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Abstract

Fuzzy logic is a frequently used solution to control problems, especially

when there are elements of human knowledge that may be incorporated

into the system. Fuzzy logic comes in several varieties with the most com-

mon being based on either type-1 or type-2 fuzzy logic. Modifications

to these standard varieties, termed Non-Stationary (NS) and Dual Surface

(DS) are also investigated. Each variety allows a certain amount of flexi-

bility in its expression. However, with this increased flexibility (and poten-

tially performance) comes additional resource requirements: either during

run time with higher processing and memory requirements; or at design

time, with additional parameters requiring selection and optimisation.

There have been several comparisons into the performance obtained from

type-1 and type-2 investigating such factors as their internal configuration

(such as membership functions as defined by their Footprint of Uncer-

tainty), task difficulty and the environment in which the experiments are

performed. However, no studies have been performed incorporating each

of these factors with the goal of determining how they impact upon per-

formance. The end goal of this work is the development of a methodology

to understand which combination of conditions will cause type-2 control

to consistently outperform type-1 based systems. This would enable the

rationalisation of moving from a type-1 to a type-2 system, which is cur-

rently done without understanding if and how performance will increase

with such a move.

This thesis introduces a novel scheme by which several methods of com-

paring performance are employed to observe how the output and resulting

performance levels change as factors including: controller configuration,

task difficulty and environmental variability are varied. These methods



are performed over three applications which gradually increase in com-

plexity: a simple tipping example, a more developed simulation based on

an autonomous sailing robots application and subsequent real-world ex-

periments, which also involve the autonomous sailing problem. The first

method of comparison studies how the rules which fire for a given input set

change as the configuration of the fuzzy logic controller is increased. The

second comparative technique investigates the control surfaces produced

by a selection of fuzzy logic controllers to observe how they change as the

internal configuration is changed. Observations such as the smoothing of

the transitions between surfaces suggest that controllers with a larger FOU

may give a better response. The third method for comparison is developed

in which outputs from a controller operating in a simulated environment

are compared to an ideal value, giving a single numeric output with which

comparisons can be made.

It was found that there are situations in which type-2 based fuzzy control

outperforms type-1. However, these are found to be less common than

expected. It is determined that this may be due to the simplicity of some

of our case studies environments (especially the tipping example), where

there may not be enough scope for large improvements to become appar-

ent. These findings lay ground for future work in which (i) more developed

and complex applications and (ii) a more tuned fuzzy system should be in-

vestigated to find if this will result in more obvious differences between

configurations.
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1

Introduction

Fuzzy logic (FL) , introduced by Zadeh [107] is a common technique that is used

as a solution to many types of task, including decision making and control problems.

There are several reasons for this popularity including: the way it can be used to mirror

the human decision making process [109]; the simplicity of implementation with a

well-defined mathematical background; and finally, it has potential to provide better

performance than techniques such as Proportional Integral Derivative (PID) control as

described in articles such as those by Li et al. [53].

Fuzzy logic controllers can be broken down into several varieties as described in

detail by Celikyilmaz and Türksen [21]. The two most commonly used varieties are

termed ‘type-1’ and ‘type-2’ with the former being the simpler of the two and therefore

the one which has been more widely adopted, due its lower resource requirements —

an important consideration for robotic systems. The use of the latter is increasing as the

resources required fall more easily within the envelope provided by modern embedded

hardware systems. However, being able to determine when each type is most suitable

is still a difficult task as evidenced by works performed by Cao et al. [11].

Defining a systematic way of selecting between type-1 and type-2 fuzzy logic is

the main goal of this thesis. While early work by Braae and Rutherford [16] inves-

tigates initial parameter selection in early fuzzy systems, many works utilise Genetic

Algorithms (GAs) for selection of optimal parameters such as in the work of Martinez-

Soto [63]. The use of GAs means that a general design process for type-2 systems is
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1.1 Motivation

not important— it is simply evolved for each application, with the downside being the

significant off-line processing requirement. The selection of the type of fuzzy system

requires understanding the effect of multiple factors. Firstly, the different types of

fuzzy logic control available in conjunction with their internal configurations such as

the Footprint of Uncertainty (FOU) of type-2 controllers. Secondly, the environment

in which experiments are performed can be varied by increasing both the task difficulty

and the sources of variation present. Comparisons between different combinations of

the above factors can be performed using different approaches. However, which of

these methods gives the best picture of performance is still an unanswered question

within the field.

There are several deviations from the standard model of type-1 and type-2 fuzzy

logic inference systems. In this thesis two are selected for study in addition to the

standard types. The first of these is termed Non-Stationary fuzzy logic (NS) in which

small deviations in the membership functions are introduced for each iteration of the

controller. The second variety is termed Dual surface (DS) fuzzy logic, which is based

on interval type-2 control with the addition of a simple algorithm for selecting between

three possible output values — the upper and lower values obtained from the output

interval and the mean of the two values. These types of controller have been selected

firstly for their simplicity to implement and secondly because it is believed that they

may be able to give a level of performance improvement over the standard models for

a minimal increase in complexity.

1.1 Motivation

As discussed in Chapter 2 (Page 9), there does not currently exist any method to

determine which fuzzy logic controller type is the most suitable for a given situation.

The first step towards developing a framework that can decide on the suitability of each

fuzzy logic controller depending on the problem characteristics would be to show that

there exists situations in which type-1 and the more sophisticated varieties of fuzzy

logic (such as type-2, NS and DS) give significantly different levels of performance,

therefore showing that one would be preferable than the other in these circumstances.

This leads to an investigation that focusses on the differences found between each

2



1.2 Aims, Objectives and Research Questions

fuzzy controller output, under what circumstances they are most apparent, and how

this can be generalised. This is therefore, the main focus of our research in this work.

1.2 Aims, Objectives and Research Questions

The main research question of this thesis is to determine ‘what combination of factors

are necessary for more sophisticated fuzzy controller types such as interval type-2

to consistently out perform type-1 fuzzy control’. In order to attempt to answer this

question the following are therefore presented as the aims of this thesis:

1. To show that variations on standard type-1 control, specifically interval type-2,

DS, and NS fuzzy control can provide significantly different levels of perfor-

mance over type-1 fuzzy control.

2. To study how performance changes as the environment is made more or less

sophisticated, by altering aspects such as variation in the environment, and the

difficulty of the attempted task.

3. To investigate how the internal configuration of a given controller (referred to as

the FOU size for interval type-2 controllers) changes the level of performance of

the more sophisticated fuzzy systems in comparison with type-1 based configu-

ration.

4. To identify the point at which type-2 fuzzy logic consistently outperforms type-1

and try to define as many aspects as possible which cause this to occur. For ex-

ample it may be observed that high levels of environmental variation will always

lead to a type-2 controller outperforming type-1.

These aims leads directly to the setting the following research objectives:

To develop a means by which meaningful comparisons between different exper-

imental scenarios can be performed.

To determine the effect of variation and task difficulty upon the performance of

fuzzy logic controllers.

3



1.3 Thesis Findings and Contributions

To determine when and indeed if type-2, NS or DS fuzzy logic outperform type-1

and under what experiment scenarios make this is likely to occur.

If these objectives are met then it should be possible to make predictions about

what circumstances are most appropriate for the implementation of more sophisticated

(and therefore more computationally expensive to implement) types of fuzzy logic.

However, the overall end goal can be defined as a sliding scale with a more successful

outcome being a more precise set of circumstances for when type-2 fuzzy logic out-

performs type-1. Even if no differences are found, as long as the methodology covers

a sufficiently wide scope, the research objectives can still be met, e.g. it may be that

there are no circumstances where type-2 control outperform type-1, and this in itself

would be considered an acceptable, though unsatisfactory result.

In order to fulfil our objectives, two experimental applications are used for the

comparative work in this thesis. The first is a very simple artificial problem, in which

the goal is to determine the appropriate tip for a given set of food and service levels in a

restaurant. From the results found it is felt that this application is too simple to be able

to fully realise the research objectives, although it provides a starting point on which

additional work can be based. The results obtained and the process of developing

comparative methodologies lead to the introduction of a robotic sailing problem which

has significantly more scope for variation. In addition, it allows both simulation and

real-world experiments to be explored. In general, this second case study was found to

give more interesting results.

1.3 Thesis Findings and Contributions

This thesis develops several approaches to comparing the performance of type-1, type-

2, DS and NS varieties of fuzzy logic using three case studies: the tipping problem,

the simulated boat environment and the real-world boat environment. Two of the ap-

proaches for performing comparisons look directly at a selection of fuzzy logic con-

trollers and how their outputs change across the entire space of possible input combina-

tions. These approaches by themselves give a broad view of the potential performance

a controller may be expected to achieve in relation to each other. However, without

4



1.3 Thesis Findings and Contributions

putting the controller into a complete environment, it is difficult to provide an abso-

lute measure of performance. This issue is therefore addressed by the use of Root

Mean Square Error (RMSE) as a measure of performance applied in a large variety

of experimental scenarios, across a range of application areas, both simulated and real

world.

Using these three approaches: the comparison of which rules fire, the inspection

of the control surfaces and the comparison of RMSE values are the main means by

which controllers and their environments are compared, allowing the different factors

including: the environmental variation, the internal configuration of the controller and

the task difficulty to be investigated. Both the internal configuration of the controllers

under test and the environment in which they operate were varied to observe how each

factor alters the overall performance as defined by the RMSE value obtained. It was

found that when the task is simple (such as the Tipping application) with no variations

being introduced, differences between all of the controllers under test is seen to be

minimal, with none of the approaches being able to consistently differentiate between

the controllers under test. Once the application and the controllers under test are made

more sophisticated, however, changes start to become more evident and the type-2

fuzzy logic based controller, in particular, starts to show improved performance over

its type-1 based counterparts.

The total number of differences observed were not as frequent it may have been

expected. Several reasons for this have been identified: Firstly the design of the con-

trollers under test were not optimal and indeed were not tuned, which may have led to

all controllers being similarly limited in the performance they could achieve. Secondly,

the effect of environmental set-up, including both the task difficulty and introduced

variation upon the system was perhaps not considered carefully enough, potentially

not containing the scope required to show the desired changes in performance. Finally,

the use of RMSE as the sole means of performance comparison may have limited the

ability to contrast run where the environmental variation changed such as in the simu-

lated sailing application. For example, a RMSE value of 5 in a difficult experimental

scenario may be considered good, but bad in an easier scenario, and this is not captured

by the RMSE value alone.

Overall the following contributions can be drawn from the research made in this

thesis:
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• In the most simple applications and environments, the majority of fuzzy logic

configurations do not show significant differences in performance, even when

several different methods of comparison are used.

• As the environment and experimental design is developed and made more com-

plex, such as those described in Chapter 5 (Page 95), the ease with which differ-

ent fuzzy logic controller can be differentiated increases.

• Type-2 fuzzy logic can provide an improvement over the less sophisticated type-

1 variety for the case studies performed. However, time must be spent determin-

ing the correct parameter values, such as the FOU size. The use of type-2 cannot

be recommended in simple applications and even in more developed areas a suit-

ably tuned type-1 may well give equal performance.

1.4 Thesis Organisation

Chapter 2 (Page 9) provides the necessary background knowledge and a review of the

current relevant literature. In addition, it presents a critical discussion of fuzzy logic in

variable and complex environments, their interactions, current studies into the area, and

alternative methods for controlling robots in such environments. Finally, the specific

gap in the literature is established along with reasoning as to why it is a suitable topic

for study.

The first experimental work is described in Chapter 3 (Page 44), in which a simple

fuzzy controller is introduced and is used to develop the ideas of this thesis. Firstly

an investigation is presented in which the rule base, which rules fire and how this

changes with the internal configuration is studied. This tipping controller is then used

in a simple control-like experiment to observe if this controller shows differences in

performance as measured by the RMSE value, and if so how these differences manifest

themselves as the FOU size is changed. This method of comparison is then further

developed to include comparing the output of the fuzzy logic controllers to ‘ideal’

values and finally by injecting a source of variation into the experiment to observe how

this affects the RMSE values obtained. Overall the results in this chapter are not as

good as expected, with few differences found in the majority of experiments. This is
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believed to be due to the simplicity of the problem and is addressed by the selection

and development of the sailing boat controller application in later chapters.

This is followed by Chapter 4 (Page 73), in which the methodology used in this

thesis is described. The hardware and software used, as well as the design and imple-

mentation of the fuzzy logic systems under investigation are described. Some common

experimental design is also introduced, including the justification as to why certain de-

sign decisions have been made.

Chapter 5 (Page 95) studies identified shortcomings of previous work by increasing

the sophistication and complexity of both the controllers under test, and the environ-

ments in which they operate. The chapter starts with two investigations in which the

aim is to study how the different controllers vary their outputs, including the rules

which fire and the output of the controller as given by the shape of the control sur-

face. This is followed by Section 5.4 (Page 107), in which a simulation environment is

used to study a wide variety of controller types and configurations, and to investigate

the association between FOU and performance. This is followed by Section 5.5 (Page

115) in which the methodology used to make the comparisons is further developed

and the subject of study is more focused more upon type-1 and type-2 comparison.

The chapter is concluded with a discussion regarding the findings, strengths and weak-

nesses observed from the results obtained. The results found overall are much more

encouraging, with several scenarios identified in which the more sophisticated con-

trollers exhibit improved behaviours, such as smoother control surfaces, which in turn

lead to improved performance, as shown by the experiments in which RMSE is used

to characterise the performance.

Chapter 6 (Page 139) introduces real-world data, as opposed to simulated data, for

the investigations, with the intention of introducing significantly more environmental

variation and task difficulty into the experiments. The collected data is analysed in

a similar manner as the simulation data. The reasons for these observations made

is discussed. In addition, changes to the methodology are proposed to overcome the

problems found in this experimental set-up. The use of a real world application has the

desired effect of introducing much more variation, resulting in much wider intervals

in the results, however other potential issues such as the lack of tuning of the fuzzy

controllers start to become apparent.
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Chapter 7 (Page 158) presents a summary and discussion of the research conducted

in this thesis. An analysis of strengths and weaknesses with the methodology is con-

ducted. Moreover, the contributions and their utility in assisting the field advance are

presented. Finally, potential improvements that may be pursued in future work are

discussed.
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2

Literature Review

2.1 Introduction

The focus of this thesis, as discussed in the previous chapter, is fuzzy logic and what

factors can change performance. Different combinations of factors including controller

configuration, environmental variation and task difficulty are put under test with the

aim of trying to find answer to questions such as ‘What combination of factors are

necessary for more sophisticated fuzzy controller types (such as interval type-2) to

consistently out perform type-1 fuzzy control?’. Changes in the parameters used to

define these systems are investigated to see how they can be used to change the levels

of performance found. In this chapter fuzzy logic as a research topic is introduced,

together with a discussion of its composition, including the operation and applications

of fuzzy logic based systems. The literature discussing the effects of variable environ-

ments upon fuzzy logic-based systems is also analysed, and the specific aims of this

thesis are then discussed.

This chapter is organised as follows: Section 2.2 introduces the basics of fuzzy

logic theory including the mathematical background of fuzzy logic. Section 2.3 dis-

cusses fuzzy inference systems, and is followed by Section 2.6 which presents fuzzy

logic as a solution to control problems as well as various aspects of control theory.

A discussion of dynamic environments and how they can affect these applications is

presented in Section 2.7 and is followed by a statement of this thesis’ research focus,
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possible research question in Section 2.8 as well as the gaps in the literature which

make these questions interesting. Finally in Section 2.9 the chapter is summarised.

2.2 Fuzzy Logic Theory

Fuzzy set theory was initially described by Zadeh in 1965 [107]. It is, from a mathe-

matical standpoint, a generalisation of crisp set theory. In this paper, the mathematical

definition of a fuzzy set is given along with the fuzzy operations required to manipulate

these sets, such as the union, intersection and complement. Such work is required for

fuzzy logic to be used effectively in real-world applications.

In a standard crisp set, a given input x, has the option of being either member or

a non-member of a given set — it has therefore, a binary membership. A complete

description of crisp logic, its operations and so forth can be found in works such as

those by Thomas [45] or Leondes [52]. Figure 2.1(a) shows a crisp set A and two

inputs b and c. These inputs represent member and non-member values respectively,

with no other values possible. This is the standard method for classification using such

sets. However, this approach has some shortcomings. For example, when trying to

classify heights of people — and trying to find those who are tall — using crisp sets

necessitates a cut-off point of, for example 200cm. This would lead to someone of

height 199cm not being classified as tall, even though their height is very close to the

cut-off value.

When a crisp set is turned into a type-1 fuzzy set, as shown in Figure 2.1(b), the two

inputs b and c are still valid. However, their membership now represents two ends of an

axis — giving them membership values 1 and 0. These values indicate complete and

no membership to the set respectively. Additionally, input d is also valid and equates

to the membership value 0.25, a value not possible using crisp sets. Using the above

height example, a gradual transition can be established, allowing a better specification

to be defined. If the same height example is used as described above, a height of

199cm would be given a very large membership value such as 0.99, showing that it is

still considered a degree of tall.

The line in red in Figure 2.1(b) describes a mathematical function, termed the

membership function (MF). The MF maps an input value (a crisp number) into a

10



2.2 Fuzzy Logic Theory

(a) Crisp set (b) Fuzzy set

Figure 2.1: Crisp and Fuzzy sets. The red line in Fig 2.1(b) is known as the membership

function

membership value. The most common type of fuzzy set is the type-1 set, in which this

function is a single line in the x-y plane. Zadeh [108] describes fuzzy types greater

than 1 in which the membership functions are of higher dimensions, giving rise to

type-2 fuzzy logic. Type-2 fuzzy logic is the most common in the literature (aside

from type-1), and although type-n systems are also described in the publication, there

are no significant applications of such types at present. Both type-1 and type-2 fuzzy

logic are active research areas, and as such, both therefore be described and discussed

in this chapter. Fuzzy logic can be broken down into the following active research

areas:

Theory The mathematical theory is the research area which formally defines what

constitutes a fuzzy set including both type-1, type-2 and more non-standard vari-

eties. In addition, it establishes how operations on these sets can be represented

using formal mathematical notation. Works such as the one by Sadeghian et

al. [77] provide insights in to recent development in this area.

Optimisation and new methods Current methods for calculations using fuzzy sets

can often be optimised to improve real-world performance. Furthermore, they

are also employed in the development of entire new methods for performing the

same operation. Defuzzification and type-reduction are two areas where this is

prevalent. Luhandjula [60] and Torshizi et al. [94] present reviews which show

the recent activity in these fields.
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Applications Fuzzy logic has already been applied to a great number of problems

and application domains, such as control of robotic vehicles as by Doitsidis et

al. [29], filtering and classification (Mendel [68]) as well as numerous medical

decision making systems such those described by Schuha [84]. With new meth-

ods and hardware advances becoming available, this number continues to expand

rapidly.

Comparative works The many different permutations and varieties of fuzzy systems

often lead to studies into which performs better in a given situation. A common

example of this kind of work is type-1 versus type-2 control studies, such as

those conducted by Czarez et al. [20], in which type-1 and type-2 controllers

are evaluated and the type-2 is found to work operate better under uncertain

conditions. Farooq et al. [31] present a similar study in which mobile robots are

controlled by using both type-1 and type-2 fuzzy types in which it is found that

type-2 control once again gives superior performance over type-1 based control.

2.3 Background of Fuzzy Logic

2.3.1 Crisp Sets

Fuzzy logic, the subject of this thesis, is based on standard set theory — a common

mathematical concept, briefly outlined above, that is frequently used in fields within

computer science such as databases and compiler technologies. Set theory uses simple

binary concepts — an object x is either ‘in’ or ‘not in’ a given set A. Given the object

x, it can be formally specified that it is, or is not, a member of set A, as shown in

equations 2.1 and 2.2 respectively. The contents of set A is stated using the format

shown in Equation 2.3. For a more complete examination of set theory, works such as

Thomas [45] or Fraenkel et al. [35] should be consulted.

x ∈ A (2.1)

x /∈ A (2.2)
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A = a1, a2, ...ax (2.3)

.

Given two sets, A and B, if all of the elements of A are also in B then the sets

are equal. If set B contains all of the elements of A with one or more additional

items, then set A is a proper subset of set B. These concepts are formally specified in

equations 2.4 to 2.5:

A = B (2.4)

B ⊂ A (2.5)

Sets require a means by which elements can be judged to be a member or a non-

member. This can be defined mathematically using a binary function, that is, a function

which returns one of two possible values for a given input. Generally in set theory, this

is function is denoted by the letter µ and can be stated mathematically as in equations

2.6 and 2.7 and is termed a membership function.

µA(x) = 1 if only ifx ∈ A.0 if only if x /∈ A. (2.6)

µA : U− > 0, 1 (2.7)

2.3.2 Crisp Set Operations

Given the basic definitions in the previous section, four operations between sets can

be defined termed: Union, Intersection, Difference and Complement. These are the

basic set operations in much the same way that addition, subtraction, multiplication

and division are the basis of operations between natural numbers.

Figure 2.2 gives a graphical representation of each of the operations. A and B in

figures 2.2(a) 2.2(b) and 2.2(c) are crisp sets. The shaded area indicates the output of

the indicated operation upon the inputs — that is what members would be the output

set, a mathematical backgrounds of these operations can be found in Stoll [93].
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These crisp set operations can be adapted for use with fuzzy sets of all varieties.

There are three main varieties of fuzzy set in common usage today: type-1, interval

type-2 and general type-2, with only the first two being used in the experimental works

of this thesis and therefore, only the operations of these types of set are described here.

General type-2 fuzzy logic was excluded due to the processing requirements being too

great for CPU on-board the robot used in real-world experiments in Chapter 6. Section

2.4 describes the operations and type specific parts related to type-1 fuzzy logic, while

interval type-2 theory is set out in Section 2.5.

(a) Set Union (b) Set Intersection

(c) Set Difference (d) Set Complement

Figure 2.2: Venn Diagrams of Results of Basic Crisp Set Operations
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Input 1 Input 2 Result

AND

0 0 0

0 1 0

1 0 0

1 1 1

OR

0 0 0

0 1 1

1 0 1

1 1 1

NOT

1 0

0 1

Table 2.1: Truth tables for AND, OR and NOT boolean operators
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2.3.3 Boolean Logic

Boolean logic defines a collection of operators that work with binary valued items,

that is, values which have one of two possible values. These operators take one or two

binary values as inputs and give a single binary value as output. Because of the nature

of the input and output values used for each operator, a clear and easy way to express

the results of each operator is the use of truth tables. Truth tables for AND, OR, NOT

and EQUIVALENCE operators are shown in Table ??. Textbooks such as Enderton

[30] or Arnold [4] provide a more complete overview of boolean logic.

These operators are often used as connectives when multiple comparisons are re-

quired in a given statement such as ‘IF A is True AND B is NOT True THEN Perform

Action C’ and ‘IF A is True OR B is True THEN Perform action D’. These sorts of

constructs are commonly used throughout control applications, such as when there are

multiple inputs to a system and each needs evaluating before a decision can be made.

These types of construct are adapted and used within the field of fuzzy logic where

they are used to connect multiple antecedents together to form a single rule within

an inference systems rule base. However as the inputs are no longer binary values

but fuzzy sets, the operators themselves must also be adapted. In order to maintain

clarity, they are also given distinct terms: AND (Union), OR (Intersection), and NOT

(Complement).

2.4 Type-1 Fuzzy Maths

As discussed in the main body of this thesis, the fundamental element of fuzzy set

theory is the fuzzy set. This is a modification to standard crisp set theory and can be

defined by Equation 2.4. Type-1 fuzzy sets can be either continuous or discrete, as

defined by equations 2.9 and 2.11. This leads to being able to define a fuzzy set as the

tuple shown in Equation 2.9. Zimmerman [111] and Klir and Yan [48] both provide a

more complete overview of this and surrounding mathematical background for further

reference.

Let X be equal to a non-empty set. Within the set X, a fuzzy set A can

be characterised by a membership function of the form µA.
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µA : X → [0, 1] (2.8)

A = {(u, µA(u))|u ∈ X} (2.9)

∫

µ
Ã
(x)/x (2.10)

∑

i=1..n

µi/xi (2.11)

2.4.1 Type-1 Fuzzy Inference Systems

A standard type-1 fuzzy inference systems is a system that uses fuzzy sets in a more

developed setting instead of just using fuzzy sets alone. Cox [28] provides a funda-

mental look at fuzzy inference systems and gives methodologies for their design. Its

general structure is shown in figure 2.3:

Figure 2.3: Type 1 fuzzy inference system.

Fuzzifier - This component maps each input value to a membership value of one or

more fuzzy sets, based on the defined membership functions.

Inference system and rule base - Output sets are generated based on the inputs sets

and the rule base. The rule base is a set of linguistic rules and are used to specify

which output sets should be triggered with a given set of inputs.

Defuzzifier - The defuzzifier module calculates an output value from the output set

that was calculated in the previous element.
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The background and operation of each of these functional areas in the context of

type-1 fuzzy inference systems is the subject of this section.

2.4.2 Fuzzification

In order to make use of fuzzy sets, the first step is the fuzzification of a crisp input into

a membership grades of the set, that determines how much the given input is part of

the set in question. This is achieved by the evaluation of the associated membership

function for the fuzzy set in the system. This means that the membership function given

by µA(x), can be thought of as a mapping of the input x to a degree of membership

to the fuzzy set A, as shown in Figure 2.3. Sinha and Dougherty [89] discuss details

of fuzzification and how membership functions can be generated to provide fuzzifiers

that provide desired outputs.

2.4.3 Rules and Inferencing

In each fuzzy inference system there is a set of rules, known as a rulebase. Each rule

is of the form 2.4.3. There are several methods for performing the inference process

with Takagi-Sugeno and Mamdani being the most common. In this thesis, as in most

control applications, the Mamdani method is used. This provides a mapping of inputs

to outputs using Equation 2.12.

IF A is XXX and B is YYY then OUTPUT is ZZZ

φ[µA(x), µB(y)] ≡ µA(x) ∧ µB(y) (2.12)

Where µA(x) is the input membership function and µB(y) is the output function).

The result is the output fuzzy set which is the product of the input and output fuzzy

variables. These are then passed into the defuzzifier in order to generate crisp outputs

as outlined in the next section.

