Correlatioa of NonnaUsed Phase Anales 

Given that the above is correct then the resulting description will not only 

have lost orientation information, it will have a normalised orientation 

imposed such that matching of test against reference can be performed by 

direct comparison without recourse to iteration, or other methods of 

repeated correlation. The saving in processor time is very likely to make the 

lengthy transformation most worthwhile. It should be noted that hardware 

Fourier Transforms are available which make this process very fast indeed. 

5.5-Fourier Correlation 
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5.5.3. Rallih of data redllrtlon 

An estimate has been made of the number of reference contours that would 

be needed for a complete set that matches any test contour with a 

correlation coefficient of greater than 0.9. The estimated number is 29, thus 

requiring 5 bits to represent this information. An additional 5 bits of 

information can be obtained from the recorded orientation by extraction 

from the direction of the first vector of the test contour compared with the 

reference contour. The positional information is not regarded as useful in 

identifying the pattern though it is available as a by product of searching for 

the contour start position. 

From this it can be seen that 10 bits of information have been derived 

representing the presence or absence of one of 29 shapes and their 

orientation from the 8192 bits originally digitised. It is also noted that if any 

of the 29 shapes is registered then the single bit of information denoting 

"aeroplane" is true. 

5.5-Fourier Correlation 
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5.14 Teat objcc:t views used for correlation experiments 

-
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Object 

00/000 
00/015 
00/030 
00/045 
00/060 
00/075 

00/090 
15/090 
30/090 
45/090 
60/090 
75/090 

90/090 
90/075 
90/060 
90/045 
90/030 
90/015 

90/000 
75/000 
60/000 
45/000 
30/000 
15/000 

Thr 

vectors 

Thr 

28 
24 
22 
21 
21 
17 

13 
20 
25 
44 
45 
48 

45 
42 
41 
43 
42 
42 

44 
45 
43 
39 
27 
29 
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Reference Object 
vectors 90/090 00/000 00/090 

339 
356 
337 
325 
299 
318 

358 
331 
460 
518 
576 
672 

704 
730 
734 
705 
713 
727 

696 
668 
572 
514 
461 
428 

0.510 
0.546 
0.507 
0.510 
0.545 
0.578 

0.548 
0.568 
0.844 

XO.913 
XO.948 
XO.942 

*1 .000 
*0.968 
*0.975 
*0.978 
*0.945 
*0.933 

*0.972 
XO.960 
XO.912 
XO.901 
0.669 
0.455 

*1.000 
*0.972 
*0.986 
*0.922 

0.798 
0.801 

0.804 
0.817 
0.154 
0.280 
0.452 
0.380 

0.510 
0.383 
0.446 
0.452 
0.374 
0.350 

0.385 
0.406 
0.484 
0.561 
0.702 
0.720 

0.804 
0.800 
0.788 
0.701 
0.694 
0.780 

*1.000 
*0.903 
0.387 
0.372 
0.484 
0.515 

0.548 
0.475 
0.513 
0.456 
0.509 
0.507 

0.491 
0.526 
0.617 
0.733 
0.884 
0.876 

------- ------ ------ ------

Reference Mean std. Dev 

90/090 * 
90/090 X 
00/000 
00/090 

0.967 
0.950 
0.970 
0.952 

0.022 
0.029 
0.034 
0.069 

Threshold value used 

90/nnn only 
> 0.9 
> 0.9 
) 0.9 

Number of vectors in coarse contour 

5.15 Correlation of reference objects with the test set of objects 
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90/000 90/015 90/030 90/045 90/060 90/075 
------ ------ ------ ------ ------ ------
0.999 0.999 0.999 0.999 0.999 0.999 
0.990 0.911 0.991 0.996 0.961 0.995 
0.998 0.982 0.998 0.995 0.998 0.998 
0.994 0.937 0.945 0.977 0.992 0.997 
0.999 0.993 0.985 0.997 0.998 0.999 
0.999 0.994 0.983 0.987 0.999 0.999 
0.974 0.935 0.815 0.943 0.968 0.999 
0.995 0.998 0.984 0.989 0.996 0.999 
0.964 0.959 0.975 0.999 0.991 0.998 

-0.206 0.408 0.467 0.681 -0.032 0.996 
0.694 0.924 0.800 -0.941 0.972 0.750 
0.999 0.967 0.937 0.990 0.949 0.999 
0.987 0.124 0.290 0.999 0.612 0.968 
0.998 0.724 0.936 0.797 0.935 0.719 
0.999 0.913 0.285 0.924 0.947 0.984 
0.999 0.971 0.998 -0.232 0.990 0.994 
0.991 0.956 0.848 0.997 0.979 0.985 
0.018 0.901 0.967 0.998 0.999 -0.620 
0.968 0.980 0.695 -0.651 0.504 0.999 
0.973 0.996 0.529 0.895 0.854 0.896 

5.16 FlTSt 20 harmonic correlations of vertical set matched against 90/090 
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Conclusions 

Research during the first year on automatic pattern recognition concen-

trated upon transform techniques. Much of the time was spent on Fourier 

Transforms and several potential image location methods have been 

studied. 

