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Abstract

Magnetic Resonance Imaging (MRI) is a medical imaging technique which

is especially sensitive to different soft tissues, producing a good contrast

between them. It allows for in vivo visualisation of internal structures in

detail and became an indispensable tool in diagnosing and monitoring

the brain related diseases and pathologies. Amongst others, MRI can be

used to measure random incoherent motion of water molecules, which in

turn allows to infer structural information.

One of the main challenges in processing and analysing four dimensional dif-

fusion MRI images is low signal quality. To improve the signal quality, either

denoising algorithm or angular and spatial regularisations are utilised. Regu-

larisation method based on Laplace–Beltrami smoothing operator was success-

fully applied to diffusion signal. In this thesis, a new regularisation strength

selection scheme for diffusion signal regularisation is introduced. A mathemat-

ical model of diffusion signal is used in Monte–Carlo simulations, and a reg-

ularisation strength that optimally reconstructs the diffusion signal is sought.

The regularisation values found in this research show a different trend than the

currently used L-curve analysis, and further improve reconstruction accuracy.

Additionally, as an alternative to regularisation methods a backward elimina-

tion regression for spherical harmonics is proposed. Instead of using the regu-

larisation term as a low-pass filter, the statistical t-test is classifying regression

terms into reliable and corrupted. Four algorithms that use this information

are further introduced. As the result, a selective filtering is constructed that

retains the angular sharpness of the signal, while at the same time reducing

corruptive effect of measurement noise.
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Finally, a statistical approach for estimating diffusion signal is investigated.

Based on the physical properties of water diffusion a prior knowledge for

the diffusion signal is constructed. The spherical harmonic transform is

then formulated as a Bayesian regression problem. Diffusion signal re-

constructed with the addition of such prior knowledge is accurate, noise

resilient, and of high quality.
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1
Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging technique which al-

lows for in vivo visualisation of internal structures in detail. It is especially sen-

sitive to different soft tissues, producing a good contrast between them. Since

1973 MRI has become indispensable in diagnosing and monitoring diseases and

pathologies. Over the course of time various MRI applications have been intro-

duced, some of which are linked to the diffusion of water in the brain. Diffusion

imaging was first introduced for measuring the random incoherent motion of

water molecules, and quickly became a reliable tool for estimating local fibre

orientations and white matter tracts (tractography).

Unlike a typical MRI scan, a diffusion weighted scan produces few dozen

different slices of the same brain section. Each slice is obtained using a

different diffusion encoding gradient, which allows to measure diffusion

in the direction it represents. The final image contain hundreds of thou-

sands of voxels, each containing a sparse set of signal samples distributed

in a three dimensional (3D) space.
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CHAPTER 1: INTRODUCTION

To make use of this data, sparse and noisy signal within each voxel has to

be analysed using either some parametric model (e.g. ball and stick, tensor

model) or further transformed into diffusion orientation distribution function

(ODF). It is then possible to derive clinically usable information (like fractional

anisotropy or mean diffusivity) or to infer fibre orientations and volume frac-

tions within voxels. In the latter case the extracted fibre structures can be used

to perform tractography resulting in a full connectivity map of the brain.

The estimation of the diffusion signal, either through a parametric or non-

parametric model, is the initial step of diffusion signal analysis (eddy current

correction, and brain extraction are considered as preprocessing). As the mea-

sured signal is of poor quality (low signal to noise ratio), those estimates might

be inaccurate. More importantly though, any errors introduced in the estima-

tion step will be propagated further and hamper other processing and anal-

ysis. It is therefore imperative that estimated diffusion profiles are of high-

est accuracy. In this thesis, novel diffusion signal processing and reconstruc-

tion methods will be presented.

1.1 Research Aim

The focus of this research is on non-parametric methods, as they do not

rely on a model selection. Additionally, with a sufficient number of sam-

ples, non-parametric methods can resolve any potential fibre configuration

within a voxel. Unfortunately, at the same time they are susceptible to

noise, and with low SNR can become inaccurate. The aim of this research

therefore, is to develop a non-parametric and noise resistant algorithm for

diffusion signal processing and reconstruction.

1.2 Software

The algorithms presented in this thesis were implemented using Matlab

2013a (http://www.mathworks.co.uk/). For visualisation of results

Matlab 2013a, DSI Studio v.1 (http://dsi-studio.labsolver.org/),

and TrackVis v0.6 (http://www.trackvis.org/) were used. Human

2
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CHAPTER 1: INTRODUCTION

brain images were pre-processed using FMRIB Software Library v5.0

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

1.3 Thesis Outline

In Chapter 2, magnetic resonance imaging, water diffusion, and methods for

measuring and processing of diffusion signal are introduced.

Chapter 3 describes a new algorithm for selecting regularisation strength

in diffusion signal reconstruction. The improved regularisation parameter

is based on Monte–Carlo simulations, correctly reacting to the change in

diffusion weighting applied and signal-to-noise ratio.

Chapter 4 investigates the statistical significance of spherical harmonic basis

functions used to reconstruct the measured signal. A new method that

uses backward elimination and statistical testing is presented, improving

the reconstruction accuracy. Furthermore, four methods to combine the

regularisation scheme introduced in Chapter 3 with statistical inference

are proposed and analysed.

Chapter 5 introduces a novel reconstruction method in which prior knowledge

build from a Monte–Carlo simulations is utilised. The linear regression used in

Chapters 3 and 4 is substituted with a Bayesian regression.

Chapter 6 summarises methods and results described in Chapters 3, 4,

and 5 and outlines future work.

Appendix A contains the Matlab code used to generate diffusion signal for any

diffusion weighting gradients, any fibre configuration, any signal-to-noise ra-

tio, and at any diffusion weighting factor. This code is used in all Monte–Carlo

simulations thorough this thesis.

Matlab implementations of contributed algorithms are presented in Appen-

dices B-D. Code snippets important for optimising Tikhonov regularisation

are given in Appendix B. Appendix C shows the code for backward

elimination method described in Chapter 4. Code relevant to Bayesian

regression is given in Appendix D.

3
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2
Background

2.1 Magnetic Resonance

Magnetic Resonance Imaging (MRI) is an in-vivo imaging technique that

can be used to visualise internal structures of the human body. It is based

on a nuclear magnetic resonance (NMR) of molecules, a phenomenon

described by Bloch [11] and Purcell [67].

When exposed to a strong, constant magnetic field, the average magnetic mo-

mentum (spin) of protons align with the direction of that field. This results in a

net magnetisation for nuclei that have an unpaired protons or neutrons. By ap-

plying electromagnetic field of a certain frequency it is possible to “flip” spins.

After the electromagnetic field is turned off, spins rotate with the same fre-

quency that was previously applied, while returning to the previous direction

enforced by the constant magnetic field. The frequency of both electromagnetic

field and spin rotation is called the resonating frequency, which depends on

the number of protons in the atom, and the strength of the external magnetic

4



CHAPTER 2: BACKGROUND

field. For hydrogen located in a field strength of 1.5T, this resonating frequency

is in the radio frequency (RF) bandwidth.

To use the NMR phenomenon for imaging purposes it is necessary to position

the source of the electromagnetic energy. Additional magnetic fields are intro-

duced, and a full 3D spatial encoding is achieved by varying the magnetic fre-

quency, phase, and field strength. The signal is mathematically reconstructed,

and finally represented as a 3D greyscale image, the contrast of which depends

on the strength of the measured signal.

2.2 Brownian Motion

Brownian motion (called molecular diffusion, or just diffusion) is a ran-

dom thermal motion of all molecules. The molecules are propelled by

the thermal energy alone, owning the random movement to the frequent

collisions with other molecules.

Molecular diffusion can be characterised by a physical constant D, called a dif-

fusion coefficient. The diffusion coefficient defines the average displacement of

molecules over a unit time. The rate of diffusion is described as [21]:

< r2
>= 6Dt, (2.1)

where < r2 > is a mean squared displacement of molecules during the time t.

In a barrier-free environment an unrestricted, random movement of molecules

can occur, and the mean squared displacement is equal in all directions. When-

ever a barrier is introduced though, molecule movement perpendicular to the

barrier becomes restricted, and the mean squared displacement is dependent

on the direction. Figure 2.1 visualises the molecules distribution in an unre-

stricted (isotropic) and restricted (anisotropic) diffusion.

2.3 Diffusion Imaging

Diffusion MRI (dMRI) is a non-invasive imaging technique that allows

to measure the movement of water molecules. As human body consists

5
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a) b)

c) d)

e) f)

Figure 2.1: Simulation of random movement of water molecules. Start posi-
tion (a,b), end position (c,d), and trace of movement for ten se-
lected molecules (e,f) in isotropic (a,c,e) and anisotropic (b,d,f) me-
dia. Gray horizontal line indicates the barrier.

6
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Figure 2.2: Schematic representation of Stejskal-Tanner pulse gradient spin
echo imaging sequence. Two gradient pulses g are placed on ei-
ther side of the refocussing pulse 180o. First 90o pulse flips spins
in transverse plane and first gradient pulse g shifts spins phase.
Second pulse gradient, after the 180o refocussing pulse, shifts spins
phase in the opposite direction. If there is no change in spins loca-
tion, the first phase shift is cancelled by the second. Any change in
spin location during ∆ will result in a T2 signal attenuation. Figure
recreated based on [46].

mostly of water, the measured signal comes almost exclusively from hy-

drogen diffusion. Applied to the brain, dMRI can be used to reconstruct

the white matter tracts [5], study brain connectivity [72], and detect early

changes in the cerebral tissue [44].

In dMRI, in addition to the homogeneous magnetic field, two additional pulsed

field gradients are introduced (Figure 2.2, line g). They have the same magni-

tude but are in opposite directions. The first gradient linearly varies the ho-

mogeneous field, so that the protons rotate at different frequencies at different

locations. The second gradient, refocuses the spins. If there was any movement

during the time between those two pulses (∆), the refocussing will not be ideal,

resulting in a reduction of the measured signal.

Figure 2.2 shows the diffusion weighting sequence used by Stejskal and Tan-

7



CHAPTER 2: BACKGROUND

ner [73]. With the use of rectangular pulsed gradients, the reduction of the

spin echo signal can be expressed as:

E

E0
= exp

[

−γ2G2δ2
(

∆ − δ

3

)

D

]

. (2.2)

In this equation, E0 is the signal intensity without the diffusion weighting,

E is the signal with the applied gradient, γ is the gyromagnetic ratio, G

is the strength of the gradient pulse, δ is the duration of the pulse, ∆ is

the time between the two pulses, and D is the diffusion coefficient. For

convenience, scanner-related parameters are combined into a single scalar

b = γ2G2δ2
(

∆ − δ
3

)

called diffusion weighting coefficient. The simplified

Stejskal–Tanner equation becomes thus:

E =
exp (−bD)

E0
. (2.3)

Perhaps the most important breakthrough in diffusion MRI occurred in 1990,

when the diffusion weighted signal in white matter was found to be relative

to the orientation of the diffusion weighting gradient [51]. The diffusion signal

could no longer be explained with Equation 2.3 alone and a tensor based math-

ematical model was established. The discovery also opened a path for new

applications, like anisotropy measures, estimating orientation of white matter

tracts, and inferring the fibre tracts.

Visualisation of diffusion signal

There are two practical ways of visualising spherical 3D data such as diffusion

signal – either through a greyscale mapped sphere (Figure 2.3a), or through

a sphere deformation (Figure 2.3b). Early works used the former, in which

sections of sphere were shaded based on the signal magnitude in that direction.

With the advent of tensor imaging, the signal (tensor) can be visualised using

an ellipsoid, and multiple tensor models and higher-order tensor models can be

visualised using an antipodally symmetric spherical function. Tensor imaging

introduced also a direction-specific colouring, where the principal direction of

the tensor (X, Y, Z) was transformed into RGB space.

8



CHAPTER 2: BACKGROUND

a) b)

c) d)

Figure 2.3: Visualisation schemes for spherical signal: sphere shading (a) and
deformation (b) visualisation schemes. By combining sphere de-
formation with direction-dependent colour coding (c), the shapes
become more intuitive to interpret (d).

A spherical signal with high magnitude in X, Y, and Z directions is visualised

in Figures 2.3a, 2.3b, and 2.3d. The sphere shading method is shown in Fig-

ure 2.3a, with the greyscale intensity linearly dependent on the signal magni-

tude. Similarly, the shape deformation used in Figure 2.3b is linearly scaled

by signal magnitude. Finally, Figure 2.3d represents a modification of sphere

deformation scheme, where each sample is colour coded based on its location

(XYZ ⇒ RBG colour mapping shown in Figure 2.3d).

In this thesis, the modified visualisation method is used (Figure 2.3d): 3D

shapes are colour coded, and the sphere is deformed. Colour coding is

based on the direction of the sample, and the direct mapping of XYZ coor-

dinates onto RGB colour space is used. In addition, the sphere is deformed

accordingly to the signal magnitude in that given direction. All figures

depicting 3D shapes will follow this format.

9
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2.3.1 Diffusion Tensor Imaging

As explained in Section 2.2, the apparent diffusion coefficient, and consequently

the diffusion weighed signal depends on the direction of a measurement. In

an isotropic environment the signal will be equal in all directions, while in an

anisotropic environment it will depend on the physical barriers present.

By measuring a diffusion weighted signal in different directions, the 1D

data can be extended to 3D. Diffusion imaging (DTI) reconstructs the

3D diffusion profile using a 2nd order tensor [6, 7]. The measured dif-

fusion signal Ei is expressed as:

Ei = E0 exp(−b~gT
i D~gi), (2.4)

with ~gi being the direction of the ith diffusion sensitising gradient,

and D a diffusion tensor.

Since the measured signal cannot be negative, D is a positive definite matrix.

Additionally, as water molecules are uncharged, D is symmetric, meaning it

has 6 unique elements. Therefore, in order to determine tensor parameters 6

non-collinear DW images are required. To reduce the effect of low signal-to-

noise ratio (SNR) of a single image [36] often more than 6 images are acquired.

Acquired images should be evenly distributed in space in order to make the

statistical properties of the computed parameters rotationally invariant, and

to reduce noise bias [29, 36, 37].

Of particular interest in diffusion MRI is the 3D distribution of water diffu-

sion, which is necessary to infer information about barriers (or lack of such)

within the medium. This distribution is characterised by orientation distribu-

tion function (ODF). Formally, the diffusion ODF Ψ is defined as the Funk–

Radon transform of the diffusion signal E:

Ψ(u) =
∫

q⊥u
E(q)dq, (2.5)

where both u and q are unit directions. Figure 2.4 shows relation-

ship between E and Ψ.

Typically, the applied diffusion weighting varies between 1000 s/mm2 and

5000 s/mm2. The higher b is, the more sensitive to molecular motion the image

10
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E
FRT−−→ Ψ

Figure 2.4: Relationship between the diffusion signal (left) and ODF (right).
Simulation of a 90◦ fibre crossing using b = 3000 s/mm2 and 8th
order SH series.

becomes. At the same time, with higher b values the signal amplitude becomes

lower and the image is more affected by noise. Figure 2.5 shows two 3D profiles

of diffusion signal, simulated with b = 1000 s/mm2 and b = 3000 s/mm2, as

well as their corresponding ODFs. Maximal simulated diffusion signal magni-

tude was 0.6065 for low, and 0.1350 for high b-value.

For the single fibre configuration, DTI can be used to accurately model the ODF.

