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Abstract

Truth Maintenance Systems (TMS) have been applied in a wide range of do-

mains, from diagnosing electric circuits to belief revision in agent systems. There

also has been work on using the TMS in modern Knowledge-Based Systems

such as intelligent agents and ontologies. This thesis investigates the applica-

tions of TMSs in such systems.

For intelligent agents, we use a “light-weight” TMS to support query caching

in agent programs. The TMS keeps track of the dependencies between a query

and the facts used to derive it so that when the agent updates its database, only

affected queries are invalidated and removed from the cache. The TMS em-

ployed here is “light-weight” as it does not maintain all intermediate reasoning

results. Therefore, it is able to reduce memory consumption and to improve

performance in a dynamic setting such as in multi-agent systems.

For ontologies, this work extends the Assumption-based Truth Maintenance

System (ATMS) to tackle the problem of axiom pinpointing and debugging in

ontology-based systems with different levels of expressivity. Starting with find-

ing all errors in auto-generated ontology mappings using a “classic” ATMS [23],

we extend the ATMS to solve the axiom pinpointing problem in Description

Logics-based Ontologies. We also attempt this approach to solve the axiom

pinpointing problem in a more expressive upper ontology, SUMO, whose un-

derlying logic is undecidable.
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Chapter 1

Introduction

Rational agents, including humans, need some form of knowledge. Knowl-

edge is the ability of an agent to represent what she knows or believes about

the world (representation) and to infer new knowledge from her current beliefs

and knowledge (reasoning). Elements of knowledge are, therefore, not separate

but instead connected to each other via some reasoning procedures. Some el-

ements of knowledge are assumptions, i.e., they are assumed explicitly by the

agent, while others are derivable from assumptions by reasoning processes. Be-

cause assumptions can come from different sources, knowledge inconsistency

is unavoidable. To understand why knowledge is inconsistent, it is necessary

to keep track of which pieces of knowledge derive another piece. This depen-

dency tracking technique is referred to “truth maintenance”,1 or more precisely

reason maintenance systems. This thesis is the investigation of the use of truth

maintenance approaches in knowledge-based systems, especially in ontology

systems and intelligent agent systems.

1It is interesting that although the main topic of TMS is to maintain consistency, the term
“truth maintenance” itself has not been used consistently. The term “truth maintenance sys-
tems” was firstly introduced by Doyle [30]. However, it is later referred to a more precise term
“reason maintenance systems” by Nebel in [65]. In fact, what a TMS aims to maintain is the
reasons to keep a belief, not the truth. However, as “truth maintenance systems” have been
used widely and persistently in the AI literature, we use this term in the rest of this thesis for
consistency.

1



Introduction

In the rest of this chapter, we present the key-concepts covered in this thesis, the

motivation of the work, its aims and objectives, and the structure of the thesis.

1.1 Key Concepts

For readability, we list below the key concepts which are frequently mentioned

in the rest of this thesis.

Knowledge-based systems are systems which are able to represent knowledge

and to exploit its knowledge to solve particular tasks using reasoning pro-

cedures.

Intelligent agents are entities which perceive their environment through sen-

sors and act through actuators to achieve some goals or to perform some

particular tasks.

Ontologies are knowledge bases which can represent knowledge in term of

concepts, instances, and their relationships. Nowadays ontologies are

usually referred as Description Logic-based knowledge bases.

An upper ontology defines abstract concepts which will then be used by do-

main specific ontologies to define more concrete concepts for different ap-

plications.

Ontology mapping is the process of mapping from an entity in one ontology

to one in another ontology. The mapping can be done in concept-level,

where a concept is mapped onto another concept, or in instance-level,

where an individual is mapped onto another individual. Ontology map-

ping aims to overcome heterogeneity among ontologies.

2
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1.2 Motivation

Truth Maintenance Systems (TMS) have been an active research area whose ap-

plications range from physical domains to software systems. Notable appli-

cations of TMS include model-based diagnosis (i.e., generating diagnoses or

explanations for system faults) and belief revision (i.e., revising the knowledge

base to adapt new knowledge updates). In general, these applications are based

on the ability to keep track of dependencies between data of a TMS. In my un-

dergraduate dissertation, I had a chance to work on one type of TMS, the Logic-

based TMS, to solve the problem of belief revision in an agent’s belief base [68].

The TMS is proved to be a very powerful tool and can be employed in differ-

ent problems and domains. A question has arised: how to construct different

types of TMS to solve problems in modern knowledge-based systems such as

ontologies in the Semantic Web and the knowledge bases of intelligent agents.

Surprisingly, there has not been many works on the applications of TMS in such

systems, especially in the Semantic Web area.

Therefore, this thesis aims to address the following specific research questions:

Research questions Which applications could the approach taken by Truth Mainte-

nance Systems, i.e., maintaining a dependency graph of data, deliver for intelli-

gent agent systems and ontology systems? How could a TMS be constructed to

provide such applications in these systems?

An intelligent agent uses a knowledge-based system to represent and reason

about its knowledge. In particular, an agent program sends queries to the KBS

and receives answers. The answer to such a query is based on whether the rea-

soner can derive an instance of the query using the agent’s current beliefs. Such

queries to the reasoner may be costly, especially with loosely-coupled reason-

ers which require a third-party interface. For example, SWI-Prolog [88] needs a

3
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Prolog/Java interface layer2 to be used in a Java-based agent platform such as

the GOAL agent programming language [48]. Therefore, caching such queries

might potentially bring benefits to the performance of an agent program. How-

ever, updates in the agent databases can invalidate cached results. As a result,

a question to answer is that how can the agent know which cached results are

affected by an update. Obviously, reasoner inferences can be recorded using

the justifications in a TMS dependency graph, and hence a TMS can be used to

answer this question. In fact, Truth Maintenance Systems have also been used

in many agents and multi-agent systems [3, 52, 61]. However, previous works

only use TMS on handling inconsistency in the agent’s belief base,e.g., belief

revision. In this thesis we would like to investigate the application of the TMS in find

invalidated cached queries in agent programming platforms.

Ontology debugging (axiom pinpointing) is the process of finding explanations

for an error (a derivation) in an ontology. After making further review of ex-

isting approaches to ontology debugging/axiom pinpointing, it is even more

interesting as many works on this topic such as in [57, 59, 64, 81] adopted a

glass-box approach, which is essential keeping track of the reasoner inferences

and collecting assumptions leading to contradictions. This is exactly what an

Assumption-based TMS (ATMS) [23] can do in its original form. The differ-

ence is that instead of building a dependency graph, the approaches mentioned

above use the tree-like structure of tableaux reasoning methods. Therefore, it is

an open research question whether a TMS such as the ATMS can be applied to solve the

problem of ontology debugging/axiom pinpointing. The ATMS in its original form

only supports Horn-clause inferences, and hence will not allow disjunctions,

which is essential to many useful Description Logics. Therefore, it is reasonable

to start with a problem where only Horn-clauses are allowed, and then extend

the ATMS’s ability to deal with more expressive logics, e.g., one with disjunc-

tions (and possibly loops) or one which is undecidable.

2JPL: http://www.swi-prolog.org/packages/jpl/java_api

4
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1.3 Research Objectives

The objectives this thesis aims to address are as follows.

• To apply a light-weight Truth Maintenance System to keep track of the

dependencies between queries and facts in the agent’s knowledge base.

These dependencies will be used to allow query caching in agent pro-

gramming platforms.

• To investigate the application of an ATMS to find incorrect mappings be-

tween Geo-spatial Knowledge-based Systems.

• To extend the ATMS to pinpoint axioms for ontologies encoded in a decid-

able but more expressive logic, the ALC description logic. In particular,

the ATMS is extended to deal with disjunctions and cyclic terminology.

• To employ the extended ATMS in axiom pinpointing problem of an upper

ontology, e.g., SUMO, which is represented by an undecidable logic, SUO-

KIF.

1.4 Structure of the Thesis

The rest of this thesis is divided into two main parts. The first part is the lit-

erature review, including Chapter 3, 2, and 4. The second part of the thesis,

presenting the main contributions, includes Chapters 5, 6, 7, and 8 . A sum-

mary of the chapters in this thesis is as follows.

Chapter 2 (Intelligent Agents and Knowledge-based Systems) gives a brief overview

of Intelligent Agents and Knowledge-based Systems. The Belief-Desire-

Intention (BDI) model and some agent programming languages and plat-

forms are also introduced.

5
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Chapter 3 (Description Logics and Ontology Debugging) introduces Descrip-

tion Logics and previous approaches to the ontology debugging/axiom

pinpointing problem. In this chapter, the ALC logic is used as an exam-

ple of reasoning services in Description Logics, including the problem of

ontology debugging and axiom pinpointing.

Chapter 4 (Truth Maintenance Systems) gives an overview of Truth Mainte-

nance Systems and their application in Knowledge-Based Systems. Two

popular types of TMSs are discussed, the JTMS and the ATMS. Their dif-

ferences and applications are also presented.

Chapter 5 (Query Caching in Agent Programs) presents an approach to query

caching in agent programs using a light-weight TMS. This chapter is partly

based on the joint work in [1]. My contribution is the development of

query caching in the GOAL programming language which uses SWI-Prolog

as the Knowledge Representation Technology.

Chapter 6 (Detecting Geospatial Ontology Mapping Errors) shows how to use

an ATMS to find errors in auto-generated ontology mappings. The geospa-

tial data are stored in a knowledge-based system supporting the Logic

of NEAR and FAR. In this chapter, we apply an ATMS to find all incor-

rect instance-mappings between two geospatial ontologies. This chapter

is partly based on the work in [66].

Chapter 7 (Debugging Ontologies with Disjunctions and Loops) presents an

extension of the ATMS to deal with non-Horn clauses, e.g., in ontologies

with disjunctions and loops. The chapter also presents results of exper-

iments comparing the performance of the extended ATMS and two De-

scription Logics reasoners, Pellet and MUPSter. This chapter is mainly

based on the paper [67].
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Chapter 8 (Axiom Pinpointing for SUMO) applies the extended ATMS in the

previous chapter to address the axiom pinpointing problem in SUMO, a

widely-used upper ontology.

Chapter 9 (Conclusion and Future Work) completes the thesis with a summary

of contributions and potential directions to future work.
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Chapter 2

Intelligent Agents and

Knowledge-based Systems

2.1 Introduction

In this chapter, we provide a wider context of the research presented in this the-

sis. In particular, we review intelligent agents and knowledge-based systems

(KBS). Intelligent agents perceive the environment and perform actions to ac-

complish their tasks. One approach to agent-based software is the Belief-Desire-

Intention (BDI) model where the notions of beliefs, desires (goals), intentions

(sequences of actions) are abstracted and represented in agent programming

languages and platforms. After introducing the BDI model in Section 2.2.2, we

briefly mention the popular agent programming languages and platforms and

also give an example of an agent program in GOAL [48] in Section 2.2.3. To be

able to achieved the goals efficiently, intelligent agents need to represent the do-

main knowledge and the perceptions of the environment in some form as well

as to reason about them. Therefore, in the last section, we give a short overview

8
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of Knowledge-Based Systems (KBS), i.e., systems which can represent knowl-

edge and exploit them using some reasoning mechanisms.

2.2 Intelligent Agents

2.2.1 Agents and the Environments

One definition of intelligent agents which is widely cited among Artificial In-

telligence community is from [79]: “An agent is anything that can be viewed as

perceiving its environment through sensors and acting upon that environment through

actuators”. The popularity of this definition is explained by its generality, i.e., it

captures not only software agents but also other types of agents, including hu-

man agents. Basically, an agent can be considered as a mapping from the states

of the agent’s environment to a course of actions. The agent’s environment

may be real (e.g., robotic agents, human agents, etc.) or virtual (e.g., software

agents), partially or fully observable (e.g., in a poker game or a chess game),

and can also contain other agents (e.g., in a team of agents).

The relationship between an agent’s environment and its actions is bi-directional

as shown in Figure 2.1. In one direction, the agent uses information from the

sensors about the current state of its environment to decide which actions to

perform. In the other direction, the actions performed by an agent can change

the environment. For example, consider a system consisting of several stock

trading agents. If one agent decides to sell or buy some stocks then the environ-

ments (e.g., stock prices and quantities) will change. This environment belongs

to not only the agent performing the actions but also other agents in the system,

and hence will affect future actions of all agents.

However, a question arises: how can the agent choose which actions to per-

form? So far we assume that the agent is only a straightforward mapping from

9
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FIGURE 2.1: An agent and its environment. This figure is based on the one in
[79].

an environment to some actions, i.e., it only reacts to the current environment.

The agent can think about which actions to choose based on what it wants to

achieve or to avoid. For example, a Google autonomous car agent may want

to achieve a task of getting to a place and also avoid running out of fuel on the

way. The process of perceving the environment, thinking about which action to

do, and performing an action in an agent forms a cycle, namely sense-plan-act,

as illustrated in 2.1. This is often called a deliberation cycle [21].

2.2.2 BDI Model

The sense-plan-act cycle is often used in an agent software model called Belief-

Desire-Intention (BDI), which abstracts human reasoning concepts. The model

has been implemented in different agent and multi-agent systems platforms

such as the Procedural Reasoning System (PRS) [40], 2APL [20], Jason [14],

GOAL [47, 48], etc. Three main components of the BDI model are as follows.

Beliefs represent information about the environment from the agent’s view.1

In logic-based BDI agents, beliefs are usually encoded as ground facts and

domain rules. When an agent perceives its environment in a sense-plan-act

1Some might prefer to refer to knowledge rather than beliefs. However it would be less
ambiguous to use the term beliefs rather than knowledge because a belief might be true or not
at a time point.
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FIGURE 2.2: The Procedural Reasoning System (see [40]).

cycle, the beliefs are also updated accordingly. Note that not all beliefs can

be perceived directly by sensors, instead some are implied by the agent

from other beliefs. For example, a stock trading agent might acknowledge

via sensors that the stock quantity is dropping for a particular stock and

have a domain rule that if a stock quantity drops then its price will be

higher. The agent will then infer that the stock price is higher and update

its belief about stock prices.

Desires are essentially the goals which a BDI agent wants to achieve (a.k.a.

achievement goals) or maintain (a.k.a. maintenance goals). Desires can be

declarative such as the mental or physical states the agent wishes to reach.

11
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In our example, the stock trading agent might want to own some amount

of money, i.e., to reach to the state of owning that amount of money.

Intentions are selected courses of actions to achieve some desires given the

agent’s beliefs. In the PRS, intentions are active plans and stored in a

process stack. Regarding the previous example of the stock trading agent,

intentions can be sequences of buying and selling actions to which the

agent commits to pursue its desires.

2.2.3 Agent Programming Languages

Even though agent and multi-agent systems, or more precisely the concepts

and theories of agency, can be implemented in many programming languages,

researchers have developed a range of agent programming languages and plat-

forms which can help programmers to develop such systems more efficiently

and easily. In [13], the authors provide a comprehensive survey of such pro-

gramming languages and platforms. The programming languages for imple-

menting agent and multi-agent systems can be either declarative, imperative, or

a hybrid of these two approaches. Roughly speaking, a declarative agent pro-

gramming language such as GOAL [48] specifies agent capabilities, beliefs, and

goals without controlling explicitly what the agents should do to achieve their

goals. In contrast, the imperative approach to implementing agent and multi-

agent systems, e.g., the JACK Agent Language [91], uses or extends a tradi-

tional imperative language like Java or C with some features of logic languages

to offer agent-specific abstractions. Some agent programming languages such

as 2APL [20], Jason [14], etc., adopt a hybrid approach that can specify beliefs

and goals in a declarative way while also employ the imperative approach on

describing plans, control of flows, etc. For clarity and readability, in the rest of

this thesis, we will provide examples and implementation in the GOAL agent

programming language.
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2.2.4 The GOAL Agent Programing Language

GOAL is basically a rule-based programming language written in Java. It is

built on top of a Knowledge Representation Technology (KRT), e.g., SWI-Prolog

[88]. The KRT provides GOAL with a mechanism to represent beliefs and goals

as well as to reason about them using rules specified by GOAL programmers.

Knowledge, beliefs, and goals in GOAL are declaratively defined using the KRT

language such as Prolog, Datalog, etc. Knowledge is the set of rules and facts

specifying the domain knowledge required by the agent to accomplish its tasks.

These rules and facts are static, i.e., they do not change over time. Beliefs, on the

other hand, are the set of facts representing the agent’s perceptions of the envi-

ronment. As the environment can change, so do the agent’s beliefs. A feature

distinguishing GOAL from other agent programming languages is declarative

goals, i.e., GOAL programmers can declare goals as the states which the agent

aims to reach. In GOAL, an achievement goal, a-goal implies that it is a goal

the agent want to be, but the agent currently does not believe that this goal has

been achieved. The rules in GOAL are grouped into modules. The main mod-

ule provides the strategies to select an action. The action specification in the

init module specifies the preconditions and post conditions of actions. The event

module processes new percepts on the environment received by the agent and

possibly updates the agent’s beliefs accordingly.

init module {

knowledge {

block(X) :- on(X, _).

clear(X) :- block(X), not( on(_, X) ).

clear(table).

tower([X]) :- on(X, table).

tower([X, Y| T]) :- on(X, Y), tower([Y| T]).
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}

beliefs { on(b1,b2). on(b2,b3). on(b3,table) }

goals { on(b1,table), on(b2,table), on(b3,table)}

actionspec {

move(X, Y)

{ pre { clear(X), clear(Y), on(X, Z), not( on(X, Y) ) }

post { not( on(X, Z) ), on(X, Y) } }

}

}

main module [exit=nogoals]

{

program{

#define misplaced(X) a-goal(tower([X| T])).

#define constructiveMove(X,Y) a-goal(tower([X,Y|T])),bel(tower([Y|T])).

if constructiveMove(X, Y) then move(X, Y).

if misplaced(X) then move(X, table).

}

}

event module{

program {

forall bel(percept( on(X,Y)), not(on(X,Y))) do insert(on(X, Y)).

forall bel(on(X,Y), not( percept(on(X,Y)))) do delete(on(X, Y)).

}

}

LISTING 2.1: Agent Program for Solving Blocks World Problems written in

GOAL

An example of GOAL agent programs is given in Listing 2.1. This listing presents

a GOAL agent program for solving Blocks World Problems. In Blocks World,
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the agent is given a set of blocks placed at some initial positions and a goal stat-

ing the positions of the blocks which the agent needs to achieve. The task is

to move the blocks from the initial configuration (i.e., the initial beliefs) to the

final configuration (i.e., the goal). As the agent is able to perceive changes in the

environment using the event module, it can update its beliefs accordingly. In

this example, achievement goals a-goal have been used to define a misplaced

block and a constructive move. For example, a move is constructive if it helps

the agent to get closer to the goal given its current beliefs.

A more thorough explanation for each part in a GOAL agent program is given

in Section 5.2. Within the scope of this chapter, we only give a brief overview of

the main components in a GOAL agent program. For more details on program-

ming intelligent agents in GOAL, we refer the reader to [48].

2.3 Knowledge-based Systems

Most intelligent agent systems use some form of knowledge to solve their tasks,

and hence they can be considered as a special class of systems, namely knowledge-

based systems. Knowledge-based systems (KBS), as defined in [16], are systems

“for which the intentional stance is grounded by design in symbolic representations”.

The symbolic representations of knowledge in such systems are referred to

as their knowledge bases. There are two important features of a knowledge-

based system: the ability to represent knowledge and the ability to reason about

knowledge.

Knowledge representation ability is particularly important for systems which

required knowledge reuse, i.e., systems where the tasks are not fixed. For exam-

ple, a medical system which can hold knowledge of diseases can use this knowl-

edge to give recommendations to doctors as a decision support system. The
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knowledge can later be reused to generate medical reports. Also, as the knowl-

edge of diseases have been conceptualised and represented in some form, it can

adapt to various concrete circumstances, e.g., to different patients. Knowledge

representation in a KBS correspond to a component of KBS, namely the Knowl-

edge Base (KB). In a KB, knowledge are normally conceptualised in symbolic

representation using some formalisms. Some well-known formalisms repre-

senting knowledge are first-order logics, description logics, Horn clauses2, etc.

Depending on the level of expressiveness required and the computational tasks,

different KBS can choose different formalisms to represent their knowledge.

A formalism for knowledge representation is essential because of the need to

reason about knowledge. We call knowledge reasoning the process of inferring the

implicit knowledge from explicit ones, and this process is normally performed

by an “inference engine” of the KBS. For example, the KB of Blocks World agent

represented in Listing 2.1 of the previous section, uses Horn clauses as the for-

malism. Given the knowledge of Blocks World and the current beliefs about

the environment, a Blocks World agent can use the inference engine (e.g.,, SWI-

Prolog) to reason and then decide which actions to perform to achieve its goal.

There are two main modes of reasoning in an inference engine, backward rea-

soning and forward reasoning. Backward reasoning (a.k.a. backward chaining

or goal-driven reasoning) starts from the goal and and tries to find the con-

crete data supporting the goal (if such data exist). A famous implementation of

backward reasoning is the PROLOG programming language [87]. In contrast,

forward reasoning (a.k.a. forward chaining or data-driven reasoning) starts from

concrete data and tries to derive as many data as possible using the reasoning

rules. This mode of reasoning is usually employed in expert systems3 to enrich

their KB by adding implicit knowledge obtained during the reasoning process.

2Horn clauses are usually referred to as if-then rules or ground facts.
3An expert system, in general, is a system designed to solve complex tasks by reasoning

about some domain knowledge.
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2.4 Conclusion

In this chapter, we introduced intelligent agents and knowledge-based systems.

We described the concept of intelligent agents and how they interact with their

environments. We provided a brief overview of BDI model of agent-based soft-

ware as well as the main approaches to agent programming languages and

tools. In particular, we focused on the GOAL agent programming language as

this background will be necessary for the demonstration and the implementa-

tion of the work in Chapter 5. Finally, we reviewed knowledge-based systems,

their features, and their components so that it will be easier for readers to follow

the next chapter, which focuses on a more specific knowledge-based system, the

Description logic-based KBS.
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Chapter 3

Description Logics and Ontology

Debugging

3.1 Introduction

Description Logics (DL) [5] are a family of logics which are well-known for rep-

resenting conceptual structures, i.e., high-level and structural descriptions of

abstract objects. It has received much attention from researchers in Artificial

Intelligence since the vision of the Semantic Web was formed [12] because DL

has been used as a logical foundation for the future web. Apart from that, De-

scription Logics have also been employed in a variety of applications such as

software engineering, medicine, domain modelling, information systems, digi-

tal business, etc.

A DL-based KB system is often referred to DL-based ontologies, or more gen-

erally, ontologies. For example, Figure 3.1 shows a simple ontology describing

some animals. Concepts Animals, Sheep, Cow, and MadCow are describing a

class of animals, a class of sheep, a class of cows, and a class of mad cows re-

spectively. Axiom Sheep ⊑ Animal defines that Sheep is a sub-class of Animal,
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i.e., a sheep is an animal. A more complicated concept definition, the definition

of MadCow, states that a mad cow is a cow which eats either a sheep or a cow.

Sheep ⊑ Animal

Cow ⊑ Animal ⊓ ∀eats.¬Animal

MadCow ⊑ Cow ⊓ ∃eats.(Sheep⊔Cow)

FIGURE 3.1: A simple ontology describing animal concepts.

Beside representation ability, DL-based Knowledge Base Systems provide rea-

soning services to extract useful but implicit information from explicit data.

Some standard reasoning services with ontologies include concept satisfiabil-

ity test (i.e., checking if a concept could have any instance), subsumption (i.e.,

checking whether one concept subsumes another), classification (i.e., providing

a hierarchical structure of concepts in the KB), instance checking (i.e., check-

ing if a particular individual belongs to a concept). . . Moreover, there are non-

standard reasoning services which help users to create and manage ontologies

more easily and efficiently. Among these are axiom pinpointing and ontology

debugging. Axiom pinpointing [81] is a process of getting sets of axioms re-

sponsible for a given consequence of the ontology. This service is similar to

explanations in other KB systems, i.e., explaining why something is derivable

from the KBs. Ontology debugging is a special case of axiom pinpointing as it

involves detecting the sources of inconsistency (i.e., semantic defects) in ontol-

ogy. However, the role of a debugging procedure is usually not only to pinpoint

the sources of inconsistency, but also to provide potential repairs. Currently, ax-

iom pinpointing and ontology debugging services have not been integrated in

most existing DL reasoners.1 This chapter briefly introduces some background

1By the time of writing this report, only Pellet reasoner supports explanation service for
ontologies. The upcoming version of RacerPro reasoner (RacerPro 2.0) has also been announced
to provide similar features.
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on Description Logic and current approaches to axiom pinpointing and ontol-

ogy debugging in the literature.

The rest of this chapter is divided into three parts. Section 3.2 provides the

preliminaries of a Description Logic together with the reasoning services. Sec-

tion 3.3 explains two non-standard reasoning services which parts of the thesis

aims to provide: axiom pinpointing and ontology debugging. Finally, Section

3.4 is an overview of the main approaches to ontology debugging and axiom

pinpointing.

3.2 Description Logics - An Overview

This section introduces the syntax and semantics of a widely known Descrip-

tion Logics ALC [83]. Also, we present two main components of a DL-based

Knowledge Base, TBox and ABox (a.k.a. the terminological and assertional

parts of the ontology respectively). Finally, the main reasoning services of a

DL-based KB, including the problem of axiom pinpointing and ontology de-

bugging, are reviewed.

3.2.1 ALC Syntax and Semantics

Each description logic has a specific syntax based on which concepts are de-

scribed. Given a set of atomic concept names and a set of atomic role names,

the concept constructors could be used to describe new concepts. One popu-

lar description logic variant is ALC, whose syntax and semantics are described

below, as in [8].

Definition 3.1 (ALC Syntax). An ALC concept description C could be either

• An atomic concept A ∈ NC ,
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• ⊤, ⊥,

• ¬D (the complement of a concept),

• C1 ⊔C2 (disjunction of two concepts),

• C1 ⊓C2 (conjunction of two concepts),

• ∃r.D (existential restriction), or

• ∀r.D (universal restriction)

where NC and NR are the sets of atomic concept names and atomic role names,

respectively, r ∈ NR, and D,C1,C2 are concept descriptions.

Definition 3.2 (ALC Semantics). An interpretation is of the form I = (∆I ,.I )

where ∆I (the domain) is a non-empty set of individuals and the interpretation

function .I will interpret each concept name C as a set CI ⊆ ∆I and every role

name r as a binary relation rI ⊆ ∆I × ∆I . Given that r ∈ NR and D,C1,C2

are concept descriptions, the semantics of the concept constructors defined in

Definition 3.1 are as follows.

• ⊤I = ∆I , ⊥= ∅

• (¬D)I = ∆I \D (the complement of a concept)

• (C1 ⊔C2)
I = CI

1 ∪C
I
2 (disjunction of two concepts)

• (C1 ⊓C2)
I = CI

1 ∩C
I
2 (conjunction of two concepts)

• (∃r.D)I = {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ DI} (existential restriction)

• (∀r.D)I = {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ DI} (universal restriction)

Basically, the top (⊤) and bottom (⊥) represents the domain and the empty

set. The complement of a concept (e.g., ¬D) is interpreted as everything in
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the domain which is not in the set. Concept conjunctions (or disjunctions) are

to describe the sets of individuals that belong to both concepts (or either of

them). Existential restrictions are used to express concepts which have at least

one r−role link to a specific concept. On the other side, universal restrictions

(a.k.a. value restrictions) are constraints stating that if a concept has r−role

links, all of them must be linked to a specific concept. For example, the concept

description

Person⊓ ∃lives.BritishCity

describes a person who lives in a British city (but they can live in other non-

British cities as well). Similarly, a person who only robs the rich or never attacks

good people can also be described as

Person⊓ (∀robs.RichPerson⊔¬∃attacks.GoodPerson).

