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Abstract

The novel contribution of this research is the development of a super-

vised algorithm that extracts relevant attributes from The Health Im-

provement Network database to detect prescription side effects. Pre-

scription drug side effects are a common cause of morbidity through-

out the world. Methods that aim to detect side effects have his-

torically been limited due to the data available, but some of these

limitations may be overcome by incorporating longitudinal observa-

tional databases into pharmacovigilance. Existing side effect detect-

ing methods using longitudinal observational databases have shown

promise at becoming a fundamental component of post marketing

surveillance but unfortunately have high false positive rates. An extra

step is required to further analyse and filter the potential side effects

detected by existing methods due to their high false positive rates,

and this reduces their efficiency. In this thesis a novel methodology,

the supervised adverse drug reaction predictor (SAP) framework, is

presented that learns from known side effects, and identifies patterns

that can be utilised to detect unknown side effects. The Bradford-Hill

causality considerations are used to derive suitable attributes as in-

puts into a learning algorithm. Both supervised and semi-supervised

techniques are investigated due to the limited number of definitively



known side effects. The results showed that the SAP framework im-

plementing a random forest classifier outperformed the existing meth-

ods on The Health Improvement Network longitudinal observational

database, with AUCs ranging between 0.812-0.937, an overall MAP

of 0.667, precision values between 0.733-1 and a false positive rate

≤ 0.013. When applied to the standard reference the SAP frame-

work implementing a support vector machine obtained a MAP score

of 0.490, an average AUC of 0.703 and a false positive rate of 0.16.

The false positive rate is lower than that obtained by existing methods

on the standard reference.
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Chapter 1

Introduction

The occurrence of negative side effects due to prescribed medication is a health

issue that occurs worldwide. The early detection of side effects is imperative for

the prevention of unnecessary morbidities or mortalities. Two types of electronic

healthcare databases are frequently used to extract data for the detection of side

effects, the spontaneous reporting system (SRS) databases and the longitudinal

observational databases (LODs). Many methods have been developed for the SRS

databases but these databases have a limited perspective and do not contain the

data required to detect all side effects. This has prompted the focus towards using

the LODs, but the proposed methods tend to be unsupervised. In this thesis,

supervised and semi-supervised techniques capable of detecting side effects by

utilising the data contained in LODs are investigated. The first part of this

chapter focuses on the research background and motivation, this is followed by

the aims and objectives. The chapter concludes with the thesis organisation that

provides the outline of each chapter.
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1.1 Background & Motivation

All prescribed drugs have side effects under certain conditions [170]. A negative

effect following the ingestion of a drug is referred to as an Adverse Drug Event

(ADE) and is defined as ‘any untoward medical occurrence that may present

during treatment with a medicine but which does not necessarily have a causal

relationship with the treatment’ [206]. When an ADE has been linked to a spe-

cific drug it becomes an Adverse Drug Reaction (ADR). An ADR is defined by

the World Health Organization as a response to a medicine which is noxious and

unintended, and which occurs at doses normally used in humans from the pro-

phylaxis, diagnosis or therapy of disease, or for the modification of physiological

function [182].

As ADRs can lead to patient morbidity or mortality, their early discovery

is essential. As a consequence, the safety of a new drug is extensively analysed

throughout its development. Unfortunately, the ability to analyse a drug’s toxi-

city is limited by the clinical study designs. The pre-clinical studies of a drug’s

development, involving animal testing, are done to initially assess a drug’s toxi-

city [25], however, the ability to infer ADRs is limited by the inability of animal

testing to be completely informative for effects on humans [133]. If a drug passes

the initial toxicity analysis, it is then tested on humans during phases i–iii, with

the trial population size increasing incrementally after each phase. Phase i will

often involve testing the drug by giving it to healthy individuals under unrealistic

conditions (i.e., the individuals cannot smoke, drink alcohol, exercise excessively

and may have food limitations enforced) [38]. It is also widely known that clini-

cal trials can be biased towards certain demographics, for example the majority
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of individuals tested during phase i trails are white males [38]. Clinical trials

involve testing the drug on a limited population size, with the largest population

size used during phase iii, but this generally only contains up to 3000 individuals

[38]. Due to numerous reasons, including the limited trial population size and

the unrealistic conditions of the trials, many ADRs are undetectable during phase

i-iii studies and can only be identified after the drug is marketed [11]. It is also

clear that ADRs that result from polypharmacy (i.e., when multiple drugs are

prescribed at the same time) will be difficult to detect. The reason is, due to the

limited population being tested, it is impossible to investigate all the different

drug combinations.

Studies investigating the prevalence of ADRs have provided evidence that

many ADRs are not discovered prior to marketing. The results indicate that up

to 6.5% of UK hospital admissions are due to ADRs [135] with similar rates also

being observed in the US hospitals (6.7%) [103]. Another study found a similar

prevalence within a UK paediatric hospital (4%) [62]. Research suggests ADRs

are more common in geriatric patients (older than sixty five), in females and in

patients taking more than one drug [17]. It has also been highlighted that the lack

of efficient means to detect ADRs causes a burden in terms of cost and quality of

life. Furthermore, this burden appears to be getting worse. It has been reported

that ADRs could cost the UK £637 million each year [43], with £466 million

being due to ADR hospital admissions and £171 million being due to ADRs

during hospitalisation. These estimates do not take into consideration additional

medical costs or loss of earning while in hospital due to an ADR. A study by Wu

et al. (2010) compared the frequency of ADRs as the cause of hospital admission

over 1999 to 2009 and showed the number of people admitted to hospital due to
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ADRs has increased over the ten years at a greater rate than the rate of hospital

admission [207]. Further, they found 26,399 people died in hospital in the UK over

the ten years as a result of an ADR [207]. This corresponded to a probability of

almost one in twenty ADRs resulting in death. One explanation for the increase

in the number of ADRs over the years is due to polypharmacy [112].

This highlights the importance of continuous post-marketing surveillance of

drugs and motivates the requirement of new methods that can identifying ADRs

efficiently. When a new potential ADR association is detected, the potential

ADR is referred to as being signalled. The majority of current post-marketing

surveillance techniques make use of the SRS databases. These databases contain

records of suspected ADRs, that were originally restricted to submissions made

by medical practitioners and coroners, but it is becoming increasingly common

for them to enable the general public to submit reports. The SRS databases

have many limitations that prevent them signalling ADRs efficiently and they

cannot be used to quantify ADR risks [57], nor can they be used to consistently

identify risk factors. It is widely known that the majority of ADRs signalled

by the existing methods applied to SRS databases do not correspond to ADRs

[172]. Retrospective studies have confirmed their inability to efficiently signal

all ADRs, as the methods applied to SRS databases were unable to signal some

ADRs before they were discovered by other means [3]. This has prompted the

demand for better surveillance techniques [43] [207] and to use other forms of

data to complement drug safety using SRS.

An alternative approach for signalling ADRs, that has recently surfaced, is to

use data contained within LODs. The LODs are not restricted to a specific period

of time around the drug prescription and can contain patient medical histories
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spanning decades. These databases may present to opportunity to efficiently

discover new ADRs [198] and enable ADR risks to be quantified. Their impor-

tance for future post-marking surveillance has been expressed [203]. The existing

methods proposed for the LODs are unsupervised and many are derived from

the SRS methods [216] but new methods have been presented that are based on

epidemiology techniques [156]. Unfortunately, these methods have been shown to

have a high false positive rate [156], due to the difficulty distinguishing between

association and causation, and this may reduce their signalling efficiency. The

majority have been developed for a common data model [115; 131] (the integra-

tion of multiple LODs into a general database) rather than specific databases.

Not all data can be converted into the common model [214], so information may

be lost. Therefore, it is of interest to also develop methods that are specific to

a single database, as new information may be revealed. It may be possible to

develop a method with a low false positive rate by considering the Bradford-

Hill causality consideration [19], as these are often used within extensive post

marketing investigations to confirm causality .

The Health Improvement Network (THIN) database is an example of a LOD

that contains approximately 6% of the general practice records within the UK.

The THIN database contains complete medical records and prescription records

(while the patient is registered) for all registered patients at participating prac-

tices. The THIN database contains heterogeneous data and has hierarchal struc-

tures embedded within it. An example of one of the hierarchal structures con-

tained in the database is the recording of the medical events (i.e., administrative

events, illnesses, symptoms, laboratory tests/results and medical history). The

medical events are recorded via READ codes, these codes have five levels of
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specificity and follow a tree structure. Little work to date has focused on using

the THIN database for general postmarking surveillance and no ADR signalling

method has been specifically developed. Research has suggested that the THIN

database potentially holds a wealth of information [105]. If its complex struc-

ture can be dealt with, then its integration into post-marketing surveillance may

enable ADRs to be signalled efficiently.

1.2 Aims & Objectives

As this research is interdisciplinary it has both a clinical and technical aim. The

overall clinical aim of this project is to develop a data-mining algorithm for a

specific LOD, the THIN database, that can detect ADRs and discover new in-

formation to improve current post marketing drug surveillance. The technical

aim is to develop an algorithm that can classify a pair consisting of a drug and

medical event (drug-medical event pair) as a causal relationship or non-causal

relationship. The algorithm must have a low false positive rate and a sufficiently

high true positive rate. This algorithm has multiple applications as it can iden-

tify causation in databases containing discrete information. One such example

is using databases containing customer shopping histories to identify items that

when purchased influence a different item being purchased in the future. Another

useful implementation of the algorithm using market data could be to identify the

impact of promotions and find what purchases are caused by the promotion. The

advantage over sequential pattern mining is that the algorithm does not require

the events to be common.
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1.2.1 Hypotheses

The THIN database potentially contains a wealth of information but this is hidden

within a magnitude of heterogeneous data containing many underlying hierarchal

structures. The abilities of the existing ADR signalling methods developed for

LODs are likely to be impacted by the structure of the THIN database and also by

their inability to distinguish between association and causation. These limiting

factors may prevent the extraction of all the information that is potential avail-

able by mining the THIN database. To extract all the possible information and

utilise the full potential of the THIN database, novel supervised/semi-supervised

methods may need to be developed. It is therefore hypothesised that,

H1 Current ADR signalling algorithms developed for LODs are not suitable for

ADR detection when they are implemented on the THIN database.

H2 Novel ADR signalling algorithms applied to the THIN database will be able

to consistently perform better than existing LOD ADR signalling algorithms

if they 1) deal with the hierarchal structures within the THIN database, 2)

incorporate new attributes essential for determining causality and 3) use

known ADR knowledge.

H3 Novel ADR signalling algorithms applied to the THIN database will outcom-

pete existing methods developed for the Observational Medical Outcomes

Partnership (OMOP) common model when considering the specified drug

and health outcomes of interest [141].

H4 Novel ADR signalling algorithms applied to the THIN database will be able

to generate new ADR signals.
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1.2.2 Objectives

To address the research hypotheses the following research objectives are proposed,

with the hypothesis they are linked to indicated in brackets.

1. Determine the benchmark for signalling ADRs using the THIN database

and identify limitations (H1).

2. Propose suitable attributes for each drug-medical event pair that may help

separate association from causation or that are specific to the THIN database

(H2.1-H2.2).

3. Develop a novel supervised/semi-supervised ADR signalling algorithm for

implementation on the THIN database that can accurately signal ADRs

(H2.3). The requirements are,

(a) A low false positive rate.

(b) To be efficient.

(c) To be robust.

4. Evaluate the novel algorithm on the THIN database.

(a) Compare the general signalling ability of the novel ADR signalling

algorithm and the existing methods applied to the THIN database

(H2).

(b) Evaluate the novel ADR signalling algorithm’s ability on the OMOP

specified drug and health outcomes of interest (H3).

(c) Generate new ADR signals (H4).

Chapters 3-6 focus on Objectives 1-4 respectively.
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1.3 Thesis Organisation

The continuation of this thesis is organised as follows. Chapter 2 presents the

literature review that is split into a pharmacovigilance section and a pattern

recognition section. The pharmacovigilance section presents an overview of the

current techniques and the recent advances. The Bradford-Hill causality consid-

erations are discussed, as ADRs represent a causal relationship and the criteria

may present the opportunity to distinguish ADRs from non-ADRs. The exist-

ing methods developed for different healthcare databases are summarised, with

their connection to the Bradford-Hill causality considerations evaluated. The

final part of the pharmacovigilance section focusses on the new initiatives cur-

rently taking place that aim to improve the way ADRs are signalled. The pattern

recognition part presents the statistical learning theory view of supervised and

semi-supervised learning. The main supervised and semi-supervised algorithms,

that are used during the later chapters of the thesis, are summarised.

In Chapter 3, the benchmark for the ADR signalling ability of the THIN

database is determined by applying a selection of the existing methods to the

THIN database. As there is no perfect gold standard for signalling ADRs, two

different comparisons were applied. The first comparison involved analysing all

the possible drug-medical event pairs for a set of specific drugs and consider-

ing only the drug-medical event pairs listened as known ADRs on the website

NetDoctor [176] to be ADRs and all other pairs to be non-ADRs. This enabled

the evaluation of the methods when there is a large number of non-ADRs, but

the comparison was limited due to the possibility of ADRs listed on NetDoctor

being incorrect and due to unknown ADRs. The second comparison, termed the
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specific comparison, only evaluated the drug-medical event pairs corresponding

to ADRs listed on drug packaging or definitively known non-ADRs. The specific

comparison enabled a more realistic evaluation and highlighted methods that are

non-consistent.

In Chapter 4, attributes that are suitable inputs for a learning algorithm to

distinguish ADRs and non-ADRs were proposed. The attributes included values

from existing method, novel attributes derived from the Bradford-Hill causality

criteria or novel attributes derived by considering the structure of the THIN

database. The technique for extracting and cleansing the data are described and

mathematical formula for calculating each attribute are presented.

In Chapter 5, the learning algorithm is developed and tentative results are

presented. The first part of the chapter proposes a novel supervised technique

that learns from a mixture of drugs and, once learned, can be applied to any

drug. In the second part, a novel semi-supervised technique is presented that

uses the limited number of known ADRs for a drug of interest to generate a

model that is specific to the drug. Both the supervised and semi-supervised

models are evaluated on a selection of drugs. The evaluation suggests that a

supervised model trained on multiple drugs will outperform a semi-supervised

model trained on a single drug. This is advantageous, as the supervised model

can be trained on drugs that have been marketed for years and can be applied to

newly marketed drugs that have limited toxicity knowledge.

In Chapter 6 the novel supervised algorithm is applied to more drugs and

compared with a selection of existing methods using the specific comparison

technique. The results showed that the novel supervised algorithm was often

significantly better and had a better mean average precision (MAP) score and
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lower false positive rate than existing methods. An additional evaluation was con-

ducted by investigating the novel supervised algorithm’s ability when considering

the health outcomes of interest (HOIs) and drugs of interest (DOIs) specified by

the OMOP. The evaluation showed that the novel supervised algorithm obtains

a lower false positive rate than existing methods (0.16) and is able to signal a

high proportion of definitively known ADRs. Therefore, the novel supervised al-

gorithm has the potential to extract new pharmacovigilance knowledge and may

help signal ADRs shortly after new drugs are marketed.

The final chapter of the thesis contains the conclusion that highlights the

key results of the research and answers the research questions proposed in the

introduction. Areas of future work are proposed, such as the modification of

the algorithm to return quantitative information about the risk of each ADR

signalled. The journal and conference contributions derived from this research

are presented at the end of Chapter 7.

1.4 Contribution to Knowledge

This research has presented the first supervised and semi-supervised methods for

signalling ADRs using LODs. New techniques for generating labels that are es-

sential for supervised/semi-supervised algorithms have been presented and novel

attributes that can distinguish between association and causation were proposed.

The research also highlighted the current limitations with evaluating the

methods, as restricting the evaluation to a small number of definitively known

drug-medical event pairs may prevent an accurate evaluation due to ignoring the

numerous drug-medical event pairs that are associated due to confounding but
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including more pairs into the evaluation may introduce error due to unknown

ADRs.

This research has contributed to four journal papers (two published, one in

print and one under review) and four conference papers. A full list of the journal

and conference papers produced during this research is presented at the end of

Chapter 7.
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Chapter 2

Literature Review

‘Prevention is the next frontier for pharmacovigilance,

beyond simply generating alerts.’

N. Moore [121]

2.1 Current Pharmacovigilance

2.1.1 Introduction

In 1961 a link was discovered between pregnant mothers ingesting the drug

Thalidomide and then giving birth to infants with congenital malformations [167].

This widespread incident highlighted the importance of drug safety and prompted

the start of systematic approaches to monitor the safety of marketed medications

[29]. The research into medication safety is commonly referred to as pharma-

covigilance. This involves the detection, assessment and prevention of ADRs for

any marketed drug. The aim of pharmacovigilance is to identify ADRs, study

relevant data and then investigate each ADR to assess risk factors. This knowl-
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edge can then be used to help prevent ADRs that would otherwise lead to patient

morbidity or mortality; helping to improve healthcare.

The process of identifying new ADRs involves signalling sets consisting of one

or many drugs and an adverse event that may correspond to an ADR. There are

different definitions for the term ADR signal in the context of pharmacovigilance

but generally it means there is information to suggest a previously unknown causal

relationship between some medication and an adverse event. The World Health

Organization’s (WHO) definition of an ADR signal is ‘reported information on a

possible causal relationship between an adverse event and a drug, the relationship

being unknown or incompletely documented previously. Usually, more than a

single report is required to generate a signal, depending on the seriousness of the

event and quality of the information’ [53; 111]. Almenoff et al.(2005) interpret this

as being able to ‘view a signal as any information, qualitative or quantitative, that

prompts further investigation on the relationship between a drug and an event’

[1].

Once an ADR signal is generated, the medication and adverse event are stud-

ied further with more stringent statistical tests to confirm whether the signal is

true, meaning there is sufficient evidence to confirm a causal relationship between

the medication and the adverse event. Conversely, if there is not sufficient ev-

idence, then the signal is false. In effect, ADR signalling is a way of filtering

all the possible combinations of drug and adverse event pairs so that only the

combinations that are most likely to correspond to ADRs remain to be inves-

tigated further. This is important as it is not possible to efficiently investigate

the thousands or even millions of possible combinations of drugs and suspected

ADRs in fine detail.
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Overall, the process of identifying an ADR (a causal relationship between a

drug and medical event) requires three steps [136];

1. Signal generation/detection- this step involves analysing all drug-medical

event pairs representing a possible ADR and highlighting the ones that are

most suspicious.

2. Signal refinement- after signals are generated in step 1 for some drug-

medical events pairs these drug-medical event pairs are actively surveyed

to look for more evidence that they may correspond to an ADR.

3. Signal evaluation- this is when a single in depth investigation (formal epi-

demiological study) is performed to determine if there is causality between

a drug and a medical event that has been signalled in step 1 and refined in

step 2.

Early pharmacovigilance depended on professionals manually investigating

hard copies of reports detailing suspected ADRs. These professionals would then

identify commonly occurring suspected ADRs or highly noxious suspected ADRs

as signals [113; 145]. The limitations with this methodology was that collabora-

tion was difficult prior to the World Wide Web so the reports were only collected

from a segment of the population and less obvious ADRs may never have been

suspected and reported or may have been difficult to identify. With the advances

in technology enabling rapid communication between borders and helping pool

large quantities of data together, many of the original limitations are beginning

to disappear [198]. Using the large collections of electrically stored data, we are

now presented with the opportunity to apply data mining methods and gener-

ate ADR signals more efficiently [35], as less time is required before there is a
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sufficient number of ADR incidences reported to enable the signal generation

[158].

The majority of existing pharmacovigilance methods that use large databases

for ADR signal detection are applied to the SRS databases. The SRS databases

are readily available electronic databases that contain a collection of voluntary

reports of suspected ADRs, often containing millions of reports. This type of

database has been used to successfully signal many ADR signals, but the signals

cannot be considered definitive [119]. There are also well documented limitations

with using SRS databases for ADR signalling, due to these databases relying on

people recognising and reporting suspected ADRs [63; 79; 168]. It has been sug-

gested that these limitations may prevent the detection of rare ADRs [79] or lead

to delays in generating ADR signals [93]. The standard procedure for automating

the generation of ADR signals in SRS databases relies on calculating a measure of

disproportionality corresponding to how often the adverse event is reported after

a specific drug compared to a baseline determined by how often it is reported

after any drug within an SRS database [119]. As there is no gold standard for

ADR signal detection, each country tends to have a different preference for the

choice of disproportionality method applied to his SRS database. The main dis-

proportionality methods applied to the SRS databases and their limitations are

detailed in Chapter 2.1.3.

Recently the LODs have caught the attention of pharmacovigilance researches

as it offers a unique perspective for ADR signal generation and is starting to

become more readily available [180]. The LODs suitable for pharmacovigilance

contain timestamped medical records and timestamped prescription records for

patients over large periods of time. Rather than relying on people suspecting
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ADRs like the SRS databases, potential ADRs can be inferred using temporal

relationships between the medical and prescription records for a patient. This

may enable the detection of rare ADRs or ADRs with a high background rate

[180] that can not be identified by mining the SRS databases. Additionally, as

generating ADR signals by mining the LODs does not require people noticing

potential ADRs, it may be possible to generate ADR signals earlier than by

mining the SRS databases. In Chapter 2.1.4, the current ADR signalling methods

developed for the LODs are described, along with their limitations.

The continuation of the pharmacovigilance section of the literature review in-

cludes a section summarising causality, and the frequently applied Bradford-Hill

causality considerations [19]. This is followed by a description of the current

methodologies for detecting ADRs by mining the SRS databases and the new

advances into mining ADRs using LODs. The final section summarises the cur-

rent pharmacovigilance initiatives and highlights how this field of research may

change with the integration of multiple electronic healthcare databases.

2.1.2 Causality

The definition of a statistical association is ‘a relationship between two measured

quantities that renders them statistically dependent’ [183] . Whereas the term

causality is defined as ‘a relationship between two events, the cause (or incidence)

event and effect (or consequent) event, where the effect event is dependent on the

cause event’ [169]. Therefore a causal relationship is also an association but not all

associations are causal. It is clear that an ADR represents a causal relationship,

as the adverse event is a result of a patient ingesting a specific drug and would
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not have occurred if the patient did not have the drug. The first step in current

ADR discovery, namely signal generation, finds drug-medical event pairs that

are associated and the later two steps, signal refinement and evaluation, aim to

determine if the found association is also a causal relationship.

A common method to assess causality between an antecedent and consequence

is to use the Bradford-Hill causality considerations [19] that proposes nine factors

that need to be considered,

1. Strength- how much do the antecedent and consequence appear to be

associated? A high association would suggest causation however a low as-

sociation does not mean there is no causation.

2. Consistency- has the relationship been observed in different patients and

situations? (In the context of ADRs, has it been reported in multiple pa-

tients and databases?).

3. Specificity- is the relationship specific (e.g., there are few other associa-

tions containing the antecedent or consequence). This factor has limitations

as many ADRs are the result of multiple causes. An alternative interpreta-

tion is whether the population experiencing the relationship is specific (e.g.,

old, young or female).

4. Temporality- the order of the antecedent and consequence (e.g., did the

medical event make the patients more prone to the drug or did the drug

cause the medical event?).

5. Biological Gradient- is there an increasing monotonic relationship be-

tween the frequency/amount of the antecedent and the frequency of the
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consequence (e.g., does a higher dosage of the drug increase the medical

event frequency?).

6. Plausibility- does it make sense? However, this is not a necessary feature

as plausibility depends on current knowledge and even the improbable could

be true.

7. Coherence- does the relationship conflict with known facts? (e.g., Do we

know drug-medical events pairs that are definitely not ADRs?).

8. Experimentation- does changing the antecedent change the consequence?

(e.g., Does the medical event start when the drug starts and stop when it

stops?).

9. Analogy-are there similarities with known causal relationships (e.g., does

the ADR exist for a similar drug)?.

The more Bradford-Hill causality factors covered by a method, the more likely

it is to correctly identify causal relations and therefore identify ADRs. In Chap-

ters 2.1.3.2 and 2.1.4.3 the range of Bradford-Hill causality factors considered by

each of the existing ADR signalling methods are determined.

2.1.3 Spontaneous Reporting Databases

2.1.3.1 Overview

The SRS databases were one of the first resources to contain vast quantities of

pharmacovigilance data and enable an aggregated analysis [152]. Their presence

in the field of pharmacovigilance has aided the discovery of many ADRs [106],
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A : medical event A i : drug i

time(days)

lack of complete history

Report 1- Gender:♂; Age:? 2 A5

Report 2 - Gender:?; Age:? 6 d1

...

Report n - Gender:♀; Age:21 1 b1

Figure 2.1: Illustration of data contained in SRS databases.

but their application is limited [63; 172]. The databases contain linked drug

and medical event records. Each link represents that the drug was a suspected

cause of the medical event. In additional to the linked drug and medical records,

there are also details specifying information about the patient that experienced

the suspected ADR. An illustration of the data contained in SRS database is

presented in Figure 2.1, where drugs are represented by squares and medical

events are represented by circles. An example of the database design for an SRS

database can be seen in Figure 2.2. The records in the database are submitted

voluntarily by medical practitioners or the general public [118]. Two common

examples of SRS databases are the Food and Drug Administration (FDA) Adverse

Event Reporting System (AERS) [77; 184] in the USA and the Yellow Card

Scheme SRS [118] run by the Medicines and Healthcare products Regulatory

Agency (MHRA) and the Commission on Human Medicines (CHM) in the UK.
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Figure 2.2: An example entity relationship diagram for an SRS database based
on the FAERS database.

The general process involved in reporting a suspected ADR into an SRS

database is for a patient or doctor to fill out a form detailing the drug/drugs

prescribed, the adverse event experienced, some information about the patient

and information about the person making the report. An example of a typical

SRS report submitted online via the yellow card scheme in the UK can be seen

in Figure 2.3. The majority of fields in the form are not required and the entries

are not validated during submission. This causes limitations as it is common

for SRS databases to contain missing or incorrect data [137]. It is also known

that SRS databases suffer for bias reporting [173], especially under reporting [79].

Another issue is underascertainment, when the ADRs is not noticed (e.g., ADRs

corresponding to medical events with a high background rate or rare ADRs may

never be suspected) [173].

The SRS methods determine the association strength between a drug-medical

event pair and pairs with a high association are signalled. The generated signals

require further analysis as association does not imply causation [1]. This has
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Figure 2.3: The online form for submitting suspected ADRs via the Yellow Card
Scheme in the UK.
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prompted researches to state that the SRS methods are ‘initial filters’ for iden-

tifying ADR associations [8] and are not capable of generating definitive signals.

Once the SRS methods generate a signal, it is then refined and finally evaluated.

This means the causal relationship is not confirmed until much later in time than

when the original signal occurred.

The SRS databases generally have a fixed point in time perspective, as limited

past and present medical knowledge for each patient is known [12], the lack

of historical data is illustrated in Figure 2.1. The actual rate that a drug is

prescribed and the rate that a medical event occurs is unknown [172], as SRS

databases only contain data on the drug prescriptions that may have resulted

in an ADR. Consequently, the SRS methods estimate the baseline rate that a

medical event occurs by finding out how often the medical event is reported with

any drug in the database. Medical events that are reported disproportionally

more often with the drug of interest compared to all the other drugs in the

database are then ranked highly as suspected ADRs. The methods make use of a

contingency table, see Table 2.1, summarising the number of reports that contain

(or do not contain) the drug and event of interest. Each method estimates the

baseline rate differently, by using different combinations of the values in Table

2.1. Unfortunately, the estimation of the background rate, by using other drug

reports, can limit the signals that are generated [76] and prevent some ADRs

(e.g., those with a high background rate) being identified. In addition, both over-

reporting and under-reporting can lead to skewed estimates for the background

rates and influence the signalling ability.

Initially, the disproportionality methods relied on calculating measures linked

to standard epidemiology statistical values such as the Reporting Odds Ratio
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Table 2.1: A sample contingency table used by the disproportionality methods
applied to the SRS databases.

Event Y Other Event Total

Drug X a b a+b
Other Drug c d c+d

Total a+c b+d a+b+c+d

Table 2.2: The different SRS methods and the measures they implement to cal-
culate the association between a drug-medical event pair. 1

Method Measure Probabilistic Interpretation [75] Approach

ROR a/b
c/d

P(AE|Drug)/P(notAE|Drug)
P(AE|notDrug)/P(notAE|notDrug)

F

PRR a/(a+b)
c/(c+d)

P(AE|Drug)
P(AE|notDrug)

F

NPRR a/(a+c)
b/(b+d)

P(Drug|AE)
P(Drug|notAE)

F

BPCNN (IC) log2(
a(a+b+c+d)
(a+c)(a+b)

) log2(
P(AE|Drug)

P(AE)
) B

EBGM (RR) a(a+b+c+d)
(a+c)(a+b)

P(AE|Drug)
P(AE)

B

(ROR) [9] and Proportional Reporting Ratio (PRR) [185]. In [196] the authors

propose a novel PRR (NPRR) method, that takes a slightly different perspective,

and they suggested that both the PRR and NPRR should be used to generate a

signal. More recently, methods have been implemented that are based on artificial

neural networks, such as the Bayesian Propagation Confidence Neural Network

(BPCNN) [10], or Bayesian modelling, such as the Empirical Bayesian Geometric

Mean (EBGM) [50]. Table 2.2 summarises the different methods and displays

their probabilistic derivations. The SRS signal generation methods are split

between frequentist statistical approaches (ROR, PRR) and Bayesian statistical

approaches (EBGM, BPCNN). The frequentist statistical methods assume that

the parameters for a model are fixed and they consider that the data comes from

1In the approach column, F represents frequentist and B represents Bayesian.
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a repeatable random sample. These methods do not require prior knowledge of

a model and are computationally cheap. It follows that the advantage of fre-

quentist methods for signal detection is that they are fast, which is an important

factor due to the large quantities of data available. Conversely, the Bayesian sta-

tistical methods assume that the data are fixed and the parameters are unknown

but described by a probabilistic distribution. These methods require some prior

knowledge and can be computationally costly. The advantage of using Bayesian

methods for signal detection is that, due to the parameters being non-fixed, they

can adapt over time when changes in the drug prescription habits may differ,

such as when doctors change the prescription rates of drugs or prescribe drugs to

patients for a non-standard indication.

The methods all have signalling criteria, see Table 2.3. The frequentist meth-

ods generate a signal for a drug-medical event pair when there are three or more

case reports and the lower 95% confidence interval is greater than one. Their stan-

dard errors, displayed in Table 2.4, are estimated using the woolf logit method

[205], a method that approximates the distribution of the ln(ROR) and ln(PRR)

as being normal. The EBGM generates a signal for a drug-medical event pair

when the lower bound of the 90% credibility interval, EB05, is greater than two.

The BPCNN signals a drug-medical event pair when its IC value minus two

standard deviations changes from negative to positive.

2.1.3.2 Causality

The SRS methods all work out the association strength between a drug and

medical event based on the disproportionality measure. As the SRS databases

sometimes contain the patient details such as age and gender it is possible for
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Table 2.3: The signalling criteria for the different SRS methods [50; 185] .

Method Signal Criteria Shrinkage

ROR exp[ln(ROR)− 1.96SE(ln(ROR))] > 1 No
PRR exp[ln(PRR)− 1.96SE(ln(PRR))] > 1 No
NPRR exp[ln(NPRR)− 1.96SE(ln(NPRR))] > 1 No
EBGM EB05 ≥ 2 Yes
BPCNN IC − 2SD > 0 Yes

Table 2.4: The standard errors for the frequentist methods [185; 196].

