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Abstract 

Previous mass spectrometry analysis of cerebrospinal fluid (CSF) has allowed the 

identification of a panel of molecular markers that are associated with Alzheimer’s disease 

(AD). The panel comprises Amyloid beta, Apolipoprotein E, Fibrinogen alpha chain 

precursor, Keratin type I cytoskeletal 9, Serum albumin precursor, SPARC-like 1 protein and 

Tetranectin.  Here we report the development and implementation of immunoassays to 

measure the abundance and diagnostic capacity of these putative biomarkers in matched 

lumbar CSF and blood plasma samples taken in life from individuals confirmed at post-

mortem as suffering from AD (n=10) and from screened ‘cognitively healthy’ subjects (n=18).  

The inflammatory components of Alzheimer’s disease were also investigated.  Employment 

of supervised learning techniques permitted examination of the interrelated expression 

patterns of the putative biomarkers and identified inflammatory components, resulting in 

biomarker panels with a diagnostic accuracy of 87.5% and 86.7% for the plasma and CSF 

datasets respectively.  This is extremely important as it offers an ideal high-throughput and 

relatively inexpensive population screening approach.  It appears possible to determine the 

presence or absence of AD based on our biomarker panel and it seems likely that a cheap 

and rapid blood test for AD is feasible.   

 

 

Keywords: Alzheimer’s disease, Biomarker, Blood Plasma, Cerebrospinal fluid 
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Introduction 

Neurodegenerative disorders, and in particular Alzheimer’s disease (AD), are having an 

increasing impact on our society.  By 2040 dementia, of which AD is the most common 

cause, is predicted to affect 81.1 million individuals worldwide [1].  Although AD therapeutics 

including Donepezil, Rivastigmine, Galantamine and Memantine are available, AD remains 

incurable as these drugs only provide some symptomatic relief and do not modify disease 

progression [2, 3].  As AD is associated with a progressive decline in health, earlier detection 

may result in enhanced therapeutic success [3].  Current diagnostic procedures are, 

however, inadequate for early disease detection or the accurate differentiation of AD from 

other forms of dementia.  Provision of enhanced cost-effective diagnostic strategies is vital 

and a biochemical test that is diagnostic and predictive of AD would help achieve this aim. 

 

Investigations into biomarkers for AD have, to date, failed to identify a single molecule 

capable of fully depicting the disease state.  Genetically AD is one of the best characterised 

diseases [4-9], however only approximately 24% of heritability has been resolved [10] and 

possession of  genetic indicators (e.g. the E4 allele of the APOE gene) does not guarantee 

disease onset [11].  Diagnosis based solely on a genetic marker would, therefore, result in 

many inaccurate diagnoses. Studies into individual AD protein biomarkers have tended to 

focus on the constituents of amyloid beta deposits and neurofibrillary tangles as these are 

the characteristic hallmarks of the disease [12] but such studies have demonstrated varying 

levels of success [13-16].  A recent study examining amyloid beta peptide 1-42 (Aȕ42) has, 

however, lent support to the belief that the underlying causative factors of AD are initiated 

many years before the symptoms of the late-onset form of AD (LOAD) manifest [17].  In this 

study, cerebrospinal fluid (CSF) concentrations of Aȕ42 were shown to have reached 

pathological levels 5-10 years prior to conversion from mild cognitive impairment (MCI) to 

AD, highlighting the huge benefits that biomarker identification could have in the early 

diagnosis of AD.  However, as is the case with single biomarkers in most complex disorders, 

Aȕ42 does not appear to have the necessary power to act as a stand-alone AD marker.  The 

findings of this study indicate that 10% of individuals with MCI who had pathological levels of 

Aȕ42 did not go on to develop AD.  As such these measurements would need to be utilised 

in conjunction with additional diagnostic procedures and it may be that a panel of biomarkers 

incorporating Aȕ42 may be more appropriate. 

 

Vafadar-Isfahani and colleagues recently identified a panel of CSF biomarkers capable of 

differentiating between healthy individuals and those with AD [18].  Comprising Amyloid 

beta, Apolipoprotein E, Fibrinogen alpha chain precursor, Keratin type I cytoskeletal 9, 

Serum albumin precursor, SPARC-like 1 protein and Tetranectin, the diagnostic 
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performance of this biomarker panel was found to improve as more markers were 

sequentially added to the model for diagnosis i.e. the effect was additive suggesting that all 

the markers are necessary for accurate diagnosis.  The panel of markers also demonstrated 

its potential utility in early diagnosis of AD by mapping individuals with Mild Cognitive 

Impairment (MCI) at an intermediate point between samples from healthy and AD 

individuals.  To enable routine screening of a population, however, it would be preferable for 

any biochemical test developed to be analysed in blood plasma as this is a far less invasive 

clinical sample to collect from a patient than CSF.  In this study we first aim to identify the 

components of the recently identified CSF AD biomarker panel [18] in blood plasma.  We 

then proceed to determine their plasma and CSF concentrations and assess their potential 

utility as diagnostics tools.  As Tau is considered one of the foremost AD biomarkers, we 

have included it in this study along with Clusterin which was recently identified as a potential 

blood plasma biomarker for AD [19]. 
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Materials and methods 

Patient Samples 

Sample cohorts used in this study were obtained from the Oxford Project to Investigate 

Memory and Ageing (OPTIMA; University of Oxford, UK). The OPTIMA study received 

approval from the Central Oxford Ethics Committee and all individuals gave informed written 

consent to participate in the study.  For 10 patients with a clinical diagnosis of probable AD, 

‘definite’ AD was diagnosed pathologically by the established CERAD criteria. The 18 control 

subjects were cognitively screened annually for at least 3 years and 6 came to autopsy and 

were classified as CERAD ‘negative’.  See a recent report for a brief description of the 

OPTIMA cohort, CSF sampling procedure and post-mortem analysis [20].  The average 

interval between CSF sampling and death was 2090 days in the controls and 1806 days in 

the AD patients. 

