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Abstract 

The paper analyses the operation of PT Bragg gratings 
when the dielectric material is considered to be both 
dispersive and nonlinear and gain and loss are saturable. 
The paper demonstrates the application of the nonlinear PT 
Bragg Grating as an optical logic gate and an optical switch.  

1. Introduction 

A Parity-Time (PT) structure is formed by balancing 
inherent loss in a medium by an equal gain in a certain 
design. The PT-symmetric structures mimic the PT-
symmetric potential system in quantum physics which, 
under certain conditions, operates in a stable regime. As 
optical waveguides have inherent material loss, it is 
desirable to balance the loss with gain for optimal 
performance. This is one of the reasons why PT structures 
have become the subject of increased interest in photonics. 
Several kinds of PT-symmetric structures have been 
reported so far based on either grating [1–4], coupler [5–9], 
or lattice [10–12] structures with a range of applications 
including lasing and absorber cavities [2], switches [4,13] 
and memory [14]. PT-structures have been extensively 
modelled using coupled-mode theory [3,7], the transfer-
matrix (T-matrix) method [1,14–16], Floquet-Bloch 
theory [11] and Fourier modal analysis  [17,18]. The 
inclusion of material nonlinearity has also been reported 
with a speculation that nonlinearity combined with a PT 
structure will open a new range of functionalities [1,19–21]. 
However, all the reported models have assumed that gain 
and loss are frequency and intensity independent. The 
important question arises on how a nonlinear PT-symmetric 
device will perform in a practical situation where gain and 
loss are both dispersive and saturable, especially when 
medium nonlinearity is also taken into account. 

To consider such a scenario we use a time-domain 
numerical technique, namely the Transmission Line 
Modelling (TLM) method [22,23]. The TLM method is 
based upon the analogy between the propagating 
electromagnetic field and voltage impulses travelling on an 
interconnected mesh of transmission lines. Successive 
repetitions of a scatter-propagate procedure provide an 
explicit and stable time-stepping-algorithm that mimics 

electromagnetic field behaviour to second order accuracy in 
both time and space [24,25]. It is important to note that the 
TLM method has been successfully implemented to model a 
dispersive and nonlinear dielectric material [22,23]. In 
principle any time-domain numerical method, including the 
Finite Difference Time Domain (FDTD) method could be 
used as a basis for the simulation undertaken.   

In our previous work, we have validated the TLM method 
to model a linear PT Bragg Grating (PTBG) with non-
dispersive gain and loss [4,26]. The impact of gain/loss 
saturation on the switching performance of a linear PTBG, 
has also been demonstrated [4]. In this paper we extend our 
model to include nonlinear and dispersive materials with 
saturable gain and loss. The Kerr nonlinearity is assumed in 
this paper and is controlled by a strong pump beam away 
from the Bragg frequency of the grating. The performance of 
the grating for different pump beam intensities and different 
saturation intensities is analysed. This is followed by studies 
of the applications of a nonlinear PTBG as an optical logic 
gate and a switch.  

This paper is structured as follows; in the next section 
the model of the PTBG structure as implemented in the 
TLM method is given. Section 3 analyses the performance 
of the nonlinear PTBG for different input intensities and 
different intensity saturation levels. Section 4 demonstrates 
practical applications of the nonlinear PTBG and Section 5 
outlines the main conclusions of the paper.  

2. Structure and model 

A Parity-Time symmetric material in optics requires a 
complex refractive index profile that satisfies ො݊ሺെݖሻ ൌො݊כሺ ሻ, where ݖ denotes the spatial position of the grating 
and * denotes the complex conjugate. The schematic of a 
PT grating is shown in Fig. 1. The grating is embedded in a 
medium of background refractive index ݊஻ as shown in Fig. 
1(a), and is made of N periods. A single period, Ȧ, of the 
PTBG is shown in Fig. 1(b) representing equal amounts of 
loss and gain per period and with the real refractive index 
varying in a piecewise constant manner between ݊௅ and ݊ ு 
(dashed line in Fig. 1(b)). The Bragg frequency ஻݂ is related 
to the average refractive index ത݊  of the structure by ஻݂ ൌ ೎మ೙ഥ౻, where c is the speed of light in free space. 
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Fig. 1(a) Schematic of the PTBG within a background material ݊஻; 
(b) A single period of PTBG showing gain and loss half-periods 
and (dashed line) modulation of the real refractive index. 
 