Fuzzy rules can be generated from input data as shown by Nozaki [75], Wang

and Mendel [100], and Hong and Lee [43], each of who generate fuzzy rules from

training data or other input data. They can also be designed using standard software

development and optimisation techniques or derived from expert knowledge.
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2.4.4 Fuzzy Operators

The Union and Intersection operators are used to connect multiple antecedents in a

single rule. They are equivalent to the boolean operators AND and OR used in classical

logic. In the inference system in this thesis only the union operator for connecting the

two inputs as described in Section 2.5.2. Cordn et al. [26] discuss the use of different

fuzzy operators in the design of fuzzy controllers.

The Union operator is most commonly implemented using min() of the sets. This

is formally defined in Equation 2.13:

A
⋃

B = {x : x ∈ or x ∈ B} (2.13)

The intersection operator is most commonly implemented using max() and is shown

mathematically in equation 2.14:

A
⋂

B = {x : x ∈ and x ∈ B} (2.14)

Defuzzification

Once the inference system has calculated output fuzzy sets, the process of defuzzifica-

tion is required in order to calculate inputs suitable for use in the specific applications.

While there is a vast number of methods for defuzzification of type-1 fuzzy sets, only

the Centre of Gravity (COG), one of the most common methods, will be considered

in this section. For a more complete look at methods for defuzzification authors such

as Hellendoorn and Thomas [42] or Leekwijck and Kerre [51] who present overviews

and comparisons of differing methods of defuzzification. While COG does not always

perform the best, its simplicity to implement often makes it the technique of choice for

the majority of situations.

One of the most common means of defuzzification in robotic applications, as used

in this thesis, is COG defuzzification known for its accuracy and speed. This process

is defined in Equation 2.15:

x⋆ =

∫

µi(x)xdx
∫

µi(x)dx
(2.15)
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Where x⋆ is the output value that will be used by the system. µi(x) are the aggre-

gated membership functions and x is the output variable.

2.5 Interval Type-2 Fuzzy Sets

Interval type-2 fuzzy logic, as introduced by Karnik and Mendel [47] or alternatively

in Liang and Mendel [54] is a restricted form of general type-2 fuzzy logic. Its basis

is the interval type-2 fuzzy set. An interval type-2 fuzzy set, A, is fully defined by

a type-2 membership function, given by Equation 2.16 and is graphically represented

in Figure 2.4. Nieminen [74] discusses the algebraic structure of type-2 fuzzy sets in

more detail.

A = {((x, u), µA(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (2.16)

0 ≤ µA(x, u) ≤ 1 (2.17)

The difference between general and interval type-2 fuzzy logic is the nature of the

secondary membership function. In a general type-2 system, the secondary member-

ship function is a type-1 fuzzy set. In contrast, interval type-2 uses a binary member-

ship, meaning this secondary membership function is an interval. This reduction of the

secondary set to a binary relation reduces the resource required for processing such sets

significantly. In this case, the 3D nature of the general type-2 set can be reduced into

two membership functions within a 2D space, termed the upper membership function

and the lower membership function and is shown in Figure 2.4, with the area bounded

by these two functions termed the Footprint of Uncertainty (FOU). Unless otherwise

specified in this thesis, all of the type-2 based work refers to interval type-2 fuzzy logic

and not the general variety.

2.5.1 Fuzzification and Membership functions

Fuzzification of interval type-2 sets uses the upper and lower membership functions

(µ(x) and µ(x)) and calculates an interval, which is then used in the inference proce-

dure described in the section below. Membership functions themselves are functions
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Figure 2.4: An Interval type-2 fuzzy set, showing the upper and lower membership func-

tions the define the Footprint of Uncertainty

Figure 2.5: Interval Type-2 fuzzification — The result is an interval

bounded within the universe of discourse of the given input variable generally repre-

sented as in Equation 2.18. Common function shapes used are triangular, trapezoidal

and Gaussian. Commonly membership functions are determined by picking a shape of

function and then tuning it until performance requirements are satisfied but many other
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methods exist as described by Bouchon-Meunier et al. [10] and Chiu [23].

XA = µA(x) (2.18)

Evaluating the upper and lower membership functions for each fuzzy set results

in an interval for each fuzzy set, which is then passed into the inference module as

described below.

2.5.2 Rules and Operators

Once the membership intervals for each of the fuzzy sets has been calculated during

the fuzzification stage as described above, the rule base must be evaluated to produce

a firing interval for each rule defined in the system.

In a standard interval type-2 fuzzy inference system, the rule base consists of a set

of rules R, each of the form:

IF (i1 IS y)[ CONNECTIVE ](i2 IS z) THEN (jn) IS z (2.19)

Where i is an input variable, y an associated fuzzy set, CONNECTIVE is a fuzzy

operator such as Union or Intersection. j1 is the output variable with its associated

fuzzy output set, z.

For each rule defined in the system (i.e. ∀rinR), the firing strength (again, repre-

sented by an interval) is calculated using Equation 2.20, resulting in a set of tuples, Ri,

each containing an upper and lower value.

Ri = [µA(X) ⋆ µB(Y ), µA(X) ⋆ µB(Y )] (2.20)

Ri represents a firing strength for a specific rule. The firing strengths for all rules

in the system are stored in a set F .

⋆ indicates the operator used, specified in the design on the specific fuzzy infer-

ence system. This may include such operators including max, min or product. These

operators are described in more detail below.
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Union

The union fuzzy operator is the equivalent of the OR operation in boolean algebra and

is defined by Equation 2.21. Union is generally implemented using the max() function,

which can be observed graphically in Figure 2.6.

A ∪ B = 1/[µ
A
(x) ∨ µ

B
(x), µA(x) ∨ µB(x)] ∀x ∈ X (2.21)

As above, µ
A
(x) indicates the lower interval value, µA(x) the upper interval value,

while ∨ is the max function.

Figure 2.6: Union of 2 interval type-2 sets using OR operator. Output set shown in green.

Intersection

The union fuzzy operator is the equivalent of the AND operation in boolean algebra.

It is defined mathematically by Equation 2.22. Intersection is generally implemented

using the min() function — as it can be observed graphically in Figure 2.7.

A ∩ B = 1/[µ
A
(x) ∧ µ

B
(x), µA(x) ∧ µB(x)] ∀x ∈ X (2.22)

As above, µ
A
(x) indicates the lower interval value, µA(x) the upper interval value,

while ∨ is the min operator.

2.5.3 Type-Reduction and Defuzzification

In the case of interval type-2, by far the most common means of obtaining an output

from the inference system is the Karnik and Mendel iterative procedure (K&M). As

the name implies it was jointly developed by Karnik and Mendel [103] and Liu [58].
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Figure 2.7: Intersection of 2 interval type-2 sets using AND operator. Output set shown

in Green.

This is combines type reduction and defuzzification into a single process and results

in the calculation of upper (yr) and lower (yl) values, the process is described in detail

here:

1. Sort the set of output values (y). For calculating yr the upper values y are used

and for calculating yl the lower values y. The set of firing intervals, f , should be

sorted to maintain the same indices as the set sorted.

2. Initialise the list f to contain the mean of each firing interval strength, i.e Equa-

tion 2.23 and calculate the result of Equation 2.24 with the new values.

3. Iterate through the set of output values y, located the index in which the follow-

ing condition is valid yk ≤ y ≤ yk+1

4. Reassign f so that all elements before or equal to the index use the lower interval

and those greater use the upper value i.e. ifn ≤ kthenfnelsef
n

.

5. Recalculate y′ using Equation 2.24.

6. If y′ = y then the result is y and R is k, ELSE repeat from point 3.

f =
(f) + f

2
(2.23)

y =

∑

n

n=1
ynfn

∑

n

n=1
fn

(2.24)
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Once yl and yr are calculated, it is most common to take the mean to obtain a single

output from the system, as in Equation 2.25:

y =
yl + yr

2
(2.25)

Generally speaking, the Karnik-Mendel iterative procedure is a fast and effective

method for the type-reduction and defuzzification of interval type-2. It is used in this

thesis for all interval type-2 systems under consideration — including those modified

type-2 fuzzy controllers, such as the dual-surface control system.

Alternatives to this method include the methods described by Greenfield et al. [39]

and by Melgarejo [66]. The Melgarejo method is compared to K& M and is found to be

faster without lacking in precision, however it has not gained significant traction. Wu

and Tan [102] give an overview of this, and several other type-reduction techniques,

ten of which are found to be faster than the standard K& M method, with the fastest

being the Wu-Tan and Nie-Tan methods.

2.5.4 Interval Type-2 Inference Systems

Interval type-2 fuzzy sets are commonly used within the confines of a fuzzy inference

system, which uses the components described above to create a coherent system with

fixed sets of input and output variables. Figure 2.8 shows how these components are

arranged and the data flows between them:

Figure 2.8: Interval Type-2 Inference System. The major difference between type-1 based

system is the addition of a type reducer.

• Fuzzifier. As outlined in Section 2.5.1, the fuzzifier constructs fuzzy sets for

each input variable using the membership functions defined within the system.
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• The rule base and inference system as discussed in Section 2.5.2 applies the

rule base to the input fuzzy sets to calculate rule firing strengths for each rule.

This results in a set of type-1 and type-2 fuzzy sets that are passed into the type

reduction section.

• Type reducer and defuzzifier. By far the most common method, the K&M it-

erative procedure outlined in Section 2.5.3, combines these two elements into a

single process which takes as its input the fuzzy sets and the rule firing strengths

to give an interval consisting of an upper and lower output values which is gen-

erally averaged to give the final crisp value from the system.

This generic form is obviously based on the type-1 inference system with the main

difference being the addition of the type reduction block and the flow of type-2 sets as

well as type-1 sets between the fuzzifier, inference system and type-reducing sections.

Mendel and Jon [69] show that in order to work with interval type-2 inference

systems it is not necessary to work with general type-2 fuzzy sets and that all interval

mathematics can be based upon type-1 fuzzy set theory, giving a significantly lower

barrier to entry. This can be thought of by thinking of the upper and lower membership

functions of the interval as individual type-1 sets.

There are many methods and approaches to the design of fuzzy inference systems

including Choi et al. [25] and Guillaume [40] which both present techniques for their

design and selection of parameters such as rule-base, input variables, and so forth.

2.5.5 Deviations from Standard Fuzzy Control

What has so far been described are termed standard fuzzy logic systems. There exist

several modifications to these systems with different aims. For example, to optimise a

particular component seen as a bottleneck, to make use of additional information, or to

adjust to changes in the system on-the-fly. Two modifications to standard fuzzy logic

control are described here along with reasoning as to why they may provide improved

performance over standard controllers and why they are specifically of interest.
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Non-Stationary Fuzzy Logic

While there has been significant work into the development of type-2 based controllers,

alternatives based on type-1 control have also been described. These studies aim to

address some of its shortcomings — specifically its lack of flexibility in more complex

environments. They were first mentioned by Garibaldi et al. [38], where the variations

in the results of a decision making process were studied in order to understand why

these variations happen and how they can be modelled and better utilised.

This lead to the development of ‘Non-stationary fuzzy logic’ (NS) described by

Garibaldi and Jaroszewski [37]. The intention with non-stationary fuzzy logic is that

the variation introduced by this method can be matched to the behaviour of the environ-

ment and therefore provide the flexibility that is not present in standard type-1 fuzzy

logic based controllers. A Non Stationary fuzzy set is defined by Equation 2.26 where

t is a free variable (time) (Equation taken from the work by Garibaldi et al. [38]).

Ȧ = µ
Ȧ
(x, t).x, µ

Ȧ
∈ [0, 1] (2.26)

This type of fuzzy logic differs from standard type-1 by the addition of multiple

fuzzifiers, as shown in Figure 2.9. Each fuzzifier has a slightly different membership

function created using a transformation of a base function — one of the most common

transformations is a horizontal movement of the base function. The intention of this

transformation is to model situations in which there could be multiple correct answers.

For example, in many medical systems a doctor is required to make a prognosis, but

different doctors may give different answers based on their own experience. In a non-

stationary system, each doctor is allocated their own membership function, which is

then fed into the same rule base and defuzzification procedure, and produces a collec-

tion of outputs. Methods such as majority voting or the mean can be used to obtain a

single output from such a system.

There are some advantages to the this approach: Firstly, it is simple to move from

a standard type-1 to this kind of system, giving an easy method to potentially improve

performance. Further, if it is assumed that a model of the environment can be calcu-

lated, it is may be possible to generate a perturbation function that matches this model.

In addition, it provides a simple method to combine multiple opinions on a given de-

cision problem into a single system such as may happen when several doctors provide
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Figure 2.9: A non-stationary fuzzy inference system

several different diagnoses from the same input data i.e. the patients test results and

symptoms.

When trying to decide what fuzzy system to move to from a standard type-1, the

choice between non-stationary and type-2 is potentially tricky. Garibaldi et al. [36]

present an investigation into the differences between non-stationary and type-2 fuzzy

sets. The authors show that a non-stationary fuzzy set could potentially be used to

approximate a general type-2 inference system. Although this technique needs further

investigation, it would give an obvious pathway to follow — starting from type-1,

moving to non-stationary and then to general type-2, based on system requirements

such as desired performance levels.

NS fuzzy logic is not restricted to using type-1 membership functions as its basis.

Zhao [110] presents the first demonstration of non-stationary system based on type-2

fuzzy logic. The starting mathematical operators including intersection and union are

defined and explained. Additional work is required to concretely show the advantages

of this system over, for example, a general type-2 system, however this work acts as a

starting point for such investigations.

Dual Surface Fuzzy Logic

Although the Enhanced Karnik-Mendel procedure is a fast and effective method of

type-reducing and defuzzifying a type-2 output set into a single crisp output, it does

so at the expense of discarding information. Once the crossing points of the upper and

lower values of the output set are found, the resulting values are simply averaged and

the average used. This means that the relative values of each output are lost.

It has been discussed by Birkin and Garibaldi [13] that with a simple modification

to the K & M algorithm, it might be possible to increase performance over standard
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type-2 control. Further, it is suggested that a selection criteria may be used to chose

from either the upper, lower, or mean values, based on the input error value. This

selection algorithm is shown in Algorithm 1. This type of controller has been termed

dual-surface (DS) because it uses both of the outputs from the KM type-reduction

algorithm.

error = control var - set point;

diff = abs(error);

if diff < THRESHOLD then

control action← (LS + US) / 2;

end

else

if error > 0 then

control action← LS;

end

else

control action← US;

end

end

Algorithm 1: The dual-surface control algorithm. Obtained from [13]

Aside from the work performed by Birkin and Garibaldi, DS control has not gained

a much attention in the exiting literature. This may be in part due to standard type-2

control itself still not being fully understood and researchers prioritising this over new

varieties. There is, however, a great deal of additional work that could be done in this

field, as it was done with standard fuzzy control. Both the DS algorithm and the inputs

selected provide interesting subjects for future investigation.
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2.5.6 Comparisons of Type-1 and Type-2 Fuzzy Logic Systems

As type-2 fuzzy logic has become better understood and cheaper to implement, many

researchers have begun to adapt their existing type-1 systems to use type-2 fuzzy logic,

such as the work performed by Cazarez et al. [20]. The reasoning behind this move

is not yet fully justified. It is based on the reasoning that if there is ‘considerable’

or ‘large amounts’ of uncertainty within the system in which the controller operates,

then type-2 fuzzy logic will likely outperform type-1 based systems, as discussed by

Aliasghary et al. [2].

There have been many comparisons of the ways in which type-2 fuzzy logic sys-

tems outperform type-1 systems under the same experimental set-ups. An example is

the comparison made by Sepulveda et al. [86]. One of the potential reasons for the

superiority of type-2 is discussed by Wu [104], in which the continuity of input-output

mappings for type-1 and type-2 systems are studied. This study uses control surfaces

generated by different controllers to show the discontinuities present in type-1, in con-

trast to the continuous character of type-2. Wu concludes that type-1 control surfaces

can be discontinuous at certain points, while the interval type-2 controller is contin-

uous in the same situation. This means that, at given points within the input-output

mapping, there are points for which the type-1 is not able to calculate an output —

making the type-2 systems more suitable in these cases. There is considerably more

work required on this subject in order determine the reason and implications this find

has upon type-2 controller design.

Cara et al. [19] use a servo system as the application basis for their compari-

son between singleton type-1, non-singleton type-1 and type-2 controller varieties.

The authors argue that type-2 controllers — even singleton varieties — employ con-

siderably more variables. These controllers are therefore, described as having more

flexibility than the equivalent type-1 control systems. In addition, by employing non-

singleton fuzzification, the authors hypothesize that the flexibility of type-1 can be

increased further, reaching a level closer to the type-2 controller. This hypothesis is

subsequently tested by the development of each of the varieties — singleton type-1,

non-singleton type-1 and singleton type-2 controllers and applying them to a non-

linear servo problem. Each controller is run under three different levels of uncertainty

— termed “none/small”, “medium” and “high” — with the terms based on the noise
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present in the servo model. The results show that under small amounts of uncertainty

the singleton type-1 system exhibits the best performance. However, as uncertainty

is increased both the non-singleton type-1 and type-2 based controllers improve in

comparison. The authors conclude that in general, the singleton type-2 system out-

performs the type-1 based controllers, both singleton and non-singleton. The authors

hypothesize that this is due to the uncertainty and variation in the type-2 system flow-

ing through the whole inference system as permitted by the FOU, contrasted with the

non-singleton type-1 controller, in which only the fuzzifier handles the variation via

the standard membership function. One of the shortcomings of this work is the appli-

cation used — a servo system. This is a simple one-input one-output system, although

it is described as non-linear in nature. While this type of applications has advantages,

such as the ability to tightly control the system, allowing sources of variation to be

controlled, it has the disadvantage that such a simple system does not provide enough

scope for different controllers to differentiate themselves in performance. The ideal of

the complexity and sophistication of the test application selected for experimentation

is developed further in this thesis.

Figueroa et al. [34] use a much more complex application problem of robotic

football for their study of the performance between standard type-1 and interval type-

2 fuzzy control systems. In this work, multiple robots move around a playing field

with the objective of pushing or kicking a ball into a goal. The experimental set-up

is complex, with a significant number of software and hardware modules required to

coordinate each of the robots around the playing field. These modules include im-

age capture and processing, high-level control system, wireless communication, and

embedded controllers on-board of each robot. This application introduces a potential

for large amounts of uncertainty including latency introduced by radio frequency (RF)

links, image processing time, and different motor movement response for each robot.

In this situation, it is found that the type-2 system outperforms the type-1 system from

which it is derived, showing that a complex environment does seem to favour type-2

fuzzy logic control.

Another comparison of type-1 and interval type-2 systems is presented by Méndez

et al. [70]. In this work, a large industrial process is used as the test application. The

interval type-2 controller outperforms the type-1 controller, as in the previous compar-

ative study above however a significant difference from the previous study is that the
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type-1 controller is already in use and operating at an acceptable level. This means

that although type-2 controller is superior, there is a requirement to show considerably

better performance to be worth the expense of upgrading the system. In this case, the

performance gains are significant but a true cost/benefit analysis is not performed.

One possible reason given for not moving from type-1 to type-2 fuzzy logic is

the increased computational requirements demanded by type-2 systems. This extra

loading has led to the study of methods for reducing the computational cost of type-2

systems. The work from Wu and Mendel [105], for instance, present a method that

eliminates type reduction when using interval type-2 fuzzy logic. This method how-

ever has not seemed to attract much attention in the literature. This may have occurred

because techniques such as the Karnik-Mendel iterative procedure for type-reduction

are straightforward to implement and, in general perform at acceptable levels. Coup-

land and John [27] present another method of increasing computational speed. They

focus on faster methods for join and meet operators, which are some of the most com-

monly used operations performed upon fuzzy sets and therefore give a considerable

boost to any system in which they are used. It is probable that these sorts of techniques

are used more frequently when the advantage of type-2 systems is shown.

That type-2 fuzzy logic systems can outperform type-1 systems, as discussed above

and further in studies such as Phokharatkul and Phaiboon [76]. However, the exact

reason as to why this occurs is still unclear. Under what conditions these effects will

reliably occur is a subject of much discussion by numerous authors, including Liang

and Mendel [55] and Wagner and Hagras [99]. Recommending type-2 logic under all

circumstances is therefore a somewhat difficult proposition. Ideally there should exist

a methodology by which one could characterise the system environment, including the

amount of variation present, how “dynamic” or variable the environment is, and how

difficult the task is to complete, which in turn would allow design decisions such as

the type of fuzzy logic to be determined.
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2.6 Applications of Fuzzy Logic

2.6.1 Control Applications

One of the most significant applications of fuzzy logic is that of control, in which a

specific system requires controlling to give a desired output with an excellent overview

provided by Jager [44]. Aircraft [61], boats [87] and cars [97] have all shown that

fuzzy logic can be applied to their control systems. Many large industrial companies

make use of it for a multitude of applications. These include General Electric, as

described by Bonissone et al. [15], in which a single FLC framework is discussed.

The framework is then used in many different applications of increasing complexity

— from domestic dishwashers, steam turbines, locomotive wheel slip controllers and

aircraft engine control systems. Sanchez-Solano [79] discuss FPGA implementation

of type-1 fuzzy control making it possible to add it to many embedded applications,

though with an additional cost of one microprocessor.

Initial studies with robots and fuzzy systems have generally made use of type-1

fuzzy logic such as those performed by Seng [85] and Yakzanet al. [106]. There are

two significant factors why this is has occurred, the first and most obvious is the gener-

ally limited resources on board mobile robotic systems. Depending on size, weight and

energy constraints, the exact configuration will vary, but in general, an embedded sys-

tem will have a fraction of the capability of a contemporary desktop or server system.

Secondly, the mathematics and background behind type-1 systems is much better un-

derstood. In addition, several methods exist for the generations of type-1 systems from

example or training data. Type-2 until recently has been considerably more complex

and harder to implement, with the sheer number of variables and parameters making

many approaches unworkable.

For research purposes, one of the most common experimental set-ups for fuzzy

logic is in the use of wheeled robots. Phokharatkul and Phaiboon [76], Hagras [41]

and Saffiotti [78] present various experiments for the demonstration of the applicabil-

ity of fuzzy logic to wheeled robot control. While they vary in the exact objective that

they are focussed on, in general they show that fuzzy logic is appropriate for these

types of applications. The variation present in these sorts of applications is generally

considered low, as there are few physical processes (such as wind) that are present in
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indoor environments. This leaves the problem with only sensor and motor uncertain-

ties, which in many robot systems, are small in the scale of the experiments presented.

Control theory is a field of engineering concerned with the behaviour of dynamic

systems, in which the system changes over time [59]. A system in this context is

a mathematical formalisation for the description of the relationship between a given

point in time and its location in space. There are three main elements to a control sys-

tem: inputs, control process and outputs, as shown in Figure 2.10. It can be observed

in the figure that there exists a cycle that links the output and inputs — known as a

feedback loop, which is an important concept in control theory. The field of control

theory provides a large number of techniques and tools for analysing, specifying and

formulating the desired behaviour of dynamic systems. These techniques in turn, al-

low controllers such as PID to be formally defined, implemented, tuned and have their

expected performance calculated without access to hardware. Song & Tai [90] give

a simple application concerning navigation of mobile robots in which fuzzy logic is

employed and found to be well performing.

Figure 2.10: A Control theory system loop

While control theory is a powerful and well understood tool that has been success-

fully applied to a great number of fields and many different applications, it does how-

ever has some shortcomings. These limitations, along with the additional resources

available with modern computer systems, have led systems engineers to develop solu-

tions based upon fuzzy logic. Using control theory as described in this section is not

an intuitive procedure as gain values are very much an abstract concept. Fuzzy logic,

on the contrary, is much closer to the human decision making process and makes the

incorporation of expert knowledge a straight-forward task.
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2.6.2 Sailing and Sailing Robots

Robotic sailing is one of the studied applications in this thesis. The following section

presents a brief overview of sailing theory and associated sailing hardware. This guide

is not intended to be comprehensive and tries to remain generic with regards to the spe-

cific boat hardware. The principals introduced in this section should therefore, apply

equally to any-sized sail boat. For a more complete guide encompassing particularities

of different systems, refer to Bond [14], which introduces a beginners guide to sailing

traditional sailing boats.

Sailing Theory

A generic sailing boat has two main controls: the direction of the rudder and the direc-

tion of the boom onto which the sail is connected. Figure 2.11 shows a generic sailing

boat with each of these elements labelled and described below:

Figure 2.11: A generic fixed wing sailing boat component layout

Fixed wings This sail type are more robust than traditional cloth sails as well as being

easier to control using a single motor. The sails provide the forward motion and

can give limited steering control.
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Rudder The rudder has the greatest effect on the direction of the boat.

Keel This prevents sideways movement of the boat when winds come from directions

that are not straight on.

Hull The shell of the boat. This gives a hydrodynamic shape and allows easy move-

ment through water.

During sailing, there are two major inputs that a human sailor needs to pay attention

to: (1) the wind direction and (2) the direction in which travel is desired. An experi-

enced sailor can determine from these inputs — along with data such as the optimal

attack angle 1 — what changes are required to the outputs of the system (the rudder

and sail positions) in order to perform the desired course change.

One problem that often arises while sailing occurs when the desired direction is

equal to the wind direction, i.e. the sailor wants to move directly into the wind. This

can not be achieved directly, so a process known as tacking must be used. This process

involves altering the desired angle of travel by a given angle (A)(based on how the boat

is affected by wind) for a given time, followed by the same period of time when the

boat is directed by the inverse of the first angle (A‘)in the opposite direction. This is

best illustrated in Figure 2.12, in which it can be observed that the average course over

the duration of the tacking gives a straight line directly into the wind.

Figure 2.12: Tacking behaviour of sailing boat

1Attack angle is that angle by which a specific boat obtains the best forward momentum and is a

constant value.
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Automating the Sailing Theory

There have been several investigations into the use of autonomous sailing boats, both as

an engineering problem and also as a test bed for various autonomous control systems.

A selection of the most relevant studies to our research are presented here, along with

a discussion of the strengths and weaknesses in their chosen control technique.

The first autonomous sailing boats appeared in 1997 and used fuzzy logic as a basis

for its control system. Abril et al. [1] demonstrate a very simple fuzzy-based controller

for adjusting the rudder and sails of a small boat. Limitations with the hardware are

an issue — with only 32KBit of memory available and with an 8-bit 2Mhz processor.

