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ABSTRACT

There are vast possibilities in fibre architecture design of 3D wosifiorcement. This paper
considers the application of Genetic Algorithm (GA) in 3D woven compositésisgtion. A set of
real and integral variables, representing 3D fibre architecture, areiléded into a mixed integer
Genetic Algorithm. The objective function is evaluated through automation of theellised finite
element analysis, by using the open source pre-processor TexGen and the commercidBAQNES.
The mixed integer Genetic Algorithm is adapted to a micro-population,ngirté improve
computatioml efficiency. The study uses statistical tests to quantify the performanbe @&enetic
Algorithm schemes and the choice of parameters. The proposed approach was applied to the
optimisation of 3D woven composites for maximum buckling resistancédorase of a landing gear
brace. This study demonstrated that the optimisation converged to the optimum wigsig 20
iterations, considering 300 out of 7000 permissible solutions. In terms ofifgugdrformance, the
optimum design performed twice as well as cross-ply laminated compaxgitasiaast 50% better than
known orthogonal 3D woven composites.

1 INTRODUCTION

3D woven composites have been shown to outperform laminate composites in delamination

resistance, which is a critical improvement for structural applications. ItiaaddD weaving enables

the production of more complex net-shape composite preforms. Successful amgichtBD woven
composites have begun to emerge in the aerospace sector. The 3D woventedBpdsengine fan

blade and casing are due to enter service on the Airbus A320neo in 2016, Baditige737MAX in

2017. Other examples include the LiftFan for the F35 Aircraft (Rolls-R@&#jhe landing gear brace

for the Boeing 787 (Messier-Dowty). 3D woven composites are also entairthé automotive sector.

A recent example is the front crash box for the Lexus LFA supercar by Toyota.
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To date, engineers and researchers have albetted number of 3D woven fibre architectures
broadly being weave variants of orthogonal, angle-interlock and tayayer. However, fibre
architecture in 3D weaving appears to have infinite design options. Furtheegedgr3D woven
composites will require full exploitation of such design freedom. It veilhkey step change to tailor
the 3D fibre architecture to the optimum, with an aim to maximize thghiveaving for a specific
application. This study presents a humerical approach to optimize 3D woven compositperatioor
the techniques of meso-scale unit cell FE analysis and Genetic Algorithms.

A number of previous studies focused on the optimisation problems in laminate cesigesign.
Ghiasi and co-authors provided an extensive review of optimization methods for twoftygamate
composites design problems, namely constant stiffness design and variable siiésigas[][ P]
Constant stiffness design considers laminate composites as uniform material, which paeseede
by one unit cell. Variable stiffness design considers property variationsiimal@aomposites structure,
which would require multiple representative unit cells. The present study onizipg 3D woven
composites falls ito the category of constant stiffness designaaingle unit cell is sufficient to
represent the bulk composite. Whilst laminate composites design benefits from the ayailiabiill-
established close-form analytical solutions, no similar analytical toalvdlable for 3D woven
composites. Hence, the gradient based optimization methods, being apfdimihate design, are not
feasible in the design of 3D woven composites. Amongst the direct search metets; Glgorithms
are one of the most accessible and popular methods, because they are simple antbfimpldment.
A recent review on laminate composites design highlighted that Genetic Atlgesiiffered problems
with computational cost, premature convergence, and dependency on the thaicareters such as
population sizﬂl]. An early study of GA application in 3D woven fabvias reported in 1995 by
Okumura et. a| [B]. The 3D woven composites were represented by an assempig-déBned sub-
cells. Each sub-cell contadone straight yarn iavaried orientation. The design optimization became
a combinational problem of sub-cell selections. With a limited number of pnedefub-cells, the three
designs resulted from the optimisation did not resemble 3D woven fibre arclefdettuwere closer to
unidirectional laminate and discontinuous long fibre composites. With advancingimpttels, Bakar
and co-workers used more realistic unit cell models generated with TexCeptifoizing 2D woven
compositeq [R]The reported optimum design was realistic and manufacturable. Yet the stuitly had
limitation in formulation of weave pattern search, which was based onlzenofrknown weave styles.
This meant that the design space was not fully explored. The performdheaiséd Genetic Algorithm
was not discussed in this work.