Method Standard Errors

ROR SE(ln(ROR)) =
√

1
a
+ 1

b
+ 1

c
+ 1

d

PRR SE(ln(PRR)) =
√

1
a
− 1

a+b
+ 1

c
− 1

c+d

NPRR SE(ln(NPRR)) =
√

1
a
− 1

a+c
+ 1

b
− 1

b+d

the SRS algorithms to deal with the specificity criteria, but none of the existing

methods does and the problem of missing values may make this difficult. The

methods do not cover the consistency criteria when they are only applied to one

SRS database and they do not deal with the biological gradient as they do not

take into consideration the dosage of the drug. The SRS methods estimate the

background risk of a medical event based on all other drugs rather than restrict-

ing themselves to estimating the risk of the medical event based on similar drugs,

therefore they do not consider the analogy criterion. Due to their restricted per-

spective, they cannot cover the experimentation factor as this requires observing

what happens when the drug stops and starts. The temporality, plausibility and

coherence criteria are indirectly covered as people should only submit a report

when a drug is suspected to have caused an ADR, and any suspected ADR would

have occurred after the drug is taken and must be plausible and coherent oth-

erwise it would not be suspected. However, people may make mistakes when
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Table 2.5: The Bradford-Hill causality considerations covered by each method. 1

Criteria ROR PRR EBGM BPCNN

Strength 4 4 4 4

Consistency 5 5 5 5

Specificity 5 5 5 5

Temporality • • • •
Biological Gradient 5 5 5 5

Plausibility • • • •
Coherence • • • •

Experimentation 5 5 5 5

Analogy 5 5 5 5

reporting a suspected ADRs or may not know information that would otherwise

make them reconsider that the medical event is a suspected ADR.

The criteria that could be covered by SRS methods, but are not currently,

are the consistency, analogy and possibly the specificity. The consistency criteria

could be covered by using other SRS databases as a cross reference to see if there

is evidence in other databases for the signals generated by the SRS methods. The

analogy could be covered by comparing a drug of interest against drugs in the

same family and using knowledge about existing ADRs for similar drugs and the

specificity could be covered by comparing the drug and event disproportionali-

ties between different groups of the population, such as the old or young. This

information is summarised in Table 2.5.

2.1.3.3 Limitations

The main limitations with signal generation using the disproportionality methods

applied to SRS databases are due to database issues. The databases are known to

contain missing or duplicated data and suffer from inconsistent reporting such as

1• represents indirectly covered.
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under-reporting or over-reporting for new drugs or more serious adverse events [9].

It is often common for the SRS databases to be plagued by inconstancies due to

changes in medical terminology over time or variance in the level of detail recorded

for the medical event depending on the person making the report [9]. Bate et al.

(2009) state that ‘disproportionality methods do not estimate reporting rates’,

as the reporting rate calculation requires the knowledge of drug usage and this is

not contained in the SRS databases [9]. The effect of this is that specific adverse

events will not be found, such as when a drug causes all events to increase or

when an adverse event is common for many drugs. The two major consequences

of the under-reporting are that there may be a large time lag between when a

rare ADR is first reported and when it is signalled, or it is possible that rare

ADRs may never be detected. One retrospective study found that 19.6% of

known ADRs were signalled by the PRR after other pharmacovigilance methods

and 26.9% of known ADRs had not been signalled during the study period [3].

The SRS methods cannot be used for signal refinement or evaluation due to the

limitation of not knowing the actual background rates that medical events occur

or drug are prescribed. Therefore, it is not possible to develop a method capable

of definitively identifying ADRs that only uses the SRS databases, instead, other

types of databases are required for the signal refinement and evaluation once

signals have been generated by mining the SRS databases.

2.1.3.4 Summary

Mining the SRS databases has aided new ADR discoveries, but the signals gen-

erated by mining the databases require further evaluation and the majority of

signals do not lead to ADR discovery [172]. A recent study provided evidence
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to suggest that limitations due to how the SRS data are collected may make it

difficult for the disproportionality methods to identify ADRs with a high back-

ground rate [70]. Furthermore, as a consequence of the the limited perspective

of the SRS databases, they cannot be used to quantify ADR risks [119], nor can

they be used to identify risk factors.

2.1.4 Longitudinal Observational Databases

2.1.4.1 Introduction

The LODs are databases containing temporal medical data [12] on thousands or

millions of patients, often spanning over many patient years. An example of an

LOD is The Health Improvement Network (THIN) database, see appendix A,

that is an electronic database containing the data stored in over 500 UK general

practices [65]. The data consists of patient details such as their year of birth,

gender, family links and timestamped medical and prescription records. It has

been found to be a suitable representation of the UK [15] and it is not common

to find duplicated or missing data due to validation procedures. Researchers

have assessed the validity of using the THIN database for pharmacovigilance

by investigating whether known associations can be found using the data and

concluded that its use is valid [105]. The database contains records of every

medical event for a patient that the doctor has been informed of, as the data

is extracted directly from the local GP databases and doctors must record all

the relevant medical details each time a patient visits [85]. Unfortunately under-

reporting is still possible in these types of databases, as some drugs can be bought

rather than being prescribed and patients may not inform their doctor of all the
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medical events that they experience. It is also possible for LODs such as the

THIN database to have inconsistencies in data recording between practices [78].

The THIN database also has issues with patients changing practices, as each

patient is given an anonymous ID within their practice but when they change

practices they will receive a new ID, and there are no links between the two IDs

to identify them as representing the same patient [104].

The LODs offer a unique perspective for discovering ADRs as, unlike the SRS

databases, they do not have direct links between drugs and medical events that

are potential ADRs [161] but potential ADRs can be inferred using the temporal

information. For example, if investigating ADRs that occur immediately after

taking a drug, all the medical events that occur within 30 days of taking the drug

can be flagged as potential ADRs. The advantage of generating ADR signals

using the LODs compared to the SRS databases are they contain patients’ medical

histories and include patients that did not experience adverse events after taking

a drug [71]. Therefore they contain the background rates that a drug is prescribed

or a medical event occurs [216] and are less prone to bias reporting due to not

relying on voluntary reports. As the LODs are not restricted to finding ADRs

that occur shortly after taking a drug, they could be used to find ADRs that are

not present till many years after taking a drug. Furthermore, the vast quantities

of data contained in LODs makes them more suitable for detecting drug-drug

interaction ADRs or child specific ADRs. Figure 2.4 illustrates the data contained

in LODs, and shows that the drug-medical event pairs that are potential ADRs

can be found by investigating the [t0, t1] period around each prescription. Another

advantage of the LODs is that they have frequently been used for signal refinement

and evaluation [31], so all three steps of detecting an ADR can be implemented
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time (years)

pat1 (♂) :
(05/08/1994)

a1 d5 a3 1 g4 b3 b3

0 t0 t1

pat2 (♂) :
(05/12/1966)

d2 d4 14 d4 b2

0 t0 t1

...

patn (♀) :
(10/11/1984)

a2 b1 a3 g3 5 3 g5

0 t0 t1
0 t0 t1

Figure 2.4: Illustration of patients’ longitudinal data contained in the THIN
database.

on a single LOD, making it possible to develop an efficient algorithm capable

of definitively detecting ADRs. Although, there may be issues with performing

signal evaluation on the same data used to generate the signal.

Numerous approaches have been suggested to signal ADR using LODs [26;

83; 90; 128; 216], but there is currently no algorithm that has been developed

specifically for the THIN database . The methods tend to calculate a measure of

association between each medical event and drug. This is calculated by comparing

the risk of the medical event for the drug taking population within a defined time

interval after the drug is prescribed with the risk of the medical event in some

substituted population. These methods are based on the counterfactual theory

of causality, where the observed risk of the medical event in the drug taking

population is compared with the risk that would have been observed had the

patients not taken the drug [122]. Once the patients take the drug, the second
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situation (i.e., patients not taking the drug) is counterfactual and unobservable,

so an observable substitution is use instead to approximate the second risk. If the

substitution does not match the counterfactual, then confounding is introduced

and the measure of association differs from the measure of causation [66].

An example of the counterfactual theory of causation is presented in Figure

2.5. It can be seen that the patient 1 given treatment 1 experienced medical event

A but would not have experienced it if treatment 0 was given, so medical event

A was caused by being given treatment 1 rather than treatment 0. However, it is

impossible to observe patient 1 taking only treatment 1 and only treatment 0 at

the same time, therefore an observable substitution is used to estimate causality.

Association is determined by observing patient 2 taking treatment 0 and compar-

ing the outcome with patient 1 taking treatment 1. Unfortunately, as the patients

are different, the observed outcome over [t0, t1] for patient 2 taking treatment 0

is different to what would have been observed for patient 1 given treatment 0

and the substitution comparison indicates that both medical event A and med-

ical event B are associated with treatment 1. However, only medical event A is

caused by treatment 1, the medical event B association is due to confounding

introduced by the substitution.
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Key

A : medical event A i : treatment i

time
t0 t1

Patient 1 B D
0 B

1 A B

Patient 1 B D 1 A B

Patient 2
(substitute)

G D 0

Figure 2.5: Illustration of the counterfactual theory of causaltion.

2.1.4.2 Methods

Disproportionally Methods

The disproportionality methods, such as modified SRS [216] and Temporal pat-

tern Discovery (TPD) [128], compare the risk during the time interval [t0, t1]

centred around the drug of interest prescriptions with the risk during the time

interval [t0, t1] centred around all drug prescriptions, so the substituted popula-

tion is the patients taking any drug. This is illustrated in Figure 2.6. The TPD

also looks for temporal changes in the measure of association, as this reduces

the effect of confounding by indication (i.e., when differences arise between the

patients taking the drug and those not taking the drug), as illustrated in Figure

2.7. Justification for using all other drug reports as a substitution, but keeping

the same time interval of interest, is that medical events are not reported uni-

formly over time [128], and it is common for the majority of medical events to be

reported shortly after a prescription. By investigating the same period of time

relative to the prescription, the potential bias caused by non-uniform reporting
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Key

A : medical event A i : drugi

time

30 days

2 B2 A5

2 D1

...

2 B1 B2

Calculate risk after drug

time

30 days

9 G1

3 A1

...

1 D4 A1

Estimate background risk ( risk after other drug)

Figure 2.6: Illustration of the disproportionality methods.

is removed.

To apply the standard SRS methods, described in Chapter 2.1.3, the contin-

gency tables need to be determined using the LOD data. In [216], the authors

presented three different proposals for calculating the contingency tables for a spe-

cific drug x and medical event y using LODs. The spontaneous reporting system

(SRS) and modified-spontaneous reporting system (modified-SRS) approaches

performed similarly and both outperformed the distinct patient approach. Re-

ferring to the set time period after the drug of interest is prescribed as the drug

hazard period, the SRS approach calculates the a-d values in Table 2.1 as, a is

the number of distinct times event y occurs during any x hazard period, b is the

number of distinct times any non–y event occurs during any x hazard period, c

is the number of distinct times event y occurs in any non–x hazard period and d

is the number of distinct times any non–y event occurs within any non–x hazard
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time

u=[1,30] day intervalv

B2 2 B2 A5

A4 2 D1

...

2 B1 B2

Find temporal changes in risk

time

u=[1,30] day intervalv

A1A3 9 G1

3 A1

...

A1 1 D4 A1

Estimate background temporal risk change
(by calculating risk change for other drugs)

Figure 2.7: Illustration of the TPD method.

period. The modified-SRS approach is similar but considers the prescriptions

that do not have medical events recorded. Therefore, b becomes the number of

distinct times any non–y event occurs during any x hazard period plus the num-

ber of x hazard periods that have no medical event recorded and d becomes the

number of distinct times any non–y event occurs within a non–x hazard period

plus the number of non–x hazard periods that have no medical event recorded

plus the number of distinct times non–y events are reported outside of a hazard

period.

The TPD method [128] compares the amount of patients that have the first

prescription of drug x in thirteen months followed by event y within a set time t

relative to the expected number of patients if drug x and event y were indepen-

dent. The background rates that a medical event occurs is calculated based on

how often it occurs within the hazard period for any drug. Letting,

nt
.y denote the number of patients that are prescribed any drug for the first time

in 13 months and have event y within time t.
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nt
x. denote the number of patients that have drug x for the first time in 13 months

and are registered for any period over time t

nt
.. denote the number of patients that have any other drug for the first time in

13 months and are registered for some period over time t.

nt
xy denotes the number of patients that have drug x for the first time in 13

months and event y occurs within time t after.

The expected number of patients that have drug x and then event y in a time

period t is then,

Et
xy = nt

x.

nt
.y

nt
..

(2.1)

If for a given drug, the event occurs more than expected, the ratio between the

observed and expected will be greater than one. By taking the log2 of the ratio,

a positive values suggests an interesting association between a drug and event.

Modifying the equation to prevent the problem of rare events or drugs resulting

in a small expectation that can cause volatility, a statistical shrinkage method is

applied.

IC = log2
nt
xy + 1/2

Et
xy + 1/2

(2.2)

The shrinkage adds a bias for the IC towards zero when an event or drug is rare.

The credibility intervals for the IC are the logarithm of the solution to equation

2.3 with q = 0.025 and q = 0.975.

∫ µq

0

(Et
xy + 1/2)n

t
xy+1/2

Γ(nt
xy + 1/2)

u(n
t
xy+1/2)−1e−(nt

xy+1/2)du = q (2.3)

The above can find possible drug and event associations of interest for a given
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t, however, the authors suggest that general temporal patterns can be found by

comparing the IC of two different time periods. The follow-up period of primary

interest is denoted by u and the control time period by v. This removes event

and drug relationships that just happen to occur more in certain sub-populations.

The different between the IC for both time periods is,

log2
nu
xy

Eu
xy

− log2
nv
xy

Ev
xy

(2.4)

re-arranging and adding a shrinkage term gives,

IC∆ = log2
nu
xy + 1/2

Eu∗
xy + 1/2

(2.5)

where

Eu∗
xy =

nv
xy

Ev
xy

.Eu
xy (2.6)

As it was observed that medical events related to the cause of the drug are often

assigned a high IC value after the prescription but also prior to the time the drug

is prescribed, the TPD algorithm includes a filter thats ignores medical events

that have a higher IC value on the day of prescription or a month before the

prescription relative to the month after the prescription.

Methods that calculate association tend to suffer from confounding as associ-

ation does not imply causation, so many of the medical events signalled due to a

high association value may not be ADRs. One method that has been presented to

counteract the problem of confounding is the ROR Regression (RORR) method

[72]. The RORR effectively filters the drugs that are signalled as ADRs by the
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ROR by determining whether the association may be due to confounding. The

method applies two regression models, the first model does not consider the effect

of covariates, letting y represent the medical event, and x1 represent the drug,

then the log odds of medical event y is,

log(
P (y|x1)

1− P (D|x1)
) = b0 + b1x1 (2.7)

where b0 is the background log odds ratio of medical event y. The second model

considers the effects of the covariates, xi, i > 1, and the log odds of y is calculated

as,

log(
P (y|x1, x2, ..., xk)

1− P (D|x1, x2, ..., xk)
) = b0 +

k
∑

i=1

bixi (2.8)

For each drug with a high ROR, the regression model only considering the drug,

equation (2.7), and the regression model considering all the covariates, equation

(2.8), are both applied and drugs that have similar b1 values for both models

are considered to be causes of medical event y. Unfortunately, its application on

the THIN database is currently limited due to the requirement of choosing the

appropriate covariates for each signal. This requires manual expert input for each

signal, which would be time consuming.

Sequential Pattern Methods

Methods based on sequential pattern mining include Mining Unexpected Tem-

poral Association Rules given the Antecedent (MUTARA) [91] and Highlighting

UTARs Negating TARs (HUNT) [90]. These methods calculate the standard se-

quential patterning mining measure known as leverage [134] that subtracts the

expected proportion of all sequences that contain the drug followed by the medical

event within a defined time interval from the observed proportion. The expecta-
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tion is derived by calculating the risk within a randomly selected time interval for

the population of patients never prescribed the drug. In effect, this is similar to a

retrospective cohort study as the cohorts are the patients exposed or non-exposed

to the drug.

The authors of MUTARA and HUNT refer to the patients prescribed the drug

as users and patients never prescribed the drug as non-users. Both methods first

restrict their attention to subsequences of the user and non-user sequences. For

each user sequence, the Th constrained subsequence of interest is the subsequence

of length Th days starting from the day the drug is first prescribed. The value of

Th differs between users depending on whether the user has a repeat prescription

within Te days after the first prescription. If the user does not have a repeat

prescription within Te days of the first prescription then Th = Te, whereas if the

second prescription of the drug occurs s days after the first prescription where

s ≤ Te then Th = s + Te. For each non-user, the Tc constrained subsequence

of interest is a subsequence of length Tc days that is randomly chosen from the

non-user’s sequence. An illustration of this can be seen in Figure 2.8.

Defining tot as the number of users and non-users, the supp(x
T
→ y) is defined

as the number of user Th constrained subsequences containing the medical event y

divided by tot, the supp(x
T
→) is the number of users divided by tot and supp(

T
→ y)

is the number of user Th constrained subsequences that contain the medical event

y divided by tot plus the number of non-user Tc constrained subsequences that

contain the medical event y divided by tot. The leverage is calculated as,

Leverage = supp(x
T
→ y)− supp(x

T
→)× supp(

T
→ y) (2.9)
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Figure 2.8: Illustration of the MUTARA and HUNT methods.
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In addition to calculating the standard leverage, a new measure called unexpected-

leverage is also calculated. The unexpected-leverage (unexlev) makes use of a

user’s history to filter repeated medical events from the users’s Th constrained

subsequence as these are ‘predictable’ and unlikely to be ADRs. This is done by

investigating a reference period prior to the first prescription within the user’s

sequence and filtering medical events from the user’s Th subsequence if they oc-

curred during the reference period. Defining supp(x
T
→֒ y) as the number of users

who’s Th constrained subsequence contains medical event y but who do not have

medical event y within the reference period divided by tot and supp(
T
→֒ y) as the

total of the number of users whose Th constrained subsequence contains medical

event y but who do not have medical event y within the reference period plus the

number of non-user Tc constrained subsequences that contain the medical event

y all divided by tot, the unexpected leverage is calculated as,

unexlev = supp(x
T
→֒ y)− supp(x

T
→).supp(

T
→֒ y) (2.10)

MUTARA returns medical events ordered by unexlev and HUNT returns med-

ical events in descending order of the ratio between the leverage rank and the

unexpected-leverage rank,

RankRatio =
medical event rank based on leverage

medical event rank based on unexpected-leverage
(2.11)

Other Methods

Other methods for signalling ADRs using LODs that have been proposed include

fuzzy logic methods [89], calculating the log likelihood over time [26], applying a
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Table 2.6: The different LOD ADR signalling algorithms and the causality criteria
each of them covers. 1

Criteria MUTARA HUNT TPD Modified SRS RORR

Strength 4 4 4 4 4

Consistency 5 5 5 5 5

Specificity 5 5 5 5 ∗
Temporality 4 4 4 5 5

Biological Gradient 5 5 5 5 ∗
Plausibility 5 5 5 5 4

Coherence 5 5 5 5 5

Experimentation 5 5 5 5 5

Analogy 5 5 5 5 5

sequential version of the self controlled case series [83] or adapted epidemiology

based approaches, see Chapter 2.1.5. These methods tend to suffer from con-

founding effects and are likely to have a high false positive rate. However, it is

worth noting that the self controlled case series is resilient to any fixed in time

confounding. Very few of these methods have been implemented on a range of

LODs, so their robustness is unexplored.

2.1.4.3 Causality

The LOD ADR signalling algorithms all cover the strength criteria as they cal-

culated the dependancy of the occurrence of a medical event on the occurrence

of a drug being prescribed. The filtering in the MUTARA/HUNT and the TPD

algorithms means they cover the temporality criteria as medical events that occur

before the drug are generally filtered. The modified SRS and RORR algorithms

do not apply a filter, so they do not cover the temporality criteria. In effect, the

RORR covers plausibility by filtering out drug-medical event pairs that are asso-

1∗ means that the factor could be incorporated but is currently not.
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ciated due to other causes, so the remaining drug-medical event pairs are more

plausible ADRs. Additionally, it would be possible to include dosage and per-

sonal attributes into the regression model used by the RORR, so the specificity

and biological gradient could be included. The other causality criteria are not

covered by the LOD algorithms. This is likely to be the reason why the existing

LOD algorithms frequently signal medical events linked to the cause of taking

the drug or medical events that are just common in the drug taking population.

2.1.4.4 Limitations

The LOD databases have presented the opportunity to signal ADRs without the

limitations associated with the SRS databases, but research has shown they have

their own limitations [100; 131]. The main limitation is the effect of confounding

factors[198], as many drug-medical event pairs that are associated do not corre-

spond to ADRs. The existing methods that signal drug-medical event pairs based

on association do not consider the eight other Bradford-Hill factors, but some of

these could be integrated by utilising the data available in the LODs. The RORR

method has the potential to cover the most Bradford-Hill causality factors, but

it is a signal refinement method rather than a signal generating method, as it

requires a signal generating method such as the ROR to identify which drug-

medical event pairs to apply the regression models on. Therefore, the RROR is

limited by any limitations with the signal generating method it incorporates.

2.1.4.5 Summary

The LOD algorithms show promise at becoming an integral part of pharmacovig-

ilance in the future due to the wealth of information they potentially hold [198].
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Although numerous methods have been developed for generating ADR signals

using LODs, they have not been robustly analysed. Their theoretical founda-

tions would suggest that they are likely to signal many non-ADRs due to the

reliance on association. The RORR method, presented to identify confounding,

requires initial drug-medical event pair signals to be generated, so it is a signal

refinement method. There has been no method that combines signal generating

and refinement into one, but such a method could signal drug-medical event pairs

more efficiently and obtain a lower rate of signalling non-causal relationships.

2.1.5 Combining Multiple Databases

2.1.5.1 Overview

There has been a recent initiative to integrate multiple electronic healthcare data

sources into one. Examples include the Mini-Sentinel [136], that will eventu-

ally become Sentinel, a US Congress mandated pharmacovigilance system that

contains medical data for more that 125 million Americans [124], the Exploring

and Understanding Adverse Drug Reactions (EU-ADR) project [34], a European

initiative set up in 2008 that contains data on over 30 million patients and the

Observational Medical Outcomes Partnership (OMOP) that has a network of

databases containing over 200 million patients. Numerous researchers have ex-

pressed the significance of large pharmacovigilance sources in aiding the ability

to discover ADRs efficiently [144]. The initiatives may bridge gaps in the current

pharmacovigilance, such as lack of knowledge concerning drug safety for minority

groups [34].

The OMOP was formed to analyse the methodologies for pharmacovigilance
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using longitudinal data. The partnership have developed a common data model

that enables the combination of different databases by transforming them into

a general format [115; 131]. The OMOP have presented a magnitude of differ-

ent techniques specifically for signalling ADRs using longitudinal data, including

cohort studies [107], disproportionality methods [216], case series methods [71],

case control methods [71], case crossover methods [160] and propensity score based

methods [159]. To enable an analysis of the methods, an approximate gold stan-

dard consisting of 53 ‘ground truth’ drug-medical event pairs (i.e., drug-medical

event pairs that are known to be ADRs or non-ADRs) have been identified [141].

The ability of the methods to generate correct signals for these ‘ground truths’,

at their natural threshold, has been investigated [156].

The standardised ‘ground truths’ only consider a selection of medical events,

referred to as Health Outcomes of Interest (HOI) and a small subset of drugs

known as Drugs Of Interest (DOI). Tables 2.7-2.8 display the OMOP’s proposed

HOIs and DOIs. Unfortunately, there are few studies investigating the methods

abilities in generating signals when a large number of drug-medical event pairs

are studied, however this is more realistic [143].

The OMOP methods tend to be based on standard epidemiological studies

that aim to identify associations between drugs and medical events by finding

medical event that have a greater incidence after a drug compared to the medical

event’s estimated background incidence. Many methods have been presented

and the seven that have been extensively investigated as described below. The

first method, the High–throughput Screening by Indiana University (HSIU), is

1READ codes do not exist for the exact medical event, so GI ulcer READ codes are given.
2READ codes do not exist for the exact medical event, so mortality due to cardiac or patient

died READ codes are given.
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Table 2.7: The Heath Outcomes of Interest defined by the OMOP [80] and their
corresponding THIN READ codes.

Medical event THIN READ code

Angioedema SN51.
Aplastic anemia D20.., D2011, D201., D2012, D2012, D204., D202.,

Dyu2.
Acute liver injury J6000, J6357
Bleeding J68.., J68z., J68z0, J68z1, J68z2, J68zz
GI ulcer hospitalization 1 J11.., J110’s
Hip fracture S30.., S30y.
Hospitalization 8H2.., 8H2z., 8H7a., 8Hd.., 8HJ.., 9144.
Acute myocardial infrac-
tion

G30.., G30’s

Mortality after myocar-
dial infarction 2

G5751, 22J..

Acute renal failure K04.., K04y., K04z., Kyu20, K043.

a cohort approach [80]. A cohort study follows a group of patients that have a

common attribute or event (such as a drug prescription) and assesses outcome risk

factors [178]. The Observation Screening method [155] calculates the screening

rate within the drug population (the frequency of a outcome divided by the total

risk time) and normalises this by dividing it by an estimate for the background

screening rate. This is either the screening rate in a non-risk period (frequency

in a pre-exposure period divided by the total pre-exposure time period) or the

screening rate in a control group. The third method, the Disproportionality

Analysis (DP) [216], identifies associations by comparing the rate that a medical

event occurs within the drug population relative to the rate it occurs within some

other population, similar to the SRS methods in Chapter 2.1.3.

The Univariate Self-control Case Series (USCCS), based on the method devel-

oped in [54], can be considered a cohort based study but where the exposed and

non-exposed patients are the same. The approach partitions the cases’ timelines
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Table 2.8: The Drugs of Interest defined by the OMOP, table from [80].

DOI Drug Name DOI Description

OMOP ACE Inhibitor ACE inhibitors: benazepril, captopril, enalapril, fosino-
pril, lisinopril, quinapril, and ramipril; restricted to oral
form

OMOP Amphotericin B parenteral Amphotericin B
OMOP Antibiotics:
erythromycins, sulfon-
amides, and thetracy-
clines

Antibiotics: erythromycins, sulfonamides, and tetracy-
clines; restricted to oral and injectable

OMOP Antiepilep-
tics: carbamazepine,
phenytoin

Antiepiletics: carbamasepine, phenytoin: restricted to
oral and injectable

OMOP Benzodiazepines Benzodiazepines: alprazolam, chlordiazepoxide, clon-
azepam, clorazepate, diazepam, estazolam, flurazepam,
halazepam, lorazepam, oxazepam, prazepam, quazepam,
temazepam, or triazolam

OMOP Beta blockers Beta blockers: propanolol, metoprolol, atenolol; re-
stricted to oral form

OMOP Bisphospho-
nates

Bisphosphonates: alendronate

OMOP Tricyclic antide-
pressants

Tricyclic antidepressants: restricted to oral and in-
jectable

OMOP Typical antipsy-
chotics

Typical antipsychotics: Chlorpromazine, chlorprothix-
ene, levomepromazine, flupentixol, Fluphenazine de-
canoate, Fluphenazine enanthate, Fluphenazine hcl,
Haloperidol, Haloperidol decanoate, Loxapine hcl,
Loxapine succinate, melperon, Mesoridazine, Molindone,
Perphenazine, amitriptyline hcl/perphenazine, Pimozide,
pipamperone, promazine, Prochlorperazine edisylate,
periciazine, Prochlorperazine maleate, Promazine, Propi-
omazine, Thioridazine, Thiothixene, Trifluoperazine, zu-
clopenthixol

OMOP Warfarin Warfarin
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into hazard and non-harard periods and compares the incidence in the hazard

periods with the incidence in the non-hazard periods [200]. Fixed in time con-

founding is overcome within the USCCS by using the same patients as the exposed

and non-exposed. The Multi-Set Case Control Estimation (MSCCE) method is

a case control approach that selects cases based on the occurrence of a speci-

fied condition and selects control that do not have the condition and are active

over the required observation period (i.e., have events reported before and after

the period) [217]. The Bayesian Logistic Regression (BLR) [87] method applies

a logistic regression approach using prior knowledge to initialise the coefficients

that determine the weight that each covariate has on the final output. The final

method is the Information Component Temporal Pattern Discovery (ICTPD),

summarised in Chapter 2.1.4.2.

The seven methods only cover the Bradford-Hill association strength consid-

eration and some incorporate filters to cover the temporality. Consistency is

indirectly incorporated due to the combination of multiple data sources. Some of

the methods, such as the BLR, remove confounding by adjusting for covariates

or apply stratification to reduce confounding by age and gender.

The seven OMOP methods described above were applied in the Non-Specific

Association (NSA) experiment, whereby the ten DOIs were paired with all possi-

ble outcomes and the signals generated by each method at their natural thresholds

were determined [80]. The majority of methods have many parameters that de-

termine their performance and the study applied the methods over a range of

parameter values to identify the optimal performance. This shows that addi-

tional work is required to tune these existing methods depending on the database

being used. The performance of the seven OMOP methods during the NSA ex-
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Table 2.9: The OMOP methods NSA experiment results.

Method
Optimal Scores over the NSA experiment
AUC MAP P(10) FPR

HSIU 0.7342 0.1408 0.42 0.2658
OS 0.7138 0.0942 0.22 0.2862
DP 0.6741 0.0622 0.23 0.3259
USCCS 0.7342 0.1408 0.4200 0.2658
MSCCE 0.603 0.032 0.05 0.397
BLR 0.6329 0.0316 0.03 0.3671
ICTPD 0.6695 0.0591 0.1 0.3305

periment is presented in Table 2.9. It can be observed that all seven methods

had False Positive Rates (FPRs) greater than 0.25 and Mean Average precision

(MAP) scores less than 0.015. The AUC values ranged from 0.6 − 0.735, as the

AUC corresponds to the probability that an ADR is ranked above a non-ADR

(rank 1 being the highest) [20], there is still approximately 30%-40% chance than

a non-ADR will be ranked higher than an ADR.

A recent study investigated potential loss from mapping the raw THIN data

into the common data model [214]. A few existing methods were applied to both

the raw THIN database and the THIN database mapped to the common data

model. The results of the study suggested that the existing methods performed

equally well on the raw and mapped data when considering the signals generated

for the 53 ground truths. However, the study showed that 55% of drug codes and

25% of medical events codes could not be mapped from THIN into the common

model [214], and this is likely to have detrimental effects when more than the

53 ground truths are considered. This highlights the important of developing

database specific methods, in additional to the common model methods, that

can utilise all the data available and present an alternative perspective for ADR
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discovery. When improvements in the mapping to the common data model are

developed, then any method developed for THIN could also be modified for im-

plementation on the THIN mapped to the common data model (or any other

common data model mapped database).

2.1.5.2 Summary

Combining the databases means that it may be possible to generate signals ef-

ficiently [3]. However, the combination requires the data to be transformed and

normalised and this has the potential to lose information and can negatively im-

pact the efficiency of signalling ADRs. It was demonstrated in [214] that many

of the raw THIN data cannot be incorporated into the common data model,

motivating the development of methods that are specific to certain databases.

Comparisons of existing OMOP methods have shown that they perform mod-

erately on the common data model [156] and there is no optimal method. In

addition, the methods had a high false positive rate, even when the number of

drug-medical event pairs being investigated is controlled. It is likely that the

methods will be further hindered when applied to determine a drug’s complete

set of side effects as there will be a surplus number of drug-medical event pairs

corresponding to non-ADRs.

