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ABSTRACT 

In this paper, numerical modelling of Parity-Time (PT) coupled waveguides is reported. The PT coupled 

waveguide structure consists of two coupled slab waveguides based on GaAs material with gain/loss material 

parameter models, including both dispersion and saturation. The numerical model used analyses the impact of 

dispersion and saturation on the eigenmode extracted by a curve fitting approach. The results show that the 

presence of saturation may prohibit the appearance of the threshold point above which the PT system becomes 

unstable.  
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1. INTRODUCTION 

Optical waveguides with balanced gain and loss mimicking the parity-time (PT) symmetric systems have been 

the subject of intense investigation in the last few years [1]. Several different PT structures have been 

investigated, such as PT Bragg gratings [2–4], PT couplers [5–9], PT whispering gallery resonators [10] and PT 

lattices [11–14]. All PT structures are characterised by a non-symmetric response  [2,3,15–17], i.e. they depend 

on the port of the input incidence. Although these investigations have been mainly theoretical studies using a 

coupled mode method [3,18,19] and ideal gain/loss model, i.e. no saturation and dispersion, several notable 

experimental observations have supported their theoretical predictions [10,12,14,15,20]. Another notable 

property of PT devices is the existence of a threshold point separating complex modes from purely real ones 

[5,8,19].  

In this paper, we explore the impact of saturation and dispersion on the behaviour of coupled PT waveguides 

using a time-domain numerical method. Recently, the impact of dispersion has been reported to be capable of 

reducing the bandwidth of unidirectional invisibility of PT Bragg gratings [4]. The impact of saturation on 

nonlinear PT Bragg gratings has been analysed and shown to be able to significantly undermine the interplay 

between the PT and nonlinear behaviours. This paper extends this analysis to PT coupled waveguides and, in 

particular, explores how saturation impacts eigenmode behaviour and the threshold gain/loss point. A curve 

fitting approach is adopted in order to extract the complex eigenmodes from a spatial Fourier transform and thus 

alleviate the resolution problem that is associated with the finite propagation length.  

Throughout this paper, time-domain modelling is done using Transmission-Line Modelling (TLM) method. 

The TLM is a flexible time-stepping numerical technique that has been extensively characterised and used over 

many years [21,22]. However any time-domain method, including the Finite-Difference Time-Domain (FDTD), 

could be employed for this purpose and we refer the reader to the extensive literature for further details of both 

of these algorithms [23,24]. 

2. PARITY-TIME (PT) COUPLED WAVEGUIDE AND MATERIAL MODEL 

 

Fig. 1 Schematic illustration of PT directional coupled waveguide 
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In this section, the PT coupled waveguide is described together with the model for gain/loss dispersion and 

saturation. The approach of extracting PT eigenmodes from time domain simulations is also described. A PT 

directional coupler is illustrated in Fig. 1 and comprises of two slab waveguides of width w , separated by a gap 

g  and embedded in a background medium bgn . The refractive index of the waveguide core is denoted by 

"'
gg jnn   where “+” denotes a gain and “-” a lossy medium.  

A dispersive and saturable gain/loss model exhibiting a homogenous broadening with a Lorentzian profile [25] 

is implemented in the TLM method as,  
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where gain/loss per unit length is related to the imaginary part of the refractive index by 
"
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denotes the atomic transitional angular frequency and   is the dipole relaxation time parameter. The intensity 

independent function   is the gain/loss saturation factor defined by  
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where I  and sI  denote the input signal and saturation intensity respectively. The saturation factor   describes 

the gain/loss saturation level, and varies between 10  , with 0  indicating high and 1  indicating 

low saturation level, respectively.  

2.1 Effective Refractive Index Extraction by curve fitting  

As a time-domain technique, the TLM method simulates the field propagation in both the space and time 

domains. In order to extract accurately the real part of effective refractive indices, a good resolution is needed in 

spatial k-space, which in turn requires that the simulation is performed along a very long waveguide. Although it 

is possible to extract the real part of the effective refractive index, obtaining the imaginary part of the effective 

index is not as direct. In order to deal with a finite propagation length, a curve fitting technique is used to solve 

for unknown complex eigenmodes. A similar approach in the time domain has been used in [26] to extract 

complex eigenfrequencies of a whispering gallery resonator and is here adapted for spatial eigenmode extraction.  

