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ABSTRACT

Extracting usable and useful knowledge from large and

complex data sets is a difficult and challenging problem.

In this paper, we show how two complementary tech-

niques have been used to tackle this problem in the con-

text of breast cancer. Diagnosis concerns the identifica-

tion of cancer within a patient; in contrast, prognosis con-

cerns the prediction of the ongoing course of the disease,

including issues such as the choice of potential treat-

ments such as chemotherapy or drug therapy, in combi-

nation with estimation of chances (or length) of survival.

Reliable prognosis depends on many factors, including

the identification of the type of this heterogeneous dis-

ease. We first use a consensus clustering methodol-

ogy to identify core, well-characterised sub-groups (or

classes) of the disease based on a large database of pro-

tein biomarkers from over a thousand patients. We then

use fuzzy rule induction and simplification algorithms to

generate a simple, comprehensible set of rules for use in

future model-based classification. The methods are de-

scribed and their use is illustrated on real-world data.

INTRODUCTION

Breast cancer, the most common cancer in women

(Parkin et al., 2001; Kamangar et al., 2006), is a com-

plex disease characterized by multiple molecular alter-

ations. Current routine clinical management relies on

availability of robust clinical and pathologic prognostic

and predictive factors to support decision making. Re-

cent advances in high-throughput molecular technologies

have supported the evidence of a biologic heterogene-

ity of breast cancer. We and others have applied protein

biomarker panels with known relevance to breast cancer,

to large numbers of cases using tissue microarrays, ex-

ploring the existence and clinical significance of distinct

breast cancer classes (Abd El-Rehim et al., 2005; Am-

brogi et al., 2006; Callagy et al., 2003; Jacquemier et al.,

2005; Diallo-Danebrock et al., 2007).

Clustering has become a widely used approach to ex-

trapolate important information from data and to separate

different groups that share similar characteristics within

them. Cluster analysis may be thought of as the discov-

ery of distinct and non-overlapping sub-partitions within

a larger population (Monti et al., 2003). Many differ-

ent clustering techniques are known today, but often only

a few selected methods are used in any given domain.

Choosing which method to use is not an easy task, as

different clustering techniques return different groupings.

Consequently, it has been demonstrated (Ambrogi et al.,

2006; Soria et al., 2010) that the use of several methods

is preferable in order to extract as much information as

possible from the data.

When using more than one algorithm, it is then com-

mon to define a consensus across the results (Kellam

et al., 2001) in order to integrate diverse sources of simi-

larly clustered data (Filkov and Skiena, 2003) and to deal

with the stability of the results obtained from different

techniques. Several approaches have been proposed for

this task. Kellam and colleagues (Kellam et al., 2001)

identified robust clusters by the implementation of a new

algorithm called ‘Clusterfusion’. It takes the results of

different clustering algorithms and generates a set of ro-

bust clusters based upon the consensus of the different

results of each algorithm. In essence, a clustering tech-

nique is applied to the clustering results. Another ap-

proach, suggested by Monti and colleagues (Monti et al.,

2003), deals with class discovery and clustering vali-

dation tailored to the task of analysing gene expression

data. The new methodology, termed ‘consensus cluster-

ing’, provides a method, in conjunction with resampling

techniques, to represent the consensus across multiple

runs of a clustering algorithm and to assess the stabil-

ity of the discovered clusters. Filkov and Skiena sug-

gested to exploit the popularity of cluster analysis of bio-

logical data by integrating clusterings from existing data

sets into a single representative clustering based on pair-

wise similarities of the clusterings. Their proposed rep-

resentative clustering was the one that minimised the dis-

tance to all the other partitions (Filkov and Skiena, 2003).

In another approach, Swift and colleagues used consen-

sus clustering to improve confidence in gene-expression

analysis, on the assumption that microarray analysis us-

ing clustering algorithms can suffer from lack of inter-

method consistency in assigning related gene-expression

profiles to clusters (Swift et al., 2004).