2.1.6 Pharmacovigilance Summary

Adverse drug reactions are becoming an increasing burden on the NHS [166].

Existing post-marketing surveillance of drugs is limited by underlying issues as-

sociated with SRS databases [79]. Many ADRs are only being found years after

the drugs are marketed and as a result, many patients suffer serious health issues
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that could be avoided with improved ADR knowledge. Rare ADRs that are hard

to identify, ADRs corresponding to medical events with a high background rate

or less serious ADRs may never be detected by data-mining algorithms applied

to SRS databases [173]. As a result there has been a recent demand for improved

post-marketing surveillance [129; 190].

One recent solution has been to develop data-mining algorithms for LODs or to

combine multiple electronic healthcare databases as a resource for ADR detection.

Unfortunately the current methods developed for LODs have a high false positive

rate [156] and have not been extensively investigated due to a lack of a complete

‘gold standard’ [33]. The high false positive rate is probably due to confounding

caused by the countless number of possible covariates. Integrating the Bradford-

Hill causality considerations into a signalling method is one possible consideration

to reduce the negative impact of confounding factors and therefore reduce the

number of false positive signals. The Bradford-Hill causality considerations have

been used to help distinguish between associations that are causal, and those

that are not. As confounding causes the associations that are non-causal, the

Bradford-Hill causality considerations must be able to indirectly identify some

confounding. The majority of existing methods only cover a few of the Bradford-

Hill causality considerations, however, there is potential to extract data from the

LODs to enable novel methods that cover more of the criteria. This could then

reduce the number of false positives.

The THIN database is a LOD that contain medical data for over 10 million

patents, often spanning decades of years per patient. The general benchmark for

the THIN database is unknown, as only a few methods have been investigated by

considering the signals generated for a small set of 54 ‘ground truth’ drug-medical
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event pairs [214]. A specific method to signal ADR using the THIN database may

generate novel signals that cannot be generated using the common data model

nor the SRS databases. There are inconsistencies in the recording of data into

the THIN database [78], but this may be overcome by developing a novel method

that takes this into account.
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2.2 Pattern Recognition

In the previous part of the literature review the existing pharmacovigilance tech-

niques that tend to signal ADRs by calculating an estimate for the relative risk of

each drug-medical event pair were summarised. The medical events with a large

estimated relative risk are then signalled, or alternatively ‘classified’, as poten-

tial ADRs. These methods can be considered unsupervised learning algorithms,

algorithms that infer hidden structure without being taught [2], as they do not

use knowledge of existing ADRs to learn intrinsic differences between ADRs and

non-ADRs. Rather, they use a single attribute such as the relative risk estimate

to distinguish between ADRs and non-ADRs. The limitation with relying on

a single attribute, such as the relative risk, is that confounding can occur and

cause many non-ADRs to have a high relative risk estimate. This results in the

techniques having high false positive rates and reduces the efficiency in detecting

ADRs.

There has been no research to date that extracts attributes for drug-medical

event pairs from LODs and then uses known ADRs as a means to learn the un-

known ADRs based on their attributes, although in [113] the authors use chemical

knowledge and learn from known ADRs. This type of learning is called supervised

learning [74]. During the training stage, supervised learning requires attributes

that describe each data-point and knowledge of the ‘classes’ that the data-points

belong to. In the context of ADR signalling each drug-medical event pair would

represent a data-point and their attributes would correspond to values that could

be used to distinguish between ADRs and non-ADRs. Examples of suitable at-

tributes include the risk of the medical event within a defined time period after
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taking the drug or the average age of the patients experiencing the medical event

after the drug. Labels need to be assigned to each data-point (i.e., each drug-

medical event pair) to define their class, for example the pair ciprofloxacin and

tendon rupture would be in the class ADR whereas the pair ciprofloxacin and

normal menopause are in the class non-ADR. In the pharmacovigilance field this

has been unexplored in general due to the uncertainty with knowing what med-

ical events are definitely ADRs or non-ADRs of a drug . If a sufficient number

of labelled data-points could be generated then a supervised algorithm could be

trained. This would enable classification of any drug-medical event pair whose

ADR status is unknown, as an ADR or non-ADR. If suitable attributes were

chosen so that it was possible to distinguish between medical events linked to

drugs due to confounding factors and true ADRs, then a supervised algorithm

could offer significant improvement over existing ADR signalling methods .

In the following section the theory behind supervised learning and the main al-

gorithms applied are described. This is followed by a summary on semi-supervised

learning, the technique developed to deal with the situation of having labels that

are difficult to generate [30]. Due to the conundrum that applying supervised

learning for signalling ADRs imposes, requiring knowledge of ADRs to extract

knowledge of ADRs, it may be impossible to generate the required number of

labeled data-points and a semi-supervised algorithm may be more appropriate.
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2.2.1 Supervised Learning

2.2.1.1 Introduction

Supervised learning is the process of learning from examples to infer the rela-

tionship between inputs and outputs. A training set consisting of inputs (also

known as attributes) and their corresponding outputs are used to ‘supervise’ the

training of a function that is capable of generalising the mapping between input

and output. The trained function can then be used to predict the output of

any unseen input coming from the same distribution as the training set inputs.

When the outputs are discrete they are referred to as classes or labels and the

supervised learning is known as classification. Alternatively, when the output is

continuous the supervised learning is known as regression [37]. For example, if

the odds ratio (OR) and risk difference (RD) attributes are known for a thou-

sand different drug-medical event pairs and for each pair their class (ADR or

non-ADR ) is also known, then supervised learning could be applied to partition

the attribute space into areas likely to correspond to ADRs and areas likely to

correspond to non-ADRs, see Fig 2.9 illustrating the ideal situation where ADRs

and non-ADRs are separable in the space determined by the OR and RD.

Formalising the previous statement, the training set An is a collection of inputs

xi ∈ X and corresponding outputs yi ∈ Y pairs,

An = {(x1, y1), (x2, y2), ..., (xn, yn)} (2.12)

Where each pair (xi, yi) are assumed to be independent identically distributed

samples from an unknown joint probability distribution P . In general, X ⊂ R
m
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RDRD

OR OR

ADR

non-ADR

new data-point
predicted as ADR

new data-point
predicted as non-
ADR

Training Prediction
Figure 2.9: Illustration of a classifier partitioning the attribute space. Using the
training data (blue dots are labelled as ADR and red as non-ADR) a function
is trained to partition the space into ADR sections and non-ADR sections. This
can then be used to predict whether a new data-point is an ADR or non-ADR
based on where the data point lies in the attribute space.
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and Y ⊂ R for regression or Y = {−1, 1} for binary classification. The task of

supervised learning is to find a function f : X → Y , where f ∈ H (a class of

functions).

As the training data is considered to consist of n independently identically

distributed samples from an unknown joint probability distribution P (x, y), then

the task of supervised learning is to develop a function f that models the de-

pendency within the joint distribution. There are two different approaches for

producing machine learning models, the discriminative model and the generative

model. The discriminative model aims to determine the conditional distribution

of the class label given the input, P (y|x) , by using a parametric model and

determining the model’s parameter values with the aid of the training set [102].

The generative method calculates the joint probability distribution, P (x, y), and

makes use of this distribution to predict the conditional distribution [102]. In gen-

eral, if the training set is sufficiently large (depending on the complexity of the

model), discriminative models have been shown to perform better [92], however,

generative models have the advantage of being able to incorporate unlabelled

data [102]. This is advantageous when generating labels becomes costly.

To find the optimal function f ∈ H for mapping the inputs to their outputs

it is necessary to evaluate each functions performance. This is calculated by a

non-negative loss function,L : Y × Y → R
+, that determines a measure of error

between the predicted output f(xi) and the real output yi. Various loss functions

have been proposed, examples for binary classification [150] include,

• Square Loss: L(f(x), y) = (1− f(x)y)2

• Hinge Loss: L(f(x), y) = |1− f(x)y)|+
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• Logistic Loss: L(f(x), y) = (ln2)−1ln(1 + e−f(x)y)

The choice of the loss function that is implemented should be chosen based on

the specific classification problem [4]. The integral of the model’s loss function

over the joint probability distribution gives the generalisation error, or risk,

R(f) =

∫

L(f(x), y)dP (x, y) (2.13)

The Bayes estimator, g∗, is the function that minimises the risk,

R(g∗) = inf
f
R(f) (2.14)

The goal of a discriminative learning algorithm is to find the function within a

class of possible functions, f ∗ ∈ H, that minimises the risk, f ∗ = argminf∈H R(f).

Unfortunately it is often the case that the Bayes estimator does not belong to

the class of possible functions. Methods that aim to determine the function that

minimises the risk include empirical risk minimisation [123], structural risk min-

imisation [187], regularisation [18] and normalised regularisation [18].

Empirical risk minimisation is a simple and generally efficient means to deter-

mine a suitable function. The empirical risk measures the difference between the

predicted output values and the true output values by calculating the average of

the loss function over each data-point in the training set,

Remp(f, An) =
1

n

n
∑

i=1

L(f(xi), yi) (2.15)

The empirical risk minimisation method then identifies the function f from a
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model of possible functions H that minimises the empirical risk,

f ∗ = argmin
f∈H

Remp(f)

It is clear that the choice of model that determines the possible functions has a

direct impact on the results returned by the empirical risk minimisation method.

The idea behind the structural risk minimisation is to pick a sequence of

models, {Hs|s ∈ N} , than increase in size and find the argument that minimises

a trade off between the empirical risk and a penalty that penalises large models

(models with a large capacity),

f ∗ = arg min
f∈Hs,s∈N

Remp(f) + pen(s, n) (2.16)

where n is the size of the training data. As the empirical risk only estimates the

actual risk, it is of interest to find bounds on the difference between the actual

and empirical risk, as this gives an indication into the predictive suitability of

any functions that are determined using a supervised learning model. Extensive

analysis by [187] managed to show that the actual risk is bounded by the empirical

risk and an additional term than corresponds to the complexity of the model.

With probability 1− η the following holds,

R(f) ≤ Remp(f) +

√

h(log(2n/h)− log(η/4))

n
(2.17)

where h is the VC dimension of the class of functions H, this is a measure of their

complexity. The VC dimension of a class of functions is the maximum number

of points that can be separated in every possible way by those functions over a
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4 4 4 5

Figure 2.10: Illustration of the maximum number of points separable in every
possible way by a linear classifier.

defined space [189]. A visual example demonstrating that a linear classifier has a

VC dimension of 3 can be seen in Figure 2.10. It can be seen that 3 non-collinear

points can be separated by a line in every possible way, but this is not the case

for 4 points, as the far right graph shows two lines are required.

In general the bound can be represented as,

Test error ≤ Training error + Complexity of set of models (2.18)

Training a highly complex model may lead to overfitting, where the training error

is minimised but the model is not generalised and performs poorly on the testing

data. On the other hand, a less complex model is likely to have a high training

error. Therefore, the perfect model determines a function that has a low training

error but is also as simple as possible.

The complexity of the model depends on H, the class of functions, and this

is determined by the classifier being applied. The most widely applied classifiers

are the Decision Tree [81], Naive Bayes [101], Logistic Regression [84], Support

Vector Machine [39] and K-Nearest Neighbours (KNN) [56]. Each of these have

different model assumptions and are briefly summarised in the following section.
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OR

non-ADR

≤ 3

ADR> 3
< 4

RD

non-ADR

≤ 2

ADR> 2

≥ 4

Figure 2.11: Example of a decision tree to classify drug-medical event pairs as
ADRs or non-ADRs.

2.2.1.2 Classifiers

Decision Tree

The decision tree classifier is a directed tree that recursively partitions the at-

tribute space into sub-spaces. An illustration of a hypothetical decision tree can

be seen in Figure 2.11. A decision tree is non-parametric [116], self explanatory

[116] and has the advantage of being unaffected by heterogeneous data or differ-

ent features that have varied ranges. This means that the data does not need

to be extensively processed before applying the classifier. Unfortunately, it has

been described as ’greedy’ as noise or irrelevant attributes in the training set can

greatly impede its performance [139].

The decision tree can be constructed with a bottom-up [95] or top-down [149]

approach. Generally speaking, the algorithm uses a splitting measure to calculate

how well an available partitioning of the space separates the classes. During each

iteration in the top-down approach, the optimal partitioning is applied to the

current subspace, or the subspace stops being partitioned when the splitting
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measures shows there is no possible partition that can lead to a sufficient gain or

the stopping criterion is satisfied. In general, the splitting criteria is only based

on a single attribute during each iteration. This is known as univariate splitting

[116] and the measures are often based on impurity based criteria such as the

Gini index [21] or information gain [138].

The information gain takes its origin from information theory and measures

the change in the entropy value that is caused by partitioning the space. The

entropy value corresponds to the uncertainty within a set. Considering the binary

classification problem where there are two class, let p1 and p2 represent the pro-

portion of the data-points within the set S that are in class 1 or −1 respectively,

then the entropy is,

E(S) = −
2

∑

i=1

pilog2pi (2.19)

If the data-points in a set are all from one class, without loss of generality, assume

they are from class 1, then p1 = 1 (log2p1 = 0) and p2 = 0 so E = 0, the lowest

possible value. If the data-points in a set are spread equally between the two

classes, p1 = p2 = 0.5, then the entropy is the highest possible value E = 1. It

is clear that choosing a partitioning with the highest information gain minimises

the entropy and leads to a final partitioning of the space into numerous subspaces

that are dense in a single class. The main limitations of using information gain as

the splitting measure for a decision tree classifier is that there is a bias towards

partitioning based on attributes with large ranges [201] that can lead to over-

fitting and it is common for the space to be fragmented into a surplus number of

small subspaces.

The Gini index is another splitting measure frequently implemented. The
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Gini index is calculated for a set S by,

Gini(S) = 1−
2

∑

i=1

p2i (2.20)

The Gini index is minimised when the majority of the data-points within set S

belong to one class. In this case, one of the pi values will be close to one and

the others will be small. The square term in the Gini index calculation puts

more emphasis on larger values. Squaring the pi value close to one has little

effect, whereas the closer a pi value is to zero, the more it becomes reduced when

squared. So a set S containing data-points spread between different classes will

have a small value for
∑2

i=1 p
2
i and therefore a Gini index close to 1.

The average Gini index is the weighted average of the Gini index based on

partitioning the set S into subsets Si using the values of a single attribute A,

where |S| corresponds to the number of elements in the set S,

Gini(S,A) =
∑

i

|Si|

|S|
Gini(Si) (2.21)

The decision tree is generated by finding the partitions that minimise the average

Gini index. Research comparing the different univariate splitting measures has

often concluded that the choice has little effect on the decision tree as there does

not appear to be an overall superior measure [116].

Naive Bayes

The Naive Bayes classifier uses the training set to determine the distribution of

the class label, P (Y ), and the conditional distribution of the input attributes
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given the class label, P (Xi|Y ) for i ∈ [1, n], and then use these combined with

Bayes rules and a conditional independence assumption to find the most probable

class for any future inputs. The conditional independence assumption is used to

simplify the number of parameters required by the model and enables an efficient

calculation of the distribution P (Y |X).

Consider three random variables, X, Y and Z. It is defined that X is condi-

tionally independent of Y given Z if, P (X|Y, Z) = P (X|Z). Assuming that the

input features are conditionally independent given the class label, then,

P (X1, X2, ..., Xn|Y ) = P (X1|X2, ..., Xn, Y )P (X2|X3, ..., XN , Y )...P (Xn|Y )

= P (X1|Y )P (X2|Y )...P (Xn|Y )

=
n
∏

i=1

P (Xi|Y )

Using Bayes rule,

P (Y = yk|X1, ..., Xn) =
P (Y = yk)P (X1, ..., Xn|Y = yk)

∑

j P (Y = yj)P (X1, ..., Xn|Y = yj)
(2.22)

and using the conditional independence the expression for the conditional prob-

ability of the class label given the input data is,

P (Y = yk|X1, ..., Xn) =
P (Y = yk)

∏

i P (Xi|Y = yk)
∑

j P (Y = yj)
∏

i P (Xi|Y = yj)
(2.23)

As the denominator in equation (2.23) is independent of the choice of class label,

it can be ignored. The classifier simply determines the most probable class label
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for an input by,

Y = argmax
yk

P (Y = yk)
∏

i

P (Xi|Y = yk) (2.24)

The classifier, although limited by its unrealistic assumption of conditional inde-

pendence, has performed well for some real life classification problems [47]. In

[146] the authors state that a known limitation of the Naive Bayes classifier is

that it does not perform optimally when the classes are non-linearly separable.

Logistic Regression

Logistic regression is a discriminative model so it assumes a distribution for

P (Y |X) and uses the training data to determine the parameter values. Logistic

regression is applied when the classification is binary and does not required the

inputs to be normally distributed, have equal variance within each class nor be

linearly related [27]. The main disadvantage with the classifier is that it uses

maximum likelihood to determine the parameter values and this requires larger

training sizes than for linear regression. It is suggested that a minimum of 50

cases per predictor are used [27].

The logistic regression model is based on the assumption that the log odds

of a data-point belonging to a class given its n attributes can be expressed as a

linear combination of the data-points attributes. Under this assumption the log

odds is expressed as,

ln(P (Y |X)/(1− P (Y |X))) = w0 +
n

∑

i=1

wiXi
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by taking the exponential and re-arranging, the conditional model used by logistic

regression for the two class problem is,

P (Y = 0|X) =
exp(w0 +

∑n
i=1wiXi)

1 + exp(w0 +
∑n

i=1wiXi)

P (Y = 1|X) = 1− P (Y = 0|X)

=
1

1 + exp(w0 +
∑n

i=1wiXi)

As the classifier assigns the class for an input x based on argmaxyk P (Y = yk|X =

x), it is clear that class 0 is assigned when 1 < exp(w0+
∑

iwiXi) (or equivalently

0 < w0 +
∑

iwiXi) and class 1 is assigned otherwise.

Support Vector Machine

The Support vector machine (SVM) classifier is a parametric model that aims

to find the hyperplane that separates the classes while maximising the distance

between the data-points and the hyperplane, see Figure 2.12. For the two class

problem, the SVM works by finding two parallel hyperplanes such that they

separate the two classes and there are no points between the two hyperplanes.

The equations of two hyperplanes are w.xi + b = 1 and w.xi + b = −1. The bit

in-between the hyperplanes is referred to as the ‘margin’. This is what needs to

be maximised to ensure the classes are separated as much as possible. As the

distances between the two hyperplanes is 2/||w||, by minimising ||w|| we can find

the maximum separation between the classes. Previously in Chapter 2.2.1.1 it

was shown that the actual risk of a classifier is bounded by the empirical risk and

a term that depends on the capacity/complexity of the set of decision functions
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Figure 2.12: Illustration of the support vector machine classifier. The hyperplane
separating the classes is positioned such that the distance between the hyperplane
and the closest data points from either class is maximised.

defined by the classifier. The decision functions used by the SVM classifier are

the hyperplanes w.x + b. It has been proven that for the set of hyperplanes

(w.x) = 0 such that mini |w.xi| = 1 for xi ∈ X the set of decision functions

fw(x) : X → {−1, 0, 1}; fw(x) = sgn(w.x) satisfying ||w|| < A has a bounded

VC dimension [188],

h ≤ R2A2 (2.25)

where R is the radius of the smallest ball centred at the origin that covers the

set X. This defines an upper bound on the capacity/complexity of the SVM

classifier. In the separable case this motivates finding the parameters w and b

such that ||w||2 is minimised and,

(w.xi + b) ≥ 1 if yi = 1;

(w.xi + b) ≤ −1 if yi = −1.
(2.26)
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as this results in a zero empirical risk and minimises the capacity of the model.

When the data is non-separable (i.e. there is no hyperpane that can cleanly split

the classes), slack variables are introduced to enable the misclassification of some

data-points. The aim is to maximise the margin while minimising the degree of

misclassification. The optimisation problem becomes minimise:

||w||2 + C

m
∑

i=1

σi

subject to:

yi(w.xi + b) ≥ 1− σi, σi ≥ 0

An addition to the optimisation problem includes incorporating kernel functions

that map the data-points into a space where they are separable [125].

K-Nearest Neighbour

The K-nearest neighbour (KNN) classifier is non-parametric, this means it does

not assume the data come from a specific distribution. The classifier is described

as a lazy algorithm as it does not use the training data to generalise (generate

a probabilistic distribution) [199], this makes the training state highly efficient,

but can cause the testing step to become costly.

The classifier requires the data to come from a metric space, but the measure of

distance can be any suitable metric. The classifier works by taking the majority

vote of the k nearest neighbours, where distance is determined by the defined

metric. If the set Nk(x) is the set of indices corresponding to the K nearest
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neighbours of x, then,

fKNN(x) =











1 if
∑

i∈Nk(x)
yi ≥ 0;

−1 if
∑

i∈Nk(x)
yi < 0.

For example, if k = 7, and for an input x three of its neighbours are class −1

and four are class 1 then the input would be assigned the class 1. The algorithm

can be modified to use the distance of the neighbours as weights so that closer

neighbours have more influence [49].

2.2.1.3 Ensemble Methods

An ensemble classifier considers the outputs from multiple trained classifier to

determine the class of a data-point [130]. In general, the method combines multi-

ple diverse ‘weak learners’ to produce a ‘strong learner’. The motivation behind

an ensemble classifier is to reduce the bias that can occur when considering single

classifiers and to reduce the variance than can occur due to the choice of data

used during training [23].

There exists a magnitude of options for generating diverse classifiers including

building models from different samples of the data [22], using different models

[51] or building models that use different subsets of attributes [82]. There are

also different ways to combine the predictions from the classifiers, such as deter-

mining the class by voting that returns the modal class or weighted voting that

incorporates the confidence of the classifiers or error estimations as weights to

produce a weighted sum of the votes. Another method, known as stacking, is to

use the outputs of the classifiers as inputs into a new meta classifier that does
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the final classification [177].

The most widely implemented ensemble methods that use sampling of the

training data set are known as bagging [22] and boosting [60]. Bagging involves

iteratively generating classifiers that are built on different training sets and re-

turning the class with the highest number of votes based on these classifiers. The

different training subsets are produced by drawing with replacement from the

whole training set. Bagging has a statistical basis and can be considered similar

to averaging as it reduces the classifier’s variance [23; 130]. The advantage of

bagging is that is it resistant to noise, however, experiments have shown that

with a little noise present it is not as accurate as other methods such as boosting

[46].

Boosting has its foundations in learning theory and the general aim is to pro-

duce a sequence of classifiers that are used to generate a weighted vote for the

overall class. The misclassifications of the previous classifiers in the sequence have

an influence on the weights assigned during classification in the later sequence

classifiers. The most widely used boosting classifier is the AdaBoost classifier

developed by Freund and Schapire [61] that generates a sequence of simple clas-

sifiers (hm ∈ H, where H is a class of simple classifiers) and weights (λm ∈ R) by

giving more importance to data-points that were misclassified by the simple clas-

sifiers earlier in the sequence. The final classification makes use of the weighted

majority vote sgn(
∑M

m=1 λmhm(x)). Considering (Xi, Yi), i ∈ [1, n] to be i.i.d.

samples where Yi ∈ {−1, 1} and Xi ∈ x then the sequence is determined by,

0. Let c1 = c2 = ... = cn = 1, and set m = 1.

1. Find hm = argmaxh∈H
∑n

i=1 cih(Xi)Yi. Set
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λm =
1

2
log(

∑n
i=1 ci +

∑n
i=1 cihm(Xi)Yi

∑n
i=1 ci −

∑n
i=1 cihm(Xi)Yi

) =
1

2
log(

∑

hm(Xi)=Yi
ci

∑

hm(Xi) 6=Yi
ci
) (2.27)

2. Set ci ← ciexp(−λmhm(Xi)Yi), and m← m+ 1, If m ≤M , return to step 1.

In step 1 the algorithm finds the simple classifier in H that has the smallest

weighted misclassification and then calculates the corresponding lambda based

on the ratio of correct classifications to misclassifications. The weights that de-

termine the importance of correctly classifying each datapoint are then updated

in step 2. If the simple classifier misclassified datapoint i then −λmhm(Xi)Yi will

be positive and therefore the weight given to it will increase, alternatively if the

classifier was correct the weight will decrease. Boosting has been shown to often

work well but it has been hypothesised that results by boosting may be impeded

when there is noise present in the training set [46; 59].

The random forest is a non-parametric ensemble classifier that produces a

‘forest’ containing multiple decision trees and determines the class based on ma-

jority voting whereby each tree in the forest is given one vote [24]. Each decision

tree is built on a different random sample of the training set, where sampling is

done with replacement.

Let the training set Dn = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)} consists of n i.i.d.

pairs of random variables sampled from the joint distribution (X, Y ) whereX = R

and Y = {0, 1}. We represent the marginal distribution of X by µ(x) = P{X =

x} and the posteriori probability by η(x) = P{Y = 1|X = x}. The probability
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of a classifier gn misclassifying is,

L(gn) = P{gn(X,Dn) 6= Y }

It has been shown that the Bayes classifier, g∗(x) = 1{η(x)≥1/2} , minimises the

probability of error [45] and this probability of error for the Bayes classifier L(g∗)

is referred to as the Bayes risk. A sequence of classifiers ({gn}) is consistent for

the distribution (X, Y ) if ∀ǫ > 0 ∃N ∈ N s.t. ∀n ≥ N |L(g∗)− L(gn)| < ǫ.

A randomised classifier gn(X, θ,Dn) uses a random variable θ to determine its

prediction, where θ takes its values from some measurable space. The probability

of error for the randomised classifier can be calculated as,

L(gn) = P{gn(X, θ,Dn) 6= Y |Dn}

Givenm identically distributed draws from the random variable θ, θm = (θ1, ..., θm)

where each of the θis are considered independent conditionally on X, Y and Dn,

the random forest classifier is constructed such that it takes the majority vote of

m decision trees by,

g(m)
n (x, θm, Dn) =











1 if 1
m

∑m
j=1 gn(X, θj, Dn) ≥

1
2

0 else
(2.28)

In [13], they prove that if the sequence of random classifiers is consistent then

so is the voting classifier. This result implies that if the sequence of random

decision trees generated by the random forest is consistent then the probability

of error of the random forest tends to the Bayes risk as the number of random
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trees increases. One example of the randomisation procedure used to generate

the random classifiers by the random forest is to use bagging. In this case each

decision trees is built on a random sample of the training data. Another common

method is to randomly sample from the attributes available in the training data

and train each tree on a difference set of attributes. Some random forest classifiers

incorporate the randomness by generating decision trees that interactively pick

a random attribute to partition the attribute space until each partition only

contains a single data-point from the training set, and then the class returned

for a new data-point is the class of the training data-point corresponding the the

subspace that the new data-point is in [24]. This method has been shown to have

similarities with the nearest neighbour classifier [110].

2.2.1.4 Supervised Learning Summary

In this section the statistical learning theory undermining supervised learning

was summarised and the main supervised classifiers currently implemented were

presented. It is clear that given sufficient historical data it is possible to learn

underlying patterns within the data that can be used to form future predictions.

As the THIN database contains a large quantity of historical data, supervised

learning techniques can be applied with the aim of inferring medical information

that can help improve current healthcare. In the later parts of this section the

ensemble classifiers, that make use of multiple classifiers with the aim of improving

the classifying accuracy on average, were discussed. In particular, the focus was

aimed towards the random forest as this classifier can be applied to heterogeneous

data and by incorporating bagging it can be more resilience to noise. These are

the two key issues associated with the THIN database, suggesting the random
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forest may have excellent performance when applied to classify ADRs using the

THIN database.

The majority of existing algorithms for signalling ADRs using electronic health-

care databases are unsupervised as they do not include known ADR labels when

detecting patterns and instead find general structures of interest within the data.

The reason few supervised algorithms exist is due to the lack of known ADRs pre-

venting the ability to have sufficient quantities of labelled data. However, if these

labels can be discovered then a supervised algorithm, with appropriate attributes,

may significantly outperform its unsupervised counterpart. Due to clinical tri-

als and knowledge gained over the time that a drug is actively prescribed, some

ADRs are definitively known and could be used as labels. If there are some labels

but not enough, then an alternative method would be to apply semi-supervised

learning. Semi-supervised learning is a mixture of supervised and unsupervised

learning techniques. In involves the inclusion of unlabelled data-points into the

training stage of an algorithm when there is a small number of labelled data-

points [30]. It is often observed that including unlabelled data-points during

training can lead to an improvement in performance of the algorithm [30]. This

is discussed further in the next section.

2.2.2 Semi-Supervised Learning

2.2.2.1 Introduction

Supervised classification was previously introduced, where the aim is to find a

function that approximates the joint distribution between the random variables

X and Y when given n random i.i.d. samples. Unfortunately, it is not always
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possible to observe both X and Y together a sufficient number of times as the

label Y can be scarce or costly to determine [30]. When the number of labelled

samples in the training set is low, any classifier trained on the data is likely to

perform poorly [140].

When the number of labelled data-points are scarce but unlabelled data-points

are readily observable, under certain assumptions, knowledge of the marginal dis-

tribution can result in an improvement in the function that approximates the joint

distribution. Semi-supervised learning algorithms make use of unlabelled data-

points to learn the marginal distribution and incorporate this in addition to the

labelled data-points when inferring the joint distribution. Formally, given both

labelled ({(Xi, Y )}li=1) and unlabelled ({Xi}
l+u
i=l+1) data the aim of the supervised

learner is to infer the joint probability distribution P (X, Y ) where the labelled

data-points are i.i.d. samples from the joint distribution and the unlabelled data-

points are i.i.d. from the marginal distribution P (X). In general there are more

unlabelled data-points, l << u

In the remainder of this introduction, the main semi-supervised techniques

are summarised and the limitations associated to the assumptions they make to

enable the incorporation of unlabelled data are discussed.

Self-training Algorithm

The self-training algorithm [40] trains a classifier on the labelled data and then

applies the trained classifier on the unlabelled data to predict their class. The

algorithm then assumes that some of the predicted classes of the unlabelled data-

points are true and moves these from the unlabelled dataset into the labelled

dataset. The algorithm continues until the unlabelled dataset is empty. Gener-
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ally the algorithm considers the model predictions for the unlabelled data-points

with the greatest prediction confidences to be true, however, this is not always

the case when the classes are non-separable [215]. Consequently, the self-training

algorithm can perform poorly when the classes are non-separable. Early mistakes

can have huge impacts as misclassifications will be incorporated into the training

of the classifiers in future iterations, potentially leading to further misclassifica-

tions.

Probability Generating Models

The aim of each classifier is to identify the most probable class given the in-

put, argmaxY p(Y |X), and this can be determined using a generative model.

The generative model makes use of Bayes rule to show that argmaxY p(Y |X) =

argmaxY p(X|Y )p(Y ) and this implies that the class can be determined when

the conditional distribution p(X|Y ) and marginal distribution p(Y ) are known.

If the conditional distribution and marginal distributions are assumed to come

from a specified model then given the training data D, the most likely parameter

value θ is,

θ̂ = argmax
θ
p(D|θ) = argmax

θ
logp(D|θ) (2.29)

and

logp(D|θ) = log(
l

∏

i=1

p(Xi, Yi|θ)
l+u
∏

l+1

p(Xi|θ))

=
l

∑

i=1

logp(Yi|θ)p(Xi|Yi, θ) +
l+u
∑

l+1

logp(Xi|θ)

The Expectation Maximisation (EM) algorithm [120] can find the value of θ that
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locally maximises p(D|θ). The limitations with the probability generating models

are that the probabilistic model needs to be defined and an incorrect model will

lead to inaccurate results [215]. It can be difficult to determine the conditional

distribution if the number of labelled data-points is small [215]. This technique

is more appropriate if there is additional knowledge about the data (e.g., the

distribution the data come from is known).

