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Abstract 
 

The affinity propagation algorithm is applied to a 
problem of breast cancer subtyping using traditional 
biologic markers. The algorithm provides a procedure to 
determine the number of profiles to be considered. 

A well know breast cancer case series was used to 
compare the results of the affinity propagation with the 
results obtained with standard algorithms and indexes for 
the optimal choice of the number of clusters. 

Results from affinity propagation are consistent with 
the results already obtained having the advantage of 
providing an indication about the number of clusters.   
 
1. Introduction 
 
Genomic analysis renewed interest in clustering 
techniques. After the seminal paper of Eisen and 
colleagues [5], proposing hierarchical clustering and the 
visual inspection of the dendrogram to discover unknown 
pattern of gene associations, the use of clustering has 
become more and more popular especially for discovering 
profiles in cancer with respect to high-throughput 
genomic data. Important applications of the Eisen method 
are the work of Bittner [18] on clustering of cutaneous 
melanoma and the works of van’t Veer [16] and Perou 
[13] on breast cancer. 
Recently a classification of breast carcinoma using 
traditional tumor markers was proposed [1]. The 
classification was in agreement with the classifications 
obtained with c-DNA microarray data [13,16]. Different 
clustering algorithms were used to choose a stable 
solution across different clustering methods. At last a 
classification in four clusters was preferred and suggested 
a possible separation of high risk profiles.  One of the 
main problems connected with cluster analysis is the 
choice of the number of clusters. In classical cluster 
analysis it is customary to use indexes to compare one 
cluster solutions to other cluster solutions and to choose 
the one suggested as optimal.  
In the previous application [1], different indexes were 
used to select an optimal partition. Namely the indexes 

proposed  by Calinski and Harabasz, [3] Krzanowski and 
Lai, [10], Hartigan, [8] and Tibshirani et al. [15], were 
considered. It is worth noting that the visual inspection of 
the dendrogram is an informal method to determine the 
number of clusters. Such a procedure was criticized in [4] 
as it can cause difficulty in assessing the validity of the 
grouping.     
According to Getz [6], the number of clusters should be 
determined internally by the clustering algorithm and 
should not be externally prescribed.  
In this work a new clustering algorithm, the affinity 
propagation [17], will be adopted to cluster cancer 
patients in order to evaluate its performance with respect 
to the traditional applications. Although this algorithm 
does not determine automatically the number of clusters it 
provides a consistent method to suggest the number of 
clusters to be created which can be useful to detect 
different levels of association pattern.  
  
2. Material and methods 
2.1. Case data 
The information on 633 patients operated on for primary 
infiltrating breast cancer between 1983 and 1992, 
archived at the Pathology department of the University of 
Ferrara, was retrospectively analyzed.   
The available data concerned patient age, pathological 
tumour size, histologic type, pathologic stage, and 
number of metastatic axillary lymph nodes; as well as 
immunohistological determinations of oestrogen receptor 
status (ER), progesterone receptors status (PR), Ki-
67/MIB-1 proliferation index (Ki-67), c-ErbB-2/NEU 
(NEU) and the p53 oncosuppressor gene (p53). 
Values of ER, PR and NEU tended to be grouped on the 
following values: 0%, 10%, 25%, 50%, 75% and 100%; 
they were consequently discretized on those values. 
Values of Ki-67 and p53 were used as originally 
measured.  
A second dataset was also analyzed: the melanoma data 
of Bittner et al. [18]. These data consist of gene 
expression profiles obtained on a collection of 38 
samples, comprised of 31 melanoma tumors and 7 
controls. For the analysis described in Section 3, the data 



from the seven control specimens were excluded and only 
the ratios for the 3613 genes that were considered “well 
measured” (that is their intensities were sufficiently high) 
were used. These ratios were converted to log2 ratios. 
The data and the original analysis are fully described in 
the book “Design and Analysis of DNA Microarray 
Investigations” by Simon and colleagues [21].  
 
