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ABSTRACT

The following thesis is divided in two main topics. The first part studies variations of

optimal prediction problems introduced in Shiryaev, Zhou and Xu (2008) and Du Toit

and Peskir (2009) to a randomized terminal-time set up and different families of utility

measures. The work presents optimal stopping rules that apply under different criteria,

introduces a numerical technique to build approximations of stopping boundaries for

fixed terminal time problems and suggest previously reported stopping rules extend

to certain generalizations of measures.

The second part of the thesis is concerned with analysing optimal wealth allocation

techniques within a defaultable financial market similar to Bielecki and Jang (2007). It

studies a portfolio optimization problem combining a continuous time jump market

and a defaultable security; and presents numerical solutions through the conversion

into a Markov Decision Process and characterization of its value function as a unique

fixed point to a contracting operator. This work analyses allocation strategies under

several families of utilities functions, and highlights significant portfolio selection

differences with previously reported results.
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CHAPTER 1

INTRODUCTION

Let us assume that you are, free of charge, offered to take part in a very simple game

involving two dice. You are invited to roll these dice up to N times and, at any point

prior to the last roll, you are allowed to stop playing and cash-in an amount of money

equivalent to the last roll number. You are therefore a decision maker within a game and

your task is to deduce what the optimal strategy to follow is, with aims of maximising

the cash reward.

Such a simple yet captivating brainteaser embodies the essence of what probabilistic

problems within the scope of this thesis are trying to achieve. As a decision maker,

you want to be capable of determining what the optimal decision to make is, whenever

your judgement is to affect the outcome of interest. Indeed, you should certainly keep

on rolling whenever the current sum of the dice is lower than the expected reward

should you choose to continue.

The present thesis deals with stochastic control problems that aim to determine

optimal strategies to follow, in situations where outcomes are partly random and partly

under our control. The work is divided into two main blocks and covers control

problems derived from the theory of optimal stopping and Markov decision processes,

fields that have found vast applications in diverse areas such as finance, statistics,

machine learning and economics. This work is motivated by two different kinds of

financial problems; on the one hand, prediction problems that aim to identify the

optimal time for a stop action to be taken, maximizing the value of a given reward

process; on the other hand, wealth allocation problems that aim to maximize the
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expected terminal wealth of a financial portfolio, adopting optimal allocation strategies

over a given set of financial products.

In what follows we separately discuss the scope and relevance of each of these fields,

we review previously published research of interest, and we finally present the line of

work developed in Chapters 3, 4 and 6 of this thesis.

1.1 PART 1: OPTIMAL STOPPING AND PREDICTION PROBLEMS

Optimal stopping theory studies the problem of choosing the optimal time to take a

particular action, with aims of maximizing or minimizing an expected reward/cost. Its

use is widespread within some areas of statistics, economics, and mathematical finance.

These problems may relate to either discrete or continuous time cases; in this work we

focus on the latter case. In order to formally introduce the definition of a stopping

problem we first present the notion of a stopping time.

Definition 1.1.1. Given a filtered probability space (Ω,F , {Ft}t≥0, P), a random

variable τ : Ω → [0, ∞) is said to be an Ft-stopping time provided {τ ≤ t} ∈ Ft for

all t ≥ 0.

Intuitively we say that τ is a stopping time if the event {τ ≤ t} can be determined

with the knowledge available up to time t. All decisions in stopping problems must

be based on the information available prior to the present time and no anticipation is

allowed.

Definition 1.1.2. Let T be a time horizon and (Ω,F , {Ft}t≥0, P) be a filtered probability

space. Denote by G = (Gt)t≥0 an Ft-adapted gain process. An optimal stopping problem

is the problem of identifying the stopping time τ∗ so that

V = E[Gτ∗ ] = sup
0≤τ≤T

E[Gτ] . (1.1.1)

Here, V denotes the value function, which models the optimal expected

reward/cost. An infinite time horizon is allowed, and usually leads to a subset of

stopping problems for which explicit solutions are often attainable. In this first part
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of this thesis we will first present a variation of a previously explored fixed horizon

stopping problem, and will afterwards direct our attention to a randomized terminal

time set up, in order to investigate ways of overcoming complications arising under

the original set up.

Optimal stopping problems have been a major object of study for approximately 60

years now and there exists currently a wide collection of techniques for approaching

them; these are determined by the nature of the underlying process. Techniques

that take advantage of the unconditional finite-dimensional distribution of a gain

process are categorized within the subgroup of techniques referred to as the Martingale

Approach, with the Snell envelope being its most important concept (cf. [55]). Snell was

the first to characterize the solution to a discrete-time stopping problem as the minimal

supermartingale dominating its gain process .

On the other hand, techniques that exploit the analytical structure of conditional

transition functions are referred to as the Markovian Approach; these attempt to study

optimal stopping problems through functions of initial points in a state space. Such

an approach deals with the extension of problem (1.1.1) to a state space (E,B), where

Gt = G(Xt) defines the Markovian representation for a measurable function G, with

a Markovian family of processes ((Xt)t≥0, (Ft)t≥0, (Pt)x∈E). Here, X = (Xt)t≥0 is a

Markov process with values in E. This approach leads to problems

V(x) = sup
τ∈T

Ex[G(Xτ)] ,

where Px(X0 = x) = 1 and T = {τ : 0 ≤ τ ≤ T}. If the Markov representation of

the problem is valid, analytical tools provided by the theory of Markov processes can

often be utilized; it is through the infinitesimal generator of the underlying process that

a close link between optimal stopping and free-boundary problems can be established.

Problems addressed in next chapters admit such a representation.

This relation between optimal stopping and free-boundary problems was explored

by Mikhalevich (cf. [42]) and several other authors during the 1960s. Work during this

decade includes that of McKean (cf. [40]), who first transformed into a free-boundary

problem the optimal stopping problem linked to pricing an American Call option. The
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success of mathematical finance would later on attract further attention to optimal

stopping; see [49] for an extensive overview of the theory and applications of optimal

stopping and free-boundary problems.

Optimal Prediction Problems

Optimal Prediction problems can be defined as a subgroup of optimal stopping

problems concerned with stopping a certain stochastic process as close as possible

to its ultimate maximum, over a pre-defined period of time and with no anticipation

allowed. These problems are of great theoretical interest and find applications within

fields of financial engineering. Well-known discrete-time variants of these problems

include the Secretary and House Selling problems (cf. [9]).

In this work we concern ourselves with continuous-time variants of these problems.

A continuous time optimal prediction problem was first studied by Graversen, Peskir

and Shiryaev for the case of a Brownian motion B = (Bt)t≥0 (cf. [29]). The authors

analysed the optimal stopping problem

V = inf
τ∈[0,1]

E[(Bτ − max
0≤s≤1

Bs)
2] .

An explicit solution to the problem was obtained through the method of time change.

Afterwards, Du Toit and Peskir continued in [20] their study considering an extension

to the case of a drifted Brownian motion Bλ = (Bλ
t )t≥0; they presented a solution to the

problem

V = inf
τ∈[0,1]

E[(Bλ
τ − max

0≤s≤1
Bλ

s )
2] .

In particular, the stopping rules obtained for both cases above were defined as the first

entry time of an underlying stochastic process to some stopping region; the process

accounted for the distance between the Brownian motion and its running maximum.

Within a financial context and considering a geometric Brownian motion Z, Du Toit

and Peskir (cf. [21]), Shiryaev, Xu and Zhou (cf. [54]) and Zhou, Dai, Jin and Zhong (cf.

[60]) derived results on the stopping problems

V1 = inf
τ∈[0,T]

E

[MT

Zτ

]

and V2 = sup
τ∈[0,T]

E

[ Zτ

MT

]

, (1.1.2)
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where MT stands for the maximum of Z over the entire time interval [0, T]. The use

of probabilistic techniques in [21] and [54], and a PDE approach in [60] enabled the

authors to derive the so-called Bang-Bang strategies, defining a goodness index through

parameters describing the dynamics of Z and categorizing most processes as either good

(never to stop) or bad (immediate stop). Problems V1 and V2 surprisingly led to different

optimal stopping rules for a given subset of parameters; in this case, the solution

to V1 was given as a time-dependent optimal stopping boundary for an underlying

stochastic process to cross.

More recently, Espinosa and Touzi (cf. [26]) and Elie and Espinosa (cf. [25]) have

addressed optimal stopping problems for a more general family of mean reverting

diffusions with similar financial motivations. In their case the terminal time bounding

the time space is random and it is given by the first hitting time of a diffusion

process to 0. In [26] the solution to the optimal stopping problem infτ∈[0,θ] E[U(Xτ −

max0≤s≤θ Xs)] is defined as the first crossing time of a time dependent boundary by

some underlying stochastic process, where X stands for some mean reverting diffusion

and U is an increasing and convex loss function; θ is the first hitting time of X to 0. On

the other hand, [25] provides a solution to the problem

inf
τ∈[0,θ]

E

[(max0≤s≤θ Xs − Xτ

max0≤s≤θ Xs

)2]

.

In this case, results are consistent with those in [21], [54] and [60], and a restrictive time

dependent stopping boundary is defined, so that immediate stop is close to optimal.

The first part of this thesis makes use of the extensive collection of optimal

stopping techniques under a Markovian approach reviewed in [49] and explored in

[17, 21, 25, 54, 60] and references therein. Chapter 2 offers an introduction to the

notation and approach to optimal stopping problems for continuous time processes,

and summarizes a set of results of use in order to study prediction problems to follow.

Next, Chapter 3 analyses a variation of problems (1.1.2), focused on minimizing a

non-linear utility function of the ratio between a geometric Brownian motion and its

absolute maximum over the entire time interval. The Chapter offers optimal stopping

strategies that apply under certain restrictions regarding the parameters describing

the model, and characterizes the resulting value functions. The solutions show
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consistency with the previous research aforementioned and suggest only ever stopping

bad processes, defined in terms of a relation between parameters in the stochastic

process. In addition, the work discusses the intractability of the stopping problem

via reduction to a free boundary problem, in cases when optimal stopping times are

expected to respond to departures of a diffusion from the origin value 0.

Chapter 4, on the other hand, brings together the theory in [49] and randomization

techniques examined in [17], [2] and [31] in order to analyse generalizations of

optimal prediction problems to families of utility functions covering wider cases not

presented in the literature. This is done in an extended time-randomized context,

where the stopping terminal deadline is random and independent of the state of

the diffusion of interest. In this work, we derive a family of stopping problems

which are time-independent with the underlying diffusion being two-dimensional. We

discuss the existence of optimal stopping boundaries and obtain complete solutions

as the unique solution to a boundary value problem. Our results allow for us to

computationally build numerical approximations of fixed terminal time set-up optimal

stopping problems and suggest the possibility of extending optimal stopping rules

defined in [21] to a more general family of power utility measures. The results on this

work have been submitted for publication to SIAM Journal on Control and Optimization.

1.2 PART 2: MARKOV DECISION PROCESSES AND FINANCE

Markov decision processes (MDPs) provide a mathematical framework for

modelling decision making in situations where outcomes are partly random and partly

under the control of a decision maker. They are useful for the study of diverse

optimization problems generally solved via dynamic programming, and have found

applications in diverse areas such as epidemic processes, queueing systems, machine

learning and economics.

A Markov decision process is in essence a discrete-time stochastic control process,

it allows for a generalization to a continuous time set up, this however requires a

significant amount of additional theory and is out of the scope of this thesis. The most
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common set up of an MDP consists of a system evolving over discrete-time points and

controlled by a set of sequential decisions. Transitions of the system state are random

and Markovian, meaning transition to future states is independent of past history.

Given a current system state, a decision maker chooses an admissible action, generally

influencing the transition to a new state according to some stochastic law. The decision

maker receives rewards according to his choices of controls for every system state,

and aims to optimally control the system evolution process. The general optimization

criterion is to maximise the expected value of the sum of random rewards. Figure 1.1

presents the schematic evolution of an MDP.

Definition 1.2.1. A Markov decision process is a sequence of random variables X =

(Xn)n≥0 describing the stochastic evolution of a system state. It is modelled by a 4-

tuple (E,A, Q·(·, ·), R·(·, ·)) where:

• E denotes the state space that process X takes values on.

• A denotes the action space. For any specific x ∈ E at time n, only a subclass of

actions Dn(x) ⊆ A may be admissible.

• Qn(B|x, a) is the stochastic transition kernel; it models the probability for action

a ∈ A in state x ∈ E at time n, to lead to some state y ∈ B at time n + 1, for B ⊆ E.

• Rn(x, a) is the one-stage reward of the system at time n, if the current state is x and

action a ∈ A is taken.

Figure 1.1: Schematic representation of the evolution of a Markov Decision Process

In order to introduce the concept of a Markov decision problem we first define the

notion of a Markov policy. Loosely, this is a sequence of decision rules π = (πn(·))n≥0

7



with πn(x) ∈ Dn(x); it determines the action taken by the controller for all x ∈ E

and time n ≥ 0. If π = (π(·))n≥0, i.e. if πn(·) is independent of n for all n ≥ 0, the

policy is named stationary and is independent of time evolution; stationary policies are

fundamental to the theory of infinite horizon MDPs and are essential to the work in

this thesis.

Definition 1.2.2. A Markov decision problem is the problem of identifying the optimal

Markovian policy π which will maximize, over an horizon N, the expected sum of

rewards given by

Eπ
[ N−1

∑
k=0

Rk(Xk, πk(Xk))
]

, (1.2.1)

where the expectation is taken over the probability distribution induced by policy π.

Equation (1.2.1) is usually referred to as the total reward criterion and, as mentioned,

infinite time horizon N is allowed. It is possible, and sometimes convenient, to extend

the scope of policies π to history-dependent (non-Markovian) policies. As well as that,

we note that it is possible to include a discounting parameter in the characterization

of (1.2.1). In general, there exist several different characterizations of optimality

criteria and vast variations on formulations of discrete-time Markov decision processes,

including problems with constraints, partial state observations, average reward criteria

and so on. We will however restrict ourselves to the theory relevant to the second part

of this thesis.

Markov decision processes were known at least as early as the 1950s with the

work of Bellman (cf. [3]). In his work, Bellman develops functional equations for

finding optimal policies through the introduction of the concepts of state, action and

transition. Substantial research establishing the importance of the model resulted

later from Howard’s book (cf. [32]) published in 1960. The foundations on Markov

decision models, and the formalization of the model in use up to these days, are due

to Dubins and Savage (cf. [22]) and Blackwell (cf. [7]) respectively. Dubins and Savage

analysed a gambling model whose underlying ideas are very similar to MDPs in terms

of structure. On the other hand, Blackwell first established a generalized description

of action sets, rewards and transition probabilities and emphasized the importance of

8



stationary policies in his work.

Another important work of special relevance to this part of the thesis is that of

Bertsekas and Shreve (cf. [4]), which provides detailed analysis on the probabilistic

structure and measurability questions for the generalized Borel model for MDPs. For a

detailed introduction and extensive overview of these problems and their theory, along

with further references, we refer to the work of Puterman (see [51]).

MDPs and Wealth Optimization Problems

Wealth optimization or portfolio optimization problems are widely studied topics

within the subject of financial engineering. Their concern is on choosing the optimal

proportions of various assets to be held in a financial portfolio, according to some

chosen performance criterion. This criterion usually combines considerations of the

expected value of the portfolio’s return, its dispersion and some measures of financial

risk.

Let T be a finite time horizon and denote by X = (Xt)t≥0 a continuous time stochastic

process defined on a filtered probability space (Ω,F , {Ft}t≥0, P). Assume that X

describes the evolution of a wealth process dependent on an allocation strategy or policy,

taking values on a set Π. In the second part of this thesis we concern ourselves with a

variation of a optimization problem of the form

V(t, x) = sup
π∈Π

E[U(Xπ
T )|Xπ

t = x] , (1.2.2)

for all (t, x) ∈ [0, T]× R+. Here, the supremum is taken over all admissible policies in

Π, and function U is the utility determining a certain performance criterion.

Research within the field of portfolio optimization was triggered during the late 60s

with the work of Merton (cf. [41]), who made use of stochastic control techniques

for maximizing expected discounted utilities of consumption. Later, his work was

extended to different default-free frameworks where market uncertainty was mainly

modelled by continuous processes with Brownian components, such work includes

that of Fleming and Pang (cf. [28]), Karatzas and Shreve (cf. [34]) and Pham (cf. [50]),

among others.
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In the last decade, it is the optimal investment linked to defaultable claims that has

attracted attention. High yield corporate bonds offer attractive risk-return profiles and

have become popular in comparison to stocks or default-free bonds; recent work in the

area includes that of Bielecki and Jang (cf. [5]), Bo et al. (cf. [8]), Lakner and Liang (cf.

[37]) and Capponi and Figueroa-López (cf. [16]). Authors Bielecki and Jang (cf. [5])

first considered a market including a defaultable bond, a risk-free account and a stock

driven by Brownian dynamics, and analysed optimal asset allocations for a variation

of problem (1.2.2) with a risk averse CRRA utility, given by

V(t, x, h) = sup
π∈Π

E

[ (Xπ
T )

γ

γ

∣

∣

∣
Xπ

t = x, Ht = h
]

, with 0 < γ < 1, (1.2.3)

for all (t, x, h) ∈ [0, T] × R+ × {0, 1}; here h denotes the current value of a default

process H = (Ht)t≥0 that models the state of the defaultable bond under the intensity

based approach to credit risk (see [6]). For this matter, the authors assumed constant

parameters governing the system and default intensity, and derived closed form

solutions for the optimal allocations, pointing out that investment on defaultable

securities is only justified under the presence of reasonable interest premiums. In

addition, since a Brownian asset is invariant to default event risk, their results allocate

it a constant fraction of wealth in a similar fashion to [41].

Bo et al. (cf. [8]) approached a perpetual allocation problem for an investor with

logarithmic utility, considering a defaultable perpetual bond along with a traditional

stock and a risk-free account in a similar manner to [5]. Their work modelled

stochastically the intensities and premium process including a common Brownian

factor, and postulated the price process of the defaultable bond based on heuristic

arguments instead of arbitrage-free arguments. Their results establish, in the same

fashion to Bielecki and Jang, monotonicity conditions on the optimal investment on

defaultable bonds with respect to the risk premium and recovery of wealth at default.

More recently, Lakner and Liang (cf. [37]) employed duality theory to obtain similar

optimal allocation strategies in a 2-way market, including a continuous time money

market account and a defaultable bond whose prices can jump; and Capponi and

Figueroa-López (cf. [16]) extended previous work in [5, 8, 37] to a defaultable market

with different economical regimes, where a defaultable bond, a money market and a
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stock are all dependent on a finite state continuous time Markov process Y = (Yt)t≥0;

in their work they obtained explicit solutions to the optimization problem

V(t, x, h; y) = sup
π∈Π

E[U(Xπ
T )|Xπ

t = x, Ht = h, Yt = y]

with logarithmic and risk averse CRRA utilities, for all (t, x, h) ∈ [0, T]× R+ × {0, 1}

and y ∈ {y1, ...yN}. A numerical economic analysis highlighted the preference

of investors to buy defaultable bonds when the macroeconomic regimes yield high

expected returns and the planning horizon is large.

Results in the literature do however primarily relate to markets incorporating

Brownian-driven assets and are limited with regards to the choices of utility functions

that they provide solutions for. The work in the second part of the thesis incorporates

the presence of a defaultable bond in a finite horizon market with a bank account and

a continuous-time jump asset driven by a piecewise deterministic Markov process (see [1]).

In this circumstance, it is possible to build a bridge between a problem formulated

in continuous time and the theory of discrete-time MDPs, reducing the optimization

problem to a discrete-time model by considering an embedded state process. Similar

financial markets, in absence of the defaultable claim, have previously been explored

by Kirch and Runggaldier (cf. [35]) and Bäuerle and Rieder (cf. [11]). Authors

Kirch and Runggaldier (cf. [35]) presented an algorithm for the evaluation of hedging

strategies for European claims, addressing the optimization problem

V(t, x, s) = min
π∈Π

E[l(F(ST)− x −
∫ T

t
πsdSs)|Xπ

t = x, St = s] ,

which aims to minimize the expected value of a convex loss function l of the hedging

error of a claim with payoff F, for all (t, x, s) ∈ [0, T]× R2
+. Here, S is an asset whose

dynamics are driven by a geometric Poisson process and Xπ is the available capital

under π. Strategies in Π are given by units held in the risky asset at different times.

On the other hand, Bäuerle and Rieder (cf. [11]) considered the general portfolio

utility maximization problem (1.2.2). In their case, the wealth process X reflects the

evolution of wealth in a portfolio mixing a bank account and a generalized family of

pure jump models; in addition, utility U is any increasing a concave function. The

authors make use of the embedding procedure previously explored by Almudevar (cf.

11



[1]) in order to convert the problem into a discrete-time MDP, and offer a proof for the

validity of value iteration and policy improvement algorithms to approximate optimal

allocation policies.

The second part of this thesis makes use of results on credit risk presented in

[6] along with the theory for MDPs reviewed in [51] and [13]. Chapter 5 offers an

introduction to the notation and approach to discrete-time Markov decission processes,

and summarizes a set of results of use in order to analyse an MDP derived from a

portfolio optimization problem in Chapter 6. Here, the work of Bäuerle and Rieder in

[11–13] is extended to the context of defaultable markets explored in [5, 8, 16, 37] and

references therein. Model parameters within a pure jump asset can be determined so

that a Brownian market is approximated and such an approach overcomes the need to

assume any particular form for the utility function. Furthermore, it provides means of

analysing portfolio strategies incorporating illiquid markets. Through the conversion

of the optimization problem into a Markov decision process (MDP), its value function

is characterized as the unique fixed point to a dynamic programming operator and

optimal wealth allocations are numerically approximated through value iteration.

In order for such a characterization to hold, default intensities and interest rates

are assumed constant in a similar manner to that in [5]. However, an extension to

Markov modulated regimes similar to [16] is discussed in the closing section. Our

numerical analysis explores the dependence of optimal portfolio selections on the risk

premium and different parameters describing the system, and extends the work in [5, 8,

16, 37] to more general families of logarithmic and exponential utility functions. The

results highlight the nature of the significantly different allocation procedures under

an exponential family of utilities, and the existence of a dependency on optimal stock

allocation to default event, in a model with short selling restrictions. The results on this

work are currently being edited and will soon be submitted for publication.

12



PART I

RESULTS ASSOCIATED TO OPTIMAL

PREDICTION PROBLEMS
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CHAPTER 2

RESULTS ON OPTIMAL STOPPING AND A RANDOMIZATION

TECHNIQUE

We begin the first part of this thesis offering an introduction to the notation and

approach to optimal stopping problems for continuous time processes. We summarize

a set of results under a Markovian approach presented in the theory in [49]; these will

be of use in order to analyse optimal prediction problems presented in the next two

chapters. In addition, we introduce some results on free-boundary problems and a

finite horizon randomization technique playing a key role in following work.

Let X = (Xt)t≥0 denote a Markovian process taking values in a measurable space

(E,B) and defined on a filtered probability space (Ω,F , (Ft)t≥0, Px), which satisfies

the usual conditions of completeness and right-continuity. It is assumed that E = Rn

for some n ≥ 0 and B is the Borel σ-algebra on E. Under probability measure Px,

process X starts at x ∈ E and is right-continuous; in addition

Xτn

n→∞−−−→ Xτ Px-a.s. ,

for all sequence of stopping times such that τn ↑ τ as n → ∞. It is also assumed that

the mapping x 7→ Px(F) is measurable for all F ∈ F .

We recall that a Markovian method of solution deals with optimal stopping problems

of the form

V(x) = sup
τ∈T

Ex[G(Xτ)] , (2.0.1)

where T = {τ : 0 ≤ τ ≤ T} and the expectation is taken with respect to Px. Here, it is
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assumed that function G : E → R satisfies

Ex

[

sup
0≤t≤T

|G(Xt)|
]

< ∞

for all x ∈ E, and we recall that infinite time horizon is allowed. Under this setting,

a decision on whether to stop or continue observing process X evolve in time depends

only on its present state, not on its past. Thus, it poses a stopping problem of a random

path in the state space E.

The general theory of optimal stopping in [49] defines the notion of a stopping set D,

along with a complementary continuation set C, so that stopping is optimal whenever

the current state of the diffusion of interest falls within D. It holds that E = D ∪ C and

D ∩ C = ∅, so that

τ∗ = τD = inf{t ≥ 0 : Xt ∈ D} (2.0.2)

stands for the optimal stopping time offering a solution to (2.0.1), if any. In most

optimal stopping problems, heuristic arguments about the shape of D make it possible

to guess its generalized mathematical representation; this ability is crucial in solving

these problems. In these cases, τ∗ will attain a supremum and the first part of the

problem is reduced to identifying the shape of D; having to additionally compute the

value function V(x) as explicitly as possible.

2.1 GENERAL RESULTS ON OPTIMAL STOPPING

The following results refer to the theory of optimal stopping for continuous time

Markovian processes and can be found in [49] (Chapter 1, subsection 2.2). We

summarize this theory for future reference and all results will be stated without proof.

In what follows no different treatment of finite horizon and infinite horizon stopping

problems is necessary. We note that whenever T < ∞, time evolution and its closeness

to T is a factor of importance and therefore stopping problem V in (2.0.1) should be

reformulated as

V(t, x) = sup
0≤τ≤T−t

Et,x[G(t + τ, Xt+τ)] , (2.1.1)
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for all (t, x) ∈ [0, T] × E; here, the expected value is taken with respect to a measure

Pt,x such that Pt,x(Xt = x) = 1. The following results are obtained for problem (2.0.1)

with T = ∞ and extend to the finite horizon case upon noting that the state space E

admits the representation R+ × E, and process Yt = (t, Xt) is Markovian. Moreover, it

holds that V(T, x) = G(T, x) for all x ∈ [0, T]× E and therefore τD ≤ T is finite.

From now on we assume T = ∞ unless otherwise specified. For problem V in (2.0.1),

we define the stopping set

D = {x ∈ E : V(x) = G(x)} , (2.1.2)

and continuation set

C = {x ∈ E : V(x) > G(x)} . (2.1.3)

We observe that if the value function V is lower semicontinuous and the gain function

G is upper semicontinuous, then C is open and it follows that D is closed. In this case,

τD in (2.0.2) is an Ft-stopping time since both X and (Ft)t≥0 are right continuous.

Definition 2.1.1. Let F : E → R be a measurable function so that F(Xτ) ∈ L1(Px) for

all stopping times τ ∈ T . Function F is said to be superharmonic if

ExF(Xτ) ≤ F(x) ,

for all x ∈ E.

The following result lists necessary conditions for the existence of an optimal

stopping time and settles the optimality of τD in V under the definition of D in (2.1.2).

Theorem 2.1.1. Assume there exists an optimal stopping time τ∗ in problem (2.0.1), so that

V(x) = ExG(Xτ∗)

for all x ∈ E. Then, value function V is the smallest superharmonic function dominating the

gain function G on the state space E. In addition, if V is lower semicontinuous and G is upper

semicontinuous, then

• stopping time τD with D given by (2.1.2) is such that τD ≤ τ∗ and is optimal in (2.0.1);
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• the stopped process (V(Xt∧τD
))t≥0 is a right-continuous martingale under Px for all

x ∈ E.

In addition, the following complementary result provides sufficient condition for the

existence of an optimal stopping time in problem V.

Theorem 2.1.2. Assume there exists a smallest superharmonic function V̂ that dominates

the gain function G on E in the stopping problem (2.0.1). Assume as well that V̂ is lower

semicontinuous and G is upper semicontinuous.

Set D = {x ∈ E : V̂(x) = G(x)} and let τD be defined by (2.0.2). Then,

• V̂ = V and τD is optimal in (2.0.1) if Px(τD < ∞) = 1 for all x ∈ E;

• there is no optimal stopping time (with probability 1) in (2.0.1) if Px(τD < ∞) < 1 for

some x ∈ E.

We note that condition Px(τD < ∞) = 1 is always satisfied whenever T < ∞,

since (T, x) ∈ D for all x ∈ E. In this case, Theorem 2.1.2 is particularly useful

since it justifies the existence of an optimal stopping time identified with τD in (2.0.2).

These results apply whenever one can prove from the definition of V that it is lower

semicontinuous. The following corollary presents a way of tackling stopping problems

fitting this criteria.

Corollary 2.1.3 (Existence of a Stopping Time).

Infinite Horizon. Consider optimal stopping problem (2.0.1) and assume that V is lower

semicontinuous and G is upper semicontinuous. If Px(τD < ∞) = 1 for all x ∈ E, then the

optimal stopping time is given by τD, with D as in (2.1.2). If Px(τD < ∞) < 1 for some x ∈ E,

then there is no optimal stopping time with probability 1.

Finite Horizon. Consider optimal stopping problem (2.1.1) and assume that V is lower

semicontinuous and G is upper semicontinuous. Then the optimal stopping time is given by

τD, with D as in (2.1.2).

It has therefore been shown that optimal stopping problem V in (2.0.1) is equivalent

to the problem of finding the smallest superharmonic function V̂ that dominates the
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gain function G on the state space E. We note that while V poses a maximization

problem, same arguments apply to optimal stopping problems linked to minimization

problems. In these cases, the focus will be given to finding the biggest subharmonic

function dominated by the gain function over the entire state space. Results on

the existence of an optimal stopping time will in this case follow from the upper

semicontinuity of the value function.