Note that a concept description can be written in Negation Normal Form (NNF)

where the negation (i.e., ¬) is moved to the most inner concepts (e.g., the pre-

vious concept description could be rewritten as Person ⊓ (∀robs.RichPerson ⊔

∀attacks.¬GoodPerson)).

ALC is a basic description logic which could be extended to more expressive

DLs by adding more concept and role constructors (e.g., number restrictions,

role restrictions, etc). For instance, with number restrictions, the language can

describe the concept of a binary tree as ≤2 hasChild.BinaryTree.

Depending on the type of applications, one can choose a DL with a trade-off

between tractability and expressiveness. With number restrictions, transitive

roles and inverse role restrictions, ALC can be extended to SHIQ, the logic

behind the simplest variant of the Web Ontology Language (i.e., OWL Lite).

This description logic is supported in most DL reasoners such as Pellet [86],

Fact [49], and RacerPro [45]. For ontologies which prefer the performance of
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reasoning services to expressiveness, there exist light-weight DLs such as EL

[90], which allows only conjunctions and existential restrictions but provides

polynomial time for standard reasoning tasks.

3.2.2 TBox and ABox

Normally, a DL-based ontology is divided into two parts: a terminological

part which has concept definitions and an assertional part which contains facts

about individuals, namely TBox and ABox. In this section, we provide descrip-

tions of these components in a DL-based Knowledge Base and a short introduc-

tion to typical reasoning services with an ontology.

So far we can express concept descriptions using constructors mentioned above.

However, as one might have very complex concept descriptions, it is really im-

portant to have concept definitions (i.e., to give names for concept expressions).

For example, one could define a British City as a city which is a part of Britain

by writing BritishCity ≡ City ⊓ ∃isPartOf.Britain.

Definition 3.3 (Concept definition). A concept definition is a statement of the

form C ≡ D where C is a concept name and D is a concept description.

More generally, one can use the general concept inclusion (a.k.a. general inclu-

sion) axiom to express the ‘subclass-superclass’ relationship between concept

descriptions such as a city is a kind of populated place, or anyone who has a

son is a parent. These statements can be encoded in ALC as follows:

City ⊑ PopulatedP lace;Person⊓ ∃hasSon.Person ⊑ Parent.

Definition 3.4 (General concept inclusion). A general concept inclusion (GCI)

is a statement of the form C ⊑ D where C and D are concept descriptions.
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It is clear that GCIs can be used to express concept definitions (e.g., C ≡ D is

the same as C ⊑D andD ⊑ C). The terminological part of a DL-based ontology

consists of GCIs and is refered as the TBox.

Definition 3.5 (TBox). A TBox is a finite set of GCIs. An interpretation I satisfies

a TBox T if ∀C ⊑ D ∈ T ,CI ⊆ DI .

Definition 3.6 (Unfoldable TBox). For all ax : C ⊑ D ∈ T where C is a concept

name andD is a concept description, T is called unfoldable iff: C appears at most

once in the left hand side of a concept definition (definitional); and D contains

no direct or indirect reference to C(acyclic) .

One might think of TBox as the set of rules in a rule-based system. Then the

question is where do the facts go? Basically, they are put in a part of the KB,

namely the assertional part (or ABox for short). Some examples of axioms

could be in an ABox are BritishCity(Nottingham) (stating that Nottingham

is a British city), attacks(RobinHood,Sheriff) (presenting the fact that Robin

Hood attacks the Sheriff), etc.

Definition 3.7 (ABox). Let a, b ∈ ∆I (a, b are called individuals), r is a role de-

scription, and C is a concept description, an ABox A is a finite set of assertional

axioms of the form C(a) or r(a, b).

An interpretation I satisfiesA if aI ∈ CI holds for all C(a) ∈ A and (aI , bI) ∈ rI

holds for all r(a, b) ∈ A where .I maps every aI to a ∈ ∆I .

Definition 3.8 (DL-based knowledge base). A DL-based knowledge base is a

pair KB = (T ,A) where T is a TBox and A is an ABox. An interpretation I

satisfies KB if its satisfies T and A

24



Description Logics and Ontology Debugging

3.2.3 Reasoning Tasks for a DL-based KB

Up to this point, one might wonder why there is such a distinction between

TBox and ABox. The answer to that question lies in the different reasoning

problems for TBox and ABox, so that treating them separately will make things

clearer.

For the TBox, the typical reasoning tasks are subsumption checking and satisfi-

ability testing. In fact, a subsumption problem can be reduced to a satisfiability

test. For example, C ⊑T D is equivalent to C ⊓ ¬D is unsatisfiable w.r.t. T .

Therefore, it is enough to have a satisfiability test algorithm to perform reason-

ing tasks for the TBox.

Definition 3.9 (Concept subsumption). Let T be a TBox and C, D concept de-

scriptions, C ⊑T D iff CI ⊆ DI for all models I of T .

Definition 3.10 (Concept satisfiability). Let T be a TBox and C a concept de-

scription, C is satisfiable w.r.t. T iff there exists an interpretation I of T such

that CI 6= ∅.

Inference problems for ABox are consistency checking (Definition 3.11) and in-

stance checking. Consistency testing shows whether there is any contradiction

in a KB while instance checking tests if an individual a belongs to a concept

C. One might observe the fact that the satisfiability problem could indeed be

reduced to a consistency problem, i.e., C is satisfiable w.r.t. T iff A = {C(a)} is

consistent w.r.t. T . This observation is important for the ontology debugging

tasks which we will cover in the following sections because roughly speaking,

debugging a TBox with unsatisfiable concepts could be reduced to debugging

an inconsistent ABox.

Definition 3.11 (ABox consistency). An ABox A is consistent w.r.t. a TBox T iff

it has a model that is also a model of T .
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Definition 3.12 (Instance checking). An individual a is an instance of a concept

description C w.r.t. T and A iff aI ∈ CI for all models I of T and A.

3.2.4 Tableau-based Reasoning

To solve reasoning problems in Description Logics, a method called tableau-

based reasoning is frequently used due to the tree-model property of such lan-

guages, i.e., a model can be constructed as a tree-like structure. This section

briefly describes a tableau-based reasoning procedure for solving reasoning

problem in Description Logics. A more comprehensive review of tableau-based

methods are given in [5], including full examples and optimisation techniques.

In general, a tableau is a set of rules, namely completion rules. These rules

are used to decompose a formula into sub-formulae. Intuitively the completion

rules try to build a model for the theory if such model exists. To do so, a tableau-

based method builds a completion tree consisting of nodes. A node is a leaf-

node if either there is no rule applicable to the formulae in that node (i.e., the

node is completed), or it has a clash (explained later in Definition 3.17), i.e., a

contradiction. A leaf-node with a clash means that it is not possible to construct

a model using the formulae in this node. A completed leaf-node in the tree

represents a model of the theory, so if such nodes exist, there is at least a model

of the theory, i.e., it is consistent.

Before applying the completion rules, all formulae in a theory are normalised

into a normal form so that they can be processed by the rules. Usually the

Negational Normal Form (NNF) is used as it is more suitable to introduce con-

tradictory formulae (clashes), e.g., C(i) and ¬C(i). A completion rule can be

either deterministic or non-deterministic. A rule is non-deterministic if it can

26



Description Logics and Ontology Debugging

introduce alternatives, i.e., choices. Otherwise, the rule is deterministic. For ex-

ample, a rule decomposing a conjunction is deterministic while a rule decom-

posing a disjunction is non-deterministic as any of the disjuncts can be used to

build a model. When a non-deterministic rule is applied, a new node (i.e., a

new branch branch) of the completion-tree is created. The application of the

completion rules stops if either a model of the theory is found (i.e., there is at

least one completed leaf-node), or there is not possibly any model for the theory

(i.e., all leaf-nodes have at least one clash).

The reasoning tasks mentioned in Section 3.2.3 can be solved using a tableaux

algorithm. For example, to solve the satisfiability testing of a concept descrip-

tion C w.r.t. T , one can assume that there exists an individual i of C, and apply

the completion rules with C(i) and the normalised formulae in T to build a

model. If such a model in which iI ∈ CI exists then C is satisfiable w.r.t. T .

3.3 Axiom Pinpointing and Debugging in a DL-based

Ontology

3.3.1 Axiom Pinpointing

Useful ontologies are usually large. For instance, a well-known medical on-

tology SNOMED CT2 has more than 370,000 subsumption axioms. Due to the

large size of the ontologies, it is difficult for a human to understand the im-

plicit relationships or to measure the effects while modifying the ontologies.

Moreover, most concepts in such ontologies are created by experts through col-

laboration, and hence it would be very tricky for a normal ontology user to ex-

plain a consequence, i.e., to find the sets of axioms supporting that consequence.

2Systematized Nomenclature of Medicine - Clinical Terms
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Even if this is possible, it is sometimes necessary to find not one but all the ex-

planations why a consequence holds. The tasks of finding these explanations

in DL-based ontologies is referred as axiom pinpointing. Generally, axiom pin-

pointing has two main applications. On the one hand, it helps users/authors

to understand the ontology better without a very expertised knowledge (i.e.,

explanation). On the other hand, it helps users to resolve inconsistency in an

ontology and to change an ontology so that unwanted axioms will be avoided

(i.e., debugging). These are two important tasks in ontology engineering.

Although all DL-reasoners support the standard reasoning tasks mentioned

above such as satisfiability test for TBoxes or consistency test for ABoxes, there

still exists the need to produce explanations automatically as a non-standard

reasoning task (the term non-standard reasoning service was firstly used for

axiom pinpointing in [81]). Intuitively, an explanation for a consequence c in

a DL-based KB (T ,A) is a set of axioms e ⊆ T sufficient for deriving c. There

can be exponentially many such explanations. It is only necessary to consider

the minimal explanations, i.e., ones which do not subsume other explanations.

These minimal explanations are also referred to justifications [55], MUPS3 [81],

MinA4 [9], or environments [66]. For consistency, we will use the term “explana-

tion” in the rest of this thesis.

Definition 3.13 (Logical entailment in a KB). Given a KB = (T ,A) and an ax-

iom ax, KB |= ax iff for every interpretation I satisfying T , I satisfies ax.

Definition 3.14 (Explanation of a consequence). Given a KB = (T ,A) and an

axiom c, the set of axioms e ⊆ T is an Explanation of c iff (e,A) |= c and for all

e′ ⊆ e, (e′,A) 6|= c.

It should be noticed that this definition of an explanation of a consequence

is similar to the notion of justification for a sentence presented in [55]. The

3Minimal Unsatisfiable Preserving Sub-TBoxes
4Minimal Axiom Set
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definition also corresponds to the Minimal Axiom Set of an input Γ w.r.t. a

consequence-property P in [9]. For the case of MUPSs [81], because the au-

thor restricts the definition of explanations for only an unsatisfiable concept

in a TBox, one could easily see that a MUPS for an unsatisfiable concept C is

equivalent to an explanation e of the consequence C ⊑⊥ in our definition.

3.3.2 Ontology Debugging

Since the purpose of axiom pinpointing is to find explanations for an arbitrary

consequence, one can use this service to pinpoint axioms responsible for a con-

tradiction. This section introduces briefly the basics of ontology debugging, in

particular the typical semantic defects occurring in an ontology.

Before going to the formal definitions of debugging an ontology, one might

wonder how can an ontology have ‘bugs’. There are three main reasons why

ontologies have bugs and debugging them is not trivial. The first and most

obvious source of bugs in an ontology is from modeller mistakes. The whole

idea of ontologies is to give a common vocabulary, and hence it requires efforts

from many modellers. The more modellers an ontology has, the more inconsis-

tent it could become, not to mention that for open-sourced ontologies, not all

modellers are experts. The second source of semantic defects in ontologies is

migration from one ontology language to another. The third possible reason for

inconsistency in an ontology is that it uses concepts from different upper on-

tologies, i.e., ontologies defining abstract concepts which will then be used by

domain specific ontologies to define more concrete concepts for different appli-

cations. An example of merging two large upper ontologies such as SUMO5 and

5SUMO (Suggested Upper Merged Ontology) is an ontology for abstract concepts, usually
used with a domain ontology (see http://www.ontologyportal.org).
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CYC6 in the same document can lead to more than 1000 unsatisfiable concepts

(see [80]).

Definition 3.15 (Incoherence). A TBox T is incoherent iff there is at least one

unsatisfiable concept in T .

Definition 3.16 (Inconsistency). A KB = (T ,A) is inconsistent iff there is no

model for it, i.e., there does not exist an interpretation I satisfying KB.

Recall in Section 3.2.3, it has been shown that the unsatisfiability test can be

reduced to a consistency test. Therefore, the task of debugging an incoherent

ontology can also be reduced to debugging an inconsistent KB, even though an

ontology could be incoherent but consistent. For example, an ontology

KB1 = ({C ⊑ D ⊓¬D},{D(a)})

is incoherent as C is unsatisfiable, but it is still consistent as there is a model for

KB where CI = ∅.

Given an ALC ontology, the only form of contradiction is that an individual a

belongs to a concept C and its complement ¬C as there is no number restriction

(otherwise, one has another kind of contradiction such as C ⊑≤2 r.D⊓ ≥3 r.D).

Definition 3.17 (Clash). A pair of assertional axioms (C(a),¬C(a)) is a clash in

KB = (T ,A) iff KB |= C(a) and KB |= ¬C(a).

From our point of view, the process of debugging ontology involves two parts.

The first is to identify which sets of axioms are responsible for the inconsistency

(i.e., pinpointing). The second step is to propose how can these axioms be mod-

ified to make the concept satisfiable, or to restore consistency to the Knowledge

Base (KB) with respect to some particular criteria. Within the first step, one

6An upper ontology for general knowledge. The open-sourced version OpenCYC currently
has about 50,000 concepts and millions of assertions (see http://opencyc.org).
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could also prepare for the later repair step by annotating which parts of the

problematic axioms really cause the contradictions as there can be very com-

plicated concept descriptions containing concepts which are irrelevant to the

inconsistency. For example, consider the definition of concept MadCow

MadCow ≡ Cow ⊓ ∃eats.((∃partOf.Sheep)⊓Brain).

If MadCow is an unsatisfiable concept, the sources of the unsatisfiability can

come from different parts of the axioms (e.g., Cow, Brain, ∃partOf.Sheep, etc).

If the source of errors is only from concept Cow, one does not need to re-

move other parts of the axioms because some implicit entailments can be lost.

In other words, it is possible to generalise the problematic concept descrip-

tion to eliminate inconsistency in this case (e.g., making the axiom become

MadCow ≡ ∃eats.((∃partOf.Sheep)⊓Brain).). Also, in the case of multiple un-

satisfiable concepts in an ontology, it is very useful to consider parts of an axiom

instead of the whole axiom. Let us assume that concept Cow is the source of 10

contradictions and Brain is the source of only one contradiction. Certainly, one

would prefer removing Cow to removing Brain from the axiom.

However, how to change axioms is still a controversial issue, as it depends on

the type of application domain. In critical domains such as medicine, some

concepts should not be automatically corrected because it is not really safe to

automatically repair an ontology by modifying the concept descriptions with-

out expertise. In a use case in Chapter 4, the modeller decided to remove all

problematic axioms, although removing one axiom would have been enough

to restore consistency. Therefore, minimal-change approaches to restore consis-

tency do not always work. We believe that one can use the parts-of-axioms idea

to give suggestions to users or to annotate the problematic axioms rather than

allow an ontology to be repaired automatically.

31



Description Logics and Ontology Debugging

3.4 Related Work on Ontology Debugging

In this section, there is a brief introduction to main approaches to ontology de-

bugging and axiom pinpointing. Generally, work on ontology debugging and

axiom pinpointing can be grouped into two main groups: glass-box and black-

box.

Black-box approach uses the DL-reasoner as a black box to compute explana-

tions.

Glass-box approach modifies internal structures of the DL-reasoner to anno-

tate derivations to a given consequence.

3.4.1 Black-box Approach

Black-box methods do not need to be bound with any specific Description Logic,

as they only use the reasoner as an external component. All DL-based reasoners

can answer queries such as “Is a concept C satisfiable w.r.t. TBox T ?” (Satisfia-

bility Test). If the answer is no, it means that some subsets T ′ of T can be the set

of axioms responsible for the unsatisfiability of C. Otherwise, T is not the set

of axioms responsible for C’s unsatisfiability. However, assume that Sat(T ,C)

is the C satisfiability test function w.r.t. T , the real matter is to find the minimal

set of axioms responsible for the C-unsatisfiability if Sat(T ,C) = false. To do

so, one can start with the empty TBox T ′ = ∅ and insert axioms into T ′ as long

as Sat(T ′,C) = true (expanding step). At the point where Sat(T ′,C) = false, the

shrinking step can be performed. All axioms in T ′ are removed apart from the

ones that removing them can make Sat( tbox′,C) = true, i.e., ones are really es-

sential for Sat(T ,C) = true. Note that by this strategy, one can only find one

minimal set of axioms responsible for C-unsatisfiability.
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Obviously, one might prefer not to apply the expanding step mentioned above.

Instead they set T ′ = T and then do the shrinking. However, this is very inef-

ficient because the explanations for a contradiction are usually very small com-

pared to the size of the original TBox. Therefore, the main concern while using

black-box methods is to choose which T ′ to start shrinking at the beginning. If a

reasonably small T ′ is used for shrinking, black-box approaches will be very ad-

vantageous because they do not restrict the expressiveness of the ontology lan-

guages, even though the completeness of the procedure cannot be guaranteed

(i.e., cannot find all minimal explanations). Fortunately, by combining black-

box calls with Reiter’s Hitting Set Tree algorithm [75], it is possible to find all

the explanations for concept unsatisfiability, according to the work reported in

[56].7

For example, given a TBox T = {ax1, ax2, ax3, ax4, ax5}where Sat(T ,C) = false

and there are two minimal explanations for the unsatisfiability of a concept C

w.r.t. T : e1 = {ax1, ax2, ax3}; e2 = {ax3, ax4}. One can perform the shrinking

step by removing each axiom from T in turn until Sat(T ,C) = true. Assume

that at the beginning T ′ = T and the axioms are removed in their ascending

index order, the one will have the following transformations of T ′:

{ax1, ax2, ax3, ax4, ax5}
1: 6ax1
−→ {ax2, ax3, ax4, ax5}

2: 6ax2
−→ {ax3, ax4, ax5}

3
−→{ax3, ax4, ax5}

4
−→

{ax3, ax4, ax5}
5: 6ax5
−→ {ax3, ax4}.

Note that only e2 is found as the minimal set of axioms and if the axioms are

removed in their descending index order then only e1 is found. Also, in step

3 and step 4, ax3 and ax4 are not removed because removing them will make

Sat(T ′,C) = true. The example above uses a naive strategy, as it needs to loop

through the whole TBox to find only one single minimal explanation. However,

with a simple trick, one can also find all the minimal explanations. Assume that

7A hitting set of a collection C of conflict sets is a set H such that {H ∩ c 6= ∅ | c ∈ C}. A
hitting set of C is minimal iff none of its subset is a hitting set of C.
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after obtaining an explanation e, one firstly needs to consider the test Sat(C,Ti)

where Ti ∈ {T \ {axi} | axi ∈ e}. Sat(C,Ti) = false implies that Ti still has some

other explanations for the unsatisfiability of C w.r.t. T .8 The second step is

to find the explanation for Sat(C,Ti) = false. These steps are repeated until

Sat(C,Ti) = true for all Ti. In general, given EXPLAIN(C,T ) as the function to

find a single explanation for the unsatisfiability of C w.r.t. T , the algorithm to

find all explanations for the unsatisfiability of C w.r.t. T is as follows.

Algorithm 3.1 Find all explanations for a concept unsatisfiability given a func-
tion to find a single explanation

procedure EXPLAIN-ALL(C,T ,AllExplanations)
e← EXPLAIN(C,T )
AllExplanations← AllExplanations∪ {e}
Let T = {T \ {axi} | axi ∈ e, Sat(C,T \ {axi}) = false}
if T = ∅ then

return AllExplanations
end if
for Ti ∈ T do EXPLAIN-ALL(C,Ti,AllExplanations)
end for

end procedure

Note that in EXPLAIN-ALL, AllExplanation is initially an empty set ∅ and accu-

mulates gradually each time EXPLAIN is called. The algorithm presented above

uses a similar idea as one in [56] to find all justifications for an OWL entail-

ment. However, the authors in [56] use Explain(C,T ) to compute a Reiter’s

Hitting Set Tree (HST) [75] to find all the minimal justifications for the entail-

ment. This approach benefits from optimisation techniques for the HST algo-

rithm, and hence can be more efficient than our simple approach. Nevertheless,

they all come from the basic idea, EXPLAIN-ALL(C,T ′)⊆ EXPLAIN-ALL(C,T ) if

T ′ ⊆ T .
8Note that if C is unsatisfiable w.r.t. T ′ ⊆ T , it is also unsatisfiable w.r.t. T .

34



Description Logics and Ontology Debugging

3.4.2 Glass-box Approach

The Glass-box approach takes advantage of knowing the internal structure of

the reasoner (i.e., the logic and language it provides), so that during the rea-

soning steps, it annotates an assertion with the set of axioms used to derive it.

Schlobach et al. [81] were one of the first to attempt ontology debugging us-

ing this approach. In [81], the authors extend the tableau-based algorithm for

testing concept satisfiability to pinpoint sets of axioms responsible for a con-

cept unsatisfiability (referred as MUPSes). Every assertional axiom added into

a node is associated with the sets of axioms used to derive it. When a clash is

found, a minimisation function for a pair (A(a),¬A(a)) is used to compute a

formula ϕ, which is a disjunction of conjunctions of propositions axi (each con-

junction C : ax1 ∧ . . . ∧ axn is considered as a set S = {axi | C |= axi} of axioms

responsible for the clash). The found sets of axioms might be not minimal, and

hence it needs to be minimised by finding the prime implicants of the minimi-

sation function ϕ, i.e., the minimal conjunctions implying ϕ.9 Each prime im-

plicant is now a MUPS. From that, one can obtain MUPS(C,T ), which is the

set of all minimal sets of axioms responsible for C-unsatisfiability w.r.t. TBox T .

The results reported in [81] were extended in [80] by applying Reiter’s model-

based diagnosis to find a set of diagnoses for an incoherent TBox. Given a set of

MUPSs w.r.t. a concept C and a TBox T as conflict sets, the author uses the Re-

iter’s Minimal Hitting Set Tree Algorithm [75] to produce potential diagnoses

for the unsatisfiability of C w.r.t. T . In general, although the work in [80, 81]

presents a complete framework to ontology debugging, there are still some is-

sues such as it is restricted to only unfoldable ALC TBox and after producing

diagnoses, it will be up to the user to choose which diagnoses (i.e., potential de-

fects) they want to fix. Moreover, even though removing completely all axioms

9For example, given a boolean function f(a, b, c, d) = abc+ bcd+ a+ cd, some implicants of
f can be abc, bcd, a, cd (the number of implicants is in exponential to the number of variables).
However, the prime implicants of f are only a and cd.
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involved in a diagnosis can resolve the inconsistency, some diagnosis might not

reflect the real problematic axioms.

Another way to look at the ontology debugging problem is to find the max-

imally consistent subsets of the ontology, as reported in [64]. This approach

produces the same results as the combination between [81] and [80] to compute

a set of maximally consistent sub-ontologies. The expansion rules for annotat-

ing assertions are similar to ones in [81]; however, the index-set I is used to

represent a set of axioms responsible for an assertion instead of the minimisa-

tion function ϕ as in [81]. The main contribution of [64] is that the maximal

satisfiable sets of axioms w.r.t. a TBox and an unsatisfiable concept are found

immediately after firing the expansion rules (i.e., the axioms involved in a clash

will be excluded when the clash is found), and hence it does not need an extra

step to compute diagnoses as in [80]. The approach in [64] is then extended

in [59, 60] to remove not the whole axioms but only parts of them. Also a re-

fined blocking technique is proposed in [59] to deal with cyclic axioms so that

termination is still guaranteed. A further contribution of [59, 60] involves mea-

suring the impact of a change in a TBox axiom and classifying changes into two

groups, helpful and harmful changes. Harmful changes will not remove the

clashes, but can possibly lead to other clashes while helpful changes can not

only resolve the contradiction but also recover some lost entailments.

Most of the work for ontology debugging mentioned so far is for the well-

known ALC description logic described earlier in this chapter. To incorporate

debugging tasks for ontologies in the Semantic Web, efforts have been made

to provide debugging services for more expressive DLs such as ones under-

lying OWL10. Some work on explanation and debugging for OWL ontolo-

gies have been reported in [56, 57]. Using similar tableau-tracing methods as

ones in [59, 64, 81], the authors define additional expansion rules to cope with

10Web Ontology Language
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more expressive DLs such as rules for cardinality (i.e., ≤ and ≥ rules) and role-

restrictions. Moreover, cycle blocking techniques have also been used to main-

tain the termination of the algorithm. More recently, Baader and Peñaloza [9]

have proposed a generic tableau rule specification format and a pinpointing al-

gorithm that works for reasoners specified in this format. They also show that

termination of a tableau reasoner for satisfiability does not necessarily lead to

the termination of its pinpointing extension. In addition, for tableau reasoners

that require a blocking condition for termination, e.g., full ALC, it is not suf-

ficient for the pinpointing extension to use the same blocking condition as the

reasoner, because the pinpointing extension needs to take into account not only

the presence of an assertion in A, but also its justifications to determine if a

tableau rule instance should be blocked. In [9] they give a characterisation of

a class of terminating tableaux where the blocking condition yields a complete

and terminating pinpointing extension. However, to the best of our knowledge,

this approach has not been implemented.

3.5 Conclusion

In this chapter, a short overview of Description Logics was given and the ALC

logic has been used as an example. Besides, standard and non-standard reason-

ing services, including axiom pinpointing and ontology debugging, were intro-

duced. The chapter ended with a literature review of previous work on DL-

based ontology debugging/axiom pinpointing services, which are categorised

into two main approaches: glass-box and black-box. The next chapter’s topics

include some background on Truth Maintenance Systems and how this tech-

nique is related to the problem of ontology debugging and axiom pinpointing.
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Truth Maintenance Systems

This chapter presents a popular technique in Knowledge-based Systems to keep

track of inferences (dependencies) between data provided by a reasoner, namely

the Truth Maintenance System. Firstly, some background on TMSs is given, in-

cluding basic data structures in TMS implementations. The second part is an

introduction to two popular types of TMS, namely Justification-based TMS and

Assumption-based TMS, and show how they differ from each other. Finally, a

brief overview of how Truth Maintenance Systems have been used in the area

of Knowledge-based Systems is given.

4.1 Introduction

Truth Maintenance Systems (TMS), e.g., [30], also known as a Reason Mainte-

nance Systems, are an approach to representing data and their dependencies

derived by a reasoner (e.g., an inference engine or a problem solver). A TMS

caches all inferences produced by the reasoner and represents them in its own

data structures in forms of nodes and justifications. Using this representation of

inferences and a set of operations, a TMS can perform tasks such as validating
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assumptions, maintaining consistency, or controlling reasoner searches, while

at the same time keeping the reasoner focused on reasoning in task domains.

A TMS is used together with a reasoner in a problem solver to find solutions

given a set of assumptions, as in Fig. 4.1.

FIGURE 4.1: Communication between a TMS and the reasoner in a problem
solver.

In general, one can look at a TMS as a directed graph, where nodes are either

data or justifications for datum-nodes. In other words, a justification is a record

of an inference, linking a datum node to the set of datum nodes deriving it. Us-

ing these recorded dependencies, a TMS allows a reasoner to quickly determine

which nodes are “responsible” for belief in a particular datum.

According to [85], a TMS performs three main tasks:

1) given a derived datum, find the data or assumptions used to derive it;

2) given a set of assumptions, find all data can be derived from them; and

3) delete a datum and all the consequences which have been derived from it.