We adopted an alternative approach, based on calcu-

lating a number of external cluster validity indices across

a range of cluster solutions produced by alternative clus-

tering algorithms, and using consensus across the cluster

validity indices and across methods to reach the overall

‘best’ number of clusters (Soria and Garibaldi, 2010).

This methodology results in a number of well charac-

terised (separate and distinct) groups of breast cancer

cases, which may be interpreted as different classes (or

types) of breast cancer, with corresponding alternative

treatment regimes.

There are many non-fuzzy classification algorithms

currently available, for example (Witten and Frank,

2000). However, many of these classification algorithms

may be very good in generalisation ability and so be very

useful for classifying new instances, but lack of compre-

hensibility of the generated models. In fact, most of the

models generated by non-fuzzy classification algorithms

contain numerical values and may not be linguistically

interpretable. This makes it harder for the user to utilise

the models for decision making purposes. Note that an

automated-system, or decision support system, is nor-

mally considered as a tool to assist experts or non-experts

in decision making. Hence, interpretability of such a sys-

tem is normally regarded as highly important (Castellano

et al., 2006). With interpretability in mind, we recently

proposed a novel algorithm to induce a simplified set of

linguistic rules (Rasmani et al., 2009) suitable for use in

a quantifier-based fuzzy classification system (Rasmani

and Shen, 2004). This methodology was applied to the

breast cancer classes obtained by our consensus cluster-

ing in order to obtain a model-based fuzzy classification

system suitable for new cases.

CONSENSUS CLUSTERING

The three-step methodology for elucidating core, sta-

ble classes (groups) of data from a complex, multi-

dimensional dataset was as follows:

1. A variety of clustering algorithms were run.

2. The most appropriate number of clusters was inves-

tigated by means of cluster validity indices.

3. Concordance between clusters, assessed both visu-

ally and statistically, was used to guide the forma-

tion of stable ‘core’ classes of data.

The methodology was applied to a well-known set of data

concerning breast cancer patients (Abd El-Rehim et al.,

2005) in order to obtain core classes. Once these core

classes were obtained, the clinical relevance of the cor-

responding patient groups were investigated by means

of associations with related patient data. All statistical

analysis was done using R, a free software environment

for statistical computing and graphics (Maindonald and

Braun, 2003).

Clustering Algorithms

Five different algorithms were used for cluster analysis:

1. Hierarchical (HCA)

2. K-means (KM)

3. Partitioning around medoids (PAM)

4. Adaptive resonance theory (ART)

5. Fuzzy c-means (FCM)

Hierarchical clustering: The hierarchical clustering al-

gorithm (HCA) begins with all data considered to be in

a separate cluster. It then finds the pair of data with the

minimum value of some specified distance metric; this

pair is then assigned to one cluster. The process contin-

ues iteratively until all data are in the same (one) cluster.

A conventional hierarchical clustering algorithm (HCA)

was utilised, utilising Euclidean distance on the raw (un-

normalised) data with all attributes equally weighted.

K-means clustering: The K-means (KM) technique

aims to partition the data into K clusters such that the

sum of squares from points to the assigned cluster cen-

tres is minimised. The algorithm repeatedly moves all

cluster centers to the mean of their Voronoi sets (the set

of data points which are nearest to the cluster centre).

The objective function minimised is:

J(V ) =

k
∑

j=1

cj
∑

i=1

||xi − vj ||
2

where xi is the i-th datum, vj is the j-th cluster centre, k

is the number of clusters, cj is the number of data points

in the cluster j and ||xi − vj || is the Euclidean distance

between xi and vj .

The j-th centre vj can be calculated as:

vj =
1

cj

cj
∑

i=1

xi, j = 1, ..., k.

K-means clustering is dependent on the initial cluster

centres setting (which, in turn, determines the initial clus-

ter assignment). Various techniques have been proposed

for the initialisation of clusters (Al-Daoud and Roberts,

1996), but for this study we used a fixed initialisation of

the cluster centres obtained with hierarchical clustering.