2.2 FREE-BOUNDARY PROBLEMS

A traditional way of finding superharmonic (or subharmonic) functions dominating

(or dominated by) the gain function G is making use of solutions to free-boundary

problems. These are differential equations to be solved for both an unknown function

and domain; the segment of the boundary of the domain is the unknown free boundary.

Well-known free-boundary problems include the Stefan and obstacle problems (see [58]

and [15]).

Consider the maximization problem (2.0.1), due to the Markovian structure of the

process X, it is possible to set up a link between problem V and a deterministic equation

that governs X in mean. This link takes the form of a partial differential equation

when X is continuous, or a partial integro-differential equation when X is a jump

process. The basic idea of this approach is that the smallest superharmonic function

V̂ dominating G solves

AXV̂(x) ≤ 0 for all x ∈ E (V̂ minimal) , (2.2.1)

V̂(x) > G(x) for all x ∈ C , (2.2.2)

V̂(x) = G(x) for all x ∈ D , (2.2.3)

where AX stands for the infinitesimal operator of the Markovian process X, given by

AX f (x) = lim
t→0

Ex[ f (Xt)]− f (x)

t
,

and acting on suitable functions f : Rn → R. It is important to observe that both

V̂ and C (or D) are unknown in the system of equations (2.2.1)-(2.2.3), and need to
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be determined. In addition, we note that in the problems analysed in this thesis the

infinitesimal generator of X has a differential form.

Assuming the gain function G is smooth enough in a neighbourhood of ∂C, condition

(2.2.1) above is in general split into two different conditions, these depend on the nature

of the state process X and stopping set C and give rise to the concepts of continuous fit

and smooth fit. Roughly speaking, if process X immediately enters the interior of D

after starting at ∂C, value function V̂ solves

AXV̂(x) = 0 for all x ∈ C ,

V̂(x) = G(x) for all x ∈ D ,

∂V̂

∂x

∣

∣

∣

∂C
=

∂G

∂x

∣

∣

∣

∂C
(smooth fit) .

On the other hand, if process X does not immediately enter the interior of D after

starting at ∂C, value function V̂ solves

AXV̂(x) = 0 for all x ∈ C ,

V̂(x) = G(x) for all x ∈ D ,

V̂
∣

∣

∂C
= G

∣

∣

∂C
(continuous fit) .

We note that condition AXV̂(x) = 0 for all x ∈ C in the system of equations above

is linked to the statement that (V(Xt∧τD
))t≥0 is a martingale in Theorem 2.1.1. The

conditions of smooth and continuous fit will be formalized and further developed in

this thesis when necessary for our purposes.

2.3 THE SUPREMUM FUNCTIONAL AND THE NEUMANN PROBLEM

Assume from now on that that the state space is given by E = R. Let St define the

supremum process of X, given by

St = sup
0≤s≤t

Xs . (2.3.1)

Free-boundary problems linked to the supremum process are of particular interest in

this work; we therefore revise some results in [49] (Chapter 3) in relation to S, these will
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provide a base of analysis for Chapter 4 of this thesis. Under the settings introduced at

the beginning of this chapter, we consider the optimal stopping problem

V = sup
τ∈T

E[G(Xt, St)] , (2.3.2)

where T = {τ : 0 ≤ τ ≤ ∞}. We note that the process (Xt, St)t≥0 is Markovian and

therefore previous analysis within this chapter applies.

Results presented here extend to a finite horizon terminal time set-up, upon careful

reformulation of the state process in (2.3.2). This usually increases the degree of

complexity of problem V due to the importance of the time variable (time remaining

decreases as the state evolves). Such results do however fall outside the scope of this

thesis.

We note that process S is strictly increasing whenever St = Xt, and constant at times

when the values of S and X differ. Its characterization allowing for arbitrary starting

points s ∈ E and s ≥ x is given by

Ss
t = s ∨ St ,

for all t ≥ 0. The extension of (2.3.2) to an arbitrary starting point in {(x, s) ∈ R2 : s ≥

x} is given by

V(x, s) = sup
τ∈T

Ex,s[G(Xt, St)] , (2.3.3)

where the expectation is taken with respect to a probability measure for which P(X0 =

x, S0 = s) = 1.

It is important to note that the dimension of the extended optimal stopping problem

(2.3.3) will be that of the minimal underlying Markovian process that leads to a

solution; this could be smaller than the dimension of the initial process (Xt, St)t≥0. The

dimension of a stopping problem is in general a complicated thing to determine.

The Neumann Boundary Condition

The Neumann boundary condition is a type of boundary condition that when

imposed on an ordinary or a partial differential equation, it specifies the values that

the derivative of a solution is to take on the boundary of the domain.
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Assume that the gain function G : E → R in (2.3.3) is continuous. Furthermore,

assume the existence of an optimal stopping time τ∗ ∈ T for problem V in (2.3.3).

It follows from Corollary 2.1.3 that τ∗ is given by the first entry time of (Xt, St)t≥0

to the closed stopping set D in (2.1.2) and is denoted by τD. Hence, V admits the

representation

V(x, s) = Ex,s[G(XτD
, SτD

)] . (2.3.4)

We recall that the existence of a closed stopping set D implies the existence of an

open continuation set C. We furthermore make the assumption of the boundary ∂C of

C being regular, in the sense that for every starting point (x, s) ∈ ∂C the process (Xx
t , Ss

t)

immediately enters the stopping set D.

Under these conditions, if the process (Xt)t≥0 is continuous, it is shown in [49]

(Chapter 3, section 7) that the extended optimal stopping problem (2.3.4) solves a

boundary problem with Neumann boundary condition for all (x, s) ∈ C̄, i.e.

AXV(x, s) = 0 for x < s with s fixed, (2.3.5)

∂V

∂s
(x, s) = 0 for x = s, (2.3.6)

V
∣

∣

∂C
= G. (2.3.7)

We note that equation (2.3.6) stands for the Neumann condition on the boundary

alongside the diagonal x = s; here, the process (Xt, St)t≥0 can be identified with the

continuous process X.

2.4 A FINITE HORIZON RANDOMIZATION TECHNIQUE

The technique of terminal time randomization, modelled as a Poisson process, was

first introduced within the context of optimal stopping in order to offer approximations

for American option values and their selling boundaries in [17]. In this context,

randomizing the horizon T was done as a first step in a more general procedure; this

aimed to asymptotically reduce the variance while holding the mean in the random

parameter setting.
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Let V denote the finite horizon optimal stopping problem given in (2.1.1); we recall

that this is given by

V(t, x) = sup
0≤τ≤T−t

Et,x[G(t + τ, Xt+τ)] ,

for all (t, x) ∈ [0, T] × E. In this case the flow of time affects the value of V

and the dimensionality of the stopping problem gains a degree of complexity. The

characterization of the boundary (or boundaries) of the continuation set C, offering

a solution to problem V, usually relates to a time dependent functional defining the

threshold in the state space E where the process X takes its values.

Let N = (Nt)t≥0 denote an Ft-adapted Poisson process with jump intensity

parameter ω, independent to X. Randomizing the time horizon in problem V consists

on modelling T as the nth jump Tn in process N, and setting the jump intensity to

ω = n/T, for some n ∈ N. Note that the asymptotic dynamics of a counting process

Ñt =
T

n
Nt

resemble the flow of time as n tends to infinity, i.e.

dÑt ≈ dt as n → ∞ .

Under such characterization of the horizon deadline, and due to the exponential

distribution of jump times in N and its memoryless property, the closeness to time T

is independent on the current time t and only dependent on the current state k in the

jump process N. Under these circumstances, it is possible to set up a time-independent

Markovian optimal stopping problem

Ṽ(k, x) = sup
τ∈T

E[G̃(Nτ, Xτ)|FTk
] (2.4.1)

for all (k, x) ∈ {0, 1, ..., n − 1} × E, where T stands for the set of all stopping times

taking values in [Tk, Tn]. A detailed presentation of a stopping problem of this kind

will be presented in the opening section of Chapter 4 .

Note that the expected value of the randomized horizon and its variance are given

by

E[Tn] = T and Var[Tn] =
T2

n
.
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Upon satisfaction of certain continuity and measurability conditions guaranteeing the

existence of a solution in (2.4.1), it is possible to build approximations to stopping rules

for the original finite horizon problem V increasing the amount of steps n in the random

horizon setting and therefore asymptotically fixing the value of Tn to T.
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CHAPTER 3

AN OPTIMAL PREDICTION PROBLEM

Let T > 0 denote a given positive terminal time and Z = (Zt)0≤t≤T define a

geometric Brownian motion with drift µ ∈ R and volatility σ > 0, given by

Zt = Z0 exp{σBt + (µ − σ2/2)t}

on a filtered probability space (Ω,F , {Ft}t≥0, P). Here B = (Bt)0≤t≤T stands for a one-

dimensional standard Brownian motion with B0=0 and {Ft}t≥0 is the P-augmentation

of the filtration generated by B. Denote the running maximum process of Z as

Mt = max
0≤s≤t

Zs , t ∈ [0, T] . (3.0.1)

Note that MT is the ultimate maximum value that Z will reach before time T; due to

the stochastic nature of the process, the precise time for this to happen will only be

known at time T. In this chapter, we set up an optimal prediction problem and aim to

identify a stopping time τ ∈ [0, T] establishing an optimal stopping rule that optimizes the

expected value of a weight function measuring the closeness between MT and Z. In

view of the results in the literature presented in Chapter 1, we analyse a variation of

problems (1.1.2) making use of a non-linear utility function U(x) = (1− αx)2 of Zτ/MT

for different values of α ∈ (0, 1). We note that α < 0 would pose maximization problem

instead. This leads to the optimal prediction problem

V = inf
τ∈T

E

[

U
( Zτ

MT

)]

= inf
τ∈T

E

[(MT − αZτ

MT

)2]

, (3.0.2)

where T stands for the set of all Ft-stopping times τ ∈ [0, T].

This chapter offers optimal stopping strategies to problem (3.0.2) under some

restrictions on the parameters that define the model. The problem is first modified
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and adapted to the natural filtration of B in Section 3.1, while Section 3.2 presents a

Markov representation for its extension to all possible starting points, along with the

proof of existence of optimal stopping times. Section 3.3 offers partial results defining

stopping rules that show consistence with previous work; and Sections 3.4 and 3.5

focus on the application of different approaches in order to provide necessary proofs.

Finally, Section 3.6 offers a discussion of used methods and their drawbacks.

3.1 AN ALTERNATIVE EXPRESSION FOR V

The prediction problem (3.0.2) is not adapted since MT is not Ft-measurable.

Therefore, it does not fall within the scope of standard optimal stopping problems and

needs to be modified. Following work in [21], for any λ ∈ R we let Bλ = (Bλ
t )0≤t≤T

denote a drifted Brownian motion given by

Bλ
t = Bt + λt ,

for t ∈ [0, T]. Set λ = (µ − σ2/2)/σ, then Mt in (3.0.1) reads

Mt = Z0 exp{σSλ
t } , (3.1.1)

where Sλ = (Sλ
t )0≤t≤T is given by Sλ

t = max0≤s≤t Bλ
s . Thus, V in (3.0.2) is given by

V = inf
τ∈T

E
[(

1 − αe−σ(Sλ
T−Bλ

τ )
)2]

. (3.1.2)

We note (cf. [39]) that the cumulative distribution function of Sλ
t is given by

FSλ
t
(s) = P(Sλ

t ≤ s) = Φ
( s − λt√

t

)

− e2λsΦ
(−s − λt√

t

)

, (3.1.3)

for all (t, s) ∈ R2
+. Here Φ(·) stands for the cumulative distribution function of a

standard normal variable.

Lemma 3.1.1. Let function G be defined as

G(t, x) = (1 − αe−σx)2 + 2σα
∫ ∞

x
(e−σz − αe−2σz)(1 − FSλ

T−t
(z))dz (3.1.4)

for all (t, x) ∈ [0, T]× R+. Then, V in (3.1.2) may be expressed as the Ft-measurable optimal

stopping problem

V = inf
τ∈T

E[G(τ, Xτ)] , (3.1.5)

with process X = (Xt)0≤t≤T given by Xt = Sλ
t − Bλ

t .
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Proof. A similar approach to that in [21], using deterministic times and making use of

the law of total expectation, shows that for any t ∈ [0, T]

E

[

(

1 − αe−σ(Sλ
T−Bλ

t )
)2]

= E
[

E
[(

1 − αe−σ(Sλ
T−Bλ

t )
)2|Ft

]

]

= E

[

E
[(

1 − αe−σ[(Sλ
t −Bλ

t )∨(max0≤s≤T−t Bλ
t+s−Bλ

t )]
)2|Ft

]

]

.

The independent and stationary increments of Bλ
t imply that

(

max
0≤s≤T−t

Bλ
t+s − Bλ

t

)∣

∣

∣
Ft

Law
= Sλ

T−t ,

so that

E

[

(

1 − αe−σ(Sλ
T−Bλ

t )
)2]

= E

[

(1 − αe−σXt
)2

FSλ
T−t

(Xt) +
∫ ∞

Xt

(1 − αe−σz
)2

dFSλ
T−t

(z)
]

.

Noting that limz→+∞(1 − αe−σz)2(1 − FSλ
T−t

(z)) = 0, we integrate by parts the above

expression to obtain

E

[

(

1 − αe−σ(Sλ
T−Bλ

t )
)2]

= E

[

(1 − αe−σXt)2 + 2σα
∫ ∞

Xt

(e−σz − αe−2σz)(1 − FSλ
T−t

(z))dz
]

= E

[

G(t, Xt)
]

.

Arguments based on each stopping time being the limit of a decreasing sequence of

discrete stopping times (cf. [21] & [24]), allow for us to extend this result to all stopping

times, so that

V = inf
τ∈T

E[G(τ, Xτ)] ,

completing the proof.

Function G in (3.1.4) is referred to as the gain function for the stopping problem V.

3.2 EXTENSION OF V AND EXISTENCE OF AN OPTIMAL STOPPING TIME

We shall make use of Markovian techniques within the theory of optimal stopping

presented in Chapter 2. For this, we recall from (2.1.1) that a Markovian approach to

stopping problems with finite horizon deals with the extension of problem V in (3.1.5)

to

V(t, x) = inf
0≤τ≤T−t

Et,x[G(t + τ, Xt+τ)] , (3.2.1)
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for all (t, x) ∈ [0, T]× R+; here, the expectation is taken with respect to a measure Pt,x

such that Pt,x(Xt = x) = 1. We note that the original problem (3.1.5) is obtained as the

special case V = V(0, 0).

However, in order to redefine problem (3.2.1) in a rather tractable way, it is necessary

to know how X depends on its starting value x ≥ 0. It is shown in [30] that the process

Xt = Sλ
t − Bλ

t , with X0 = x ≥ 0, has the law of a Brownian motion with negative

drift −λ reflected at 0. In addition, it is known (c.f. [20]) that this shares the law of the

process Xx = (Xx)0≤t≤T defined by

Xx
t = x ∨ Sλ

t − Bλ
t , (3.2.2)

so that, for any x ≥ 0 and t ∈ [0, T] fixed, it holds that X under Pt,x is equal in law to

Xx under P.

Lemma 3.2.1. The optimal stopping problem V in (3.1.5) admits an optimal stopping time and

can be extended to

V(t, x) = Et,x[G(t + τD(t, x), Xt+τD(t,x))] = E[G(t + τD(t, x), Xx
τD(t,x)

)] , (3.2.3)

with

τD(t, x) = inf{s ∈ [0, T − t] : (t + s, Xx
s ) ∈ D} , (3.2.4)

for all (t, x) ∈ [0, T]× R+ and some D ⊆ [0, T]× R+.

Note. The subset D ⊆ [0, T]× R+ will be referred to as the stopping set.

Proof. We note from (3.1.4) that G is continuous in (t, x), as well as Xx on x. In addition,

we note that

E[G(t, Xx
t )] = E

[

(1 − αe−σXx
t )2 + 2σα

∫ ∞

Xx
t

(e−σz − αe−2σz)(1 − FSλ
T−t

(z))dz
]

< E

[

1 + 2σ
∫ ∞

0
e−σzdz

]

< ∞ ,

for all t ∈ [0, T]. The use of the dominated convergence Theorem implies that the

mapping (t, x) 7→ E[G(t + τ, Xx
τ)] is continuous for all τ ∈ T . As a consequence,

the extended V given in (3.2.1) is upper semicontinuous for all (t, x) ∈ [0, T] × R+.

The interpretation of Corollary 2.1.3 for minimization stopping problems entails the
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existence of a stopping region D ⊆ [0, T]× R+ and optimal stopping time τD in (3.2.4)

allowing for the characterization of the extension of V in (3.2.3).

Results in Section 2.1 indicate that the extended V in (3.2.3) is given by the biggest

subharmonic function dominated by the gain function G on the entire state space.

Function G is a highly non-linear function at low values of x, as observed in Figure

3.1. Lemma A.1.1 in Appendix A shows that, for all (t, x) ∈ [0, T]× R+, it is possible

Figure 3.1: Value of function G for x ∈ [0, 4), with T = 1, α = 1, λ = −0.5 and µ = 0.

A high non-linearity is observed at low values of x; in addition, it rapidly approaches

value 1 as x departs from 0, cause of the intuitive understanding of optimal stopping

times coming at points of significant excursions of the process X from 0.

to rewrite function G as

G(t, x) = 1 −
(

2αe−σx − α2e−2σx
)

Φ
( x − λ(T − t)√

T − t

)

+
( α2σ

λ − σ
e2(λ−σ)x − 2ασ

2λ − σ
e(2λ−σ)x

)

Φ
(−x − λ(T − t)√

T − t

)

+
4α(σ − λ)

2λ − σ
e

σ
2 (σ−2λ)(T−t)Φ

(−x + (λ − σ)(T − t)√
T − t

)

+
α2(λ − 2σ)

λ − σ
e2σ(σ−λ)(T−t)Φ

(−x + (λ − 2σ)(T − t)√
T − t

)

, (3.2.5)
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for all λ ∈ R/{ σ
2 , σ}. If λ = σ

2 we get

G(t, x) = 1 + 2σα

√

T − t

2π
e
− (x+ σ

2 (T−t))2

2(T−t) −
(

2αe−σx − α2e−2σx
)

Φ
( x − σ

2 (T − t)√
T − t

)

−
(

2α2e−σx + 2α(1 + σx) + σ2α(T − t)
)

Φ
(−x − σ

2 (T − t)√
T − t

)

+3α2eσ2(T−t)Φ
(−x − 3σ

2 (T − t)√
T − t

)

,

and if λ = σ, function G is given by

G(t, x) = 1 − 2σα2

√

T − t

2π
e
− (x+σ(T−t))2

2(T−t) −
(

2αe−σx − α2e−2σx
)

Φ
( x − σ(T − t)√

T − t

)

−
(

2αeσx − α2(1 + 2σx)− 2α2σ2(T − t)
)

Φ
(−x − σ(T − t)√

T − t

)

.

In addition, we recall from (2.1.2) that, for any starting (t, x) ∈ [0, T] × R+, the

optimal stopping time takes place whenever the current state of the two-dimensional

Markovian process (t + s, Xx
s )0≤s≤T−t falls within the subset of the state space where

the values of G and V are the same, so that the stopping set is given by

D = {(t, x) ∈ [0, T]× R+ : V(t, x) = G(t, x)} ,

and is a closed set. The continuation set C was defined in (2.1.3) as

C = Dc = {(t, x) ∈ [0, T]× R+ : V(t, x) < G(t, x)} .

We note that D ∪ C = [0, T]× R+. In addition, since the terminal time indicates forced

stopping, so that {T} × R+ is always a part of D, we have τD ≤ T. Also, V(t, x) ≤

G(t, x) for all (t, x) ∈ [0, T]×R+, since immediate stopping is always possible in (3.2.3).

3.3 CHARACTERIZATION OF THE STOPPING SET

The shape of the stopping set is dependent on the value of parameters µ and σ,

which describe the dynamics of the process Z. The following results provide partial

characterizations of D and establish Bang-Bang stopping strategies for several choices

of parameters, allowing for different α ∈ (0, 1); we recall that Bang-Bang strategies

apply whenever [0, T)× R+ is fully included in either D or C. The theorem is stated

without proof and results proving its different parts are postponed to the next sections.
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Techniques of use are rather direct, and a discussion on the intractability of the problem

through its reduction to a free-boundary problem is included in Section 3.6.

Theorem 3.3.1. The optimal stopping set D for the optimal stopping problem (3.2.3) is

partially characterized by the following expressions. If 0 < α ≤ 1
2

D =











[0, T]× R+ when µ ≤ − σ2

2 ,

{(T, x) : x ≥ 0} when µ ≥ σ2

2 .
(3.3.1)

If 1
2 < α ≤ 2

3

D =











[0, T]× R+ when µ ≤ − σ2

2 ,

{(T, x) : x ≥ 0} when µ ≥ 3σ2

2 .
(3.3.2)

Finally, if 2
3 < α ≤ 3

4

D = {(T, x) : x ≥ 0} when µ ≥ 3σ2

2
. (3.3.3)

Note that lower values of α increase our ability to describe D. This is because the

manipulation of the utility function U, with respect to α, triggers several beneficial

inequality properties on a differential operator closely related with the infinitesimal

generator of the underlying process X, as we will see in Section 3.4. The following

corollary follows from Theorem 3.3.1 and characterizes stopping rules for the original

non-extended stopping problem V in (3.1.5).

Corollary 3.3.2. The optimal stopping rule for problem (3.1.5) is partially characterized by the

following expressions. If 0 < α ≤ 1
2

τD(0, 0) =











0 when µ ≤ − σ2

2 ,

T when µ ≥ σ2

2 .
(3.3.4)

If 1
2 < α ≤ 2

3

τD(0, 0) =











0 when µ ≤ − σ2

2 ,

T when µ ≥ 3σ2

2 .
(3.3.5)

Finally, if 2
3 < α ≤ 3

4

τD(0, 0) = T when µ ≥ 3σ2

2
. (3.3.6)
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In what follows, Section 3.4 introduces a direct approach to the problem based on

techniques of stochastic calculus, and leads to results proving most of Theorem 3.3.1.

The case µ ≥ σ2

2 in equation (3.3.1) requires a different approach based on Girsanov’s

Theorem and techniques of change of measures; the proof of which is postponed to

Section 3.5.

3.4 A DIRECT STOCHASTIC APPROACH

The aim under this approach is to exploit the properties of the stochastic infinitesimal

generator of the underlying process X, which is key in order to establish proof for most

of the cases in Theorem 3.3.1. The infinitesimal generator of X is known (see [21]) to

act on twice differentiable functions f (satisfying f ′(0) = 0) as

AX f (x) = −λ f ′(x) +
1
2

f ′′(x) . (3.4.1)

Applying Itô formula on G in (3.2.3) we get

V(t, x) = G(t, x) + E

[

∫ τD(t,x)

0
Gt(t + s, Xx

s )ds +
∫ τD(t,x)

0
Gx(t + s, Xx

s )dXx
s

]

+ E

[

∫ τD(t,x)

0

1
2

Gxx(t + s, Xx
s )d〈Xx, Xx〉s

]

, (3.4.2)

for all (t, x) ∈ [0, T]× R+. An application of the Itô-Tanaka formula (cf. [49], Theorem

30.9) shows that

dXt = −λdt + sign(Yt)dBt + dl0
t (Y) ,

where the process Y is the unique strong solution to the stochastic differential equation

dYt = −λsign(Yt)dt + dBt ,

with Y0 = 0, and dl0(Y) is the local time of Y at 0 given by

dl0
t (Y) = lim

ε→0

1
2ε

∫ t

0
I(|Ys| < ε)d〈Y, Y〉s .

Then, we note that d〈Xx, Xx〉t = dt and expand dXx
s = d(x ∨ Sλ

s − Bs − λs) in

equation (3.4.2) to obtain

V(t, x) = G(t, x) + E

[

∫ τD(t,x)

0
Gt(t + s, Xx

s ) +AXG(t + s, Xx
s )ds

]

+ E

[

∫ τD(t,x)

0
Gx(t + s, Xx

s )d(x ∨ Sλ
s )−

∫ τD(t,x)

0
Gx(t + s, Xx

s )dBs

]

,
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for all (t, x) ∈ [0, T]× R+. Note that Gx(t + s, Xx
s )d(x ∨ Sλ

s ) is always 0, since a change

of value in x ∨ Sλ
s implies Xx

s = 0, and from G in (3.1.4) we note that

Gx(t, x)
∣

∣

x=0+ = 2ασ(e−σx − αe−2σx)P(Sλ
T−t ≤ x)

∣

∣

x=0+ = 0 ,

for all t ∈ [0, T]. In addition, since E[Gx(t, x)] ≤ E[2σe−σx] < ∞, the term
∫ r

0 Gx(t +

s, Xx
s )dBs is a martingale starting at 0, for all r ≥ 0. Then, by the optional sampling

theorem, the extended optimal prediction problem (3.2.3) may be expressed as

V(t, x) = G(t, x) + E

[

∫ τD(t,x)

0
H(t + s, Xx

s )ds
]

, (3.4.3)

with

H(t, x) = Gt(t, x) +AXG(t, x) . (3.4.4)

Figure 3.2: Value of function H for x ∈ [0, 4), with T = 5, α = 1, λ = −0.5 and µ = 0.

It is noticeable that H is a non-monotone function of time and space.

Figure 3.2 presents the values of function H for some choice of parameters. In

addition, Lemma A.1.2 in Appendix A shows that, for all (t, x) ∈ [0, T] × R+, H is
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given by

H(t, x) = σα ·
{

[

2α(σ + λ)e−2σx − (σ + 2λ)e−σx
]

Φ
( x − λ(T − t)

√

(T − t)

)

+
[

σe(2λ−σ)x − 2ασe2(λ−σ)x
]

Φ
(−x − λ(T − t)

√

(T − t)

)

+ 2α(λ − 2σ)e−2σ(λ−σ)(T−t)Φ
(−x + (λ − 2σ)(T − t)

√

(T − t)

)

− 2(λ − σ)e−
σ
2 (2λ−σ)(T−t)Φ

(−x + (λ − σ)(T − t)
√

(T − t)

)

}

for all λ ∈ R.

3.4.1 Properties of Function H

In what follows we expose some properties of H for different values of α that are

useful in order to establish results in Theorem 3.3.1.

Lemma 3.4.1. If α ≤ 3
4 and µ ≥ 3σ2

2 , then H is strictly negative for all (t, x) ∈ [0, T]× R+.

Proof. Recall that λ = (µ − σ2/2)/σ, then µ ≥ 3σ2

2 is equivalent to λ ≥ σ. Let function

Ĥ be given by

Ĥ(t, x) =
1

σα
· H(t, x) = A(t, x) + B(t, x) + C(t, x) , (3.4.5)

with

A(t, x) =
[

2α(σ + λ)e−2σx − (σ + 2λ)e−σx
]

Φ
( x − λ(T − t)

√

(T − t)

)

+
[

σe(2λ−σ)x − 2ασe2(λ−σ)x
]

Φ
(−x − λ(T − t)

√

(T − t)

)

,

B(t, x) =
[

2α(λ − 2σ)e−2σ(λ−σ)(T−t) − 2(λ − σ)e−
σ
2 (2λ−σ)(T−t)

]

× Φ
(−x + (λ − 2σ)(T − t)

√

(T − t)

)

,

and

C(t, x) = − 2(λ − σ)e−
σ
2 (2λ−σ)(T−t)

×
[

Φ
(−x + (λ − σ)(T − t)

√

(T − t)

)

− Φ
(−x + (λ − 2σ)(T − t)

√

(T − t)

)]

.
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Showing that Ĥ is strictly negative is equivalent to showing that function H is strictly

negative, since both σ and α are strictly positive. We show that for all (t, x) ∈ [0, T]×

R+, functions A and C are less than or equal to 0 and function B is strictly negative.

Function C is obviously non-positive since λ ≥ σ and the term within the square

brackets is positive. The inequality A ≤ 0 is proved in different ways depending on

the value of x. For x ≤ log(2α)
σ we have that

• 2α(σ + λ)e−2σx − (σ + 2λ)e−σx ≤ 0: Recall that α <
3
4 and σ, x ≥ 0, then

2α(σ + λ)e−σx − (σ + 2λ) ≤ 3
2
(σ + λ)e−σx − (σ + 2λ) ≤

≤ 3
2
(σ + λ)− (σ + 2λ) ≤ 0 , since λ ≥ σ;

• σe(2λ−σ)x − 2ασe2(λ−σ)x ≤ 0: Recall that σ > 0, then

1 − 2αe−σx ≤ 0 ⇔ x ≤ log(2α)

σ
.

For x >
log(2α)

σ , a direct calculation shows that

A(t, x) =
[

2α(σ + λ)e−2σx − (σ + 2λ)e−σx
]

·
∫

x−λ(T−t)√
(T−t)

−∞

1√
2π

e
−s2

2 ds

+
[

σe(2λ−σ)x − 2ασe2(λ−σ)x
]

·
∫

−x−λ(T−t)√
(T−t)

−∞

1√
2π

e
−s2

2 ds .

Applying the change of variable s′ = s + x√
T−t

in the first integral and s′ = s − x√
T−t

in

the second we obtain

A(t, x) =
[

2α(σ + λ)e−2σx − (σ + 2λ)e−σx
]

·
∫ −λ

√
(T−t)

−∞

1√
2π

e
−(s+ x√

T−t
)2

2 ds

+
[

σe(2λ−σ)x − 2ασe2(λ−σ)x
]

·
∫ −λ

√
(T−t)

−∞

1√
2π

e
−(s− x√

T−t
)2

2 ds .