These tasks are also relevant to the problem of ontology debugging. For exam-

ple, tracing the sources S1 and S2 of the assertions A(x) and ¬A(x), where A

is a concept name and x is an individual in the ontology, gives the source of

the contradiction (or clash) S1 ∪ S2. Similarly, if one can find a minimal set of
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assumptions from which the contradictory assertions were derived, the mini-

mal set of axioms which are the cause for the clash can also be identified.1 This

set corresponds to a MUPS in [81], or a justification for concept unsatisfiability

defined in [55] (see Section 3.4.2).

4.2 Data Structures in a TMS

Different TMS implementations use different data structures to represent infer-

ences and to perform their tasks, e.g., maintaining belief status, enabling/dis-

abling assumptions, etc. However, most TMS implementations use the follow-

ing data structures:

datum node a node in the dependency graph, supplied by the reasoner.

justification a justification connects datum nodes in the the graph, linking a set

of supporting nodes (the antecedents) and a supported node (the conse-

quence).

Definition 4.1 (Datum node). A datum node ndatum is of the form

〈datum, label , justifications〉,

where datum is the formula given by the reasoner, label represents status of

the node (believed or unbelieved) or the set of nodes supporting the current

node depending on the type of TMS, and justifications store references to the

justifications supporting this node.

Definition 4.2 (Justification for a node). A justification for a node ndatum in a

TMS is of the form

〈ndatum ,antecedents〉,

1In the literature on ontology debugging, the idea of tagging an assertion with the axioms
used to derive it has also been proposed in [59, 64].
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where antecedents is a set of nodes supporting ndatum . A justification always

has a consequence it justifies; however the set antecedents may or may not be

empty. If antecedents of a justification is empty, this justification is supporting an

foundational datum node (i.e., a node which is not derived from other nodes).

FIGURE 4.2: An example of the graph of datum nodes and justifications. Dia-
mond and circles are justifications and nodes in the dependency network.

Figure 4.2 illustrates a dependency graph created by a TMS. ni and Ji repre-

sent datum nodes and the justifications respectively. n1, n2, n3 are foundational

datum nodes because their justifications have an empty antecedents . A datum

node can be justified by multiple justifications, e.g., n4 is justified by both J4

and J5.

Based on datum nodes and justifications, a TMS supports the following basic

operations [38]:

• create datum nodes and their justifications based on the data and infer-

ences given by the reasoner;

• maintain the status of datum nodes by updating their labels; and

• when a contradiction is discovered, the TMS tells the reasoner about the

contradiction. The TMS can also handle the contradiction by performing

an operation, e.g., retracting an assumption leading to the contradiction.
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Depending on the tasks and the type of coupling to the reasoner, there are dif-

ferent kinds of Truth Maintenance Systems. For instance, a Justification-based

TMS (JTMS) can work in only one context2 at a time while the Assumption-

based TMS (ATMS) can work in multiple contexts. Similarly, while the JTMS

and ATMS can support only definite clauses supplied by the reasoner, the Clause

Management System (CMS) [76] can represent arbitrary propositional clauses.

In the following sections, we will discuss two of the most popular types of Truth

Maintenance Systems: Justification-based TMS (JTMS) and Assumption-based

TMS (ATMS).

4.3 JTMS and ATMS: The Differences

The main differences between a JTMS and an ATMS are what it stores in a

node’s label and how the justifications for a datum node are maintained. Firstly,

in the JTMS, since a node’s label only stores the belief status, which is either in

or out, one can only determine whether this datum is derivable or not from

a particular set enabled assumptions A. Therefore, if a node is in given A, it

holds in only one set of assumptions A (a.k.a. single context according to TMS

literature). There is no direct way to check whether that node is still in when

we change A without relabelling nodes’ labels (by enabling and retracting as-

sumptions). In contrast, the ATMS stores in each node’s label the minimal sets

of assumptions used to derive that node, i.e., multiple contexts. This approach

will obviously cost more time and memory to maintain such sets of assump-

tions. However, in return the ATMS does not have to recompute the labels if

the context changes. Whether a JTMS or an ATMS is a better choice depends on

2A context is a set of assumptions.
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the type of application. If the application does not have many changes in con-

texts and only requires a single solution at a time, it would be better to choose

the JTMS over the ATMS and vice versa.

Secondly, a JTMS only keeps a single valid justification as the supporting justifi-

cation for a datum node at a time (explained further in Section 4.4.2). If the sup-

porting justification of an in node becomes invalid, e.g., some of its antecedents

are labelled out, the JTMS will try to find another supporting justification to

keep its label as in. On the other hand, the ATMS maintains all justifications for

a node at all time. This feature of the ATMS is particularly useful for applica-

tions which need to present all possible derivations of a datum at a time.

One interesting problem investigated in this thesis is finding sets of assump-

tions in which a datum holds or a contradiction occurs. We argue that it is more

appropriate to use the ATMS for this task. Firstly, in the context of finding er-

rors in a Knowledge-based System containing a set of assumptions A, because

it is not certain which element of A is an error, one would need to try running

the JTMS for each set A′ ⊆ A to see that whether node n⊥ is in or out given the

assumption set A′. The work for the reasoner and node relabelling can also be

duplicated if the change in A′ between two runs is small. This redundancy in re-

labelling in the JTMS can be avoided by using the ATMS. In this case, the ATMS

can take the whole set of assumptions A and compute which subsets of A de-

rive a datum. For example, it is possible for the ATMS to compute all minimal

subsets of A which can cause a contradiction by examining the label of n⊥ after

termination. In addition, because of the four properties of node’s label in the

ATMS, one can determine immediately that a datum holds in an arbitrary set

of assumptions A or not by checking the whether there exists an environment

in that node’s label subsumed by A without any relabelling effort. Moreover,

because the ATMS stores all justifications for a node , it is much easier for the
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ATMS to generate all explanations for a datum node or the contradiction node

n⊥ in forms of the justifications for that node.

4.4 Justification-based Truth Maintenance Systems

Although the TMS described in [30] is the first JTMS, [38] refer to it as the Non-

monotonic JTMS due to its non-monotonic justifications. In the interests of sim-

plicity, in what follows we describe the simplified version of JTMS presented in

[38], i.e., non-monotonic justifications are not allowed, for simplicity and clarity.

This JTMS only accepts propositional definite clauses as datums.

Definition 4.3 (Propositional Definite Clause). A propositional definite clause

is either

• an atomic clause (an atom) such as a; or

• a rule of the form a← b where a is an atom and b is either an atom or a

conjunction of atoms.

4.4.1 Data Structures in a JTMS

A JTMS node is an assumption node if the reasoner explicitly tells the JTMS that

the node is an assumption. It can be either enabled or retracted. An enabled

assumption node is believed by the JTMS without the need for a valid justi-

fication. If an assumption node is retracted (i.e., not enabled), it is considered

as a normal datum node, which will then only be believed if it has a satisfied

justification. Initially, a JTMS contains a set of enabled assumption nodes A

and a set of justifications J , which are given by the reasoner. Note that a JTMS

never removes justifications and nodes, including non-enabled nodes, from the

dependency graph.
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The label of a node n stores the current status of n, which can be either in or

out. If A∪ J ⊢ n under the propositional calculus rules then n is labelled in, i.e.,

node n is believed. Otherwise the node is labelled out (i.e., not believed).

4.4.2 Main Operations of a JTMS

Given the set of enabled assumption nodes A and the set of all justifications

given from the reasoner J , the two main tasks of a JTMS are:

1. to return whether a particular node is labelled in with the current justifi-

cations and enabled assumptions.

2. to return an explanation for why a node is believed. This explanation is

also called a well-founded support of the node and consists of all justifica-

tions used to derive it from the enabled assumptions. If there are multiple

justifications for a node, the JTMS only chooses one valid justification3

to be the supporting justification for that node. Note that the JTMS only

returns a single explanation, which is the main difference to the ATMS

which is introduced later in this chapter.

To perform these tasks, a typical JTMS supports three operations: adding a jus-

tification, enabling an assumption, and retracting (disabling) an assumption.

Adding a justification requires the JTMS to check whether a node n which it justi-

fies for is in or out. If it is out and all antecedents of the justifications is in then n

is relabelled as in and the justification is marked as the new supporting justifi-

cation for n. The procedure of relabelling nodes applies recursively to the nodes

whose current supporting justification has n as an antecedent. The process ter-

minates after all affected nodes are relabelled. An illustration of labelling an

out node to in in a dependency network is given in Figure 4.3. Note that n4 is

3A valid justification is the one whose all antecedents are labelled in.
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FIGURE 4.3: Labeling node n1 from out to in. White and dark-colour nodes
represent out nodes and in respectively. Diamond and circles are justifications

and nodes in the dependency network.

not relabelled because its supporting justification (J2) is not satisfied (one of the

antecedent, n2, is still out).

Enabling and retracting an assumption are similar to adding a justification in

the sense that they also, if necessary, involve relabelling nodes from out to in

and in to out respectively. The main difference between enabling and retracting

an assumption is that enabling assumptions only changes the labels of nodes

from out to in and does not change a node’s current supporting justifications,

while retracting assumptions also needs to find another valid justification for

a node (if such a justification exists) after labelling the node from in to out. In

other words, as there is only one supporting justification for a node at a time, if

the node is labelled out then the JTMS needs to find another valid justification

to support it. If there is such an alternative justification supporting that node,

the node will be re-labelled as in. Otherwise, its label is still out.
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4.4.3 Representing Negation and Disjunction in a JTMS

As the JTMS only allows definite clauses, it is not possible to derive negation

of a datum. To reason about negations, the JTMS has to employ some encod-

ing tricks. Firstly, the JTMS represents a negation of a datum datum as an in-

dependent node n¬datum beside the node representing positive datum ndatum.

Secondly, the JTMS add a justification of the form ndatum ∧ n¬datum ⇒⊥. This

justification means that if ndatum and n¬datum are in together then there is a con-

tradiction. If a contradiction occurs, the JTMS will signal the reasoner with the

nodes leading to the contradiction. The reasoner has a contradiction-handler

to process the contradictory data. This contradiction-handler can choose to just

report the contradiction or perform a JTMS operation, e.g., retracting an as-

sumption leading to the contradiction to restore consistency.

For disjunctive clauses such as A∨B, the JTMS also needs to supply additional

negation nodes ¬A,¬B and following justifications:

A∧¬A⇒⊥,

B ∧¬B ⇒⊥,

¬A∧¬B ⇒⊥ .

The first JTMS [30] also supports non-monotonic justifications of the form

〈ndatum, inlist, outlist〉

in which ndatum is labelled in if all nodes in inlist are in and all nodes in outlist

are out. In [30], an assumption node always has a non-monotonic justification

with a non-empty outlist supporting it. For instance, p is an assumption if np is

justified by 〈np,{},{n¬p}〉.
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4.5 Assumption-based Truth Maintenance Systems

In this section, we present an overview of an ATMS including its data structures

and algorithms. An Assumption-based Truth Maintenance System (ATMS) [23]

also maintains a directed graph of datum nodes derived during the inference

process. In general, given a set of assumptions A and a set of justifications pro-

duced by a reasoner, one can use an ATMS to determine all minimal subsets of

A deriving a datum. An ATMS is also able to handle contradictions by mark-

ing contradictory sets of assumptions so that they cannot be used to derive any

datum.

4.5.1 Structure of an ATMS node

An ATMS node ndatum is of the form:

〈datum, label , justifications〉

where datum is a propositional formula, label is a set of environments, which

are sets of assumptions used to derive that datum. Assumptions are explicit

data from which implicit information can be inferred by the reasoner. The re-

lationship between datum nodes in the dependency graph are represented by

justifications for datum nodes.

Each justification for a datum node ndatum is of the form:

〈ndatum,antecedents〉

where antecedents are datum nodes in the graph which immediately derive

ndatum. Justifications are given to the ATMS by the reasoner. Since there are
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many ways a datum can be derived, it is possible to have multiple justifications

for a particular node.4

There are four types of nodes in an ATMS, namely premise nodes, assumption

nodes, datum nodes and contradiction nodes.5

• A node is a premise node if its label is of the form {{}}. Because premises

hold in an empty environment, they hold universally. A justification for a

premise node does not have any antecedent. Therefore, in the implemen-

tation, it is not necessary to maintain justifications for premises.

• An assumption node is a node justifying itself. For example, an assump-

tion A may be represented as 〈A,{{A}},{(A⇒ A)}〉. As a result, an as-

sumption node has at least one singleton environment (i.e., environments

contains only one assumption) in its label. Note that it is also possible

for an assumption node to have multiple justifications, i.e., to be derived

from other nodes.

• A datum node, or a derived node, stores data derived during the infer-

ence process. A datum node ndatum with a non-empty label indicates that

datum holds in some environment. Some datum nodes are explicitly made

to be assumptions by the reasoner in the beginning, which is similar to as-

sumptions in the JTMS.

• The contradiction node n⊥ represents falsity. A set of datums can derive

a contradiction by deriving ⊥, e.g., np ∧ n¬p ⇒ n⊥. Then n⊥’s label can

be used to determine which environments (i.e., sets of assumptions) can

lead to contradictions. In the ATMS, inconsistent environments (a.k.a.

nogoods) are removed from all nodes labels except n⊥.
4Note that the usage of environments and justifications in the ATMS are not the same. The

former is to answer queries such as “given a set of assumptions A, will a datum hold in A?”
while the latter is to maintain dependencies between ATMS nodes.

5In the original ATMS [23], the author also mentioned assumed nodes, which are not the as-
sumptions by themself, but instead derived from assumption nodes. However, in this work,
we consider them as normal datum nodes.
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4.5.2 Properties of ATMS node labels

The main task of an ATMS is to ensure that each node’s label (i.e., set of envi-

ronments) is minimal, consistent, sound, and complete. In particular, these four

properties of an ATMS node label are defined as follows:

minimality the datum of a node (so far) has not been discovered to be derivable

from a strict subset of any set of assumptions in its label;

consistency if a set of assumptions is discovered to be inconsistent, then it is

removed from the labels of all nodes (except n⊥);

soundness if a set of assumptions is in the label of a node, then the reasoner has

found a derivation of this node’s datum which only uses those assump-

tions; and

completeness all ways of deriving the datum discovered by the reasoner so far

are included in its node label.

Example 4.1. Let us consider the following assumptions:

1. Swim

2. Rainy

3. HaveUmbrella

4. ¬HaveUmbrella

5. Rainy ∧¬HaveUmbrella→ GetWet

6. HaveUmbrella→ ¬GetWet.

7. Swim→ GetWet
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Using a forward chaining (data-driven) reasoner, it is possible to label datum GetWet

with the following environments (and possibly more):

• e1 : {1,7},

• e2 : {2,4,5}.

Firstly, note that there are exponentially many environments where a datum

holds while it is only necessary to consider minimal environments of a datum.

In Example 4.1, GetWet also holds in environment {1,2,7}. However, because

e1 ⊂ {1,2,7}, one only needs to keep e1 as an environment of GetWet. A label

is minimal if it does not contain two environments, e and e′, where e ⊂ e′.

Secondly, a node label needs to be consistent, i.e., no environment in its la-

bel is inconsistent. In an ATMS, there is a database called nogood6 storing the

set of unsubsumed inconsistent environments, e.g., the ones which can derive

contradictions like {3,4} in Example 4.1. A label is consistent if none of its envi-

ronments subsumes an environment in nogood. For instance, a label containing

all assumptions like {1,2,3,4,5,6,7} is not consistent.

Thirdly, the label for a node ndatum must be sound, which means that for each

environment e in ndatum’s label, datum is derivable from e. In Example 4.1, the

label of nGetWet is sound because GetWet is derivable from both e1 and e2.

Finally, every node’s label has to be complete, i.e., for environment e where

datum is derivable, there has to be at least one environment e′ in the label of

ndatum such that e′ ⊆ e. With the above example, the label of nGetWet is complete

because there does not exist an environment e where GetWet is derivable and e

is not a superset of either e1 or e2.

6In fact nogood is the label of the contradiction node n⊥ introduced in Section 4.5.1
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4.5.3 Label Update Propagation Algorithms

The ATMS operates in a cycle as demonstrated in Figure 4.4. Initially, the rea-

soner sends information about assumptions to the ATMS, which then creates as-

sumption nodes whose labels contain a single environment of one assumption

(i.e., the assumption itself). As the reasoner informs the ATMS of new datum

nodes and justifications, the ATMS label propagation algorithms update labels of

previously asserted nodes to remove any subsumed environments (in the case

of a justification for a datum node), or any environments which subsume an

environment (in the case of a new justification for the distinguished node n⊥

which represents contradiction). The process ends when the reasoner stops,

i.e., no new justification has been created in the ATMS’s dependency graph.

Clearly, the label propagation algorithms can be implemented in a naive way, in

which for every new inference, new labels are completed created for each node.

However this approach is not very efficient as it does not take into account the

current labels and justifications of nodes in the dependency graph. In the next

chapter, we will present an incremental approach based on the algorithms given

in [25], in which only the latest label updates are computed and propagated to

relevant nodes in the dependency graph.

4.5.4 Implementing Disjunctions in an ATMS

The ATMS as described in [23] does not support non-deterministic choices (i.e.,

disjunctions). However several approaches to handling disjunctions in an ATMS

have been proposed in the literature. In [24] de Kleer extended the original

ATMS to encode disjunctions of assumptions by introducing a set of hyper-

resolution rules. However, such rules may significantly reduce the efficiency of

the ATMS. Another approach [25] uses a justification for⊥ by negated assump-

tions to represent a disjunction of assumptions, e.g., A ∨B can be encoded by
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FIGURE 4.4: The ATMS operates in a cycle.

the justification ¬A,¬B ⇒⊥. Both of these approaches are limited to encoding

a disjunction of assumptions.

In [76] the original ATMS was generalised to a clause management system

(CMS) where justifications are arbitrary disjunctive clauses. To find the ‘min-

imal support’ for a clause, the CMS implementation described in [26] uses a

method for computing prime implicants which relies on justifications being

clauses consisting of literals to which the resolution rule can be applied.
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4.6 Applications of Truth Maintenance Systems in

Knowledge-Based Systems

Truth Maintenance Systems have been employed intensively in different do-

mains, including Knowledge-Based (KB) systems. We take the definition of a

KB system as given in [16]; that is a system “whose ability derives in part from

reasoning over explicitly represented knowledge”. As one can see, there are two fea-

tures of a KB system: knowledge representation and reasoning. From this point

of view, a TMS can also be considered as a KB system in its own right. That is, a

TMS has data structures to represent data and inferences and infers new knowl-

edge via its assumption enabling/retracting operations (e.g., in the JTMS) or its

label propagation (e.g., in the ATMS). However, in this section, we consider the

TMS as only a component of a larger KB system. The main applications of TMS

in KB systems are based on its ability to record data dependencies using the

dependency graph and include belief revision, explanations/diagnoses gener-

ation, and incremental reasoning.

The main applications of the JTMS [30] include belief revision and non-monotonic

reasoning. Belief revision is the process of changing a belief base (belief set) to

adapt to new beliefs. The JTMS can achieve this task using its operations such

as enabling and retracting an assumption. Truth Maintenance Systems create a

style of belief revision, namely the foundational approach, which allow tractable

revision and contraction of beliefs. Some examples of belief revision implemen-

tation following this approach are [3, 62]. TMS techniques are also implemented

to maintain knowledge integrity of multi-agents sytems, i.e., each individual

agent can have a local consistent knowledge base as in [52, 61] and data shared

among agents can also be globally consistent [52]. The ATMS can also be used

for belief revision as shown in [29], although it is not really necessary to imple-

ment belief revision using a multi-context system such as the ATMS.
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The ATMS as introduced in [23], aimed to solve the problem of multiple (pos-

sibly contradictory) assumptions in qualitative reasoning which the JTMS was

not capable of due to its single-context nature. Given the system components

as assumptions together with the system descriptions and some measured ob-

servations, as in e.g., [75]7, the ATMS can diagnose faults in the system com-

ponents in form of assumptions leading to contradictions [27]. This idea is ex-

tended to incorporate probable behaviour modes [28]. This approach has been

applied in diagnosing many physical domains, including analog electronic cir-

cuits [19] and power transmission networks [31] . However, there has been

relatively little work on diagnosing KB systems using the ATMS. One aim of

this thesis is to investigate whether the ATMS can be used to solve the problem

of fault-diagnosis in various KB systems.

With the introduction of the semantic web [12], Truth Maintenance Systems

have also been used to revise semantic web systems. For example, there has

been work on RDF-based systems such as revising consequences of an RDF8

database after removing some statements [17]. In other work, the ATMS has

been used to find minimal consistent subsets of OWL9 documents Dsub ⊆ D

in a collection of OWL documents D which are sufficient to answer a query

[43]. The justification structure in the JTMS is also exploited by [54] to generate

explanations in for policy management in the AIR policy language (an RDF-

based language). The explanations are presented in form of tree-like structures

of justifications for a particular belief, which is produced by the JTMS’s depen-

dency tracking mechanism. More recently, there has been work on using TMS

to optimise reasoning in ontology streams [77]. An ontology stream On
m from

time-point m to timepoint n is a sequence of ontologies On
m(m), . . . ,On

m(n) in

7In [75], a system is defined as a triple of <SYSTEM DESCRIPTION (SD), SYSTEM COMPO-
NENTS (COMPS), OBSERVATIONS (OBS) >. The diagnosis task is to find a set C ⊂ COMPS

such that if C is removed from COMPS then the system is no longer faulty.
8Resource Description Framework (see [73]).
9Web Ontology Language
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which each ontology On
m(i + 1) (m ≤ i < n is a discreet time-point) is an im-

mediate updated version of On
m(i). The authors employ an approach similar to

belief revision to cache ontology reasoning inferences in the original ontology

of a stream in a JTMS so that later updates will only affect some parts of the

original ontology (similar to adding justifications and retracting assumption in

a JTMS), and new query answers can be computed more efficiently using the

combination of cached inferences and recent updates.

4.7 Conclusion

In this chapter, we reviewed Truth Maintenance Systems and their applications.

In particular, we examined two popular types of TMS, namely, the JTMS and

the ATMS. For each type of TMS, the main data-structures and operations were

given and the main differences between these two families of TMSs were sum-

marised. We also discussed which type of TMS is more appropriate for par-

ticular tasks and gave a brief overview of previous applications of TMSs in

Knowledge-based Systems found in the literature. In the following chapter, we

will show how to employ the original ATMS to detect all errors in a Knowledge-

based System.

56



Chapter 5

Query Caching in Agent Programs

5.1 Introduction

BDI1-based agent programming languages adopt the notions of beliefs, desires

(a.k.a. goals), and actions to allow writing high-level, declarative agent pro-

grams. An agent programming platform therefore needs to represent and to

reason about these notions in some knowledge representation technology (KRT).

The interaction between an agent program and the KRT includes asking for an-

swers to a query and updating explicit knowledge in its knowledge base. Query

caching is a mechanism which allows agent programs to remember the results

of previous queries so that the agent program does not have to resend such

queries to the KRT. However, updates make changes to knowledge base, and

hence may make previous cached results invalid. In this chapter, we develop

a caching model which allows agent programs to cache query answers over

multiple query-update cycles by using a light-weight truth maintenance sys-

tem (TMS) to keep track of dependencies between queries and the facts used to

derive the answers.
1Befief-Desire-Intention
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The research questions, objectives, and the contributions of the work presented

in this chapter are as follows.

Research Questions How can the data dependency graph maintained by a

TMS can be employed to enable query caching in order to improve the

performance of query answering in agent programming languages? How

can such a TMS be constructed in a way that the overhead of maintain-

ing (i.e., storing and invalidating) cached results does not outweigh the

benefit of caching?

Research Objectives

1. To specify under which conditions query caching is beneficial to agent

programs.

2. To implement a query caching facility for an agent programming lan-

guage which adopts the TMS techniques (i.e., maintaining the de-

pendency graph) so that only cached results which are affected by

updates can be invalidated.

3. To verify the approach by evaluate the performance of query answer-

ing in different caching modes (i.e., without caching, with caching

within a single query-update cycle, and with caching over multiple

query-update cycles).

Contributions The main contribution is an implementation of query caching

for GOAL agent programming language which allows users to choose

various caching modes: without caching, with caching within a single

query-update cycle, and with caching over multiple query-update cycles.

The evaluation shows that caching query over multiple query-update cy-

cles really improves query answering for agent programs significantly.

The rest of this chapter is organised as follows. In Section 5.2, we describe how

an agent program interacts with its knowledge representation technology via
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query actions and update actions. We then look at how query caching can ben-

efit agent programs in Section 5.3. This section presents two modes of query

caching in agent programs, namely single-cycle and multi-cycle caching. In

Section 5.4, we show how to implement the multi-cycle caching mode using

a lightweight truth maintenance system. Section 5.5 presents experimental re-

sults in different query caching modes which show that query caching signifi-

cantly improves the performance of agent programs.

5.2 Queries and Updates in Agent Reasoning Cycles

To be able to implement the notions of beliefs, desires, and intentions (recall

Section 2.2.2), an agent programming platform should have a mechanism to

represent and to use such notions. We refer to this mechanism as a Knowledge

Representation Technology (KRT). A KRT can form part of the agent platform

such as in the case of Jason and the PRS, or it can be an external component

which interfaces with the core agent platform such as SWI-Prolog [88] in GOAL

and JIProlog [53] in 2APL. Intuitively, a KRT can be considered as an inference

engine (or a reasoner as in Figure 2.2).

The task of the KRT in an agent programming platform is to store the current

state of the agent and its view of the environment in a database (i.e., the agent’s

belief base and goal base) and to infer implicit data given the current database.

The agent program interacts with its KRT via two actions, query and update. For

example, the stock trading agent might query against its belief base that which

stock currently has the highest price and update the new price of a particu-

lar stock in its belief base. Note that query actions do not change the agent’s

databases while update actions do. The following sections demonstrate when

and how query and update actions can occur. Note that depending on the agent

programming language or platform, the agent program can send queries and
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updates to the KRT in different ways. For concreteness, in what follows we

focus on the GOAL agent programming language, but similar operations are

found in all logic-based BDI agent programming languages.

5.2.1 Queries

Recall from Section 2.2 that agents operate in a “sense-plan-act” cycle. In the

“plan” phase of a logic-based BDI agent, the set of rules in the agent’s program

is executed. The antecedents of a rule are queries against the agent’s beliefs and

goals. An example of the rules in a Blocks World agent written in the GOAL

agent programming language is given in Listing 5.1. In this example, the first

rule contains two queries, one is against the goal base

a-goal(tower([X,Y|T]))

while the other is against the belief base (e.g.,

bel(tower([Y|T]))

).

main module{

program{

if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y).

if a-goal(tower([X|T])) then move(X,table).

}

}

LISTING 5.1: Rules in Blocks World agent program written in GOAL language
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Similarly, queries also appear in parts of the agent programs which use rules

to represent domain knowledge such as ones in Listing 5.2. For example, the

agent considers a block X clear if X is a block and there is nothing on top of X .

If the agent program sends a query clear(X) to the KRT (e.g., SWI-Prolog for

GOAL) then the KRT applies the domain rule

clear(X) :- block(X), not(on(Y,X)).

against the current belief base and check whether there is any answer (e.g.,

bindings of X).

clear(X) :- block(X), not(on(Y,X)).

tower([X]) :- on(X,table).

tower([X,Y|T]) :- on(X,Y), tower([Y|T]).

LISTING 5.2: Rules in Blocks World agent program written in GOAL language

5.2.2 Updates

The second type of operation that the agent program uses to interact with its

KRT is an update action. An update can happen in either the “sense” phase, i.e.,

when the agent perceives changes in the environment and update its beliefs

or goals accordingly, or in the “act” phase, where the agent directly changes

its databases via an internal action (e.g., an action which changes the agent’s

beliefs or goals but does not directly affect its environment). The following

examples demonstrate these cases by database updates performed by a GOAL

Blocks World (BW) Agent.