The single diffusion tensor model is inaccurate for more complex fibre configu-

rations, such as multiple fibre crossing, kissing, and bending [3, 4, 25]. The dif-

fusion signal within voxels containing multiple fibres can be better explained

as a sum of single tensors responses [2, 25]:

Ei = E0

n

∑
k=1

vk exp(−b~gT
i Dk~gi). (2.6)

Dk is a diffusion tensor of the kth fibre and vk a volume fraction (∑n
k=1 vk = 1),

which tells how strongly the fibre affects the total diffusion within the voxel. An

n-fibre crossing will have 6n unique parameters, and to be correctly resolved

requires at least that many different diffusion weighted images.

Because of implications of Equation 2.6, it is not possible to model a multi fibre

response with a DTI. The model is not flexible enough to cope with the higher

degree of freedom brought by complex fibre configurations. For example a DTI

fitted to a 90o fibre crossing will have infinite number of peaks (Figure 2.6a),

while a 60o fibre crossing will have one peak instead of two (Figure 2.6c).

Unfortunately, without additional constraints the multi tensor model (MTM) is

11
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a) b)

c) d)

Figure 2.5: Visualisation of diffusion signal (top) and ODF (bottom) for low
(left, b = 1000 s/mm2) and high (right, b = 3000 s/mm2) diffusion
weighting applied. Higher b-values are more sensitive to molecular
displacement, resulting in a sharper ODF.

numerically unstable even for N = 2 as multiple D1 and D2 can satisfy Equa-

tion 2.6. As such, only two-tensor models with positive semi-definite and sym-

metrical constraints are of possible use. With N > 2 the situation becomes

much worse, and as of now a 3 tensor model has not yet been used.

Alternatively to expanding N, Özarslan proposed to increase D in size [60].

The method, called higher order tensor (HOT), is stable regardless of

the size of D. Like MTM though, it has to ensure that D is symmetric

and positive semi-definite.

Data Visualisation and Assessment

One of the early problems with using DTI was how to visualise and assess the

tensor data. With diffusion MRI, the measured signal E is dependent on the

12
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a) b)

c) d)

Figure 2.6: Visualisation of a 90o (a) and 45o (c) fibre crossings modelled using
a DTI, and their true ODFs (b and d); b = 3000 s/mm2, view from
top.

measuring direction which makes it rotationally dependent. Additionally, the

diffusion tensor D is of high dimensionality, which makes it difficult to directly

use for the whole image. As such neither could be directly used to visualise or

assess the data, and the need for simplified tensor analysis emerged.

The 3x3 matrix D itself, can be decomposed into 3 eigenvalues (λ1, λ2 and λ3)

and eigenvectors (~v1, ~v2 and ~v3) that show the strength and the direction of

molecular diffusion. The eigenvalues can be used to create 3D greyscale maps

(Figure 2.7a-c). By transforming x, y and z coordinates to red, green and blue

colour, the primary eigenvector (~vi corresponding to the highest eigenvalue λi)

can be used to create an 3D, RGB image (Figure 2.7d).

The eigenvalues λ1, λ2 and λ3 can be used to compute rotational invariant

13
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diffusion anisotropy measures, like mean diffusivity (Equation 2.7), fractional

(Equation 2.8) and relative (Equation 2.9) anisotropy, and volume ratio (Equa-

tion 2.10). Each of those measures range from 0 to 1, and can be used to cre-

ate a 3D grey scale map (Figure 2.7e-h).

Mean diffusivity (MD) summarises the average diffusion within the voxel, and

is computed as the average of all three eigenvalues of D:

MD =
λ1 + λ2 + λ3

3
. (2.7)

Larger MD values are found in cerebrospinal fluid (CSF), while smaller in

more organised structures of the brain. As a consequence, MD maps can

be used to remove the CSF voxels from the image. MD maps can also be

used to study CSF-related diseases [52].

Fractional anisotropy (FA), perhaps due to its intuitive interpretation, is the

most widely used diffusion anisotropy measure in dMRI research. The magni-

tude of FA is dependent on the anisotropy of D [40], and is given by:

FA =

√
3
√

(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2

√
2
√

λ2
1 + λ2

2 + λ2
3

. (2.8)

FA varies from 0 for isotropic (λ1 = λ2 = λ3) to 1 for anisotropic (λ1 ≥ λ2 = λ3)

diffusion, and is sensitive to low anisotropy [74].

Relative anisotropy (RA) is a normalised version of FA [45]. It represents the

ratio of the anisotropic part of D to its isotropic part:

RA =

√

(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2
√

3MD
. (2.9)

RA ranges from 0 for isotropic to
√

2 for anisotropic diffusion, and scales

linearly with anisotropy [74].

Volume ratio is defined as a ratio of the ellipsoid volume and sphere of MD-

diameter [83]:

VR =
λ1λ2λ3

MD3 (2.10)

VR changes from 1 for isotropic to 0 for extremely anisotropic diffusion [74].

14



CHAPTER 2: BACKGROUND

a) b) c)

d) e) f)

g) h)

Figure 2.7: Visualisation of information derived from eigenvalues and primary
eigenvector: primary eigenvalue (a), secondary eigenvalue (b), ter-
tiary eigenvalue (c), RGB visualization of primary eigenvector (d),
mean diffusivity (e), fractional anisotropy (f), relative anisotropy
(g), and volume ratio (h).
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2.3.2 High Angular Resolution Diffusion Imaging

Both MTM and HOT models have more parameters to estimate than classical

DTI, and as such require more data to work with. The number of acquisitions is

increased, and the diffusion is measured in many non-collinear directions. The

resulting high angular resolution diffusion image [80] (HARDI) can be used to

not only solve MTM and HOT models, but also to perform DTI analysis.

In HARDI analysis, both number and direction of spherical sampling gradients

have to be selected. The more of the directions that are sampled the better the

reconstruction accuracy becomes. The upper limit is decided by the acquisition

time, as every volume requires extra time to scan. Finally, the angular resolu-

tion of HARDI is balanced with other conditions, like desired spatial resolution,

diffusion weighting applied, and single volume SNR. In a clinical environment,

depending on application, this translates to 30 to 60 diffusion gradients being

used, with a scanning time up to 15 minutes.

Like in DTI, the gradient encoding scheme should be chosen in a way that re-

duces the noise bias, and keeps the statistical properties of the computed pa-

rameters rotationally invariant.

2.3.3 Q-Ball Imaging

As an alternative to tensor analysis (DTI, HOT, MTM), Tuch introduced

a model-independent HARDI reconstruction scheme [79, 81] called Q-ball

imaging (QBI). The method was based on a numerical approach to calculate

the equator integral from Equation 2.5. Since the equator points do not always

coincide with the diffusion sampling points, the HARDI signal had to be

first interpolated using the spherical radial basis function [22]. Anderson [4],

Hess [31, 32], and Descoteaux [18] have independently and in parallel devel-

oped analytical solutions for the ODF reconstruction in QBI using spherical

harmonic series [59] and Funk–Hecke theorem.

With a model-free representation of ODF it is now possible to calculate more

accurate fractional anisotropy. The generalised fractional anisotropy (GFA) is
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an extension to FA, and is computed as a standard deviation divided by the

root mean square of the ODF [79]:

GFA =

√

n ∑
n
i=1(Ψ(ui)− Ψ̄)2

(n − 1)∑
n
i=1 Ψ(ui)2 , (2.11)

where Ψ(ui) is the ODF sampled in ui direction, Ψ̄ is the mean of the ODF,

and n is the number of ODF samples.

2.4 HARDI Processing

2.4.1 Spherical Harmonics Analysis

Spherical harmonics (SHs) are globally supported, complete, orthonor-

mal spherical basis function. They allow for a non-parametric analysis

of the diffusion signal, and can be seen as the extension of Fourier ba-

sis functions to the sphere. The basis functions, defined as a solution

to Laplace equation, are given by:

Ym
l (θ, φ) =

√

2l + 1
4π

(l − m)!
(l + m)!

Pm
l (cos θ) exp(imφ) , (2.12)

with Pm
l being the associated Legendre function of order (l ≥ 0) l and phase m

(−l ≥ m ≥ l)1, and θ and φ a colatitude and longitude.

The coefficients of the series are found through the SH transform:

clm =
∫ 2π

0

∫ π

0
E(θ, φ)Ym

l (θ, φ) sin θdθdφ . (2.13)

In practice, the number of signal samples is limited, and rarely equal to the

number of basis functions. As such, instead of interpolating the measured sig-

nal, the signal is approximated with a truncated nth order SH series [3]:

Ê(θ, φ) =
n

∑
l=0

l

∑
m=−l

clmYm
l (θ, φ) . (2.14)

1In Mathematics called band and degree.
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Here Ê(θ, φ) is the approximation of signal E measured in direction θ, φ. The

signal is approximated with an nth order SH series, Ym
l is a SH function defined

in Equation 2.12, and cm
l is a SH coefficient of order l and band m.

Classical SH transform is no longer used to find SH coefficients and in-

stead, an efficient method based on matrix operations is preferred. Having

infinite number of samples, and infinite number of SH basis functions the

diffusion signal can be expressed as:

E = Yc . (2.15)

With a sufficient SNR to assume a normal distribution of noise2, the SH repre-

sentation of the signal can be found by minimising the least squares difference:

arg min
c

‖Yc − E‖2 , (2.16)

which can be solved using the ordinary least squares (OLS) method:

c = (YTY)−1YTE . (2.17)

Having the SH coefficients, it is now possible to recreate the missing sections

of the spherical signal. The inverse transform, which simply becomes another

matrix multiplication, is used to reconstruct the signal:

Ê = Ylargec , (2.18)

where Ylarge is a SH design matrix generated using a dense spherical sampling.

The diffusion weighting gradients are constant across the whole image,

and therefore SH design matrix Y does not change. This allows to com-

pute the term (YTY)−1YT only once, and use it over the whole image

significantly speeding up the processing time.

Finally, the diffusion signal that is analysed is antipodally symmetric, which al-

lows to remove antipodally asymmetric odd-order basis functions from Equa-

tions 2.14-2.17. The total number of basis functions used to describe a signal is

thus (n + 1)(n + 2)/2 and should be no greater than the number of acquired

samples (number of diffusion weighting gradients used).

2Otherwise a maximum likelihood method should be used.
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Having a SH representation of the signal, the diffusion ODF can be directly

estimated [4, 18, 31, 32] by a linear transformation of coefficients c:

Ψ(θ, φ) ≈
n

∑
l=0

l

∑
m=−l

2πclmPl(0)Y
m
l (θ, φ) . (2.19)

Here Pl(0) being the associated Legendre function of order l evaluated at 0.

Combining Equations 2.17 and 2.5 yields:

Ψ = 2πP(YTY)−1YTYE , (2.20)

where P is a diagonal matrix with elements Pl(0). Again, the term

P(YTY)−1YTY needs to be computed only once.

The ODF should be relatively smooth with a few maxima oriented along the

direction of underlying fibres. Unfortunately, due to noise the ODF has a lot

of sharp spikes and needs to be smoothed. Noise related peaks can be reduced

by filtering SH coefficients [76], including a regularization scheme in the sig-

nal approximation [19, 32], or by selectively removing the noise-infested ba-

sis functions [53]. In all cases smoothing of ODF function is produced at the

cost of a lower angular resolution.

Finally, the GFA can be directly calculated in the SH domain [13]:

GFA =

√

√

√

√1 − (c0
0)

2

∑l ∑
l
m=−l(c

m
l )

2
. (2.21)

2.4.2 Fibre Orientation Distribution Function

Fibre orientation density (FOD) and fibre orientation distribution function

(FODF) are sharper versions of ODF. The spherical deconvolution introduced

by Tournier [76] allows to compute FOD directly from HARDI data. The

measured signal E is a convolution of unknown FOD F with the signal RE

coming from a single fibre population (Figure 2.8, top):

E = F ⊗ RE. (2.22)
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RE
⊗

FOD = E

F
R

T
−−−→

F
R

T
−−−→

RΨ

⊗

FOD = Ψ

Figure 2.8: Relationship between diffusion signal, ODF, and FOD. Diffusion
signal for a single fibre (top left) can be converted to ODF (bottom
left) using a Funk-Radon Transform. Diffusion signal for a 90o fibre
crossing (right top) is a convolution of diffusion signal for a single
fibre and the FOD (fibre structure, two delta functions crossing at
90o; middle). The ODF for a 90o fibre crossing (bottom right) is
both a convolution of the ODF for a single fibre crossing and the
FOD, as well as a Funk-Radon Transform of diffusion signal for
a 90o fibre crossing. HARDI and ODF profiles are reconstructed
using 8th order SH series; diffusion signal was simulated for b =
3000 s/mm2.

The single fibre response RE is approximated from the most anisotropic vox-

els [76], or on a voxel-by-voxel basis [4], and represented with rotational har-

monics [30]. Since the SH transform is a Fourier transform on the sphere the

convolution can be efficiently represented as a matrix multiplication, or lin-

ear transformation of SH coefficients:

f m
l = cm

l /rl . (2.23)

Here f m
l is a FOD spherical harmonic coefficient of l order and m band,

and rl a rotational harmonic coefficient of a single fibre response RE. The

rotational harmonic coefficients of the deconvolution kernel are calculated

from m = 0 coefficients of spherical harmonic representation of delta

function d and single fibre response s:

rl = sm=0
l /dm=0

l , (2.24)
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With an infinite SH series the signal will deconvolve to a sum of delta

functions oriented along the underlying fibre tracts (Figure 2.8, FOD). Un-

fortunately, the number of samples is limited, and the series expansion of

the signal has to be truncated. Additionally, SHs are globally supported

complete functions and when truncated are unsuitable to represent sharp

signals. As such, using truncated SH series will result in an oblate FOD,

as well as introduce unwanted “ringing” effect near the centre of the lobe

(Figure 2.9a). Due to the noisy signal reconstruction the deconvolution will

pollute the FOD with false peaks (Figure 2.9b).

To remove the ringing, and partially reduce the false FOD peaks that are caused

by noise, Schultz proposed deconvolution using a non-ringing cosine power

lobe [69]. The deconvolution kernel is built in the same way as in Tournier’s

spherical deconvolution, but using the cosine power lobe (cosh):

rl = s0
l /p0

l , (2.25)

where p are coefficients of cosine power lobe SH transform, and h is used

to select the sharpness of the resulting FOD. Depending on the h, signal

will be deconvolved to a more oblate (low h) or prolate (high h) FOD. With

higher h though, cosine power lobe kernel starts to behave like delta func-

tion kernel, introducing ringing and susceptibility to noise. In practice, a

good sharpness-to-artefacts ratio can be achieved with h being two to three

times larger than the SH series order used [56]. Figure 2.9c and Figure 2.9d

show the 8th order SH series reconstruction of the signal deconvolution

to a cosine power lobe with h set to 16.

Another way of acquiring FOD is based on sharpening the diffusion ODF. Us-

ing the same spherical deconvolution method, it is possible to deconvolve dif-

fusion ODF to FOD using a single fibre response ODF (Figure 2.8, bottom). For

this, Descoteaux provided a formal relationship between ODF and FOD (called

fibre ODF, or FODF, as it was derived directly from ODF) [20]. The method,

called spherical deconvolution transform (SDT), like cosine power lobe, pro-

duces more noise resilient FOD (Figure 2.9e and Figure 2.9f).