Hence, A(t, x) ≤ 0 would follow from

2α(σ + λ)e−σx − σ − 2λ ≤
[

2ασe−σx − σ
]

e
2xs√
T−t

+2λx

for all s ∈ (−∞,−λ
√

T − t). The term within brackets on the right hand side is negative

since x >
log(2α)

σ ; in addition, since e
2xs√
T−t

+2λx is increasing on s we set s = −λ
√

T − t,

so that A(t, x) ≤ 0 follows from

2α(σ + λ)e−σx − σ − 2λ ≤ 2ασe−σx − σ ,
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which holds for α ≤ 3
4 .

In order to prove that B(t, x) < 0 we show that

2α(λ − 2σ)e−2σ(λ−σ)(T−t)
< 2(λ − σ)e−

σ
2 (2λ−σ)(T−t)

for different values of λ. Recall that λ ≥ σ, then

• if λ ≤ 2σ the inequality is obvious, since the term on the left hand side is strictly

negative while the term in the right and side is strictly positive;

• in case λ > 2σ, both expressions are positive and the result follows from

2α(λ − 2σ) < 2(λ − 2σ) < 2(λ − σ) , since α ≤ 3
4

,

and

−2σ(λ − σ)(T − t) ≤ −σ

2
(2λ − σ)(T − t) ⇔ 3σ ≤ 2λ ,

therefore completing the proof.

Lemma 3.4.2. If α ≤ 2
3 and µ ≤ − σ2

2 , then H is strictly positive for all (t, x) ∈ [0, T]× R+.

Proof. Note that µ ≤ − σ2

2 is equivalent to λ ≤ −σ. We make use of function Ĥ in

(3.4.5) and rewrite it as

Ĥ(t, x) = A(t, x) + B(t, x) ,

with

A(t, x) = I(x) ·
[

Φ
( x − λ(T − t)

√

(T − t)

)

− Φ
(−x − λ(T − t)

√

(T − t)

)]

+
[

I(x) + I I(x)
]

· Φ
(−x − λ(T − t)

√

(T − t)

)

,

and

B(t, x) = 2α(λ − 2σ)e−2σ(λ−σ)(T−t) · Φ
(−x + (λ − 2σ)(T − t)

√

(T − t)

)

− 2(λ − σ)e−
σ
2 (2λ−σ)(T−t) · Φ

(−x + (λ − σ)(T − t)
√

(T − t)

)

.
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Functions I(x) and I I(x) are given by

I(x) = 2α(σ + λ)e−2σx − (σ + 2λ)e−σx ,

I I(x) = σe(2λ−σ)x − 2ασe2(λ−σ) .

The strict positivity of H would follow from the strict positivity of Ĥ. We show

that for λ ≤ −σ and α ≤ 2
3 , function A is strictly positive while function B is greater

than or equal to 0 for all (t, x) ∈ [0, T] × R+. In order to show that A(t, x) > 0, we

separately show that both I and I + I I are strictly positive, since the remainder terms

in the equation are clearly positive.

• I(x) > 0 is equivalent to

α <
eσx(σ + 2λ)

2(σ + λ)
,

since λ ≤ −σ. We note that the right hand side is increasing on λ, since

d

dλ

eσx(σ + 2λ)

2(σ + λ)
=

σeσx

2(σ + λ)2 > 0 .

Therefore
eσx(σ + 2λ)

2(σ + λ)
≥ lim

λ→−∞

eσx(σ + 2λ)

2(σ + λ)
= eσx ≥ 1 > α .

• I(x) + I I(x) > 0 is, on the other hand, equivalent to

α <
1
2

( eσx[(σ + 2λ)− σe2λx]

σ + λ − σe2λx

)

,

since λ ≤ −σ. We note that the right hand side is increasing on x, since

d

dx

1
2

( eσx[(σ + 2λ)− σe2λx]

σ + λ − σe2λx

)

=
[σ + 2λ − σe2λx] · [σ + λ − σe2λx]

(σ + λ − σe2λx)2

+
2λ2e2λx

(σ + λ − σe2λx)2 > 0 .

Therefore

1
2

( eσx[(σ + 2λ)− σe2λx]

σ + λ − σe2λx

)

≥ 1
2

( eσx[(σ + 2λ)− σe2λx]

σ + λ − σe2λx

)∣

∣

∣

x=0
= 1 > α .

In order to show that B(t, x) ≥ 0 we use a direct calculation. We note that the

inequality would follow from

2α(λ − 2σ)e−2σ(λ−σ)(T−t) ·
∫

−x+(λ−2σ)(T−t)√
(T−t)

−∞

1√
2π

e
−s2

2 ds

≥ 2(λ − σ)e−
σ
2 (2λ−σ)(T−t) ·

∫
−x+(λ−σ)(T−t)√

(T−t)

−∞

1√
2π

e
−s2

2 ds .
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The change of variable s′ = s − σ
√

T − t on the right hand side integral leads to

2α(λ − 2σ)e−2σ(λ−σ)(T−t) ·
∫

−x+(λ−2σ)(T−t)√
(T−t)

−∞

1√
2π

e
−s2

2 ds

≥ 2(λ − σ)e−
σ
2 (2λ−σ)(T−t) ·

∫
−x+(λ−2σ)(T−t)√

(T−t)

−∞

1√
2π

e
−s2

2 e−
σ2(T−t)

2 e−sσ
√

T−tds .

Thus, the non-negativity of B would follow from

α(λ − 2σ)e−2σ(λ−σ)(T−t) ≥ (λ − σ)e−
σ
2 (2λ−σ)(T−t)e−

σ2(T−t)
2 e−sσ

√
T−t ,

for all s ∈ (−∞, −x+(λ−2σ)(T−t)√
(T−t)

). Since λ ≤ −σ, the right hand side of the above

expression is always negative and increasing on s; substituting s for −x+(λ−2σ)(T−t)√
(T−t)

,

B(t, x) ≥ 0 would follow from

α(λ − 2σ) ≥ (λ − σ)eσx . (3.4.6)

We note that the term in the right hand side is always negative and decreasing on x ≥ 0;

so that

(λ − σ) ≥ (λ − σ)eσx .

Thus, to show that (3.4.6) holds, we require to prove that α(λ − 2σ) ≥ λ − σ, or

equivalently

α ≤ λ − σ

λ − 2σ
. (3.4.7)

Finally, since
d

dλ

λ − σ

(λ − 2σ)
= − σ

(λ − σ)2 < 0 ,

the right hand side of (3.4.7) is decreasing on λ and therefore

λ − σ

λ − 2σ
≥ λ − σ

λ − 2σ

∣

∣

∣

λ=−σ
=

2
3

.

The inequality B(t, x) ≥ 0 follows from the assumption α ≤ 2
3 .

3.4.2 Partial Proof of Theorem 3.3.1

We now use results in Lemmas 3.4.1 and 3.4.2 in order to establish different parts of

Theorem 3.3.1.
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Proof of case µ ≥ 3σ2

2 in (3.3.2) and (3.3.3). We show that in this case the optimal

stopping set D is given {T} × R+. Recalling expression for V in (3.4.3) and noting the

strict negativity result for H in Lemma 3.4.1, we conclude that for all (t, x) ∈ [0, T)×R+

an infimum is attained at time τD(t, x) = T − t. Therefore, it holds V(t, x) < G(t, x) for

all (t, x) ∈ [0, T)× R+ and (t, x) ∈ C. For (t, x) ∈ {T} × R+, we get V(t, x) = G(t, x)

and (t, x) ∈ D.

Proof of case µ ≤ − σ2

2 in (3.3.1) and (3.3.2). We show that in this case the optimal

stopping set D is given [0, T]× R+. Recovering expression for V in (3.4.3), and noting

the strict result for H in Lemma (3.4.2), we conclude that for all (t, x) ∈ [0, T) × R+

it holds τD(t, x) = t and (t, x) ∈ D, since otherwise V(t, x) > G(t, x), which is a

contradiction.

3.5 STOPPING TIMES FOR α ≤ 1
2 AND µ ≥ σ2

2

We now make use of the moment generating function of Xx, allowing for similar

probabilistic techniques to that in [54] (Section 5) to be applied, and setting the

remaining results in Theorem 3.3.1. Lemma A.2.1 in Appendix A shows that the

moment-generating function of Xx is given by

MXx
t
(s) = E[esXx

t ] = es(x+σt( s
2 σ−λ)) · Φ

( x − σt(λ − σs)

σ
√

t

)

+
σs

σs − 2λ
e(

2xλ
σ + σ2s2t

2 −(λσt+x)s) · Φ
(

− x + σt(λ − σs)

σ
√

t

)

− 2λ

σs − 2λ
· Φ

(

− x − λσt

σ
√

t

)

(3.5.1)

for all t ∈ [0, T] and s ∈ (−∞, 0) ∪ (0, 2λ
σ ). In addition, MXx

t
(0) = 1.

In order to prove case µ ≥ σ2

2 in equation (3.3.1), without loss of generality we fix

σ = 1 and show that the result holds whenever µ ≥ 1
2 . This is allowed by the scaling

property of Brownian motion, since a time change Bσ2t with terminal time T
σ2 and σ > 0

recovers the original stopping problem. We continue introducing some preliminary

results.
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Lemma 3.5.1. If µ = 1
2 and α ≤ 1

2 , the following inequalities hold

E[G(T, Xx
T)] = G(0, x) for x = 0 , and (3.5.2)

E[G(T, Xx
T)] < G(0, x) for x > 0 . (3.5.3)

Proof. Note that µ = 1
2 is equivalent to λ = 0. From expression for G in (3.1.4) we

obtain

E[G(T, Xx
T)] = E[(1 − αe−(Xx

T))2] = 1 − 2αMXx
T
(−1) + α2MXx

T
(−2) ,

with MXx
t
(s) as in (3.5.1). Then, noting expression for G in (3.2.5), for λ = 0 we get

G(0, x)− E[G(T, Xx
T)] = (α2e−2x − 2αe−x)Φ

( x√
T

)

+ (2αe−x − α2e−2x)Φ
(

− x√
T

)

+ 2αe
T
2 −xΦ

( x − T√
T

)

− α2e−2(x−T)Φ
( x − 2T√

T

)

+ (2αex+ T
2 − 4αe

T
2 )Φ

(

− x + T√
T

)

+ (2α2e2T − α2e2x+2T)Φ
(

− x + 2T√
T

)

. (3.5.4)

Substituting x = 0 in (3.5.4) above cancels all terms out and yields result (3.5.2).

In order to prove the second result (3.5.3) we first define the auxiliary function

ρ(x) =
e2x

α

(

G(0, x)− E[G(T, Xx
T)]

)

.

We will show that ρ(x) > 0 for all x > 0, which is equivalent to (3.5.3). We have seen

that ρ(0) = 0 and the proof would follow from dρ(x)
dx > 0 for all x > 0. We note that

dρ(x)

dx
= 2ex

[

Φ
(

− x√
T

)

− Φ
( x√

T

)]

+ 2e
T
2 +xΦ

( x − T√
T

)

+
[

6e3x+ T
2 − 8e2x+ T

2
]

Φ
(

− x + T√
T

)

+ 4αe2x+2T(1 − e2x)Φ
(

− x + 2T√
T

)

,

so that the result would follow from

0 < Φ
(

− x√
T

)

− Φ
( x√

T

)

+ e
T
2 Φ

( x − T√
T

)

+
[

3e2x − 4ex
]

e
T
2 Φ

(

− x + T√
T

)

+ 2αex+2T(1 − e2x)Φ
(

− x + 2T√
T

)

.

It is shown in [54] (Section 5) that

Φ
(

− x√
T

)

− Φ
( x√

T

)

+ e
T
2 Φ

( x − T√
T

)

+
[

e2x − 2ex
]

e
T
2 Φ

(

− x + T√
T

)
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is strictly positive for all x > 0. Thus, the problem can be simplified to showing that

0 ≤ 2
[

e2x − ex
]

e
T
2 Φ

(

− x + T√
T

)

+ 2αex+2T(1 − e2x)Φ
(

− x + 2T√
T

)

for all x > 0, i.e

0 ≤
∫ − x+T√

T

−∞

[

ex − 1
]

e
T
2

1√
2π

e−
y2

2 dy + α
∫ − x+2T√

T

−∞

[

1 − e2x
]

e
T
2

1√
2π

e−
y2

2 dy (3.5.5)

for all x > 0. The change of variable y′ = y −
√

T in the first integral implies that (3.5.5)

follows from

0 ≤ (ex − 1)e−y
√

T + αe2T(1 − e2x)

for all y ∈ (−∞,− x+2T√
T
). This is a decreasing function on y. We therefore show that

(ex − 1)ex+2T + αe2T(1 − e2x) ≥ 0 ⇔ α ≤ (ex − 1)ex

e2x − 1
.

This holds true for α ≤ 1
2 , since

d
dx

(ex − 1)ex

e2x − 1
=

ex + e−x − 2
(ex − e−x)2 ≥ 2(cosh(x)− 1)

(ex − e−x)2 ≥ 0 ,

and, using L’Hôpital’s rule

(ex − 1)ex

e2x − 1
≥ lim

x→0

(ex − 1)ex

e2x − 1
=

1
2

.

Lemma 3.5.2. If µ >
1
2 and α ≤ 1

2 , the following inequality holds

E[G(T, Xx
T)] < G(0, x) for x ≥ 0 . (3.5.6)

Proof. We note that µ >
1
2 is equivalent to λ > 0 and recall from the proof of Lemma

3.1.1 that

G(t, x) = E[(1 − αe−(x∨Sλ
T−t))2|Ft] ,

for all (t, x) ∈ [0, T]× R+. Thus, noting (3.1.4) we have

G(0, x)− E[G(T, Xx
T)] = E

[

(1 − αe−(x∨Sλ
T))2 − (1 − αe−(x∨Sλ

T−Bλ
T))2]

= αE
[

e−(x∨Sλ
T)(αe−(x∨Sλ

T)[1 − e2Bλ
T ] + 2[eBλ

T − 1])
]

.

40



We make use of Girsanov’s theorem and define a new probability measure Q,

equivalent to P, with Radon-Nikodym derivative

dQ

dP
= e

1
2 λ2t−λBλ

t .

We observe that under Q, process (Bλ
t )0≤t≤T is a standard Brownian motion, since

dQ(Bλ
t ≤ x) = e

1
2 λ2t−λxdP(Bλ

t ≤ x) =
1√
2πt

e−
x2
2t ,

for all t ∈ [0, T].

The use of Q allows for a simplification of the problem with respect to λ, so that

G(0, x)− E[G(T, Xx
T)] = αEQ

[

e−(x∨Sλ
T)(αe−(x∨Sλ

T)[1 − e2Bλ
T ] + 2[eBλ

T − 1])e−
1
2 λ2T+λBλ

T
]

.

Equivalently,

G(0, x)− E[G(T, Xx
T)] = αE

[

e−(x∨ST)(αe−(x∨ST)[1 − e2BT ] + 2[eBT − 1])e−
1
2 λ2T+λBT

]

,

where the expectation is taken with respect to the original measure P.

Now, we define the auxiliary function

ρ(λ) =
e

1
2 λ2T

α

(

G(0, x)− E[G(T, Xx
T)]

)

,

and show that it is strictly increasing on λ, so that result (3.5.6) follows from Lemma

3.5.1. Note that

dρ(λ)

dλ
= E

[

e−(x∨ST)eλBT BT(αe−(x∨ST)[1 − e2BT ] + 2[eBT − 1])
]

.

The equation within the expectation is always equal or greater than zero, and so its

expected value is positive. This can be seen as follows.

• If BT = 0, the case is trivial.

• If BT > 0, we note that x ∨ ST ≥ BT and prove that

αe−(x∨ST)[e2BT − 1] ≤ αe−BT [e2BT − 1] < 2[eBT − 1] ,

or equivalently

α <
2e2BT − 2eBT

e2BT − 1
.
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This result therefore follows from

α <
2y2 − 2y

y2 − 1
for all y > 1 ,

which is true whenever α ≤ 1
2 , since

d
dy

2y2 − 2y

y2 − 1
=

2(y − 1)2

(y2 − 1)2 ≥ 0 ,

and the function is increasing on y, so that and application of L’Hôpital’s rule

yields
2y2 − 2y

y2 − 1
≥ lim

y→1

2y2 − 2y

y2 − 1
= 1 > α .

• If BT < 0, we show that

αe−(x∨ST)[1 − e2BT ] ≤ α[1 − e2BT ] < 2[1 − eBT ] ,

or equivalently

α <
2[1 − eBT ]

1 − e2BT
.

The result therefore follows from

α <
2[1 − y]

1 − y2 for all y ∈ (0, 1) ,

which is true whenever α ≤ 1
2 , since

d
dy

2[1 − y]

1 − y2 = −2(y − 1)2

(y2 − 1)2 ≤ 0 ,

and the function is decreasing on y. Hence, the application of L’Hôpital’s rule

yields
2[1 − y]

1 − y2 ≥ lim
y→1

2[1 − y]

1 − y2 = 1 > α .

3.5.1 Remainder Proof of Theorem 3.3.1

We make use of results in Lemmas 3.5.1 and 3.5.2 to establish the remaining part of

Theorem 3.3.1 using a similar argument to that in [54] (Section 5).
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Proof of case µ ≥ σ2

2 in (3.3.1). We note that T and x are arbitrary points and recall that

α ≤ 1
2 . Then, from (4.4.12) in Lemma 3.5.2 we observe that for µ >

σ2

2

Et,x[G(T, XT)] < G(t, x) for all (t, x) ∈ [0, T)× R+ ,

where the expectation is taken under a measure for which P(Xt = x) = 1. It follows

that for all (t, x) ∈ [0, T)× R+

V(t, x) = Et,x[G(t + τD(t, x), Xt+τD(t,x))] ≤ Et,x[G(T, XT)] < G(t, x) ,

and (t, x) ∈ C by the definition of the continuation set in (4.2.5).

If µ = σ2

2 , inequality V(t, x) < G(t, x) cannot be attained for x = 0. However, both

stopping at deadline and immediate stopping are optimal, supporting result (3.3.1). To

see that, note from Lemma 3.5.1 and the arbitrary nature of T and x that

Et,x[G(T, XT)] ≤ G(t, x) for all (t, x) ∈ [0, T)× [0, ∞) .

Therefore, for all x ∈ R+ and stopping times τ ∈ T

E[G(T, Xx
T)|Fτ] ≤ E[G(τ, Xx

τ)] ,

and

V(0, x) = E[G(τD(0, x), Xx
τD(0,x))] = E[G(T, Xx

T)] ,

since V is a minimization problem. This shows that both 0 and T are optimal stopping

strategies and settles result (3.3.1).

3.6 DISCUSSION

This chapter has analysed finite horizon stopping times that aim to minimize a

choice of a non-linear utility function; we recall that this function accounts for the

ratio between a running geometric Brownian motion and its absolute maximum over

the total time interval. It has been shown that Bang-Bang stopping strategies are

optimal under certain conditions, yielding similar results to those in [21, 25, 54, 60] and

reinforcing the idea of only ever stopping bad processes; in our case those for which
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the condition µ ≤ − σ2

2 is satisfied. However, complete characterizations of D have not

been established in all cases, a problem that responds to the complexity of function H

derived from the choice of non-linear utility function in V; in Section 3.6.2 we discuss

the complications that a reduction to a free boundary problem similar to that in [21]

encounters in this case.

3.6.1 Characterization of the Value Function

The following corollary follows from Theorem 3.3.1 and Lemma A.2.1 in Appendix

A; it partially specifies the value function of the optimal stopping problem (3.2.3).

Corollary 3.6.1. Value function V in extended problem (3.2.3) is, for all (t, x) ∈ [0, T]× R+,

partially characterized by the following expressions. If 0 < α ≤ 1
2

V(t, x) =











G(t, x) when µ ≤ − σ2

2 ,

1 − 2αMXx
T−t

(−1) + α2MXx
T−t

(−2) when µ ≥ σ2

2 ;

if 1
2 < α ≤ 2

3

V(t, x) =











G(t, x) when µ ≤ − σ2

2 ,

1 − 2αMXx
T−t

(−1) + α2MXx
T−t

(−2) when µ ≥ 3σ2

2 ;

and if 2
3 < α ≤ 3

4

V(t, x) = 1 − 2αMXx
T−t

(−1) + α2MXx
T−t

(−2) when µ ≥ 3σ2

2
,

where MXx
t

denotes the moment generating function of Xx
t given in (3.5.1).

Figure 3.3 below illustrates the gain and value functions of a stopping problem of the

form (3.2.3) whose optimal strategy is to always stop at terminal time T. It is observed

that V < G for all (t, x) ∈ [0, T)×R+ and V = G for (t, x) ∈ {T} ×R+. We recall from

the theory of optimal stopping in Chapter 2 that V is the biggest subharmonic function

dominated by G.

3.6.2 Reduction to a Free Boundary Problem

As explained in the introductory Chapter 2, a common technique for characterizing

both the stopping set and value function is to pose a free boundary problem for V
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Figure 3.3: Gain and value functions of stopping problem (3.2.3). Here, T = 5, α =

0.45, λ = 0.2 and σ = 1. It is observed that V < G for all (t, x) ∈ [0, T) × R+ and

V = G for (t, x) ∈ {T} × R+.

to solve; this is particularly helpful when stopping times are expected to respond to

departures of a diffusion of interest from a certain threshold value, and lead to the

concept of stopping boundaries. These boundaries do by definition define the boundaries

between sets D and C. In view of (2.2.1)-(2.2.3) we note that the stopping problem must

solve

Vt +AXV(x) ≥ 0 for all (t, x) ∈ [0, T]× R+ , (3.6.1)

V(x) < G(x) for all (t, x) ∈ C ,

V(x) = G(x) for all (t, x) ∈ D ,

with AX given by (3.4.1). The inclusion of the time differential of V in equation (3.6.1)

corresponds to the finite-horizon nature of the problem and we refer the reader to [49]

for details on this matter.

Drawbacks on using such an approach in this case are revealed from a direct analysis

of function H in (3.4.4). For instance, when α is close to 1, direct examination of H

reveals the existence of two non-monotone functions h1(t) and h2(t) such that

P = {H > 0} = {(t, x) ∈ [0, T]× R+ : h2(t) < x < h1(t)} , and

N = {H < 0} = {(t, x) ∈ [0, T]× R+ : (x, t) 6∈ P} ,

whenever λ ∈ (− 1
2 , λ∗), as seen in the left hand side of Figure 3.4, or monotone

functions h1(t), h2(t), h3(t) and h4(t), along with time points u1 and u2, so that
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P = P1 ∪ P2 and

P1 = {(t, x) ∈ [0, u1]× R+ : h2(t) < x < h1(t)} ,

P2 = {(t, x) ∈ [u2, T]× R+ : h3(t) < x < h4(t)} ,

N = {(t, x) ∈ [0, T]× R+ : (x, t) 6∈ P} ,

whenever λ ∈ (λ∗, 1
2 ), for some λ∗ ∈ (− 1

2 , 1
2 ), as seen in the right hand side of Figure

3.4. In this case, while arguments similar to those in Subsection 3.4.2 imply that N ⊂ C,

Figure 3.4: Positive and negative regions of function H, for different values of (x, t) ∈
[0, T]× R+ and α = 1. Left figure: λ = 0.2, σ = 1 and T = 5. Right figure: λ = 0.22,

σ = 1, T = 5.

we only know that P may contain a stopping set. However, the complexity of function

H along with the non-monotone behaviour of the mapping t 7→ H(t, x), precludes

establishing the existence of such a stopping set in these cases, as well as characterising

the stopping boundaries and providing results on their regularity conditions; therefore

preventing the set up of a free boundary problem without resorting to purely analytic

methods outside of the scope of this thesis. In addition, establishing strict inequalities

for H with respect to 0 results an intractable problem, so that work in this chapter

yielding optimal Bang-Bang strategies is not applicable whenever α is close to 1.

Similarly, the analysis of the case µ ∈ (− σ
2 , σ

2 ) when α ≤ 1
2 in Theorem 3.3.1, reveals

that H is such that there exists a continuous and decreasing function h, with h(T) = 0,
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so that

P = {H > 0} = {(t, x) ∈ [0, T]× R+ : x < h(t)} , and

N = {H < 0} = {(t, x) ∈ [0, T]× R+ : x > h(t)} ,

leading to the complications discussed above and leaving the optimal strategy for this

interval unsolved.

3.6.3 Conclusion and Future Work

Results in this section show consistency on stopping strategies to be adopted in

comparison with previous work summarized in the introduction in Chapter 1, this

is with independence of the choice of utility function made. However, results are

unsatisfactory due to the high limitations in terms of cases covered.

Hence, tackling natural extensions of stopping problems (1.1.2), allowing for

generalized families of utility functions, seems to be beyond the bounds of possibility

in view of the technical complications arisen in this chapter. Thus, the randomization

technique introduced in Chapter 2 that focuses on modifying the dimensionality of

the stopping problem, leading to a family of simpler free boundary problems, seems

a rather efficient way to obtain solutions capable of asymptotically approximating

stopping rules to finite-horizon problems seemingly out of the reach of methods

exposed in this chapter. This leads to the next topic of study in Chapter 4.
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CHAPTER 4

TIME-RANDOMIZED PREDICTION PROBLEMS FOR A FAMILY

OF UTILITY FUNCTIONS

We continue with the notation introduced in Chapter 3 and let (Ω,F , P) denote a

probability space endowed with a filtration {Ft}t≥0. For fixed n > 0, we now denote

by T the waiting time to the nth jump Tn of an Ft-adapted Poisson process N = (Nt)t≥0

with rate ω, so that

P(T ∈ [t, t + dt)) =
ωntn−1e−ωt

(n − 1)!
dt .

We recall that B = (Bt)t≥0 denotes a one-dimensional standard Brownian motion with

B0 = 0; we assume B and N to be independent. Additionally, for fixed constants µ and

σ, we recall that Z = (Zt)t≥0 denotes a geometric Brownian motion given by

Zt = Z0 exp{σBt + (µ − σ2/2)t} .

The running maximum processes M = (Mt)t≥0 and S = (Sλ
t )t≥0 are given by

Mt = max
0≤s≤t

Zs and Sλ
t = max

0≤s≤t
Bλ

s , t ≥ 0 , (4.0.1)

where λ is a fixed constant and Bλ
t = Bt + λt. Recall further from (3.1.3) that the

distribution of Sλ
t is given by

FSλ
t
(s) = P(Sλ

t ≤ s) = Φ
( s − λt√

t

)

− e2λsΦ
(−s − λt√

t

)

.

In addition, we saw in (3.2.2) that the stochastic process X = (Xt)t≥0 given by Xt =

Sλ
t − Bλ

t (with X0 = x ≥ 0), shared the stochastic law of the alternative process Xx =

(Xx
t )t≥0, with

Xx
t = x ∨ Sλ

t − Bλ
t .
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Definition 4.0.1. The family U consists of all C2 functions U(x) defined in D = [1, ∞)

that are increasing, strictly concave or convex and satisfy

E
[

sup
0≤t≤Tn

{

U(eσXx
t ) + σ

∫ ∞

0

∫ ∞

Xx
t

eσzU′(eσz)(1 − FSλ
T
(z))dzP(Tn−Nt ∈ dT)

}]

< ∞ ,

(4.0.2)

for all n ≥ 1 and x ≥ 0. In addition, they meet the following convergence and

integrability criteria:

lim
x→+∞

eαxU′(eαx)P(Sλ
t0
≥ x) = 0 , (4.0.3)

∫ ∞

0
eαxU′(eα(β+x))P(|Bt0 | ≥ x)dx < ∞ , (4.0.4)

∫ ∞

0
e2αxU′′(eα(β+x))P(|Bt0 | ≥ x)dx < ∞ , (4.0.5)

for all constants values α, β, t0 ∈ R+, where U′(x) and U′′(x) are the first and second

order derivatives of U(x).

Note. Analytically testing the veracity of (4.0.2)-(4.0.5) for a given utility function can

be a daunting challenge. However, Section 4.7 offers a discussion on existence and

provides, by computational means, examples of utilities meeting these criteria.

For a given function U ∈ U , we consider the optimal stopping problem

V = inf
τ∈T

E

[

U
(MT

Zτ

)]

, (4.0.6)

where T stands for the set of all stopping times taking values in [0, T].

This chapter will derive a family of time-independent stopping problems dependent

on a 2-dimensional underlying diffusion. Complete solutions will be obtained as

the unique solution to a family of free boundary problems. The detection of Bang-

Bang strategies and links to work in the previous Chapter will be analysed. The

final results will allow for us to computationally build numerical approximations of

fixed terminal time set-up optimal stopping problems, and suggest the possibility of

extending optimal stopping rules in [21] to a more general family of power utility

measures.

In Section 4.1, problem (4.0.6) will be modified in order to pose a time-independent

2-dimensional optimal stopping problem fitting the general theory presented in the
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introduction. Section 4.2 will then provide evidence of the existence of optimal

stopping times and offer a Markovian representation of the problem. The relation

between the stopping problem and the stochastic infinitesimal generator of the

underlying process is explored in Section 4.3, where the existence of Bang-Bang

strategies and stopping boundaries is discussed and the main result in the chapter

introduced. The proof of the result will be offered in Sections 4.4 and 4.5; where a

family of free boundary problems is presented and its solution is derived. Finally,

section 4.7 will discuss results and suggest future research directions.