In a GOAL agent, all updates are instantiated (ground facts). In other words,

an update of the form p(X̄) where p is a predicate and X̄ is a list of constants.
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For instance, adding on(X,Y) into the belief base means adding on(a,b) where

a and b are constants.

event module{

program{

forall bel( percept(on(X,Y)),on(X,Z),not(Y=Z))

do insert(on(X,Y),not(on(X,Z))).

}

}

LISTING 5.3: Updates in “sense” phase: event module of GOAL BW agent

As an example of the first case (i.e., updates in the “sense” phase), the event mod-

ule in GOAL specifies how the agent program updates its belief base after being

notified a change in the environment. Listing 5.3 shows a fragment of GOAL

code which states that if the BW agent receives a percept that on(X,Y) and its

current beliefs includes on(X,Z) and Y and Z are two different objects, then the

agent should update its beliefs by adding a new fact on(X,Y) and removing the

fact that X is on Z. Note that in this case, the update contains a sequence of up-

dates, i.e., an addition and a deletion, while in other cases, there could be only

one update.

The second case is where an update is performed directly by an action of the

agent, and is demonstrated in the action specification of the BW agent as in

Listing 5.4. The BW agent’s “move” action has the postcondition which contains

two updates to the agent’s databases (the belief base and the goal base2): delet-

ing on(X,Z) and adding on(X,Y).3

2In GOAL, if a goal is achieved completed (all its sub-goals are also achieved) then it will be
removed from goal base.

3Note that in GOAL, negative and positive literals in an update form a delete list and an add
list respectively. An update to the database is performed by firstly delete all literals in the delete
list from the belief base and then adding all literals of the add list into the belief base.
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actionspec{

move(X,Y) {

pre{ clear(X), clear(Y), on(X,Z), not(X=Y) }

post{ not(on(X,Z)), on(X,Y) }

}

}

LISTING 5.4: Updates in “act” phase: action specifications of BW agent

(GOAL)

5.2.3 Agent Query-Update Cycles

From the previous sections, one can see that the interaction of an agent program

with its KRT is basically a sequence of queries and updates. For example, an

example log of queries and updates sent from the BW agent to its KRT (e.g.,

SWI-Prolog) is given in Listing 5.5.

...

query beliefbase:percept(block(X))

query beliefbase:not(block(X))

add beliefbase:block(b)

query beliefbase:on(f, table)

query beliefbase:on(e, f)

query beliefbase:on(e, f)

del beliefbase: on(a,b)

...

LISTING 5.5: An example log of queries and updates in the BW agent.
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In Listing 5.5, the line

query beliefbase:on(f,table)

is a query to check if a fact block(f,table) exists in the belief base while the

line

query beliefbase:percept(block(X))

is a query to SWI-Prolog which asks if there is anyX such that percept(block(X))

holds. The former query returns a boolean value while the later returns the list

of substitutions (if any), i.e., mappings from X to a constant. The line

add beliefbase: block(b)4

represents an addition of a fact. Note that in GOAL, an update requires an

insertion of negative literals such as the one in Listing 5.3 will be transformed

into the removal of the corresponding positive literals from the database under

the Closed World Assumption (see [74]). For example, insert(not(on(a,b)))

will be translated into del(on(a,b)).

Given all queries and updates sent to the KRT from the agent program, one

can group the sequence of queries and updates into cycles. Such a cycle only

contains consecutive queries and consecutive updates. Within a query-update

cycle, a sequence of consecutive queries and a sequence of consecutive updates

are denoted as the query phase and the update phase of the cycle respectively. For

instance, Listing 5.5 can be considered as two query-update cycles as in Figure

5.1. The idea of dividing the queries/updates into phases comes from the fact

that within a query phase, the agent’s databases do not change. Therefore, it is

only necessary to perform a query once, and keep that answer for later if the

4The real updates to SWI-Prolog are via assert and retract predicates for addition and
deletion of facts respectively.
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FIGURE 5.1: An example of query-update cycle in the BW agent
.

same query is asked again within that query phase. This technique is called

“caching”.

By looking at the query/update pattern in each individual query-update cy-

cle or in all cycles together in agent program executions, one can have an idea

of whether caching query results can really improve the performance of agent

programs. In [2], the authors have conducted such experiments with different

combinations of agent platforms such as Jason, 2APL, and GOAL and task en-

vironments such as the Blocks World [79], Elevator Simulation [35], and the
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Multi-Agent Programming Contests [11, 22]. The investigation of the agent

query/update pattern gives following observations.

Observation 5.1. In a single query-update cycle, the same query is performed more

than once.

Observation 5.1 comes from the fact that in all combinations of agent program-

s/platforms/environments, it is a consistent pattern that there are a number

of queries repeated in a single query-update cycle. The ratio N/K where N is

the total number of queries and K is the number of unique queries in a cycle

ranges from 1.16 to 38.63, which means that the percentage of queries which

are repeated within a cycle (N−K
N

) ranges from 13.8% to 97.4%. Given this ob-

servation, it it clear that caching queries within a single query-update cycle can

possibly improve the time which an agent program spends on querying the

KRT.

Observation 5.2. A significant number of queries are repeated at subsequent query-

update cycles.

Observation 5.3. The number of updates U (add, deletes) performed in a query-update

cycle is significantly smaller than the number of unique queries K performed in that

cycle, i.e. K ≫ U .

Obsevation 5.2 is based on the average percentage of queries which are repeated

in the query phase of next cycle. This number, called p in [2], ranges from 52%

to 92%. This observation, together with Observation 5.3 which states that the

number of queries is significantly greater than the number of updates with in a

cycle, make it intuitive that it might be beneficial to cache queries over multiple

query-update cycles as well. The reason why have Observation 5.3 is important

for multi-cycle caching is that updates change the agent databases. Therefore,

the fewer updates compared to queries within the same cycle, the fewer queries

affected by these updates and the more useful query caching becomes.
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5.3 Query Caching Modes: Single-Cycle vs. Multi-

Cycle

In this section, we examine when query caching can improve the performance

of agent programs and the algorithms for implementing two different query

caching modes, single-cycle and multi-cycle. Finally, we show how a lightweight

truth maintenance system can be used to implement multi-cycle query caching.

5.3.1 The Abstract Performance Model of Query Caching

The first question to ask before implementing query caching in an agent plat-

form is when will caching be useful? Obviously, caching is useful only if the

querying/updating time is smaller with caching than without caching. Here

we will try to model the time spent in each agent query-update cycle without

and with caching using the abstract performance model given in [2] with the

following parameters.

• N : the average total number of queries per query-update cycle.

• U : the average total number of updates per query-update cycle.

• K: the average number of unique queries per query-update cycle.

• cq: the average cost (time spent) per query.

• cu: the average cost (time spent) per update.

• cins: the average cost (time spent) per cache insertion. Note that as a cache

can be implemented using a hash table, cins is constant.

• chit: the average cost (time spent) per cache lookup. The word “hit” does

not necessarily mean that it is a cache hit, i.e., Chit also counts the lookup

cost even when there is no hit in the cache.
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• p: the percentage of queries repeated in the next (consecutive) query-

update cycle. This is the ratio of the average number of queries in cycle i

that reoccur in cycle i+ 1 to the average total number of queries per cycle

(N ).

Given the above parameters, the time cost per query-update cycle without any

caching is:

costno_caching = N × cq +U × cu. (5.1)

Definition 5.1 (Cost Difference). Let us denote dM2

M1
as the cost-difference be-

tween a caching modeM1 and a caching modeM2 whereM1,M2 ∈ {no_caching,

single_cycle, multi_cycle} as follows:

dM2

M1
= costM1

− costM2
.

We say that a caching mode M2 is better than a caching mode M1 iff dM2

M1
> 0.

In the following sections, we examine the benefits of two caching modes, single-

cyle caching mode and multi-cycle in relation to no_caching mode in agent pro-

grams. In particular, we specify in which conditions caching bring benefits to

agent programs and quantify the improvement in performance. We also anal-

yse worst-case senarios where caching might potentially make the query an-

swering in agent programs slower.

5.3.2 Single-Cycle Query Caching

If the caching is done only within each single query-update cycle , we refer this

mode of caching to the single-cycle caching mode. In the beginning of each query-

update cycle, the cache is emptied, i.e., cached results are only kept within one

query-update cycle. Alternatively, the cache can be emptied after the query
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phase, and this does not affect the abstract performance model given below.

The average time cost per query-update cycle with query caching done for each

single cycle is:

costsingle_cycle = K × (cq + cins) +N × chit +U × cu. (5.2)

In Equation 5.2, for all N queries in a cycle, a cache lookup is performed to

check if the query has already been cached, hence takes N ×Chit. If it is a cache

hit (i.e., the query is cached) then the cached answer is returned. Otherwise, a

normal query is sent to the KRT and the returned answer is inserted into the

cache; this requires K × (Cq +Cins). The total update time is as in the case of no

caching (see Equation 5.1). In pratice, if the cache is implemented using a hash

table, one can achieve Cins and Chit in constant time.

Clearly, single-cycle caching benefits an agent program when dsingle_cycle
no_caching > 0,

which is equivalent to:

(N × cq +U × cu)− (K × (cq + cins) +N × chit +U × cu) > 0,

which is then equivalent to:

(N −K)× cq −K × cins −N × chit > 0.

As one can see, the single-cycle is beneficial to an agent program iff (N −K)×

cq > K × cins +N × chit. The worst case happens when all queries are unique

(i.e., N = K), and hence dsingle_cycle
no_caching = −K × cins −N ×c hit < 0, the single_cycle

caching mode becomes slower than no_caching mode by an amount of N ×

(cins+ chit). In other words, in the worst case, for each query, all three operations

(e.g., cache lookup, KRT query, and cache insertion) have to be done.
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5.3.3 Multi-Cycle Query Caching

The single-cycle caching mode, as described in the previous sub-section, clears

the cache in the beginning of each query-update cycle. However, this may be

inefficient because there is a high percentage of queries which have already

been cached in the previous cycle according to Observation 5.2. The idea of the

multi-cycle caching mode is to keep the cached results as long as possible, i.e.,

until they become invalid. To do so, the caching is performed in two steps, as

illustrated in Algorithm 5.1.

Algorithm 5.1 Multi-Cycle Caching

% Step1: Query Phase
for each query Qi do

answer← lookup(Qi, cache)
if answer 6= null then

return answer
else

answer← query(Qi,database)
put(Qi, answer, cache)
return answer

end if
end for
% Step2: Update Phase
queries← ∅
for each update Ui do

update(Ui,database)
queries← queries ∪ invalidate(Ui, cache)

end for
for each query Qj ∈ queries do

delete(Qj, cache)
end for

The first step is similar to single-cycle caching and occurs in the query phase of

the cycle. In this step, all cache lookups are performed. If it is a cache hit, the

query answer is returned. Otherwise, a query to KRT is performed, and the

answer is returned to the agent program. The second step is done in the update

phase of the cycle. Recall that in the update phase, the agent databases change,

and hence some cached results become invalid. Therefore, it is necessary to
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eliminate these affected cached results from the cache. To do so, we need a

mechanism to keep track of which cached results are affected by an update.

This is based on the idea of belief revision presented in Section 4.6, where some

beliefs are retracted/unbelieved because of an update in the database. This is

where we can employ a truth maintenance system, i.e., to keep track of which

beliefs should become invalid when an update occurs. Before looking at how

to use such a TMS for that purpose, we will first see how the multi-cyle caching

mode can improve agents’ query answering process.

To be able to maintain a cache of queries over multiple cycles, we need to quan-

tify following operations:

• cinvalid is the average cost to retrieve which cached queries are affected by

an update.

• cdel is the average cost to delete a query from the cache when it becomes

invalid. As a cache can be implemented using a hash table, cdel is of con-

stant time.

Note that for each query phase, we have in average p×N cached queries from

the previous cycle and (1 − p) × N uncached. However, this does not take

into account the number of queries cached within a cycle. If we assume K

unique queries are distributed uniformly over cached and uncached queries,

the number of uncached queries per cycle will become (1 − p) ×K. That is,

(1− p)× (N −K) is the number of queries which are not cached in the previous

cycles, but are cached within the current cycle. Hence, the total time in query

phase according to this model is:

(1− p)×K × (cq + cins) +N × chit (5.3)
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For the time spent on update phase, we need to consider two steps. The first

step is the cost of updating and retrieving invalidated queries. These need to be

done for each update, and hence the time spent in this step is U × (cu + cinvalid).

The other step is to delete invalidated queries from the current cache. Let us

denote the total number of invalidated (unique) queries as Ninvalid. In the best

case where no cached query is invalid, Ninvalid is 0. In the worst case when all

cached queries are removed, this number is the total number of cached entries.

Here we take Ninvalid to be (1− p)×K, i.e., the average number of uncached

queries per cycle. We then have the total time in update phase according to this

model:

U × (cu + cinvalid) +Ninvalid × cdel (5.4)

The average time cost per query-update cycle with query caching done over

multiple cycles is:

costmult_cycle = (1−p)×K× (cq+ cins)+N × chit+U × (cu+ cinvalid)+Ninvalid× cdel

(5.5)

Multi-cycle caching mode will benefit an agent program if dmulti_cycleno_caching > 0. From

Equations 5.1 and 5.5, this is equivalent to:

N × cq+U × cu− ((1−p)×K× (cq+ cins)+N × chit+U × (cu+ cinvalid)+Ninvalid× cdel)> 0

which is equivalent to:

(
N

K
− 1)× cq + p× (cq + cins) >

N

K
× chit + cins +

U

K
× cinvalid + (1− p)× cdel.

As the cache can be implemented using a hash table, the cost for lookup, inser-

tion, and deletion can be of constant time. Also, timing results show that cq is

much higher than chit, cins, and cdel. Therefore, the performance of the multi-

cycle caching mode depends mainly on N/K, p, and U
K
× cinvalid. The more
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queries repeated within a cycle (i.e., the larger N
K

is), the more queries repeated

over multiple cycles (i.e., p is higher), and the smaller U
K
× cinvalid, the better the

multi-cycle caching mode compared to no-caching mode. All three conditions

(i.e., N
K
> 1, p > 50%, and U

K
≪ 1) are satisfied given Observations 5.1, 5.2, and

5.3.

One might also wonder under which conditions multi-cycle caching outper-

forms single-cycle caching and whether it is possible to switch between caching

modes to optimise the benefits of caching (if any) in agent programs. The an-

swer to the first question is when dmulti_cyclesingle_cycle > 0. Given costsingle_cycle from Equa-

tion 5.2 and costmulti_cycle from Equation 5.3, we have the following condition

under which multi-cycle caching will outperform single-cycle caching mode:

p×K × (cq + cins)−U × cinvalid −Ninvalid × cdel > 0. (5.6)

If we replace Ninvalid by (1− p)×K then Condition 5.6 is equivalent to:

p×K × (cq + cins)−U × cinvalid − (1− p)×K × cdel > 0

which is then equivalent to:

p×K × (cq + cins) > U × cinvalid + (1− p)×K × cdel. (5.7)

Because the cache is implemented using a hash table, it is reasonable to as-

sume cdel = cins. Thus, p×K × cins > (1− p)×K × cdel when p > 1− p. More-

over, recall that from Observation 5.2 and Observation 5.3 in Section 5.2.3, p

ranges from 52% to over 90% (i.e., p > 1− p) and K ≫ U in all combinations of

agent platforms/environments/programs in the experiment.This means that

the Condition 5.7 can be satisfied, and hence the performance of agent program

with multi-cycle caching mode will be better than one with single-cycle caching
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mode. However, note that we need to assume that the cost to get which queries

become invalidated after an update, i.e., cinvalid, is not much greater than the

cost to perform a query, i.e., cq. In the next section, we will explain why it is

reasonable to make this assumption.

5.4 Truth Maintenance for Multi-Cycle Query Caching

In this section, we present an approach to maintain sets of queries that are af-

fected by database updates using a lightweight truth maintenance system. In

particular, we do not cache all inferences as in the conventional TMS. Instead,

we only keep track of queries (datum nodes) and the set of ground facts (as-

sumptions) used to derive them.

In Algorithm 5.1, the key factor to allow query caching over multiple query-

update cycles is the function invalidate which returns a list of queries becoming

invalidated (i.e., incorrect) after an update. For example, assumed that an agent

program includes a knowledge-base as follows (the example is from the book

“the Art of Prolog” [87]).

father(abraham ,isaac). male(isaac)

father(haran ,lot). male(lot)

father(haran ,milcah ). female(milcah ).

father(haran ,yiscah ). female(yiscah ).

son(X,Y):-father(Y,X), male(X).

LISTING 5.6: A simple agent’s knowledge-base in PROLOG

If a query Q=son(haran,X) is asked, the search tree as in Figure 5.2 will be made.

The answer to this query against the current agent database is {S=lot}, i.e., a

mapping from S to lot, is added into the cache. By looking at the search tree, we
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FIGURE 5.2: A simple search tree from query son(haran,X) from [87].

can see that query son(haran,X) depends on {male(lot),father(haran,lot)}.

In other words, we call that {male(lot),father(haran,lot)} is the support set

of Q, following Definition 5.2. If in the update phase of a later cycle there is

an update such that male(lot) is deleted from the database, then the answer

{S=lot} is no longer valid, and should be removed from the cache.

Definition 5.2 ( Support Set of a Query). A support set of a query Q against

a knowledge base KB is the set of explicit ground facts S(Q) = {f | f ∈ KB}

where each f is used to find a solution toQ, i.e., {f}∪KB′ |= δ(Q) whereKB′ ⊂

KB ∧KB′ 6|= δ(Q) and δ(Q) is an instantiation of Q. If there is no solution to q

then S(Q) = ∅.

The idea is now to maintain a database of support sets for all queries so far.

From this database, one can compute which queries are possibly affected by an

element of a support set. We refer to this set of queries as the invalidated set of a
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FIGURE 5.3: Mappings from queries to their support sets and from facts to
their invalidated sets.

fact. The mappings from queries and facts to their corresponding support sets

and invalidated set respectively are illustrated in Figure 5.3.

From the example in Listing 5.6, one can compute the following support sets

based on the queries son(haran,Y ) and son(X,Y ).

SupportSet(son(haran,Y ))={father(haran, lot),male(lot)}

SupportSet(son(X,Y ))={father(abraham, isaac),male(isaac), father(haran, lot),male(lot)}

Then we will have some invalidated sets as follows:

. . .

InvalidatedSet(male(lot))={son(haran,Y ), son(X,Y )}

InvalidatedSet(father(abraham, isaac))={son(X,Y )}

. . .
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From a TMS viewpoint, a support set of a query is the set of assumptions where

the instantiation of the query holds and an instantiation of a query is a datum in

the dependency graph. This is demonstrated in Figure 5.4. However, instead of

FIGURE 5.4: Prolog queries and facts in correspondence to TMS datum nodes
and assumptions.

recording all intermediate inferences as justifications as in a conventional JTMS,

here we only record the relationship between assumptions and data represent-

ing queries. All intermediate inferences (inferences in the dashed area of Figure

5.4) are omitted, and hence the cost of maintaining a full dependency graph is

significantly reduced.

Obviously, this approach is not fine-grained in the sense that the support sets of

sub-goals, e.g., in the running example father(X,Y ) is a sub-goal of son(X,Y ),

will not be computed. However, note that although the knowledge base is

growing non-monotonically (i.e., KB |= Q does not imply KB′ |= Q where

KB ⊂ KB′), the dependency graph is not, i.e., all justifications and beliefs are

never removed from the graph. Therefore, this leads to increasing complexity

for the implementation of query caching if a full JTMS is implemented. In fact,

Forbus and de Kleer reported in [38] that it is usually a bad idea to connect a

full TMS to a PROLOG interpreter because of cost of keeping and maintaining
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the cache of all inferences is not cheaper than just rerunning the inference rules.

What we do here based on the observations that there are substantial number

of queries are repeated and caching the queries’ answers will make the agent

program more efficient. Thus we only need to keep track of the original facts

(assumptions), not the intermediate steps, to derive a query answer.

5.5 Experimental Results

In this section we present an implementation of the caching models described

earlier for the GOAL agent programming language with SWI-Prolog as the

KRT. Both single- and multi-cycle caching were implemented. The implementa-

tion of single-cycle caching is straightforward, as described in Sub-section 5.3.2.

In what follows, we focus on the implementation of multi-cycle caching. The

multi-cycle caching implementation follows Algorithm 5.1. To implement the

invalidate operation, we used a meta-interpreter written in Prolog that, in ad-

dition to the answer to a query, returns the ground facts used to answer the

query. Calls to SWI-Prolog are replaced by calls to the meta-interpreter. Apart

from providing the ground facts supporting a query, the meta-interpreter does

not change the result of the original query.

The answer to each query is stored in a hash table queryCache. Each ground fact

f returned by the meta-interpreter is also stored together with the set of queries

it may invalidate, invalidates(f) in a hash table. In later query-update cycles, if

an update (insertion or deletion) of f is performed then, for each query in in-

validates(f), its cached result is removed from queryCache, and f is also removed

from invalidates. Note that this means cq in Equation 5.5 includes also the cost

of invalidate, and the invalidate operation now becomes only a hash table
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lookup to retrieve invalidated queries. The computation of dependency infor-

mation is performed at run-time rather than compile-time, which is useful to

switch between caching modes depending on different agent programs.

To measure the benefits of different query caching modes, we run the extended

GOAL version which allows users to choose different types of caching modes

in two classic problems in agent programming, the Blocks World problem and

the elevator problem. Blocks World, introduced in [92], is an environment con-

sisting of a table and a set of blocks. A goal is a state of the world where the

blocks are put on top of another to build one or more towers. This is a classic

planning problem where the initial state and the goal state are clearly specified,

the agent has the full control, and the environment is fully observable and de-

terministic. The size of a Blocks World problem is determined by the number

of blocks in the environment. The Elevator problem, on the other hand, is a

dynamic environment which contains a set of elevators which are controlled by

different agents. A simulator randomly generates people and their actions such

as calling for an elevator, entering/leaving an elevator, or going to a specific

floor. Because each agent can only observe its own elevator and the simulation

of people’s actions is random, this environment is only partly-observable and

non-deterministic. The size of this problem is the number of floors.

Table 5.1 shows the comparison between different caching models in GOAL

where h represents the percentage of cache hit . The figures reported are the

average of 5 runs and timing is in microseconds. Although the log-files show

that the average query times for calls to the meta-interpreter are about 1.5 to 2

times higher than normal queries, as the cache is cleared less often, the number

of calls to SWI-Prolog decreases resulting in a reduction in average query times

compared to single-cycle caching.
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Problem Caching h cq cu
Blocksworld10 No 0% 53.83 52.67
Blocksworld10 Single-cycle 27% 44.10 46.42
Blocksworld10 Multi-cycle 36% 43.74 40.48
Blocksworld50 No 0% 42.04 44.89
Blocksworld50 Single-cycle 32% 38.86 43.68
Blocksworld50 Multi-cycle 51% 31.79 37.35
Blocksworld100 No 0% 37.07 41.63
Blocksworld100 Single-cycle 31% 33.03 42.99
Blocksworld100 Multi-cycle 54% 30.21 37.90
Elevator10 No 0% 19.15 19.87
Elevator10 Single-cycle 83% 3.40 20.52
Elevator10 Multi-cycle 90% 2.87 20.15
Elevator50 No 0% 19.81 19.21
Elevator50 Single-cycle 65% 7.37 20.00
Elevator50 Multi-cycle 79% 5.80 17.81
Elevator100 No 0% 20.23 19.12
Elevator100 Single-cycle 65% 7.61 19.92
Elevator100 Multi-cycle 77% 6.10 18.21

TABLE 5.1: Comparison of different caching modes

5.6 Related Work

The idea of caching query calls and answers in deductive reasoning systems

had been proposed in Tabled Logic Programming [89]. The idea underlying

tabling is that sub-goals and their (possibly incomplete) answers are stored dur-

ing searching for an answer to a query. The main goal of this technique is to

maintain termination of logic programs. However, in many Prolog systems, ta-

bles are cleared after each top-level query (e.g., the main goal). XSB-Prolog as

mentioned in [89] provides support to maintain tables of dynamic predicates

when an update occurs with a technique called incremental tabling, which is re-

lated to the field of truth maintenance. In all cases the tabled predicates need to

be pre-declared in the logic program.

Maintaining cached results after updates is also similar to the problem of in-

cremental view maintenance in database systems [44]. Provably efficient algo-

rithms to find minimised incremental changes in relational databases exist, e.g.,

[42]. In ontology systems, there is also work on caching ontological inferences
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and performing updates on top of the cached inferences instead of recomputing

the inferences from scratch, see [77]. The most relevant work to the approach

presented in this chapter is the one reported in [2]. In fact, the argument that

caching can improve the performance of agent programs based on the observa-

tions in [2]. We also used the abstract performance model for single-cycle query

caching from this work.

5.7 Conclusion

In this chapter, we presented an approach to query caching in agent program-

ming using a lightweight TMS as a means of dependency tracking. Firstly,

we analysed the query and update phases of an agent’s query-update cycle,

with the GOAL agent programming language as an example. Next, we quanti-

fied the benefits of query caching by extending the abstract performance model

given in [2]. Specifically, we showed that according to the observations in [2], it

can be more efficient for agent programs to implement multi-cycle caching. An

approach to implement query caching in GOAL with SWI-Prolog as the knowl-

edge representation technology was also described, with experimental results

showing that query-caching, especially in multi-cycle caching mode, can make

agent programs more efficient by reducing time for re-querying the KRT.
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Chapter 6

Detecting Geospatial Ontology

Mapping Errors

6.1 Introduction

Nowadays, the process of creating geospatial data involves not only expert

modellers but also dedicated voluteers. This trend brings the advantages of

both sources of data to recently developed geospatial databases: the authori-

tative, consistent, and standardised data from experts and the more up-to-date

and feature-rich information from the community. As an example, [34] use the

data from Ordnance Survey, the UK’s national mapping agency, and from Open

Street Map, a free open-sourced map which allows collaboration in creating and

editing maps, to investigate the methodologies to link geospatial data from two

separate sources to take the advantages of both.

One problem with linking data from different sources, especially automatic

data linking, is to maintain the consistency of data. This is equivalent to the

problem of finding the potential errors in auto-generated mappings, as incor-

rect mappings can lead to the global system inconsistency.
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In this chapter, we present an approach to detect such mapping errors in a

geospatial knowledge-based system using an ATMS. We focus on the prob-

lem of finding ontology-mappings responsible for contradictions in a geospa-

tial Knowledge-Base (KB) generated by ontology mappers1. As an example, we

consider the KB using the Logic of NEAR and FAR (LNF) introduced in [33]. We

also configure the ATMS to meet the problem requirements.

The research questions, objectives, and the contributions of the work presented

in this chapter are as follows.

Research Questions How can an ATMS be constructed to solve the ontology

debugging (axiom pinpointing) problem? Is it feasible for an ATMS to

find all minimal explanations in a reasonable amount of time?

Research Objectives

1. To show a use case where an ATMS can be employed to detect map-

ping errors between two geospatial ontologies.

2. To construct a general framework which use an ATMS to give mini-

mal explanations for inconsistency derived after combining two geo-

spatial ontologies and the mappings.

3. To implement the ATMS and to verify that the system can produce all

mapping errors (minimal explanations) within a reasonable amount

of time with a realistic dataset.

Contributions We show that a “classic” ATMS can be constructed to solve the

problem of ontology debugging (axiom pinpointing) in a rule-based sys-

tem consisting of Horn-like rules. We also show that the framework can

be used to detect all mappings errors in the use case of Nottingham city

1An ontology mapper generates mappings of instances or concepts between multiple on-
tologies.
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centre where individuals of the Open Street Map ontology are mapped to

an individual in the Ordnance Survey ontology.