Co-training

The semi-supervised method of co-training [16] is when two different classifiers

are trained, in a similar style to self-training except they learn from each other

and unlabelled data is iteratively added to each classifier’s labeled data based

on the predictions of the other classifier. The process of co-training at learning

speed k is,

1. Initially let the training sample be L1 = L2 = {(X1, Y1), ..., (Xl, Yl)}.

2. Repeat until unlabelled data is used up:

1. Training a view-1 classifier f (1) from L1 and a view-2 classifier f (2)

from L2.

2. Classify the remaining unlabelled data with f (1) and f (2) separately.

3. Add f (1)’s top k most-confident predictions (X,f (1)(X)) to L2.

Add f (2)’s top k most-confident predictions (X, f (2)(X)) to L1.

Remove these from the unlabelled data.

In effect, the algorithm forces the two classifiers, using different views, to agree

on the prediction of the unlabelled data, and the chance of overfitting is reduced.
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The co-training algorithm assumes that the data can be partitioned into two

different views but how this is done is not always obvious. One limitation of this

algorithm is that it requires the two views to be conditionally independent given

the class [41],

P (X(1)|Y,X(2)) = P (X(1)|Y )

P (X(2)|Y,X(1)) = P (X(2)|Y )

Although in [6] the authors argue that the conditional independance can be re-

laxed. They suggested that co-training can be applied as long as the two views

are not highly correlated. However, many situations are likely to violate this

assumption. For example, in the context of classifying a drug-medical event pair

as a side effect, if one view uses the knowledge of when the drug occurs relative

to the medical event and the other view uses association strength, these views

are likely to be highly correlated. If the drug is only observed before the medical

event occurs and not after then this will probably mean there is also a strong

association between the drug and medical event.

In Chapter 2.2.1.1, the error of a classifier was shown to be bounded by the

training error and the term that corresponds to the complexity of the model. It is

known that a complex model that minimises the training error may not generalise

well to unseen data as it may over-fit. Co-training aims to reduce the complexity

of a model by restricting the function space, and therefore reduces the error [215].
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2.2.2.2 Semi-Supervised Clustering

When there are no labelled data available, unsupervised techniques such as clus-

tering are applied to find intrinsic patterns within the data [88] without learning

from labelled data. Examples include the k-means clustering that initially assigns

each data-point into a random cluster and then iteratively moves each data-point

into the cluster that is closest [73]. The distance between the data-point and each

cluster is based on the cluster centre, the average of the data-points within that

cluster. Recent semi-supervised techniques have involved the incorporated of a

small number of labelled data to bias the clustering [7]. For example, in [7] the

authors use the labelled data to determine the initial centres in the k-means clus-

tering algorithms and fix the labelled data-points into one cluster. Alternative

approaches to improving clustering with additional knowledge has involved using

must or cannot be in the same cluster constraints [191] or interactive clustering

[32], where the semi-supervised clustering algorithm adapts based on feedback.

If the labels are given, the seed-constrained K-means clustering algorithms,

developed in [7] improves the unsupervised k-means algorithm by using the labels

data to determine the initial cluster centres and then applies the k-means algo-

rithm while fixing the labelled data to their known cluster. The set of data-points

input into the seed-constrained K-means algorithm is the set {x1,x2, ...,xn}, the

value of K input is k (the maximum number of classes in the labelled data) and

the initial seeds are Sl = {xi : xi is labelled as class l}. The seed-constrained

k-means algorithm is described in Algorithm 1.

As there will be labels rather than constrains for the ADR detection problem,

the seed-constrained K-means algorithm presents a simple and efficient solution
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Input : Set of data-points X = {x1,x2, ...,xn}, xi ∈ R
d, number of

clusters K, the set S = ∪K
l=1Sl of initial seeds.

Output: Disjoint K partitioning {Xl}
k
l=1 of X such that the KMeans

objective function is optimised.
Initialization: µ

(0)
h ←

1
|Sh|

∑

x∈Sh
x, for h = 1, ..., K; t← 0

repeat
For x ∈ S, if x ∈ Sh assign x to the cluster h (i.e., set X t+1

h ). For x 6∈ S,

assign x to the cluster h∗ (i.e., set X t+1
h∗ ), for h∗ = argmin

h
‖x− µ

(t)
h ‖

2

µ
(t+1)
h ← 1

|X
(t+1)
h |

∑

x∈X
(t+1)
h

x

t← (t+ 1)
until convergence;
Algorithm 1: The seed-constrained K-means algorithm developed in [7]

if the number of labelled data are low. A common problem with clustering is

that the measure of distance this is most suitable for a given problem is generally

unknown [210]. The Euclidean distance metric is the standard one implemented,

but this treats each attribute equally and assumes the attributes are independent

[208]. For many clustering problems these assumptions are unrealistic. This has

prompted researchers to develop methods that use the limited number of labelled

data available for semi-supervised learning to learn the optimal metric space. By

learning the suitable metric space, clustering techniques can be improved [208].

2.2.2.3 Metric Learning

An area of recent research is using additional knowledge to determine the optimal

metric, see [99] for a summary. As clustering looks for closely connected com-

munities within the data, the measure of ‘closeness’ will impact the results, and

the standard Euclidean distance may not be most suitable [208]. In [211] the au-

thors proposed learning the metric prior to clustering, whereas in [14] the metric

learning is embedded into the clustering and gets applied during each iteration.
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In [211], the authors proposed a metric learning algorithm that uses knowledge

of constraints (i.e. labelled data-points that are in the same cluster as must-link

and data-points that are in different clusters as cannot-link) to learn a mapping

from the original attribute space into a new space that maximises the distance

between data-points in different clusters while adding a constraint to the maxi-

mum distance that data-points in the same cluster can be apart. The algorithm

applies eigenvalue optimisation and is highly efficient.

The known constraints are used to determine S, representing the set of all

index pairs for data-points that are similar (e.g., (1, 3) ∈ S means that data-point

1 and data-point 3 are known to be in the same cluster), and D, representing

the set of index pairs for data-points that are different (e.g., (1, 5) ∈ S means

that data-point 1 and data-point 5 are known to be in different clusters). The

inner product of two d × n real valued matrices, A,B ∈ R
d×n, is denoted by

〈A,B〉 :=Tr(ATB), where Tr(A) means the trace of the matrix A and the cone

of positive semidefinite matrices is denoted by Sd
+.

Given a pair of data-points xi,xj ∈ X
Di
L , the matrix Xij = (xi−xj)(xi−xj)

T .

If τ = (i, j) is an index pair, then Xτ ≡ Xij. The matrix XS is defined

by XS =
∑

(i,j)∈S Xij and
∼

Xτ = X
−1/2
S XτX

−1/2
S . The authors calculated that

∇fµ(S
µ
t ) =

∑
τ∈D e−〈

∼
Xτ ,S〉/µ

∼
Xτ

∑
τ∈D e−〈

∼
Xτ ,S〉/µ

. The metric learning process, that uses these matri-

ces, is presented in Algorithm 2.

The must-link and cannot-link constrains can be determined when some la-

belled drug-medical event pairs are known. The must-link pairs are all combina-

tion consisting of any two of the known ADRs pairs or all combinations consisting

of any two of the known non-ADRs pairs. The cannot-link pairs are all the possi-

ble combinations consisting of one of the known ADR pairs and one of the known

81



Input :

• smoothing parameter µ > 0 (e.g., 10−5)

• tolerance value tol (e.g., 10−5)

• step sized {αt ∈ (0, 1) : t ∈ N}

Output: d× d matrix Sµ
t ∈ S

d
+

Initialization: Sµ
1 ∈ S

d
+ with Tr(Sµ

1 )= 1
for t = 1, 2, 3, ... do

Zµ
t =argmax{fµ(S

µ
t ) + 〈Z,∇fµ(S

µ
t )〉 : Z ∈ S

d
+, Tr(Z)=1 }, that is,

Zµ
t = ννT where ν is the maximal eigenvector of the matrix ∇fµ(S

µ
t )

Sµ
t+1 = (1− αt)S

µ
t + αtZ

µ
t

if |fµ(S
µ
t+1)− fµ(S

µ
t )| < tol then break

end
Algorithm 2: The distance metric learning algorithm from [211]

non-ADR pairs. It is then possible to apply the metric learning described by

Algorithm 2 to efficiently learn the optimal metric space.

2.2.2.4 Semi-Supervised Learning Summary

In this section the frequently applied semi-supervised techniques have been sum-

marised. The semi-supervised techniques can, under certain assumptions, im-

prove classification/clustering by incorporating the unlabelled data when the

number of labelled data are scarce [30]. Out of the semi-supervised classification

techniques discussed (i.e, self-training, co-training and probability generating),

the self-training algorithm is most applicable for classifying ADRs due to the

probability generating algorithm requiring prior knowledge of the distributions

[215], of which is unknown, and the difficulty with determining the non-correlated

views required by the co-training algorithm.

Alternatively, the most suitable semi-supervised clustering technique is the
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seed-constrained k-means [7] algorithm as this is efficient and takes advantage of

the labelled data available. However, as discussed previously, clustering can be

improved by applying metric learning [208]. As the ADR classification/clustering

is required to be efficient, a suitable metric learning algorithm to apply to im-

prove the clustering and ensure efficiency is the one presented in [211]. The

choice of semi-supervised classification or semi-supervised clustering will need to

be determined.

2.2.3 Pattern Recognition Summary

Statistical learning theory is a field of research that aims to learn or identify

intrinsic patterns within data. These patterns can then be applied to make future

predictions, and in the medical context, they can be used to aid decision making

such as what drug to prescribe to a patient. When there are a sufficient number

of labelled data, supervised learning can be applied whereby a general function is

learned that accurately maps the input into the output. Numerous methods have

been proposed that can produce a function that has a minimal training error but

will also perform well on future data [39; 56; 81; 84; 101]. Ensemble methods have

been presented that are able to combine multiple classifiers to reduce the variance

and can improve the classification accuracy. Unfortunately, issues arise when

using real life data. Such examples include the introduction of noise, difficulties

generating labels or the presence of missing data. Ongoing research aims to

develop methods that can produce an accurate function when there are issues

present. In the case of insufficient labels, semi-supervised techniques have been

proposed that make use of unlabelled data [215]. However, there is no guarantee
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that semi-supervised algorithms will outperform their supervised counterpart [30].

Nonetheless, semi-supervised techniques have been successfully implemented on

real life problems [108] and may be suitable for determining ADRs when there is

a lack of known ADRs.

2.3 Literature Review Summary

The first section of the literature review focussed on the current techniques being

applied by the pharmacovigilance community. The literature is full of techniques

for signalling ADRs using LODs, but no method has been presented that was de-

veloped specifically for the THIN database and few studies have applied a range

of methods on the THIN database. Therefore, there has been no extensive analy-

sis of applying ADR signalling methods on the THIN database and a benchmark

is unknown. The current research does highlight the inherent difficulties in accu-

rately determining current benchmarks for ADR signalling techniques, and this

will need to be addressed in order to find the THIN benchmark.

The majority of existing methods for signalling ADRs using LODs rely on

measures of association strength or temporality and do not cover the seven other

Bradford-Hill causality considerations [19]. Furthermore, they do not take into

consideration attributes specific to the database being used, but database specific

attributes may offer a unique insight into causality. As a consequence, the existing

ADR signalling methods tend to be affected by confounding and this causes

them to generate many false positives [156]. It may be possible to reduce the

negative effects of confounding by generating attributes for each drug-medical

event pair based on the remaining seven Bradford-Hill causality considerations

84



or by generating attributes specific to the database. The justification is that the

Bradford-Hill causality considerations help distinguish between association and

causation, something that is currently lacking within the existing methods. This

may then result in a low false positive rate.

The existing ADR signalling techniques developed for LODs are unsuper-

vised, as they do not learn from drug-medical event pairs that are known ADRs

or non-ADRs. The reasoning being that it is difficult to obtain a large number of

drug-medical event pairs with definitive ADR or non-ADR labels. However, if a

sufficient number of ADR and non-ADR pairs were determined, then supervised

or semi-supervised techniques could be applied, using suitable attributes, to iden-

tify new ADRs. The semi-supervised techniques may be advantageous when the

number of labelled drug-medical event pairs are limited, for example in the case

when a drug is rarely prescribed, then its ADRs may be generally unknown and

the number of labelled data will be small.

A supervised or semi-supervised technique that uses attributes based on the

Bradford-Hill causality considerations or specific to the THIN database may be

able to reduce the negative effects of confounding by identifying and utilising

patterns linked to ADRs or non-ADRs. The random forest ensemble algorithm

is a suitable classifier to apply when there is a sufficient number of labelled data

due to its ability to handle heterogeneous data and its resilience to noise. When

the number of labelled data is low, a self-training algorithm or a semi-supervised

clustering algorithm may yield improved results. If such an algorithm signalled

ADRs with a low false positive rate, then a larger number of drug-medical event

pairs likely to correspond to ADRs could be evaluated extensively by rigorous

epidemiological studies, and this is likely to result in new ADRs being discovered
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efficiently. In addition, the supervised/semi-supervised technique that considers

more than just the association strength and temporality factors of the Bradford-

Hill causality considerations (and may reduce the effects of confounding) is likely

to outperform the existing ADR signalling methods on the THIN database and

on the OMOP standard reference.
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Chapter 3

Existing Methods Comparison

‘One result from the DOI-HOI experiment was a number of

reproducibly high false positive rates across methods and

data sources.’

Dubey et al. [48]

3.1 Introduction

So far in this thesis, the research hypotheses and aims have been defined and the

current research within the field has been summarised. Numerous ADR signalling

methods, specific for LODs, have been proposed, but few have been applied

directly on the THIN database. As there has been no extensive application of

existing methods applied on the THIN data, the general benchmark is unknown.

As the aim of this research is to developed a suitable ADR signalling algorithm

specifically for the THIN data, it is necessary to determine the current benchmark

(i.e., the suitability of the existing methods on the THIN database).
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3. Existing Methods Comparison

In this chapter, the motivation for choosing two different types of comparison

is given and followed by a description of the existing method implementations.

The methodology used to determine the ‘true’ labels for each drug-medical event

pair is proposed, as the signals generated by each method will be compared

with the ‘truth’. The various measures used to analyse each method’s signalling

ability are then presented and the comparisons are conducted. The chapter ends

with a summary of the key results of both comparisons and the ADR signalling

benchmark values for the THIN data are presented.

3.2 Motivation

ADRs are a consequence of multiple factors, for example, an ADR may only occur

when the patient is a certain age and gender, eats a specific diet or has certain

ongoing illnesses [94]. As a consequence, ADRs are difficult to identify and it is

common for many ADRs to be unknown [147]. This means there is no extensive

gold standard, as there is no complete list of definitive ADRs for any drug, and this

makes it difficult to accurately benchmark ADR signalling algorithms. Motivated

by the lack of gold standard, in [179], the authors developed a list of drug-medical

event pairs known to represent ADRs or non-ADRs, but, although the list it

expanding over time [70], it initially only considered four medical events. Further

research has focused on producing a larger reference standard [33] containing

drug-medical event pairs with definitive labels, but the number of drug-medical

pairs is still often less than a hundred.

In previous studies, on non-THIN data, the authors have used the HOI-DOI

reference standard containing 53 drug-medical event pairs with definitive labels,
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3. Existing Methods Comparison

and applied the existing methods to these pairs to determine how they compare

and set an approximate benchmark [156]. In [156] the TPD and ROR05 signalled

16 drug-medical event pairs out a possible 53, with 6 and 4 known ADRs being

signalled respectively. The benchmarks, over a range of electronic healthcare

databases, for the TPD were an AUC of 0.73 and AP of 0.41 and for ROR05

an AUC of 0.68 and an AP of 0.2. The study also concluded that the existing

methods obtain a similar performance and the existing methods have a high false

positive rate, this was also evident in [162]. In the later study, the benchmark

AUC obtained was 0.83.

A previous study determined the benchmark for the signalling ability of exist-

ing methods on the THIN database using the HOI-DOI reference standard [214].

The paper applied three existing methods, including the PRR and USCCS, to

the THIN database mapped into the common data model and the raw THIN

database. The results of the study, on the HOI-DOI reference standard, showed

that the PRR and USCCS returned sensitivity values of 0.67 and 78 respectively

and specificity values of 0.68 and 59 respectively on the mapped THIN database.

Similar values were obtained by applying the PRR on the raw THIN data. Un-

fortunately, as the HOI-DOI reference standard restricts the analysis to a small

subset of drug-medical event pairs, the impact of false positives is likely to be

reduced (as there are less pairs to generate false positive on). This comparison

may also add bias due to the choice of HOIs and DOIs included in the analysis.

For example, the known ADRs included in the HOI-DOI reference standard have

generally been signalled by numerous sources and may be easier to signal. Unfor-

tunately, there has been no analysis of existing methods on the THIN database

that includes a larger set of drug-medical event pairs, but this may be a more
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3. Existing Methods Comparison

realistic analysis.

To enable an extensive analysis of the signalling ability of the existing meth-

ods on the THIN database, additional comparisons with different perspectives

and bias are required. The first perspective, referred to as the general compari-

son, generates signals using the existing methods for all the drug-medical event

pairs satisfying the condition that the medical event occurs for at least one patient

during the month after the drug. The true label for each drug-medical event pair

is determined using current knowledge of ADRs, where only drug-medical event

pairs currently known to be ADRs are considered true ADRs. Unfortunately,

the known ADR status of each drug-medical event pair is not definitive, as some

ADRs may be unknown, so this introduces error into the general comparison. The

second perspective, referred to as the specific comparison, is similar to compar-

isons previously conducted [156], as it only analyses drug-medical event pairs that

are either definitively non-ADRs or listed on drug packages as ADRs. However,

the specific comparison considers a larger number of drug-medical event pairs

than the HOI-DOI reference standard, so there may be less bias. The specific

comparison is less affected by a lack of ADR knowledge than the general com-

parison, but may have errors due to drug package listed ADRs being potentially

incorrect, due to the difficulty in determining causality.

In summary, as there is no gold standard, numerous comparisons need to be

conducted to determine an extensive benchmark for the existing methods sig-

nalling ability on the THIN database. The HOI-DOI reference standard bench-

mark has been determined but this benchmark is limited due to potential bias

caused by non-randomly selecting drug-medical event pairs. The general com-

parison will evaluate the methods without the selection bias, but will introduce
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bias due to a lack of ADR knowledge. Finally, the specific comparison is a trade

off between the previous comparisons and potentially contains bias from both

non-random selection and a lack of ADR knowledge, but both types of bias are

relatively reduced.

3.3 Existing Methods

To enable a fair comparison the TPD, MUTARA, HUNT and modified ROR

methods, described in Chapter 2.1.4.2 were applied to investigate the one to

thirty day period after the drug is prescribed (i.e., the month after). If each

method used a different time period, the comparison would be biased.

3.3.1 TPD

In this study the TPD was implemented as described in [128], with IC value

over the time period corresponding to the 30 days after the first prescription

in 13 months (u = [0, 30]) contrasted with the IC value over the time period

corresponding to the 27 to 21 months prior to prescription (v = [−822,−639]),

but two different filters were investigated:

• The TPD is applied and medical events with an IC value the month prior

to prescription or an IC value on the prescription day greater than the IC

value during the month after the prescription are filtered (TPD 1).

• The TPD is applied and medical events with an IC value the month prior

to prescription greater than the IC value during the month after the pre-

scription are filtered (TPD 2).
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The justification for choosing two filters is due to the possibility that ADRs can

occur and be reported to doctors on the same day as the prescription, so filtering

events with an IC value on the day of prescription greater than the IC value

during the month after the prescription may prevent detection of some ADRs.

3.3.2 MUTARA & HUNT

Two different lengths for the reference period were investigated as the length

of the reference period determines the per patient filter stringency and the op-

timal stringency is unknown for the THIN database. The reference period for

MUTARA60 and HUNT60 is set to be the time period starting from two months

prior to the prescription and ending the day before the prescription. The reference

period for MUTARA180 and HUNT180 is set to be the time period starting from

six months prior to the prescription and ending the day before the prescription.

The reference periods are chosen to end the day before the prescribed as this gave

better preliminary results. The other parameter values used are: Tc = Te = 30,

as this corresponds to the time period of a month after the drug prescription.

3.3.3 ROR

The ‘Spontaneous reporting system’ style transformation [216] is applied, where

SRS style reports consisting of a patient, drug prescription and possible ADR are

inferred from the LOD by discovering all the medical events that occur within 30

days of a drug prescription. Signals are only generated for medical events that

have been reported with the drug of interest a minimum of 3 times.
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3.4 Determining Labels

3.4.1 ADR Labels

The drug-medical event pair (α, β), consisting of a drug α and a medical event

β, that correspond to an ADR were found using the online medical website Net-

Doctor [176] or using SIDER [98], a side effect resource containing side effects

mined from drug packaging.

3.4.1.1 Online

The online medical website, NetDoctor, lists known ADRs for the majority of

drugs available. The ADR strings for a general drug α were mined from the

website. A string match was then applied to find the corresponding READ codes

( e.g, SELECT READcode FROM Drugcodes WHERE description like ’%ADR

string%’), and each of the READ codes (βis) that matched the NetDoctor listed

ADRs were paired to the drug α and added to the set ΨÂ,

ΨÂ = {(α, β)|β is listed as an ADR to α on NetDoctor }

3.4.1.2 SIDER

The SIDER side effect resource contains information on drugs’ ADRs and indi-

cations that were obtained by applying text mining to drug packaging. In total,

the resource contains 996 drugs, 4192 ADRs and 99423 drug-medical event pairs

corresponding to ADRs. The drug-medical event pairs, (α, β), corresponding to
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ADRs were extracted from SIDER to generate the set ΨA,

ΨA = {(α, β)|β is listed as an ADR to α in SIDER}

3.4.2 Noise Labels

The noise labels were manually extracted by examining the THIN READ code

tree. READ codes corresponding to irrelevant events such as ‘Family history’,

‘Nationality’, ‘Job type’, ‘Chronic illnesses’ (as this research is focusing on acute

immediately occurring ADRs) or ‘administrative events’ were extracted and paired

with all the drugs in the THIN database to generate the set ΨN ,

ΨN = {(α, β)|β is irrelevant , α ∈ THIN}

3.5 Measures

For each drug, α, and medical event, β, the existing algorithms determine a

measure of association between α and β. The TPD uses the IC∆05(α, β), MU-

TARA uses unexlev(α, β), HUNT uses the rank ratio, rank in descending order of

lev(α, β) divided by rank in descending order of unexlev(α, β), and the modified

SRS used the ROR05(α, β) (reporting odds ratio lower 95% confidence interval).

This measure of association is referred to as the rank score in the remained of

this chapter.
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Table 3.1: The signalling criteria of the existing methods

Method Rank Score Signal Criteria

TPD IC∆05 IC∆05 > 0
MUTARA unexlev unexlev > 0
HUNT Ranklev/Rankunexlev -

modified SRS ROR05 ROR05 > 1

Table 3.2: A worked example of comparing the existing methods signals and the
known truth.

Known Truth

ADR Non-ADR

Signalled
Yes

True Positive False Positive
(TP ) = 10 (FP ) = 200

No
False Negative True Negative
(FN) = 12 (TN) = 500

3.5.1 Natural Thresholds

The existing methods generate signals at their natural threshold, indicated in

Table 3.1. The methods performances at their natural thresholds are generally

uninformative as the natural threshold is an arbitrary cut off. However, in this

thesis I will present the methods performances at their natural thresholds to en-

able comparison with existing work that has used these thresholds. To determine

the method’s ability to signal ADRs, the signals at the natural threshold are com-

pared with the known truth. If a signalled drug-medical event pair is a true ADR

then it’s a True Positive, else it’s a False Positive, conversely, if a non-signalled

drug-medical event pair is a true ADR then it’s a False Negative, else it’s a True

Negative, as summarised in Table 3.2. The measures of interest for the natural

threshold can then be calculated as;

Sensitivity = TP/(TP + FN) (3.1)
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Table 3.3: An example of the medical event list associated to a specific drug and
ordered by an existing method’ rank score.

Medical Event Rank Score Known ADR y(i)

Event 1 2.34 No y(1) = 0
Event 5 2.12 Yes y(2) = 1 P (2) = 1/2
Event 4 1.75 Yes y(3) = 1 P (3) = 2/3
Event 2 1.74 No y(4) = 0
Event 3 0.68 No y(5) = 0

Specificity = TN/(TN + FP ) (3.2)

So, using the example in Table 3.2, the Sensitivity is 10/(10 + 12) and the speci-

ficity is 500/(500 + 200).

3.5.2 Ranking Ability

To determine the general ranking ability, each existing method is applied and

returns a ranked list of the drug-medical event pairs being investigated in de-

scending order of the rank score. Table 3.3 shows an example of the output of a

method when considering the ranking of the medical events paired to the same

drug. The function yi, known as the truth, is 1 if the ith ranked medical event

is a known ADR and 0 otherwise. The precision of each method at cutoff K,

denoted P (K), is defined as the fraction of known ADRs that occur in the top

K events of the list returned by each method for a specific drug, see Eq. (3.3).

P (K) =

∑K
i=1 y(i)
K

(3.3)
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Table 3.4: An example of the medical event list for all the drugs and ordered by
one of the algorithms.

Drug Medical Event Rank Score Known ADR y(i)

Drug 10 Event 7 2.34 No y(1) = 0
Drug 10 Event 5 2.12 Yes y(2) = 1
Drug 2 Event 56 1.75 Yes y(3) = 1
Drug 9 Event 7 1.74 No y(4) = 0
Drug 2 Event 16 0.68 No y(5) = 0

The average precision (AP) is a measure that can be used to determine how well

a method generally ranks the medical events associated to a drug. This measure

has previously been applied to compare methods implemented on the common

data model [156]. The AP is calculated by finding the average P (K) for each K

corresponding to a known ADR,

AP =

∑

K:y(K)=1 P (K)
∑

i y(i)
(3.4)

Using Table 3.3 as an example, as there are two known ADRs returned (
∑

i y(i) =

2) and the known ADRs in the table are ranked second and third we have {K :

y(K) = 1} = {2, 3}, so the AP score is,

AP =
P (2) + P (3)

2
=

1/2 + 2/3

2
=

7

12
(3.5)

To give a general measure of the ranking ability of each algorithm over all

the drugs investigated, the receiver operating characteristic (ROC) curves are

computed. The ROC plots were generated by combining all the results for each

method, as illustrated in Table 3.4. The ROC curves are formed by plotting the

sensitivity against (1−specificity). The Area Under the Curve (AUC) [28], was
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approximated using the trapezoidal rule for a range of specificity values (AUC[a,b]

corresponds to the partial AUC [193] when only considering the specificity within

the interval [a, b]). To compare the AUCs of various methods DeLongs test at a

5% signifiance level is implemented [44].

3.6 General Comparison

3.6.1 Method

For the general comparison the method was as follows.

Step 1: Find the set of drug-medical event pairs such that the medical event

is recorded within a [1, 30] day time period after the drug for any patient.

G = {(α, β)|β occurs within the [1, 30] day time interval centred around the

day of the prescription of drug α for any patient }.

Step 2: Determine the ground truth for each drug-medical event pair ((α, β) ∈

G),

Truth(α, β) =















ADR, if (α, β) ∈ ΨÂ

non-ADR, otherwise

(3.6)

Step 3: For each drug-medical event pair ((α, β) ∈ G), calculate the method’s

rank score.

Step 4: • Natural threshold- Determine signals using rank score and signal

criteria. If (α, β) is signalled and Truth(α, β) is ADR then this is

a TP, otherwise it is a FP. Conversely, if (α, β) is not signalled and

Truth(α, β) is ADR then this is a FN, otherwise it is a TN.

98



3. Existing Methods Comparison

Table 3.5: The specificity and sensitivity at the natural thresholds for the different
algorithms (3dp).

Algorithm Signals Sens Spec Precision

HUNT60 7785 0.179 0.903 0.0541
HUNT180 7785 0.193 0.903 0.058

MUTARA60 67624 0.933 0.109 0.032
MUTARA180 65435 0.914 0.136 0.032

TPD 1 1893 0.090 0.953 0.057
TPD 2 3557 0.107 0.926 0.043
ROR05 37729 0.312 0.726 0.031

• General Ranking - Plot the ROC curves and calculate the AUCs using

the rank scores and Truth for each drug-medical event pair. The AP

is also calculated on the list of medical events for each drug that are

ordered in descending order of the assigned rank score, see Table 3.3.

The existing methods were applied to 27 drugs for 6 drug families, for information

about the drugs investigated, see Appendix B.

3.6.2 Results

Table 3.5 shows the specificity and sensitivity for the different methods at their

natural thresholds and the number of signals generated. As HUNT does not

have a natural threshold, the top 10% of medical events were considered to be

signalled.

The AUC[0,1] ranged between 0.546 (ROR05) to 0.597 (MUTARA180), the

AUC[0.7,1] ranged between 0.048 (ROR05) to 0.076 (MUTARA60) and the AUC[0.9,1]

ranged between 0.005 (ROR05) to 0.011 (HUNT180 and HUNT60), as presented in

Table 3.6. Figures 3.1a and 3.1b show the ROC plots for the different methods.

Figure 3.2a shows the AP scores for the different methods over the range
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(a) Whole specificity range

(b) Section of specificity greater than 0.7

Figure 3.1: The ROC plots for the different methods. The black line is the line
x=y.
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Table 3.6: The AUC results for the different algorithms (3dp).

Algorithm AUC[0,1] AUC[0.7,1] AUC[0.9,1]

HUNT60 0.566 0.072 0.011
HUNT180 0.570 0.071 0.011

MUTARA60 0.596 0.076 0.010
MUTARA180 0.597 0.069 0.010

TPD 1 0.570 0.065 0.009
TPD 2 0.557 0.060 0.007
ROR05 0.546 0.048 0.005

of drugs investigated. The family of drugs that the methods perform worse on

overall were the sulphonylureas with AP scores ranging from 0.0088−0.0687. The

algorithms all performed well on the calcium channel blockers, with AP scores

ranging from 0.0236−0.1988, but the ROR05 performed worse for all the calcium

channel blockers investigated. The methods also performed well for the tricyclic

antidepressants with AP scores ranging between 0.0499− 0.1670. It can be seen

in Figure 3.2a that generally the methods perform similarly between the same

drugs of the same class, apart from the methods performing much better for

benzylpenicillin sodium compared to the other penicillin drugs.

The box plots of the AP scores for the different methods seen in Figure 3.2b

show overall the TPDs, MUTARAs and HUNTs perform equally and outperform

the ROR05. The MUTARA algorithm has the highest median AP score over

all the drugs and is more consistent, whereas the performance of the TPD and

HUNT varies more between the drugs.

3.6.3 Discussion

The results show that the methods’ natural thresholds operate at different strin-

gencies. The most stringent method was the TPD 1 that returned 1893 signals,
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(a) Bar chart of the AP scores for each drugs.

(b) Box plot showing the median, quartiles and minimum/maximum AP scores.

Figure 3.2: AP results for each method applied for each drugs.
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the lowest out of all the methods, with a high specificity of 0.953 and low sensi-

tivity of 0.09, whereas the less stringent was the MUTARA60 that returned 67624

signals with a high sensitivity of 0.933 and a low specificity of 0.109. This was

not unexpected as the TPD threshold used the lower confidence interval value

rather than the actual IC∆ value and the TPD applied a statistical shrinkage.