The refractive index profile of the nonlinear PT Bragg 
grating for one period ݊ீ  can be expressed as: 

݊ீሺݖǡ ߱ǡ ǡݐ ሻܫ ൌ ቐ݊ሺ߱ሻ േǼ݊ሺݖሻ ൅ ݊ଶܫሺݖǡ ሻݐ ൅ ݆ ೎ഘߙሺ߱ǡ ሻǡܫ ݖ ൏ ஃଶ݊ሺ߱ሻ ሻݖǼ݊ሺט ൅ ݊ଶܫሺݖǡ ሻݐ െ ݆ ೎ഘߙሺ߱ǡ ሻǡܫ ݖ ൐ ஃଶ  (1) 

Here, ݊ ሺ߱ሻ  is the base refractive index as a frequency 
dependent material, ȟ݊ሺݔሻ  is the modulation of the real 
refractive index as a spatially dependent function, ݊ଶ is the 
Kerr nonlinearity constant, ܫ is the input intensity of the field 
and ߙሺ߱ǡ ሻܫ  denotes gain or loss in the grating which is 
dispersive and saturable. Equation (1) shows that Kerr 
nonlinearity also contributes to the overall real part of the 
refractive index.  

The frequency and intensity dependent dielectric material 
is modelled in the TLM model using the Duffing equation of 
polarisation [27], ߲ଶ ஽߲ܲݐଶ ൅ ߜʹ ߲ ஽߲ܲݐ ൅ ߱଴஽ଶ ஽ܲ ஽݂ ൌ ߳଴߯௘଴߱଴஽ଶ  (2) ܧ

where ܲ ஽ and ܧ denote the electric polarisation and field, ߜ 
and ߱ ଴஽ denote the damping and dielectric resonant angular-
frequency parameters of the medium respectively, and ߯௘଴ 
denotes the dielectric susceptibility at DC. The nonlinearity is 
implemented with the function ஽݂ as [28],  

஽݂ ൌ ݁఍௉ವమ ǡ (3) 

where ߞ ൌ െ ௡మඥఞ೐బାఞ೐ಮାଵఢబమሺఞ೐బାఞ೐ಮሻయఎబ , ݊ଶ  is the Kerr nonlinear 

constant, ߯௘ஶ  denotes the constant susceptibility at infinite 
frequency and ߟ଴  is the free-space impedance. It is 
emphasised that when ஽݂ ൌ ͳ the Duffing equation reduces 
to the linear model of optical material based on simple 
harmonic oscillator with a Lorentzian profile. In this case the 
refractive index at a given angular frequency ߱ is calculated 
as, ො݊ଶ ൌ ሺͳ ൅ ߯௘ஶሻ ൅ ఞ೐బఠబವమଶ௝ఋఠା൫ఠబವమ ିఠమ൯. (4) 

The implementation and validation of the Duffing equation 
to model a realistic dispersive and nonlinear optical 
dielectric has been reported in [28].  

On the other hand, a dispersive and saturable gain/loss 
model with a Lorentzian profile is implemented as [29],  ȁߙȁሺ߱ǡ ሻܫ ൌ ȳሺܫሻ ൬ ଴ͳߙ ൅ ݆ሺ߱ െ ߱଴ఙሻ߬ ൅ ଴ͳߙ ൅ ݆ሺ߱ ൅ ߱଴ఙሻ߬൰ǡ (5) 

where the gain/loss parameter ȁߙȁ  is related with the 

imaginary part of refractive index ݊ூ  by ȁߙȁ ൌ ഘ೎݊ூ , ߱଴ఙ 
denotes the atomic transition angular-frequency, ߬  is the 
dipole relaxation time parameter and ߙ଴ is the peak value of 
the gain or loss at ߱଴ఙ . In order to quantify the saturation 
level, it is useful to introduce the saturation factor ȳ defined 
as,  ȳ ൌ ͳͳ ൅  ǡ (6)ܵܫܫ

where I is the input beam intensity and ܫௌ is the saturation 
intensity. For a fixed ܫௌ, the saturation factor ȳ varies over 
the interval Ͳ ൏ ȳ ൏ ͳ , with ȳ ൌ Ͳ  denoting a highly 
saturated state (಺಺ೄ ՜ λ ) and ȳ ൌ ͳ  denoting negligible 

saturation (಺಺ೄ ՜ Ͳ ). It is emphasised that the model 

described in (2)-(6) satisfies the Kramers-Kronigs conditions 
which relates the real and imaginary part of a refractive 
index.   
 

