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Abstract

The work presented in this thesis describes the development and imple-
mentation of a number of ideas and methods that allow fMRI to be carried out
using echo-planar imaging at ultra high field strength, despite the significant
problems associated with this.

In the first study, EPI is used to probe how the gradient echo (GE) and spin
echo (SE) BOLD responses relate to the underlying neurological processes,
whilst the brain is in both its active and resting states. These finding show that
SE BOLD contrast is harder to detect but less localised to arcas around large
draining veins than GE BOLD contrast and thus potentially more localised
to sites that represent true functional areas of activation.

The second study describes how dynamic A B, mapping can be performed
during fMRI experiments with a hyperoxic challenge, in order to assess the
magnitude and extent of A By effects that arise due to susceptibility differences
between air and tissue. Developing on this, this work describes the steps
involved in the design and implementation of a dual echo GE/SE EPI sequence
and how it can be used to enable off-resonance effects, such as image distortion
and signal concentration/dilution, to be corrected on a dynamic basis for.
simultaneously acquired, GE and SE data.

The final study demonstrates how such a sequence can be used to detect
resting state networks. Showing that the correspondingly low temporal sepa-
ration of the GE and SE data allows GE and SE BOLD contrast mechanisms

to be compared in a number of novels ways in different resting state networks.
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Chapter 1

Introduction

The drive to increase signal to noise ratio (SNR), and hence diagnostic
quality of MR images, has led to the development of MR systems that operate
at increasingly high field strengths. In theory, the additional SNR can be
utilised in a number of ways, such as for improving image resolution and
acquisition speed or for viewing contrast mechanisms that are otherwise hard
to detect. However, this is not plain sailing, because realising these gains
in practice. when using these systems, is often quite challenging since there
are also a number of problems that either arise, or increase in severity, when
imaging at increasingly high field strengths.

A significant proportion of recent MR publications describe how MRI can
be used to probe the functional nature of the human brain, by taking advan-
tage of a contrast mechanism known as blood oxygenation level dependent
contrast (BOLD). BOLD contrast based techniques are especially promis-
ing at high field strengths due to the increase in BOLD contrast with field
strength. This increased BOLD sensitivity allows functional MRI (fMRI) to
be carried out using spin echo based acquisition sequences, where activation
related signal changes are. in theory, more spatially localised to the underlying
neurological activation.

To date, the majority of fARI is carried out using Echo Planar Imaging
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(EPI) readout modules (originally developed here in Nottingham (Mansfield
1977)) that allow rapid signal sampling whilst acquiring images at relatively
high spatial resolution. However, EPI acquisitions are highly susceptible to
off-resonant field effects, that are exacerbated at higher field strengths, that
can cause severe geometric distortions, signal modulation and in extreme cases
complete signal dephasing.

The work in this thesis aims to look at how the increase in BOLD contrast
at ultra high field strength, can be used to carry out robust functional imaging
using both gradient echo (GE) and spin echo (SE) EPI. The goal is to use
this to probe the underlying contrast mechanisms that are responsible for the
BOLD response and, more specifically, to show how these differ for GE and SE
acquisitions. This work also aims to alleviate some of the problems associated
with using EPI at ultra high field strength by correcting for off-resonance field
effects on a dynamic basis, whilst minimising any changes to the nature of the

functional image acquisition.

1.1 Thesis Outline

In Chapter 2 the fundamental principles that allow the technique of mag-
netic resonance imaging to exist and hence be used as a clinical tool are de-
scribed. A basic quantum mechanical description is given that explains the
nature of the underlying physical processes that occur when a nucleus is placed
in an external magnetic field. This description is then expanded to explain
how such a spin state system can be manipulated so that it produces a de-
tectable radio frequency signal, when irradiated with electromagnetic pulses,
and how this signal can be manipulated so as to produce images.

In Chapter 3 the theory behind blood oxygenation level dependant con-
trast is presented. This work describes some potentially fundamental limita-

tions to the spatial resolution in fMRI and explains how the level of BOLD
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contrast that is attainable is influenced by factors such as magnetic field
strength and water diffusion. This chapter also describes how the BOLD
contrast mechanism changes when imaging is carried out using GE and SE
based acquisition schemes.

Chapter 4 describes the first major study in this thesis and presents work
that was carried out to compare the spatial location and strength of BOLD
activation in the motor cortex, from data acquired using SE and GE EPI
sequences, in order to scrutinise the theoretical descriptions of the different
contrast mechanisms. Specifically this study assesses the relative location of
the GE and SE activation to the underlying vascular network.

Chapter 5, the second major study, describes a technique that can be
used to measure ABy on a dynamic basis during a functional experiment.
The work demonstrates how it is possible to carry out dynamic A By mapping
to monitor field variations during a functional hyperoxia experiment without
having to change the acquisition parameters. A further method is presented
that enables dynamic off resonance correction to be carried out on SE EPI
data, circumventing the problem associated with using SE sequences to mea-
sure ABy. A final technique is then described that allows for the almost
simultaneous collection of both GE and SE EPI data and that also enables
dynamic distortion correction to be carried out on both data sets. This is
demonstrated in a preliminary study in which dynamic distortion correction
is carried out on SE and GE EPI data acquired during an auditory and motor
fMRI experiment.

In Chapter 6, the final study in this thesis, a dual GE/SE EPI sequence
is used to probe the nature of the resting state BOLD response with the aim
of identifying and comparing functional connectivity maps from SE- and GE-
BOLD data. Further, a novel technique is described for measuring 6 R5/d R,

using non task-related resting state data.



Chapter 2

NMR Theory

2.1 First Principles

This chapter describes some of the fundamental principles that allow the
technique of magnetic resonance imaging to exist. The first section starts
by explaining why arguably the most important and immediately apparent
feature of an MR scanner, its large static magnetic field, is a fundamental
necessity for MRI. To do this, a basic quantum mechanical description is given
that explains the nature of the underlying physical processes that occur when
a nucleus is placed in an external magnetic field, namely the splitting of spin
state energy levels, and how the strength of the static magnetic field directly
affects the degree of splitting and consequently the available signal strength.
This description is then expanded to explain how such a spin state system can
be manipulated so that it produces a detectable radio frequency signal when
irradiated with electromagnetic pulses, and also how the evolution over time
of such a system can be understood using relatively straightforward quantum
mechanics. The steps required to predict what effect this has on a macroscopic
scale are then described along with a description of the empirically derived
relaxation factors that make the theory agree with experimental evidence.

The sections after this explain how the emitted signal can be manipulated
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to produce images, introducing methods and concepts such as quadrature
detection. the Fourier Transform and reciprocal space (k-space). The main
factors that affect the contrast and signal to noise ratio of the resulting images

are also described.

2.1.1 Nuclear Spin

Protons have a fundamental quantum mechanical property known as spin,
which is analogous to the spin of a rotating ball, although strictly speaking
spin angular momentum is an intrinsic property of the particle with no real
classical meaning. A proton is a spin-1/2 particle. This means that it has a
spin quantum number m, = % , due to its quantum mechanical nature, and

a) and |B) :

it exists in a superposition of two states

[w) = cola) + ¢5]8) (2.1)

Where ¢, and ¢3 are the superposition coeflicients and must be normalised
such that |c,|* + |es|? = 1. In the presence of an external magnetic field
in the z-direction the two spin states of the z-component of spin angular
momentum (/;), |a) and |3), have well defined energy levels. The energy

difference between the states is given by:

AF = hw (2.2)

This process is known as Zeeman splitting (Figure 2.1). The term w is the

Larmor frequency, more commonly written as wy and is equal to :

Wy = ’7’[3(), (23)

where v is the gyromagnetic ratio and By is the magnetic field strength.
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Figure 2.1: Zeeman splitting: The presence of an external inagnetic field causes the
two spin states to have different energy levels

2.1.2 Precession

The spin state |¢) described in Equation 2.1 also evolves over time. Such

temporal variancy is described by the time-dependent Schrodinger equation:

Clu)(e) = ~ille) (1) (2.4)

where the Hamiltonian operator is given by:

H = Woyl;z. (25)

Thus the spin state at a time point £, is related to the spin state at a time

point o (with a temporal separation of 7) by the following relation:

|0} (t1) = €77 |6) (k). (2.6)

The exponential term is simply a rotation operator (R.) that acts about the
z-axis. Thus after a time period 7 the spin will have rotated around the z-axis

by an angle wor.
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2.1.3 Spin Ensembles and the Spin Density Operator

A typical macroscopic sample is made up of a huge number of spins >>
10% with each spin in either the spin state |a), |3) or in a superposition
of the two. As a result the net magnetisation vector will be a function of
the net state of all of these spins. Thus at first sight it seems impossible,
in a practical sense, to predict the theoretical result of an observation on a
macroscopic system as it requires the calculation of an inordinate number of
spin states. However, it turns out that the vast majority of these spins have
little if any affect on other spins in the sample and so, to a high degree of
accuracy, the system can be considered to consist of only independent spins.
This saving grace enables a quantum mechanical operator known as the spin
density operator p, based on the quantum mechanical expectation value, to

be used to predict the result of an observation on a macroscopic scale, where

CaCh (:(,(:;3 Pa  P-
p=|o){¢| = = . (2.7)
C3Ch  C3CY P+ P3

Here the density matrix terms give values for the average contribution of
each spin in the sample and represent the populations and coherences of the
various spin states. The diagonal elements give the population of the |¢) and
|3) states and the off-diagonal elements describe the coherences between these
two states. The average value contributed by each spin for an observation of

Q is then given by:

(@ =Te {50} 2.8)

with an accuracy of N7'2_ where N is the number of spins. Thus in the
example where N = 10%° the error is of the order of 1 in 10'°! Hence the

density operator provides a method for determining the average result of an
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observation independent of the number of spins in the sample.

As the coefficients of the spin states are normalised for each individual
spin, it stands to reason that the spin population terms in the density matrix
are also normalised such that c,cf + ¢z = 1. Only the difference between
these populations is of interest. When the population of the lower energy state
|a) is higher than that of the |3) state there is a net polarization of spins in
the direction of the By field. When the population of the higher energy state
|3) is greater, there is a net spin polarization in the opposite direction to the

By field (Figure 2.2). For coherences to exist there must be a superposition

By A

Pa > PB Pa < Pg Pa = PB

Figure 2.2: Population States: A net spin polarization (solid arrow) is produced
when the population of the |a) and |3) states are not equal

of spin states present and the spins must be in phase in the transverse plane.
The phase of the complex coherences ¢_ represents the orientation of the net
spin polarization where ¢_ is the angle of the net polarization vector from the
+ve x-axis (Figure 2.3). If we know the state of the spin ensemble at some
time point then the Schrodinger equation provides a method to determine its
state at a later time point. A good technique to determine the starting state
of a system is to consider what happens when it is in thermal equilibrium
with its surrounding environment. Given the very large number of spins in a
typical sample this kind of statistical analysis provides a very accurate result.

There are two points to consider when a spin system is at thermal equilib-

rium. firstly there is no coherence between spin states and secondly the spin
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Net Polarisation

i 4

Figure 2.3: Coherence States: The net spin polarization is at angle ¢_ to the x-axis

state populations are described by a Boltzmann distribution. The population
of the spin state |a) is then given by:

o~ FalkeT

°q
P = e~Ea/ksT 4 o= Es/kT" (2.9)

A first order approximation of this can be calculated by expanding the expo-

nentials into a power series and using only the first term of the series. This

gives:
1 1 hf‘/ lg()
eq _ _ -
eq — - =
(2.12)
such that in matrix form we have:
eq | 2 4 kT )
pr= . b L imB, | (2.13)
2 4 kT

Using this expression it can be calculated that the difference between the spin
population states, which will later be shown to relate to the amount of signal
that can be detected in an MRI experiment, depends fundamentally on the

strength of the external magnetic field (at 7T this is of the order of 1 in 10°).
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In MRI we are more concerned with the macroscopic effects from spin
ensembles and the spin density operator is typically represented by a mag-
netisation vector, M. Where the A, component is related to the population
difference between the spin states and the M, component is related to the

quantum coherences.

2.1.4 Radio Frequency Pulse

If an MR sample is irradiated with a radio-frequency (RF) electromagnetic
pulse. The spins in the sample will experience a very weak oscillating magnetic
field. If the frequency of the RF pulse is matched to the resonance frequency
of the spins this will have a large effect on the nature of the spin states due
to a property known as resonance. Simply put, because the magnetic field
from the RF pulse then oscillates at the same frequency as that at which the
spins are precessing, the overall effect of the pulse is amplified significantly
(in analogy to pushing a child on a swing). When considering the nature of
these effects it is much simpler to consider the problem in a frame rotating
at the same frequency as the RF pulse (wy.r). In this rotating frame the

time-dependent spin Hamiltonian then becomes:
i =01, (2.14)
where
Qo = wo — Wres (2.15)

and is known as the resonance offset frequency. During the application of a

RF pulse this becomes:

H = !, + whu (1;('03((])1,) + [,,.sirz.(qbl,)) . (2.16)
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where wp,; is the nutation frequency and is effectively a measure of the
strength of magnetic field component of the RF field and ¢, is the phase
of the RF pulse. Thus for an exactly on resonance pulse with phase, ¢, = 0

the Hamiltonian becomes:

H = wnu (ixcos(@,)) . (2.17)

Then by applying the Schrodinger equation it can be seen that the spin state
after application of an RF pulse is simply related to state before it by the

following:
[4)1 = Rey(By)| )0, (2.18)

where 3, is known as the flip angle of the pulse and is given by 3, = w7

and Ry, is simply a rotation operator:

" ; COS( %Bp) *‘f .S"]j'", (%/{3})()‘“1’1))
flon () = (2.19)

—isin(§8,e1%?) cos(33p)

N j—

This quantum mechanical description then makes it fairly trivial to determine

what effect different pulses have on a spin state.

90° RF pulse

In the case of a 8, = 7/2 pulse, otherwise known as a 90° pulse, with a

o)

phase of 0, the following effects are observed on a spin in state

1 — 1 1 1 ()_m“l 1+ P

]
veloi 1) \e) vl 2\1 -

Rol“) =

(2.20)
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Thus the 90° RF pulse converts the |«a) state into the | — y) state (a super-
position of the |a) and |3) state), with an additional phase factor. Hence the
spin polarization is rotated into the transverse plane. In a similar manner it
can be shown that a 7 pulse (180°) transforms a spin in state {«) into state
|3) with an additional —i phase factor, i.e. the spin polarization is flipped.
To expand this to a macroscopic description we need to consider what
happens to the density matrix. If we again consider what happens to the spin
state after an RF pulse, as described in Equation 2.18, then we find that the

density matrix after the RF pulse is given by:

b1 =16)1(0]1 = Ko, (85)10)0(0l0 R, (— 1) (2.21)
b1 = Ro,(8y) o R, (—5y) (2.22)

For a starting state of thermal equilibrium gy = %i + l‘%ﬁfﬂlz and a flip

angle of 90° we get the following:

=3 : 2.2.
Po= St TRt (2.23)
Ry, (Bp) 1 R, (—53,) = =1, (2.24)
~ 1 2 ]. fl"/f}() ~
==1-- I 2.25
P T AT Y (2:25)
and in terms of the density matrix:
1 1 h,’*/ B() 0
p=|2 kT (2.26)
0 1 1 hf’/Bo
2 4 KT
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l _lfWB()
4i kT 2

Thus the 90° RF pulse makes the populations of the two state equal and intro-
duces coherences, shifting the net magnetisation vector M into the transverse
plane along the —y axis. In a similar manner it can be shown that a 180°

pulse inverts the spin populations without adding coherences.

2.2 Relaxation

In the previous section a mathematical description was given to show how

rotation operators about z leave the populations of the

a) and |3) states

unchanged and simply add a phase term to the coherence:

Pal = Pa0 (228)
P31 = P30 (2.29)
poi=e"Tp_y (2.30)

From this it would appear that the spin magnetisation vectors precess around
the z-axis indefinitely. Indeed the induced current from this rotating magneti-
sation can be detected by placing tuned coils around the sample. However
- experiments show that the amplitude of the measured signal decreases over
time. It turns out that to model the detected signal accurately. two empir-
ically determined decay constants, T} and Ty, are needed, where T} gives a
measure of the return to equilibrium as a result of spin-lattice effects and T,

due to spin-spin effects.
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2.2.1 7T, (Spin-Lattice) Relaxation

The energy gained by a system due to the application of an RF pulse is
eventually lost to the surrounding lattice by a process known as T relaxation.
This causes the population of the spin states to return to the thermal equilib-
rium condition. The probability of an interaction occurring that causes spins
to lose energy to the surrounding lattice, depends on the frequency of the
vibrational, translational and rotational motion of magnetic entities within
the sample. If these occur at the Larmor frequency, stimulated emission takes
place and energy is lost. If the sample contains a very large number of mag-
netic entities moving at frequency wp, energy will be lost rapidly and the
T, time will be short. To take account of this the spin populations can be

modelled in the following way:

Pan = (pao — p0)e” T + plo (2.31)

psa = (pso — pg e ™ + pif (2.32)

2.2.2 T, (Spin-Spin) Relaxation

The phase coherence generated as a result of nuclear magnetic resonance
during an RF excitation pulse is also lost, due to local variations in the mag-
netic field strength. This is due to the presence of small magnetic fields
generated by other nuclei (T, decay) and magnetic field inhomogeneities (T}

decay). The combination of this dephasing T is described by the following
===t (2.33)

For example, liquids. like water, have a long T, because the molecules are
free to move around rapidly and so any fluctuations in the local magnetic
field strength, imparted by the presence of other molecules, are rapid. In

comparison the molecules in rigid structures generally have a short T, hecanse
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the interactions between spins occur for a longer period of time and have a
greater effect. In terms of the spin density operator, this effect can be modelled

by adding a decay term to the coherence states:

; b
poq =T, (2.34)

2.3 The Bloch Equations

When imaging macroscopic samples it is often preferable to describe NMR
using classical physics. This is reasonable, as the time dependence of the ex-
pectation value in quantum mechanics follows the classical case almost ex-
actly when a large number of spins are considered (Bloch 1946). Thus the net
torque, T, acting on the spins within a unit volume due to the net angular
momentum vector of the spins within the volume (the spin isochromat), S,

will follow the following classical description very accurately:

_ 45
= 2= = 35
T=""=0NxB8 (2.35)

where M is the magnetic moment per unit volume (magnetisation). Then

using:
M=~S (2.36)
the following expression can be derived:
dM _ -

—- =7[M % B] (2.37)

This is the general form of the Bloch equation that does not take into account

relaxation effects. If we add the empirically determined relaxation terms T
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and T, and set

(Bz\ (Bl (‘os(wt)\

wofl
1l

B, | = | Bisin(wt) (2.38)

5] o

we get the full Bloch equations:

dM; M,
M, ‘ M,
dM, , . —
= ¥( M, By sin(wt) + M, B, cos(wt)) — A—I”T—j—\—[—q, (2.41)
1

in the presence of an RF field. This can then be solved using a number of
limiting conditions, such as the fact that B, = 0 just after the application
of a 90° RF pulse, and that if the pulse is applied in the x-direction then
M, = M, =0 and M, = M,. This gives:

-~

M (t) = Mysin(wgt)eT2 (2.42)
M, (t) = My cos(wot)e ™ (2.43)
M,(1) = Mo [1 - eff] . (2.44)
Using complex notation this gives
Myy(t) = Moe™oteTs (2.45)
M.(t) = My [1 - f"] . (2.46)

where A, = M, +iM,.
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2.4 The NMR signal

2.4.1 Free Induction Decay

After RF excitation the rotating transverse component of the net mag-
netisation vector will induce an oscillating voltage in any tuned coils that are
placed near to the sample (Faraday’s Law), whose amplitude decays due to Ty
effects (Figure 2.4). It is the detection of this induced voltage that is the fun-
damental goal of any NMR experiment, because contained within the signal
is information about the spins within the sample. Further, various techniques
can be used to increase the amount of useful information contained within
the signal, the most common being methods that allow spatial localisation of
the different components of the signal, using methods such as frequency and

phase encoding (see Sections 2.5.3 and 2.5.4).
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Figure 2.4: Free Induction Decay.

2.4.2 The Spin Echo

To remove the dephasing effects due to magnetic field inhomogeneities, i.e.
T, in Equation 2.33, it is also possible to measure the induced voltage after a

combination of pulses has been applied in a pre-determined sequence, known
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as a spin echo (SE) pulse sequence (Figure 2.5). In such a sequence, an initial
90° RF pulse excites the nuclei within the sample, converting longitudinal
magnetisation into in-phase coherent transverse magnetisation, which then
induces a signal within the RF receiver coils. The transverse magnetisation
loses phase coherence due to T; decay, reducing the signal intensity. How-
ever, a second 180° RF pulse is then applied, which effectively flips the spins
about their axes in the transverse plane, and rephasing occurs (Figure 2.6).
This reverses the dephasing effect of magnetic field inhomogeneities because
the phase accumulated by the transverse magnetisation due to magnetic field
inhomogeneities is reversed after application of the 180° RF pulse (assuming

the magnetic field inhomogeneities are time invariant).
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Figure 2.5: A simulated SE pulse sequence. The red line shows the decay due
to both T, and T effects whereas the blue line describes decay due to T and
incorporates the rephasing effects of the 180° RF pulse. In a SE pulse sequence,
the red line intercepts the blue line at time TE.

Thus after a time TE/2, the phase of the nuclei will change by an amount
identical (ideally) to that experienced in the time period between the initial

90° RF pulse and the subsequent 180° RF pulse, producing a signal known
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as a spin echo at time TE; this phenomenon was accidentally discovered by
the US physicist Erwin L. Hahn and described in his seminal paper (Hahn
1950). However, the dephasing effects due to spin-spin interactions (T3) are
essentially random and so are not rephased; because of this, the spin-echo has

a signal amplitude that decays with the time constant, T5.

(&)

Figure 2.6: Classical description of the rephasing due to the application of a 180°
RF pulse. (A) Transverse magnetisation immediately after 90° RF pulse. (B) Spin
dephasing occurring as a result of field inhomogeneities. (C) Rephasing of spins
after a 180° RF pulse.

2.4.3 The Gradient Echo

In a gradient echo pulse sequence, an initial RF pulse is used to excite the
spins in order to generate a signal due to free induction decay. A magnetic
field gradient is then applied to rapidly dephase the FID signal. Following on
from this, a reversed polarity readout gradient is applied that has twice the
area of the preparation gradient. The signal is sampled during the readout
gradient. At the point half way through the readout gradient the dephasing
effects of the preparation gradient are cancelled out leading to a gradient
echo. Reversing the gradient in this way does not remove the dephasing effect
of any magnetic field inhomogeneities in the same way as the SE sequence.
Instead the gradient echo (GE) that is produced has a signal intensity that is

dependent on T not T5 (Figure 2.7).
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Figure 2.7: A simulated GE pulse sequence. The red line shows the decay due to
both T; effects and the imaging gradients, whereas the blue line describes decay due
to only T5. The preparation gradient dephases the initial signal, this is then followed
by a reversed polarity readout gradient with twice the area of the preparation
gradient.

2.5 From Echoes to Images

2.5.1 Quadrature Detection

The signal from the MR scanner is independently mixed with cosine and
sine reference signals (at frequency w,.r) to generate two signals that oscillate

with a much lower frequency (£2) than the original signal:
QO = Wo — Wref, (247)

where wr.s is set to a frequency which is very close to the expected Larmor

frequency for the field strength in question. The two signals that are produced
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both have a high frequency (=~ 2wp) and low frequency component:

cos (wot) co8 (Wrept) = % [cos ((wo + wrep)t) + cos ((wy — wres)t)] (2.48)
cos (wot) sin (wWyept) = % [sin ((wo + wreg)t) — sin ((wo — wres)t)] (2.49)

The higher frequency term can be removed using a low pass filter to give:

S1(t) = cos(Qpt) (2.50)
S2(t) = —sin(Qt) (2.51)

It is important to note that both the cosine and sine reference signals are
needed to prevent information loss. If just the cosine reference was used, the
-ve frequency offsets (i.e. wy < wpes) would be indistinguishable from +ve
offsets (wo > wres). For simplicity, the two terms that are generated can be

considered as the real and imaginary parts of a complex signal:
S(t) = S1(t) + iS2(t) (2.52)

This complex signal retains all the original information and distinguishes be-
tween positive and negative values of €3y. This is a very convenient way of
describing the signal because it allows it to be modelled as an exponential. If

this technique was not used the FID would be described by:
S(t) = cos (wot)e ™™ (2.53)

Where, A = & = L + L. However when using the complex signal notation
T; T, ' T 128

along with Euler’s relation, the FID can be described as :

S(t) — e(—iSZ()f)(%—t/'Ifz'. (
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where, e(®) = cos(z) + isin(x). Qo then depends on:

where B(7) is the total magnetic field strength. In MRI this field strength
varies due to By inhomogeneities and the strength of the imaging gradients

that have been applied, such that:
B(r) = ABy(r) + Gzx + Gy + G .z, (2.56)

where, Gpx, Gyy and G,z are the magnetic fields imparted by the x, y and
z gradients respectively and A By is the field offset. Following on from this,
it is easy to see that in MRI the signal produced by spins precessing in the
transverse plane, after RF excitation at a position r, can be described by the

following Equation :
S(r,) = plr)e 06113, @:57)

where, p(r) is the spin density and ¢(¢) is the phase at time, t, which can be

written as:

t t t Y
o(t) = 21y [/ G (t)rdt +/ Gy(t)ydt + / G.(H)zdt + / Alf()(r')df] :
0 0 0 (

)

(2.58)

The phase of the signal does not depend on the static magnetic field strength
but on ABy, i.e the field offset, and the gradient history.

The gradient dependent components of the phase (Equation 2.58) are used
to encode the signal in k-space (see Section 2.5.2), as a result the pixel by

pixel phase in the phase image, created from the complex data after Fourier
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transformation of the signal, is described by the following formula:

3(5(x.y))

R

Pimage(Z, y) = arctan ————==
e (S(z.y))

(2.59)

»r

Where S is the complex signal from the MR scanner. Ideally, this phase is
not dependent on the gradients that were applied during imaging (assuming

perfect echo centring in k-space).