The results also show that none of the methods was able to signal the known

ADRs without being swamped by false positives signals.

The AUC results show that the methods perform similarly and no method

had a higher partial AUC for all three restricted specificity intervals studied

(AUC[0,1],AUC[0.7,1] and AUC[0.9,1]). Overall no method consistently outperformed

the others over all the drugs investigated in this study, however, either the TPD

1 or HUNT had the highest AP score for the majority of the drugs studied. The

ROR05 generally performed the worse, but still had a higher AP score than the

other methods for the drug phenoxymethylpenicillin.

The results obtained in this study were consistent with previous results as

the P (10) for MUTARA and HUNT averaged 0.065 and 0.122 respectively in

this study and were 0.1 and 0.1− 0.3 respectively in previous work [91][90]. The

P (10) for the TPD method applied to Nifedipine in this study was 0.7, the same

as on the UK IMS Disease Analyzer database [128]. However, there was deviation

between the AP score of the ROR05 in this study (0.01− 0.06) and in the study

by Zorych et al. [216] (0.1-0.15), this is probably due to this study using real

data with redundant READ codes and Zorych et al. using simulated data. The

general comparison also demonstrated that the existing methods generate a large

number of false positive signals.

The main limitation of this comparative study was the assumption that if
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a drug pair (α, β) is not in the set of known ADRs, ΨA1 , then it is a non-

ADR. This is not true, as some pairs may be unknown ADRs, as there is no

definitive complete list of ADRs for any drug. The consequence of this is that the

true sensitivity, specificity and AP scores may be different to that the values

obtained. However, the methods should be able to correctly rank the known

ADRs and these are likely to be more common and obvious than the unknown

ones. Therefore, if the method is unable to correctly rank the known ADRs above

other events (and obtain a low AP in this study) then it is unlikely to identify the

unknown ADRs, so the AP scores determined in this study still give insight into

the methods abilities to detect ADRs. Another limitation was the READ code

redundancy. The negative effect of noise may get amplified due to the redundancy

causing there to be a larger number of noise READ codes. It may be the case

that the methods would have higher AP scores if there was a way to group READ

codes corresponding to the same medical event.

3.7 Specific Comparison

3.7.1 Method

Due to similar results being obtained in the general comparison by the MU-

TARA and HUNT methods implemented with different reference periods, only

the MUTARA180 and HUNT180 were applied for the specific comparison. The

method for the specific comparison is as follows.

Step 1: Find the definitive non-ADRs drug-medical event pairs corresponding

to the drug of interest α or the drug-medical event pairs listed as ADRs on
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α’s drug packaging, G = {(α̂, β) ∈ ΨN
⋃

ΨA|α̂ = α}.

Step 2: Define the truth for each drug-medical event in G,

Truth(α, β) =















ADR, if (α, β) ∈ ΨA

non-ADR, if (α, β) ∈ ΨN

(3.7)

Step 3: For each drug-medical event pair ((α, β) ∈ G), calculate the method’s

rank score.

Step 4: • Natural threshold- Determine signals using rank score and signal

criteria. If (α, β) is signalled and Truth(α, β) is ADR then this is

a TP, otherwise it is a FP. Conversely, if (α, β) is not signalled and

Truth(α, β) is ADR then this is a FN, otherwise it is a TN.

• General Ranking - Plot the ROC curves and calculate the AUCs using

the rank scores and Truth for each drug-medical event pair. The AP

is also calculated on the list of medical events for each drug that are

ordered in descending order of the rank score assigned by the existing

method.

The existing methods were applied for five drugs, Nifedipine, Ciprofloxacin, Ibupro-

fen, Budesonide and Naproxen, see Appendix B.

3.7.2 Results and Discussion

For the specific comparison, MUTARA performed better at general ranking than

the other methods, with greater AUC, AUC[0.9,1] and AP values, see Table 3.7.

This result contradicts the general comparison results, that showed none of the
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Figure 3.3: The ROC plots for the specific comparison. The figure on the left
is the whole specificity range, the figure on the right is for the specificity within
the interval [0.9, 1]. The orange, red, yellow, green and blue curves correspond to
MUTARA180, HUNT180, TPD1, TPD2 and the ROR05 respectively.
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Table 3.7: The ranking ability of the existing methods obtained in the specific
comparison.

Method AUC AUC[0.9,1] AP

ROR05 0.5374 0.003 0.072
MUTARA180 0.770 0.032 0.315
HUNT180 0.678 0.023 0.222
TPD1 0.6149 0.007 0.095
TPD2 0.6197 0.006 0.094

Table 3.8: The signals returned by the existing methods at their natural thresh-
olds. The natural threshold used for HUNT was the rank ratio greater than
1.

Method TP FP FN TN Sensitivity Specificity Precision

ROR05 258 3197 429 4140 0.376 0.564 0.075
MUTARA180 614 4648 73 2689 0.894 0.366 0.117
HUNT180 466 4006 221 3331 0.678 0.454 0.104
TPD1 42 302 645 7035 0.061 0.959 0.122
TPD2 49 392 638 6945 0.071 0.947 0.111

existing methods outperforms any other when considering the overall ranking.

However, the TPD was the method that returned the least number of false pos-

itives and obtained the greatest precision, 0.122. In agreement to previously

obtained results, the specific comparison showed that the existing methods signal

many false positives at their natural thresholds, see Table 3.8.

To identify why the TPD’s ranking performance decreased relative to MU-

TARA for the specific comparison, the ranked list of drug-medical events pairs

returned by the TPD was manually investigated. Interestingly, the manual inves-

tigation showed that the READ code redundancy was to blame, as the TPD did

not assign a consistent IC∆05 for READ codes corresponding to the same medical

event, and the READ codes matching the SIDER ADR strings tended to have

lower IC∆05 values than other READ codes corresponding to known ADRs but
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not exactly matching the SIDER ADR string (e.g. If a SIDER ADR string was

‘vomiting’ , then the THIN READ code with a description ‘vomiting’ would be

labelled as an ADR, but ‘O:E vomiting’ or ‘[D] vomiting’ would not be labelled).

However, this does highlight that the TPD is not consistent and, although its

performance may improve if different labels were used, it still struggles to assign

a high IC∆05 to all READ codes corresponding to known ADR medical events .

Previous studies have also identified inconsistency with the TPD [80].

The specific comparison appears to be a better way to compare the methods

as the results are not limited by unknown ADRs. The potential bias introduced

by only considering a subset of drug-medical event pairs has the advantage of

highlighting methods that are not consistent. It can be argued that a perfect

method would assign a similar rank score to READ codes corresponding to the

same medical event, so methods unable to do this may be flawed.

3.8 Summary

In this chapter, four existing LOD ADR signalling methods were compared by

applying them to the THIN database for a range of drugs. The comparisons mea-

sured how well they ranked the known ADRs or signalled known ADRs at their

natural thresholds. As there is no golden standard, two different comparisons

were applied. The first comparison compared the methods on a wide range of

drug-medical event pairs but introduced bias by assuming there are no unknown

ADRs, whereas the second comparison removed the bias of assuming there are no

unknown ADRs but incorporated bias by only investigating a selection of drug-

medical events pairs and by assuming drug packaging listed ADRs are correct.
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The results highlight the issue of comparing existing methods without a golden

standard. If a golden standard existed (i.e., for one drug all the ADRs were

known), the methods could be applied to all the drug-medical event pairs for the

specific drug and accurate measures could be obtained. However, when there is

no gold standard, then bias is introduced and the results obtained may not be a

true reflection of the methods abilities.

Nonetheless, considering the results of both comparisons and previous studies,

the limitations of the existing methods were determined. The general comparison

showed that no method was superior over all the drugs considered, however the

specific comparison indicated that MUTATA is more consistently than the TPD.

The main conclusion is that, for both comparisons, the existing methods failed

to signal known ADRs without signalling a superfluous quantity of non-ADRs,

resulting in a low precision benchmark of 0.122 for the specific comparison and

0.058 for the general comparison. The general ranking benchmarks for the general

comparison are an AP of 0.2, an AUC of 0.597, an AUC[0.9,1] of 0.011 and an

AUC[0.7,1] of 0.076. The benchmarks for the specific comparison are an AP of

0.315, an AUC of 0.770 and an AUC[0.9,1] of 0.032. Future methods should aim

for higher scores.
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Chapter 4

Incorporating Causation

‘The application of Austin Bradford-Hill’s criteria for

evaluation causal associations in pharmacovigilance and

pharmacoepidermiology is very useful.’

Saad A.W. Shakir [163]

4.1 Introduction

So far in this thesis, the current research focus was summarised and the existing

pharmacovigilance methodologies were presented. In the previous chapter the

benchmark measures were determined by applying the current ADR signalling

methods on the THIN database and it was concluded that they have a high

false positive rate. In this chapter the processes implemented to generate and

transform the data extracted from the THIN database are described. The main

focus is the proposal of suitable attributes that offer insight into causality. The

aim is to use these attributes as inputs into a learning algorithm that will be
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4. Incorporating Causation

trained to signal ADRs with a low false positive rate.

4.2 Motivation

The main limitation of ADR signal detecting using LODs is the abundance of

confounding factors [68] [174]. The majority of medical events that occur after

a drug are related to pre-existing illnesses, but these are still strongly associated

to the drug. The existing methods can be considered unsupervised methods

that aim to approximate the measure of causation between a drug-medical event

pair. This is done by comparing the risk of the medical event after the drug

compared with a substitute, such as the risk in a control population [91] or the

risk when considering every other prescription [128]. Unfortunately, this only

measures association as the choice of substitute introduces confounding [117],

for example, as argued in [114], the choice of drug treatment may be influenced

by the patient’s medical history and the doctors preferences. To reduce the

number of signals corresponding to medical events that are related to the drug

cause, some authors have developed filters, such as ignoring medical events that

occur more often before the drug than after [128; 161]. The consistently high

false positive rate that occurs when the methods are applied to LODs suggests

that these filters are still unable to removed all the effects of confounding and

this hinders the effectiveness of the existing methods. The signals they generate

require further analysis [148] and rare ADRs may not be signalled [143].

To develop an improved ADR signalling algorithm, it is important to iden-

tify a way to distinguish between association and causation in observational data.

Such an algorithm would have a reduced false positive rate as it would be resilient
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against confounding effects. Causality is often determined using a randomised

controlled experiment [154], where treatments and controls are randomly assigned

to control confounding [153]. This cannot be implemented using observational

data, as there is no control over who is assigned a treatment. In [67], the authors

highlight the issues associated with using observational data for causal inference.

A common technique to identify causality using observational data is to apply

a supervised algorithm with additional knowledge that incorporates confounding

factors, such as fitting a regression model that incorporates parameters based

on confounding [58]. In [132] and [42] the authors manually investigated causal-

ity between a single drug and a single medical event by investigating suitable

measures of the Bradford-Hill causality considerations that can be derived from

pharmacovigilance data. The Bradford-Hill causality considerations are often

used when determining causation [164] and researchers have discussed the im-

portance of applying these considerations within pharmacovigilance [52]. In this

thesis, the idea is expanded by removing the requirement of a manual inspection.

Instead, an algorithm is implemented that learns to determine causality between

each drug-medical event pair based on Bradford-Hill causality derived attributes,

as this will increase efficiency and enable a wider search. The novel idea is to

train a supervised algorithm using attributes based on latent variables (not di-

rectly observed), derived from the Bradford-Hill causality considerations, rather

than observable variables. In this chapter, the attributes that add insight on

causality, derived from a selection of the Bradford-Hill causality considerations,

are proposed and explored.
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4.2.1 Data Cleansing

The THIN database contains validation fields indicating the integrity of each

record. Only records that are valid are extracted from the database and records

corresponding to patients with a missing date of birth or gender are deleted. Any

records containing an invalid age such as a negative number or greater than one

hundred and twenty years are also removed.

Patients whom are newly registered present a problem in the THIN database

as they often come to the practice with a magnitude of historical and existing

conditions that get recorded during their first few visits even when the condi-

tions initially occurred years previously. This is often referred to as ‘registration

event dropping’. Studies have shown that the probability of ‘registration event

dropping’ is significantly reduced after a patient has been registered at the same

practice for a year [104]. To prevent this biasing the results the medical records

that were recorded within the first year of each patient being registered are deleted

from the THIN database. The last month of prescription records for patients are

also ignored to prevent under-reporting, as implemented in [143].

4.2.2 Data Extraction

4.2.2.1 Formulation

Denoting the cleansed THIN data by Ω = {ΩP ,ΩE}, where ΩP is the set of

valid drug prescription reports and ΩE is the set of valid medical event reports

contained in the THIN database. Throughout this thesis, the ith element of the

vector x is represented by xi. Each prescription record, ω ∈ ΩP ⊂ R
8, is a vector

containing the details about the prescription, where ω ∈ R
8 and,
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ω1 : is the corresponding record’s patient ID (who had the prescription).

ω2 : is the corresponding record’s prescribed drug.

ω3 : is the corresponding record’s gender (1 if male, 0 if female).

ω4 : is the corresponding record’s date of prescription (when the prescription was

issued).

ω5 : is the corresponding record’s patient’s age (time in days between the patients

date of birth and when the prescription was issued).

ω6 : is the corresponding record’s dosage (dosage of the drug issued).

ω7 : is the corresponding record’s British National Formulary (BNF) code (a

code specifying the general family of the drug).

ω8 : is the corresponding record’s noise value (the total number of drugs pre-

scribed within the [−30, 30] day time interval centred around the prescrip-

tion date).

Each medical event record in the complete THIN database, ψ ∈ ΩE ⊂ R
5, is

a vector containing the medical event report details, where ψ ∈ R
5 and,

ψ1 : is the corresponding record’s patient ID (who had the medical event).

ψ2 : is the corresponding record’s READ code (corresponding to medical event).

ψ3 : is the corresponding record’s date of recording (when the medical event was

reported).

ψ4 : is a binary value representing if a READ code with the same Level 3 READ

code parent as the record has been recorded for the patient before. If it is

the first time the value is 1, otherwise it is 0.

ψ5 : is a binary value representing if a READ code with the same Level 4 READ

code parent as the record has been recorded for the patient before. If it is

the first time the value is 1, otherwise it is 0.

114



4. Incorporating Causation

As it can be seen, each medical event is recorded via a READ code. The READ

codes have a tree structure with five levels of specificity, as described in Appendix

A. Therefore, the term drug-medical event pair is analogous to the term drug-

READ code pair. For clarity, the drug-medical event pair corresponding to drug

α and READ code β is denoted by (α, β). Unfortunately, the READ codes are

redundant, and multiple READ codes can correspond to the same medical event

but with slight variance in the description. For example, the READ code ‘91a..’

may represent ‘had a chat with patent’ and the READ code ‘91b..’ may represent

‘discussion with patient at his request’, both these READ codes correspond to

the medical event of talking to the patient, but differ slightly.

4.2.2.2 Extraction

For a given drug, α, it is possible to extract prescription records of interest in

three different ways. The first method extracts all the records containing the drug

α (where ω2 was previously denoted as the drug prescribed in therapy record ω),

ΩPα := {ω ∈ ΩP |ω2 = α} (4.1)

In the latter part of this chapter the prescription records in the set ΩPα are used

to find a rough measure of association, by investigating the medical events that

occur shortly before the drug compared with the medical events that occur shortly

after a drug. As there is no restriction on how far apart the prescription records

in the set ΩPα are for the same patient, some prescriptions, for the same patient,

may be recorded in short succession. This may cause bias when investigating the

medical events that occur shortly before one prescription, as they may be caused
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by the previous prescription.

To reduce this bias a second method to extract reports containing drug α is

proposed. For two therapy records, ω,
∗

ω ∈ ΩPα , the records correspond to the

same patient when both patient IDs are the same, ω1 =
∗
ω1, and correspond to

the same drug when ω2 =
∗
ω2. The second method only extracts reports if the

drug was not previously prescribed, to the same patient, within the previous 13

months,

Ω̂Pα := {ω ∈ ΩPα | {
∗

ω ∈ ΩPα \ ω|ω1 =
∗
ω1, ω2 =

∗
ω2, tm(

∗
ω4, ω4) ∈ [0, 13]} = ∅}

Where the function tm(a, b) : Date×Date→ Z denotes the time in months from

date a to date b. As different drugs from the same family are often prescribed, due

to the first drug not being effective or the patient reacting badly, there can still be

bias when using Ω̂Pα . To further reduce the bias, only prescription records where

there has been no previous prescription of a similar drug within the previous 13

months are considered,

Ω
Pα

:= {ω ∈ ΩPα | {
∗

ω ∈ ΩP \ ω|ω1 =
∗
ω1, ω7 =

∗
ω7, tm(

∗
ω4, ω4) ∈ [0, 13]} = ∅}

Figure 4.1 is a graphic representation of the different filtering that is imple-

mented to extract the data, where a drug is considered filtered if it is surrounded

by a red square. Each line represents the sequence of drug records ordered by

time, where drug 1 and 2 are from the same drug family (have the same BNF

code). The top line represents no filtering, so all drug records are included in the

analysis, the middle line represents filtering a drug if the same drug was recorded
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Ω
P
: 1 1 2 1 2

Figure 4.1: Illustration of filtering done during data extraction.

within 13 months previously, and the bottom line represents filtering a drug if a

drug in the same family was recorded within the 13 months previously. Using the

prescription record subsets for the drug α, it is possible to determine the ‘risk’

drug-READ code pairs that correspond to potential acutely occurring ADRs by

finding all the READ codes that occur within 30 days of any prescription of α,

see Equation 4.2. Figure 4.2 illustrates how the ‘risk’ drug-READ code pairs

corresponding to drug 1 are determined, where the medical events represented

by circles are paired with drug 1 if they occur between the square representing

drug 1 and the red line. A short time period is used as the focus of this research

is on discovering ADRs that occur immediately after ingesting a drug. It was

determined that investigating the 30 days after a drug is prescribed was the best

trade off between having a sufficiently large period of time after the prescription

to allow patients time to report the medical event while not having the time

period too large that many erroneous medical events will be reported.

RMEα = {ψ2|ψ ∈ ΩE, ∃ω ∈ ΩPα where ω1 = ψ1, td(ω4, ψ3) ∈ [1, 30]} (4.2)
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Figure 4.2: Illustration of determining risk drug-medical event pairs.

where the function td(a, b) : Date × Date → Z represents the time in days from

date a to date b. One suitable approach to determine ADRs to drug α using LODs

is to combine medical event reports with prescription reports containing α when

the medical event report occurs within a set time frame around the prescription

report. Let Ω[u,v],Pα be a relationship between the prescription records of drug α

(ΩPα) and the medical event records (ΩE) defined by the records having the same

patient ID (ω1 = ψ1) and the medical event report occurring within the set time

period around the date of the prescription report (td(ω4, ψ3) ∈ [u, v]),

Ω[u,v],Pα = {(ω,ψ) ∈ ΩPα × ΩE|ω1 = ψ1, td(ω4, ψ3) ∈ [u, v]} (4.3)

As illustrated in Equation (4.3), each element in the set Ω[u,v],Pα contains the

combined prescription reports containing α and medical event reports of interest,

where the medical event report occurred with the [u, v] day interval around the
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prescription record. For each combined record, κ = (ω,ψ) ∈ Ω[u,v],Pα , the first

eight elements correspond to the prescription record (κi = ωi, i ∈ [1, 8]) and the

last five elements correspond to the medical event record (κi = ψi−8, i ∈ [9, 13]).

Similarly, the set of combined reports of interest can be calculated when only

considering the first time prescriptions in 13 months of drug α or the prescriptions

of drug α that have no similar drug prescribed within the previous 13 months by

substituting the set ΩPα with the set Ω̂Pα or Ω
Pα

respectively,

Ω̂[u,v],Pα = {(ω,ψ) ∈ Ω̂Pα × ΩE|ω1 = ψ1, td(ω4, ψ3) ∈ [u, v]} (4.4)

Ω
[u,v],Pα

= {(ω,ψ) ∈ Ω
Pα
× ΩE|ω1 = ψ1, td(ω4, ψ3) ∈ [u, v]} (4.5)

The aim of this thesis is to develop a classifier such that, for each ‘risk’ drug-

READ code pair containing drug α, (α,β ∈ RMEα), the pair is classified as either

an ADR or non-ADR. To develop such a classifier requires generating suitable

attributes for each pair and learning from pairs that are known ADRs and non-

ADRs. In the next section the proposed attributes based on the Bradford-Hill

causality considerations and THIN structures are derived.

4.2.3 Data Derivation

After cleansing and extracting the data of interest, the data can now be trans-

formed into suitable attributes. The set of combined reports containing READ

code β that occur within the [u, v] time interval centred around the prescription
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Figure 4.3: Illustration of combining drug records and medical event records.

of drug α is,

Ω[u,v],PαEβ = {κ ∈ Ω[u,v],Pα |κ10 = β} (4.6)

The equivalent sets when only considering the prescriptions of drug α for the

first time in 13 months or prescriptions of drug α when a similar family drug has

not been prescribed within the last 13 months are,

Ω̂[u,v],PαEβ = {κ ∈ Ω̂[u,v],Pα |κ10 = β} (4.7)

and

Ω
[u,v],PαEβ

= {κ ∈ Ω
[u,v],Pα

|κ10 = β} (4.8)

respectively.

This is graphically illustrated in Figure 4.3, where the medical event reports

are represented by circles and the drugs are represented by squares. For each

prescription of drug 1, the time interval [u, v] centred around the prescription

is investigated, and any medical event report occurring within the interval is

combined with the report to produce a new combined report.
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Table 4.1: Contingency table calculations for the epidemiological association mea-
sures.

READ code β not READ code β

Drug α |Ω[1,30],PαEβ | |Ω[1,30],Pα | − |Ω[1,30],PαEβ |
⋃

γ 6=αDrugγ
∑

γ 6=α |Ω
[1,30],PγEβ |

∑

γ 6=α |Ω
[1,30],Pγ | −

∑

γ 6=α |Ω
[1,30],PγEβ |

4.2.3.1 Association Strength

‘Prospective inquiries into smoking have shown that the death rate

for cancer of the lung in cigarette smokers is nine to ten times the

rate in non-smokers’ - Bradford-Hill [19].

The association strength criterion concentrates on how associated the READ code

and drug are [19]. Previously implemented measures of association derived from

LODs are the IC∆ used by the TPD algorithm [128], see Chapter 2.1.4.2, or the

IC∆05. These values measure the association between the READ code and drug

during the ‘hazard’ period that occurs after the prescription relative to some

‘non-hazard’ time period.

xαβ1 = IC∆ (4.9)

xαβ2 = IC∆05 (4.10)

Alternative measures are the risk ratio (RR), odds ratio (OR) and risk dif-

ferent (RD) that are frequently used in epidemiological studies to measure the

association between an exposure and disease [194]. These measures contrast the

rate of disease in a population that is exposed to some risk with the rate of the

disease in a population not exposed. In [151] the author states that, if there are

other (non-drug) sufficient causes of a medical event, then the frequency of these

121



4. Incorporating Causation

has a greater impact on the medical event and drug’s risk ratio measure than

the risk difference measure. So the measures can generate varying strengths of

association for the same drug-READ code pair.

The RD investigates the additive difference between the risk of having the

READ code after the drug of interest is prescribed compared to the risk of having

the READ code after any other drug prescription [181]. Using Table 4.1 the RD

can be calculated by,

xαβ3 = (|Ω[1,30],PαEβ |/|Ω[1,30],Pα |)− (
∑

γ 6=α

|Ω[1,30],PγEβ |/
∑

γ 6=α

|Ω[1,30],Pγ |)

xαβ4 = (|Ω̂[1,30],PαEβ |/|Ω̂[1,30],Pα |)− (
∑

γ 6=α

|Ω̂[1,30],PγEβ |/
∑

γ 6=α

|Ω̂[1,30],Pγ |)

xαβ5 = (|Ω
[1,30],PαEβ |/|Ω

[1,30],Pα
|)− (

∑

γ 6=α

|Ω
[1,30],PγEβ |/

∑

γ 6=α

|Ω
[1,30],Pγ

|)

(4.11)

The RR estimates the risk of having the READ code in the month after the

drug of interest is prescribed divided by the risk of having the READ code in the

month after any other drug, the measure has been incorporated to signal ADRs

in SRS databases [9]:

xαβ6 = (|Ω[1,30],PαEβ |/|Ω[1,30],Pα |)/(
∑

γ 6=α

|Ω[1,30],PγEβ |/
∑

γ 6=α

|Ω[1,30],Pγ |)

xαβ7 = (|Ω̂[1,30],PαEβ |/|Ω̂[1,30],Pα |)/(
∑

γ 6=α

|Ω̂[1,30],PγEβ |/
∑

γ 6=α

|Ω̂[1,30],Pγ |)

xαβ8 = (|Ω
[1,30],PαEβ |/|Ω

[1,30],Pα
|)/(

∑

γ 6=α

|Ω
[1,30],PγEβ |/

∑

γ 6=α

|Ω
[1,30],Pγ

|)

(4.12)

The OR calculates the ratio between the odds that a READ code occurs in the
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drug of interest group and the odds that a READ code occurs in any other drug

group. There has been much debate into the usefulness of this measure, in [165]

the authors state that the OR should not be used in place of the RR although in

[194] they argue that the OR and RR are different measures and as long as the

OR is not considered on the same scale as the RR then it is worthwhile:

xαβ9 = (
|Ω[1,30],PαEβ |

[|Ω[1,30],Pα | − |Ω[1,30],PαEβ |]
)/(

∑

γ 6=α |Ω
[1,30],PγEβ |

[
∑

γ 6=α |Ω
[1,30],Pγ | −

∑

γ 6=α |Ω
[1,30],PγEβ |]

)

xαβ10 = (
|Ω̂[1,30],PαEβ |

[|Ω̂[1,30],Pα | − |Ω̂[1,30],PαEβ |]
)/(

∑

γ 6=α |Ω̂
[1,30],PγEβ |

[
∑

γ 6=α |Ω̂
[1,30],Pγ | −

∑

γ 6=α |Ω̂
[1,30],PγEβ |]

)

xαβ11 = (
|Ω

[1,30],PαEβ |

[|Ω
[1,30],Pα

| − |Ω
[1,30],PαEβ |]

)/(

∑

γ 6=α |Ω
[1,30],PγEβ |

[
∑

γ 6=α |Ω
[1,30],Pγ

| −
∑

γ 6=α |Ω
[1,30],PγEβ |]

)

(4.13)

4.2.3.2 Temporality

‘Does a particular diet lead to disease or do the early stages of the

disease lead to those peculiar dietetic habits?’ - Bradford-Hill [19].

The temporality criteria concerns itself with the direction of the relationship

between the READ code and drug. This is an important factor, and has been

highlighted in other criteria for causation [86]. It measures if the READ code

occurs after the drug, or the other way round. If the READ code and drug are

associated but the READ code frequently occurs before the drug, then this may

suggest the medical event corresponding to the READ code causes the drug and

not the other way round.

The first values of interest are the after and before ratios (AB ratios). The
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AB ratios calculate how many prescriptions of α have the READ code β recorded

between 1 and 30 days after the prescription divided by how many have the

READ code β recorded between 1 and 30 days before the prescription, this is a

basic implementation of the self controlled cross-over method.

xαβ12 = |Ω[1,30],PαEβ |/|Ω[−30,−1],PαEβ |

xαβ13 = |Ω̂[1,30],PαEβ |/|Ω̂[−30,−1],PαEβ |

xαβ14 = |Ω
[1,30],PαEβ |/|Ω

[−30,−1],PαEβ |

(4.14)

Other suitable attributes for the temporality criterion are the filters that have

been implemented by existing LOD ADR signalling algorithms, where xαβ15 and

xαβ16 correspond, respectively, to the TPD Filter 1 and the TDP Filter 2 , the

modified versions of the TPD filter applied initially in [128] and adapted in [143].

The final attribute, xαβ17 , is the output of the LEOPARD algorithm described in

[161].

4.2.3.3 Specificity

‘If the association is limited to specific workers and to particular sites

and types of disease and there is no association between the work and

other modes of dying, then clearly that is a strong argument in favour

of causation’ - Bradford-Hill [19].

The third Bradford-Hill consideration is how specific an association is. In gen-

eral, specificity is interpreted as the drug only causes a single, specific, ADR

[67]. Consequently, many researchers, including [151] and [67], argue this is not

very informative, as many drugs cause multiple ADRs . Other researchers have
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suggested modifying the interpretation of the specificity criteria [197]. Weiss ar-

gues that an association is specific when both the outcome and the exposure are

specific or when only specific people that are exposed have the outcome.

This prompts the novel specificity attributes proposed in this thesis. The first

considers how specific the READ code is, justification for this is that general

outcomes are likely to occur by chance as they probably have a high background

rate, but if a specific READ code occurs frequently after the drug of interest is

prescribed then this may give reason to suspect it as an ADR. The first specificity

attribute uses the READ code hierarchal level,

xαβ18 = i, where β corresponds to a level i READ code (4.15)

If the drug and READ code association is only found in a certain subpopulation

then this may also be suggestive of an ADRs. Therefore attributes are developed

based on the age and gender of the patients experiencing the READ code after

the drug compared to all the patients who are prescribed the drug. A suitable

method to measure if a specific age group experience β after α is to compare the

average age of the patients who experience β within 1 to 30 days after α with the

125



4. Incorporating Causation

average age of the patients prescribed α.

xαβ19 = (
∑

κ∈Ω
[1,30],PαEβ

κ5/|Ω
[1,30],PαEβ |)/(

∑

κ∈Ω[1,30],Pα

κ5/|Ω
[1,30],Pα |)

xαβ20 = (
∑

κ∈Ω̂
[1,30],PαEβ

κ5/|Ω̂
[1,30],PαEβ |)/(

∑

κ∈Ω̂[1,30],Pα

κ5/|Ω̂
[1,30],Pα |)

xαβ21 = (
∑

κ∈Ω
[1,30],PαEβ

κ5/|Ω
[1,30],PαEβ |)/(

∑

κ∈Ω
[1,30],Pα

κ5/|Ω
[1,30],Pα

|)

(4.16)

Justified by a similar argument, it is also useful to calculate a measure to compare

the ratio of patients that experience β within 1 and 30 days of α that are male

relative to the ratio of patients who are prescribed α and are male.

xαβ22 = (
∑

κ∈Ω
[1,30],PαEβ

κ3/|Ω
[1,30],PαEβ |)/(

∑

κ∈Ω[1,30],Pα

κ3/|Ω
[1,30],Pα |)

xαβ23 = (
∑

κ∈Ω̂
[1,30],PαEβ

κ3/|Ω̂
[1,30],PαEβ |)/(

∑

κ∈Ω̂[1,30],Pα

κ3/|Ω̂
[1,30],Pα |)

xαβ24 = (
∑

κ∈Ω
[1,30],PαEβ

κ3/|Ω
[1,30],PαEβ |)/(

∑

κ∈Ω
[1,30],Pα

κ3/|Ω
[1,30],Pα

|)

(4.17)

4.2.3.4 Biological Gradient

‘The fact that the death rate from cancer of the lung rises linearly

with the number of cigarettes smoked daily, adds a very great deal to

the simple evidence that cigarette smokers have a higher death rate

than non-smokers.’ - Bradford-Hill [19].

The biological gradient criterion in the context of ADR detection considers the
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dosage of the drug. Often, but not always the case, an ADR is more likely to occur

when the drug is ingested at a high dosage compared to a low dosage [36]. In [192]

the authors used the Pearson’s correlation and logistical regression to measure the

biological gradient. However, in [142], it was shown that the Pearson’s correlation

was difficult to calculate using data from the THIN database. Therefore different

measures are required.