These are:-

i) Target location by averaging the gradient of the phase plane to 

detect phase plane tilt. 

;;) Target location by Fourier Transformation of phase plane infor-

mation, to deted: the phase plane tilt. 

iii) Comparison of Walsh-Hadamard and Fourier Transforms. 

iv) Target location by edge detection using Walsh-Hadamard Trans-

forms as filters. 

v) Target location by relating phase components of the Fourier 

Transform with the modulus components of a Fourier Trans-

formed square. 

In each case the major drawback has been thermal noise and background 

information which is included in the transform, and which tends to obscure 

the effect under study. 

Conclusions 
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A great deal of empirical knowledge has been gained about the properties 

of images and transforms from the first year's work. However it appears that 

transform techniques do not provide the whole answer to image analysis 

problems. The greatest difficulty with this approach is that it is not clear 

what responses are useful, partly because the effects observed using 

artificial images have proved to be considerably less pronounced when 

swamped by noise found on a real thermal image, and partly because the 

usefulness of any particular property of a transform is not evaluated 

quantitatively by this approach. 

Transform techniques probably have great value in image analysis, but they 

cannot be considered in isolation. The need for a transform to reduce 

redundant information in an image may be dictated by a system, or the use 

of a transform may improve an existing system. However in each case it is 

the system for classifying images which must be produced ftrst, and an 

appropriate transform may then by used to enhance its operation. 

The use of contour description has by contrast been very successful. 

Reliable and accurate desaiptiODS of complex features have been obtained 

using the contour foUowingalgorithm described, and a great deal of promise 

is shown by the use of Fourier Transforms as the floal step in the normalising 

procedure. 

The use of fully visible objects may be sccn by some as a severe drawback 

to the algorithm, since in many cases objects are partially occluded in scenes 

by other objects. ｈ ｾ ｲ Ｌ it is fek that by producing the normalised 

desaiption of a contour the groundwork for a semantic pattern recognition 

Conclusions 
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process has been established. Consideration should be given to contour 

description of line segments rather than an entire object. The Fourier 

Transform of such descriptions will not necessarily match in phase angle 

directly, however a shift of the results will scale the effective length of the 

contour, thus the problems of matching are reduced to one of shift and 

direct correlation on up to 20 data points. This is not as onerous a task as 

matching the original image matrices. 

The results, therefore, present a useful adjunct to pattern recognition 

techniques, and it is hoped that further research into syntactic methods of 

image understanding will benefit from this study. 

Conclusions 
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APPENDIX A i 

/ 
FT.LOGII '-J''I-1984 11 'Zl '.g. 

..... INPUT DATA 000. 
INPUT J'ILI!S RE.1.1. : S;JFL1OIO I"AGINlRY • NULLOOOO 

UlL PAR' LEFT HUF SCAtE FACTOR • 10.090' 
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3. Phase plane for transform of 8 by 8 test object at position 10, 10 
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,QFT02.l0G;1 14-NOY-1983 14:52 POgo 40 
_0 •• TRANSFORMED DATA •••• 

INPUT FILES REAL : SQ202 I"AG1NAR' : NUll 
ANGLE Ｈ ｏ ｅ ｇ ｾ ｅ ｅ ｓ Ｉ l EFT HALF SCALE FACTOR. 510.2761 

129 
129 259 
259 28 
la 158 

158 211 
211 56 

259 28 lsa 
28 158 287 

158 281 56 
287 56 186 

56 186 315 
186 J15 84 
31S 84 214 

84 214 343 

lal 
56 

186 
315 

56 186 135 264 34 
186 )15 264 34 163 
315 84 34 163 293 

163 293 
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62 19 t 
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349 
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214 343 293 62 191 
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219 349 298 68 197 
349 118 61 191 326 
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326 96 45 114 304 
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4. Phase plane for transform of 8 by 8 test object at position 20, 20 
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ZS-JAH-1'" 16: 1] P.oe 
•••• INPUT OA fA *.*. REAL: 'I041.J' IMAGINARY : HULLOOOO 

