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Abstract
We consider the problem of auto-calibrating the intrinsic

parameters of a camera moving with a special motion: the
rotation axis of the camera being perpendicular to its trans-
lation direction. Our method for calibrating the camera is
based on Kruppa’s equation which in general requires solv-
ing a set of nonlinear equations. We prove in a theorem how
to recover the true scale of the Kruppa’s equation from the
eigenvalues of a matrix formed using the fundamental ma-
trix between two views.

1. Introduction

The problem of camera calibration has been widely stud-
ied in the computer vision literature [12, 13, 14, 9, 1]. Such
methods typically require the user to show a known object
(calibration rig) to the camera and find the camera param-
eters by minimizing the reprojection error between the 2D
projections of known 3D points in the object and their mea-
sured 2D projections in the image.

Another approach for calibration of cameras is to use
auto-calibration methods [10, 11, 8, 2, 4, 1]. Such methods
automatically match image points across several images and
calibrate the cameras by solving nonlinear equations such
as Kruppa’s equations [3]. While very elegant, these meth-
ods suffer from the fact that solving Kruppa’s equations re-
quires solving nonlinear equations and are ill-conditioned.
However, [5] shows that for special motions one can trans-
form the nonlinear equations to linear ones using the fact
that the unknown scale in the Kruppa’s equation is related to
the eigenstructure of a matrix formed using the fundamental
matrix. As a specific example which is also relatively com-
mon, when the axis of rotation of a camera is perpendicular
to the direction of translation, it has been shown [5] that one
can recover the unknown scale of the Kruppa’s equation as
one of the eigenvalues of a suitable matrix. However, to the
best of our knowledge, there is no work addressing the crite-
rion to use in order to decide which eigenvalue corresponds
to the true scale of the Kruppa’s equation. In this paper,
we address this problem by introducing a simple algorithm
which we prove its correctness in a theroem.

In Section 2, we review the problem of self-calibration of

cameras and restate the theoretical results on that for cam-
eras undergoing special motions. In Section 3, we propose
our main result on auto-calibration of a camera having a
special motion: its rotation axis being perpendicular to the
translation direction. We prove a theorem on how to re-
cover the true scale of the Kruppa’s equation from a matrix
formed using the fundamental matrix between two views.

2. Self-Calibration of Cameras
Assume we have N points {Xj ∈ R3}Nj=1 in 3D space,

where the vector Xj contains the coordinates of point j in
the world reference frame. Let (R, T ) ∈ SO(3) × R3 be
the pose of a camera, with respect to the world reference
frame, where R is a rotation matrix belonging to SO(3) =
{R ∈ R3×3 : R>R = I, det(R) = +1} and T is the
translation between the world and the camera frames. Then
the projection of the point Xj onto the image plane of this
camera has homogeneous coordinates x̃j ∈ R3 satisfying
the following equation:

λj x̃j = KRXj +KT. (1)

In this equation, λj is the projective depth of a point j and
is equal to the third coordinate of KRXj +KT . The ma-
trix K ∈ R3×3 is called the intrinsic parameter matrix or
camera calibration matrix and is of the following form:

K =

fsx fsθ ox
0 fsy oy
0 0 1

 . (2)

The calibration matrix is constructed using the intrinsic pa-
rameters of the camera, namely, the position of the optical
center (ox, oy), the size of the pixels (sx, sy), the skew fac-
tor sθ and the focal length f . The rotation R and translation
T describe the relative position and orientation of the cam-
era frame with respect to the world reference frame. They
are also called the extrinsic calibration parameters of the
camera. Note that x̃j in equation (1) describes the image
point in the pixel coordinates, while xj = K−1x̃j is the
image point in the metric coordinates. The SfM problem
refers to the problem of inferring both extrinsic and intrin-
sic parameters of the camera.
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Now, assume that we have two cameras observing the
same scene. Without loss of generality, we assume the
world reference frame is located at the center of the first
camera, i.e., (R1, T1) = (I, 0). The relation between the
image points in the two cameras is then given as:

λj2x̃
j
2 = λj1K2RK

−1
1 x̃j1 +K2T (3)

where, for simplicity of notation, we used (R, T ) rather
than (R2, T2). One can eliminate the unknown scales λj1
and λj2 from (3) and get:

x̃j>2 Fx̃j1 = 0, where F = K̂2TK2RK
−1
1 . (4)

The matrix F is called the fundamental matrix between the
two cameras and incorporates intrinsic and extrinsic cali-
bration parameters. Here, û ∈ so(3) denotes the mapping
of u ∈ R3 to the space of skew-symmetric matrices so that
û u = 0.