4.1 AN ALTERNATIVE EXPRESSION FOR V

Lemma 4.1.1. For any given utility function U ∈ U , let the gain function G be defined as

G(k, x) =























U(eσx) + σ
∫ ∞

0

∫ ∞

x eσzU′(eσz)(1 − FSλ
T
(z))dzP(Tn−k ∈ dT) , k < n ,

U(eσx) , k ≥ n ,

(4.1.1)

where Tn−k stands for the waiting time until the (n-k)th jump of a Poisson process with rate

ω, λ = (µ − σ2/2)/σ and FSλ
t
(s) is as in (3.1.3). Then, (4.0.6) can be expressed as the time-

independent optimal stopping problem with underlying Ft-measurable gain function given by

V = inf
τ∈T

E[G(Nτ, Xτ)]] . (4.1.2)

Proof. The proof is similar to that in Lemma 3.1.1. We can rewrite V in terms of a

Brownian motion with drift λ and its running maximum so that

V = inf
τ∈T

E[U(eσ(Sλ
T−Bλ

τ ))] .

Using deterministic times, and making use of the law of total expectation, the term

involving the expected value above, restricted to the case when {t ≤ T}, reads

E[U(eσ(Sλ
T−Bλ

t ))1{t≤T}] = E[E[U(eσ(Sλ
T−Bλ

t ))1{t≤T}|Ft]]

= E[1{t≤T}E[U(eσ((Sλ
t −Bλ

t )∨(max0≤s≤T−t Bλ
t+s−Bλ

t )))|Ft]] .
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The independent and stationary increments of Bλ
t imply that

(

max
0≤s≤T−t

Bλ
t+s − Bλ

t

)∣

∣

∣
Ft

law
= Sλ

T−t .

In addition, due to the memoryless property of the exponential distribution we have

T − t
law
= Tn−Nt , where Tn−Nt stands for the waiting time until the (n − Nt)th jump in a

Poisson process with rate ω. Recalling that processes N and B are independent, we get

E[U(eσ(Sλ
T−Bλ

t ))1{t≤T}] = E[1{t=T}U(eσXt)]

+ E[1{t<T}

∫ ∞

0

{

U(eσXt)P(Sλ
T ≤ Xt)

}

P(Tn−Nt ∈ dT)]

+ E[1{t<T}

∫ ∞

0

{

∫ ∞

Xt

U(eσz) fSλ
T
(z)dz

}

P(Tn−Nt ∈ dT)] ,

where fSλ
T
(z) is density function of Sλ

T. Using property (4.0.3) and integrating by parts

the inner integral in the last term of the right hand side we obtain

E[U(eσ(Sλ
T−Bλ

t ))1{t≤T}] = E[1{t≤T}U(eσXt)]

+ E[1{t<T}σ
∫ ∞

0

∫ ∞

Xt

eσzU′(eσz)(1 − FSλ
T
(z))dzP(Tn−Nt ∈ dT)]

= E[G(Nt, Xt)1{t≤T}] .

As pointed out in [24] and [21], arguments based on each stopping time being the

limit of a decreasing sequence of discrete stopping times, allow for us to extend this

result for deterministic times to all stopping times. This implies that we may rewrite V

as

V = inf
τ∈T

E[G(Nτ, Xτ)] ,

completing the proof.

4.2 EXTENSION OF V AND EXISTENCE OF AN OPTIMAL STOPPING TIME

Let us for now assume that V in (4.1.2) admits an optimal stopping time, this will

be shown below. Then, we let D denote the stopping set of all possible states at which

immediate halting results optimal in the stopping problem, so that

V = E[G(NτD
, XτD

)] , (4.2.1)
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where τD is defined as

τD = inf{t ≥ 0 : (Nt, Xt) ∈ D} .

We note that the subset defined by {n} × R+ must always be part of D, since the state

n in N indicates forced stopping. This implies that τD ≤ T < ∞ almost surely.

We note that the law of N started at k is equal to that of (Nk
t )t≥0, with Nk

t = k + Nt.

In order to make use of optimal stopping techniques under a Markovian setting given

in Chapter 2, we extend stopping problem V allowing for a start at any point in the

state space (k, x) ∈ {0, 1, ..., n} × R+, so that

V(k, x) = Ek,x[G(Nt+τD(k,x), Xt+τD(k,x))|t < T] = E[G(Nk
τD(k,x), Xx

τD(k,x))] , (4.2.2)

with

τD(k, x) = inf{t ≥ 0 : (Nk
t , Xx

t ) ∈ D} , (4.2.3)

where Ek,x denotes the expectation under a Markovian probability measure for which

P(Nt = k, Xt = x|t < T) = 1. Here, τD(k, x) stands for the first entry time of the

2-dimensional Markovian process Yk,x
t = (Nk

t , Xx
t ) in D. We note that the original

problem in (4.2.1) can be retrieved as V = V(0, 0). Recall that the solution to our

stopping problem is provided by the largest subharmonic function that is dominated

by the gain function on the entire state space. The optimal stopping time is whenever

the current state of the Markovian process falls within the subset of the state space

where the value of the gain and dominating functions is the same. From the definition

of D in (2.1.2), the optimal stopping set D can be defined as

D = {(k, x) ∈ {0, 1, ..., n} × R+ : V(k, x) = G(k, x)} , (4.2.4)

and is complemented by

C = Dc = {(k, x) ∈ {0, 1, ..., n} × R+ : V(k, x) < G(k, x)} . (4.2.5)

Note that if a Bang-Bang strategy were to be optimal, then {0, ...n − 1} × R+ would be

fully included in either D or C.

Lemma 4.2.1. The extended optimal stopping problem V in (4.2.2) admits an optimal stopping

time given by τD in (4.2.3), for any (k, x) ∈ {0, 1, ..., n} × R+.
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Proof. We recall that any utility function U ∈ U is continuous. Moreover, any

function f : N0 7→ R, where N0 stands for the set of natural numbers including 0,

is continuous since all sets in N0 are open. Therefore, we note from the expression

for G in (4.1.1) that the mapping (k, x) 7→ G(k, x) is continuous on {0, 1, ..., n} × R+.

Then, by the dominated convergence theorem and assumption (4.0.2), it follows that

mappings of the form (k, x) 7→ E[G(Nk
τ , Xx

τ)] are continuous and therefore upper

semicontinuous over stopping times taking values in [0, Tn−k], where Tn−k stands

for the time of the (n − k)th jump in a Poisson process with rate ω. Moreover, the

value function V(k, x) is the infimum of the mapping over such stopping times and is

therefore upper semicontinuous itself. The existence of an optimal stopping time and

its characterization in terms of the stopping set D follows from these facts, along with

Corollary 2.1.3 in the introduction section.

4.3 INFINITESIMAL GENERATOR AND SOLUTION TO THE PROBLEM

The stochastic infinitesimal generator of the process X was introduced in (3.4.1). We

recall it acts on twice differentiable functions f (satisfying f ′(0) = 0) as

AX f (x) = −λ f ′(x) +
1
2

f ′′(x) .

On the other hand, the generator of a Poisson counting process is given by

AN f (k) = lim
t→0

E[ f (k + Nt)]− f (k)

t

= lim
t→0

{

(e−ωt − 1)
f (k)

t
+ e−ωt[ f (k + 1)ω +

f (k + 2)ω2t

2
+ ...]

}

= ω[ f (k + 1)− f (k)] . (4.3.1)

Therefore, the infinitesimal generator of the 2-dimensional Markovian process Yt =

(Nt, Xt) acts on suitable functions f : {0, ..., n − 1} × R → R as

AY f (k, x) = ω[ f (k + 1, x)− f (k, x)]− λ
d f (k, x)

dx
+

1
2

d2 f (k, x)

dx2 . (4.3.2)

For all (k, x) ∈ {0, ..., n− 1}×R, an application of Itô formula on function G in (4.2.2)
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yields

V(k, x) = G(k, x) + E

[

∫ τD(k,x)

0
Gx(Nk

s− , Xx
s )d(x ∨ Sλ

s − Bλ
s )
]

+ E

[

∫ τD(k,x)

0

1
2

Gxx(Nk
s− , Xx

s )d〈Xx, Xx〉s +
∫ τD(k,x)

0
∆G(Nk

s , Xx
s )dNk

s

]

,

with ∆G(Nk
s , Xx

s ) = G(Nk
s , Xx

s ) − G(Nk
s− , Xx

s ). We recall that d〈Xx, Xx〉t = dt; then,

adding and subtracting a compensator to the last integral term in the above equation,

we obtain

V(k, x) = G(k, x) + E

[

∫ τD(k,x)

0
AXG(Nk

s− , Xx
s )ds +

∫ τD(k,x)

0
Gx(Nk

s− , Xx
s )d(x ∨ Sλ

s )
]

+ E

[

−
∫ τD(k,x)

0
Gx(Nk

s− , Xx
s )dBs +

∫ τD(k,x)

0
∆G(Nk

s , Xx
s )d(Nk

s − ωs)
]

+ E

[

∫ τD(k,x)

0
ω∆G(Nk

s , Xx
s )ds

]

, (4.3.3)

Note that the processes (Nk
s −ωs)s≥0 and (Bs)s≥0 are martingales; in addition, a change

in value in x ∨ Sλ
s implies Xx

s = 0, and Gx(k, 0) = 0 for all k ∈ {0, ..., n − 1}, since

Gx(k, x) =
∫ ∞

0

{dU(eσx)

dx
+ σ

d
dx

∫ ∞

x
eσzU′(eσz)(1 − FSλ

T
(z))dz

}

P(Tn−k ∈ dT)

=
∫ ∞

0

{

σeσxU′(eσx)− σeσxU′(eσx)(1 − FSλ
T
(x))

}

P(Tn−k ∈ dT)

=
∫ ∞

0
σeσxU′(eσx)FSλ

T
(x)P(Tn−k ∈ dT) . (4.3.4)

Therefore, in a similar manner to (3.4.3), equation (4.3.3) becomes

V(k, x) = G(k, x) + E

[

∫ τD(k,x)

0
AYG(Nk

s , Xx
s )ds

]

, (4.3.5)

for all (k, x) ∈ {0, ..., n − 1} × R. Moreover, differentiation of equation (4.3.4) with

respect to x shows that AYG(k, x) in (4.3.2) is given by

AYG(k, x) = ω[G(k + 1, x)− G(k, x)]− (λ − σ

2
)Gx(k, x)

+
σ

2
eσx d

dx

∫ ∞

0
U′(eσx)FSλ

T
(x)dP(Tn−k ∈ dT) .

4.3.1 Bang-Bang Stopping Rules and Characterization of V

Noting expression (4.3.5), the following two sets play a fundamental role in the

description of C and D,

Θ = {(k, x) ∈ {0, 1, ..., n − 1} × R+ : AYG(k, x) ≥ 0} , (4.3.6)

Υ = {(k, x) ∈ {0, 1, ..., n − 1} × R+ : AYG(k, x) < 0} . (4.3.7)
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Let ∆ =
√

λ2 + 2ω and define functions R1 and R2 as

R1(k, x) =
∫ x

0
V(k + 1, r)e−(λ−∆)rdr ; R2(k, x) =

∫ x

0
V(k + 1, r)e−(λ+∆)rdr . (4.3.8)

Lemma 4.3.1. Let U ∈ U . If Υ = {0, 1, ..., n − 1} × R+ or Θ = {0, 1, ..., n − 1} × R+, then

a Bang-Bang stopping strategy is optimal. Moreover, if Υ = {0, 1, ..., n − 1} × R+,

V(k, x) = U(eσx)
(

1 +
λ + ∆

∆ − λ
e−2∆x

)

+
ω

∆
e(λ−∆)x

(λ + ∆

∆ − λ
R2(k, x) + R1(k, x)

)

,

for all (k, x) ∈ {0, 1, ..., n − 1} × R+; if Θ = {0, 1, ..., n − 1} × R+,

V(k, x) = G(k, x) ,

for all (k, x) ∈ {0, 1, ..., n − 1} × R+.

Proof. Note that, if Υ = {0, 1, ..., n − 1}×R+, it follows from expression (4.3.5) that for

all (k, x) ∈ {0, 1, ..., n − 1} × R+ an infimum is attained at deadline T, so that V(k, x) <

G(k, x) and according to (4.2.5) we have (k, x) ∈ C. Thus, the entire state space with the

exception of {n} × R+ is contained in the continuation set, and the explicit expression

for V is given as the unique solution to the set of equations

AYV(k, x) = 0 for all (k, x) ∈ {0, 1, ..., n − 1} × R+ , (4.3.9)

lim
x→0

Vx(k, x) = 0 for all k ∈ {0, 1, ..., n − 1} , (4.3.10)

lim
x→∞

V(k, x) = U(eσx) for all k ∈ {0, 1, ..., n − 1} . (4.3.11)

Here, the differential equation (4.3.9) follows from the results on free boundary

problems presented in the introductory Chapter 2. Also, equation (4.3.11) is rather

obvious in view of the definition of the gain function in (4.1.1). The derivation of

(4.3.10) is however necessary and provided in Lemma 4.4.4 later in this Chapter. Hence,

making use of (4.3.10) and (4.3.11) as boundary conditions, the explicit solution for V

can be obtained solving the ordinary differential equation (4.3.9). We omit the details on

this procedure here, since this approach will be exposed later with means of providing

proof to the main result in the Chapter.

Finally, if Θ = {0, 1, ..., n− 1}×R+, we note from the equation for V in (4.3.5) that for

all (k, x) ∈ {0, 1, ..., n− 1}×R+ it holds τD(k, x) = 0, since otherwise V(k, x) > G(k, x),
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which is contradictory. This implies that V(k, x) = G(k, x) and instantaneous stopping

is optimal.

It follows from Lemma 4.3.1 that for a given U ∈ U

D = {n} × R+ if Θ = {0, 1, ..., n − 1} × R+, and

D = {1, 2, ..., n} × R+ if Υ = {0, 1, ..., n − 1} × R+.

4.3.2 Stopping Boundaries and Solution to the Problem

Should conditions of Lemma 4.3.1 not be met, we note from expression (4.3.5) that

Υ ⊆ C always. This is observed noting that for all (k, x) ∈ Υ we have AYG(k, x) < 0

and thus τD(k, x) ≥ 0. It follows that V(k, x) < G(k, x) and (k, x) ∈ C. On the other

hand, it is not necessarily true that Θ ⊆ D.

In this case, the memoryless property of the exponential distribution poses an

independent optimal stopping problem for each subsequent step in N (cf. [2, 17, 31]),

and may give rise to the existence of arrays of critical points in R+ dividing the state

space {0, 1, ..., n} × R+ into sets D and C. These are referred to as optimal stopping

boundaries, and the optimal stopping rule for a problem V started at an arbitrary

(k, x) ∈ C is given by the first crossing time for process X to a boundary. Formally

defined as time functions (constant over time within jumps in N), stopping boundaries

are linked to the amount of steps left to deadline in N at any given point of time, and

we denote them

ζ∗t = ζ∗(n − Nk
t ) , (4.3.12)

for t ≥ 0, (see example in Figure 4.1).

If set Θ in (4.3.6) is non-empty, there exist bounding functions bi : {0, 1, ..., n − 1} →

R+ that define its frontier(s) with set Υ. In this case, a direct analysis of functions bi

along with properties of operator AY in (4.3.2) can usually determine the shape of the

stopping set D in terms of stopping boundaries ζ∗. This is the basis for the conversion

of the stopping problem to an equivalent free boundary problem (for some examples

see [49], Sections 7 & 8). In what follows we make the following assumption and study
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Figure 4.1: Example realization with n=10 and U(x) = x. The values of the optimal

stopping boundary ζ∗ are observed along with the dynamics of a process Xx; τ is the

optimal stopping time.

the reduction of problem V in (4.2.2) to a free boundary problem.

Assumption 4.3.2. Sets Θ and Υ in (4.3.6)-(4.3.7) are non-empty and there exists a unique

n-dimensional array b such that

Θ = {(k, x) ∈ {0, 1, ..., n − 1} × R+ : x ≥ b(k)} , and

Υ = {(k, x) ∈ {0, 1, ..., n − 1} × R+ : x < b(k)} .

Figure 4.2 below offers examples of choices of function U meeting this criteria; a

short discussion on the challenges of facing more than a single bounding function is

included in the discussion Section 4.7.

Under Assumption 4.3.2 and recalling that Υ ⊆ C, it follows that D includes all

points (k, x) ∈ {0, 1, ..., n − 1} × R+ where x lies above a boundary in (4.3.12) such

that ζ∗(n − k) ≥ b(k) for all k ∈ {0, 1, ..., n − 1}, if any. Thus, the continuation set C is

defined by

C = {(k, x) ∈ {0, 1, ..., n} × R+ : x < ζ∗(n − k)} ;

equivalently

D = {(k, x) ∈ {0, 1, ..., n} × R+ : x ≥ ζ∗(n − k)} .
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Figure 4.2: Numerical examples of the value of functions AYG(k, x) with respect to

x, for different fixed values of k. Here, µ = 0.5, σ = 1, ω = 4 and n = 5; the left

hand side plot corresponds to U(x) = 1
2 (x3/2 + x4/3), on the right hand side we have

U(x) = 1
2 (x1/2 + x1/4).

Note that ζ∗T = ζ(n − n) = ζ∗(0) = 0. This definition of sets C and D stands in

accordance with the intuitive argument suggesting that stopping times are linked to big

departures of process Z from its running maximum. In addition, ζ∗ may take infinite

values, so that if ζ∗(n − k) = ∞ for all k ∈ {0, 1, ..., n − 1}, it follows Θ ⊂ C, never

stopping results optimal and the corresponding value function V is given by Lemma

4.3.1. Finally, for any starting point (k, x) ∈ {0, ..., n} × R+, the optimal stopping rule

τD linked to ζ∗ takes the form

τD(k, x) = inf{t ≥ 0 : Xx
t ≥ ζ∗(n − Nk

t )} . (4.3.13)

Therefore, the solution to V will follow from the correct detection of the values that

ζ∗ takes at each step. To give the main result in this Chapter, we first define the

following functions. Let C1 and C2, in terms of the corresponding optimal stopping

boundary ζ∗ and the set of parameters (λ, σ, ω), be given by

C1(k) = (Gx(k, ζ∗(n − k))− (λ − ∆)G(k, ζ∗(n − k))) · e−(λ+∆)ζ∗(n−k)

2∆

+
ω

∆
R2(k, ζ∗(n − k)) , (4.3.14)
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and

C2(k) = −(Gx(k, ζ∗(n − k))− (λ + ∆)G(k, ζ∗(n − k))) · e−(λ−∆)ζ∗(n−k)

2∆

− ω

∆
R1(k, ζ∗(n − k)) . (4.3.15)

with functions R1 and R2 given by (4.3.8).

Theorem 4.3.3. For a given U ∈ U such that Assumption 4.3.2 holds, the extended optimal

stopping problem V(k, x) in (4.2.2) can be recursively decomposed as follows,

V(k, x) = C1(k)e
(λ+∆)x + C2(k)e

(λ−∆)x

+
ω

∆
·
{

e(λ−∆)xR1(k, x)− e(λ+∆)xR2(k, x)
}

, (4.3.16)

if x < ζ∗(n − k) and k < n, and

V(k, x) = G(k, x) , (4.3.17)

if x ≥ ζ∗(n − k) or k = n. Function G(t, x) is as described in (4.1.1) and functions R1, R2, C1

and C2 are given by (4.3.8), (4.3.14) and (4.3.15), respectively.

The value of the optimal stopping boundary ζ∗, at ‘n-k’ steps left to deadline, can be identified

as the unique positive solution to the integral equation

(λ + ∆)C1(k) + (λ − ∆)C2(k) = 0 . (4.3.18)

For all x ∈ R+, V is known at deadline and given by V(n, x) = G(n, x) = U(eσx);

thus, equation (4.3.16) provides an iterative method for finding the numerical value

of V at any point in the state space. Next, we provide the proof for Theorem

4.3.3 in the following two sections. As mentioned, we aim to pose a family of free

boundary problems so that V stands as its unique solution; this is done in Section

4.4. Results establishing (4.3.16) and (4.3.18) follow then from the application of

ordinary techniques for solving linear second order differential equations with constant

coefficients (see for example [57]); this part of the proof is postponed to Section 4.5.

Additionally, Section 4.6 presents and discusses a direct simplification of the above

result to a case with a single jump in N.
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4.4 A FREE BOUNDARY PROBLEM

We recall from Chapter 2 (Section 2.2) that the optimal stopping problem V(k, x) in

(4.2.2) satisfies

AYV(k, x) = 0 for (k, x) ∈ C , (4.4.1)

V(k, x) = G(k, x), for (k, x) ∈ D , (4.4.2)

where AY stands for the infinitesimal generator of the process Y given in (4.3.2). In

terms of the optimal stopping boundary ζ∗, this is equivalent to

ω[V(k + 1, x)− V(k, x)]− λVx(k, x) + 1
2 Vxx(k, x) = 0 for x < ζ∗(n − k) , (4.4.3)

V(k, x) = G(k, x) for x ≥ ζ∗(n − k) . (4.4.4)

In the following, we show that the mapping x 7→ V(k, x) is continuous for any fixed

value of k in N. Note that twice differentiability of this mapping when restricted in

C follows from the general theory of Markov processes in [49] (Chapter 3, Section 7).

Moreover, in view of the introductory Section 2.3 in Chapter 2 on the Neumann free

boundary problem, we show that, for any k < n, the system of equations (4.4.3)-(4.4.4)

is complemented by the following boundary conditions

limx→ζ∗(n−k) V(k, x) = G(k, ζ∗(n − k)) , (4.4.5)

limx→ζ∗(n−k) Vx(k, x) = Gx(k, ζ∗(n − k)) , (smooth fit) , (4.4.6)

limx→0 Vx(k, x) = 0 , (normal reflection) . (4.4.7)

In order to show the validity of (4.4.5)-(4.4.7), we make use of variations of the methods

of solution presented in [49] (Chapter 4) and applied in [18, 20, 21, 29] among others.

4.4.1 Monotonicity and Continuity of V

We recall that V(k, x) < G(k, x) for any x < ζ∗(n − k). Then, condition (4.4.5)

will follow from continuity of the mapping x 7→ V(k, x). We start by introducing the

following lemma for later use.

60



Lemma 4.4.1. Let U ∈ U be an strictly-convex function and fix t ≥ 0 and x ∈ R+. Then, the

random variable eσXx
t U′(eσXx

t ) has finite expectation.

Proof. Note first that

Xx
t = x ∨ Sλ

t − Bλ
t ≤ max(x + |λ|t + |Bt|, max

0≤s≤t
{λs + Bs} − λt + |Bt|)

≤ max(x + |λ|t + |Bt|, max
0≤s≤t

|Bs|+ |λ|t + |Bt|)

≤ x + 2 max
0≤s≤t

|Bs|+ |λ|t .

Since U is a non-decreasing and convex function,

0 ≤ E[eσXx
t U′(eσXx

t )] ≤ E[eσ(x+2 max0≤s≤t |Bs|+|λ|t)U′(eσ(x+2 max0≤s≤t |Bs|+|λ|t))]

= −
∫ ∞

0
eσw(z)U′(eσw(z))dP(max

0≤s≤t
|Bs| ≥ z) ,

where w(z) = x + |λ|t + 2z. Integrating by parts the above yields

E[eσXx
t U′(eσXx

t )] ≤ −[eσw(z)U′(eσw(z))P(max
0≤s≤t

|Bs| ≥ z)]
∣

∣

∞

0

+
∫ ∞

0
[eσw(z)U′(eσw(z)) + σe2σw(z)U′′(eσw(z))]P(max

0≤s≤t
|Bs| ≥ z)dz .

Recall (cf. [21]) that P(max0≤s≤t |Bs| ≥ z) ≤ 2P(|Bt| ≥ z). Noting conditions (4.0.4)

and (4.0.5), it follows that

E[eσXx
t U′(eσXx

t )] < ∞.

Lemma 4.4.2. Fix U ∈ U and k ≤ n, the mapping x 7→ V(k, x) is non-decreasing and

continuous in R+.

Proof. The proof is split up in two parts. To start with, we show that function G

defined by (4.1.1), to which V relates, is non-decreasing in x. We note that if k = n,

the monotonicity of G follows from Gx(k, x) = σeσxU′(eσx) ≥ 0. If k < n, we recall

from (4.3.4) that

Gx(k, x) =
∫ ∞

0
σeσxU′(eσx)FSλ

T
(x)P(Tn−k ∈ dT) ≥ 0 , (4.4.8)

for all x ∈ R+.
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We now show that V is non-decreasing in x. If k = n, then (k, x) ∈ D and so V = G.

Therefore V(k, x) = U(eσx), which is a non-decreasing function of x. If k < n, take

values x, y ∈ R+ with x ≤ y and set τx = τD(k, x) and τy = τD(k, y), where τD(k, ·)

is given by (4.3.13). Since the subset {n} × R+ is included in D, we have τx, τy ≤ T

almost surely. According to the definition of V(k, x) in (4.2.2), the infimum is attained

at time τx and we have

V(k, x) = E[G(Nk
τx

, Xx
τx
)] ≤ E[G(Nk

τy
, Xx

τy
)] ,

implying that

V(k, y)− V(k, x) = E[G(Nk
τy

, X
y
τy
)− G(Nk

τx
, Xx

τx
)] ≥ E[G(Nk

τy
, X

y
τy
)− G(Nk

τy
, Xx

τy
)] .

Recalling that G(k, x) is non-decreasing on x, and noting that X
y
τy
≥ Xx

τy
, we get

V(k, y) ≥ V(k, x) ,

settling the result on monotonicity for V.

We continue showing that the mapping x 7→ V(k, x) is continuous on x for any fixed

k ≤ n. If k = n, the value function is reduced to U(eσx), which is continuous in x by

assumption. If k < n, following the previous arguments, we note that for x ≤ y

0 ≤ V(k, y)− V(k, x) ≤ E[G(Nk
τx

, X
y
τx
)− G(Nk

τx
, Xx

τx
)] .

Since G(k, x) is continuous in x, for any fixed value of k, the mean value theorem gives

0 ≤ V(k, y)− V(k, x) ≤ E[(X
y
τx
− Xx

τx
)Gx(Nk

τx
, ν)] .

where Xx
τx
≤ ν ≤ X

y
τx

. Moreover, noting that X
y
τx
− Xx

τx
= y∨ Sλ

τx
− Bλ

τx
− x∨ Sλ

τx
+ Bλ

τx
≤

y − x, we have

0 ≤ V(k, y)− V(k, x) ≤ (y − x)E[Gx(Nk
τx

, ν)] .

In order to further simplify the above, we recall result (4.3.4) and note that

Gx(Nk
τx

, ν) ≤ σeσνU′(eσν)
∫ ∞

0
FSλ

T
(ν)P(Tn−Nk

τx
∈ dT)

≤ σeσνU′(eσν)
∫ ∞

0
P(Tn−Nk

τx
∈ dT) = σeσνU′(eσν) ,

if Nk
τx
< n. Also, it is trivial that Gx(Nk

τx
, ν) ≤ σeσνU′(eσν) if Nk

τx
= n.
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If U is concave, then U′ is a non-increasing function. Noting that ν ≤ X
y
τx

, we obtain

0 ≤ V(k, y)− V(k, x) ≤ σc(y − x)E[eσX
y
τx ] . (4.4.9)

for some constant value c > 0. If U is convex, then U′ is a non-decreasing function and

so

0 ≤ V(k, y)− V(k, x) ≤ σ(y − x)E[eσX
y
τx U′(eσX

y
τx )] . (4.4.10)

Note that the integrability of eσX
y
τx U′(eσX

y
τx ) for convex functions U follows from

Lemma 4.4.1. We refer to [21] for a probabilistic proof on the integrability of the term

eσX
y
τx . Finally, take the limit as |y − x| → 0 in (4.4.9) and (4.4.10) above to conclude that

x 7→ V(k, x) for k ∈ {0, ..., n} are continuous mappings in R+, therefore concluding the

proof.

4.4.2 The Condition of Smooth Fit

Lemma 4.4.3 (Principle of Smooth Fit). For any fixed k < n, Vx(k, x) exists and is

continuous at ζ∗(n − k). In addition, it holds Vx(k, ζ∗(n − k)) = Gx(k, ζ∗(n − k)).

Note. We can observe an example of the smooth pasting of the value function V to the

gain function G in Figure 4.3.

Proof. Let ε > 0 and τε = τD(k, ζ∗(n − k) − ε). From the definition of C in (4.2.5)

we note that V(k, ζ∗(n − k) − ε) < G(k, ζ∗(n − k) − ε). Also, it is always optimal to

halt while in D, so that V(k, ζ∗(n − k)) = G(k, ζ∗(n − k)) < E[G(Nk
τε

, X
ζ∗(n−k)
τε

)]. This

implies

G(k, ζ∗(n − k))− G(k, ζ∗(n − k)− ε) ≤ V(k, ζ∗(n − k))− V(k, ζ∗(n − k)− ε) , (4.4.11)

and

V(k, ζ∗(n − k))− V(k, ζ∗(n − k)− ε) ≤ E[G(Nk
τε

, X
ζ∗(n−k)
τε

)− G(Nk
τε

, X
ζ∗(n−k)−ε
τε

)] .