The proposed novel biological attribute, calculated below, contrasts the aver-

age drug dosage for the patients that experience β within 1 to 30 days of α with

the average drug dosage for all the patients prescribed α,

xαβ25 = (
∑

κ∈Ω
[1,30],PαEβ

κ6/|Ω
[1,30],PαEβ |)/(

∑

κ∈Ω
[1,30],Pα

κ6/|Ω
[1,30],Pα

|) (4.18)

4.2.3.5 Experimentation

‘Because of an observed association some preventative action is taken,

Does it in fact prevent?’ - Bradford-Hill [19].

The final Bradford-Hill causality consideration investigated is experimentation.

There is deviation between the meaning behind experimentation, some authors

assume it relates to intervention (i.e. if the drug stops does the medical event,

if the drug restarts does the medical event follow?) [175], whereas others believe

it corresponds literally to experiments that have been conduced and their results

[64].

In this thesis we adopt the intervention interpretation and apply a retrospec-

tive investigation to find instances where a patient stopped taking the drug for a

while and then restarted, and refer to this as a retrospective intervention. Unfor-
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tunately, few patients experience retrospective interventions and this limits the

experimentation attribute’s usefulness. If a patient has two or more independent

prescriptions of the drug, it can be observed whether the medical event often

occurs shortly after the prescriptions but never shortly before. If this is the case,

then this is a very strong implication that the medical event is an ADR.

Equation 4.19 shows the calculation for the proposed novel attributes based

on the Bradford-Hill experimentation causality consideration. It is determined

by finding the number of patients that have READ code β within 1 to 30 days of

two or more independent prescriptions of α but never within 1 to 30 days before

any prescriptions of α divided by the number of patients that have two or more

independent prescriptions of α.

xαβ26 =
|{κ1|∃κ,

∗

κ ∈ Ω
[1,30],Pα,Eβ

, κ4 6=
∗
κ4, κ1 =

∗
κ1}

⋂

{κ1|κ 6∈ Ω
[−30,−1],Pα,Eβ}|

|{κ1|∃κ,
∗

κ ∈ Ω
[1,30],Pα

, κ4 6=
∗
κ4, κ1 =

∗
κ1}|

(4.19)

4.2.3.6 Other Criteria

The consistency, plausibility and coherence require additional resources for their

calculation and are not tackled in this thesis. The analogy factor is indirectly

incorporated by using a supervised algorithm, as attributes similarities for the

drug-READ code pairs corresponding to known ADRs are learned and used to

infer new ADRs.

4.2.3.7 THIN Specific

The attributes specific to the THIN database make use of the READ code struc-

ture and additional information available that might help distinguish between an
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ADR and non-ADR. The first attribute gives a measure of how much noise there

is present for the READ code β and drug α as it is harder to classify drug-READ

code pairs with a large measure of noise as the attribute values are likely to be

misleading. To determine the level of noise, the average number of prescriptions

that occur within the two month interval centred around the prescription of α is

calculated for all patients and compared with the average number of prescriptions

that occur within the two month time interval centred around the prescription of

drug α for the patients that also experienced READ code β within 1 to 30 days.

xαβ27 = (
∑

κ∈Ω
[−30,30],PαEβ

κ8/|Ω
[−30,30],PαEβ |)/(

∑

κ∈Ω
[−30,30],Pα

κ8/|Ω
[−30,30],Pα

|) (4.20)

The next attribute investigates whether, for each READ code β that occurs within

1 and 30 days of a prescription of α, the patient has previously experienced β (or

its level 3 parent). If many patients have previously experienced a more general

version of β but not β itself, then this is a sign that β is not an ADR to drug

α. The reason is that β is likely to have occurred due to an illness progression

rather than it being caused by the drug. This prompts,

xαβ28 = (
∑

κ∈Ω
[1,30],PαEβ

κ12)/(
∑

κ∈Ω
[1,30],Pα,Eβ

κ13) (4.21)

The final THIN specific attributes use the READ code structure to help distin-

guish between associations that are causal and associations that are due to illness

progressions. These attributes calculate the AB ratio when only considering the

more general versions of all the READ codes. Therefore, if the association has

occurred due to the illness progression, the AB ratio for the more general versions
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of the READ codes should be small, even if the AB ratio for the actual READ

code is large.

Letting Φβ
3 denote the set of READ codes that have the same level 3 parent

as β, then the AB ratio is calculated on the transformed data,

xαβ29 = |
⋃

∗
β∈Φβ

3

Ω
[1,30],Pα,E∗

β |/|
⋃

∗
β∈Φβ

3

Ω
[−30,−1],Pα,E∗

β | (4.22)

Similarly, Φβ
4 denotes the set of READ codes that have the same level 4 parent

as β and the AB ratio is calculated,

xαβ30 = |
⋃

∗
β∈Φβ

4

Ω
[1,30],Pα,E∗

β |/|
⋃

∗
β∈Φβ

4

Ω
[−30,−1],Pα,E∗

β | (4.23)

4.2.3.8 A Note on Dependency

Many of the attributes derived from the same Bradford-Hill causality consid-

erations may have some statistical dependency but also give slightly different

perspectives. The statistical dependency is unlikely to have any negative conse-

quences on the future classifiers as either feature selection is applied to remove

any redundancy or the methods are unaffected by statistical dependency. The

random forest is a decision tree based classifier; decision trees partition the at-

tribute space based on measures such as entropy. At each iteration the decision

tree will simply pick the partitioning of an attribute space based on how well it

separates the classes, dependency of two attributes will not have any negative

effect on this process. For the other classifier used throughout this research, fea-

ture selection will be performed prior to training. Feature selection will choose a
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subset of attributes to be used by the classifier that maximises its performance. If

two dependant attributes negatively affect the classifier then the optimal feature

subset will only contain a maximum of one of them.

4.2.4 Data Description

The attribute vector for a drug-READ code pair (α, β) is x̂αβ = (xαβ1 , xαβ2 , ..., xαβ30 ) ∈

R
30. The set X̂α = {x̂αβi , βi ∈ RMEα} contains all the (α, βi) corresponding

Bradford-Hill causality consideration derived attribute vectors for the drug α and

each of its ‘risk’ READ codes βi (the READ codes recorded within 1 to 30 days

from any prescription of α).

4.2.5 Data Transformation

4.2.5.1 Continuous Attributes

The importance of processing the data has been stressed in [127], one vital stage

in processing is to ensure each attribute is treated equally by a classifier. This is

done by normalising the data. Normalisation scales the nominal attribute data

between two values [96], this ensures the optimal performance of some learning

algorithms [127]. The three frequently implemented normalisation techniques are,

N1 (z-score Normalisation, useful if data bounds are unknown)

f : X → X; fz−score(x) = (x− X̄)/(σX)

N2 (Min Max Normalisation, data are scale into the range [0, 1])

f : X → X; fMinMax(x) = (x−minX)/(maxX −minX)

131



4. Incorporating Causation

Table 4.2: The results of KNN with leave one out cross validation when the
different normalisations are applied to the data, k=8 (preliminary results showed
this was optimal).

Normalisation TP FP FN TN AUC

None 684 443 1080 7746 0.7885
N1 674 246 1090 7943 0.8055
N2 698 387 1066 7802 0.7567
N3 673 349 1091 7840 0.7561

N3 (Decimal Scaling Normalisation, data are scale into the range [−1, 1])

f : X → X; fdecimal(x) = x/10j, j = min{j ∈ N|∀xi∈X |xi/10
j| < 1}

Table 4.2 shows the results when a KNN algorithm was applied with leave one

out cross validation on labelled data for 25 drugs with the data transformations

N1-N3 and no transformation. The optimal solution was obtained when the N1

transformation was applied, as the AUC was the greatest. Therefore, the N1

transformation will be used to transform any continuous attributes prior to any

learning algorithm in the remainder of this thesis.

4.2.5.2 Discrete Attributes

The discrete attributes, xαβ15 − x
αβ
18 are not normalised. The binary attributes do

not require any transformation, but the non-binary discrete attribute xαβ18 corre-

sponding to the READ code hierarchal level does. As described in [127], dummy

attributes (binary attributes corresponding to the each value of the discrete at-

tribute) are generated for xαβ18 , see Table 4.3 for an example. Due to the linear

dependancy between xαβ18 ’s dummy attributes, one can be discarded, so only four

of the dummy attributes are used. If we denote the z-score normalisation of the

continuous attributes and the creation of dummy attributes for the discrete at-
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Table 4.3: Example of how a discrete attribute is transformed into its dummy
attributes.

Orignal Dummy Attributes
READ code lv lv1 lv2 lv3 lv4 lv5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
3 0 0 1 0 0

tributes by the mapping f : R30 → R
33, then this leads to the transformed data

Xα = {f(x), x ∈ X̂α}.

4.2.6 Feature Selection

In preliminary work I investigated the usefulness of different Bradford-Hill causal-

ity considerations based attributes for predicting ADRs. A multivariate filter

known as the Correlation-based Feature Selection (CFS) algorithm [69] was ap-

plied to a range of attributes. This feature selection technique aims to find a

subset of attributes such that each individual attribute in the subset is more cor-

related to the label/class than it is to other attributes in the subset. Therefore,

only attributes that offer new insight for predicting the label/class are included,

the others will be removed, as they are generally redundant. The paper detail-

ing this preliminary work can be found in appendix C. However, in the actual

framework proposed within this work, I will use wrapper feature selection prior to

the classification (except for random forest) as wrapper feature selection chooses

the attribute subset based on how well the classifier performs when trained using

only the subset of attributes, this is more useful than a multivariate filter as it
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considers the classifier performance rather than just relying on correlations.

A wrapper approach to feature selection implements a heuristic search through

the power set of the attributes. It aims to find the attribute subset that, when

used as input into a classifier, maximises the classifiers performance. For ex-

ample, consider the attribute set {x1, x2, x3}, the power set of these attributes

is {{}{x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}}. A wrapper that

performs an exhaustive search will apply the classification using every possible

subset of attributes (all the power set) and choose the subset for which the clas-

sifier performed the best.

In general it is not suitable to perform an exhaustive search and a local optimal

subset (hopefully with a good performance) will be found instead. A forward

search starts with one attribute and iteratively investigates the addition of a single

attribute at a time until there is no further improvement possible. A backwards

search starts with all the attributes and iteratively investigates the removal of a

single attribute at a time until there is no further improvement possible. These

searchers described above are referred to as ‘greedy’ as the process of adding (or

removing) an attribute cannot be reversed once done. This leads to the searchers

finding local optimal subsets rather than global optimal ones.

In the future work I will implement a greedy backwards feature selection

algorithm named ’rfe‘ available in the R caret package. This algorithm requires

inputting the size of the attribute subset desired. It iteratively removes attributes

based on their ranking of importance by the naive Bayes classifier until the at-

tribute subset is reduced to the desired size. I will search for the subsets of size 5,

10, 15, 20, 25, 30 and 33. I will then select the subset out of these seven that max-

imises the classifier performance (prediction accuracy). Naive Bayes was chosen
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as this classifier assumes conditional independence, so it is more likely to be neg-

atively affected by attributes’ dependencies. Details about the chosen attributes

returned by wrapper feature selection throughout this research can be found in

appendix C.2.

4.3 Summary

In this chapter methods to generate thirty-three attributes for each drug-READ

code pair have been proposed. These attributes may help identify causal relation-

ships as they are derived from the Bradford-Hill causality considerations [19] that

has been used frequently to investigate causality between a single drug-medical

event pair. In addition, THIN specific attributes were presented with the aim

of preventing issues that arise due to the hierarchal READ code structure. The

attributes were explored and it was determined that z-score normalisation should

be applied to transform the continuous data and optimise the results of any learn-

ing algorithms applied. The foundations have been set to enable the development

of a novel framework for ADR signalling that incorporates causal knowledge and

the THIN data structure.

In Chapter 5, the attributes proposed in this chapter and their transformations

will be used as inputs into a learning algorithm which will be trained, using the

knowledge of known ADRs and non-ADRs, to distinguish between causal and

non-causal relationships.
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Chapter 5

Developing The ADR Learning

Framework

‘Our evaluation showed that the phenotypic information

(when available) largely improved the performance of ADR

prediction models. ’

M. Liu [113]

5.1 Introduction

In the previous chapter suitable attributes based on the Bradford-Hill causality

considerations and specific to the THIN database were proposed, with the aim

of being used as inputs into a learning algorithm capable of identifying causality

and hence, able to signal ADRs. This was the first step toward testing the main

hypothesis being investigated in this thesis, that a framework that incorporates

attributes that give insight into causality and attributes specific to the THIN

database into a learning algorithm that uses knowledge of existing ADRs will
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signal ADRs without a high false positive rate. The second step is determining

which learning algorithm is optimal.

In this chapter the focus is on developing an algorithm for detecting ADRs

by applying supervised and semi-supervised techniques that utilised knowledge

of existing ADRs and non-ADRs. The sub question answered in this chapter is

what will yield a better ADR signalling algorithm, a supervised approach that is

trained on labelled data corresponding to a variety of drugs, or a semi-supervised

approach that uses the labelled and non-labelled data for a single drug?

5.2 Motivation

Generally ADR signalling methods using data contained in SRS databases and

LODs have been unsupervised, however, numerous supervised algorithms have

been presented to classify ADR using chemical structures and known ADRs.

One of the first algorithms that used chemical structures to infer ADRs was de-

veloped for a specific group of drugs known as the CEPT inhibitors [209]. This

idea was expanded to simultaneously identify multiple ADRs [5] where the authors

prosed two novel algorithms that incorporate knowledge of chemical structures

and known ADRs, extracted from SIDER [98], to infer new ADRs. The first algo-

rithm learns associations between drug attributes and known ADRs and uses this

knowledge to infer new ADRs. The second algorithm, based on a method of pre-

dicting disease-causing genes [186], uses a diffusion process that incorporates the

similarities between drugs and the similarities between ADRs. The overall mea-

sure of how likely a drug causes an ADR was calculated using a combination of the

values returned by the two algorithms. More recent methods have utilised target
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protein information in addition to chemical structure and ADR knowledge, and

used these to generate attributes that are fed into a predictive model [109; 212] or

included biological and phenotypic (e.g., indications and known ADRs) based at-

tributes [113]. In [113] the presented framework detected ADRs with a precision

of 66.17% and a recall of 63.06% and it was shown that including attributes based

on known ADRs improves the ability of the classifier and increases the recall and

precision. This is a key result, as it shows that incorporating knowledge of known

ADRs into an algorithm for signalling ADRs may decrease the false positive rate.

ADR signalling algorithms applied to LODs have exceptional potential to

identify new ADRs [204], but are currently limited by the high number of false

positives [156]. An ADR signalling algorithm that generates attributes based

on LODs, but also incorporates known ADR labels may reduce the number of

false positives and should outperform the existing unsupervised algorithms. As an

ADR represents a causal relationship, any attributes used by a learning algorithm

to distinguish between ADRs and non-ADRs need to contain information about

causality. In Chapter 4 suitable attributes for each drug-medical event pair based

on the strength, temporality, specificity, biological gradient and experimentation

factors of the Bradford-Hill causality considerations were investigated, as well as

attributes specific the to THIN database. These attributes are suitable inputs into

a causality learning algorithm as they are frequently implemented by researchers

to determine causal relations [42]. In Chapter 3.4, labels were extracted from the

SIDER resource for known ADRs, and noise medical events were extracted using

the READ code tree. Using the generated attributes and the known labels it

may be possible to learn areas of the attribute space that suggest a drug-medical

event pair represent an ADR. It is hypothesised that such an algorithm would
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reduce the time required to definitively identify ADRs and enable a wider search

for ADRs. Overall, this would improve current healthcare.

5.3 Algorithms

After the THIN data has been processed, as described in Chapter 4, for each drug

of interest α, we can assign class labels to some of the drug-READ code pairs

(class ADRs or class non-ADRs). Therefore, the set of Bradford-Hill causality

consideration attribute vectors Xα is partitioned into labelled data, (Xα
L , Y

α
L ) =

{(x, y)|x ∈ Xα and y is the known label}, and unlabelled data, Xα
U = {(x, y)|x ∈

Xα and the label is unknown}. The aim of the learning algorithms is to determine

a predictive function f : X → Y , using the labelled data and the unlabelled

data, that can then be applied to the attributes of a new drug-medical event

pair, (α∗, β∗), to predict the pair’s class.

5.3.1 Supervised ADR Predictor

Supervised methods only use the labelled data (Xα
L , Y

α
L ). The Supervised ADR

Predictor (SAP) framework signals ADRs by applying a classifier that is trained

on n drugs to a drug not used to train the classifier. Using a sufficiently large

value for n ensures that there is an adequate number of labels. In this study the

value of n used is 24 as this corresponded to approximately 10, 000 labelled data-

points. As the drug being investigated is not used in the training, no knowledge

of existing ADRs for that drug is required, so the SAP framework can be applied

to newly marketed drugs. The framework is illustrated in Figure 5.1.
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Ω

Input training
drugs: A =
{αi, i ∈ [1, n]}

Determine S =
{(α, β)|α ∈

A, β ∈ RMEα}

Extract training
data: (X, Y ) =
{(xαβ, Y αβ)|(α, β) ∈

S, Y αβ 6= 0}

Process data ρ :
X → X; ρ(X) = X∗

Train Classifier, sk :
X → Y ; sk(X

∗) = Y

Return sk(x)

Input drug of
interest: α∗

Generate Xα∗
=

{xα∗β|β ∈ RMEα∗
}

Return sk(ρ(X
α∗
))

Training

Predicting

Figure 5.1: The framework implemented to train the four different classifiers
using a variety of n drugs with known side effects. These general classifiers are
then used to predict the class for unlabelled data.
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5.3.1.1 Training Stage

Starting with the THIN data, Ω, and the set of training drugs, A = {αi, i ∈

[1, 24]}, the first step is determining the ‘risk’ drug-medical event pairs for each

of the training drugs. These are all the medical event and drugs pairs,(αi, β) ,

where the medical event β is observed to be recorded, for at least one patient,

within 30 days after a training drug αi was recorded. The set containing all these

‘risk’ drug-medical event pairs where the drug is a training set drug is denoted

by S.

Next, the Bradford-Hill causality consideration based attributes and the THIN

specific attributes are extracted for each pair in S with a corresponding label that

is ±1. The labels are determined (using the sets ΨA and ΨN defined in Chapter

3.4) by,

Y αβ =























1 if (α, β) ∈ ΨA;

−1 if (α, β) ∈ ΨN .

0 else.

(5.1)

So, the extracted labelled data is, (X, Y ) = {(xαβ, Y αβ)|(α, β) ∈ S, Y αβ 6= 0}.

Before the labelled data is used to train the classifier, it is processed according

to the chosen classifier being implemented. The processing step is represented

by the function ρ : X → X. For the random forest classifier, ρ is the z-score

normalisation function, ρ(x) = (x − µ)/σ, where µ is the mean of X and σ is

the standard deviation of X. For the SVM, Naive Bayes and Logistic Regression,

ρ represents z-score normalisation and wrapper feature selection (see appendix

C.2) [157].

The final step is using the processed labelled data to train and return the clas-
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sifier, sk : X → Y , using leave one out cross-validation. The classifier is trained

so that sk(x
ab) = 1 represents drug a causing medical event b and sk(x

ab) = −1

represents drug a not causing medical event b. The trained random forest clas-

sifier is represented by s1 : X → Y , the SVM is represented by s2 : X → Y , the

Logistic regression is represented by s3 : X → Y and the Naive Bayes classifier

is represented by s4 : X → Y .

5.3.1.2 Prediction Stage

Once the classifier, sk : X → Y , is trained, the SAP algorithm can then be

applied to any drug α∗ not used in training. The set of attribute vectors, Xα∗
=

{xα∗β|β ∈ RMEα∗
}, corresponding to ‘risk’ drug-medical event pairs containing

the drug being investigated are extracted and processed. The trained classifier is

then applied to each of the data-points, xα∗β ∈ Xα∗
, to predict whether the drug

α∗ and medical event β correspond to an ADR. The final output for classifier k

is the set of medical events that correspond to the signalled drug-medical event

pairs containing drug α∗, {β|sk(x
α∗β) = 1,xα∗β ∈ Xα∗

}.

5.3.1.3 Results and Analysis

To analyse the SAP algorithm a set of 25 drugs were chosen, D = {αi, i ∈ [1, 25]}.

For each drug, αi ∈ D, the SAP algorithm was trained on the set of drugs in

D excluding αi and then validated by being applied to αi. The inputs into the

SAP framework were, A = {αj ∈ D|j 6= i} and α∗ = αi. The predictions of

the classifiers on each labelled data-point (not used during training), sk(x
αiβ),

are then compared with the truth, Y αiβ, to measure the ability of the classifier.

Using the validation set, (Xαi , Y αi) = {(xαiβ, Y αiβ)|β ∈ RMEαi , Y αiβ 6= 0}, the
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Table 5.1: The results of the different classifiers at their natural thresholds for
three drugs, Nifedipine, Ciprofloxacin and Ibuprofen.

Drug Algorithm TP FN FP TN Sensitivity Specificity
Nifedipine RF 22 41 8 604 0.349 0.987
Ciprofloxacin RF 13 42 0 385 0.236 1
Ibuprofen RF 22 53 2 784 0.293 0.997
Nifedipine NB 14 49 6 606 0.222 0.990
Ciprofloxacin NB 6 49 5 380 0.109 0.987
Ibuprofen NB 9 66 16 770 0.120 0.980
Nifedipine SVM 25 38 9 603 0.397 0.985
Ciprofloxacin SVM 12 43 0 385 0.218 1
Ibuprofen SVM 24 51 9 777 0.32 0.989
Nifedipine LR 6 57 2 610 0.095 0.997
Ciprofloxacin LR 6 52 6 379 0.103 0.984
Ibuprofen LR 12 63 7 779 0.16 0.991

number of true positives (TP ), false positives (FP ), false negatives (FN) and

true negatives (TN), for each classifier sk, are calculate as,

• TP = |{sk(xj) = yj|(xj, yj) ∈ (Xαi , Y αi), yi = 1}|

• FP = |{sk(xj) = 1|(xj, yj) ∈ (Xαi , Y αi), yi = −1}|

• FN = |{sk(xj) = −1|(xj, yj) ∈ (Xαi , Y αi), yi = 1}|

• TN = |{sk(xj) = yj|(xj, yj) ∈ (Xαi , Y αi), yi = −1}|

Table 5.1 presents the results of the classifiers at their natural threshold and

Figure 5.2 presents the ROC plots and partial ROC plots of the classifiers, re-

spectively.

Bar charts of the AUC and AUC[0.9,1] values returned by the classifier for

the three drugs are displayed in Figure 5.3. The random forest classifier had

significantly greater AUC[0.9,1]s for all three drugs investigated at a 5% signifi-

cance level. However, the random forest’s AUC was only significantly greater for
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(d) Ciprofloxcin: high specificity

Figure 5.2: The ROC curves for the different classifiers used to predict the ADRs
of the drugs. The red curve represents the random forest classifier, the orange
curve represents the support vector machine classifier, the green curve represents
the logistic regression classifier and the blue curve represents the Naive Bayes
classifier.
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Figure 5.2: Continuation of the ROC plots.

Nifedipine (p-value: 0. 0002) and not for Ciprofloxacin nor Ibuprofen (p-values

0.164 and 0.052 respectively). The AUC for the random forest classifier was in

the range [0.823, 0.912], indicating excellent performance. The other classifiers

also performed well with the lowest AUC value of 0.730 obtained by the SVM for

Nifedipine.

The random forest and SMV were able to signal between 24% − 35% and

22%− 40% of the known ADR READ codes for the three drugs respectively. In-

terestingly, the classifiers all managed to keep the number of false positives low,

aggregating over the three drugs, 85%, 77%, 52% and 62% of the signals returned

by the random forest, SVM, Naive Bayes and logistic regression classifiers, re-

spectively, were known ADRs. Consequently, although only approximately 30%

of known ADRs were signalled by the random forest classifier at its natural thresh-
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Figure 5.3: The AUC and AUC[0.9,1] values for the SAP algorithm implementing
each of the classifiers when applied for the drugs Nifedipine, Ciprofloxacin and
Ibuprofen.
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old, the majority of signals were true, so no additional filtering would have been

required to further validate the signals. This is an improvement over the existing

methods (see Chapter 3).

When investigating the signal overlap between the classifiers, in general the

SVM returned the greatest number of unique signals (6 for Ibuprofen, 6 for

Nifedipine and 2 for Ciprofloxacin) although the random forest also had some

unique ones (4 for Ibuprofen, 2 for Nifedipine and 4 for Ciprofloxacin). This

suggests it may be of interest to investigate applying an ensemble technique that

integrates the results obtained from all four classifiers.

5.3.1.4 Summary

The classifiers that use the Bradford-Hill causality consideration based and THIN

specific attributes and additional knowledge of known ADRs and non-ADRs show

excellent promise at effectively signalling ADRs. These classifiers are trained on

drugs that are not investigated, so there is no requirement of known ADRs for

the drugs investigated and the classifiers had a high specificity and sensitivity.

Out of the four classifier investigated, the random forest returned significantly

better results and was also the classifier that required the least amount of pre-

processing, making it highly efficient. All four classifiers obtained a sufficiently

high specificity in addition to constraining the number of false positives. The

benchmark AUC for the supervised classifiers is set at 0.91 and the benchmark

AUC[0.9,1] are set at 0.048 for Ciprofloxacin, 0.059 for Ibuprofen and 0.053 for

Nifedipine.
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5.3.2 Semi-Supervised ADR Predictor

In the previous section a general classifier was proposed but the combinations of

attribute values that suggest a drug-medical event pair corresponds to an ADR

may vary for each drug, so information may be lost by combining the labelled data

for a variety of drugs. However, it is difficult to determine a specific classifier with

a high accuracy as the number of known ADRs per drug is generally less than

a hundred or so, but the number of ‘risk’ drug-medical event pairs are often in

the thousands. When there is only a small number of labelled data, but surplus

unlabelled data, it has been shown that semi-supervised techniques may yield

more accurate results [126]. In this section a novel semi-supervised framework is

proposed.

A frequently implemented example of a semi-supervised technique is the self-

training wrapper algorithm, summarised in Chapter 2.2.2.1. This algorithm trains

a classifier on labelled data and then gets the classifier to ‘teach’ itself by applying

the trained classifier on the unlabelled data and adding any unlabelled data-point

and its prediction to the labelled data, if the classifier is confident of the predic-

tion [215]. In [195], the authors showed that the performance of a self-training

approach and supervised approach is comparable by applying self-training using a

tree based classifier to a natural language classification problem. This motivates

the investigation of a self-training approach that incorporates a random forest

to learn from the labelled and unlabelled data. Unfortunately, the self-training

approach requires a sufficient number of initial labelled data, as classifiers per-

form poorly when trained on a small set of data [55], and an incorrect initial

model will get interactively worse. When the size of the initial labelled data is
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small, a semi-supervised clustering algorithm may be more appropriate as a small

number of labels can be used to aid clustering by adding bias [7]. Therefore, in

this Section, two semi-supervised algorithms are presented to signal ADRs using

labelled and unlabelled data corresponding to one drug; a self-training random

forest and a semi-supervised k-means clustering.

The framework for Semi-Supervised ADR Predictor (SSAP), that contains

both the self-training algorithm and the semi-supervised clustering, is presented in

Figure 5.4. The value crit∗ represents the critical value that is used to determine

whether the self-training or semi-supervised clustering is applied during the SSAP

framework, based on the fraction of total data that is labelled. This value will be

determined by investigating the performance of both semi-supervised techniques

when applied to data with a range of labelled data sizes.

5.3.2.1 Self Training Random Forest

The self training random forest iteratively trains a random forest on the labelled

data for drug α, (Xα
L , Y

α) = {(xαβ, Y αiβ)|β ∈ RMEα, Y αβ 6= 0}, but after

each random forest is built, it is applied to the unlabelled data Xα
U = {xαβ|β ∈

RMEα, Y αβ = 0} and any unlabelled data point assigned a predicted class with

a confidence greater than 0.9 is removed from the unlabelled set and added to

the labelled set. The self training stops when the stopping criteria is met, either

all the originally unlabelled data-points are moved into the labelled set or the

iteration has run for twenty times. In detail, the self train process is:

Once the final random forest is trained, the final iteration model ŝ : X → Y ,

is applied to the unlabelled data Xα
U . The algorithm returns the predicted class

of the unlabelled data, ŝ(x),x ∈ Xα
U , or the confidence of the data point being in
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Ω

Input drug α

Determine S =
{(α, β)|β ∈ RMEα}

Extract data:
(Xα

L , Y
α) =

{(xαβ, Y αβ)|(α, β) ∈
S, Y αβ 6= 0}
and Xα

U ,=
{(xαβ|(α, β) ∈
S, Y αβ = 0}

Is crit ≥ crit∗?

Yes

Train Random
Forest Classifier
using (Xα

L , Y
α)

Apply trained Ran-
dom Forest to Xα

U
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data-points with
confidence ≥
0.9 to labelled

Is stopping
point reached?

Apply final Random
Forest to Xα

U and
return probability

of class ADR

No
Apply Metric

Learning to output
M : X → X

Apply Semi-
supervised k-means
to (M(Xα

L), Y
α)

and M(Xα
U)

Return distance
from ADR
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Self Training Classifier

Figure 5.4: The framework for the Semi-Supervised ADR Predictor algorithm.
This algorithm uses labelled and unlabelled data for the drug of interest only
during training. The technique applied depends on the percentage of labelled
data.
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Input : Labelled data: (Xα
L , Y

α), Unlabelled data: Xα
U and Iteration

limit: n}
Output: Final random forest applied to unlabelled data, si(Xα

U)
Initialization: L1 = ∅, U1 = Xα

U

for i = 1, 2, 3, ... do
Train random forest, si : X → Y , on labelled data (Xα

L , Y
α)

⋃

Li.
Apply to unlabelled data si(U i), Set:
Li+1 = Li

⋃

{(xαβ, si(xαβ))|xαβ ∈ U i, confidence of prediction ≥ 0.9}
U i+1 = {xαβ|xαβ ∈ U i, confidence of prediction < 0.9}
if i ≥ n or U i+1 = ∅ then break

end
Algorithm 3: The self train random forest algorithm

the ADR class.

5.3.2.2 Semi-supervised Clustering

The semi-supervised clustering technique is proposed for replacing the self-training

random forest when there is insufficient number of labelled data. The semi-

supervised clustering method has two steps, the first step applies metric learning

[211] using the labelled data, Xα
L , to learn a mapping, M : X → X , of the at-

tribute space that minimises the distance between data-points in the same class

while adding a constraint to keep data-points from different classes sufficiently far

apart. The second step is the application of the seed-constrained k-means clus-

tering algorithm [7] to determine the clusters using the mapped data, M(Xα),

where Xα = Xα
U ∪ X

α
L . The k-means algorithm uses the labelled data to deter-

mine the initial centres of the clusters and fixes the labelled data to a cluster, the

unlabelled data-points are then iteratively assigned to the cluster with the clos-

est centre until convergence. Both the metric learning and the semi-supervised

k-means algorithm are described in Chapter 2.2.2.1. In detail, the process is:

151



5. Developing The ADR Learning Framework

1. Apply metric learning with µ = 10−5, tol = 1−−5 and αt = 0.02, where:

• X = Xα
L

⋃

Xα
U

• S = {(i, j)|(xi, yi), (xj, yj) ∈ (Xα
L , Y

α), yi = yj}

• D = {(i, j)|(xi, yi), (xj, yj) ∈ (Xα
L , Y

α), yi 6= yj}

To output the metric space mapping M : X → X

2. Apply seed-constrained k-means to M(X), where:

• K = 2

• S1 = {M(xi)|(xi, yi) ∈ (Xα
L , Y

α), yi = 1}

• S2 = {M(xi)|(xi, yi) ∈ (Xα
L , Y

α), yi = −1}

To output the final cluster or the distance from the final ADR centre,

||M(xi)− µ1||, where µ1 is the centre of the ADR cluster.