Note that equation (4) is a bilinear equation in x̃j1 and
x̃j2. As a result, having enough number of point correspon-
dences (at least 8) {x̃j1, x̃

j
2}Nj=1 between the two cameras,

one can reconstruct the fundamental matrix F up to a scale
factor from the linear equation:

x̃1>
2 ⊗ x̃1>

1

x̃2>
2 ⊗ x̃2>

1
...

x̃N>2 ⊗ x̃N>1

 f = 0 (5)

where ⊗ denotes the Kronecker product, and f ∈ R9 is ob-
tained by stacking all rows of F into a vector. So, one can
recover the fundamental matrix Fi from a set of point cor-
respondences {x̃j1, x̃

j
2}Nj=1 using the 7-point algorithm [1]

and then recover the translation T
′

= γKT (up to a scale
factor γ), since by equation (4), T

′
is in the left nullspace

of F .
Having T

′

i and F recovered, one canonical recon-
struction of the projective camera matrices is given by
(T̂
′>F, T

′
), where T̂

′>F = KRK−1 + T
′
v> for some

v ∈ R3 [5]. If we let Y = KK>, it is easy to check that the
following equation holds:

(T̂
′>F − T

′
v>)Y (T̂

′>F − T
′
v>)> = Y. (6)

Multiplying both sides of the above equation on left by T̂
′

and on right by T̂
′>, we get:

(T̂
′
T̂
′>F )Y (F>T̂

′
T̂
′>) = T̂

′
Y T̂

′>. (7)

One can show that T̂
′
T̂
′>F = 1/λF for some λ ∈ R and

as a result equation (7) reduces to the well-known Kruppa’s
equation:

F Y F> = λ2 T̂
′
Y T̂

′>. (8)

3. Auto-Calibration of Cameras for Special
Motions

In this section, we propose a method for auto-calibration
of a camera when the rotation axis is perpendicular to the
translation direction. [5] has shown that for this special mo-
tion, the true scale of the Kruppa’s equation is one of the
eigenvalues of F>T̂ ′ . However, it is not clear whether the
true scale corresponds to the smaller or the larger nonzero
eigenvalues of F>T̂ ′ and more generally how to recover the
true scale from the eigen-structur of F>T̂ ′ . In this section,
we first show that for such a special motion, the true scale of
the Kruppa’s equation can be either the larger or the smaller
nonzero eigevalues of F>T̂ ′ . Second, we propose a method
to find the true scale based on the eigenvalue-eigenvector
decomposition of the matrix F>T̂ ′ . As will be shown later,
this method would be extremely helpful for camera auto-
calibration, since by finding the true scale we can estimate
the calibration matrix by solving the linear Kruppa’s equa-
tion.

Before beginning our analysis, we state Theorem 6.15
from [5].

Theorem 1 Given an unnormalized fundamental matrix
F = λT̂ ′KRK−1 with ||T̂ ′ || = 1, if T = K−1T̂ ′ is
parallel to ω (the axis of R), then λ2 = ||F>T̂ ′F || and
if T is perpendicular to ω, then λ is one of the two nonzero
eigenvalues of F>T̂ ′ . More precisely, for v ∈ R3 satisfy-
ing ω = T̂K−1v, the eigenvector of F>T̂ ′ corresponding
to the true scale of the fundamental matrix is given by T̂ ′v,
i.e.,

(F>T̂ ′) T̂ ′v = λ T̂ ′v. (9)

Now, the question is if there is a way of deciding whether
the smaller or the larger nonzero eigenvalue of F>T̂ ′ cor-
responds to the true scale, λ. Although Remark 6.19 of [5]
says there is no way to tell which eigenvalue is the correct
one, we show in this paper that there is actually a way of
finding the true one.