2.5.2 Fourier Transformations

The 18th century French mathematician Jean Baptiste Joseph Fourier
developed a mathematical technique known as a Fourier Transformation (FT)
that can be used to determine the spectral composition of a signal. The

transformation along with its inverse are described by the following relations:

S(Q) = / h s(t)e Sttt (2.60)
s(t) = /w S(Q)e"HdQ (2.61)
0

An NMR signal which is made up of a number of components (1) with different

frequencies, (. and decay constants, A, can be described by the following:

s(t) =Y a0, (2.62)
l

where a; represents the amplitude of each signal component . The Fourier

transform of this gives:

s(Q) = Za,/ e~ Q=0+t gy (2.63)
0

l
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After evaluating the integral this leads to:

1
s(Q)=>a [m] , (2.64)

l

where the term in brackets is a complex Lorentzian function. Thus, Fourier
transformation of the NMR signal produces a frequency domain signal that is
a superposition of Lorentzian spectral components. This can be seen in Figure
2.8 where a simulated signal is shown broken down into its three constituent
components along with the Lorentzian of each. It can be seen that the Fourier
transform of the signal (using a discrete Fast Fourier Transform algorithm
(FFT)) produces a result that is almost identical to the sum of the Lorentzian

components. In magnetic resonance imaging the frequency in the signal is used
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Figure 2.8: Top: Simulated NMR time series containing three different component
signals. Middle (left to right) Three individual components that make up the signal
and the Fourier Transform of the signal. Bottom: Lorentzians of each of the signal
components and the real part of the sum of the three.

to encode its spatial location and the a; term in Equation 2.62 is governed by

the proton density of the sample being scanned. This can be seen by changing
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Equation 2.57 to describe the total detected signal whilst ignoring decay and

off-resonance effects, so that:
S(t) = / p(r)er Jo Gt gy (2.65)

where p(r) is the spin density at position vector r and G(t’) is the gradient

at time ¢, such that in the 2D case
G(t') = G.()i + G,(1)]. (2.66)

If the following substitution is made:

k(t) = A /0 ‘G, (2.67)

then it is easy to see that the signal from the MR scanner is described by the

Fourier transform of the spin density:
S(t) = p(k) = /p(r)ei ke dr. (2.68)
Thus the Fourier transform can be used as a tool to determine the spin density:
p(r) = FT(S(¢)). (2.69)

Hence, in MRI. Equations 2.60 - 2.61 describe the processes involved in trans-
forming an image g(r) from image space into spatial frequency space G(k)
along with its inverse.

It is also simple to see from Equation 2.67 that if no imaging gradients are
applied during sampling, i.e. k(f) = 0, the signal only provides information

regarding the number of spins that are present not their positions:

S(t) = /p(r)n’.r: (2.70)
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In reality the signal is only sampled for a limited period of time and at discrete
intervals, thus a discretised version of the Fourier transform has to be used

(DFT).

2.5.3 k - space

To generate useful diagnostic information from the NMR signal it is usu-
ally necessary to localise the signal in at least two dimensions. This can be
accomplished by employing frequency and phase encoding gradients, as eluded
to in the previous section, to modify the frequency and phase of the signal in

a manner that depends upon spatial location.

Frequency Encoding

Frequency encoding gradients can be used to spatially encode the NMR
signal in one dimension. To achieve this, a linear magnetic field gradient is
applied, in the required encoding direction, during the acquisition of the free
induction decay or spin echo signal. The magnetic field gradients are cre-
ated using gradient coils. The resulting spatial variation in magnetic field
strength causes the spin isochromats to precess at different frequencies de-
pending on their position in the sample. Fourier transformation of this signal
then provides the amplitude of each frequency component. Since each fre-
quency component has a direct one to one correspondence with position, 1D
spatial localisation is achieved (Figure 2.9). There are a number of factors that
can alter the effectiveness of this process by disrupting the correspondence of
frequency with position, such as the presence of unwanted local magnetic field

inhomogeneities.

Phase Encoding

Unfortunately. frequency encoding can not be used to encode the second

spatial dimension, as the signal associated with any given frequency band
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Figure 2.9: In the top row an object is imaged with no encoding gradients. The
spins in the object all precess at the same frequency. The amplitude of the detected
signal from any given macroscopic volume depends on the number of spins that
are present. As the signal has the same frequency at all points in the object the
Fourier transform of the signal contains only one component and therefore no spatial
localisation is possible. When a frequency encoding gradient is applied (second row)
the frequency varies with position and the Fourier transform of the total measured
signal contains a number of components that can be used for 1D spatial localisation.
However the second spatial dimension remains unencoded.

would not then be associated with a unique spatial location. Fortunately,
phase encoding gradients can be used to get around this problem. These are
applied before the signal is acquired in order to generate an additional net
phase that depends on position, in a similar manner to frequency encoding.
Since frequency is simply the rate of change of phase it is then possible to
encode the signal in the second dimension by repeating the signal acquisition
a number of times with different phase encoding gradient strengths used for
each new acquisition. The rate of change of phase is then different at different
points in the object depending on how far the point is away from the central
turning point of the gradient (where the net phase accumulation due to the
gradient will always be zero) (Figure 2.10). As rate of change of phase is
simply equal to frequency the Fourier transform can be used to determine
the rate of phase accumulation. Thus the one to one correspondence between

rate of change of phase and position in the phase encoding direction allows
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the second spatial dimension to be encoded. A further phase encoding step
can be used in the third dimension to allow 3D encoding, where the additional
phase encoding gradient is only incremented after all the phase encoding steps

for the 2D encoding have been completed.

Grad. 3 B4 Y2
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Figure 2.10: In this example an object is imaged three times with three different
phase encoding gradients applied before data sampling. Gradient 1 causes a net
phase offset that varies with position along the y-axis of the object, gradient 2
has strength 0 and causes no dephasing and gradient 3 produces a phase shift of
opposite polarity to gradient 1 (Left image). The rate of change of phase over time
(frequency) is then different at different points in the object. In this case the point
yo experiences a larger phase change over time due to the gradients than point y;
(Right image).

Populating k-space

The signal that is acquired in this way can be constructed into a matrix
with each signal acquisition, consisting of a signal with a range of frequencies
due to the frequency encoding gradients, populating one line of the matrix.
Each line will then have a different phase due to the phase encoding gradients.
The matrix then effectively contains two dimensions of frequency information:
one set of frequencies due to the frequency encoding gradients that are applied
during signal acquisition and one set due to the presence of varying degrees
of rates of change of phase in the data, due to the different phase encoding
gradients that are applied before each signal acquisition. This matrix form

of the spatially encoded NMR signal, is known as reciprocal space or more
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commonly, k-space (see Figure 2.11). Different acquisition sequences can be
used to populate k-space in a variety of ways. An example of how k-space is
filled during a simple 2D gradient echo sequence is shown in Figure 2.12.

ky

Figure 2.11: Left: An image of a slice through the human brain. Middle: k-space
data for this image. Right: A representation of the discrete nature of the k-space
data.

1st TR
RF I—I k-space
PE
FE _____ 2 - - (] . - . - - L]
H 2nd TR - - L] L - L ] - - L
l‘---‘, => ky - - - 3 I,’,‘ L ] - - L]
,__\ . 8 e l" v - . - - .
...... ‘ 'A, ” :’ P- 3 TR
|_| 3rd TR A, —————— —p- 2 TR
: K p- 1 TR
—_— o
(e |

Figure 2.12: A representation of how k-space is filled during a 2D GE pulse sequence.
During the first TR, the combination of the phase encoding gradient and frequency
encoding preparation gradient, shift the point at which k-space is filled to the
bottom left corner. The positive lobe of the frequency encoding gradient is then
applied during sampling to acquire the first frequency encoded signal, populating
the first line of k-space. During subsequent TRs the strength of the initial phase
encoding gradient is altered so that different lines of k-space are encoded differently.
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2.5.4 Slice Selection

Images are usually acquired using a slice selection technique, where an
additional gradient is applied during the application of the RF excitation
and refocusing pulses in order to localise the signal to a 2D slice. Since the
bandwidth of an RF pulse determines the range of frequencies in a sample
that will experience nuclear magnetic resonance, any spins outside of this
range will not be effected by the pulse. Thus if a slice selection gradient
is applied across a sample in such a way as to ensure that only the region
of interest (i.e. the slice) contains spins with frequencies that match those
present within the bandwidth of the RF pulse, the rest of the sample will be
unaffected by the pulse (Figure 2.13). Acquiring more than one slice is then
simply a case of repeating the acquisition using an RF pulse with a different
carrier frequency, or by changing the isocentre of the slice selection gradient
(however this is more difficult). When using this method, the slice thickness,
Az, is determined by the bandwidth of the RF pulse, Af, and the strength

of the slice selection gradient, G,, where

2rAf

Az = )
vG.

(2.71)

A sinc shaped RF pulse is often used in order to achieve a rectangular slice
profile in the slice selection direction. To reduce the length of the RF pulse,
the sinc function is typically truncated so that it contains only a few lobes
either side of the main central lobe. However this smooths out the slice profile
and can lead to a problem known as crosstalk, where the imperfect nature of
the slice profile (i.e. its non-rectangular shape) means that the RF pulses also
affect spins in neighbouring slices. When these adjacent slices are then selected
for imaging, residual magnetisation perturbations exist due to the excitation
of the previous slice. This problem can be alleviated by interleaving the slice

selection process so that adjacent slices are not acquired immediately after
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each other. For example this may involve acquiring odd numbered slices first,
then even numbers. The slice selection gradient also causes dephasing across
a slice, however this can be compensated for by applying a rephasing gradient
lobe, directly after the slice selection gradient, that has opposite polarity and

half the gradient area of the slice selection gradient.

f 1‘ Grad. 1

RF pulse I i
bandwidth

Slice Thickness

Figure 2.13: An example of how slice selection gradients can be applied during the
application of an RF pulse to restrict the effects of the pulse to a predetermined
slice. The strength of the gradient can be altered to change the slice thickness. In
the left image the stronger gradient (Grad. 1) produces a thinner slice for a given
RF pulse BW than the weaker gradient (Grad. 2). The central frequency of the
bandwidth of the RF pulse can be changed to shift the position of the slice in the
slice selection direction (right image). The pulse bandwidth can also be changed to
alter the slice thickness.

2.5.5 Image Contrast

A significant benefit of MRI over more conventional medical imaging tech-
niques such as X-ray computed tomography is the ability to use pulse se-
quences to generate images that are sensitive to a variety of different contrast
mechanisms. This enables acquisitions to be tailored for use in obtaining
information valuable for a range of medical conditions.

To some extent all MRI acquisitions are sensitive to the proton density of
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the sample, however it is possible to change the contrast so that other contrast
mechanism dominate. The three main types of image contrast weightings are
known as: proton density weighting, 7 weighting and T, weighting. There
are however a number of other different contrast types, such as susceptibil-
ity weighting, diffusion weighting and Blood Oxygenation Level Dependent

contrast.

T, Weighting

A T, weighted image is an image that has been created so that contrast
is displayed between tissues with different T; values. After an initial RF
excitation pulse the longitudinal component of magnetisation recovers due to
T, relaxation at a rate that depends on the T) of the tissue. To generate an
image, a large number of RF pulses are often needed, so that all of k-space
can be sampled and hence a large number of pulse repetitions are required.
After a time TR between successive RF pulses, the amount of longitudinal
magnetisation recovery that has occurred will be higher for tissues with a
short Ty than for those with a long T;. However, if the TR is long enough,
the magnetisation in tissues that have both long and short T, will have fully
recovered before the next repetition. To maximise the T, contrast produced
by this process of saturation recovery, a short TR is required so that the
amount of longitudinal magnetisation that is available to be converted to
transverse magnetisation (signal) is highly dependent on the Ty of the tissue
being imaged (Figure 2.14). Using a long TR suppresses T| contrast. In T\
weighted images, tissues with a short T\ (e.g. fat) appear bright, because
their longitudinal magnetisation will have recovered more, whereas tissues
with a long Ty (e.g. cerebrospinal fluid) appear darker. To achieve optimum
T, weighting, not only do the effects of T} contrast have to be maximised, but
also the effects of T, contrast have to be minimised, therefore a short TE is

needed as well as a short TR.
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Figure 2.14: T; relaxation curves, demonstrating how the contrast between two
tissues with different T times depends on the TR. A short TR gives a higher T}
contrast.

T, Weighting

The echo time of a sequence controls the amount of T, decay that occurs
before the echo is generated. Immediately after an excitation pulse, tissues
with different 75 times but similar proton density, will have similarly sized
net transverse magnetisations. After a time TE this magnetisation will have
decreased by an amount dependent on 75. Thus, using a long TE generates a
large difference in signal strength between the tissue types and increases the
T, contrast, whereas using a short TE suppresses T, contrast (Figure 2.15).
In T, weighted images, tissues with a short T, (e.g. fat) appear dark and
tissues with a long T5 (e.g. cerebrospinal fluid) appear bright. If the effects of
magnetic field inhomogeneities are not reversed, such as in a GE acquisition,
then this type of image will be T weighted. To achieve optimum 75 weighting
the effects of T, contrast have to be maximised and the effects of T} contrast

have to be minimised, therefore a long TR is needed, as well as a long TE.
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Figure 2.15: T, relaxation curves, demonstrating how using a short TE gives low
T, contrast.

Proton Density Weighting

A proton density weighted image is an image where the variations in signal
intensity are mainly due to differences in the proton density within the tissues
being scanned. The number of protons directly determines the number of
spins available to produce signal and so proton density weighting is present
within all images. To maximise the effect of proton density weighting, 7T and

T, contrast have to minimised by using a long TR and a short TE.

Magnetic Susceptibility Effects

The degree to which a material is magnetised when in the presence of
an external magnetic field can also have an effect on image contrast, and is
described by a property known as its magnetic susceptibility y. Once magne-

tised a material will generate its own magnetic field that perturbs the external
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By field in the local region. The strength of this magnetisation is given by:

— X —_
M=—2 B 272
(1 + x)to (272)

where, on a macroscopic scale, the magnetic field strength Bue0 15 given by:
Bracro = po(l + x(r))(Hy + I]obj)v (2.73)

where pg is the permeability of free space, x(r) is the magnetic susceptibility
as a function of position, Hy is the magnetising field and finally f1,; is the
demagnetising field due to the geometry of the susceptibility distribution.
People are mostly made out of water which is diamagnetic and so xiotal
is negative, where Xiotal = Xwater + &Y, because any paramagnetic changes
in the body Ay will not usually change the overall properties of the tissue
significantly enough to make it paramagnetic. Calculation of how the ficld
varies at interface regions between tissues with different susceptibilities re-
quires complex numerical calculations. However, a number of approximations
can be made to simplify these calculations, such as modelling blood vessels as
infinitely long cylinders. Changes in B due to susceptibility effects can cause
artefacts such as signal dephasing and associated signal loss in MR images.
In functional MRI, the changing susceptibility of blood with oxygen concen-
tration i1s exploited to generate a contrast mechanism that provides insight
into which parts of the brain are active during specific functional tasks (sce

Section 3).

2.5.6 Signal to Noise Ratio

The ability to distinguish between an NMR signal and random background
noise depends on the ratio of the NMR signal strength to the level of noise in

the signal. this is known as the signal to noise ratio (SNR). The noise in an
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NMR experiment occurs mainly as a result of random thermal fluctuations in
electrical current, within the subject and equipment, that are independent of
the signal strength (Edelstein et al. 1986). However, in human subjects noise
related to physiological functions, such as the beating heart and respiratory
cycle, can be the dominant source of noise. This is especially problematic at
higher field strengths (Triantafyllou et al. 2005). If the SNR in an image is
too low, the NMR signal will be indistinguishable from the background noise.

There are a number of factors that influence the achievable SNR level, and

a few of these will now be discussed.

SNR and B,

The strength of the static By field has a strong influence on SNR. As men-
tioned earlier, the population difference between spin states can be described

by a Boltzmann distribution where:

/\/(iown _ Cﬁf_f (274)

Nup
and AF = vhBy. Thus with increasing By the population difference between
the two states increases and more signal is detected. In fact, given that

AFE << kT the following approximation can be obtained:

] ~hiB
‘5 X Nu.p - Ndown ~ Ns (ﬁ) y (275)

where N, is the number of spins and § is the amount of available signal.
The amount of signal that is detected by a coil is also dependent on the field
strength (Bp). This is because the induced voltage is proportional to the rate
of change of the magnetic fields that are produced due to the precessing nuclei,

whose processional frequency is described by the Larmor equation. Thus

Vszgnal x [3() (27())
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However a number of effects counteract these theoretical gains such as the
fact that it is harder to make coils that operate efficiently at high frequencies
(associated with increasing field strength). As such, noise increases with field
strength at a rate that lies somewhere between B(l)/ Y and By, depending on
whether the noise is dominated by the coil (non-conducting samples) or the
subject (Human imaging at high field strength). Consequently, the relation-
ship between field strength and SNR is typically proportional to By and not
B2.

SNR and Receiver Bandwidth

Increasing the readout gradient bandwidth (BW) increases the range of
frequencies in the signal and consequently reduces the SNR. When the BW is
increased the total number of spins in a set frequency range is reduced due to
the larger number of frequencies that are present and because there are only
a set number of spins available to produce signal. However the noise level is
uniform across frequency ranges and so adding more frequencies to the signal
increases the noise power, resulting in a decrease in SNR. The overall signal
originating from any given voxel remains the same. Therefore, increasing
the receiver bandwidth decreases the SNR by increasing the noise within a
voxel, not by decreasing the signal strength (Figure 2.16), as described by the

following relationship:

SNR

2,77
BW (2.77)

SNR and Signal Averaging

The number of signal averages (NSA) determines how much data is used to

generate each line of k-space. When data is measured multiple times, random
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Figure 2.16: Imaging using a larger receiver bandwidth increases the noise level in
any given voxel and decreases the SNR.

noise will change for each measurement whereas the signal will remain the
same. Thus, signal averaging will tend to cause the noise to cancel whilst the
true signal is enhanced, increasing the image SNR. Due to this behaviour, we

get the following relations:

S o< NSA (2.78)
Noise o« VNSA (2.79)

Thus, doubling the NSA increases the SNR by v/2, not 2. Doubling the NSA
will also double the scan time and so this technique is not always the best

method for increasing image SNR.

SNR and Pixel Size

An MR image consists of a number of voxels representing the signals orig-
inating from specific volumes of tissue. The NMR signal strength in a region
of tissue is dependent on the number of protons within the volume that have a

component of magnetisation in the transverse plane. Larger volumes contain
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more protons and produce a higher signal. The volume of an MR image voxel
depends upon a number of factors such as the slice thickness, field of view and
matrix size. A voxel’s cross-sectional area is equal to the FOV divided by the
matrix size and its depth is governed by the slice thickness, hence its volume

is given by:

FOVer FOVpg

voxel volume = .
Nrg Npg

. Az, (2.80)

where FOV g and FOVpg correspond to the FOV in the frequency encoding
/ phase encoding directions respectively, Ngp and Npg are the matrix sizes
in the frequency / phase encoding directions and Az is the slice thickness.
Increasing Npg reduces the noise in the image by \/Npy , through an effect

similar to signal averaging. Thus the SNR is proportional to:

SNR « volume . v Npy (2.81)

In contrast, when imaging using ionising radiation modalities such as Com-
puted Tomography the SNR is proportional to the square root of the area and
so reducing the pixel dimensions by a half only halves the SNR. Thus it is
always advantageous to use the finest pixel size possible in order to allow fine
detail to be visualised in areas with a sufficiently high SNR. In regions of low
SNR, averaging of the pixel values recovers the original SNR. In MRI the sit-
uation is quite different because reducing the pixel size causes an irreversible
loss of SNR in the image and averaging of pixel values will not increase the
SNR to its original level. In MRI the pixel size has to be large enough to give
an adequate SNR in the area of interest within an image to enable anatomical
features to be accurately visualised, yet at the same time small enough to
provide an adequate spatial resolution. Thus in MRI there is a key trade-off

between image SNR and resolution.
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2.5.7 Relaxation Constant Parameter Mapping

The relaxational constants Ty, T, and T, are often sensitive to different
physical properties of a sample and so can provide contrasting information
about the underlying structure of the object being imaged. For this reason
it is often useful to measure these relaxation rates directly, as opposed to

weighting an image by them.

T, Mapping

For T, mapping an inversion recovery sequence can be used in which a
180° RF pulse is first applied to invert the longitudinal magnetisation, then
after a set time TI, during which the inverted magnetisation recovers due to
T, relaxation effects, a 90° RF pulse is applied. This converts the longitudinal
magnetisation into transverse magnetisation, producing an FID. An additional
180° pulse can then be applied to generate a spin echo whose signal intensity
depends on TI, T}, TE and T,. This signal can then be sampled using a
number of different readout techniques (for example EPI, Figure 2.17). The
signal detected during such as inversion recovery sequence is described by the

following equation:
S(TI)=So[1— (1= cos(cx)).e™"/T] (2.82)

where « is the flip angle of the inversion pulse. By measuring the signal
intensity multiple times, through sampling of either a gradient echo or spin
echo, with a range of different TIs (keeping TE constant) it is possible to
performm an exponential fit to the signal intensity at each voxel location as
a function of TI and thus to measure T\ (Figure 2.18). When carrying ont
this kind of acquisition it is important to use a TR of at least 5T in order to
allow full recovery of longitudinal magnetisation before the pulse sequence is

repeated. This type of fitting becomes more complicated when reconstructed
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Figure 2.17: A SE EPI inversion recovery sequence. An initial 180° RF pulse
is applied to invert the longitudinal magnetisation (with an optional spoiler to
remove any unwanted transverse magnetisation resulting from the RF pulse). This
is followed by a standard SE EPI readout module at time, TI.

modulus image data is used, because it isn't then possible to determine the
sign of the measured signal, as a decay curve similar to the plot on the right in
Figure 2.18 is actually detected. However, a fit to this can be found by using
the absolute value of an exponential function. with the caveat that this can
reduce the accuracy of the T} estimates due to rectification of the noise around
the zero-crossing point; tending to bias the T) estimation upwards (Clare &

Jezzard 2001).

T, and T; Mapping

In a similar manner. T; mapping can be performed by carrying out an
imaging experiment on a sample using a SE sequence that is repeated with
multiple different TE values whilst maintaining a fixed TR. A fit of the natural
logarithm of the signal at each echo time on a voxel-by-voxel basis then allows

T, to be determined by calculating the gradient of the fit. This can be seen
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Figure 2.18: Left: A plot showing simulated results of how signal intensity varies
as a function of inversion time (77) in an inversion recovery sequence. Right: The
detected signal recovery when using modulus image data. The blue circle highlights
the region where noise rectification is problematic during fitting.

by considering the following signal equations:

TE
S = My exp (—-) (2.83)
T,
A
In(S) = In(My) — T'TE (2.84)
2

It should be noted that this technique does not take account of the additional
signal loss brought about by the diffusion of protons through macroscopic field
inhomogeneities (ABy) and so, in fact, the measured signal is more accurately

described by:

TE 2 . 4
S = My exp (— —T—) exp | — 3 (YABy)? . (%) : D) A (2.85)
2

where D is the self diffusion coefficient. However, diffusion effects are generally
fairly small. 7%y mapping can be carried out in the same way but using a GE

acquisition sequence.



Chapter 3

BOLD Contrast: Imaging The

Brain

Neurological processes, whether conscious or not, are brought about due
to the propagation of electrochemical signals in and between a multitude of
nerve cells in the brain. The generation of these signals requires a contin-
uous supply of energy from oxidative metabolic processes. In humans this
requires a significant proportion of the body’s energy resources, consuming ~
20% of the total oxygen and glucose supply. The raw materials necessary for
these metabolic processes are supplied via the blood and hence any increase
in neurological activity also heightens metabolic demand. In fact, it was first
documented over a 100 years ago that a local increase in neurological activ-
ity causes a corresponding increase in regional cerebral blood flow (rCBF)
(Mosso 1881) in order to supply fundamental elements such as oxygen (Fox
& Raichle 1986). In MRI, the magnetic field strength in a local region, and
hence signal strength, is sensitive to the presence of paramagnetic elements
such as oxygen. Thus, this principle that brain activation level is correlated
with blood flow and hence local oxygen concentration, which in turn affects
the MR signal strength, forms the basis of an MR based functional imaging

technique, commonly known as Blood Oxygenation Level Dependent (BOLD)
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imaging, that can be used as a tool to probe neurological processes (Ogawa
et al. 1992). The principles that underlie this functional imaging technique

will be described in further detail in the remainder of this chapter.

3.1 Susceptibility Effects

In MRI the strength of the local magnetic field at any given point is in-
fluenced by the magnetic properties of the surrounding tissue. When placed
in an external magnetic field magnetic materials become slightly magnetised,
with the magnetisation aligned with the applied field, creating a small local
field perturbation. The size of this effect can be explained by the product:
x By, where x is the magnetic susceptibility of the material. The size of x
depends on a number of factors including: the number of unpaired electron
spins, the number of unpaired nuclear spins and the orbital motion of the
electrons. However the contribution of the unpaired nuclear spins is neg-
ligible and the size of x is mainly determined by the number of unpaired
electrons. For this reason deoxyhaemoglobin, with four unpaired electrons,
is more paramagnetic than oxyhaemoglobin. Thus altering the amount of
oxyhaemoglobin/deoxyhaemoglobin in a given area of the brain has an effect
on the MR signal. The increase in local blood supply that is brought about
due to elevated brain activation is much larger than that required to supply
the cells in the region with an adequate level of oxygen. Thus, the net effect
of increased neuronal activity. is a rise in the amount of oxyhacmoglobin in
the local region. Indeed the over-supply of oxygen may be crucial in order to
increase the rate at which oxygen is supplied to tissue via diffusion because it
increases the oxygen concentration gradient between the capillaries and sur-
rounding tissue, allowing diffusion of oxygen to occur at a higher rate (Jezzard
et al. 2003). The localised control of blood flow may be influenced by a number

of factors. such as the release of potassium ions, after nerve cell depolarisation
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and also the release of the vasodilator nitric oxide (Iadecola 1993).

A local decrease in the concentration of deoxyhaemoglobin due to brain
activation produces an increase in the local signal intensity relative to that
found in the inactive state. When two materials with different magnetic sus-
ceptibilities are adjacent to each other a magnetic field gradient is created
at the interface between them, and because of this the presence of deoxy-
haemoglobin in blood will cause any protons within the surrounding tissue
to experience a change in the local magnetic field strength. The nature of
this effect depends on the size of the blood vessels, with larger blood vessels
producing a longer-range effect. When the magnetic field gradients are large
enough to cause the magnetic field to vary significantly across the dimensions
of a voxel, signal dephasing dominates (Boxerman et al. 1995). That is the
spins in the voxel experience a different magnetic ficld strength depending
upon where they are. The signal emanating from the voxel is then composed
of signals with a wide range of phase values, reducing the net signal intensity.
The amount of signal attenuation that occurs is described by the term AR5,
which is a measure of the relaxation rate of the signal due to the change in

blood magnetic susceptibility on activation (Gati et al. 1997). Thus:
ARy = Ry — Rp.

where R3, and R}, are the relaxation rates of the activated and baseline
states respectively. From this, it is fairly trivial to calculate that the change
in signal intensity at a given echo time (TE) between the activated (S4) and

baseline state (Sg) is:

AS = SA - S[g = SB (t‘f'TE'AR‘2 — 1) (31)
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Using the assumption that TE. AR5 — 0 allows the following approximation
e TEAR: ~ 1| — TE.AR}

such that

AS/Sg

AR =~ — TE

(3.2)

Thus AR} can be determined by calculating the difference in signal intensity
between the activated and baseline states and normalising by the base line
signal intensity and the echo time. The magnitude of the change in magnetic
field strength at the blood-tissue interface depends on the difference in sus-
ceptibilities between the blood and tissue and not on the size of the blood

vessel.