The number of clusters is an explicit input parameter to

the K-means algorithm.

Partitioning around medoids: The partitioning around

medoids (PAM) algorithm (also known as the k-medoids

algorithm) is a technique which attempts to minimize the

distance between points labeled to be in a cluster and

a point designated as the center of that cluster. In con-

trast to the K-means algorithm, PAM chooses data points

as centers (the so-called medoids) and then assigns each

point to its nearest medoid. A medoid is defined as the



object within a cluster for which the average dissimilar-

ity to all other objects in the cluster is minimal, i.e. it

is the most centrally located datum in the given cluster.

Dissimilarities are nonnegative numbers that are close to

zero when two data points are ‘near’ to each other and

large when the points are very different (Kaufman and

Rousseeuw, 1990). Usually, a Euclidean metric is used

for calculating dissimilarities between observations.

The algorithm consists of two phases: the build phase

in which an initial set of k representative medoids is se-

lected and the swap phase in which a search is carried out

to improve the choice of medoids (and hence the clus-

ter allocations). The build phase begins by identifying

the first medoid, the point for which the sum of dissim-

ilarities to all other points is as small as possible. Fur-

ther medoids are selected iteratively through a process

in which the remaining points are searched to find that

which decreases the objective function as much as possi-

ble. Once k medoids have been selected, the swap phase

commences in which the medoids are considered itera-

tively. Possible swaps between each medoid and other

(non-medoid) points are considered one by one, search-

ing for the largest possible improvement in the objective

function. Thiscontinues until no further improvement in

the objective function can be found. The algorithm is

described in detail in (Kaufman and Rousseeuw, 1990),

pp.102–104. The number of clusters is an explicit input

parameter to the PAM algorithm.

Adaptive resonance theory: The adaptive resonance

theory (ART) algorithm has three main steps (Carpenter

and Grossberg, 1987). First, the data are normalised to

a unit hypersphere, thus representing only the ratios be-

tween the various dimensions of the data. Second, data

allocated to each cluster are required to be within a fixed

maximum solid angle of the group mean, controlled by a

so-called ‘vigilance parameter’ ρ, namely Xk · P i ≤ ρ.

However, even when the observation profile and a proto-

type are closer than the maximum aperture for the group,

a further test is applied to ensure that the profile and pro-

totype have the same dominant covariates. This is done

in a third step by specifying the extent to which the near-

est permissible prototype allocation for the given obser-

vation must be on the same side of the data space from

the diagonal comprising a vector of ones, 1̂, using a pre-

set parameter, λ:

Xk · P i ≤ λXk · 1̂.

The ART algorithm is initialised with no prototypes

and creates them during each successive pass over the

data set. It has some, limited, sensitivity to the order in

which the data are presented and converges in a few iter-

ations. In the ART algorithm the clusters are determined

automatically: the number of clusters is not an explicit

parameter, although there are parameters that can adjust

the number obtained.

Fuzzy c-means: The fuzzy c-means (FCM) algorithm is

a generalisation of the K-means algorithm which is based

on the idea of permitting each object to be a member of

every cluster to a certain degree, rather than an object

having to belong to only one cluster at any one time. It

aims to minimise the objective function:

J(U, V ) =

n
∑

i=1

c
∑

j=1

(µi,j)
m‖xi − vj‖

2

where n is the number of data points, xi and vj are the

data points and cluster centres and µi,j is the membership

degree of data xi to the cluster centre vj (µi,j ∈ [0, 1]). m

is called the ‘fuzziness index’ and the value of m = 2.0 is

usually chosen. An exhaustive description of this method

can be found in (Bezdek, 1974). As for K-means, the

number of clusters is an explicit input parameter to FCM.