This imposes a limit on the number of membership functions and rule base, as well

as the overall complexity of the system. Vaneck [96] on the contrary, presents a much

more capable hardware platform, providing 256Kb of memory and a 25Mhz proces-

sor. This advance in hardware allows a more detailed and sophisticated controller to be

implemented. In addition it also allows membership functions to be held in a more de-

veloper friendly manner. This is due to the fact that memory is not so restricted, which

allows high level languages and data structures to be used. This makes modifications

a considerably easier matter, while at the same time offering increased performance.

The specific hardware basis of the robot used in this thesis is described in details in

Chapter 4. It was originally developed in the University of Aberystwyth. Sauze [80]

initially discusses some possible techniques for the control of this robotic sailing boat.

This was followed up by the works [82] and [83], in which bio-inspired techniques

applied to control sailing robots are more fully realised. Specifically, the authors in-

troduce artificial endocrine systems, which use concepts from the human endocrine

system as a basis of a fault tolerance measure for sailing boats. The main focus of

their work is to develop a long running and robust platform suitable for long periods

of autonomous operation, rather than optimal sailing such as moving in the straight-

est line possible. Due to the objectives of their work, the authors therefore sacrifice

performance in terms of course accuracy and fast sailing for robustness in their con-

troller designs. The characteristics embedded in their sailing boat hardware, therefore,

help the studies performed in this thesis, as the hardware has been thoroughly tested

and potential shortcomings have been detected and addressed. Furthermore, their work
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provide knowledge regarding the battery lifespan and motor characteristics of the hard-

ware. This facilitates the conduction of the real-world experiments later in this thesis,

as the potential variability in the outcomes of sailing runs can then be mostly attributed

to the volatility of the environment, rather than hardware faults.

The software controllers in this thesis use the work performed by Stelzer [92] [91].

The intention of Stelzer in this work is to develop a boat control system that can sail

autonomously. Specifically, it should be able to perform turns, tacks and other ma-

noeuvres of a sailing boat in a similar manner to how a human would perform them

and in similar a time frame. In contrast to the work of Sauze, the boats here are not

generally intended for a long term usage autonomy. Instead, they are intended to oper-

ate on a much shorter time period, hours, rather than days or weeks — making the time

it takes to perform a turn, for example, much more important than conserving battery

energy.

The hardware selected was chosen for various reasons. The work of Sauze shows

that the hardware platform is robust, reliable and lasts many hours. These features are

important for field work, where access to mains power is limited. Additionally, it uses

fixed wing sails, which tend to be more reliable and less prone to breakage than cloth

sails. The hardware on-board, specifically the gumstix PC, provides adequate compu-

tational resources to execute both type-1 and type-2 fuzzy systems while still main-

taining a high update rate of sensor readings (further information about the hardware

will be presented in the next chapter). The boat used by Stelzer is less well described

in the literature and is therefore not as easy to determine how closely it matches the

requirements of a robot for testing fuzzy logic controllers.

The general approach of all works above is to use sophisticated controllers along

with a a significant tuning and debugging cycle of the boat itself to give a well-

performing controller. Briere [17] uses a simpler state machine controller. However, he

spends significant time and resources performing detailed investigations into physical

aspects of the boat, such as drag and hydro-mechanical properties. While this means a

simple controller was used and gave good performance, any changes to the boat would

demand a significant investment into their effects upon the controller. This sort of ap-

proach is also very prone to failure issues, as slight changes in the responsiveness of

hardware will necessitate changes in the controller.

38



2.7 Variable Environments

The work performed so far by the above authors show that autonomous sailing

provides a difficult but not insurmountable challenge for several different varieties of

fuzzy controller. Fuzzy logic as a control method for autonomous sailing has been

attempted by several different authors with varying degrees of complexity and success

as discussed above [1], [96]. It is shown here that fuzzy logic is a feasible approach

for autonomous boat control. The effect of environmental variability is also easier

to study in this type of application, as sources of uncertainty can have such a large

effect on overall performance. This makes trends and patterns potentially easier to

spot, when compared with applications such as wheeled robots where, spotting the

effect of, for example, surface material can be difficult and require careful and precise

measurements potentially requiring a significant investment in time or equipment.

2.7 Variable Environments

2.7.1 Defining Variable Environments

As has been described in the previous section, robotics is a common application area

used in the investigation of fuzzy logic based control methods. In this field, one of

the most common issues that must be considered when designing and using any type

of automated controllers, such as those based on fuzzy logic, is the environment in

which it is designed to operate. Robotic experiments generally operate in an given

Environment as defined in Definition 2.7.1. One of the aspects of such an environment

is how much it is liable to change over time. An environment which changes over time

is termed variable environment and is given a formal definition in Definition 2.7.1.

An environment is a defined as fixed set of physical processes within a

fixed area.

An environment is considered variable if sensors within the system are

subject to changes by one or more external sources, termed a source of

variation. The greater the number of sources and the size and frequency

of their variations will determine how dynamic a given environment is.
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This can be characterised by the term variability with more variability

indicating a more dynamic environment.

There are many possible reasons for the occurrence of these sorts of variations

within environments — some environments naturally change over time, while others

are generally static but have changes triggered by external agents, such as people mov-

ing through them. The wind is the the main cause of changes in the environments

used in the sailing based experiments of this thesis. However, other examples include

changing light levels, sound or heat levels. Each of these causes of change are referred

to as sources of variation. For a source of variation to be considered relevant to a given

experiment, its effect upon the system must be measurable in some way by the robot.

For example, sensors must be able to measure the variation induced by the entropy —

in the case of the experiments in this thesis, the changes in wind parameters can be

measured by the wind sensor aboard the sailing robot being used for the experiments.

Additionally, the wind will cause the boat to move position in the environment.

The level of variation within a given experiment is difficult to accurately quantify.

It is not a simple binary concept, (e.g. the environment is not either dynamic or not) but

instead it is a complex continuous function of each source of variability and their rela-

tive degrees of change over time. Changes and comparisons in variability are easier to

obtain than absolute values, i.e. it is generally easier to determine environment ‘A’ has

a higher level of variability than environment ‘B’. Due to this difficulty, dynamic envi-

ronments are an interesting area for the investigation of autonomous controllers, such

as those based on fuzzy logic. However, this research must be pursued with caution

to ensure that experiments are well controlled and controllers are not overwhelmed by

the variation present. For example, trying to sail a small boat in gale force winds in

which no matter what the controller tried to do, the observed behaviour would be the

same — the boat would move essentially randomly. McBratney and Odeh [65] discuss

the use of fuzzy logic within the field of soil sciences in which imprecise and variable

data is a common hurdle to be overcome.
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2.7.2 The Effect of Variable Environments on Autonomous Navi-

gation Systems

The effects of operating robots in variable environments can be considerable — the

changes in the environment cause changes in the performance characteristics of the

robot under test. In general, the more sophisticated forms of controller, the more likely

it is to be able to cope with variations in the environment, as discussed in Section 2.5.6.

While it is known that dynamic environments have generally detrimental effects, struc-

tured investigations into how this occurs are not common in the literature. Due to this

shortcoming, our work aims to use structured increases of variability in the experimen-

tal environments to determine relationships between performance and environmental

conditions.

Some examples of studies into the effect of variable environments include the work

of Antoun and Mckerrow [3], who define their environment as a village in which an

autonomous robotic agent represents a lost tourist within the town who is trying to find

their way to a given destination. The dynamic elements introduced in these experi-

ments includes people — both singular and collectively to form crowds, along with

other vehicles, such as cars and buses. The eventual goals of the work are ambitious

however, this specific publication is an introduction to their platform, methodology

and goals — the experimental data presented is minimal. However, the concepts used

including how they define variable environments rather than actual experimental data

is the interesting point.

In this thesis the wind is considered the main source of variation of the experimental

environment used in the sailing experiments performed in Chapters 5 and 6. The more

frequently and the bigger the size of the changes in wind speed and direction, the more

dynamic the environment (i.e. it has higher variability), and it is hypothesized that the

more sophisticated fuzzy logic control types such as type-2 fuzzy logic will be better

able to handle these more dynamic environments than type-1 fuzzy logic. And it is

this hypothesis that is further investigated as one of the main subjects of the research

conducted in this thesis.

It has been hypothesized that the use of type-2 fuzzy logic as an evolution of type-1

fuzzy logic, specifically its more sophisticated membership functions which utilise a
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2.8 Research Focus

Footprint of Uncertainty, can be utilised to counter the problems with highly dynamic

environments.

2.8 Research Focus

This thesis will initially use a simple ‘Tipper’ application in order to introduce the

concepts and methodologies for comparing fuzzy logic controllers. Several different

approaches are used to investigate how the factors being considered change the be-

haviour of the systems. Based on the results obtained a new application which uses

autonomous sailing is introduced for the remainder of the experimental work. This

sailing application provides the basis for a more developed investigation into the ef-

fects of dynamic and variable environments on the behaviour of fuzzy systems includ-

ing, but not limited to their performance as defined by an RMSE value.

Parameters related to the internal configuration of the fuzzy controllers, most im-

portantly the FOU size are predicted to be important in defining the behaviour of the

controllers, especially when the environment in which they operate contains sources

of variation. Work is performed in which the FOU size is varied across a number of

environments that contain increasing amounts of variation, allowing the effect of the

FOU to be observed.

In addition to the configuration of the controller and the environmental variation,

the difficulty of the task is the final factor of interest, where it is hypothesized that

more sophisticated controllers will perform better. Scenarios in which all three factors

are varied one by one will make up the bulk of the experimental work attempted.

The overall intention would be the ability to be able to support statements such as

‘Type-2 controllers with a large FOU size generally outperform type-1 fuzzy systems

in environments with large amounts of variation’ in the most general manner possible.

As part of this work comparisons of controllers with different internal configura-

tions, operating under increasing levels of variation and task difficulty are performed.

How the results change between these experiments lead to being able to draw con-

clusions about how each of these alter performance, and therefore determine which

conditions are better for a given controller configuration.
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2.9 Summary

This chapter outlines the background material that is used and referred to in the rest

of this thesis. Fuzzy logic as a concept is introduced including its background mathe-

matical theory. The components of basic fuzzy logic and the make up of generic fuzzy

inference systems are discussed. Furthermore, modifications to the standard type-1

and type-2 are explored including non-stationary and dual-surface varieties. In addi-

tion, their relationship to the more standard varieties and why they have the potential

to be a useful avenue of study is presented.

Applications which utilise fuzzy controllers are discussed together with an analysis

of the advantages and disadvantages of applying fuzzy logic to the explored domains.

The basics of control theory are introduced and the reasoning why it is important sub-

ject of this thesis is discussed.

Several studies which compare type-1 and type-2 fuzzy logic are presented, with

particular reference to shortcomings of the techniques used to make the comparisons

and how these can be addressed. One of the most common limitations is that the

amount of environmental variability is often not controlled or varied in a structured

manner. Vague and imprecise values such as “low” and “high” are commonly used,

making answering the question “At what level of variability in a dynamic environment

does type-2 begin to present considerable performance increases over type-1 control?”

a difficult task.

The use of sailing boats and its suitability for the experiments in this thesis is dis-

cussed. Sailing boat based applications are found to present an interesting control

problem and a challenge that should allow a wide gap between different performing

controllers to occur. This is much preferable to controllers in which performance dif-

fers only marginally and therefore require very specialised measuring equipment to

observe. Large differences therefore make determining the best or worst performer an

easier task, which is important when so many different combinations are simultane-

ously considered.
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3

Tipper Application and Initial

Methodology Evaluation

3.1 Introduction

In this chapter a simple application is introduced with the intention of demonstrating

the comparative methodologies used in the rest of this thesis. Several sets of experi-

ments are performed and their results discussed along with any conclusions that can

be drawn from the work. Both type-1 and type-2 varieties of fuzzy logic controller are

utilised — with the type-2 controllers utilising four different sizes of FOU. The first

experiment looks at the rules inside the fuzzy logic controller and how they fire under

different conditions. These experiments use the entire input space of the fuzzy con-

troller and is focussed on looking at its internals working. The following experiments

use the same application but work to develop a methodology for comparing controllers,

including introducing such elements as variation and the concept of comparison with

an ideal output value.

The main aim of the experiments in this chapter is to show that type-2 fuzzy logic

can provide a significant difference in performance to type-1 based controller in one or

more experimental scenarios — ideally by showing an improvement overall.

This chapter is organised as follows: The test fuzzy logic controller is described
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3.2 Tipper Fuzzy Logic System Description

in Section 3.2. Section 3.3 presents experiments investigating how the rules which

fire change across the different FOU sizes. A comparative methodology using RMSE

is introduced in section 3.4 and further developed in Sections 3.5 and 3.6 where the

concepts of ideal values and randomness are added respectively. Finally the findings

of this chapter are discussed in Section 3.7 and the chapter is summarised in Section

3.8.

3.2 Tipper Fuzzy Logic System Description

All of the experiments performed in this chapter use the fuzzy logic controller de-

scribed in this section. This includes the inputs variables, outputs variables with their

associated fuzzy sets, the rules base and which operators are employed. The example

application used in this section is a fuzzy decision support system originally described

in the Matlab documentation [64] which, in this thesis is referred to as the tipping prob-

lem. This application has been chosen because of its simplicity, making it ideal to show

the operation of the comparative techniques used in this chapter as well as being fast

and straight forward to implement due to the high quality documentation provided.

There are many approaches to designing fuzzy systems as described by Berkan and

Trubatch [9] and Feng et al. [32], both of which present straight forward approaches

to the design of standard type-1 fuzzy controllers.

This application is concerned with determining what percentage tip should be given

to a restaurant server based on the quality of the service and food provided. This type

of system is generally termed a ‘fuzzy decision support system’. The exact working of

each of the elements of a fuzzy inference system is given in Section 2.3 (Page 12).

3.2.1 Input Variables

This system uses two input variables termed ‘service’ and ‘food quality’. Chiu [24]

and Lin et al. [57] discusses two different approaches of selection of inputs variables

for fuzzy systems with the results of the technique being compared to a benchmark

problem with improved results being found.
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3.2 Tipper Fuzzy Logic System Description

The ‘service’ input variable has three associated membership functions labelled

‘Poor’, ‘Average’ and ‘Excellent’. From Figure 3.1(b) it can be seen that service is

rated between zero and ten, with 0 indicating the worst possible (“Poor”) and 10 the

best possible service (“Excellent”). The original designers of this system use Gaussian

shaped membership functions for all of the fuzzy sets, however due to shortcomings

in the software library used in this thesis, Gaussian membership functions are not sup-

ported and therefore these have been changed to triangular shaped function, this change

addresses the software shortcoming and secondly also means that both input variables

have the same shaped functions which may be beneficial for later analysis.

Food quality is the second input variable in this system and is described using

the two adjectives (fuzzy sets) ‘Rancid’ and ‘Delicious’, both of these are represented

using trapezoidal membership functions as shown in Figure 3.1(a) with limits between

0 and 10. The sets for this variable are kept constant throughout each experiment so

that only one aspect of the experiment is changed at a time.

The membership functions for the service input variable is changed to generate sev-

eral different system configurations used for comparison. Specifically, the food mem-

bership functions is formed into type-2 footprints of uncertainties (FOU) as defined in

Table 3.1, making the whole system a type-2 fuzzy logic based system. The different

sizes used in these experiments are shown in Figures 3.2(a), 3.2(b) 3.2(c) and 3.2(d).

The original membership functions defined by the original designers (but including the

changes stated above) of this system will be termed the ‘standard’ configuration in the

discussion later in the thesis.

One point of note is the fact that the membership functions for the food quality

input variable do not overlap. Some designers of fuzzy logic systems believe that this

should be avoided in such systems as it will, depending on factors such as rule base,

can lead to decreased performance. However in order to minimise changes from the

original system this is maintained as is except when the FOU size of type-2 systems

causes overlap.

3.2.2 Output Variables

The output variable calculated by this system is the percentage tip that should be given

and therefore it is labelled ‘tip’. This output is represented by three fuzzy sets la-
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3.2 Tipper Fuzzy Logic System Description

FOU Size Poor Upper Excellent Lower

1 1 9

2 2 8

3 3 7

4 4 6

Table 3.1: Upper and lower limits of the Poor and Excellent fuzzy sets for each FOU size
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Figure 3.1: Input Membership functions for Tipping Problem

belled ‘cheap’, ‘average’ and ‘generous’ which use triangular membership functions,

as shown in Figure 3.3. The limits for this variable are between 5% (a cheap tip) and

35% (a generous tip). It must be noted that the output sets selected by the original de-

signers would not make an effective real-world solution as it is possible for input sets

with low food and service scores to obtain an equally generous output as those with

high scores. However, as with the input variables they are maintained for the purposes

of this work.
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Figure 3.2: Type-2 input membership functions for ‘service’ input variable

3.2.3 Rules

The rules used in this system are outlined in Table 3.2 below. These rules are evaluated

during the inference process when the input fuzzy sets have been calculated from the
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3.2 Tipper Fuzzy Logic System Description

Figure 3.3: Tip output membership function

crisp input values.

Rule Number Service Food Quality Tip

1 Poor Rancid Cheap

2 Good N/A Average

3 Excellent Delicious Generous

Table 3.2: Rules for the Tipping Problem in table form

Rule 2 only uses one input antecedent and therefore the service input is defined as

N/A.

These rules can also be stated in a more English form as follows:

If service is poor or the food is rancid, then tip is cheap

If service is good, then tip is average

If service is excellent or food is delicious, then tip is generous

49



3.3 Tipper Rule Experiments

Rules can be generated in numerous ways including collection from experts; such

as the work done by Chen and Linkens [22] in which rules are generated using input

data for several fuzzy models; and generating them from Rule base such as in the work

by Wang and Mendel [100].

3.2.4 Operators

The AND/OR functions use the min and max operators respectively. The rules speci-

fied above use the OR conjunction.

The centroid method is used for defuzzification of the output set to obtain a crisp

value.

These operators were selected by the original designers and have been maintained

as-is. The fuzzy set mathematics and operators and how they are calculated is given in

Section 2.5.2 22.

3.3 Tipper Rule Experiments

3.3.1 Experimental Purpose

These experiments aim to look at how the rules which fire change as the controller

configuration is varied. Specifically, as the FOU of a type-2 controller is increased,

does the number of rules that fire increase in number, or is there otherwise a recognis-

able pattern to the changes that occur. It is hoped that these results assist developing

the reasoning that may help explain why type-2 fuzzy logic system do (or do not) pro-

vide better performance than type-1 systems under given conditions, which is the main

focus of this thesis. An example ideal result would be to find that under hypothetical

scenario ‘A’ more rules fire overall and then for this to be correlated to a peak RMSE

value in a similar scenario in later experiments.
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3.3 Tipper Rule Experiments

3.3.2 Experimental Design

In this experiment, each combination of inputs for each controller configuration is

generated and passed into the system with its output recorded. In addition to the crisp

output value, whether each rule in the system fired or not is recorded and stored as a

binary number. A ‘0’ will indicate that a rule did not fire and a ‘1’ indicating the rule

did fire. The system used here uses 3 rules in the rule base and therefore each output

is 3 digits long, giving 8 possible combinations.

The difference between which rules fire under the type-1 configuration and each

different type-2 controller is calculated. This is performed for each set of input com-

binations, by performing a bitwise comparison of the binary representation of which

rules fire and summing the total that are different. Because there are 3 rules the max-

imum difference is therefore 3 — all the rules in one set fired while all the rules in

the other set did not fire. This allows graphs to be generated and therefore the trend,

and how the rules change between controller configurations can be be observed. An

example of a single ‘rule difference’ would be if one controller output a rule fire pat-

tern of 001 while the configuration to compared to gave the pattern 010 the difference

between them would be two — the result of the bitwise comparison.

One shortcoming of these experiments is that they do not give any idea about the

relative performance levels of a given controller — there is no real method for deter-

mining which configuration of rules firing for a given set of inputs is the best. This

is further addressed in Section 3.4 in which the controller is put into a more realistic

experiment where performance is a more relevant issue and it becomes easier to judge

whether a given controller configuration is better or worse than another.

3.3.3 Hypothesis

It is hypothesized that as the FOU size is increased the number of rule differences

between the type-1 and the type-2 will correspondingly increase. This is because as

a the FOU size is increased, each membership function will increase in size, covering

more and more of the universe of discourse, triggering more rules to be fired, though

this can depend upon the design of the rule base of the system under test.
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3.3.4 Results
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Figure 3.4: x-axis and y-axis show the combinations of input variables. z axis shows the

difference in the number of rules which fire. Large z axis values indicate large differences

occur between the two controllers. Colouring used to improve 3D visibility.

Table 3.3 shows the total number of differences in the rules that fire across all the

possible inputs in the universe of discourse. It can be seen that there are very few

differences present, out of the total of 363 (11 × 11 × 3 rules) possible firings which

could fire, in the largest case only 9 are different. This can be observed in 3.4 in which

there are very few points where z is not 0.

In all cases the maximum number of differences between any two controllers is

one, it is believed that this occurs because of the nature of the rules used in this system.
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3.3 Tipper Rule Experiments

FOU Differences

1 11

2 9

3 8

4 8

Table 3.3: Rule fire differences between Type-1 and Type-2 Controllers with increasing

FOU sizes. The maximum possible differences for a row is 363.

It is believed that this is because the rules have no overlap in them, i.e. there are no

rules in which there is a repeated fuzzy set for a given input variable. This can lead to a

discontinuity in the control surface because if the input variable is within this range no

rules will fire, and unless this is a specifically desired outcome, may lead to degraded

performance.

As the FOU configuration moves from standard (FOU size 0) to FOU size 4 the

amount of overlap between the middle fuzzy set (‘Average’) and the two end sets

(‘Poor’ and ‘Excellent’ respectively) increases, means that there are fewer times when

more than one fuzzy set for this input variable will fire.

3.3.5 Discussion

While the results shown here have shown some issues — they do not generally show

any differences between the difference configurations as was anticipated in Section

3.3.3, some conclusions can still be inferred. It is believed that the results are partly due

to the fact that the fuzzy system used here is simple and the rule base is “incomplete”

— that is not every possible combination of input sets is explicitly defined within the

rule set as is commonly done.

The differences in rules that fire does not give an indication of performance but may

help with understanding why certain performance levels are obtained. For example, if

a hypothetical configurations ‘A’ gave 33% performance improvement over another

hypothetical configuration ‘B’ and always fired rule 1 (out of 3 possible rules), it may
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3.4 Tipper Controller Application Example

be possible that these two facts are related. However it is not possible to draw such as

solid conclusion from the limited experiments in this section. It is hoped that these ex-

periments in conjunction with those in the next chapter will allow further development

of these ideas.

Overall, this methodology for investigating the inner workings of fuzzy systems

seems to show surprising outcomes as discussed above. While some limitations have

been observed, this seems to be mainly based on the controller configuration used

rather than the methodology itself and if the problems with the controller is fixed then

the results obtained may improve and allow stronger conclusions to be made. This is

tested by reapplying this methodology with a more sophisticated application in a later

chapter.

3.4 Tipper Controller Application Example

Experimental Purpose

In this section, the tipping problem is further developed and adapted into an environ-

ment that may be considered more traditional for fuzzy logic systems. The intention

of this experiment is to show how the controller change its performance profile as the

internal controller configuration (such as FOU size) and the external environment is

varied. Finally, observations and reasoning and conclusions are presented based on the

results obtained. From this it is hoped that the effect of the controller configuration

and environmental set-up upon performance can be determined.

This experiment also acts as a preliminary and introductory study into this compar-

ative methodology and so different strengths and weaknesses are sure to be revealed.

In later chapters this method of comparison is used in more complex application areas.

The application under consideration here is somewhat contrived and simplistic as it is

acting as a introduction to the method. However, this means that the entire system can

easily be understood, and each input and output can easily be controlled — limiting

unexpected and unintended side effects.

54



3.4 Tipper Controller Application Example

Experimental Design

The tip controller used is as described in Section 3.2, with the same values selected

for the type-2 FOU sizes. Specifically FOU sizes 1,2,3 and 4 are used, these have

been selected because between them they cover between 0 and 75% of the universe of

discourse which is felt gives a good range of values to start evaluating the methodology.

In order to compare fuzzy logic controllers, the difference in output between type-

1 and type-2 based fuzzy will be determined. The output of each controller will be

compared with the type-1 and this difference will be used to calculate the RMSE value

using Equation 3.1. The results will include graphs showing how the difference be-

tween the type-1 and various type-2 RMSE values changes across the input space. This

data will also be summed up in tables which will show the total numeric differences,

average differences and other supporting data.

√

(ControllerOutput− IdealOutput)2

n
(3.1)

Hypothesis

It is hypothesised that as the FOU size of the type-2 fuzzy logic controllers is increased

the relative performance will change in response. Specifically, that there should exist

an FOU size which obtains better performance than the rest. Logically this should be

either at one end of the range under test, (i.e. FOU sizes 0 or 4).

It is also possible that this may not occur, as it may be that too large an FOU

size will cause the membership functions of the input variables to all cover the entire

universe of discourse. If this occurs, it is likely (depending on the exact method used

to derive the FOU) every rule will fire for every input value, generally an undesirable

result for control systems.

3.4.1 Results

Figure 3.5 show the difference between the type-1 and FOU size 1 type-2 fuzzy logic

controllers in a graphical format. Few differences and patterns between the different

configurations can be observed directly from this graph. This has led to the use of a
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3.4 Tipper Controller Application Example

FOU RMSE P-Value

0 0 NA

1 4.85 1.23E-007

2 4.74 5.50E-006

3 4.28 1.21E-005

4 3.71 0

Table 3.4: RMSE and P-Values obtained when comparing type-1 and type-2 fuzzy con-

trollers. The P-Value is the result Mann Whiteney test with a a smaller P-Value indicating

a less significant difference.

FOU Number of Differences Mean Difference

0 0 0

1 44 6.8

2 46 6.29

3 42 5.04

4 26 4.87

Table 3.5: A Difference is counted when the output from the type-1 controller does not

match the output of the type-2. The average magnitude of these differences is shown by

the ‘Mean Difference’ column. In both cases a larger value indicates a bigger difference

between the two controllers in question.
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(a) Type-1 Fuzzy System Compared with FOU Size 1 Interval type-2 system

Figure 3.5: x-axis and y-axis show the combinations of input variables. z axis shows

the difference in the output of fuzzy system under test. Large z axis values indicate large

differences occur between the two controllers. Colouring used to improve 3D visibility.

statistical test in order to systemically test whether or not these differences are in any

way significant.

