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Abstract

Structural operational semantics is a popular technique for specifying the meaning of programs by means
of inductive clauses. One seeks syntactic restrictions on those clauses so that the resulting operational
semantics is well-behaved. This approach is simple and concrete but it has some drawbacks. Turi pioneered
a more abstract categorical treatment based upon the idea that operational semantics is essentially a
distribution of syntax over behaviour. In this article we take Turi’s approach in two new directions. Firstly,
we show how to write operational semantics as modular components and how to combine such components
to specify complete languages. Secondly, we show how the categorical nature of Turi’s operational semantics
makes it ideal for implementation in a functional programming language such as Haskell.
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1 Introduction

Operational semantics is one of the primary techniques for formally specifying the

meaning of programs. Traditionally, one defines the operational semantics of a

programming language as a relation over the syntax of programs. In structural

operational semantics [19], this relation is defined by a set of inductive rules, and

one seeks syntactic restrictions on these rules so that the resulting operational se-

mantics has certain desirable properties. However, despite the relative simplicity

of this syntactic approach to operational semantics, it has a number of significant

drawbacks:

• Being syntactic, the restrictions on rules are often rather intricate, and it is not

clear how they arise. This intricacy makes proving meta-theoretic results difficult,

and makes it virtually impossible to see how these results are affected by changes

to the language under consideration, or to the notion of observable behaviour
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of the semantics being defined. One gets the feeling that there is some deeper

mathematical structure at play that is being obscured by the syntactic clutter.

• Being syntactic, operational semantics presented in this form is language-specific.

As a result, it is difficult to implement a generic notion of operational semantics

in a high-level programming language such as Haskell. Compare, for example,

with the use of logical frameworks to implement logics and type theories; such

language-independent frameworks are clearly missing for operational semantics.

One would like to be able to write data types whose inhabitants are operational

semantics, and programs which manipulate such data types.

• Being syntactic, it is not clear how to relate operational semantics to the more

abstract and high-level denotational semantics. This is more than just a math-

ematical irritation: by utilising concepts from category theory, denotational se-

mantics has given us many language-independent mathematical tools to structure

programs. These include, for example, monads, initial algebra semantics and Kan

extensions. The fact that these tools are language independent suggests that they

somehow get at the essence of computation. The same cannot currently be said

of operational semantics, with its inherently language-dependent flavour.

Overall, we are left with the feeling that we need to get at the mathematical

essence of operational semantics, to allow mathematical tools to be used to structure

and reason about operational semantics in a high-level manner, and to make it easier

to relate it to denotational semantics. Indeed, at this point, we can begin to wonder

if we really need operational and denotational semantics. A categorical semantics

encompassing both approaches may actually be what we are striving for.

But the development of such an approach has already begun! Ten years ago,

Daniele Turi did something rather remarkable. He abstracted from the concrete,

syntactic, language-dependent approach to operational semantics and proclaimed

that operational semantics was a categorical construct, namely a distributive law

between syntax and behaviour. In one fell swoop [24], Turi opened the way to

tackling all of the above problems. By parameterising his treatment by a functor

representing syntax and a functor representing semantics, he abstracted away from

the specific details of particular languages and their meaning. Moreover, it became

possible to relate the operational and denotational approaches; indeed, they become

two sides of the same coin, as they define the same semantic function, one by the

universal property of the final coalgebra, the other by the universal property of the

initial algebra. That is, the semantic function J−K : µΣ → νB from the syntax into

the behaviour, is induced by both an algebra over the final coalgebra νB and a

coalgebra over the initial algebra µΣ. These are provably equal.

We further develop of Turi’s categorical approach to operational semantics by

addressing the questions of modularity and implementation. More precisely, the

article makes the following contributions:

• We develop a modular operational semantics, by structuring Turi’s primitive con-

cept of behaviour. We show how to write modular semantic components and how

to construct languages built from these components. We stress that a general ap-

proach to modularity in Turi’s mathematical operational semantics has not been

considered before (but see the related work section at the end of the article.)
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• We implement our ideas in Haskell, which helps to bring Turi’s categorical work to

the functional programming community in a more accessible way, makes the ideas

directly executable, facilitates experimentation, and allows us to benefit from

Haskell’s well-developed support for monadic programming. We stress that the

question of how to implement Turi’s mathematical operational semantics has also

not been considered. This is no trivial task as there a variety of implementation

issues which must be addressed so that the resulting code retains the elegance

and simplicity of the category theory which inspires it.

As with any work that involves implementing mathematics, it is important to

be clear about the relationship between the mathematical theory and its concrete

implementation. We use categorical tools as our main technical devices, and use

Haskell to illustrate and make these categorical techniques more accessible to the

programming languages community. For the purposes of this article, it suffices to

work in the category Set of sets and total functions, but the reader should bear in

mind that the mathematical theory generalises to other categories. For example,

Haskell is not based on Set but on the category CPO, which has considerable extra

structure which admits partial functions. Because we do not rely on the extra

structure, and because we can use Haskell to reason about its total fragment [2],

Haskell provides a convenient syntax for programming in Set. Some languages

require the framework to be interpreted in CPO-like categories [12], in particular

for dealing with general recursion, but for all the examples we consider, the structure

of Set is enough.