3. Results and Discussion 

In this section, the performance of 200 periods of nonlinear 
PTBG based on GaAs material is analysed using the TLM 
method. The following material parameters are used 
throughout this paper, ߯௘଴ ൌ ͹Ǥͷ , ߱଴஽ ൌ Ͷ͸ͳͶǤͶ    Ȁ  , 
and ߜ ൌ ͲǤͲͻʹ͵    Ȁ   [30], with the high and low 
refractive index, i.e. ݊ு  and ݊ ௅  obtained respectively from 
the high and low dielectric susceptibilities, ߯௘ஶ ൌ ʹǤͺ and ʹǤͷ, which form the grating. The Kerr nonlinearity constant 
is ݊ ଶ ൌ ʹ ൈ ͳͲିଵ଻  ଶ ିଵ [31,32] throughout the structure. 
The gain and loss parameters are ߬ ൌ ͲǤͳ    and ߱ ଴ఙ ൌʹͳͳ͸Ǥͷ    Ȁ   [29] while ߙ଴  depends on the gain/loss 
given. The periodicity of the PTBG is designed so that the 
Bragg frequency is at the atomic-transitional frequency, i.e. ஻݂ ൌ ഘబ഑మഏ , hence Ȧ ൌ ͳʹʹǤ͹   . The background material is 
GaAs with ݊ ஻ ൌ ͵Ǥ͸ʹ͸  at the Bragg frequency ஻݂Ǥ  The 
unidirectional (U) operation of the PTBG occurs when the 
gain/loss in the PTBG satisfies ȁߙ଴ȁ ൌ భమഘ೎ሺ݊ு െ ݊௅ሻ  [4] 
which for the chosen material parameters, happens when the 
gain/loss coefficient ȁߙ଴ȁ ൌ ͳͶ͸ͲǤʹͶ   ିଵ.  

The main characteristic of the linear PT Bragg grating is 
that transmission is the same regardless of whether the 
grating is excited from the left or right of the grating but the 
reflectances are different. The amount of gain/loss of the 
system also influences the operation of the grating in that 
above a certain threshold point the operation of grating is in 
an unstable regime. Another characteristic of a linear PTBG 
is that the grating exhibits unidirectional invisibility – 
commonly referred to as the U point.  

In the light of the refractive index profile given in (1), 
for the nonlinear PT Bragg grating, we consider a scenario 
where an input beam is comprised of two beams, namely a 
strong pump beam and a probe beam. The pump beam is a 
CW beam and is used to activate the Kerr nonlinearity. The 
frequency of the pump beam ௣݂௨௠௣ is set to be far from the 
Bragg frequency, i.e. ௣݂௨௠௣ ൌ ʹͲͲ    . The probe signal is 
a Gaussian pulse modulated at the Bragg frequency ஻݂ and 
is low in intensity, with its maximum intensity being 1% of 
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the pump beam intensity. Since the intensity of probe beam 
is very low compared to the strong pump beam, its effect 
can be seen as a perturbation of the pump beam and hence 
the pump beam can be considered as the input beam.  

In order to investigate the effect of different saturation 
levels on the performance of a nonlinear PTBG the 
saturation intensity ܫௌ  is fixed to a certain level and the 
saturation factor ȳ is changed by changing the intensity of 
the pump beam.  