√

((Type− 1OutputV alue) −− (Type− 2OutputV alue))2

n
(3.2)

Table 3.5 shows the raw number and average magnitude of the differences between

the different FOU sizes and the type-1 configuration (i.e. FOU size 0) which, in this

case is considered the ‘ideal’ value. It can be observed that the number of differences

stays relatively constant across all of the FOU sizes, constituting approximately 30%

of the total number of input variable combinations. The magnitude of the differences
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3.5 Tipper with Ideal Value Comparison

tends to decrease as the FOU size is increased, which is somewhat counter intuitive,

as it would be thought that with a more significant difference between two controllers,

such as larger FOU sizes would give larger differences however this does not seem to

be the case, the reasoning for this is discussed in more detail below.

Table 3.4 shows the results of statistical tests performed on the results obtained

from the experiments. Single sided Mann Whitney tests were used to test the signifi-

cance of the differences between the type-1 (i.e. FOU size 0) and the rest (type-2 based

with FOU sizes between 1 and 4). It can be seen that the P-Value obtained in each case

is very small, indicating there is no significant difference between the different config-

urations which supports what can be observed from the graphs and other supporting

data.

3.4.2 Discussion

Based on the results obtained from this experiments, one of several conjectures can be

proposed, firstly it may be that type-2 fuzzy logic does not make a significant difference

in performance under any conditions. Secondly, it may be that the methodology used

for the comparisons is unfit for performing these comparisons. The ideal value used

in calculation of the RMSE comes from a fuzzy logic controller under test — it would

be better if this value could be obtained from a separate source, and this is what is

addressed in the next section.

3.5 Tipper with Ideal Value Comparison

3.5.1 Experimental Purpose

The application considered so far in this chapter has been identified as somewhat con-

trived and simplistic, this is justified as it is acting as a introduction to the comparison

methodologies being developed. This means that the entire system can easily be un-

derstood, and each input and output can easily be controlled — limiting unintended

side effects. However it does currently lack some concepts that are commonly used in

control applications, one of which is addressed here that of an ideal value.
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3.5 Tipper with Ideal Value Comparison

In most control applications, an ‘error’ value is generally used as one of the main

inputs into the system [62]. In order to calculate this error value, there must also be an

ideal value which is specific to the application the controller operates in [50]. In this

chapter so far, this has been omitted for simplicities sake, however it is felt that this is

to the detriment of the results obtained and therefore what conclusions can be drawn

from the experiment in question. This is therefore the focus of this section, where a

simple ‘ideal’ value introduced to observe how this affects the results obtained in the

comparisons made.

3.5.2 Experimental Design

Service

0 1 2 3 4 5 6 7 8 9 10

0 None a a b b c c d d Av Av

1 a a b b c c d d Av Av e

2 a b b c c d d Av Av e e

3 b b c c d d Av Av e e f

4 b c c d d Av Av e e f f

Food 5 c c d d Av Average e e f f g

6 c d d Av Av e e f f g g

7 d d Av Av e e f f g g h

8 d Av Av e e f f g g h h

9 Av Av e e f f g g h h Max

10 Av e e f f g g h h Max Max

Table 3.6: Ideal values for tipper output. Values for each character given in Table 3.7

The tip calculation controller used is the same as the one described in Section

3.2, with the same values selected for the type-2 FOU sizes. This is done in order
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3.5 Tipper with Ideal Value Comparison

1 None 0

2 a Low Cheap 3.33

3 b Cheap 6.67

4 c Hi Cheap 10

5 d Average 13.33

6 e Av 16.67

7 f Low Gen 20

8 g Gen 23.33

9 h Hi Gen 26.67

10 Max 30

Table 3.7: Exact Tips table lookup. The numeric values have been selected to maintain

a constant difference between each row. Values have been selected to maintain constant

difference.

to minimise what changes between each set of experiments and introducing a single

aspect at a time into the experimental set-up.

Every integer combination of inputs will be used for each run. This means there

will be a total of 122 runs of each controller type — a large enough sample size to allow

the comparisons made to have a good level of confidence behind them. For each run,

values will be obtained from a specific fuzzy controller and from the result of a look

up of the inputs in Table 3.6, and based on these two values the level of performance

will be determined.

The difference between the two values will be the main focus of interest in terms

of performance. This will be quantified by calculating a new RMSE value, using the

formulae shown in Figure 3.3. In this formula, n is the number of runs performed

from the controller totalling 121 as discussed above. This RMSE value will provide

the basis for the comparisons between the difference controller configurations. As is

usual a large RMSE value indicates that there is more of a difference between the two
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3.5 Tipper with Ideal Value Comparison

values under comparisons, and assuming the look up table is considered optimal, then

the performance of the fuzzy controller is therefore worse.

RMSE =

√

(ControllerOutput− IdealOutput)2

n
(3.3)

Several assumptions and assertions are made in the process of performing these

experiments in order to keep them consistent and simple. These assumptions are:

• The restaurant idea is simplified. There is only considered to be one food dish

and a single member of front of house staff. This minimises some sources of

variability that should be considered in more sophisticated and complete experi-

mental set-up.

• There is only a single customer therefore the same standards and so forth are

required to give the same output. Theoretically this means that the same cus-

tomer will repeatedly visit the same restaurant multiple times in the same day,

and in some cases the same customer may be in the same restaurant multiple

times simultaneously. Once again this is a simplification of normal situations.

• The result of the static lookup table is considered to be correct, ideal and optimal

for the purposes of this experimental set-up.

Hypothesis

It is hypothesised that as the FOU size of the type-2 fuzzy logic controllers is increased

the spread of results will increase, which should be able to be seen visually. Specif-

ically, while the direction of the change is not know, the RMSE is hypothesized to

gradually change in a systematic and relatively linear manner up a fixed point. It is

anticipated that in a complex enough scenario and over enough different FOU sizes,

the performance will reach a peak and then begin to degrade, whether this happens in

this simplistic set-up however is not known.
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Figure 3.6: x-axis and y-axis show the combinations of input variables. z axis shows the difference in the output of fuzzy system

under test and the ideal output. Large z axis values indicate large differences occur between the two. Colouring used to improve 3D

visibility.
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3.5 Tipper with Ideal Value Comparison

FOU RMSE Mean Standard Deviation

0 7.92 10.2 6.9

1 11.11 7.73 8.07

2 11.13 7.81 8.03

3 11.44 8.45 7.81

4 11.83 9.15 7.6

Table 3.8: RMSE Values in comparison with the static lookup table

3.5.3 Results

Figure 3.6 shows 5 figures in which the 5 different FOU sizes under test are compared

to the static lookup table results. The difference between these two values is plotted

along the z axis with the x and y indicating the set of inputs used. It can be observed

that overall there are a few differences between the different figures, though they are

not identical. This is once again showing that this application does not give sufficient

ability for better or worse performing controllers to show their abilities.

Table 3.8 shows the RMSE values obtained when comparing the different FOU

sizes under test to the look up values found in Table 3.6. One obvious point of interest

is the increase of RMSE value when moving from type-1 to type-2 fuzzy control,

observable when the FOU size increases from 0 to 1. After this point, there is a very

slight increase for each FOU size increase. While it is not thought that these differences

are significant in themselves, its is believed that in a more developed situation these

differences would increase in magnitude, which would closer match the hypothesis

made in section 3.5.2.

The mean difference, as shown in Table 3.8 is largest for the FOU size 0, and small-

est for FOU size 1. The variance shows a different picture however, with the smallest

value, indicating better performance, being for the FOU size 0, confusing the pic-

ture about which controller is the best performance, even considering the restrictions

present with the application used.
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3.6 Tipper with Sources of Variation

3.5.4 Discussion

The introduction of an ’ideal’ value, here represented by the values obtained from what

is being termed the ‘static lookup table’, presents a small amount of additional evidence

that this methodology has potential for making the the differences between different

fuzzy logic controller configurations observable. While the results obtained in this

section have once again not been entirely convincing, certain artefacts such as the way

in which the RMSE value changes as the FOU sizes increases from 0 towards to the

max value of 4 indicates that under different conditions, discussed in the next section,

this methodology could well provide a useful means of comparing fuzzy controller

configurations.

An additional reason for the lack of difference between the different configurations

may be that the controller and environment in which it was used are not sufficiently

complex for type-2 to show significant improvement — it has often been hypothesized

that type-2 control only show benefits when the environment in which they operate

has significant sources of uncertainty, randomness or variation. The experiments per-

formed here do not introduce anything in the way of randomness into the environment,

and hence do not present a situation in which type-2 control can show better perfor-

mance therefore this is the point that will be addressed in this next and final section.

3.6 Tipper with Sources of Variation

3.6.1 Experimental Design

The inputs to the fuzzy system under test will use the same integer progression as

used in the previous set of experiments going from 0 to 10. However in contrast to

the previous experiments, in this batch of experiences a source of variation will be

introduced to generate small random values which will be added to the normal inputs

into the system. These random numbers will follow a Gaussian distribution with a

mean and standard variation of 1.

The RMSE will again be calculated between the ideal values, calculated using the

results of the look up table and the output of the fuzzy logic controller under test. The

64



3.6 Tipper with Sources of Variation

mean and standard deviation of the differences will also be calculated in order to give

a second view of the data.

3.6.2 Results

FOU RMSE Mean Difference Standard Deviation

0 15.53 13.07 8.43

1 14.25 10.28 9.92

2 13.9 10.65 8.98

3 14.01 10.56 9.26

4 13.28 10.34 8.31

Table 3.9: RMSE indicates the mean difference between Ideal Output and Type-1. Stan-

dard deviation indicates the range of the difference obtained for the given FOU size

Figure 3.7 shows the raw difference between the outputs of the fuzzy logic con-

troller (one figure per FOU size) and the table look-up. The x and y axes indicate the

two inputs into the system once the random value has been added, as has occurred with

the previous experiments, absolute levels of performance are hard to determine from

these plots. In order to address this, box plots have been plotted (Figure 3.8). From

these plots it can be observed that the differences are not large from a statistical point

of view — the medians show are all within 4 units of each other.

Table 3.9 enumerates the results found and shows the RMSE and how it changes

as the FOU size is increased. It can observed that these results are different from the

previous couple of sections as the RMSE decreases as the FOU size is increased. At

first glance this implies that under variable conditions type-2 fuzzy control, especially

those with large FOU sizes will tend to perform better. However is is felt that the re-

sults from this single, simple study are not sufficient to make this with any certainty.

However this work gives a good starting point to make further investigations of this

type, as performed in later chapters. The mean and standard deviations of the differ-

ences between the look up table and the output of the fuzzy logic controller are shown
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Figure 3.7: x-axis and y-axis show the combinations of input variables. z axis shows the difference in the output of fuzzy system

under test and the ideal output once variation has been added to the system. Large z axis values indicate large differences occur

between the two. Colouring used to improve 3D visibility.
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3.6 Tipper with Sources of Variation
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Figure 3.8: Box plots of the distribution of the outputs of each controller under test. Each

plot represents the distribution of outputs from a different FOU size

in the third and forth columns of the table. These values present the same picture as

the RMSE value, in that the largest change in values is located between the FOU 0

and FOU 1 points, i.e. between the type-1 and type-2 controller, further indicating

potential for type-2 performance improvement over type-1.
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3.7 Chapter Discussion

3.6.3 Discussion

This set of experiments show the most significant differences between the controllers

under test so far. However it is difficult to draw firm conclusions beyond this statement.

This once again implies that this application is too simple to be able to make firm

conclusions about the performance of type-1 and type-2 fuzzy logic controllers and

when or if a type-2 would out perform a type-1 based controller.

The application used here had a particularly narrow universe of discourse, so the

ability to choose larger intervals was limited. Results such as the mean difference show

very small differences between FOU sizes 1,2,3 and 4, which certainly suggests larger

spreads of FOU size would be worth investigating in future work.

Overall the introduction of a source variation causes the experimental output to

more closely match the hypothesis made in Section 3.4, specifically type-2 fuzzy logic

control does appear to out perform type-1 as outlined by the differing RMSE values

obtained. This supports the hypothesis that this comparative methodology is capable

of finding differences between type-1 and type-2 controller types. However with such

a limited experimental set-up care must be taken not to make the case to strongly —

additional experimental work is required before any general statements can be made

with any confidence.

3.7 Chapter Discussion

The goal of this chapter was to assess how well the comparative methodology performs

in differentiating different types and configurations of fuzzy logic controller within the

context of a simple application. The ideal goal of this work would have been to be

able to show how the methodology was able to demonstrate that each FOU size and

fuzzy logic controller gave a very specific performance profile across the different

experiments. An example of this would be that as the FOU size increased from 0 to 4

the performance would increase by 10% at each FOU size. This sort of result was not

found however, and in general the number differences observed were minimal.

From the rule based experiments shown in Section 3.3 it can be seen that the degree

by which the FOU changes the control surface obtained, and therefore the rule differ-

ences are not large. One anticipated reason for this is the application used and the
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3.7 Chapter Discussion

general simplicity of its design, this is discussed below as it this problem also seems to

manifest in the results of the second set of experiments and therefore will be discussed

as an overall shortcoming with the work performed in this chapter.

A second point of note when looking at the results obtained is that, even though

there are very few differences, the experiment in which there are the most is the one

which has the smallest difference in FOU size, i.e. FOU size 1 in comparison with the

type-1 system. This is the inverse to what would was hypothesized, as it was expected

that a larger FOU size would cause a larger difference as FOU sizes cause the different

fuzzy sets to be more disparate.

When looking at the results in Section 3.4, shortcomings in both the application

selected and the methodology used can be observed. The application based shortcom-

ings are less of an issue as it has been stated above that the application is a non realistic

and is used merely as an experimental problem for the testing of the methodology — it

has no practical application and is easily addressed by changing application. However

the issues identified with the methodology must be addressed in some way before it

can be used in further work and this is discussed further below.

The experimental design in Section 3.4, did not include an ”ideal value” to define

performance levels, such as used in many control applications, where an “optimal”

output is known. Without such a value, direct comparisons between the various con-

figurations are somewhat difficult to perform. This has been somewhat countered by

comparing each FOU size with the FOU size 0 (that is equivalent to type-1), which

is being considered as the “base” performance level, and does help towards the stated

objective of comparing type-1 and type-2 fuzzy logic systems, however it is hypothe-

sized that an external ideal control value would improve the comparisons made, and so

this was attempted in the following section — with limited success.

It is found that the introduction of this ideal value as done in Section 3.5, and the

resulting ability to calculate a more realistic RMSE value did not give vastly different

results, and the reason for this was narrowed down to the simplicity of the experiment

— there was no source of randomness or variation within the environment.

The final set of experiments in Section 3.6, added a source of variation into the ap-

plication and this was found to help a difference between type-1 and type-2 fuzzy logic

control become more apparent. This result was successful and shown in the increased

magnitude of the differences between the RMSE and mean differences values. This
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3.7 Chapter Discussion

suggests that this is an important direction for future work — and the introduction of

more sources of variation and randomness in a systematic way would be interesting to

analyse. Doing this within the context of the current application would be somewhat

difficult due to its simplistic nature, and so a new application would be desirable as

discussed below.

In this chapter the FOU size of the controllers used do not in general cause signifi-

cant differences in the results obtained in each of the experiments. This may be due to

the relatively small differences between each of them with only a change of 4 between

the largest and smallest FOU sizes. From this it can be determined that in the situations

here, small changes to FOU size do not cause major differences in the results obtained.

In future work this FOU difference will be increased in an attempt to try and observe

what sorts of values are required to cause significant changes.

Overall from the work performed here it can be concluded that moving from type-1

to type-2 based fuzzy logic control will not necessarily give a performance increase.

In several of the experiments explored here no differences in performance at all were

found, especially when there is no variation present within the experimental scenario.

To investigate this further, in the following chapters a significantly more complex,

applications and environments will be introduced as a new test application to see if

they will present more promising results.

The first and most obvious change to be made is to the application that is being used

to test the fuzzy logic controllers. The results obtained here generally show minimal

differences, and as this application is so simple, with only the final sets of experi-

ments showing easily observable differences. A more sophisticated application may

involve using more complex inputs (potentially with relationships between the inputs),

a greater number of membership functions with more complex shapes. This increase

would be matched by a corresponding increase in the task difficulty that controllers

must perform with the combination of these two factors allowing “better” controllers

to show themselves.

Type-1 and type-2 based fuzzy logic systems are the most prolific in the literature,

however these are not the only varieties that are feasible to run in real time on current

generation hardware. Dual surface and Non-stationary are two types of fuzzy logic

control that have been studied and have shown to give (in general) performance in-

creases over standard type-1 and their use in the new application will be considered,
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3.8 Summary

in addition to type-1 and type-2 based controllers to observe how these less standard

varieties perform in comparison. Alongside the additional types of fuzzy logic control,

the changes of the size of the FOU used in this chapter are small, this is mostly due to

the universe of discourse having a relatively small total area. In future chapters, larger

ranges will be used for the input variables, which in turn will allow a larger number

of different FOU sizes to be investigated without having to resort to measures such as

floating point.

In the next chapter, a significantly more sophisticated application is introduced,

that of robotic sailing, in which the task in its most simple form is for the controller

under test to steer a robot around a defined course. The lessons learnt from this chapter

are applied to the new application area, with the environment made more sophisticated.

The controllers tested are also more considerably more complex with a larger rule base

along with more input and output sets and a larger universe of discourse as discussed

here.

Based on the shortcomings discussed above, the stated objectives in Section 3.1

have not been fully achieved in this chapter. Changes in performance between type-1

and type-2 have been shown in several scenarios, however in general very differences

are present in this chapter. With the changes discussed in this section, it is hoped that

these problems can be addressed in later chapters and it that they will give better results

using the more sophisticated applications tested later than those in this chapter.

3.8 Summary

In this chapter two approaches for comparing different configurations of fuzzy logic

controllers are developed. The results obtained when they are applied to a simple tip-

ping controller application do not generally show significant differences except in the

final set of experiments in which a source of variation was added to the environment.

The reasoning for this lack of change is discussed in Section 3.7 but are mostly in-

tertwined with the fact that the application is very simple with few opportunities for

better applications to become apparent.

The lack of differences in this application are not of major concern as the main

objective of this chapter is to show that the methodology used for performing the com-
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3.8 Summary

parisons with differing FOU sizes was effective and it felt to have been achieved. In

the next chapter significantly more complex experimental set-ups are described using

a robotic sailing application in both real world and simulated environments. It is be-

lieved that this application provides much more scope for performance differences and

so should allow the comparison methodology described in this chapter to demonstrate

more differences between the various fuzzy controllers.
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4

Robotic Sailing Background

4.1 Introduction

In this chapter the FLOATS (Fuzzy Logic Operated AuTonomous Sailboat) platform

is introduced. FLOATS is a robotic sailing platform that provides interfaces for simu-

lation and real-world robots.1.

In Section 4.2 background information is discussed, including a reiteration of the

research question. In addition the varieties of fuzzy logic controller used are intro-

duced. This is followed by Section 4.4, in which the hardware used in the experiments,

both real world and simulated, is described. Next, Section 4.4.3 provides information

about the software used for performing the experiments including the design of the

fuzzy controllers used in the majority of the sailing boat experiments. Section 4.3 de-

scribes the methodology that is employed for performing experiments and analysing

the results obtained. Section 5.3 presents a small discussion on control surfaces and

how they change with different controllers and why this is relevant to the work.

1AUTHORS Note — The methodology is based off work previously submitted and accepted at

FuzzIEEE [7] [8]
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4.2 Background

4.2 Background

4.2.1 Robotic Sailing

As discussed in the previous chapter, autonomous sailing using small, unmanned craft

in restricted environments such as ponds, small lakes or swimming pools, is used as the

one of the two experimental domains in which experiments are performed. Previous

work discussed in Section 2.6.2 shows that this application presents a challenge to

standard type-1 based controllers because of the potential of rapid changes to the inputs

which are used to control the speed and direction of the boat. It is believed that with a

good design, fuzzy logic can provide a satisfactory solution to this problem as the use

of membership functions and rule base allow and good mirroring of the human sailor

decision making process.

It must be stated that the intention of these experiments is not to develop the most

effective solution for a sailing robot. Rather, the application is used to compare the

relative effectiveness of various fuzzy-based controllers. The effect of different pa-

rameter settings and the reasons for the occurrence of relative performance levels is

also a specific point of interest.

4.2.2 Reiterating the Research Question

The main research question previously stated in 1.2 on Page 3 addressed in this thesis

is the formally stated as ‘What combination of factors are necessary for more sophisti-

cated fuzzy controller types such as interval type-2 to consistently out perform type-1

fuzzy control’. In order to investigate this, several fuzzy logic controllers are com-

pared using a variety of different approaches. Firstly, direct comparisons, using their

observed outputs, such as which rules fire for a given set of inputs, and control surface

shapes are investigated; Secondly by using these controllers in-situ within the context

of control based experiments is studied. Both of these approaches are executed using

several different sets of conditions, where parameters such as environmental variation,

task difficulty and the internal configuration of the fuzzy logic controllers are gradually

changed. This is done in a systematic manner to observe how of each factor affects the

performance of the controllers in relation to each other.
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4.2 Background

Overall, the intention of this work is to observe the effect of the environment and

parameters of the fuzzy controllers upon performance. This will work towards the aim

of being able to develop methods by which optimal controllers can be determined for

a given situation.

In order for our research aims to be achieved, several objectives must be met:

• Perform an in-depth and thorough comparison of different FOU sizes and ob-

serve the effects they have upon the performance of standard type-2 fuzzy logic

controllers. It is hoped that this will result in being able to pick an optimal FOU

size for given circumstance, or at the very least provide a better understanding

of what effect FOU size will have on a controller in different conditions.

• Perform an investigation and analysis of increasing levels of environmental vari-

ation on the performance of type-2 fuzzy logic-based sailing systems. This in

turn will allow for both quantification of the variation and use of this quantifica-

tion to support the controller development process.

• There are several modifications to standard type-1 and type-2 fuzzy logic sys-

tems but their exact performance profile and their benefits are unknown and in

question. An investigation to observe their performance in comparison to the

standard type-1 and type-2 varieties is required to develop an understanding of

their effects and when or indeed if they provide better performance in the studied

application areas.

4.2.3 Overview of Controllers Used in this Thesis

Four main controller types derived from standard fuzzy logic are put under test: type-

1, interval type-2, NS and DS. The previous chapter has described the theory behind

these controllers, how they differ from each other and why they present an interesting

selection of controllers for use in experiments of this type. In this section more concrete

details about each of the implementations of the controllers is given.

Type-1 fuzzy logic is used as a baseline controller for all of the experiments per-

formed in this thesis. This controller is considered the most simple type of fuzzy logic,

according to Melin and Castillo[67] and has long been the most used fuzzy system in
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real-world scenarios of control. Furthermore, it is the most applied method in embed-

ded systems where resources such as memory and processing power are scarce. While

type-1 fuzzy logic does not have the flexibility of more sophisticated types, the sim-

plicity of implementation and the way it mirrors the human decision making processes

still make it a powerful tool. Therefore, it is an obvious inclusion to be considered in a

comparative work.

Non Stationary fuzzy logic was chosen to be included in this work as it is hypoth-

esized that the random perturbation of the MFs could be used to model the variation

in the readings of sensors in the boat. NS fuzzy logic has so far not been widely used

in the field of fuzzy robotics. It is hoped however, that this work may highlight under

what circumstances if there is any, NS fuzzy logic is preferable to other types. NS has

an advantage over the more sophisticated controllers, such as interval type-2 in that it

is very easy to implement from a given type-1 controller, though the efficiency of such

an implementation is questionable.

Usually considered more sophisticated and flexible, general type-2 fuzzy logic are

often presented as a preferable solution to situations in which there is a great deal of

variation within the environment in which it will operate. General type-2 fuzzy logic,

as its name suggests, is the most general variety of fuzzy logic that is widely used. Its

potentially high computational cost has led many parties to investigate interval type-

2 control as an alternative. The robot used in later chapters has somewhat restricted

resources available and therefore interval type-2 fuzzy logic is used in this thesis.

One of the most commonly used methods for obtaining an output value from a

type-2 set is the KM iterative procedure [46], as mentioned in the previous chapter.

However, it seems unintuitive to always take the mean of the upper and lower values

of the output set, as this discards some of the information obtained from a potentially

computationally expensive operation. Dual Surface control is an approach developed

to overcome this issue, as it introduces an algorithm to select between upper, lower

and mean values, based upon information present in a standard type-2 controller. The

intention the inclusion of this derivation of standard type-2 fuzzy logic is to further

improve performance over type-2 with minimal changes to its overall structure.
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4.3 Simulation Methodology and Analysis of Results

4.3 Simulation Methodology and Analysis of Results

For each combination of controller, controller parameter and course layout, 30 repeti-

tions are performed under simulation. This allows statistical comparisons to be made

with some degree of certainty as it reduces the variability to a tolerable level.

4.3.1 Common Experimental Design for Experiments III and IV

In the Sections 5.4 and 5.5 of Chapter 5 the FLOATS platform is leveraged using sim-

ulation in order to observe correlations between the various aspects under investigation

as well as to address some of the shortcomings identified in the previous chapter related

to the simplicity of the environment and experimental design. The aspects of interest

are: (1) the FOU size of the type-2 controllers and associated parameter vales for Dual

surface and Non stationary varieties; (2) the levels of variation and randomness present

in the environment; (3) the different controller types under test; and (6) the differences

in performance that occur between these controllers.

Section 5.4 on Page 107, investigates how performance changes when varying the

type of controller and the associated configuration values. Type-1, interval type-2, NS

and DS controllers with their associated parameter values are described and used in ex-

periments. The objective is to determine an association between parameter values and

performance. Experiments are performed using different combinations of parameter

value and controller type. During these experiments, the level of difficulty is gradu-

ally increased to observe how this affects the RMSE value obtained. In addition to the

course difficulty, three different levels of environmental variation are defined: ‘low’,

‘medium’ and ‘high’. This variation is aimed at causing further differentiation in the

performance of the various controllers, allowing differences and trends to be more

easily observed.