(4.4.12)

From (4.4.12), we derive making use of the mean value theorem, that for all fixed k

V(k, ζ∗(n − k))− V(k, ζ∗(n − k)− ε) ≤ E[(X
ζ∗(n−k)
τε

− X
ζ∗(n−k)−ε
τε

)Gx(Nk
τε

, ν)] ,
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where X
ζ∗(n−k)−ε
τε

≤ ν ≤ X
ζ∗(n−k)
τε

. Recall that for any U in U the term Gx(k, x) is positive

for all (k, x) ∈ {0, 1, ..., n} × R+. Note also that

X
ζ∗(n−k)
τε

− X
ζ∗(n−k)−ε
τε

= ζ∗(n − k) ∨ Sλ
τε
− (ζ∗(n − k)− ε) ∨ Sλ

τε
≤ ε .

Thus,

V(k, ζ∗(n − k))− V(k, ζ∗(n − k)− ε) ≤ ε · E[Gx(Nk
τε

, ν)] . (4.4.13)

Since V is twice differentiable in C, dividing the terms in equations (4.4.11) and (4.4.13)

by ε and taking the limit as ε → 0 leads to

Gx(k, ζ∗(n − k)) ≤ Vx(k, ζ∗(n − k)) ≤ lim
ε→0

E[Gx(Nk
τε

, ν)] . (4.4.14)

Moreover

τε = τD(k, ζ∗(n − k)− ε) = inf{s ≥ 0 : X
ζ∗(n−k)−ε
s ≥ ζ∗(n − Nk

s )}

= inf{s ≥ 0 : (ζ∗(n − k)− ε) ∨ Sλ
s − Bs − λs ≥ ζ∗(n − Nk

s )}

≤ inf{s ≥ 0 : −Bs ≥ ε + λs + ζ∗(n − Nk
s )− ζ∗(n − k)} ε→0−−→ 0 ,

since a Poisson process is right-continuous. This implies that ν
ε→0−−→ ζ∗(n − k), since

X
ζ∗(n−k)−ε
τε

≤ ν ≤ X
ζ∗(n−k)
τε

. Therefore, by (4.4.14), the fact that Vx(k, ζ∗(n − k)) =

Gx(k, ζ∗(n − k)) follows from the right-continuity of Poisson processes.

Next, we show that for any fixed k < n, Vx(k, x) is continuous at ζ∗(n − k). For this,

we take δ > 0, and in a similar fashion as before, for any ε ∈ (0, δ) we have

V(k, ζ∗(n − k)− δ + ε)− V(k, ζ∗(n − k)− δ) ≤

E[G(Nk
τδ

, X
ζ∗(n−k)−δ+ε
τδ

)− G(Nk
τδ

, X
ζ∗(n−k)−δ
τδ

)] ,

so that

V(k, ζ∗(n − k)− δ + ε)− V(k, ζ∗(n − k)− δ) ≤ εE[Gx(Nk
τδ

, ν)] ,

where X
ζ∗(n−k)−δ
τδ

≤ ν2 ≤ X
ζ∗(n−k)−δ+ε
τδ

. Since τδ
δ→0−−→ 0 we have ν2

ε→0−−→ X
ζ∗(n−k)−δ
τδ

.

Now, dividing the above by ε and taking the limit as ε → 0 we obtain

Vx(k, ζ∗(n − k)− δ) ≤ E[Gx(Nk
τδ

, X
ζ∗(n−k)−δ
τδ

)] ,
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Figure 4.3: Values of V and G for different x and fixed single jump to deadline; here,

U(x) = x, λ = 0 and σ = ω = 1. The smooth pasting of V to G is observed. The

stopping set D is the area for which V(n − 1, x) = G(n − 1, x).

so that

lim sup
δ→0

Vx(k, ζ∗(n − k)− δ) ≤ Gx(k, ζ∗(n − k)) .

To show that the reverse inequality holds, taking ε > 0, arguments seen before imply

that

V(k, ζ∗(n − k)− δ)− V(k, ζ∗(n − k)− δ − ε) ≥

E[Gx(Nk
τδ

, ν3)(X
ζ∗(n−k)−δ
τδ

− X
ζ∗(n−k)−δ−ε
τδ

)] ,

for some ν3 ∈ [X
ζ∗(n−k)−δ
τδ

, X
ζ∗(n−k)−δ−ε
τδ

]. If we divide the above by ε and take the limit

as ε → 0, the left hand side tends to Vx(k, ζ∗(n − k)− δ) and the right hand side does

so to

1
ε

E[Gx(Nk
τδ

, ν3)(X
ζ∗(n−k)−δ
τδ

− X
ζ∗(n−k)−δ−ε
τδ

)]

= E[Gx(Nk
τδ

, ν3)
(ζ∗(n − k)− δ) ∨ Sλ

τδ
− (ζ∗(n − k)− δ − ε) ∨ Sλ

τδ

ε
]

ε→0−−→ E[Gx(Nk
τδ

, X
ζ∗(n−k)−δ
τδ

)I{Sλ
τδ
<ζ∗(n−k)−δ}] ,

implying that

Vx(k, ζ∗(n − k)− δ) ≥ E[Gx(Nk
τδ

, X
ζ∗(n−k)−δ
τδ

)I{Sλ
τδ
<ζ∗(n−k)−δ}] .
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Hence, due the right continuity of Poisson processes we get

lim inf
δ→0

Vx(k, ζ∗(n − k)− δ) ≥ Gx(k, ζ∗(n − k)) ,

concluding the proof.

4.4.3 The Condition of Normal Reflection

Lemma 4.4.4 (Normal Reflection). For any fixed k < n, limx→0 Vx(k, x) = 0.

Proof. Fix k < n. If ζ∗(n − k) = 0, then Vx(k, x) = Gx(k, x) and from equation (4.3.4)

we observe that limx→0 Vx(k, x) = 0. If ζ∗(n − k) > 0, we apply Itô’s formula for non-

continuous semimartingales to V(Nk
t , X0

t ), while (Nk
t , X0

t ) is in the continuation set C,

so that

V(Nk
t , X0

t ) = V(k, 0) +
∫ t

0
Vx(Nk

s , X0
s )dX0

s +
1
2

∫ t

0
Vxx(Nk

s , X0
s )d[X

0]s

+ ∑
s≤t

∆[V(Nk
s , X0

s )] ,

where, for any multi dimensional Markovian process (Yt)t≥0, ∆[V(Yt)] = V(Yt) −

V(Yt−), and Yt− stands for the left-continuous left-limit process of Y in t. We note that

function V is twice differentiable in C and the limit limx→0 Vx(k, x) exists.

We recall from Section 3.4 that dX0
s = dSλ

s − λds − dBs is a generalized Itô process

so that [X0]s = (
∫ s

0 dBr)2 =
∫ s

0 dr = s. We plug these expressions appropriately in the

previous equation to obtain

V(Nk
t , X0

t )− V(k, 0) =
∫ t

0
AXV(Nk

s , X0
s )ds +

∫ t

0
Vx(Nk

s , X0
s )dSλ

s

−
∫ t

0
Vx(Nk

s , X0
s )dBs + ∑

s≤t

∆[V(Nk
s , X0

s )] , (4.4.15)

where the operator AX is the infinitesimal generator of the process X given by (3.4.1).

Now, we note that jumps in process Nk
t are of size 1. Therefore, the last term in the

right hand side of equation (4.4.15) can be modified as follows

∑
s≤t

∆[V(Nk
s , X0

s )] =
∫ t

0
[V(Nk

s− + 1, X0
s )− V(Nk

s− , X0
s )]dNk

s ,
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implying that

V(Nk
t , X0

t )− V(k, 0) =
∫ t

0
AXV(Nk

s , X0
s )ds +

∫ t

0
Vx(Nk

s , X0
s )dSλ

s

−
∫ t

0
Vx(Nk

s , X0
s )dBs

+
∫ t

0
[V(Nk

s− + 1, X0
s )− V(Nk

s− , X0
s )]dNk

s ,

and thus

E[V(Nk
t , X0

t )]− V(k, 0)
t

=
E[

∫ t
0 AXV(Nk

s , X0
s )ds]

t
+

E[
∫ t

0 Vx(Nk
s , X0

s )dSλ
s ]

t

+
E[

∫ t
0 [V(Nk

s− + 1, X0
s )− V(Nk

s− , X0
s )]dNk

s ]

t
, (4.4.16)

for all t ≥ 0.

Hence, we take on both sides of (4.4.16) the limit as t → 0 to obtain

AYV(k, 0) =

AXV(k, 0) + Vx(k, 0+) · lim
t→0

E[Sλ
t ]

t
+ [V(k + 1, 0)− V(k, 0)] · lim

t→0

E[Nk
t − k]

t
.

(4.4.17)

Here, for fixed t > 0, the random variable Nk
t − k follows a Poisson distribution with

rate ωt. Thus, we have E[Nk
t −k]
t

t→0−−→ ω. Therefore, equation (4.4.17) becomes

AYV(k, 0) = AXV(k, 0) + Vx(k, 0+) · lim
t→0

E[Sλ
t ]

t
+ANV(k, 0) , (4.4.18)

where AN stands for the infinitesimal generator of the process Nt described in (4.3.1).

Recalling that AY = AX +AN , equation (4.4.18) reduces to

Vx(k, 0+) · lim
t→0

E[Sλ
t ]

t
= 0 .

Note that

E[Sλ
t ] ≥ E[St]− |λ|t =

√
tE[|Bt|]− |λ|t

for all t ≥ 0, due to St
law
= |Bt| law

=
√

t|B1|. Thus, dividing the above by t and letting

t → 0 yields

lim
t→0

E[Sλ
t ]

t
> lim

t→0

E[|Bt|]√
t

− |λ| = ∞,

so that it holds Vx(k, 0+) = 0 and the proof is completed.
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4.5 A UNIQUE SOLUTION TO THE BOUNDARY PROBLEM

For all k ∈ {0, ..., n − 1}, the free boundary problem linked to V(k, x) in (4.2.2)

comprises equations (4.4.3) and (4.4.4), along with boundary conditions (4.4.5)-(4.4.7).

In this section, we use techniques for solving linear second order differential equations

and prove the validity and uniqueness of expressions (4.3.16)-(4.3.18), therefore setting

the proof of Theorem 4.3.3.

First, we recall that ζ∗ takes value 0 for k = n, so that instantaneous stopping results

optimal. This, along with condition (4.4.4), establishes (4.3.17) in the decomposition

of V(k, x) whenever x ≥ ζ∗(n − k) or k = n. In order to prove the complimentary

case when x < ζ∗(n − k) and k < n, we provide a standard solution for V(k, x) in the

ordinary differential equation (4.4.3). This is a linear second order differential equation

with constant coefficients, we rewrite it as

1
2

Vxx(k, x)− λVx(k, x)− ωV(k, x) = −ωV(k + 1, x) .

General theory of differential equations in [57] suggests the solution to this equation

is of the form V(k, x) = VH(k, x) + VP(k, x). Here, VH is the solution to the associated

homogeneous equation and VP is the non-homogeneous particular solution. Thus, we

use the method of variation of parameters on the system of equations

Vxx(k, x)− 2λVx(k, x)− 2ωV(k, x) = 0 , (4.5.1)

Vxx(k, x)− 2λVx(k, x)− 2ωV(k, x) = −2ωV(k + 1, x) . (4.5.2)

4.5.1 Solution to the Homogeneous Equation

The solution to VH is of the form VH(k, x) = C1(k)V1(k, x) + C2(k)V2(k, x), with both

V1(k, x) and V2(k, x) being exponentials of the form erx, plugging these into equation

(4.5.1) leads to the characteristic equation

r2erx − 2λrerx − 2ωerx = 0 ⇒ r2 − 2λr − 2ω = 0 ,

solved by

r = λ +
√

λ2 + 2ω and r = λ −
√

λ2 + 2ω ,

68



so that

VH(k, x) = C1(k)e
(λ+

√
λ2+2ω)x + C2(k)e

(λ−
√

λ2+2ω)x , (4.5.3)

where C1(k) and C2(k) are both functions of k.

4.5.2 Particular Solution

The method of variation of parameters tells us that we ought to look for a solution

such that VP(k, x) = u1(k, x)e(λ+
√

λ2+2ω)x + u2(k, x)e(λ−
√

λ2+2ω)x, where u1 and u2 are

the solutions to






















u′
1(k, x)e(λ+

√
λ2+2ω)x + u′

2(k, x)e(λ−
√

λ2+2ω)x = 0 ,

u′
1(k, x)

(

e(λ+
√

λ2+2ω)x
)′
+ u′

2(k, x)
(

e(λ−
√

λ2+2ω)x
)′
= −2ωV(k + 1, x) .

Equivalently,


































u1(k, x) =
∫ 2ωV(k + 1, x)e(λ−

√
λ2+2ω)x

W(e(λ+
√

λ2+2ω)x, e(λ−
√

λ2+2ω)x)
dx ,

u2(k, x) = −
∫ 2ωV(k + 1, x)e(λ+

√
λ2+2ω)x

W(e(λ+
√

λ2+2ω)x, e(λ−
√

λ2+2ω)x)
dx ,

where W( f , g) stands for the Wronskian determinant of functions f and g, given by

W( f , g)(x) =

∣

∣

∣

∣

∣

∣

∣

f (x) g(x)

f ′(x) g′(x)

∣

∣

∣

∣

∣

∣

∣

= ( f g′ − f ′g)(x) ,

so that

W(e(λ+
√

λ2+2ω)x, e(λ−
√

λ2+2ω)x) = −2e2λx
√

λ2 + 2ω .

Hence, we have

u1(k, x) = −
∫

ωṼ(k + 1, x)e(λ−
√

λ2+2ω)x

e2λx
√

λ2 + 2ω
dx

= − ω√
λ2 + 2ω

∫

V(k + 1, x)e−(λ+
√

λ2+2ω)xdx ,

and

u2(k, x) =
∫

ωṼ(k + 1, x)e(λ+
√

λ2+2ω)x

e2λx
√

λ2 + 2ω
dx

=
ω√

λ2 + 2ω

∫

V(k + 1, x)e−(λ−
√

λ2+2ω)xdx ,
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so that VP is given by

VP(k, x) = u1(k, x)e(λ+
√

λ2+2ω)x + u2(k, x)e(λ−
√

λ2+2ω)x

=
ω

∆

(

e(λ−∆)xR1(k, x)− e(λ+∆)xR2(k, x)
)

,

with ∆ =
√

λ2 + 2ω and functions R1 and R2 given in (4.3.8). This, along with (4.5.3)

shows

V(k, x) = C1(k)e
(λ+∆)x + C2(k)e

(λ−∆)x +
ω

∆

(

e(λ−∆)xR1(k, x)− e(λ+∆)xR2(k, x)
)

,

(4.5.4)

the complete general solution for V(k, x) in (4.4.3).

4.5.3 Determining a Unique Solution

We use boundary conditions (4.4.5)-(4.4.6) to derive functions C1 and C2 in terms of

the optimal stopping boundary ζ∗. We recall that functions R1 and R2 in (4.3.8) are such

that

dR1(k, x)

dx
= V(k + 1, x)e−(λ−∆)x and

dR2(k, x)

dx
= V(k + 1, x)e−(λ+∆)x .

Then, from (4.5.4) above we have

Vx(k, x) = (λ + ∆)C1(k)e
(λ+∆)x + (λ − ∆)C2(k)e

(λ−∆)x

+
ω

∆

(

(λ − ∆)e(λ−∆)xR1(k, x)− (λ + ∆)e(λ+∆)xR2(k, x)
)

. (4.5.5)

Note that x 7→ V(k, x) is a continuous mapping; then, the general form solutions for V

and Vx in (4.5.4) and (4.5.5), along with (4.4.5)-(4.4.6), gives

G(k, ζ∗(n − k)) = C1(k)e
(λ+∆)ζ∗(n−k) + C2(k)e

(λ−∆)ζ∗(n−k)

+
ω

∆
e(λ−∆)ζ∗(n−k)R1(k, ζ∗(n − k))

− ω

∆
e(λ+∆)ζ∗(n−k)R2(k, ζ∗(n − k)) , Eq. A

and

Gx(k, ζ∗(n − k)) = (λ + ∆)C1(k)e
(λ+∆)ζ∗(n−k) + (λ − ∆)C2(k)e

(λ−∆)ζ∗(n−k)

+
ω

∆
(λ − ∆)e(λ−∆)ζ∗(n−k)R1(k, ζ∗(n − k))

− ω

∆
(λ + ∆)e(λ+∆)ζ∗(n−k)R2(k, ζ∗(n − k)) . Eq. B
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Here, taking A · (λ − ∆)− B and A · (λ + ∆)− B yields

C1(k) =
ω

∆
R2(k, ζ∗(n − k))

+ (G̃x(k, ζ∗(n − k))− (λ − ∆)G̃(k, ζ∗(n − k))) · e−(λ+∆)ζ∗(n−k)

2∆
,

and

C2(k) = −ω

∆
R1(k, ζ∗(n − k))

− (G̃x(k, ζ∗(n − k))− (λ + ∆)G̃(k, ζ∗(n − k))) · e−(λ−∆)ζ∗(n−k)

2∆
,

settling (4.3.14) and (4.3.15).

Finally, note that limx→0 Ri(k, x) = 0 for i ∈ {1, 2}. Then, normal reflection condition

in (4.4.7) yields integral equation in (4.3.18) for optimal boundary ζ∗ to solve, i.e.

Vx(k, x)
x→0−−→ (λ + ∆)C1(k) + (λ − ∆)C2(k) = 0,

which settles the last result in Theorem 4.3.3.

4.6 EXPONENTIAL TERMINAL TIME

In the special case when n = 1, so that T is an exponentially distributed random

variable, the stopping boundary will take a constant value. This is a common set up

within stopping problems with financial applications and is known as canadization of

the terminal time (see for example [17, 36]). Its advantage lies in that the dimensionality

of the problem is reduced to 1, so that the existence of a stopping set is easy to justify.

In this case, a simplified result derived from Theorem 4.3.3 above can be offered.

Let the gain function G be given by

G(x) = U(eσx) + σω
∫ ∞

0

∫ ∞

x
eσzU′(eσz)(1 − FSλ

T
(z))dze−ωTdT . (4.6.1)

In addition, define functions R1 and R2 as

R1(x) =
∫ x

0
U(eσr)e−(λ−∆)rdr and R2(x) =

∫ x

0
U(eσr)e−(λ+∆)rdr , (4.6.2)

and let functions C1 and C2, in terms of the corresponding constant stopping boundary

ζ∗ and parameters (λ, σ, ω), be given by

C1 =
ω

∆
R2(ζ

∗) + (Gx(ζ
∗)− (λ − ∆)G(ζ∗)) · e−(λ+∆)ζ∗

2∆
, (4.6.3)
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and

C2 = −ω

∆
R1(ζ

∗)− (Gx(ζ
∗)− (λ + ∆)G(ζ∗)) · e−(λ−∆)ζ∗

2∆
, (4.6.4)

with ∆ =
√

λ2 + 2ω.

Corollary 4.6.1. Let U ∈ U be such that Assumption 4.3.2 is satisfied, then the underlying

extended optimal stopping problem V(x), derived from setting k = 0 and n = 1 in (4.2.2), is

such that

V(x) = C1e(λ+∆)x + C2e(λ−∆)x +
ω

∆
·
{

e(λ−∆)xR1(x)− e(λ+∆)xR2(x)
}

, (4.6.5)

if x < ζ∗, and

V(x) = G(x) , (4.6.6)

if x ≥ ζ∗, where ζ∗ stands for the optimal stopping boundary. Function G(x) is given by

(4.6.1), and functionals R1, R2, C1 and C2 are given by (4.6.2), (4.6.3) and (4.6.4) respectively.

Finally, ζ∗ can be identified as the only positive solution to the integral equation

(λ + ∆)C1 + (λ − ∆)C2 = 0 . (4.6.7)

4.7 DISCUSSION

This Chapter has analysed, in a time-randomized context, generalizations of optimal

prediction problems to a family of utility functions meeting certain conditions. A

time-independent family of stopping problems has been derived and the existence of

optimal stopping boundaries discussed, characterizing boundaries and optimal value

functions for problems meeting certain criteria relating the operator AY in (4.3.2) and

the gain function G. Results in Theorem 4.3.3 allow for the iterative computation of

a stopping boundary ζ∗ associated to the problem of optimally halting a stochastic

process Z driven by a geometric Brownian motion with drift µ and variance σ.

In this case, we recall that the optimal stopping time comes at the first hitting time of

the diffusion X0 in (3.2.2) to the boundary ζ∗. We note that different sets of parameters

(µ, σ) defining Z must be linked to different boundaries; these can be either more

permissive, allowing for a broader range of values of Xt not to fall in the stopping
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set D, or more restrictive, reducing the values of ζ∗ and therefore forcing the halt at a

slight take off of X from 0.

4.7.1 Existence

For a choice of utility function U ∈ U , analytically tackling the veracity of conditions

in Definition 4.0.1 and Assumption 4.3.2 can be a daunting challenge, especially

due to the complexity of the integral term in (4.0.2) and equation AY in (4.3.2). A

computational approach to these conditions does on the other hand show that several

families of functions meet these requirements. An example is given by the family of

combined power utility functions, i.e. functions U(x) of the form

U(x) =
m

∑
i=1

αix
δi ,

with m ≥ 0, 0 ≤ δi < 1 for all i ∈ {1, 2, ..., m} (strictly concave) or 1 < δi for all i ∈

{1, 2, ..., m} (strictly convex); 0 ≤ αi ≤ 1 and ∑
m
i=1 αi = 1. Direct numerical analysis of

functions AYG(k, x) in (4.3.5) reveals the existence of common properties for measures

of this kind. For all (k, x) ∈ {1, 2, ...n} × R+ there exist u1, u2 ∈ R+ with u1 < u2 so

that

AYG(k, x) < 0 if µ ≥ u2 , and

AYG(k, x) > 0 if µ ≤ u1 .

Moreover, for any µ ∈ (u1, u2) conditions in Assumption (4.3.2) are met. It follows that

for this family of functions the optimal stopping set D can partially be defined as

D = {n} × R+ if µ ≥ u2 , (4.7.1)

D = {0, 1, ..., n} × R+ if µ ≤ u1 , and (4.7.2)

D = {(k, x) ∈ {0, 1, ..., n} × R2 : x > ζ∗(n − k)} if µ ∈ (u1, u2) . (4.7.3)

We recall from the introduction to this thesis that it was introduced in [54] and later

on extended in [21], that under a fixed terminal time set-up, the problem of optimizing

the ratio within a geometric Brownian motion and its ultimate maximum until deadline

(or its inverse), led to the categorization of processes into first 2 and later on 3 different
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groups. The solution to our randomized problem for the family of combined power

utility functions suggests that we can make use of a virtually similar categorization to

that in [21] and [54], as exposed in the set of equations (4.7.1)-(4.7.3).

4.7.2 Multiple Bounding Functions

It is possible to extend the scope of this chapter to functions U in U not meeting

conditions listed in Assumption 4.3.2. The shape of sets Θ and Υ in (4.3.6) and (4.3.7)

is dependent on the choice of U, and this alters the construction of the stopping set D.

For instance, the choice of squared logarithmic utility function U(x) = log2(x), leading

to the randomized terminal time optimal stopping problem

inf
τ∈[0,T]

E[(Bλ
τ − max

0≤s≤T
Bλ

s )
2] , (4.7.4)

shows the existence of two bounding points for the set Θ at any fixed value of k,

when λ > 0 and is close to 0 (see Figure 4.4). This is consistent with results in

Figure 4.4: Value of function AYG(k, x) for varying x and different fixed values of k.

Here, λ > 0 and close to 0; in addition, σ = 1, ω = 3, n = 6 and U(x) = log2(x). We

notice the existence of two bounding functions for sets Θ and Υ.

[18] that analyse the stopping problem (4.7.4) under a fixed terminal time T. Such

observation suggests that there may exist two stopping boundaries, which in turn shifts
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the reduction procedure to an alternative free boundary problem to that in (4.4.3) and

(4.4.4).

4.7.3 Approximating a Fixed Terminal Time

Finally, results in this chapter also make it possible to build numerical

approximations of some fixed terminal time set-up optimal prediction problems. We

recall from Section 2.4 that if a randomized T is modelled by the nth jump in a Poisson

process with rate ω = n/T∗, for fixed T∗, then it holds

E[T] = T∗ and V[T] =
T∗
n

,

so that T → T∗ as n → ∞. Thus, it is possible to make use of low-variance Gamma

distributed estimates to the true deadlines. Figure 4.5 presents an approximation of

the stopping boundary for the fixed terminal time problem V with U(x) = x as first

analysed in [21], when λ = −0.25.

Figure 4.5: Estimate of continuous optimal stopping boundary for fixed terminal time

T∗ = 10, with λ = −0.25 and σ = 1. The amount of breaks used to build this estimate

is 60, so that ω = 6. Time τ stands for the optimal stopping time to this process Xx.
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PART II

APPLICATION OF MARKOV DECISION
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CHAPTER 5

RESULTS ON MARKOV DECISION PROCESSES

We begin the second part of this thesis offering an introduction to the notation and

approach to discrete-time Markov decision processes (MDPs). We will also summarize

a set of results presented in the theory in [51] and [13], which will be of use in analysing

an MDP derived from a portfolio optimization problem in Chapter 6. In addition, we

will introduce and describe computational procedures that aim to approximate optimal

solutions within the context of these problems.

In what follows, we will be restricting ourselves to the theory strictly relevant to this

thesis, and we therefore present results that apply to infinite horizon models under

non-discounted expected total reward criterion. Additionally, we focus on Markovian

decision rules that comply with the Markovian set up of our problem, and we ignore

the existence of history-dependent decision rules that allow for a formulation in greater

generality.

5.1 THE BOREL MODEL

Let (Ω,B(Ω), P) denote a probability space where:

• The sample space Ω is given by {E ×A}∞, with E and A to be defined below.

• The σ-algebra B(Ω) is given by the Borel measurable subsets of {E ×A}∞.

• Measure P is a probability measure on B(Ω).
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In addition, let X = (Xn)n≥0 and Y = (Yn)n≥0 be sequences of random variables taking

values in E and A respectively, so that

Xn(ω) = xn and Yn(ω) = αn ,

for all n ≥ 0. Here, an element ω ∈ Ω is a sequence of observations

ω = (x0, α0, x1, α1, ...) ,

taking values in {E ×A}∞.

A technical formulation of an MDP in this thesis, extending the presentation in the

introduction section, consists of a history process Z = (Zn)n≥0, describing the joint

stochastic evolution of states Xn ∈ E and actions Yn ∈ A in a system, defined by

Z0(ω) = x0 and Zn(ω) = (x0, α0, x1, α1, ..., xn) ,

for n ≥ 1. It incorporates the following components:

• A Borel space (E,B(E)) of the state space E and its Borel subsets B(E). We assume

E to be an unbounded subset of the Euclidean space.

• A Borel space (A,B(A)) of the action space A and its Borel subsets B(A), along

with a collection of admissible action sets D(x) ∈ B(A) such that there exists a

measurable function f : E → A, with f (x) ∈ D(x) for all x ∈ E.

• A family of measures P(D(x)) on the Borel subsets B(D(x)), for all x ∈ E.

• Conditional transition probability functions Qn(·|x, α), which for all n ≥ 0 satisfy

i) Qn(B|·, ·) is measurable with respect to B(E × D(x)), for B ∈ B(E).

i) Qn(B|·, ·) is integrable with respect to each P ∈ P(D(x)), for all x ∈ E and

B ∈ B(E).

• Real-valued reward functions Rn(x, α), which for all n ≥ 0 satisfy

i) Rn(·, ·) is measurable with respect to B(E × D(x)).

i) Rn(·, ·) is integrable with respect to each P ∈ P(D(x)), for all x ∈ E.
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Finally, it includes a set of Markovian one-step deterministic policies or decision rules F

given by

FD = { f : E → A | f measurable and f (x) ∈ D(x) for all x ∈ E} ,

and a set of Markovian one-step randomized policies or decision rules given by

FR = { f : E → P(A) with f (x) = Px ∈ P(A) | Px(D(x)) = 1 for all x ∈ E} ,

so that for all f ∈ FR

Rn(xn, f (xn)) =
∫

D(x)
Rn(xn, α)Pxn(dα) ,

and

Qn(B|xn, f (xn)) =
∫

D(x)
Qn(B|xn, α)Pxn(dα) ,

for B ∈ B(E). We note that FD ⊆ FR always, since deterministic policies can be attained

as randomized policies with density atoms.

A set of deterministic Markovian policies ΠD is defined by the Cartesian product of

the corresponding decision set FD; analogously, randomized Markovian policies ΠR

are defined by the Cartesian product of FR, so that ΠD ⊆ ΠR. Within the scope of

this thesis, a Markov decision problem deals with the problem of identifying the optimal

deterministic Markovian policy π = ( f0, f1, ...) ∈ ΠD, if any, that maximizes the

expected sum of rewards, which in view of (1.2.1) is given by

Eπ
x

[ ∞

∑
k=0

Rk(Xk, Yk)
]

for all x ∈ E, where the expectation is taken over the probability distribution P|X0=x

induced by the policy π ∈ ΠD, and Yk = fk(Xk). However, it will also be necessary to

invoke randomized policies π ∈ ΠR at certain points in our work.

We will generally refer to such an MDP as to be modelled by the 4-tuple

(E, A, Q·(·, ·), R·(·, ·)) .