 

Protein detection by immunoassay: ELISA 

SPARCL1 was analysed by sandwich ELISA using capture and biotinylated detection 

antibodies from Creative Biomart (CAB-701MH) and R&D Systems (BAF2728) respectively. 

The wells of ELISA plates were coated overnight with 5 ȝg/ml capture antibody (CAB-

701MH in PBS).  Following this and every subsequent incubation wells were washed three 

times with PBS-0.05% Tween20 (PBST).  Antibody-coated wells were blocked with PBST-

1% BSA for  1 hr,  50 ȝl sample (either clinical sample or protein standard) was added for 2 

hr and then biotinylated detection antibody (BAF2728) was added at 500 ng/ml for 2 hr.  The 

reaction was developed using streptavidin-HRP and TMB substrate, stopped with 1 M HCl 

and read at 450 nm. Concentrations of SPARCL1 in the samples were determined from a 

standard curve generated with recombinant SPARCL1 (R&D Systems; 2728-SL).  Keratin 9 

was detected according to the manufacturer’s protocol using an ELISA kit purchased from 

antibodies-online GmbH (ABIN417500). ELISA kits against ȕ-Amyloid peptide 1-40 (Aȕ40) 

and Aȕ42 were purchased from Wako Chemicals GmbH (298-64601 and 296-64401) and 

used according to manufacturer’s instructions. 

 

Antibodies and recombinant proteins 

Appropriate pairs of monoclonal capture antibody and biotinylated polyclonal detection 

antibody and a corresponding recombinant protein standard were sourced as displayed in 

Table 1 and verified by western blot and ELISA.   

 

Antibody coupling to microspheres 

COOH-coated fluorescently dyed microspheres (Bio-Plex) were purchased from Bio-Rad 

(Hercules, CA). Bead regions 011, 020, 027, 033 and 042 were assigned to ApoE, 
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Tetranectin, Fibrinogen alpha chain, Clusterin and Tau respectively. Monoclonal capture 

antibodies were coupled to the microspheres using the Bio-Plex Amine Coupling Kit (Bio-

Rad, 171-406001) according to manufacturer’s instructions. When necessary, pre-

processing with Micro Bio-Spin 6 columns (Bio-Rad) was undertaken to ensure antibodies 

were in PBS buffer containing no additives prior to the attachment procedure.  Assays were 

initially developed and optimised individually for target protein before being combined step-

by-step to identify any problems due to reagent cross-reactivity that may have occurred.   

 

Luminex procedure 

Designated wells of a filter plate were pre-wetted with wash buffer (PBS-0.05% Tween20 

(PBST)).  A bead suspension containing 5000 of each antibody-conjugated bead set was 

added to each well, washed twice with PBST and resuspended in incubation buffer (PBS-1% 

BSA).  To this, a sample of appropriately diluted clinical sample or protein standard was 

added, and the plate was incubated for 2 hr at 25°C on a rotating plate shaker (600 rpm).  

Wells were then washed twice with PBST, and incubated with a cocktail of biotinylated 

detection antibodies (containing each antibody at a pre-determined optimal concentration).  

The plate was incubated for 1 hr at 25°C on a rotating plate shaker after which wells were 

again washed twice with PBST and the reporter molecule (Streptavidin-RPE) was added to 

the appropriate wells.  Finally, following a 30 min incubation at 25°C on a rotating plate 

shaker and two washes with PBST, PBST was added to each well in preparation for 

analysis.  Data were acquired on a Bio-Plex 200 system and analysed with associated 

software (Bio-Rad). All multiplex assays were performed in duplicate.  In each well, a 

minimum of 100 beads per target molecule were analysed for both bead designation and R-

phycoerythrin fluorescence.  Clinical sample concentrations of each target protein were 

determined from standard curves generated using recombinant proteins. 

 

Human cytokine 30-plex Luminex Assay 

Cytokine levels in both plasma and CSF were measured using the Luminex human cytokine 

30-plex panel (Biosource, Camarillo, CA). This kit is able to simultaneously measure human 

IL-1ȕ, IL-1RA, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p40/p70, IL-13, IL-15, IL-17, 

TNF-Į, IFN- Į, IFN-, GM-CSF, MIP-1Į, MIP-1 ȕ, IP-10, MIG, Eotaxin-1, RANTES, MCP-1, 

VEGF, G-CSF, EGF, FGF-basic and HGF.  Samples were analysed according to 

manufacturer’s instructions.  Briefly, incubation buffer and 1:2 diluted plasma samples were 

pipetted into wells and incubated with the beads for 2 hours.  Wells were washed, incubated 

with biotinylated detector antibody for 1 hour, washed again and incubated for 30 mins with 

streptavidin-RPE.  Wells were washed to remove unbound streptavidin-RPE prior to 

analysis.  All samples and standard curves were performed in duplicate.  Data was acquired 
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on a Bio-Plex 200 system and analysed with associated software (Bio-Rad). Standard 

curves for each cytokine were generated using the pre-mixed lyophilised standards provided 

in the kits and the cytokine concentrations in samples were determined from the appropriate 

standard curve. 

 

Individual biomarker analysis 

Data was analysed using GraphPad Prism Version 5.02. Concentrations of the markers in 

the cohorts were compared using the Mann-Whitney test and Spearman correlation 

coefficients were determined as appropriate.  A p-value ≤ 0.05 was considered to be a 

practical level of clinical significance. 

 

Biomarker panel analysis 

To determine the effectiveness of each individual marker, the statistical data was used to 

calculate the proportion of both the healthy and the diseased population that would be 

incorrectly diagnosed. It was assumed that both the healthy and the diseased population are 

normally distributed, but the principle is valid for other distributions. 