First, we show that depending on the motion and cali-
bration parameters of the camera, λ can be either the larger
or the smaller nonzero eigenvalue of F>T̂ ′ . Using the fact
that F = λT̂ ′KRK−1 we can write:

F>T̂ ′ = λ(KRK−1)>T̂ ′
>
T̂ ′ = λ(KRK−1)>(I−T

′
T
′>).

(10)
Then by taking the trace from both sides we get:

trace(F>T̂ ′) = λ(1 + 2cos(θ))

− λtrace((KRK−1)>T
′
T
′>),

(11)



where θ is the angle of rotation along ω. On the other hand,
using the fact that one of the eigenvalues of F>T̂ ′ is zero,
and one is equal to λ, we have:

trace(F>T̂ ′) = 0 + λ+ γ, (12)

where γ is the third eigenvalue of F>T̂ ′ . Thus, by equality
of (11) and (12) we get:

γ = [2cos(θ)− trace(T
′>(KRK−1)>T

′
)]λ

= ( 2cos(θ)− T>R>S−1T )λ.
(13)

where S−1 = K>K.
If for a calibration matrix with S−1 = I we let T =

1/2 e1 and R = exp(ê3θ), then the relation between the
two nonzero eigenvalues of F>T̂ ′ is as follows:

γ = 7/4 cos(θ)λ.

As a result, for θ = π/6, we get γ = 7
√

3λ/8 > λ and
for θ = π/3 we get γ = 7λ/8 < λ. This shows that
depending on the motion and calibration parameters, the re-
lation between λ and γ varies and we can not find the true
scale based on ordering of the eigenvalues of F>T̂ ′ . So, the
question is: can we still determine which eigenvalue corre-
sponds to the true scale of F ? We show in the following
that the answer to this question is positive.

We already know that T
′

and T̂ ′v with v satisfying
ω = T̂K−1v are two eigenvectors of F>T̂ ′ correspond-
ing to the eigenvalues 0 and λ, respectively. Obviously,
T̂ ′ T̂ ′v would be orthogonal to these two eigenvectors, thus
{T ′ , T̂ ′v, T̂ ′ T̂ ′v} forms an orthogonal basis for R3. As a
result, the third eigenvector corresponding to the eigenvalue
γ can be written as T̂ ′ T̂ ′v+αT

′
+βT̂ ′v, for some α, β ∈ R,

so we have:

F>T̂ ′(T̂ ′ T̂ ′v+αT
′
+ βT̂ ′v) = γ(T̂ ′ T̂ ′v+αT

′
+ βT̂ ′v).

(14)
Using the fact that T

′
and T̂ ′v are eigenvectors of F>T̂ ′ ,

and T̂ ′ T̂ ′ T̂ ′ = −T̂ ′ , equation (14) can be written as:

−F>T̂ ′v + βλT̂ ′v = γ(T̂ ′ T̂ ′v + αT
′
+ βT̂ ′v). (15)

By left multiplying the equation (15) by T
′>, we get

α = −T
′>F>T̂ ′v / γ (16)

also by rearranging the terms in equation (15), we get

(F> + γT̂ ′)T̂ ′v = β(λ− γ)T̂ ′v − αγT
′
. (17)

Finally, by left multiplying this equation by (T̂ ′v)>, and
using the fact that T̂ ′v is orthogonal to T

′
we obtain

β = T̂ ′
>
v>(F> + γT̂ ′) T̂ ′v / [(λ− γ) ||T̂ ′v||2]. (18)

Now, looking more closely to the structure of the eigen-
vectors of F>T̂ ′ corresponding to λ and γ we can see that
the eigenvector corresponding to λ lives in the plane orthog-
onal to T

′
while the third eigenvector T̂ ′ T̂ ′v+αT

′
+βT̂ ′v

would not be in this plane as long as α 6= 0. Thus, if α 6= 0,
the only eigenvector being orthogonal to T

′
is the one corre-

sponding to the true scale of the fundamental matrix (since
the first eigenvector corresponding to the zero eigenvalue is
parallel to T

′
). As a result, we must investigate the condi-

tions under which α is not zero as well as the structure of
the eigenvalues for the case of α = 0.