This is followed by Section 5.5 on Page 115 which is limited to a comparison

between type-1 and interval type-2 fuzzy logic-based controllers under varying condi-

tions. The size of the FOU is varied and its effect upon performance under increasing

levels of difficulty is observed and discussed. The difficulty of the task is defined by

two main characteristics specifically: the amount of variation within the environment
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4.3 Simulation Methodology and Analysis of Results

and the difficulty of the programmed course. The level of variation is set at differ-

ent levels — denoted by letters ‘A’ to ‘I’, with ‘A’ representing no variation and ‘I’

denoting a large amount of variation.

The main differences between the two experiments is in the breadth of their cov-

erage. The first set sacrifices the number of different environment variables, including

course difficulty and environmental variation combinations to cover more types of con-

trollers. This contrasts with the second set where only interval type-2 is considered.

This allows significantly more levels of uncertainty to be used over more course lay-

outs. It is anticipated that, by performing these two different sets of experiments the

desired correlations can be observed. Furthermore, comparative techniques used so far

can be validated and evaluated. With this validation process it is hoped that any short-

comings that may be present in the methodology or controller design can be identified

before the real world experiments are performed.

4.3.2 Case Studies Examined

Several case studies were used in this thesis in an attempt to answer the research ques-

tion. This was an appropriate approach for this kind of work because each case study

can be used to directly address a specific aim as specified in Section 1.1.

Initial work involved a very simple application set-up in which a Tipping controller

is introduced and used to study various methods of comparing different configurations

of type-1 and type-2 fuzzy controllers. The results found are disappointing but the

reason is hypothesized to be due to the simplicity of the environment and controller

rather than major flaws in the methodology employed.

Sections 5.4 and 5.5 present two studies, described above which tries to observe

how parameters, including size of the FOU, affects the performance of fuzzy logic

systems such as type-1, type-2, DS and NS in a simulated sailing boat application. This

was done using very simple courses for the boat to be steered around while varying the

internal configuration of each controller type. RMSE (Root mean squared error) was

used to compare the performance level and it was found that type-2 based fuzzy logic

systems most often performed the best out of those under test (signified by a lower

RMSE), however there were several data points which refute this, indicating extra

work is required.
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Finally, in Chapter 6, real world experiments are used to observe how the inherent

variability affects the results obtained under simulation. A pilot experiment is used

to try and eliminate as many problems from the experimental technique as possible,

However the final results obtained in a main study, while giving some points of interest

are overall disappointing.

4.3.3 Course Description

In each of the simulation based experiments performed there is a scheme to the design

of the courses that the controller is designed to complete. Different numbers of turns,

each with differing angles of turn required will used to vary the difficulty of a given

experiment, the different courses that will be used is shown in Figure 4.1.

Figure 4.1: Each coloured line represents a single experimental course layout. The white

circles represent possible end points and the black circle the start point. The angles re-

quired for the first turn are 5.71◦ (green line courses), 11.42◦ (red line course) and 21.84◦

(blue line courses) for 25, 50 and 100 meters vertical movements respectively. Not to

scale.
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Variability Variability Score Lower Limit Upper Limit

None 0 180 180

Low 1 160 200

High 2 140 220

Table 4.1: Levels of variability

4.3.4 Statistical Analysis Methods

In the experiments performed in Sections 5.4 and 5.5, one-sided Mann Whitney tests

are used to determine if RMSE values of different experiments show statistically sig-

nificant differences. This test was selected because the data generated was independent

and non-parametric in nature, which was tested by comparing the mean with the me-

dian of several data sets. Unless otherwise specified in the text a p-value of 0.05 was

deemed sufficient to reject the null hypothesis in each of these tests.

4.3.5 TrackSail

The simulator used, TrackSail [49], is a Java based sailing game that has been modified

in order to allow the control of the boat to decided by an external source — which

in this case is the fuzzy logic controller under test. To define the environment in a

given experiment, a configuration file is passed into the simulator. This file defines the

following parameters:

Wind Speed→ None Low High

Direction Change ↓ None A D G

Low B E H

High C F I

Table 4.2: Wind change configuration definitions
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Direction Change Variability Score Lower Limit Upper Limit

None 0 180 180

Low 1 160 200

High 2 140 220

Wind Speed Variability Score Lower Limit Upper Limit

None 0 7 7

Low 1 4 10

High 2 1 13

Table 4.3: Upper and lower values of wind speed (m/s) and direction (◦) alongside vari-

ability score

• Course name

• Laps

• Max elapsed time

• Wind speed upper limit

• Wind speed lower limit

• Wind direction upper limit

• Wind direction lower limit

• Wind update rate

• List of way points

Of these items numbers 4 to 7 are set to the values defined in Table 4.3. The way

points are defined to describe the course attempted in the experiment such as those

shown in Figure 4.1.

81



4.3 Simulation Methodology and Analysis of Results

Command Id Command Description

1 set sail x y Sets sail x to y degrees

2 set rudder x Sets rudder to x degrees

3 set waypoint x Sets waypoint to navigate to

4 get sail Gets sail position

5 get rudder Gets rudder position

6 get windspeed Gets wind speed

7 get winddir Gets wind direction

8 get compass Gets current direction of boat

9 get waypointdir Gets direction of current waypoint

10 get waypointdist Gets distance to current waypoint

11 get waypointnum Gets id of current waypoint

12 get easting Gets current latitude

13 get northing Gets current longitude

Table 4.4: Commands that can be sent to the simulator. All commands trigger the simula-

tor to respond with a single byte indicating the value requested or success of the command.

While running Tracksail provides an interface that can be accessed by any program-

ming language which supports POSIX sockets via a local loopback interface (defined

as 127.0.0.1) on port 6667. The fuzzy controller rig used in Chapter 5 connects directly

to this socket in order to exchange information bwith the simulator. Once connected, a

ASCII based request/response mechanism is used to send and receive data. Table 4.4

lists the commands implemented by TrackSail.

Minimal changes were made to the Tracksail application code-base. The changes

made consist of bug fixes to fix corner conditions which often resulted in a simulation

crash which in turn would be detected by the rest of the software rig, causing the data
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to be discarded and a replacement experiment to be performed. In addition hooks were

made in the initialisation phase in order to make the automation easier to execute and

easier to detect when failures occurred within the simulation.

4.3.6 Simulation versus Real World

Simulation by its very nature is a simplification of the simulated real world environ-

ment. This simplification has positive and negative effects on experimental work per-

formed using simulation. The ability to control how inputs are passed into the con-

troller under test is a strong benefit for this type of work, allowing the rate and dis-

tribution of the input variables to be tightly controlled and repeated across different

experimental scenarios, making it easier to draw conclusions from the results obtained.

This more controlled manner of input however can have some downsides — if all the

inputs are drawn from a particular distribution or follow fixed patterns then it may be

that results obtained contain bias, which in turn will not allow the results to be gener-

alised effectively. Simulation also lends itself well to automation, increasing the rate

at which experiments can be run and therefore increasing the sample size of the re-

sults obtained meaning, for example, that statistical tests can be made with increased

confidence.

Even those sources of variation which are held in common by both approaches are

simplified to a greater or lesser degree in simulation. The simulator does not implement

concepts such as tides, currents or other hydrodynamic properties of large bodies of

water. Real-world objects such as wildlife and fixed obstructions (buoys, rocks or

debris) are also not present in the simulator, both of which would indirectly cause

deviations in the course taken by the robot. Wind in a real world environment is a

complex process and measuring its properties accurately is difficult, with several issues

present that do not occur during simulation such as inaccuracies, update rate problems

and potential imprecision. Even if the inaccuracies of wind sensors are ignored, many

things may alter the wind reading real-world sensors obtain — even the height of the

sensor can cause deviations in the value obtained.

The differences between the two approaches discussed here demonstrate the need

for both techniques. However, in order to be able to effectively compare results be-

tween the two environments, care must be taken to keep as many factors constant as
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possible. This includes the internal configuration of the fuzzy controllers under test

(e.g. the FOU size in the case of type-2 controller) in addition to the task that is being

attempted.

4.4 Hardware Set-up

In this section the hardware that is used for the sailing boat based experiments in this

thesis is described. The experiments presented in later sections are separated into sim-

ulation based and real world based environments, each with differing aspects. Simu-

lation was used in the initial work (Section 4.4.2) due to its ability to rapidly produce

many experiments and to give precise control over sources of variation. Real world

experiments are used to verify the work done in simulation, in an environment without

the rigid control (Section 4.4.1).

4.4.1 Real-World Hardware

The robotic hardware for the real world sailing experiments is shown in Figure 4.2.

The processing hardware is based around a gumstix-based micro PC containing an

ARM-7 CPU running at 600Mhz with 128Mb of RAM and running a version 2.6.21

of µ linux. This PC connects via an RS-232 serial line to a PIC microprocessor, which

provides access to all the on-board sensors — including wind direction, GPS and dig-

ital compass. The PIC also provides access to the actuators on the system — two sails

and a magnetically coupled rudder. The interface between the PIC and the gumstix is

an custom ASCII-based protocol.

The sails are controlled by electric motors. This gives them approximately 290◦ of

rotational freedom for the front sail and 310◦ for the rear sail. Software present in the

motor controller module of the PIC limits this rotation down to approximately 280◦ for

the front motor. This prevents the the two sails from hitting each other, which could

potentially cause motor burn out. The fine grain control of the motors allow the sails

to be moved in approximately 2◦ increments.

The rudder is built using a magnetically coupled servo. This means that there is no

physical linkage between the motor and the rudder itself. Therefore, no hole in the hull

84



4.4 Hardware Set-up

Figure 4.2: The robotic boat platform

is required, as with some methods of rudder control such as a direct drive shaft. The

rudder has approximately 90◦ of movement freedom — 45◦ in each direction, with an

accuracy of approximately 3◦. The main potential issue with the rudder mechanism is

the possibility of detritus becoming caught in it. However with appropriate care this

can be avoided, especially when the test water body is carefully selected.

GPS information is provided by a Telit GE863 GPS module attached via a serial

line to the PIC processor. For the purposes of these experiments, it is used to provide

location and current system time for the gumstix. As this module does not provide

A-GPS capability, it may be inaccurate and take significant time in order to gain an

accurate fix. Due to this limitation, an additional external GPS source is used to check

the values received by the on-board transceiver. In this case, this source is an Apple

iPhone 4S — which includes an A-GPS (Assisted GPS) module. Assisted GPS uses
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additional data sources, including Wifi and GPRS, to obtain a more accurate fix than

that obtained using a standard GPS module.

The boats current bearing is obtained from a GY-26 digital compass, which inter-

faces with the PIC using an I2C line. This module also has the capability to read its

current yaw and pitch 1. However, for the purposes of these experiments this function-

ality is not used. This sensor provides bearing accuracy to within 1◦.

The wind direction is read from a digital motor encoder which is rotated by a wind

vane attached to the top of the taller sail. It has a full 360◦ of rotational freedom and

is accurate to within 3◦, which is based upon the smallest electrical pulse the encoder

can capture.

Data and commands are relayed to and from the gumstix unit by way of 802.11b

wifi via the gumstix Ethernet port and an on-board wifi base station. Standard unix

tools including ssh and sftp are used to control what the gumstix does, including start-

ing experiments, setting way-points and retrieving logs. The base station is placed on

the boat because the connection to a wifi hotspot by the gumstix can cause the CPU to

block while waiting on wifi initialisation responses. This causes the fuzzy software to

stop or slow down its operations — an undesirable effect.

The boat is powered by 18 AA NiMH batteries, which make up some of the

weighting of the keel and provide power for approximately 6 hours of experimenta-

tion. Charging is performed by a mains powered charging unit and takes 2 hours for a

fast charge and 8 hours for a trickle charge.

Due to limitations in the speed of interconnects between different modules —

specifically the baud rate of the serial line between PIC and gumstix, there is an upper

limit on the speed that data can be collected from the sensors. If every sensor is read

on each iteration this limit is approximately 2Hz.

The majority of the code for the controllers was implemented using C and Python

programming languages. The high level object orientation provided by Python, allows

the fuzzy inference system to be constructed quickly and easily to incorporate type-2

and non-stationary fuzzy logic systems. C, being lower level, is optimised for speed,

this ensures that critical sections of the code were run as optimally as possible which

is important for a constant update rate.

1tilt on x-y plane
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4.4.2 Supplementary Hardware and Software

As previously stated, simulations are run using a linux-based laptop with a 1.8Ghz

Intel Atom with 1GB of RAM running Ubuntu 9.10 [88]. The Java RE [5] version

used is 1.6.020 and Python is version 2.5.52.5.5 for Linux.

The majority of the code base is written in Python, which includes the majority

of the fuzzy logic controller code, is therefore platform-independent. Some C code is

also used which uses either GCC 3.3.6 or gcc-arm cross compiler 4.1.1, depending on

the target hardware (simulator or real world).

Based on the exact experimental set-up (such as course difficulty, parameter value

and controller type) a single simulated run takes approximately 3 minutes. This in-

cludes the java virtual machine (JVM) start-up time and all post processing such as log

creation and formatting.

The fuzzy logic controllers are based on an implementation using PyFuzzy, an

open-source fuzzy logic library written in Python. The most update version is 0.1.0

obtained from the source forge page [56]. The library provides only type-1 fuzzy logic

functionality though it does offer many types of defuzzifers, fuzzifiers and operators

for the combination of input variables and fuzzy sets. Due to the object oriented nature

of python, it is a simple matter to inherit the fuzzifiers and modify the code to return

type-2 sets and add logic to handle the inference and type-reduction of such sets. KM

was the only type-reduction method implemented as it is the most common method

used and is the only one used in the work here.

PyFuzzy was selected from the numerous open source fuzzy logic libraries avail-

able for various reasons. Juzzy [98], a java based library, written in Java was consid-

ered too slow, while the Free fuzzy library(FFLL) [33] is too complex and difficult to

extend to add type-2 fuzzy logic required.

4.4.3 Controller Design

As a basis for the design decisions made, the fuzzy controllers used the work done by

Stelzer [92] and [91] as a starting point. In this work, it is shown that the design used

by lead to a well performing type-1 fuzzy controller, which is able to make turns and

sail along given routes with minor deviations from a straight line. For the work in this
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thesis some changes have been made due to the lack of data required to generate some

constants used in Stelzers’ controllers.

A running rate of 1Hz was fixed in the controller code for all controller configura-

tions. This value was chosen in order to ensure that the more sophisticated controllers

could run a complete cycle, as there were initial concerns that for type-2 based es-

pecially would run too slowly. While this low running rate leads to overall lower

performance, it is believed that the consistency between controllers is more important

in this work than optimal performance.

The sails are controlled using simple lookup table in which each of their positions

are changed in response to the wind direction. The rudder is the main source of changes

of direction of the boat and this therefore is where the fuzzy design effort is focussed.

Inputs Variables

The most often used inputs for control applications are Error and Delta E [53]. In

the context of the application under discussion here, these values are calculated using

Equations 4.1 and 4.2, respectively. In the design of our fuzzy controller, both of these

inputs use the same base shapes for their MFs.

error = Desired Direction− Current Direction (4.1)

∆error = Current Error − Previous Error (4.2)

In interval type-2 fuzzy systems systems, secondary MFs are binary instead of con-

tinuous and in general can be visualised as a two-dimensional area, termed a Footprint

of Uncertainty (FOU). This makes interval type-2 systems considerably more manage-

able than the general type-2 variety. The FOUs have been derived by starting with

the simple type-1 and moving a uniform distance along the x-axis in both directions

generating lower and upper bounds. The size of the FOU is varied throughout the

different experiments performed in this thesis. A selection of membership functions

using common FOU sizes are shown in Figure 5.1
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(b) Type-2 FOU Size 2 Membership function
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(c) Type-2 FOU Size 5 Membership function
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(d) Type-2 FOU Size 10 Membership function
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(e) Type-2 FOU Size 10 Membership function

Figure 4.3: Membership functions of fuzzy controllers.
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Output Variables

The output value of all of the controllers is termed RudderOutput and represents a

percentage change of the current rudder position. The output variable is represented

by 5 singleton sets, as shown in Figure 4.4.

●

−50 0 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rudder % Change

µ

−
−
−
−
−

Strong Left
Left
Keep
Right
Strong Right

Figure 4.4: Fuzzy output singletons

Rule Base

Each of the input variable has five associated fuzzy sets. This gives a combined rule-

base set of 25 rules as shown in Table 4.5. The fuzzy inference system calculates

which sets have a non-zero firing strength for each input. This gives a collection of

membership values for some of the output sets based on this table depending on the

specific inputs.

The rules have been derived from the work of Stelzer [92]. Alternatively they can

be looked at from a logical point of view in that when sailing a boat and a turn in a

given direction is required, the rudder must be changed in the opposite direction. The
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Large Positve Positive None Negative Large Negative

Strong Left Strong Right Strong Right Right Right Right

Left Keep Left Right Keep Keep

None Keep Left Keep Right Keep

Right Keep Keep Left Right Keep

Strong Right Left Left Left Strong Left Strong Left

Table 4.5: Rule base. The table shows 25 rules generated by multiplying the number of

fuzzy sets for each input (5 of each)

size of this change depends on a number of physical factors such as the size of the

rudder but the overall directions can be reasoned out as done here.

Dual Surface and Non-Stationary Controller Modifications

The NS controllers as previously discussed, are a modification to standard type-1 fuzzy

logic. Standard type-1 MFs are perturbed to generate new functions, such as those

shown in Figure 4.5(b) (on page 92). The perturbation function is defined as a hor-

izontal movement obtained from a Gaussian distribution with a mean of zero and

an standard deviation that acts as this controller types parameter. During execution,

the overall controller selects 30 values from the random distribution to create 30 sub-

controllers, each including MFs which deviate slightly from the standard type-1 sets.

Each of these fuzzy sets are then processed as a standard type-1 system and the mean

of the outputs from each of the 30 controllers is taken to give a final output.

A DS type-2 controller is implemented to determine if improved results can be

achieved through incorporating extra information, such as the upper and lower outputs

as outlined in Birkin and Garibaldi [12]. This employs the algorithm described in

Algorithm 1 (page 29) for selection of control surfaces and determination of the value

returned. This algorithm compares a user chosen metric, in this case the magnitude of

the input error, with a threshold value. On this basis the final output of the system is

selected from either the lower, upper or mean value. For this comparison, the original
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Figure 4.5: 10 sized FOU for NS and Type-2

method of using the magnitude of the error in the system is retained. As with other

controllers, several different threshold values are used to determine any observable

effect on the system and its performance.

During each experiment, each variety of controller excluding the type-1, has an

associated parameter value which determines its internal configuration. For the interval

type-2 and DS controllers the parameter refers to the area size of the FOU. For the

NS, the parameter represents the maximum horizontal movement which is defined by

the standard deviation of the associated Gaussian random number generated — which

gives an area similar to a FOU. This parameter value is altered several times for each

course layout to observe how the change affects performance.

Due to the nature of the sailing boat problem, even proven optimal controllers

may have difficulties operating in all wind conditions. This is because it is impossi-

ble for any sailing boat to move directly into the wind (i.e. DesiredDirection ==

WindDirection− 180). The solution to this problem used by human sailors is to use

a procedure known as tacking. This involves altering the desired direction so it does

not move directly into the wind. As with many parameters such as this, the exact angle
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required varies per boat but is typically between 10◦ and 30◦ [14]. This behaviour is

mimicked by the software in the fuzzy controller by implementing a simple check to

work out if tacking is required if so which direction is optimal.

4.4.4 Supplementary Software

FLOATS also include a set of software tools designed to help automation for the testing

of robotic sailing boats, in both simulation and real-world environments. Figure 4.6

shows the modular layout of this system, with details of each being discussed below.

Figure 4.6: Module layout for the FLOATS system

Controller Calculates the new sail and rudder positions from the data provided by the

controller rig. All controllers under test in these experiments are implemented

in the Python programming language, although virtually any other programming

language could have been used.

Central Control System A C based program that interfaces with a single given con-

troller and hardware abstraction layer, providing data for the logging subsystem.

Logging The Logging module generates comma-separated values (CSV) formatted

log files from the data provided by the controller rig.
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Analysis tools This module reads the data stored in the CSV files created by the Con-

trol rig. It generates the performance metrics and any graphs that may be re-

quired. Unlike the rest of the system, this operates off-line after each experiment

has been completed.

Hardware abstraction layer This module provides the correct hardware/software in-

terface for the given environment (simulation or real world).

Environment FLOATS is designed to support both real-world and simulation-based

approaches for conducting experiments. This module represents which approach

is in use for a given experiment.

Course layout The course is preprogrammed before each experiment. It is either de-

fined within the simulator configuration or by using GPS coordinates when op-

erating in the real world.
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5

Simulation Experiments

5.1 Introduction

This chapter presents the second set of experimental work of this thesis. Several in-

vestigations based on the FLOATs simulation architecture are conducted, which are

intended to address the shortcomings of the work performed in the previous chapter.

One of the main conclusions of the previous chapter was that the tipping application

selected was too simple to give interesting results. This simplicity can be looked at in

several ways: First it did not include any sources of variation, randomness or uncer-

tainty. Second, the universe of discourse, width of membership functions and rule base

were all too small to allow sufficient change to be easily introduced. Thirdly, due to the

experimental design, there was no real concept of feedback in which outputs from the

system will change the environment and in turn affect the inputs into the next iteration

of the system.

This chapter applies three different approaches of performing comparisons between

fuzzy logic controllers. Two of these were applied in the previous chapter, with min-

imal differences being found between the controllers under test. This previous work

used a simple controller in a simple environmental set-up and it is believed that this

is one of the main reasons for the lack of differences observed. These findings there-

fore have lead to the decision to reapply the methods used in conjunction with a more

complicated fuzzy logic controller.

95



5.2 Rule Fire Experiments

In addition to reusing the two comparative methods, a new approach looking into

the control surfaces of the controllers under investigations is introduced. This was not

done in the previous set of work as it was thought that the simplicity of the controller

would not allow any interesting results to present themselves. The rule fire and con-

trol surface approaches use the controllers without any environmental context, relying

more on the analysis of outputs from the inference system using input values for every

combination present in the whole universe of discourse. This contrasts to the third and

final approach to comparison, this is intended to be more a realistic setting in which a

subset of inputs which progresses across the universe of discourse is used.

The chapter is organised as follows: Sections 5.2 and 5.3 present the two context

free techniques of comparison. This is followed by two sets of experiments in Sections

Section 5.4 and Section 5.5 in which the RMSE value obtained from experiments in

which the environment, and variations within it is studied. The chapter is closed with a

discussion of the results found in Section 5.6. Finally Section 5.7 provides a summary

of the chapter.

5.2 Rule Fire Experiments

5.2.1 Experimental Purpose

Section 3.3 in the previous chapter presents an investigation into the effects differing

the internal configuration of type-2 fuzzy logic systems upon which rules fire in a given

system is performed. A simple 3 rule fuzzy system was used to evaluate the concept,

and while there were issues with the design of the fuzzy system it was found that

generally there are very few differences using the set-up described.

The present section utilises this technique in more complex application with a more

sophisticated fuzzy controller design, specifically the FLOATS platform. As previ-

ously discussed, it has a larger rule base, a greater number of output fuzzy sets with

each rule having a larger range. Additionally the number of different configurations of

fuzzy controller that will be investigated will be increased from five to six.

96



5.2 Rule Fire Experiments

5.2.2 Methodology

The methodology used in this section is the same as that discussed in Section 3.3.2,

with the exception of the fuzzy logic controller used, which is thoroughly described in

Section 4.4.3. The only significant change that will be made is to the output logs to

include an indication as to which rules fire at each iteration of the fuzzy logic controller.

As in the previous experiments in Section 3.3 this will be achieved by outputting a

bitmap, with a ‘1’ in given location in the map indicating that rule has fired while a

‘0’ indicating it did not. Table 5.1 indicates which bit represents which rule and also

shows which combination input variables each rule requires to fire.

Large Positve Positive None Negative Large Negative

Strong Left 1 2 3 4 5

Left 6 7 8 9 10

None 11 12 13 14 15

Right 16 17 18 19 20

Strong Right 21 22 23 24 25

Table 5.1: Rule to Bit Map number mapping — the number indicates the bit number of

the given rule

With 25 rules in total, a 32 bit integer provides enough space for each rule to be

assigned. As an example the bitmap ‘0000011111000001111100000’ would indicate

the rules 5–10 and 16–20 have fired while the rest (i.e. rule numbers 0–5, 11-15 and

21-25) did not fire.

5.2.3 Hypothesis

As stated in Section 3.3.3 (Page 51) that as the FOU sized is increased, more rules will

fire for a given set of inputs. This is because as the size of the FOU increases, the

membership functions of each input fuzzy set will be correspondingly larger, meaning
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Figure 5.1: Membership functions of fuzzy controllers. The larger movement value directly corresponds to a large FOU size.
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5.2 Rule Fire Experiments

a single input value will trigger more fuzzy sets to have a non zero membership, which

in turn will in turn trigger more rules to fire. It is not known if more rules firing will

directly change the overall performance of that controller configuration, however this

is not the direct focus of this experiment.

5.2.4 Results

FOU Size Differences Percentage

5 161759 0.05

10 306246 0.09

15 436850 0.13

20 570095 0.18

25 681800 0.21

Table 5.2: Total number of differences and percentage of total possible difference when

compared with FOU size 0 controller configuration

Figure 5.2 shows graphical representations of how different rules fire for each

FOU configurations. The x and y axes represent the inputs to the fuzzy system,

each of which have a range between -180 and 180 — therefore with 25 rules there

can be a maximum difference of 3,240,000 firings — many more than in the pre-

vious set of rule firing experiments in the previous chapter. The final axis repre-

sents the difference between number of rules the specified FOU size and FOU size

0 which is being used as a baseline. If the output from the FOU 0 size controller

was ”0000000000000000000000001” and the output from FOU size 10 controller was

”0000000000000000000011111” the difference would be 4, as there are 4 rules which

fire in the latter and not in the former. In these experiments there is no difference be-

tween a rule firing in the first and not the second against a rule firing in the second

and not the first — originally the concept of positive difference (the first case) and a

negative difference (the second case) was considered but this was abandoned because
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5.3 Investigation into Control Surfaces

a negative value could be cancel out a later positive giving a total difference of 0 where

in fact there were potentially several differences. A larger difference indicates more

rules fired in one than in the other, directly indicating difference but necessarily in

better or worse direction.