Like in an SD, the deconvolution kernel is based on the assumed single fibre

response. In SDT though, the deconvolution kernel is built from an ODF profile

of a single fibre response. The kernel is defined using λ1 and λ2, a major and
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a) b)

c) d)

e) f)

Figure 2.9: Spherical deconvolution to a delta function (top row), cosine power
lobe (middle row), and spherical deconvolution transform (bot-
tom row), of a simulated 45◦ fibre crossing; 8th order SH series,
b = 3000 s/mm2 without (left column) and with (right column)
added Rician noise (SNR = 35). The spherical deconvolution to
a delta function produces sharp FOD profile with ringing (a). In a
noisy signal this method introduces numerous false peaks (b). FOD
produced with a cosine power lobe kernel and spherical deconvo-
lution transform do not introduce ringing (c and e), and suppress
false peaks at the cost of angular resolution (d and f).
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minor eigenvalue of a tensor representing assumed single fibre response:

rl =
2π

√

∑
N
i

(

(λ2/λ1 − 1)z2
i + 1

)

N

∑
i

(

Pl(zi)
(

(λ2/λ1 − 1)z2
i + 1

))

. (2.26)

With zi = −1 + 2i/N, N should be chosen large enough to densely

sample the < −1, 1 > range.

A different approach was sought by Kezele [39], who reconstructed the

sharp diffusion ODF by incorporating a spherical wavelet transform into

the Funk–Radon transform. Also Tristan-Vega [77, 78] modified the Funk–

Radon approximation to the radial integral. By including the Jacobian of

the spherical coordinates in FRT he computed a true orientation probability

density function. Similar approach, but with a different orientation func-

tion (both with and without SH transform) was proposed by Özarslan [61]

in a diffusion orientation transform.

It is important to note that the spherical harmonic basis functions are glob-

ally supported and thus are not well suited to describe sharp FODs. A

recent study by Michailovich, in which the HARDI signal (and subsequently

ODF) is modelled using multiresolution bases of spherical ridgelets [48]

can match the SH-based QBI accuracy-wise with just a few basis func-

tions (45 basis functions vs 4 to 8). The advantages of SH series are in

robustness to noise and ability to use linear least squares methods for fast

computationally inexpensive implementation.

2.4.3 Regularisation of Spherical Harmonic Series

In order to obtain a sharp FOD it is necessary to use large number of SH ba-

sis function. With the increasing order of SH series though, the SH transform

becomes more affected by noise. This can lead to increase in ringing artefacts

as well as introduce numerous weak false peaks.

One of the early works that addressed noise susceptibility of longer SH series

was done by Tournier [76]. A straightforward coefficient attenuation of SH

series was performed after initial SH transform of measured signal. Each coef-

ficient of nth order was weighted (attenuated) prior to spherical deconvolution.
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As the weights (w = [1, 1, 1, 0.8, 0.1, 0.02, 0.002] for n = [0, 2, 4, 6, 8, 10, 12]) were

chosen empirically, this method became known as ad-hoc low-pass filtering.

More formal solution to noise suppression was sought by Hess [32] and De-

scoteaux [19] through the use of Tikhonov regularisation. In a linear regression,

the Equation 2.16 is modified by adding a regularisation term:

arg min
cλ

‖Ycλ − S‖2 + λ2‖Γcλ‖2 , (2.27)

with Γ a chosen Tikhonov matrix and λ2 a parameter controlling the strength

of regularization; for λ2 = 0 it minimises the least squares norm. The regu-

larised solution is therefore defined as:

cλ = (YTY + λ2
Γ

T
Γ)−1YTS . (2.28)

The difference in Hess and Descoteaux regularisation lies in the Tikhonov ma-

trix used. Hess used a diagonal matrix which only improved the matrix con-

dition. Descoteaux on the other hand, built the regularisation matrix on a

Laplace–Beltrami operator, which is a natural measure of smoothness for func-

tions defined on a sphere. In SH representation, for this operator Γ
T

Γ simply

becomes a diagonal matrix with l2
j (lj + 1)2 along the diagonal (lj being the or-

der associated with the jth coefficient).

An important issue in using Tikhonov regularisation is the selection of the regu-

larisation strength λ2. Stronger regularisation, while removing more noise will

also reduce angular resolution of the FOD. Analogically, with lower parameter

the FOD is sharper but at the same time high frequencies, which are polluted

by noise, are being preserved. Figure 2.10 shows the effect of increasing regu-

larisation strength on noise free and noisy FOD reconstruction.

The study by Descoteaux [18] focuses on an L-curve analysis and its use for

an automatic regularisation parameter selection. Later on, Sakaie [68] work

based on a general cross validation (GCV) produce similar results – the values

found through GCV mostly coincides with L-Curve method. Figure 2.11 shows

the optimal regularisation parameter found using the L-curve analysis. As ex-

pected, the increase in SNR means that less regularisation is needed, due to

the measured signal becoming more similar to the real. The optimal parameter
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λ2 = 0.001 λ2 = 0.005

λ2 = 0.01 λ2 = 0.05

Figure 2.10: The effect of increasing a regularisation strength in SH trans-
form. With the stronger regularisation applied, false peaks are
suppressed at the cost of a lowered angular resolution.

value as a function of diffusion weighting though is more complex tough. Ini-

tially, the parameter value increases along with the diffusion weighting applied.

With higher b, absolute signal values Ei become smaller (see Equation 2.3), and

more regularisation is needed to deal with noise. At roughly b = 3000 s/mm2,

for a given SNR (SNR = 35) this trend reverses, most likely due signal becom-

ing sharp enough to be mistaken with noise.

As both L-curve and GCV methods work by finding the optimal compromise

between the data preservation and the improvement of the design matrix con-

dition they might not be optimal when the signal is corrupted. As such, the

data preservation should not be explicitly sought. In Chapter 3, Section 3.2 an

optimisation scheme will be introduced, which focuses on selecting a regulari-

sation strength that assures the highest quality of reconstructed profile.

Unfortunately, due to the ringing introduced in the deconvolution trans-

form ALF and Tikhonov regularisation methods cannot guarantee the

non-negativity of the FOD function. The improved deconvolution algo-

rithms proposed by Dell’Acqua [17], Sakaie [68], and Tournier [75] based
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Figure 2.11: L-curve based optimal regularisation parameter as a function of:
a) SNR, and b) diffusion weighting factor for a two fibre crossing.

on iterative approach (with Dell’Acqua using a modified Richardson-Lucy

deconvolution [15], and Sakaie and Tournier a spherical deconvolution)

address this at the additional computational cost (e.g. extra iterations, no

possibility to use precomputed terms).

2.5 Human Brain and Tractography

The brain is the most complex organ in human. It is divided into five regions:

telencephalon (cerebral hemispheres), diencephalon (thalamus, hypothalamus,

pituitary gland, and pineal body), mesencephalon (midbrain), metacephalon

(the pons and cerebrellum), and myelencephalon (medulla oblongata). The

cerebrum, which is made of four lobes (frontal, temporal, occipital, and

parietal), is the largest structure in the human brain. It consists of white

and grey matter. Neuron cell bodies, dendrites and synapses form grey

matter, while white matter is made of myelinated nerve fibers. Grey matter

is found both on the outside (cerebral cortex), and inside (basal ganglia,

thalamus, and hypothalamus) of the brain.

The fibers in white matter are arranged in tracts, connecting together differ-

ent sections of brain. Depending on the location of regions that those tracts

connect, they can be classified as commissural, projection, or association tracts.

Commissural tracts connect left and right hemispheres; two largest commis-

sures are the corpus callosum, and anterior commissure. Association fibres
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are local, short connections located within one hemisphere. Projection fibres

are ascending and descending fibres, that connect cerebrum with other parts

of the brain and spinal cord (and vice versa). In these organised sections

of the brain, the diffusion is constrained by myelin sheaths and axonal mem-

branes [9] of fibre bundles. Therefore, by tracking the path of the least resis-

tance it is possible to infer the orientation and configuration of those bundles,

and thus reconstruct the white matter.

The whole family of algorithms used to resolve fibre bundles, is called trac-

tography, and can be divided into three groups: local methods, global meth-

ods, and methods based on diffusion simulations. Local methods that track

the curve sequentially through neighbouring voxels come in two variants: de-

terministic [5, 14, 49] and probabilistic [10, 62] streamline tractography. Global

approaches on the other hand, find the best path between two points based on

the optimisation criteria. They utilise front evolution techniques [63], weighted

graphs [34, 47, 86], or minimise a global energy function [24, 42]. Finally, dif-

fusion simulation methods [27, 41] either directly solve the diffusion equation,

or simulate the fluid flow. While being able to resolve fibre crossing [26] and

branching [8, 38] using DTI data alone, they are considerably slower and re-

quire many parameters and thresholds to tune.
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Robust Tikhonov Regularisation

Both parametric (e.g. DTI) and non-parametric (e.g. SH analysis) methods

can benefit from using Tikhonov regularisation. In both cases, to auto-

matically select the amount of regularisation applied either an L-curve or

GCV analysis has to be performed.

In this chapter, a new method for finding optimal regularisation value is

proposed [55, 58]. It can be formulated as an optimisation problem, and

solved through minimising (or maximising) a fitness function. As this

function is selected based on the similarity of real and recreated signal, the

optimal parameter is thus found through ground truth verification (GTV).

It is expected that the recommended regularisation values found with the

GTV method will be different from parameters found with L-curve analysis

and GCV. Furthermore, using the GTV optimised values should result in a

more accurate diffusion signal reconstruction. With the GTV found values the

regularisation should be able to more accurately reduce the noise corruption

and not over or under regularise the signal.
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Since the SH transform can be implemented efficiently, even exhaustive

algorithms, which tests all possible solutions are viable. Enough iterations

and wide variety of fibre configurations should be simulated, so that the

averaged regularisation parameter stays unbiased. The parameters found,

and accuracy of signal reconstruction using those parameter will be compared

with the current state of the art parameter selection methods. Fortunately,

as both L-curve and GCV analyses result in the same “optimal” parameter

values [16], only one will have to be compared. Due to the use of Monte-

Carlo simulation in the validation step, the L-curve will be compared as

it is computationally cheaper than GCV.

This chapter is organised as follows. In Section 3.1 different fitness functions

which can be used to compare the reconstruction of diffusion signal accuracy

are discussed. Section 3.2 focuses on the optimal procedure for regularisation

strength selection. Results are then validated using numerical simulations in

Section 3.3. Tractography of a Fibre Cup phantom is performed and the results

are discussed in Section 3.4. In Section 3.5 real brain image was analysed us-

ing optimally selected regularisation parameters. Discussion and further im-

provements are provided in Section 3.6.

3.1 Fitness Function

In order to optimise a reconstruction algorithm, a method of comparing two

shapes should first be described. This function, called fitness function, has to be

able to tell how similar two reconstructed shapes are. Perhaps the most intuitive

way of comparing two spherical shapes is by computing the volumetric differ-

ence between the two shapes. This difference is 0 for two identical shapes, and

becomes larger as more dissimilar they become. The fitness function to min-

imise the absolute difference between the real and reconstructed profiles is thus:

arg min
λ

‖Ylargeĉλ − Ylargec‖2 . (3.1)

Two SH series are computed: of real, noise free signal c and of regularised,

noisy signal ĉλ. Both signals are upsampled using a dense spherical sampling

Ylarge. Number of those points has to be large enough to accurately approx-

imate the volumetric difference between those two profiles. By utilising the
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Fourier transform addition theorem, same error measure can be obtained in a

frequency domain. This allows for efficient implementation of fitness function,

which is necessary for large Monte-Carlo simulations. By removing Ylarge from

Equation 3.1 the inverse transform is thus avoided:

arg min
λ

‖ĉλ − c‖2 . (3.2)

Revising Equation 2.19 is is now possible implement a fitness func-

tion based on an ODF:

arg min
λ

‖Pĉλ − Pc‖2 , (3.3)

where the constant matrix P implements a Funk-Radon transform. Similarly,

using Equation 2.26 an FODF based fitness function can be built:

arg min
λ

‖Rĉλ − Rc‖2 . (3.4)

The constant matrix R is used to perform a spherical deconvolution transform.

Finally, two other measures can be used to directly differentiate between two

SH series – correlation coefficient [4] and symmetric Kullback–Leibler (sKL)

divergence [12]. The correlation coefficient is given by:

rλ =
∑l ∑m clm ĉlm√

∑l ∑m clmclm

√
∑l ∑m ĉlm ĉlm

. (3.5)

The sKL divergence measure is based on the DTI analysis, which in SH repre-

sentation relates to using the coefficients of the ODF:

sKLλ =
1
2
{ 1

c00
∑

l

l

∑
m=−l

[clmdlm − clmd̂lm] +
1

ĉ00
∑

l

l

∑
m=−l

[ĉlmd̂lm − ĉlmdlm]} , (3.6)

with c and d being SH coefficients of Ψ and log(Ψ), and ĉ and d̂ of

noise corrupted Ψ̂ and log ˆ(Ψ). In Equations 3.5 and 3.6, SH coefficients

ĉlm and d̂lm are regularised with strength λ (for clarity the λ index is

dropped in the scalar notation).

Figure 3.1 shows the aptitude of different error measures as a function of cross-
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Figure 3.1: Aptitude of different error measures as a function of crossing an-
gle (top) and SNR (bottom). Signal was simulated using low
(b = 1000 s/mm2, left) and high (b = 3000 s/mm2, right) diffusion
weighting factor.

ing angle (top) and SNR (bottom). Two diffusion weighting factors are visu-

alised – low (b = 1000 s/mm2, left) and high (b = 3000 s/mm2, right).

The L2 norm of FODF differences, does not scale linearly with regards to the

crossing angle. For example, for b = 3000 s/mm2 it peaks at around 45o, falls

down till around 80o, and then remains constant. As such, the FODF cannot be

used to reliably asses similarity of two reconstructions.

The ideal error measure should be a linear function of both crossing angle

and SNR, and be sensitive to changes. As none of the remaining error

measures exhibit such behaviour, all four will be used for optimisation,

and numerical validation.
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3.2 Optimal Parameter Selection

The algorithm for creating the phantom signal and analysing the regularisa-

tion fitness can be summarised as follows:

1. For a given diffusion weighting factor b and signal to noise ratio 1/σ do:

2. Select a number of n fibre crossings with random volume fractions.

3. Generate a synthetic signal E using a multi-tensor model.

4. Generate a noise corrupted signal Ê =
√

(E + N(0, σ2))2 + N(0, σ2)2.

5. Investigate the fitness function for various regularisation parameters λ2.

6. Repeat from 2 for k times.

For a set of diffusion weighting factors and SNRs (both feasible and non-

feasible combinations), a range of λ2 ∈ [0, 0.5] is tested. No limits on minimal

crossing angle or volume fractions are placed. For each iteration the best

parameter is selected based on the current fitness function. Four fitness

functions from Section 3.1 are tested: HARDI, ODF, 1 − r and sKL. Each

simulation is tested k = 10, 000 times, and the final parameter is averaged.

The optimal parameter as a function of SNR and diffusion weighting, found

using an exhaustive search (GTV method) and L-curve analysis, is presented

in Figures 3.2-3.9. Fibre configurations up to three fibre crossings, as well as

an unknown (random) fibre configurations were tested, and the best parameter

for a single fibre (Figures 3.2 and 3.3), two fibre crossing (Figures 3.4 and 3.5),

and three fibre crossing (Figures 3.6 and 3.7) reconstructions is provided. Addi-

tionally, the optimal parameter for an unknown (random) fibre configuration

is given by Figures 3.8 and 3.9.