3.2 Spatial Resolution

The spatial resolution of functional measurements based upon the BOLD
response depends not only on the imaging resolution of the functional ac-
quisition, but also, more fundamentally, on the spatially blurred nature of
the BOLD contrast mechanism itself. In analogy to how a river might drain
the water from distant hills, a significant proportion of the BOLD signal is
generated due to the relatively long range susceptibility cffects around large
draining veins that are potentially distant from the true site of cortical ac-
tivation (Lai et al. 1993, Turner 2002). This puts an inherent limit on the
resolution that is achievable using GE imaging techniques and this may have
heen reached in high field experiments where data can now be acquired with
resolutions as high as Imm3. It may be possible to circumvent this fundamen-
tal resolution limit by using SE imaging sequences that are less sensitive to

the susceptibility effects around large draining veins (described later in this
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chapter), imaging at higher field strengths (due to the shortening of blood
T5), or using novel functional paradigms. Indeed Menon & Goodyear (1999)
describe an elegant solution that employs standard GE imaging techniques.
They demonstrate that it is possible to remove the activation brought about
due to large draining veins by stimulating different regions of the brain that
are in close proximity and then subtracting the resultant activation maps.
The pertinent idea being that functional regions that are very close together
will be drained by the same large veins and that these veins will produce sim-
ilar venous activation patterns upon activation. Subtraction of the activation
maps from these spatially disparate functional regions will leave behind only
the highly localised activation due to BOLD effects in the microvasculature
that are highly specific to each functional site. Menon & Goodyear (1999)
accomplish this by applying an alternating visual stimulus to each eye and
conclude that the technique allows ocular dominance columns to be viewed

at sub-millimetre resolution.

3.3 Field Strength

The size and nature of the BOLD response is also dependent on the
strength of the external magnetic field. At lower field strengths the largest
contributor to the net change in signal in a voxel, upon activation, is due
to the change in signal contribution of the blood itself because of changes in
blood oxygenation and volume. At 1.5T the intrinsic blood signal is greater
than the intrinsic signal of the surrounding tissue, due to the longer T5 of
blood (Wright & Hu 1991). thus an increase in local blood volume causes an
increase in signal. However at 7T the T3 of blood is very short (see Table 3.1)

(Thulborn et al. 1982) and so the intrinsic blood signal is low.
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Field strength (T) Blood water T, (ms) Gray matter water T, (ms)
7 15 55
1.5 130 90

Table 3.1: T, values at high and low field strengths

3.4 Water Diffusion

The random diffusion of water molecules through tissue alters the amount
of BOLD contrast that can be detected as the diffusion decreases the amount
of phase dispersion, and hence signal attenuation, that occurs due to the
susceptibility effects around blood vessels. Diffusion is essentially a random
process and so any spins undergoing diffusion experience an average of the
field perturbations in a local region whose size is governed by the diffusion
distance. This decreases the dephasing effects across a voxel and reduces the
size of the GE BOLD response. The severity of this effect is dependent on the
diffusion distance relative to the local field gradient and is greater when the
field gradient is larger, i.e around smaller vessels.

The average displacement of a water molecule in one dimension can be

described by the following:
Ar? =2DT, (3.3)

where D is the diffusion coefficient and T is the time over which diffusion
occurs. The displacement in a 2D plane is then given by v4DT. If an echo
time of 25ms is used in a GE sequence and D is given a value of lum? /s, the
diffusion distance will be ~ 10um. This distance is approximately equal to the
size of venules, larger than the size of capillaries and smaller than draining
veins. The size of the diffusion distance relative to the effective range of
the extra-vascular component of BOLD contrast (EV) can be seen for two

two different vessel sizes in Figure 3.1. Thus in a GE sequence the extra-
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Figure 3.1: An example of the diffusion distance and the effective range of EV
BOLD contrast for two vessels, one large (~ 30um, left) and one small (~ 3um,
right), the relative scales are correct. The intra-vascular component (IV) is shown
in red.

vascular component of BOLD contrast is dominated by the effects around
large draining veins due to the longer range of the field perturbations around
these vessels and the contrast suppressing effects of molecular diffusion around
capillaries. The size of the intra-vascular effect (IV) is mostly dependent on

the By-field strength, with higher field strengths reducing the IV contribution.

3.5 SE Bold

It is also possible, although less common, to use a SE pulse sequence for
fMRI. In a SE sequence the 180° RF pulse refocuses the signal dephasing
due to static field inhomogeneities (75 effects) and produces an image that
is Ty-weighted. However the refocusing pulse does not refocus the random
dephasing effects due to spin diffusion. Due to the random nature of diffusion,
the net phase accumulated by a spin in the first half of the echo time is then
different to that experienced in the second half of the echo time. Consequently

the 180° RF pulse will not refocus all of the dephasing that has occurred within
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a voxel. Around large blood vessels spins undergoing diffusion experience a
fairly constant magnetic field strength over time and so are not significantly
affected by the random motion of diffusion. Thus when a SE sequence is used
for fMRI the long range susceptibility effects around large blood vessels are
refocused, leaving only the dephasing effects due to random diffusion. Since
these are negligible around large blood vessels, there is alinost no change
in 75 upon activation and very little BOLD contrast, removing the extra-
vascular component of activation around large vessels (EVL, in Figure 3.2). In
contrast, spins undergoing diffusion around small vessels (such as capillaries,
EVS in Figure 3.2) experience a large range of field strengths over time, due to
the large susceptibility induced magnetic field gradients around these vessels,
these random signal dephasing diffusion effects are not refocused by the 180°
RF pulse leading to T, BOLD contrast in the EVS compartment. This has
been confirmed in numerous studies (Duong et al. 2002, Yacoub et al. 2003,
Harmer et al. 2011). Duong et al. (2002) showed that when using a high
resolution slab selective EPI technique SE activation correlates very closely
with maps showing changes in cerebral blood flow (CBF). with both showing
activation occurring almost entirely in grey matter regions. Also, Lowe et al.
(2000) found that AR, is more uniform across cortical and subcortical gray
matter structures than AR3. They postulated that larger changes in AR;
are detected across these structures due to the greater volume fraction of
macrovessels in the cortical regions relative to subcortical regions. and that
the uniformity of AR, across these regions suggests that AR, is less affected by
the presence of macrovessels. In summary a SE sequence removes the majority
of the EV effects of BOLD activation around large vessels, but leaves an effect
due to diffusion around small vessels, enabling better localisation of the BOLD
signal. Despite this, fMRI studies generally employ gradient echo (GE) rather
than spin echo (SE) based imaging techniques because of the higher sensitivity

provided by GE BOLD contrast (Michelich et al. 2006, Duong et al. 2002,
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Figure 3.2: The BOLD signal compartments. GE EPI detects the contribution
of all of these compartments, SE EPI suppresses the contribution from the EVL
compartment leaving the IVL, IVS and EVS compartments. Diffusion gradients
can be used to suppress the activation from the IVS IVL and EVL compartments.
Using a high magnetic field strength can also suppress the signal from the IVS and
IVL compartments. Thus, at ultra high field SE BOLD is only sensitive to the EVS
compartment.

Yacoub et al. 2003), despite its lower spatial specificity. However the increased
signal-to-noise ratio (SNR) available at ultra-high field opens up the possibility
of more routine use of SE techniques (Olman et al. 2010, Yacoub et al. 2008).
BOLD contrast depends upon both intravascular (IV) and extravascular (EV)
signal changes. As field strength is increased, the EV contribution dominates
over [V effects due to the disproportionate shortening of the T, of venous blood
compared to that of tissue (Yacoub et al. 2003, Yacoub et al. 2001b): venous
bloods T, reducing from ~ 180 ms at 1.5 T (Barth & Moser 1997) to ~ 40 ms
at 3T and ~ 10 ms at 7 T (Gardener et al. 2010). Thus at low field strength
(e.g. 1.5 T) BOLD contrast is dominated by IV effects (Oja et al. 1999, Song
et al. 1996), whilst at ultra-high field, BOLD signal is dominated by EV effects
(at the echo times which are typically used in fMRI experiments). The EV
BOLD effect due to static dephasing around large vessels is linearly dependent

on magnetic field strength, whilst the EV effect around small vessels, due to
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diffusion of spins, is predicted to increase supra-linearly with magnetic field
strength (Yacoub et al. 2003, Boxerman et al. 1995, Ogawa et al. 1993). Spin
echo experiments thus benefit particularly from the use of ultra-high field,
and the relative increase in sensitivity to EV effects around small vessels
(Yacoub et al. 2003). These processes heighten the spatial specificity of SE
BOLD compared to GE BOLD contrast. However, since spin echo acquisitions
refocus the effect of static dephasing, the sensitivity of SE BOLD contrast is

significantly reduced compared to GE BOLD contrast.

3.6 BOLD contrast in fMRI

Having the ability to produce images with a contrast that is sensitive to
the brain’s activation level is very useful, as it allows for experiments to be
carried out that assess neurological function. Activation levels can be assessed
by repeatedly scanning a subject over time whilst they perform a specific
neurological task at a nuimber of different time points, separated by known
intervals. If the temporal resolution of the dynamic acquisition is high enough
and there is an adequate contrast to noise ratio (CNR), the time series will
display a signal change, in the regions of the brain that are employed to process
the task at hand, that correlates with the onsets of the stimuli. Regression
analysis can then be used to assess whether a given region (voxel) shows
activation. To allow this, the overall effect that the underlying activation has
on the MR signal intensity has to be modelled. There are numerous technigues
that have been developed for this, ranging from sitnple models that use a single
gamma function (Buckner et al. 1996) to more complicated techniques that
use a combination of gamma functions (Friston ct al. 1998) or finite impulse
response filters (FIR) (Goutte et al. 2000). These models are designed with
one or more parameters that can be varied to allow an accurate fit to the data.

Studies have shown that the shape and timing of the hacmodynamic response
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function (HRF) (Figure 3.3) can change across the brain due to differences in
the vascular structure (Lee et al. 1995) and so it is beneficial to have a model
that has some flexibility in these areas.

The characteristic shape of the HRF is shown in Figure 3.3, it has a number
of notable features that are related to the underlying physiological processes.
For example, immediately after the onset of a stimulus there is usually an
initial dip in signal intensity (Yacoub et al. 2001a). It has been postulated
that this occurs as a result of elevated levels of deoxyhaemoglobin in the
blood, due to the heightened metabolic demand, in the period before the
arrival of extra oxygen (delivered via an increase in CBF). Once the effects
of vasodilators such as nitric oxide take hold, the increased blood volume
provides an over-supply of oxygen to the local region and the signal intensity
increases, this can be seen as the peak in the HRF in Figure 3.3 at around 5
seconds after the stimulus onset. The time between the stimulus onset and
the return of the HRF to basecline levels can be as long as 20s. The HRF
is almost invariably modelled as a linear time-invariant system, that is, the
HRF invoked by a stimulus is considered to add linearly to the HRF of another
stimulus in a manner that does not change with time. This is known as the
general linear model or GLM. Using this assumption the predicted activation is
calculated by convolving the HRF with a boxear stimulus function, describing
the on and off periods of the functional stimuli for the experiment. (Fig. 3.4)
and then using regression analysis to determine what model parameters for
the HRF best fit the measured time courses. This type of analysis can be
carried out on a voxel-wise basis across the entire imaging data set to assess
where activation occurs. To determine how well the measured data fits the
predicted model, a statistical measure such as a z-score is usually displayed
on a voxelwise basis. Due to the large number of voxels in a typical fMRI
experiment it is important to apply a multiple comparisons correction factor

(usually a Bonferroni correction factor (Rice 1989)). Otherwise a large munber
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Figure 3.3: The Haemodynamic Response Function (HRF), showing typical timings.

of spatial locations would display statistically significant activation purely due
to chance, confounding the results. Whilst this tvpe of correction significantly
reduces the number of false-positives it also increases the likelyhood of false

negatives, however this is considered less problematic in fMRI.
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Figure 3.4: A block design experiment. The model for the haemodynamic response
function is convolved with block design, representing the ON and OFF periods of
the stimulus. The resulting model is then used during functional analysis as the
predicted timecourse.



Chapter 4

Spatial location and strength of
BOLD activation in high spatial
resolution fMRI of the motor

cortex: a comparison of SE and

GE fMRI at 7T

4.1 The Motor Cortex

The human brain is made up of a number of functional regions that are
dedicated to the control and monitoring of specific cognitive processes, such
as hearing and vision. The motor region is dedicated to the planning, control
and execution of movements that are made on a voluntary basis. Its function
and relative location were determined in the early 1900’s via a series of inva-
sive experiments in which electrodes were used to stimulate the brain directly.
The motor cortex can be divided into three main functional sites, the primary
motor cortex (M1), the pre-motor cortex and the supplementary motor arca

(SMA). The primary motor cortex contains a point to point neuronal repre-
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sentation of every part of the body which can be moved on a voluntary basis.

This can be represented schematically using a homuncular diagram (Figure

4.1).

Figure 4.1: Motor Homunculus, demonstrating which regions of the brain are
dedicated to controlling the movement of different parts of the body. (Fig-
ure modified from https://courses.washington.edu/psy222/0verheadSlides/
Sensorimotor’%20System/Homunculus. jpg)

These motor regions are responsible for controlling different aspects of
movement. The primary and pre-motor cortex are used for the guidance of
ongoing motion and control of the proximal and trunk muscles. Whereas the

supplementary motor area is used for planning and co-ordination of more com-
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plex movements (such as the co-ordination of bi-manual movements). Neu-
ronal signals that are generated in the motor cortex descend down through the
corticospinal tract, crossing over to the opposite side of the body, in order to
stimulate the muscles that are required for a specific movement to take place
(Figure 4.2). The control of ongoing tasks involves a feedback loop, where
sensory information such as visual and tactile signals are combined with mo-
tor information in order to update the neuronal signals output from the motor
cortex. This allows for any difference between the actual and intended motion

to be corrected.

Primary motor cortex

Ventral horn

Muscle fibers

Figure 4.2: The neuronal pathway of the motor response. (Modified from
http://brainconnection.positscience.com/med/medart/1/
motoranat-motorunit. jpg)

The volume of the cortical region that is dedicated to a particular body
area gives an indication as to the amount of control one has over it. This
is represented in the homuncular diagram by the size of the corresponding
body part that surrounds the surface of the brain (Figure 4.1). Thus the high
dexterity that we have when it comes to complex hand and finger motion is in

part due to the fact that a large area of the brain is dedicated to the control
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of these body areas.

Since the development of MRI, functional task-based studies employing
fMRI have allowed the location of the motor cortex to be determined accu-
rately and non-invasively in in-vivo experiments. The localisation efficacy of
fMRI was confirmed in an early study by Yousry et al. (1995) who compared
the spatial location of fMRI activation in the motor cortex to the location of
the motor cortex as determined by direct electrical stimulation during surgery
and found good agreement between the two techniques. If further results can
prove that fMRI can be used for the routine, robust and accurate detection
of the location of functional regions in the brain, such as the motor cortex,
then it could be used as a powerful clinical tool. For example, it may prove
possible to use this type of non-invasive localisation of functional regions prior
to surgery to reduce the invasiveness of an operation or to lessen the risk of
motor impairment when neurosurgery is carried out in nearby brain regions
(Maldjian et al. 1996, Di Salle et al. 1999, Matthews et al. 2006). Further
the use of SE-based fMRI techniques, instead of the more common GE-based
fMRI techniques, may prove useful for understanding the BOLD response and
for achieving higher spatial resolution in functional studies such as occeular

dominance column mapping (Yacoub et al. 2007).

4.2 Introduction

Although the vast majority of fMRI is carried out using GE BOLD con-
trast, current theory suggests that the SE BOLD response has higher spatial
specificity to the underlying neuronal activity. Further, SE sequences are also
less prone to the effects of magnetic field inhomogeneities, which can be par-
ticularly problematic at high field strength. Following on from this, if it is pos-
sible to both reliably and robustly detect the SE BOLD response its increased

spatial specificity to the underlying neuronal activity would be particularly
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beneficial in a number of developing clinical fields such as pre-surgical localisa-
tion of the motor cortex (Maldjian et al. 1996, Di Salle et al. 1999, Matthews
et al. 2006). However the inherent insensitivity of the SE BOLD response
to the long range extravascular effects around large blood vessels can be a
double-edged sword, since this effect also reduces the overall sensitivity of the
SE BOLD response to neuronal activity; making this response much harder
to detect.

Due to the difficulties involved in its detection, there are only a lim-
ited number of studies that directly compare GE and SE BOLD contrast
(Bandettini et al. 1994a, Lowe et al. 2000, Zhao et al. 2004, Yacoub ot al.
2005, Zhao et al. 2006, Schaefer et al. 2008). In humans, these studies have
generally been restricted to the visual cortex due to its strong haemodynamic
response, with data acquired at a relatively coarse in-plane spatial resolution
(Bandettini et al. 1994a, Lowe et al. 2000) or with a large slice thickness
(Yacoub et al. 2005).

In the work described here, the increased BOLD contrast to noise ratio
(CNR) at 7 T is exploited, along with the use of a multi channel receive coil,
to offset the lower functional sensitivity of SE BOLD. We use the increased
CNR to enable the GE and SE BOLD responses to a sitmple motor task to
be accurately compared at high spatial resolution (1.5 mm isotropic) during
a relatively short scan session (~ 1 hr). To gain insight into whether the
underlying mechanisms that lead to GE and SE BOLD contrast have an effect
that differs significantly when imaging at high spatial resolution, we use a
region of interest (ROI)-based analysis to compare the spatial location of and
signal change within activated regions, calculated via analysis of GE and SE
data from the same subjects. Further. we calculate the position of areas of
activation relative to the location of large draining veins (measured using
high resolution venous mapping sequences). Using this information we test

the accuracy of the theoretical assumption that suggests that the SE BOLD
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response is more localised to the underlying microvasculature (representing
the true location of neuronal activity) than to large draining veins. We also
investigate the fractional SE BOLD signal change as a function of echo time
and from this calculate the change in 7,- relaxation rate (AR;) on activation.
T, data also enables the determination of the optimum echo time for SE fMRI

studies of the motor cortex.

4.3 Methods

4.3.1 Data Acquisition

Five healthy subjects participated in this study (age 22-31 years; two
males). Ethical approval was obtained from the University of Nottingham
Medical School Ethics Committee and all subjects gave full written consent.
Scanning was carried out on a 7 T Philips Achieva system, using a volume
transmit head coil and a 16-channel receive coil (Nova Medical, Wilming-
ton MA). To minimize motion, subject’s heads were held in place using a
customized MR-compatible vacuum pillow (B.U.W. Schmidt, Germany) and
foam padding.

For the functional acquisitions, multi-slice. single-shot GE- and SE- echo
planar imaging (EPI) sequences were used to acquire contiguous axial slices
with a field of view (FOV) of 192 x 72mm? (AP x RL), at 1.5 mm isotropic
resolution. A reduced FOV was employed in the phase-encoding (RL) direc-
tion along with a SENSE acceleration factor of 2. This allowed the use of
short SE echo times and readout durations (minimum TE = 30 ms, 24 ms
readout duration). Image volumes were positioned so as to span the right
primary motor cortex.

For the functional study, SE-EPI scans were acquired with echo times of
30. 35, 40, 45, 50 and 55 ms. A GE-EPI scan with a TE of 25 ms was also

collected. Both GE and SE data were acquired with a TR of 2.4 s per vohumne,
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with each volume comprising 16 slices. 78 volumes were collected for each
dataset during the fMRI protocol.

The functional paradigm consisted of a visually-cued motor task, with a
rest period of 16.8 s followed by 14.4 s of finger tapping using the left hand,
repeated over 6 cycles. The paradigm commenced with a rest period to provide
an initial baseline measurement.

T; maps were generated using 6 GE-EPI scans at different echo times
(spanning 25-50 ms with 5 ms spacing). To increase the SNR, 20 volumes
were acquired at each TE. Ti-weighted anatomical images with the same slice
prescription, coverage, and resolution as the functional data were acquired
using an MPRAGE sequence with linear phase encoding order (TE = 2.14
ms, TR = 14 ms, FA = 10°, TI = 960 ms, 2 averages). The cntire scan
session took approximately one hour.

High-resolution, T;-weighted axial images were recorded for each subject
in a separate scan session (0.25 x 0.25 x 1.5 mmn?* resolution over a 192 x 154
mm? field of view, TR = 320 ms, TE = 20 ms, 34 slices) to allow large veins to
be identified. A T)-weighted (MPRAGE) image at 1.5 mm isotropic resolution
was also acquired, with the same slice prescription, to aid registration of the

venous mask and the functional data.

4.3.2 Data Analysis

Data were realigned using AFNI (Cox 1996). with the GE data registered
to the SE data, and analysed with a general linear model using FEAT in FSL
(Smith et al. 2004). Noise pre-whitening was applied to the data along with
high-pass temporal filtering. A high pass cut-off frequency corresponding to a
period of 31.2 s (i.e. the length of a cycle) was used to compensate for signal
drift. Data were not spatially smoothed in order to retain the high spatial
resolution of the functional scans. Using FEAT, z-score activation maps were

calculated for each echo time of the SE data and also for the GE data. For the
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SE data, an additional z-score map was generated by carrying out functional

analysis on the average of all six SE data sets for each subject.

T, Mapping

T, maps were generated in functional space by using data from the initial
rest period of each functional SE scan. This was accomplished by carrying
out a weighted fit of the natural logarithm of the signal at each echo time on a
voxel-by-voxel basis (Section 2.5.7). Multi echo time GE-EPI scans, acquired
following the fMRI protocol, were analysed in a similar manner to gencrate

T, maps.

Reduced FOV Imaging

To enable the rapid acquisition of high resolution images, the FOV in the
phase encoding direction had to be reduced in size so that it encompassed
only half of the head. When imaging in this way it is impossible to stop the
effects of the encoding gradients in regions outside of the FOV and so signal
aliasing artefacts can be problematic.

These artefacts can be present in both the frequency and phase encoding
directions (if the FOV is smaller than the object in each of the corresponding
directions). In the frequency encoding direction the higher frequency signals
from outside of the FOV are indistinguishable from the signals originating
inside it, as explained by Nyquist-Shannon sampling theory (Figure 4.3). As
a result the encoding process causes these signals to contaminate the signal
from within the FOV (by misinterpreting them as low frequency signals).
causing fold-over artefacts (Figure 4.3). However, aliasing in the FE direction
is generally not a problem as it can be easily remedied by applying a band pass
filter to the NMR signal, which removes unwanted frequencies from outside
the FOV whilst retaining those from within it.

Aliasing in the PE direction occurs for similar reasouns, but due to phase
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Figure 4.3: Aliasing. When using discrete sampling points two different frequencies
can appear to have the same frequency.
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Figure 4.4: Aliasing artefact in the phase encoding direction.

instead of frequency effects (Figure 4.4). As the detected phase is always
inherently wrapped between -7 to 4+ it is not possible to filter phase using a
band-pass filter and so aliasing occurs. To get around this problem saturation
pulses can be used to remove the signal contribution from outside the FOV.
An example of this outer volume suppression is shown in Figure 4.5. The left
image displays a pronounced aliasing artefact in the PE direction where the
front of the head has been wrapped around to the back of the image due to
the reduced FOV. The image on the left demonstrates the effectiveness of a

saturation pulse; with complete removal of the aliasing artefact.
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Figure 4.5: An example of the effects of aliasing artefacts using data from a separate
scanning session. Severe wrap around aliasing can be seen in the left image. In the
right image a saturation band was used to remove the signal from outside of the

FOV.

In a standard saturation pulse, a spatially selective 90° RF pulse is used
to flip the longitudinal magnetisation into the transverse plane (saturating
the signal). These RF pulses have to be designed in such a way that the net
transverse magnetisation, created by the saturation pulse, is kept as small
as possible by intentional phase dispersion, so that no signal is detected. For
additional signal attenuation, saturation pulses are usually followed by the ap-
plication of spoiler gradients. In order to minimise any recovery of longitudinal
magnetisation, imaging has to be carried out immediately after application of
the saturation pulses.

When imaging is carried out at high field, such as in this study, this method
of saturation tends to be ineffective due to the effect of B, field in homo-
geneities (Pfeuffer et al. 2002). To get around this problem, a 5, field insen-
sitive technique that uses amplitude- and frequency-modulated pulses with

additional spoiler gradients (Luo et al. 2001), was employed.
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Shimming

To reduce the effects of image distortions, due to the presence of field in-
homogeneities, an image-based shimming technique was employed (Poole &
Bowtell 2008). At the start of each scanning session a By field-map was cal-
culated by using the difference in phase of two gradient echo images acquired
with echo times of 6 and 6.5 ms (Jezzard & Balaban 1995). The corresponding
B, information was used for computation of shim currents to second order,
in such a way as to minimise any field inhomogeneities inside a cuboidal re-
gion (90x50x50mm®, APxRLxFH) containing the pre-central gyrus (Poole &
Bowtell 2008, Wilson et al. 2002). The shim values were fixed for all the

remaining functional scans in the session.

Fat Suppression

The Larmor frequency of a hydrogen nucleus depends to a small extent on
the properties of the molecule that the hydrogen atom resides in. In biomedical
MRI we detect signals from hydrogen contained within both fat and water.
These molecules have very different physical properties. In fat, a large electron
cloud reduces the strength of the external magnetic field within the molecule,
reducing the Larmor frequency. This chemical shift is known as the fat-water
shift and is equal to approximately 3.5 ppm. When imaging at 7 T this
equates to a shift of 1043 Hz. This natural difference in precessional frequency
means that any fat and water signals from a given volume will appear to
originate from different locations after spatial encoding. The size of this spatial
offset depends upon the bandwidth that is used for the acquisition, with lower
bandwidths increasing the shift (Figure 4.6).

When using EPI at 7T, where typical bandwidths are 50 Hz/pixel in the
phase encoding direction, the fat-water shift is ~ 20.9 pixels! In comparison
in the frequency encoding direction, where the bandwidth is usually around

3kHz, this shift is only around 1/3 of a pixel. Thus this effect is only really a
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problem in the PE direction (Nagy & Weiskopf 2008).