Fig. 2 shows the frequency response of the nonlinear 
PTBG for a saturation intensity  ܫௌ ൌ ͷ ൈ ͳͲଵ଴   ିଶ at the 
U-point. For a given level of saturation intensity, the effect 
of the Kerr nonlinearity is low since ݊ଶܫௌ ൌ ͳ ൈ ͳͲି଺. Four 
different intensities of the input beam ܫ are considered so 
that the saturation factor ȳ  varies from low to high 
saturation, i.e. ȳ ൌ ͲǤͻͻ, ͲǤͺ, ͲǤͲͳ and ʹ ൈ ͳͲି଺ .  Fig. 2 
compares results together with the analytical solution 
obtained using the T-matrix method [34]. It is emphasised 
here, that the T-matrix method models a linear and 
dispersive structure, i.e. no Kerr nonlinearity and no 
gain/loss saturation. With that in mind, the T-matrix method 
results are presented more as a reference than for a direct 
comparison. The response of the linear PTBG using the 
idealised model of gain/loss [1] is also included in Fig. 2 for 
comparison. The ideal gain/loss model here is implied to be  
frequency and intensity independent.  

 

Fig. 2(a)Transmittance (b) reflectance for left, Ȟ௅ , and (c) right, Ȟோǡ 
incident for different saturation levels ȳ  

Fig. 2(a) shows that transmittance of the ideal PTBG 
model has almost-total transmission ܶൎ ͳ  at all 
frequencies. At low saturation level (ȳ ൌ ͲǤͻͻ ), the 
transmittance calculated using the TLM method agrees with 
one calculated with the T-matrix method, due to the fact 

that in this case the change of refractive index and gain/loss 
in the PTBG induced by the Kerr nonlinearity and 
saturation respectively are negligible. It is noticeable that 
compared to the idealised case, the total transmission ܶ ൌ ͳ 
occurs only at the Bragg frequency ஻݂. This result confirms 
that material dispersion prohibits unidirectional behaviour 
at all frequencies as shown in the case of an ideal PTBG [4]. 
Furthermore, as the saturation factor ȳ  decreases the 
transmittance becomes similar to that of the regular Bragg 
grating (RBG), i.e. it loses PT behaviour. This is shown in 
Fig. 2(a) where the response for ȳ ൌ ͲǤͲͳ  overlaps with 
that of the RBG. By increasing the input beam intensity 
even further, ȳ ൌ ʹ ൈ ͳͲିସ, the band-gap is shifted to the 
lower frequency due to the fact that the dominant 
modulation mechanism becomes the Kerr nonlinearity.  

 

Fig. 3(a)Transmittance (b) reflectance for left Ȟ௅  and (c) right Ȟோ 
incident beam for high saturation intensity and different saturation 
factors ȳ 

Fig. 2(b) and Fig. 2(d) show the reflectance for beams 
incident from the left, Ȟ௅ ǡ and right, Ȟோǡ side of the PTBG 
respectively. For the ideal linear PTBG the reflectance Ȟோ is 
zero and Ȟ௅ is amplified, showing the unidirectional 
behaviour at all frequencies. At low saturation levels 
(ȳ ൌ ͲǤͻͻ) the reflectance Ȟ௅ has narrower bandwidth and 
the PTBG maintains the unidirectional behaviour around ஻݂.  
Furthermore, at low saturation, ȳ ൌ ͲǤͻͻ, the TLM results 
for Ȟ௅ and Ȟோ agree very well with results obtained using the 
T-matrix method due to the negligible effect of nonlinearity. 
Further increase in saturation level shifts the reflectance 
spectra to lower frequencies due to the dominant Kerr 
nonlinearity.  

Fig. 3(a) shows the response of the nonlinear PTBG 
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under the condition of high saturation intensity, which if it 
was reached, produces high Kerr nonlinearity of ݊ଶܫௌ ൌ ͲǤͷ. 
The grating is operated at the U point with ȁߙ଴ȁ ൌ ͳͶ͸ͲǤʹͶ    ିଵ. Two different input intensities are considered so that 
gain/loss saturation is ȳ ൌ ͲǤͻͻ and ͲǤͻͷ, corresponding to  
low saturation. The induced Kerr modulation for given 
intensities is ݊ ଶܫ ൌ ͲǤͲͲͷͳ and ͲǤͲʹ͸͵  respectively. The 
response of the linear structure (no Kerr nonlinearity and no 
gain/loss saturation) calculated using the T-matrix method 
is included for comparison.  Fig. 3 shows that as the 
intensity and saturation increase the overall responses for ܶ, Ȟோ  and Ȟ௅ shift towards lower frequencies as the Kerr 
nonlinearity increases overall refractive index. It is 
observed that at the ݂஻  the unidirectional invisibility is 
preserved, ܶ ൎ ͳ  and Ȟோ ՜ Ͳ , whilst transmittance higher 
than 1 is observed for ݂ ൏ ஻݂. The reflectance for the left 
incident case, Ȟ௅ , decreases and is shifted to a lower 
frequency. On the other hand, the Ȟோ increases as the input 
beam increases and negligible reflectance is observed for ݂ ൐ ஻݂.  