L(FT HALF SCALE "(TOR • 6.24]1 

46Z 411 431 456 411 400 41t 46Z 431 400 443 456 41t 4ll 418 44 ] 456 4]1 5]1 456 411 461 468 456 461 468 44] 456 4]1 443 46Z 4" 46Z 46Z 46Z 443 49] 4" 461 4" 406 462 462 461 456 468 462 456 411 4" 44] 406 411 461 46Z 46Z 443 468 462 46Z 456 46Z 411 431 411 418 44) '18 462 456 '56 46Z 41t 411 411 411 461 46Z 431 411 '11 443 418 406 45 6 tIn.:lID 44) 456 3 361 456 411 418 4)1 , 456 )81 4 
loll " 41P 387 406 381 19) 400 400 87 , 393 4 )61 )11 362 317 
e)9) 3'3 )50 325 356 )9] 362 lil[j393 ]11 'It 418 393 418 )87 3' 7 387 3') 

Ｓ Ｖ Ｘ ｾ Ｓ Ｘ Ｑ 381 )81 387 )9) 36 )9) )H 361 I:!3m 32 5 311 381 406 ))1 361 387 368 311 325 331 325 331 HO 32S )11 311 34330350 350 ))1 325 )25 )43 356 ]4) 331 HO 350 JZ5 312 350 350 )56 36B 34] 325 
343 )12 343 331 325 350 325 ]ZS 325 3 1 2 o 325 325 0 0 350 0 o 356 31Z o ))1 0 325 0 311 0 0 0 0 )68 o 343 )6P 0 350 JlZ 0 0 0 0 0 0 0 0 ) IZ 31Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ｾ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 

0 ｾ 0 0 ｾ 0 ) 0 0 0 
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5 a). Thresholded Jeep image from Alabama database (left half) 
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5 b) Tbresholded Jeep image from Alabama database (right hall) 
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6 a). Phase plane step histogram for 8 by 8 square test object. 
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7 b). Detail of tank object from Alabama database (right half) 
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8 a). Inverse transform of .modulus, plane from 8 by 8 square, phase plane 

from tank object (appendix 7). (left balt) 
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8 b). Inverse transform of modulus plane (rom 8 by 8 square, phase plane 

from tank object: (appendix 7) (right balf) 
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APPENDIX A XIV 

..... 
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ct lsh troris+"orm oT pictures 
ｾ ｩ ｣ ｴ ｵ ｲ ･ name i SQFLOI01 Scale factor = 1.0000 Ext renle Left 

[;; 999 999 783 7S1 783 783 ,-98 -9B -98 -9B 108 lOB lOB 108 
999 999 9«J9 :'83 .783 783 783 -98 -98 -98 -98 108 108 108 lOB 
999 000 999 ,"'83 733 "'83 783 -98 -9B -98 -9B lOB 108 108 lOB ,',' " 

999 999 990 783 7S3 783 783 -98 -98 -98 -9B 108 lOB lOB lOB 
777 777 777 777 60, - 609 609 609 -76 -76 -76 -76 84 ｂ ｾ B4 84 
777 777 777 777 \ 609 609 609 609 -76 -76 -76 -76 B4 B4 84 84 
777 777 777 777 609. 609 609 609 -76 -76 -76 -76 B4 Ｘ ｾ B4 84 
777 777 777 777 ' 609 609 609 609 -:76 -76 -76 -76 84 Ｘ ｾ 84 8" 

-110 -110 -110 -110 -86 -B6 -86 -96 11 11 11 11 - 11 -11 - 11 - 11 
-110 -110 Ｍ ｾ Ｑ Ｐ -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 - 11 
-110 -110 -110 -110 -96 -86 -86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -96 -96 -86 11 11 11 11 -11 -11 -11 -11 
111 111 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 97 87 -10 -10 -:10 -10 12 12 12 12 
111 111 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 97 B7 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 97 87 -10 -10 - 10 -10 12 12 12 12 
111 111 111 111 B7 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 97 87 -10 -10 -10 -10 12 12 12 12 

-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 - 11 -11 - 11 
-110 -110 -110 -110 -86 -96 -86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 - 11 
-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -a6 -86 -86 -86 11 11 11 11 -11 - 11 - 11 - 11 
-110 -110 -110 -110 -86 -86 -86 -86 -11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 -11 
111 111 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 111 B7 87 87 BZ -10 -10 -10 -10 12 12 12 12 
111 111 111 111 87 87 87 . 87 -10 -10 -10 -10 12 12 12 12 
111 ｾ Ｑ Ｑ 111 111 87 87 87 87 -10 -10 -10 -10 12 12 12 12 
111 111 111 t11 [P s: 87 17 -10 -10 -10 -10 12 12 12 12 
111 111 211 111 8:' 8' 87 B7 -10 -10 -10 - 10 12 12 12 12 

-110 -110 -110 Ｍ Ｑ Ｑ ｾ ·86 -96 ··86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -86 -86 -86 1.1 11 11 11 -11 -11 -11 - 11 
-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -86 -86 -86 11 11 11 11 -11 -11 -11 -11 
-110 -110 -110 -110 -86 -86 -86 -96 11 11 11 11 -11 -11 -11 - 11 
_t.n _t.n ｟ Ｎ ｴ ｾ -tin -AI. -sa -AI. -sa 11 H it t t _ it _ 1 • •• .. 