Considering first the healthy population, take Ph(c) as the probability distribution with respect 

to marker concentration c. The first step involves calculating the range of marker 

concentrations where the diseased population overlaps with the healthy population. This is 

entirely covered by the range of concentrations for the diseased population, so the range 

can be set to ߤௗ േ  ௗ, where ȝd and ıd are the mean and standard deviation of theߪ݊

diseased population respectively, and n is the number of standard deviations from the mean. 

In this work, n was chosen as 3. We define the proportion of the healthy population that lies 

within this range to be Oh. An example can be seen in Figure 1, where the healthy 

population that cannot be correctly diagnosed with the single example marker is shown in 

grey. 

Individuals with marker concentrations in the overlap range are at risk of being 

misdiagnosed. Determining Oh for a marker gives a measure of its usefulness. Oh can be 

calculated as the cumulative distribution of the healthy population, Ph, that lies within the 

overlap range.  This can be found by integrating the probability density function for the 

healthy population, Ph, over the overlap range, as shown in Equation 1.  

Equation 1 ܱ௛ ൌ ׬ ௛ܲሺܿሻ݀ܿఓ೏ା௡ఙ೏ఓ೏ି௡ఙ೏  

In some cases the lower integration limit will be negative, implying a negative marker 

concentration which is of course not possible, so the general case above must be modified. 
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The probability density function, Ph(c), is multiplied by the step function H(c) as defined in 

Equation 2. 

Equation 2 ܪሺܿሻ ൌ ቄͲǡ ܿ ൏ Ͳͳǡ ܿ ൒ Ͳ 

This removes the possibility of negative marker concentrations. It also means that the total 

area of  Ph(c) that is under consideration, defined as Th, is less than 1. Th must be found so 

that Oh can be calculated as a proportion. Th is calculated in Equation 3. 

Equation 3 ௛ܶ ൌ ׬ ௛ܲሺܿሻ݀ܿஶ଴  

Th may also be calculated using Equation 4, where the upper integration limit is set based on 

the healthy population mean and standard deviation to give a more practical limit. The 

parameter m = 6 was chosen in this work. 

Equation 4 ௛ܶ ൌ ׬ ௛ܲሺܿሻ݀ܿఓ೓ା௠ఙ೏଴  

The final result for Oh is given in Equation 5 with the same result for the diseased population 

in Equation 6. 

Equation 5 ܱ௛ ൌ ଵ்೓ ׬ ௛ܲሺܿሻܪሺܿሻ݀ܿఓ೏ା௡ఙ೏ఓ೏ି௡ఙ೏  

Equation 6 ܱௗ ൌ ଵ்೏ ׬ ௗܲሺܿሻܪሺܿሻ݀ܿఓ೓ା௡ఙ೓ఓ೓ି௡ఙ೓  

 

Supervised learning techniques  

The parameters Oh and Od give an indication of how well each individual marker performs as 

a diagnostic tool, but to get the full power they must be considered together as a panel of 

markers.  To validate the data without preconception of how to classify the subject 

groupings, three data analysis techniques based on supervised learning techniques were 

employed; a decision tree classifier (C4.5), a Bayesian classifier (Naïve Bayes) and a 

Multilayer Perceptron artificial neural network (ANN). 

 

In the C4.5 algorithm each attribute of the data can be used to make a decision that splits 

the data into smaller subsets. It examines the normalised information gain that results from 

choosing an attribute for splitting the data. The attribute with the highest normalised 

information gain is used to make the decision. The algorithm then recurs on the smaller 

sublists. The system outputs as a decision tree, or a set of if-then rules, which can be used 
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to classify new cases, with an emphasis on making the model understandable and accurate 

[21]. 

 

The Naive Bayes is a probabilistic classifier based on Bayes’ theorem with strong 

independence assumptions that can deal with large numbers of cases and variables. It aims 

to predict the class of test instances as accurately as possible and is termed naive because 

it is based on two simplifying assumptions: (1) That the predictive attributes are conditionally 

independent given the class and (2) The values of numeric attributes are normally distributed 

within each class [22]. 

 

The Multilayer Perceptron is a feed-forward ANN model that maps sets of input data onto a 

set of appropriate output. It has three distinctive characteristics: (1) The model of each 

neuron in the network includes a nonlinear activation function. (2) The network contains one 

or more layers of hidden neurons (not part of the input or output of the network) which 

enable the network to learn complex tasks by extracting progressively more meaningful 

features from the input patterns. (3) The network exhibits a high degree of connectivity, 

determined by the synapses of the network. A change in the connectivity of the network 

requires a change in the population of synaptic connections or their weights.   The Multilayer 

Perceptron derives its computing power from these characteristics together with the ability to 

learn from experience through training [23].  This system is trained to solve problems using 

the error back-propagation algorithm. 

 

The classification algorithms were applied to the two data sets (CSF/Plasma) to examine 

whether the classifications into Healthy/AD could be reproduced.  Each technique was 

implemented using a ‘leave-one-out’ cross-validation, to estimate how accurately the 

predictive model performs in practice. At each step, the whole data but one point are used 

for training and the remaining point is used for testing. The process is then repeated n-times, 

where n is the total number of patients. 
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Results 

The concentrations of eight putative AD protein biomarkers were determined in plasma and 

CSF samples collected simultaneously from individual ‘donors’. The ‘matched’ nature of the 

samples makes it feasible for comparisons to be made between the protein constituents of 

each sample, but this also led to restrictions of the overall cohort sizes.  All of the proteins 

examined (Aȕ40, Aȕ42, ApoE, Clusterin, Fibrinogen alpha chain, Keratin 9, SPARCL1, Tau, 

Tetranectin) could be detected in CSF and plasma using immunoassays (Figure 2).  The 

mean concentrations of the proteins measured in both sample sets are shown in Table 1.  