The article is aimed at functional programmers with a basic knowledge of cat-

egory theory and semantics, but we do not assume prior knowledge of Turi’s cate-

gorical approach to semantics. The Haskell code from the article is available from

the authors’ websites.

2 Structural Operational Semantics

Operational semantics gives meaning to terms in a language by defining a transition

relation that captures execution steps in an abstract machine. Reasoning about

this relation can be difficult. Therefore Plotkin proposed structural operational

semantics (SOS), in which the transition relation is defined by structural recursion

on syntax-directed rules [19]. One then uses the principle of structural induction to

reason about the induced transition relation.

Example 2.1 Consider a simple process language P whose terms p ∈ P are speci-

fied by the following grammar, which corresponds to Basic Process Algebra [1]:

p ::= !a | p ; p | p ⊔ p

The informal meaning of the operators in the language is that !a prints the char-

acter a on the screen, p ; q sequences the execution of p and q, and p⊔ q non-

deterministically chooses to execute either p or q.

We give an operational semantics for P by the set of structural rules in Figure 1.

The rules recursively define relations →⊆ P ×A×P and −→X ⊆ P ×A, on terms

P and set of characters A. We write p
a
−→ p′ for (p, a, p′) ∈ → and p

a
−→ X for

3
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!a
a
−→X

p
a
−→ p′

p ; q
a
−→ p′ ; q

p
a
−→X

p ; q
a
−→ q

p
a
−→ p′

p⊔ q
a
−→ p′

q
a
−→ q′

p⊔ q
a
−→ q′

p
a
−→X

(p⊔ q)
a
−→X

q
a
−→X

(p⊔ q)
a
−→X

Fig. 1: Structural operational semantics for P

n ⇓ n

t ⇓ n u ⇓ m

t + u ⇓ n + m

c ⇓ 0 t ⇓ n

ifz c t e ⇓ n

c ⇓ n n 6= 0 e ⇓ m

ifz c t e ⇓ m

Fig. 2: Structural operational semantics for Z

throw ↑

t ↑ u ↑

(catch t u) ↑

Fig. 3: Structural operational semantics for E

(p, a) ∈ −→X. Intuitively, the transition p
a
−→ p′ represents a term p which can

evolve into term p′ by printing the character a on the screen, whereas p
a
−→X holds

for terms which can terminate successfully by printing character a.

Example 2.2 We define a simple language of arithmetic expressions, with integers,

additions and a conditional expression, whose terms z ∈ Z are specified by the

following grammar:

z ::= Z | z + z | ifz z z z

The informal meaning of ifz c t e is that if c is 0 then t is evaluated, otherwise e

is evaluated. We give an operational semantics for this language in Figure 2. The

rules recursively define a relation ⇓ ⊆ Z × Z, where we write t ⇓ n for (t, n) ∈ ⇓.

Intuitively, t ⇓ n means that term t can evaluate to integer n.

Note that the semantics were given in a small-step style for P and big-step style

for Z. However, the mathematical approach to operational semantics that we use

in this article treats these two different styles uniformly.

Example 2.3 Let us consider now a language E of exceptions:

e ::= throw | catch e e

The informal meaning is that throw throws an exception and catch t u evaluates

t and, if t throws an exception, recovers from it by evaluating u. Its operational

semantics is given by the rules in Figure 3 and define a predicate ↑ ⊆ E, where we

write e ↑ for e ∈ ↑. Intuitively, e ↑ means that e can throw an exception.

This language is not very useful by itself as the only possible outcome is to

throw an exception. Its real utility is exhibited when one considers the language

E together with some other language. For example, we will consider combining E

with P and Z. However, to put the languages together we need to add extra rules

explaining how catch deals with the transitions defined by the other languages and

how the operators in other languages deal with exceptions. In Figures 4 and 5, we

show all the rules that need to be added to combine E with P and Z.
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p
a
−→ p′

catch p q
a
−→ catch p ′ q

p
a
−→X

(catch p q)
a
−→X

p ↑ q
a
−→ q′

catch p q
a
−→ q′

p ↑ q
a
−→X

(catch p q)
a
−→X

p ↑

(p ; q) ↑

p ↑

(p⊔ q) ↑

q ↑

(p⊔ q) ↑

Fig. 4: Additional rules for combining P and E

t ⇓ n

catch t u ⇓ n

t ↑ u ⇓ n

catch t u ⇓ n

t ↑

t + u ↑

u ↑

t + u ↑

c ↑

(ifz c t e) ↑

c ⇓ 0 t ↑

(ifz c t e) ↑

c ⇓ z z 6= 0 e ↑

(ifz c t e) ↑

Fig. 5: Additional rules for combining Z and E

More generally, combining operational semantics is not just a matter of the

tedious and error-prone task of adding extra syntactic rules, but may also involve

modifying the original rules, which makes it difficult to formally relate the original

and combined languages. The underlying problem is that SOS lacks a language-

independent theory that would clarify what combining languages means in general,

rather than for specific rules.