The structure of this chapter is as follows. In Section 6.2, we introduce the

problem of finding errors in the mappings of two geospatial data sets which are

generated using a qualitative approach, namely the Logic of NEAR and FAR.

Section 6.3 shows how to detect all incorrect mappings using an ATMS. We

then present the algorithms for maintaining node labels’ properties mentioned

in the previous chapter, which are implemented for this particular problem, in

Section 6.4. The algorithms are based on ones given in [25]. Finally, in the last

two sections, we give correctness proofs and experimental results of the system

based on the geospatial dataset of Nottingham City Centre.

6.2 Finding Incorrect Mappings in a Geospatial Knowedge-

based System using the Logic of NEAR and FAR

In [33], the authors use a fragment of LNF to detect incorrect instance-matchings2

generated from two different geospatial ontologies. In particular, they used the

data sets from Open Street Map (OSM)3 and Ordnance Survey of Great Britain

(OSGB)4 to generate mappings of geospatial objects from these two sources us-

ing some criteria. A mapping of two objects is of the following form, where X

and Y are the ids of two geospatial objects from OSM and OSGB respectively:

OSM : X = OSGB : Y

2A mapping between two sources of data (e.g., geospatial ontologies) can be at two levels:
the concept level and the instance level.

3http://www.cs.nott.ac.uk/ hxd/evaluation/OpenStreetMap.owl
4http://www.ordnancesurvey.co.uk/ontology/BuildingsAndPlaces/v1.1/BuildingsAndPlaces.owl
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However, these mappings might not always be correct, and there exists a need

to check whether there is any inconsistence in a set of generated mappings. To

do so, they introduced the Logic of NEAR and FAR. In general, the Knowledge-

Base contains a set of rules R and a set of facts F , as in [33]. The facts are

binary ground formulas of the forms BEQ(a, b), NEAR(a, b), and FAR(a, b)

where a, b are geospatial objects and BEQ,NEAR,FAR are binary predicates

representing the fact that two objects are considered to be possibly in the same

location, nearby, or far from each other respectively. For δ = 20m, BEQ(a, b) is

generated if a and b are within a distance d and d ≤ δ. Similarly, NEAR(a, b)

and FAR(a, b) are generated if δ < d ≤ 2 ∗ δ and d > 4 ∗ δ, respectively. These

facts are generated using the geospatial data (i.e., locations) of all objects from

the original sources (e.g., OSM and OSGB).

The LNF rules are rules of the form A→ B. These rules are introduced in [33],

where BEQ,FAR,NEAR are binary predicates and a, b, c, d, e are variables:

Rule 1 BEQ(a, a);

Rule 2 BEQ(a, b)→ BEQ(b, a);

Rule 3 NEAR(a, b)→ NEAR(b, a);

Rule 4 FAR(a, b)→ FAR(b, a);

Rule 5 BEQ(a, b)∧BEQ(b, c)→ NEAR(a, c);

Rule 6 BEQ(a, b)∧NEAR(b, c)∧BEQ(c, d)→ ¬FAR(d, a);

Rule 7 NEAR(a, b)∧NEAR(b, c)→ ¬FAR(a, c);

Rule 8 BEQ(a, b)∧BEQ(b, c)∧NEAR(c, d)→ ¬FAR(d, a);

Rule 9 BEQ(a, b)→ NEAR(a, b);

Rule 10 FAR(a, b)→ ¬NEAR(a, b);
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Rule 11 BEQ(a, b)∧ FAR(b, c)→ ¬NEAR(c, a);

Rule 12 BEQ(a, b)→ ¬FAR(a, b);

Rule 13 BEQ(a, b)∧BEQ(b, c)→ ¬FAR(c, a);

Rule 14 BEQ(a, b)∧BEQ(b, c)∧BEQ(c, d)→ ¬FAR(d, a); and

Rule 15 BEQ(a, b)∧BEQ(b, c)∧BEQ(c, d)∧BEQ(d, e)→ ¬FAR(e, a).

Apart from Rule 1, which means that an object is always within a distance δ of

itself, other rules are self-explanatory. Rule 7 is only applicable for points, not

polygon objects, and hence mappings of polygon objects needs to take this into

account and remove Rule 7.

Each mapping OSM :X = OSGB : Y makes two objects OSM :X and OSGB :

Y equivalent in the KB. For example, if NEAR(OSM : X,OSM : Z) and there

exists a mappingOSM :X =OSGB : Y , thenNEAR(OSM : Y,OSM : Z) is also

in the KB. As there is only three predicates in the logic, to implement equality

of objects, we can encode the mappings as the following additional rules:

Rule 16 a = b→ b = a (mappings are symmetrical);

Rule 17 a = b∧BEQ(a, c)→ BEQ(b, c);

Rule 18 a = b∧NEAR(a, c)→ NEAR(b, c);

Rule 19 a = b∧ FAR(a, c)→ FAR(b, c);

Rule 20 a = b∧¬BEQ(a, c)→ ¬BEQ(b, c);

Rule 21 a = b∧¬NEAR(a, c)→ ¬NEAR(b, c);

Rule 22 a = b∧¬FAR(a, c)→ ¬FAR(b, c);
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The task required is twofold. The first part is to check whether there are any

inconsistencies under the Logic of NEAR and FAR specified by the above rules,

given generated mappings. Secondly, if there is an inconsistency then find min-

imal sets of mappings responsible for the inconsistency.

6.3 The ATMS-based Approach to Mapping Errors-

Detection

To solve the problem presented in Section 6.2, we use an ATMS introduced in

Section 4.5. The whole framework is illustrated in Figure 6.1. We use a reasoner

to reason under the Logic of NEAR and FAR, which includes the rules in Section

6.2. To introduce inconsistency, we have an additional rule stating that a fact

and its negation cause a contradiction:

⊥-rule A(a, b)∧¬A(a, b)→⊥ where A ∈ {BEQ,NEAR,FAR}.

There is a clear mapping between the problem of detecting errors and the op-

erations of the ATMS. In particular, all generated BEQ, NEAR, and FAR facts

and LNF rules can be encoded as ATMS premises and each mapping is repre-

sented by an ATMS assumption. We then have a reasoner to infer new facts as

well as to discover inconsistency. The job of the ATMS is to maintain the cache

of inferences in its dependency graph and compute all possible derrivations of

a node, including n⊥, in each node’s label.

The system operates in a cycle. At each cycle the reasoner applies an inference

rule to a set of facts which are not currently known to be inconsistent and sends

the inference to the ATMS in form of a justification if such a justification does

not exist. The ATMS creates nodes and updates the dependency graph between

nodes using the justification. In addition, the ATMS also maintains consistency,
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FIGURE 6.1: The Framework to Find Incorrect Mappings of 2 Geospatial On-
tologies, Open Street Map (OSM) and Ordnance Survey Great Britain (OSGB).

minimality, soundness, and completeness of each node’s label using the label

update propagation algorithms mentioned in Section 4.5.3. The reasoner keeps

making inferences until no inference rule can be applied. At this point, each en-

vironment in the label of a node ndatum is a minimal set of axioms that can used

to derive datum, and the label of n⊥ consists of sets of mappings responsible for

inconsistency.

6.4 Algorithms for Label Update Propagation in the

ATMS

This section describes the algorithms used to update node labels in the ATMS.

The algorithms are based on ones in [25]. When the ATMS receives a new justi-

fication J : x1, . . . , xk⇒ n, it invokes PROPAGATE(J, a, I) to update node n’s label

and propagate the changes to other nodes in the ATMS. PROPAGATE takes three
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parameters: J : x1, . . . , xk ⇒ n is the justification for the node whose label to

be updated, a is an antecedent of J whose label has been updated, and I is the

newly added environments. With a new justification J sent from the reasoner, I

and a are given as {{}} and ∅ respectively. PROPAGATE first computes the label

update for node n by calling COMPUTE-SINGLE-LABEL-UPDATE. If there exists a

non-empty update L, it updates n’s label with the environments in L by calling

UPDATE-NODE-LABEL.

Algorithm 6.1 Propagate incremental label update

procedure PROPAGATE(J : x1, . . . , xk ⇒ n,a, I)

L← COMPUTE-SINGLE-LABEL-UPDATE(a, I,{x1, . . . , xk})

if L 6= {} then

UPDATE-NODE-LABEL(L,n)

end if

end procedure

Procedure COMPUTE-SINGLE-LABEL-UPDATE computes the label update for a

node n, when a is a member of n’s antecedents, I is a set of new environments

recently added to node a, and X is the set of J ’s antecedents (i.e., {x1, . . . , xk})

in Algorithm 6.1).

Algorithm 6.2 Compute single label update

procedure COMPUTE-SINGLE-LABEL-UPDATE(a, I,X)

for all h ∈ X,h 6= a do

I ′← {e∪ e′ | e ∈ I, e′ ∈ label(h)}

I ← I ′ \ {e | e′ ⊆ e, e⊥ ⊆ e, e ∈ I
′, e′ ∈ I ′, e⊥ ∈ label(n⊥)}

end for

return I

end procedure
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Procedure UPDATE-NODE-LABEL updates the label of n and propagates the changes,

i.e., L, to its consequences if n is not a contradictory node. It also maintains

soundness and minimality properties of nodes’ label. For clarity and consis-

tency between different chapters in this thesis, this procedure is slightly dif-

ferent from the original one from [25] as it does not remove subsumption and

nogoods from the label update L after propagating the label update. However,

this does not affect the performance of the label update propagation signifi-

cantly.

Algorithm 6.3 Update the current label and propagate to consequences

procedure UPDATE-NODE-LABEL(L,n )

if n = n⊥ then

for all e ∈ L do

UPDATE-FALSITY(e)

end for

else

L← L \ {e | en ⊆ e, e ∈ L, en ∈ label(n)}

Ln← label(n) \ {en | e ⊆ en, e ∈ L, en ∈ label(n)}

label(n)← Ln ∪L

if L = {} then

return

end if

for all J where n ∈ antecedents(J) do

PROPAGATE(J,n,L)

end for

end if

end procedure

Procedure UPDATE-FALSITY updates the nogood database in the label of n⊥
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when a new nogood is found. It also triggers label update in all nodes to re-

move nogoods and its supersets from each label.

Algorithm 6.4 Update nodes when a nogood e is found

procedure UPDATE-FALSITY(e)

Add e into n⊥

for all node n 6= n⊥ in the ATMS do

L′ = {e′ | e⊥ ⊆ e
′, e′ ∈ label(n), e⊥ ∈ label(n⊥)}

label(n)← label(n) \L′

end for

end procedure

6.5 Correctness

This section is to show that the approach works correctly, i.e., the label of a

datum node is correct, complete, consistent, and minimal (see Section 4.5.2).

Before proving that the properties of node’s label hold, we firstly show that

the reasoner logic (LNF) of the reasoner is sound and complete. This has been

proved in [33]. Secondly, we need to show that the reasoner is terminating. This

can be established from the facts that the reasoner is forward-chaining and the

inference rules (LNF rules) do not contain loops. The following theorems show

that the four properties of a node label are maintained.

Theorem 6.1 (Label soundness). For each datum node n and each environment in

its label, there is a sequence of rule applications produced by the reasoner, such that the

only assumptions used in the derivation are in the label’s environment.

Proof. The proof is by induction on the longest chain of justifications connecting

the datum to assumptions. Environments are added when the ATMS receives

a justification from the reasoner (see Algorithm 6.1). If the antecedents of the
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justification are assumption nodes or premise nodes, the theorem follows im-

mediately because we have a one step derivation of the datum from those as-

sumptions or premises. The inductive step is as follows. After the environment

which reflects the assumptions used in the derivation is added to the datum’s

label, it is updated to maintain soundness. In particular, if an environment in

the label of n is discovered to be a superset of another environment in the label

of n (i.e., the label is non-minimal) or an environment in the label of n⊥ (i.e., the

label is inconsistent), it is removed (see Algorithm 6.2). This step, i.e., maintain-

ing label minimality and consistency, does not change any environment (e.g., no

assumption is added or removed from an environment), and hence soundness

is maintained.

Theorem 6.2 (Label completeness relative to reasoner). Every set of assumptions

A from which a datum n can be derived given the set of justifications produced by the

reasoner so far, is a superset of some environment in the datum’s label.

Proof. This theorem is proved by induction on the length of the derivation (the

length of the chain of justifications produced by the reasoner). For a one step

derivation (where the corresponding justification for n has assumption nodes

or premise nodes as ancetedents) this is immediate. For a k step derivation,

assume that the justification for n has n1 and n2 as antecedents, and that all

known derivations for n1 use one of the sets of assumptions e1, . . . , em and for n2,

e′1, . . . , e
′
m′ . Since n1 and n2 occur as the k-1st and k-2nd steps in the derivation

of n, the inductive hypothesis applies (i.e., the labels of n1 and n2 are complete

given the justifications produced so far). As in Algorithm 6.2, all ways to derive

n use e1 ∪ e′1 or e1 ∪ e′2, . . . , or em ∪ e′m′ . This set of environments will then be

added to n’s label by Algorithm 6.3. The ‘superset’ comes from the fact that

Algorithms 6.2 and 6.3 check for subsumption of environments and remove the

ones which contain redundant assumptions.
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Theorem 6.3 (Label Consistency). No environment in the datum node’s label is in-

consistent, i.e., is a superset of an environment where n⊥ holds.

Proof. If a nogood environment of n⊥ is found (see Algorithm 6.3), Algorithm

6.4 ensures any environment of a node in the ATMS, apart from n⊥, is not a

superset of the nogood environment.

Theorem 6.4 (Label minimality). No environment in the datum’s label is a subset of

any other.

Proof. Guaranteed by subsumption tests and removal in Algorithms 6.2 and

6.3.

6.6 Preliminary Experimental Results

In this section, we describe an implementation of an error detecting system that

comprises a forward-chaining rule-based reasoner and an ATMS. The system,

including the reasoner and the ATMS, is written in POP11.5 The reasoner is a

set of rules (Rule 2-22) from Section 6.2, except Rule 7 as mentioned before. For

Rule 1, the system generates all facts of the form B(a, a) where a is a constant

in the KB at compile-time. Other facts, e.g., instances of BEQ, NEAR and FAR

predicates, are generated from the location of each object and explicitly given

to the reasoner. Rules and BEQ, NEAR, FAR facts are encoded as premises

(i.e., always true). The mappings (e.g., OSM : X = OSGB : Y ) are encoded as

assumptions as these might or might not be correct.

5http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.html
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The generation of mappings and original BEQ, NEAR, and FAR facts is as in

[33]. BEQ, NEAR, and FAR facts are generated using Nottingham City Cen-

tre’s geospatial data from OSGB and OSM map data. The mappings are gener-

ated using similarity in place names. The experiments were performed on a PC

with dual core 2.2GHz Intel Pentium and 4GB RAM PC running Ubuntu 12.04.

Initially, there were a total of 11557 original BEQ, NEAR, and FAR facts and

219 mappings. After termination, the reasoner and the ATMS detect 72 mini-

mal sets of incorrect mappings. The total time for the reasoner to derive all facts

and contradictions is 61.7 seconds while the ATMS spends 40.6 seconds to find

all mappings leading to n⊥. During its run, the ATMS has built a dependency

graph of 15440 nodes and 30699 justifications. There are also 21198 justifica-

tions for n⊥. It is interesting that although there are many justifications for n⊥,

the ATMS still performs well. The reason behind this is the average size of n⊥’s

environment, which is only one in this case. Note that the number of justifica-

tions as well as the average size of environments in n⊥’s label will greatly affect

the performance of the ATMS because of minimalisation process . In this case,

because all LNF rules and facts are encoded as premises and mappings are en-

coded as assumptions, there is only one mapping (average) in each minimal set

of mappings responsible for inconsistency, and hence the ATMS still performs

well.

In Example 6.1, object OSGB : 1000002309051190 (Castle Clinic6 located at a

street called The Ropewalk) is mapped to objectOSM : 99999874 (A pub named

The Ropewalk7). This is then revealed as an incorrect mapping because while the

names are similar, they are located far away from each other. To see why the

mapping is incorrect, we also provide a facility to print a derivation of⊥. In Ex-

ample 6.1, we also show two derivations of ⊥. These derivations involve two

6Address: 18-20 The Ropewalk, Nottingham NG1 5DT
7Address: 107-111 Derby Rd, Nottingham NG1 5BB
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steps (i.e., two justifications). BEQ(OSM : 99999874,OSM : 99999874) is gen-

erated at compile-time and is a premise, and hence there is no justification for

it. Note that although it is possible to have many justifications for a node, the

nodes’ labels are always kept minimalised due to the minimalisation process.

Example 6.1. An example of minimal sets of incorrect mapping is:

{OSGB : 1000002309051190 = OSM : 99999874}

Trace 1:

<\atms_justification: 63 >

falsity

DERIVED FROM

[[BEQ OSM:99999874 OSM:99999874]

[FAR OSM:99999874 OSM:99999874]

[(=> (and (BEQ ?A ?B) (FAR ?A ?B)) (false))]]

<\atms_justification: 35 >

[FAR OSM:99999874 OSM:99999874]

DERIVED FROM

[[SAMEAS OSGB:1000002309051190 OSM:99999874]

[FAR OSGB:1000002309051190 OSM:99999874]

[(=> (and (SAMEAS ?X ?Y) (FAR ?X ?B)) (FAR ?Y ?B))]]

Trace 2:

<\atms_justification: 76 >

falsity

DERIVED FROM

** [[BEQ OSM:99999874 OSM:99999874]
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[BEQ OSM:99999874 OSM:99999874]

[BEQ OSM:99999874 OSM:99999874]

[BEQ OSM:99999874 OSM:99999874]

[BEQ OSM:99999874 OSM:99999874]

[(=> (and

(BEQ ?A ?B)

(BEQ ?B ?C)

(BEQ ?C ?D)

(BEQ ?D ?E)

(FAR ?E ?A))

(false))]]

<\atms_justification: 35 >

[FAR OSM:99999874 OSM:99999874]

DERIVED FROM

[[SAMEAS OSGB:1000002309051190 OSM:99999874]

[FAR OSGB:1000002309051190 OSM:99999874]

[(=> (and (SAMEAS ?X ?Y) (FAR ?X ?B)) (FAR ?Y ?B))]]

6.7 Conclusion

In this chapter, we showed how to employ the original ATMS to solve a real-

world problem, namely detecting errors in auto-generated mappings between

two ontologies. In addition, correctness proofs of the algorithms (i.e., the ability

to maintain correct ATMS’s node labels) were also given. Finally, experimental

results showed that ATMS can find all incorrect mappings of the given data-

set within a reasonable amount of time (under one minute). As the problem

presented in this chapter uses a logic supporting only Horn-clause inferences,
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we did not need to modify an ATMS significantly. In the next chapter, we will

extend the current ATMS to deal with a reasoner of more expressive logic with

disjunction and loops.
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Chapter 7

Debugging Ontologies with

Disjunctions and Loops

7.1 Introduction

In the previous chapter, an ATMS is applied to find incorrect auto-generated

geospatial mappings. The inference rules in the reasoner are Horn-like rules,

and hence using the ATMS is straightforward. In this chapter we show that

an ATMS can also be used for axiom pinpointing, that is, finding the minimal

set of axioms responsible for an unwanted consequence, even in a more ex-

pressive description logic such as ALC, which allows disjunction constructs.

More specifically, we present a system which returns all minimal sets of axioms

responsible for the derivation of inconsistency in an ALC ontology (where all

inclusion axioms have an atomic concept on the left). Following Sirin et al [86],

we refer to these sets of axioms as explanations.

Our approach involves using a modified Assumption-Based Truth Maintenance

System (ATMS) [23] to trace inferential dependencies between formulae and

compute the minimal sets of ontology axioms responsible for a contradiction.
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The research questions, objectives, and the contributions of the work presented

in this chapter are as follows.

Research Questions How can a ‘classic’ ATMS (e.g., as described in [25]) be

extended to support logics featuring disjunctions and cyclic definitions?

How well the extended ATMS can perform in both synthetic and realistic

ontologies?

Research Objectives

1. To define a variant of the ALC logic, which we call the dictionary

ALC, extending the unfoldable ALC terminologies with cyclic defi-

nitions.

2. To extend the data-structures of the original ATMS to support non-

determinism, i.e., disjunctions, and cyclic definitions of concepts.

3. To implement the new ATMS, which we call the D-ATMS, and to

conduct experiences comparing the performance of the system with

other reasoners such as Pellet and MUPSter.

Contributions The main technical contribution of this work is extending the

ATMS to deal with disjunctions and loops. The notion of an ATMS en-

vironment (a set of axioms from which a formula is derivable) is gener-

alised to include the non-deterministic choices required for the derivation

of the formula. We show that this extended ATMS (which we call the D-

ATMS), combined with a tableau reasoner extended with a blocking con-

dition to ensure termination, produces correct, complete and minimal ex-

planations for a contradiction in anALC ontology where inclusion axioms

always contain an atomic concept on the left (which we refer to as dictio-

nary terminologies). We have developed a prototype implementation of

our approach which we call AOD1. Experimental results comparing AOD,

1An Ontology Debugger
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MUPSter[82], and the Pellet [86] explanation service are encouraging, and

suggest that AOD can outperform MUPSter and Pellet on both synthetic

and real-world ontologies.

The rest of chapter is organised as follows. Section 7.2 presents the general

framework of AOD. In Section 7.3, we give a high level overview of the rea-

soner, including the blocking conditions for handling loops. In Section 7.4, we

explain the D-ATMS extensions to a ‘classical’ ATMS in detail. In Section 7.5, we

show that the system is correct and complete relative to the reasoner. The ex-

perimental results of the prototype and how the system displays explanations

are given in Section 7.6 and Section 7.7.

7.2 System Architecture

Our ontology debugging framework, AOD, consists of two components: a tableaux-

style reasoner and the D-ATMS, as described in Figure 7.1.

FIGURE 7.1: The components of AOD: a reasoner and the D-ATMS

The reasoner takes as input a set of TBox axioms and a single ABox axiom cor-

responding to the concept whose emptiness is to be checked, e.g., to check the

emptiness a concept A, we add A(a) as an ABox axiom. To check for incoher-

ence, we check whether a contradiction is derivable from the TBox and ABox.

The reasoner derives consequences by applying inference rules to axioms and

previously derived formulae. Newly derived formulae are communicated to
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the D-ATMS in the form of inferences. An inference φ1, . . . , φn
r

=⇒ φ indicates

that the formula φ can be derived from the set of formulae φ1, . . . , φn using the

inference rule r.

The D-ATMS maintains dependencies between formulae inferred by the rea-

soner, and computes explanations (minimal reasons) for formulae. To do so, the

D-ATMS builds and maintains a justification graph. Each node in the graph cor-

responds to a formula or a justification (a record of inference; a justification has

an outgoing edge to the inferred formula and incoming edges from each of the

premises of the inference)2. A new inference φ1, . . . , φn
r

=⇒ φ from the reasoner

causes the D-ATMS to update the justification graph to record the derivability

of φ from φ1, . . . , φn. If φ = ⊥, i.e., if the reasoner has derived an inconsistency,

the D-ATMS also records the fact that the antecedents of the justification are

known to be inconsistent.

When the reasoner applies an inference rule, it passes the resulting inference to

the D-ATMS, causing the D-ATMS to update the justification graph. In addition,

the reasoner can query the D-ATMS for the explanations of a previously derived

formula φ. An explanation consists of all minimal sets of axioms from which φ

can be derived, and, optionally, the sequence of inference rules necessary to

derive φ from each set of axioms. The explanations returned by the D-ATMS

are guaranteed to be correct (in the sense that φ is derivable from each of the

returned sets of axioms) and minimal (in the sense that φ is not derivable from

their proper subsets). Explanations are used in AOD in two ways. First, when

checking if a constant i is blocked by a constant j in the the ∃-rule, the reasoner

uses the D-ATMS to determine if the explanations of the concept descriptions

which hold for i are a subset of the explanations of the concept descriptions

of j. Second, when the reasoner can make no new inferences, the D-ATMS is

invoked to compute all explanations for ⊥.

2Note that we use the term justification as it is used in ATMS literature, rather than to mean
the minimal set of axioms responsible for an entailment as in, e.g., [10].
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7.3 The Reasoner

In this section we introduce the syntax of the logic we are using, and the infer-

ence rules.

7.3.1 A Dictionary ALC

The syntax ofALC includes a set of atomic concepts (unary predicates)A,A1, . . .,

roles (binary predicates) s, r, . . ., and constants a, b, . . .. Complex concepts are

built from those using intersection ⊓, union ⊔ (we generalise slightly to n-ary

versions of intersection and union), negation ¬, existential quantification ∃s.C

(which defines the set of objects connected by the role s to an individual defined

by concept C), and universal quantification ∀s.C (which defines a set of objects

all of whose s-successors are in C). Formulas are formed by stating inclusions

between two concepts: C ⊑ D, and stating that an individual is described by

a concept: C(a). For simplicity, we only allow negation of atomic concepts,

since every ALC formula can be rewritten in negation normal form. We restrict

the syntax of inclusions to require that all inclusions have an atomic concept

on the left. This is similar to the restriction for unfoldable ALC terminologies

[7, 65], but we do not require in addition that the terminology is acyclic (there

may be a chain of inclusions which leads from a concept to itself). We refer

to this kind of terminologies as dictionary ALC terminologies. Although a sin-

gle concept on the left of each inclusion seems a significant restriction, there

are quite a few real life ontologies which conform to this restriction, for ex-

ample, the Biochemistry-primitive ontology from the TONES repository,3 the

3http://owl.cs.manchester.ac.uk/repository
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Ordnance Survey BuildingsAndPlaces ontology,4 the Adult Mouse Brain On-

tology from the NCBO BioPortal,5 the Geo ontology [82], the DICE ontology6,

the MGED ontology7, and a merge of two well-known upper ontologies, a mini-

version of SUMO ontology8 and the CYC ontology9. The reasoner is restricted

to ALC rules for the results reported in this work (and some features of the on-

tologies listed above, such as role inclusions, are ignored), but it is reasonably

straightforward to extend the reasoner with additional inference rules.

The reasoner is a tableau reasoner for dictionary ALC terminologies. It uses

essentially the same rules as in [64, 81], together with a blocking condition:

⊑-rule from A(a) and A ⊑ C derive C(a)

⊓-rule from (C1 ⊓ . . .⊓Cn)(a) derive C1(a), . . . ,Cn(a)

⊔-rule from (C1 ⊔ . . .⊔Cn)(a), derive choices C1(a), . . . , Cn(a)

⊥-rule from A(a) and ¬A(a) derive ⊥

∀-rule from (∀s.C)(a) and s(a, b) derive C(b)

∃-rule from (∃s.C)(a) derive s(a, b),C(b) where: b is a new individual, (∃s.C)(a)

has not been used before to generate another new individual.

whereA is an atomic concept, C andD are arbitrary concepts, a, b are constants,

and s is a role. For ontologies that include disjointness axioms of the form

DJ(A1, . . . ,An) stating that the conceptsA1, . . . ,An are pairwise disjoint, we add

the following inference rule to the reasoner:

4http://www.ordnancesurvey.co.uk/oswebsite/ontology/BuildingsAndPlaces/v1.1/

BuildingsAndPlaces.owl
5http://bioportal.bioontology.org/ontologies/1290
6http://www.mindswap.org/2005/debugging/ontologies/dice.owl
7http://www.mged.org
8http://www.ontologyportal.org
9http://www.opencyc.org
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(B1 ⊔B2 ⊔B3)(a)
(C1 ⊔C2)(b)

B1(a)
(C1 ⊔C2)(b)

B1(a),
C1(b)

B1(a),
C2(b)

B2(a)
(C1 ⊔C2)(a)

B2(a),
C1(b)

B2(a),
C2(b)

B3(a)
(C1 ⊔C2)(a)

B3(a),
C1(b)

B3(a),
C2(b)

FIGURE 7.2: Tableau with nested disjunctions

dj-rule from DJ(A1, . . . ,An) and Ai(a), Aj(a), i, j ∈ {1, . . . , n}, i 6= j derive ⊥.