SPARCL1 (p = 0.035)) and Aȕ42 (p = 0.049) were found to be significantly decreased in 

CSF from AD patients in comparison to healthy controls.  Keratin 9 was only detectable in 

CSF samples from three AD patients (Mean concentration ± SD; 3.75 ± 5.9 pg/ml) and not 

any healthy individuals.  In plasma from AD patients, the concentrations of Aȕ42 (p = 

0.0008) and Tau (p = 0.047) were significantly decreased in comparison to those observed 

in healthy controls.  Significant correlations between the plasma and CSF concentrations of 

ApoE, SPARCL1, Tau and Tetranectin were determined in healthy individuals but were 

found to be weaker in the AD patient cohort (Table 2).   

 

To investigate the inflammatory component of AD, samples were examined using Luminex 

technology, allowing simultaneous assessment of 30 cytokines. In the plasma and CSF 

samples, 11 and 12 respectively of the cytokines examined were not present at 

concentrations that could be detected using this technology and are omitted from Table 3.  

Furthermore, some samples contained levels of RANTES that exceeded the maximum 

range of the standard curve so these values have also been omitted from Table 3.  

Significant differences (p-value ≤ 0.05) in concentration between AD and healthy samples 

were observed for FGF-basic (p = 0.05), IL-1RA (p = 0.02), MCP-1 (p = 0.01) and MIP-1ȕ (p 

= 0.04) in plasma samples as illustrated in Figure 3.  These differences were not replicated 

in the matched CSF samples in which only IL-12 (p = 0.04) demonstrated a significant 

change. 

 

In order to gain more insight into the mechanisms of disease and potential pathways 

implicated, we sought to identify any correlations that exist between components of the 

targeted biomarker panel and the inflammatory proteins shown to be significantly altered in 

AD (FGF-basic, IL-12, IL-1RA, MCP-1 and MIP-1ȕ).  The correlation of Keratin 9 with the 

other proteins could only be established in the disease cohort as it was not detectable in 

samples from the healthy cohort.  Whilst all potential combinations of proteins were 

analysed, only those shown to be significantly correlated are displayed in Table 4 along with 

the p-value of the correlation and the effect of disease on the correlation.  All of the targeted 
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biomarker panel and inflammatory proteins were found to be significantly correlated (p ≤ 

0.05) with at least one other protein (Table 4).  Identification of a correlation in CSF samples 

did not automatically infer a correlation between that protein pair in the corresponding 

plasma samples as only the Aȕ40/Aȕ42 and MCP-1/Tetranectin pairings demonstrated the 

same patterns of correlations in CSF and plasma samples.  In these cases a correlation that 

existed between the proteins in healthy samples was disrupted in the disease cohorts.  

Interestingly, some of the protein targets that were not significantly altered in the disease 

state (Figure 2 and Table 2) were found to correlate with some of those that exhibited 

significant changes.  For example, clusterin, which had p-values of 0.90 and 0.55 in plasma 

and CSF respectively, was found to correlate with Aȕ40, Aȕ42, FGF-basic, MCP-1 and Tau 

demonstrating its potential importance in the disease network.  

 

Despite having identified significant differences in the concentrations of several proteins in 

AD samples, it would still not be possible to accurately differentiate an AD sample from a 

healthy sample using purely individual protein biomarkers as there is still significant overlap 

present between the ranges of concentrations of the two separate cohorts (Figure 2).  

Examination of this overlapping region allowed numerical assessment of the diagnostic 

power of each individual marker in the healthy and disease states for both CSF and plasma 

samples (Table 5).  Keratin 9 values were determined using the detection limits of the ELISA 

kit used during sample analysis.  When analysed in this manner, the individual markers that 

provided the most power in identifying healthy CSF, AD CSF, healthy plasma and AD 

plasma were IL-1RA (66.43%), Keratin 9 (98.76%), FGF-basic (82.13%) and MIP-1ȕ 

(28.05%) respectively.  It is important, however, that these single protein markers are 

investigated as a combined panel of biomarkers to determine whether this can provide 

improved diagnostic ability and permit identification of a subject’s disease state.  Data 

analysis techniques based on supervised learning techniques were, therefore, employed in 

order to validate our data without preconception of how to classify the subject groupings.  

The biomarker panel examined comprised the original biomarker panel plus all detectable 

inflammatory markers.  Due to the nature of the analysis, i.e. analysis of a complete 

biomarker panel, only samples where measurements had been obtained for all of these 

markers could be utilised.  

 

In the CSF samples, the C4.5 algorithm did not perform well, resulting in only seven (46.7%) 

patients being correctly classified, whilst the remaining eight were misclassified. The naïve 

Bayes classifier performed slightly better, returning 60% (i.e. nine patients) accuracy. The 

remaining six patients were not correctly assigned to their category.  The most accurate 

results were obtained with the neural network, with 13 patients been correctly classified 
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(86.7%).  When the whole data set was used for both training and testing, all three 

classification techniques reached an accuracy of 100% (all patients correctly classified).  For 

the measurements made in plasma samples, the C4.5 algorithm classified 14 out of 16 

(87.5%) correctly.  The C4.5 algorithm shows that, based upon this dataset, it is enough to 

check the values of the M7 variable (Aȕ42) to establish whether a patient should be 

classified as Healthy or as AD. However, when the whole data were used for both training 

and testing, not all patients were correctly classified (15/16). In plasma samples the naïve 

Bayes algorithm reached an accuracy of 75% (i.e. 12 patients correctly classified). This 

method was also able to classify correctly all patients when both training and testing were 

performed using the whole data.  Finally, the ANN was less accurate than for the CSF 

samples, assigning only 13 out of 16 patients (81.25%) to the correct group, but it reached 

100% accuracy when the whole data was used for training and testing.  It is evident that the 

classification techniques performed better on the plasma samples with more data available. 