3 Modular Syntax

The first step towards obtaining modular operational semantics is to obtain modular

syntax, in the sense that terms of a language are constructed by combining smaller

languages. It is straightforward to implement the grammar for P as a recursive

datatype:

data P = Put A | Seq P P | Alt P P

type A = Char

However, datatype P is monolithic. In order to obtain modular syntax we need to

reveal the underlying structure, separating the operators of the language from the

description of its terms. We use the standard categorical technique (for example,

see [5]) of modelling terms by the free monad over a signature, and the combination

of languages by the coproduct of free monads.

3.1 Terms as Free Monads

We will specify the syntax of a language by its signature, that is, the set of its oper-

ators and their corresponding arities. Each signature has a corresponding instance

of the Functor class (see Appendix B), which we call a signature functor.

Example 3.1 The signature functor for P is as follows:

data P a = Put A | Seq a a | Alt a a

instance Functor P where

fmap (Put c) = Put c
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fmap f (Seq p q) = Seq (f p) (f q)

fmap f (Alt p q) = Alt (f p) (f q)

Terms constructed with operators from the signature functor f and with vari-

ables of type x are given by the free monad on f at x , represented by the datatype

Term f x . The flexibility of having variables of an arbitrary type will be used later

on to represent the meta-variables in operational rules.

data Term f x = Var x | Con (f (Term f x ))

That is, a term is either a variable or an operator from f applied to a term. It is

now straightforward to make such terms into both Functors and Monads:

instance Functor f ⇒ Functor (Term f ) where

fmap f (Var x ) = Var (f x )

fmap f (Con t) = Con (fmap (fmap f ) t)

instance Functor f ⇒ Monad (Term f ) where

return = Var

(Var x ) >>= f = f x

(Con t) >>= f = Con (fmap (>>=f ) t)

We will not use the fact that Term f is a monad in this article, but we mention it

because it shows that terms structured in this way come equipped with a substitu-

tion operator, as given by (>>=) :: Term f a → (a → Term f b) → Term f b [6,15].

With this representation of terms, the natural manner in which to process terms is

using a generic fold operator [16,8]:

foldTerm :: Functor f ⇒ (a → b) → (f b → b) → Term f a → b

foldTerm var (Var a) = var a

foldTerm var con (Con fta) = con (fmap (foldTerm var con) fta)

Intuitively, the argument of type a → b is used to process variables, and the argu-

ment of type f b → b (an f -algebra) is used to process operators.

Finally, the programs of a language are its closed terms. That is, programs are

terms with variables taken from the empty datatype Zero, which comes equipped

with a canonical map empty :: Zero → a into any other type a.

type Program f = Term f Zero

Thus, we have a generic notion of syntax equipped with well-behaved substitu-

tion and a well-behaved recursion operator. Moreover, as shown in the next section,

we obtain a simple and principled method for combining the syntax of languages.

3.2 Coproducts of Free Monads

We have shown that signatures define the operators of a language. In order to

obtain modular syntax we will combine the signatures of small languages to obtain

a signature for the complete language.

The natural way to combine two languages is to take the coproduct of the

free monads modelling them. Since free constructions preserve coproducts, this is

equivalent to the free monad on the coproduct of their signature functors.
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prog :: Program P

prog = (put ’a’ ‘seq ‘ put ’b’)⊔ (put ’c’)

put :: Char → Term P a

put c = Con (Inl (Put c))

seq , · ⊔ · :: Term P a → Term P a → Term P a

seq p q = Con (Inr (Inl (Seq p q)))

p ⊔ q = Con (Inr (Inr (Alt p q)))

Fig. 6: The term ( !a ; !b)⊔ !c, as a Program of signature P

data (f ⊕ g) a = Inl (f a) | Inr (g a)

instance (Functor f ,Functor g) ⇒ Functor (f ⊕ g) where

fmap h (Inl fx ) = Inl (fmap h fx )

fmap h (Inr gx ) = Inr (fmap h gx )

copair :: (f a → b) → (g a → b) → (f ⊕ g) a → b

copair f (Inl fa) = f fa

copair g (Inr ga) = g ga

The function copair processes the coproduct of functors f and g , given that we

provide two functions: one to process f and the other to process g . We can use

copair to define an f ⊕ g-algebra from an f -algebra and a g-algebra. Therefore,

foldTerm can be used to process f ⊕ g terms.

Example 3.2 We rewrite P as the coproduct of the signatures of its operators:

type P = Put ⊕ Seq ⊕ Alt

data Put a = Put Char

data Seq a = Seq a a

data Alt a = Alt a a

The P-term ( !a ; !b)⊔ !c is written in Haskell as the program prog in Figure 6.

Example 3.3 In a similar manner, we rewrite the operators of Z and E as separate

languages. Again, the syntax of the complete languages can be recovered by the

coproduct of their operators.

data N a = N Int

data Add a = Add a a

data Ifz a = Ifz a a a

data Thr a = Thr

data Cat a = Cat a a

type Z = N ⊕ Add ⊕ Ifz type E = Thr ⊕ Cat

Note that now we may define the syntax of new languages simply by choosing

which constructs we would like to have. For example, we may define the syntax

EP of P extended with exceptions, EZ of Z extended with exceptions, or a non-

deterministic arithmetic language NDZ:

type EP = Thr ⊕ Cat ⊕ Put ⊕ Seq ⊕ Alt

type EZ = Thr ⊕ Cat ⊕ N ⊕ Add ⊕ Ifz

type NDZ = N ⊕ Add ⊕ Alt

7



Jaskelioff, Ghani and Hutton

Coproducts provide a structured, mathematical foundation for assembling syn-

tax. There are, however, some practical concerns. As shown in Figure 6, we had

to define auxiliary functions put , seq , and · ⊔ · to make the definition of programs

less cumbersome. These shorthands will only work for terms of signature P, and

would need to be changed should the language be extended. For instance, if we

were working with the language EP, then we would have to define a new auxiliary

function put ′ as:

put ′ :: Char → Term EP a

put ′ c = Con (Inr (Inr (Inl (Put c))))

Redefining these auxiliary functions every time we change our language is inher-

ently non-modular. In the following subsection we show how to solve this problem.