Cluster Validity

Clustering validity is a concept that is used to evaluate

the quality of clustering results. If the number of clus-

ters is not known prior to commencing an algorithm, a

cluster validity index may be used to determine the best

number of clusters for the given data set. Although there

are many variations of validity indices, they are all ei-

ther based on considering the data dispersion in a cluster

and between clusters, or considering the scatter matrix

of the data points and the one of the clusters centers. In

this study, the following indices were applied to those al-

gorithms for which the number of clusters is an explicit

parameter, over a range of number of clusters:

1. Calinski and Harabasz (Maulik and Bandyopad-

hyay, 2002)

2. Hartigan (Hartigan, 1975)

3. Scott and Symons (Scott and Symons, 1971)

4. Marriot (Marriot, 1971)

5. TraceW (Edwards and Cavalli-Sforza, 1965; Fried-

man and Rubin, 1967)

6. TraceW−1B (Friedman and Rubin, 1967)

For each index, the number of clusters to be considered

was chosen according to the rule reported in Table 1

where in is the validity index value obtained for n clus-

ters (Weingessel et al., 1999).

CLUSTERING RESULTS

Patients and Clinical Methods

A series of 1076 patients from the Nottingham Tenovus

Primary Breast Carcinoma Series presenting with pri-

mary operable (stages I, II and III) invasive breast cancer

between 1986-98 was used to evaluate the methodology.

Immunohistochemical reactivity for twenty-five proteins,

with known relevance in breast cancer including those



Table 1: Different validity indices and their associated

decision rules

Index Decision rule

Calinski and Harabasz minn((in+1 − in) − (in − in−1))
Hartigan minn((in+1 − in) − (in − in−1))
Scott and Symons maxn(in − in−1)
Marriot maxn((in+1 − in) − (in − in−1))
TraceW maxn((in+1 − in) − (in − in−1))
TraceW−1

B maxn(in − in−1)

used in routine clinical practice, were previously deter-

mined using standard immunocytochemical techniques

on tumour samples prepared as tissue microarrays (Abd

El-Rehim et al., 2005). Levels of immunohistochemi-

cal reactivity were determined by microscopical analysis

using the modified H-score (values between 0-300), giv-

ing a semiquantitative assessment of both the intensity of

staining and the percentage of positive cells.

HCA, K-means, PAM and ART Clustering

The HCA results from our previous study (Abd El-

Rehim et al., 2005) were utilised, unaltered. Both the

K-means and PAM algorithms were run with the num-

ber of clusters varying from two to twenty, as the num-

ber of clusters is an explicit input parameter of the al-

gorithms. Given that both algorithms can be sensitive to

cluster initialisation and in order to obtain reproducible

results, both techniques were initialised with the cluster

assignments obtained by hierarchical clustering. For the

ART algorithm, the parameters were adjusted to obtain

six clusters to match the number of clusters previously

obtained by HCA. The best validity index obtained for

repeated runs of the algorithm with 20 random initialisa-

tions was used to select the final clustering assignment.

Fuzzy C-means Clustering

The fuzzy c-means algorithm did not perform as hoped.

When the number of clusters was set as two and three,

it appeared that reasonable results were obtained. How-

ever, from examination of the membership function of

each point assigned to these clusters, it could be seen that

it was very close to either 1
2 or 1

3 , respectively. In other

words, every data point was assigned to all the clusters

with the same membership. Moreover, when the num-

ber of clusters was above three, non-zero memberships

were evident for only three clusters and these member-

ships were similar to the three cluster solution — i.e. for

n > 3, the n = 3 cluster solution was obtained, but with

n − 3 empty clusters.

The fuzziness index m was altered in an attempt to im-

prove the results obtained, but it was found that little dif-

ference in the results was observed until m was close to

one. Given that when m = 1 fuzzy c-means is equivalent

to K-means, this result was not useful. As there are many

applications for which the fuzzy c-means technique has

been successful (see, for example, (Wang and Garibaldi,
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Figure 1: Cluster validity indices obtained for K-means

for varying cluster numbers from 2 to 20.