In short, there is very limited knowledge on the formulation and performance of Galgstiithms
for the constant stiffness design of 3D woven composites. The present stisdjoamplementa
versatile formulation for optimising 3D woven compositdfie novel aspects of the proposed
formulation are the adagiion of a mixed integer Genetic Algorithrh J5] with a micro-populatiom, [6]
and the parameterization of the unit cell modelling of 3D woven comp@dites [7]. Tieaepjs applie
to the optimization of the buckling resistance of an aircraft land gear. Graeestudy uses statistical
tests[[$] to quantify the performance of the different Genetiowtlyn schemes and the choice of
parameters. The study clearly demonstrates the suitable GA scheme andnetgraréhat would be
computationally efficient in the constant stiffness design of 3D woven composites.

2 OPTIMISATION FRAMEWORK
2.1 Design space — unit cell

A unit cell of 3D woven composites contains a single repeatable weaeznpdly applying
appropriate periodic boundary conditidnk [9], the unit cell model can be used ti firedjlobal elastic
responses. Shown in Figure 1 (a), the unit cell of 3D woven reinforcement has warp aparmgef
aligned along X and Y directions, while through-thickness binders undulateZrdifection. The ratio
between the binder stack and the warp yarn stack is 1:1 in the example. TarsMairmstack ratio is
a variable during the optimisation search. The other design variables inwusigaccing between weft
yarns §y.rt), the spacing between warp and binder yaspg.{,), the number of layers in each weft
stack (1), the number of weft yarn stack¥), and the number of layers in each binder st&Qk The
parameters are illustrated in Figure 1 (b), (c) andBuhder path P) is another variable in the weave
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design. Figure 1 (d) shows one of the possible binder paths overcrossing weft yammisv kay9 and
stacksV = 8. The binder yarn path is described here by a binary ma#ix () x N, where the value
1 indicates binder overcrossing a weft yarn and the value 0 indicates absemuenfFor example,
the binder path in Figure 1 (&) expressed in a binary matri¥ x 8. In each column, the number of

elements with the value 1 indicates the number of binder kayeb. The binder patis
0 0 00 0 0 1

(1)

SO R R RERRREROOO

SCoOoCOoOR R R R R
COoOORRRRERRLRO
OR R RRROOO
PR R R ERrROoOOOO
oORRRRPRROOO

COoOOR R R R R
CooocOoRR KRR

o

Without constraints, the number of unique binary matrices, for exampig,gf is 21°*8. Many of
these matrices do not represent feasible or unique binder paths in 3Dreio¥ercements. We apply
the following constraints to the matrikin dimension ¥ + 1) x N, in order to narrow the realistic
design space for the optimisation search. Two composites panels will havealdemtichanical
properties when their binder pathsandP, exhibit mirror symmetry, i.e. eitheé¥ ; jy = Pyp41-4,j) OF
Py jy = Pain—jy- The number of binder layets< K < M undulate in the same way. This means the
binder tows have the same yarn path relative to each other. To ensure the wogetoésbnot fall
apart, at least one binder needs to float over the top/bottom surfacesgeast anke element iRow 1
and Row M+ 1 of the binary matrix? has the value 1.

Warp Weft Binder

Weft stack N

z

| Binder layer K

Z
X

Figure 1: Design parameters for 3D woven composites

2.2 Optimisation driver — Genetic Algorithms

As described in Section 2.1, the design variables in 3D woven materials are a wixhieger
values (Weft stack, N, Weft layer, M, Binder layer, K, Bind path, P)raabvalues (yarn space,o
and Sarp). The corresponding properties in the optimisation problems are likely to be nonlinear, shown
asan example in Section 3. Based on these considerations, we have choseettbalg®rithm MI-
LXPM proposed by Deep et. &l][5]. iBhalgorithm is suitable for generic integer and mixed integer
optimisation problems. The main attraction of MI-LXPM over other existing schemes iisrdtatires
minimum expert parameters in the operators for crossover, mutation, selection armjtandiiraints.
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The MI-LXPM algorithm by Deep et. &% briefly introduced here. A general optimisation problem
is expressed as:
minimise fX,Y),
subject to g;(XY) <0, j=1,.,
he (X,Y) =0, k=1,..K, (2)
XL X <XV,
YL<Y < YU:integer.
Above, X is a vector of real value variables andY is a vector of integer value variables. The function

f(X,Y) is the objective function, whilg; (X,Y) is thejth inequality constraints arid (X, Y) is kth
equality constraints. The variable vectdrand Y are in the respective ranges ®#,[XV] and [YZ, YY].