The algorithm returns the predicted cluster of the unlabelled data-points or

the distance between the data point and the ADR cluster centre.

5.3.2.3 Results and Analysis

The self-training random forest algorithm and semi-supervised clustering algo-

rithm implemented the SSAP framework were both applied to the drugs Nifedip-

ine, Ciprofloxacin and Ibuprofen to analyse the results. For each drug, αi, the

labelled data was extracted, (Xαi , Y αi) = {(xαiβ, Y αiβ)|β ∈ RMEαi , Y αiβ 6=

0}, and randomly partitioned into disjoint training, (Xαi
L , Y

αi
L ), and validation,

(Xαi
U , Y

αi
U ), sets.

(Xαi , Y αi) = (Xαi
L , Y

αi
L )

⋃

(Xαi
U , Y

αi
U )
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(Xαi
L , Y

αi
L )

⋂

(Xαi
U , Y

αi
U ) = ∅

The data input into the algorithms as labelled data was (Xαi
L , Y

αi
L ) and the data

input into the algorithms as unlabelled data was Xαi
U . The algorithms were anal-

ysed by investigating the ROC plots determined by comparing their predictions

on the validation data ŝ(x),x ∈ Xαi
U with the truth Y αi

U . Both algorithms were

applied for varying values of crit = |Xαi
L |/|X

αi |, to investigate if there is an obvi-

ous threshold value of crit that can be used to determine which semi-supervised

algorithm to apply when the SSAP framework is implemented (i.e., does the

self-training algorithm always outperform the semi-supervised clustering when

crit ≥ crit∗?).

Figure 5.8 displays the AUC of the ROC plots obtained by applying the semi-

supervised clustering or self-train classifier to the drugs Nifedipine, Ciprofloxacin,

and Ibuprofen. The AUCs varied between 0.55−0.88 and 0.53−0.84 for the semi-

supervised clustering and self-train classifier respectively. For Nifedipine, both

algorithms performed their respective best, with AUCs of 0.80 and 0.88 for the

clustering and self-train respectively, when 90% of the data was labelled, whereas

for Ibuprofen, both algorithms performed their respective best when only 5% of

the data was labelled. This shows that the semi-supervised techniques did not

always improve in performance when the value of crit was increased, this is further

evident in Figures 5.5-5.6. Futhermore, this suggests that the SSAP framework

does not require a large number of labelled data, as, in general, the performance

seems to be similar for low and high values of crit, but the performance depends

on the quality of labelled data.

To investigate how much the initial labels affect the performance, both semi-
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(b) Ciprofloxacin - Left Plot: Self Training, Right Plot: Clustering

Figure 5.5: The ROC curves for the SSAP framework at 6 different values of crit
when applied to the different drugs. The black, blue, red, orange, yellow and
green curve correspond to crit values of 0.9, 0.7,0.5,0.3,0.1 and 0.05 respectively.
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Figure 5.6: The ROC curves for the SSAP framework at 6 different values of crit
when applied to Ibuprofen. The black, blue, red, orange, yellow and green curve
correspond to crit values of 0.9, 0.7,0.5,0.3,0.1 and 0.05 respectively. Left Plot:
Self Training, Right Plot: Clustering.
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Figure 5.7: The ROC curves for the SSAP framework repeated multiple times
for the drug Ibuprofen at a crit value of 0.1 to investigate consistency. Left Plot:
Self Training, Right Plot: Clustering.

supervised techniques were applied multiple times with a crit value of 0.1, but

the initial labels were varied. The results are displayed in Figure 5.7. It can

be seen that the performance varied each time, and although the semi-supervise

clustering produced good results four out of the five times, one time it performed

very poorly, worse than random guessing when considering a high specificity.

This is probably due to bad initial labels resulting in a poor model that then gets

worse as the unlabelled data are incorporated. This is not ideal, as there is no

control on the labelled data available, and applying one of the semi-supervised

techniques may yield poor results for certain labelled data.

There does not appear to be an optimal value for crit∗ so, rather than only ap-

plying one of the algorithms, it may be optimal to apply both the semi-supervised

clustering and self-trained classifier, and generate signals based on both values.
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Figure 5.8: The AUC for the ROC plots obtained by applying the semi-supervised
clustering and the self training classification within the SSAP framework to the
different drugs at varied crit values.
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5.3.2.4 Summary

The results show that a semi-supervised approach that only uses data for the

drug of interest generally performs well but the performance can be affected by

initial errors in the self training or metric learning. The consequence is that the

SSAP framework is not as consistent as the SAP framework, and although it

may occasionally produce better results (depending on the initial labelled data),

it may also perform very poorly. It was observed that the SAP algorithm, with

the random forest classifier, had a greater AUC than either of the semi-supervised

algorithms for all the crit values investigated for all three drugs.

Overall, the SAP algorithm produced better and more consistent results. It

also has the additional benefit of not requiring knowledge of existing labels for

the drug being investigated, unlike the SSAP algorithm.

5.4 Summary

In this chapter two different frameworks were proposed to signal ADRs. The

frameworks were then applied to data, where the truth was known, and mea-

sures were calculated to determine the suitability of each framework. The first

framework implemented a supervised algorithm and was trained using labelled

data corresponding to a selection of drugs not being investigated. The second

framework used a semi-supervised approach and was train using the labelled and

unlabelled data for the drug of interest.

The ROC plots show that the SAP framework, using a random forest classi-

fier, consistently generates superior results. Interestingly, using the labelled data

for the drug of interest generally leads to a worse performance. Therefore, the
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conclusion of this chapter is that a general model, that uses Bradford-Hill causal-

ity consideration attributes and THIN specific attributes, trained on independent

drugs yields the optimal solution. The tentative results suggest such a framework

is capable of signalling ADRs with a low false positive rate. It is now of inter-

est to determine how this general model compares with existing ADR signalling

algorithms and investigate if it is robust.
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Chapter 6

Evaluating The ADR Learning

Framework

‘As there is no true gold standard, prospective evaluation of

signal detection methods remains a challenge.’

P. M. Coloma[33]

6.1 Introduction

In the previous chapters, a novel idea of automating the application of the

Bradford-Hill causality considerations for mass signalling of ADRs was developed.

In Chapter 4 the attributes derived from the Bradford-Hill causality considera-

tions were presented, and used as inputs into a learning algorithm in Chapter 5.

The tentative results of the novel learning algorithm, named the SAP framework,

suggest that training a general classifier using knowledge of existing ADRs on

attributes based on the Bradford-Hill causality considerations and THIN specific

160



6. Evaluating The ADR Learning Framework

attributes may present the opportunity to signal ADRs with a high precision and

sufficiently high specificity. In this chapter, the SAP framework is evaluated by

applying the specific comparison used in Chapter 3 and also by determining the

frameworks ability on the HOI-DOI reference standard, as this enables a general

comparison with previous and future work.

As it was hypothesised that the SAP framework will be able to generate

new signals that can not be generated by existing methods, the framework will

also be applied to the drug-medical event pairs for a selection of drugs that are

not definitively known as ADRs or non-ADRs. The signals generated will be

presented as this offers another perspective into the effectiveness of the SAP

framework and may highlight new ADRs.

6.2 Motivation

The existing methods are known to suffer from the high false positive rate [156]

and this means that further investigation needs to be applied to the signals that

are generated. If the SAP framework has a low false positive rate, then this

additional investigation will not be required, increasing the efficiency of ADR

signalling. As the high false positive rate is due to signalling strong associations

that are non-causal but occur due to confounding effects, the SAP framework

should be more resilient to a high false positive rate as the Bradford-Hill causality

considerations should help distinguish between associations due to confounding,

and associations due to causation [19].

Evaluating the SAP framework on the standard reference [80] will enable

other researchers to readily compare their methods with the SAP framework
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and the SAP framework can be compared with previous results. However, this

standard reference may be biased due to only considering a selection of HOIs.

Therefore, the specific comparison is also applied to evaluate the SAP framework

and determine the false positive rate when a larger number of drug-medical event

pairs are analysed. If the SAP framework is shown to have a low false positive

rate, but this does not inhibit its general ability, then this would be a step forward

for pharmacovigilance.

6.3 Evaluation using the Standard Reference

A recent standard reference set has been introduced to enable a fair comparison

between methods applied to different databases. The standard reference con-

tains ten DOIs and nine HOIs (discussed in Chapter 2.1.5), and consists of 53

definitively known ADR or non-ADR drug-medical event pairs (9 ADRs and 44

non-ADRs). The SAP framework was applied for each of the 53 drug-medical

event pairs on the THIN database and the signals generated by the framework

were compared with the known truth.

Previously, the benchmark measures over all the methods and a variety of

databases are an AUC of 0.77 and an AP of 0.49, the method obtaining these

values had a sensitivity of 0.56, a specificity of 0.82 and a positive predictive

value of 0.38 [156]. The previous comparisons have all concluded that existing

methods have a high false positive rate (≥ 0.18 [156]). On the THIN database the

benchmark values were a sensitivity of 0.67, a specificity of 0.68 and a precision

of 0.33 [214].
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6.3.1 Method

The SAP framework was evaluated by generating signals for each DOI after train-

ing the SAP framework on the other nine DOIs. As some of the DOIs have drugs

in common, the drugs used during training were always excluded from the vali-

dation to prevent bias. Due to the limited number of drug-medical event pairs

available for training, the random forest classifier was found to perform poorly

on the reference standard, so the SAP framework with a support vector machine

classifier embedded was used instead. It was also found, due to the limited train-

ing size, that feature selection was required to reduce the number of attributes

used by the SAP framework. The attributes not used were the TPD filter 1

(xαβ15 ) and TPD filter 2 (xαβ16 ), LEOPARD (xαβ17 ), experimentation (xαβ26 ) and the

risk different (xαβ4 -xαβ5 ), risk ratio (xαβ7 -xαβ8 ) and odds ratio (xαβ10 -x
αβ
11 ) when only

considering the first time the drug is prescribed in 13 months or the first time

any drug in the same family is prescribed in 13 months.

6.3.2 Results

Table 6.1 presents the results of the signals generated using the SAP framework

for the standard reference. The number of TPs was 6, the number of FPs was

7, the number of FNs (excluding the pair antibiotics and acute liver failure as

that was not experienced by any patients in the subsection of the THIN database

used) was 2 and the number of TNs was 37. Therefore, at its natural threshold,

the SAP framework had a sensitivity of 0.75, a specificity of 0.84, a precision of

0.46 and a false positive rate of 0.16.

The general raking ability measures were a MAP (average AP) score of 0.490,
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Table 6.1: The results of the SAP framework with the support vector machine
classifier on the 53 standard reference set of DOIs and HOIs.

Angi-
odema

Aplastic
anemia

Acute
liver
injury

Bleed-
ing

GI Hip
frac-
ture

MI Death
after
MI

Renal
Fail-
ure

ACE inhibitors TP TN FP TN
Ampotericin TN TN TN TN TN TP
Antibiotics TN NO 1 TN TN FP TN
Antiepileptics TN FN TN TN TN
Benzodiazapine FP TN TN FP TP FP FP
Beta Blockers TN TN TN TN TN TN
Bisphosphonates TN TN FN TN TN
Tricyclic An-
tidepressants

TN TN TN TP TN

Typical An-
tipsycotics

TN TP FP

Warfarin TN TN TP TN TN TN

an average AUC of 0.703 and an average P(10) of 0.2875. The DOIs antibiotics

and betablockers were not used in the previous calculation due to them having

no positive drug-medical event pairs, so the measures are undefined.

6.3.3 Discussion

Previous benchmarks for existing methods using the common data model on the

standard reference set were an AP ranging between 0.25− 0.49 an AUC ranging

between 0.59−0.77 and a false positive rate ranging between 0.18−0.89 [156]. The

false positive rate of 0.16 returned by the SAP framework was lower than existing

methods obtained in previous studies, but the general ranking measures were

comparable with the optimal existing methods. Therefore, the results of the SAP

framework using the THIN database for the standard reference set show that the

1This DOI-HOI pair was Not Observable (NO) using the THIN database
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SAP framework is able to generate signals as well as the existing methods applied

to the common data model but it has a lower false positive rate. This provides

evidence to support the hypothesis that generating methods for specific database

rather than the common data model may enable new signals to be generated and

supports the hypothesis that incorporating knowledge of existing methods and

attributes based on causation will reduce the number of false positives generated

by the method.

The SAP framework was limited in this evaluation due to the small number

of DOIs and HOIs resulting in a small training set. This shows that the SAP

framework has even more potential, as when the training size increases, the ability

of the classifier will increase and the SAP framework is likely to perform better.

As the SAP framework’s performance was as good, or maybe better, than existing

methods when the training set was small, it is likely to significantly outperform

the methods when more DOIs and HOIs are used to train the classifier. The

evaluation also highlighted how adaptable the framework it, as it can use any

classifier within it, so the most suitable classifier can be chosen based on the

situation. Furthermore, the SAP framework only requires the classifier to be

tuned and feature selection to be applied, so the number of parameters is relatively

low compared to many of the existing methods, making its application more

efficient.
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Method Signal Criteria Ranking Criteria

SAP Framework Class with most votes Confidence of class ADR
ROR05 ROR05 > 1 ROR05

MUTARA180 unexlev > 0 unexlev
HUNT180 (unexlev rank)/(lev rank) > 1 (unexlev rank)/(lev rank)
TPD IC∆05 > 0 IC∆05

Table 6.2: The signalling and ranking criteria of the methods.

6.4 Specific Comparison

6.4.1 Method

The specific comparison, as conducted in Chapter 3.7, was repeated for the drugs

Nifedipine, Ciprofloxacin, Ibuprofen, Budesonide and Naproxen and including

the SAP framework as an additional method. The different criteria used by each

method to generate signals or rank the pairs are described in Table 6.2. The

specific comparison was chosen to be implemented in addition to evaluating the

SAP on the standard reference as this enables a more rigorous evaluation of the

SAP’s ability to generate signals with a low false positive rate.

An additional investigating is implemented by applying the SAP framework to

the ‘risk’ drug-medical event pairs that are not definitively known as non-ADRs

or listed as ADRs on the drug packaging (i.e., the unlabelled drug-medical event

pairs). This will enable potentially new ADRs to be discovered.

6.4.2 Results

6.4.2.1 Nifedipine

Natural Thresholds

Table 6.3 displays the ADR signalling methods abilities at their natural thresh-

166



6. Evaluating The ADR Learning Framework

Table 6.3: The results of the signals generated by the different ADR signalling
methods applied to Nifedipine at their natural thresholds.

Method TP FN FP TN Sensitivity Specificity Presicion F-Score

SAP 22 41 8 604 0.349 0.987 0.733 0.473
ROR05 44 36 164 448 0.550 0.732 0.212 0.306

MUTARA180 54 9 267 345 0.857 0.564 0.168 0.281
HUNT180 42 21 248 364 0.667 0.595 0.145 0.238
TPD 1 5 58 11 601 0.079 0.982 0.313 0.127

Table 6.4: The general ranking, Area Under the Curve (AUC), partial AUC
(AUC[0.9,1]) and Average Precision (AP), results of the different ADR signalling
methods applied to Nifedipine.

Method AUC AUC[0.9,1] AP

SAP 0.889 0.054 0.596
ROR05 0.691 0.010 0.129

MUTARA180 0.833 0.053 0.562
HUNT180 0.743 0.031 0.326
TPD 0.716 0.012 0.170

old. The existing methods MUTARA180, SRS and HUNT180 signalled the greatest

number of known ADRs, 54, 44 and 42 respectively. However, these methods also

incorrectly signalled many non-ADR and had low presicion values (0.145−0.212).

The SAP framework had the highest presicion, 0.733, specificity, 0.987 and F-

score, 0.473. This was due to the low number of false positives.

General Ranking

Table 6.4 displays the AUC, AUC[0.9,1] and AP values for the five ADR signalling

methods. The SAP framework had the highest AUC, AUC[0.9,1] and AP, with

values 0.889, 0.054 and 0.596 respectively. The AUC of the SAP framework was

not significantly greater than the AUC for MUTARA180 (p-value 0.093), neither

1The TPD result presented was the optimal result when both the TPD1 and TPD2 were
applied.
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Table 6.5: The results of the signals generated by the different ADR signalling
methods applied to Ciprofloxacin at there natural thresholds.

Method TP FN FP TN Sensitivity Specificity Presicion F-Score

SAP 13 42 0 385 0.236 1.000 1.000 0.382
ROR05 19 36 71 314 0.345 0.816 0.211 0.262

MUTARA180 55 0 327 58 1.000 0.151 0.144 0.252
HUNT180 49 6 257 128 0.891 0.332 0.160 0.271
TPD 4 51 14 371 0.073 0.964 0.222 0.110

was the AUC[0.9,1] (p-value 0.471). The ROC plots are presented in Figure 6.1.

The worse performing method was the ROR05, with an AUC of 0.691 and an AP

of 0.129.

Unlabelled Data Signals

Out 6489 unlabelled drug-medical event pairs containing Nifedipine, 233 were

signalled as ADRs by the SAP framework and are displayed in Appendix D.

The signals (and the number of patients experiencing them 30 days after the

drug) included itching/pruritus (≥1976), psoriasis (579), rash (≥ 836), olecranon

bursitis (483), depression (≥ 3082), joint pain/arthralgia (≥ 3023), appetite loss

(203), tiredness (1848), excessive thirst (36), torticollis (71), dizziness (2585)

and benign essential tremor (91). There were also heart related signals such as

unstable angina (120) and acute myocardial infarction (114).

6.4.2.2 Ciprofloxacin

Natural Thresholds

The methods had variable sensitivities, ranging from 0.073 for HUNT180 to 1

for MUTARA180 and specificities, ranging from 0.0151 for MUTARA180 to 1

for the SAP framework. This suggests their natural thresholds act at varying
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Table 6.6: The general ranking, Area Under the Curve (AUC), partial AUC
(AUC[0.9,1]) and Average Precision (AP), results of the different ADR signalling
methods applied to Ciprofloxacin.

Method AUC AUC[0.9,1] AP

SAP 0.812 0.048 0.614
ROR05 0.713 0.007 0.190

MUTARA180 0.851 0.042 0.547
HUNT180 0.716 0.033 0.406
TPD 0.713 0.011 0.140

stringencies. The SAP framework was able to signal approximately 25% of the

known ADRs and did not signal any non-ADRs. MUTARA180 signalled all the 55

known ADRs but also signalled 327 non-ADRs. The TPD performed the worse

for Ciprofloxacin, with the lowest F-score of 0.110 compared to the others that

ranged from 0.252− 0.382.

General Ranking

For the drug Ciprofloxacin, MUTARA180 had the greatest AUC, 0.851 but the

SAP framework performed better when only considering a low specificity, with

a AUC[0.9,1] of 0.048. The SAP framework also had the greatest AP value,

0.614 compared to the APs of the other methods (0.140 − 0.547). The AUC

of MUTARA180s ROC curve was not significantly greater than the AUC of the

SAP framework ROC curve (p-values 0.241), neither was the AUC[0.9,1] of the

ROC curve for the SAP framework compared to the AUC[0.9,1] of MUTARA180s

ROC curve (p-value 0.235. The ROC plots for the methods applied to signalled

ADRs of Ciprofloxacin can be seen in Figure 6.1.

Unlabelled Data Signals
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Table 6.7: The results of the signals generated by the different ADR signalling
methods applied to Ibuprofen at there natural thresholds.

Method TP FN FP TN Sensitivity Specificity Presicion F-Score

SAP 23 52 3 783 0.307 0.996 0.885 0.455
ROR05 16 59 242 544 0.213 0.692 0.062 0.096

MUTARA180 69 6 538 248 0.92 0.316 0.114 0.202
HUNT180 51 24 522 264 0.68 0.336 0.089 0.157
TPD 3 72 41 745 0.04 0.948 0.068 0.050

Table 6.8: The general ranking, Area Under the Curve (AUC), partial AUC
(AUC[0.9,1]) and Average Precision (AP), results of the different ADR signalling
methods applied to Ibuprofen.

Method AUC AUC[0.9,1] AP

SAP 0.903 0.057 0.654
ROR05 0.473 0 0.076

MUTARA180 0.845 0.045 0.498
HUNT180 0.595 0.020 0.196
TPD 0.654 0.002 0.102

The signals generated by the SAP framework applied to the drug Ciprofloxacin

are listed in Appendix D. Out of 3574 unlabelled drug-medical event pairs con-

taining Ciprofloxacin, 125 pairs were signalled as corresponding to ADRs. Some of

the interesting signals include hypothyroidism (324), depressed mood (625), oral

aphthae (285), muscle injury/strain (46), congestive heart failure (542), Incoordi-

nation symptom (807), canidial balanitis (67), confused (434), achilles tendinitis

(130), left ventricular failure (318) and panic disorder (192).

6.4.2.3 Ibuprofen

Natural Thresholds

The results of the methods applied to Ibuprofen at their natural threshold are

presented in Table 6.7. It can be seen that MUTARA180 was able to signal the
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majority of known ADRs (69/75) at its natural threshold but it also signalled

538 non-ADRs. The SAP framework signalled less, approximately 30% of the

known ADRs (23/75), but managed to only signal 3 non-ADRs, this resulted in

the SAP framework obtaining the greatest presicion, 0.885 and F-score, 0.455.

General Ranking

The SAP framework had the greatest AUC, 0.903, and AUC[0.9,1], 0.057, and these

were significantly greater than the AUC and AUC[0.9,1] corresponding to the sec-

ond best method MUTARA180, with an AUC value of 0.845 and a AUC[0.9,1] of

0.045 (p-values 0.037 and 0.044 respectively). The SAP framework also had the

greatest AP value, 0.654 compared with 0.498, 0.196, 0.102 and 0.076 correspond-

ing to MUTARA180, HUNT180, TPD and the ROR05 respectively. These general

ranking measures are contained in Table 6.8. The ROR05 actually performed

worse than random guessing, with an AUC value under 0.5 and was unable to

signal any known ADRs at a high specificity as its AUC[0.9,1] was 0.

Unlabelled Data Signals

When the SAP framework was applied to unlabelled data corresponding to Ibupro-

fen, there was a total of 200 signals out of a possible 7700. The signalled pairs

included the medical events Nausea (3084), rash (≥ 6155), tiredness symptom

(2937), Gout (3709), essential hypertension (7883), Candidiasis (3488), Cough

(1180), palpitations (1860), shortness of breath (2489), vomiting (170), patient’s

condition improved (22539) and myalgia (2246). A complete list of signals is

contained in Appendix D.

171



6. Evaluating The ADR Learning Framework

Table 6.9: The results of the signals generated by the different ADR signalling
methods applied to Budesonide at there natural thresholds.

Method TP FN FP TN Sensitivity Specificity Presicion F-Score

SAP 26 26 0 535 0.5 1 1 0.667
ROR05 23 29 360 175 0.442 0.327 0.060 0.106

MUTARA180 49 3 308 227 0.942 0.424 0.137 0.240
HUNT180 38 14 258 277 0.731 0.518 0.128 0.218
TPD 1 51 12 523 0.019 0.978 0.077 0.031

Table 6.10: The general ranking, Area Under the Curve (AUC), partial AUC
(AUC[0.9,1]) and Average Precision (AP), results of the different ADR signalling
methods applied to Budesonide.

Method AUC AUC[0.9,1] AP

SAP 0.937 0.070 0.767
ROR05 0.705 0.002 0.059

MUTARA180 0.855 0.052 0.544
HUNT180 0.707 0.025 0.232
TPD 0.696 0.003 0.105

6.4.2.4 Budesonide

Natural Thresholds

Table 6.9 displays the results of the signals generated for Budesonide by the meth-

ods at their natural threshold. The SAP framework did not signal the most known

ADRs, MUTARA180 signalled 49 out of 52 known ADRs, but it was able to signal

50% and all the signals were correct (0 false positives). MUTARA180 signalled

308 false positives, so only 49 out of the 357 signals generated by MUTARA180

correspond to known ADRs. The TPD generated the least number of signals,

13 in total, and only 1 corresponded to a known ADRs, making it the wore per-

forming method. The F-score of the SAP framework, 0.667, was over double the

other methods’ F-scores, in the range [0.031, 0.240].
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General Ranking

The SAP framework performed excellently on the drug Budesonide with an AUC

of 0.937, a AUC[0.9,1] of 0.070 and a AP of 0.767. Both the AUC and the AUC[0.9,1]

of the SAP framework was significantly greater than the AUC and the AUC[0.9,1]

of MUTARA180 (p-values 0.0126 and 0.022 respectively), the second best perform-

ing method with an AUC of 0.855 and a AUC[0.9,1] of 0.0524. The results for all

the methods are presented in Table 6.10. The methods that obtained the lowest

ranking performance were the TPD and ROR05, although their AUC values were

approximately 0.7, suggesting all the methods performed well for Budesonide.

Unlabelled Data Signals

There were a total of 206 signals out of a possible 5219 generated by the SAP

framework when applied to unlabelled drug-medical events pairs containing Budes-

onide. A selection of the interesting medical events signalled as ADRs to Budes-

onide are micturition frequency (892), constipation (2650), pain/backache (2397),

accidental falls (1513), incoordination symptom (1407), dermatitis (≥ 1739), dead

(125), heartburn (634), impotence (607), essential hypertension (2258), appetite

loss (82), bloating (71), drug and other substances-adverse effects in therapeu-

tic use (281), alopecia unspecified (100), tremor (201) and patient’s condition

worsened (927). For a list of all the signalled medical events see Appendix D.

6.4.2.5 Naproxen

Natural Thresholds

The SAP framework was able to signal approximately 40% of the known ADRs

and out of the signals generated, 89% corresponded to known ADRs and only 11%
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Table 6.11: The results of the signals generated by the different ADR signalling
methods applied to Naproxen at there natural thresholds.

Method TP FN FP TN Sensitivity Specificity presicion F-Score

SAP 31 49 4 446 0.388 0.991 0.886 0.539
ROR05 25 55 182 268 0.313 0.596 0.121 0.174

MUTARA180 72 8 293 157 0.9 0.349 0.197 0.324
HUNT180 54 26 274 176 0.675 0.391 0.165 0.265
TPD 6 74 15 435 0.075 0.967 0.286 0.119

Table 6.12: The general ranking, Area Under the Curve (AUC), partial AUC
(AUC[0.9,1]) and Average Precision (AP), results of the different ADR signalling
methods applied to Naproxen.

Method AUC AUC[0.9,1] AP

SAP 0.883 0.055 0.700
ROR05 0.510 0.000 0.136

MUTARA180 0.793 0.036 0.503
HUNT180 0.628 0.020 0.325
TPD 0.706 0.008 0.209

corresponded to non-ADRs. MUTARA180 was able to signal 90% of the known

ADRs, but only 20% of the total signals corresponded to ADRs, the remain-

ing 80% were non-ADRs. The SAP framework had the greatest F-score, 0.539,

with the other methods obtaining 0.324, 0.265, 0.174 and 0.119 for MUTARA180,

HUNT180, the ROR05 and TPD respectively. These results are presented in Table

6.11 and the ROC plots are displayed in Figure 6.1.

General Ranking

The general ranking performance of the methods varied when applied to Naproxen,

this can be seen in Table 6.12. The SAP framework and MUTARA180 performed

well, obtaining AUC values of 0.883 and 0.793 respectively and AUC[0.9,1] values of

0.055 and 0.036 repsectively. The SAP framework’s AUC was significantly greater
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than MUTARA180’s AUC (p-value 0.012), as was its AUC[0.9,1] (p-value 0.007).

The SAP frameworks’ AP was greater than the other methods, 0.7, compared

with the other methods ranging from 0.136 (ROR05) to 0.503 (MUTARA180).

The ROR05 performed poorly, with an AUC of 0.51, not much improvement on

random guessing, and a AUC[0.9,1] of 0, showing it was not able to signal any

known ADRs when the specificity if high.

Unlabelled Data Signals

When the SAP framework was applied to the 4540 unlabelled drug-medical event

pairs containing the drug Naproxen, a total of 302 pairs were signalled as cor-

responding to ADRs. For a list of all the medical events contained in these

drug-medical event pairs see Appendix D. The medical events of interest are de-

pression (1677), abdominal pain (1077), acquired hypothyroidism (588), anxiety

states (707), breathlessness (873), hoarse (172), nausea present (232), constipa-

tion (308), unstable angina (24), vomiting (38), left ventricular failure (230),

obstructive jaundice (13), acute retention of urine (13), acute non-ST segment

elevation myocardial infarction (27), ocular hypertension (147), drug stopped-

medical advice (529), spasms (14), congestive heart failure (368) and atria flutter

(20).

6.4.3 Discussion

The SAP framework had a greater AUC value for four out of the five drugs

investigated and a greater AUC[0.9,1] for all five drugs, compared to the existing

methods. The AUC and AUC[0.9,1] was significantly greater, at a 5% significance
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(a) Nifedipine
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(b) Ciprofloxcin

Figure 6.1: The ROC plots for the SAP algorithm, implementing a random forest
(black) and the existing methods MUTARA180 (orange), HUNT180 (red), TPD
(green) and ROR05 (blue).
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(c) Ibuprofen
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(d) Budesonide

Figure 6.1: The ROC plots for the SAP algorithm, implementing a random forest
(black) and the existing methods MUTARA180 (orange), HUNT180 (red), TPD
(green) and ROR05 (blue).
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(e) Naproxen

Figure 6.1: The ROC plots for the SAP algorithm, implementing a random forest
(black) and the existing methods MUTARA180 (orange), HUNT180 (red), TPD
(green) and ROR05 (blue).
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level, for three of the five drugs (Ibuprofen, Budesonide and Naproxen). This

suggests that the SAP framework is overall better at ranking ADRs. As the SAP

framework’s AUC[0.9,1], the AUC when the specificity is high and the false positive

rate is low, was always greater than the existing methods, this shows that the

SAP framework is able to signal ADRs more precisely. This is also evident by

the AP score of the SAP framework being greater than the existing methods for

all five drugs, resulting in an overall Mean Average Precision (MAP) score of

0.667 compared to 0.531, 0.297, 0.145 and 0.118 corresponding to MUTARA180,

HUNT180, TPD and ROR05 respectively.

The SAP framework was able to signal a high percentage of ADRs while main-

taining a low number of false positives. Although MUTARA180 signalled more

ADRs, it also signalled many false positives. Over all five drugs, the number of

SAP and MUTARA180 signals that were true positives were 115 and 299 respec-

tively, but the number of false positives were 15 and 1733 respectively. Therefore,

88.5% of the SAP framework signals are likely to correspond to ADRs, while only

14.7% of MUTARA180’s signals are likely to be ADRs. This means MUTARA180’s

natural threshold signals probably need additional filtering, whereas this is not

necessary when the SAP framework is implemented.