Table 2: Optimum number of clusters estimated by each

index for K-means and PAM methods

Index K-means PAM

Calinski and Harabasz 6 4

Hartigan 3 4

Scott and Symons 3 4

Marriot 6 4

TraceW 4 4

TraceW−1
B 3 4

Minimum sum of ranks 6 4

2005)), these results are not easy to explain, but they may

have been caused by the fact that our data contains a lot of

values close to the extremes of each variable. Although

the fuzzy c-means algorithm is widely used in literature,

we decided to drop it from further analysis due to its poor

performance on our data.

Cluster Validity

The values of the decision rule obtained for various val-

ues of the validity indices for K-means, for 2 to 20 clus-

ters, are shown in Figure 1. The best number of clusters

according to each validity index, for each clustering al-

gorithm, is shown in Table 2, as indicated by the solid

circle in Figure 1.

It can be seen that, while there was not absolute agree-

ment among the indices as to which was the best num-

ber of clusters for the K-means method, there is good

agreement that the best number of clusters for the PAM

method is four. Although the best number of clusters

varies according to validity index for K-means, on fur-

ther inspection, it can be seen from Figure 1 that there

is more agreement than might be immediately apparent.

For example, the Scott and Symons index (which indi-
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Figure 2: Biplot of classes projected on the first and sec-

ond principal component axes

cated that the best number of clusters was three) indicated

that the second best number of clusters was six. Conse-

quently, the indices were used to rank order the number

of clusters and the minimum sum of ranks was examined.

It was found that the minimum sum of ranks (a form of

consensus among the indices) indicated that the overall

best number of clusters was six for K-means and four for

PAM. However, it was subsequently found that the four

cluster solution obtained by PAM was not as clinically

interesting as the six cluster solution and it was dropped

from further analysis.

Characterisation of Classes

Biplots of the six consensus classes were produced and

are shown in Figure 2, in order to provide a visualisa-

tion of the separation of the classes. A proposed sum-

mary of the essential characterisations of the classes ob-

tained is given in Figure 3, according to the available bio-

pathological knowledge. It is worth noting that class 2,

labelled as Luminal-N, and the split of the basal group

into two different subgroups depending on p53 levels,

appear to be novel findings not previously emphasised

in literature.

FUZZY CLASSIFICATION

Fuzzy Subsethood Measures

A fuzzy subsethood measure was originally defined as

the degree to which a fuzzy set is a subset of another.

However, the definition of fuzzy subsethood value can

be extended to calculate the degree of subsethood for

linguistic terms in an attribute variable V to a decision

class D (Yuan and Shaw, 1995). For linguistic terms

{A1, A2, . . . , An} ∈ V and (V,D) ⊆ U :

S(D,Ai) =

∑

x∈U ∇(µD(x), µAi
(x))

∑

x∈U µD(x)
(1)

where ∇ can be any t-norm operator. It should be noted

that, to be used for classification problems, both V and
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Figure 3: A summary of the classes of breast cancer ob-

tained, with indicative class interpretations.

D must be defined under the same universe of discourse

U (Yuan and Shaw, 1995). Although the decision class

is represented by fuzzy sets, this definition allows the de-

cision class with zero fuzziness where the membership

value is either one or zero.

Rule Induction

FuzzyQSBA is a rule induction algorithm that was devel-

oped by extending the Weighted Subsethood-based Al-

gorithm (WSBA) (Rasmani and Shen, 2006). WSBA

has the significant advantage, as compared to previous

subsethood-based methods, of not relying on the use

of predefined threshold values in generating fuzzy rule-

sets. The development of WSBA was based on fuzzy

subsethood values as defined in Equation (1). Given

a training dataset, WSBA induces a fixed number of

rules according to the number of possible classification

outcomes. To avoid the use of any threshold values

in the rule generation process, crisp weights generated

using fuzzy subsethood values are created for each of

the linguistic terms appearing in the resulting fuzzy rule

antecedents. In FuzzyQSBA, fuzzy quantifiers are ap-

plied to replace the crisp weights within the rules learned

by WSBA. As small changes in the training dataset

might cause a change to the entire ruleset, developing

a fuzzy model that employs continuous fuzzy quanti-

fiers may be more appropriate compared to two-valued or

multi-valued crisp quantifiers (Rasmani and Shen, 2004).

