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Abstract 

This paper reports on the time-domain numerical model of a 
parity-time Bragg grating with saturated and dispersive gain. 
The model is compared against the ideal PT scenario where 
the gain is constant and unsaturated for all frequencies.  

1 Introduction 

Recently, a new class of optical metamaterials that utilise 
balanced loss and gain, also known as Parity-Time (PT) 
structures, have opened a new avenue in realising optical 
functionalities, for example, switching [1][2], lasing and 
isolating. An interesting potential application of PT devices is 
in cloaking as they offer unidirectional invisibility over a 
wide frequency range [3].  

To date, all modelling of PT-devices has been done using 
frequency domain methods such as coupled mode theory and 
using materials that have constant and frequency-independent 
gain and loss. However, in practice the gain in material 
saturates at high input intensities and any change in the real or 
imaginary part in the material refractive index is described via 
the Kramers-Kronig relations.  

This paper outlines the implementation of a dispersive 
gain material model that satisfies the Kramers-Kronig relation 
and gain saturation. This is done in the numerical 
Transmission Line Modelling (TLM) method. The model is 
then used to analyse the response of a PT Bragg grating and 
compare it with the idealised case with constant gain/loss. 

2 PT-Symmetric Bragg grating 

A schematic presentation of a PT Bragg grating is given in 
Fig.1. The length of the period is の 噺 膏喋【岫に券眺岻, where 膏喋 is 
the Bragg wavelength and 券眺 is the average refractive index 
of the grating. The PT- structure requires that loss and gain in 
the structure are balanced which can be expressed via a 
complex refractive index as 券賦岫伐権岻 噺 券賦茅岫権岻. This condition 
implies that one period of the Bragg grating has four layers of 
equal length but of different material parameters, so that 
refractive indices of layers satisfy the following distribution:  

畔 券眺 髪 つ券眺 髪      ┸   ど 隼 捲 隼 の【ね券眺 伐 つ券眺 髪      ┸   の【ね 隼 捲 隼 の【に券眺 伐 つ券眺 髪      ┸   の【に 隼 捲 隼 ぬの【ね券眺 髪 つ券眺 髪      ┸   ぬの【ね 隼 捲 隼 の . (1) 

 
Fig. 1. Schematic illustration for a single period of the PT-
Bragg grating 

3 Modelling 

In this paper, a model of macroscopic physical gain and loss, 
having a homogenously-spectral-broadening and satisfying 
the Kramers-Kronig condition [4] is implemented through the 
electric conductivity 購, as 購岫降岻 噺 磐 なな 髪 荊【荊鎚卑 磐 購待【にな 髪 倹岫降 伐 降待蹄岻酵 髪 購待【にな 髪 倹岫降 髪 降待蹄岻酵卑  (2) 

where 降待蹄 is the atomic transition angular-frequency, 購待【に is 
the peak value of the conductivity at 降待蹄 and 酵 is the dipole 
relaxation time parameter. Material gain and loss are 
implemented as  糠岫降岻 噺 罰 購岫降岻に潔券眺香待  (3) 

where 潔 and 香待 are the free-space light velocity and 
permittivity respectively, and 券眺 is the real part of refractive 
index. Loss is implemented with a positive sign whilst gain is 
implemented with a negative sign in eq. (3). 

The frequency dependant dielectric properties are 
modelled using the Duffing model for electric polarization 
outlined in  [5] as, 項態鶏槻帖項建態 髪 に絞 項鶏槻帖項建 髪 降待態鶏槻帖 噺 香待鋼勅待降待帖態 継槻 (4) 

where 鶏槻帖 and 継槻 denote the electric polarization and field in 
the 検-direction, 絞 and 降待帖 denote the damping and dielectric 
resonant angular-frequency parameters of the medium, and 鋼勅待 denotes the dielectric susceptibility at DC frequency.  