3.3 Automatic Injections and Projections

Consider a function which produces terms of signature G. If G = Fi, this function

can be easily extended to produce terms of signature Σ = F1 ⊕ . . . ⊕ Fn by post-

composing it with foldTerm Var (ini · Con), where ini is the corresponding injection

into the coproduct. We would like this extension to work on terms of any signature

containing G, but this is not the case here: G will not be at a fixed position i

for every signature containing G. In general, we would like to be able to define

functions on coproducts of datatypes for which only a limited part is known.

The solution to this problem [14,21] is to parameterise each function by injec-

tion/projection pairs corresponding to each of the summands a function is interested

in. We can avoid writing this parameterisation with the following type class:

class (Functor sub,Functor sup) ⇒ sub →֒ sup where

inj :: sub a → sup a

prj :: sup a → Maybe (sub a)

We can think of sub →֒ sup as meaning “sub is a subtype of sup”. The class

method inj is used to inject a subtype sub into the supertype sup, and prj let us do

a case analysis on a sup to determine if it is in fact a sub.

The following instances state the reflexivity of · →֒ ·, and that if f = gi for some

i, then f is a subtype of a coproduct g1 + (g2 + (. . . )) . Note that the sum should

be associated to the right for the type-checker to be able to infer an instance, so we

need to be careful when constructing coproducts.

instance (Functor f ) ⇒ f →֒ f where

inj = id

prj = Just

instance (Functor f ,Functor g) ⇒ f →֒ f ⊕ g where

inj = Inl

prj (Inl f ) = Just f

prj = Nothing

instance (Functor h, f →֒ g) ⇒ f →֒ h ⊕ g where

inj = Inr · inj

8
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con :: (s →֒ t) ⇒ s (Term t x ) → Term t x

con = Con · inj

put :: (Put →֒ s) ⇒ Char → Term s x

put c = con (Put c)

seq :: (Seq →֒ s) ⇒ Term s x → Term s x → Term s x

seq p q = con (Seq p q)

· ⊔ · :: (Alt →֒ s) ⇒ Term s x → Term s x → Term s x

p ⊔ q = con (Alt p q)

n :: (N →֒ s) ⇒ Int → Term s x

n m = con (N m)

add :: (Add →֒ s) ⇒ Term s x → Term s x → Term s x

add p q = con (Add p q)

ifz :: (Ifz →֒ s) ⇒ Term s x → (Term s x ,Term s x ) → Term s x

ifz c (t , e) = con (Ifz c t e)

thr :: (Thr →֒ s) ⇒ Term s x

thr = con Thr

cat :: (Cat →֒ s) ⇒ Term s x → Term s x → Term s x

cat p q = con (Cat p q)

Fig. 7: Modular constructors for the operators of P , Z, and E

prj (Inr a) = prj a

prj = Nothing

For convenience, we define an auxiliary function f =g for processing supertypes,

which applies a function g if we are in the case of a chosen subtype and a function

f otherwise.

(=) :: (sub →֒ sup) ⇒ (sup x → a) → (sub x → a) → sup x → a

(f = g) x = case prj x of

Nothing → f x

Just y → g y

Finally, we will rewrite the auxiliary functions in Figure 6 so that they work with

any signature which satisfies certain requirements expressed as type constraints. In

Figure 7 we show the modular constructors for the operators in P , Z, and E.

With the use of coproducts and the functorial representation of signatures, we

achieved our goal of obtaining and implementing a modular syntax.

4 Transition Relations as Coalgebras

As shown in Section 2, operational semantics are given by a transition relation

which represents execution steps in an abstract machine. Transition relations can

be modeled in a generic, categorical way by coalgebras [10]. Given an endofunctor B,

a B-coalgebra is an object X and a structure map X → BX. The carrier of the

coalgebra X can be seen as the states of an abstract machine while the endofunctor

B represents the observable behaviour of the machine.

9
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Every relation R ⊆ X × Y can be written as a function X → PY mapping

every element in X to its set of related elements in Y . The simplest technique for

interpreting the powerset functor in Haskell is to use the list functor. Thus, we

interpret relations R ⊆ X × Y as Haskell functions X → [Y ].