(Vila et al., 1997) proposed a continuous fuzzy quantifier

which applies linear interpolation between the two clas-

sical, extreme cases of the existential quantifier ∃ and the

universal quantifier ∀. In particular, the quantifier was

defined such that:

Q(Aij , Dk) = (1 − λQ)T∀,A/D + λQT∃,A/D (2)

where Q is the quantifier for fuzzy set A relative to fuzzy

set D and λQ is the degree of neighbourhood of the two

extreme quantifiers. The truth values of the existential

quantifier T∃,A/D and the universal quantifier T∀,A/D



were defined as:

T∃,A/D = ∆N
k=1µ(ak)∇µ(dk) (3)

T∀,A/D = ∇N
k=1(1 − µ(dk))∆µ(ak) (4)

where ak and dk are the membership functions of fuzzy

sets A and D respectively, ∇ represents a t-norm and

∆ represents a corresponding t-conorm. By using fuzzy

subsethood values as the degree of neighbourhood (λQ)

of the quantifiers, any possible quantifiers that exist be-

tween the existential and universal quantifiers can be cre-

ated in principle. Initially, all linguistic terms of each

attribute are used to describe the antecedent of each rule.

This may look tedious, but the reason for keeping this

complete form is that every linguistic term may contain

important information that should be taken into account.

The continuous fuzzy quantifiers are created using infor-

mation extracted from data and behave as a modifier for

each of the fuzzy terms. The resulting FuzzyQSBA rule-

set can be simply represented by:

Rk = ∇
i=1...m

(

∆
j=1...n

(Q(Aij , Dk)∇µAij
(x))

)

,

k = 1, 2, . . . , n (5)

where Q(Aij , Dk) are fuzzy quantifiers and µAij
(x) are

fuzzy linguistic terms. As both the quantifiers and the

linguistic terms are fuzzy sets, choices of t-norm oper-

ators can be used to interpret ∇(Q(Aij , Dk), µAij
(x))

whilst guaranteeing that the inference results are fuzzy

sets. Based on the definitions of the fuzzy subsethood

value, fuzzy existential quantifier and fuzzy universal

quantifier (Equations (1,3,4)), it can be proved that if

λQ is equal to zero then the truth-value of quantifier Q

will also equal zero. Thus, during the rule generation

process, the emerging ruleset is simplified as any lin-

guistic terms whose quantifier has the truth-value of zero

will be removed automatically from the fuzzy rule an-

tecedents, reducing considerably the seeming complexity

of the learned ruleset. As commonly used in rule-based

systems for classification tasks, the concluding classifi-

cation will be that of the rule whose overall weight is the

highest amongst all.

Rule Extraction

Fuzzy quantifiers have been employed in FuzzyQSBA

with the intention to increase the readability of the re-

sulting fuzzy rules and to improve the transparency of

the rule inference process. However, the structure of the

rules is still very complex. Thus, although the use of

quantifiers will make the rules more readable, it seems

that it does not increase the comprehensibility of the

fuzzy rules. As an alternative, a rule simplification pro-

cess that is based on fuzzy quantifiers is proposed below.