When SE-EPI data are acquired at 7T, with a TE-value optimized for
BOLD sensitivity, fat appears hyperintense. This is because the T, of fat
at 7 T (~ 52 ms (Ren et al. 2008)) is similar to the T, of grey matter. In
comparison, in a GE-EPI acquisition, optimised to have a TE that matches
the T, of grey matter (~ 25 ms), the fat signal is highly attenuated (73 of
fat ~ 10 ms) and fat suppression is not strictly necessary. Fat suppression is
therefore vital when imaging using SE-EPI at 7 T in order to remove image

artefacts associated with fat shift effects.
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Figure 4.6: Fat-water chemical shift effects. When a small bandwidth is used for
spatial encoding the resulting fat shift effect is large (middle). When the bandwidth
is greater than the fat shift the effect is much less severe (bottom)

One effective technique that can be used for fat suppression is to apply an
additional 180° RF pulse at the start of the scan to invert the longitudinal
magnetisation in the volume. Image acquisition can then be timed to coincide
with the point at which the longitudinal magnetisation of the fat has recovered
to zero so that no fat signal is generated. This technique relies on the fact that
fat has a considerably different T} relaxation time to most other tissues. This
type of sequence is know as STIR (Short inversion Time Inversion Recovery)

(Bydder & Young 1985).
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Another technique known as frequency-selective fat saturation can also be
used for fat suppression. For this, an RF pulse is applied with a narrow range
of frequencies, centred on the Larmor frequency of fat, so that only fat is
excited. Spoiler gradients are then applied immediately after the RF pulse to
dephase the signal before imaging is commenced, using the same principles
described earlier for saturation pulses. This technique can be combined with
STIR so that any signal that is not entirely nulled by the inversion pulse
is spoiled. This type of suppression is generally known as SPIR (Spectral
Inversion Recovery) (Kaldoudi et al. 1993).

At higher field strengths, such as 7T, it is usually more effective to use
frequency selective fat saturation due to the large absolute difference in the
Larmor frequencies of fat and water (McRobbie et al. 2003). However it is
hard to achieve good fat suppression using frequency selective techniques when
magnetic field inhomogeneities are present as they produce a spatial variation
of the Larmor frequencies which can be particularly problematic when a large
FOV is used.

When imaging is carried out using a SE sequence, a further fat suppres-
sion technique can be employed, known as Slice Selective Gradient Reversal
(SSGR)(Gomori et al. 1988). In this method, the polarity of the slice-selection
gradient and RF pulse frequency offset is reversed during application of the
180° RF refocusing pulse. Due to the fat-water shift the selective RE excita-
tion pulse excites fat and water from slices that are displaced from one another
in the slice direction. By inverting the polarity of the slice-selection gradient
for the 180° RF pulse, the direction of displacement of the fat-slice relative to
the water-slice is reversed. Provided that the fat-water shift is greater than
the bandwidth of the selective RF pulses, the fat-slice that is excited by a
nominal 90° RF pulse, applied in conjunction with a gradient of positive po-
larity, will have no overlap with the slice that experiences a selective 1830° RF

pulse applied with a gradient of negative polarity, and consequently no fat



4.3. Methods 69

signal is refocused at the time of the spin echo of the water signal (Figure
4.7).

The separation, D, (in mm) of the fat and water-slices is given by:

D =06B,y/G (4.1)

where 0 is the chemical shift of fat relative to water, By is the main mag-
netic field strength in Tesla, and G is the slice-selection gradient strength in
T/m. In this study, the bandwidth of the excitation pulse (Hamming filtered
sinc) was 628 Hz and for the refocusing pulse was 695 Hz. For excitation of a
1.5 mm- thick slice, this required the use of a 9.83 mT /m slice select gradient

strength during application of the 90° RF-pulse, calculated from:

_ RFpw

G, = % (4.2)

where G, is the gradient strength in the slice selection direction I8 Fpy
is the RF bandwidth and Az is the slice thickness. This resulted in a fat-
water displacement, D, of 2.4 mm, and a reversed displacement of 2.15 mm
for the selective 180° RF pulse. Since these values exceed the slice thickness,
the fat signal in the SE image is strongly suppressed. A major benefit of
the SSGR approach, compared to the methods described earlier, is that it
does not require the use of additional RF pulses and so the SAR of a SE
sequence employing SSGR is the same as a standard SE sequence. This is
especially important at 7 T as the number of slices that can be acquired using
SE sequences is often SAR limited when using short TRs.

A preliminary study was carried out in order to assess which fat suppres-
sion technique was most effective when using a SE EPI sequence with a large

FOV at 7 T. For this, a volunteer was scanned using a SE EPI sequence with
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a range of different fat suppression techniques: SPIR (previously found to be
more effective than STIR), SSGR and SPIR + SSGR. Figure 4.8A shows an
image of a representative axial slice when no fat suppression was used; next to
this are images acquired using SPIR (B), SSGR (C) and SSGR + SPIR (D).
[t is clear from these images that both SPIR and SSGR have removed the fat
artefact (with no obvious difference between the two techniques). When both
SPIR and SSGR were used the fat suppression was less effective. When SPIR
fat suppression was used, SAR constraints meant that only 14 slices could be
scanned in a TR of 2.4 s. In contrast, use of SSGR allowed the number of
slices to be increased to 16 slices (using the same TR), whilst providing equally
robust fat suppression (Figure 4.8). As a result SSGR was determined to be

the optimum method for fat suppression in SE EPI functional imaging.

No Suppression SPIR SSGR SSGR + SPIR

Figure 4.8: A comparison of fat suppression techniques. A : An axial scan of the
head without fat suppression. B : using SPIR. C : using SSGR. D : using both
SSGR and SPIR. The arrow in image A highlights a significant fat shift artefact, a
less pronounced artefact is also seen in D. No significant fat-shift artefacts can be
seen in B or C.
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Threshold-Free Cluster Enhancement

To reduce the effects of noise, z-score maps (generated using FEAT) were
clustered using a recently developed technique known as Threshold-free clus-
ter enhancement (TFCE) (Smith & Nichols 2009). TFCE maps provide a
voxelwise measure of the amount of cluster-like spatial support for each voxel
in a z-score map. The TFCE values in these maps represent the weighted sum
of the height of the statistical map data (i.e. z-score) and the spatial extent
of the cluster surrounding it.

For both the GE and average SE data the TFCE maps were thresholded
at the 95th percentile of voxels with non-zero values to form binary masks
representing voxels showing task-related activation. The masks were used to
form regions of interest (ROI) for subsequent analysis.

Employing this technique meant that the ROI were not delimited by a z-
score value chosen arbitrarily by the user but instead by an automatic process.
For example, SE- and GE- statistical maps are often thresholded at differing
z-scores to account for the large difference in CNR between these acquisition
sequences (Michelich et al. 2006) and these threshold levels are often chosen
arbitrarily. The TFCE technique provides a more objective method of ROI
definition.

An additional "average’ SE ROI mask was defined using the TFCE map
formed from the average of all the SE data for each subject (across TEs).

The average z-score and the T3 distribution of voxels in this 'average’
ROI were measured. Similarly the average z-score and T distribution were
determined for the GE ROI. The mean T, and T values were calculated for

both SE and GE ROL

Fractional Signal Change

The ’average’ SE ROI was used to estimate the fractional signal change

AS/S and CNR at each echo time. AS/S was calculated from the fractional
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change in mean signal intensity across the ROI as a function of TE, using
(Son — Sorr)/S. Son and Sorpr were calculated using the average of image
volumes 5 to 8 (ON) and the average of image volumes 11 to 13 (OFF) from the
average stimulus cycle (corresponding to an ON period between 12-19.2 s and
an OFF period between 26.4-31.2 s in the stimulus cycle). S was calculated
from the average of the baseline data acquired at the start of each scan. Data
from all subjects were combined to calculate the average value of AS/S at
each of the echo times. Since AS/S is expected to scale as |AR,. TFE| (Gati
et al. 1997), AR, was estimated from a weighted linear regression of AS/S
versus TE. This calculation was carried out using only the SE data in both
the GE ROI and the ’average’ SE ROI. The signal change normalised by the
baseline signal at the shortest echo time was also calculated on a voxel-by-
voxel basis for the "average’ SE ROI from (Son — Sorr)/Spase, where Son
and Sopr were determined as described above and Spagr was the bascline
signal for TE = 30 ms. The actual variation of the signal with TE from the
ROI was also calculated by averaging over voxels.

The expected variation of (Son — Sorr)/Spase versus echo time was
simulated for the "average’ SE ROI. This was accomplished by using the voxel-
wise T, values in the ROI to calculate the expected signal change, as described

by the following:

AS = S TF/T (e7THAR: _ ) (4.3)

A AR, value of -0.85 s7! was used for these calculations (as estimated
from the linear regression in Figure 4.13). The SE images from all subjects
displayed a band like region of low signal intensity running along the bank of
the pre-central gyrus in both the GE- and SE-EPI data, indicating a region in

which the relaxation rate was elevated. In order to assess the signal behaviour
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in this region, a mask spanning this dark-band was manually defined for each

subject using the T maps.

Venous Maps

To assess the tissue specificity of the activation measured from the GE-
and SE-data, venous vessel masks were generated using the phase of high
resolution, T;-weighted images. The phase data were first unwrapped us-
ing PRELUDE in FSL and then high-pass filtered by subtracting a Gaussian
smoothed version of the phase (using a kernel with a full-width at half maxi-
mum of 2 mm) so as to remove large length-scale phase variations. The phase
data were then thresholded to produce high resolution venous masks. Venous
masks were then dilated (using a 2D disk with a diameter of 1.5 mm) prior
to down-sampling to 1.5 mm isotropic resolution to give information on hoth
the vessel positions and the regions in their direct vicinity (dilation ensured
that the position of the veins could be seen in the down-sampled image). The
venous masks were aligned to the functional data in the following manner:
first the whole head Tj-weighted MPRAGE images were realigned to the Ty-
weighted MPRAGE images acquired during the functional session (which were
spatially registered to the SE fMRI data); using the algorithm described by
Nestares & Heeger (2000). The corresponding transform was then applied to
the venous masks prior to binarisation (using a threshold value of 0.5). The
fraction of active voxels that were common to the venous masks was assessed
for the SE ROI at each echo time. The overlap with the vessel mask of vox-
els that were not common to the SE and GE ROI (which we call uncommon

voxels) was also investigated.

Temporal SNR

The temporal SNR (tSNR) of the SE- and GE-fMRI data was estimated

using the SE- and GE- ROI respectively. tSNR was calculated from the mean
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signal divided by the standard deviation over the initial baseline volumes
for each echo time. This was calculated on a voxel by voxel basis and then
averaged over voxels. BOLD contrast to noise ratio (CNR) was computed as
CNR = tSNR*(AS/S).

The standard deviation across dynamics, during the baseline period, was
used to provide an estimate of the relative magnitude of the thermal and
physiological noise. This involved calculating the ratio of the average temporal
standard deviation of voxels located in adjacent gray and white matter regions,
and then making the assumption that thermal noise dominates in white matter
whilst in gray matter a combination of both thermal and physiological noise

is present.

4.4 Results

SSGR removed the vast majority of fat shift artefacts from the SE images.
Significant activation was found for all subjects in the GE and SE data across
all echo times.

Figure 4.9 illustrates the high accuracy that was achieved by image regis-
tration. Registration results are shown for the functional GE- and SE- EPI
data sets and Ty weighted anatomical data (used to generate the vein maps).
The red line overlaid on each image delineates the locus of the central sulcus
identified from the SE EPI data

Figure 4.10 shows the GE (TE = 25 ms) and SE (TE = 45 ms) activation
maps overlaid on the mean image (across volumes) of the corresponding EPI
data for a representative subject. Corresponding T, and T maps are also
shown. The T, map displays a dark band of low T, values following the pre-
central gyrus of the motor cortex.

Figure 4.11 shows an example of one of the high-pass filtered phase images

that were used to create the venous masks. Examples of the high resolution
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SE EPI GE EPI Downsampled MPRAGE
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Figure 4.9: Alignment accuracy for a representative subject. A : mean SE-EPI
fMRI data. B : mean GE-EPI fMRI data. C : T -weighted image used to form vein
masks (downsampled to 1.5mm isotropic resolution). D : MPRAGE data. The red
line highlights the central sulcus as identified on SE-EPI fMRI data.
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Figure 4.10: Activation maps from a representative subject overlaid on correspond-
ing mean EPI images for GE (TE = 25 ms) and SE (TE 15 ms) data. Corre-
sponding T5 and T3 maps are also shown. A dark band of tissue with low 7% values
(~ 30 ms) can be seen running along the bank of the pre-central gyrus of the motor

cortex (arrow). The images on the right show the zoomed in blue box regions.
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and low resolution (down-sampled) venous masks that were generated from

these data are also shown.
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Figure 4.11: A : High-pass filtered phase image generated from high resolution 7}
data acquired using a GE sequence. B : Venous mask created by inverting the phase
and thresholding the data. C : Down-sampled low resolution venous mask.

Figure 4.12 A shows the temporal variation of the signal intensity in the
GE-data averaged over the GE-ROI and in the SE-data (TE = 45 ms) averaged
over the average’ SE ROI for a representative subject. The average signal
across one stimulus cycle at each echo time is shown for the SE data (Figure
4.12 B). The ratio of the percentage signal changes of the SE (TE = 45 ms)
and GE data (TE = 25 ms) was found to be 0.48 £ 0.05 (i.e. GE BOLD
percentage signal change was 2.1 4 0.2 times larger than for SE BOLD). The
mean z-score in the relevant ROI (across subjects) was found to be 40 % higher
in the GE data (8.5 £ 0.4) than in the 45 ms echo time SE data (6.1 4 0.5).
When only venous voxels were considered, the mean z-score was found to be
9.5 4 0.2 in the GE ROI and 7.7 £ 0.2 in the SE ROI (22 % higher in the GE
ROI).

The average temporal SNR (tSNR) in the GE ROI for the GE data was
found to be 46.9 + 3.6 and the GE BOLD CNR was found to be 3.5 4 0.2.
Results for the SE data were echo time dependent, as shown in Figure 4.12
C, for a TE of 45 ms the tSNR was 25.4 + 1.6 and the CNR was 1.0 £0.1. At

these echo times the ratio of GE CNR to SE CNR was therefore 3.5 + 0.4.
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The ratio of the noise amplitude in adjacent gray and white matter re-
gions was found to be 1.16 for the SE data (TE=45ms) and 1.17 for the GE
data. Values close to unity indicate that thermal noise dominates as would
be expected from the measured values of gray matter tSNR (see Figure 1 of
Triantafyllou et al. (2005)).

For the SE data the average number of voxels in each ROI, generated
using the TFCE technique, was found to be: 783 + 36, 739 + 21, 708 + 24,
733+ 22, 723+ 19, 716 = 11 for the echo times of 30, 35, 40, 45, 50 and 55ms
respectively (with the standard error across subjects also shown). For the
SEav ROI (generated from analysis of the average of the SE data across all

echo times for each subject) this was 741 £ 17 and for the GE data 782 + 28.
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Figure 4.12: A : Example time-series showing BOLD percentage signal change for
the GE data (TE = 25 ms) averaged over the GE ROI and for SE data (TE = 45
ms) averaged over the average SE ROI, for a representative subject. B : Average
BOLD signal change across SE cycles at each echo time. C : tSNR and D : CNR
as a function of echo time (TE) where the data shown in C and D are the average
across subjects, with the error bars indicating the SEM.
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The variation of the BOLD percentage signal change (AS/S) as a function
of TE in the SE data can be seen in Figure 4.13 A for both the SE ROI (blue)
and GE ROI (red). Using a weighted linear regression, the mean AR, was
found to be —0.85+0.11s7! for the SE-ROI and —0.37 £ 0.05s5~! for the GE-
ROL. In the region that is common to both ROI (com ROI} AR, was found to
be —0.95 £ 0.06s~!. In the region of the SE ROI that was uncommon to the
GE ROI (SE uncommon ROI), AR, was —0.72 £ 0.1557!, in the part of the
GE ROI that was uncommon to the SE ROI (GE uncommon ROI), AR, was
0.17 £ 0.11s7!, indicating that there are only small activation related signal
changes in the SE data in this region (Figure 4.13 B).

To assess the echo time at which maximum SE contrast occurs, the BOLD
signal change was determined relative to the baseline signal in the first rest
period of the SE data acquired with TE = 30 ms (Sox — Sorw)/Spase for
both the ’average’ SE ROI and dark band. An example of the manually drawn
dark band ROI is shown for one subject in Figure 4.14 A.

The dark band ROI was masked with the SE ROI before analysis. (Son —
Sorr)/Spask is displayed, along with the standard error across subjects, in
Figure 4.13 B. Due to inter-subject variability, curves were normalised using
the peak signal change before averaging across subjects. The mean Ty and T
values in the 'average’ SE ROI and dark-band ROI were T, = 48.3 + 1.1 ms.
Ty =365+ 3.4 ms, and Ty = 30.7 £ 0.7 ms, T; = 32.8 + 4.6 ms respectively.
The expected normalised signal change versus echo time was calculated using
simulated data and is shown in Figure 4.14 B.

The number of activated voxels for the SE and GE ROI are shown in
Figure 4.15. The number of voxels common to both the GE and SE ROl was
~ 50 % of the total number in each ROI (Figure 4.15 A). It was found that
18 % (p = 0.046) more voxels overlapped the venous mask for the GE ROI
than the SE ROI when the whole ROI was considered, and 50 % (p = 0.040)

more when the non-overlapping region of the SE and GE ROIs was used as
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Figure 4.13: A : AS/S in the SE "average’ ROI and GE ROI for SE data. Weighted
least squares fits (weighted using 1/(SEM?) ) are shown along with errors on the
gradient and y-intercept, with y = 0.085x [0.011] + 0.166 [0.491] (r=0.966) and y =
0.037x [0.005] + 0.711 [0.234] (r=0.960) for the SE and GE ROIs, respectively. B
: AS/S in the ROI common to both SE and GE ROI (com ROI), uncommon part
of the SE and GE ROIs (SE uncommon ROI and GE uncommon ROI respectively)
with y = 0.095x [0.006] + 0.188 [0.244] (r=0.993), y = 0.072x [0.015] + 0.273 [0.630]
(r=0.928) and y = -0.017x [0.011] + 1.207 [0.484] (r=0.601) for the common, SE
uncommon and GE uncommon ROIs respectively.
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Figure 4.14: A : T, map for a representative subject with a manually drawn dark
band ROI region highlighted in red. B : Experiment: (AS/Spasg in the SE and
dark band regions. The baseline signal of the SE scan with TE = 30 ms was used
to calculate Spase. Simulations: Simulations of expected (AS/Spask calculated
using the Tb maps for each subject, a ARy value of -0.85 (as estimated from Figure
4.13) was used to produce the simulated data.

an uncommon ROI (Figure 4.15 B).

4.5 Discussion

Using the TFCE method, activation was found to be highly localised to
the cortical strip in the pre-central gyrus in both the SE and GE data for all
subjects (Figure 4.10). The average number of voxels in the GE and SE ROI

were found to be very similar, as would be expected when using the TFCE
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Figure 4.15: A : Average number of voxels in the SE and GE ROIs and number of
voxels common to both ROIs. B : Proportion of voxels in the whole (average SE
and GE ROIs) and uncommon ROIs (SE uncommon ROI and GE uncommon ROI)
which overlap with the venous mask. Two tailed t-test statistics are also shown.

method (Figure 4.15 A). Interestingly the number of active voxels common
to both GE and SE ROIs was less than half the total number in each, giving
a strong indication that the areas of activation identified from the BOLD
response are indeed different for the GE and SE acquisitions. The purity of

the SE signal was ensured by employing crusher gradients around the 180 °

RF pulse, to kill off any none-SE signal pathways, and through the use of a
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short EPI readout duration.

The mean T5 value of voxels in the SE ROI was found to be 48.3 £ 1.1
ms similar to the values (47-55.0 ms) that have been reported for grey matter
in the literature (Yacoub et al. 2003, Cox & Gowland 2010). The mean Ty
value in the SE ROI was found to be 36.5 + 3.4 ms, which is similar to values
for grey matter reported in previous studies (32-36 ms) (Peters et al. 2007, Li
et al. 2006).

A dark band of pixels, which followed the pre-central gyrus of the motor
cortex, was observed in the SE images of all subjects. This was found to
have a significantly lower mean T, of 30.7 & 0.7 ms than that of adjacent
grey matter. The T3 value in the dark band ROI was found to be 32.8 £ 4.6
ms. Interestingly Haacke et al. (2005) reported finding reduced T contrast
and enhanced phase contrast with respect to adjacent white matter in this
area. This could be explained by elevated iron or myelin content in the grey
matter of the motor cortex, which would also explain the reduced T that
we observed. The larger relative reduction in 75 than 75 in the dark band
suggests that SE BOLD contrast will be significantly more attenuated in this
region than GE BOLD contrast.

For the optimum SE echo time of 45 ms the percentage signal change in the
SE ROI region (using the average cycle) was measured to be 4.3+0.5 %, whilst
the GE data (TE = 25ms) percentage signal change was 8.9+0.7 %. resulting
in a SE to GE ratio of 0.48 £ 0.05 which is in good agreement with the value
of 0.46 reported by Yacoub et al. (2005) in the visual cortex at 7 T (using
similar echo times). The smaller fractional signal change in the SE data was
largely the cause of the factor of 3.5 reduction in the BOLD CNR which we
measured when comparing the GE and the SE data. Some of the reduction
does however result from the lower tSNR in the SE data. This may result
from greater steady state signal saturation and larger magnetisation transfer

effects occurring in the SE data as a result of the repeated application of
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180° RF pulses. The plot of CNR versus TE for the SE data (Figure 4.12
C) was relatively flat over the range of echo times investigated as a result of
the competing effects of the reduction in tSNR and the increase in percentage
signal change with increasing TE.

The measured percentage signal change was found to vary linearly with
echo time (Figure 4.13), in agreement with numerous previous studies (Yacoub
et al. 2003, Duong et al. 2003, Schaefer et al. 2008). AR, for the SE-ROI was
calculated to be —0.85+0.11s7! and ~0.37 £ 0.05s~" for the GE-ROI. These
values are higher than those reported at 7 T in a large ROI in the visual area
by Duong et al. (2003), who found AR, to be —0.21s7! and, in the case of the
SE ROI, also higher than the value of —0.51 £ 0.14s~" reported by Schaefer
et al. (2008) in the motor cortex at 7 T. The reduction in AR, in the GE-ROI
is expected as the GE ROI will contain voxels that are activated due to non-
Ty-related BOLD effects. For the GE ROI a significant non-zero intercept
was found, while the intercept was not significantly different from zero for the
SE ROI. The non-zero intercept for the GE-ROI data most likely reflects the
effects of in-flowing blood and line broadening (Yacoub et al. 2005, Schaefer
et al. 2008, Uludag et al. 2009).

Since the TFCE method was used in this study, the GE and SE BOLD
ROI contain a similar number of voxels. The GE BOLD ROI would therefore
be expected to have an increased sensitivity to large draining veins and thus
to show significant T3 changes due to large vessel BOLD and in-flow effects.
In the uncommon region of the SE ROI, AR, was found to be —0.724+0.15s7!,
slightly lower than in the whole SE ROLI. In the uncommon part of the GE ROI,
AR, was found to be +0.17 £ 0.155" : this result can be better understood
by observing the data in Figure 4.13, from which it can be seen that the
percentage SE signal change in the uncommon portion of the GE ROl is
less than 1 % across nearly all echo times. This indicates that there is no

significant SE BOLD contrast in this region and so no TE dependent trend.
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This also implies that the area of the GE ROI that is uncommon to the SE ROI
is activated due to underlying effects to which SE images are not sensitive.
These are most likely due to extravascular effects around large vessels. In the
ROI defined to be common to both the GE and SE activation, A R, was found
to be —0.95 &+ 0.06s7 1.

Figure 4.14 shows the measured percentage signal change, relative to the
baseline signal of the SE data set acquired with TE = 30 ms, as a function of
echo time. For the SE ROI (mean T, = 48.3 £ 1.1 ms) these results show that
the largest change occurs for an echo time of approximately 45 ms. This is
in agreement with the simulations, though a dip at an echo time of 50 ms in
the real data is not seen in the simulated data. In the dark band ROI (mecan
Ty = 30.740.7 ms) the peak signal change occurred at a TE of ~ 35 ms, close
to the tissue T, and in fairly good agreement with the simulated data which
showed the largest signal change at 30 ms (the shortest TE considered in the
simulation).

The regions which showed significant activation in the GE data contained
more voxels overlying venous blood vessels than the activated regions iden-
tified from the SE measurements (Figure 4.14 B). This difference was most
pronounced when the uncommon ROIs were compared (50 %, p=0.040) as op-
posed to the average SE and GE ROIs (termed whole ROIs in Figure 4.15) (18
%. p=0.046). The results indicate that the GE and SE ROIs contain a com-
mon region that contains voxels overlying venous sites, but in regions where
the SE and GE BOLD activation does not overlap, the proportions of vox-
els that occur at venous sites is much less in the SE case; indicating that GE
BOLD is more sensitive to the effects due to larger blood vessels slightly offset
from the site of SE based BOLD activation. The common region between SE
and GE activation is most likely due to contributions from extravascular signal
from small vessels and residual intravascular effects (Yacoub et al. 2003). De-

spite the postulated increase in functional spatial specificity of the SE BOLD
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response, large changes in Ry may still occur at a few sites where very large
vessels are present due to the diffusion of water through field gradients around
individual red blood cells (Bandettini et al. 19944).

It is important to acknowledge that the optimal SE percentage signal
change was on average a factor of 2.08 + 0.22 times lower than that pro-
duced by GE BOLD based sequences, and the CNR a factor of 3.5£0.4 times
less. It is likely that the advantage of SE BOLD fMRI will therefore be the
increased specificity apparent at ultra-high spatial resolution, but this must
be compared with the selectivity achievable with GE BOLD using selective
adaptation (Grill-Spector & Malach 2001) or multivariate pattern analysis
(MVPA) (Kamitani & Tong 2006, Cox & Savoy 2003) to resolve fine func-

tional features.

4.6 Conclusion

Analysis based on the TFCE method allowed comparison of the spatial
location and percentage signal change in active brain regions in GE and SE
data, collected at ultra high field (7 T) and high spatial resolution (1.5 mm
isotropic), during the execution of a simple motor task.

An echo time of 45 ms was found to be optimal at 7 T for fMRI experiments
on the motor cortex using SE-EPT (producing a large signal change relative to
the shortest echo time), similar to the average T, of the voxels in the SE-ROL.

We identified a dark band in SE images of the motor cortex corresponding
to a region in which 7, and T; were significantly reduced, possibly due to
increased iron and/or myelin content (Haacke ot al. 2005).

Interestingly the number of active voxels common to both GE and SE
ROIs was found to be less than half the total number in cach, indicating
that the areas of activation identified from the BOLD response were different

for the GE and SE acquisitions. Further, regions which showed significant
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activation in the GE data were found to contain significantly more voxels
overlying venous blood vessels than the activated regions identified in the SE
data.

These results support evidence in the literature that SE based BOLD
contrast is predominantly sensitive to different underlying mechanisms than
GE BOLD contrast. The data suggests that the origin of the SE BOLD
response is most likely due to extravascular effects around small blood vessels,
whereas the GE BOLD response is sensitive to the extravascular effects around
both small and large vessels (with the large vessel effects dominating). This
indicates that the SE BOLD response is indeed more spatially specific to the
underlying neuronal activation. The work presented in this chapter has now

been published (Harmer et al. 2011).