The constrainty; (X,Y) andh. (X, Y) in Equation 2 are handled by a parameter-less penalty

functior@} The equality constrainta, (X, Y) are converted to inequality constraints by using
toleranceg; (X, Y) andhi (X,Y) are collectively referretb ¢;(X,Y). The penalty applieas

f(X,Y) if(X,Y)is feasible

' 3
fWOTSt + Z;n:1|¢](X; Y)| OtheTWise ( )

penalty(X,Y) = {

where forstis the objective function value of the worst feasible solution in the current population.

To facilitatean effective search over the design space, each iteration in the gdgetithm sifts
through a fixed number of diversified candidates and carries the fittest cargjidatéiie next
generation, evolvingpwards the optimum solution(s). The iteration involves a set of genetic operators.
The MI-LXPM algorithm implements the following operators that requires no pagamput from the
user.

Selection applies binary tournament techniguie][11] to randomly pick two solutions in thentur
iteration and select the better performing solution for the Laplace crossover operation.

L aplace crossover uses two selected solutiong (X, ¥), x2(X, ¥)) in the current iteration to create
two new solutionsy(Z(X, ¥), y2(X, ¥)) for the next iteration. Laplace crossover use a random number
that follows the Laplace distribution:

a—blogu; 1 <0.5
ﬁi={ s (4)

a+bloguy; 1> 0.5

whereg;is a random number, dependent on random numlaerd r.. And a is the location parameter
and b >0 is the scaling parameter with integer value if the decision variablesgeemotherwise with
real value. The crossover results in two new solutions as:

i =xi +Bilxi —xf|
yi =xf + Bilxi — x|, ®)

To ensure the integer restriction for the variablegshe new solutiony; from Equation 5 are
truncated tgy,.

¥, = y;, if y; is integer; otherwise,

y, = {[ [{i_]i_ X either value with a 50-50 chance, whprg is the integer part of;.
Vi
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Mutation does not applin the present study, as there is sufficient diversity introduced by using the
crossover operator. This is particularly the clsethe micro Genetic Algorithm which has a small
population.

Elitism warrants a solutiom(X,Y) with the best value gienalty(X,Y) calculated from Equation
3 to survive the current iteration onto the next iteration. Elite count is the nainbautions that are
allowed to descend to the next iteration. Tikian important parameter to be specified by a user. The
sensitivity of elite count on the optimization convergence is investigated latés giutly.

TheMI-LXPM genetic algorithm typically requires a large population size (i.e208). To evaluate
the objective function for each individual of the population, in the da3B woven composites design,
the finite element analysis requires a reasonably large amount of compugrantl computer memory.
Evaluation of the objective function is ideal to be computed in parallel. Foreadapmlation size, the
parallel computing demands a High Performance Computing cluster. A smaller populaids siz
desirable for running the optimisation task on a desktop workstation. For this reasadapt the
standardMI-LXPM to a mico-Genetic Algorithm (LUGA) with a population of 5 individuals. The
adapted uGA scheme applies the same operators described above. With a smaller population, the
diversity in the LGA is encouraged by the more frequent population initialisaéinrthe standandll -
LXPM. The population initialisation happens onlycerat a start point of the standard MI-LXPM. The
population is randomly generated obeyagniform distribution over the entire search space. The
evolution of subsequently new populations follows the rules of the described cpe@atdhe other
hand, the uGA scheme uses population initialisation in every iteration. Thesgt@fme first checks
the convergence of the population after going through the operators of selectiooe lcaptsover and
elitism. If the population is not converged, it keeps only one elite individual, while meplie rest of
the population by the random initialisatid®y implementing both the standard MI-LXPM and the uGA
schemes, we investigate theomparative performance in Section 4.