Optimal parameter as a function of SNR All tested fitness functions,

as well as an L-curve analysis react correctly to the change in SNR (Fig-

ures 3.2, 3.4, 3.6, and 3.8). As the signal-to-noise increase, less smoothing

is required. The L-curve based parameter though, especially for a single

fibre reconstruction with a high diffusion weighting, does not decrease to 0.
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Figure 3.2: Optimal parameter values for a single fibre reconstruction as a
function of SNR for six diffusion weighting factors.
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Figure 3.3: Optimal parameter values for a single fibre reconstruction as a
function of diffusion weighting factor for six SNRs.
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Figure 3.4: Optimal parameter values for a two fibre reconstruction as a func-
tion of SNR for six diffusion weighting factors.
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Figure 3.5: Optimal parameter values for a two fibre reconstruction as a func-
tion of diffusion weighting factor for six SNRs.
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Figure 3.6: Optimal parameter values for a three fibre reconstruction as a func-
tion of SNR for six diffusion weighting factors.
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Figure 3.7: Optimal parameter values for a three fibre reconstruction as a func-
tion of diffusion weighting factor for six SNRs.
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Figure 3.8: Optimal parameter values for a random fibre reconstruction as a
function of SNR for six diffusion weighting factors.

39



CHAPTER 3: ROBUST TIKHONOV REGULARISATION

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

diffusion weighting factor [s/mm
2
]

re
g
u
la

ri
s
a
ti
o
n
 v

a
lu

e
 [
−

]

 

 

L−curve

HARDI

ODF

1−r

sKL

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

diffusion weighting factor [s/mm
2
]

re
g
u
la

ri
s
a
ti
o
n
 v

a
lu

e
 [
−

]

a) SNR = 10 b) SNR = 15

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

diffusion weighting factor [s/mm
2
]

re
g
u
la

ri
s
a
ti
o
n
 v

a
lu

e
 [
−

]

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

diffusion weighting factor [s/mm
2
]

re
g
u
la

ri
s
a
ti
o
n
 v

a
lu

e
 [
−

]

c) SNR = 20 d) SNR = 25

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

diffusion weighting factor [s/mm
2
]

re
g
u
la

ri
s
a
ti
o
n
 v

a
lu

e
 [
−

]

500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

diffusion weighting factor [s/mm
2
]

re
g
u
la

ri
s
a
ti
o
n
 v

a
lu

e
 [
−

]

e) SNR = 30 f) SNR = 35

Figure 3.9: Optimal parameter values for a random fibre reconstruction as a
function of diffusion weighting factor for six SNRs.
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This means that even a noise-free signal will be smoothed out, decreasing

the angular resolution. Other fitness functions – HARDI, ODF, coefficient

correlation, and symmetric Kullback-Leibler divergence – produce parameter

that decreases towards 0 as SNR reaches infinity.

Optimal parameter as a function of b-value The GTV method also reacts

properly to the change in diffusion weighting factor (Figures 3.3, 3.5, 3.7, and

3.9). As the diffusion signal becomes sharper (higher b-values), it becomes im-

possible to apply strong regularisation without affecting the underlying signal.

This trend is maintained across all fitness functions tested.

As mentioned, at high diffusion weighting applied, the measured signal be-

comes very sharp (fast changing). As such, with low SNR it becomes impossible

to distinguish signal from noise, as both are in a high frequency spectrum. The

stronger regularisation that is used in this case (Figures 3.5a, 3.7a, and 3.9a at

b = 4000 s/mm2), is smoothing both signal and noise, and degrades the recon-

structed signal towards an oblate shape (or even sphere, if the SNR is too low).

The L-curve based parameters exhibit more complex trend. For all tested

SNRs, the parameter value found using this method increases along with

the diffusion weighting applied. Depending on a diffusion weighting

factors, it peaks at around 3000 s/mm2 (earlier for lower and later for

higher b-values), and then starts to decay. Both the decay rate and peak

magnitude is unaffected by the SNR.

With the exception of single fibre simulations, the L-curve analysis is less sen-

sitive to the change in diffusion weighting factor than the GTV method. The

difference between the recommended parameter value for low and high dif-

fusion weighting applied is close to 0, often with the high diffusion applied

parameter being larger then low.

Optimal parameter and the number of fibre crossing Both the regu-

larisation parameter found with an L-curve and GTV methods follow

their respective trends regardless of the number of simulated fibre cross-

ing. Depending on the underlying fibre configuration, the values found

to be optimal are different though.
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For all SNRs and diffusion weighting factors, optimal parameter value was the

largest for a three fibre crossing simulation. The single fibre simulation need

the smallest regularisation to be applied, and the optimal regularisation for a

two fibre crossing is in-between. The simulations involving random fibre con-

figurations provide regularisation values similar to the simulation of a two fibre

crossing. This is concise with Descoteaux’s research [18]. When model selection

on a per-voxel basis is not viable (e.g. most clinical cases), regularisation values

provided found through a random fibre configuration should be used.

3.3 Numerical Validation of Optimised Reconstruc-

tion

To assess the effect of new regularisation parameter on regularisation accuracy,

another set of Monte-Carlo experiments is designed. For all tested diffusion

weighting factor and SNR pairs in Section 3.2, diffusion signal of random fibre

configuration is reconstructed with regularisation values found by L-curve and

GTV methods. The reconstruction error is measured using the four fitness func-

tion selected in 3.1, and for each fitness function, is averaged over all iterations.

Similar to Section 3.2, number of iterations for each test was set to 10, 000.

Figures 3.10-3.17 show the signal reconstruction error of an L-curve and GTV

based regularised SH transform. The regularisation value was selected based

on the results shown in the Figures 3.2-3.9. In many figures, only two func-

tions are visible - black, representing the error of L-curve based regularised re-

construction, and red, of GTV optimisation using symmetric Kullback–Leibler

divergence fitness function. In those cases the missing functions are fully, or

partially, obstructed by GTV-sKL.

The error of regularised reconstruction of a random fibre configuration is mea-

sured using four fitness functions: HARDI (Figures 3.10 and 3.11), ODF (Fig-

ures 3.12 and 3.13), correlation coefficient (Figures 3.14 and 3.15), and sym-

metric Kullback–Leibler diverge (Figures 3.16 and 3.17). Again, similar to

Section 3.2, all errors are plotted as a function of SNR and diffusion weight-

ing factor. The larger the SNR or diffusion weighting factor become (or both),

the bigger the difference in regularisation accuracy using the parameters rec-

ommended by L-curve and GTV.
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Figure 3.10: Reconstruction error represented using a HARDI error measure as
a function of SNR for six diffusion weighting factors.
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Figure 3.11: Reconstruction error represented using a HARDI error measure as
a function of diffusion weighting factor for six SNRs.
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Figure 3.12: Reconstruction error represented using an ODF error measure as
a function of SNR for six diffusion weighting factors.
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Figure 3.13: Reconstruction error represented using a ODF error measure as a
function of diffusion weighting factor for six SNRs.
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Figure 3.14: Reconstruction error measured using a correlation coefficient as a
function of SNR for six diffusion weighting factors.
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Figure 3.15: Reconstruction error measured using a correlation coefficient as a
function of diffusion weighting factor for six SNRs.
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Figure 3.16: Reconstruction error measured using a symmetric Kullback–
Leibler divergence as a function of SNR for six diffusion weighting
factors.
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Figure 3.17: Reconstruction error measured using a symmetric Kullback–
Leibler divergence as a function of diffusion weighting factor for
six SNRs.
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In all tests, the reconstruction with GTV based regularisation value performs

no worse than L-curve based value. As expected, the GTV based regularised

reconstruction becomes more accurate as the SNR increases. This is due to

GTV method correctly assessing the signal to be of good quality, and grad-

ually decreasing the applied regularisation towards zero. The L-curve based

parameter on the other hand, regardless of the SNR or diffusion weighting

applied, always is greater than zero.

3.4 Tractography using Fibre Cup Phantom

To test if the improved regularisation produces globally viable results, a

streamline tractography on a Fibre Cup phantom was performed. The

Fibre Cup, a tractography contest first held at MICCAI 2009 in London, is

a competition in which mechanical phantom [23, 65] is used to evaluate

tractography algorithms performance. The phantom consists of many pos-

sible fibre structures, like fibre crossing, kissing, splitting, or bending, and

is therefore a good visualisation tool for qualitative tractography results.

Same seeds as in Fibre Cup competition were used, and reconstructed fibres

were compared with Fibre Cup ground truth.

The diffusion images of the Fibre Cup phantom come in two resolutions – 3 mm

and 6 mm isotropic. Each voxel size was scanned using three different diffu-

sion weighting factors – low (b = 650 s/mm2), medium (b = 1500 s/mm2), and

high (b = 2000 s/mm2 or b = 2650 s/mm2 for 3mm and 6mm isotropic). All

images were acquired on the 3T Tim Trio MRI systems. A single-shot diffusion-

weighted twice refocused spin echo echoplanar pulse sequence was used. The

Eddy current was corrected to the first order. A single T2 image was acquired,

as well as a 64 diffusion sensitised images. The gradients were uniformly dis-

tributed over the sphere. There were two repetitions for 3 mm isotropic im-

ages, and one of 6 mm isotropic.

In order to qualitatively assess the viability of the optimised reconstruction, a

streamline tractography [5, 82] was performed on the b = 1500 s/mm2, 3 mm

isotropic image. The image SNR was estimated to be 26, and as a consequence,

accordingly with the Figure 3.9d, the regularisation parameter λ2 was set to

0.002. For tractography algorithm, the minimal fibre length was constrained to
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a) b)

c) d)

Figure 3.18: The Fibre Cup phantom ground truth (a) and tractography re-
sults (b). Reconstructed FODFs using optimised regularisation
scheme (c) and seeds used to perform the tractography (d).
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75 mm, and maximal to 500 mm (never reached due to phantom size). Other

parameters include: maximal angle set to 45o, subvoxel seeding, trilinear inter-

polation, and smoothing (momentum) set to 0.5.

Figure 3.18 shows the ground truth (a), tractography results (b), recon-

structed FODFs (c), and seeds used to initiate the tractography (d). There

is one fibre per seed, and each fibre has the same colour as its seed. Fibres

are coloured based on the original Fibre Cup ground truth image (Fig-

ure 3.18a). Fibres representing ground truth (Figure 3.18a) are overlayed

on top of GFA, while the reconstructed images (Figure 3.18b-d) are plotted

on top of the quantitative anisotropy [85].

The phantom consist of a bending fibre (right, blue and yellow), a bending

fibre that touches (kisses) another fibre (top, blue and black), a top horizon-

tal fibre (green, yellow, and red), and four diagonal fibres. Three top-left to

bottom-right diagonal fibres cross at one point, and then cross with the remain-

ing top-right to bottom-left diagonal fibre.

As seen in Figure 3.18b, majority of seeds were resolved correctly. There is no

problem with a right bending fibre (blue and yellow ) and both seeds produce

expected fibres. Also both top bending and kissing fibres (blue and black) are

correct. Furthermore, both top-left to bottom-right diagonal fibres (purple and

yellow), and both middle-left to bottom-right fibre (orange and green) are cor-

rectly located, but end prematurely. One out of three top-right to bottom-left

diagonal fibres (red) is resolved. The two remaining fibres, while correctly lo-

cated, are truncated. The upper top-left to bottom-right fibre (cyan), although

crudely shaped and slightly truncated, can be considered as a proper fibre. Also

two horizontal fibres (green and red) are correctly, but not fully found. The

upper-top to bottom-right diagonal fibre (green), and horizontal fibre (yellow)

incorrectly leaks into wrong directions.

3.5 Diffusion Signal Reconstruction from Hu-

man Brain Image

In-vivo images of a 20 year old male patient were acquired using Philips MR

Achieva R3.2; local research ethics committee approval and informed consent
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were obtained. Image acquisition matrix was set to 224× 224 with in-plane res-

olution of 2 × 2 mm2. 48 slices were acquired with thickness of 2 mm. 32 diffu-

sion weighted images with b = 1000 s/mm2 (TE = 54 ms, TR = 7803.283 ms),

and a single non-DW image were taken.

Images were corrected for the eddy current distortion using FSL [35, 71, 84],

and the brain was extracted using the Brain Extraction Tool [70] (BET). Dif-

fusion signal was reconstructed using a regularised 6th order SH series1 and

transformed into FODF (Figures 3.19-3.21). FODF profiles were colour-coded

as explained in Section 2.3. Each anatomical direction is associated with one

principle colour: blue red with medial-lateral direction, green with anterior-

posterior direction, and blue with inferior-superior direction.

Three crossings in the brain have been highlighted: between the superior cor-

pus callosum and the cingulum (Figure 3.19), between the corona radiata and

superior longitudinal fasciculus at the centrum semiovale (Figure 3.20), and be-

tween the corona radiata and the corpus callosum at the centrum semiovale

(Figure 3.21). Finally, a streamline tractography was performed to verify a

global correctness of the reconstructed signal (Figure 3.22).

Both the superior corpus callosum and the cingulum can be seen in the

Figure 3.19. The green FODFs that run posterior-anteriorly represent the

cingulum (middle section of bottom Figure 3.19), while the red-blue FODF

(left and right edges of bottom Figure 3.19) represent the corpus callosum

and run medial-laterally and inferior-superiorly. Some voxels seem to con-

tain both cingulum and corpus callosum – FODF is shaped as a crossing

in superior-inferior and posterior-anterior directions. This is an apparent

crossing caused by a limited MRI resolution.

The true crossing at the centrum semiovale is shown in the Figure 3.20b. The

red-blue FODFs that mainly run in the superior-inferior direction represent the

corona radiata (right section of bottom Figure 3.20). The superior longitudinal

fasciculus, represented by green FODF profiles, is seen on the left and runs

mostly in anterior-posterior direction.

The FODFs of apparent fibre crossing between the corona radiata and the cor-

pus callosum at the centrum semiovale are shown in Figure 3.21. The corpus

1Longest possible SHS – there were 32 non-collinear diffusion encoding gradients and to use
8th order SHS at least 45 are necessary.
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Figure 3.19: Fibre crossing between the superior corpus callosum and the cin-
gulum: T2 (top-left) and GFA (top-right) images with a high-
lighted region of interest, and reconstructed FODFs (bottom).
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Figure 3.20: Fibre crossing between the corona radiata and longitudinal fasci-
culi at the centrum semiovale: T2 (top-left) and GFA (top-right)
images with a highlighted region of interest, and reconstructed
FODFs (bottom).
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Figure 3.21: Apparent fibre crossing between the corona radiata and the cor-
pus callosum at the centrum semiovale: T2 (top-left) and GFA
(top-right) images with a highlighted region of interest, and re-
constructed FODFs (bottom).
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Figure 3.22: Fibre tracts reconstructed at cingulum (orange), and corpus callo-
sum (green, blue, and yellow).
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callosum is seen through red FODFs running in a medial-lateral direction (bot-

tom left section of Figure 3.21). Corona radiata on the other hand, radiates in

inferior-superior direction and medial-lateral directions. It can be seen as fan-

ning, bending fibres represented as blue, red, and mixed (purple) FODFs.

In all three cases, the FODFs are oriented in anatomically correct directions. The

direction transition across voxels is smooth, and continuous.

Finally, Figure 3.22 shows reconstructed fibre tracts of two brain structures: cin-

gulum (orange), and corpus callosum (green, blue, and yellow). Orange and

blue seeds are located within the region shown in the Figure 3.19, while yel-

low and blue are located in the genu and splenium sections of corpus callosum.

For each seed 100 tracts were reconstructed using a streamline tractography.

The maximal angle was set to 45o, minimal tract length to 25 mm, and forward

momentum to 0.5 with trilinear interpolation, and subvoxel seeding.