 

Fig. 4 (a) Transmittance, (b) reflectance for left and (c) reflectance 
for right of PTBG at the U operation as a function of input intensity 
at ݂ ൌ ͵͵͸Ǥͺͷ  THz. The gain/loss has high saturation intensity ݊ଶܫௌ ൌ ͲǤͷ. Results for the NBG(ߙ଴ ൌ Ͳ) at the Bragg frequency ஻݂ ൌ ͵͵͸Ǥͺͷ     are included for reference. 

Fig. 4 shows the response of the nonlinear PTBG as a 
function of input beam intensity, when the gain/loss 
intensity saturation is high ሺ݊ଶܫௌ ൌ ͲǤͷሻ . The grating is 
operated at the U point with ݂ ൌ ͵͵͸Ǥͺͷ THz. The 
frequency  ݂ ൌ ͵͵͸Ǥͺͷ     is the Bragg frequency of the 
linear grating. The response for the nonlinear Bragg grating 
(NBG) at  ݂ ൌ ͵͵͸Ǥͺͷ     , with no gain and loss (ߙ଴ ൌ Ͳ)  

is also included in Fig. 4(a) and shows that at low intensities 
the transmittance is very low but then switches to total 
transmittance at high intensity. This can be explained that 
by the fact that at high input intensity the band-gap of the 
nonlinear Bragg grating is shifted to the lower frequency so 
that ݂ ൌ ͵͵͸Ǥͺͷ     lies outside the band-gap. For the case 
of the nonlinear PTBG operating at  ݂ ൌ ͵͵͸Ǥͺͷ    , the 
total transmission ܶ ൌ ͳ is achieved regardless of the input 
beam intensity.  

Since the NBG is orthogonal (reciprocal and lossless), 
i.e. ܶ ൅ Ȟ ൌ ͳ, Fig. 4(b,c) show that at low input intensity 
the reflectance is close to 1,  and it is very small at high 
input intensity. For the case of a nonlinear PTBG the 
reflectance, Ȟ௅ ് Ȟோ with Ȟ௅ ൐ Ȟோ at low input intensity, i.e. 
small Kerr effect, but as the input intensity increases the Ȟ௅ 
decreases to almost zero and fits with the response of the 
NBG.  Fig. 4(a,b) show that at high input intensity and for 
high saturation intensity, total transmittance with both Ȟ௅ ǡ Ȟோ ՜ Ͳ is observed corresponding to a bidirectionally 
transparent grating for frequencies ݂ ൐ ஻݂.  

 

Fig. 5 (a) Transmittance, (b) reflectance for left and (c) reflectance 
for right incidence of PTBG at the U operation as a function of 
input intensity at  ݂ ൌ ͵͵͸Ǥͺͷ THz. The gain/loss has low 
saturation intensity ݊ଶܫௌ ൌ ͲǤͲͲͲͷ . Results for the NBG (ߙ଴ ൌ Ͳሻ 
at the Bragg frequency ݂஻ ൌ ͵͵͸Ǥͺͷ     are included for 
reference.  

   The impact of gain/loss saturation on the performance of 
the nonlinear PTBG as a function of input beam intensity is 
shown in Fig. 5. The grating is operated at ݂ ൌ ͵͵͸Ǥͺͷ 
THz, similarly as in  Fig. 4. The saturation intensity is low 
and set to ܫௌ ൌ ʹǤͷ ൈ ͳͲଵଷ   ିଶ, corresponding to a low 
Kerr nonlinearity of ݊ଶܫௌ ൌ ͲǤͲͲͲͷ. The PTBG operates at 
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the U point with ȁߙ଴ȁ ൌ ͳͶ͸ͲǤʹͶ   ିଵ . Fig. 5(a) shows 
almost total transmittance at low input intensity but it 
gradually decreases and fits with the response of the NBG 
as the input intensity is increased.  