The proposed optimisation workflow is illustrated in Figure 2. The Genetiorifigns carry over
the individual designs as input to TexGen. In turn, TexGen creates geometric afi@izlsoven fibre
architectures, and proceeds to pre-process the unit cell models for the ABA@US. TexGen
generates a 3D solid voxel mesh with separate domains of tows and matrix. The validitg ebuel
mesteshas been discussed previousllf [7], 12]. It has been recognised as a suitable option for predicting
homogenised elasticity of composite materials. TexGen applies the periodic bocodditions in
warp and weft direction, based on the formulae proposed by Li[e} al [9]. Te&enalculates and
exports the fibre orientations and fibre volume fractions for the \@reatents in the tow domainsA
tows are treated as transversely isotropic unidirectional fibreoreed composite, the fibre orientation
and fibre volume fraction are the essential datacalculate the tow properties under the global
coordinate system for the unit cell model. ABAQUS performs the elastic analy$eoaidscases, i.e.
three axial loadings and three shear loadings. The predicted stress strain ragsoitsasa matrix of
homogenised elasticity for the composite material. Wredptimisation schemes, i.e. the standard M-
LXPM and the uGA, are implemented using the mixed integer optimisation tool in MatLab. As Python
scripting is compatible with TexGen, ABAQUS and MatlLab, the entire optimisatmkflaw is
automated in a Python script.
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1. Random uniformly
distributed initiation
—— . over search space.
Initialisation 2. If it is micro-GA, keep
one elite child from the
previous cycle,

. Parallel FE computing of
elastic properties of 3D
reinforced composites

Termination Yes
criteria satisfied? —
. Objective function
No evaluations

*» Best solution

Genetic Algorithm cycle
Selection: Binary
deterministic selection
with replacement
Crossover: one point /
uniform crossover
Mutation: No random
changes

Elitism: Fittest

27N
i AN y
o Micro-GA ™| individual designs are
“\._convergence kept
: A Y Replacement: non-elite
Standard " A )
GA No designs are replaced

Figure 2: Optimisation flow chart for 3D woven reinforcement design

2.3 Compar ative evaluation methods on GA performance

In Section 2.2, we introduced two Genetic Algorithm schemes suitable for 3D wowugrosite
designs under a given application. Although the algorithms use the parametamlets gperators,
users still have to set values of population size and elite count for the standakPMI The uGA
scheme has these two parameters fixed. Yet, both schemes need to set the stal cowdrgence
criteria. It becomes important to quantitatively evaluate the differergs€bAmes and their parameters.
Such study ultimately helps non-experienced users to choose a more reliablecat af§orithm.
Non-parametric statistical tests were proposed for comparison of genetithaigdid[ 13] We adopt
the Sign test and the Wilcoxon signed-rank test in this study because teagwate perform, sensitive,
robust, and suitable for pairwise comparison.

Sign test counts the number of cases on which one algorithm outperforms theTdtberumber of
winning (S) is assumed to Béinomial distribution. Given n as the number of optimisation experiments
for each algorithm, the winning algorithm is determined as being signifidaetiier with a p-value
0.05, if the number of winninig

S=2+n. (6)

Wilcoxon signed-rank test is safe and robust for pairwise comparison, particularly when the
distribution of differences between pairs may be non-normally distributede$hkas the hypothesis
that the differenced( = p; — p,) between the members of each [aif, p,) hasa medianof zero.
This implies that the two algorithms perform equally in finding the optimum.

The Wilcoxon signed-rank test starts by ranking the differefd®gegardless to the sign of the
difference, i.e. the absolute differences. All zero differences are ignoretthe pairs with equal
membersp; = p,. Subsequently the original signs are affixed to the rank numbers. All ptirsqual
absolute differences (ties) get the same rank: all are ranked with the nibanrank numbers that
would have been assigned if they would have been different. All positve isa0d all negative
ranks (W) are summed and the total number of pairs (N) are determiihedevel of significance is
listed inthe table of critical Wilcoxon valuds [[L8¥:

p — value = pr(min ( w+, W —),N). (7)
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The test result from Equation 7 will show which of the pairs performs bsiter £ and-), if the
level of significancas < 0.1. On the other hangh, — value = 0.1 would indicate the two algorithms
would have the same statistical performance.