3.6 Discussion

In this Chapter, the optimal method for selecting regularisation parameters was

presented. The method fine-tunes the regularisation parameter for a given dif-

fusion weighting factor and SNR. It performs a large number of Monte Carlo

simulations in order to find the numerically optimal reconstruction. The reg-

ularisation values found through multiple exhaustive searches were different

to those currently utilised (L-curve [18] or GCV [68]). Diffusion signal recon-

struction using SH transform with regularisation controlled by the proposed

method was on average more accurate (in worst case it was equally accurate)

than with regularisation set up by other methods (namely L-curve).

The optimisation described in this chapter is performed independently of

the image analysis. It can be therefore applied to any application where

diffusion signal is already reconstructed using a regularised SHT. The only

change for these applications would be in adjusting the regularisation pa-

rameter, by either using Figures 3.2-3.9 or by performing own optimisations

similar to ones explained in Section 3.2.

The Tikhonov regularisation with the Laplace–Beltrami operator is an elegant

way of regularising the measured signal within each voxel. In the Fourier do-
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main, the method is computationally efficient and therefore viable for large data

sets (up to few million voxels, with several dozen samples in each voxel). The

GTV optimisation method offers a cost-free accuracy boost to any processing

pipeline that involves the before mentioned regularisation.

The framework for selecting the regularisation strength presented in this chap-

ter can be extended in many directions. The most obvious direction would be

to explore different optimisation functions. For example, if one is interested

in more accurate tractography, a complex ground truth that models intra-voxel

behaviour should be used. On the other hand, if one has the access to a hard-

ware phantom [66], it is possible to use the GTV method to “train” the opti-

misation for a given MRI scanner. The ground truth would be based on the

hardware phantom, and the regularised reconstruction of that phantom scan

should be optimised. This “profiling” of the scanner should theoretically result

in a higher accuracy than the simulated GTV described in this chapter.

The angular regularisation is one of several techniques that can be used to im-

prove the reconstruction accuracy. Spatial regularisation that forces to maintain

signal continuity across voxels can be used in conjunction with angular regu-

larisation. Apart from intra and inter voxel regularisation, modifications to SD

are also possible. The major issue with both SD and SDT is the lack of non-

negativity constraint. The reconstructed FODFs may, due to noise and ringing,

exhibit negative regions. Another improvement in the accuracy of the recon-

structed signal is thus possible by constraining the negativity of FODF, and

propagating it back to HARDI signal [75]. This can be implemented on top of

the angular and spatial regularisation, but requires iterative re-evaluation of

each voxel and slows down the reconstruction step linearly.
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4
Statistical Inference for

Reconstructing Diffusion Signal

The diffusion weighted signal acquired using clinically viable parameters suf-

fers from low SNR, and poor spatial and angular resolution. Improving any

of these properties increases the scanning time which, while acceptable in re-

search environment, becomes very expensive in clinics. Recent research in a

non-parametric diffusion signal processing was focused on a intra and inter

voxel reconstruction of the signal, and involved either spatial or angular reg-

ularisation, and sometimes both.

In this chapter, an alternative to angular smoothing is presented. The proposed

method is based on a stepwise linear discriminant analysis [1], which allows

to select the most important predictors while retaining the highest discrimina-

tion power. Instead of modifying SH coefficients (e.g. regularisation schemes

described in Section 2.4.3), a statistical approach to assess them in terms of sig-

nificance is utilised [64]. Even without the ground truth data, it is possible to

estimate how necessary each basis function is to represent the signal, and how
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much it is affected by noise. As such, depending on the selected threshold, the

frequency can be deemed significant to signal representation and retained, or

insignificant and removed from the signal. The resulting SH series will there-

fore contain only most useful basis functions and be able to filter noise from the

signal. Furthermore, the remaining SH basis function can still be regularised,

further improving signal reconstruction accuracy.

This chapter is organised as follows. Section 4.1 highlights the issue of using

long SH series to represents diffusion signal. Monte Carlo simulations are used

to test the average accuracy of the signal representation as a function of the

number of SH basis functions. Additionally, the average magnitudes of SH co-

efficients, and a noise influence on SH transform is explored. In Section 4.2, a

statistical method for elimination of the least significant SH basis function us-

ing a Student’s t-test is introduced. Section 4.3 introduces stepwise regression,

as well as three methods for combining the statistical inference with angular

regularisation is described in Chapter 3. Additionally, the accuracy of back-

ward elimination regression in diffusion signal reconstruction is tested. GFA

maps and full brain tractography of a human brain are presented in Section 4.4,

and show the viability of backward elimination regression in medical imaging.

Finally, conclusions and discussion are presented in Section 4.5.

4.1 Spherical Harmonic Analysis of Noisy Signal

Spherical harmonics, as globally supported spherical functions, can be

used to approximate any spherical signal. The signal is represented as

a superposition of basic waves, more often called basis functions. By

having enough basis functions Y, it is therefore possible to represent a

diffusion signal E with a certain error ǫ:

E = Yc + ǫ . (4.1)

At the same time though, the SH analysis is a generalisation of a Fourier anal-

ysis, and the SH basis functions represent a spherical frequencies of the sig-

nal. As in the Fourier transform, the higher the order of the basis function,

the higher the frequency of the signal this basis function represents. There-

fore, any truncated SH series can be considered as an accurate representation
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Figure 4.1: Normalised root-mean-square deviation for SHT of diffusion signal
with low (left triplets), medium (middle triplets), and high (right
triplets) diffusion weighting applied. Each triplet shows NRMSD
for a 2nd to 10th order SHT of diffusion signal. Diffusion signal was
generated with no noise (a), and with increasing corruption (b-d).

of the signal, up to the truncated frequency. The truncation of the series is

enforced by the limited number of samples, from which the transform is com-

puted. Due to noise, in order to have a numerically stable linear regression the

number of parameters (SH coefficients) must be no greater than the number

of linearly independent samples.

Figure 4.1 shows the mean of normalised root-mean-square deviation

(NRMSD) of approximated signal as a function of SH order. The diffusion

signal was generated for three diffusion weighting factors b = 500 s/mm2,

b = 1500 s/mm2, and b = 3000 s/mm2, each 10000 times for 1, 2 and 3 fibre

crossings independently. The discrete signal was simulated at 1000 uniformly

distributed points on a sphere. Four cases are presented: one with no noise (Fig-

ure 4.1a), and three with increasing noise (Figure 4.1b-d, SNR of 10, 20, and 30).

Even with a low diffusion weighting factor, a 2nd order SH series does not
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allow to accurately approximate the diffusion signal. Across all 9 tests (low,

medium, and high diffusion weighting factor and one, two, and three fibre

crossings) the single fibre configuration proved to be the most difficult to accu-

rately approximate (highest error). As the diffusion weighting factor increases,

the signal becomes sharper, meaning more basis functions are needed to accu-

rately approximate the signal. With a medium diffusion weighting factor, 4th

order SH series, and with a high, the 6th order series become inaccurate. The

difference in NRMSD across the number of fibres crossing is marginal. In gen-

eral, 6th and 8th order SH series are sufficient to accurately approximate the

diffusion signal simulated using a middle and high diffusion weighting factor.

With the addition of noise, the error drastically increases. Even with a high

SNR, any higher order SH series (l > 2) becomes, at best, only twice more

accurate than the 2nd order SH series. As the noise is always random (following

Rician distribution), higher order basis functions become more affected. For

low diffusion weighting factor, regardless of the fibre configuration simulated,

the higher order basis functions no longer help in signal representation (same

error as for 2nd order SH series). With medium and high diffusion weighting

applied, the 4th order basis functions are still useful (reduce the error). Even

with reliable measurements (SNR = 30), any SH series above 6th order will

not improve the approximation accuracy.

Depending on SNR, the 6th or 8th order SH series can be considered as optimal.

However, even when truncating the approximation to just several basis func-

tions the approximation error is still several times higher than ground truth (ap-

proximation of noiseless signal). To some degree, medium SH basis functions

react to noise present in signal introducing false regularities in approximation.

Figure 4.2 presents the average magnitude of the main SH coefficient m = 0 for

a set of orders l ∈ {2, 4, 6, 8, 10}. Both noise free and corrupted signals for low,

medium, and high diffusion weighting factors are investigated, as well as 1, 2

and 3 fibre crossing configurations. To produce statistically significant results,

each magnitude is averaged from SH transform of 10000 independent voxels.

The initial SH basis functions of up to 4th order can be considered stable. Re-

gardless of the presence and strength of noise, the average magnitude of those

frequencies remains constant. With higher frequencies though (l ≥ 6), noise

influence starts to be seen in the SH coefficients. It can be seen that at low dif-

fusion weighting factor, even with a high SNR, the average magnitude of the
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Figure 4.2: Average magnitudes of main SH basis functions, at increasing fre-
quencies. Noiseless (red), and corrupted signal analysis (blue,
cyan, and yellow).
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6th order coefficients is several times larger than those of noise free equiva-

lent. This noise susceptibility escalates at higher frequencies, especially when

lower diffusion weighting is applied.

With low diffusion weighting factors, the average magnitude of 10th order ba-

sis functions for SH transform of noisy signal is over 1000 times larger than it

should be. This means that those basis functions are mostly representing noise,

not the underlying diffusion signal. As a result, the higher order terms need

to be saturated (see Chapter 3) or not used at all.

4.2 Statistical Inference and Linear Regression

4.2.1 Rationale

Stepwise regression [33] is a set of regression models that allow for automatic

selection of predictive variables. The algorithms can be divided into three ap-

proaches: forward selection, backward elimination, and bi-directional elimina-

tion. Forward models usually start with no predictors other than a constant

value, and over iterations add variables that improve the model the most. The

process stops when there are no more useful variables. Backward elimination

methods work exactly the opposite, they start with a full model, and over itera-

tions remove those variables that are the least useful. Bi-directional algorithms

combine both approaches, either adding the most useful variable, or removing

the least significant one in each iteration. In this Section, an alternative to series

truncation, based on backward elimination method is proposed.

Instead of removing all corrupted lth order basis function, a selective proce-

dure through the use of t-test can be utilised [53]. The initial regression model

is found using a classical, unregularised least squares method. Next, for each

predictive variable ci, t-scores are computed. The decision whether the vari-

able is insignificant or not is made based on the lowest t-score. If the vari-

able is deemed insignificant, it is removed from the regression model, and t-

scores for remaining variables are recomputed. The procedure is repeated until

only significant variables are left.
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As mentioned in Section 2.4.1, the SH transform can be implemented and

solved as a linear regression (Equation 2.16). It is therefore possible to use

one of the linear regression t-tests – test for regression slope – to tell whether

there is no correlation between E and c 1. The null hypothesis states that

the slope (SH coefficients c) is equal to 0 (is insignificant), and alternative

that it is not equal to 0 (is not insignificant):

H0 : ci = 0

H1 : ci 6= 0 .
(4.2)

The null hypothesis has to be tested for each coefficient ci.

Before t-values for each coefficient ci can be found, it is necessary to obtain the

standard error for each of the least-squares estimators:

SE(ci) =

√

MSE

∑
N
k=1(Xik − X̄)2

, (4.3)

where MSE is the mean squared error, which in regression analysis is an un-

biased estimate of noise variance:

MSE =
∑

N
k=1(Ek − Êk)

2

N − L
. (4.4)

In the formula above, the nominator is simply a sum of squared residuals, while

the denominator is the sample size N reduced by the number of parameters L

used in the regression. Having the standard error, it is now possible to com-

pute t-scores for each coefficient ci:

ti =
ci

SE(ci)
. (4.5)

The last step of the t-test is to use the t-scores to obtain the p-values. In statis-

tics, the p-value is a probability of obtaining a result equal to, or more extreme,

than what was observed. If the p-value for ith coefficient is lower then the pre-

determined significance value α (usually 0.05), the null hypothesis is rejected.

As a result, the basis function corresponding to the coefficient ci is considered

as significant in signal representation, and should be kept.

It is important to note that the t-test is a test for marginal significance of the

1Alternatively, the partial F-test can be used for the same results.
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predictor ci. Since it takes into account all other cj (i 6= j) used to represent

the variable E, any change in cj will change the significance of ci. However,

the SH basis functions are orthonormal and the potential removal of ci does not

change the actual values of cj
2. As a consequence, the least significant basis

function will stay least significant, even if other basis functions are removed

(the p-values will change). This allows forming the iterative backward elimi-

nation method, where in each iteration the least significant basis functions is

removed from the signal representation.

4.2.2 Regularised Backward Elimination Regressions

There are multiple ways of combining the backward elimination regression

with regularisation. The most straightforward approach is to use regu-

larised coefficients in Equation 4.5. For further references, the SH series

obtained using classical backward elimination will be referred to as backward

elimination (BE), and the regularised backward elimination will be called

regularised backward elimination (RBE).

Alternatively, backward elimination can be used to classify basis functions as

either significant or insignificant. Based on this classification, two possible al-

gorithms emerge. First, only significant basis functions are used, but the co-

efficients itself are regularised [57]. Another way to combine regularisation

with elimination is to use full SH series, but regularise only the insignificant

coefficients. For further reference, former method will be called significant-

regularised backward elimination (SBE), while latter insignificant-regularised

backward elimination (IBE). Their respective formulations are given by:

cSBE = cTR ◦ sgn|cBE| , (4.6)

cIBE = cTR ◦ (1 − sgn|cBE|) + cBE , (4.7)

where cTR are regularised SH coefficients, and ◦ denotes a Hadamard product.

2The numerical orthonormality of the discrete SHT is enforced through the sampling scheme
and, depending on the sampling scheme used, may not be maintained.
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Figure 4.3: Reconstruction error as a function of diffusion weighting factor for
low SNR at different significance levels.

4.3 Quantitative Evaluation

To test the influence of backward elimination on accuracy of diffusion signal

representation, exhaustive numerical simulations were performed. Diffusion

signal was generated for multiple fibre configurations (one, two, three, and

random fibre crossing), different SNRs, and diffusion weighting factors. Sim-

ulated, noisy signal was analysed with a SHT, and unreliable basis functions

were rejected using backward elimination procedure. Reconstruction error of

reduced SH series as a function of diffusion weighting factor is presented in Fig-

ures 4.3 and 4.4. Four significance levels were tested, α ∈ {0.5, 0.1, 0.05, 0.01}
for both low (10) and high SNR (30). In each case, error was averaged over

10000 independent simulations.
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Figure 4.4: Reconstruction error as a function of diffusion weighting factor for
high SNR at different significance levels.

When diffusion signal is simulated with low diffusion weighting applied it is

more beneficial to use low significance level. The lower the probability of in-

correctly rejecting the null hypothesis is, the more basis functions are removed

from signal representation. In a low changing signal this improves the accu-

racy of signal reconstruction. Keeping a high significance level with a high dif-

fusion weighting though, increases the probability of Type II error. When the

null hypothesis is incorrectly accepted, the accuracy of signal representation

suffers, and a higher significance level should be used. For further reference,

a point at which two lines representing the errors of two significance levels

cross is called “critical” point. To the left of critical point a lower significance

level should be used, to the right – higher.

The location of critical point depends on the SNR use to generate diffusion sig-
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Figure 4.5: Basis function relevance for four significance levels, low SNR.

nal, and underlying fibre configuration. At a given diffusion weighting fac-

tor, the higher the SNR becomes the less basis functions can be safely removed

from Equation 2.18, meaning a higher significance level has to be selected. For

example, it becomes more beneficiary to use α = 0.05 over α = 0.01 start-

ing from b = 2300 s/mm2 when reconstructing a low quality (SNR = 10)

diffusion signal coming from two fibre crossing. With a high quality signal

though (SNR = 30), it is better to use higher significance level as soon as

b = 1200 s/mm2. Additionally, depending on the fibre configuration, the criti-

cal point is located at different location, e.g. as the number of fibre crossings

increase, the point moves toward right.