The naïve Bayes classifier was unable to outperform the other two techniques; this is likely 

to be due to the cohort size as this method is known to perform well with big datasets and if 

data are normally distributed.  For the CSF samples the ANN was the best classifier, but 

unfortunately it is difficult to access the ‘rules’ used for classification by this method as they 

are not ‘visible’.   
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Discussion 
Confirmation of the presence of a disease to acceptable levels of clinical confidence from a 

single molecular indicator (i.e. a biomarker) is not a trivial task. Practical examples of such 

markers do, however, exist.  Prostate-specific antigen (PSA) and Human Epidermal Growth 

Factor Receptor 2 (HER2), for example, are employed diagnostically for prostate and breast 

cancers respectively.  Whilst even these exemplars display limitations (HER2 is not definitive 

of all breast cancer subtypes [24] and the diagnostic assay for PSA produces large numbers 

of false positives [25]), they provide useful diagnostic tools and, particularly in the case of 

HER2, have lead to improved therapeutic intervention [26].  Investigations into biomarkers 

for AD have, to date, failed to identify a single molecule capable of fully depicting the disease 

state due in part to the complex nature of the pathways underlying the disease [27].  An 

alternative approach whereby panels of biomarkers are investigated (as opposed to a 

singular marker) has, in comparison, heralded some success an example of which being the 

recent identification of a panel of cerebrospinal fluid (CSF) biomarkers capable of 

differentiating between AD and healthy individuals.  This panel comprised some novel 

protein biomarkers not previously associated with AD and, encouragingly, was applied in the 

identification of a cohort of individuals with mild cognitive impairment (MCI) [18]. 

 

The initial aim of this study was to demonstrate that the components of this biomarker panel 

could be detected and quantified in blood plasma.  Further to this our aim was to determine 

the concentrations of these proteins in CSF and to examine their utility as individual 

biomarkers in their own rights in both types of clinical sample (CSF and plasma).  It is well 

documented that albumin is the most abundant protein component of both blood plasma [28] 

and CSF [29].  It also has limited utility as a biomarker due to its physical properties, the 

inter-individual variation in ranges that it exhibits and the vastly higher concentrations that it 

exists at compared to the other biomarker components of the panel under consideration [28, 

30].  Instead of providing an accurate measure of disease onset and/or progression, we now 

consider that it is more likely that albumin is acting as a marker of damage to the blood-CSF 

barrier [31] and therefore it was omitted from our current study.  As an association between 

inflammatory genes/proteins and AD has been previously demonstrated [32-34], the 

inflammatory profiles of the samples were also assessed to investigate whether they would 

positively augment the diagnosis obtained using the original biomarker panel.   

 

As illustrated in Figure 2, all of the components of the biomarker panel that were under 

consideration (Aȕ40, Aȕ42, ApoE, Clusterin, Fibrinogen alpha chain, Keratin 9, SPARCL1, 

Tau and Tetranectin) could be measured in blood plasma samples from both healthy and 

diseased individuals using immunoassay.  All proteins could also be detected in CSF 
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samples from both healthy and diseased individuals with the exception of Keratin 9 which 

was not detectable in CSF from healthy individuals.  To our knowledge, this is only the 

second demonstration of the presence of Keratin 9, a protein normally considered to be 

associated with skin, in blood.  Previous data suggests that Keratin 9 may act as a serum 

marker of metastasis of hepatocellular carcinoma [35].  It is also the first immunoassay 

validation of the presence of Keratin 9 in CSF; the only previous association between CSF 

Keratin 9 and AD was reported in a study by Vafadar-Isfahani and colleagues [18].   

 

The cohort sizes under investigation in this study were modest, but are in keeping with other 

similar studies [36].  Perhaps unexpectedly given these relatively small cohorts, significant 

differences in the mean concentrations of some of the biomarker panel components and 

inflammatory proteins were found in both CSF and plasma samples (Figures 2 and 3; Tables 

2 and 3) suggesting that these proteins may have potential utility as individual biomarkers in 

AD.  The most notable potential AD biomarker identified in this study is CSF Keratin 9 as this 

was found to only be present in CSF samples collected from AD patients, not healthy 

individuals.  Another promising protein marker is SPARCL1, levels of which were 

significantly altered in CSF samples of AD patients when compared to healthy controls (p = 

0.035) and approaching significance (0.089) in plasma samples.  SPARCL1 has been linked 

to several diseases including various forms of cancer [37-43], uterine leiomyomas [44] and 

multiple sclerosis [45].  An association between SPARCL1 and AD has previously been 

demonstrated by Yin et al using 1D electrophoresis followed by LC-MS/MS [46].  The study 

also identified SPARCL1 as a potential target for Parkinson’s disease [46].  The other 

proteins found to be significantly altered in the disease state during this study, Aȕ42 and Tau 

have extensively been linked to AD and thus this study provides further validation of their 

potential utility in AD diagnostics.   