3 CASE STUDY
3.1 Problem definition

The selected case study for the 3D woven composites optimiseagomspired by the recently
certified application of 3D woven composite in Boeing-787 landing gear yracmanufactured by
Messier-Dowty The braces connect to the rest of the landing gear system by pin joints. The load path
of the braces is relatively simple, i.e. compression and tension during normal senditons. 3D
woven composites are employed in the brace design for the advantages of weight savingsiod cor
resistance over steel. As the current study is set out in search of optimaraintksign, with less
concern of structural topology, the brace geometry is simplified as a cyliiteonstant cross-section,
simply supported at both ends.

Under compression load, the cylindrical shell may fail either by ultimate iadatellapse (governed
by the compressive strength) or by buckling. The Euler critical load for a simply supported beam unde

compression is

2E1
Peuler = TtL_Z, (8)

whereE is the Young’s modulus, | is the moment of cross-sectional area of the brace, and L is the brace
length.

For the practical calculation of the buckling limit of an orthotropic compok##, the Engesser
formula gives a close estimation, as suggesté¢d ifil@5,

PEuler
P =— 9
Engesser 1+2Pgyler/AG’ ( )

whereA is the cross-sectional area of the brace,@igithe in-plane shear modulus.

The stability theory by Shanldy [[L7]suggests that the inelastic buckling aiiciims intermediate
slenderness ratio due to the influence of transverse shear deformation. For eomaiesials, the shear
modulus has significant influence on the buckling resistance, as indicated by the Engesatome
(Eqg. 9). The buckling performance can also be expressed as a monotonically increasingdtiongon
dimensionless buckling coefficiepf18]:

_ D12+2Dge

B - (D11D )1/2 (10)
1122
whereD;; are flexural stiffnesses afcompositep is typically smallest for cross-ply laminates while
maximum for angle-ply laminates with 48egree ply angles. It reaches a unit value 1 when the
composite is quasi-isotropic. Sinee3D woven reinforce has 0/90 in-plane cross-ply layypss
expected to be smallest. However, with waviness and crimp introduced by binderthyarmscking
coefficientf can increase substantially close to an isotropic material.

3.2 Objectivefunction

An objective function is formulated fasimple design scenario, with constant thickness and fixed
in-plane stiffness in weft direction. The optimisation task sets out tamsexthe buckling coefficient,
with the design variables of binder yarns. It starts with specifying #festackN = 4, weft layer
M = 5, and yarn spacin§.r; = Swarp = 1.67 mm, which meets the design brief with constant
composites thickness 3.0 mm and weft stiffness 62.9 GPa. The corresponding desifgm Sp@bander
is expressed as a set of inequality constraiats

mxin —-B(x), (11)

subject to
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X1 +2x3<8
X1 +2x4, <8
X1 +2x5 <7
X1+ 2x6 <7

x; € [1,2,3,4]
2 €1123]
x31x4' x5’x6 2 0

X1,X2,X3,X4, X5, Xg : INteger

Here B is the buckling dimensionless parameter calculated by Equation 10. The varialdesector of
six geometric variable of 3D weave architecture, i.e.

x1:number of binder layers
X,:binder path
x3 x4: Upper binder locations

X5, Xg: Lower binder locations

4 RESULTS
4.1 Optimisation convergence

Genetic Algorithms drive the optimisation search based on the penalty valudhatta objective
function value (Equation 3). Figure 3 plots the penalty value, buckling ceetffciversus number of
generation, indicating the optimisation convergences. The Best penalty value ite thel@ion within
the current generation, while the Mean penalty value is the average penalty ealtiea@ntire current
population. The mean penalty value indicates whether the population has no maitydivet the
optimum solution is ultimately converged. Figure 3(a) shows that the staktldtXPM, with a
population size of 15 and a termination criterion after 50 generations, convetgeapiimum design
within 20 iterations, after assessing 300 out of 7000 permissible deBagh the best and mean penalty
values show a direct decent towards the converged optimum within a smakmafrgenerations.
When the FE evaluations ran in parallel on a High Performance Computing €lesteinevaluation
took 7 minutes, the run time of 20 generations to convergence were 140 miowteseH on a desktop
PC using 5 CPUs, each generation with a population size of 15 required 3 batéhparaliel FE
analysis. The computational time tripled to 420 minutes. This was the origitightion to implement
the HGA with a small population size of 5. Figure 3(b) shows the convergenoe pGA after 42
generations. The required computational time was 294 minutes, 8l#8Poi faster than the standard
GA. The pGA had a clear advantage over the standard GA, when the optimisation rankbopaRies
A quantitative comparison is presented in Section 4.2 for the robustness of the u®&& atzhdard
GA.