Chapter 5

Off-Resonance Field Effects:
EPI Artefact Correction

5.1 Theory

Most modern MRI scanners can generate static magnetic fields with a
uniformity of better than 1 ppm over a central volume with a diameter of
around 40 cm. This high uniformity is essential in MR imaging because the
precessional frequency of spins in a sample (wy) is governed by the strength
of the local magnetic field; as described by the Larmor equation. To induce
magnetic resonance in these spins an RF pulse is applied that has a frequency
that matches the resonant frequency. Any significant variation in wy across
the sample will reduce the effectiveness of the RF pulse. During an MRI ac-
quisition a number of magnetic field gradients are applied in order to spatially
localise the signal so that images can be produced (Section 2.5). The gradi-
ents impart a change in magnetic field strength that varies linearly across the
sample, in such a way that the field strength has a linear relation to position
in the object. Inhomogeneities in the main magnetic field (ABy) also cause
the field strength to vary as a function of spatial location, disrupting the

proportionality between magnetic field strength and position. If unaccounted
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for, these adversely effect the encoding process and lead to errors in image
reconstruction that manifest as geometric distortions in the reconstructed im-
age. Variations in the sign and magnitude of the field inhomogeneity across
the imaging volume cause the signal from different parts of the sample to be
shifted by varying amounts and so will also change its apparent spin density.

Magnetic field inhomogeneities can be produced in a number of ways. A
common cause of first order global By offsets (A By) is the inaccurate calibra-
tion of gradient shim coils. However, in most modern scanners these effects
can be corrected for by carrying out shim coil calibrations at the start of a
scanning session. A more problematic effect arises due to the presence of the
sample itself. When an object is placed in a magnetic field the material that
makes up the sample will increase or decrease the local magnetic field strength
by an amount that depends upon its magnetic permeability (;2). Paramag-
netic materials cause the magnetic field lines to bunch together slightly inside
the material, increasing the local magnetic field strength, whereas diamag-
netic materials cause the field lines to spread apart reducing it. This relation
is given by :

B=npul (5.1)

where B is the physical magnetic field and H is the vector field (equal to -
when no material is present). This property of materials is often described in
terms of the magnetic susceptibility x, where u = (1 + x)pp. This relation

leads to the following:

B =(1+ x)ull

—
[ads ]
~o

~—

where x. for diamagnetic, paramagnetic and ferromagnetic materials is defined
by x < 0, x > 0 and x > 0 respectively. In humans y < 0 because tissue

is generally weakly diamagnetic (Haacke et al. 1999). Variations in the local
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magnetic field due to these susceptibility effects can be a significant problem

in MRIL

5.1.1 Off-Resonance Effects in Conventional imaging

Sequences
During sampling under a readout gradient of strength, (., the phase of

the measured signal from position, x, in a sample, at time ¢ relative to the

start of sampling, is given by:

Oz, t) = yGroxt + YABy ()t (5.3)
3o (i
oz, t) = vGxt (1 + %J—)) (5.4)
d(x,t) = kyx' (5.5)
where
ABy(x
r’=uc+ AB(x) (5.7)

Q.

Thus, spins located at position, r, will be encoded at position. ./, in the re-
constructed image. Furthermore because A By is a function of «, the difference
between r and x’ will change with & and lead to location dependent image

distortions. In a perfectly uniform magnetic field the FOV (L) is given by :
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where G, is the imaging gradient and At the sampling interval. In the presence

of field inhomogeneities this changes to L', given by:

1 G
L= = L 5.10
v (G + Gag,) At ((:+(:A,;(,) (5.10)

Thus, when Gag, > 0 the FOV, L', reduces, effectively increasing the size of
the object. Whereas when Gap, < 0 the FOV increases; reducing the size of
the object. This stretching/compression will vary across the image, depending
on the size of the local magnetic field inhomogeneity.
If we consider the effects of a magnetic field inhomogeneity that changes
in the phase encoding direction (PE) we get :
' ABy(y)

r =+ ————, 5.11
x r G, () )

where spins originating from x are again encoded at position £’ in the recon-
structed image. However, in this case ABy (y) does not change with @ but
produces a net phase offset that varies with y. This effectively shifts the po-
sition of spins along x as a function of their position in y, changing the shape
of the ROI that defines the voxel, from a square/rectangle to a parallelogram.
This does not alter the relationship between position in y and rate of change
of phase and so does not cause distortions in the PE direction. This can be

better seen by considering the phase difference between two lines of k-space:

A By(:

¢) =G lr (1 + %@) + Gy TrE (5.12)
A By(;

¢2 =Gt (1 + T@) + 7("1/,2 YTrE (513)
'.’L‘"

Ao = vAG yTpE (5.14)

where AG|, is the strength of the phase encoding gradient step and 7pp is

its duration. This phase difference does not depend on AB,. Thus with
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conventionally acquired non-EPI acquisition techniques image distortion is

only problematic in the FE direction.

5.1.2 Off-Resonant Field Effects in EPI

In a single shot GE EPI sequence every line of k-space is acquired during
a single TR period. This enables very rapid multi-slice acquisitions to be
carried out (Figure 5.1) and allows MRI to be used for functional imaging
with a relatively high temporal resolution. However, as a result of the way
that the data are acquired, EPI is very susceptible to distortion artefacts
brought about by magnetic field inhomogeneities. This can be problematic
when registering EPI images to those created using conventional acquisition
sequences such as MPRAGE, which are less susceptible to field inhomogeniety

related distortions.

-

EXCItation |t b st o T 1l F LT T i el e T s n

Figure 5.1: A blipped GE EPI acquisition sequence. The time to acquire one slice
can be <100 ms.

In single shot EPI, any phase evolution that occurs, due to the presence

of By inhomogeneities, continues across different lines of k-space (Figure 5.3)
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(in a standard non-EPI acquisition the phase is generally reset between the
acquisition of successive k-space lines). This continuous evolution of phase
generates a significant phase difference between adjacent lines of k-space, re-

sulting in severe A By related image artefacts.

AGy

PE -

Gy TAPE

n.t
X |
FE la 2a
G:c g 2b 1b
—p N.tDW - -
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Figure 5.2: A schematic of the gradients that are applied during the acquisition of
the first two lines of k-space during a single shot GE EPI acquisition, where N is
the number of sample points and tp,y is the dwell time. 7,4, is the duration of the
phase encoding blip. The read and phase encoding gradients have strengths of G,
and Gy, respectively. For simplicity, gradient ramps are not shown.

Considering the timings shown in Figure 5.2, for the first two lines of a

GE EPI sequence, the phase difference between equivalent points in adjacent
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lines of k-space is given by :

P2a = V[G:vl' (n tow — N ;DW)

N tpw

Gap =Y [Gz$ (N tow — —(N—=n) l,,,w)

— Gy Y Tpe + AGy Y Tare

N tpw

+ AB() ( + Tare + N tnw' + (A,V — ”) fr,)u») ] (516)

Ap =1~ [AGy Y Tare + ABo (TAPE +2(N —n) tlm’)jl (5.17)

Due to the way that k-space is sampled during an EPI acquisition, every
other line of k-space has to be reversed before reconstruction (Figure 5.3): i.e.
the first point that is sampled during acquisition of the first line of k-space is
equivalent to the last point that is sampled during acquisition of the second
line of k-space. This can be seen in Figure 5.2 and has been taken account of
in the derivation of Equation 5.17.

The phase difference between the points where k, is equal to zero in suc-

cessively sampled lines of k-space, is then:

Ao = Y AGy Y Tare + AB() (TAPH + N, “)w)} . (5.18)

which can be written as:

Ap = YAG Y Y Taps. (5.19)
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where

’ AB, (TAPE + N, tfnw) (5 20)

y =y+AGy

Tare

If the FOV and matrix size in the y direction are given by L, and N, respec-

tively, then the voxel size, Ay, is given by:

L
Ay ==¥ Fo
y Nya («)21)
and knowing that:
1 §
bv=%e (5.22)
we get:
Ay = L 5.2
y - NyAk:yv (O.uvj)

Then assuming linear gradients are used, we get the following:

Ak, = AG, Tars (5.24)

1
Ay=—o 5.25
Y= NAG, Tars (5:25)

Substituing this definition into Equation 5.20 provides:
v =y+ABy Ny (Tare + N to) Ay (5.26)

Since the gradient bandwidth per pixel is given by:

1
- roo
Nt (5.27)
1

= - . 5.28
Ny(TAPI; + N, tpw) ( )

BWpg pix =
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the magnitude of the ABj induced distortions in the PE direction can be

determined:

, ABo

Y=y + o
BWpg pix

Ay (5.29)

Using a similar derivation, the distortions in the FE direction can be described
by:

, ABy

r=x+ —— Ar 5.30
BWEE pix (5-:30)

Since the bandwidth in the PE direction is much less than in the FE
direction, the distortions in an EPI acquisition are much more severe in the
PE direction.

In single shot EPI, image artefacts in the FE direction occur in the same
way as described for conventional imaging sequences (as described by Equation
5.30). The absolute size of the distortions in both the FE and PE direction
for a typical GE EPI sequence, used for functional imaging at 7 T, will now

be calculated, using some of the sequence parameters in Table 5.1. Using

matrix size 64 x 64
Tare 390 HS
FE bandwidth 3000 Hz/pix
PE bandwidth 40 Hz/pix
ABy 100 Hz

dwell time (¢pu ) 5.2 ps

Table 5.1: Typical scan parameters for a single shot EPI sequence at 7T

Equation 5.30 the distortion in the FE direction will be :

100
"=l 4+ — £ H.
x I{ 3000] Au (5.31)

r’=r+0.033 Ar (5.32)
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Similarly, using Equation 5.29, the distortions in the PE direction will be:

100
yl =Yy [1 + E] Ay (5315)
Yy =y+25Ay (5.34)

These shifts equate to a displacement of 0.033 pixels in the FE direction
and 2.5 pixels in the PE direction; highlighting the importance of distortion

correction in the PE direction.

1 TR

Figure 5.3: Continuous phase evolution in EPI. Each subsequent line of k-space is
sampled in the opposite direction

SE EPI sequences are also susceptible to ABy-induced image distortions,
but are less affected by signal dropout than GE EPI due to the refocusing effect
of the 180° RF pulse. A schematic representation of a SE EPI acquisition can
be seen in Figure 5.4.

A number of different techniques can be employed to correct for off-resonanc

~

effects. Generally the first step will involve reducing the large length scale
variations in By by shimming the magnet more effectively. The scope of this
technique for correcting for the effects of more rapidly changing field offsets
is fundamentally limited by hardware constraints. In a typical case, accurate
shimming can only be implemented within a small ROI inside the FOV and
can only correct for first, second or third order spatial variations of the field

(at best). Higher order variations, such as those due to the susceptibility
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Figure 5.4: A SE EPI sequence with blipped phase encoding gradients. A Matlab
simulation of the resulting NMR signal envelope is also shown. During time t=0
to t=TE/2 the signal decays due to both Ty and T} effects (i.e. T). From time
TE/2 to TE the T} effects are reversed, whilst T2 decay continues. At time TE the
dephasing effects of T are completely reversed. For t > TE the signal decreases
exponentially due to T5 effects. The dephasing and rephasing effects of the readout
gradients are also shown
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differences between different tissue types can’t be completely corrected using
3 2 g

typical shim coils (Figure 5.5)

X2 - Y2 shim coil

Shim Iron Inserts

Figure 5.5: Shimming methods. Left : shim iron inserts are often added to newly
installed MRI scanners to reduce ABy inhomogeneities. Right: Shim coils can be
used on a scan by scan basis to further reduce these effects and to some extent
account for the field altering properties of the object that is being imaged. In this
example a non-standard shoulder slotted shim coil design is shown.

Another effective technique that can be used to reduce the effects of AB,
inhomogeneities is to increase the bandwidth of the imaging gradients (Figure
5.6). If we consider the phase of the MR signal during sampling (Equation
5.7) then it is easy to see that as G = oo the distortion vanishes. However
increasing the bandwidth of the encoding gradients also decreases the SNR,
because the noise power is uniform across frequencies, and so when a larger
bandwidth is employed the overall amount of noise is increased. In Figure
5.6 the reduced distortion but increased noise, produced by increasing the
bandwidth in the read direction, is clearly evident. This increase in noise
limits the scope of this technique.

A number of methods have been developed by various groups that allow
distortion artefacts to be corrected using post-processing steps. A selection

of these will be described in the following section.
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Figure 5.6: Left: Image of a phantom displaying large geometric distortions due
to employing a deliberately low bandwidth in the readout direction (10Hz/pixel).
Right: High bandwidth image of the same phantom (390Hz/pixel) displaying accu-
rate geometry but with reduced SNR. The images were acquired using a standard
non-EPI GE sequence. Consequently, in this example, the distortions are in the FE
direction (top-bottom in the image)

5.1.3 Phase Information

The amount of phase evolution that occurs during a GE acquisition de-
pends, amongst other things, upon the integral of the field strength over time
(minus the reference field strength). This depends on a number of factors,
such as the gradient history and ABj (see Equation 2.58). Consequently, it
is possible to measure AB, by acquiring two images, using the same imaging
gradients, but different echo times, and then subtracting the phase of one
image from the other (Jezzard & Balaban 1995). From Equation 2.58, it can
be seen that if the imaging gradients are kept the same, but the echo time is

changed the subtraction of two phase images will give:

A(p = "]AB()AfFE. (5.55)
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Making it possible to determine ABjy:

Ao

ABy = ———
0 ATE

(5.36)

An example slice from a single shot GE EPI acquisition, along with a A B,
A le slice from a single shot C I

map measured using this technique, is shown in Figure 5.7.

AB,
1“ (Hz)

Figure 5.7: Left: A slice from a single shot GE EPI acquisition. Right: The
corresponding A By map; calculated by subtracting the phase from two images with
different echo times (ATE = 3 ms). The data were acquired with a 2mm isotropic
resolution, a matrix size of 112 x 112 and a SENSE acceleration factor of 2 in the
PE direction. The PE direction is Left-Right in these images.

This dual echo time technique can only be used for GE acquisitions because
the refocusing effect of the 180° RF pulse in a SE acquisition removes the A B,

information from the phase data.

5.1.4 Image Artefact Correction Strategies

Once we have a ABp map it can be used to generate a pixel shift map by
comparing the size of the frequency offset per pixel to the bandwidth per pixel
of the encoding gradients. This can be used to transform a distorted image
into undistorted space on a voxel-by-voxel basis. Correcting for distortion

alone 1s not the best method of achieving an accurate representation of the
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true image due to signal dilution/concentration effects. This occurs when the
signal emanating from a voxel is spread, due to the encoding process, across a
region that is either larger or smaller than the size of the region that it actually
originated from, because of spatially varying field inhomogeneities. Jezzard
& Balaban (1995) developed a technique to correct for this by calculating
the gradient of the pixel shift map and then multiplying the intensity of each
pixel in the image by a factor of one plus the local pixel shift gradient. Hutton
et al. (2002) suggest that this type of intensity correction should be used as
standard, but note that in certain circumstances it can also increase noise
levels.

Most A By mapping techniques are carried out using non-EPI GE anatom-
ical acquisition sequences, due to their high SNR. When the resulting A,
maps are used for artefact correction of EPI sequences this can lead to a num-
ber of problems, for example signal smearing artefacts can appear around the
edge regions of the images after the correction has been carried out. This oc-
curs because in this situation, ABy maps are measured in undistorted space
whereas the EPI data are encoded in distorted space. Thus, the value of the
measured A By, at a given voxel location in the Ay map, does not represent
the true A By value for the corresponding pixel location in the EPI map. If
this effect is not accounted for it will reduce the accuracy of the correction
technique and, more problematically, mean that the edge regions of the EPI
data may lie outside of the regions of measured A3, values. The random
phase readings that are recorded from outside of the object, due to the lack
of signal, will produce meaningless ABy values and can lead to signal smear-
ing artefacts at the edge of the image. Similar artefacts can also occur if
there is subject motion between the acquisitions of the ficld map and the EPI
data. One method of reducing this effect is to first self distort the Ay map
before employing it for distortion correction of the EPI data. To overcome

some of these problems, Jezzard & Balaban (1995) describe a technique where
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they mask the AB, map, by thresholding the modulus immage data, and then
fit a polynomial inside the mask region. They extrapolate the polynomial
fit to cover the regions outside of the mask, to remove edge discontinuities
whilst forcing the fit to decay slowly to zero when outside of the mask. Their
methodology helps allow these maps to be used for distortion correction when
small movements are present.

An alternative approach to eliminating this problem is to use an EPI se-
quence to measure A By, ensuring that the same encoding gradient bandwidths
are used as are employed in the acquisition that needs distortion correction, so
that the resulting A By maps are in the same distorted space. Due to the speed
at which EPI acquisitions can be acquired it is possible to scan multiple vol-
umes and average them together to increase SNR in the same acquisition time
that a conventional non-EPI generated field map can be acquired; alleviating

the problem of reduced SNR when using an EPI acquisition.

Simulated Phase Evolution Rewinding (SPHERE)

Kadah & Hu (1997) developed a technique that allows both distortion
correction and intensity correction to be carried out in one step. When an
object f(v) is imaged in the presence of By-field inhomogeneities, using an EPI

sequence, the Fourier encoding process can be described by:
D(k) — / f(v)ei‘znmﬁBut(k)(f—z‘zrrk.vd,l, (5'37)

where t(k) is the sampling time. The extra encoding term causes the recon-
structed image to be distorted from its true shape by an amount dependent
upon the size of the local ABy. Kadah & Hu (1997) proposed a method called
simulated phase evolution rewinding that corrects for this by effectively revers-

ing the effect of this additional exponential encoding term, using the following
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transformation:

D(k) = / f(v)em2maBottk) iy, (5.38)

~

where f is an approximation of the undistorted image (i.c. the distorted
image). Fourier transformation of D(k) yields a distortion corrected image.
The A By map that is needed for this technique to work can be calculated using
a technique such as the dual echo time technique described earlier. The major
benefit of this method is that the intensity values in the corrected image arce
inherently corrected for signal dilution/concentration effects without having

to make error-prone calculations of the gradient of the pixel shift map.

5.1.5 Dynamic Correction

All of the distortion correction techniques that have been described so
far rely on the assumption that the ABy field is stationary. However this is
not always the case. If a subject moves in the scanner the AR, ficld, which
depends on the orientation and location of the subject, will change. Most,
correction techniques rely on the assumption that the Af3, field is temporally
static and try to overcome the problems associated with such movement by
fitting a polynomial to the measured field map that decays towards zero in the
regions outside of the imaged object. This has two main consequences. Firstly
it reduces the effect of high spatial frequency changes, effectively smoothing
the field map. Secondly, it reduces the severity of signal smearing/dropout
that can occur at air-tissue interfaces when there has been motion after the
A By map was recorded. This is because the technique effectively smears the
A B, map so that the regions outside of the body have defined A, values,
and as a consequence movement of the patient is less problematic. However
the technique is not ideal because, assuming there is a high enough SNR,

the higher spatial frequency terms in the A/3, map may represent a true
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local change in the magnetic field that could have arisen due to the local
proximity of two tissue types with large magnetic susceptibility differences,
such as at air-tissue or tissue-bone interfaces. This is especially problematic
when imaging at high magnetic field strength (Chen & Wyrwicz 1999) and in
functional studies; where a large number of dynamics are recorded whilst a
subject is performing some task, such as a motor task, which can induce head
motion. Further, this technique also assumes that the A3y field is fixed in
scanner space, when in fact a significant component of the A3 field is created
due to the presence of the object in the scanner and as such will move with
it.

As a consequence of these effects, it is desirable to have a A3y mapping
technique that can be carried out on a regular basis throughout a scanning
session without adding significant amounts of time to the length of the session.
A number of techniques have been described in the literature that can be used
for dynamic distortion correction (Chen & Wyrwicz 1999, Zeng et al. 2004),
however they also significantly increase the overall acquisition time, which can
be problematic in fMRI studies. One approach is to alter the echo time of
each volume in the sequence so that the phase from two consecutive volumes
can be subtracted to generate dynamic field maps. However in order to create
useful field maps using the phase information from just two EPI images the
ATE would have to be at least 3 ms (shown in the next section) which would
also produce a significant change in the contrast of the two images, severely
limiting the practicality of its use in most fMRI studies, since this contrast
change would likely confound most functional analysis techniques.

Lamberton et al. (2007) describe a technique to overcome this problem that
makes dyvnamic distortion correction possible during functional experiments,
without increasing the overall acquisition time. By careful consideration of

the origins of phase contrast information. de Moortele et al. (2005) describe
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how the phase in an MR image can essentially be represented by:

O = Pcoit + OB, + PABy + Dresidual (5.39)

where ¢.0i; is a phase term brought about due to the RF receiver coil, ép,
is the phase due to the properties of the RF transmission pulse, ¢ap, is the
phase associated with magnetic field inhomogeneities and ¢ppsigua takes into
account any remaining residual phase. Lamberton et al. (2007) simplify this
representation by assuming that the voxel-by-voxel phase in an image (¢),
can be modelled as having two components, an essentially static, non Af3,
dependent term, (¢g), and a potentially time varying, dynamic Af3y dependent

term (¢;):

¢ = ¢o + ¢ (5.40)

where,

¢ = vABol (5.41)

Thus, to calculate the time varying field offset ABy(t) from a measurement
of ¢, the ¢ term has to be accounted for. ¢ is brought about due to a
number of factors such as the RF field, bandpass filters and inaccurate k-
space centering (Lamberton et al. 2007, de Moortele et al. 2005), as well
as static field inhomogeneity effects. Non-centred k-space can occur due to
pulse timing errors, eddy currents and imperfect encoding gradients. All these
¢o factors are independent of the imaged object and can introduce phase
variations across all three dimensions.

It is possible to measure ¢p by calculating ABy using a dual echo time
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technique:
$o=¢—YABTE (5.42)

Once calculated, this can be subtracted from the phase images produced dur-
ing a dynamic EPI acquisition sequence (see Figure 5.8) so that distortion
maps can be generated on a dynamic basis:

o(t) — ¢o

One disadvantage of this technique is that the phase images require compli-
cated and time consuming spatial and temporal unwrapping, temporal un-
wrapping is needed to ensure there are no large phase jumps between dynam-
ics.

Lamberton et al. (2007) use a small smoothing kernel on the ¢y map. to
increase the stability of the technique in the presence of motion, and then
carry out 3rd order polynomial fitting. This is likely a sound approximation
because due to its nature ¢g should be a smoothly varying function.

In more recent work, Hahn et al. (2009) describe a modification to the
method devised by Lamberton et al. (2007) that removes the necessity for
phase unwrapping. In their technique they calculate the difference between
the resonance offset between each dynamic and the average resonance offset of
all the dynamics: If two complex images [} and /,, are acquired at echo times
of TE, and TE, respectively, then the phase of cach image can be caleulated

by taking the complex argument:

(l’f‘g([l) = ¢| = (/)0 + Aw.TEl (514)

arg(ly) = ¢ = ¢y + Aw. TE,. (5.45)
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Figure 5.8: Dynamic field mapping technique, modified from Lamberton et al.
(2007). A38 is the static field inhomogeneity, and ¢y is the static phase component.

ABJ is the dynamic component of the field inhomogeneity at time point n, and ¢,
is the corresponding dynamic component of the phase.

o

such that
arg(ly) —arg(l}) = Aw.ATE, (5.46)

where ATE = TE, — TE,. Equation 5.46 can then be recast as:

arg(l,17)

O S SATE

’ (5.47)
where the * represents the complex conjugation. If the ¢y component is rep-
resented as a hypothetical complex image, Iy, acquired with an echo time of

0, then we get the solution described by Lamberton et al. (2007):

However as mentioned earlier, this technique requires complicated spatial and

temporal unwrapping. Hahn et al. (2009) describe a technique to overcome
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this problem by making an approximation for the average phase in the image

(¢), in a time series of images, by using the following relation:
¢~ arg(l), (5.49)

where
. X
lzz“—’_l, (5.50)
j=t '

and N is the number of dynamics in the image data set. Taking the argument
of the sum of complex unit vectors in this way provides a rough approximation
to the mean phase, provided that the maximum phase difference between
dynamics isn’t too large. An approximation of the average frequency offset
due to magnetic field inhomogeneities can then be calculated, by subtracting
oo, as follows:

arg(i. 13)
TE

Aw =
If we define:
Sw(t) = Aw(t) — Aw (5.52)

where dw(t) is the difference between the resonance offset during the % ac-

quisition and the average resonance offset, this leads to :

N I*
2 10

arg | I(t) .
J=1

dw(t) =

R
TE (().t)vj)

This result no longer depends on [ and because the average phase is sub-
tracted from the phase for each dynamic, phase unwrapping is not required,

provided the difference between the phase for any given volume and the av-
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erage phase is less than 27, which is generally true apart from in the most
extreme cases. This method does not correct for static field inhomogeneity
effects, but can be combined with a standard dual echo time reference scan
to allow both static and dynamic effects to be corrected. An implementation
of this approach is described in Sections 5.3 and 5.5.

Hahn et al. go on to test what effect dynamic distortion correction has
on functional activation analysis in the presence of temporal A3, variations.
They measure this for both real and simulated data using standard Magnitude-
Only (MO) and the more recently developed technique of complex constant-
phase (CP) activation analysis. They conclude that dynamic distortion cor-
rection improves both the accuracy and power of activation analysis when
using a CP model and also, but to a lesser extent, when using a MO model.
They suggest that temporally varying field inhomogeneities can remove large
amounts of activation when carrying out CP analysis with only a static dis-
tortion correction regime and that the activation can be recovered when their
dynamic distortion correction technique is employed. They also recommend
arrying out dynamic distortion correction prior to motion correction to in-

crease the accuracy of the motion correction.



5.2. Introduction 111

5.2 Introduction

In the remainder of this chapter three studies are described. We start the
first study by experimentally determining the optimum AT F for an EPI based
dual echo time A By mapping acquisition at 7 T, in order to gencrate robust
A By maps with minimal phase wrapping. We then test the effectiveness of a
number of A By map filtering techniques, in order to reduce the impact of noise
and to extrapolate ABy values to regions with insufficient SNR available for
direct measurement. Following on from this, we implement a SPHERE based
distortion correction technique and test its effectiveness, on phantom and
human head data, in regions of both moderate and severe A3, inhomogeneity.
We then implement a technique based on the work described by Lamberton
et al. (2007) and Hahn et al. (2009), in order to carry out Al3, mapping on
a dynamic basis, and demonstrate how such a technique can be used to carry
out dynamic A By mapping and to monitor field variations, during a functional
hyperoxia experiment. Looking at field changes that occur, due to increased
oxygen levels in the sinuses, during periods of hyperoxia.

Building on the work from the first study, the second study in this chapter
describes the development stages and subsequent testing of a unique solution
that enables dynamic distortion correction of SE EPI data, by modifying a
SE-EPI sequence to acquire a GE-EPI image prior to the 1830° RF pulse. In
this work we demonstrate how the phase of the GE data, from such a dual
GE/SE EPI acquisition, can be used for dynamic field monitoring, allowing
simultaneous distortion correction of both the GE and SE EPI data.