Percentage of how often each SH basis functions is used after backward elim-

ination process is applied (basis function relevance) is shown in Figures 4.5

and 4.7, while the distribution of a number of basis functions used in a signal

representation (polynomial degree) in Figures 4.6 and 4.8. Backward elimina-

tion regression with significance value α ∈ {0.5, 0.1, 0.05, 0.01} was performed

for low and high SNRs on a 10000 diffusion signal reconstruction of a ran-
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Figure 4.6: Distribution of the polynomial degree for four significance levels,
low SNR.

dom fibre configuration. Diffusion signal simulated using a medium diffusion

weighting factor b = 1500 s/mm2.

The relevance of a basis function depends on its order, significance level used,

as well as SNR. The 2nd order basis functions (2–6) are robust to noise, and

regardless of SNR or significance level, are used in 90% of cases. Higher order

SH basis though, are more sensitive to noise, and thus less relevant. The rele-

vance of 4th order basis functions (7–15) is, depending on the significance level,

10% to 70% for low, and 40% to 70% for high SNR simulations. The higher

order basis functions become less relevant.

When SH functions are used to represent the diffusion signal, only antipodal

symmetric bases (bases of even order) are needed. As such, any full nth order

SHS will have (n + 1)(n + 2)/2 terms. This means there are 45 different basis

functions used when the signal is approximated using 8th SH series. Further-

more, due to backward elimination, SH series can be reduced to just few basis

functions (Figure 4.6 and Figure 4.8, polynomial degree). The lower the signif-
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Figure 4.7: Basis function relevance for four significance levels, high SNR.

icance value is, the less basis functions will be used. Additionally, the number

of statistically significant bases is tied to SNR; and with low SNR, more basis

functions are rejected from the signal representation.

Although the backward elimination regression improves the accuracy of

signal reconstruction, in terms of absolute error it is not as good as Tikhonov

regularisation. The optimised Tikhonov regularisation described in Section 3.2

can be up to two times more accurate than backward elimination (Figure 3.11a

vs Figure 4.3d and Figure 3.11e vs Figure 4.4d). Since these two methods

work in different domains (backward elimination removes frequencies,

while Tikhonov regularisation saturates them) they can be combined into

regularised backward elimination regression.

Finally, Figures 4.9 and 4.10 show the reconstruction error for all four meth-

ods: BE (solid), RBE (dash and dot), SBE (dash), and IBE (dot). Significance

levels are coded with different colours, red is used for 0.01, yellow for 0.05,

cyan for 0.1, and blue for 0.5. Black solid line is used to represent the error
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Figure 4.8: Distribution of the polynomial degree for four significance levels,
high SNR.

of a full regularised signal reconstruction.

In general, the Tikhonov regularisation by itself produces good reconstruction

accuracy for either low SNR or low diffusion weighting factors. As soon as SNR

increases and a medium diffusion weighting is applied the SBE method be-

comes the most accurate (dot lines). Lowest significance values for this method

result in the most accurate reconstruction.

Out of all methods, direct application of Tikhonov regularisation to back-

ward elimination regression almost always gives the worst results. This

can be seen especially with a high SNR (Figure 4.10), when RBE performs

even worse than BE. The only application for this method may be found

with high significance values (blue dash and dot line) at low diffusion

weighting factors (b < 1700 s/mm2), as in these cases it can accurately

represent the diffusion signal.
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Figure 4.9: Reconstruction error for backward elimination methods (various
coloured) and Tikhonov regularisation (solid black), low SNR. Four
backward elimination methods are compared: BE (solid coloured),
RBE (dash and dot coloured), SBE (dash coloured), and IBE (dot
coloured).

4.4 Backward Elimination Regression in Brain

Imaging

In-vivo images of a healthy human brain were acquired using Philips MR

Achieva R3.2; local research ethics committee approval and informed consent

were obtained. Image acquisition matrix was set to 224 × 224 (in-plane resolu-

tion of 2 × 2 mm2, TE = 72 ms, TR = 15, 292 ms), and 52 slices were acquired

with thickness of 2 mm. 61 diffusion weighted images with b = 3000 s/mm2,

and 6 non-DW images were taken. Eddy current correction and brain extrac-

tion was done using FSL and BET software. Diffusion signal was reconstructed

using an 8th order SH series. SNR was estimated to be between 18 and 21,
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Figure 4.10: Reconstruction error for backward elimination methods (various
coloured) and Tikhonov regularisation (solid black), high SNR.
Four backward elimination methods are compared: BE (solid
coloured), RBE (dash and dot coloured), SBE (dash coloured), and
IBE (dot coloured).

and as such significance level α for backward elimination was set to 0.01, and

regularisation value λ2 for Tikhonov regularisation was set to 0.002.

Figure 4.11 shows GFA maps computed from two SH series – full regularised

and classical BE regressions, as well as the number of non-zero SH basis func-

tions after performing backward elimination (white representing high count).

BE removes corrupted frequencies from signal representation, which means

that GFA maps generated from reduced SH series have better contrast. The

number of non-zero basis functions used to reconstruct the signal for voxels

containing isotropic signal is very low, and often SH series is reduced to a sin-

gle basis function (sphere). The highest number of basis functions is seen in the

voxels with medium to high anisotropy. In these voxels SNR is high and more
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Figure 4.11: GFA maps computed from regularised and backward elimination
regressions, and the non-zero basis functions map for backward
elimination. Inferior-superior view, 10th, 20th, 30th and 40th slice.
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basis functions are deemed significant. As a result, non-zero basis functions

map closely correlates with the GFA map, and thus brain structure.

Full brain tractography is presented in Figure 4.12. Four methods were used to

reconstruct the signal: full regularised regression and three backward elimina-

tion algorithms (BE, SBE, and IBE). All tractography result can be considered

correct and look similar to each other, although there is a difference in quantities

of reconstructed tracts for regularised and IBE regressions, and BE and SBE.

The first two methods are less restrictive, and produce longer tracts. Mean

tract length is 11.4688 mm and 11.4578 mm for regularised and IBE methods,

while mean tracts for BE and SBE methods are 8.78166 mm and 8.75327 mm

long (maximal tract are 105.71 mm, 115.916 mm, 107.549 mm, and 107.577 mm

for regularised, IBE, BE, and SBE methods respectfully). The longer tracts pro-

duced by regularised and IBE regressions are often resolved as multiple shorter

tracts when using BE and SBE regressions, most likely due to their restrictive

signal representation (use of reduced or reduced and regularised SH series in-

stead of full regularised or full and partially regularised SH series). As a result,

the number of tracts resolved for regularised and IBE regressions are 156282

and 159482, while for BE and SBE is almost twice as much – 247611 and 244768.

4.5 Discussion

In this chapter, an alternative to the widely used angular regularisation schemes

based on backward elimination regression was presented. The method, which

is part of the stepwise regression family, uses Student’s t-test to automatically

select the most reliable basis functions. In an iterative process, the least signif-

icant basis function is removed from the signal representation one at a time,

or more precisely, the coefficient associated with it is set to 0. The algorithm

terminates once only significant basis functions are left.

In Section 4.3 numerical evaluation of this method was presented. The method,

by removing most noise affected basis functions, consistently improves the

signal representation accuracy. However, its performance is not as good as

popularly used regularisation schemes based on Tikhonov regularisation [19,
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a) full regularised regression b) backward elimination regression – BE

c) backward elimination regression – SBE d) backward elimination regression – IBE

Figure 4.12: Full brain tractography, inferior-superior view of 27th slice.
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32]. Therefore, three additional methods that incorporate angular regularisa-

tion into backward elimination regression had been developed. Depending on

the quality and parameters of the scan, either first (RBE), or last (IBE) algo-

rithm should be used for best results.

Additionally, a new measure based on the number of non-zeroed coefficients

(number of basis functions used) was introduced. Maps generated using this

measure coincidence with GFA maps, and in general with white matter organ-

isation in the brain (Figure 4.11). They could potentially be used in a further

processing. One of the possible application could be in developing a reliability-

aware algorithms. For example, a tractography algorithm can use this infor-

mation to decide how strongly the signal in each voxels should affect tract re-

construction. Another possible use for this information could be a selective

denoising algorithm, where the denoising strength is correlated with the re-

liability of signal in each voxel.

Finally, in Section 4.4 the viability of the backward elimination regression and

the developed methods in real image processing is addressed. Diffusion signal

of a full brain scan (SNR between 18 and 22, and diffusion weighting factor

b = 3000 s/mm2) was represented using a backward elimination reduced 8th

order SH series. GFA maps computed from backward eliminated SHS, thanks

to the partially removed noise, have a better contrast than those obtained from

just regularised SH transform. Three out of four introduced methods, due to

SNR and diffusion factor requirements, were deemed viable: BE, SBE, and IBE.

Full brain tractography that was performed on the signal represented using

those methods proved to be consistent with the tractography performed on the

signal represented using classically regularised SH series.

It is important to note that backward elimination methods require significant

processing power, as each voxel has to be analysed multiple times. Due to the

high computational requirements and only marginal increase of reconstructed

signal accuracy this method may not be viable for clinical applications. The

method can also be used for the new measure it introduces – number of non-

zero coefficients. However, as there are no clinical experiments which use this

measure its usefulness is not known.
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5
Bayesian Regression and Spherical

Harmonic Analysis

In Chapter 3 the reconstruction of diffusion signal was improved by reg-

ularising higher frequencies with a Laplace–Beltrami smoothing operator.

The signal reconstruction was then further improved by introducing statis-

tical inference and significance testing in Chapter 4. In both cases though,

the coefficients of SH transform were found using ordinary least squares

(OLS) method (Equation 2.17). In this Chapter, an alternative method

using Bayesian inference is used.

As stated in previous chapters, signal reconstruction (approximating signal val-

ues in-between measuring points) can be regarded as a linear regression prob-

lem. The dependent variable (regressand) is expressed by explanatory variable

(regressors). In diffusion signal reconstruction the measured signal is a regres-

sand, and SH basis functions are regressors. The relationship between regres-

sand and regressors is defined by a parameter vector (regression coefficients),

often found using OLS. Bayesian regression extends the linear regression by in-

troducing a additional knowledge about the relationship between dependent
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and explanatory variables. Regression coefficients will be therefore affected by

the dependent variable and a prior knowledge, which should result in a supe-

rior accuracy of the diffusion signal reconstruction.

This chapter is organised as follows. In Section 5.1 Bayesian regression and

the construction of prior knowledge are introduced. Numerical evaluation and

phantom simulations are presented in Section 5.2. Section 5.3 shows the appli-

cation of Bayesian regression and prior knowledge to diffusion MRI image of

human brain. Finally, Section 5.4 concludes this chapter discussing advantages

and shortcomings of described method as well as further work.

5.1 Bayesian Regression

By using Bayesian regression it is possible to infer about unknown pa-

rameters using some known (prior) information. The information can

be based either on data (e.g. past observations) or beliefs (e.g. predicted

behaviour). For a linear regression model:

y = Xβ + ǫ , (5.1)

with unknown regressors β, and ǫ ∼ N(0, σ2) with unknown σ2. The

conjugate prior for β and σ2 is the multivariate normal inverse gamma

distribution, N − Γ−1(m, V, a, b):

f (β, σ2|m, V, a, b) =

|V|−1/2(2π)−p/2 ba

Γ(a)

(

1
σ2

)p/2+a+1
exp

(

− 2b+(β−m)TV−1(β−m)
2σ2

)

, (5.2)

with mean m, covariance σ2V, shape a, scale b, and p being the number of re-

gressors.

The posterior distribution is simply another multivariate normal inverse

gamma distribution N − Γ−1(m∗, V∗, a∗, b∗), with parameters:

a∗ = a + n/2 , (5.3)
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b∗ = b + {mTV−1m + yTy − (m∗)T(V∗)−1m∗}/2 , (5.4)

m∗ = V∗(V−1m + XTy) , (5.5)

V∗ = (V−1 + XTX)−1 , (5.6)

with n being the number of observations.

Alternatively, the conjugate prior can be expressed as a multiplication of two

distributions: normal defined by mean m and covariance σ2V, and inverse

gamma defined by shape a and scale b. Similarly, the posterior distribution

can be decomposed into two distributions: N(m∗, V∗) and Γ−1(a∗, b∗).

When a prior knowledge is weak, the diagonal elements of matrix V tend to go

to infinity, rendering V−1 close to zero. The posterior then becomes:

m∗ = (XTX)−1XTy , (5.7)

V∗ = (XTX)−1 (5.8)

which is equal to ordinary least squares solution. Similar behaviour should be

established, when the data is completely reliable (σ2 = 0). It can be achieved

by using the unbiased estimate of noise σ̂2 to scaling the V−1:

m∗ = V∗(σ̂2V−1m + XTy) , (5.9)

V∗ = (σ̂2V−1 + XTX)−1 . (5.10)

The posterior distribution is therefore affected by both data and prior knowl-

edge, with data reliability controlling the ratio. It represents how likely regres-

sors βx are, given the observed data. The highest probability is obtained for

βx = m∗, and therefore posterior mean is a natural candidate for unknown

regressors. Combining Equations 5.9 and 5.10 it can thus be written:

β = (σ̂2V−1 + XTX)−1(σ̂2V−1m + XTy) . (5.11)

5.1.1 Prior Knowledge for Diffusion Signal Reconstruction

In order to apply Bayesian regression to diffusion signal reconstruction prior

information has to be identified. Since the diffusion signal can be accurately
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simulated using mathematical models, a numerical simulation is used to gen-

erate a set of noise free SH transforms. For a given diffusion weighting fac-

tor and a set of diffusion coding vectors, a random fibre configuration is se-

lected. Diffusion signal is generated using a multiple tensor model (Equa-

tion 2.6) and the SH transform of the signal is computed. SH coefficients c

are stored, and the process is repeated N = 1, 000, 000 times. The prior knowl-

edge is expressed in the form of prior distribution defined by its mean µ and

variance V for each coefficient k:

µk =
1
N

N

∑
i=1

cki , (5.12)

Vk =
1
N

N

∑
i=1

(cki − mk)
2 . (5.13)

Figure 5.1 shows prior distribution, computed for low (b = 1000 s/mm2) and

high (b = 3000 s/mm2) diffusion weighting factors. The first basis function

(l = 0, m = 0) is omitted for visualisation purposes (µ = 1.81 for low, and

µ = 0.69 for high diffusion weighting factors). Both mean and variance exhibit

the same trend regardless of the diffusion weighting applied. The variance

of coefficients decreases as the order of basis functions increases. Additionally,

most coefficients are equally likely to be positive or negative (µ = 0). Some coef-

ficients however, are always either positive or negative (µ 6= 0 and µ ≫ V). For

example, 9th and 11th coefficients stay negative regardless of the fibre configu-

ration and diffusion weighting factor that was used to generate diffusion signal.

The prior distribution defined by µ and V gives general information on the

behaviour of SH transform of the diffusion signal. Therefore, it can be used to

constrain noise influence on diffusion signal reconstruction (Equation 5.11).

5.1.2 Localised Prior Knowledge

The prior distribution generated in Section 5.1.1 describes a global behaviour of

SH basis functions. It was created from a set of all possible fibre configurations

and therefore does not capture any local properties that exist. However, by re-

stricting the fibre orientation for which diffusion signal is created, it is possible

to check for potential local properties of SH analysis.
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Figure 5.1: Mean (top) and variance (bottom) of prior distribution for low (left)
and high (right) diffusion weighting factors.