The optimum designs are manufacture-able bycgudad loom, as shown in Figure 3(a). The
optimised 3D woven composites have a buckling coefficient as twice that ofas®ply laminate
composites, and at least 50% better than a known orthogonal 3D woven composites.
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Figure 3: Convergence of the objective functidouckling coefficient versus the number of
generations: (a) the standard genetic algorithm; (b) the micro-genetic algorithm.

4.2 Effect of GA parameters

Examining the response of the objective function, i.e. buckling coeffittetite variables of the 3D
weave architecture reved that the optimisation problem (Eq. 1¥)highly non-linear. The Genetic
Algorithms do not guarantee to find the absolute global optimum, when the sidutamverged by the
end of the optimisation. Hence, the performance of Genetic Algorithms is to Hesdikelihoodin
finding the optimum value(s). Such assessment provides a critical basis to clkselzeme and its
parametric values for the given optimisation problem. The statistical &gts,test and Wilcoxon
signed-rank test described in Section 2.3, were applied to quantify the compaediivmances of the
used GA schemes and their parameters. For each of the st@Alartd the pGA witla fixed set of
parameters, the study ran 300 repeats of the optimisation procedure, resiB00gistimised value
of B. To compare the optimisation performance, two sets of 300 optimum values pdioe®igm test
and Wilcoxon signed-rank test.

The unit cell based FE analysis was the most time-consuming component withptithisation
iteration (~7 minutes using Intel i7 CPU 3.20GHz). In order to run 300 repk#te optimisation
procedures at different settings within reasonable time, the FE amalgse completed and tabulated
corresponding to each exhaustive 3D weave designs prior the parametric stutly tiidptimisation
iterations, the objective function was evaluated by searching tabulatexs \adcording to the design
variables, instead of time-consuming FE analyses.

The study compared five pairs of main options in the GA implementatiorre$aks by Sign test is
listed in Table 1 and the results by Wilcoxon signed-rank test is listEdbile 2. Both Sign test and
Wilcoxon signed-rank test make effective comparisons of the performance of thie gigogithms. In
some cases, Wilcoxon signed-rank test is more sensitive and definitive than Sign test. The comparative
study made the following findings. First, the relative performance of the pGBecauferior, equal or
superior to the standard GA, dependent on the convergence eritieeisstall count. Seconthe effect
of stall count converges to a value of 14 for the pGA. Third, elite count fton3 tloes not affect the
performance of the standard GA. It shall be noted that elite count of 1 is nexgivefto preserve
population diversity. Fourth, the most efficient stall count is 15 fostdredard GA. Fifth, the population
size of 28 leads to the performance convergence of the standard GA.