 

When looking at the significance of the association of the proteins with AD in CSF, the most 

powerful (excluding Keratin 9 for which a p value cannot be determined) are SPARCL1, 

Aȕ42 and Fibrinogen.  These three proteins were also identified as the three most important 

components of the AD biomarker panel derived in the mass spectrometry study that 

preceded this study [18].  The levels of correlation between plasma and CSF protein 

concentrations were found to be variable (Table 2).  The blood brain barrier restricts 

molecular diffusion (including capillary walls among other structures) and associated 

biochemical and physiological processes to maintain a dynamical blood/CSF concentration 

gradient.  The observed differences that we found seem most likely due to compromises in 

this barrier function which have been demonstrated to be compromised in neurological 

conditions including AD [47].   
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Evidence of an inflammatory component to AD has been emerging in the literature over the 

last few years, however the nature and extent of the inflammatory response has yet to be 

fully elucidated.  A variety of cytokines and chemokines have been implicated in the disease 

process [36, 48, 49]. Indeed, the first suggestion of a biomolecular fingerprint for AD 

included a large number of inflammatory markers [34].  The majority of the cytokines 

examined in this study were detectable in both plasma and CSF which is in contrast to a 

previous study undertaken using Luminex in which only one cytokine out of the 22 examined 

was detectable [50]. These differences could be due to the sensitivity of the detection kit 

being utilised or the disease stage of the patients being studied.  Correlation between 

cytokine levels and disease progression have been previously identified [51].  Motta and 

colleagues demonstrated an initial large increase in immune responsiveness for some 

cytokines in mild-stage AD with respect to comparative healthy individuals.  As the disease 

progressed from the early stages a gradual decline in cytokine levels were observed until 

concentrations in individuals with late-stage disease had dropped below those observed in 

the healthy cohort [51].  When taking the findings of this previous study into consideration, 

the decrease in levels of many of the inflammatory markers observed within this study may 

have been expected as the samples investigated represent late-stage disease. 

 

Of the detectable cytokines, we observed significant decreases in CSF levels of IL-12 (p = 

0.04) and plasma levels of FGF-basic (p = 0.05), IL-1RA (p = 0.02), MCP-1 (p = 0.01) and a 

significant increase in plasma MIP-1ȕ (p = 0.04) (Figure 3 and Table 3).  All five of these 

proteins have previously been linked to AD but the extent and strength of these associations 

is varied.  Whilst FGF-basic has been linked to AD processes [52] and MIP-1ȕ (CCL4) has 

been identified as a component of some Aȕ1-42 pathways [53, 54], to our knowledge this is 

one of the first instances of them being highlighted as potential AD biomarkers.  In contrast, 

several studies have examined expression patterns of MCP-1 (CCL2) in AD with slightly 

conflicting findings, but generally it appears that it increases in AD CSF and decreases in AD 

plasma [55-58] which is in accordance with the findings of this study.  The IL-1 cytokine 

family has been widely implicated in AD pathology [59-61] and decreased expression of IL-

1RA in CSF has previously been linked to AD [62].  Levels of IL-12 have previously been 

shown to decrease in CSF from AD patients [63] corroborating the findings of this study.  

Expression of IL-12 in plasma samples has also been tracked throughout AD progression 

with an increased concentration being observed during mild stage disease which gradually 

decreases as the health of the individual declines [51].  However these results were not 

replicated in this study as we observed comparable levels of IL-12 in plasma from AD 

patients and healthy individuals.   
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In addition to the foregoing points, Figures 2 and 3 highlight the difficulties encountered 

whilst trying to define a singular biomarker indicative of the presence of a complex disease 

condition such as AD.  Even if, as demonstrated by some of the data presented here, a 

prospective biomarker is shown to be significantly different in the disease condition 

compared to that in the healthy, there still remains uncertainty as to the accuracy of the 

clinical decision based on the marker measurement from a patient.  This uncertainty has its 

origins in the overlap between the marker distributions (Figure 1).  Only those concentration 

values falling outside of the overlapping ranges can be considered as an affirmative 

diagnosis, thus extensive levels of overlap may render the practical application of a 

respective marker untenable.   

 

One solution to the foregoing marker screening problem involves combination of the 

measurements of separate molecular markers into a singular analytical protocol to yield a 

more reliable clinical decision.  During this study this approach was investigated through 

application of established supervised learning techniques to the datasets.  Using the C4.5 

algorithm, a diagnostic accuracy (in correctly classifying either an AD or Healthy sample) of 

87.5% was obtained for the plasma data sets whilst application of the neural network 

algorithm to the CSF dataset yielded a diagnostic accuracy of 86.7%.  It is not appropriate to 

assign sensitivity or specificity values to the results obtained within this study due to the 

nature of the analytical methods used which were implemented using a ‘leave-one-out’ cross 

validation of the entire healthy and AD cohorts.  The values of diagnostic accuracy obtained 

are promising, particularly for the plasma samples, but need to be validated further using 

larger sample cohorts.  We envisage that this type of multiparametric biomarker testing 

would be used as a screening tool to inform decisions about further diagnostic requirements 

e.g. whether a patient should be referred for an MRI scan.  When used in conjunction with 

clinical and neuropsychometric evaluation, the ability to define a healthy individual from a 

blood test would enable a subset of the population to avoid the need for referral for imaging 

tests such as MRI [64] which are expensive and tend to be of limited availability outside 

specialist centres. 
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Figure Legends 

Figure 1 Determining Population Distribution Overlaps The overlap (grey) in population 

distributions of a healthy (black line) and disease (dashed line) cohort for a single disease 

biomarker.  

 

Figure 2 Immunoassays of Biomarker Panel Components. Quantification of components 

of the biomarker panel in AD patients and healthy individuals in (A) CSF and (B) plasma 

samples.  Samples were interrogated using either Luminex or ELISA immunoassays as 

described in the Methods section.     

 

Figure 3 Inflammatory Proteins in AD. Inflammatory proteins were examined in blood 

plasma samples from healthy and AD cohorts.  Samples were interrogated using the 

Luminex human cytokine 30-plex panel (Biosource).  Data was collected using a Bio-Plex 

200 system and analysed with associated software (Bio-Rad).  Only those proteins 

demonstrated to differ significantly between the two patient cohorts are displayed: A) FGF-

basic; B) IL-1RA; C) MCP-1 and D) MIP-1ȕ. 
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Table 1 Immunoassay Reagents. Details of the antibody and protein reagents used in the 

development of Luminex assays for this study. 