2.2. Statistical Methods 

The clustering technique affinity propagation (AP, 
[17]) will be adopted for grouping tumours with similar 
biological characteristics. 
As other clustering algorithms, this method uses data to 
find a set of centers such that the sum of squared errors 
between data points and their nearest center is small.  
Like other traditional clustering techniques, the Affinity 
propagation algorithm determines the centers from real 
data points (exemplars). These exemplars correspond, for 
example, to the medoids in the algorithm Pam [9] 
(Partitioning Around Medoids, a more robust version of 
K-means), that is k representative objects among the 
observations of the dataset that should represent the 
structure of the data.  
As a technical detail, it is worth noting that K-means 
algorithm does not use exemplars, as the centers are not 
generally actual data points. 
Affinity propagation combines the properties of different 
classes of clustering algorithms. On one hand, algorithms 
like hierarchical clustering are based on grouping pairs of 
objects with high affinity. On the other hand model-based 
clustering uses a probability model based on a mixture of 
class conditional distributions. Affinity propagation uses 
both pairs comparison and a probability model to 
determine the optimal grouping. According to a more 
technical point of view, affinity propagation can be 
derived as the sum-product algorithm in a graphical 
model describing the mixture model [20]. 
The first step for the algorithm implementation is to 
choose a measure of similarity, s(i,k), between all pairs of 
data points. In AP terminology, s(i,k) quantifies how well 
the data point with index k is suited to be the exemplar 
for data point i. Generally, as similarity, it is used the 
negative Euclidean distance. In the case of  c-DNA data 
the Pearson correlation is generally used as similarity 
measure [18]. 
This method does not require the number of clusters to be 
prespecified.  
The second step is about the choice of the values of  
“preferences” which will be indicated, with a little abuse 
of notation as s(i,i). Please note that this is not a similarity 
measure.  The preferences represent a measure of how 
much data point i is candidate to be an exemplar. In 
general, data points with larger values of s(i,i) are more 
likely to be chosen as exemplars. At the beginning, the 
AP simultaneously considers all data points as potential 

exemplars (Input the preferences common for all data 
points). 
The number of identified exemplars is influenced by the 
values of the input preferences, but also emerges as a 
result of the message passing structure that is illustrated 
subsequently. For very small value of input s(i,i), for 
every i, all data points are grouped in one large cluster 
with a single exemplar; in the opposite case of large s(i,i) 
for every i, each data point prefers to be its own 
exemplar. In general, the initial value of the preferences is 
set equal to the median of all input similarities (resulting 
in a moderate number of clusters) or to their minimum 
(resulting in a small number of clusters).  
The AP is a method that recursively transmits messages 
(that will be defined subsequently) between pairs of data 
points until a good set of exemplars and corresponding 
clusters emerges.  

 

 

 

 

The algorithm is named Affinity Propagation because at 
any point in time, each message reflects the current 
affinity between one data point and the other that is its 
exemplars.  
In practice, it is adopted a message-passing algorithm in 
which each data point i furnishes a measure to suggest 
another data point k to be selected as cluster center, 
taking into account other potential exemplars for point i. 
There are two kinds of message being passed between 
each pairs of data points that represent the relationship 
between data points: 

- “responsibility”: sent from data point i to candidate 
exemplar k. It is a measure that quantifies how well-
suited point k is to be the exemplar for point i, taking 
into account other potential exemplars for point i. This 
message is represented by r(i,k) and it is computed 
using this formula: 
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where s.t. means “so that”; 
- “availability”: sent from candidate exemplar point k 

to point i. It is a measure that reflects the evidence 
for point i to choose point k as its exemplar, 
considered that other points may have k as an 
exemplar. This message is represented by a(i,k) and 
it is computed using this formula: 
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A particular measure is the “self-responsibility”, that is 
r(k,k); it reflects accumulated evidence that point k is an 
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exemplar and how it would be unsuitable to be integrated 
in a group of another cluster center. 
At the beginning of the algorithm, the availabilities are 
initialized to zero, so r(i,k) is set to the input similarity 
between point i and its potential exemplar k minus the 
largest of the similarities between point i and other 
candidate exemplars. After the computation of all the 
responsibilities, the availabilities are worked out using the 
previous formula. Only the positive portions of 
responsibilities between the candidate exemplar k and 
other data points i’ are added because it is only necessary 
for a good exemplar to explain some data points well ( 
r(i’,k)>0 ) regardless of how poorly it explains other data 
points ( r(i’,k)<0 ). In fact, if r(i’,k)<0, k is not suited to 
be the exemplar for point i’. So in this case, the point i’ 
will not contribute to the message passing from candidate 
exemplar k to point i.  
After that, the messages are recursively updated for a 
fixed number of iterations or until a stable clustering 
results. At any stage, the availabilities and responsibilities 
can be combined to identify exemplars. For point i, the 
value k that maximizes a(i,k)+ r(i,k) identifies point i as 
exemplars if k=i or identifies the data point that is the 
exemplars for point i. 
At the end of the message passing, we obtain the number 
of clusters and the labels for each data point of its 
exemplars. 
An advanced characteristic of Affinity Propagation is that 
it determines the number of clusters on the basis of the 
message passing architecture and the points that are most 
representative, given an initial common preference. It is 
possible to see the effect of the value of the input 
preference on the number of clusters by a graphic with 
the value of the common initial preference on the x-axis 
and the respective number of clusters on the y-axis. In 
this way, the value to adopt in the analysis can be 
established in correspondence with plateaus that are 
observable in this graphic.  
Given the initial common preference AP defines a unique 
solution. One of the strong points of AP is its 
computational efficiency, as described in [19]. The 
algorithm is feasible even in presence of very large data 
sets. 
Multiple correspondence analysis (MCA), see Greenacre 
(7) or Lebart et al. (11), was used as visualization 
technique to study the composition of the clusters for the 
breast cancer data due to the discretization of the values 
of the biomarkers. The five biologic markers (ER, PgR, 
Ki-67, NEU and p53) were used to create the MCA plot 
(active information). The cluster classifications were used 
as passive information. The amount of information 
explained by the first two axes was calculated following 
the approach suggested by Benzecrí (2). In fact, due to a 
geometric property of MCA, the percentages of the inertia 
explained by each axis are always a pessimistic indicator 