The ⊑, ⊓, ∀, ⊥ and dj-rules are straightforward. The ⊔-rule allows us to reason

by cases when we encounter a formula of the form (C1 ⊔ . . .⊔Cn)(a). The ⊔-rule

creates branches in the tableaux for each disjunct (choice) C1(a), . . . , Cn(a). A

tableau is a tree where nodes are sets of formulae, and children of a node are

obtained by applying inference rules to formulae in the node, so that the child

node(s) contains all the formulae from the parent node and the newly derived

formula. For readability, we will sometimes show only the new formula in

a child node, with the understanding that all the formulae higher up on the

branch belong to the node as well. If a node contains several disjunctions, for

example B1 ⊔ B2 ⊔ B3(a) and C1 ⊔ C2(b) as in Figure 7.2, the order in which

the disjunction rule is applied does not matter, but once this order is fixed, the

choices for the second disjunction are repeated under each of the choices for the

first disjunction (see Figure 7.2).

7.3.2 Loops and The Blocking Conditions

The original definition of of unfoldable TBox does not allow cyclic definition

of concepts although cyclic definitions are essentially a useful feature for DL
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modellers. For example, it is straight-forward to define a man who has only

male descendants (Momd)10 using a cyclic definition as follows.

Momd =Man⊓ ∀hasChild.Momd

It is very hard and nonintuitive for modeller to define such a concept without

cyclicity.

However, if we remove one condition of unfoldable TBox (see 3.6) specifying

that the right-hand side of a concept definition cannot refer directly or indirectly

to the concept name it defines, the following TBox will cause looping in the

reasoner.

T = {A(i1),A ⊑ ∃s.A}

Basically, the ⊑-rules and ∃-rule while applying to A(i1) will create a fresh con-

stant i2 and an assertion A(i2), and the same process applies to A(i2). This will

create an infinite chain of assertions of the form:

A(i1)
⊑−rule
−−−−→∃s.A(i1)

∃−rule
−−−−→A(i2)

⊑−rule
−−−−→∃s.A(i2)

∃−rule
−−−−→ . . .

∃−rule
−−−−→A(in)

⊑−rule
−−−−→ . . .

Therefore, it is essential to have a blocking condition for the application of the

∃-rule to prevent the generation of similar assertions. However, this condition

can be varied depending on the reasoning task. In the following sections, we

will look at the blocking condition with and without pinpointing.

10This example is given from [6]
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7.3.2.1 Blocking Condition without Pinpointing

Recall that in section 7.3.1, the condition of ∃-rule is only that there exists an

assertion of the form (∃s.C)(a) and the rule has not been applied on it yet. Be-

cause looping might occur, we need another condition to block constant a (or

the assertion (∃s.C)(a) ) if they cause looping. The reason to block a constant

instead of the assertion is that there can be multiple assertions with the same

constant causing looping. For example,

T1 = {A(i1),A ⊑ ∃s.A⊓B,B ⊑ ∃s.B}

can have two assertions with the same constant causing loops ∃s.A(i1) and

∃s.B(i1).

Blocking Condition 1

• A constant ai+1 is blocked by a constant ai if for each node in the

ATMS whose datum contains ai+1, there exists a node which is simi-

lar whose datum contains ai.

• Two assertions are similar if they have the same concept descrip-

tion and different constants (for instance, A(a1) and A(a2) are similar

while A(a1)) and B(a1) are not.

This blocking condition will be checked everytime an exists rule (in our T1 on-

tology, ∃s.A(i2)) is triggered. If i2 is blocked by another constant (in this case

is i1), the rule will not be fired, and hence the reasoner terminated. For normal

reasoning services such as unsatisfiability or consistency checking, this block-

ing condition is enough because the reasoner only needs to know whether or not

an assertion is derivable, not how it is derived. In the next section, the blocking

condition for pinpointing will be examined.

106



Debugging Ontologies with Disjunctions and Loops

7.3.2.2 Blocking Condition with Pinpointing

A similar loop also occurs in

T2 = {A(i1),A⊑∃s.A⊓B⊓C ⊓D⊓E(1),B ⊑¬E(2),C ⊑∀s.¬E(3),D⊑∀s.∀s.¬E(4)}.
11

The case of T2 is more complicated than the case of T1, because if constant i2

is blocked by constant i1, ⊥ is only derivable from {1,2} and {1,3}. In fact,

{1,4} can also derive ⊥ . It is because node ¬E(i1) and ¬E(i2) are considered

similar according to Blocking Condition 1, while they actually come from differ-

ent derivations (¬E(i1) is derived from {{1,2}} while¬E(i2) is derived from

{{1,2},{1,3}}). Therefore, it is also necessary to take into account the environ-

ments of nodes in blocking condition to ensure that all explanations are found.

The refined blocking condition is the sames as in Blocking Condition 1, but the

definition of nodes’s similarity should be change to:

Blocking Condition 2

• A constant ai+1 is blocked by a constant ai if for each node in the

ATMS whose datum contains ai+1, there exists a node which is simi-

lar whose datum contains ai.

• Two assertions are similar iff:

– they have the same concept description and different constants,

and

– they have the same set of explanations.

This condition is similar to the blocking condition in [9, 59]. In fact, the notion

of similarity in Blocking Condition 2 is similar to ≡pin in [9]. The difference be-

tween this blocking condition and ones in [9, 59] is that this condition applies

11This example is adapted from one in [59]

107



Debugging Ontologies with Disjunctions and Loops

to all nodes in the ATMS (in which each node is an assertion) while the other

two apply to two consecutive nodes in a tableaux (in which each node is a set

of assertions). With Blocking Condition 2, new constants i3 and i4 will also be

created, and because i4 is blocked by i3 according to Blocking Condition 2, the

reasoner terminates while all explanations for inconsistency can still be found.

Note that the second condition of similarity is too strict, as we only need the

explanation set of all assertions of blocked constant to be the subset of the ex-

planation set of all assertions of blocking constant. Therefore, we modify the

∃-rule in the beginning of Section 7.3.1 to incorporate the blocking condition as

follows:

Blocking Condition 3 Let assertions(i) be the set of all concept descriptions

which hold for i. Then a constant i is blocked by a constant j if the follow-

ing two conditions hold:

• assertions(i) ⊆ assertions(j)

• for each C(i) in assertions(i), the set of explanations of the node cor-

responding to C(i) is a subset of the set of explanations of the node

corresponding to C(j).

The ∃-rule will then become:

∃-rule from (∃s.C)(a) derive s(a, b),C(b) where: b is a new individual, (∃s.C)(a)

has not been used before to generate another new individual, and a is not

blocked.

It is a standard subset blocking condition for assertions, extended to ensure that

assertions of the blocked constant do not have any new and different ways of

being derivable (compared to the assertions of the blocking constant), which

may result in new explanations being produced.
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The reasoner derives consequences by applying inference rules to axioms and

previously derived formulae. In order to deal with cyclic terminologies, the

reasoner operates in phases. In the odd phase, all inference rules apart from

the instances of ∃-rule are applied. When no inference rules other than the ∃-

rule are applicable, execution switches to the even phase, in which non-blocked

instances of the ∃-rule are applied.

Each possible inference is generated exactly once. Two inferences are the same

if they have the same antecedents and result from the application of the same

inference rule. This means that the reasoner will generate multiple inferences

with the same formula as the consequent, if the formula can be derived from

different antecedents or different inference rules. Newly derived formulae may

form the antecedents of further inferences, and the cycle repeats until no new

inferences can be made.12

In order to reduce the time required for pattern matching and the search for

derivations of a contradication, we pre-process the ontology depending on the

input ABox, essentially computing the concepts reachable from the ABox and

the corresponding inclusion axioms, or the logical module for the Abox (see, for

example, [41, 51]). Since the input ontologies always have an atomic concept on

the left of the inclusion axioms, there exists a quite straightforward algorithm

which guarantees completeness of the resulting module.

7.4 The D-ATMS

Like the original ATMS [23], the D-ATMS maintains dependencies between

formulae inferred by the reasoner and computes minimal sets of axioms from

12In particular, the reasoner does not stop after a contradiction is derived on a branch, but
continues to apply inference rules until no new rule applications are possible.
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which a formula is derivable.13 In this section, we explain how the ATMS intro-

duced in [23] is generalised to deal with disjunctions.

7.4.1 Dealing with Disjunctions

The original ATMS [23] can only represent Horn-clause inferences supplied by

the reasoner such as A1 ∩ A2 ∩ A3 → B. This is fine with the less expressive

description logics such as EL, as there is no disjunctive concept description.

However, it is not the case for unfoldable ALC, as now disjunction is allowed

under the ⊔-rule in Section 7.3.1:

⊔-rule from (C1 ⊔ . . .⊔Cn)(a), derive choices C1(a), . . . , Cn(a)

Recall from Section 3.2.4 that a tableau is a tree where each node is a set of as-

sertions, the way tableaux-like reasoners deal with disjunction is quite intuitive.

Everytime a ⊔-rule is applied to a node of the tableau, the node is divided into

two child-nodes, and each of them represents the disjunctive branch of the par-

ent node (see Figure 7.3). Then the reasoning rules will apply to the children

nodes instead of the parent node.

B(a), (C1 ⊔C2)(a)

B(a), (C1 ⊔C2)(a)
C1(a)

B(a), (C1 ⊔C2)(a)
C2(a)

FIGURE 7.3: Tableau reasoning with disjunctions

In an ATMS, a node records only one assertion, and hence it will be harder to

record an inference resulted from the ⊔-rule. For example, in Figure 7.4, how

13An ATMS typically also provides additional functionality, e.g., interpretation construction;
as these capabilities are not required for our approach we do not discuss them here.
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can one distinguish between an inference from conjunction and another infer-

ence from disjunction? Therefore, there should be a way for derived nodes such

asC1(a) andC2(a) to recognise whether they or their ancestor nodes are derived

from disjunctive inferences. To do so, we need to embed the information of all

disjunctive choices which are used to derive a node in its label, in addition to

the set of nodes where it is derived from as in the original ATMS.

(C1 ⊓C2)(a)

C1(a) C2(a)

(C1 ⊔C2)(a)

C1(a) C2(a)

FIGURE 7.4: The inference from a conjunction and a disjunction might be
recored by a typical ATMS

A disjunctive choice has two parts to record: the disjunction and a choice (i.e.,

a disjunct). As the result, instead of recording only a set of axioms as in the

original ATMS, to be able to record disjunctive inferences, an environment has

to be extended to include a sequence of disjunctive choices from which, the

set of axioms can consistently derive a node. To sum up, there are three data-

structures in the original ATMS which can be added (or extended) to allow rea-

soning with non-Horn clause formulae: a) another kind of justification to record

disjunctive inference supplied by the reasoner; b) a disjunctive choice, which in-

cludes a unique disjunction and one disjunct; and c) an extended environment

of a node, which now needs to include the sequence of disjunctive choices have

been made to derive that node. In the following section, we will look in more

details at how the original ATMS is extended to deal with disjunctions.
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7.4.2 The D-ATMS Data-structures: Nodes, Justifications, En-

vironments and Labels

The D-ATMS maps reasoner inferences to an internal representation based on

nodes and justifications.14 Each formula is represented by a D-ATMS node. We

denote the node corresponding to a formula φ by nφ. Axioms are represented by

axiom nodes, and inconsistency is represented by a distinguished false node, n⊥.

In the interests of readability, we will often refer to a formula node nφ by the for-

mula φ it represents. To compute derivability, the D-ATMS builds a justification

graph. Justification nodes record the fact that a node (the consequent) can be de-

rived from a set of other nodes (the antecedents): they have an outgoing edge

to the consequent and incoming edges from each of the antecedents. A node

may be the consequent of more than one justification (recording the different

ways in which it can be derived), and be an antecedent in other justifications

(recording the inferences that can be made using it).

Definition 7.1. A justification is a structure j : nφ1 , . . . , nφk⇒ nφ, where nφ1 , . . . , nφk

are nodes corresponding to the antecedents of an inference, nφ is a node cor-

responding to the consequent of the inference, and j is the justification id, a

unique, sequentially assigned integer that identifies the justification.

As ids are unique, we will often refer to a justification by its id. The D-ATMS

distinguishes two different types of justification: deterministic justifications

and non-deterministic justifications. Non-deterministic justifications are pro-

duced by the ⊔-rule and have a choice (a formula appearing as a disjunct in

a disjunction) as the consequent and a single antecedent consisting of the dis-

junction in which the choice appears. Non deterministic justifications are of the

form j : nd ⇒ nψi
, where d is of the form ψ1 ⊔ . . . ⊔ ψk, 1 ≤ i ≤ k. Deterministic

justifications may be derived using any of the decomposition rules except the

14Note that we use the term justification as it is used in ATMS literature, rather than to mean
the minimal set of axioms responsible for an entailment as in, e.g., [10].
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⊔-rule, and may have any formulae except a disjunction as antecedents. Deter-

ministic justifications are of the form j : nφ1 , . . . , nφk ⇒ nφ.

When reasoning begins, the D-ATMS contains only axiom nodes. As the rea-

soner derives consequences, it sends the inferences to the D-ATMS. A justifi-

cation is added linking the nodes representing the antecedents of the inference

to the node representing the consequent (if no node exists for the derived for-

mula, one is created). The reasoner may designate certain sets of formulae as

inconsistent (nogood in ATMS terminology) by providing a justification for n⊥.

Each node in the justification graph has a label consisting of a set of environ-

ments.

Definition 7.2 (environment). An environment e is a pair (A,C) where A is

a set of axioms and C is a sequence of choice sets [c1, . . . , ck] of length k ≥ 0.

Each choice set ci is a pair (di, bi) where di = ψ1 ⊔ . . . ⊔ ψn is a disjunction and

bi ⊂ {ψ1, . . . , ψn} is a set of choices for di (i.e., a subset of the disjuncts appearing

in the disjunction).

An environment represents a set of axioms and choices under which a partic-

ular formula holds.15 The presence of an environment (A,C) in the label of a

node nφ indicates that φ can be derived from the axioms A together with a se-

quence of choices from C. The choice sequence corresponds to a (set of) tableau

branch(es): each choice consists of a disjunction di and one or more of the dis-

juncts appearing in di. If φ can be derived from all the disjuncts appearing in

di, we have eliminated dependency on all choices for di, and the choice set for

di can be removed from C. If the sequence of choice sets is empty, then φ does

not depend on any choices (i.e., it can be derived from only the axioms A). For

example, the presence of the environment ({φ1, . . ., φk}, [ ]) in the label of a node

nφ means that φ has been derived by the reasoner from the axioms φ1, . . . , φk.

15In a ‘classical’ ATMS [23], environments do not contain choice sequences.
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Environments in the D-ATMS thus capture the branching structure of a tableau.

For example, in the tableau in Figure 7.2 an environment for B1(a) will have

a choice sequence [((B1 ⊔ B2 ⊔ B3)(a),B1(a))] and C1(b) will have a choice se-

quence [((B1 ⊔ B2 ⊔ B3)(a),B1(a)), ((C1 ⊔ C2)(b),C1(b))]. The order of choice

sets in a choice sequence comes from the order in which the ⊔-rule is applied to

disjunctions on the corresponding branch. If one choice sequence corresponds

to a prefix of another, then the first choice sequence depends on fewer disjunc-

tive choices. This intuition may be helpful when considering the definition of

subsumption for environments below.

The label of a node contains the set of environments from which the formula

corresponding to the node can be derived. The label of n⊥ consists of a set

of inconsistent environments or nogoods. Initially, the labels of all nodes in

the justification graph other than axiom nodes are empty, and the label of each

axiom node contains a single environment consisting of the axiom itself and an

empty sequence of choice sets.

7.4.3 Example

As an example, consider the following TBox inspired by the MadCow example

from the OilEd tutorial:

ax1 Sheep ⊑ Animal

ax2 Cow ⊑ Animal ⊓ ∀eats.¬Animal

ax3 MadCow ⊑ Cow ⊓ ∃eats.(Sheep⊔Cow)

we also add the assumption MadCow(a). The inferences made by the reasoner

give rise to the following justifications (note that Animal(b) has two justifica-

tions):
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j1 MadCow(a),MadCow⊑Cow⊓∃eats.(Sheep⊔Cow)⇒Cow⊓∃eats.(Sheep⊔

Cow)(a)

j2 Cow ⊓ ∃eats.(Sheep⊔Cow)(a)⇒ Cow(a)

j3 Cow ⊓ ∃eats.(Sheep⊔Cow)(a)⇒ ∃eats.(Sheep⊔Cow)(a)

j4 Cow(a), Cow ⊑ Animal ⊓ ∀eats.¬Animal,⇒ Animal ⊓ ∀eats.¬Animal(a)

j5 ∃eats.(Sheep⊔Cow)(a)⇒ eats(a, b)

j6 ∃eats.(Sheep⊔Cow)(a)⇒ (Sheep⊔Cow)(a)

j7 (Animal ⊓ ∀eats.¬Animal)(a)⇒ Animal(a)

j8 (Animal ⊓ ∀eats.¬Animal)(a)⇒ ∀eats.¬Animal(a)

j9 eats(a, b), ∀eats.¬Animal(a)⇒ ¬Animal(b)

j10 (Sheep⊔Cow)(a)⇒ Sheep(a) (non-deterministic)

j11 (Sheep⊔Cow)(a)⇒ Cow(a) (non-deterministic)

j12 Sheep(b), Sheep ⊑ Animal⇒ Animal(b)

j13 Animal(b), ¬Animal(b)⇒⊥

j14 Cow(b), Cow ⊑ Animal ⊓ ∀eats.¬Animal⇒ (Animal ⊓ ∀eats.¬Animal)(b)

j15 (Animal ⊓ ∀eats.¬Animal)(b)⇒ Animal(b)

j16 (Animal ⊓ ∀eats.¬Animal)(b)⇒ ∀eats.¬Animal(b)

and the justification graph is shown in Figure 7.5. Each node in the justification

graph is labelled with a set of environments: the minimal sets of axioms from

which the corresponding formula is derivable (i.e., an explanation). For ex-

ample, Animal(a) in Figure 7.5 would have an environment {Cow ⊑ Animal ⊓

∀eats.¬Animal, MadCow ⊑ Cow ⊓ ∃eats.(Sheep⊔Cow), MadCow(a)}.
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FIGURE 7.5: Justification graph. Formula nodes are round, axioms are blue, ⊥
is red. Justification nodes are square, non-deterministic justifications are green

with dashed arrows.

7.4.4 Label Computation

We now describe how labels are computed from the justifications generated by

the reasoner.

To define the D-ATMS algorithms for computing labels, we need the following

primitive operations on environments and labels which generalise and extend

the corresponding notions in [23].

We say that a choice sequence C1 is a prefix of a choice sequence C2, C1 � C2, if

C1 = [(d1, b1), . . . , (dk, bk)] and C2 = [(d′1, b
′
1), . . . , (d

′
n, b

′
n)], k ≤ n and for every i≤ k,

di = d′i and b′i ⊆ bi. C1 ≺ C2 iff C1 � C2 and C2 6� C1.

Definition 7.3 (Subsumption of environments). An environment (A1,C1) sub-

sumes an environment (A2,C2), (A1,C1) ⊆s (A2,C2) iff A1 ⊆ A2, and C1 � C2.
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(A1,C1) ⊂s (A2,C2) iff (A1,C1) ⊆s (A2,C2) and (A2,C2) 6⊆s (A1,C1).

An environment e is nogood if it is subsumed by an environment in the label of

the false node n⊥. Note that for sequences of binary disjunctions, the condition

for subsumption of environments above becomes b′i = bi, and can be rephrased

more simply as C1 is a prefix of C2. For n-ary disjunctions it is possible to have

b′i ⊂ bi. For example, (A, [((B1 ⊔B2 ⊔B3)(a),{B1(a),B2(a)})]) subsumes (is more

informative than) (A, [((B1 ⊔B2 ⊔B3)(a),B1(a))]) because the latter depends on

a more specific set of choices.

Definition 7.4 (Union of environments). The union of two environments e1 =

(A1,C1) and e2 = (A2,C2), e1∪≤ e2 = (A1∪A2,C1∪≤ C2) if C1 and C2 are sequences

of choice sets for which C1 ∪≤ C2 is defined, otherwise e1 ∪≤ e2 is not defined. ∪≤

for sequences of choice sets is defined as follows:

1. if C1 � C2 then C1 ∪≤ C2 = C2;

2. if C2 � C1 then C1 ∪≤ C2 = C1;

3. for all other cases, C1 ∪≤ C2 is not defined.

Intuitively, environments of two antecedents can be combined by ∪≤ to form an

environment of the consequent if the antecedents belong to the same branch of

the tableau. The consequent belongs to the lower of the two disjunctive nodes

in the tableau to which the antecedents belong.

Definition 7.5 (Merge of environments). The merge of two environments e1 =

(A1,C1) and e2 = (A2,C2), e1∪+ e2 = (A1∪A2,C1∪+ C2) if C1 and C2 are sequences

of choice sets for which ∪+ is defined. Otherwise, e1 ∪+ e2 is not defined. ∪+ for

sequences of choice sets is defined as follows:

1. if C1 = [(d1, b1), . . . , (dn, bn)] and C2 = [(d′1, b
′
1), . . . , (d

′
n, b

′
n)], n ≥ 1, and for

every i < n di = d′i and b′i = bi (in other words, C1 and C2 are the same apart

from their last element), dn = d′n, bn 6= b′n, then
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(a) if bn ∪ b′n does not include all the disjuncts in dn, then C1 ∪+ C2 =

[(d1, b1), . . . , (dn, bn ∪ b
′
n)]

(b) C1 ∪+ C2 = [(d1, b1), . . . , (dn−1, bn−1)] otherwise;

2. for all other cases, C1 ∪+ C2 is not defined.

Intuitively, if the same formula belongs to all children of a disjunctive node in

a tableau, then it can be lifted ‘up’ to the parent, otherwise, ∪+ merges two

subtrees into one subtree where the formula belongs to all children. Recall that

the label of a node is the set of all environments from which the node can be

derived.

Definition 7.6 (Union of labels). The union of two labels L1 and L2, L1 ∪+ L2 =

L1 ∪L2 ∪ {e1 ∪+ e2 | e1, e2 ∈ L1 ∪L2}.

7.4.5 Lazy Label Update Propagation

We can now explain how the standard ATMS label computation algorithms are

extended to handle disjunctions. This section briefly presents a summary of

the lazy approach to label computation and the algorithms to compute correct

labels.

Recall that in the original ATMS [23], labels must be correct globally, i.e., the

label of every node in the dependency graph has to be computed to maintain

global correctness and completeness. However, this property might be unnec-

essary in some cases. For example, for axiom pinpointing and ontology debug-

ging context, we are only interested in the derivation of ⊥; therefore, all nodes

in the dependency graph which are not involved in the derivation of ⊥ become

irrelevant, and hence their labels do not need to be computed or updated. In

other words, we only propagate label updates when needed. To do so, we need
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to define a set of target nodes N = {nφ1 , . . . , nφm} whose labels (i.e., explana-

tions) have to be computed and completed. For example, when checking if an

inference is blocked (see Section 7.3), the target nodes are nodes corresponding

to the assertions about a constant. When computing explanations for ⊥, the

target node is n⊥.

Restricting label computation in the D-ATMS to a particular set of nodes (in the

evaluation of the blocking condition and to n⊥ in explanation generation) has

some similarities with lazy label evaluation in assumption-based truth mainte-

nance systems, e.g., [58], and to work on focusing the ATMS, e.g., [31, 32, 37].

Such approaches have been shown to offer significant performance improve-

ments relative to the ATMS described in [23].

Firstly the union of the justification closure J = Jnφ1
∪ . . . ∪ Jnφm

for each node

nφi ∈ N is computed. Each Jnφi
⊆ J is the set of justifications that have nφi as

a consequent, together with the justifications of the antecedents of those justi-

fications, and so on until we reach justifications whose antecedents are axiom

nodes (assumptions) or which are already included in Jnφ1
⊆ J .16 For example,

when computing explanations for ⊥ in the MadCow example in Figure 7.5, the

relevant part is the graph without the justifications j7, j16 and the nodes n11, n18.

The justifications in J are processed in order of justification id (recall that a

smaller justification id means earlier inference). For each justification

j : nφ1 , . . . , nφk ⇒ nφ ∈ J,

we first compute a label update — a set of new environments computed from the

Cartesian product of the labels of the antecedents to be merged into the label

of nφ. There are two cases: if j is a nondeterministic justification, this is done

16For reasons of efficiency, we exclude from J any justification used in label computation at
a previous cycle of the reasoner, as the D-ATMS labels have already been updated with these
justifications.
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by the procedure UPDATE-NONDET-JUSTIF, otherwise, if j deterministic, by the

procedure UPDATE-DET-JUSTIF. We then merge the label update into the label

of the consequent. If φ = ⊥ (i.e., if j is a justification for n⊥) this is done by

the procedure UPDATE-FALSE-LABEL, and by UPDATE-NODE-LABEL otherwise.

If φ 6= ⊥ and applying the label update results in a change in the label of nφ,

we propagate the new label to nodes reachable by following already processed

(having a smaller id) justification links j′ ∈ J, j′ < j (since we discovered a new

way to derive the formulae which are their consequents). The process termi-

nates when the labels of all reachable nodes have been updated. In the worst

case all justifications in the justification graph must be traversed, but the pro-

cess is guaranteed to terminate.

Below we give algorithms for each step of the label computation process. The

algorithms are similar to those in [25], but have been extended to handle non-

deterministic justifications.

Algorithm 7.1 Update a non-deterministic justification

procedure UPDATE-NONDET-JUSTIF(j :nd⇒nψi
,m,J)

L← {(A,C ′ + (d,ψi)) | (A,C) ∈ label(nd) ∧
∃n′(A′,C ′) ∈ label(n′) ∧ C � C ′ ∧
¬∃n′′(A′′,C ′′) ∈ label(n′′) ∧ C ′ ≺ C ′′}

UPDATE-NODE-LABEL(nψi
,L,m,J)

end procedure

The first procedure, UPDATE-NONDET-JUSTIF takes a non-deterministic justifi-

cation j : nd ⇒ nψi
, the justification closure of the target nodes J , and m, the id

of the justification in J currently being processed as arguments, and computes a

label update L for the label of the consequent choice, nψi
. The axioms appearing

in the environments in L are the same as the axioms in the environments of the

label of nd, as ψi is derivable from the same axioms as d. However the sequences

of choice sets must be updated to record the dependency on the choice ψi. As

explained above, a sequence of choice sets encodes the branches in the tableau

on which the formula ψi has been derived, and new branches must be added
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under each existing branch in the tableau where the disjunction is derivable.

To reflect this tableau structure in the label of nψi
, for each environment (A,C)

appearing in the label of nd we compute the set of choice sequences of maximal

length appearing in any label {C1, . . . ,Ck} where C is a prefix of Cs, 1 ≤ s ≤ k,

and add an environment (A,Cs + (d,{ψi})) to the label update L. For exam-

ple, in Figure 7.2, when the ⊔-rule is applied to (C1 ⊔ C2)(b), the only choice

sequence appearing in its label is [ ]. The set of choice sequences of maximal

length which have [ ] as a prefix are [((B1 ⊔ B2 ⊔ B3)(a),B1(a))], [((B1 ⊔ B2 ⊔

B3)(a),B2(a))], and [((B1 ⊔B2 ⊔B3)(a),B3(a))]. The choice sequences in the la-

bel update of C1(b) and C2(b) are therefore [((B1 ⊔ B2 ⊔ B3)(a),B1(a)), ((C1 ⊔

C2)(a),C1(a))], [((B1 ⊔ B2 ⊔ B3)(a),B1(a)), ((C1 ⊔ C2)(a),C2(a))], etc. We then

call UPDATE-NODE-LABEL to update the label of the consequent node nψi
with

L.17 (Note thatm and J are not used by UPDATE-NONDET-JUSTIF and are simply

passed through to UPDATE-NODE-LABEL.)