The field propagating along the x direction, with a spatial mode distribution   in the y direction, can be 

expressed as, 
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Where the propagation constant )( "'
0, mmmx jnnk   with '

mn  and "
mn  are the real and imaginary parts of the 

effective index of eigenmodes m  and fk
c

2
0   with f  the operating frequency. The theoretical spatial 

Fourier transform along the propagating direction of the field in equation (3) is, 
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The analytical Fourier transform in k-space along a finite length Lx   is, 
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In order to extract unknown values 
'
mn and "

mn  a curve in the form of absolute value of equation (5) is fitted to 

the discrete data obtained from the numerical TLM simulation.  

 

 



3. RESULTS AND DISCUSSIONS 

In this section the PT directional coupler is modelled using the TLM method. The accuracy of the curve fitting 

for solving waveguide eigenmodes is first tested on the case of a PT waveguide with non-saturable gain/loss i.e. 

1 and then applied to the case of saturable gain/loss.  

The PT directional coupler in this paper has the following parameters: the core refractive index is 5.3' gn , 

background refractive index is 3.1bgn , waveguide width is 15.0w µm and waveguide separation 15.0g

µm. The length of the PT waveguide is 40 µm. The gain/loss parameters are 5.21160 
 
rad/ps and 1.0

ps. The TLM simulation has the following parameters: the spatially mesh has 
3105.7  yx µm and was 

run for 260000 time steps, which ensured that the optical signal reached steady state. The loss waveguide is 

initially excited with the analytical mode profile. In this paper the TM polarisation is considered.  

3.1 Unsaturated gain/loss system (Ω = 1)  

Fig. 2(a) shows the magnetic field zH of the propagating TM mode in space as it propagates along the x 

direction. Fig. 2(a) shows that the wave is coupled from the lossy waveguide to the gain waveguide.  It is noted 

that when a total coupling occurs, a maximum field is observed in one channel followed by a minimum in the 

other, thus displaying the typical sinusoidal profile of power coupling between two waveguides. Fig. 2(b) shows 

the k-space plot of the magnetic field zH , obtained by spatial Fourier transformations in both the x and y 

directions of Fig. 2(a). Fig. 2(b) shows the presence of two guided modes propagating in the x  direction, which 

make up a supermode in Fig. 2(a). Ideally two distinct discrete lines would be shown if the Fourier 

transformations were performed in an infinite domain (equation (4)). However, since the Fourier transformations 

are performed in a finite domain these two mode lines spread and are accompanied by a continuous trail of side 

lobes as shown in Fig.2(c). Fig.2(c) is obtained by projecting, i.e. summing all modes in Fig.2(b), to the 

horizontal axis. Fig. 2(c) depicts two distinct peaks, which correspond to the two guiding TM modes, the discrete 

points denoting the direct projections of Fig. 2(b) while the solid line is obtained by curve fitting the discrete 

point by equation (5). The MATLAB curve fitting toolbox is used for curve fitting purposes. 

 

Fig. 2(a) zH  field profile in x-y space domain, (b) k-space plot obtained by spatial Fourier transformation of 

(a) in both directions and (c) the projected k-space plot on the horizontal axis. 

To investigate the impact of gain/loss on the effective refractive index, the (a) real and (b) imaginary part of 

the effective indices are plotted in Fig. 3(a,b) as a function of the gain/loss parameter 0 . As the saturation 

factor 1 this is the case of non-saturable gain and loss for which an analytical solution exists and is also 

plotted in Fig. 3. Analytical solutions are for the threshold point 2400tr cm
-1

, below which the eigenmodes 

are purely real and above which the eigenmodes are complex conjugate. The discrete points in Fig. 3 show the 

effective refractive indices obtained using the TLM and the curve fitting technique. The real part of the refractive 



index (Fig. 3(a)) displays a similar trend as the one calculated by the analytical method but is slightly higher in 

value. This discrepancy can be explained by the presence of numerical dispersion. Fig. 3(b) shows a good 

agreement between the imaginary parts of the effective refractive index calculated by the TLM method and by 

the analytical method, with small a discrepancy occurring around the threshold point where the two guided 

modes are about to coalesce. It is noted that during the fitting process, the minimum goodness (R-parameter) of 

the fitted curve occurs for gain/loss parameters close to the threshold point and is around 98%.     

 

Fig. 3 Comparison of (a) the real part and (b) the imaginary part of the effective refractive index of the PT 

coupled waveguide obtained by the TLM and curve fitting method (dashed lines) and the analytical method. 