In the final study, the SPHERE technique is modified so that the phase
evolution rewinding process is carried out on upsampled k-space data (as
recommended by Techavipoo et al. (2007)). in order to remove the aliasing
artefacts that are generated in regions of large ABy offsets, such as around
the sinuses. Using this, we demonstrate how a dual GE/SE EPI sequence

can be used in auditory and motor fMRI experiments to allow both GE- and
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SE-BOLD based activation analysis to be carried out, with dynamic field

monitoring and correction.
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5.3 Application: Dynamic AB;, measurement

during Hyperoxia

5.3.1 Introduction

When a sample composed of materials with different magnetic susceptibil-
ities is placed in an external magnetic field, a field perturbation is created at
the boundaries between regions of different susceptibilities. In in-vivo imaging
experiments this effect is strongest at air-tissue interfaces, due to the param-
agnetic and diamagnetic nature of oxygen and tissue respectively. Recently,
a number of groups have carried out functional studies in which the partial
pressure of inhaled oxygen was elevated (causing hyperoxia) in order to in-
crease venous oxygen saturation (Rostrup et al. 1995) thus modulating the
amplitude of the BOLD response. The results of these experiments have been
used to estimate venous cerebral blood volume (Bulte et al. 2007, Blockley
et al. 2012) and for BOLD calibration (Chiarelli et al. 2007). However, an
increase in the amount of inspired oxygen causes a corresponding increase in
the size of the field perturbation, A By, in regions close to the oral cavity and
sinuses. This can lead to unwanted variations in signal strength during pe-
riods of hyperoxia. It is therefore important to quantify the size of the field
inhomogeneities due to variation in oxygen content of the inspired air. In this
study we carry out ABy mapping on a dynamic basis to assess the nature of

the By variations that occur during a hyperoxia functional paradigm.

5.3.2 Method

Five healthy subjects participated in this study (age 22-28 years: three
males). Ethical approval was obtained from the University of Nottingham
Medical School Ethics Committee and all subjects gave full written consent.

Scanning was carried out on a 7 T Philips Achieva svstem, using a volume
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transmit head coil and a 16-channel receive coil (Nova Medical, Wilmington
MA).

End-tidal O, and CO, partial pressures were controlled and monitored
using a gas delivery breathing circuit (Respiract™, Thornhill Research Inc.,
Toronto, Canada).

The partial pressure of O, was modulated between the subject’s baseline
level of ~ 110 mmHg and 500mmHg (hyperoxia). The paradigm consisted
of 3 minutes of breathing normal air followed by 3 minutes of breathing air
with enhanced oxygen concentration, and a final 3 minutes at normal oxygen
levels. The paradigm was repeated twice.

Isocapnia was maintained throughout the experiment, at the subjects base-
line level (~ 40 mmHg). A single shot EPI acquisition, covering the region
from the level of the sinuses up to the top of the head (TR = 2.4s, TE =
25ms, SENSE factor = 3, voxel bandwidth in the PE direction = 41.5 Hz,
30 axial slices, 400 dynamics, 2mm isotropic resolution, matrix size 96 x 96),
was performed throughout the respiratory challenge. A dual echo time EPI
acquisition was also carried out (using TEs of 25 and 28ms with 10 repeats of
each TE), for mapping of the static ABy field prior to the acquisition of data
during the functional paradigm.

Initial tests were carried out during a separate session to calculate the
optimum ATE for the dual echo time EPI acquisition, using ATFE values
ranging from 1 to Sms. Data were acquired from a phantom and the human
head. 10 repeated measurements were made at each AT, and the standard
deviation of the results was then used to assess what the optimum ATFE was,
i.e. the shortest ATE that produced consistent results shot to shot. Short
TEs are essential to minimise the problems associated with unwrapping 27
phase wraps. The phantom data were acquired at 2mm isotropic resolution
with 10 slices and a matrix size of 64 x 64. The human head data were

acquired at 2mm isotropic resolution using a matrix size of 96x40, with the



5.3. Application: Dynamic ABy measurement during Hyperoxia 115

largest dimension in the readout direction. 20 slices were acquired. The
human head data results were also compared to the standard Philips, non-
EPI, A By mapping sequence (AT E of 0.5 ms) at similar resolution (2.5mm x
3mm) and slice coverage (20 slices).

To reduce the effects of noise a 7th order three dimensional polynomial fit
was applied to the ABy maps that were used in the hyperoxia experiment.

Dynamic phase information, collected during the hyperoxic challenge, were
combined with static field measurements to construct dynamically varying ab-
solute A By field maps; using the technique described in Section 5.1.5 (Lamberton
et al. 2007, Hahn et al. 2009). The magnitude of the voxel shifts due to hy-
peroxia were estimated by comparing the frequency of the hyperoxia-induced

field shifts to the voxel bandwidth in the phase encoding direction.

5.3.3 Results

A By profiles generated using a dual echo time EPI acquisition, are shown
across a phantom in Figure 5.9. In the left image, A3, profiles are shown for
5 different AT Es (using ATE values ranging from 1 to 5ms). The standard
deviation of the field maps which were generated using ATFE s of 1 and 3ms
are shown on the graph on the right.

A By profiles across a human head are shown in Figure 5.10. A, val-
ues generated using both a dual echo time EPI sequence (ATFE = 3ms) and
a standard Philips non-EPI dual echo time technique (ATFE = 0.5ms), are
shown. There is little difference between the NEX = 1 and NEX = 20 EPI
data, however local differences can be seen between the non-EPI and EPI
data.

The effectiveness of the sphere based distortion correction algorithin (see
Section 5.1) was tested by carrying out static distortion correction on phantom
data. The results for this are shown in Figure 5.11. The results for distortion

correction under more severe conditions are shown in Figure 5.12 (Based on
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Figure 5.9: ABj profiles across a phantom. Results were produced using the average
of 10 field maps, using data from a dual echo time acquisition. Left : Profiles from
field maps acquired using AT E's ranging from 1 to 5 ms. Right: Standard deviation
of the data acquired using AT Es of 1 and 3 ms.
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Figure 5.10: ABy profile across a human head. Results for both EPI and non-
EPI dual echo time acquisitions are shown. The EPI data is shown with both no
averaging (blue) and with averaging over 20 dynamics (red). The location of the
profile in the head is shown by the red line in the anatomical image on the right.

data acquired using the same phantom shown in Figure 5.11).
The effects of using different filtering/fitting methods on static A B, maps,
taken from human head data, using a slice taken at the level of the sinuses.

are demonstrated in Figure 5.13. Results produced using median filtering,
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Figure 5.11: GE EPI distortion correction with simulated phase evolution rewind-
ing: Phantom test results. The outline of a non-distorted anatomical acquisition
is shown in red for comparative purposes. The ABy maps are used to rewind
the effects of phase evolution due to the presence of field inhomogeneities using
the SPHERE technique, generating the simulated k-space data. Inverse Fourier
transformation of the simulated k-space data provides the distortion and intensity
corrected image data.

polynomial filtering and discrete cosine transform filtering are shown. The
difference between the filtered and unfiltered field maps are also shown to
highlight the accuracy of the different filtering techniques. A profile across

the sinus region is shown for each of these fits in Figure 5.14.
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Figure 5.12: Distortion correction of phantom data. The original distorted image
can be seen in B. The SPHERE corrected image can be seen in C. Signal drop out
can’'t be corrected using this approach. A plot of the measured field inhomogeneity
is also shown in A, the profile corresponds to the red dashed line going from left
to right in the distorted modulus image in B. The vertical red dashed lines in B
(and dashed black lines in A) represent the extremities of the AB, mask. Areas
outside this region (away from the centre of the phantom) were not used during
the polynomial fit, however the polynomial fits were extrapolated out away from
the edges of the phantom to reduce adverse edge effects. The polynomial fits were
calculated to 4th order in 2D.



Figure 5.13: Static ABy field maps. A: unfiltered field map. B - F : filtered field maps. G - K : difference between filtered and
unfiltered field maps. The following filters were used: B: 3x3 Median filter. C: Cosine transform filter. D: 4th order polynomial fit.
E: 7th order polynomial fit. F: 10th order polynomial fit.

(55

eIxotod A Sulmp juowanseaw 0gy otwreud(] uonyesrddy

611



5.3. Application: Dynamic A By measurement during Hyperoxia 120

150

100

AB() (HZ)

-100

=150, 20 40 60 80 100 120

Pixel Location

Figure 5.14: Profiles through A - F in Figure 5.13. It is clear that median filtering
struggles in regions with high noise levels (due to low signal). The location of the
profile is shown by the black line in Figure 5.13 A

The results for the frequency shift due to hyperoxia are shown in Figure
5.15. The field offset was found to be largest in the frontal sinus, up to 20 Hz,
representing a shift of ~50 % of a voxel. The frequency offset decreases with
distance away from the frontal sinus but does not drop to zero and affects
the whole brain. In a 5x5 voxel ROI positioned in the motor cortex, the
hyperoxia-based frequency shift was 3.1 0.2 Hz (mean + std over subjects),
~ 7% of a voxel. The results in Figure 5.15 show that the average field map
during the normoxia periods differs from the static field component. This
is brought about due to the fact that this dynamic field mapping technique
effectively measures the field offset relative to the mean field offset across time
(i.e. the mean of both the functional ON and OFF periods), hence the field
map averaged during the OFF periods is less than the mean. However, the
true dynamically varying field component can be easily found by subtracting
the OFF state field map from the ON state map.

Single subject time-courses, averaged over a 5x5 voxel ROl in the frontal
sinus (black) and the motor cortex (blue) are shown in Figure 5.16. An ar-
bitrarily scaled boxcar function describing the ON and OFF states of the

hyperoxic challenge is also shown.
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Figure 5.15: A By field maps during normoxia and hyperoxia for an example subject.
The AP direction is right to left in each image. Top row: Sagittal view. Bottom
row: Axial view.
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Figure 5.16: Dynamic ABjy measurements in 5x5 voxel ROIs in a region close to
the frontal sinuses (black) and motor cortex (blue). The functional paradigm for
the hyperoxic challenge is also shown (red).

A histogram of AB, values across time is shown in Figure 5.17 for an
example subject. Values were taken using data from the entire masked head
region. For clarity the scaling on the y-axis has been set to clip some of the

extreme A By values.
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Figure 5.17: 3D histogram displaying ABj as a function of time (calculated using
the entire brain region inside the brain mask (see Figure 5.18)). Each vertical line
is a 2D histogram of ABj values for a single dynamic. This serves to highlight both
the absolute shift in ABy values over time as well as the spread of values.

5.3.4 Discussion

The field maps that were used to determine the optimum ATFE for the
dual echo time acquisition, acquired using single shot EPI (averaging over 10
dynamics), are very similar for all AT FEs (1 - 5 ms) (Figure 5.9). Without
averaging, the field maps acquired using shorter ATEs (< 3ms) were less
consistent than those based on the longer AT FE values (> 3ms), with results
varying significantly; this is shown by the large standard deviation. The data
demonstrate that in order to acquire accurate field maps using single shot
GE EPI at 7T, when using only a few dynamic averages (to minimise the
acquisition time), it is preferential to use a ATFE of around 3ms. Above this

value there was little improvement in the standard deviation of the results.
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Figure 5.18: The mask region that was used for the 3D histogram data in Figure
5.17. The modulus data are also shown.)

Further at echo time differences greater than 3 ms the likelihood of phase
differences that are greater than 27 occurring, increases significantly, making
it necessary to apply phase unwrapping. In comparison, in a study at 2 T
Hutton et al. (2002) found a AT FE of 10 - 15 ms to be optimal when using GE
EPI to produce A By maps, as a result of the smaller field inhomogeneities that
are present at 2 T relative to 7 T. Indeed, simply scaling their recommended
AT E values by the ratio of the corresponding field strengths would equate to
a ATFE rangeof 2.9-43 ms at 7 T.

To determine the difference between EPI and non-EPI based AB; maps,
when using human head data, a conventional non-EPI based dual echo time
GE acquisition was also carried out. The EPI field maps were created using
a ATE of 3 ms whereas the non-EPI data were acquired using the standard
philips image acquisition technique using a ATFE of 0.5 ms. Figure 5.10 shows
profiles across the AB, maps for both acquisition methods. The EPI based
field maps show very little benefit from carrying out dynamic averaging, as
predicted by using a AT'E of 3ms. They also show very good agreement with

the data generated using the conventional non-EPI sequence. However there
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are a few points where significant differences can be seen (see pixel location
30 in Figure 5.10). To some degree these differences are expected due to the
fact that the EPI based acquisitions are acquired in distorted space, however
such extreme differences are not expected. The results show that the A3,
map created using the EPI data varies across space more smoothly than the
non-EPI data and since large to medium length scale B, inhomogeneitics are
generally smoothly varying functions, due to the way they are created, the
sharp features in the non-EPI profile are most likely due to there being regions
of low SNR. This may in part be due to the low ATFE that was used in the
standard Philips non-EPI sequence.

The accuracy of the distortion correction technique was assessed by scan-
ning a phantom using both a GE EPI acquisition and a conventional non-EP1
based anatomical imaging sequence and comparing the resulting images before
and after distortion correction (Figure 5.11). The outline of the undistorted
anatomical acquisition (red) clearly highlights the severity of the distortion
in the GE EPI acquisition. However redistributing k-space to rewind the ef-
fects of phase evolution, brought about due to the A, field, provides very
effective distortion correction of the EPI data. The distortion correction tech-
nique was also found to perform well in the presence of severe A By variations,
where, despite the magnitude of the distortions, accurate geometric distortion
correction was still achieved (Figure 5.12). This technique cannot however
correct for regions of signal dropout, such as in the bottom right corner of the
phantom. Further improvements to EP acquisitions in conditions such as this,
where there are large magnetic field inhomogeneities, could be accomplished
by employing SE EPI, because the refocusing pulse should reduce the sever-
ity of any signal drop out. However, a side effect of using a SE acquisition
with a refocusing pulse is that the ABy information in the phase data is also
refocused and so cannot be used to measure ABy. A solution to this problem

is developed in the next section.



5.3. Application: Dynamic ABy measurement during Hyperoxia 125

To reduce the contaminating effects of noise it is important to filter the field
maps. In this study we found that the optimum filtering method depended
upon the severity of ABj, more specifically, on its spatial rate of change.
The degree of smoothing that is required also depends upon the SNR of the
data, and consequently upon ATE, By field strength and a number of image
acquisition parameters such as voxel size. Hutton et al. (2002) assessed the
standard deviation of ABp in a homogeneous region of the field map and
found that the standard deviation decreased as the kernel size of a Gaussian
smoothing filter was increased, but that the effect was much less pronounced
when the field maps were generated using longer ATF s due to the increase
in SNR that occurs when longer ATE s are used.

The phantom data shown in Figures 5.11 and 5.12 indicate that low order
polynomial fits can effectively correct for significant distortions when they
are brought about due to large, but slowly varying B3, field offsets. However
when rapid spatial variations in ABy are present, such as around the sinuses,
low order polynomials are ineffective (Figure 5.13). For filtering in these
regions a median filtering technique can be used, however this does not work
in regions of signal dropout where instead higher order polynomials should
be employed. We have demonstrated that even in extreme cases, such as the
region around the sinuses during a hyperoxic study (with field offsets of up
to 100Hz), a 7th order polynomial fit can be used to accurately model the
A By variation (Figure 5.13). With the benefit that the fit to the field map
at any point is backed up by data from across the entire brain, leading to
robust estimations of the A By field even in regions of low signal. Using even
higher order polynomials provides little additional benefit and significantly
increases the overall computation time and memory requircments. To improve
speed and accuracy, the polynomial fitting was only applied to data within
a mask region, calculated by thresholding the modulus image data, with the

results then extrapolated out to cover the regions of missing signal intensity.
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We also demonstrate the use of a discrete cosine transformation technique
(Hutton et al. 2002) based on a robust method recently developed by Garcia
(2010). This automatically determines the amount of smoothing to apply by
using a generalised cross validation technique. The method provided robust
multi-dimensional smoothing and allowed the high spatial frequency variations
to be accurately fitted much more rapidly than with high order polynomial
techniques. The discrete cosine transform technique provided very similar
accuracy to the median filtering method but with the added benefit that it
can provide a reasonable fit in regions with missing data, such as at pixel
location 80 in Figure 5.14, where median filtering fails.

The results in this study have demonstrated the feasability of carrying
out dynamic A By mapping during a functional MRI acquisition, a hyperoxic
challenge, using just one additional reference scan. In a cross field study at
3 T and 7 T, Pilkinton et al. (2011) also mapped the change in A3, due
to hyperoxia, however they were limited to collecting A3y maps during a
separate functional run and with a significantly lower temporal resolution (5
A By maps for each of the functional ON and OFF periods) than the technique
that has been described here (75 ABy maps for cach ON and OFF period).
They also found the largest ABy effects in the frontal sinus.

The results demonstrate that the additional field shift due to the presence
of increased oxygen in the sinuses during the hyperoxia periods extends over
the whole head. The field offsets, due to hyperoxia alone, were found to bhe
largest around the frontal sinus (up to 20 Hz), representing shifts of around
50% of a voxel. Thus over a functional run the composition of spins within a
voxel, that make up the signal from the voxel as a whole, will vary significantly.
Near high contrast boundaries, the shifting of the boundary in and out of the
voxel could significantly alter the overall signal intensity in the voxel. This
task-correlated signal change may confound the results of studies looking at

how the BOLD related signal changes during hyperoxia. However, our results
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also show that the frequency offset decreases quite significantly with distance
away from the sinuses. In a 5x5 voxel ROI positioned in the motor cortex,
the frequency shift due to hyperoxia was found to be 3.1 £ 0.2 Hz (mean
+ std over subjects), representing a shift of ~ 7% of a voxel. In the visual
cortex the shift was found to be ~5% of a voxel. This magnitude of shift
will be less problematic, but may still confound the results of BOLD studies.
Further work needs to be carried out to assess what effect such dynamic voxel
composition changes will have on the data. This will likely depend upon
the local anatomical structure surrounding a voxel. It may prove useful to
model this using a digital phantom of the human head to determine where
the effect will be most significant. It may be possible to use dynamic distortion
correction, using the techniques described here, to correct for any such signal

changes.

5.3.5 Conclusion

We have demonstrated the ability to calculate dynamic Af3y maps using a
dual GE EPI sequence at 7 T using just one initial reference scan. We found
that an optimum ATFE of ~ 3ms should be used for the initial dual echo
time EPI acquisition in order to maximise SNR whilst minimising the scan
duration and severity of phase wrapping. We demonstrate that for accurate
filtering of the resulting field maps high order (7th order or above) polyno-
mials are required. However we also show that it is possible to use a discrete
cosine transform filtering technique to cope with even higher spatial frequency
variations in ABy. We demonstrate that dynamic A3y mapping can be used
to monitor field variations during functional hyperoxia experiments without
having to change the acquisition sequence. The results demonstrate that the
additional field shift due to the presence of increased oxygen in the sinuses
during the hyperoxic periods extends over the whole head. The field offsets,

due to hyperoxia alone, were found to be largest in the frontal sinus, around
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50% of a voxel, whilst shifts in the motor and visual cortices were found to be
approximately 7% and 5% of a voxel respectively. We recomnend that the
techniques described here should be employed during all hyperoxia studies to

monitor the induced temporal variations in AB,.
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5.4 Development of a Dual GE / SE EPI se-

quence

5.4.1 Introduction

In a SE EPI sequence the refocusing effect of the 180° RF pulse removes
any ABp information contained within the phase. It is therefore impossi-
ble to employ dynamic distortion correction using the methods described by
Lamberton et al. (2007) and Hahn et al. (2009) for SE EPI.

Here we develop a unique solution to circumvent this problem. We de-
scribe how dynamic distortion correction can be applied to SE EPI data by
modifying a SE-EPI sequence to acquire a GE image prior to the 180° RF
pulse and by then using the phase of the GE EPI data to monitor changes
in the magnetic field inhomogeneity. Since both the GE and SE images are
acquired simultaneously with identical readout gradients they show the same
distortions which can both be corrected. By exploiting parallel imaging we
demonstrate that it is possible to incorporate the additional GE EPI sampling
without increasing the echo time of the SE data to an unusable level. This
type of acquisition should be of particular value in fMRI studies where the
added information, due to having both GE and SE data, can be used to probe
the functional nature of the BOLD response in more depth. In this section
the development and testing of the modified dual GE/SE EPI acquisition that
is required for this technique is described. It is then outlined how this acqui-

sition scheme can be used for dynamic distortion correction of both GE and

SE EPI data.

5.4.2 Method

A standard single shot SE EPI sequence consists of a 90° RF pulse followed

by a 180° refocusing pulse. After the refocusing pulse a blipped EPI sampling
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module is employed to encode the data in k-space. The initial FID signal,
from the 90° RF pulse, is not sampled and decays away.

In the proposed modification to this sequence an additional EPI readont
module is added between the 90° and 180° RF pulses to sample the FID
signal so that both GE and SE EPI acquisitions can be acquired (Figure
5.19). The resulting phase information from the GE data is then used to
monitor field variations to allow off-resonance artefact correction of both the
GE and SE EPI data. All modifications were made to the standard Philips
SE EPI acquisition using the Philips GOAL-C programming language.

The main problem that had to be addressed throughout the development
of this sequence was ensuring that the sampling process of the FID did not
affect the generation and sampling of the spin echo.

To ensure that the GE phase data can be used to accurately correct the
A B, image artefacts of both GE and SE data, the two images have to be
acquired in the same distorted space. This was accomplished by ensuring
that the bandwidth (BW) of the encoding gradients were the same for both
acquisitions.

It should be noted that adding additional echo-planar imaging gradients
places a constraint on the minimum echo time that can be achieved for the
SE EPI because hardware restrictions limit the speed at which k-space can
be fully sampled. This can be problematic because if the echo time of the
SE is made too long the SNR of the resulting image will be too low for it
to be of use. This is a particular issue when imaging at ultra high ficld
strength due to the reduction of T, with increasing field, however this effect
is somewhat offset by the increase in CNR at high ficld strength.  Taking
advantage of recent developments in parallel imaging and coil technology, hy
employing a 32 channel receive coil, allows a work-around to this problem.
Having information from multiple coils allows parallel imaging to be used at

high acceleration factors. whilst maintaining a robust image quality. Using
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Figure 5.19: Top: Standard SE EPI sequence with blipped gradient EP1 sampling.
Bottom : Modified Dual echo GE / SE EPI sequence, incorporating two blipped
gradient EPI sampling modules and slice selective gradient reversal. The gradients
for the acquisition of the GE EPI are fully balanced.
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parallel imaging in this way means that less lines of k-space have to be acquired
in order to sample k-space fully, thus significantly reducing the length of the
EP sampling module.

We also add inherent fat suppression to the SE acquisition by reversing
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the polarity of the slice selection gradient for the 180° RF pulse, relative to
that of the 90° pulse (see Section 4.3.2).

Due to the spatial variation of the applied RF field, which is exacerbated
at high field, it is difficult to produce a uniform flip angle (FA) over the whole
sample when applying an RF pulse. Usually any deviations away from the
desired FA manifest themselves as a slight decrease in the signal strength,
when imaging using a GE sequence, and so this is not normally a significant
problem. However, in SE sequences any deviation of the refocusing pulse
away from 180° can cause additional signal pathways to exist (Bernstein et al.
1994). These can take the form of either stimulated cchoes or FIDs which can
contaminate the signal from the spin echo during sampling. If these are not
accounted for, the acquired data will no longer be a pure spin echo; changing
the contrast of the image. Here we remove these extra pathways by applying
crusher gradients either side of the 180° RF pulse. The gradient pulse applied
after the 180° RF pulse dephases the FID signal, whilst the gradient pulse prior
to the 180° RF pulse stops the true spin echo signal from being destroyed by
the FID crusher, by reversing its effects so that the net dephasing effect on the
spin echo signal pathway is zero. In the standard SE EPI sequence the first
crusher is combined with the slice selection rephasing gradient. However in
the modified dual GE/SE EPI sequence this is not possible as each slice has to
be rephased before the GE EPI is sampled and so an extra crusher gradient
had to be added in the slice selection gradient direction prior to the 180°
pulse. It is generally considered that a minimum phase dispersion equivalent
to 47 is needed across the slice for adequate signal reduction to be achieved
(Bernstein et al. 1994). The required crusher gradient area is given by the

following expression:

Ao
vAz'

Ap =
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where Az is the slice thickness and A¢ the required phase variation. The
maximum performance of the imaging gradients on the 7T Philips system (at
the time of testing this sequence) was a slew rate of 166 mT/m/ms and a
gradient amplitude of 33mT/m. Assuming a slice thickness of 2.5 mm gives
a value of Ag of 18.8 mT.ms/m. Assuming a trapezoidal gradient waveform,

the ramp and plateau times that are required to produce this are:

G (5.55

T = ¥ 2.0
TP glew rate )
Ag ‘

Tplateau = G = Tramp (55())

which gives a minimum ramp time of 7.4p,, = 0.20ms and a minimum plateau
time of Tpiateau = 0.37ms. This leads to a minimum crusher gradient duration
of 0.77ms. Due to the importance of these calculations a number of scans were
carried out using a range of gradient amplitudes to check that the calculations
were correct. For this, imaging was carried out with the 180° RF pulse turned
off so that only the signals that were generated via unwanted pathways were

encoded and assessed.

Results

A schematic of the final dual GE/SE EPI sequence is shown in Figure 5.20;

all the major elements that make up the sequence have been labelled.
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[n Figure 5.21 the effects of using different crusher gradients strengths are
shown (Using crusher gradient pulses of duration lms). The images in A-C
were acquired with the 180° RF pulse turned off and the images in D-F were

generated in the normal manner.

Figure 5.21: The effects of changing the strength of the crusher gradients either
side of the 180° RF pulse. In A- C the 180° RF pulse was turned off so that
the amount of signal remaining after the crusher gradient could be assessed. The

crusher gradient strengths were 10, 20 and 30 mT/m for A, B and C respectively.
D-F shows the corresponding SE images when the 180° RF pulse was applied.

An example dynamic generated using the optimised dual GE/SE EPI se-
quence is shown in Figure 5.22. The data were acquired using a TR of 3s,
matrix size of 96 x 96 and echo times of 18 and 65 ms for the GE and SE re-
spectively (2mm isotropic resolution). A parallel imaging SENSE acceleration
factor of 4 was used. The phase data from the images were first unwrapped
before being filtering to remove low spatial frequency changes; in order to

reveal local phase changes.



5.4. Development of a Dual GE / SE EPI sequence 136

Modulus Unwrapped Phase Filtered Phase

Figure 5.22: Example images generated using the dual GE/SE EPI sequence. Both
modulus and phase data are displayed.

Discussion

Images acquired using the dual GE/SE EPI sequence are shown in Figure
5.22. Both the GE and SE EPI data have high SNR. The added AB, infor-
mation can be clearly seen in the GE phase, both global (in the unwrapped
phase) and local variations (in the filtered phase) being evident. The refo-
cusing pulse in the SE sequence completely removes these effects. Parallel
imaging artefacts can be seen in the SE phase data due to the high SENSE
factor that was used, however these are not as strongly evident in the modulus
data.