Algorithm 7.2 Update a deterministic justification

procedure UPDATE-DET-JUSTIF(j :nφ1 , . . . , nφk⇒nφ, m,J)
if j ∈ J ∧ j < m then

L← {e1 ∪≤ . . .∪≤ ek | ei ∈ label(nφi),1 ≤ i ≤ k}
L← {e | e ∈ L,¬∃e′ ∈ L∧ e′ ⊂s e}
L← {e | e ∈ L,¬∃e′ ∈ label(n⊥)∧ e

′ ⊆s e}
if nφ = n⊥ then

UPDATE-FALSE-LABEL(n⊥,L)
else

UPDATE-NODE-LABEL(nφ,L,m,J)
end if

end if
end procedure

The corresponding procedure for deterministic justifications, UPDATE-DET-JUSTIF,

takes a deterministic justification j : nφ1 , . . . , nφk ⇒ nφ, the justification closure

of the target nodes J , and m, the id of the justification in J currently being pro-

cessed as arguments. If j : nφ1 , . . . , nφk ⇒ nφ is in the justification closure of the

17Note that, without loss of generality, we assume that ⊥ does not appear as a disjunct in a
disjunction.
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target nodes and the justification id j is less than the id of the justification in

J currently being processed m, UPDATE-DET-JUSTIF computes a label update L

for the label of the consequent nφ. For every k-tuple of environments from the

labels of nφ1 , . . . , nφk (every way to derive the premises) we take their ∪≤ union

(which means, we only combine derivations on the same branch), remove any

of the resulting environments which are subsumed (to guarantee minimality),

and then remove nogoods. If j is a justification for n⊥, UPDATE-DET-JUSTIF calls

UPDATE-FALSE-LABEL to record that the antecedents of j are nogood (i.e., in-

consistent). Otherwise it calls UPDATE-NODE-LABEL to update the label of the

consequent node nφ with the label update L.

Algorithm 7.3 Update the label of a node and propagate to consequents

procedure UPDATE-NODE-LABEL(nφ,L,m,J)

L′← label(nφ)∪+ L

L′← {e | e ∈ L′,¬∃e′ ∈ L′ ∧ e′ ⊂s e}

L′← {e | e ∈ L′,¬∃e′ ∈ label(n⊥)∧ e
′ ⊆s e}

if label(nφ) 6= L′ then

label(nφ)← L′

for all justifications j : nφ ∈ antecedents(j) do

UPDATE-DET-JUSTIF(j,m,J)

end for

end if

end procedure

The procedure UPDATE-NODE-LABEL takes a (consequent) node nφ, a label up-

date L, the justification closure of the target nodes J , and the id of the justifi-

cation in J currently being processed m, as arguments, and updates the label

of nφ with L. In doing so it ensures that the new label for nφ is minimal and

consistent. If the update results in a change in the label of nφ, the new label

is propagated through all justifications j where nφ is an antecedent, by calling
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UPDATE-DET-JUSTIF with j, m and J as arguments. (Note that, as with UPDATE-

NONDET-JUSTIF, m and J are not used by UPDATE-NODE-LABEL and are simply

passed through to UPDATE-NONDET-JUSTIF.)

Algorithm 7.4 Remove nogood environments from node labels

procedure UPDATE-FALSE-LABEL(n⊥,L)

L′← label(n⊥)∪+ L

L′← {e | e ∈ L′,¬∃e′ ∈ L′ ∧ e′ ⊂s e}

if label(n⊥) 6= L′ then

label(n⊥)← L′

for all nodes n in the justification graph do

label(n)← {e | e ∈ label(n), ¬∃e′ ∈ label(n⊥)∧ e
′ ⊆s e}

end for

end if

end procedure

The procedure UPDATE-FALSE-LABEL takes the distinguished node n⊥ and a

label update L as arguments, and updates the label of n⊥ with L. In doing so,

it ensures that the label of n⊥ is minimal. If the update results in a change in

the label of n⊥, any environment subsumed by a new nogood in L is removed

from the labels of all nodes, ensuring that all labels (other than that of n⊥) are

consistent.

7.5 Correctness

Here we sketch the proofs that, given an inconsistent set of formulae Γ (consist-

ing of a dictionary ALC TBox and some concept instances), the D-ATMS will
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return all minimal explanations for the inconsistency. More precisely, it will re-

turn as the label of n⊥ the set of all Γ′ ⊆ Γ such that (i) Γ′ |= ⊥ and (ii) there is no

Γ′′ ⊂ Γ′ such that Γ′′ |= ⊥.

In order to show this, we need to establish first that the reasoner has a sound

and complete set of decomposition rules and is guaranteed to terminate, and

second that the D-ATMS keeps a correct record of the inferences performed by

the reasoner. That is, for every chain of rule applications which derives a for-

mula from Γ, there is a corresponding environment in the label of the formula,

that all environments correspond to such derivations, and that all environments

are minimal. Also, that the D-ATMS maintains the tree structure of the corre-

sponding semantic tableau in the form of choice sequences in environments

and when it receives a non-deterministic justification from the reasoner, it cre-

ates the required number of branches at the right level in the tree.

The first set of theorems applies to the correctness of the reasoner.

Theorem 7.7 (Reasoner soundness). The reasoner’s rules are sound: if given a set Γ

it derives ⊥, then Γ is unsatisfiable.

Proof. The set of rules the reasoner uses (if the ⊔ rule is interpreted as a branch-

ing rule) are standard rules for ALC, see, for example [8].

Theorem 7.8 (Reasoner refutation completeness). Given an unsatisfiable set Γ, the

reasoner derives ⊥ and finds all possible derivations of ⊥.

Proof. If the set Γ is unsatisfiable, the reasoner will find a derivation of ⊥ on all

branches (this is again standard and follows from the refutation completeness

of the tableau rules used by the reasoner plus the subset blocking condition:

see for example [8, 18]). Since the D-ATMS reasoner does not terminate until

there are no applicable rules, it will find all derivations of ⊥ from Γ (since it is
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refutation-complete, it will find a derivation of ⊥ from every inconsistent sub-

set Γ′ of Γ). Note that the blocking condition ensures that there are no different

derivations of ⊥ which could have been found by using formulae containing

(descendants of) the blocked constant, since every such derivation can be sim-

ulated using the blocking constant (which has all the concept descriptions with

the same explanations as the blocked constant).

Theorem 7.9. The reasoner terminates.

Proof. The blocking condition ensures that only finitely many new constants

will be introduced (see for example [18]; our blocking condition requires in ad-

dition that the explanations for each property of the blocked constant are not

new, but there are finitely many possible environments, hence there are finitely

many possible explanations). This in turn means that only finitely many dif-

ferent formulae will be derived, and each formula can be used in finitely many

ways as a premise for an inference. This means that although the reasoner does

not terminate immediately when a contradiction discovered (as is customary

with tableaux reasoners), it will still produce only a finite number of different

rule instances, until its termination condition (no new inferences) is met.

We now turn to the properties of the D-ATMS proper. Because only the nodes

which are the consequent of a justification in the justification closure have their

labels computed, the following theorems only apply to those nodes and the

formulae corresponding to them.

The following theorem states that the D-ATMS only records environments for a

formula that correspond to a valid derivation of the formula by the reasoner.

Theorem 7.10 (Soundness). For each node nφ and each environment in its label, there

is a sequence of tableau rule applications produced by the reasoner, such that the only
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axioms used in the derivation are in the non-disjunctive part of the environment, and

the disjunctive part encodes the subtree where φ has been derived.

Proof. The proof is by induction on the longest chain of justifications connect-

ing the formula to the axioms in the environment. Environments are added in

response to receiving an inference from the reasoner which in turn corresponds

to an inference rule application. Depending on the type of the justification

this is handled by Algorithm 1 (non-deterministic justifications, or ⊔-rule ap-

plications) or Algorithm 2 (deterministic justifications, applications of all other

rules). Algorithm 1 maintains the branching structure of the ⊔-rule applications

corresponding to that of a standard tableaux reasoner.

If the antecedents of the justification are axioms, the theorem follows immedi-

ately because we have a one step derivation of the formula from those axioms.

The inductive step is routine, and corresponds to adding another inference step

to a valid derivation.

After the environment which correctly reflects the axioms used in the deriva-

tion is added to the label of the node corresponding to the formula, it may be

updated in several ways. First of all, if the environment is discovered to be

a superset of another environment or to be inconsistent, it may be removed;

this does not violate soundness. Second, it may be updated if it is discovered

that the formula is now derivable on all branches of some disjunction; this also

corresponds to a valid inference step.

The following theorem states that for every possible way of deriving a formula

from Γ, the D-ATMS records the set of axioms Γ′ used in the derivation as an

environment in the label of the node corresponding to the formula.

Theorem 7.11 (Completeness relative to reasoner). Every set of axioms Γ′ from

which φ can be derived given the set of justifications produced by the reasoner, is a
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superset of the axioms appearing in some environment in the label of the corresponding

node nφ.

Proof. By induction on the length of the derivation (the length of the chain of

justification produced by the reasoner). For a one step derivation (where the

corresponding justification for nφ has axioms as antecedents) this is immedi-

ate. For a k step derivation, assume that the justification for nφ has nφ1 and

nφ2 as antecedents, and that all known derivations for φ1 use one of the sets of

axioms e1, . . . , em and for φ2, e′1, . . . , e
′
m′ . Since φ1 and φ2 occur as the k-1st and

k-2nd steps in the derivation of φ, the inductive hypothesis applies. Hence all

ways to derive φ should use e1 ∪≤ e′1 or e1 ∪≤ e
′
2, . . . , or em ∪≤ e

′
m′ . This set of

environments will be added to the label of nφ by Algorithms 1 and 2. The ‘su-

perset’ comes from the fact that Algorithms 2 and 3 check for subsumption of

environments and remove the ones which contain redundant axioms.

This theorem together with Theorem 7.8 ensures completeness of AOD: all pos-

sible explanations for ⊥ will be returned as the label of n⊥.

The next property we need is that the environments are minimal. After the

reasoner terminates having produced all possible derivations of ⊥, all axioms

in each environment are guaranteed to be essential for the derivation.

Theorem 7.12 (Minimality). No environment in any node’s label is a subset of any

other.

Proof. Guaranteed by subsumption tests in Algorithms 2 and 3: all dominated

environments are removed from the label of each affected node.
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7.6 Experimental Results

We have developed a prototype implementation of our approach. Both the rea-

soner and the D-ATMS are implemented in Pop-11.18 The tableaux reasoner is

implemented as a set of six inference rules using Poprulebase, a Pop-11 rule

interpreter.

To evaluate our approach, we performed experiments in which we compared

the performance of our prototype system when providing all minimal explana-

tions for inconsistencies in a variety of unfoldable and dictionary ALC TBoxes

with that of MUPSter [82] and Pellet [86] (version 2.2.2). We chose to compare

the D-ATMS with MUPSter and Pellet as they represent different approaches

to finding all minimal explanations for an inconsistency. Both use a glass-

box approach (extending the reasoner with dependency tracking), but MUPSter

finds all minimal explanations, while Pellet finds a single minimal explanation,

which is then combined with Reiter’s Hitting Set algorithm [75] to find all other

explanations [56, 86]. (In our experiments, we used Pellet’s glass-box approach,

as this typically requires less time to find an explanation [56].) The experiments

were performed on a PC with dual quad-core 2.66GHz Intel Xeons and 32GB

RAM PC running CentOS 5.5. All times are CPU times in ms and represent the

average of 5 runs. Only the time actually used for generating explanations is

given. We do not count the time AOD, MUPSter, and Pellet spend parsing and

loading the ontologies, nor the time required for them to render the explana-

tions.19

To test the correctness of our implementation, we compared the results for AOD

with those of MUPSter on the set of 1,611 randomly generated unfoldable ALC

TBoxes used by Schlobach to evaluate the performance of MUPSter [82].20 For

18http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.html
19In addition we modified MUPSter so as not to require Racer, as the unsatisfiable concept is

given as an input.
20The dataset is available at http://www.few.vu.nl/~schlobac/software.html.
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each ontology, we obtained a list of unsatisfiable concept names from RacerPro

before finding all minimal explanations for each unsatisfiable concept name.21

The explanations generated by both systems were the same, apart from one case

where MUPSter returned a non-minimal explanation.22

We also recorded the CPU time required for AOD, MUPSter and Pellet to gen-

erate explanations for each randomly generated ontology. In one case MUPSter

did not produce an explanation within 5000 seconds and the run was aborted.

We omitted this case and the case in which MUPSter returned a non-minimal

explanation from our analysis, and in the following we consider only the re-

maining 1609 cases. Overall, AOD was noticeably faster than both MUPSter

and Pellet, with an average execution time of 23 ms (median 6ms) compared to

671ms (median 36ms) for MUPSter and 192ms (median 162ms) for Pellet.

To evaluate the performance of AOD on more realistic examples, we used the

Biochemistry-primitive ontology from the TONES repository,23 a fragment of

the Ordnance Survey BuildingsAndPlaces ontology,24 and the Adult Mouse

Brain Ontology from the NCBO BioPortal.25 The Biochemistry-primitive, Build-

ingsAndPlaces, and Adult Mouse Brain ontologies were translated intoALC by

removing axioms for inverse roles and role inclusions. To make these ontologies

incoherent, we choose to systematically create unsatisfiable concepts from ex-

isting ontology entailments, allowing us to control the number of unsatisfiable

concepts and the form of the resulting explanations. For each ontology, we ran-

domly selected 10 pairs of concepts (A,B) whereA⊑B is non-trivially entailed

by the ontology, i.e., A ⊑ B 6∈ T . Then for each entailment, A ⊑ B, we created

21http://www.racer-systems.com/products/racerpro
22For the TBox tbox_50_6_1_1_3_5_v1 and unsatisfiable concept A49 MUPSter returns

{A49,A37, A26,A34,A0} as an explanation for the unsatisfiability of A49, while the D-ATMS
returns {A49,A37,A34,A0}. As can easily be determined by hand (and confirmed by Pellet),
the minimal set of axioms in addition to A49(a) required to derive a contradiction in this case
is indeed {A49,A37,A34,A0}.

23http://owl.cs.manchester.ac.uk/repository
24http://www.ordnancesurvey.co.uk/oswebsite/ontology/BuildingsAndPlaces/v1.1/

BuildingsAndPlaces.owl
25http://bioportal.bioontology.org/ontologies/1290
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a concept EntailmentA_B ⊑ A ⊓ ¬B. Finding all minimal explanations for the

entailment A ⊑ B thus becomes equivalent to finding all minimal explanations

for the unsatisfiability of EntailmentA_B.

The explanations generated by all three systems were the same for all ontolo-

gies. The timing results are presented in Table 7.1, 7.2, and 7.3. As can be seen,

AOD is 4.25 to 7.6 times faster than MUPSter and 14.5 to 23 times faster than

Pellet on these ontologies (based on ratios of median times). Moreover, the

maximum execution time of AOD for any concept is less than the minimum

execution time of MUPSter and Pellet for any concept.

AOD MUPSter Pellet
Average 8 52 144
Median 5 38 106

Min 5 36 101
Max 27 178 486

TABLE 7.1: Execution times (in ms) for the Biochemistry-primitive ontology
(265 axioms and 10 unsatisifiable concepts).

AOD MUPSter Pellet
Average 9 35 116
Median 8 34 116

Min 5 31 109
Max 15 40 125

TABLE 7.2: Execution times (in ms) for the BuildingsAndPlaces ontology (124
axioms and 10 unsatisifiable concepts).

AOD MUPSter Pellet
Average 23 155 493
Median 21 161 492

Min 17 129 486
Max 27 178 503

TABLE 7.3: Execution times (in ms) for the Adult Mouse Brain ontology (3447
axioms and 10 unsatisifiable concepts).
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We also evaluated the performance of AOD on four large-scale, cyclic ontolo-

gies: the Geo ontology [82], the DICE ontology26, the MGED ontology27, and

a merge of two well-known upper ontologies, a mini-version of SUMO ontol-

ogy28 and the CYC ontology29. As in [82], the Geo, DICE, and MGED ontologies

were made incoherent by adding disjointness axioms of the formDJ(A1, . . . ,An)

stating that the concepts A1, . . . ,An are pairwise disjoint. For the merge of mini

SUMO and CYC, the large number of concepts common to both ontologies re-

sults in many unsatisfiable concepts in the merged ontology.

The results are presented in Tables 7.4, 7.5, 7.6, and 7.7. For the merge of the

mini SUMO and CYC ontologies in Table 7.7, we also recorded the number

of concepts where MUPSter and Pellet did not return an explanation within

600 seconds. Where MUPSter and Pellet generated explanations, these were

the same as those generated by AOD. As with the non-cyclic ontologies above,

AOD is noticeably faster than both MUPSter and Pellet (5.4 to 54 times faster

than MUPSter and 32 to approximately fifteen thousand times faster than Pel-

let). In addition, the maximum time required for AOD to return an explanation

in the most complex ontology, the merge of mini SUMO and CYC,30 is 18.2 sec-

onds, whereas MUPSter fails to return explanations of three concepts within

600 seconds, and Pellet fails to return explanations for 255 concepts (27% of the

total) within 600 seconds.

Overall, these results suggest AOD is noticeably faster than MUPSter and Pellet

on both unfoldable and cyclic ontologies. For seven of the eight non-random

ontologies, it is uniformly faster on all concepts, often by a significant margin.

For large, complex ontologies, such as the merge of mini SUMO and CYC, the

improvement in performance is most noticeable, suggesting that the D-ATMS

26http://www.mindswap.org/2005/debugging/ontologies/dice.owl
27http://www.mged.org
28http://www.ontologyportal.org
29http://www.opencyc.org
30While the DICE ontology contains a larger number of axioms, approximately 98% are dis-

jointness axioms.
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AOD MUPSter Pellet
Average 7 52 289
Median 7 50 287

Min 5 48 239
Max 11 61 368

TABLE 7.4: Execution times (in ms) for the Geo ontology (500 axioms and 11
unsatisifiable concepts).

AOD MUPSter Pellet
Average 10 524 75235
Median 9 489 75251

Min 5 359 74059
Max 19 649 76670

TABLE 7.5: Execution times (in ms) for the DICE ontology (27939 axioms and
76 unsatisifiable concepts).

AOD MUPSter Pellet
Average 35 71 800
Median 15 68 485

Min 5 45 404
Max 217 146 8470

TABLE 7.6: Execution times (in ms) for the MGED ontology (406 axioms and
72 unsatisifiable concepts).

AOD MUPSter Pellet
Average 132 3638 20658
Median 13 334 712

Min 5 257 592
Max 18167 494030 536422

Timeout after 600s 0 3 255

TABLE 7.7: Execution times (in ms) for the Mini Sumo & Cyc ontology (5725
axioms and 923 unsatisifiable concepts).

may be more scalable than MUPSter and Pellet. However, on the MGED ontol-

ogy, although is AOD is about 5.4 times faster than MUPSter overall (based on

the ratio of median times), it is slower than MUPSter on about 10% of concepts

by a factor of up to 2. An analysis of profiling data for AOD suggests that for

these concepts, execution time is dominated by the reasoner, with only a small
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amount of time spent in explanation generation. With a more sophisticated rea-

soner implemenation, we might expect AOD’s execution time to reduce in such

cases.

7.7 Displaying Explanations

As the D-ATMS maintains an explicit justification structure, it is straightfor-

ward to generate explanations of how a contradiction is derivable intended for

human users. The D-ATMS keeps track of intermediate steps in a derivation as

justifications in the justification graph and can render them in textual form for

output to the user. For example, the explanations for the MadCow example in

Section 7.4.3 (with minor editing to fit page margins) are:

⊥ derived from: Animal(b), ¬Animal(b)

Animal(b) derived from: axiom Sheep ⊑ Animal, Sheep(b)

Sheep(b) derived from: (Sheep⊔Cow)(b)

∗

| Animal(b) derived from: (Animal ⊓ ∀ eats.¬Animal)(b)

| (Animal ⊓ ∀ eats.¬Animal)(b) derived from:

| axiom Cow ⊑ Animal ⊓ ∀ eats.¬Animal, Cow(b)

| Cow(b) derived from: (Sheep⊔Cow)(b)

|

∗ (Sheep⊔Cow)(b) derived from: ∃ eats.(Sheep⊔Cow)(a))

∃ eats.(Sheep⊔Cow)(a) derived from: Cow(a)⊓ ∃ eats.(Sheep⊔Cow)(a)

Cow(a)⊓ ∃ eats.(Sheep⊔Cow)(a) derived from:

axiom MadCow ⊑ Cow ⊓ ∃ eats.(Sheep⊔Cow), axiom MadCow(a)

¬Animal(b) derived from: ∀ eats.¬Animal(a), eats(a, b)
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∀ eats.¬Animal(a) derived from: Animal ⊓ ∀ eats.¬Animal(a)

Animal ⊓ ∀ eats.¬Animal(a) derived from:

axiom Cow ⊑ Animal ⊓ ∀ eats.¬Animal, Cow(a)

Cow(a) derived from: Cow(a)⊓ ∃ eats.(Sheep⊔Cow)(a)

Cow(a)⊓ ∀ eats.(Sheep⊔Cow)(a) derived from:

axiom MadCow ⊑ Cow ⊓ ∃ eats.(Sheep⊔Cow), axiom MadCow(a)

eats(a, b) derived from: ∃ eats.(Sheep⊔Cow)(a)

∃ eats.(Sheep⊔Cow)(a) derived from: Cow(a)⊓ ∃ eats.(Sheep⊔Cow)(a)

Cow(a)⊓ ∃ eats.(Sheep⊔Cow)(a) derived from:

axiom MadCow ⊑ Cow ⊓ ∃ eats.(Sheep⊔Cow), axiom MadCow(a)

The explanation rendering of AOD is an initial prototype, and (as in the exam-

ple above) the textual explanations produced are often rather verbose. There

has been considerable work in the literature on the generating more ‘human

readable’ explanations and other debugging aids (such as suggesting repairs to

an ontology) [10] which we believe can be adapted in a straightforward way to

the AOD justification structure.

7.8 Conclusion

We described AOD, a system for debugging dictionary ALC TBoxes based on

an ATMS with disjunctions and loops. Our approach is correct and complete

with respect to a reasoner for ALC with dictionary TBoxes. We also proposed

a new blocking condition to ensure termination during the reasoning process.

We presented experimental results which suggest that its performance com-

pares favourably with that of MUPSter and Pellet. As the D-ATMS maintains

an explicit justification structure, it is straightforward to generate explanations

of how a contradiction is derivable intended for human users — the D-ATMS
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essentially keeps intermediate steps in a derivation and can produce them on

request.

We believe the D-ATMS is a promising new approach to ontology debugging.

Although our approach was developed for ALC with dictionary TBoxes, the

reasoner and the reason maintenance component are only loosely coupled, and

the D-ATMS can be adapted to work with other reasoners.
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Chapter 8

Axiom Pinpointing for SUMO

8.1 Introduction

An upper ontology provides definitions of generic or abstract concepts that

span a broad range of domain areas. Upper ontologies allow application devel-

opers to define new (domain specific) concepts in terms of a common ontology,

and provide semantic interoperability by allowing applications to inter-operate

through shared concepts. One such upper ontology is the Suggested Upper

Merged Ontology (SUMO) [69]. SUMO contains about 1000 terms and 4000

definitional statements1 expressed in a variant of first order logic with some

higher-order extensions called the Standard Upper Ontology Knowledge Inter-

change format (SUO-KIF) [46].

In order for ontologies such as SUMO to be widely used, it is important to be

able to guarantee that they are consistent and free of bugs. A ‘bug’ in the con-

text of ontology development is the derivability of an undesirable consequence

1The term ‘SUMO’ is used to refer both to the upper ontology and to a collection of domain
specific ontologies comprising about 20k terms based on the upper ontology. In what follows,
we take SUMO to refer to the upper ontology only.
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from the axioms of the ontology. Explanation generation is the process of pro-

viding human-understandable reasons for the derivability of some (typically

undesirable) formula in an ontology. For logics which include classical propo-

sitional logic, it is sufficient to be able to provide an explanation for derivability

of a contradiction. Namely, if we are interested in an explanation for the deriv-

ability of φ from Γ, we can reduce this problem to an explanation of derivability

of a contradiction ⊥ from Γ ∪ {¬φ}. Explanations are key to debugging on-

tologies — when an undesired formula is derivable, it is important to know

why it is derivable, so that the responsible axioms can be changed by the on-

tology developer. Several different styles of explanation generation have been

proposed in the literature. One approach involves producing an (edited) proof

trace, e.g., [36] (existing debugging tools for SUMO, e.g., [50, 70, 72] also fall into

this category). Another approach is axiom pinpointing, i.e., the identification of

the minimal set of ontology axioms from which a contradiction is derivable,

e.g., [81, 86]. The reason for requiring a minimal set of axioms rather than the

set of all axioms involved in a derivation, is because a derivation may contain

redundant axioms, which makes it difficult to decide which axioms have to be

removed or edited. In particular, proof traces may contain redundant steps and

references to axioms which are not essentially used in the derivation.

This chapter presents an approach to axiom pinpointing for SUMO ontologies,

SES (SUMO Explanation Service), that returns the set of minimal sets of ontol-

ogy axioms from which a contradiction is derivable. SES consists of two parts:

a second-order reasoner for SUO-KIF, and a truth maintenance system. The rea-

soner is sound and complete for a fragment of SUO-KIF in which all the SUMO

Base ontology axioms can be expressed. The truth maintenance system com-

putes explanations from the inferences made by the reasoner. The fragment

of SUO-KIF understood by the reasoner is not decidable, and SES is therefore

not guaranteed to produce all explanations for the derivability of ⊥. However,
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when the reasoner does terminate ‘naturally’ (not due to a time-out) it is guar-

anteed to return all minimal explanations for ⊥. Otherwise it returns all sets of

axioms responsible for the derivations of ⊥ it found before termination, min-

imised with respect to the inferences it found so far.

The research questions, objectives, and the contributions of the work presented

in this chapter are as follows.

Research Questions How can the D-ATMS be extended to deal with logics

where a decidable reasoning procedure does not exist? In case of non-

termination, what should the D-ATMS-based explanation service do?

Research Objectives

1. To select a real-world use case where the ontology is reasonably large

and the underlying logic is undecidable.

2. To implement a translating procedure from such logics to a logic

which the D-ATMS can handle.

3. To implement an extension of the D-ATMS to provide an axiom pin-

pointing service for the ontology represented in the new logic as well

as the special treatment in the case of non-termination.

Contributions The main contribution of this chapter is the SES, an approach to

axiom pinpointing for SUMO ontologies, which returns the set of min-

imal sets of ontology axioms from which a contradiction is derivable.

To the best of our knowledge, SES is the first system to provide axiom

pinpointing-style explanations for SUMO ontologies. Another contribu-

tion is the FKIF logic, a fragment of second-order logic which allows effi-

cient implementation of the reasoner while still is able to represent most

axioms in the SUMO Base Ontology.
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The remainder of this chapter is organized as follows. In sections 8.2 and 8.3

we briefly outline SUMO and SUO-KIF, and the fragment of second-order logic

FKIF understood by the reasoner. In Section 8.4 we describe the two main com-

ponents of our prototype axiom pinpointing system SES, and in Section 8.5 we

give examples of two bugs in the SUMO Base ontology found by SES. In Section

8.6 we briefly describe related work, and conclude in Section 8.7.