More numerical results are shown in Table 5.2 where it can be seen that the per-

centage of differences increases by approximately %4 for each increase of FOU size.

The smallest differences occurs between FOU sizes 20 and 25 while the largest dif-

ferences lie between FOU sizes 15 and 15 and 20 where the difference is 5% and is

discussed further below.

5.2.5 Discussion

The results obtained here show much more significant differences than in the previous

set of experiments using this technique. Table 5.2 shows that the percentage of rules

which are different between type-1 and the increasing FOU size is by approximately

%4 for each increase of the FOU size. It can be observed that increasing the FOU size

changes the output values across the large parts of the universe of discourse, and while

the results shown are not large enough to draw strong conclusions from, it gives one

the first observations of the potential changes in performance as the FOU size changes.

Overall these experiments show that more sophisticated environments, do seem to

allow type-2 fuzzy controllers with a larger magnitude of difference in their outputs.

How these differences result in altered performance profiles in a more realistic setting

is the subject of the rest of this chapter.

5.3 Investigation into Control Surfaces

To show that each controller under test creates a suitable mapping of input values to

output, a test rig is used to generate control surfaces across the entire universe of dis-

course for several different controller configurations. Each fuzzy controller is executed

in a minimal set-up without any of the tacking behaviours or sensor reading function-

ality present. Control surfaces result in a 3D graph, in which two axes represent the

input values and the third axis represent the raw output obtained from the system. In
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5.3 Investigation into Control Surfaces

order to plot a complete control surface, every integer value within the input variable

ranges for each input is passed into the fuzzy logic system.

The type-1 control surface shown in Figure 5.3(a) (page 103) shows a typical con-

trol surface. It can be seen that all transitions are very crisp and sharp in nature. One

reason for this is the resolution of the data used to plot the graphs, which as stated, uses

an increment of one. If a smaller increment was adopted, then a more gradual transition

would be observed. This is somewhat clearer in Figure 5.3(b), which is more closely

zoomed. This figure also goes some way to showing why type-1 control is often said

not to give as good performance as type-2 — very small changes in one input located

at one of these transitions points could lead to a large output change.

Figures 5.4 (page 104) show the control surfaces of type-2 fuzzy controllers with

FOU sizes 2, 10 and 20. There are two trends which can easily be seen from this

progression. First, many of the corners between surface faces become increasingly

smoothed, as the lines near a surface transition come closer together. This means that

for the same input data (and ignoring such things as variation between them) a type-

2 controller produces a smoother movement across a transition section in one of the

input values, when compared to type-1. The smoother transition in may indicate better

performance as supported by Wu [104] , especially if a given experiment has a great

deal of inputs which appear in these areas.

The control surfaces shown in Figures 5.5 (page 105) are calculated from the non-

stationary controllers. Each controller is differentiated by the standard deviation of

the random number generator used for the perturbation functions in each specific con-

figuration. These control surfaces show that the straight lines observed in the type-1

figures change and exhibit a speckling effect. This makes the edges less sharply de-

fined as in the type-2 case, but with a more random element rather than the introduction

of smoother curves as in the type-2 case, this can be observed more easily by using a

cross sectional view of the control surface shown in Figure 5.6. In these plots the

graphs of the smaller movement value (Figure 5.6 (a)) shows an almost straight line

while a large value (Figure 5.6 (b)) exhibits a much more variable graph. It is theo-

rised that this speckling smooths out the transitions in much the same way as the type-2

smoothing behaviour works as described above. In both cases, it may also equate to

a more gradual transition in circumstances where the input triggers more than 1 fuzzy

set to be triggered.
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5.3 Investigation into Control Surfaces

(a) Type-1 control surface

(b) Type-1 zoom surface

Figure 5.3: Type-1 control surfaces x-axis and y-axis show the combinations of input vari-

ables. z axis indicates the resulting output value. Colouring used to improve 3D visibility.
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(a) FOU size 2 type-2 control

surface

(b) FOU size 10 type-2 control

surface

(c) FOU size 20 type-2 control

Surface

(d) FOU size 2 zoomed surface (e) FOU size 10 type-2 zoom sur-

face

(f) FOU size 20 type-2 zoom sur-

face

Figure 5.4: Interval type-2 fuzzy controllers control surfaces with increasing FOU sizes.

x and y axes show the input variable values. z Axis indicates the resulting output.

5.3.1 Discussion

This small study is focussed on looking how the control surfaces of different fuzzy

logic controllers change as the fuzzy controller configuration (FOU size) is increased.

In this set, only a single parameter is changed, for the type-2 and DS controllers this

is the FOU size; the NS parameter is amount of variation introduced when generating

the sub controllers. The type-1 controller in this context is used as the control surface

against which the others can be compared.

Several interesting points can be observed in the results of this study, specifically,
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5.3 Investigation into Control Surfaces

(a) Movement 2 NS control sur-

face

(b) Movement 10 NS surface (c) Movement 20 NS control sur-

face

(d) Movement 2 NS zoomed

surface

(e) Movement 10 NS zoomed

surface

(f) Movement 20 NS zoomed

surface

Figure 5.5: Non-stationary fuzzy controllers control surfaces. x and y axes show the input

variable values. z Axis indicates the resulting output.

that as the parameters of the type-2 controller is increased the transitions between

different sections of the control surface become more smooth. This seems to imply that

a larger parameter (essentially representing the FOU size of the set in question) should

give a smoother response to sets of inputs which pass through these sorts of areas of the

control surface. This is considered a positive result overall as it is evidence that type-2

controllers with larger FOU sizes have potential to give significantly different results

— whether these results lead to better overall performance in real world conditions,

it is hypothesized, will be application dependent, but is further investigated later in

this chapter. Bastian [6] also discusses a similar topic with particular reference to the
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(b) Movement 20 NS cross section

Figure 5.6: Cross section of a subset of the control surfaces for movement sizes 2 and 20

non stationary controllers

transition areas where the rules which fire change.

The second point of observation in this selection of control surfaces is the appear-

ance of artefacts such as warping as the FOU is increased. The exact reason behind

these artefacts is not yet know. However, there is a theory presented by Wu [104] that

there exist situations in which type-1 controller would produce a discontinuous control

surface whereas type-2 would not. Wu [101] goes on to develop this idea and shows

that, given an interval type-2 system, there does not always exist an equivalent type-1

system. Further work is required to determine if and when these discontinuities will

occur and to test if they are not caused simply by the granularity of the data used to

generate the control surfaces. It may be that using an increment of for example 0.01

instead of 1 may reduce the visibility of the discontinuities.
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5.4 Factors Affecting Performance of Different Types of Fuzzy Logic Controller

5.4 Factors Affecting Performance of Different Types

of Fuzzy Logic Controller

5.4.1 Experiment Purpose

The main purpose of this set of experiments is to compare multiple varieties of fuzzy

logic and evaluate how they perform with different levels of variability present in the

environment. Additionally this, the first large set of results using FLOATs, ensures that

the described experimental set-up is capable of generating data that assists in achieving

the aims of this thesis.

The use of FLOATs in these experiments addresses several of the problems identi-

fied at the end of Chapter 3, where the simplicity of the experiments performed coupled

with a lack of variation it is believed, led to the poor results obtained. FLOATS is con-

siderably more sophisticated by most measures, so it is hoped that better (i.e. more

distinct) results can be obtained.

5.4.2 Experimental Design

In this section, the type-1, interval type-2, NS and DS fuzzy controllers are defined and

their usage explored. A PI (proportional integral) controller is also included to provide

some benchmark levels of performance against the fuzzy types. This PI controller is

derived from the work of Sauze et al. [81], in which the authors have spend significant

work tuning the gain values used. This tuning, according to the authors, resulted in a

well-performing controller under calm situations.

In order to address the secondary purpose of these experiments, the width of the

FOU of the type-2 and DS controller is varied for each course, from a minimum of

0 (equivalent to a type-1 controller) up to a maximum of 20. This size (20) has been

chosen as the maximum value after several large values were tested for viability and

20 was found to be the largest sensible value.

Three different levels of variability are defined and labelled as ‘None’, ‘Low’ and

‘High’. These levels are created by altering the rate and magnitude of the change in

wind direction within the simulator and are shown in Table 5.3.
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5.4 Factors Affecting Performance of Different Types of Fuzzy Logic Controller

Variation Variation Score Lower Limit Upper Limit

None 0 180 180

Low 1 160 200

High 2 140 220

Table 5.3: Levels of Variation

As there are already many factors under consideration, including environmental

variation, controller FOU size, the difficulty of the course will be kept simple so as to

ease the task of determining a correlation between the various elements of study. A

straight line of 550 metres in length has been selected will therefore be used.

The performance of a given experiment will be determined by the standard measure

termed RMSE. The error term is defined as the difference between the desired direction

and current direction the boat is facing. The best possible value for RMSE is there-

fore 0, indicating the boat was always facing the desired direction. Similarly, a large

RMSE value indicates that there was significant deviation from the optimal course and

therefore the controller performed poorly. Furthermore, the time taken and total dis-

tance travelled are also collected to support the RMSE in the comparative evaluation

regarding the performance of given run.

5.4.3 Hypothesis

It is hypothesised that, assuming all other aspects are kept constant, as the environment

is made more variable i.e. increased from ‘None’ to ‘High’, then the performance

of all controllers will drop. The reasoning behind this is that the experiments with

higher levels of variability will require more work from the controller under test. If

the controller does not adapt to the environment variations, subsequently the overall

performance should drop. Whether the high level of variability here is sufficiently

high enough to cause controllers to fail or for performance to significantly deteriorate

is as yet unknown.
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5.4 Factors Affecting Performance of Different Types of Fuzzy Logic Controller

It is also anticipated that if the FOU is increased, then the plot of FOU size against

performance should result in a curve in which performance increases (shown by RMSE

decreasing) until a certain point after which it will decrease (shown by increasing

RMSE). This is because it is believed that there is a specific “optimal” FOU value

for each controller configuration. With the increase of the levels of variation present

after this point, performance is anticipated to drop.

As discussed in Section 5.4.1, the link between FOU and variation in the envi-

ronment still remains to be investigated. However, it is hoped that these experiments

can establish a base point for a discussion on how to derive the FOU size from the

quantification of variation in the environment in which the controller is running.

5.4.4 Experimental Procedure

The experimental procedure for each experimental run is as follows:

• One of the five controller types (type-1, type-2, PI, NS and DS) under test is

configured. Type-2 DS and non-stationary controllers have their parameter set

to one of the following values (0,5,10,15,20).

• The simulator is configured to run at one of the three defined levels of variation:

‘low’, ‘medium’ or ‘high’ as specified in Table 5.3.

• The specified controller is connected to the simulator and configured to attempt

to control the boat around the selected course.

• Data from the simulator and the controller is collected and analysed. Perfor-

mance measures such as RMSE are calculated for each run. Images such as a

course plot can also be generated from this data.

The experiment will be broken down by the level of variation used. Experiment set

one uses no variation, experiment set two with ‘low’ variation and experiment set three

with ‘high’ variation levels. Each combination of controller type, parameter value and

variation level will be performed thirty times and the results collected. Thirty runs of

each combination are performed in order to eliminate any erroneous runs and provide

statistical significance, with the mean value of each taken and used for comparisons.
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5.4.5 Results

Figure 5.7 (page 118) shows that as the variation increases (left to right in the sub

figures), the courses taken by the boat exhibits increased deviations from a straight line

course. This supports the hypothesis that increasing environmental variation results

in routes that deviate more from the straight line “optimal” course. The amount of

deviation from the optimal route is signified by a larger RMSE value.

The results of the low variation experiments are presented in Table 5.4. In the ta-

ble, the performance at FOU size of 5 in the type-2 controller shows little difference

compared to the baseline PI controller. When the FOU is increased to 10 however,

type-2 performance becomes significantly worse. At its largest size of 20, the type-2

controller shows better performance than the type-1 and PI controllers. For the DS

controller, both metrics, i.e. the RMSE and the time taken are worse with small FOU

sizes, such as 5. As the FOU increases, however the performance correspondly in-

creases, resulting in the best overall performance in this experiment.

Experiment two (medium variation) increases the amount of variation present in

the environment and the results are shown in Table 5.5 (page 113). These outcomes

clearly show the anticipated drop in performance with the average increase in RMSE

being 5.06 and the mean increase in time being 40.2 seconds. A very similar pattern

to the previous experiment can be observed in the performance values of the standard

type-2 and DS results. A peak in performance is observed when FOU size is 10 for

the interval type-2 controller. Similarly, a peak can be observed at FOU size of 20 for

the DS controller. The hypothesis made in the previous paragraph is also expected to

hold true here in this experiment. From these results it is believed that the experiments

so far demonstrate that there certainty exist points where type-1 outperforms type-2.

Conversely, there are also points in which type-2 performs better. These observations

are further discussed in the next section.

Table 5.6 (on page 114) summarises the results of the experiments performed at

high levels of variation. The average performance of the type-2-based controllers is

somewhat lower than that obtained in the previous experiments. In addition, only one

configuration of the DS controller obtained statistically significant improvements over

the type-1 controller. None of the standard interval type-2 and NS approaches achieved

this performance level regarding the time taken metric. However, the NS controller did
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produce two cases in which the RMSE was improved significantly. The mean RMSE

increase between experiments one and three was 9.57 with an average time increase of

10.4s.

As discussed in Section 4.3.4 (page 80), statistical tests are used to determine any

significant difference between type-1 and the NS, type-2 and DS controllers. Given

the nature of the data collected, the one-sided Mann-Whiteney statistical test has been

selected. This test is performed for both RMSE and time taken metrics with 5% signif-

icance level being used to reject the null hypothesis.

This test is also performed for the PI and type-1 controllers for all three experi-

ments. The type-1 RMSE proved significantly lower than the PI with low variation

(experiment one). As variation increases however, the RMSE of the PI controller be-

comes significantly lower than the type-1 controller showing a worsening of relative

performance.

5.4.6 Discussion

From the work performed here the following points have been concluded:

• At ‘low’ and ‘high’ levels of variation, the more sophisticated controllers such as

type-2 generally do not show a significant improvement when compared to the

type-1 controllers. These observations are supported by several Mann-Whitney

test, which fails to reject the null hypothesis as shown in Tables 5.4 and 5.6 in

which statistically significant differences are underlined. Specific controllers in

each category do show this improvement, however.

• At ‘medium’ variation levels type-2, NS and DS controllers generally do exhibit

statistically significant improvements on the type-1 method.

• The resulting difference between PI and type-1 controllers show that type-1 does

improve upon the PI for the RMSE metric and improves under low variation

conditions and low and highly variable conditions for the time metric. This is

also supported by the Mann-Whitney tests performed specified in table 5.4
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5.4 Factors Affecting Performance of Different Types of Fuzzy Logic Controller

Variety Parameter Mean Std. Dev Mean Time

Value RMSE RMSE Time (secs) Std.Dev (secs)

PI N/A 18.01 0.30 146.56 2.02

Type 1 N/A 16.32 0.17 140.80 0.66

Non Stationary 2 17.03 0.64 139.96 1.16

Non Stationary 5 16.72 0.54 139.28 0.63

Non Stationary 10 16.99 1.14 139.59 1.41

Non Stationary 20 16.74 0.55 140.07 1.10

Type 2 2 15.97 0.62 140.42 1.03

Type 2 5 15.84 0.28 140.65 1.18

Type 2 10 16.04 0.53 140.80 0.66

Type 2 20 18.94 0.57 150.03 2.69

Dual Surface 2 19.13 0.61 153.80 1.86

Dual Surface 5 19.34 1.35 150.57 3.35

Dual Surface 10 16.73 0.59 145.43 1.33

Dual Surface 25 15.80 0.24 149.10 7.22

Dual Surface 50 15.99 0.25 142.38 3.59

Table 5.4: RMSE and total time taken for course completion at low variation levels. Mean

and standard deviation of 30 runs with the best values per category shown in italic and the

best overall controller shown in bold. The values that are statistically different from the

type-1 controller are underlined. Parameter refers to movement in NS, FOU in IT2 cases

and threshold in the DS case.
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5.4 Factors Affecting Performance of Different Types of Fuzzy Logic Controller

Variety Parameter Mean Std. Dev Mean Time

Value RMSE RMSE Time (secs) Std.Dev (secs)

PI N/A 23.25 0.30 204.69 12.97

Type 1 N/A 24.47 0.76 221.34 8.46

Non Stationary 2 22.86 1.99 160.50 9.17

Non Stationary 5 22.21 4.11 172.53 23.17

Non Stationary 10 20.27 3.18 158.53 3.61

Non Stationary 20 21.09 2.80 161.09 9.23

Type 2 2 25.65 1.39 189.81 11.69

Type 2 5 20.48 3.34 178.64 20.19

Type 2 10 19.32 1.28 168.39 11.24

Type 2 20 26.00 5.31 186.87 5.34

Dual Surface 2 20.59 0.96 168.62 7.85

Dual Surface 5 23.06 5.10 181.94 19.03

Dual Surface 10 22.02 0.92 173.54 12.54

Dual Surface 25 19.75 3.84 171.27 12.66

Dual Surface 50 18.81 1.61 174.35 18.10

Table 5.5: RMSE and total time taken for course completion at medium variation levels.

Mean and standard deviation of 30 runs with the best per category shown in italic and the

best overall controller shown in bold. The values that are statistically different from the

type-1 controller are underlined. Parameter refers to movement in NS, FOU in IT2 cases

and threshold in the DS case.
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5.4 Factors Affecting Performance of Different Types of Fuzzy Logic Controller

Variety Parameter Mean Std. Dev Mean Time

Value RMSE RMSE Time (secs) Std.Dev (secs)

PI N/A 25.85 0.38 157.2 1.41

Type 1 N/A 27.43 0.93 153.61 3.53

Non Stationary 2 31.22 4.55 153.83 7.37

Non Stationary 5 22.21 4.11 172.53 23.17

Non Stationary 10 20.27 3.18 158.53 3.61

Non Stationary 20 28.69 1.35 151.23 2.60

Type 2 2 25.48 0.66 149.70 2.08

Type 2 5 25.33 1.36 150.19 2.33

Type 2 10 25.83 0.93 149.77 2.75

Type 2 20 32.72 1.92 172.37 17.31

Dual Surface 2 24.11 1.15 141.09 5.76

Dual Surface 5 28.93 7.41 152.49 10.02

Dual Surface 10 29.12 8.46 151.91 12.63

Dual Surface 25 26.09 0.84 151.26 2.56

Dual Surface 50 25.95 2.66 149.81 2.86

Table 5.6: RMSE and total time taken for course completion at high variation levels.

Mean and standard deviation of 30 runs with the best per category shown in italic and the

best overall controller shown in bold. The values that are statistically different from the

type-1 controller are underlined. Parameter refers to movement in NS, FOU in IT2 cases

and threshold in the DS case.
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5.5 An Investigation into the Effect of Environmental Variation upon the

Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

• From the results it can be seen that this more developed application does seem

to allow certain configurations to present significantly better performance over

alternatives, matching our hypotheses.

The fact that the PI controller outperformed the type-1 controller in some experi-

ments, however insignificantly, indicates that some aspects of the type-1 system were

not tuned optimally in these experiments. Further work may therefore be required in

this regard. However, any changes required would also affect the other controllers,

which have been based on this type-1 set-up. For this reason, it is not anticipated

that there would be much alteration in the general performance ordering of the various

controllers if these modifications were performed. Additionally, as has been previ-

ously stated, the goal of this work is not to develop the best performing controller but

to highlight the differences between those under test in the different scenarios used.

The use of FLOATS has shown that more sophisticated experimental set-ups do

enable more obvious differences between the various experimental scenarios to be ob-

tained, which in turn allows better discussion and conclusion to be drawn. However it

is still felt that more can be done, as in several cases the differences were small.

5.5 An Investigation into the Effect of Environmental

Variation upon the Root-Mean Square Error Per-

formance for Type-2 Fuzzy Logic Systems

5.5.1 Experiment Purpose

Based on the results of previous experiments, it has been decided that greater gran-

ularity of variability levels would be helpful to better understand how it affects per-

formance. This will also allow better evaluation of the comparative methodology, as

additional data points may make trends in the data easier to spot.

The difficulty of the course used in the previous section contained no turns and

difficulty was increased simply by increasing the environmental variability present.

This has been deemed insufficient to allow different controllers to exhibit their changes
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Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

in their relative performance and will be addressed by increasing the difficulty of the

task being attempted as described below.

5.5.2 Experimental Design

In order to produce a series of courses in which the difficulty increases in a systematic

manner, a straight line course with fixed wind blowing parallel to the boats starting

direction is taken as a starting scenario. This is the simplest possible course in which

the boat must simply move forward in order to reach the end point. In order to add

difficulty to this course, deliberate turns are introduced by the addition of way points

which are vertically offset from the straight line course. This offset is either 0, 25,

50 or 100 meters and creates turn angles of 5.71◦, 11.42◦ and 21.84◦ respectively.

Courses of this type will be termed ‘single turn’ courses for reference later on in these

experiments. ‘Double turn’ courses will also be defined, in which the boat must return

to a point on the original horizontal line therefore requiring a second turn. Angles of

11.4◦, 22.84◦ and 43.68◦ for the 25, 50 and 100 meter vertical movements are used to

achieve this. Figure 5.8 illustrates the different courses under test in this work.

Every combination of course and wind configuration, defined in Tables 4.2 and 4.3

(Pages 120 and 81), will be tested with each controller configuration. The first experi-

ments will include no variation (configuration A) and move towards the most variable

environment (configuration I). Every four seconds a wind change will be triggered by

the simulator using a Gaussian random number generator to modify the values of the

wind speed and direction within the range defined by the chosen wind configuration.

Four seconds was chosen as the update rate due to several preliminary experiments

showing its suitability. The variability score shown in Table 4.3 is used only for giving

an arbitrary ordering for the configurations. This score is calculated by summing the

direction and speed variability scores together. For example, the total variability score

for ‘Low’ directional variability and ‘low’ speed variability (Wind Configuration ‘E’)

would be (1 + 1 = 2).

The main difference from the first experiments (Section 5.4 on page 107) is the

increase in granularity of the experiments. The drawback is that this second sets of

experiments cover fewer varieties of fuzzy logic, specifically the DS and NS fuzzy
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controller types. Overall, the difficulty in completing the course, even without varia-

tion, is greater than in the previous experiments caused by the inclusion of one or more

turns required to reach the end goal.

5.5.3 Hypothesis

It is hypothesised that as the task difficulty and amount of variation increases, the FOU

size of the best performing type-2 controller will increase. This is based on the idea that

larger FOU sizes are able to handle greater levels of variation within the environment.

It is also anticipated that as the various wind configurations are tested, the calcu-

lated RMSE value will change in a predictable manner. This means that configurations

‘A’ and ‘B’ are likely to show a lower RMSE value than the configurations ‘H’ and ‘I’.

A linear increase is not anticipated, as several configurations have the same variability

score hinting that they are equal in difficulty. The exact ordering, however is still in

question, as the relative effects of the two different sources of variation are unknown.

It may be case that increasing the changes in wind direction may have a much higher

effect on performance than changing wind speed or vice versa.

As the FOU size is increased, it is expected that the performance will start at type-1

levels (as a size 0 FOU is equivalent to a type-1), followed by an increase in perfor-

mance followed by a drop, as the FOU increases to cover larger areas of the universe

of discourse. It is anticipated that this will result in the worst performing controllers,

and this, in the worst cases will prevent the course from being completed at all. For ex-

ample a FOU size of 180 would mean every fuzzy set would cover the entire universe

of discourse, which in turn would lead to a single input triggering every fuzzy set to

have non zero membership, causing every rule to fire, which in turn would cause the

output of the controller to remain constant.
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(c) Experiment 3 course example (high variation)

Figure 5.7: Plots of example courses performed by different controllers: PI (green) and type-2 (blue) at low, medium and high

variation levels. The course end point is determined by a red circle.
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5.5 An Investigation into the Effect of Environmental Variation upon the

Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

Figure 5.8: Each coloured line represents a single experimental course layout. The white

circles represent possible end points and the black circle the start point. The angles re-

quired for the first turn are 5.71◦ (green line courses), 11.42◦ (red line course) and 21.84◦

(blue line courses) for 25, 50 and 100 meters vertical movements respectively. Not to

scale.
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5.5.4 Experimental Procedure

The experimental procedure is as follows:

• A type-2 fuzzy logic controller is initialised and the FOU size set to one of the

following values: (0, 5, 10, 15, 20, 25).

• The simulator is configured to run at one of the configured wind set-ups as spec-

ified in Table 4.2 (page 80).

• The simulator is configured to use one of the defined courses. The course con-

figurations are shown in Figure 4.1 (page 79).

• The specified controller is connected to the simulator and allowed to attempt to

run the course.

• Data from the simulator and the controller is collected and analysed. Values

including RMSE and total time taken for each run are collected. Images such as

a course plot can also be generated from this data if required.

Each combination of controller type, parameter value and variability level will be

performed and the results collected. Thirty runs of each combination will be executed

in order to eliminate any erroneous runs, with the mean value of each taken and used

in for the discussion of results.

Wind Speed None Low High

None A D G

Low B E H

High C F I

Table 5.7: Wind Configuration Definitions. Each character represents a the shown com-

bination of changes in wind speed and direction
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5.5.5 Results

Similarly to the previous section, single-sided Wilcoxon tests are be used to evaluate

the statistical difference between two individual batches of experiments. A 5% of

significance level is be used to indicate difference between the two input runs. For

clarity, course layouts are displayed throughout this section as the vertical distance

hyphenated with the number of turns. For example, Single-25 would indicate a course

requiring a single turn and 25m of vertical movement to complete.

The first set of experiments were designed as a simulation software verification

of the entire software assembly. This involved a comparison of the type-1 controller

metric values with the FOU size 0 type-2 controller values to ensure their outcome

metrics were statistically similar.