Example 4.1 The SOS rules for the language P defined two transition relations

→ ⊆ P × A × P and −→X ⊆ P × A. Given our decision to interpret relations as

Haskell functions, it is natural to write these as coalgebras with carrier Program P,

and structure functions Program P → [(A, Program P)] and Program P → [A]

respectively. In order to make the coalgebraic structure explicit, let us define func-

torial composition, the functor Pr a, which pairs a character from A with a, and

the constant A functor:

data (h ◦ g) x = Comp{deComp :: (h (g x ))}

instance (Functor h,Functor g) ⇒ Functor (h ◦ g) where

fmap f (Comp c) = Comp (fmap (fmap f ) c)

data Pr a = Pr A a

data KA a = KA A

Using these definitions, we can express the transition relation −→ by a

([ ] ◦ Pr)-coalgebra on Term P and the transition relation −→ X by a ([ ] ◦ KA)-

coalgebra on Term P. Furthermore, we can pack both transition relations into a

([ ] ◦ (Pr⊕KA))-coalgebra on Term P which captures all the observable behaviour of

language P.

Example 4.2 Consider the language Z of Section 2. A simple inductive argument

shows that the ⇓ relation is a function. Hence, we can describe the induced transition

relation by a KI-coalgebra, where KI is the constant Int functor.

data KI a = KI Int

Example 4.3 The transition relation ↑ can be represented by a KE-coalgebra,

where KE is the constant unit functor.

data KE a = KE

As shown in these last two examples, when the transition relation is a function,

we can remove the powerset (or list). In this manner, the determinism of the

underlying transition system is made explicit, avoiding the need for a separate proof.

Being able to describe precisely what is observable by choosing the appropriate

behaviour functor is an important advantage of the coalgebraic approach.

4.1 Execution of transition systems

In order to execute a transition system specified by a coalgebra, we unfold the

coalgebra [10,9] to construct a tree of observations. The appropriate notion of tree

is given by the greatest fixpoint 4 of the behaviour functor of the coalgebra.

4 In Haskell there is no distinction between least and greatest fixpoints of recursive datatypes. To distinguish
between them, we write least fixpoints as data and greatest fixpoints as codata.

10
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codata Nu f = Nu (f (Nu f ))

unfold :: Functor b ⇒ (x → b x ) → x → Nu b

unfold g = Nu · fmap (unfold g) · g

In conclusion, coalgebras provide an abstract model of transition systems, where

the type of the transition system and its corresponding notion of equality are deter-

mined by a functor. However, as discussed in the next section, this is not sufficient

to model structural operational semantics.

5 Mathematical Operational Semantics

Coalgebras provide an abstract model of transition systems. Unfortunately, they

do not support a proper theory of SOS. In particular, the carrier of a coalgebra

is unstructured, and hence a purely coalgebraic approach will not be able to take

advantage of the fact that the carrier of the coalgebra is the set of terms, and hence,

has an algebra structure. Therefore, in order to develop a mathematical operational

semantics, what we need is a structure which contains both coalgebraic and algebraic

features. Turi constructed such a structure in his categorical framework for SOS by

focusing on the operational rules rather than on the transition relation.

In this section we present our implementation of Turi’s framework. To begin

with, let us consider a typical operational rule and analyse its structure:

p
a
−→ p′

p ; q
a
−→ p′ ; q

premisses

source → target

In general, a rule consists of some premisses and a conclusion. The source of the

conclusion consists of an operator of the language (the ; operator, in the example

above) applied to some metavariables (p and q) which stand for arbitrary terms.

Premisses are transitions from these metavariables. Finally, the target of the con-

clusion is a term with metavariables taken from the source of the conclusion and

from the premisses (q and p′, respectively).

In the previous two sections we showed how to abstract syntax by a signature

functor and observable behaviour by a behaviour functor. Using these concepts we

can abstract the structure of operational rules.

5.1 The Type of Operational Rules

Given a language with syntax determined by a signature functor s and behaviour

functor b, its structural operational semantics is given by rules of the form:

type OR s b = ∀ x y · (x → y) → -- Term environment

(x → b y) → -- Behaviour environment

s x → -- Source of the conclusion

b (Term s y) -- Target of the conclusion

The type above says that operational rules are defined by a function which given

two environments and the source of the conclusion of a rule, returns the transition

11
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in the conclusion of the rule. The x in the type declaration above corresponds to

variables in the source of a transition (source variables) and y to variables in the

target of a transition (target variables). The environments are:

Term environment: specifies which target variable corresponds to each source

variable. It enables us to use source variables to construct the term in the target

of the conclusion.

Behaviour environment: specifies the transition corresponding to each source

variable. It plays the role of the premisses in an operational rule.

Note that source and target variables are polymorphic to ensure that the defined

semantics do not depend on their actual nature. The distinction between source

variables and target variables guarantees that the induced semantics depends only

on the behaviour of its subterms, and not on the actual subterms.

Example 5.1 In Figure 8 we give operational semantics 5 to the constructs of P

given in Example 3.1 with a behaviour functor ([ ] ◦ (KA ⊕ Pr).

Function orP implements the operational rules of P given in Figure 1 by pattern-

matching on the operator in the source of the conclusion. In the case of Put c, the

only possible transition is to print c and terminate. In the case of Seq p q , we

analyse the type of each possible transition of p to see which transition to perform

(for the definition of the monad instance for lists, see appendix B.3). If p may print

a character c and terminate, then Seq p q prints c and continues execution with

term q . If p may print c and continue execution with term p ′ then Seq p q prints

c and continues execution with term Seq p ′ q . In the case of Alt p q , the possible

transitions are the union of the possible transitions from p and from q .