 

Table 2 Protein Biomarkers in CSF and Plasma.  Expression levels of the biomarker 

panel components were quantified in CSF and plasma samples using immunoassays.  

Variations between the cohorts were evaluated using the Mann-Whitney test.  Spearman 

correlation coefficients were determined for protein values between the two sample types.  A 

p-value 0.05 was considered statistically significant 

 

Table 3 Inflammatory Proteins in CSF and Plasma.  Expression levels of inflammatory 

proteins were quantified in CSF and plasma samples using the Luminex human cytokine 30-

plex panel (Biosource).  Variations between the cohorts were evaluated using the Mann-

Whitney test.  A p-value 0.05 was considered statistically significant. 

 

Table 4 Correlations Between Proteins Concentrations in CSF and Plasma.  Spearman 

correlation coefficients were determined for all protein pairings in CSF and plasma.  A p-

value 0.05 was considered statistically significant.  Target markers showing significant 

correlations either in the healthy or disease state are shown. 

 

Table 5 The Power of Individual Proteins Within the Biomarkers Panels.  Contribution of 

each individual marker to the overall power of the biomarker panels shown in Figure 4.  

Values are presented as the percentage of a cohort that can be accurately identified using 

that marker.  Each marker is ranked according to its contribution to the strength of the 

biomarker panel. 
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Figure 1 
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Figure 2 

(A) CSF 

 

 

(B) Plasma 
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Figure 3 
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Table 1  

 

Target 
Capture Antibody Recombinant Protein Detection Antibody 

Supplier Product Supplier Product Supplier Product 

ApoE Abcam ab1907 Merck 178468 Abcam ab24274 

Clusterin 
AbD 

Serotec 
MCA2612 R&D Systems 2937-HS R&D Systems BAF2937 

Fibrinogen 

Į-chain 
Abcam ab19079 

Thermo 

Scientific 
RP-43142 Abcam ab34546 

Tau Abcam ab80579 Abcam ab72489 
Thermo 

Scientific 

MN1000

B 

Tetranectin Abcam ab51883 R&D Systems 5170-CL R&D Systems BAF5170 
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Table 2  

 

Target Marker 

Mean concentrations (± SD) P-value (change 

due to AD) 

Plasma/CSF 

correlation Plasma CSF 

Healthy AD Healthy AD Plasma CSF 
Health

y 
AD 

Aȕ40 (pmol/L) 9.36±1.65 
9.00±1.1

0 
161±76.6 175±53.4 0.8968 0.5787 0.93 0.66 

Aȕ42 (pmol/L) 4.91±0.90 
3.54±0.4

1 
43.8±21.6 25.5±10.1 0.0008* 

0.0493

* 
0.61 0.14 

ApoE (µg/ml) 5.86±1.28 
4.98±0.9

9 
10.08±2.88 10.05±1.62 0.1718 0.9809 0.02 0.54 

Clusterin (µg/ml) 6.12±1.31 
5.93±1.3

1 
7.14±1.02 7.38±1.19 0.9046 0.5490 0.14 0.18 

Fibrinogen Į-

chain (µg/ml) 
348±401 323±354 8.77±13.08 12.2±8.36 0.7191 0.0887 0.30 0.87 

Keratin 9 (pg/ml) 422±219 625±379 0.0±0.0 3.75±5.9 0.2721 - - 0.24 

SPARCL1 

(ng/ml) 
1957±1136 

1271±55

7 
1286±620 815±245 0.0887 

0.0349

* 
0.05 0.89 

Tau (ng/ml) 75.1±14.3 
63.4±11.

9 
61.5±17.6 63.9±11.7 0.0466* 0.5490 

≤0.000

1 
0.47 

Tetranectin 

(µg/ml) 
29.9±14.3 21.4±5.4 6.59±3.09 6.08±2.18 0.3498 0.9046 

≤0.000

1 
0.58 
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 Table 3  

 