Level of

A Wins(>) Loses (< _. " B
significance

HGAstall 7 133 167 0.05 GA

HGAstall 8 134 166 0.1 GA

pGAstall 9 146 154 - GA
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HGAstall 10 159 141 - GA
HGAstall 12 165 135 0.1 GA
LGAstall 14 174 126 0.01 GA
LGAstall 16 186 114 0.001 GA
A Wins(>) LE)<S )es si;ﬁ;%(?:laor{ce B
HUGA stall 2 44 256 0.001 HLGA stall 1¢
MGA stall 3 50 250 0.001 MGA stall 1¢
MGA stall 4 64 236 0.001 HGA stall 1€
HGA stall 5 65 235 0.001 HGA stall 1€
HGA stall 6 84 216 0.001 P GA stall 1€
HGA stall 7 96 204 0.001 HGA stall 1€
HGA stall 8 102 198 0.001 P GA stall 1€
HGA stall 9 111 189 0.001 P GA stall 1€
HLGA stall 10 122 178 0.001 MGA stall 1¢
HGA stall 12 131 169 0.05 P GA stall 1€
UGA stall 14 141 159 - LGA stall 1¢
A Wins(>)  Loses (<! sigﬁ;;i(?:laorfce B
GAelite 1 158 142 - GA elite 2
GA elite 2 147 153 - GA elite 2
A Wins(>)  Loses (< silg;ﬁi\;iecla(ﬁce B
GA stall 10 150 150 - GA stall 3C
GA stall 15 169 131 0.05 GA stall 3C
GA stall 20 157 143 - GA stall 3C
A Wins(>) Loses (<) si;ﬁi‘%‘i'aorfce B
GApopulation 14 64 236 0.001 GA population 3:
GApopulation 16 82 218 0.001 GA population 3:
GApopulation 18 94 206 0.001 GA population 3:
GApopulation 2C 109 191 0.001 GA population 3:
GApopulation24 131 169 0.05 GA population 3:
GApopulation 28 142 158 - GA population 3:

Table 1. Sign test results with a sample size = 300 fes-B{aired optimisation parameters: uGA vs
GA, stall count in uGA, elite count in GA, stall count in GA and population size in GA.

A Performance p-value B
UWGA stall 7 < 0.09 GA
ULGA stall 8 = 0.13 GA
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HGA stall 9 = 0.98 GA
HGA stall 10 > 0.08 GA
HGA stall 12 > 0.002 GA
ULGA stall 14 > <0.001 GA
UGA stall 16 > <0.001 GA
A Performance p-value B
UGA stall 2 < <0.001 L GA stall 1€
HLGA stall 3 < <0.001 P GA stall 1€
UGA stall 4 < <0.001 HGA stall 1¢
ULGA stall 5 < <0.001 P GA stall 1€
HGA stll 6 < <0.001 HGA stall 1¢
HGA stall 7 < <0.001 HGA stall 1¢
HLGA stall 8 < <0.001 P GA stall 1€
HGA stall 9 < <0.001 HGA stall 1¢
HGA stall 10 < <0.001 P GA stall 1€
HGA stall 12 < 0.005 MGA stall 1€
UGA stall 14 = 0.19 P GA stall 1¢
A Performance p-value B
GA elitel = 0.13 GA elite 3
GA elite 2 = 0.75 GA elite 3
A Performance p-value B
GA stall 10 = 0.99 GA stall 3C
GA stall 15 > 0.08 GA stall 3C
GA stall 20 = 0.44 GA stall 3C
A Performance p-value B
GA population 14 < <0.001GA population32
GA population 16 < <0.001GA population 3:
GA population 18 < <0.001GA population 3:
GA population 20 < <0.001GA population 3:
GA population 24 < 0.003 GA population 3:

GA population 28 0.37 GA population 3.

Table 2. Wilcoxon signed-rank test results with a sample size = 300vsBApaired optimisation
parameters: HGA vs GA, stall count in pGA, elite count in GA, stall count in GA and populagion siz
in GA. The symbols “<” and “>” indicate clear winning performance by one parametric setting over
the other, with a level of significance <0.1, while “=" indicates little statistical difference between the
pair.
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5 CONCLUSIONS

The study successfully implemented an optimization framework for constanéssiffiesign of 3D
woven composites. A mixed range of real and integer parameters enabled to geakstitegeometric
unit cell model of 3D woven composites in TexGen. Automated TexGen interface with the solve
ABAQUS made it computationally efficient to evaluate the relationship betv@&e woven fibre
architecture and the elastic properties of 3D woven composites. A case stadpsetize the buckling
efficient of 3D woven composites in a landing gear brace.MhkeXPM Genetic Algorithm and its
adaptation to a micro-population proved to be efficient and robust, as the Sagdt®dilcoxon signed-
rank test assessed the performance of the Genetic Algorithms in tiseuclsd he optimized 3D woven
composites improved the buckling coefficient by doubling that of cross-ply compasiteS0% higher
than that of conventional 3D orthogonal woven composites.
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