It is important to note that values of type OR s b are isomorphic to Turi’s

abstract operational rules (see Appendix A). Consequently, not only are they a

structured, language-independent formulation of SOS, but also they are guaranteed

to induce a transition relation with bisimulation as a congruence and to generate an

adequate denotational model. We prefer OR rules rather than Turi’s abstract oper-

ational rules since they lead to a natural implementation in a functional language.

5.2 Obtaining a Transition Relation

Every operational rule OR s b induces a lifting opMonad of the syntax monad

Term s to the category of b-coalgebras. The function opMonad (the operational

monad [22]) takes a b-coalgebra on x and returns a b-coalgebra on Term s x . Intu-

itively, opMonad shows that given an operational rule and the semantics of variables

x in the terms, we can give semantics to terms with variables from x .

opMonad :: (Functor s,Functor b) ⇒

OR s b → (x → b x ) → Term s x → b (Term s x )

opMonad op k = snd · foldTerm 〈Var, fmap Var · k〉

〈Con · fmap fst, fmap join · op fst snd〉

where 〈f , g〉 a = (f a, g a)

5 For clarity, in Figure 8 we have omitted the constructors for functorial composition.
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orP :: OR P ([ ] ◦ (KA ⊕ Pr))

orP (Put c) = [Inl (KA c)]

orP te be (Seq p q) = be ′ p >>= copair

(λ(KA c) → [Inr (Pr c (te ′ q))])

(λ(Pr c p ′) → [Inr (Pr c (Con (Seq p ′ (te ′ q))))])

where te ′ = Var · te

be ′ = map (fmap Var) · be

orP te be (Alt p q) = map (fmap Var) (be p ++ be q)

Fig. 8: Operational semantics for P

In order to execute a Program we unfold the coalgebra obtained from opMonad :

run :: (Functor s,Functor b) ⇒ OR s b → Program s → Nu b

run op = unfold (opMonad op empty)

It is a simple exercise for the reader to use opMonad to obtain a denotational

model s (Nu b) → (Nu b) corresponding to a given OR.

This concludes our functional implementation of Turi’s mathematical opera-

tional semantics. In the next section we tackle the question of how to modularly

combine operational rules.

6 Modular Operational Semantics

Operational rules OR s b are defined for a signature functor s and behaviour functor

b. In Section 3 we showed how to obtain modular syntax by abstracting from

a specific signature functor, and instead considering a signature functor equipped

with type constraints as in Figure 7. Our goal now is to obtain a similar abstraction

technique for behaviours.

Many behaviours that appear in practice, including all the behaviours in our

examples, are of the form m ◦ b, where m is a monad and b is a coproduct of

functors. If we only consider operational semantics with behaviours of this form we

can abstract from a concrete m ◦ b and obtain modular behaviours:

• Rather than considering a concrete monad, we consider a monad m which sup-

ports certain required operations. This is exactly the technique proposed by Liang

et al. [14] and implemented in the Haskell library.

• The same technique used to abstract from concrete syntax using the →֒ relation

can be used to abstract coproducts of behaviours b.

Putting together modular behaviours with modular syntax yields the following

definition of modular operational rules:

type MOR s t m b = ∀ x y · (x → y) →

(x → m (b y)) →

s x → m (b (Term t y))

Modular operational rules MOR differ from concrete operational rules OR in two

ways:
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(i) they distinguish between the signature s of the semantic component being

defined, and the signature of the complete language t ,

(ii) they consider behaviours to be the functorial composition of a monad m and

a functor b.

Given a MOR, we can ossify it and obtain a concrete OR by fixing the signature

of the complete language to be the signature of the language being defined, and

providing a behaviour which satisfies the behaviour requirements of the given MOR.

ossify :: MOR s s m b → OR s (m ◦ b)

ossify mor te be = Comp · mor te (deComp · be)

6.1 Combining Modular Operational Rules

Combining modular operational rules is a simple matter of taking their copair. The

requirements on the behaviour of the combined rules is the combination of the

requirements on behaviour of each component.

(⋒) :: MOR s t m b → MOR s ′ t m b → MOR (s ⊕ s ′) t m b

(op1 ⋒ op2 ) te be = copair (op1 te be) (op2 te be)

This is the fundamental tool for combining modular operational rules. The

constraint that the monad m and behaviour b should be the same for the input

rules of ⋒ appears to be a severe restriction that undermines our original goal.

However, as it will be shown next, we can sidestep this restriction by defining

modular operational rules over an abstract monad and behaviour.