An experiment can be constructed, which explores some properties of SH anal-

ysis. For a set of single fibre voxels, where fibre directions are all on the same

plane, it can then be observed that the coefficients of SH analysis of the diffusion

signal for this set of voxels will change in a predictable manner. For example,

consider five fibres in the same plane, each rotated by 5o from the previous one.

For each fibre, diffusion signal using MTM is generated, and SH analysis is per-

formed. The middle fibre is selected as a reference, and every SH coefficient is

normalised using the largest coefficient around the reference:

ĉk =
ck − c10

max(|c0|, |c5|, |c10|, |c15|, |c20|)
. (5.14)

In the Equation 5.14, ck is the coefficient of SH transform of diffusion sig-

nal generated for ko rotated fibre, and ĉk is the normalised and reference

shifted version. With such notation, all reference coefficients (k = 10)

become 0, while other coefficients vary from −1 (lower than reference)
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Figure 5.2: Normalised difference in SH coefficients of diffusion signal gener-
ated for five single fibres belonging to the same plane.

to 1 (bigger than reference).

The predictability of the coefficient change is shown in the Figure 5.2. The nor-

malised difference in SH coefficients magnitude between the reference (green)

and rotated fibres changes in a monotonous way (or remain unchanged). For

example, 2nd, 9th, 16th, and 20th coefficients decrease, while 7th and 18th in-

crease in magnitude along with the increasing rotation.

It is observed that SH coefficients of signals from fibres within a predefined cone

shape are similar. Averaging the SH coefficients will result in a non-zero mean

and low variance. The narrower the cone shape becomes the lower the variance.

A prior built from these simulations will therefore capture local properties of a

diffusion signal coming from a single fibre in a direction defined by the cone.

Again, this can be extended to more complex fibre configurations.

Finally, an algorithm to build a localised prior knowledge can be formed. The

SH analyses of one million random fibre configurations (Section 5.1.1) can be

reused. However, to compute mean and variance for each coefficient only a

selection of configurations should be used, e.g. since the SH analyses of dif-

fusion signal generated for a single fibre ~rx, ~r1, ~r2, and ~r3 are similar, when

analysing an unknown fibre~rx the prior for cx needs to be strongly influenced

by known coefficients c1, c2, and c3. As a result, from the precomputed one

million simulations only a subset of most similar SH coefficients are taken, and

86



CHAPTER 5: BAYESIAN REGRESSION AND SPHERICAL HARMONIC ANALYSIS

r1

r3

r2

rx

Figure 5.3: Spherical sampling scheme. Vertices represent fibre directions for
which the SH transform of diffusion signal is known (c1, c2, and
c3 for directions ~r1, ~r2, and ~r3). Red vector ~rx represents unknown
direction for which SH transform of diffusion signal is known as
well (cx). Vector ~rx is a linear combination of ~r1, ~r2, and ~r3, while SH
coefficients cx are linear combination of coefficients c1, c2, and c3.

used to compute new mean and variance. The new, localised prior is thus used

in the same way as outlined in Section 5.1.

5.2 Numerical Evaluation

To numerically test the performance eight fibre configurations were selected:

single fibre without (1) and with isotropic compartment (2), two orthogonal

fibre crossings without (3) and with isotropic compartment (4), two 45o fibre

crossings without (5) and with isotropic compartment (6), and three 90o fibre

crossings without (7) and with isotropic compartment (8). Figures 5.4 and 5.5

show the error of HARDI and FODF reconstructions defined as normalised root

mean squared deviation (lower means better). Both low diffusion weighting

with high SNR (Figure 5.4) and high diffusion weighting with low SNR (Fig-

ure 5.5) are presented. Number of iterations was set to 10000.

For all multiple fibre configurations Bayesian regression using both global
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Figure 5.4: Reconstruction accuracy of HARDI signal (top) and FODF (bottom)
for low diffusion weighting; b = 1000 s/mm2, SNR = 35.
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Figure 5.5: Reconstruction accuracy of HARDI signal (top) and FODF (bottom)
for high diffusion weighting; b = 3000 s/mm2, SNR = 20.
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and localised prior performed better than optimised Tikhonov regularisation

(Chapter 3). The improved reconstruction accuracy can be observed for

low and high diffusion weighted applied. By utilising prior knowledge, the

magnitude of SH coefficients is restrained to physically possible. Refinement

of prior knowledge (Section 5.1.2) further increases the SH transform accuracy

and provides strong noise invariance. FODF which is more sensitive to noise

benefits more from introducing prior knowledge to the SH transform.

With the increased diffusion weighting and the decreased SNR it becomes

more preferable to use Tikhonov regularisation to reconstruct the diffusion

signal of a single fibre. The diffusion signal can change quickly, and the

global prior knowledge, which now includes more high frequencies, can

no longer suppress as much noise as regularisation. Ultimately, this is the

only case in which regularisation methods can outperform Bayesian as the

SNR becomes too low, and prior knowledge too general. In case of more

complex structures like two and three fibre crossing, the prior knowledge

is flexible enough to aid signal reconstruction, while selectively removing

noise. The regularisation on the other hand, indiscriminately saturates higher

frequencies removing both signal and noise.

Finally, refining the prior knowledge can improve the accuracy of signal recon-

struction. For simple fibre configurations localising prior knowledge results

in the most accurate, almost noise free reconstruction. Consequently, FODFs

consist of only true peaks, significantly reducing the error (configurations 1

and 2). As the configuration becomes more complex though, the benefits of

prior knowledge localisation diminish. At low diffusion weighting factors and

three fibre crossings it is no longer desired to refine the prior knowledge.

Figures 5.6 and 5.7 visualise reconstructed HARDI signal (top sub-figure) and

FODF (bottom sub-figure) from simulations with low (Figure 5.6) and high (Fig-

ure 5.7) diffusion weighting factor. In all sub-figures, five reconstructions are

visualised (from bottom): noise free, least squares, optimised Tikhonov regu-

larisation, global Bayesian regression, and localised Bayesian regression.

For both low and high diffusion weighting factors, Bayesian regression

methods reconstruct more regular and noise-free signal than optimised

Tikhonov regularisation. The near-perfect reconstruction can be seen in

case of FODF, especially when using a localised prior. With localised prior
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1 2 3 4 5 6 7 8

Figure 5.6: Visualisation of HARDI signal (top image) and FODF (bottom im-
age) for low diffusion weighting. From bottom to top row: real sig-
nal, least squares reconstruction, regularised reconstruction, global
and local Bayesian reconstruction; b = 1000 s/mm2, SNR = 35.
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1 2 3 4 5 6 7 8

Figure 5.7: Visualisation of HARDI signal (top image) and FODF (bottom im-
age) for high diffusion weighting. From bottom to top row: real sig-
nal, least squares reconstruction, regularised reconstruction, global
and local Bayesian reconstruction; b = 3000 s/mm2, SNR = 20.

92



CHAPTER 5: BAYESIAN REGRESSION AND SPHERICAL HARMONIC ANALYSIS

there are no false, noise imbued peaks in the reconstructed signal. This

high noise robustness is obtained at the cost of a small orientation tilt

(Figure 5.7, top rows of both sub-figures).

5.3 Brain Image Application

The same brain scan from Section 4.4 was used to test the application of

Bayesian regression model in diffusion signal reconstruction. In accor-

dance with Chapter 4, signal reconstruction was done using 8th order

SH series as well. This will allow for a direct comparison with the re-

sults presented in Section 4.4.

Figure 5.8 shows GFA maps computed from three SH series – regularised

series, as well as Bayesian series using two priors (global and localised).

Bayesian regression using either prior, similarly to backward elimination,

provides a way of removing high frequency noise without lowering angular

resolution of diffusion signal. GFAs produced from Bayesian obtained SH

series contain higher contrast and as a result look “sharper” than regularised

GFA. The GFA computed from a Bayesian regression using a localised prior

has higher contrast than the GFA computed using a global. Additionally,

the GFA computed using a localised prior is sharp enough to observe the

separation between two hemispheres.

Similar to Chapter 4.4, TrackVis was used to perform a full brain tractography.

All tracts passing through 27th slice are shown in Figures 5.9 and 5.10. Bayesian

regression with global prior reconstruct accurate diffusion signal, partially in-

variant to noise. Both fibre lengths and number of fibres resolved are similar to

Tikhonov regularisation (average fibre length of 11.3454 mm and 11.4688 mm,

and 157609 and 156282 fibres resolved). Fibre tracks resolved from the signal

reconstructed using a localised prior though, are not always correct. Despite su-

perior signal reconstruction introduced by the use of localised prior, fibre tracks

resolved (Figure 5.10) were not on par with fibres resolved when global prior

(Figure 5.9) was used. Among correctly resolved fibre tracks there is a large

number of artificial tracts (grey tracts), both inside and on the surface of brain.

The localised prior always provides the best candidate for a prior, even for a

voxel that does not contain any potential fibres. In the current implementation
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# regularised Bayesian (global) Bayesian (localised)
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Figure 5.8: GFA maps computed from regularised (left) and Bayesian regres-
sions (middle and right). Bayesian regression using a global (mid-
dle) and localised (right) prior. Inferior-superior view, 10th, 20th,
30th and 40th slice.
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the list of candidates is fixed (10000 most similar SH series). In case of isotropic

data, the list will contain SH series of isotropic data, as well as most similar

anisotropic SH series. Due to low magnitudes of isotropic based candidates,

such localised prior will have a tendency to “fiberise” the isotropic voxel. As

the method is stable, the localised prior for an isotropic voxel is always com-

puted in the same way. This results in an isotropic voxel being “fiberised” in a

systematic way. The tracking algorithm, fibre assignment by continuous track-

ing [43, 50], finds a group of same voxels and assigns fibres through them (90o

fibre crossing, seen as grey fibres in Figure 5.10). In a non-localised reconstruc-

tion (e.g. Tikhonov regularisation or when using a global prior) these voxels

are still reconstructed as either isotropic, or randomly oriented anisotropic. As

a result, tractography will discard them as possible fibre holders due to their

non-uniformity. This unexpected consequence of prior localisation could be

corrected either in the reconstruction step, or during the tractography itself.

5.4 Discussion

In this Chapter, Bayesian regression model and its application to diffusion sig-

nal reconstruction was introduced. This regression model supplements the

measured data with some beliefs about it. The stronger and more accurate the

beliefs are, the better theoretical results it can deliver. Those beliefs come in

a form of a prior knowledge, and the main challenge in creating a Bayesian

regression model is in providing a proper prior.

In Section 5.1.1, a Monte–Carlo method for creating a physically realistic prior

knowledge was proposed. Diffusion signal for a set of random fibre config-

urations was created and represented using SH series. The mean and vari-

ance of the SH coefficients are calculated as a ‘global’ prior, as it was com-

puted from SH coefficients of diffusion signal from all possible fibre configu-

rations. Additionally, only a subset of fibre configurations was used, and mean

and variance were computed from the respective SH coefficients. The sub-

set was selected in a way that minimised the difference between the Monte–

Carlo obtained SH coefficients and the least squares obtained SH coefficients

of a unknown voxel. The prior obtained in this way was called “localised”

as it adapted to the observed data.
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Figure 5.9: Full brain tractography, inferior-superior view of 27th slice,
Bayesian reconstruction of diffusion signal using a global prior.
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Figure 5.10: Full brain tractography, inferior-superior view of 27th slice,
Bayesian reconstruction of diffusion signal using a localised prior.
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Numerical superiority of the Bayesian regression was shown in Section 5.2. For

both low and high diffusion weightings applied, the application of Bayesian

regression improved signal reconstruction accuracy. The only case in which

Bayesian regression performed worse than the current state-of-the-art (regu-

larisation schemes) was with high diffusion weighting factor and simple fibre

configuration (single fibre) when using a global prior. Global prior for high

diffusion weighting applied has a high variance, as it needs to accommodate

for high changes in the magnitude of higher order SH coefficients. As a re-

sult, it could not successfully remove as much noise as a classical regularisation

scheme. This was corrected by the localisation of the prior – variance was low-

ered, and non-zeroed mean was introduced.

In Section 5.3 both priors were tested on an in vivo human brain image. Trac-

tography using the signal reconstructed through Bayesian regression with both

priors was performed and visually inspected. The signal reconstructed using a

global prior can be used as is by the off-the-shelf software (e.g. TrackVis). The

fibre tracts resolved are visually similar to tracts resolved from the signal re-

constructed using current state-of-the-art. However, the localised prior had the

tendency to overrule the observed data, especially at isotropic voxels, resulting

in anisotropy being given to isotropic voxels. This confuses the tractography

algorithm to construct fibres passing through those voxels.

This can be traced back to the way the localised prior is computed. A fixed

number of similar SH coefficients is used to compute the new mean and vari-

ance. The subset of SH coefficients contains not only coefficients for isotropic

but also anisotropic data. This skews the prior towards anisotropic prior, and

ultimately introduces anisotropic bias in the reconstruction of isotropic sig-

nal. The most straightforward solution would be to enforce a fixed number

of purely isotropic voxels in prior generation. However, this does not guaran-

tee that any isotropic signal will contribute to the prior, e.g. that anisotropic SH

coefficients will not be involved in computing the mean and variance. Alterna-

tively, as the anisotropy in those voxels is relatively low, any fibres passing

through them could thus be rejected.

The main novelty of this research is the application of Bayesian regression

model to diffusion signal reconstruction and introduction of methods to

compute the prior knowledge. There are many possibilities to generate

and use prior knowledge in diffusion signal reconstruction which were not

98



CHAPTER 5: BAYESIAN REGRESSION AND SPHERICAL HARMONIC ANALYSIS

explored in this research. For example, different methods for building a

localised prior should be investigated. While the “most similar” approach

works in simulated environment, the tractography algorithms and real brain

reconstruction proved to be challenging. Alternative methods could include,

among others, prior weighting or ensuring a correct distribution in the global

prior (e.g. enough voxels with isotropic signal).

Finally, the Bayesian regression opens a path to many new applications.

For example, the inclusion of prior knowledge in regression model al-

lows to work with insufficient data. The higher order SH series can be

used, with more regressors than regressands, possibly to obtain sharper

and more accurate FODFs.
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6
Conclusions and Future Directions

6.1 Summary and Conclusions

This thesis is concerned with improving the quality of the diffusion weighted

signal obtained from an MRI scanner. The random motion of water molecules

is used to introduce contrast to DW images. In organised structures, the

motion becomes restricted in a systematic way. As a consequence, by

using the measured diffusion signal it is possible to infer information

about the underlying structure.

In medicine, diffusion MRI is most commonly used to produce images of hu-

man brain. The most organised structure within the brain is the white matter.

Bundles of axons that run in the same direction form fibre tracts, and restrict

water motion in perpendicular direction. The measured signal can be used to

establish directions in which the signal least hindered, and fibre tracts, which

usually span across many voxels, can be reconstructed using information de-

rived from the measured signal.
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The resolution and quality of acquired signal is restricted by the scanning time.

Having an image with high spatial and angular resolution, as well as high SNR,

imposes clinically implausible scanning times. As a result, the spatial and an-

gular resolution of the image is limited: voxels are usually 1 or 2 mm wide, and

up to 60 sampling directions represented by diffusion weighting gradients are

used. The parameters, along with the diffusion weighting factor, are selected

in such a way that an image of acceptable quality (SNR wise), in an reasonable

time frame (usually up to 15 minutes) can be obtained.