Figure 5.9 below shows the results of a benchmark experiment in which the major-

ity of controllers simply maintain a straight line course. The average RMSE obtained

was the expected value of close to 0 with no statistical differences, except possibly

at the largest FOU size. In this case, performance decreases significantly, as shown in

Figure 5.9(a). It is believed that these results occur because the controllers under test do

not need to execute any turns or course corrections in order to complete the task. This

leads to the conclusion that any performance benefits or penalties a controller may ex-

hibit do not have a chance to become apparent under such simple circumstances which

has also been shown in several prior experiments in this thesis. Figure 5.9(b) shows the

changes between the best performing type-2 and the baseline type-1 controller. Finally,

Figure 5.9(c) shows several example course plots in which each coloured line repre-

sents a single experimental run. All runs indicate a straight line course was achieved

as expected.

The next experiment to be considered is shown in Figures 5.10 (page 124) and 5.11

(page 125), which show how the RMSE value (on the y axis) changes as the FOU size

is increased from 0 to 25 (on the x axis). Each wind configuration (as indicated by

coloured lines) is represented in the figure. Across all the course configurations, the

RMSE increases (signifying decreasing performance) as FOU size exceeds 20. Any

improvements in performance that do occur, occur before the FOU reaches size 20.

This is more obvious in Figure 5.10(b) (page 124), but can also be observed in Figure

5.10(a) (page 124) and Figure 5.11(b) (page 125).
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Figures 5.12 and 5.13 (pages 126 and 127, respectively) show example course plots

of both single and double turn courses with all the various wind configurations under

test represented by coloured lines. The white circles in the figures indicate way points

that must be reached to complete the course. The increase in course difficulty can

be observed from both number of required turns and the required turn angle form

left to right. This is also mirrored in the observed plots of controllers — plots of

more difficult courses show many controllers having more turns when compared to

less difficult configurations. The green line in Figure 5.13(c) is an example of this

behaviour occurring.
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(a) 25m vertical movement
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(b) 50m vertical movement
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(c) 100m vertical movement

Figure 5.10: Single turn experiments showing how RMSE changes as vertical movement is increased (course difficulty increases

from left to right). x-axis shows the change in FOU size, y-axis indiates the resulting RMSE value. Each line represents the

increasing levels of environmental variability present in each experiment.

1
2
4



5
.5

A
n

In
v
estig

a
tio

n
in

to
th

e
E

ffect
o
f

E
n

v
iro

n
m

en
ta

l
V

a
ria

tio
n

u
p

o
n

th
e

R
o
o
t-M

ea
n

S
q

u
a
re

E
rro

r
P

erfo
rm

a
n

ce
fo

r
T

y
p

e-2
F

u
zzy

L
o
g
ic

S
y
stem

s

●

0 5 10 15 20 25

0
5

10
15

20
25

30

FOU Size

R
M

S
E

 (
D

eg
re

es
)

●

● ● ●

●

●

●

● ●
●

●

●

● ● ●
●

●

●

●
●

● ● ●

●

● ● ●
●

●
●

●

● ● ●
●

●

●
●

● ●

●

●

● ●

● ●

● ●

●
●

● ● ●

●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

● ●
●

● ●

●

● ●

● ●

● ●

● ●
● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

−
−
−
−
−
−
−
−
−

A
B
C
D
E
F
G
H
I

(a) 25m vertical movement
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(b) 50m vertical movement
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(c) 100m vertical movement

Figure 5.11: Double turn experiments showing how RMSE changes as vertical movement is increased (course difficulty increases

from left to right). x-axis shows the change in FOU size, y-axis indiates the resulting RMSE value. Each line represents the

increasing levels of environmental variability present in each experiment.
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Figure 5.12: Example course plots for single turn experiments. Each line represents a different wind configuration.
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Figure 5.13: Example course plots for double turn experiments. Each line represents a different wind configuration.
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5.5 An Investigation into the Effect of Environmental Variation upon the

Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

Configuration Type-1 RMSE Type-2 RMSE RMSE Difference

A 5.93 3.56 -2.37

B 8.35 3.91 -4.44

C 6.34 3.31 -3.03

D 5.90 3.20 -2.70

E 7.41 4.08 -3.33

F 4.83 2.84 -1.99

G 6.32 3.46 -2.86

H 5.10 2.44 -2.66

I 4.72 2.66 -2.06

Table 5.8: RMSE differences between Type-1 and a Type-2 controllers with a fixed FOU

size (size 20) on single-50 course layout. This increase in performance can also be ob-

served in Figure 5.10(b)

Tables 5.10 and 5.11 show the p-values obtained when the type-1 controller is

compared with the best performing FOU size for every combination of wind configu-

ration and vertical movement, broken down into tables based on the number of turns

required to complete the course. If there is no FOU size in which better performance

is observed, then this combination is omitted from the table. There are two obvious

observations that can be made from these figures. First, there are no points in which

the vertical movement is 100. In addition, double turn experiments have consider-

ably fewer points than the single turn. These observations are further discussed in the

next section. A p-value of less than 0.05 indicated that the null hypothesis should be

rejected i.e. there is a significant difference between the inputs to the test.
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5.5 An Investigation into the Effect of Environmental Variation upon the

Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

Configuration Type-1 RMSE Type-2 RMSE RMSE Difference

A 15.29 15.70 0.41

B 15.75 22.43 6.69

C 11.84 16.68 4.83

D 12.33 17.15 4.82

E 12.53 25.68 13.15

F 11.67 15.53 3.86

G 14.53 15.50 0.97

H 13.68 22.22 8.54

I 12.97 16.35 3.38

Table 5.9: RMSE difference between Type-1 and a Type-2 controllers with FOU size of

20 on a single-100 course layout

Wind Type-1 Type-2 Vertical FOU P-Value

Config RMSE RMSE Movement Size

A 12.94 11.11 50 20 1.11e-006

B 12.79 9.84 50 10 4.84e-013

E 12.66 9.23 50 15 3.02e-011

I 11.07 10.06 50 15 1.64e-005

Table 5.10: RMSEs and p-value of best performing FOU sizes in comparison with type-1

FOU size for double-turn course configurations.
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5.5 An Investigation into the Effect of Environmental Variation upon the

Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

Wind Type-1 Type-2 Vertical P-Value

A 2.72 1.55 25 2.40e-011

B 2.82 1.78 25 2.44e-011

C 2.60 1.28 25 7.66e-012

D 2.81 1.89 25 9.51e-010

E 2.58 1.87 25 2.29e-011

F 2.16 1.08 25 2.29e-011

G 2.17 1.06 25 2.48e-011

H 2.67 1.80 25 1.68e-011

I 2.24 0.85 25 2.73e-011

A 7.00 3.56 50 2.91e-011

B 6.76 3.91 50 2.78e-011

C 6.51 3.31 50 2.43e-011

D 5.99 3.20 50 2.73e-011

E 6.98 4.08 50 1.98e-011

F 4.86 2.84 50 2.58e-011

G 4.85 2.44 50 2.80e-011

H 6.49 3.46 50 2.84e-011

I 4.82 2.66 50 2.98e-011

Table 5.11: RMSEs and p-value of best performing FOU size (20 in all cases) in com-

parison with type-1 FOU size for single-turn course configurations. A smaller p-value

indicates the type-1 and type-2 values are more similar hence all the values show there are

no statistical differences
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Root-Mean Square Error Performance for Type-2 Fuzzy Logic Systems

5.5.6 Discussion

From these results, there are several circumstances in which type-2 based controllers

outperform type-1 controllers. However, this does not occur in the majority of cases.

It is, in fact, more common for the performance to be similar to the type-1 value (sta-

tistically so in most cases) rather than outperform it as it would be expected.

In total there are 324 combinations of wind, controller and vertical movement con-

figurations. From all these combinations, only 23 show statistical improvement when

compared with type-1. This represents 8% of the total. This low percentage suggests

that the expected increase of performance when switching from type-1 to type-2 does

not occur. Its more likely that the outcome performance for both types remain the

same. However, in most cases performance significantly worsens unless considerable

design effort is undertaken. It can be noted that the RMSE values in these experiments

are smaller than those in Section 5.4 (Page 107)., this is due to the nature of sailing in

which sailing at a fixed angle to the wind is easier than sailing with the wind coming

from directly behind the craft.

The results found in this section are supported by other works in which type-2

performance is compared with type-1 such. One example is the work by Musikasuwan

et al. [73], where a type-1 controller outperforms, by a small margin, a type-2 based

controller. The authors work was more focussed on the number of parameters of the

model parameters in each controller. However, the essential result — that type-1 can

outperform type-2 under the correct circumstances — agrees with the findings here.

Birkin and Garibaldi [13] also demonstrate the improved performance of interval type-

2 fuzzy over type-1 based controllers in a micro robot context, further supporting the

work shown here.

The results obtained here to not match the the hypothesis made in Section 5.5.3

(page 117), specifically the higher variability levels do not always produce significantly

higher RMSE values. This can be seen best in Figure 5.14, in which the RMSE for

each wind configuration, vertical movement and turn count combination is plotted with

the FOU size being held at 20. In the majority of cases, wind configuration ‘B’ (red

crosses) tends to have one of the the highest RMSE over the entire range of FOU sizes.

This contrasts with wind configuration ‘I’ (orange points), which seem to appear often

at the bottom of the graph indicating the best performance. This seems contrary to what
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was expected, which would be for wind configuration A to have the lowest RMSE and

configuration and I to have the highest (as common sense would seem to indicate that

more noisy environments are more difficult to sail in). Whether this conclusion is a

general result or an artefact of the nature of this specific control problem is not yet

known.

Regarding the different wind configurations, (Figures 5.12(a) and 5.13(c)) (pages 126

and 127), as the courses become more difficult, the spread of the results also increases.

When the vertical movement is 25 units of distance with a single turn, the results are

much closer together, with a difference between highest and lowers RMSE value of

1.04. This contrasts significantly with the 100-double turn experiment, in which the

difference is 9.98. This is an expected result, as with each increase in course dif-

ficulty the number of course corrections required by each controller also augments.

This means that there is greater scope for a controller to demonstrate its improved

performance (or lack thereof).

The correlation between the different wind configurations and the performance

change that occurs between type-1 and type-2 controllers is difficult to determine as it

is not consistent across all experimental scenarios. This could be due to the ordering of

the configurations, as defined in Table 4.2 (page 80). In the tables, multiple configura-

tions have been given an equal variability score based on the assumed equal weighting

of the two variability sources. This may however be a faulty assumption. The results

also contrasts with the findings made by Sepulveda et al. [86], in which type-1 and

type-2 controllers are tested and the type-2 outperforms the type-1 in all cases. This

occurs both with and without variation within the environment and the difference in

performance seems to have an increasing correlation. This suggests either the differ-

ence is down to the different application or the tuning of the type-2 is considerably

better than the type-1. Another point to consider is that Sepulveda et al. have not tried

as many different levels of variation as have been presented here. Therefore, the differ-

ences found here have not been able to present themselves have not been considered in

their set-up.

The addition of turns to increase the difficulty of the course has, as expected, a

significant effect on the performance of all controllers. It can be observed between

Figures 5.10 and 5.11 (pages 124 and 125) that every RMSE value is higher in the

double turn situation when compared with the single turn. This can be explained by
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considering that in double turn courses the controller needed to turn the boat over twice

as much than the single turn courses, making the track more difficult to complete.

These experiments have further increased the level of complexity of the experi-

mental set-up and have resulted in somewhat more obvious differences between type-1

and type-2 fuzzy logic. This implies that the methodology used is capable of showing

differences between type-1 and type-2 fuzzy control systems under a wide variety of

situations. However as there were not as many cases where type-2 significantly outper-

formed type-1 it may still be the case that these experiments still do not have sufficient

difficulty to enable the recommendation of type-2 control in this application.

5.6 Discussion

The rule based experiments in Section 5.2 show that, in comparison to the work per-

formed in the previous chapter utilising the same techniques as in Section 3.3 that the

more developed environment show better differentiation between the different configu-

rations. With the largest difference between the type-1 and type-2 controllers equating

to approximately 20% of the total number of input sets. This gives the first evidence

that a more developed environment and controller set-up gives type-2 controllers a bet-

ter opportunity to present differing performance levels compared with type-1 control,

whether this equates to improved performance is the subject of study of the experi-

ments that follow.

The control surface investigation in Section 5.3, presents an investigation into how

control surfaces change as the controllers are varied by a fixed set of parameters. The

overall results obtained show that type-2 and non-stationary controllers with larger

FOU sizes tend towards smoother control surfaces which may imply improved perfor-

mance, though this cannot be directly seen in these results. However it gives a good

basis for the development and execution of the experiments that follow in the chapter.

Experiment four focuses only on type-1 and type-2 varieties of fuzzy control to the

exclusion of the DS and NS varieties of fuzzy logic. It also introduces much more

granularity into the levels of variation and course difficulty with nine different levels

instead of three in the previous experiment. Similar to the previous set of experiments,

the results found are encouraging because a peak in performance is again found at an
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FOU size of 20. However, they still do not reflect the correlations anticipated that could

be applied to a more general setting. The hypothesis for this investigation was that the

desired outcome would be a decrease in performance as the amount of variation present

in the environment increases and the controller configuration and course difficulty are

kept constant. However, this was not always the case, for example: the RMSE change

between the type-1 and type-2 systems do not exhibit any regular observable pattern.

In the results of both experiment sets three and four, show some similar patterns

observed. However, overall there is not enough statistical evidence to support a direct

causation of either parameter value or environmental variation upon RMSE value ob-

tained. The nature of the application used here is fairy complex coupled with a fairly

sophisticated controller may mean that there is no direct and obvious way to reliably

predict performance levels.

In order to counteract the possible effects of having two sources of variation, such

as in the Section 5.5, the analysis must take into account each of the sources individ-

ually, before attempting to observe their joint effects. From experiment two, configu-

rations ‘A’, ‘B’ and ‘C’ should be grouped for analysis, as they only regard changes in

the wind direction. Subsequently, its necessary to observe how the differences in the

first group compare with configurations ‘A’, ‘D’ and ‘G’, where only the wind speed

is changed. With these analysis, finally, the performance of configurations ‘E’, ‘F’,

‘H’ and ‘I’ can be effectively assessed where the combination of changes in speed and

direction come into effect.

One approach to solving the problem of operating within noisy and uncertain en-

vironments is discussed by Brooks [18] where ‘Relational Maps’ are introduced as

a means to modelling environments and incorporating the related uncertainties thus

allowing robots to reduce the effect upon performance. These ‘Relational maps’ are

described as rubbery and stretchy rather than using a traditional fixed coordinate sys-

tem. This implies that Brooks believes that flexibility in such systems is an important

feature for good performance within uncertain environments. In general features of

the more sophisticated types of fuzzy logic systems, such as the FOU size of interval

type-2 systems can be shown to provide this sort of flexibility.

The interaction of multiple sources of variation and randomness is also a point

that merits discussion. It is hypothesized that, as the number of sources of variation

increases, the complexity of modelling the combined effects upon performance will
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expand exponentially, making understanding and adapting to such situations more and

more difficult. An interesting development would be to use it in a real world situation

where noise, and variation cannot be controlled or accurately measured in every dimen-

sion. Alternatively, a more sophisticated physics engine could be integrated into either

Tracksail or some other simulator, however this would be a difficult task with many

considerations including processing and memory requirements and the complexity of

the maths involved.

All of the three approaches to comparison (Rule fire experiments, studying the

Control surface and RMSE comparisons) used in this chapter have shown to have some

ability to differentiate between differing fuzzy logic controllers configurations. Overall

the rule fire experiments show the least useful information as the number of rules which

fire cannot be directly linked to performance in a real situation, in addition it seems that

this technique is the least sensitive to change, showing the smallest differences between

the tested configurations. The control surface study results in interesting graph shapes

in which the change in the smoothness of the transitions could be easily seen, however

this does not provide any quantitative evidence as the RMSE study does, which shows

that the RMSE method is the most useful overall.

The effect of FOU size in these experiments is considerably more noticeable than

the results obtained in the previous chapter. This supports the theory previously pro-

posed in Section 3.6.3 (Page 68) where the difference between the largest and smallest

FOU sizes was considered too small to cause trigger significant differences. The dif-

ferences here were 25 — a approximately 5 times greater difference, with differences

generally becoming apparent when the FOU size exceeds size 10. While it is difficult

to generalise this sort of result, it does give a starting point for discussion.

The methods used for comparison in Sections 5.2 and 5.3 operate across the entire

possible input space with no concept of variation and therefore the idea of task diffi-

culty cannot easily be applied. The sections which follow however in which increasing

numbers of turns, with increasing turn angle offer a simple mechanism to model such

a concept.

Using wheeled robots for a similar sorts of investigation has been discussed by

Birkin [13] and Hagras [41] (which both find Type-2 based control to be superior to

type-1 in a subset of cases). Wheeled robotics however, do not rely on external pro-

cesses such as the wind for their movement. In order to use a wheeled robot, a mech-
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anism by which the amount of forward motion obtained from a single value of input

into the motors vary by some degree. This may be achieved, for example, by using dif-

ferent surfaces upon which the robot would move — a hard firm surface, which would

provide sufficient friction to allow good movement would vary significantly with, for

example, deep pile carpet, sandy or icy surfaces. For a given amount of movement,

such as a complete turn of a motor, each surface would cause a different amount of

forward motion to be achieved, introducing a source of variation into the environments

in which wheeled robots operate.

5.6.1 Conclusions

From the first two approaches certain conclusion can be drawn, specifically: The differ-

ences in the number of rules which in type-1 and type-2 configurations is significantly

higher than in the previous chapter, showing that increasing the complexity of the set-

up has achieved one of its goals of making differences more obvious and observable

in each comparative approach; secondly larger FOU values seem to give a smoother

transition across the control surface implying that a controller with a larger FOU will

give a smoother response to inputs across specific areas of the input space, potentially

giving better performance when the inputs are within this one of these regions.

One of the main objectives for this work was to observe if a more complex exper-

imental environment would enable observation of more obvious differences between

different configurations of controller. Including both different configurations of the

same controller (such as varying the FOU size of a type-2 fuzzy logic controller) and

between different types entirely, such as between type-1 and type-2. The results in

this chapter shows a significantly larger range than in the previous chapter, so this ob-

jective has been achieved to some degree. However there are still many combinations

in which performance is not significantly different, which suggests that there is still

development that can be done in order further improve findings. In the next chapter

this is attempted by moving the controller into a real world environment in which the

variation and randomness should be significantly higher, making the environments in

which the experiments are performed even more complex. It is hoped that at this level,

different configurations will present significant differences in performance allowing

more solid conclusions to be drawn.
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Secondly, it must be noted obtaining optimal performance from a given controller

was not a goal of this work, instead the goal being to try and observe if and when type-

2 fuzzy logic would outperform type-1 based systems and under what conditions this

would occur. It has been shown in this work that this certainly does occur using the

experimental set-up, it is not a given outcome. Further work is required to determine

the exact reasoning and how and why this occurs at the levels it did.

5.7 Summary

In this chapter the methodologies used to compare fuzzy logic controllers within the

context of two sets of simulation experiments are presented. A new fuzzy logic con-

troller is introduced in order to address some of the shortcomings found and discussed

in the previous chapter. The first experiments investigates which rules fire and how

this changes as the FOU size increase. This is followed by a short study into the con-

trol surface of each of the investigated fuzzy logic controllers. Both of these begin to

show the sort of differences that can be observed when the controllers are used directly,

without a surrounding control task. As the differences between the various controllers

are usually still relatively small, the decision is made to move into a real world en-

vironment. Real world environments are generally considered to be more complex in

terms of the amount of variation present in the environment and therefore present more

of a challenge to fuzzy logic control systems, giving better controllers more scope to

present differences in performance.
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Figure 5.14: RMSE values for each wind configuration for each experiment. Points x-axis

represents a given course layout from easier to complete to most difficult. y-axis indicates

the RMSE for a given experimental set-up. Each coloured point represents the RMSE of

given level of environmental variation for the specified course layout
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6

Real-World Experiments

6.1 Introduction

Experimentation within a simulation environment is a technique often used to com-

plement real-world trials. Simulation is a collection of procedures mimicking reality

with the purpose of providing further insights into the real system, in a controlled envi-

ronment, through the use of ‘what-if’ scenarios. These techniques, therefore, present

some advantages when compared with real-world experimentation, as discussed by

Miglino et al. [71]. In relation to the problem of autonomous sailing boats, for exam-

ple, simulation has the benefit of being time and cost-effective. Within the simulation

environment, sensors and robots are never faulty unless these errors have been pur-

posely added. In addition, it is possible to control and tune sources of variation for a

given experiment, which is impossible to do in reality. Additionally, there is no need

to rely on weather conditions to perform a run; replicating the identical experiments

under the same parameters is a straightforward task. However, by their nature, simu-

lators are restricted in their scope and even the best systems do not encompass every

possible scenario that could occur in the real world. As a consequence, the experiments

in the simulation environment, such as those performed in our previous chapters, are

limited to pre-defined scenarios, in which uncertainty sources are derived from a single

random number generator.
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The previous chapters have shown that the different fuzzy logic controllers con-

sidered in this thesis, specifically type-1, type-2, non-stationary and dual surface con-

trollers, can present different levels of performance as the environment in which they

operate change. However, in the first experimental chapter 3, the differences found

were minimal, which have been attributed to the simplicity of the application. This is

addressed in Chapter 5 where a more sophisticated controller and application were in-

troduced, which gave improved results. In this chapter the same controllers are used in

the context of real-world experiments which, as discussed above, introduce additional

variability, making the task in question more difficult to complete than in simulation.

This is done in an attempt to show greater differences and therefore assist in answering

our research questions.

This chapter is organised as follows. In Section 6.2 the nature of real-world en-

vironments and the differences present in comparison to simulation are discussed.

Section 6.3 describes a pilot real-world study together with the preliminary results

obtained. This section concludes with a discussion of the potential shortcomings and

improvements to the pilot methodology. A larger study that includes the improvements

proposed in the previous section are presented in Section 6.4. The experiments of this

section focus on the interval type-2 fuzzy controller. Finally, the outcomes of these

studies are discussed and summarised in Section 6.5 and the chapter is summarised in

Section 6.6.

6.2 Real-World Sailing

6.2.1 Hardware

The robotic hardware used is described in detail in Section 4.4. The sailing robot, as

shown in Figure 6.2, has a wind direction sensor on top of the front mast, to which

the front sail is attached. The boat is also equipped with a GPS receiver and digital

compass modules. These devices calculate the position and the bearing required as

inputs to the controller.
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6.2 Real-World Sailing

Figure 6.1: The robotic boat platform used in the experiments.

6.2.2 Location Selection

Selecting an appropriate location for performing real-world experiments is of great

importance and several requirements must be considered:

Good view of the sky The location data is provided by (non assisted) GPS and the

receiver is located on board of the boat. Therefore it must have an unobstructed

view of the sky. Buildings, large trees and other large structures can cause reflec-

tion of the GPS signal, and this in turn can cause a drop in accuracy. The GPS

system is further validated by using a phone-based GPS receiver, which employs

an A-GPS (assisted) system with GPRS and 3G technologies used in conjunc-

tion with a standard GPS receiver in order to increase the accuracy, consistency

and robustness of the location reading.
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Easy access to waterside Natural lakes often contain reeds, weeds and mud banks,

which impede the launch and collection of the boat at the start and end of ex-

periments. The difficulty in reaching the boat interferes with the consistency of

each experiment and reduces the number of experiments that can be achieved in

a given time frame.

Minimal currents and water-based disturbances Rivers, streams and other flowing

bodies of water introduce variation that currently cannot be handled using the

current hardware. Objects such as waterfalls, fountains and inflow or outflow

pipes cause similar disturbances in a smaller scale. Similarly, additional varia-

tion may be introduced from sites with large amounts of local wildlife, including

ducks, swans and fish.

Unobstructed wind access Not only do tall buildings, lines of trees and other high

structures create reflection of GPS signals, but they can also cause the wind

to act in a very unpredictable manner. While these experiments are a study in

environmental variation, attempts are made to minimise it to some degree.

When considering this list, the use of an indoor swimming pool, in which wind

could be controlled by a number of large electric fans, was found to not to be feasible,

as in there would be no view of the sky. After considering several alternatives, a

location matching all of the requirements was found in the city of Norwich (Norfolk

county) 1. The location is a purpose-built boating pond. An aerial view of the location

is shown in Figure 6.2 (page 143) with a view from a nearby building shown in Figure

6.3 (page 144). The pond is 20m wide by 30m long, which gives a 70cm boat (the

length of the robot used in our experiments) plenty of space to manoeuvre and turn.

Twice a week the pond is used by model boat enthusiasts for a large variety of different

types of craft, which gives confidence that it is suitable for our use.

1http://www.norwichmodelboatclub.com/
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6.2 Real-World Sailing

Figure 6.2: Source: Google Maps. Aerial view of the model boat pond.

6.2.3 Experimental Design: from Simulation to Real-World Ex-

periments

Once experiments move from a simulated environment to the real world using a phys-

ical robot, a considerable number of additional variables are introduced. These vari-

ables introduce far more sources of variation making the environment considerably

more complex. As previously discussed in Section 2.7, there are many different sources

in such environments, including:

Sensor variation The sensors on the boat have limited accuracy. It is therefore ex-

pected that considerable variation and randomness will be introduced by this

device.
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6.2 Real-World Sailing

Figure 6.3: A view from the boat house.

Actuator variation The boat has motors which can only be set within a certain degree

of accuracy. It is also possible for overshoot to occur; this commonly happens

when there is a large change in the sail position, and the momentum of the sail

causes it to move past the endpoint. While it is not anticipated that this form of

randomness would have a significant effect, it should, however, still be consid-

ered.

It is expected that with the transition from the simulation environment to the real

world, the experimental scenarios would become considerably less predictable. The

wind readings should therefore reflect a far more dynamic and unpredictable environ-

ment than under simulation. This is due to the real-world nature of variable wind and

the fact that the wind sources are not restricted to a single random variable, such as the

random number generator used in simulation.
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As discussed previously, in controlled simulation scenarios the generations of thou-

sands of runs at a time is easily achievable. In the real world, however, it is significantly

more laborious to perform a single run where each run takes an estimated at thirty min-

utes. It is infeasible therefore, to perform the thirty runs for each combination (requir-

ing an estimated 15 hours per configuration) as it has been carried out in the simulation

environment. On the other hand, a minimum number of repeats are required for the

purpose of making more general conclusions with a certain degree of confidence. Ten

repeats are therefore established as the optimal number with a good balance between

having sufficient repeats and ensuring enough variety in tested configurations.