Marker 

Mean concentrations (± SD) P-value 

(change due 

to AD) 
Plasma CSF 

Healthy AD Healthy AD 
Plasm

a 
CSF 

EGF 8.08 ± 5.60 9.54 ± 8.04 5.24 ± 6.91 3.93 ± 8.68 0.82 0.07 

Eotaxin 54.7 ± 44.1 39.8 ± 19.0 25.2 ± 26.2 10.1 ± 21.1 0.47 0.26 

FGF-

basic 
2.30 ± 3.44 

0.124 ± 

0.392 
3.80 ± 3.00 2.62 ± 1.11 0.05* 0.29 

G-CSF 10.6 ± 10.4 17.8 ± 14.1 11.8 ± 24.8 2.97 ± 4.28 0.42 0.32 

HGF 111 ± 38.2 84.9 ± 14.5 89.6 ± 30.2 77.7 ± 40.9 0.10 0.18 

IFN- Į 256 ± 163 165 ± 116 93.3 ± 143 59.4 ± 111 0.27 0.73 

IL-1RA 41.0 ± 53.5 2.98 ± 9.43 7.82 ± 22.5 1.65 ± 3.53 0.02* 0.95 

IL-2R 143 ± 132 64.9 ± 80.2 40.6 ± 50.7 38.1 ± 78.4 0.14 0.57 

IL-6 
0.293 ± 

0.927 
0.647 ± 2.05 0.833 ± 1.52 

0.266 ± 

0.841 
1.00 0.11 

IL-8 3.22 ± 5.82 0.576 ± 1.82 11.6 ± 11.6 6.99 ± 8.45 0.23 0.58 

IL-10 34.8 ± 110 3.68 ± 7.76 0.0 ± 0.0 
0.084 ± 

0.266 
0.67 - 

IL-12 116 ± 99.2 109 ± 52.7 52.1 ± 48.8 25.6 ± 52.0 0.97 0.04* 

IP-10 13.8 ± 9.23 14.0 ± 6.83 8.32 ± 5.22 6.46 ± 6.00 0.91 0.36 

MCP-1 235 ± 102 150 ± 62.9 237 ± 54.4 240 ± 96.7 0.01* 0.72 

MIG 45.5 ± 34.5 39.3 ± 24.1 25.3 ± 35.0 11.4 ± 19.5 0.45 0.45 

MIP-1Į 13.4 ± 12.2 6.23 ± 5.71 9.70 ± 11.9 1.81 ± 3.94 0.15 0.15 

MIP-1 ȕ 62.2 ± 48.0 152 ± 88.1 47.7 ± 77.1 49.7 ± 131 0.04* 0.36 

VEGF 
0.477 ± 

0.485 

0.205 ± 

0.261 

0.730 ± 

0.513 

0.533 ± 

0.276 
0.21 0.21 
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Table 4  

 

CSF Correlations Plasma Correlations 

Target 1 Target 2 Healthy  AD  Effect due to AD Target 1 Target 2 Healthy  AD  Effect due to AD 

Aȕ40 Aȕ42 0.0368* 0.5364 Disrupted correlation Aȕ40 Aȕ42 0.0167* 0.9768 Disrupted correlation 

Aȕ40 ApoE 0.4279 0.0154* Correlation Aȕ40 Clusterin 0.0333* 0.7033 Disrupted correlation 

Aȕ40 SPARCL1 0.0279* 0.7033 Disrupted correlation Aȕ40 Fibrinogen 0.3556 0.0368* Correlation 

Aȕ40 Tau 0.1710 0.0458* Correlation Aȕ40 IL-12 0.0167* 0.0962 Disrupted correlation 

Aȕ40 Tetranectin 0.0831 0.0072** Correlation Aȕ40 Tau 0.0333* 0.2675 Disrupted correlation 

Aȕ42 MCP-1 0.4976 0.0072** Correlation Aȕ42 Clusterin 0.0072** 0.0458* Weaker correlation 

ApoE MCP-1 0.0067** 0.0831 Disrupted correlation Aȕ42 Tau 0.0154* 0.1323 Disrupted correlation 

ApoE Tau 0.0368* 0.0458* 
No change in 

correlation 
ApoE Fibrinogen 0.7033 0.0368* Correlation 

ApoE Tetranectin 0.0458* 0.0368* 
No change in 

correlation 
ApoE IL-12 0.0154* 0.7930 Disrupted correlation 

Clusterin FGF-basic 0.5560 0.0107* Correlation ApoE Tau 0.1710 0.0046** Correlation 

Clusterin MCP-1 0.0341* 0.9349 Disrupted correlation ApoE Tetranectin 0.4618 0.0368* Correlation 

FGF-

basic 
MIP-1 beta 0.0480* 0.3268 Disrupted correlation Clusterin Tau 0.0046** 0.2162 Disrupted correlation 

MCP-1 Tau 0.0123* 0.3599 Disrupted correlation Fibrinogen Tau 0.9768 0.0154* Correlation 

MCP-1 Tetranectin 0.0480* 0.2992 Disrupted correlation Fibrinogen Tetranectin 0.0831 0.0107* Correlation 

Tau Tetranectin 0.0022** 0.0107* Weaker correlation IL-12 Tau 0.0107* 0.7520 Disrupted correlation 

     MCP-1 Tetranectin 0.0458* 0.3268 Disrupted correlation 
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     Tau Tetranectin 0.5364 0.0072** Correlation 
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Table 5 

 

Marker 
Healthy CSF AD CSF Healthy Plasma AD Plasma 

Rank Power(%) Rank Power(%) Rank Power(%) Rank Power(%) 

Aȕ40 4 40.58 21 0 14 5.13 12 0.002 

Aȕ42 5 29.68 17 0 3 56.67 10 0.07 

ApoE 11 10.48 6 4.50 20 0.002 4 4.52 

Clusterin 17 0.57 8 2.71 18 0.03 8 1.97 

EGF 21 0.02 9 0.82 22 0.0003 5 3.21 

Eotaxin 14 4.00 14 0.0006 7 19.08 18 0 

FGF-basic 6 26.37 19 0 1 82.13 15 0 

Fibrinogen 7 18.41 18 0 21 0.002 7 2.41 

G-CSF 2 52.30 22 0 23 0.0001 3 5.02 

HGF 22 0.013 10 0.62 5 35.51 19 0 

IFN-a 16 2.45 13 0.002 13 6.19 20 0 

IL-12 19 0.46 12 0.06 12 7.33 23 0 

IL-1RA 1 66.43 20 0 2 73.54 16 0 

IL-2R 23 0.0003 7 3.54 10 12.74 21 0 

IL-6 8 13.92 23 0 - - - - 

IL-8 13 4.34 15 0.0002 4 44.19 22 0 

IP-10 20 0.10 11 0.21 17 1.37 11 0.003 

Keratin 9 24 0 1 98.76 24 0 2 7.96 

MCP-1 24 0 4 8.57 9 15.56 17 0 

MIG 9 13.14 24 0 16 3.06 13 0.0003 

MIP-1a 3 46.84 24 0 6 23.96 24 0 

MIP-1B 24 0 5 6.23 24 0 1 28.05 

SPARCL1 12 6.66 16 0 11 7.68 14 0 

Tau 15 3.92 2 15.68 19 0.02 6 2.48 

Tetranectin 18 0.56 3 14.95 15 3.86 9 1.49 

VEGF 10 11.85 24 0 8 17.48 24 0 

 

 

 