8.2 SUMO & SUO-KIF

The Suggested Upper Merged Ontology (SUMO) [69] is a freely available, for-

mal ontology of about 1000 terms and 4000 definitional statements. It consists of

eleven sub-ontologies (Structural, Base, Set/Class Theory, Numeric, Temporal,

Mereotopology, Graph, Measure, Processes, Objects and Qualities), of which

the most important are Base and Structural (all of the other sub-ontologies in-

clude these two). SUMO has undergone more than ten years of development,

and has been extended with a number of domain ontologies which together

comprise some 20,000 terms and 80,000 axioms. It has been applied in a num-

ber of areas including Artificial Intelligence and linguistics.

SUMO has been extensively peer reviewed during development, and has been

subjected to a certain degree of formal verification using automated theorem

provers [50, 70, 72]. In particular, the Sigma environment for the development

of SUMO ontologies [70] can be used with a number of different automatic the-

orem provers, including Vampire [78] and E [84] to check whether an ontology

is consistent. This work identified a number of inconsistencies in SUMO which

were rectified, and much of the recent work on SUMO and Sigma has focused

on increasing coverage for specific applications, rather than investigating the
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properties of the core upper ontology. The SUMO web site2 lists no known

bugs in the upper ontology.

SUMO is described using a variant of first order logic with some higher order

extensions, called the Standard Upper Ontology Knowledge Interchange for-

mat (SUO-KIF).3

sentence ::= word | equation | relsent |
logsent | quantsent | ?word

equation ::= (= term term)
relsent ::= (relword argument+)
logsent ::= (not sentence) |

(and sentence+) | (or sentence+) |
(⇒ sentence sentence) |
(⇔ sentence sentence)

quantsent ::= (forall (variable+) sentence |
(exists (variable+) sentence)

term ::= variable | word | string |
funterm | number | sentence

argument ::= (sentence | term)
variable ::= ?word | @word
string ::= “character∗”
funterm ::= (funword argument+)
relword ::= word | variable
funword ::= word | variable
number ::= [−] digit+ [.digit] [exponent]
exponent ::= e [−] digit+

FIGURE 8.1: BNF syntax for SUO-KIF

The BNF syntax for SUO-KIF is given in Figure 8.1 and is mostly self-explanatory.

Restated in more conventional logical notation, it includes first- and second-

predicates (for example, Divisible as in Divisible(0,0) is a first-order predicate

and instance as in instance(Divisible,ReflexiveRelation) is a second-order pred-

icate), functional symbols, equality =, boolean connectives ¬ (not), ∧ (and), ∨

(or), ⇒ (implies), quantifiers ∀ (for all) and ∃ (exists). It has first-order and

second-order variables and allows quantification over relational variables, for

2www.ontologyportal.org
3http://suo.ieee.org/SUO/KIF/suo-kif.html
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example it is possible to say

∀x∀R(instance(R,ReflexiveRelation)⇒ R(x,x))

The most unusual feature of SUO-KIF are row variables, @ROW , which range

over finite sequences of arguments of arbitrary finite length; we will write it

in the logical notation as x̄: a list of variables xi of arbitrary finite length. For

example, it is possible to say

∃R∃x̄R(x̄)

(there exists some relation and some sequence of elements such thatR holds for

this sequence). A detailed description of SUO-KIF can be found in [71].

Clearly, since SUO-KIF includes full first order logic with functional symbols

and equality, reasoning in it is undecidable. Examining the upper ontology, it is

difficult to identify some decidable fragment of first or second order logic into

which it would fit: the quantifier prefixes of axioms are often of the form ∀ ∃

which is undecidable with full first-order logic and at least one binary predi-

cate [15], they do not conform to the definition of guarded [4] or packed [63]

fragment of first-order or monadic second-order logic, etc.

8.3 FKIF

Since we were unable to find any decidable fragment of first- or second-order

logic expressive enough to formalise SUMO, we chose to work in a fragment

of second-order logic which we call FKIF. Although FKIF is not decidable, it

allows for a reasonably efficient reasoner implementation (unlike the full SUO-

KIF, which has been shown by Horrocks and Voronkov [50] to have a non recur-

sively enumerable set of validities). The definition of FKIF is given below. Note
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that FKIF is different from the schema form proposed by Hayes and Menzel

[46] to reduce complexity of SUO-KIF.

Recall that a formula is in negation normal form if all negations occur only in

front of atomic formulas.

Definition 8.1. FKIF

FKIF is the fragment of SUO-KIF which contains formulas of the following

form:

• ground formulas in negation normal form which do not contain quanti-

fiers

• implications of the form

∀X1 . . .∀Xn(φ⇒ ψ)

where

– X1, . . . ,Xn are all the free variables in φ⇒ ψ

– all of X1, . . . ,Xn occur in φ

– φ and ψ are in negation normal form

– φ is built using only negations and conjunctions, and

– ψ contains only negations, conjunctions, disjunctions and ∃x where

x is a first order variable (x is not @ROW or ?REL)

We omit universal quantifiers in FKIF formulas (free variables are assumed to

be universally quantified). The main syntactic restriction of the FKIF fragment

compared to full SUO-KIF, is that relational variables and @ROW variables are

only allowed to occur universally bound.
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Not all well-formed SUO-KIF sentences can be equivalently translated into FKIF.

For example

(exists (@ROW ?REL) (?REL @ROW ))

(in logical notation, ∃R∃x̄R(x̄)) cannot be translated into FKIF. However there

were no examples of this form in any SUMO ontology we examined.

The Base ontology was translated into FKIF using a translation procedure δ,

which is applied recursively to a set of SUO-KIF sentences. The patterns matched

by δ are given below, and are attempted in the order listed. We assume that each

quantifier has its own distinct variable.

1. δ(φ) = φ if φ ∈ FKIF

2. δ(¬∃X̄φ) = ∀X̄¬φ

3. δ(∀X̄φ) = ∃X̄¬φ⇒⊥

4. δ(∃X̄φ) = ⊤⇒ ∃X̄φ

5. δ(φ1⇔ φ2) = {(φ1⇒ φ2), (φ2⇒ φ1)}

6. δ(φ1⇒ (φ2⇒ φ3)) = (φ1 ∧ φ2)⇒ φ3

δ((φ1⇒ φ2)⇒ φ3) = (¬φ1 ∨ φ2)⇒ φ3

7. δ(φ1⇒ φ2) = dnf (φ1)⇒ nnf (φ2)

8. δ(φ1⇒ (∀X̄φ2)) = (∃X̄(φ1 ∧¬φ2)⇒⊥

9. δ((∃X̄φ1)⇒ φ2) = φ1⇒ φ2

10. δ((∀X̄φ1)⇒ φ2) = ¬φ2⇒ ∃X̄¬φ1

11. δ(φ1⇒ φ2) = dnf (φ1)⇒ nnf (φ2)
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12. δ((φ1 ∨ φ2)⇒ φ3) = {φ1⇒ φ3, φ2⇒ φ3}.

where dnf reduces a formula to disjunction normal form, and nnf reduces a

formula to negation normal form.

Theorem 8.2. If the translation procedure δ terminates, it is correct, i.e., the translated

formula is in FKIF.

Proof. Firstly, Steps 2, 3, 4, and 5 translate an existential or universal quantified

statement into an implication. After that, Step 6 removes all nested implica-

tions. Next, Step 7 pushes all quantifiers to the front of the antecedent and the

consequence of the implication. Steps 8, 9, 10 remove all quantifiers from the

antecedent and the consequence of the implication where possible. However,

Step 10 will not terminate if the input implication is of the form ∀X̄φ1⇒ ∃Ȳ φ2.

With such an input, the translated result is ∀Ȳ ¬φ2⇒ ∃¬X̄φ1, and hence Step 10

is repeated with the translated result.

However, if Step 10 terminates, Step 11 will translate the antecedent into a list

of disjunctions. Finally, Step 12 will translate that implication into separate im-

plications.

One sentence in the Base ontology could not be translated by δ and required

special treatment. An axiom defining the concept TotalValuedRelation contained

a @ROW variable which was ‘underconstrained’. The axiom is given in its en-

tirety in Section 8.5; here we give it in simplified form:

instance(R,TotalV aluedRelation)∧ V alence(R,n) ∧

RightType(x̄)⇒ ∃yR(x̄, y)
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where RightType(x̄) checks that x̄ is of length n− 1 and each element of it is

in the appropriate domain for R. For example, a particular instance of this

implication for n = 3 would be:

instance(Sum,TotalV aluedRelation)∧ V alence(Sum,3) ∧

Number(x1)∧Number(x2)⇒ ∃ySum(x1, x2, y)

One way of translating such axioms would be to introduce an instance of the

axiom for each possible arity of the relation R, up to a specified bound deter-

mined by the current ontology.4 SES takes a different approach, which involves

a single rule that dynamically matches a set of instances for x̄ once the rela-

tion’s valence and type of elements are known. The final pattern for @ROW in

the reasoner rule that implements the axiom is a ‘dynamic pattern’ (effectively

a procedure) that takes the valence of the relation and the element type, and

returns n− 1 previously asserted instances of the correct type.

8.4 Axiom Pinpointing for SUMO

Our implementation of axiom pinpointing for SUMO (SES) consists of two parts:

a second-order reasoner for FKIF which derives consequences by applying in-

ference rules to previously inferred sentences, and a truth maintenance system

which maintains dependencies between newly inferred consequences and their

antecedents and which computes explanations when a new derivation is found

for ⊥.
4This is the approach taken by Sigma, which encodes the above axiom as six instances to

handle cases up to arity 6.
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The system works in cycles. At each cycle, the reasoner checks whether any of

its inference rules (described below) are applicable to the axioms and/or any

previously inferred sentences, and if so, it sends the consequence of applying

the rule together with a justification consisting of the name of the rule and the

antecedents of the rule used to infer the consequence to the truth maintenance

system. The truth maintenance system updates its dependency structure to in-

corporate the new formula and its justification. If a new closed derivation of ⊥

has been found, the truth maintenance system also updates the set of explana-

tions to record the minimal sets of ontology axioms required for all derivations

of ⊥ produced by the reasoner up to this point.

The system can be configured to pause after each new explanation is found,

allowing the user to decide whether to continue or to terminate the search for

explanations, or to run for a fixed number of reasoner cycles and return all

explanations found within the depth bound.

Both the reasoner and the truth maintenance system are implemented in Pop-

11.5 The reasoner is implemented using Poprulebase, a Pop-11 rule interpreter

which supports dynamic generation of rule patterns (used to implement rule

conditions involving @ROW variables) .

8.4.1 Reasoner

The reasoner uses the following tableau decomposition rules:

⇒-rule from φ1 ∧ . . . ∧ φn ⇒ ψ and φ1[X̄/t̄], . . . , φn[X̄/t̄] derive ψ[X̄/t̄], where

φi[X̄/t̄] are ground instances of φi;

∧-rule from φ1 ∧ . . .∧ φn derive φ1, . . . , φn;

∨-rule from φ1 ∨ . . .∨ φn, derive cases φ1, . . . , φn;
5http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.html
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∃-rule from ∃xφ(x) derive φ(c) where c is a new individual and ∃xφ(x) has not

been used before to generate another new individual;

⊥-rule from φ and ¬φ derive ⊥, where φ is a ground atomic formula.

We assume semantics for SUO-KIF described in [46].

Theorem 8.3. Each deterministic rule preserves satisfiability. If the premise of the

non-deterministic rule ∨-rule is satisfiable, then one of the conclusions is.

Proof. The rules for ∧,∨,∃,⊥ (note that ∃ only applies to first order variables),

are standard tableau rules. The only unusual rule is ⇒. It treats implication

not as standard classical tableaux do (splitting into cases) but as for example

subsumption axioms are treated in description logic. The universally quantified

variables which can be both first- and second-order, are instantiated against the

domain as it is defined in [46]. Clearly, if the implication is valid and the left-

hand side of it is satisfiable for some substitution of ground terms, then the

right-hand side should be satisfiable as well.

Theorem 8.4. Consider a tableau for a set of formulas Γ. If it has a branch where a

contradiction is not derivable, then Γ is satisfiable.

Proof. The proof is by constructing a satisfying model for Γ given an open

branch of a standard tableau (a branch not containing a contradiction). A set

of formulas Σ is a Hintikka set if:

1. for no formula φ both φ and ¬φ are in Σ

2. if φ∧ ψ ∈ Σ then φ ∈ Σ and ψ ∈ Σ

3. if φ∨ ψ ∈ Σ then φ ∈ Σ or ψ ∈ Σ

4. if ∃xφ ∈ Σ, then φ(c) ∈ Σ for some c
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5. if ∀X̄(φ1 ∧ . . . ∧ φn ⇒ ψ) ∈ Σ, and some ground instances of φ1, . . . , φn,

φ1[X̄/t̄], . . . , φn[X̄/t̄] ∈ Σ, then ψ[X̄/t̄] ∈ Σ.

Clearly an open branch is a Hintikka set, and a Hintikka set is satisfiable. Note

that when constructing a model, we can replace implications containing uni-

versally quantified variables with the set of all their ground instances.

Like any other first-order theorem prover, the reasoner is not guaranteed to

terminate. We will say that the reasoner ‘terminates normally’ when it termi-

nates because no new inferences can be found. To refer to both the cases when

the reasoner terminates normally and when it times out, we will use the term

‘halted’.

8.4.2 Truth Maintenance System

The D-ATMS truth maintenance system described in the previous chapter used

by SES is essentially an Assumption Based Truth Maintenance System (ATMS)

[23] extended to handle disjunctions.

The D-ATMS maintains a graph data structure which records all inference rule

applications. Each derived formula φ is represented by a node nφ. Axioms

are represented by axiom nodes, and inconsistency is represented by a distin-

guished false node, n⊥. Justifications form the edges of the graph and record

the fact that a node (the consequent) can be derived from a set of other nodes

(the antecedents). A node may be the consequent of more than one justifica-

tion (recording the different ways in which it can be derived), and be an an-

tecedent in other justifications (recording the inferences that can be made using

it). When reasoning begins, the D-ATMS contains only axiom nodes. As the

reasoner derives consequences, it sends the inferences to the D-ATMS. A justifi-

cation is added linking the nodes representing the antecedents of the inference
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to the node representing the consequent (if no node exists for the derived for-

mula, one is created). The reasoner may designate certain sets of formulas as

inconsistent by providing a justification for n⊥.

The derivability of a formula from a set of axioms is represented by an envi-

ronment. Each node in the justification graph has a label containing the set of

environments from which the formula corresponding to the node can be de-

rived. The label of n⊥ consists of a set of inconsistent environments or nogoods.

The D-ATMS ensures that the environments in the label of each node are sound,

complete and minimal with respect to the set of inferences passed by the rea-

soner to the D-ATMS so far.

The notion of relative correctness and minimality (with respect to the reasoner)

is essential. The D-ATMS itself does not produce derivations; it only manipu-

lates the inferences provided by the reasoner. If the reasoner’s inference rules

are unsound, then some environment may contain a set of axioms that do not

logically entail the formula. If the set of inference rules used by the reasoner

is incomplete for a given logic, then the environments in the label of a formula

node may not contain all the sets of axioms that logically entail it. The environ-

ments generated by the D-ATMS are guaranteed to be minimal, but minimality

is also relative to the set of rules used by the reasoner, and to the set of deriva-

tions discovered by the reasoner when the environment is (re)computed.

For example, suppose that the reasoner sends an inference to the D-ATMS record-

ing that φ can be derived from ψ1 and ψ2. Suppose further that this is the first

derivation of φ which has been found and that the labels of ψ1 and ψ2 have one

environment each: ψ1 is ultimately derivable from the axioms {ax1, ax2} and

ψ2 is derivable from {ax2, ax3}. Then the single environment in the label of nφ

will be {ax1, ax2, ax3}. Given the set of inferences made by the reasoner, this is

a minimal environment. However, suppose that at the next step the reasoner

discovers another derivation of φ, this time from ψ2 and ψ3 which has a single
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environment {ax3}. When this inference is passed to the D-ATMS, the label of

nφ is updated to include the environment {ax2, ax3}; since the new environment

is a subset of the old environment {ax1, ax2, ax3}, {ax1, ax2, ax3} is discarded to

maintain mimimality of the label of nφ. The label of nφ would be updated in

the same way if the reasoner discovers that ψ1 is derivable just from only {ax2},

as changes in environments are propagated to the ‘descendants’ of the formula:

nφ’s environment will become {ax2, ax3}.

The D-ATMS label computation algorithms are correct in the following sense:

D-ATMS Correctness. When the reasoner is halted, the D-ATMS returns as the

label of n⊥, a set of sets of axioms {e1, . . . , en} such that each set ei is a set of

axioms for which the reasoner found a derivation of ⊥, and this set is minimal

with respect to all inferences found before the reasoner halted.

Our argument in the previous chapter (e.g., Section 7.5) builds on standard

ATMS results and uses the fact that the D-ATMS algorithms ensure that each

environment in a label of a formula involved in a derivation of ⊥ contains a

minimal set of axioms required to derive the formula (relative to the existing

justification graph). Note that if the reasoner terminates normally (when no

more inference rules are applicable), SES will return all possible explanations

(minimal sets of axioms responsible for inconsistency). If the reasoner termi-

nates due to e.g. time out, the explanations it returns are still guaranteed to be

correct (the axioms in each explanation do entail false) but they not guaranteed

to be minimal, nor is SES guaranteed to return all possible explanations in this

case.
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8.5 Examples

To illustrate the utility of our approach, we give two examples of bugs in the

Base ontology of SUMO discovered by SES. We chose the Base ontology as it is

reasonably large (consisting of 1058 sentences), complex, and is used by many

other ontologies. We found two different derivations of ⊥ using two axioms

which have the same bug (a missing universal quantifier).

The simpler of the two bugs is in the definition of a reflexive relation:

(<=>

(instance ?REL ReflexiveRelation)

(?REL ?INST ?INST))

which is missing a (forall ?INST) quantifier on the right. It is translated by δ

into two FKIF axioms

∀r∀i1∀i2(instance(r,ReflexiveRelation)⇒ r(i1, i2))

and

∀r∀i1∀i2(r(i1, i2)⇒ instance(r,ReflexiveRelation))

From the Base ontology and two additional facts, Divisible(1,1) and¬Divisible(0,0),

SES derives a contradiction and gives as an explanation the two facts and the

definition of the reflexive relation.

The second example of an inconsistency involves the definition of a total valued

relation

(<=>

(instance ?REL TotalValuedRelation)

(exists (?VALENCE)
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(and

(instance ?REL Relation)

(valence ?REL ?VALENCE)

(=>

(forall (?NUMBER ?ELEMENT ?CLASS)

(=>

(and

(lessThan ?NUMBER ?VALENCE)

(domain ?REL ?NUMBER ?CLASS)

(equal

?ELEMENT

(ListOrderFn (ListFn @ROW) ?NUMBER)))

(instance ?ELEMENT ?CLASS)))

(exists (?ITEM)

(?REL @ROW ?ITEM))))))

The definition of TotalValuedRelation also has a missing universal quantifier:

in this case over the @ROW variable on the right hand side. The problematic

direction is ⇐, which essentially says that if there exists a single tuple of the

correct type satisfying ?REL, then ?REL is a total valued relation:

R(x̄, y)⇒ instance(R,TotalValuedRelation) ∧

Valence(R,n)∧RightType(x̄)

Both derivations of ⊥were found within a few seconds. However, the reasoner

does not terminate naturally on the base ABox, hence we have no guarantee

that no other derivations of ⊥ exist.6

6An analysis of the performance of the reasoner reveals that the reason for non-termination
on the base ABox is generation of new terms by function application. While it is possible a add
a blocking condition which blocks further application of reasoner rules when some limit on the
nesting of functions is exceeded, this would result in loss of completeness.

152



Axiom Pinpointing for SUMO

We checked the derivation of inconsistency for the ReflexiveRelation using Sigma

[70]. Sigma can derive Divisible(0,0) as an answer to a query (a request to prove

Divisible(?X?X)), and it correctly states that the derivation of Divisible(0,0) in-

dicates an inconsistency. However, when we used Sigma to check consistency

of the Base ontology (as opposed to answering a query with a concrete predi-

cate), it ran out of memory even with a heap size of 10GB.

8.6 Related work

Horrocks and Voronkov [50] used the first-order theorem prover Vampire [78]

for query answering and consistency checking in SUMO. They discovered a

number of non-trivial inconsistencies. As an explanation of an inconsistency,

they give an (edited) proof listing. They comment on the problem of making

proofs human-readable and understandable, and concede that current proof

format of Vampire is far from perfect. The Sigma ontology development envi-

ronment for SUMO [70, 72] can be used for query answering and inconsistency

checking, however in our experience the proof listings are somewhat difficult

to understand.

8.7 Conclusion

We described SES, an approach to axiom pinpointing for SUMO ontologies,

which returns the set of minimal sets of ontology axioms from which a con-

tradiction is derivable. SES consists of two main components: a second-order

tableaux reasoner, and a truth maintenance system. The reasoner is sound and

complete for a fragment of SUO-KIF in which all the SUMO Base ontology ax-

ioms can be expressed. The truth maintenance system computes explanations
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from the inferences made by the reasoner. The combined returns all sets of ax-

ioms responsible for the derivations of ⊥ found before termination, minimised

with respect to the inferences it found so far. In cases where SES does not time

out, it is guaranteed to return all minimal explanations for ⊥.

To the best of our knowledge, SES is the first system to provide axiom pinpointing-

style explanations for SUMO ontologies. Although the reasoner can be further

optimised, our prototype SES implementation is able to debug the SUMO Base

ontology, finding two previously unreported derivations of⊥ in a few seconds.

154



Chapter 9

Conclusion and Future Work

9.1 Summary of Contributions

In this thesis, we have shown that TMS can be used in modern Knowledge-

Based Systems such as intelligent agents and ontologies.

Firstly, we showed that the dependency tracking mechanism in TMS can be

used in agent programming platforms, and not only for belief revision as in the

literature [3, 52, 61], but also for improving performance of agent programs.

In Chapter 5, we applied a light-weight version of a TMS to keep track of the

dependency between facts and queries in the agent databases so that if there

is an update in the agent databases, it is possible to find the affected queries.

Using this system, we were able to perform query caching in the GOAL agent

programming language, following the observations given in [2]. The caching

mode can be either single cycle, i.e., the cache is cleared after a query-update

cycle, or multi-cycle, i.e., the cache is maintained over multiple query-update

cycles. Our approach supports the multi-cycle caching mode and only removes

from the cache queries’ results invalidated after an update. The experiments in

different caching modes showed that query caching improves the performance
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of agent programs and multi-cycle caching performs better than single-cycle

caching in all test-cases.

Secondly, we argued that it is possible to apply the ATMS to the debugging/ax-

iom pinpointing problems in ontologies with different levels of expressiveness.

In fact, previous glass-box approaches to the problem of ontology debugging/ax-

iom pinpointing use a tracing facility embedded inside the reasoner to record

the dependencies between the derived data (assertion) and the original assump-

tions (axioms) used to derive it [57, 59, 64, 81]. Therefore, the dependency track-

ing facility and the reasoner are tightly-coupled, and hence for each implemen-

tation of a reasoner, the facility for axiom pinpointing is built from scratch. On

the other hand, the ATMS and the reasoner is loosely-coupled. For example, in

Chapter 6, we have showed that the “classic” ATMS can directly deal with the

ontology debugging/axiom pinpointing problem when the reasoner is a basic

forward chaining inference engine with only Horn-like rules. As long as the

reasoner has only Horn-like rules and there is no cycle obtained by generating

new constants, the ATMS-based approach presented in Chapter 6 will work for

the ontology debugging/axiom pinpointing problem.

For logics which have disjunctions such as the description logicALC, the ATMS

needs to be extended to deal with disjunctions, as in Chapter 7. Disjunctions in

the ATMS are solved by recording the sequence of choices in each environment

so that the extended environment has not only the set of assumptions where a

datum holds but also the sequence of choices which have been made to derive

the datum. For ontologies which have cyclic inclusions, a blocking condition

is necessary to guarantee termination. However, to allow node labels in the

ATMS to be complete, the blocking condition needs to take into account not

only the node’s datum, i.e., the assertion, but also its label. In Chapter 7, we

have presented a blocking condition for a Dictionary ALC reasoner which can

guarantee completeness for the ATMS node labels relative to this reasoner. In
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this chapter, we also showed how the label update propagation can be opti-

mised by focusing on relevant justifications, i.e., justifications involved in the

derivation of a target node. The results of the experiments comparing our ap-

proach and two Description Logics reasoners, Pellet and MUPSter, suggest that

the ATMS-based approach outperforms two other systems in a wide range of

ontologies.

For more expressive logics, in Chapter 8 we investigated whether the extended

ATMS can find explanations for a contradiction in an upper ontology, SUMO,

whose underlying logic, SUO-KIF, includes full first order logic and some higher-

order features. To be able to use the ATMS for debugging SUMO, we defined

a second-order fragment of SUO-KIF, namely FKIF, and showed how to trans-

form a formula from SUO-KIF to FKIF using a translation procedure. We were

able to translate most statements in the SUMO’s Base ontology to FKIF, apart

from one statement which needs special treatment. The reasoner for FKIF is

implemented and, combined with the extended ATMS, form an explanation

service for SUMO, which we call SES. As the reasoner is not guaranteed to

terminate, we configured the ATMS so that it can either compute all minimal

explanations for inconsistency if the reasoner terminates, or return possibly in-

complete and non-minimal explanations if the reasoner halts due to time out or

reaching the bound depth. To the best of our knowledge, SES is the first system

to provide axiom pinpointing-style of explanations for SUMO.

9.2 Future Work

This thesis has showed that it is possible to use the ATMS to find explanations

of a derivation or an inconsistency in ontology-based systems. In future, our

ATMS-based explanation framework can be extended in two aspects, generali-

sation and efficiency.
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Regarding generalisation, a future plan is to characterise the types of reasoning

procedures which the ATMS can be used to to provide an explanation service.

For example, as showed in [9], a terminating tableaux-based reasoner does not

always have a terminating axiom pinpointing extension. Therefore, important

topics for future work is to characterise such reasoners and to use the ATMS to

provide possibly incomplete but terminating axiom pinpointing service. This is

similar to how we treated the SUMO upper ontology in Chapter 8.

To improve efficiency of our current framework, there are two potential direc-

tions. The first is to improve the performance of the reasoner implementation.

The Poprulebase reasoners in our framework use a simple pattern-directed rule

matching, with backtracking to find consistent variable bindings. While the un-

derlying Poprulebase implementation does incorporate hashing of axioms and

derived formulas, it does not make use of more sophisticated caching strategies

such as, e.g., RETE [39]. As the reasoner must run until no rule is applicable

to ensure all minimal explanations are found, in cases where very large num-

bers of inferences are possible, the lack of more sophisticated indexing/caching

may have a significant impact. Secondly, the ATMS implementation can be op-

timised further by having a more efficient subsumption testing using extra data

structures such as, e.g., tries as suggested in [38]. However, more work needs

to be done for using tries for the extended ATMS, where disjunctions are al-

lowed. In addition, for an acyclic dependency graph, a MapReduce technique

as presented in [93] can also be used to improve the performance of label update

propagation in the ATMS.

Although query caching in agent programs, especially multi-cycle query caching,

has been showed to be able to improve the performance of agent programs in

Chapter 5, we are still aware of several possible limitations of the current im-

plementation which can be improved in future work. The most important topic

of future work is to generalise the current implementation of query caching.
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The current prototype of query caching is specific to the GOAL agent program-

ming language and is also tied to a specific KRT, SWI-Prolog. This implemen-

tation takes advantage of the meta-programming feature in Prolog-based KRTs

to record dependencies between queries and facts. Therefore, a promising re-

search direction is to develop the general interface between the query caching

component and the agent program as well as the KRT so that different com-

binations of agent programming platforms and KRTs can use query caching.

With such an interface, the implementation of query caching component can be

loosely-coupled to the KRT and to the implementation of the agent program-

ming platforms.
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