Fig. 4(a,b) shows the magnetic field zH  distribution in x-y space domain for gain/loss the parameter of (a) 

17650  cm
-1, 

below the threshold point and (b) above the threshold point for 30000  cm
-1

, as marked with 

arrows in Fig. 3. When operated below the threshold point, Fig. 4(a) shows that the coupling length is longer 

than that compared to the case of no gain/loss in Fig. 2(a). Fig. 2(a) shows 3 complete coupling cycles compared 

to only 2 cycles in Fig. 4(a) for the same propagation length of 40µm. It is also noted that the field distribution 

profile is asymmetric due to the presence of gain and loss. The zH  profile for operation above the threshold 

point is displayed in Fig. 4(b), where the field in both channels is exponentially growing and where the growing 

mode dominates. Fig. 4(c,d) shows the projected k-space plot of the magnetic field shown in Fig. 4(a,b), for the 

operation of (c) below and (d) above the threshold point. Fig. 4(c) shows two distinct guiding modes that 

correspond to the case of Fig. 4(a), whilst Fig. 4(d) has a single peak corresponding to a single mode existing 

above the threshold point as predicted by Fig. 3(a,b).  

 

Fig. 4 (a,b) zH  field profile in x-y space for operation (a)  below threshold point 17650  cm
-1

 and (b) above 

threshold point 30000  cm
-1

. The projected k-space plots for operation (c) below the threshold point 

1765 cm
-1

 and (d) above threshold point 3000 cm
-1

. Gain/loss is considered linear 1 . 

 



3.2 Saturable gain/loss system 

In this section the impact of gain/loss saturation on the eigenmode solutions of the PT directional coupler is 

analysed. For this purpose an incident signal with an intensity of 
71064.3 I Wm

-2 
is launched in the lossy 

waveguide. The gain/loss has a saturation intensity 
7102.65 sI Wm

-2
. The TLM parameters are as given in 

section 3.1.  

 

Fig. 5 Comparison of (a) real and (b) imaginary part of the effective index as a function of gain/loss parameter   

obtained using the TLM method and curve fitting for a case of a saturable gain/loss and analytical solution with 

no gain/loss saturation.  

 

Fig. 5(a,b) shows the real and imaginary part of the effective refractive index as a function of the gain/loss 

parameter 0 , obtained by the TLM and curve fitting together with the analytical solution of a linear system       

( 1 ). Compared with the ideal case, Fig. 5 shows that in the case of a saturable gain/loss PT waveguide the 

two eigenmodes never coalesce and hence there is no threshold point. It can be explained that as the optical 

intensity in the waveguide increases, the effective gain/loss decreases due to saturation. Consequently, as shown 

in Fig. 5(b), the guided modes have small imaginary effective index (gain/loss) with a more strongly growing 

mode. 

 

Fig. 6(a) Magnetic field zH  profile distribution in space domain, (b) k-space plot obtained by spatial Fourier 

transformation in both directions of (a), (c) the projected k-space plot shown in (b) into the horizontal axis. 

Operated with gain/loss parameter of 3000 cm
-1

and saturation intensity of 
7102.65 sI Wm

-2
.  

 

Fig. 6(a) shows the zH distribution in the x-y domain for 30000  cm
-1 

as marked in Fig. 5. Fig. 6(a) shows 

coupling from both channels. This is in contrast to the same operational point for linear gain/loss profile (Fig. 

4(b)) where the field is exponentially growing. Fig. 6(b) shows the k-space plot of the field profile distribution in 



Fig. 6(a). Fig. 6(b) shows two guided modes with a distinct line at around 34.2effn and a degenerating mode at 

around 30.2effn . Fig. 6(c) shows the projection of the k-space plot shown in Fig. 6(b) calculated by the TLM 

method (discrete points) and the fitted curve by equation (5). Fig. 6(c) shows the presence of two guided modes 

which are very close compared to the case of no gain/loss (Fig. 2(c)) and also that the growing mode dominates 

the field profile.    

4. CONCLUSIONS 

This paper analysed the impact of the saturable and dispersive gain/loss material model on the eigenmode 

solutions of a PT directional coupler using the TLM method and curve fitting technique to extract the complex 

eigenmode solutions. Good agreement is obtained when the results obtained using the TLM and the curve fitting 

technique are compared against the analytical solutions for the case of no gain/loss saturation. The results show 

that the presence of saturation may prohibit the appearance of the threshold point, resulting in a stable system. 
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