The echo time of the SE acquisition was largely limited by the echo time
of the GE readout and the matrix size of the acquisition. However in the
example shown in Figure 5.22, where the GE echo time was set to 18ms,
which is slightly reduced from the optimal value of 25ms, it was still possible

to acquire the SE image with an echo time of 65ms. Both these echo times
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should be adequate for studies such as fMRI (indeed this is shown in Section
5.5 and Chapter 6). Further, the GE echo time could have been set to a
minimum of 15 ms, reducing the minimum possible SE echo time to 62 ms.
One possible solution to reduce the TE of the SE further (without changing
the image resolution) would be to re-order the k-space sampling so that the
central line of k-space is acquired first using a half-Fourier type acquisition,
where the conjugate symmetry of k-space is exploited to reduce the number
of k-space lines that have to be acquired. Depending on the matrix size
and SENSE acceleration factor that are used this could reduce the TE by
anything from around 5-10 ms (A line of k-space typically takes ~ 0.5ms to
acquire assuming ~ 128 points are sampled and typical bandwidths are used).
Alternatively a reduced size FOV could be used along with suppression slabs
to remove unwanted signal from outside the FOV.

Figure 5.21 shows the effect of changing the strength of the crusher gradi-
ents on either side of the 180° RF pulse. In A, where the gradient amplitude
was set too low, the signal from the unwanted pathways are clearly visible,
The effects of this appear as artefacts in image D. It is clear that the signal
contamination diminishes with increasing gradient amplitude, up to a point
where it is almost completely removed in image C. The signal contamination
could also be reduced by increasing the length that the crusher gradients are
applied for, however this would then increase the minimum TE that could be
achieved for the SE.

One problem with the current implementation of this sequence is its sus-
ceptibility to Nyquist ghosting artefacts, due to mis-alignment of k-space lines.
The standard SE EPI sequence acquires extra data without any phase encod-
ing, between the application of the 90° and 180° RF pulse. These data are
then used to correct for Nyquist ghosting by measuring the phase differences
between the non-phase encoded echoes. Based on the assumption that be-

cause there are no phase encoding steps, there should be no phase difference
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between the inverse fourier transform of each echo. Any differences that exist
are then likely to be constant or linear phase errors that will cause Nyquist
ghosting artefacts (Bernstein et al. 1994). These phase errors can be used
to correct for ghosting. As a result, Nyquist ghosting was observed on some
of the data that were collected during this work. However, this effect can be
remedied by applying post-processing based correction techniques (Buonocore
& Zhu 2001).

This type of dual echo sequence could be particularly beneficial in ftMRI
studies because the extra GE image can be used in conjunction with the SE
data for analysis of activation; allowing information on both the GE and SE
BOLD contrast mechanisms to be assessed. Further because both images are
acquired with a very small temporal separation, the temporal characteristics
of these BOLD response mechanisms can be directly compared. Problems
associated with registration of the GE and SE images, that can occeur dune to
the difference in contrast of the two images types, is also no longer an issue
with this dual acquisition. Dynamic motion correction could be carried out
on either the GE or the SE dynamic data sets, with the calculated motion cor-
rection parameters then applied to the other data set, making the assumption
that motion between the GE and SE data that occurs in the period between
the acquisition of the two central lines of k-space for the GE and SE EPI data

is minimal (i.e. most motion that occurs over a time of ~ 40 ms is negligible).
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5.5 Application: Dynamic Off-Resonance Cor-
rection of Simultaneously Acquired GE
and SE EPI data measured using a dual
GE/SE EPI sequence

5.5.1 Introduction

The development and testing of a dual GE/SE EPI sequence was described
in the previous section. This section now shows how this sequence can be used
to overcome the problems associated with carrying out distortion correction
on SE EPI data, i.e. the inability to measure A By when using SE EPI due to
the inherent lack of ABy information in the phase of the SE data. We extend
the Lamberton and Hahn (Lamberton et al. 2007, Hahn et al. 2009) techniques
to allow absolute and dynamic correction of simultancously acquired GE and
SE EPI data using the modified dual echo sequence. In addition the SPHERE
technique is modified to carry out phase evolution rewinding on upsampled
k-space data (as recommended by Techavipoo et al. (2007)) in order to remove
the aliasing artefacts that are otherwise generated.

To assess the effectiveness of this method, the spatial correspondence of
distortion-corrected 7T EP-images are compared with conventional anatomi-
cal scans. Further, an auditory fMRI experiment is performed to test whether
the technique can be used to carry out artefact correction in a real world
scenario, involving the auditory cortex, which is an area prone to significant
distortions (due to the presence of air-tissue interfaces in the sinuses). For

completeness a motor task based fMRI experiment was also carried ont.
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5.5.2 Method

All scanning was carried out on healthy volunteers using a 7T Philips
Achieva whole body scanner with a 16 channel receive coil. Auditory fMRI
was performed using sparse imaging, in which a 20-slice GE/SE EPI axial
volume was acquired in the first 2s of a 10s TR period. Sound stimuli, com-
prised broadband noise modulated at 10 Hz (~ 80 dB) presented for 20 s,
commencing ~ 5 s prior to the readout, followed by a 20 s bascline period.
This was repeated for 10 cycles. We used the dual GE/SE EPI acquisition
with a GE EPI echo time (TE) of 20 ms, and an asymmetric SE EPI TE of
58 ms (i.e. the central line of k-space was acquired at a time point slightly
offset from that of the spin echo echo time). Data were acquired at 2 mm
isotropic resolution using a bandwidth of 35.6 Hz/pixel in the PE direction,
and a SENSE factor of 2. Static ABy maps were generated using the dual
echo time technique with data acquired using a GE-EPI acquisition (10 vol-
umes, 5 at each echo time) and an echo time difference of 2 ms. These data
were acquired using the same scan parameters as the functional acquisition to
ensure the distortions were equal.

The SE data for the auditory experiment was carried out asymmetrically
because the study was performed during the development of the dual GE/SE
EPI sequence, at a point when symmetry for the SE had yet to be hard coded
into the sequence. However the exact same principles, of using the AR, data
from the first GE to correct for distortions for both data sets, still applies.

Subsequently. a motor-task based fMRI study involving bilateral finger
movement was carried out, using a GE TE of 14 ms and a symmetric SE TE
of 62 ms. Data were acquired at 2 mn isotropic resolution nsing a bandwidth
of 54.1 Hz/pixel in the PE direction. A SENSE acceleration factor of 4 was
employed. using a 32 channel receive coil and a TR of 7.5s. in which 20-
slice volumes were acquired. The motor fMRI study was carried out using a

fully developed version of the GE/SE EPI sequence with SE data acquired
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symmetrically.

All fMRI analysis was carried out using FEAT (FSL, Oxford, UK) with
motion-corrected data. No spatial smoothing was applied.

AB, field maps were filtered by removing high spatial frequency terms
from a discrete cosine transformation (Garcia 2010), so as to reduce noise and
edge effects.

The processing pipeline for the dynamic distortion correction of simulta-
neously acquired GE and SE EPI data is shown in Figure 5.23 (steps involving
the masking of data are not displayed). Phase information contained within
the GE EPI data of each functional acquisition is used to calculate how A /3,
varies over time relative to the mean A B, (Hahu et al. 2009). These dynamic
ABy maps are combined with the static ABy map to create dynamically
varying AB, maps that also include the contribution of static ficld inhomo-
geneities. The dynamic ABy maps are then used to rewind the effects of phase
evolution, due to the presence of field inhomogeneities, for both the GE and
SE EPI data. This is accomplished by generating artificial (or simulated) k-
space data using the original k-space data from the GE and SE EPI scans and
the measured ABg results. Inverse Fourier transformation of the siimulated
k-space data provides the distortion and intensity corrected image data.

The phase evolution rewinding process used by the SPHERE techuique
effectively phase encodes the image with an extra phase term that cancels out
the additional phase that was imparted due to the presence of field inhomo-
geneities. This allows an undistorted image to be constructed by taking the
inverse Fourier transform of the rephase encoded image. However problems
with this technique can occur when ABy is too large because the additional
simulated phase encoding can cause significant ripple like artefacts in the re-
constructed image due to re-gridding effects (Chion et al. 2003). Techavipoo
et al. (2007) developed a technique to correct for this by upsampling k-space

prior to phase evolution rewinding. They found that an upsample factor of 4
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in the PE direction was optimum (See Figure 3 in Techavipoo et al. (2007)).
Since we expect the regions surrounding the sinuses to be affected by rol-
atively large magnetic field inhomogeneities we also employ this technique;
using their recommended upsampling factor of 4.

To aid the visual assessment of the effectiveness of the artefact correction
technique, outlines of major anatomical contrast boundaries were drawn on
a selection of slices from the motor fMRI data, using images acquired with

anatomical acquisitions as guidance.
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5.5.3 Results

[n Figure 5.24, both distorted and undistorted GE and SE EPI data are
shown for one axial slice in the head. Significant distortions due to off
resonance field effects are present in both the uncorrected GE and SE EPI
data and are successfully removed after distortion correction. The effects of
k-space upsampling can also be seen; the corrected data are displayed with
k-space upsampling factors of 1 (i.e. no upsampling) and 4. Upsampling k
space in the phase encoding direction successfully removes the banding like
artefacts that can be seen close to the sinuses in the data processed without

upsampling.

Undistorted Undistorted
Distorted (no upsampling)  (upsampled)

GE EPI

SE EPI

Figure 5.24: Distorted and undistorted GE and SE EPI data are shown using a
slice at the same level as the sinuses. Distortion corrected images are displaved
both without k-space upsampling and with an upsampling factor of 4. Significant
distortion can be seen on the left of the brain (red arrows) in the undistorted data.

Results from the auditory fMRI experiment can be seen in Figure 5.25.
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Distorted and undistorted data are shown for both the GE and asymmetric
SE data. An anatomical acquisition is also displayed and overlaid with fNRI

data from the asymmetric SE acquisition.

GE EPI SE EPI Anatomical

Distorted

Undistorted

Figure 5.25: Auditory fMRI. Both distorted and undistorted GE and SE EPI data
are displayed with overlayed fMRI activation. The SE fMRI data is also shown
overlayed onto an anatomical scan.

The effectiveness of the distortion correction of the SE EPI data is demon-
strated in Figure 5.26 for two axial slices. A selection of high contrast bound-
aries. drawn using data from the anatomical scan, are displayed (in red) to
allow visual assessment of the accuracy of the distortion correction.

fMRI results from the motor task experiment are shown in Figure 5.27. A
number of slices are displayed for both the GE and SE EPI data. Results are
shown before and after distortion correction. fMRI activation results (after

clustering using TFCE) are overlaid on the EPI data.

5.5.4 Discussion

We have demonstrated that absolute and dynamic distortion correction

can be successfully applied to both GE and SE EPI data using a dual GE/SE
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SE EPI Unscgs'lciolgtled Anatomical

Slice A

Slice B

Figure 5.26: SE EPI distortion correction. Both original and undistorted SE EPI
data are shown alongside an anatomical scan for two different slices. An anatomical
outline. taken from the anatomical scan, is shown in red.

SE EPI

Distorted

Undistorted

Figure 5.27: Motor fMRI: Distorted and undistorted GE and SE EPI data are
displayed with fMRI activation overlayed on top.

EPI acquisition and just one initial reference scan.

We found that the addition of extra echo-planar encoding gradients be-
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tween the 90° and 180° RF pulses increased the minimum echo time that
could be achieved for the SE data (dependent on the matrix size). However
the accessible echo times fell in a good range for fMRI, as highlighted by our
fMRI experiments.

In Figure 5.24, both GE and SE EPI data are shown for one axial slice
in the head. Significant distortions due to off-resonance field effects were
present in both data sets (see left side of brain). After distortion correction
these effects are almost completely removed. Without k-space upsampling a
banding like artefact can be seen close to the sinuses where there is a large
A B,y inhomogeneity. However upsampling k-space to 4 times its original size in
the phase encoding direction, before carrying out phase evolution rewinding,
successfully removed this effect. It is important to note that upsampling the
data in this manner significantly increases the post-processing time of the
technique (by over an order of magnitude!).

Results from the auditory fMRI experiment are shown in Figure 5.25. The
most significant effects of distortion correction can be seen around the sinuses
due to the large static field variations in this region. The mean A3, field
inhomogeneity in the functional ROI in Herschel's gyrus was found to be
~ 23 Hz, leading to a sub-pixel shift in this region. However INRI analysis
after dynamic distortion correction appears to show better alignment with
the gray matter. This will have to be verified in a larger study with a larger
cohort.

The effectiveness of the technique for correcting for the large static A3,
induced distortions can be seen more clearly in Figure 5.26. These images
clearly demonstrate that anatomical outlines of the brain match the corre-
sponding anatomical features in EP-images more accurately after distortion
correction is carried out.

For the motor task, significant tMRI activation can be seen in both the

GE and SE EPI data in both the distorted and undistorted data. The more
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diffuse nature of the GE BOLD response can be clearly seen. Despite these
promising results it remains for future work to determine whether dynamic
distortion correction of simultaneously acquired GE and SE EPI data improves
the functional power of activation analysis. This may largely depend upon the
functional task that is being carried out and where in the head the functional
area is relative to the anatomical regions where large susceptibility changes
are expected; such as near the sinuses. It may also depend upon the type
of fMRI activation analysis that is carried out. Indeed, in a study looking
at dynamic distortion correction of GE EPI data, Hahn et al. (2009) found
dynamic correction to be beneficial, in terms of increased statistical power in
fMRI studies where complex data is used for activation analysis instead of the
more commonly used modulus data. They also found that dynamic distortion

correction improved subsequent motion correction.

5.6 Conclusion

A technique that allows image artefacts, produced due to off-resonance
field effects, to be corrected on a dynamic basis for both GE and SE EPI data
when scanning using a dual GE/SE EPI sequence has been described. The
use of the sequence and method for dynamic distortion correction has been
demonstrated for both auditory and motor fMRI data. Using the technigues
developed here, we have provided a method that allows accurate dynamic
distortion correction to be applied to both GE and SE EPI data using just
one initial reference scan. These corrections provide improved alignment to
anatomical data, which may be particularly advantageous for techniques such

as cortical flattening of activation maps.



Chapter 6

Dual GE/SE EPI : Resting
State Functional Magnetic

Resonance Imaging

6.1 Background

The human brain consumes approximately 20% of the body's energy vot
makes up only 2% of its mass (Raichle et al. 2001). This vastly disproportion-
ate energy consumption per unit mass, relative to the rest of the body, can be
attributed to the large metabolic demands of the brain that are required to
support ongoing intrinsic spontaneous neuronal activity (Fox & Raichle 2007).
It has been postulated that this resting state baseline activity is associated
with a number of processes that have to be controlled continuously. snch as
the control and monitoring of internal processes in the body. Larger more ab-
stract baseline level mechanisms, such as alertness to the surrounding world,
may also require the co-ordination of a large number of functional regions in
the brain.

Until recently. most fMRI studies have concentrated on assessing how the

brain’s function, whilst a specific goal-related task is being performed (e.p.
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finger movement) differs from its function when the brain is at rest (Friston
1996, Logothetis et al. 2001, Yacoub et al. 2005, Harmer et al. 2011).

More recently there has been interest in the underlying changes in brain
activity whilst at rest. In the field of fMRI there have been some question as to
whether this functional activation is indeed due to the presence of underlying
neuronal processes, as it may instead be brought about as a result of other non-
neuronal BOLD related metabolic responses, like variation in cardiac output
(Mitra et al. 1997, Lowe et al. 1998, Cordes et al. 2000). Such problems
can arise because the low sampling frequency, typically used in fMRI, may
cause aliasing of cardiac and respiratory effects into the low frequency ranges
associated with the BOLD response (De Luca et al. 2006). Cordes ot al.
(2001) suggested that it is only these low temporal frequencies that contribute
significantly to regionally specific BOLD correlations. However, work carried
out using fMRI at high sampling frequencies has shown that low frequency
fluctuations, associated with the BOLD response, are still present even when
this type of aliasing is not problematic, somewhat negating this fear (Biswal
et al. 1995, Lowe et al. 1998). This is further supported by a munber of studies
that show a correlation between low frequency BOLD signal fluctuations and
variations in electrical activity detected using EEG (Goldman et al. 2002,
Laufs et al. 2003).

In an early paper by Biswal et al. (1995), fMRI was used to detect the
BOLD response to these spontaneous neuronal processes. This involved us-
ing correlation analysis to compare the similarity of voxel-wise time-courses.
These authors found that low frequency fluctuations, < (0.1Hz, in the resting
state of the brain, in somatosensory regions, had high temporal correlations
at a number of spatial locations known to be associated with motor func-
tion. They suggested that the high correlation between these regions was an
indication of the existence of a resting state network.

A confounding factor in the detection of these resting state networks (RSN)
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is the difficulty in knowing whether or not the brain is at rest or is involved in a
conscious task-related thought process, for example making plans or imagining
playing a sport. To circumvent this problem Raichle et al. (2001) defined a
baseline state, using quantitative Positron Emission Tomography (PET), by
studying the relationship between oxygen delivery and utilisation; specifically
the oxygen extraction fraction (OEF). They demonstrated the uniformity of
the OEF during a resting state acquisition, and postulate that the mean OEF
represents the metabolic equilibrium state, when the brain is in its resting
state. They suggest that any regions showing a significant deviation from the
mean OEF represent areas undergoing task-related brain activation. They
also detect a reduction in the baseline activity dufing task-based studies in
midline areas of the brain (specifically the posterior cingulate, precuncus and
medial prefrontal cortex). Noting that damage to these regions is known to
lead to difficulties in perceiving the visual field as a whole, this finding provides
evidence that resting state networks in these areas are related to processes that
keep us alert to the surrounding world. Using this definition, Raichle et al.
(2001) describe a default mode network of brain function that involves arcas
such as the posterior cingulate, precuneus and medial prefrontal cortex.

In a review article, Gusnard & Raichle (2001) concluded that resting state
networks, found in the posterior cingulate cortex and precuneus, are associated
with the brain’s continuous monitoring of the world around us, for example
for the detection of nearby predators. They also go as far as to suggest
that resting state networks may provide organisms with a stable sense of
perspective relative to the external world, i.e a "self’.

More recently, f{MRI has widely been used to detect this default mode net-
work (DMN), somewhat negating the earlier concerns regarding the confound-
ing affects of unwanted task related activation (Greicius et al. 2003, Buckner

et al. 2008, Bluhm et al. 2009, Hale et al. 2010).
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6.1.1 Resting State Network Detection

Most of the early fMRI studies to detect resting state networks utilised
correlation-based analysis techniques (Lowe et al. 1998, Cordes et al. 2000, Fox
et al. 2006). These methods require the selection of an initial sced location
within a resting state network, which is usually taken as cither a single voxel
or, to reduce the effects of noise, the average time-course from an ROL of
voxels. Once the seed location is selected, a Pearson correlation coctheient
is then calculated between the time-series of the seed region, and that from
each of the individual voxels, on a voxel-wise basis; providing a mecasure of
the covariance of the time-series (normalised by the product of their standard
deviations). The resulting correlation coefficient maps are then thresholded
using the required p-value (typically around 0.05) and, following the applica-
tion of Bonferroni multiple comparisons correction factor (to account for the
large number of voxels within an MR imaging volume), used to generate an
image that shows which regions of the brain are significantly correlated with
the seed region.

A significant problem with such a-priori seed selection is that it relies on
the assumption that the seed voxel time-course is a good approximation to the
time-course of the network (Beckmann et al. 2005, Kiviniemi et al. 2003, Van
De Ven et al. 2004, De Luca et al. 2006). This may not necessarily be the case
due to the arbitrary nature of seed selection and because the seed time-course
can be comprised of a superposition of signals from different sources such as
spatially varying artefacts, which may not be present at all locations in the
network.

To circumvent this problem. a number of groups use independent compo-
nent analysis to separate a signal into a number of additive lincar subcom-
ponents that are maximally statistically independent of each other (Comon
1994). This can be accomplished by minimisation of the mutual information

contained within the signals. Beckmann & Smith (2004) extend the [CA tech-
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nique to include a gaussian noise term in the model to avoid problems associ-
ated with over-fitting of the data and to allow Z-score maps to be generated
(probabilistic independent component analysis or PICA). Their modification
allows the overall problem to be solved using a technique similar to the GLM,
with the major difference being that the mixing matrix, analogous to the de-
sign matrix in GLM, is determined using the data itself. As these techniques
are data-driven, i.e. are not looking for a specific time-course shape, they also
allow the detection of signal correlations that occur due to unwanted signal
artefacts. Beckmann et al. (2005) showed that even when imaging at a rela-
tively long TR of 3 s (where respiratory and cardiac effects can be temporally
aliased into the low frequency regions in which the resting state networks lie),
ICA can effectively separate cardiac and respiratory effects from those effects
that are of interest. For example, Cole et al. (2010) concluded that spatial
overlap between the DMN and respiratory artefact regions, detected using
ICA, are generally fairly small. In comparison seed-based correlation analysis
(SCA) techniques can be severely affected by signal artefacts, often to the
extent where meaningful correlation analysis is impossible.

Non-BOLD related signal fluctuations can be a major confound in the
analysis of resting state data. In a 7 T study, Bianciardi et al. (2009) look
at how much variance in the resting state signal can be explained by non-
neuronal sources. Their results showed that low frequency drift (< 0.01 Hz),
attributable to scanner instability, accounted for ~35% of the total variance
within the grey matter (equating to a 3.2% signal change). For this reason, it

is vitally important to remove these effects before analysing the data.

6.2 Introduction

Spontaneous, low frequency fluctuations in connected resting state noet-

works have been identified in T;-weighted GE BOLD data (Biswal ot al. 1995,
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Lowe et al. 1998, Cordes et al. 2000, Fox et al. 2006). One such network is the
default mode network (DMN) which comprises the medial prefrontal cortex,
posterior cingulate, precuneus and parietal cortex (Raichle et al. 2001).

At 7 T, the increase in the sensitivity of SE BOLD contrast, compared to
lower field strengths, means it can be used for functional imaging. Applying
SE BOLD to study resting state data potentially allows RSNs to be detected
with a higher spatial specificity to the underlying microvasculature. Sk-EPI
has the added benefit that it is insensitive to signal-dropout due to through-
slice dephasing. Studies have indicated that there may be a disruption to the
DMN in a range of neurological and psychiatric disorders such as Alzheimers,
autism and depression (Jin et al. 2011, Buckner et al. 2008, Bluhm ¢t al. 2009).
Thus knowledge of the DMN may be of practical use in these fields of research.
Any added spatial specificity that may be brought about through the use of
the SE BOLD response will also be beneficial.

This study therefore aims to use a modified dual GE/SE EPI scquence
at 7 T to identify functional connectivity maps in both SE- and GE-BOLD
data. Correlated fluctuations in T3- and Ty-weighted images across multiple
echo times in the DMN and other areas are assessed.

A novel technique for measuring the ratio of the changes in relaxation rate
on activation in gradient and spin echo data (6§ R3/d R.), based on resting state
signal fluctuations in the DMN, is also described. This is the first time that

the spin echo AR, has been measured in resting state data.

6.3 Methods

6.3.1 Data acquisition

Data were collected on a 7 T Philips Achieva System using a volume
transmit and 32-channel receive coil. A dual GE/SE EPI sequence was im-

plemented by modifying a SE EPI sequence (as described in Section 5.4) to
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acquire a GE image prior to the 180° RF pulse so as to allow the almost
simultaneous acquisition of GE and SE images (temporal separation ~50ms,
dependent on echo time). The sequence was used to collect 150 volumes of
GE and SE EPI resting state fMRI data on 5 subjects. Each volumne com-
prised 16 axial slices spanning a region from the ventricles to close to the top
of the brain. Images were acquired at 3 mm isotropic resolution using a band-
width of 56.6 Hz/pixel and a TR of 3 s (SENSE acceleration factor 2). The
functional data acquisition was repeated four times allowing the collection of
GE/SE images with echo time pairs of 17/60, 22/70, 27/80 and 32/90 ms.
Inversion recovery (IR) images (10 inversion times ranging from 100 to 2000
ms) were also collected to allow tissue segmentation.

To circumvent problems associated with a-priori seed selection, a sophis-
ticated multivariate probabilistic independent component analysis technigne
(PICA) was employed in this study; implemented using MELODIC (FSL, Ox-
ford, UK) (Beckmann & Smith 2004). Each data set was analysed using a
range of different total ICA component numbers, from 30 to 120 components.
The resulting component maps were then visually studied for the presence of
resting state networks. The optimum number of ICA components was visu-
ally determined on a scan by scan and subject hy subject basis by identifying
which number of components detected the most resting state networks with

the least network splitting.

6.3.2 Filtering

For ICA analysis low frequency drifts were removed using a Gaussian
weighted local straight line fit to the data (Marchini & Ripley 2000). im-
plemented as part of the MELODIC software package. To improve image
SNR. the functional data was smoothed to Suun isotropic resolution nusing a
Gaussian kernel before the ICA analysis.

For the voxel-wise results, such as the correlation analysis, low frequency
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drifts were removed by detrending the data. This involved fitting a 2nd order
polynomial to each voxel’s time series and then subtracting this fit from the

data. This allowed any drift in signal to be removed on a voxel-wise basis.
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Figure 6.1: Low pass filtering. A : An example voxel time series B: The correspond-
ing spectrum. C : The signal after contamination with a 0.14Hz cosine signal. D
: Corresponding frequency space; the additional noise can be clearly seen. E :
The filtered contaminated signal (black line) after removing any frequencies above
0.12Hz in frequency space and applying an inverse Fourier transformation. The
original signal is also shown (red line) alongside the difference between the original
and filtered signal (blue line). F The masked region of frequency space (red line).

To reduce the effects of high frequency noise, low pass filter was applied
before the voxel-wise correlation and fractional signal change analysis (Figure
6.1). This was accomplished by setting frequencies above a cut-off frequency
(0.12Hz) to zero. The cut-off frequency was chosen in order to preserve the
BOLD related response (expected to occur at frequencies less than 0.12Hz
(Biswal et al. 1995)) whilst removing higher frequency noise. The first and
last points in each time series were then removed to reduce the ringing effects

that can occur when using this type of filter.
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6.3.3 T/ T;/ T maps

T, and T; maps were created by calculating the mean signal across all
volumes during the functional acquisitions in a voxel-wise fashion for each
echo-time, for both the SE and GE images respectively. A lincar fit was
then carried out to determine the signal intensity variation with echo time, as
described in Section 2.5.7. Calculating T> and T maps using the data from
the functional acquisitions removed the necessity for carrying out additional
spatial registration which would be required if separate scans were used to
measure these maps.