9 a). Walsh transform of square at 01, 01 

AppcndixA 



APPENDIX A xv 

l alsh trans-f"orm o-f" pi ct.ures. 
Picture name: SQFL1020 Scale factor = 1.0000 Extreme Left 

999 99 558 558 -989 -989 Ｍ Ｕ ｾ Ｘ -548 333 333 -98 -98 -323 -323 ｾ Ｑ Ｐ Ｘ 108 
999 99 558 558 -989 -989 Ｍ Ｕ ｾ Ｘ Ｍ Ｕ ｾ Ｘ 333 333 -98 -98 -323 -323 108 108 

-998 -998 -557 -557 990 990 Ｕ ｾ Ｙ Ｕ ｾ Ｙ -332 -332 99 99 324 324 - 107 -107 
-998 -998 -557 -557 ,990 990 549 Ｕ ｾ Ｙ -332 -332 99 99 324 324 107 -107 

-61 -61 110 61 61 -36 -36 11 11 -n- -:rr> - 11 - f1 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 - 11 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109·-109 -60 -60 37 37 -10 -10 -35 -35 12 12 

-776-776 433 -43 I 427 427 -258 -258 77 77 r52 -)51-1 - 83 -83 
-776 -776 433 -43] 770 770 427 427 -258 -258 77 77 252 252 ! -83 -83 
777 777 +34 434 -769 -769 426 -426 259 259 -76 -76 251 -251J 84 84 
777 777 434 434 -769 -76 426 -426 259 259 -76 -76 -251 :251 ｂ ｾ 84 

-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 ' -11 -11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 -11 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 

-110 ··110 -61 ｾ Ｑ 110 110 61 61 -36 -36 11 11 36 36 - 11 - 11 
-110 ··110 ··61 61 j 10 110 61 61 -36 -36 11 11 36 36 - 11 - 11 
111 111 Ｖ ｾ 1'1 

1.1_ 10" tl),? ·60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 ,, 109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 6:! 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 - 109 -60 -60 37 37 -10 -10 -35 -35 12 12 

-110 - 110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 - 11 - 11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 - 11 - 11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 - 11 - 11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 -11 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 

-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 -11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 - 11 -11 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 

-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 -11 
-110 -ho -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 -11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 - 11 
-110 -110 -61 -61 110 110 61 61 -36 -36 11 11 36 36 -11 - 11 111 111 . 62 62 -109 -109 -60 -60 3.7 37 -10 -10 -35 -35 12 12 
111 111 62 62 -109 -109 -60 -60 37 37 -10 -10 -35 -35 12 12 111 111 62 62 -109 -109 -60 -60 37 37 -10 - 10 -35 -35 12 12 
t t t 119 J.? J.? -tno -tno _Ln _Ln "I" "I'" _ H\ _ 1/\ _,e: . "'c- ." '" 

9 b). Walsh transform of square at 10, 20 
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10. Comparison of Fourier and Walsh transforms 
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B.3 View of aeroplane after removing zero and peak 
values that carry no additional information 
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2. Contour around aeroplane normalised to 20 vectors 
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3. Contour around aeroplane normalised to 40 vectors 

4. Contour around aeroplane normalised to 75 vectors 
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5. Contour around aeroplane normalised to 100 vectors 
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6. Contour around aeroplane normalised to 125 vectors 
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7. Contour around aeroplane normalised to 150 vectors 

8. Contour around aeroplane normalised to 200 vectors 
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Object Phase Object Phase 

90/000 -2.6 90/180 13.0 

90/015 -16.7 90/195 0.3 

90/030 -3.0 90/210 0.2 

90/045 -0.5 90/225 9.7 

90/060 -9.0 90/240 19.6 

90/075 -9.4 90/255 1.7 

90/090 -6.0 90/270 -9.3 

90/105 15.0 90/285 25.2 

90/120 6.7 90/300 -3.1 

90/135 14.6 90/315 18.4 

90/150 26.2 90/330 18.3 

90/165 30.9 90/345 0.3 
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