6.2 Defining Modular Operational Rules

The following example shows how to write the modular components for the operators

of P :

morPut :: (Put →֒ s,KA →֒ b,Monad m) ⇒ MOR Put s m b

morPut (Put c) = return (inj (KA c))

morSeq :: (Seq →֒ s,KA →֒ b,Pr →֒ b,Monad m)

⇒ MOR Seq s m b

morSeq te be (Seq p q) = be ′ p >>= return · fmap (‘seq ‘te ′ q) = λ(KA c) →

return (inj (Pr c (te ′ q)))

where te ′ = Var · te

be ′ = fmap (fmap Var) · be

morAlt :: (Alt →֒ s,Functor b,MonadPlus m)

⇒ MOR Alt s m b

morAlt te be (Alt p q) = fmap (fmap Var) (be p ‘mplus‘ be q)

The fundamental idea is that each component should have the least possible

requirements on syntax and behaviour, as given by the type constraints in the type
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morN :: (N →֒ s,KI →֒ b,Monad m) ⇒ MOR N s m b

morN (N n) = return (inj (KI n))

morAdd :: (Add →֒ s,KI →֒ b,Monad m) ⇒ MOR Add s m b

morAdd te be (Add p q) = be ′ p >>= return · fmap (‘add ‘ te ′ q) = λ(KI n) →

be ′ q >>= return · fmap (te ′ p ‘add ‘) = λ(KI m) →

return (inj (KI (n + m)))

where te ′ = Var · te

be ′ = fmap (fmap Var) · be

morIfz :: (Ifz →֒ s,KI →֒ b,Monad m) ⇒ MOR Ifz s m b

morIfz te be (Ifz c t e) = be ′ c >>= return · fmap (‘ifz ‘ (te ′ t , te ′ e))

= λ(KI n) → if n ≡ 0 then be ′ t else be ′ e

where te ′ = Var · te

be ′ = fmap (fmap Var) · be

Fig. 9: Modular operational rules for the operators of Z

signatures above. For morPut , the only requirements are that Put is in the syntax of

the complete language, and that KA is in the behaviour. The semantic component

for morSeq is a bit more subtle. After obtaining the behaviour of the first argument

with be it needs to check whether execution of the first argument has finished, as

indicated by a behaviour KA. This check is implemented by a case analysis with

the = operator. In the case of a behaviour KA, it will move on to the second

argument with a Pr transition, as it is done in the non-modular semantics of P. The

most interesting part is the handling of the case where the behaviour is not KA,

but some possibly unknown behaviour 6 . Here, a step is made by propagating the

unknown behaviour and continuing execution with the term obtained by adding the

(Seq [−] q) context to the resulting term of the transition. The semantic component

for Alt is almost the same as the corresponding case in the non-modular semantics

of P, except that now we do not explicitly require a behaviour [ ], but ask for the

monad in the behaviour to support the mplus operation (described in appendix B.4).

Example 6.1 Modular operational semantics for the modular components of Z

and E are given in Figures 9 and 10, respectively. In morAdd , the monad in the

behaviour forces the choice of an order of evaluation of the arguments of Add. In

the next subsection, we will show how to modularly obtain an addition operator

with non-deterministic order of evaluation.

6.3 Putting it all together

After writing modular operational rules for all the fragments, it is time to reap the

fruits of our hard work. The following examples show how straightforward it is to

obtain semantics for new languages by combining modular components.

6 We say possibly unknown behaviour because in this case the behaviour might be the known behaviour
Pr, or an unknown behaviour.
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morThr :: (Thr →֒ s,KE →֒ b,Monad m) ⇒ MOR Thr s m b

morThr Thr = return (inj KE)

morCat :: (Cat →֒ s,KE →֒ b, Monad m) ⇒ MOR Cat s m b

morCat te be (Cat p q) = be ′ p >>= return · fmap (‘cat ‘ te ′ q) = λKE →

be ′ q

where te ′ = return · te

be ′ = fmap (fmap return) · be

Fig. 10: Modular operational rules for the operators of E

Example 6.2 We construct modP a modular version of the language P which

combines the modular operational rules of its operators. The requirements on syntax

and behaviour of modP are the combination of the requirements of its components.

To obtain a concrete operational semantics for P we fix the syntax to be exactly

P and we instantiate the monad m to be the list monad [ ], which satisfies the

requirement of being a MonadPlus:

morP :: (Put →֒ s,Seq →֒ s, Alt →֒ s,KA →֒ b,Pr →֒ b,MonadPlus m) ⇒

MOR P s m b

morP = morPut ⋒ morSeq ⋒ morAlt

orP ′ :: OR P ([ ] ◦ (Pr ⊕ KA))

orP ′ = ossify morP

Example 6.3 A modular version of language Z is defined as the combination of

the semantics of N, Add, and Ifz. To obtain a concrete version we fix the syntax and

semantics with ossify . In this case the monad in the behaviour has no requirements,

so we can instantiate it to the identity monad (described in Appendix B.2):

morZ :: (N →֒ s, Ifz →֒ s,Add →֒ s,Monad m,KI →֒ b) ⇒ MOR Z s m b

morZ = morN ⋒ morAdd ⋒ morIfz

z :: OR Z (Id ◦ KI)

z = ossify morZ

Example 6.4 Adding exceptions to P is just a matter of adding the semantics of

throw and catch:

ep :: OR EP ([ ] ◦ (KE ⊕ Pr ⊕ KA))

ep = ossify (morThr ⋒ morCat ⋒ morP)

Example 6.5 Adding exceptions to Z is once again, just a matter of adding the

semantics of throw and catch:

ez :: OR EZ (Id ◦ (KE ⊕ KI))

ez = ossify (morThr ⋒ morCat ⋒ morZ )

Example 6.6 A version of Z which can also print characters is the following:

zp :: OR (Put ⊕ Seq ⊕ Z) (Id ◦ (KA ⊕ Pr ⊕ KI))

zp = ossify (morPut ⋒ morSeq ⋒ morZ )
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Our modular semantics of addition has a fixed evaluation order from left to right.