Fig. 5(b) and (c) depict the reflectance for the left Ȟ௅ and 
right Ȟோ  incidence respectively. At low input intensity Ȟ௅ ൐ Ȟோ , but it gradually decreases and fits with the 
response of the NBG as the input intensity is increased. Fig. 
5(a-c) show the impact of the gain/loss saturation, that it 
effectively reduces the gain/loss in the system to a 
negligible level at high input intensity, and hence inhibits 
the interplay of Kerr nonlinearity and PT behaviour as is 
observed in Fig. 4.     
 

4. Applications 

In this section two potential applications of a nonlinear 
PTBG based on GaAs are investigated, namely an optical 
logic gate and a switch. The input beam comprises of a 
probe beam and a strong pump beam. The probe beam is a 
CW operated at the Bragg frequency ௣݂௥௢௕௘ ൌ ͵͵͸Ǥͺͷ     
and has a low intensity which is kept constant throughout 
the simulation with ܫ ൌ ͳ ൈ ͳͲ଺   ିଶ. The pump beam is 
a CW signal operated far from the Bragg frequency at ௣݂௨௠௣ ൌ ʹͲͲ    . The intensities of the pump beam are 
switched between two different values, i.e. ܫଵ ൌ ͳ ൈͳͲଵସ   ିଶ and ܫଶ ൌ ͳ ൈ ͳͲଵହ  ିଶ as marked in Fig. 5, 
where the pump beam intensity is shown against time. The 
pump beam is initially turned off and then turned on to 
intensity ܫଵ for a duration of 10 ps, followed by an increase 
to intensity ܫଶ for another 10 ps. The pattern is then repeated 
as seen in Fig. 6(a). 

 

Fig. 6 Comparison of switching operation between the (b) 
NBG and (c) PTBG for the pump beam intensity profile 
shown in (a).   
 

Fig. 6 compares the performance of the NBG and PTBG 
where Fig. 6(b) shows the transmitted probe beam of a 
NBG structure (ߙ଴ ൌ Ͳሻ when excited from the left side. 
The transmitted probe beam of the NBG is very low when 
the pump beam is turned off or operated at ܫ ൌ  ,ଵ. Howeverܫ
when the pump beam is switched to operate at ܫଶ  total 
transmitted power is observed. On the other hand, Fig. 6(c) 
shows the output of the PTBG when the grating is excited 
from the left. It can be seen that when the pump beam is off 
the probe beam is totally transmitted ܶ ൌ ͳ. Increase in the 
pump beam intensity to ܫଵ  reduces the transmitted probe 
beam intensity. A subsequent further increase of the pump 
beam to ܫଶ  increases the transmitted probe beam to total 
transmittance. Although Fig. 6(b) and Fig. 6(c) show that 
NBG and PTBG have similar switching operation, the 
PTBG achieves switching at lower pump intensity with the 
default ON state for ܫ ൌ Ͳ and OFF state at ܫ ൌ   .ଵܫ

 

5. Conclusion 

The performance of a nonlinear PT Bragg grating that has 
dispersive material and a saturable gain/loss model is 
analysed and compared with the performance of an 
idealised PT Bragg grating and a nonlinear Bragg grating 
with no gain/loss. It is shown that material dispersion limits 
the unidirectional behaviour of the PTBG to a narrowband 
region around the Bragg frequency. The interplay of 
saturation and nonlinearity is important as low saturation 
intensity can prohibit the impact of Kerr nonlinearity in a 
nonlinear PTBG. At high saturation intensity the impact of 
nonlinearity contributes to bidirectional invisibility for 
frequencies above the Bragg frequency. The operation of 
the PTBG as an optical switch and logic gate confirms that 
the switching operation can be achieved at lower pump 
intensities than is the case for the nonlinear Bragg grating 
with no gain and loss.  
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