In (Bordogna and Pasi, 1997), fuzzy quantifiers are sug-

gested to be used as a fuzzy threshold. The basic idea

of a fuzzy threshold is extended here to conduct the rule

simplification process for FuzzyQSBA. This is to offer

flexibility in accepting or rejecting any particular linguis-

tic term to represent a particular linguistic variable in a

fuzzy rule. To employ the rule simplification, the follow-

ing fuzzy quantifiers and fuzzy antonym quantifiers are

proposed:

TQ(η) =

{

1 if TQ(λ) ≥ η,
TQ(λ)

η if TQ(λ) < η
(6)

TantQ(η) =

{

1 if TQ(λ) ≤ 1 − η,
1−TQ(λ)

η if TQ(λ) > 1 − η
(7)

where TQ(λ) is the truth value of quantifier (TVQ) asso-

ciated with each linguistic term in Equation (5) and η is

a threshold value that can be defined as:

η = p × ω (8)

where p is a factor for the maximum TVQ, ω. In this

technique, the decision to accept a particular linguistic

term is made locally without affecting other variables.

The aim of using a fuzzy threshold is to soften the de-

cision boundary in the process of accepting or rejecting

any terms to be promoted as antecedents of a fuzzy rule,

whilst at the same time significantly reducing the number

of terms in the induced fuzzy rules. The fuzzy quantifiers

mentioned above can be interpreted as ‘at least η’ and its

antonym ‘at most 1 − η’.

Rule Simplification

The rule simplification algorithm is as follows:

1. For each variable, select the maximum TVQ and

calculate TQ(η) and TantQ(η) for each linguistic

term.

2. For i = 1, 2, . . . , l where l is the number of linguis-

tic terms for a variable, and for m 6= n, calculate:

δ(TQi
(η)) = |TQm

(η) − TQn
(η)|

δ(TantQi
(η)) = |TantQm

(η) − TantQn
(η)|

3. Conduct the following test: if mini{δ(TQi
(η))} ≥

{δ(TantQi
(η))} then choose the negation of terms

with the lowest TVQ to represent the conditional at-

tribute; else choose the term with the highest TVQ.

4. Create a simplified rule using the accepted linguistic

terms (or negation of the terms).

Note that when η = 1, the fuzzy quantifier and its

antonym will become ‘most’ and ‘least’, and when η = 0
the quantifier and its antonym will become ‘there exists

at least one’ and ‘for all’. By using the technique pro-

posed above, the primary terms with higher TVQs are ac-

cepted to represent the antecedents of the fuzzy rules. By

lowering the value of η, the primary terms with a lower

TVQ will gradually be accepted. The idea behind this

technique is that only the dominant linguistic term (or its

negation) will be chosen to represent a particular linguis-

tic variable.



CLASSIFICATION RESULTS

The results of the automated rule induction and simpli-

fication obtained using the FuzzyQSBA algorithms de-

scribed above is shown in Table 3. It can be seen that

there is a very good correspondence between the auto-

matically induced rules and the characterisation of the

classes obtained from clinical experts shown in Figure 3.

Note that the term ‘luminal CKs’ refers to CK5/6, CK14

and CK18, whereas ‘basal CKs’ refers to CK7/8 and oth-

ers. However, in Table 3, the absence of luminal CKs

defines membership of classes 4 and 5, as opposed to the

presence of basal CKs as mentioned in Figure 3.

CONCLUSIONS

In this paper, we have illustrated the use of consensus

clustering to elucidate six separate and distinct classes

from the original data set. Further clinical investigations

have confirm that these classes form well-chacterised

sub-types of breast cancer with distinct clinical charac-

teristics (Soria et al., 2010). We have then presented a

rule simplification process (Rasmani et al., 2009) to ac-

company the FuzzyQSBA rule induction algorithms de-

scribed previously (Rasmani and Shen, 2006) which re-

sults in a simple, comprehensible classification table for

each of the six classes based on only ten biomarkers.

In future, we aim to implement the resultant fuzzy rule

table in a model-based classification system that can be

used to determine the type (class) of cancer in new pa-

tients presenting with breast cancer. We hope to thereby

create a clinically useful decision support tool for assist-

ing in the choice of treatment(s) for breast cancer, to im-

prove patient survivability and quality of life (by ensur-

ing appropriate treatments) and to reduce health service

costs (by reducing unnecessary treatments).
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