The implementation of the gain (2) and Duffing (4) 
models are done in  the Transmission Line Modelling method 
[6]. The TLM method is a time stepping numerical technique 
based upon the analogy between the propagating 
electromagnetic fields and voltage impulses travelling on an 
interconnected mesh of transmission lines. As a time-domain 
numerical model, it offers flexibility in modelling frequency-
dependent and nonlinear material [6]. In the TLM method, 
this is done using 灼-transform approach. The overall outline 
of the TLM approach in modelling dispersive properties is to 
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first calculate the electric field at each node from the incident 
voltages from the left 撃挑沈 and right 撃眺沈  nodes. For the 1D case 
this is given by [6], に盤撃挑沈 髪 撃眺沈匪 噺 に撃槻 髪 訣岫灼岻撃槻 髪 に峭な 伐 灼貸怠な 髪 灼貸怠嶌 盤鋼勅著撃槻 髪 喧槻帖匪 (5) 

where 撃槻 is the normalized electric field in the 検-direction, 鋼勅著 is the dielectric susceptibility at infinite frequency, 訣岫灼岻 
and 喧槻帖岫灼岻 are the normalized conductivity (2) and electric 
polarization (4) in the 灼-domain. In the next step the scattered 
voltages from the each node are obtained which become the 
incident voltages on the neighbouring nodes in the following 
time-step. These successive repetitions of the scatter-
propagate procedure provide an explicit and stable time 
stepping algorithm that mimics electromagnetic field 
behaviour to second order accuracy in both time and space.  

3 Result and discussions 

In this section, a PT Bragg grating based on GaAs material is 
analysed. The material parameters chosen are: 鋼勅待 噺 ば┻の, 降待帖 噺 ねはなね┻ね r  【  , and 絞 噺 ど┻どひにぬ r  【   [7] with the 
high and low dielectric susceptibility as 鋼勅著張 噺 に┻ぱ and 鋼勅著挑 噺 に┻の. The gain parameters are 荊鎚 噺 はの┻に   【  態, 酵 噺 ど┻な    and 降待蹄 噺 なぱぱぬ r  【   [4]. The period of the 
Bragg grating is designed so that the band-gap is centred at 
the atomic-transition angular frequency 降待蹄, i.e. の 噺ど┻なねどのぱ づ . The background material has 券眺 噺 ぬ┻のは, i.e. 
the refractive index of GaAs at around な づ .  

Figure 2 compares the transmittance of the 200 period 
GaAs PT Bragg grating for the ideal case, the physical model 
and the linear grating that corresponds to the conventional 
Bragg grating with no gain/loss. The ideal PT model has a 
constant and frequency-independent gain with 糠 噺ど┻なぬにの づ 貸怠 with and modulation index of つ券眺 噺 ど┻どになな. 
The physical gain model has a parameter of 糠岫降待蹄岻 噺ど┻なぬにの づ 貸怠 and was run for low (荊 噺 ど┻どの   【  態) and 
high intensity (荊 噺 のど   【  態). The linear Bragg grating 
has 糠 噺 ど  and is included for reference. Figures 2(a,b) show 
the transmittance and the reflectance for a wave incident from 
the right respectively. Figures 2(a,b) show that the PT Bragg 
grating ideal model exhibits a broadband unidirectional 
invisibility i.e. 劇挑 噺 劇眺 蛤 な and ち眺 噺 ど. However, in the case 
of the physical model unidirectional invisibility occurs only 
around the band gap frequency, and is dependent on the input 
signal intensity, reducing the unidirectional invisibility to the 
narrowband range around the Bragg frequency. The effect is 
more prominent at high input intensities which can be 
explained by the fact that the saturation of the gain breaks the 
balance of gain and loss thereby destroying the PT-symmetry.  

4 Conclusion 

The paper reports on the implementation of dispersive and 
saturated gain model in the TLM for the time-domain 
modelling of the unidirectional invisibility of the PT-
symmetric Bragg gratings. The saturated gain modifies the 
unidirectional invisibility of the grating making it dependent 
on the intensity of the input signal. The model shows that the 

realistic model of gain modifies the unidirectional invisibility 
of the grating reducing it to a narrowband phenomenon.  

 

Fig. 2. Plot of dispersion of PTBG for passive Bragg filter, 
PTBG with the ideal model, physical model (low and high 
intensity) for incident from the right.   
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