We lastly note that in general, the theory of Markov decision processes is sufficiently

rich as to be addressed without confronting such mathematical subtleties, and we will

offer simplified notation whenever possible.
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5.2 RESULTS FROM MDP THEORY

Results in this section refer to the theory of infinite horizon Markov decision

processes and can be found in [12], [51] (Chapters 5 to 7) and [13] (Chapter 7). Most

theory for MDPs deals with countable state-space models with bounded rewards; we

will however, for future reference, summarize a set of results of interest that allow

for the implementation of solution algorithms when the state space is not finite and

rewards unbounded. All results will be stated without proof.

An important particularity of infinite horizon MDPs is that they are often simpler

to solve than finite horizon models, and generally admit a stationary optimal policy.

We say that a deterministic Markovian policy π = ( f0, f1, ...) ∈ ΠD is stationary, and

denote it ( f )n≥0, if it uses a single decision rule at every decision epoch n ≥ 0, i.e.

π = ( fn)n≥0 = ( f )n≥0 = ( f , f , ...) for some f ∈ FD ,

and we note that randomized Markovian stationary policies are defined analogously.

When certain structure assumptions are satisfied, an infinite horizon model can

actually be seen as an approximation of its finite horizon equivalent, providing us with

tools in the core of MDP theory, such as reward and value iteration, in order to attain

approximations of the solution.

In the following we assume to be analysing a stationary problem, that is, the reward

functions, transition probabilities and decision sets do not vary between epochs n ≥ 0;

also, we will assume that rewards are non-negative. We will refer to the value of a policy

π as the function vπ : E → R defining the total expected reward

vπ(x) = Eπ
x

[ ∞

∑
k=0

R(Xk, Yk)
]

,

for all x ∈ E; in addition, we call the value of the MDP the function v : E → R defined

as the optimal total expected rewards over policies π ∈ ΠD, given by

v(x) = sup
π∈ΠD

vπ(x) , (5.2.1)

for all x ∈ E. We note that, even if a value v exists for the MDP, it does not imply

that an optimal policy in ΠD will, since a different π ∈ ΠD may attain the maximum
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for each x ∈ E. Our aim is to determine a policy π∗ ∈ ΠD, if possible, that satisfies

vπ∗
(x) ≥ v(x) for all x ∈ E.

A key notion for characterizing the value function of an MDP is the principle of

optimality or Bellman equation. This concept plays a central role in the theory of

contracting MDPs, and presents a necessary condition for optimality, associated with

the optimization method of dynamic programming in discrete-time decision making

problems. If applicable, the value of the MDP at a certain state x ∈ E may be expressed

in terms of the pay-off R from some initial action, plus the value of the remaining

decision problem resulting from it, so that in a stationary problem v satisfies

v(x) = (T v)(x) , (5.2.2)

where T denotes the maximal reward operator, given by

(T v)(x) = sup
α∈D(x)

{

R(x, α) +
∫

E
v(y)Q(dy|x, α)

}

, (5.2.3)

for all x ∈ E. The term within brackets in (5.2.3) is usually denoted

(Lv)(x|α) = R(x, α) +
∫

E
v(y)Q(dy|x, α) , (5.2.4)

and referred to as the reward operator. Generally, we aim to construct a function space

V so that, under reasonable conditions on states, actions, rewards and transitions to

ensure that T v ∈ V, equation (5.2.2) has a unique solution and equals the value of the

MDP. Another result of special relevance is Banach’s fixed point theorem, which we

reproduce here.

Theorem 5.2.1 (Banach’s Fixed Point Theorem). Let (B, d) be a complete metric space with

a contraction mapping T : B → B, i.e. such that there exists a constant c ∈ [0, 1) so that

d(T(x), T(y)) ≤ cd(x, y) ,

for all x, y ∈ B. Then, T admits a unique fixed point x∗ in B (i.e. T(x∗) = x∗). Furthermore,

x∗ can be found starting with an arbitrary element x0 ∈ B and defining a sequence (xn)n≥0,

with xn = T(xn−1) for n ≥ 1, so that

xn → x∗ as n → ∞ .
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Now, for any arbitrary measurable function w : E → R satisfying infx∈E w(x) > 0,

define the weighted supremum norm ‖ · ‖w for functions g : E → R by

‖g‖w = sup
x∈E

|g(x)|
w(x)

. (5.2.5)

Also, let Mw(E) be the space of measurable real-valued functions given by

Mw(E) = {g : E → R : g measurable and ‖g‖w < ∞} .

We note that convergence in Mw(E) implies pointwise convergence, since for each x ∈

E and sequence of functions (gn)n≥0 with gn ∈ Mw(E) for n ≥ 0, it holds

|gn(x)− g(x)| < εw(x) if ‖gn − g‖w < ε

for some ε > 0. Therefore, every Cauchy sequence of elements in Mw(E) converges to

an element on its set, so that Mw(E) is a Banach space.

Assumption 5.2.2. There exist constants µ, κ ∈ R+ so that

i) supα∈D(x) R(x, α) < µw(x) for all x ∈ E.

ii)
∫

E w(y)Q(dy|x, α) ≤ κw(x) for all α ∈ D(x) and x ∈ E.

In view of this assumption, function w is sometimes referred to as a bounding function

for the MDP. Moreover, the Markov decision process is called contracting if κ < 1,

and guarantees that the optimization problem v in (5.2.1) is well-defined, since for all

π ∈ ΠD it holds

vπ(x) = R(x, α0) + Eπ
x

[ ∞

∑
k=1

R(Xk, Yk)
]

= R(x, α0) +
∫

E
vπ(y)Q(dy|x, α0)

≤ µw(x) + µκw(x) + µκ2w(x) + · · · = µ

1 − κ
w(x) < ∞ ,

for all x ∈ E, and ‖vπ‖ ≤ µ
1−κ so that v ∈ Mw(E). It is also guaranteed that the

contracting infinite horizon MDP can be approximated by a finite horizon model, since

it can be shown in a similar fashion that there exists a constant c > 0 such that

lim
n→∞

Eπ
x

[ ∞

∑
k=n

R(Xk, Yk)
]

≤ c lim
n→∞

κnw(x) = 0 .
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Lemma 5.2.3. Under Assumption 5.2.2, with κ < 1, it holds that

‖T g1 − T g2‖w < ‖g1 − g2‖w

for any arbitrary g1, g2 ∈ Mw(E), where T is the maximal reward operator in (5.2.3).

Furthermore, given a stationary policy π = ( f )n≥0 ∈ ΠD we have

vπ = lim
n→∞

(T f ◦ n... ◦ T f )g = lim
n→∞

T n
f g , (5.2.6)

for all g ∈ Mw(E), and vπ is the unique fixed point of T f in Mw(E), with

(T f g)(x) = (Lg)(x| f (x)) , (5.2.7)

for all g ∈ Mw(E) and x ∈ E.

Note that result (5.2.6) is a direct application of Banach’s fixed point Theorem 5.2.1,

when the metric is induced by the norm ‖ · ‖w, since T f is contracting. The result

suggests that it is possible to determine the value of a stationary deterministic policy

π by repetitive application of T f to an arbitrary initial function in Mw(E). Next, we

reproduce a verification result that avoids general measurability problems; it states

that candidates for the optimal solution to problem (5.2.1) are given by fixed points of

the maximal reward operator.

Theorem 5.2.4. Under Assumption 5.2.2, with κ < 1, let g ∈ Mw(E) be a fixed point of

T : Mw(E) → Mw(E). If there exists a decision rule f ∈ FD such that

(T g)(x) = (T f g)(x) ,

for all x ∈ E, with T f as in (5.2.7); then the value of the MDP is such that v = g and

π = ( f )n≥0 ∈ ΠD is an optimal deterministic stationary policy.

In addition, the following structure theorem will provide us with means to

determine the existence of optimal stationary policies to our problem in Chapter 6,

along with proof for the usefulness of iterative methods, such as value iteration, in

order to approximate optimal solutions.

Theorem 5.2.5. Under Assumption 5.2.2, with κ < 1, let Cw(E) ⊂ Mw(E) be a closed subset

such that
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i) 0 ∈ Cw(E),

ii) T : Cw(E) → Cw(E),

iii) for all g ∈ Cw(E) there exists an f ∈ FD such that T g = T f g,

with T f as in (5.2.7). Then, it holds that

a) v ∈ Cw(E) and v = T v (value iteration).

b) v is the unique fixed point of T in Cw(E).

c) v is the smallest function g ∈ Cw(E) such that g ≥ T g (superharmonic).

d) For all g ∈ Cw(E)

‖v − T ng‖w ≤ κn

1 − κ
‖T g − g‖w .

e) There exists an optimal deterministic stationary policy π = ( f )n≥0 ∈ ΠD such that

v = vπ.

In view of Theorem 5.2.5, our efforts in Chapter 6 will be directed towards the

construction of a complete metric space (V, d) satisfying conditions (i)− (iii).

5.3 PIECEWISE DETERMINISTIC MODELS AND CONTROL FUNCTIONS

Stochastic processes that evolve through random jumps at random time points

and are governed by a deterministic flow in between jumps are referred to as

piecewise deterministic Markov processes (PDMPs). When a continuous time optimization

problem solely relates to piecewise deterministic stochastic processes, whose jump

behaviour can be controlled, it can then be reduced to a discrete-time MDP and

treated with previously introduced methods (see [1]). However, several mathematical

complications arise as the action space becomes a function space; here, we reproduce

some technical results found in [13] (Chapter 8) and [59] that ensure tractability of the

problem.

If (Tn)n≥0 denotes jump times in a PDMP, the evolution of the process up to time

Tn+1 is known to the decision maker at time Tn, for all n ≥ 0, so that he can fix a control
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action α(t) for all Tn + t ≤ Tn+1. This is the basis for treating a continuous-time control

problem as a discrete-time MDP, where an α ∈ A is thought of as the action at time Tn

or epoch n ≥ 0, and the action space A is given by a function space

A = {α : R+ → U : α measurable} ,

where U is the control action space, assumed to be a compact Borel subset of a Polish

space, a separable and completely metrizable topological space. In addition, it is shown

in [59] that for A to become a Borel space fitting previously presented theory, it can be

endowed with the coarsest σ-algebra (with the fewest open sets) such that mappings

α 7→
∫ ∞

0
e−tw(t, αt)dt

are measurable for all bounded and measurable functions w : R+ × U → R.

Relaxed Controls and the Young Topology

In addition to deterministic controls, it is also necessary to consider the space of

randomized controls. If allowed, a decision maker could choose to fix a randomized

control action at a decision epoch n ≥ 0 at time Tn. Doing so, he fixes a probability

distribution ρ(t) ∈ P(U ) for all Tn + t ≤ Tn+1, where P(U ) is the set of probability

measures on the Borel subsets B(U ). Then, we think of ρ ∈ R as an action at time Tn,

where the function space R is given by

R = {ρ : R+ → P(U ) : ρ measurable} . (5.3.1)

Trivially, we have A ⊆ R, since all deterministic controls are attainable in R through

the adoption of measures with single mass points.

The set R is endowed with the Young topology, the coarsest such that for all ρ ∈ R,

the mapping

ρ 7→
∫ ∞

0

∫

U
g(t, u)ρt(du)dt

is continuous for all functions g : [0, ∞] × U → R which are measurable in the first

argument and continuous in the second and satisfy

∫ ∞

0
max
u∈U

|g(t, u)|dt < ∞ . (5.3.2)
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With respect to this topology R is a separable, metric and compact Borel space.

Moreover, for a sequence of controls (ρn)n≥1 ⊂ R and fixed control ρ ∈ R,

limn→∞ ρn = ρ if and only if

lim
n→∞

∫ ∞

0

∫

U
g(t, u)ρn,t(du)dt =

∫ ∞

0

∫

U
g(t, u)ρt(du)dt , (5.3.3)

for all functions g satisfying (5.3.2).

5.4 SOLUTION ALGORITHMS AND VALUE ITERATION

There exists a whole family of dynamic programming algorithms commonly used

to solve MDPs, notable variants of these include value iteration and Howard’s policy

improvement algorithm. These algorithms require storage for an indexed array of

values V, along with an array of policies π. When concluded, optimal policies will

be stored in π, and V will contain the optimal sum of the rewards attained according

to each policy in π.

Computational approximations of value functions and optimal policies in Chapter

6 have been obtained through the method of value iteration, combined with

linear interpolation methods that approximate values over a discretized grid of the

continuous state space. The method starts with an arbitrary value function V0 meeting

certain conditions of continuity and concavity, and uses equation (5.2.2) to update its

values at a next stage, while storing within the array π the optimal strategy for every

point in the discretization of the state space. The contracting property of operator

T guarantees the convergence of the method, which will stop according to a given

tolerance for the value difference between steps.

Here, we present a simplified sequence diagram of the algorithm procedure. We let

Ẽ ⊂ E denote a discretization of the state space E, and we approximate values of V at

arbitrary points in E through linear/spline interpolation and exponential/logarithmic

transformations; in addition, we make use of Simpson’s rule for numerical integrations.

We denote by Ũ ⊂ U a discretization of the control action space and let δ be an arbitrary

tolerance value, then:
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• Define initial candidates V(x) and π(x) for all x ∈ Ẽ;

• Repeat:

– For all x ∈ Ẽ let π(x) = argmax
u∈Ũ

{

R(x, u) +
∫

E V(y)Q(dy|x, u)
}

– For all x ∈ Ẽ let V1(x) = R(x, π(x)) +
∫

E V(y)Q(dy|x, π(x))

– If(max(V1(x)− V(x)) < δ) Bellman update V = V1 & Break;

– Bellman update V = V1;

• Return V and π.
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CHAPTER 6

MDP ALGORITHMS FOR WEALTH ALLOCATION PROBLEMS

WITH DEFAULTABLE BONDS

Let T > 0 be a fixed time horizon and (Ω,G, P) denote a complete probability

space equipped with a filtration {Gt}t≥0. Here P refers to the real world (also called

historical) probability measure and {Gt}t≥0 is the enlargement of a reference filtration

{Ft}t≥0 denoted Gt = Ft ∨ Ht and satisfying the usual assumptions of completeness

and right continuity; Ht will be introduced later. We consider a frictionless financial

market consisting of a risk-free bank account B = (Bt)0≤t≤T, a pure-jump asset

S = (St)0≤t≤T and a defaultable bond P = (Pt)0≤t≤T. The dynamics of each of the

components of the market are given as follows.

Risk Free Bank Account. Let B0 = 1 and r > 0 denote the market fixed-interest rate,

the deterministic dynamics of B are given by

dBt = rBtdt .

Pure Jump Asset. Let C = (Ct)0≤t≤T be a compound Poisson process defined on

(Ω,G, {Ft}t≥0, P), given by

Ct =
Nt

∑
n=1

Yn , (6.0.1)

where N = (Nt)0≤t≤T denotes a Poisson process with intensity ν > 0 and (Yn)n∈N is

a sequence of independent and identically distributed random variables, with E[Yn] <

∞, Yn ≥ −1 and distribution γ(dy). Here {Ft}t≥0 is a suitable complete and right-

continuous filtration.

Asset S is a piecewise deterministic Markov process (see Section 5.3) adapted to Ft
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and given by

dSt = St−(µdt + dCt) ,

where µ is the constant appreciation rate of the asset and S0 > 1. Figure 6.1 illustrates

some sample realisations of the process S.

Figure 6.1: Sample realisations of the Piecewise Deterministic Markov Process S, with

varying parameters. On the left hand side ν = 2, T = 10, µ = 0.025; on the right hand

side ν = 40, T = 10, µ = 0.05. Jumps Y follow truncated normal distributions.

Defaultable Bond. We consider a tradeable zero coupon bond with face value of one

unit and recovery at default. Let τ > 0 be an exponentially distributed random variable

defined on (Ω,G, {Ht}t≥0, P) with intensity λP; we make use of the intensity-based

approach for modelling Credit Risk (see [6]) and let the τ model the default time of the

bond P. Here Ht = σ(Hs : s ≤ t) is the filtration generated by the one-jump process

Ht = 1{τ≤t}, after completion and regularization on the right; Ct and Ht are assumed to

be independent and λP is denoted the hazard rate of τ, so that the compensated process

dMt = dHt − λPd(t ∧ τ) (6.0.2)

with M0 = 0 is a (Gt, P)-martingale, with Gt = Ft ∨ Ht. Lastly, we denote by Z =

(Zt)0≤t≤T the Ft-adapted recovery process of P, i.e. the process determining the wealth

recovery upon default.

Then, the time-t price of this defaultable bond P with maturity at T is given by

Pt = BtEQ

[

B−1
T (1 − HT) +

∫ T

t
B−1

u ZudHu

∣

∣

∣
Gt

]

, (6.0.3)
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where Q is a martingale measure equivalent to P; intuitively, Pt models the discounted

Q-expected value of the pay-off (1 − HT) + HTZτ. The existence of such an equivalent

measure on (Ω,G) follows from the results on change of measures presented in [6]

(Chapter 4).

This Chapter will extract the real world dynamics of the defaultable bond (6.0.3) and

set up a portfolio optimization problem V of the form (1.2.2), allowing for investments

on the three introduced financial instruments. We will present the conversion of the

problem into a discrete-time Markov decision process (MDP), so that the value function

is characterized as the unique fixed point to a dynamic programming operator. Then,

optimal wealth allocations will be numerically approximated through the method of

value iteration and the dependence of optimal portfolio selections will be explored in

terms of the risk premium and different parameters describing the system. Our results

suggest significantly different allocation procedures to those in [5, 8, 16, 37] under

an exponential family of utilities, and extends the work to more general families of

logarithmic and exponential utility functions.

The rest of the Chapter is organised as follows. Sections 6.1 and 6.2 derive the P-

infinitesimal dynamics of the financial products and set up an allocation problem by

means of characterizing the dynamics of a joint wealth process. Section 6.3 follows

a procedure in order to introduce an equivalent MDP to our optimization problem,

and presents the main technical results in the Chapter. Sections 6.4 and 6.5 will

provide proof of our results and justify the use of value iteration techniques in order

to approximate optimal solutions. Finally, sections 6.6 and 6.7 present a numerical

analysis and make comments on optimal portfolio strategies, drawing comparisons

with previous results that lead to the key contributions of this work; in addition

possible extensions of the model and drawbacks of this approach are discussed.

6.1 THE P-DYNAMICS OF THE DEFAULTABLE BOND

Following results in [6] (Section 4.4) and [33] (Section 8.6), let η = η(τ) = φe−λP(φ−1)τ

be a random variable satisfying η > 0 and EP[η] = 1, where φ is a strictly positive

90



constant. Then, the change of measure with Radon-Nikodým density process

ηt =
dQ

dP

∣

∣

∣

Gt

= EP[η(τ)|Gt] = EP[η(τ)|Ht] , (6.1.1)

is such that τ is an exponentially distributed random variable under Q, with intensity

λQ = φλP; this is observed by noting that

dQ(τ ≤ t) = φe−λP(φ−1)tdP(τ ≤ t) = φλPe−φλPtdt .

In practice, default intensities are independently estimated, using credit ratings and

company data for the real world intensity λP and derivatives prices (including CDS

and Options) for λQ; their underlying ratio φ is named the ‘Risk Premium’ and

represents the reward investors claim for bearing the risk of default in P.

Proposition 6.1.1. The stochastic process ηt defined by (6.1.1) is a (Gt, P)-martingale with

η0 = 1 and

dηt = ηt−(φ − 1)dMt ,

where Mt is defined by (6.0.2).

Proof. Expanding the conditional expectation in (6.1.1) we get

ηt = EP[η(τ)|Ht] = Htφe−λP(φ−1)τ + (1 − Ht)
∫ ∞

t
φe−λP(φ−1)xλPe−λP(x−t)dx

= Htφe−λP(φ−1)τ + (1 − Ht)e
−λP(φ−1)t = φHt e−λP(φ−1)(τ∧t) .

Then, direct application of Itô’s formula for non-continuous semi-martingales to ηt

yields

dηt = ηt−(φ − 1)[dHt − (1 − Ht)λPdt]

= ηt−(φ − 1)[dHt − λPd(t ∧ τ)]

proving the result.

In order to obtain the P-dynamics of P defined by (6.0.3) we make use of the models

for valuation of contingent claims subject to default risk in [23]. We first define the

concept of a gain process; we denote by G = (Gt)0≤t≤T the wealth gain process resulting

from holding one defaultable bond P, given by

dGt = dPt + ZtdHt , (6.1.2)
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with G0 = P0. Note that P and G differ in the sense that G incorporates the wealth

recovered in case of default in P, so that Gt = Zτ for t ≥ τ. In addition, we make the

following assumption.

Assumption 6.1.2 (Recovery of Market). The wealth recovery upon default in P is given by

a fraction of its current market value, i.e. Zt = (1 − L)Pt− for all t < T, with 0 ≤ L ≤ 1

constant.

Lemma 6.1.3. The price dynamics of the defaultable bond P in (6.0.3), under the Recovery of

Market assumption and real world probability measure P, are given by

dPt = Pt− [(r + φλPL)dt − dHt] for t ≤ T ∧ τ, and (6.1.3)

dPt = 0 for τ < t ≤ T , (6.1.4)

with P0 = e−(r+φλP L)T.

Proof. The derivation of these equations follows from the application of Theorem 1 in

[23]. We use arbitrage-free arguments to obtain a pricing expression for Pt; the key

observation is that its future expected gain G in (6.1.2), up to time τ ∧ T, must match

the attainable risk-less reward under measure Q; that is, the discounted gain e−rtGt

given by

e−rtGt = e−rtPt + (1 − L)
∫ t

0
e−rsPs−dHs (6.1.5)

for t ∈ [0, τ ∧ T], must be a Q-martingale. Noting that P(τ = T) = 0 a.s., we may

assume that default does not occur at maturity time. Recall from (6.0.3) that P is

discontinuous only at the default time and that Pt = 0 for t ≥ τ, we may denote

Pt = (1 − Ht)Ut, where Ut is a continuous process. Plugging this expression for P into

(6.1.5) above and applying Itô’s formula we obtain

d(e−rtGt) = e−rt
[

(1 − Ht−)dUt − r(1 − Ht−)Ut−dt − LUt−dHt

]

for t ∈ [0, τ ∧ T]. It is possible to rewrite the above equation in terms of a compensated

jump process, through the inclusion and subsequent subtraction of a compensator in

the jump differential term dHt, so that

d(e−rtGt) = e−rt
[

(1 − Ht−)(dUt − (r + λQL)Ut−dt)− LUt−dMQ
t

]

,
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where

dMQ
t = dHt − λQd(t ∧ τ)

with MQ
0 = 0 is a (Gt, Q)-martingale. Therefore, for e−rtGt to be a Q-martingale the

following must hold

dUt = (r + φλPL)Utdt ,

since we recall that λQ = φλP. Finally, note that dPt = dUt − Ut−dHt and Pt = Ut for

t < τ, the result follows.

6.2 WEALTH DYNAMICS AND THE ALLOCATION PROBLEM

Consider an investor wishing to invest in this market. Denote by πB
t the percentage

of total wealth at time t invested on the risk-less bond; analogously πS
t and πP

t denote

the time-t proportions on the asset and defaultable bond. The portfolio process π =

(πB
t , πS

t , πP
t )0≤t≤T is a Gt-predictable process taking values in

U = {(u1, u2, u3) ∈ R3
+ :

3

∑
i=1

ui = 1} , (6.2.1)

so that short selling is not allowed and wealth is fully invested at all times and remains

positive. Note that πP
t = 0 for t > τ; furthermore, although the price of P drops to zero

at default we must account for the gain derived from its recovery value, i.e. we consider

the P-dynamics of the gain process G = (Gt)0≤t≤T in (6.1.2) with regards to portfolio

optimization purposes. From (6.1.3) and (6.1.4), the dynamics of G are determined by

dGt = Gt− [(r + φλPL)dt − LdHt] for t ≤ T ∧ τ, and

dGt = 0 for τ < t ≤ T ,

with G0 = P0.

Denote by Xπ = (Xπ
t )0≤t≤T the wealth process associated to a strategy π ∈ U . Then,

its time-t infinitesimal gain is given by

dXπ
t = Xπ

t− ·
[

(1 − πP
t − πS

t )
dBt

Bt
+ πS

t

dSt

St−
+ πP

t

dGt

Gt−

]

.
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Denote by Xπ,c
t the purely continuous component of Xπ

t ; the explicit form of X is

derived using Itô calculus and noting that

d log(Xπ
t ) =

dXπ,c
t

Xπ
t−

+ log(1 − πP
t LdHt) + log(1 + πS

t dCt)

= [r + πS
t (µ − r) + πP

t φλPL]dt + log(1 − πP
t L)dHt + log(1 + πS

t dCt) ,

so that

log(Xπ
t ) = log(X0) +

∫ t

0
[r + πS

s (µ − r) + πP
s φλPL]ds

+ log(1 − πP
τ L)Ht +

Nt

∑
n=1

log(1 + πS
Tn

Yn) , (6.2.2)

which follows noting that Ht is a single jump process with jump size 1, at time τ; and

random jumps Yi in Ct occur at random times Ti in N. Hence, exponentiating equation

(6.2.2) we have

Xπ
t = X0e

∫ t
0 (r+πS

s (µ−r)+πP
s φλP L)ds(1 − πP

τ L)Ht

Nt

∏
n=1

(1 + πS
Tn

Yn) , (6.2.3)

where X0 stands for the initial wealth.

Let Π denote the family of all measurable portfolio processes π taking values in U .

For a given increasing and concave utility function U : (0, ∞) → R+, let

Vπ(t, x, h) = Et,x,h[U(Xπ
T )]

denote the expected terminal reward associated to a portfolio strategy π ∈ Π, for

current state (t, x, h) ∈ [0, T]× R+ × {0, 1}. Here, Et,x,h denotes the expectation under

the conditional probability measure P|(Xπ
t =x,Ht=h). The optimal policy π∗ ∈ Π is the

one that maximizes the reward, so that

Vπ∗(t, x, h) = sup
π∈Π

Vπ(t, x, h) , (6.2.4)

for all (t, x, h) ∈ [0, T] × R+ × {0, 1}. As mentioned before, we aim to numerically

approximate the policy π∗, so as to explore the dependence of optimal portfolio

selections on the risk premium, utility of choice, and additional parameters defining

the model. Note that Vπ∗(T, x, h) = U(x) for all (x, h) ∈ R+ × {0, 1} and problem Vπ∗

is tractable since E[Yn] < ∞.
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6.3 AN EQUIVALENT DISCRETE-TIME MARKOV DECISION PROCESS

We follow a similar approach to that in [11] and [12] in order to reduce problem

(6.2.4) to a discrete-time MDP, allowing for Vπ∗ to be computationally identified as the

unique fixed point to a maximal reward operator.

Let Ψ = (Ψn)n≥0 denote the increasing sequence of joint jump times in N and H,

given by

Ψn = Tn1{Tn<τ} + τ1{Tn−1<τ<Tn} + Tn−11{τ<Tn−1} , (6.3.1)

with Ψ0 = 0. Intuitively, Ψ represents an ordered discrete counting process

incorporating default time τ to jump times (Tn)n≥0 in asset S; in addition, we refer

to the counting steps n ≥ 0 of Ψ as decision epochs. We define the MDP composed by

the following 4-tuple (E,A, Q, R), an explanatory diagram is presented in Figure 6.2.

Figure 6.2: Explanatory diagram of the structure of the MDP (E,A, Q, R); variables

Ξn and Ξn+1 refer to the states of the system at epochs n and n + 1 subsequently. We

observe that each decision epoch n takes place at time Ψn.

The State Space E is given by E = [0, T] × R+ × {0, 1} and supports times Ψn, with

associated wealth XΨn and states of default process HΨn , right after each jump. We use

the notation Ξn to denote the n-th state of the system, given by

Ξn =















(Ψn, XΨn , HΨn) ∈ E if Ψn ≤ T ,

∆ otherwise ,
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for n ≥ 0. ∆ /∈ E is an external absorption state and allows for us to set up an infinite

horizon optimization problem as described in Chapter 5.

The Action Space A stands for the set of deterministic control actions

A = {α : R+ → U measurable} , (6.3.2)

where U is given in (6.2.1). A control α ∈ A is a function of time and α(t) ∈ U

determines the allocation of wealth at time t after a jump in Ψ. We note that for a

given state Ξn ∈ E ∪ {∆} only a subclass of actions Dn(Ξn) ⊆ A may be admissible

(for example, if bond P defaulted).

In addition to A, we denote by F the set of all deterministic policies or decision rules

given by

F = { f : E ∪ {∆} → A measurable} . (6.3.3)

At any decision epoch n, a policy fn ∈ F maps a state Ξn to an admissible control

action in Dn(Ξn); we denote the resulting control by f Ξn
n . The policy determines, as a

function of the system state, the control chosen at epoch n; this results in a function

f Ξn
n : R+ → U that models the time evolving allocation of wealth in our portfolio π, so

that

πt = f Ξn
n (t − Ψn) for t ∈ [Ψn, Ψn+1) . (6.3.4)

A portfolio process π ∈ Π is called a Markovian portfolio strategy if it is defined by

a Markov policy, i.e. a sequence of functions ( fn)n≥0 with fn ∈ F (see Section 5.1).

We recall that if policies fn ≡ f for all n ≥ 0, the Markov policy is called stationary,

implying that decisions are independent of the epoch number and only dependent

on the system state. Figure 6.3 illustrates the characterization of a Markovian portfolio

strategy in a diagram. It is key to note that for a specified Markov policy, the controls to

take at each epoch are random, since they depend on the system states to be observed.