In order to define a version of addition with a non-deterministic order of evaluation

we extend the semantics with ⊔ and define non-deterministic addition addND as

syntactic sugar for the term (a + b)⊔ (b + a).

zP :: OR (Put ⊕ Seq ⊕ Alt ⊕ Z) ([ ] ◦ (KA ⊕ Pr ⊕ KI))

zP = ossify (morPut ⋒ morSeq ⋒ morAlt ⋒ morZ )

addND a b = (a ‘add ‘ b)⊔ (b ‘add ‘ a)

In order to obtain a combined semantics we need to provide a monad which

supports the operations required by the modular components. One way to obtain

such a monad is to use monad transformers together with liftings of operations

as in [14]. Another way would be to use the coproduct of monads [5,7] or to use

Lawvere theories [20]. Note that the requirements do not specify any order on

the layering of effects, so there could be many different monads that satisfy these

requirements, each yielding different combined semantics.

7 Related Work

A practical approach to modular operational semantics for certain specific effects

has recently been put forward by Mosses [17], but it is based on the syntactic rather

than semantic approach to SOS. Turi showed with a few examples how operational

rules which are parametric in their behaviour could be instantiated to different

settings [23] but did not attempt to systematize this technique. Lenisa et al. [13]

defined an operation that combines two operational rules on the same behaviour

OR s b and OR s ′ b into an operational rule OR (s ⊕ s ′) b, but did not consider

the problem of semantics with different behaviour. The advantage of defining the

combination operation for MOR rather than OR is that elements of MOR are flex-

ible enough to allow the separate definition of operators which depend on other

operators. This flexibility is especially advantageous if each operator has different

requirements on the behaviour functor, as each operator will be defined with less

requirements, yielding a more general semantics. Kick [11] presented the dual of

the syntax combination operation for ORs, that is, an operation which takes two

operational rules OR s b and OR s b ′, and returns a OR s (b ⊗ b ′) (where ⊗ is

functorial product). This operation does not seem to be powerful enough to sup-

port the combinations we are trying to obtain. However, it would be interesting to

see how this operation, in the particular case of the behaviour being of the form

PB, could be used to obtain results similar to ours by exploiting the isomorphism

P(A + B) ∼= P(A) × P(B).

8 Conclusion

We have developed a modular approach to operational semantics which allows us

to define the semantics of a language as a combination of the semantics of its in-

dividual components. Our approach is based on writing the operational semantics

on partially known syntax and behaviour, and on the representation of an opera-

tional semantics as a polymorphic function that distributes syntax over behaviour.
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This high-level modular approach leads to a simple and natural implementation in

Haskell, which serves to make our work more accessible and also to allow readers

to experiment further with our constructions.

As with Turi’s original work, this paper is fundamentally first-order. Therefore,

in terms of future work, our primary aim is to consider modular operational se-

mantics for languages with more advanced features, such as binding and recursion.

Incorporating binding operations into Turi’s framework is a difficult task, see [4,3]

for example, but we have some preliminary ideas in this direction. In addition,

we would like to investigate the extent to which our ideas are applicable to other

models of program execution, such as abstract and virtual machines.

Our eventual aim is to be able to write modular operational semantics in Haskell

in as clean and simple way as modular interpreters [14].
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A ORs are Turi’s Operational Rules

Operational rules ORs are isomorphic to Turi’s abstract operational rules AOR.

Categorically, this can be seen by the universal property of right Kan extensions

and their end formula [15], which is valid in any parametric model. More concretely,

the isomorphism is given by the following functions:

type AOR s b = ∀ a · s (a, b a) → b (Term s a)

fromOR :: OR s b → AOR s b

fromOR os = os fst snd

toOR :: (Functor s) ⇒ AOR s b → OR s b

toOR aor te be = aor · fmap 〈te, be〉

where 〈f , g〉 a = (f a, g a)

B Additional definitions

B.1 Functors and Monads

A datatype is shown to have a functorial or a monadic structure by an instance of

the following classes, plus the proof that certain coherence conditions hold [18].

class Functor f where

fmap :: (a → b) → f a → f b

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b) → m b
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The multiplication of a monad for all Monad instances is:

join :: Monad m ⇒ m (m a) → m a

join = (>>=id)

B.2 The Identity Monad

The identity monad is given by the following instances:

data Id a = Id a

instance Functor Id where

fmap f (Id a) = Id (f a)

instance Monad Id where

return = Id

(Id a) >>= f = f a

B.3 The List Monad

The list monad is given by the following instances:

instance Functor [ ] where

fmap f [ ] = [ ]

fmap f (x : xs) = f x : fmap f xs

instance Monad [ ] where

return x = [x ]

[ ] >>= f = [ ]

(x : xs) >>= f = f x ++ (xs >>= f )

B.4 The class of MonadPlus monads

Monads that support choice and failure, such as the list monad via ++ and [ ], are

instances of the class MonadPlus:

class (Monad m) ⇒ MonadPlus m where

mzero :: m a

mplus :: m a → m a → m a
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