of the quality of the representation. Therefore, Benzecrí 
suggested the following indicator:  
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where p is the number of variables and λ  is the principal 
inertia. For the melanoma data principal component plots 
[22] were used to visualize the separation of the tumor 
samples according to the c-DNA microarray data. 
 
3. Results 
3.1. Breast cancer biomarkers data 

AP was applied to the breast cancer data 
analyzed in [1] where the final clustering was obtained 
using a K-Medoids algorithm to generate four clusters. 
A graphical evaluation of the effect of the value of the 
input preference on the number of clusters for the breast 
cancer data is reported in Fig.1.    
The presence of three main plateaus in correspondence 
with two, four and five clusters is shown.  
When we did the analysis with two clusters (results not 
shown), by using an input preference value in 
correspondence with that plateau, we obtained results 
consistent with expectations tied to data from literature. 
Indeed, one cluster was associated with null values of ER 
and PR, the other with high values of these biological 
markers. 
Then the message-passing algorithm was run with an 
input preference to obtain 4 clusters. The results are 
reported in the Multiple correspondence analysis plot 
(Fig. 2). The information explained by the first two axes 
is near to 89%. Therefore, the two-dimensional plots are 
expected to be effective representations of the 
associations displayed. 
The MCA plot was generated with the categories of the 
five biological markers as active information and the AP 
cluster classification as passive. 
As for the contribution of the categories of the biological 
markers to the construction of the MCA axes, along the 
first axis there was a separation between high values of 
PR, ER and the categories of ER and PR absent, high 
NEU, P53 and Ki-67. The second MCA axis mainly 
separated the highest values of ER and PR from low PR, 
Ki-67 and null category of P53. 
Null values of PR and high values of NEU were 
associated with the Cluster 4. Null values of ER, highest 
values of P53, Neu and Ki-67 were associated with 
Cluster 3. Therefore, Cluster 3 and Cluster 4 represent 
groups that are associated with characteristics known to 
be poor prognostic factors. Whereas, Cluster1 was 
associated with highest values of ER and PR, so it seemed 
to represent subject with characteristics known to be good 
prognostic factors. Cluster 2 seemed to be associated with 
intermediated values of PR and ER and null values of 



Neu; so also this cluster was associated with less 
aggressive tumour features. As for the triple negative 
patients, null values of PR, ER and NEU associated with 
positive values of P53 were grouped in Cluster 3.  
 
Fig 1: The effect of the value of the input preference on 
the number of clusters. 
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The distribution of subject between the classification 
using K-Medoids and the classification using AP is 
reported in Table 1. 
If we compare these results with those of the previous 
work, null values of PR, ER, NEU and P53 were grouped 
in Cluster 2, which was the cluster most similar to the 
characteristics of total sample. Instead, in this new 
classification null values of PR, ER and NEU associated 
with null values of P53 lay in Cluster 4, a cluster that is 
not similar to total sample for the distribution of 
biological markers and represents groups with poor 
prognostic factors. 
Afterwards, we applied again the AP algorithm to obtain 
a division of subjects in 5 groups and to compare these 
results with the four clusters. To do this, we chose a 
preference value from the plateau in correspondence of 
five clusters in the first graphic.  
The distribution of subjects between the classification 
using K-Medoids and the classification using AP is 
reported in Table 2. 
Cluster 4 was more associated with PR absent and high 
values of Neu. Cluster 2 seemed to be more associated 
with intermediated values of PR and ER and null values 
of Neu; it was more associated also with low values of 
KI-67.  
As before Cluster1 and Cluster 2 were associated with 
less aggressive tumour features, whereas Cluster 3 and 
Cluster 4 represents groups with a negative prognosis. 
Cluster 5 was mainly characterized by PR absent and high 
value of NEU. Null values of PR, ER ad NEU associated 
with positive values of P53 were grouped in Cluster 3. 
Unlike the previous classification, when we divided 
subjects in five groups null values of PR, ER and NEU 
associated with null values of P53 move from Cluster 4 to 
Cluster 5. 