Due to the amount of time required to conduct real-world experiments, fewer ex-

periments can be run, and this has led to increasing the interval between the different

sizes of the FOU, compared to what was used in the simulations. FOU sizes 0, 10,

20 and 40 are therefore tested, as opposed to 0, 5, 10, 15, 20 and 25 used in the pre-

vious chapter. These values are selected because it has been found that a size of 20

often gives good performance, and time constraints only allow four different sizes to

be tested; this leads to selection of values half and double the size of the best perform-

ing size, as well as size 0 to allow comparisons with type-1 performance. The finer

increase in FOU sizes used in simulation is selected because the level of variation in

the environment is controlled and therefore a correlation between the FOU size could

be sought. However, this control is less achievable in the real world without a large

investment in time for additional experiments.

6.2.4 Hypothesis

It is hypothesised that this application will present the most difficult task for the fuzzy

logic controllers attempted in this thesis so far. Previous work in this thesis has shown

that differences can certainty be found between the performance levels type-1 and (cer-

tain configurations of) type-2 fuzzy control but that it can be difficult to observe de-

pending on the exact environmental scenario. This leads to the hypothesis that this

additional difficulty and variation found in real-world experiments will allow the dif-

ferences between type-1 and type-2 to become more obvious. This in turn will poten-

tially allow the identification of the values for task difficulty, environmental variability
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and controller configuration that are most likely to cause type-2 control to outperform

type-1 fuzzy control.

6.3 Pilot Study

In order to test the methodology and to determine values such as the time taken to

complete an individual experiment, a pilot study was performed. The purpose of this

study was to make sure that the correct data is being collected. Furthermore, the pilot

provided verification that when a larger study was performed, it can be streamlined

and therefore much data as possible collected. Additionally, potential problems in the

experimental method, such as a too simple a course, can be identified and addressed.

6.3.1 Methodology

The course that the boat must complete is simple and is shown in Figure 6.4, with the

defined course superimposed on the aerial view of the pond. The course is equiva-

lent in distance to the width of the pond. This has been chosen for several reasons.

First, observations of the wind show that the most common prevailing direction is that

marked as a red arrow in the figure; Secondly, the relatively short distance means that

a well-performing controller will complete the course quickly, allowing more runs to

be performed within the time frame. However, it is anticipated that a badly performing

controller will have difficulty managing even a short course, such as the one defined.

The procedure for performing the experiment is defined as follows:

At the start of the day, the exact end point is determined using the A-GPS receiver.

This is performed each day to ensure that effects such as atmospheric conditions, which

can cause slight variations in GPS readings to occur, are minimised. This way point

is programmed into a way point parameter file on-board the boat. For each separate

experiment the following procedure is executed:

1. The boat hardware system is reset to realign all motors. The controller is ini-

tialised and begins to read sensor values and change actuator positions in re-

sponse.
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Figure 6.4: Pilot course. Start point is shown by ‘A’ and end point shown by ‘B’. Prevail-

ing wind shown by white arrow.

2. The robot is lowered into the water and aligned by the operator to face directly

towards the opposite side (e.g. towards point B). The boat is released.

3. The operator uses a video camera to record the boat’s progress.

4. When the boat reaches the opposite side of the pond the run time is noted and

the run is considered complete.

5. The boat is removed from the water and walked back to the starting point, where

the controller is stopped and the data transferred.
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6.3.2 Experiments

These experiments were performed during the week of 11th June of 2012. The weather

was warm but there was sufficient wind to sail the boat successfully. A total of eight

experiments were successfully run. Three fuzzy controllers were used: type-2, DS and

PI (Proportional Integral).

The PI controller was used both as a hardware and software test case, as it had

previously been used by the system builders to test the platform and shown to have

reasonable performance. Type-1 and type-2 based controllers are the major focus of

study in this thesis, the aim being to determine how they perform under real-world

conditions; they will therefore be the most studied varieties in the preliminary investi-

gation. DS and NS controller types were included in order to test if they demonstrated

significant differences from the more standard type-1 and type-2 varieties.

As the type-2 controllers were the main focus, it was decided to spend more time

running experiments with this type of controller, allowing several different parameter

values to be tested. However, this was at the expense of the NS and DS controller

types where only one parameter value for each controller could be attempted. During

the study, no runs using the NS controller were successfully completed due to hardware

and software initialisation problems.

Data was collected by the systems on-board the boat, including all of the sensor

readings which allowed the RMSE and the average speed to be calculated. The runs

were also recorded using a video camera so that any obvious problems, such as sail

overrun (where the sails would attempt to cross paths and lead to hardware damage)

could be observed. It also gave the ability for the numerical data to be more easily

associated with observational data. For example, if the boat was to hit debris, thus

cause a performance change, this could be observed in the video.

6.3.3 Results

Table 6.1 shows the summary of the data collected during the pilot study, which lasted

for one week in total. The data in the table has been normalised so that it is all on a com-

mon scale. It can be observed that a small amount of data has been collected, totalling

eight complete successful runs. A large number of unanticipated software problems

148



6.3 Pilot Study

and errors occurred during the first runs and this slowed down the experimentation

process. These issues were fixed and the stability of the system was therefore found

suitable for the main study described in the next section. This was reinforced by the

fact that during the last two days of the study the amount of data collected, after the

fixes were applied, was considerably higher.

Experiment FOU Controller RMSE

1 5 Type-2 0.55

2 5 Type-2 0.45

3 10 DS 0.47

4 10 DS 0.45

5 20 Type-2 0.44

6 40 Type-2 0.54

7 N/A PI 0.52

8 N/A PI 0.56

Table 6.1: Pilot study collected data. Each row represents a single experimental run.

6.3.4 Pilot Analysis and Discussion

The amount of data gathered during this pilot study is insufficient to be in anyway con-

clusive, though it is enough to show that the base methodology is acceptable, although

small modifications, as outlined in Section 6.4.1, are required to ensure that a large

data set is collected and the data collected is as high a quality as possible.

In the pilot experiments there was no fail condition defined, since the boat was

given as much time as it needed to reach the opposite shore. This varied between four

minutes in fast cases, and over thirty minutes for the slower instances. The limited

amount of daylight reduced the number of runs in total that could be achieved each

day. In a future investigation a time limit should be introduced after which the run
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should be considered a fail. This should maximise the number of runs that can be

performed.

It was observed during the pilot study that it was possible for the robot to become

wedged between an overhang on the pond edge and the waters surface. This can cause

the boat to stop moving though the controller and actuators are still running. This

observation needs to be taken into account when introducing any changes to the exper-

imental methodology. This is considered in Section 6.4.1.

6.4 Type-2 Main Study

In this study, the focus is on a comparison of type-1 and type-2 fuzzy logic controller

types, with the aim of establishing if in real-world experiments, the differences be-

tween performance levels are more easily observable and can further strengthen the

original hypothesis made in Section 6.2.4.

6.4.1 Changes in Methodology

As in the previous chapter, an investigation is conducted into type-2 fuzzy logic and

specifically how the change in the FOU size affects performance. However, as param-

eters of the wind cannot be controlled as in simulation they will simply be recorded.

This means that every run has a unique level of variation and wind levels that cannot

be reproduced.

This work has three objectives, namely:

1. to observe the effect of FOU size upon performance;

2. to demonstrate how real-world environments present a difficult task for con-

trollers under test in comparison to the simulation environment previously used.

3. to show which configurations perform best at differing degrees of variability

within the environment.

In order to minimise the differences in the level of variation in the environment be-

tween the each run, all runs of each controller type are conducted sequentially, instead
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of grouping the experiments per FOU sizes. It is anticipated that the weather condi-

tions will not change significantly over the time it takes to run one experiment for each

considered controller configuration, estimated at 3 hours.

Based on shortcomings identified when evaluating the results of the pilot study,

three changes have been made:

1. A required turn in order to complete the course is introduced. The new course is

shown in Figure 6.5. This turn has been added in order to increase the amount of

work that is required for each controller to complete the experiment and therefore

allow ‘better’ controllers to differentiate themselves from those which perform

poorly.

2. The filming component is eliminated. In these experiments, the operator does not

record the course. Recording adds complexity to the experiment, as the operator

must control the boat from a laptop, while simultaneously recording it and being

in the correct position to stop the boat as it reaches the end point. The videos

made as part of the pilot study did not really assist the task and therefore they

will be eliminated.

3. A time limit of fifteen minutes to complete the run is added. After this time, the

run is considered a failure and the boat is removed from the water as soon as it

reaches any side of the pond and the data is discarded.

6.4.2 Experiments

The way point data is collected every day and uploaded to the boat as discussed in Sec-

tion 6.3.1. Each experiment is then performed following the modified run procedure:

1. The boat hardware system is reset, realigning all motors. The controller is ini-

tialised and begins to sense values and change actuator positions in response.

2. The robot is lowered into the water and aligned by the operator to face directly

towards the opposite side (e.g. towards point B). The boat is released and a timer

is started.
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Figure 6.5: Modified boat course including newly added turn indicated by θ. Start point

is shown by ‘A’ and end point shown by ‘B’

3. When the boat reaches the end point, the end time is noted and the run is consid-

ered finished.

4. If the time exceeds the limit, the boat is removed from the water as soon as it is

possible to do so (i.e. it reaches an edge).

5. If the boat reaches the end point, it is removed from the water and walked back

to the starting point, where the controller is halted and the data stored.

These experiments were run during the week of 3rd December of 2012, when the

overall weather was cold but relatively calm. There were no adverse weather condi-

tions such as storms. However, sufficient wind to sail the boat was present with overall

levels slightly higher than those observed during the pilot study.
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6.4.3 Results

Figure 6.6 depicts how the calculated RMSE changes as the FOU size is increased.

It can be observed that there is a small increase as the FOU size moves from size 0

to 10, and after this point it starts to decrease. Additionally from this graph it can

be observed that the RMSE for FOU size 40 decreases by a noticeable amount. This

further supports the hypothesis that a real-world environment will allow better or worse

performing controllers to become apparent, more so than in the experiments performed

in previous works.
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Figure 6.6: RMSE of the different sizes of FOU under test

Table 6.2 provides a more quantitative outlook on the data obtained from the exper-

iments. The runs column indicates how many runs were performed for each FOU size,

with the goal being 10 runs. The p-value shown here is the value obtained by perform-

ing T-test between the rows FOU size and FOU size 0, with most p-values resulting a
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FOU Runs Mean RMSE Std Dev P-Value

0 12 162.95 13.81 N/A

10 11 162.93 10.18 0.27

20 14 157.57 15.86 0.15

40 10 157.04 12.36 0.07

Table 6.2: Mean RMSE with its variance and the p-value result of a t-test between type-1

and the indicated FOU size. A smaller p-value indicates a less significant difference.

statistically significant difference. In order to keep the input data sets the same size for

the t-tests, the first 10 runs of each configuration were used.

The RMSE values were calculated using the same calculation as those used through-

out this thesis. Overall, the results show the RMSE decreasing, meaning improved

performance as the FOU grows. It can also be noted that the RMSE values are much

greater than those obtained in previous works — showing that the environment does

have more variation present, which makes it a more difficult task to complete. The

standard deviation is also much larger in these experiments than those in the previous

experiments. It is believed that this occurs for the same reasons as for the RMSE value

— the environment introduces more variation, within a smaller data set.

6.5 Discussion

A significant number of issues arose while working in the real world that were absent

during the simulation experiments. Some of these issues were anticipated, some not.

Overall, the hardware used in the boat was reliable and worked as expected. How-

ever, some relatively minor problems occurred, such as the battery life of the platform,

which did not provide enough power for a complete day of experiments on a single

charge. It has been suggested by Doel and Pai [95] that battery usage is another metric

of performance that should to be considered. The goal would be minimising the bat-

tery usage by reducing the amount of motor usage used during an experiment. This
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obviously involve a trade-off, especially when significant variation is present, as each

course correction would require motor movement which in turn would use battery

power.

The behaviour of the boat in the water was much more variable than anticipated,

with many small movements occurring in all directions. For example, the tilt of the

boat seems to have a significant impact on how much control the rudder has upon the

boat in a given direction, as well as the amount of wind that is converted into forward

motion. As the boat has a tilt sensor as part of the digital compass, this could be used

in future work to further increase performance, using the tilt as an additional input to

the fuzzy system.

Performance and localisation of the GPS sensor on-board the robot was satisfac-

tory, and in general it matched the measurements of the external A-GPS device. How-

ever, the time taken to obtain a good satellite fix was considerably longer than antici-

pated. A-GPS chips are becoming more widespread and hence the replacement of the

current GPS receiver with a more accurate device would benefit the accuracy of the

position data generated in future work.

One potential issue, to be subject of future investigation and study, is the effect

of the update rate of the sensors/actuators. It has already been explained in Section

4.4.1 why the selected rate was used. However, observations show that at some points

in real-world experiments, the controller was not able to handle certain conditions,

such as when a large gust would blow, with its direction significantly different from

the current direction. This would cause the boat to over or under-shoot a turn and

therefore dramatically alter the speed.

The FOU sizes used in the main study of this chapter show some changes in results

as they increase. However, these changes are smaller than would be expected in a real

world with large levels of variation. This supports the idea that the levels of variation

present in this real-world environment are not as large as anticipated, either due to the

prevailing conditions or the location selected. The relatively small differences obtained

between the different FOU sizes seem to imply that FOU choice is a small factor in

performance of a fuzzy-based system.

The sample size used in this experiment was established by the methodology and

limitations upon potential duration of the study. As the statistical test results (Table

6.2) generally indicate no significant changes, it may be possible that the sample size
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needs to be significantly larger, in order for the changes to become apparent. This was

attempted to be partially corrected by increasing the difficulty of the task between the

pilot and main studies — that of adding in a turn into the course. However, this did not

alter the results.

The complexity and difficulty of the course (i.e the number and size of each turn), is

one potential reason for the similar performance levels of each different configuration.

Additionally, the tendency of the wind to blow as shown by the white arrow in Figure

6.5 (page 152) should also be considered. The fact that the wind most often blows

perpendicular to the route required means that overall the course is fairly easy — a

human sailor, for example, would have little difficulty in completing a similar course.

It may be that orienting the course so that the boat must move into the wind or at a more

difficult angle may further differentiate between different controller configurations and

ease comparisons.

In the pilot study, the results presented very little variation regarding the RMSE

values, and this caused changes to be incorporated into the main study, where an ex-

tra turn was added to the course. This should have made the route more difficult to

complete, allowing better controllers to show correspondingly better results. This was

indicated by a larger spread of RMSE values across different configurations. While the

small amount of data collected in the pilot study makes direct comparisons difficult, it

was hypothesized that the larger study, with the added turn would show a larger gap in

performance between better and worse controllers. This was somewhat supported by

the results in the main study.

As has previously been stated, the goal of the work in this thesis is not to develop

the best controller possible but to understand the relative performance of each. Due

to this, the tuning of the fuzzy controllers under test was not considered important,

as each was derived in the same manner. Due to the similarity of the RMSE values

obtained, the effect of additional tuning of each of the fuzzy systems may have been a

useful area of study. However, this would have been a considerable investment in time

and will be left as an avenue for future work.

Overall, this chapter shows that more difficult and variable real-world experiments

cause more variable results to be observed. The hypothesis made in Section 6.2.4 is

supported by the results in that larger FOU sizes seem to give better performance than

those with smaller FOU sizes. However, the results obtained still not fully support
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this hypothesis, as the differences observed, while larger than those previously found,

still do not achieve the magnitude of changes that were anticipated. This has lead

to considering other factors for the reasons for this lack of differences. The main

considerations are (i) the original type-1 fuzzy sets may have been far from optimal,

making it hard to improve upon performance; and (ii) the method by which the type-2

fuzzy logic controllers were derived from the type-1 may have been too simple to ever

give good results. Both of these considerations are out of the scope of this thesis but

present good opportunities for future work.

6.6 Summary

In this chapter, the same fuzzy logic controllers in the previous chapter were applied

to a real-world autonomous sailing boat context, as opposed to simulation. The results

obtained show some additional differences than those observed in the previous chapter.

The reasons for this are discussed along with reasoning as to why these differences

have been found, possible solutions and avenues of future work are then identified.

In the next chapter an in-depth discussion about the work and findings of this thesis

is presented. In addition, the ideas for future work and improvements to address some

shortcomings are presented.
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Discussion

7.1 Introduction

In this thesis, the topic of fuzzy logic and specifically, how its behaviour changes across

different scenarios was investigated using three case studies: the tipping problem and

autonomous sailing robots in simulation and real-world environments. The effects of

variation in the environment, how it can affect performance and how it can be intro-

duced into the environment was studied. Multiple varieties of fuzzy logic control were

investigated, with comparisons between them being the major focus of study. Each

variety was evaluated using several different internal configurations, generally deter-

mined by the FOU size.

The main motivation behind this work was to be able to identify which factors are

likely to cause type-2, dual surface and non-stationary fuzzy logic types to outper-

form type-1 and the relative import of such factors, with most focus applied to interval

type-2 control. This was intended to act as a starting point for being able to develop

techniques for the selection and justification of the type of fuzzy logic control for a

given application. Task difficulty in the context of the sailing robot application was

defined by (1) the sailing boats defined course, including how many turns and the total

cumulative angle; and (2) the conditions under which the sailing occurs, including the

wind, water and other sources of environmental variation.
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7.2 Evaluation of Aims

The aims stated in Chapter 1 (shown in boldface) have been addressed as follows:

• To show that variations on standard type-1 fuzzy logic control such as type-

2, Dual Surface, and Non-stationary fuzzy logic control can provide signif-

icantly improved performance over standard type-1 fuzzy logic based con-

trol systems. This was addressed by using the different varieties of fuzzy logic

across experiments of increasing difficulty and complexity utilising the simula-

tion environment in Chapter 5. Within each experimental set-up, many variables

were kept constant, which enabled us to perform meaningful comparisons. The

differences were most obviously shown in the experiments within sections 5.4

and 5.5 (pages 107, 115) where differences in performance are found throughout

several different set-ups.

• To study how performance changes as the environment is made more or less

complex, by changing the degrees of environmental variation and the task

difficulty defined. While moving through the case studies, the experimental

environment generally increased in complexity from the very simple Tipper ex-

periments in Section 3.4 (Page 54) to the real-world experiments in Section 6.4

(Page 150). In addition, within the simulated sailing study the environment was

studied with several combinations of task difficulty and environmental set-up.

• To investigate how the internal configuration of a given controller (referred

to as the FOU size) changes the level of performance of type-2, DS and NS

based fuzzy systems in comparison with the more standard type-1 based

configuration. This was achieved by gradually increasing the range of the FOU

sizes used in each case study. The Tipper experiments in Section 3.3 (Page 50)

used a narrow range of values (sizes 1 to 4) of FOU, which is increased to a

range of 10 to 40 in the real-world experiments. It was anticipated due to the

greater variation present in the real world.

• To determine the combination of factors (FOU Size, environmental varia-

tion and task difficulty) with which type-2 fuzzy logic would consistently

outperform type-1 based control. Each of the case studies in the thesis utilised
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different combinations of the above factors in an attempt to address the stated

aim. For example, in the experiments in Section 5.5 (Page 115) nine different

configurations of wind variables (defining the environmental variation), several

courses (defining task difficulty) and multiple FOU values for each fuzzy vari-

ety are used with the results, giving an indication of where peaks and troughs in

performance lie.

7.3 Contributions and Findings

In addressing the aims discussed above, the following contributions have been made:

• A methodology and supporting framework that enabled effective comparison of

fuzzy logic controllers of multiple different varieties has been developed. It takes

into account the following factors that may alter behaviour:

1. Task difficulty, made up of both the direct task difficulty (such as the course

layout in the sailing boat simulation) and the environment in which the task

is performed. Specifically the variation present in the environment, such as

the changes in wind speed and direction for the sailing boat experiments

were employed.

2. Fuzzy controller configuration. The FOU size of the type-2 and dual sur-

face controllers was varied in an attempt to observe how this altered the be-

haviour of the system — specifically, how the RMSE value was obtained.

A similar value, the standard deviation of the random number generator,

was used in the case of the non-stationary controllers.

3. Means of comparison. The determination of which rules fire, shapes of

control surface and calculated RMSE values were investigated to observe

which factor or combination of factors give the most effective means of

comparison between controllers.

• The application of non-stationary fuzzy control to robotic control problems. To

the best of our knowledge, the current literature does not contain any similar

work. The use of non-stationary provides a stepping point in complexity between
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standard type-2 and the more sophisticated (and therefore expensive) interval (or

indeed general) type-2 control.

• The application of the same fuzzy controller to both simulated and real-world

environments has not been extensively examined within the literature. Perform-

ing this sort of comparison allows the ability to examine how two very different

environments can alter performance while keeping as many factors constant as

possible.

The methodology described in point 1 above has been applied to multiple case

studies and has resulted in being able to describe the following findings:

1. Control surfaces inspection can highlight some potential differences, such as the

increased smoothing discussed in detail in Section 5.3.1 (Page 104).

2. The use of the rule fire comparison method for performance evaluation has

shown to be the least effective means of comparison of those used in this thesis.

However it has still highlighted some issues with the design of rule bases for

fuzzy systems, which are discussed in further detail in Section 3.3.5 (Page 53).

3. Each of the more sophisticated types of fuzzy control have been shown to be

capable of producing better (lower RMSE) values than type-1 under certain con-

ditions:

• Interval Type-2 outperforms type-1 less frequently than it was anticipated.

In the large simulation experiment in Section 5.5.6 (Page 131, this occurs

in approximately 8% of the the experiments.

• Non-stationary control generally presents improvements at lower levels of

complexity (low levels of environmental variability and task difficulty) than

Interval type-2. This occurs in approximately 5% of cases in the same study

as above.

• Dual surface fuzzy control improvements occur the least frequently of the

three types studied and it is more difficult to predict when this may occur.

The reasoning for this is discussed by Birkin in [13].
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These findings can be generalised to suggest that overall the more sophisticated

fuzzy controllers can only show improvements in performance if the environment of

the experiment is of a suitable level of complexity. In the most simple of situations,

such as the Tipper in Chapter 3, very few differences were observed as expected —

the task was so simple any controller was able to complete it without difficulty. As

more complex case studies were introduced, the differences became more obvious. It

is hypothesised that if even more complex case studies were used, there would be an

upper bound where no controller would be able to complete the task, resulting in a

drop in performance.

A possible reason for the the more sophisticated controllers only showing a small

improvement over type-1 is the number of parameters available in the more sophisti-

cated varieties. An example of this would be when moving from a type-1 based design

to interval type-2 based design. The system designer must, in addition to the type-1

parameters, define a membership function for each fuzzy set. This gives flexibility,

but requires further effort to select the appropriate values. Therefore, with increasing

numbers of parameters to define, without using a systematic method (such as a ge-

netic algorithm), the chance of selecting a set of parameters which result in improved

performance decreases.

7.4 Shortcomings and Limitations

There were shortcomings in the work performed, which are discussed below per case

study:

• Tipper case study: While a useful introductory work used to successfully vali-

date the methodology, overall the experimental set-up was found to be too simple

to show significant differences between the different controllers under test.

• Simulated sailing case study: The Tracksail simulator is very simple in nature

with a minimal model for the simulation of wind and water dynamics. In some

ways the simplicity helped, allowing considerable control of the experiment.

However, it also limited the utility and realism of the simulator.
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• Real-world case study: The amount of data collected was small, due to hardware

issues and the inherent difficulty in working in real-world situations. This has

led to difficulties in drawing firm conclusions from this case study.

Aside from the shortcomings in the case studies, more general limitations of the

thesis as a whole have been identified as follows:

• The comparison of RMSE values, while shown to be effective, is limited in its

ability to compare between different experimental set-ups, in which aspects such

as the variation present changes. For instance, a given RMSE in experiment ‘A’

may represent a well-performing controller, while in experiment ‘B’ may be

significantly worse.

• The update rate of the controller was very slow for such a control system. The

rate selected was due to hardware constraints of the sailing robot and the desire

to maintain the same update rate across the different environments (simulation

and real world). It is believed that this adversely affected the RMSE value.

With a faster update rate the differences between better and worse performing

controllers would have become more apparent. This is because in a given time

(e.g. a 30 second window) an update rate of 1Hz would allow 30 changes of

rudder position while a faster update rate of 10Hz would allow 300 changes —

giving better controllers more scope to respond to changes in conditions.

7.5 Future Work

In this thesis, four main controller types were studied (type-1, interval type-2, type-1

non-stationary and dual surface). However this is not an exhaustive list of types of

fuzzy controllers described in the literature. There are several others which present

interesting avenues for future work, including:

• Non-Singleton, which modifies the standard method for fuzzification to use a

shape such as triangle instead of a single line to determine the membership. It

has been shown by Mouzouris and Mendel [72] that this type of fuzzy logic can

minimise the effect of noise and therefore lead to increased performance with

minimal changes to existing control systems.

163



7.5 Future Work

• Interval type-2 based non-stationary. The non-stationary controller used in this

thesis was based on type-1 fuzzy logic and showed a small number of cases

having better performance than standard type-1. The move to interval type-2

based non-stationary may further increase performance levels.

• General type-2 fuzzy logic (briefly described in Section 2.5 (Page 20)) is a very

interesting avenue for future work, as it represents the most sophisticated type

of fuzzy logic currently in use. However, it comes with a high processing cost

and it was found to be unsuitable for the robot used in this thesis — these issues

would need to be solved prior to its usage.

The case studies used in this thesis cover a large range of different levels of com-

plexity, from the Tipping example to the real-world sailing study. Additional case stud-

ies, such as wheeled robots or changing existing experiments using the sailing simula-

tor to include more complex and realistic models could give the additional scope that

is needed to show performance differences between the simple and more sophisticated

control methods.

The comparison of rules which fire and of control surface shape as done in this

thesis were not well developed. We believe that additional analysis of the results (in a

suitably complex experimental setup) may lead to additional methods of comparison.

For example, a mathematical analysis of the control surface including the gradient of

transitions and where they occur may be able to give a predictor of performance.

All of type-2 FOUs in our work have been derived from the type-1 membership

functions using a standard horizontal movement mechanism. This means of derivation

is not the only way of performing such adaptations, and the effect of the method se-

lected is currently not investigated in the literature. This is another subject which may

greatly affect the performance of the fuzzy controllers to be investigated.
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