There are few consequences stemming from limited spatial and angular

resolutions. First, restricting the spatial resolution to 1 mm isotropic voxels

means that thousands of axons, which are 10 µm thick, are contributing to

that voxels signal. Not all of those axons will pass in the same directions,

e.g. some will cross, fan, or touch (kiss). This means that the obtained

diffusion profile can potentially have a non-trivial shape. Moreover, same

fibre bundles may span across few neighbouring voxels. As a consequence

of this non-trivial shape and limited angular resolution, a lot of significant

data can be missed. Without enough sampling directions, a voxel in which

three fibre bundles cross can be mistaken for a simpler configuration (e.g.

two fibre bundles crosses, or even a single fibre).

Considering all these challenges, a successful signal analysis or fibre recon-

struction algorithm needs to be able to retain from a noisy scan as much orig-

inal signal as possible. As a result, signal denoising algorithms, regularisation

schemes, or constrained models were proposed in the past. This research, in-

vestigates the applicability of spherical harmonic basis functions to represent

as well as denoise diffusion signal.

Application wise, the focus of this thesis is on improving the quality of in-

vivo images of the human brain. The algorithms presented here though can

not only be applied to images of different regions of the body, but also ex-

tended to non-medical applications.

6.2 Notable Achievements

A systematic approach to optimally select a regularisation parameter was pre-

sented in Chapter 3. Using Monte–Carlo simulations, diffusion signal of differ-
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ent parameters is generated, corrupted, and represented with SH series. The

regularisation strength that on average provides the most accurate signal rep-

resentation is then selected. The recommended regularisation parameters were

found to significantly differ from currently utilised L-curve analysis [18], as

well as to improve the accuracy of SH signal representation.

Additionally, a novel algorithm to fit SH basis function to HARDI signal was

described in Chapter 4. The method, based on backward elimination regres-

sion, uses statistical testing to discriminate between accurate and corrupted SH

basis functions. Combined with Tikhonov regularisation [19], the method fur-

ther improves diffusion signal reconstruction accuracy.

Finally, an application of Bayesian method for solving linear regression prob-

lems was introduced in Chapter 5. The linear regression problem is usually

solved using ordinary least squares method. However, instead of adding the

regularisation term prior information is used. The prior is constructed through

Monte–Carlo simulations. A mathematical model was used to simulate a diffu-

sion signal, which was then analysed using SH transform. Two methods of us-

ing a prior knowledge were tested, and compared using numerical phantoms.

Finally, the method was used to process the diffusion image of a human brain.

6.3 Known Limitations

As was mentioned in Section 2.4.1, with a sufficient SNR the Rician and Gaus-

sian distributions start to match, which allows to solve linear regression prob-

lems with ordinary least squares method. In practice though, the measured

signal is not always of high enough quality to use the OLS solution. When

SNR is too low, the correct solution should be found using maximum likeli-

hood method [28]. As a consequence, the SH transform used in Chapters 3, 4,

and 5 should be reimplemented using maximum likelihood method.

As a part of research described in Chapter 3, 4, and 5 a limited clinical study

was performed. In each chapter, one diffusion MRI image was analysed – ei-

ther partially or in full. These experiments served as a proof of concept and

demonstrated that the proposed methods can potentially become clinically fea-

sible. However, due to the limited and incomplete scope of this proof further

extensive clinical study is needed.
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6.4 Future Directions

While the SH allow for a convenient computation of ODF and FODF, unlike

parametric models they cannot distinguish the signal from noise. With

a higher diffusion weighting applied more basis functions are needed to

represent the fast changing signal. The higher order basis functions repre-

sent higher frequencies, and are naturally more susceptible to corruption.

Adding mathematical (e.g. non-negativity) and physical (e.g. Gaussian-

like behaviour) constraints should further reduce the noise influence, and

significantly improve the accuracy of SH transform.

With a higher diffusion weighting applied, the multi tensors model becomes

inaccurate. Recent research, especially involving high field MRI scanners, has

shown two components of diffusion signal: intra and extra cellular. Water diffu-

sion becomes restricted inside axons, while outside it is merely hindered. This

observation led to development of more advanced diffusion models, like dif-

fusion Kurtois, or biexponential. The foundation of this research is based on

SH basis functions, which are globally supported, and therefore can be used to

represent any spherical signal. As a consequence, any change in the mathemat-

ical model used to generate the diffusion signal should have a marginal effect.

Nevertheless, further investigation at high diffusion weighting factors should

be made, in order to validate the findings described in this thesis.

When using the multi tensor model, all scanner parameters are conveniently

combined into a diffusion weighting coefficient b. With more complex mod-

els though, it is no longer possible to rely just on b, as the same value can be

obtained from different scanning parameters. Most often, the complex model

will separate extra and intra cellurar diffusion, and model each one as a func-

tion of a different, scanning related parameter (e.g. echo time ∆). As a result,

all functions of b (like optimal regularisation value) should be recalculated as

a function of those additional parameters.

Finally, super resolution technique could be added to presented research.

By simply performing sub-voxel interpolation of the measured signal the

accuracy of tractography algorithms has been improved. Adding this

technique to Tikhonov regularisation or backward elimination regression

should improve the signal reconstruction accuracy, and as a result, the
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accuracy of ODF and FODF as well. Since the research presented here is

focused on the SH transform, it is desired that the sub-voxel interpolating

algorithm is implemented in SH domain.
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A
Diffusion Signal Simulation

The Monte–Carlo simulations described in this thesis, unless otherwise

specified, were all based on a phantom signal created using Equation 2.6.

The MTM implementation in Matlab language is shown in Listing A.1.

Function create_signal returns a vector with diffusion signal for a single

voxel, and takes 5 mixed arguments. The 5 arguments are as follows: dif-

fusion weighting factor b (scalar), T2 value at voxel E0 (scalar), diffusion

weighting gradients g (n by 3 matrix), m diffusion coefficients (3 by 3 by

m matrix), and volume ratios vol (vector).

1 function E = create_signal(b, E0, g, D, vol)

2 n = size(g, 1);

3 m = size(D, 3);

4 E = zeros(n, 1);

5 % generate signal, assuming size(vol, 2) == m

6 for in = 1:n

7 gi = g(in,:)’;

8 for im = 1:m

9 Di = D(:,:,im);
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10 E(in) = E(in) + vol(im) * ...

11 exp(-b * (gi’ * Di * gi));

12 end

13 E = E0 * E;

14 end

15 % normalise, as it is possible for sum(vol) != 1

16 E = E / sum(vol);

17 end

Listing A.1: Diffusion signal simulation at a voxel level.

The generated signal E can further be corrupted, by adding a Rician distributed

noise with standard deviation st:

1 function Es = corrupt_signal(E, st)

2 Es = sqrt((E + st*randn(n, 1)).^2 + (st*randn(n, 1)).^2);

3 end

Listing A.2: Signal corruption using Rician distributed noise.
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Ground Truth Verification

The GTV method can be explained using two functions: main function opti-

mal_parameters (Listing B.1) in which the optimal parameter is selected based on

a pre-defined criteria, and sub function investigate_lambda (Listing B.2) where

regularisation parameters are evaluated. Both functions optimal_parameters

and investigate_lambda expect the first argument to be a structure (simParams).

In addition, function investigate_lambda requires a diffusion weighting factor

(bval), and standard deviation of noise (st).

The structure simParams, represents simulation parameters and is con-

stant. The structure defines the range of SNRs (simParams.snrs), diffu-

sion weighting factors (simParams.bvals), and regularisation parameters

(simParams.lambdas) to be tested, number of iteration (simParams.iterations),

SH order (simParams.order)) and design matrix (simParams.aMatrix) to

be used, diffusion sensitising gradients (simParams.gradients) and the fi-

bre configuration (simParams.dNum and simParams.dIso) for which the

diffusion signal is simulated.
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For each SNR and diffusion weighting factor, simParams.iterations voxels

are generated. For each of those voxels, the optimal regularisation pa-

rameter using both L-Curve (function lcurve_parameters) and GTV method

(function investigate_lambda) is found. For GTV method, in this imple-

mentation the regularisation parameter that minimises the minimal error

is selected (Listing B.1, lines 18-23).

1 function opt = optimal_parameters(simParams)

2 a = size(simParams.snrs, 2);

3 b = size(simParams.bvals, 2);

4 opt = zeros(a, b, 5);

5 i = 1;

6 for snr = simParams.snrs

7 j = 1;

8 for bval = simParams.bvals

9 % compute l-curve parameters

10 r0 = lcurve_parameters(simParams, bval, 1/snr);

11 % investigate lambdas using GTV

12 [r1, r2, r3, r4] = investigate_lambda(simParams,

bval, 1/snr);

13 % minimise minimal error

14 tmp1 = zeros(simParams.iterations, 1);

15 tmp2 = zeros(simParams.iterations, 1);

16 tmp3 = zeros(simParams.iterations, 1);

17 tmp4 = zeros(simParams.iterations, 1);

18 for k = 1:simParams.iterations

19 tmp1(k) = simParams.lambdas(r1(k,:) ==

min(r1(k,:)));

20 tmp2(k) = simParams.lambdas(r2(k,:) ==

min(r2(k,:)));

21 tmp3(k) = simParams.lambdas(r3(k,:) ==

min(r3(k,:)));

22 tmp4(k) = simParams.lambdas(r4(k,:) ==

min(r4(k,:)));

23 end

24 % store data

25 opt(i,j,1) = mean(r0);

26 opt(i,j,2) = mean(tmp1);

27 opt(i,j,3) = mean(tmp2);

28 opt(i,j,4) = mean(tmp3);

29 opt(i,j,5) = mean(tmp4);

30 j=j+1;

31 end

32 i=i+1;

33 end
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34 end

Listing B.1: Optimal parameter selection.

The second function returns 4 error measures for each of the regularisation pa-

rameter tested. Functions r_correlation and skl_divergence are used to calculate

correlation coefficient and symmetric Leibler–Kullback divergence, and imple-

mented according to their respective publications. Functions for generating

and corrupting diffusion signal are described in Appendix A.

1 function [res1, res2, res3, res4] =

investigate_lambda(simParams, bval, st)

2 X = simParams.aMatrix;

3 L2 = l_tikhonov(simParams.order, 2);

4 n = size(simParams.gVectors, 1);

5 ol = odf_legendre(simParams.order);

6 lsize = size(simParams.lambdas, 2);

7 % preallocate output

8 res1 = zeros(simParams.iterations, lsize);

9 res2 = zeros(simParams.iterations, lsize);

10 res3 = zeros(simParams.iterations, lsize);

11 res4 = zeros(simParams.iterations, lsize);

12 % OPTIMISATION: precompute SHT

13 inversePrecomputed0 = (X’ * X) \ X’;

14 inversePrecomputed = cell(lsize, 1);

15 for j=1:lsize

16 lambda = simParams.lambdas(j);

17 inversePrecomputed{j} = (X’ * X + lambda * L2) \ X’;

18 end

19 % do the simulation

20 for i=1:simParams.iterations

21 D = diffusion_random(simParams.dNum, simParams.dIso);

22 yp = create_signal(bval, 1, simParams.gVectors, D);

23 y = corrupt_signal(yp, st);

24 % perfect reconstruction

25 cp = inversePrecomputed0 * yp;

26 ocp = ol .* cp;

27 % test all lambda

28 for j=1:lsize

29 c_lb = inversePrecomputed{j} * y;

30 oc_lb = ol .* c_lb;

31 % and save

32 res1(i,j) = norm(cp - c_lb);

33 res2(i,j) = norm(ocp - oc_lb);

34 res3(i,j) = 1-r_correlation(cp, c_lb);
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35 res4(i,j) = skl_divergence(inversePrecomputed0,

inversePrecomputed{j}, ocp, oc_lb, X*ocp, X*oc_lb);

36 end

37 end

38 end

Listing B.2: Calculation of fitness functions.
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C
Backward Elimination Method

The actual implementation of the t-test introduced in Chapter 4, Section 4.2

does not use p-values. Instead, the inverse cumulative distribution functions

of the t-distribution is used to find t-values at the 1 − α/2 1 percentile for a

range of degrees of freedom (from N − L to N). The minimal t-score is com-

pared with the threshold, and if lower, the null hypothesis is accepted, and

the basis function represented by the coefficient ci is considered insignificant

and removed from the signal representation. These threshold values (icd f _arr)

need to be computed only once for the whole image, and allows for a notice-

able reduction in the computation time.

The function to perform backward elimination (Listing C.1) expects 3 ar-

guments to be passed, and returns 2 parameters. The arguments are the

diffusion signal y (vector), SH design matrix X (matrix), and inverse cu-

mulative distribution function for t-distribution icd f _arr (vector) evaluated

at 1 − α/2 percentile. The returned parameters are new SH coefficients

1One-sided test due to taking the absolute value of the coefficient ci.
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where eliminated frequencies are zeroed newcoe f f s (vector), and a binary

list of basis functions used cc (vector).

1 function [newcoeffs, cc] = backward_elimination(y, Xorg,

icdf_arr)

2 N = size(Xorg, 1);

3 P = size(Xorg, 2);

4 Morg = inv(Xorg’ * Xorg);

5 fullcoeffs = Xorg \ y;

6 coeffs = fullcoeffs;

7 E_eval = Xorg * coeffs;

8 nc = 1:P;

9 M = Morg;

10 X = Xorg;

11 % start the main loop

12 while true

13 L = size(coeffs, 1);

14 res = sum( (y - E_eval).^2 ) / (N-L);

15 signif = abs(coeffs ./ sqrt(res * M(logical(eye(L)))));

16 % OPTIMISATION: use precomputed inverse cdf ’icdf_arr’

17 msignif = min(signif);

18 if msignif > icdf_arr(N-L) || L == 1 || isnan(msignif)

== 1

19 % stopping criteria reached, or just one SH basis

function left

20 break;

21 else

22 m = find(signif == msignif);

23 if size(m, 1) == 0

24 error(’Something went terribly wrong!’);

25 end

26 % remove the least significant and start again

27 nc(m) = [];

28 X(:,m) = [];

29 M(m,:) = [];

30 M(:,m) = [];

31 coeffs(m) = [];

32 E_eval = X * coeffs;

33 end

34 end

35 % convert ’nc’ (vector with index of basis functions used)

to ’cc’ (binary mask of basis functions used)

36 cc = zeros(1, P);

37 for c = nc

38 cc(c) = 1;

39 end
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40 % create reduced SHT, the difference between ’coeffs’ and

’newcoeffs’ is that the latter contains ’0’

41 newcoeffs = fullcoeffs .* cc’;

42 end

Listing C.1: Backward Elimination Method.
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D
Bayesian Regression

Computation of posterior distribution using a measured data and prior knowl-

edge is shown in Listing D.1. Function bayesian_regression expects five argu-

ments: diffusion signal E (vector), SH design matrix X (matrix), estimated noise

variance sig2 (scalar), and prior means mpr (vector) and variances Vpr (diago-

nal matrix). Function returns posterior means mpo (vector) and variances Vpo

(diagonal matrix). When using a global prior, this step can be optimised by

pre-computing matrices Vpo, as well as term sig2 ∗ inv(Vpr) ∗ mpr. However,

when using a localised prior this optimisation is no longer possible.

1 function [mpo, Vpo] = bayesian_regression(E, X, sig2, mpr, Vpr)

2 Vpo = inv(sig2 * inv(Vpr) + X’ * X);

3 mpo = Vpo * (sig2 * inv(Vpr) * mpr + X’ * E);

4 end

Listing D.1: Computation of posterior distribution.
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