 
Table 1: The distribution of subjects between new and old 
classification  
  AP CLUSTERS 

 1 2 3 4 
1 253 1 0 2 
2 1 122 0 84 
3 0 1 88 2 
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Table 2: The distribution of subjects between new and old 
classification  
  AP CLUSTERS 

 1 2 3 4 5 
1 211 40 0 1 4 
2 0 123 0 0 84 
3 0 1 87 0 3 
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3.2.Bittner et al. melanoma data 
 
Bittner and colleagues [18] attempted to determine if c-
DNA microarray data could be used to identify distinct 
subtypes of cutaneous melanoma, a malignant neoplasm 
of the skin. In particular they were able to identify two 
major cancer profiles with different biological 
characteristics. The result was based on the application of 
a hierarchical algorithm and by cutting the dendrogram by 
visual inspection [4].  
In fig.3 the dendrogram resulting from the application of 
a hierarchical algorithm with average linkage and a 
similarity matrix based on Pearson correlation is reported. 
The two clusters were obtained by cutting the tree to 
obtain 5 clusters. In this way the 31 melanomas were 
divided in a single group comprising 20 melanomas while 
the remaining 11 (actually grouped in 4 clusters) were 
considered together. 
AP algorithm was applied to the melanoma data using a 
distance matrix based on correlations. The resulting plot 
of the cluster number for different preferences levels is 
reported in fig. 4. The plot suggests solutions with 2, 3 
and 5 clusters. The solution with 5 cluster is the one more 
similar to the one obtained by Bittner and colleagues. The 
3-dimensional principal component plot in fig. 5 shows 
the two groups of  the 31 melanomas.   The red crosses 
correspond to the “interesting” cluster identified by 
Bittner and colleagues. The four black squares are tumors 
classified differently by AP and the hierarchical 
algorithm. The concordance between the two methods 
appears satisfying.  
 



Fig 2: MCA plot of the five discretized biological markers 
ER, PR, MIB, NEU, P53 (active information) and four 
clusters (passive information) 

 
 
Fig 3: Dendrogram resulting from the application of 
hierarchical algorithm to Bittner et al. dataset. 

    
 
 
 
 

Fig 4: The effect of the value of the input preference on 
the number of clusters for the melanoma data 
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Fig 5: Principal component plot of the gene expression 
profiles obtained for the 31 melanoma tumors. 
 

 
 
4. Discussion 
 
Cluster analysis is a powerful technique to explore 
complex diseases and improve prognosis. The recent 
literature on omic data is rich of new methods of cluster 
analysis able to deal with huge datasets. Moreover 
techniques of visualizations are usually adopted to 
suggest the number of clusters [5]. 
At the same time many papers warn against the possible 
misuse of clustering techniques [4]. 
One of the main problems is the subjectivity of the 
analysis and the ability of clustering algorithms to create 
clusters even in absence of real structure. 
The choice of the number of clusters is one of the main  
problems to be faced when applying this kind of analysis. 
The possibility to use algorithms that incorporate a 
criterion for the choice of the optimal partition is one of 
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the achievement of the recent developments in this 
research field. The affinity propagation algorithm is 
characterized by a simple software implementation and it 
has the ability to suggest the cluster number. In this work 
it was demonstrated how the algorithm is in agreement 
with the solutions obtained with much more effort with 
traditional algorithms and indexes for the cluster number 
choice. Moreover the range of the suggested solutions 
gives insights in the hierarchical structure of the data 
highlighting different level of information for the 
treatment of cancer patients well in accordance with 
previous knowledge. In particular the solution with two 
clusters for breast cancer data, evidenced in Fig. 1, 
reflects the well known separation between tumors ER 
positive and negatives. This is a very important 
distinction and, in fact, in a number of paper of the pre-
genomic era the number of clusters considered was in fact 
two [14, 12]. The solution with four clusters is in 
agreement with the solution selected in the previous work 
and the four clusters obtained are similar to that created 
by the PAM algorithm. The solution with five clusters 
suggests a possible more complex pattern to be explored. 
The clustering obtained by AP on the melanoma data is 
able to reproduce the interesting findings of Bittner and 
colleagues having the advantage of avoiding any arbitrary 
choice due to the visual inspection of the dendrogram. 
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