T, mapping was carried out using an inversion recovery sequence as de-
scribed in Section 2.5.7. The problem associated with noise rectification
around the zero crossing point was assessed. To test the size of this effect
a fit was performed to a noisy simulated recovery curve using both the trne
polarity (real) and modulus data, using a simulated T\ = 1.5s and M, = 100
(Figure 6.2). The fitting procedure was repeated 1000 times. The T and A,
values, calculated from the fits, are shown in Table 6.1. A slight increase can
be seen in the T; values that were calculated using the modulus data, however
this effect was considered too slight to significantly effect the results in this

study.

Fit method Ty (s) My (arb)

True data  1.502 (0.003) 99.965 (0.186)
Mod data  1.518 (0.004) 99.898 (0.189)

Table 6.1: T; and Mg results taken from exponential fits to simulated inversion re-
covery data. using both the true polarity data and modulus only (positive polarity)
data. The average results are shown from 1000 repeat runs.
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Figure 6.2: An example of the problems that can arise when fitting to modulus
data using simulated data with added Gaussian noise (SNR 20). The black crosses
represent the points at which the signal was sampled. The solid black line displays
the true theoretical signal recovery curve (T} = 1.5s, My = 100). The dark blue
line shows the best fit that was obtained using the modulus data (7, = 1.60s,
My = 97.9) and light blue line using the true data (71 = 1.54s, My = 98.1) (from
the left plot).

6.3.4 Masks

In order to assess the nature of the resting state SE/GE signal variations,
a number of different ROIs were scrutinised. An ROI was created for the
DMN by visually identifying the ICA components that corresponded to the
DMN (with reference to the literature) for each functional run. These were
then used to create masks for both the GE and SE BOLD data with different
masks created for each of the functional runs (i.e. for each echo time pair).
Masks where then first eroded and then dilated, using a disk kernel with a
diameter of 3 pixels, to remove small noisy cluster regions. A common mask
across echo times was then generated for each subject, for both the SE and
GE data. by combining the separate masks and choosing voxels that were
common to at least 3 of the 4 echo times (Figure 6.3). A further mask that
was common to both the combined GE and SE DMN masks (COM) was
created via multiplication of the two binary masks. Gray matter masks were

also produced for each subject by thresholding the calculated T} maps, with
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the threshold level determined via visual assessment of the resulting masks.

TE, TE, TE3 TE,4
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Figure 6.3: Processing pipeline for the DMN ICA based mask creation. GE ICA
DMN masks that were created by carrying out ICA on the functional acquisitions
acquired at each of the four different echo times, are shown for a representative
subject (Top row). The mask common to all four masks is also shown (bottom
left). along with a mask representing voxels common to at least 3 out of the 4
masks (bottom l'iL‘,llT }e

GE/SE Correlation Analysis

To assess how the signal fluctuations in the GE data related to those in
the SE data, a correlation analysis was performed between each dual GE/SE

lmage pair on a voxel-wise basis.
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6.3.5 Resting state GE/SE signal fluctuations

The relative fractional signal change in the GE and SE BOLD data, set
by the ratio of the change in relaxation rate dR} or R, to the relaxation
rate R, or R;, was also calculated by considering how the fractional signal
change varied with TE for both the SE and GE data. The steps taken to allow
this calculation in the absence of a task-driven functional paradigm, and the
assumptions made are described below:

First we must consider the signal detected using GE and SE imaging sc-

quences:

See = Spe ™ Farth

Ssr = aSpe~ T Esele

where a takes into account effects such as the imperfect nature of the 180°
RF pulse and diffusion. Fluctuations in the GE signal can be attributed to
variations in Rj and Sy (0R} and 0Sp) and noise. Similarly, SE fuctuations
can be described by variations in Ry and aSy (6 R, and d(aS,)). Due to the
nature of the BOLD response one would expect d R} and 0 R, to be correlated,
and that 65y and &(aSp) would also be correlated. The signal Huctuations

can then be described by:

SGE = (So + 650)€‘TE(:E(R;+6R;) +n ((5.3)

Ssg = (Sp + 0(aSp))e~ TEar(ferolts) 4 N (6.-1)

where n and .V represent the thermal noise in the GE and SE signals respoc-
tivelv. For conciseness. in the following derivation only the case for the GE
signal is detailed. since the method described can be applied in both cases,

the final result for the SE case is quoted. If we approximate the GE signal by
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considering only terms to first order in § R5 and 4.5, this gives:
See = (So +8S)(1 — TE.6R3)e™TERE 4 (6.5)
which can be expanded to:
Sce = Soe  TER + §Spe™TER: — S, TESRye THR: 4y, (6.6)

By setting SpeTE-F2 = (Sgg) and calculating the fractional signal change:

Sce
dRgE = -1 .
S T (6.7)

We get the following relation:

85, .
SRge = — — TE.6R}) +

5 (6.8)

n
(S(.'E>

Calculating the variance of the fractional signal fluctuations then gives :

Var (§Rge) = Var ("S ) + Var (~TE.8R}) + Var ( "
SO <b( e >

85, 35Sy
+2.Cov ( ° _TESR: ) +2.Cov ("S —-’-’-—> (6.9)
SO <LS( N >

+2.Cov ( ~TE.0R;, S n >)
GE

Assuming that fluctuations in ?OQ and Rj do not correlate with thermal noise,
n. and that the mean values of J R;, %‘? and n are equal to 0, this gives the

following result:

(6Ra) = <("j) > STE(GR) +

~2TE <5q 532>

(6.10)
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If we assume the correlations between 4.5y and ¢ R} are small then this results

in:

n? ) 2
(FRae)) — >=<(%) >+TE2<(6R;>2> (6.11)

Similarly for the SE case, with the added assumption that ﬂ%‘"—’z = ﬂg‘—’l, this
20 20

gives:

9 2
(6Rs)?) — AN0) =<(5Si) >+TE2<<61ez>2> (6.12)

Thus it is possible to plot the mean of the squared fractional signal change
(minus the thermal noise term) as a function of the square of the echo time.
As BOLD signal fluctuations tend to occur on time scales of approximately
5-8s. assuming a relatively short TR is used along with low pass filtering, the
influence of the thermal noise term should be minimal (Triantafyllou et al.

2010) and can thus be ignored:

((6RgE)?) =~ <(%§09) > + TE*{(0R3)?) (6.13)

2
{(6RsE)?) = <(§%) > + TE*(0R,)*) (6.14)

|6R3| and |dRy| can therefore be determined by calculating the gradients of
linear fits of the mean of the squared fractional signal change as a function of

the square of the echo time, via regression analysis.
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6.4 Results

Dual GE/SE EPI acquisitions were used for successfull identification of
the DMN in both the SE and GE BOLD resting state data in all subjects.
Example DMN ICA maps for all 5 subjects are shown in Figure 6.4 (one GE
and SE echo time pair is shown for each subject), with the thresholded ICA
results shown overlaid onto the temporal mean of the corresponding functional
scan. The spatial characteristics of the DMN, with nodes in the medial frontal
cortex, posterior cingulate, precuneus and parietal cortex, as described in the
literature (Raichle et al. 2001, Smith et al. 2009, Buckner et al. 2008), can be

clearly seen.
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Figure 6.4: Example DMN components from [CA analysis are shown for all subjects
overlaid onto the mean of the corresponding functional scans. Robust networks can
be seen in both the GE and SE BOLD data.
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The only effective method of calculating the optimum number of ICA
components, in order to detect functional networks in the presence of signal
artefacts whilst minimising network splitting, was to analyse each data set
multiple times. For each run a different number of components was used,
with the optimum number of components manually identified after processing.
Consequently the number of components used ranged from between 40 and
120 depending on the data set. An example of some of the spatially correlated
artefacts that were picked out using ICA are shown in Figure 6.5, while an
example of the problem of network splitting can be seen in Figure 6.6, where
[CA has split the DMN across two components. This can be better visualised
when the ICA components are binarised and then overlaid onto one image

(bottom image in Figure 6.6).

Comp. A

Comp. B

Figure 6.5: Two ICA components displaying image artefacts. The artefact in com
ponent A is most likely due to head motion during the functional acquisition (despite

motion correction).

A number of other functional networks were detected during data analysis
and are shown in Figure 6.7 for GE BOLD networks and Figure 6.8 for SE
BOLD networks.

The variation of the GE and SE BOLD responses with TE can be seen in
Figure 6.9. Analysis was carried out using the average signal in the respective

S)

GE and SE ICA masks. Two methods. and ‘\:. were used to characterise
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Comp. A

Comp. B

Mask (A+B)

Figure 6.6: Two ICA components, calculated using a single functional data set,
both displaying parts of the DMN. This network splitting can arise when trying to
separate the data into too many statistically independent components nsin.;; ICA.
In the bottom image a mask of the two networks is shown, with component A in
red. component B in blue and the overlapping regions in white.

the fluctuating BOLD signal.

For the first method we use the standard deviation of the signal over time
to characterise the signal fluctuations (Figure 6.9). For the second method
we use the difference between the maximum and minimum signal intensities
present in the filtered time series, AS, as an indicator of the magnitude of
signal fluctuations. In both cases the signal variation was scaled by the average
sicnal intensity. Both methods produced results that show an increase in
relative signal variation with echo time.

The average Ty, T and T} values in each of the ICA DMN mask regions

are given in Table 6.2.

ICA Mask T, T Ts
GE 1676 (17) 43.9 (1.2) 27.5 (1.5)
SE 1691 (14) 42.7 (1.0) 26.9 (1.3)
COM 1733 (28) 43.1(1.4) 27.6 (1.8)

Table 6.2: T5. T3 and T} values in each of the ICA mask regions. Times arc in ms
along with the standard error.
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Figure 6.7: GE BOLD based resting state functional networks, detected using ICA.
A: Motor network B: Network in the occipitotemporal (BA 37) and precentral (BA
1) areas C: Visual network D: Dorsal Attention Network (DAN) E: Dorsal Attention
Network (Mirror of D) F: Somatosensory network
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Figure 6.8: SE BOLD based resting state functional networks, detected using [CA.
A: Motor network B: Network in the occipitotemporal (BA 37) and precentral (BA
1) areas C: Dorsal Attention Network D: Visual network
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Figure 6.9: Changes in the BOLD signal vs TE for GE and SE data, using the
average signal from each ROI. The average result across subjects is shown, along
with the standard error. Two different measures are used to characterise the BOLD
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The percentage overlap between each functional ICA mask and the GM
mask (determined by thresholding each subjects T1 map) is shown in Table
6.3. The SE and COM ICA masks were found to contain a significantly higher
number of voxels in GM than the GE ICA masks (with p-values of 0.0361 and
0.0228 respectively).

ICA Mask Percentage of Mask in GM

GE 66.21 (2.03)
SE 72.18 (3.40)
COM 73.44 (3.43)

Table 6.3: The percentage of voxels in each functional ICA mask that are also in
the GM mask (average across subjects, showing the standard error).

The mean correlation coefficient in each of the mask regions (calculated
from the voxel-wise correlation of the GE and SE time-courses) are shown in
Table 6.4. The statistical significance in correlation coefficients between mask
regions was assessed using a paired students t-test. Correlation cocfficients
were significantly higher (p < 0.05) in the DMN masks than in the general

grey and white matter regions.

p-values, from t-test

Mask Correlation Coefficient :
askLorretatl GE SE _COM _GM WM

GE 0.64 (0.01) - 0.022 0.005 0.026 0.024
SE 0.68 (0.01) 0.022 - 0.035 0.005 0.011
COM 0.69 (0.01) 0.005 0.035 - 0.004 0.010
GM 0.59 (0.01) 0.026 0.005 0.004 - 0.024
WM 0.47 (0.05) 0.024 0.011 0.010 0.024 -

Table 6.4: Correlation coefficients in the GE, SE and common DMN masks, as
well as the general GM and WM regions. The standard error across subjects is
shown in brackets. Differences between the mask regions were assessed using a
paired students t-test (p-values are shown). All results demonstrate significance at
p < 0.05

An example correlation map is shown in Figure 6.10 alongside histograms
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of the correlation coefficients in each of the separate mask regions. The his

togram from the grey matter region peaks at a correlation coefficient of around

0.6. Conversely the white matter has a peak at around 0.2,

|
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Figure 6.10: GE/SE correlation map for an example subject. Histograms displaying
the correlation coeflicient values in the different mask regions are also shown. (TE

pair = 17/60 ms)

The results for the ratio of R to d Rs are shown in Table 6.5. Regression
analysis was carried out on a voxel wise basis and then averaged in each of the

different mask regions and across subjects. Some examples of individual voxel
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wise linear fits are shown in Figure 6.11. From the average results across all
subjects. d 3 /0 Ry values were significantly higher in the GM than the WM.
All DMN ICA masks were also found to be significantly higher than the WM.

No sienificant difference is seen between the GE and SE data. An example

ratio map. showing d R3/dR> on a voxel-wise basis, is shown in Figure 6.12,

histograms are shown for each of the mask regions.

) 004 0.00¢

(TE(s))?*

Ficure 6.11: Example voxel-wise linear fits, for the determination of IR /OR,
Results are shown for an example subject in DMN mask locations. Both GE and
SE data are displayed.
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Figure 6.12: dR3/0R> map for an example subject. Histograms for the different

mask regions are also shown.
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p-values, from t-test

Mask GR:/6R
ask  ofG /0l — b com GM WM

GE 292(0.18) - 0326 0.109 0051 0.000
SE 3.12(0.18) 0326 -  0.704 0.035 0.000
COM 3.16 (0.13) 0.109 0704 -  0.014 0.000
GM 247 (0.28) 0.051 0.035 0.014 -  0.003
WM 1.29 (0.12) 0.000 0.000 0.000 0.003 -

Table 6.5: 6R}/6R; in the GE, SE and common DMN masks, as well as the general
GM and WM regions. The standard error across subjects is shown in brackets.
Differences between the mask regions were assessed using a paired students t-test
(p-values are shown). p < 0.05 indicates significance

6.5 Discussion

These results demonstrate that resting state functional networks can be
robustly detected using SE-BOLD contrast at 7T (Figures 6.4, 6.7 and 6.8),
despite the reduced sensitivity of the SE BOLD response (Yacoub et al. 2005,
Harmer et al. 2011). The DMN was detected at all echo timme pairs for ev-
ery subject. Further we have demonstrated the feasibility of using a dual
GE/SE EPI sequence in order to acquire two echo-planar images that provide
information on both the GE and SE BOLD response. The small temporal
separation between the acquisition of these two scans (~ 50ms) allowed the
temporal characteristics of the resting state GE and SE BOLD responses to
be accurately compared, in a manner not before reported in the literature, A
large number of other, non-DMN, resting state networks were also detected,
such as the visual and motor networks along with artefactual maps. Some
examples are shown in Figures 6.7 and 6.8. We found that all the resting
state default mode networks were highly localised to the grey matter regions,
despite the spatial smoothing carried out as part of the ICA analysis.

Using the dual GE/SE data the resting state GE and SE BOLD signal

fluctuations were scrutinised to assess how they changed with echo time. Due
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to the resting state nature of these experiments an approximation to the
temporal nature of the BOLD percentage signal change had to be made, due
to the lack of task related ON and OFF states that one would typically usce to
determine this. Two different methods of characterising this change were used
1) the difference between the maximum and minimum signal intensities, AS,
present in the filtered time series data, scaled by the average signal, and 2)
the standard deviation of the signal variation over time scaled by the average
signal (Figure 6.9). Both indicate that the fractional GE BOLD signal (in the
GE ICA mask) increases with TE in agreement with a number of studies in the
literature (Yacoub et al. 2003, Duong et al. 2003, Schaefer ct al. 2008). Whilst
only method 2 showed a significant increase with TE for the SE BOLD data.
This may be due to the increased sensitivity of method 1 to image artefacts.
For example, if a brief spike in signal intensity occurs, due to the presence of
a temporally succinct artefact that has not been removed by filtering, AS/S
will not provide a good approximation to the BOLD related signal change,
whereas method 2 is less susceptible to this effect.

During the analysis of these data the number of ICA compounents that
were used, in order to accurately detect the default mode network, varied
across subjects due to the presence of signal artefacts. Significant changes in
signal intensity, due to image artefacts, were detected as individual or multiple
components during ICA analysis and had the effect of reducing the number
of free components that were available to identify the networks of interest.
Examples of some of these artefacts are shown in Figure 6.5. The artefact
in component A is most likely due to inter-scan subject motion because the
effect is seen most significantly at the boundaries between regions that have
a high contrast difference, such as at the edge of the brain and around the
ventricles. The large change in signal intensity at these boundaries is brought
about due to voxels effectively moving along a high contrast gradient between

the two regions. The ability of ICA to detect such artefacts make it a useful
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tool for assessing the quality of functional data sets, in this case highlighting
the imperfect nature of motion correction. In component B, ICA detects
a further artefact where a significant fraction of the brain shows correlated
signal variations in one slice. It is not clear what produced this artefact.

When a large number of components were employed during ICA| in an
attempt to account for the effects of image artefacts, the networks of interest,
such as the DMN, were often split across multiple components, as shown in
Figure 6.6. To account for this effect, any split components that were found
were combined together before data processing into a single mask region that
was deemed to represent the whole DMN. This problem, of having no prior
knowledge of the optimuim number of ICA components to use, and the solu-
tion, which involved carrying out ICA on cach data set multiple times using a
different number of component for each run, highlights a time consuming prob-
lem associated with use of the ICA technique. In some promising recent work,
Wang (2011) have attempted to address this problem using a constrained 1CA
model, where the number of components does not have to be pre-determined.
They accomplish this by placing constraints on the source separation process,
based on prior information. They suggest the method may be of particular
benefit for analysis of resting state data because it is possible that constraint
templates could be built using the large number of resting state networks that
have already been detected in the literature. However, by its very nature, this
type of constrained ICA (CICA) will be less data-driven than standard 1C'A
methods.

To give an indication as to the spatial location of the DMN mask regions
relative to the underlying grey matter, the spatial overlap between the SE
and GE BOLD ICA masks and the grey matter mask were measured. The
results demonstrated that the SE and common [CA masks have a tendeney
to be more grey matter specific than the GE ICA masks (p-values of 0.0361

and 0.0228 respectively), possibly due to the lower spatial specificity of the
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GE BOLD response.

Signal correlations between the GE and SE BOLD data were found to
be significantly higher in the GE, SE and common DMN ICA maps than in
the grey matter as a whole. Signal correlations were significantly lower in
the white matter than in the grey matter or DMN ICA masks. This is logical
because if the majority of signal fluctuations (after filtering) are indeed due to
the action of the BOLD response, brought about due to underlying neuronal
processes, then the correlation should be higher in the grey matter where these
responses take place. This can be seen to good effect in the example data set
shown in Figure 6.10, where the correlation map appears to have cffectively
segmented the grey matter from the white matter. It should be noted that
this delineation was not as clear for all subjects due to the adverse effects
of some image artefacts causing a small, but noticeable base level correlation
across the imaging volume. The higher correlation in the resting state network
regions relative to the rest of the grey matter is also understandable heeanse
these resting state neuronal processes should occur over time-scales much
longer than the temporal separation between the GE and SE BOLD data
(> 50ms) and thus be temporally synced. Provided that the same networks
are present in both the GE and SE images, there should be a higher correlation
in these regions than in the rest of the grey matter taken as a whole. The
assumption that the SE BOLD response has a higher spatial specificity to
underlying neuronal activity than the GE BOLD response, may explain the
increased correlation between the two contrast mechanisms in the SE DMN
in comparison to the GE DMN. If the SE BOLD response more accurately
represents the true location of the underlying neuronal activity, then the more
diffuse GE BOLD response should correlate more highly with the SE response
in the SE mask regions than in the more diffuse GE mask regions. Whereas
the entire SE mask region should correlate well with the GE mask region,

leading to a higher average correlation value. This effect is indeed seen in the
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data, with the correlation coefficient found to be significantly higher in the
SE mask region than in the GE mask.

No significant differences for the ratio of § R} /6 Ry were found between the
GE (2.92+0.18), SE (3.12+0.18) and common (3.16+0.13) DMN ICA masks.
However all of these values were found to be significantly higher than the value
measured in white matter (1.29+0.12) with both the SE and comnmon regions
also significantly higher than the grey matter region as a whole (2.47 £+ 0.28).
The results in resting state network regions agree well with the value of 2.6
measured by Yacoub et al. (2005) in the motor cortex at 7 T using a task based
functional acquisition. This suggests that the technique that was desceribed
and implemented in this study in order to measure this ratio using non-task
related functional resting state data, is indeed producing the results described
in the theory (Section 6.3.5).

The ratio of 6R5/0R, has been measured at a range of field strengths,
using task related functional paradigmns, by a mumber of ditferent groups.
In an early study at 1.5T Bandettini et al. (1994a) measured this value to
be 3.52 + 0.56, in further studies at 1.5T Lowe et al. (2000) and (Stroman
et al. 2001) measured this as 3.3 £ 0.9 and 3.7 respectively. At 3T Stroman
et al. (2001) measured this as 3.8. There has been a lot of interest in the
literature as to whether this ratio decreases with increasing field strength.
For convenience, and to aid assessment of this, these values along with the
average value taken from the GE and SE DMN ICA masks from this study are
shown in Figure 6.13. The data indicates that there may well be a decrease
in the ratio with increasing field strength however this reduction is relatively
small. Yacoub et al. (2005) propose that the ratio as a whole may not show
a strong decrease with increasing field strength due to the presence of both
intra- and extra-vascular BOLD effects. They go on to suggest that only the
extra-vascular component should decrease significantly with increasing field

strengths.
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Figure 6.13: 6R3/0R; using data taken from multiple studies in the literature
(Bandettini et al. 1994a, Lowe et al. 2000, Stroman et al. 2001, Yacoub et al. 2005),
including the average value taken from the SE and GE ICA mask in this study (red
cross). The blue line shows a linear fit to the data y = —0.13z + 3.8 (R? = 0.65)

The extra information gained by measuring both GE and SE BOLD data,
with a low temporal separation, during a functional acquisition, along with
the methods demonstrated for assessing the nature of the BOLD response,

should prove useful in a wide range of functional studies.

6.6 Conclusion

We have demonstrated the feasibility of using a dual GE/SE EPI sequence
in order to acquire two echo-planar images that provide information on both
the GE and SE BOLD response, that are time synchronised; by exploiting the
high SNR available at 7 T and when imaging with a 32 channel receive coil.
We have demonstrated that the correspondingly small temporal separation
between the GE and SE data (~ 50ms) allows the temporal characteristics of

the resting state GE and SE BOLD responses to be compared, in a manner
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not before reported in the literature, and have demonstrated a method to
assess the ratio of d R3/d R, for resting state data.

Further the results demonstrate that resting state functional networks can
be robustly detected by exploiting both GE and SE-BOLD contrast mecha-
nisms at 7 T. despite the reduced sensitivity of the SE BOLD response. The
DMNXN was detected at all echo times for every subject (for both GE and SE
data). Signal correlations between the GE and SE BOLD data were found to
be significantly higher in the GE, SE and common DMN ICA maps than in
the grey matter.

We have demonstrated the use of a novel technique for measuring 6 25/ R,
using non task-related functional data. The value of this ratio in the DMN
regions agrees well with published results from other groups that have used

functional task related paradigms to estimate d R} /0 Rs.



Chapter 7

Conclusion

The work presented in this thesis is directed towards the development and
implementation of a number of ideas and methods that allow echo-planar
imaging to be carried out for fMRI at ultra high field strength (7 T), despite
the significant problems associated with implementing fMRI at high field.
Techniques have been presented that enable off-resonance effects, that plague
this type of acquisition, to be measured on a dynamic basis (and subsequently
corrected for). for both GE and SE EPI data.

In the first study (Chapter 4) a method is presented that takes advantage
of the increase in BOLD CNR at ultra high field strength, to enable fMRI to
be carried out using both gradient echo and spin echo EPIs at high spatial res-
olution during a motor task. These findings show that the relative location of
activated voxels for the GE and SE BOLD responses, differs significantly. Fur-
ther. using sensitive venous mapping techniques, the results also demonstrate
that regions showing statistically significant activation in GE EPI data contain
significantly more voxels overlving venous blood vessels sites than activated
regions identified in SE EPI data. These results lend strong weight to theories
in the literature that suggest that SE BOLD contrast is actually sensitive to
different underlying physiological mechanisms than GE BOLD contrast. It

suggests that the SE BOLD response arises due to the extravascular magnetic
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susceptibility effects around small blood vessels, and that in contrast the GE
BOLD response is sensitive to the extravascular effects around both small and
large blood vessels, with the large vessel effects dominating. This points to
the fact that the SE BOLD response is indeed more spatially specific to the
underlying neuronal activation and thus, in situations where enough SNR is
available (such as at high field strengths), may be a more powerful tool for
probing neurological processes than standard GE based techniques. This work
has now been published (Harmer et al. 2011).

The second study described in this thesis (Chapter 5) probes the effect
that magnetic field inhomogeneities have on EPI acquisitions. First, a tech-
nique is introduced that can be employed to measure A By on a dynamic basis
during a functional hyperoxia experiment. This is used to assess the size of
susceptibility effects that occur, due to increased levels of oxygen concentra-
tion. during hyperoxia. The findings show that the effects are global in nature,
extending over the whole head, and that the field offsets, due to hyperoxia
alone, are largest in the frontal sinus, but still present in both the motor
and visual cortices. Consequently, the author recommends that this simple
to implement technique should be used during all hyperoxia studies so that
the induced temporal variations in ABy can be monitored and if necessary
corrected for (for example to aid image registration). This may also prove
helpful when analysing data at a group level, where initial registration to a
template is required. In the second section of this chapter a unique solution is
described that enables dynamic off resonance correction of SE EPI data that
circumvents the problem associated with using a SE sequence to measure A By,
This technique is developed further to show that it can be used to collect GE
and SE EPI data simultaneously whilst allowing dvnamic distortion correc-
tion of both the GE and SE data sets. This principle is demonstrated in a
preliminary study where dynamic distortion correction is carried out on GE

and SE EPI data collected during auditory and motor fMRI studies. Hence,
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this chapter describes a unique method that allows highly accurate dynamic
distortion correction to be carried out on simultaneously acquired GE and SE
EPI data using just one initial reference scan. Correcting for off-resonance
effects in this manner allows improved alignment to anatomical data, which
may be particularly advantageous for techniques such as the cortical flattening
of activation patterns.

In Chapter 6, the final study in this thesis, a dual GE/SE EPI sequence
is used to probe the resting state BOLD response and identify functional
connectivity maps in SE- and GE-BOLD data. The work demonstrates how
the correspondingly small temporal separation between the GE and SE data
(~ 50ms) that this sequence provides, allows the temporal characteristics of
the resting state GE and SE BOLD responses to be compared, in a manner
not previously reported in the literature. This is used to assess correlated
fluctuations in T;- and T,-weighted images across multiple echo times in the
default mode network and other areas. Signal correlations between the GE
and SE BOLD data are found to be significantly higher in the default mode
network regions than in the gray matter as a whole. Further, a novel tech-
nique for measuring 0 R} /d R, using non task-related resting state data is also
described. The results for this in the DMN regions agree well with published
results from other groups that use normal functional task related paradigms

with a definite functional ON and OFF period.
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