Substituting F = λT̂ ′KRK−1 in equation (16) we get:

α = −λ / γ T
′>(T̂ ′KRK−1)>T̂ ′v

= −λ / γ T
′>(KRK−1)>T̂

′>T̂ ′v
(19)

which is zero only when T
′>(KRK−1)> is parallel to T

′>.
This means that there exists a constant η ∈ R such that
T
′>(KRK−1)> = η T

′>, which using the fact that T̂
′

=
K T can be simplified to RT = η T . This holds only for
two cases: (1) T is parallel to the axis of rotation which is
obviously in contradiction with our original assumption, or
(2) R = I3 with η = 1.

As a result, α is always nonzero as long as the rotation
is not the identity. When the camera motion is only trans-
lational, both eigenvectors of F>T̂ ′ corresponding to the
nonzero eigenvalues, lie in the same plane orthogonal to T

′
.

However, when this is the case, resulting from the rotation
being the identity, we can assume that the rotation axis is
parallel to the translation direction (but with zero degrees
of rotation!). So, by the results of [5], we can get the true
scale by λ = ||F>T̂ ′F ||.

However, we can find a stronger result from our previous
analysis. When the rotation is the identity, we have θ = 0
andR = I3. So, from equation (13) which gives the relation
between the nonzero eigenvalues we have:

γ = (2− T>S−1T )λ = (2− T
′>T

′
)λ = λ , (20)

since ||T ′ || = 1. This means that when the motion of the
camera is only translational then both eigenvalues of F>T̂ ′

are equal to each other and thus equal to the true scale of
the fundamental matrix. Otherwise, when the rotation is
not the identity, we can find the true scale as the eigenvalue
of F>T̂ ′ corresponding to the eigenvector being orthogonal
to T

′
which is unique from the above analysis.

We can summarize our result in the following theorem.

Theorem 2 Given an unnormalized fundamental matrix
F = λT̂ ′KRK−1 with ||T̂ ′ || = 1, if T = K−1T̂ ′ is
perpendicular to ω (axis of R), then the eigenvector cor-
responding to the true scale is orthogonal to T̂ ′ . If both



eigenvectors corresponding to the two nonzero eigenvalues
are orthogonal to T̂ ′ , then both eigenvalues are equal and
give the true scale.

As a result, the algorithm for finding the unknown scale
of the Kruppa’s equation is as follows:

• Find the eigenvalue-eigenvector decomposition of the
matrix F>T̂ ′ . Let {v1, v2, T

′} be the eigenvectors cor-
responding to eigenvalues {λ1, λ2, 0}.

• Find which eigenvector vi is orthogonal to T
′

i.e.
v>i∗T

′
= 0.

• If vi∗ is the only eigenvector orthogonal to T
′
, then

the true scale of the fundamental matrix is equal to the
corresponding eigenvalue i.e. λ = λi∗ .

• If both eigenvectors are orthogonal to T
′
, then the true

scale is equal to either of the nonzero eigenvalues of
F>T̂ ′ which are equal i.e. λ = λ1 = λ2.

Remark 1 When the data are noisy, we can find the true
scale by searching for the eigenvector which has the min-
imum inner product with the eigenvector corresponding to
the smallest eigenvalue of F>T̂ ′ .

Example 1 Let T =
[
1 2 1

]>
, ω =

[
2 −1 0

]>
and

K =

0.5 1 0
0 2 0
0 0 1

 and let the true scale of the fundamen-

tal matrix to be λ = 5. Then, for the matrix F>T̂ ′ we get
λ1 = 5.00 and λ2 = −1.78. We have v>1 T

′
= 0 while

v>2 T
′
= −0.68. Thus, we the true scale is given by λ1 = 5.

Now, if we have a pure translation of T =
[
1 2 1

]>
,

then we get two nonzero eigenvalues for F>T̂ ′ which are
equal i.e. λ1 = λ2 = 5 while v>1 T

′
= v>2 T

′
= 0. In

this case, the true scale is simply the nonzero eigenvalue
λ = λ1 = λ2 = 5.
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