The Transition Probability Q. For current state Ξn ∈ E and control f Ξn
n ∈ Dn(Ξn),

the transition density describes the probability for the system to adopt a specific state

in epoch n + 1 (or time Ψn+1). Let f Ξn
n (t) = (αB

t , αS
t , αP

t ) ∈ U denote the proportions

of wealth allocated to each financial instrument at t ≥ 0 time units after jump time
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Figure 6.3: Characterization of a Markovian portfolio strategy π ∈ Π defined by a

Markov policy ( fn)n≥0, with fn ∈ F.

Ψn, according to control f Ξn
n ; we note from (6.3.4) that this is equivalent to the global

portfolio wealth allocation πt+Ψn at time t + Ψn. Analogously, let Γ
f Ξn
n

t denote the

associated wealth t ≥ 0 time units after Ψn; this is equivalent to the global wealth

Xπ
t+Ψn

at time t + Ψn. Note from (6.2.3) that Γ
f Ξn
n

t is a deterministic function of the last

system state, given by

Γ
f Ξn
n

t (XΨn , HΨn) = XΨn e
∫ t

0 (r+αS
s (µ−r))ds[HΨn + (1 − HΨn)e

∫ t
0 αP

s λP Lφds] . (6.3.5)

For an arbitrary Ξn = (t′, x, h), Lemma B.1.1 in Appendix B shows that the transition

density kernel Q is given by

Q(B|Ξn, f Ξn
n ) = P(Ξn+1 ∈ B|GΨn , f Ξn

n ) =

= ν
∫ T−t′

0
e−(ν+(1−h)λP)s

∫ ∞

−1
1B(t

′ + s, Γ
f Ξn
n

s (x, h)(1 + αS
s y), h)γ(dy)ds

+ (1 − h)λP

∫ T−t′

0
e−(ν+λP)s1B(t

′ + s, Γ
f Ξn
n

s (x, 0)(1 − αP
s L), 1)ds , (6.3.6)

for B ⊆ E; in addition

Q({∆}|Ξn, f Ξn
n ) = 1 − Q(E|Ξn, f Ξn

n ) .

Since ∆ is an absorbing state we define Q({∆}|∆, α) = 1 for all controls α ∈ A.

Intuitively, formula (6.3.6) gives the probability for the system state at epoch n + 1

to fall within a subset B of the state space, given all information in GΨn .

The Reward Function R is a function R : E ×A → R given by

R(t, x, h, α) = e−(ν+(1−h)λP)(T−t)U(Γα
T−t(x, h)) . (6.3.7)
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The adoption of such a non-negative reward function ensures the reducibility of

optimization problem (6.2.4) to an infinite horizon discrete-time Markov decision

process, as it will be shown in Lemma 6.3.1 below. We note that the term

e−(ν+(1−h)λP)(T−t) defines the likelihood of no jumps in a Poisson process with rate

ν + (1 − h)λP over a period of time T − t, this will be a key observation in the proof of

Lemma 6.3.1. In addition, we define R(∆, α) = 0 for all α ∈ A.

For an arbitrary state (t, x, h) ∈ E, we let v(t, x, h) denote the optimal total expected

reward over all Markov policies ( fn)n≥0 with fn ∈ F, given by

v(t, x, h) = sup
( fn)

Et,x,h

[ ∞

∑
k=0

R(Ξk, f Ξk

k )
]

, (6.3.8)

where Et,x,h denotes the expectation under the probability measure P|(Xt=x,Ht=h). We

now present an equivalency result between the portfolio optimization problem (6.2.4)

and the MDP (E,A, Q, R).

Lemma 6.3.1. For any (t, x, h) ∈ E, we have Vπ∗(t, x, h) = v(t, x, h).

Proof. We treat the case t = 0, arbitrary time points can be proved similarly upon

redefinition of terminal time T′ = T − t and adjustment of notation (see [13], Chapter

8). Denote by ΠM the set of all Markovian portfolio strategies and note that ΠM ⊆ Π.

Due to the Markovian structure of the state process the optimal strategy in (6.2.4) must

be Markovian (see [4]), so that

Vπ∗(0, x, h) = sup
π∈Π

Vπ(0, x, h) = sup
π∈ΠM

Ex,h[U(Xπ
T )] , (6.3.9)

i.e. the supremum is attained in the set ΠM. Any π ∈ ΠM is defined by sequence of

decision rules fn ∈ F forming a Markov policy ( fn)n≥0 as described in (6.3.4); therefore,

for such a policy we need to show that

Ex,h[U(Xπ
T )] = Ex,h[

∞

∑
k=0

R(Ξk, f Ξk

k )] .

The proof is conceptually similar to that in [11] (Theorem 3.1). Note that

Ex,h[U(Xπ
T )] = Ex,h

[ ∞

∑
k=0

U(Xπ
T )1{Ψk≤T<Ψk+1}

]

=
∞

∑
k=0

Ex,h

[

Ex,h

[

U(Xπ
T )1{Ψk≤T<Ψk+1}

∣

∣

∣
GΨk

]]

,
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where Ψ is the increasing counting process in (6.3.1) incorporating default time in

Ht to jump times in Nt; we recall these are Gt-adapted processes with exponentially

distributed jumps and intensities λP and ν. In view of (6.3.4) and (6.3.5) we note that

wealth Xπ can be expressed as a deterministic function of the previous system state,

i.e.

Xπ
t = Γ

f
Ξk
k

t−Ψk
(XΨk

, HΨk
) ,

for t ∈ [Ψk, Ψk+1), with Xπ
0 = x. Therefore

Ex,h[U(Xπ
T )] =

∞

∑
k=0

Ex,h

[

Ex,h

[

U(Γ
f

Ξk
k

T−Ψk
(XΨk

, HΨk
))1{Ψk≤T<Ψk+1}

∣

∣

∣
GΨk

]]

=
∞

∑
k=0

Ex,h

[

U(Γ
f

Ξk
k

T−Ψk
(XΨk

, HΨk
))P(Ψk+1 > T ≥ Ψk|GΨk

)
]

.

In addition, we note that

P(Ψk+1 > T ≥ Ψk|GΨk
) = 1{T≥Ψk}P(Ψk+1 > T|GΨk

)

= 1{T≥Ψk}e−(ν+(1−HΨk
)λP)(T−Ψk) .

Thus,

Ex,h[U(Xπ
T )] =

∞

∑
k=0

Ex,h

[

1{T≥Ψk}e−(ν+(1−HΨk
)λP)(T−Ψk)U(Γ

f
Ξk
k

T−Ψk
(XΨk

, HΨk
))
]

=
∞

∑
k=0

Ex,h

[

R(Ξk, f Ξk

k )
]

,

completing the proof.

6.3.1 Main Results

It has been shown that value function Vπ∗ in (6.2.4) can be derived as the sum of

expected rewards v in (6.3.8); in what follows, we make use of the theory exposed in

Section 5.2 and present results confirming the usefulness of iterative methods in order

to approximate optimal portfolio strategies for our problem. The efforts are directed

towards the construction of a complete metric space satisfying conditions (i)− (iii) in

Theorem 5.2.5, so that Vπ∗ is identified as the fixed point to a reward operator. Proof of

the results is postponed to the next Sections.
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Let M(E) define the set of measurable functions mapping the state space E into the

positive subset of the real line, given by

M(E) = {g : E → R+ : g measurable} .

We recall from (5.2.3) that the maximal reward operator T for the MDP (E,A, Q, R) is a

dynamic programming operator acting on M(E), such that

(T g)(t, x, h) = sup
α∈A

{

R(t, x, h, α) + ∑
k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, α)
}

,

for all g ∈ M(E) and (t, x, h) ∈ E. Additionally, the term within brackets is denoted

(Lg)(t, x, h|α) = R(t, x, h, α) + ∑
k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, α) , (6.3.10)

and referred to as the reward operator, so that

(T g)(t, x, h) = sup
α∈A

(Lg)(t, x, h|α) . (6.3.11)

Now, let Cϑ(E) be the function space defined by

Cϑ(E) = {g ∈ M(E) : g continuous and concave in x and ‖g‖ϑ < ∞} , (6.3.12)

where

‖g‖ϑ = sup
(t,x,h)∈E

g(t, x, h)

(1 + x)eϑ(T−t)
, (6.3.13)

for fixed ϑ ≥ 0 satisfying conditions in Lemma 6.4.1.

Theorem 6.3.2. Operator T is a contraction mapping on the metric space (Cϑ(E), ‖ · ‖ϑ).

Theorem 6.3.3. There exists an optimal stationary portfolio strategy π∗ ∈ Π, defined by a

Markov policy ( f )n≥0 with f ∈ F as shown in (6.3.4), so that Vπ∗ in (6.2.4) is the unique fixed

point of T in Cϑ(E).

Theorem 6.3.3 implies that a single decision rule f : Ξn → A is optimal for all epochs

n ≥ 0, and the control chosen after each jump in Ψ is only dependent on the state of the

system Ξ; we note that this incorporates information on time left to deadline, current

wealth and event of default in P. Moreover, since Vπ∗ is characterized as a unique

fixed point to a dynamic programming operator the use of computational approaches

to approximate its value is justified.
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6.4 PROOF OF THEOREM 6.3.2

We begin with the presentation of a contraction result for later use. Let Mϑ(E) define

the function space given by

Mϑ(E) = {g ∈ M(E) : ‖g‖ϑ < ∞} ,

where the norm ‖ · ‖ϑ is as in (6.3.13). In view of (5.2.5), ‖ · ‖ϑ is a weighted

supremum norm and Mw(E) is a Banach space, since every Cauchy sequence of elements

converges to an element in the set.

Lemma 6.4.1. For sufficiently large ϑ ∈ R+ it holds ‖T g1 − T g2‖ϑ < ‖g1 − g2‖ϑ, for all

g1, g2 ∈ Mϑ(E) .

Proof. For all g1, g2 ∈ Mϑ(E), it holds

(T g1 − T g2)(t, x, h) ≤ sup
α∈A

{(Lg1)(t, x, h|α)− (Lg2)(t, x, h|α)}

= sup
α∈A

{

∑
k

∫

(g1 − g2)(s, y, k)Q(ds, dy, k|t, x, h, α)
}

≤ ‖g1 − g2‖ϑ sup
α∈A

{

∑
k

∫

(1 + y)eϑ(T−s)Q(ds, dy, k|t, x, h, α)
}

.

Denote by I the expression within brackets on the right hand side. In view of (6.3.6), it

reads

I = ν
∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1
(1 + Γα

s (x, h)(1 + αSy))eϑ(T−t−s)γ(dy)ds

+ (1 − h)λP

∫ T−t

0
e−(ν+λP)s(1 + Γα

s (x, 0)(1 − αPL))eϑ(T−t−s)ds .

Note that for all (t, x, h, α) ∈ E ×A we have

1 + Γα
s (x, h) < 1 + xe(2r+µ)t+λP Lφ ≤ k(1 + x) ,

for some k ∈ R+, therefore there exists a constant c ∈ R+ so that

1 + Γα
s (x, h)(1 − αPL) ≤ c(1 + x) ,

and
∫ ∞

−1
(1 + Γα

s (x, 0)(1 + αSy))γ(dy) = 1 + Γα
s (x, 0)(1 + αSȳ) ≤ c(1 + x) ,
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for all x ∈ R+, since ȳ = E[Y] < ∞. Thus, the following holds for I

I ≤ c(1 + x)eϑ(T−t) ·
{

ν
∫ T−t

0
e−(ν+(1−h)λP+ϑ)sds + (1 − h)λP

∫ T−t

0
e−(ν+λP+ϑ)sds

}

≤ c(1 + x)eϑ(T−t)(1 − e−(ϑ+ν+λP)(T−t))
( ν

ν + ϑ
+

λP

ν + λP + ϑ

)

.

There trivially exists a constant ϑ ∈ R+ big enough so that

cϑ = c(1 − e−(ϑ+ν+λP)(T−t))
( ν

ν + ϑ
+

λP

ν + λP + ϑ

)

< 1 .

Thus,

‖T g1 − T g2‖ϑ = sup
(t,x,h)∈E

(T g1 − T g2)(t, x, h)

(1 + x)eϑ(T−t)
≤ ‖g1 − g2‖ϑcϑ < ‖g1 − g2‖ϑ ,

completing the proof.

We note from the proof of the Lemma that part (ii) in Assumption 5.2.2 is satisfied

with κ < 1. Upon noting that for all (t, x, h, α) ∈ E ×A it holds that

R(t, x, h, α) ≤ µ(1 + x)eϑ(T−t) for some µ > 0,

we conclude from the results in Section 5.2 that the MDP (E,A, Q, R) is contracting,

and therefore problem v in (6.3.8) is well-defined.

Since Cϑ(E) in (6.3.12) is a closed subset of Mϑ(E), the contracting property of T

in Theorem 6.3.2 follows. However, we must provide proof for the concavity of the

mapping x 7→ (T g)(t, x, h), along with the continuity of (t, x, h) 7→ (T g)(t, x, h); here,

we do so separately.

6.4.1 The Proof of Concavity

Lemma 6.4.2. For all g ∈ Cϑ(E), the mapping x 7→ (T g)(t, x, h) is concave.

Proof. We begin introducing the concept of invested amounts. In view of (6.3.5), at t

time units after a last decision epoch in E with wealth x and default state h, a control

action α ∈ A with fractions α(t) ∈ U for all t ≥ 0 yields the wealth amounts a(t) =

102



α(t)Γα
t (x, h). It is therefore possible to define an alternative convex action space of

invested amounts, given by

Ax,h = {a : R+ → R3
+ :

3

∑
i=1

ai(t) = Γα
t (x, h) for some α ∈ A} .

We denote by Γa
t (x, h) the deterministic wealth evolution in time for a control a ∈ Ax,h;

in addition, we refer to controls a and α as being equivalent if Γa
t (x, h) = Γα

t (x, h).

The dynamics of Γa
t (x, h) are expressed in terms of invested amounts and given by

dΓa
t (x, h)

dt
= Γa

t (x, h)r + aS
t (µ − r) + (1 − h)aP

t λPLφ ,

which is a first order linear differential equation, its general form solution is given by

Γa
t (x, h) =

∫ t
0 φ(s)[aS

t (µ − r) + (1 − h)aP
t λPLφ]dt + C

φ(t)
,

with φ(t) = e−
∫

rdt. Therefore

Γa
t (x, h) = ert

(

x +
∫ t

0
e−rs[aS

t (µ − r) + (1 − h)aP
t λPLφ]dt

)

,

which is a linear function on (x, a). For an arbitrary fixed t′ ≥ 0 and h ∈ {0, 1}, fix

wealths x1, x2 ≥ 0 with x1 6= x2 and set controls α1, α2 ∈ A so that

(T g)(t′, x1, h) = (Lg)(t′, x1, h|α1) , and

(T g)(t′, x2, h) = (Lg)(t′, x2, h|α2) ,

where operators L and T are given (6.3.10) and (6.3.11) by respectively. Now, choose

equivalent controls a1 ∈ Ax1,h and a2 ∈ Ax2,h so that

a1(t) = α1(t)Γ
α1
t (x1, h) and a2(t) = α2(t)Γ

α2
t (x2, h) ,

for t ≥ 0. Fix κ ∈ (0, 1) and let

x3 = κx1 + (1 − κ)x2 , and

a3 = κa1 + (1 − κ)a2 .

Note that a3 ∈ Ax3,h since ∑
3
i=1 a3,i(0) = x3. Hence,

(T g)(t′, x3, h) = sup
α∈A

(Lg)(t, x3, h|α) = sup
a∈A

(Lg)(t, x3, h|a) ≥ (Lg)(t, x3, h|a3) ,
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with,

(Lg)(t′, x3, h|a3) = e−(ν+λP(1−h))(T−t′)U(Γa3
T−t′(x3, h))

+ (1 − h)λP

∫ T−t′

0
e−(ν+λP)sg(t + s, Γ

a3
t′ (x3, h)− LaP

3,s, 1)ds

+ ν
∫ T−t′

0
e−(ν+(1−h)λP)s

∫ ∞

−1
g(t + s, Γ

a3
t′ (x3, h) + yaS

3,s, 1)γ(dy)ds ,

where aP
3,s and aS

3,s denote the wealth amounts invested in the defaultable bond P and

stock S respectively s ≥ 0 time units after t′, according to control a3 ∈ Ax3,h. We

recall that (x, a) 7→ Γa
t (x, h) is a linear mapping, utility U is a concave function and g is

concave on its second argument, so that

(T g)(t′, x3, h) ≥ κ(Lg)(t′, x1, h|a1) + (1 − κ)(Lg)(t′, x2, h|a2)

= κ(T g)(t′, x1, h) + (1 − κ)(T g)(t′, x2, h),

completing the proof.

6.4.2 Enlargement of the Action Space

In order to settle the continuity of the mapping (t, x, h) 7→ (T g)(t, x, h), we will

naturally make use of the enlargement of the action space A in (6.3.2) to the set of

randomized controls. We recall from (5.3.1) that this is given by

R = {ρ : R+ → P(U ) measurable} ,

where P(U ) defines the set of probability measures on the Borel subsets B(U ) of the

compact set U in (6.2.1). Such an enlargement of the action space is common in these

circumstances (see [51], [4], [13]) and will provide us with tools to settle the desired

result. We recall that A ⊆ R, since all deterministic controls are attainable in R through

the adoption of measures with single mass points. Also, the set R is endowed with the

Young Topology as explained in Section 5.3, so that R is a separable, metric and compact

Borel space. Then, for a sequence of controls (ρn)n≥1 ⊂ R and fixed control ρ ∈ R,

limn→∞ ρn = ρ if and only if

lim
n→∞

∫ T

0

∫

U
g(t, u)ρn,t(du)dt =

∫ T

0

∫

U
g(t, u)ρt(du)dt , (6.4.1)
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for all functions g : [0, ∞] × U → R which are measurable in the first argument and

continuous in the second and satisfy

∫ ∞

0
max
u∈U

|g(t, u)|dt < ∞ . (6.4.2)

As a standard procedure, previous functions (6.3.5) and (6.3.6) defined on the set of

deterministic Markovian controls A need to be extended to R. For ρ ∈ R, we define

the wealth dynamics between jump times in (6.3.5) as

dΓ
ρ
t (x, h) =

∫

U
Γ

ρ
t (x, h)[r + uS(µ − r) + (1 − h)uPλPLφ]ρt(du)dt ,

for all (x, h) ∈ R+ × {0, 1}, so that

Γ
ρ
t (x, h) = Γ

ρ̄
t (x, h)

is deterministic, with ρ̄ ∈ A defined by ρ̄t =
∫

U uρt(du). On the other hand the

transition density Q in (6.3.6) extends to

Q(B|t, x, h, ρ) =

ν
∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U
1B(t + s, Γ

ρ
s (x, h)(1 + uSy), h)ρs(du)γ(dy)ds

+ (1 − h)λP

∫ T−t

0
e−(ν+λP)s

∫

U
1B(t + s, Γ

ρ
s (x, 0)(1 − uPL), 1)ρs(du)ds , (6.4.3)

where we recall γ(·) defines the density distribution of jumps Y in asset S. We note that,

by definition, deterministic controls can perform no better than relaxed ones. Here, we

introduce a result showing that, in fact, deterministic controls in A do perform as well

as randomized ones in R.

Lemma 6.4.3. For all g ∈ Cϑ(E) it holds

(T g)(t, x, h) = sup
α∈A

(Lg)(t, x, h|α) = sup
ρ∈R

(Lg)(t, x, h|ρ),

for all (t, x, h) ∈ E.

Proof. We recall that A ⊆ R, so that for all g ∈ Cϑ(E) it holds

sup
α∈A

(Lg)(t, x, h|α) ≤ sup
ρ∈R

(Lg)(t, x, h|ρ) ,
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for all (t, x, h) ∈ E. In addition, recall that for all ρ ∈ R we have ρ̄ ∈ A; so that the

result will follow from

(Lg)(t, x, h|ρ) ≤ (Lg)(t, x, h|ρ̄) ,

for all ρ ∈ R. Now, note from the function (6.3.7) that R(t, x, h, ρ) = R(t, x, h, ρ̄), since

Γ
ρ
t (x, h) = Γ

ρ̄
t (x, h) by definition. In addition, any function g ∈ Cϑ is concave on its

second argument, so that by Jensen’s inequality we have

∫

U
g(t + s, Γ

ρ
s (x, h)(1 + uSy), h)ρs(du) ≤ g(t + s, Γ

ρ
s (x, h)(1 + ρ̄Sy), h) ,

and

∫

U
g(t + s, Γ

ρ
s (x, 0)(1 − uPL), 1)ρs(du) ≤ g(t + s, Γ

ρ
s (x, 0)(1 − ρ̄PL), 1) ,

for all (t, x, h) ∈ E. Hence, it holds that

(Lg)(t, x, h|ρ) = R(t, x, h, ρ) + ∑
k

∫

g(s, y, k)Q(ds, dy, du, k|t, x, h, ρ)

≤ R(t, x, h, ρ̄) + ∑
k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, ρ̄)

= (Lg)(t, x, h|ρ̄) ,

completing the proof.

6.4.3 The Proof of Continuity

Lemma 6.4.4. The mapping (t, x, h) 7→ (T g)(t, x, h) is continuous, for all g ∈ Cϑ(E).

Proof. Note that all sets in {0, 1} are open and therefore it suffices to prove that (t, x) 7→

(T g)(t, x, h) is continuous. In view of Lemma 6.4.3, we note we can make use of relaxed

controls within R, since

(T g)(t, x, h) = sup
ρ∈R

(Lg)(t, x, h|ρ).

We recall that R is a compact Borel space with respect to the Young topology, therefore,

in view of the definition of L in (6.3.10) the proof would follow from the continuity of

the mappings E ×R → R given by

(t, x, ρ) 7→ e−(ν+(1−h)λP)(T−t)U(Γ
ρ
T−t(x, h)) , (6.4.4)
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and

(t, x, ρ) 7→ ∑
k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, ρ) , (6.4.5)

for fixed h ∈ {0, 1}. Since utility U is a continuous function and the exponential term

in (6.4.4) is continuous on time, continuity of mapping (6.4.4) reduces to showing that

(t, x, ρ) 7→ Γ
ρ
T−t(x, h)

is continuous. From the definition of Γ in (6.3.5), this is equivalent to showing that

∫ t

0

∫

U
uS(µ − r)ρs(du)ds and

∫ t

0

∫

U
uPλPLφρs(du)ds (6.4.6)

are continuous in (t, ρ). Following the approach in [11] (Prop. 4.3) we provide proof

for the first integral expression in (6.4.6), the second is proved in a similar fashion. Let

(tn, ρn)n≥1 ⊂ [0, T]×R be a sequence with (tn, ρn) → (t, ρ), in order to ease notation

let ǫn,s and ǫs denote

ǫn,s =
∫

U
uS(µ − r)ρn,s(du) and ǫs =

∫

U
uS(µ − r)ρs(du) .

Then,

∣

∣

∣

∫ tn

0
ǫn,sds −

∫ t

0
ǫsds

∣

∣

∣
≤

∣

∣

∣

∫ tn

0
ǫn,sds −

∫ t

0
ǫn,sds

∣

∣

∣
+

∣

∣

∣

∫ t

0
ǫn,sds −

∫ t

0
ǫsds

∣

∣

∣

≤ (µ − r)|tn − t|+
∣

∣

∣

∫ t

0
ǫn,sds −

∫ t

0
ǫsds

∣

∣

∣
.

Noting that function u 7→ g(t, u) = g(u) = uS(µ − r) is such that satisfies (6.4.2), it

follows from the characterization of convergence in R in (6.4.1) that

(µ − r)|tn − t|+
∣

∣

∣

∫ t

0
ǫn,sds −

∫ t

0
ǫsds

∣

∣

∣

n→∞−−−→ 0 .

We now turn our attention to the mapping (6.4.5), we note from the definition of the

kernel Q in (6.4.3) that continuity follows from that of functions

W1(t, x, ρ) =
∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U
g(t + s, Γ

ρ
s (x, h)(1 + uSy), h)ρs(du)γ(dy)ds

(6.4.7)

and

W2(t, x, ρ) =
∫ T−t

0
e−(ν+λP)s

∫

U
g(t + s, Γ

ρ
s (x, 0)(1 − uPL), 1)ρs(du)ds , (6.4.8)
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for a fixed h ∈ {0, 1}. We follow a procedure in [12] (Lemma 1) to prove the continuity

of equation (6.4.7), that of (6.4.8) is proved in a similar fashion. We begin assuming

that g ∈ Cϑ(E) is a bounded function and we let (tn, xn, ρn)n≥0 ⊂ [0, T]× R+ ×R be

a sequence with (tn, xn, ρn) → (t, x, ρ); in order to ease notation let g′n and g′ denote

functions given by

g′n(s, u) = g(tn + s, Γ
ρn
s (xn, h)(1+uSy), h) and g′(s, u) = g(t+ s, Γ

ρ
s (x, h)(1+uSy), h) .

Then

|W1(tn, xn, ρn)− W1(t, x, ρ)| ≤

≤
∣

∣

∣

∫ T−tn

T−t
e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U
g′n(s, u)ρn,s(du)γ(dy)ds

∣

∣

∣

+
∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U
|g′n(s, u)− g′(s, u)|ρn,s(du)γ(dy)ds

+
∣

∣

∣

∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U
g′(s, u)(ρn,s(du)− ρs(du))γ(dy)ds

∣

∣

∣
.

Since g is a bounded function, the first term converges to 0 as n → ∞. Due to dominated

convergence and the continuity of Γ and g the second term does also converge to 0 as

n → ∞. Finally, the third term converges to 0 due to the characterization of convergence

in R in (6.4.1).

Now, we recall from (6.3.13) that for all g ∈ Cϑ there exists some constant cg ∈

R+ satisfying g(t, x, h) ≤ cg(1 + x)eϑ(T−t). Let w(t, x, h) = g(t, x, h)− cg(1 + x)eϑ(T−t)

define a negative and continuous function; then, there exists (cf. [4], Lemma 7.14) a

decreasing sequence of bounded functions (wn)n≥1 with wn → w pointwise, therefore

W ′
n(t, x, ρ) =

∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U
wn(t + s, Γ

ρ
s (x, h)(1 + uSy), h)ρs(du)γ(dy)ds

defines a bounded and decreasing sequence of continuous functions with

W ′
n(t, x, ρ) → (6.4.9)

W1(t, x, ρ)− cg

∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1
(1 + Γ

ρ
s (x, h)(1 + ρ̄S

s y))eϑ(T−t)γ(dy)ds .

as n → ∞. Since the pointwise limit of non-increasing sequences of continuous

functions is upper semicontinuous, it follows that the right hand side function in (6.4.9)

is upper semicontinuous. In addition, the term

cg

∫ T−t

0
e−(ν+(1−h)λP)s

∫ ∞

−1
(1 + Γ

ρ
s (x, h)(1 + ρ̄S

s y))eϑ(T−t)γ(dy)ds
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is continuous, therefore W1 is upper semicontinuous. Taking w(t, x, h) = −g(t, x, h) +

cg(1 + x)eϑ(T−t) lower semicontinuity of W1 is achieved, proving the result on

continuity for W1 and completing the proof.

6.5 PROOF OF THEOREM 6.3.3

We recall from Lemma 6.3.1 that the value of the original portfolio optimization

problem (6.2.4) can be derived as the sum of expected rewards v in (6.3.8). Theorem

6.3.3 implies that, in addition, the value function Vπ∗ is characterized as a unique fixed

point to a dynamic programming operator, so that the use of computational methods

to approximate its value is justified. The main line of the proof is directed towards the

use of Theorem 5.2.5 in the introductory results section.

Proof of Theorem 6.3.3. We recall that the MDP (E,A, Q, R) is such that v = Vπ∗ and

Assumption 5.2.2 is satisfied, with κ < 1. In addition, the Banach space Cϑ(E) is a

closed subset of Mϑ(E) satisfying

i) 0 ∈ Cϑ(E),

ii) T : Cϑ(E) → Cϑ(E).

Thus, according to Theorem 5.2.5 the proof would follow from the existence, for all

g ∈ Cϑ(E), of a deterministic policy f ∈ F such that T g = T f g, with

(T f g)(t, x, h) = R(t, x, h, f (t,x,h)) + ∑
k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, f (t,x,h)) ,

for all (t, x, h) ∈ E.

It follows from a well-known result in [4] (Chapter 7) that there exists a randomized

policy f : E → R such that T g = T f g for all functions g ∈ Cϑ(E). However, we note

from Lemma 6.4.3 that the deterministic policy f̄ : E 7→ A given by

f̄
(t,x,h)
s =

∫

U
u f

(t,x,h)
s (du) ∈ U

for all (t, x, h) ∈ E, is measurable and such that T g = T f̄ g, therefore completing the

proof.
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6.6 NUMERICAL ANALYSIS

In what follows we present and analyse computational results to our discrete-

time infinite-horizon optimization problem (E,A, Q, R) defined in (6.3.1)-(6.3.8), for

different measures of risk aversion. Numerical approximations of optimal allocation

strategies π∗ ∈ Π, along with optimal values Vπ∗ , are obtained through the method

of value iteration as introduced in Section 5.4 and justified by the results in Theorem

6.3.3. For this matter, we have made use of an homogeneous space discretization as

introduced in [11] (Section 5.3).

We recall that the equivalency result in Lemma 6.3.1 warrants the optimality of these

strategies in the original portfolio optimization problem (6.2.4), where alterations on

wealth allocations are only decided at times of jumps in the market (a jump in asset S

or a default in P) and span as time-dependent allocation functions until the next market

jump; these jumps are referred to as epochs within the context of the MDP. Thus, we take

advantage of the flexibility of the method regarding the choice of utility function and,

in view of the original problem, determine distinctions on optimal wealth allocation

strategies under different families of utilities, as well as the impact of generalizing

utilities towards risky investments. Additionally, we assess the influence on allocation

strategies of the different parameters defining the model and, more importantly, the

effect of the short selling restriction imposed on the original definition of the problem.

Results in this section allow for us to complement and draw comparisons with the

work in [5, 8, 16, 37], expanding its scope as discussed in Section 6.7. The focus is

on popular power, logarithmic and exponential utility measures of risk aversion. The

constant relative risk aversion (CRRA) family of power utility functions is given by

U(x) =
x1−c

1 − c
for 0 < c < 1, (6.6.1)

so that the level of relative risk aversion is constant and given by R(x) = − xU′′(x)
U′(x)

= c,

where U′ and U′′ denote the first and second order derivatives of U respectively. The

logarithmic family of utility functions is on the other hand given by

U(x) = log(x + c) for c ∈ R+, (6.6.2)
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and its level of risk aversion is R(x) = x
x+c , so that it is a CRRA utility measure only

if c = 0; if c > 0 this is an increasing relative risk aversion (IRRA) measure. Finally,

the exponential family of measures is a popular constant absolute risk aversion (CARA)

family given by

U(x) = 1 − e−cx

c
for c ∈ R+, (6.6.3)

so that the absolute risk aversion level is constant and given by A(x) = −U′′(x)
U′(x)

= c.

Figure 6.4: Approximation of pre-default V for different utility functions U. Results

obtained through the method of value iteration with convergence in 10 iterations. T =

1, r = µ = 0.05, λ = 0.25 φ = 1.3, L = 0.5 and ν = 10.

Figure 6.4 presents pre-default value functions under different choices of measures;

we note that these are increasing in wealth and decreasing in time. In these cases,

optimal allocation strategies correspond to varying fractional distributions of wealth

between the defaultable bond and the bank account; and convergence in the grid has

been in all cases achieved under 10 iterations, using an initial candidate V according to

the strategy of investing all wealth in B.
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6.6.1 Discussion of Parameter Choices

In view of the questions to address within this section, numerical simulations are

undertaken with a set interest rate of r = 0.05. In addition, values such as jump

intensities λ and ν, risk premium φ, loss at default L and appreciation rate of the stock µ

are, unless otherwise stated, fixed to sensible positive values within a financial context.

This is done using parameter choices for numerical simulations in [5] and [16] as a

reference, therefore allowing for direct comparisons of our results with recent work on

portfolio management with defaultable bonds, and establishing general properties on

optimal strategies with respect to variations on utility functions and time, wealth and

default state values.

6.6.2 Performance Analysis of Utility Functions

Optimal allocations under different utilities vary on time, wealth values and level

of aversion towards risky investments. Under an exponential measure of constant

absolute risk aversion, the level of optimal risky investments is highly dependent on

wealth values; in this case, both πP and πS are decreasing functions of wealth for

x > κ, with κ ∈ R+ small as observed in the case of a defaultable bond in Figure

6.5. In addition, a slight decrease on the aversion towards investing in P is noticed as

Figure 6.5: Optimal πP, for U(x) = 1− e−x and varying values of t ∈ [0, T] and x ≥ 0.

Parameters r = 0.05, ν = 10 and λ = 0.25.
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time approaches deadline. On the contrary, the optimal wealth distribution remains

invariant with regards to changes in wealth for both power and logarithmic utilities,

however, there exists a mild increase of aversion towards the exposure to risky bonds as

time approaches deadline, while remaining nearly time-invariant when the planning

horizon is large; this is specially noticeable within logarithmic utilities and has been

previously reported as discussed in Section 6.7. Certainly, as time approaches deadline

(and maturity in P under definition (6.0.3)) there exists an increase on the value of P

and a decrease on the likelihood of default, implying that the defaultable bond gets

relatively cheap only when the planning horizon is large.

Additionally, stock investments remain time-invariant under both these measures; a

previously reported result that is discussed in Section 6.7. Figure 6.6 below presents

varying levels of the optimal percentage allocation πS for varying values of the

difference between the appreciation rate of the stock µ and the interest rate r under

power utility functions U(x) = x1−c

1−c , showing that this is a linearly increasing function

on µ − r and a decreasing function on the level of constant relative risk aversion

R(x) = c. However, the short-selling restriction imposed to the portfolio optimization

Figure 6.6: Optimal πS after default, as a function of the distance between the

appreciation and interest rate and for different power utility measures U(x) = x1−c

1−c .

Maximum allocation equals 1, since no short-selling is allowed. Here, λ = 0.25

φ = 1.3, L = 0.5 and ν = 10.
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problem causes allocations πS to remain invariant to a default event only if pre-default

bond allocations πB are strictly positive; if πB = 0 at default time, both bond and stock

percentage investments may increase following a default event in P.

Moreover, we note in Figure 6.7 that for fixed t ∈ [0, T] and wealth x ∈ R+, the

value function V is such that V(t, x, 0) ≥ V(t, x, 1) for all (t, x) ∈ [0, t] × R+. In

Figure 6.7: Approximation of the loss in V at default. Here T = 1, r = µ = 0.05,

λ = 0.25 φ = 1.3, L = 0.5 and ν = 10. On the left hand side U(x) =
√

x
2 , on the right

hand side U(x) = 1 − e−x.

addition, V(t, x, 0)− V(t, x, 1) is decreasing in time and equal to 0 at t = T, a common

feature under all utilities. Certainly, a default event decreases the dimensionality of

the problem through a reduction in the choices of investment opportunities. Under

exponential utilities and for x > κ, the loss in value is a decreasing function on wealth.

Finally, utilities analysed present common properties with regards to alterations

on the values of several parameters defining the model. Optimal allocations πP are

increasing functions of the risk premium φ and decreasing functions of the loss value L

at default, as illustrated in Figure 6.8 for a given pre-default state (t, x, 0) ∈ E and utility

U(x) = 2
√

x in a two-Bond market. A higher incentive for bearing risk in P motivates

a higher investment; on the contrary, the opposite effect is caused by decreasing the

return on recovery, despite the fact that it increases the yield on the bond. It is also

never optimal to invest in a defaultable bond provided φ ≤ 1. In addition, optimal
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Figure 6.8: Approximation of pre-default πB in a two-Bond market, for different risk

premium φ and loss on default L. Parameters r = 0.05, ν = 10, λ = 0.25 and utility

U(x) = 2
√

x.

risky investments present a similar dependency on the level of aversion under different

utilities; these are decreasing functions of the level of relative/absolute risk aversion,

as observed in Figure 6.9 for a defaultable bond under power and exponential utilities.

6.7 DISCUSSION

This final Chapter has studied an extension of the work in [11–13] to the context

of a defaultable market, in order to present a numerical technique for the analysis of

optimal wealth allocation strategies for risk adverse investors, allowing for the use of

broad families of utility functions. The original continuous-time portfolio optimization

problem has been transformed into a discrete-time Markov Decision Process and

its value function has been characterized as the unique fixed point to a dynamic

programming operator, justifying the use of value iteration algorithms to provide the

approximations of results of our interest.

The chapter has analysed the dependence of optimal portfolio selections on the risk
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Figure 6.9: Optimal allocation πP for utilities U(x) = x1−c

1−c , U(x) = 1 − e−cx

c and

varying values of c ≥ 0 in a two-Bond market with fixed (x, t, 0) ∈ E. Parameters

r = 0.05, ν = 10 and λ = 0.25

premium, recovery of market value and several other parameters defining the model,

and has extended the scope of the results in [5, 8, 16, 37] to broader families of utility

functions, highlighting relevant divergences on optimal strategies with respect to

variations and generalizations in choices of utilities. In addition, the work as examined

the impact of a short selling restriction within the market, identifying a dependency on

optimal stock allocations with respect to default event on a corporate bond.

We recall that the work in [5, 8, 16, 37] covers continuous markets primarily driven

by Brownian components and focuses on power utility functions and a restrictive

choice of logarithmic utility. The analysis in Section 6.6 suggests that, similarly to

[5, 8, 16], investments on defaultable bonds are only justified when the associated risk

is correctly priced, measured in terms of risk premium coefficients φ. Also, similar

monotonicity properties on optimal defaultable bond allocations have been identified

in comparison to those presented in [5] and [16], under power and logarithmic utilities,

so that these are decreasing on φ, increasing on L and there exists a reduction of the risk

aversion as time approaches maturity; this work suggests that such properties extend

to generalizations of logarithmic utility functions defined in (6.6.2). On the contrary,

under exponential measures in (6.6.3), there exists a slight increase in the risk aversion
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towards P in time, and optimal defaultable bond allocations are highly dependent on

the wealth value and decreasing for x > κ, for some small κ ∈ R+. Additionally, we

observed that in this case V(t, x, 0)− V(t, x, 1) is decreasing on x for x ≥ κ.

Furthermore, it has been shown that the investment in the risky bond and stock

is always prioritised as the levels of constant relative or absolute risk aversion are

diminished. Also, optimal stock investments have been identified as linear functions

of the appreciation rate of the stock and interest rate, similarly to [41]; however, unlike

results reported in [5] and [16], a short-selling restriction has been identified to trigger

a dependency on the allocation with respect to default event in P.

6.7.1 Extensions and Limitations of the Model

This Chapter has treated a portfolio optimization problem involving one bank

account, a pure jump asset and a defaultable bond. The problem of considering

a diversified portfolio involving multiple assets and defaultable bonds is a natural

extension to this work, not addressed in here in order to avoid technicalities part of

extensive models.

Other natural extensions of the model under the reduction to an MDP approach

were pointed out by Bäuerle and Rieder (see [11]). These include the introduction of

regime switching markets, where the different economical regimes are modelled by a

continuous-time Markov chain (It)t≥0 in a similar manner to [16], so that parameters

and coefficients defining the bank account, asset and defaultable bond vary according

to the different states of I. In this scenario, the state space within the formulation of the

MDP gains a degree of dimensionality, but the embedding procedure remains similar.

In addition, models with partial information can be considered upon assuming that I

is a hidden process and making use of filtering theory.

Finally, we note that this work has made rather strong assumptions regarding most

parameters defining the model. The interest rate, stock appreciation rate, default

intensities and loss on default rate have all considered constant. An extension to

Brownian models for such parameters would not be tractable under the approach
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presented in this Chapter; however, the inclusion of different economical regimes as

discussed above could present a more realistic case of study.
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APPENDIX A

APPENDIX TO CHAPTER 3

In this Appendix, we include some lengthy analytical calculations leading to minor

results that are part of Chapter 3 in this thesis.

A.1 CLOSED FORM EXPRESSION OF FUNCTIONS G AND H

Lemma A.1.1. Function G in (3.1.4) is always positive and can be expressed as

G(t, x) = 1 −
(

2αe−σx − α2e−2σx
)

Φ
( x − λ(T − t)√

T − t

)

+
( α2σ

λ − σ
e2(λ−σ)x − 2ασ

2λ − σ
e(2λ−σ)x

)

Φ
(−x − λ(T − t)√

T − t

)

+
4α(σ − λ)

2λ − σ
e

σ
2 (σ−2λ)(T−t)Φ

(−x + (λ − σ)(T − t)√
T − t

)

+
α2(λ − 2σ)

λ − σ
e2σ(σ−λ)(T−t)Φ

(−x + (λ − 2σ)(T − t)√
T − t

)

(A.1.1)

for all (t, x) ∈ [0, T]× R+ and λ ∈ R/{ σ
2 , σ}. If λ = σ

2 it is given by

G(t, x) = 1 + 2σα

√

T − t

2π
e
− (x+ σ

2 (T−t))2

2(T−t) −
(

2αe−σx − α2e−2σx
)

Φ
( x − σ

2 (T − t)√
T − t

)

−
(

2α2e−σx + 2α(1 + σx) + σ2α(T − t)
)

Φ
(−x − σ

2 (T − t)√
T − t

)

+3α2eσ2(T−t)Φ
(−x − 3σ

2 (T − t)√
T − t

)

(A.1.2)

for all (t, x) ∈ [0, T]× R+. Finally, if λ = σ, it is given by

G(t, x) = 1 − 2σα2

√

T − t

2π
e
− (x+σ(T−t))2

2(T−t) −
(

2αe−σx − α2e−2σx
)

Φ
( x − σ(T − t)√

T − t

)

−
(

2αeσx − α2(1 + 2σx)− 2α2σ2(T − t)
)

Φ
(−x − σ(T − t)√

T − t

)

(A.1.3)

for all (t, x) ∈ [0, T]× R+.
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Proof. We recall from (3.1.4) that function G is given by

G(t, x) = (1 − αe−σx)2 + 2σα
∫ ∞

x
(e−σz − αe−2σz)(1 − FSλ

T−t
(z))dz

for all (t, x) ∈ [0, T] × R+. It is trivial that G is always positive; now, we note from

(3.1.3) that the distribution of Sλ
T−t is given by

FSλ
T−t

(x) = P(Sλ
T−t ≤ x) = Φ

( x − λ(T − t)√
T − t

)

− e2λxΦ
(−x − λ(T − t)√

T − t

)

,

for all (t, x) ∈ [0, T]× R+, so that function G is split up as

G(t, x) = (1 − αe−σx)2 + 2σα
(

A(x) + B(t, x) + C(t, x)
)

, (A.1.4)

with

A(x) =
∫ ∞

x
(e−σz − αe−2σz)dz ,

B(t, x) =
∫ ∞

x
(αe−2σz − e−σz)Φ

( z − λ(T − t)√
T − t

)

dz ,

and

C(t, x) =
∫ ∞

x
(e(2λ−σ)z − αe2(λ−σ)z)Φ

(−z − λ(T − t)√
T − t

)

dz .

Equation A is easily derived to be

A(x) =
1
σ

e−σx − α

2σ
e−2σx ;

on the other hand, we make use of integration by parts in order to derive B, so that

B(t, x) =
( 1

σ
e−σz − α

2σ
e−2σz

)

Φ
( z − λ(T − t)√

T − t

)∣

∣

∣

∞

x

−
∫ ∞

x

( 1
σ

e−σz − α

2σ
e−2σz

)

φ
( z − λ(T − t)√

T − t

) dz√
T − t

,

with φ(x) = 1√
2π

e−
x2
2 . Careful evaluation of the integral expression above yields

B(t, x) =
( α

2σ
e−2σx − 1

σ
e−σx

)

Φ
( x − λ(T − t)√

T − t

)

+
α

2σ
e2σ(σ−λ)(T−t)Φ

(−x + (λ − 2σ)(T − t)√
T − t

)

− 1
σ

e
σ
2 (σ−2λ)(T−t)Φ

(−x + (λ − σ)(T − t)√
T − t

)

,

for all λ ∈ R.
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Equation C needs to be treated independently depending on the value of the

parameter λ. If λ 6= σ
2 , σ, integration by parts gives

C(t, x) =
( 1

2λ − σ
e(2λ−σ)z − α

2(λ − σ)
e2(λ−σ)z

)

Φ
(−z − λ(T − t)√

T − t

)∣

∣

∣

∞

x

+
∫ ∞

x

( 1
2λ − σ

e(2λ−σ)z − α

2(λ − σ)
e2(λ−σ)z

)

φ
(−z − λ(T − t)√

T − t

) dz√
T − t

,

so that

C(t, x) = (
α

2(λ − σ)
e2(λ−σ)x − 1

2λ − σ
e(2λ−σ)x)Φ

(−x − λ(T − t)√
T − t

)

+
1

2λ − σ
e

σ
2 (σ−2λ)(T−t)Φ

(−x + (λ − σ)(T − t)√
T − t

)

− α

2(λ − σ)
e2σ(σ−λ)(T−t)Φ

(−x + (λ − 2σ)(T − t)√
T − t

)

.

If λ = σ
2 we have

C(t, x) =
(

z +
α

σ
e−σz

)

Φ
(−z − σ

2 (T − t)√
T − t

)∣

∣

∣

∞

x

+
∫ ∞

x

(

z +
α

σ
e−σz

)

φ
(−z − σ

2 (T − t)√
T − t

) dz√
T − t

,

so that,

C(t, x) =
α

σ
eσ2(T−t)Φ

(−x − 3σ
2 (T − t)√
T − t

)

− (x +
α

σ
e−σx)Φ

(−x − σ
2 (T − t)√
T − t

)

−σ

2
(T − t)Φ

(−x + σ
2 (T − t)√
T − t

)

+

√

T − t

2π
e
− (x+ σ

2 (T−t))2

2(T−t) .

Finally, if λ = σ, function C is given by

C(t, x) =
( eσz

σ
− αz

)

Φ
(−z − σ(T − t)√

T − t

)∣

∣

∣

∞

x

+
∫ ∞

x

( eσz

σ
− αz

)

φ
(−z − σ(T − t)√

T − t

) dz√
T − t

,

so that,

C(t, x) =
1
σ

e−
σ2
2 (T−t)Φ

( −x√
T − t

)

+ (αx − 1
σ

eσx)Φ
(−x − σ(T − t)√

T − t

)

+ασ(T − t)Φ
(−x − σ(T − t)√

T − t

)

− α

√

T − t

2π
e
− (x+σ(T−t))2

2(T−t) .

Results (A.1.1)-(A.1.3) follow by plugging in expression (A.1.4) equations A and B

along with the corresponding choice of C, according to the choice of parameter λ.
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Lemma A.1.2. Function H in (3.4.4) is given by

H(t, x) = σα ·
{

[

2α(σ + λ)e−2σx − (σ + 2λ)e−σx
]

Φ
( x − λ(T − t)

√

(T − t)

)

+
[

σe(2λ−σ)x − 2ασe2(λ−σ)x
]

Φ
(−x − λ(T − t)

√

(T − t)

)

+ 2α(λ − 2σ)e−2σ(λ−σ)(T−t)Φ
(−x + (λ − 2σ)(T − t)

√

(T − t)

)

− 2(λ − σ)e−
σ
2 (2λ−σ)(T−t)Φ

(−x + (λ − σ)(T − t)
√

(T − t)

)

}

for all (t, x) ∈ [0, T]× R+.

Proof. We note from (3.4.1) and (3.4.4) that function H is given by

H(t, x) = Gt(t, x)− λGx(t, x) +
1
2

Gxx(t, x) . (A.1.5)

From the expression for equation G in (3.1.4), we note that

Gx(t, x) = 2ασ(e−σx − αe−2σx)FSλ
T−t

(x) ,

Gxx(t, x) = 2ασ2(2αe−2σx − e−σx)FSλ
t
(x) + 2ασ(e−σx − αe−2σx)

d
dx

FSλ
T−t

(x) ,

and

Gt(t, x) = −2σα
∫ ∞

x
(e−σz − αe−2σz)

d
dt

FSλ
T−t

(z)dz .

We recall from (3.1.3) that FSλ
T−t

is given by

FSλ
T−t

(x) = P(Sλ
T−t ≤ x) = Φ

( x − λ(T − t)√
T − t

)

− e2λxΦ
(−x − λ(T − t)√

T − t

)

,

for all (t, x) ∈ [0, T]× R+. Hence, we have

Gx(t, x) = 2ασ
(

e−σx − αe−2σx
)

Φ
( x − λ(T − t)

√

(T − t)

)

− 2ασ(e(2λ−σ)x − αe2(λ−σ)x)Φ
(−x − λ(T − t)

√

(T − t)

)

, (A.1.6)

for all (t, x) ∈ [0, T]× R+; in addition, noting that

d
dx

FSλ
T−t

(x) =
2

√

2π(T − t)
e
− (x−λ(T−t))2

2(T−t) − 2λe2λxΦ
(−x − λ(T − t)√

T − t

)

,
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we get

Gxx(t, x) = 2ασ2(2αe−2σx − e−σx
)

Φ
( x − λ(T − t)

√

(T − t)

)

+ 2ασ
(

2α(λ − σ)e2(λ−σ)x − (2λ − σ)e(2λ−σ)x
)

Φ
(−x − λ(T − t)

√

(T − t)

)

+ 2ασ

√

2
π(T − t)

(

e(λ−σ)x − αe(λ−2σ)x
)

e
− x2+λ2(T−t)2

2(T−t) , (A.1.7)

for all (t, x) ∈ [0, T]× R+.

Similarly, in view of

d
dt

FSλ
T−t

(x) =
x

(T − t)
3
2
√

2π
e
− (x−λ(T−t))2

2(T−t)

we have

Gt(t, x) = − 2σα

(T − t)
3
2
√

2π

∫ ∞

x
(e−σz − αe−2σz)ze

− (z−λ(T−t))2

2(T−t) dz ;

so that careful evaluation of the integral term yields

Gt(t, x) = 2σα2(λ − 2σ)e−2σ(λ−σ)(T−t)Φ
(−x + (λ − 2σ)(T − t)

√

(T − t)

)

− 2σα(λ − σ)e−
σ
2 (2λ−σ)(T−t)Φ

(−x + (λ − σ)(T − t)
√

(T − t)

)

+ ασ

√

2
π(T − t)

(

αe(λ−2σ)x − e(λ−σ)x
)

e
− x2+λ2(T−t)2

2(T−t) , (A.1.8)

for all (t, x) ∈ [0, T] × R+. Finally, plugging expressions (A.1.6)-(A.1.8) into (A.1.5)

completes the proof.

A.2 MOMENT GENERATING FUNCTION OF Xx

Lemma A.2.1. The moment-generating function of Xx
t = x ∨ Sλ

t − Bλ
t is given by

MXx
t
(s) = E[esXx

t ] = es(x+σt( s
2 σ−λ)) · Φ

( x − σt(λ − σs)

σ
√

t

)

+
σs

σs − 2λ
e(

2xλ
σ + σ2s2t

2 −(λσt+x)s) · Φ
(

− x + σt(λ − σs)

σ
√

t

)

− 2λ

σs − 2λ
· Φ

(

− x − λσt

σ
√

t

)

(A.2.1)

for s ∈ (−∞, 0) ∪ (0, 2λ
σ ); in addition, MXx

t
(0) = 1.
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Proof. Result MXx
t
(0) = 1 is rather obvious. For s ∈ (−∞, 0) ∪ (0, 2λ

σ ), we recover a

result in [54] (Appendix D) stating that the cumulative density function of Xx
t is given

by

FXx
t
(y) = P(Xx

t ≤ y) = Φ
(

− x − y − λσt

σ
√

t

)

− e−
2yλ

σ Φ
(

− x + y − λσt

σ
√

t

)

,

for all (t, y) ∈ [0, T]× R+. Noting that

d
dy

FXx
t
(y) =

1

σ
√

2πt
e
− (x−y−λσt)2

2σ2t +
1

σ
√

2πt
e−

2λ
σ ye

− (x+y−λσt)2

2σ2t

+
2λ

σ
e−

2λ
σ yΦ

(

− x + y − λσt

σ
√

t

)

,

we expand E[esXx
t ], so that

E[esXx
t ] =

1

σ
√

2πt

∫ ∞

0
esye

− (x−y−λσt)2

2σ2t dy +
1

σ
√

2πt

∫ ∞

0
e(s−

2λ
σ )ye

− (x+y−λσt)2

2σ2t dy

+
2λ

σ

∫ ∞

0
e(s−

2λ
σ )yΦ

(

− x + y − λσt

σ
√

t

)

dy .

Now, the third term on the right hand side may be integrated by parts as long as s < 2λ
σ ,

yielding

E[esXx
t ] =

1

σ
√

2πt

∫ ∞

0
esye

− (x−y−λσt)2

2σ2t dy +
σs

σs − 2λ

1

σ
√

2πt

∫ ∞

0
e(s−

2λ
σ )ye

− (x+y−λσt)2

2σ2t dy

− 2λ

σs − 2λ
Φ
(

− x − λσt

σ
√

t

)

.

Evaluation of the above integrals yields the result.
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APPENDIX B

APPENDIX TO CHAPTER 6

In this Appendix, we include some lengthy analytical calculations leading to minor

results that are part of Chapter 6 in this thesis.

B.1 TRANSITION DENSITY KERNEL Q

Let f Ξn
n (t) = (αB

t , αS
t , αP

t ) ∈ U denote the proportions of wealth allocated to each

financial instrument in the introduction of Chapter 6 at t ≥ 0 time units after jump

time Ψn, according to control f Ξn
n . Analogously, let Γ

f Ξn
n

t in (6.2.3) denote the associated

wealth t ≥ 0 time units after Ψn.

Lemma B.1.1. For an arbitrary Ξn = (t′, x, h), the transition density kernel Q in the MDP

(E,A, Q, R) in Section 6.3 is given by

Q(B|Ξn, f Ξn
n ) = P(Ξn+1 ∈ B|GΨn , f Ξn

n )

= ν
∫ T−t′

0
e−(ν+(1−h)λP)s

∫ ∞

−1
1B(t

′ + s, Γ
f Ξn
n

s (x, h)(1 + αS
s y), h)γ(dy)ds

+ (1 − h)λP

∫ T−t′

0
e−(ν+λP)s1B(t

′ + s, Γ
f Ξn
n

s (x, 0)(1 − αP
s L), 1)ds ,

for B ⊆ E; in addition

Q({∆}|Ξn, f Ξn
n ) = 1 − Q(E|Ξn, f Ξn

n ) .

Proof. For an arbitrary Ξn = (t′, x, h) at epoch n, the transition probability to a new

state Ξn+1 ∈ E ∪ {∆} at epoch n + 1 is given by

Q(B|Ξn, f Ξn
n ) = P(Ξn+1 ∈ B|GΨn , f Ξn

n ) = P(Ξn+1 ∈ B|Gt′ , f Ξn
n ) , (B.1.1)
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where Gt′ intuitively denotes all the information in the system up to time t′. For B ⊆ E,

the next epoch comes at the time of the first jump in either the asset S or the default

process H (and always before deadline T); in addition, we note that cases h = 0 and

h = 1 must be treated separately since in the latter there are no more jumps in H. Due

to the Markovian structure of the problem, we rewrite (B.1.1) as

Q(B|Ξn, f Ξn
n ) = P(Ξn+1 ∈ B|Ξn = (t′, x, 1), f Ξn

n ) · h

+ P(Ξn+1 ∈ B|Ξn = (t′, x, 0), f Ξn
n ) · (1 − h) , (B.1.2)

The first term in the right hand side of (B.1.2) is derived upon noting that the

intensity of the poisson jump process N in (6.0.1) is ν, and that the distribution of the

jumps Y ≥ −1 is given by γ(dy). Under control f Ξn
n , the percentage of wealth invested

in asset S at any time t ≥ 0 after t′ is given by αS
t , analogously, the total wealth is given

by Γ
f Ξn
n

t (x, 1), so that

P(Ξn+1 ∈ B|Ξn = (t′, x, 1), f Ξn
n ) =

∫ T−t′

0
νe−νs

∫ ∞

−1
1B(t

′ + s, Γ
f Ξn
n

s (x, 1)(1 + αS
s y), 1)γ(dy)ds . (B.1.3)

For the second term in (B.1.2) we must consider the events

• C1 =“Next jump in Asset S arrives before jump in Default process H” , and

• C2 =“Jump in Default process H arrives before next jump in Asset S” ,

so that we can extend the above expression according to the laws of conditional

probabilities, yielding

P(Ξn+1 ∈ B|Ξn = (t′, x, 0), f Ξn
n ) = P(Ξn+1 ∈ B|Ξn = (t′, x, 0), f Ξn

n , C1)P(C1)

+ P(Ξn+1 ∈ B|Ξn = (t′, x, 0), f Ξn
n , C2)P(C2) .

The jump intensity of H is given by λP; thus,

P(C1) =
∫ ∞

0
νe−νs

∫ ∞

s
λPe−λPrdrds =

ν

ν + λP

,

and analogously P(C2) = λP

ν+λP
. In addition, we denote φS and φH the next jump

times of S and H respectively, so that their conditional probability density functions
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fφS|C1
(·|C1) and fφH |C1

(·|C1) are given by

fφS|C1
(·|C1) =

d
ds

P(S ≤ s, C1)

P(C1)
= (λP + ν)e−(ν+λP)s = fφH |C1

(·|C1) .

Then, in a similar manner to B.1.3, we have

P(Ξn+1 ∈ B|Ξn = (t′, x, 0), f Ξn
n , C1)P(C1) =

∫ T−t′

0
νe−(ν+λP)s

∫ ∞

−1
1B(t

′ + s, Γ
f Ξn
n

s (x, 0)(1 + αS
s y), 0)γ(dy)ds , (B.1.4)

and

P(Ξn+1 ∈ B|Ξn = (t′, x, 0), f Ξn
n , C2)P(C2) =

∫ T−t′

0
λPe−(ν+λP)s1B(t

′ + s, Γ
f Ξn
n

s (x, 0)(1 − αP
s L), 0)ds . (B.1.5)

Finally, plugging equations (B.1.3), (B.1.4) and (B.1.5) in expression (B.1.2) completes

the first part of the proof. The additional result

Q({∆}|Ξn, f Ξn
n ) = 1 − Q(E|Ξn, f Ξn

n )

is trivial.
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