Overall, the SAP framework managed to signal 115 out of the 325 ADRs. This

corresponds to a minimum of 35.4% of the ADRs being identified, as READ code

redundancy may mean that some of the 64.6% remaining non-signalled ADRs

READ codes may correspond to the same medical event as the signalled READ

codes. This value may be further improved by training the SAP framework on

more drugs, or by adding additional attributes based on the remaining Bradford-

Hill causality considerations (consistency, plausibility and coherence). The SAP

179



6. Evaluating The ADR Learning Framework

framework was also able to signal medical events that had a low frequency during

the 30 day period after the drug, and medical events with a high background rate

such as depression and myocardial infarction. These medical events are often

difficult to signal by the existing SRS methods [70] as the association strength is

often very weak.

The TPD, HUNT180 and ROR05 performed worse than the SAP framework

and MUTARA180. The methods were unable in general to signal ADRs without

being swamped by false positives and obtained MAP scores of less than 0.5,

suggesting their general ranking ability was poor on the drug-medical event pairs

investigated. The TPD method may have been inhibited as it only analyses

patients that have a long medical history, due to it investigating the 27 months

to 21 month time period prior to the prescription. Therefore, the amount of data

available for the TPD algorithm may have been smaller relative to other methods.

The natural threshold of HUNT180> 1 appeared to act at a similar stringency as

MUTARA180 suggesting this is a good threshold to apply.

It is clear that the SAP framework was consistent over the drugs investigated

and did not perform poorly on any instance. MUTARA180 also returned consis-

tent results, however, the other three existing methods returned mixed results.

They performed poorly for Naproxen and Ibuprofen, with the ROR05 being worse

than random guessing and TDP performing little better.

When the SAP framework was applied to the unlabelled data corresponding

to the five drugs it was able to signal many suspected ADRs and highlighted

some potentially new ADRs. The results obtained from the unlabelled data were

very promising but require further evaluation to confirm causality. The SAP

framework successfully signalled known ADRs with obscure descriptions, and
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this is additional evidence to support its ability.

6.5 Summary

The results of the SAP framework applied on the standard reference set of 53

drug-medical event pairs provide evidence that the SAP framework is able to

signal ADRs with a low false positive rate. The results of applying the SAP

framework on a subset of the THIN database and the results of applying ex-

isting method to the common data model are comparable. This is impressive

as the common data model contains more data than the subset of the THIN

database used through this research. The results provide evidence to support

the argument that methods should be developed for specific databases to utilise

the whole data, as it is known that information can be lost when transforming

LODs into the common data model [214]. It is also clear that single databases

in their raw form are useful sources for pharmacovigilance. The results also show

that introducing attributes based on the Bradford-Hill causality considerations

to tackle the problem of confounding can reduce the number of false positives

signals.

The results of the specific comparison show that the novel SAP framework out-

performs the existing methods evaluated in this thesis (MUTARA180, HUNT180,

ROR05 and TPD) and signalled ADRs with a low false positive rate. The SAP

framework appears to be the first ADR signalling technique that has manage

to signal a sufficient number of ADRs using LODs while obtaining a low false

positive rate. This is an improvement over current pharmacovigilance techniques

applied to LODs and may increase the efficiency in discovering ADRs. Possible
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reasons for the SAP framework’s performance are the inclusion of Bradford-Hill

causality consideration attributes and attributes specific to the THIN database

or its ability to learn from known ADRs.

The SAP framework was able to generate new ADR signals, but further anal-

yse needs to be performed before the the signals can be confirmed as true or not.

The benefit of the SAP framework is that prior results can be used to update the

framework as the signals it generates are confirmed as ADRs or non-ADRs. The

SAP framework’s performance should increase over time as the number of known

definitive ADRs or non-ADRs increases.
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Chapter 7

Conclusions

This thesis has focused on developing an ADR signalling framework, specifically

for the THIN database, that can identify ADRs with a low false positive rate.

It was determined that the current ADR signalling techniques, applied to the

THIN database, had a high false positive rate and the majority of signals were

non-ADRs. The plausible reasons for this were that the existing methods cannot

distinguish between causation and association and they do not take into account

the hierarchal structures embedded within the THIN database.

To overcome this issue of the methods signalling ADRs based on the strength

of association rather than causation, a generalisation of the technique of consider-

ing the Bradford-Hill causality considerations to determine signals was proposed.

The technique was generalised by calculating attributes based on five of the

Bradford-Hill causality considerations (association strength, temporality, biologi-

cal gradient, specificity and experimentation), using the THIN database, and then

using knowledge of existing ADRs to find patterns embedded within the attribute

values that could be used to signal ADRs. By applying a learning technique, a

sixth Bradford-Hill factor, analogy, is also indirectly incorporated. Furthermore,

attributes that incorporated knowledge of the THIN hierarchal structures were
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also proposed and used as attributes into the learning algorithm. These attributes

helped identify medical events that occurred before the drug was taken but then

progressed or were recorded inconsistently.

It was shown that the SAP framework, a classifier trained using data consist-

ing of Bradford-Hill causality considerations and THIN specific attributes corre-

sponding to drug-medical event pairs that are known ADRs or non-ADRs, can

be applied to a different drug-medical event pair to determine if the pair is an

ADR or not with an specificity of 0.75 and a sensitivity of 0.84. The natural

threshold false positive rate was lower than existing methods, showing that the

SAP framework overcomes the current limitation of a high false positive rate that

plagues the existing ADR signalling methods for LODs.

In the continuation of this chapter the contributions of this work are sum-

marised, and suggestions are made for future directions of work to follow on from

this research. The dissemination of this research is reported in the conclusion of

this chapter.

7.1 Contributions

This thesis has made the following contributions:

• Determined the benchmark for the existing methods on the THIN

database

There is no golden standard for signalling ADRs [179] due to the lack of

definitive knowledge of existing ADRs for each drug. In [214], the authors

applied a selection of ADRs signalling techniques to the raw THIN database

and a mapped version of the database to determine if signals are lost during
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the mapping. This was the first example of the THIN database being inves-

tigated for ADR signal detection. Benchmarks for the standard reference

using the raw THIN database were determined, but the authors did not

apply an extensive analysis and the standard reference may contain bias.

In Chapter 3, an extensive analysis was conducted by applying a selection

of existing ADR signalling methods (Reporting Odds Ratio, Temporal Pat-

tern Discovery, Mining Unexpected Temporal Association Rules given the

Antecedent and Highlighting Unexpected temporal association rules Negat-

ing Temporal association rules) to the THIN database and analysing the

signals with two different perspectives. The ROR and TPD had been com-

pared with other methods in numerous studies [156] [80] and the authors

concluded that the methods performed similarly, so rather than applying all

the existing methods, only these two were chosen. MUTARA and HUNT

had not be incorporated in any previous comparison, so they were also

added to the investigation. The previous comparisons had concluded that

the methods had a high false positive rate [156] and this limited there abil-

ity.

The comparisons conducted in this research showed, consistent with previ-

ous results, that the four existing method had a high false positive rate. An

interesting result was that their performance deteriorated when the num-

ber of drug-medical event pairs being investigated increased, although this

may be partially due to the effect of unknown ADRs causing their results

to seem worse than they are. When considering a smaller subset the drug-

medical event pairs, where only definitively known ADRs or non-ADRs are
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included, the benchmark AUC, AUC[09,1], AP, were 0.770, 0.032, 0.315 re-

spectively. The sensitivity and specificity ranged between 0.061−0.894 and

0.0366− 0.959 respectively.

The comparison suggested that the existing ADR signalling methods are

unsuitable for signalling ADRs using the THIN database due to the large

number of false positive signal generated. It would be difficult to extensively

investigate each signal generated and the majority of them would be false.

• Proposed suitable attributes to distinguish association from cau-

sation

The THIN database is a LOD containing prescription and medical histo-

ries for millions of patients. It offers the potential to infer temporal causal

relationships between drugs and medical events, but no ADR signalling

technique had been developed specifically for the THIN database. Exist-

ing methods, developed for alternative databases, determine the association

strength between a drug-medical pair and signal the pairs with the great-

est association. This causes a high false positive rate, as many medical

events can be highly associated to a drug due to non-causal reasons. When

investigating a single drug-medical event pair, researchers have often con-

sidered the Bradford-Hill causality considerations to draw conclusions [164].

As the THIN database contains data that can be used in consideration of

many Bradford-Hill causality considerations, in this work, a generalisation

and automatisation of this idea was proposed by extracting Bradford-Hill

causality considerations based attributes from the THIN database. The

attributes were then used as inputs into a learning algorithm. This is the
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first attempt of such an approach.

The attributes proposed in Chapter 4 are a mixture of existing and novel cal-

culations to cover five of the Bradford-Hill causality considerations, namely,

association strength, temporality, specificity, biological gradient and exper-

imentation. The association strength based attributes and the majority of

the temporality attributes were extracted from existing pharmacovigilance

methods. The specificity, biological gradient, experimentation and tempo-

rality BA ratios are all novel attributes that were developed in this work. As

this work was focussing on a ADR signalling technique, specifically for the

THIN database, novel attributes were also presented in Chapter 4 to deal

with the hierarchal structure within the THIN data. It was concluded in

Chapter 3 that the existing methods struggle with illness progressions or re-

dundancy within the THIN database. By using the THIN medical event hi-

erarchy, attributes were proposed that identify medical events that are more

detailed or similar to medical events that were reported before the drug.

Different attributes may be required for different healthcare databases, de-

pending on any database specific issues that are identified.

• Developed a novel supervised/semi-supervised technique for causal

inference using THIN

After proposing the novel learning algorithm for signalling ADRs, the fo-

cus fell on what would be better, to develop a supervised classifier that is

trained on labelled data corresponding to a collection drugs or to apply a

semi-supervised algorithm that is trained on both labelled and unlabelled

data for the drug being investigated?
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In previous work, [5] and [113], researchers have trained classifiers to signal

ADRs using chemical data and known ADRs. It was shown that these tech-

niques attained a high recall and precision and the results provided evidence

that incorporating knowledge of ADRs into models improves performance.

The existing methods for signalling ADRs using LODs are unsupervised

and do not incorporate knowledge of existing ADRs.

In Chapter 5, two learning algorithm frameworks, that use the attributes

derived from the THIN data (described Chapter 4), were presented. The su-

pervised technique, the SAP framework, applied a classifier that is trained

on labelled data corresponding to various drugs. The semi-supervised tech-

nique, the SSAP framework, applied either a self-train random forest or

a semi-supervised clustering technique to both the unlabelled and labelled

data of a single drug. It was concluded that the SAP framework outper-

formed the SSAP self-train and semi-supervised approach and the SAP

framework returned consistent results. This was the first attempted of im-

plementing supervised or semi-supervised techniques to infer ADRs using a

LOD.

The SAP framework consistently returned a low false positive rate, even

when the training set was small. As the consuming element of the SAP

framework is the training aspect, the SAP framework is highly efficient

once trained and training rarely needs to occur. The SAP framework was

also shown to be robust, as it was consistently able to signal ADRs with a

low false positive rate over a range of drugs.

• Evaluated the SAP framework on the THIN database
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In Chapter 6 the SAP framework was compared with the TPD, ROR, MU-

TARA and HUNT methods for a range of drugs using the THIN database.

The results confirmed that the SAP framework, using Bradford-Hill causal-

ity considerations and THIN specific attributes and learning from known

ADRs, was able to signalled ADRs with a low false positive rate, unlike

the existing methods. The SAP framework obtained a greater Average

Precision and AUC[09,1] for all the drugs investigated. The current bench-

marks, set by the SAP framework, for ADR signalling methods using the

THIN database are a MAP of 0.667, a sensitivity of 0.354 and a precision

of 0.885. These results provided evidence to confirm the second hypothesis,

that novel ADR signalling algorithms applied to the THIN database will

outperform existing methods if they deal with the hierarchal structures in

the THIN database, incorporate causality based attributes and learn from

existing ADRs.

The SAP framework was able to generate new ADRs signals when it was

applied to unlabelled drug-medical event pairs. This supports the third

hypothesis. Unfortunately, additional analysis is require to confirm if the

signals are true or false.

The SAP frameworks ability on the OMOP DOI-HOI standard reference

containing ten DOIs and nine HOIs was limited by the training size avail-

able. However, the SAP framework’s ability to generate ADR signals using

the THIN database was comparable to the existing methods ability us-

ing the common data model. This is an impressive result as the common

data model contains more data, and the SAP framework obtained a lower
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false positive rate than existing methods. The performance of the SAP

framework is likely to improve as the training size increases, so the SAP

framework is likely to outcompete the existing methods when a larger stan-

dard reference set is developed. Therefore, the fourth hypothesis, that the

SAP framework will outcompete the existing methods when considering

the standard reference, cannot be currently confirmed but the results do

provide limited evidence to support it.

7.2 Future Work

The areas of research that follow on from this research are now presented.

• Generating attributes for the remaining Bradford-Hill causality

considerations

In Chapter 4, attributes were developed that cover five of the nine Bradford-

Hill causality considerations. The sixth, analogy, was indirectly incorpo-

rated due to using a supervised technique that looks for patterns within

ADRs. The remaining considerations are consistency, plausibility and co-

herence. Future work could aim to generate new attributes to cover these

remaining considerations. Possible suggestions for suitable attributes are,

to calculate the strength of association in different databases, such as SRS

databases, for the consistency factor or to incorporate attributes relating

to chemical structure knowledge, such as in [113], for the coherence factor.

There are two possible ideas to determine attributes for plausibility. The

first idea is to mine the web, such as medical forums, and identify if the

drug-medical event pair have been frequently mentioned as corresponding

190



to a possible ADR. In [202], the authors have used text mining techniques

to identify ADRs and this idea could be adapted. The second idea is to

indirectly tackle plausibility by ruling out other possibilities, this could be

done by applying sequential pattern mining and filtering the explainable

medical events (medical events that have progress from a prior illness).

• Combining the SAP and SSAP frameworks using an ensemble

In this research a supervised framework and a semi-supervised framework

were proposed in Chapter 5. Four classifiers, support vector machine, ran-

dom forest, naive Bayes and logistic regression and two semi-supervised

algorithms, self-trained random forest and semi-supervised k-means were

applied to the data and analysed. The results showed that the random for-

est classifier performed the best, so this was selected and used in Chapter

6, although when the training set was small, the support vector machine

classifier performed better. Future would could involved investigating an

ensemble technique that uses the prediction of all the learning algorithms

developed in Chapter 5 to get a final aggregated prediction.

• Quantifying the ADRs

This research has produced a framework that can efficiently and precisely

signal ADRs. Using this framework to signal the ADRs, the signalled ADRs

could then be investigated and the additional risk of having the medical

event due to taking the drug could be determined. This follow up work

would add accurate quantitative information to ADRs, something that is

currently lacking [171].
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• Identifying risk factors corresponding to the ADRs

In addition to quantifying the ADRs, the signals could also be investigated

to determine risk factors. Possible methods of achieving this would be to

apply association rule mining [213] to the patients’ sets of medical history

for all the patients taking the drug and all the patients taking the drug

and experiencing the ADRs, and then identify the rules that occur more

frequently in the patients experiencing the ADR.

• Make the SAP framework run in realtime

The causal based attributes for each drug-medical event pair could be stored

such that when new therapy and medical records are added to the database

the attributes are updated. The SAP framework could then be applied to

determine if the signal status of any drug-medical event pair has changed.

The learning model used within the SAP framework could also be re-trained

after a sufficient amount of new data is added, and could incorporate new

labels as addition ADR knowledge is gained.

• Removing the redundancy in the READ codes

The READ code structure has redundancy and there are multiple READ

codes for the same medical event. This causes issues when trying to aggre-

gate how frequently a medical event occurs after the drug of interest for the

same population as the redundancy partitions the medical event and these

partitions have smaller frequencies than if they were all grouped together.

If future worked aimed to develop an algorithm that could group the READ

codes that correspond to the same medical event together, the results of the

ADR signalling algorithms on the THIN database would improve.
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• Adapting the framework to identify drug-drug interactions

Many researchers have identified the requirement of identifying drug-drug

interactions ADRs. The THIN databases contains data that may be used

to signal drug-drug interaction ADRs and the SAP framework can readily

be adapted. Future work could aim to identify when a patient is taking

two drugs within a similar time interval and then, for drug A, drug B and

medical event 1, generate the attributes developed in Chapter 4 for three

different prescription situations, the first would be patients only taking

drug A, the second would be for patients only taking drug B and the third

would be patients taking both drugs. The three sets of attributes could

be combined into one data-point corresponding to drug A, drug B and the

medical event 1.
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Appendix A

The THIN Database

Introduction

The THIN database is a longitudinal resource containing temporal medical data

corresponding to over 3.5 million active patients and 11.5 million total patients.

The data are anonymously extracted from each individual general practice’s Vi-

sion clinical system, validated and combined to generate the THIN database. The

current database is 326Gb and covered 6.05% of the UK in 2012, with over 0.6

billion medical records (i.e., entries detailing an instance of a medical event such

as an illness, observation or laboratory event) and approximately 1 billion ther-

apy records (i.e., entries detailing an instance of a drug prescription). There is

a slightly higher relative proportion of female patients than male patients in the

database, with 47.7% of a patients being male and 52.3% being female, whereas

the 2011 census suggests the UK population is 49.1% male and 50.9% female.

The number of general practices included within the database is expanding over

time, with 12 new practices recruited during the first three quarters of 2013.
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Figure A.1: An entity relationship diagram of the THIN database.

The database is also expanding due to recently occurring records from registered

practices being added over time.

Structure

The structure of the main THIN database is illustrated in Figure A.1, there are

additional tables not included into the diagram due to them not being incor-

porated within this research. The three main tables are the patient table, the

therapy table and the medical table, see Figures A.2-A.4. Each patient within

the THIN database is represented by a unique anonymous patient id, named the

combid, and the patient table contains the attributes of each patient (e.g., their

year of birth, their body mass index, their smoking habits, the year they reg-

istered and the date of death if they have died). The medical table stores the

temporal data regarding the patients’ medical events. Each entry in the medical

table contains a combid that refers to the patient experiencing the medical event,

197



a READ code that corresponds to a medical event and the date that the medical

event occurred. The READ codes are there due to database normalisation, but

one advantage of using the READ codes rather than string descriptions to repre-

sent a medical event is that they have a hierarchical structure that may be useful

when applying data analysis. The READ codes and their structure are discussed

in greater detail further in thin Chapter. The therapy table contains records

regarding drug prescriptions. Each therapy record contains the combid referring

to the patient being prescribed the drug, a drugcode corresponding to the drug

being prescribed and the prescription date. The drugcode is also introduced due

to database normalisation. The drugcode does not have an obvious structure but

each drugcode is linked to up to three British National Formulary (BNF) codes

corresponding to the main chemical components that make up the drug. The

BNF codes do have a hierarchical structure and can be used to identify similar

groups of drugs. The BNF codes are also discussed in greater detail in the latter

section of this Chapter.

READ Codes

The READ codes are a clinical terminology thesaurus used for recording medical

events within General Practice databases. Each medical event is encoded into

a READ code, and the READ code consists of five elements from the alphabet

{1−9, a−z, A−Z, •}. The READ codes have a hierarchal tree structure with five

levels. The medical events become more specific as the level increases, so the child

READ codes correspond to the same medical event as their parent READ code

but are more specific. The level of a READ code x = x1x2x3x4x5 is calculated
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Figure A.2: A screen shot of the patient table contained within the THIN
database.

Figure A.3: A screen shot of the therapy table contained within the THIN
database.
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Figure A.4: A screen shot of the medical table contained within the THIN
database.

Figure A.5: An example of the branch of the THIN READ code tree.
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as,

Lv(x) =











argmini{(i− 1)|xi = •} if ∃i s.t. xi = •

5 otherwise.
(A.1)

An example of a branch in the READ codes is,

A• • •• Infectious and parasitic diseases (level 1)

A1• • • Tuberculosis (level 2)

A12•• Other respiratory tuberculosis (level 3)

A120• Tuberculosis pleurisy (level 4)

A1201 Tuberculosis of pleura (level 5)

where it can be seen that all the READ codes above are infections and the infec-

tion represented by the READ code becomes more detailed as the level increases.

A graphical illustration of this section of the READ code tree can be seen in

Figure A.5.

Unfortunately, the READ codes have redundancies and a single medical event

may have multiple corresponding READ codes found in widely varying branches

of the READ code tree. This can lead to issues during data analysis as it is

difficult to aggregate the data for the READ codes corresponding to the same

medical event, and the partitioning can result in a lower confidence in the results

that are obtained. There are also problems with inconsistent READ code usage

by medical staff. For example, some staff may frequently enter high level specific

READ codes while others may have a tendency to enter low level READ codes

that are less specific. Furthermore, it is common to find ‘temporal READ code

progressions’, where a low level READ code is initially recorded and shortly in
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Figure A.6: An example of the branch of the British National Formulary (BNF)
tree.

time afterwards a child or grand-child READ code is recorded due to additional

knowledge being obtained.

BNF Codes

The BNF codes are based on BNF sections. They have a hierarchal tree structure

linking drugs that are prescribed for the similar indication (i.e., the reason for

being given the drug), and drugs with the same BNF code are from the same

drug family. Figure A.6 illustrates a branch of the BNF code tree. If we consider

each BNF code to be represented by yi = yi1.yi2.yi3.yi4, where each element is in

the alphabet {1 − 15, 00}, then yi1 is the primary category, yi2 is the secondary

category, yi3 is the tertiary category and yi4 is the quaternary category. There are

15 different primary categories, these primary categories relate to the the most

general description of the drug indication. The similarity between two BNF codes
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yi1 Category

1 Gastro-intestinal system
2 Cardiovascualar system
3 Respiratory system
4 Central nervous system
5 Infections
6 Endocrine system
7 Obstetrics, gynaecology, and urinary-tract disorders
8 Malignant disease and immunosuppression
9 Nutrition and blood
10 Musculoskeletal and joint diseases
11 Eye
12 Ear, nose, and oropharynx
13 Skin
14 Immunological products and vaccines
15 Anaesthesia

can be calculated as,

S(yi,yj) =
|{yik|yik = yjk}|

max(|{k|yik 6= 00}|, |{k|yjk 6= 00}|)
(A.2)

where the similarity measure is 1 if and only if the two BNF codes are the same,

and greater than zero if and only if the BNF codes correspond to drugs prescribed

for a similar indication.

Issues & Validation

There are known issues with the database including concept drift and problems

with the level of time stamp detail. In general, the data is validated during

extraction and additional fields are added into the tables to indicate the integrety

of each record, so problematic records can be excluded from the study.
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Data Collection Issues

One of the main limitations of the THIN data is changes in the way data is

collected or the type of data collected over time may lead to concept drift. Over

time the READ codes that are actively used may change, new READ codes may

get added and old READ codes may be removed. For example, it is common for

old records to contain the READ code ’ZZZZZ’ corresponding to an unmappable

medical event. The drug prescription rate is unlikely to stay constant over time,

as new knoweldge of suspected ADRs or new studies detailing the effectiveness

of a drug can impact a General Practioneers decision to prescribed a drug. It is

also common for new drugs to be introduced.

Time Stamps

Each record in the medical and therapy table contains a time stamp. These time

stamps are the day that the doctors entered the event of prescription into the

database. As the time stamp is only in days, it is not possible to determine the

order for the medical events and prescriptions within one day. When a medical

event and prescription are recordered for the same paient on the same day it may

be possible that the patient was prescribed the medication due to the medical

event or that the medical event is an adverse drug reaction of the medication.

To address the uncertainty of the order of events with the same timestamp

for the same patient, the medical events recorded on the day a drug is prescribed

are often ignorred from the calculation of assocation between a drug and medical

event.
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Appendix B

Drugs

Drugs Investigated

NSAIDs

The drugs Ibuprofen, Ketoprofen, Fenoprofen and Celecoxib used in this study

are all from the same drug family known as non-steroidal anti-inflammatory drugs

(NSAIDs). These drugs are typically prescribed for continuous pain associated

with inflammation and have a variety of common side effects including gastroin-

testinal disturbances, hypersensitivity reactions and depression. Rarer side ef-

fects include congestive heart failure, renal failure and hepatic failure. Elderly

patients are more prone to side effects associated with NSAIDs. In this study the

the drugs tended to be prescribed sightly more to females with the male propor-

tion ranging from 0.335 − 0.405 and to older patients, although Ibuprofen was

prescribed to younger patients more than the other NSAID drugs. The NSAID

drug prescribed the most was Ibuprofen with over a million first in 13 month
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Table B.1: Information about the NSAID drugs investigated in this paper. Total
is the number of times the drug is prescribed for the first time in 13 months, age
is the average age of the patients who are prescribed the drug for the first time in
13 months and male proportion is the number of patients that are male divided
by the total number of patients who are prescribed the drug for the first time in
13 months.

Drug Total TPD MUTARA ROR Age male proportion
celecoxib 68036 62946 62100 63416 62.49 0.335
ibuprofen 1178163 1012555 858819 903415 45.56 0.405
ketoprofen 72946 65718 61710 63536 58.17 0.375
fenoprofen 1255 1008 975 1036 56.29 0.404

prescriptions, whereas Fenoprofen was only prescribed 1225 times for the first

time in 13 months, see Table B.1.

Quinolones

The quinolones are a class of drugs used to treat bacterial infections such as res-

piratory track infections and urinary-track infections. Ciprofloxacin, levofloxacin,

moxifloxacin, nalidixic acid and norfloxacin are drugs from the quinolone family

that are investigated in this paper. The quinolones have many side effects, includ-

ing tendon rupture. The average age of the patients prescribed the quinolones

for the first time in 13 months was similar between all the drugs, around the

late fifties. The male proportion shows that females are prescribed quinolones

more than males, but this was more obvious for norfloxacin and nalidixic acid.

Ciprofloxacin was the most prescribed quinolone and moxifloxacin was the least

common, with only 1465 prescriptions. Table B.2 shows the information on the

drugs from the THIN database.
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Table B.2: Information about the Quinolone drugs investigated in this paper.
Total is the number of times the drug is prescribed for the first time in 13 months,
age is the average age of the patients who are prescribed the drug for the first
time in 13 months and male proportion is the number of patients that are male
divided by the total number of patients who are prescribed the drug for the first
time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
ciprofloxacin 280011 250158 227739 235420 55.64 0.440
levofloxacin 7662 7028 6775 6928 60.55 0.43
norfloxacin 14876 13224 12220 12625 56.83 0.262
moxifloxacin 1465 1347 1343 1371 62.09 0.419
nalidixic acid 4273 3646 3620 3787 55.63 0.127

Table B.3: Information about the tricyclic drugs investigated in this paper. Total
is the number of times the drug is prescribed for the first time in 13 months, age
is the average age of the patients who are prescribed the drug for the first time in
13 months and male proportion is the number of patients that are male divided
by the total number of patients who are prescribed the drug for the first time in
13 months.

Drug Total TPD MUTARA ROR Age male proportion
doxepin 6752 6029 5908 6104 56.69 0.316

lofepramine 45532 38565 37642 39517 51.39 0.285
nortriptyline 11775 10519 10307 10650 54.43 0.286

Tricyclic Antidepressants

Tricyclic antidepressant drugs are a family of drugs used to treat depression and

are known to cause, among others, cardiovascular and central nervous system side

effects. The three drugs, doxepin, lofepramine and nortriptyline where selected in

this paper. The tricyclic antidepressants investigated are prescribed to patients

with similar ages and genders and tend to be prescribed more often to older

females. The main difference between the drugs is that doxepin is only prescribed

to 6752 patients whereas the other two drugs are prescribed to more than 10000

patients, see Table B.3.
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Table B.4: Information about the calcium channel blocker drugs investigated in
this paper. Total is the number of times the drug is prescribed for the first time
in 13 months, age is the average age of the patients who are prescribed the drug
for the first time in 13 months and male proportion is the number of patients that
are male divided by the total number of patients who are prescribed the drug for
the first time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
nifedipine 125491 112715 112499 115823 65.29 0.453
verapamil 24334 22000 21896 22513 65.01 0.405
felodipine 69534 65093 64036 65202 67.46 0.454
amlodipine 270918 251316 249972 254876 66.68 0.494
nicardipine 2796 2510 2511 2593 65.91 0.481

Calcium Channel Blockers

The drugs nifedipine, nicardipine, amlodipine, felodipine and verapamil are all

calcium channel blocker that are used to treat high blood pressure and raynaud’s

phenomenon. It is common for the calcium channel blockers to be prescribed

with other drugs and applying the existing algorithms to detect side effects on

the calcium channel blockers will investigate the effect of confounding due to

multiple prescriptions. The drug nifidipine was previously used to investigate

the TPD applied to the UK IMA Disease Analyzer, so investigating the calcium

channel blockers will also give insight into how robust the TPD is when applied

to different electronic healthcare databases. The calcium channel blockers are

generally prescribed for the first time in 13 months to patients around 65 years

old. Amlodipine and nicardipine are prescribed only slightly more to females than

males, whereas the other calcium channel blockers investigated are prescribed

even more often to females. Amlodipine and nifedipine have been prescribed

over 100000 times for the first time in 13 months in the THIN database, but

nicardipine has only been prescribed 2796 times, see Table B.4.
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Table B.5: Information about the sulphonylurea drugs investigated in this paper.
Total is the number of times the drug is prescribed for the first time in 13 months,
age is the average age of the patients who are prescribed the drug for the first
time in 13 months and male proportion is the number of patients that are male
divided by the total number of patients who are prescribed the drug for the first
time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
glibenclamide 11874 10356 10377 10768 65.12 0.540
gliclazide 45824 41626 40537 41612 65.02 0.546
glimepiride 10957 10156 9882 10081 64.20 0.534
glipizide 5315 4856 4614 4731 66.50 0.535

tolbutamide 3113 2758 2793 2894 69.40 0.487

Sulphonylureas

The sulphonylurea drug family includes tolbutamide, glibenclamide, gliclazide,

glimepiride and glipizide. They are a class of antidiabetic drugs used for the

management of type 2 diabetes mellitus. The sulphonylureas are prescribed for

the first time in 13 months to older patients will an average age around 65 years

old and all the sulphoylureas investigated except tolbutamide are prescribed more

often to males, with approximately equal male proportions. Glipizide and tolbu-

tamide are the less frequently prescribed sulphonylurea drugs. The general infor-

mation about each of the sulphonylurea drugs can be seen in Table B.5.

Penicillins

The last drug family is the Penicillin drugs amoxicillin, ampicillin, flucloxacillin,

benzylpenicillin and phenoxymethlypenicillin. These drugs are used to treat bac-

terial infections. The number of times the drugs are recorded as being prescribed

in the THIN database varies between 2000 to over two million. There is also a

divergence between the average age of the patients prescribed each of the drugs,
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Table B.6: Information about the penicillin drugs investigated in this paper.
Total is the number of times the drug is prescribed for the first time in 13 months,
age is the average age of the patients who are prescribed the drug for the first
time in 13 months and male proportion is the number of patients that are male
divided by the total number of patients who are prescribed the drug for the first
time in 13 months.

Drug Total TPD MUTARA ROR Age male proportion
amoxicillin 2795759 2321098 1593874 1718875 38.84 0.427

benzylpenicillin 2071 1610 1840 1972 31.79 0.471
flucloxacillin 971174 834017 729967 765428 41.42 0.456

phenoxymethly 55397 45941 45679 48142 29.67 0.396
ampicillin 80655 63458 64827 69381 39.18 0.423

with the penicillins generally being prescribed to younger patients than many of

the other drugs families investigated in this paper. The male proportion is fairly

similar between the different penicillin drugs, with females being prescribed the

drug more often than males, see Table B.6.
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Appendix C

Software Details and Preliminary

Work

C.1 Software Details

The data were stored in MS SQL server and the data manipulation (generation of

the Bradford Hill causality consideration attributes) was performed using SQL.

The classification was performed using the function ‘train’ and the feature se-

lection used to pre-process the data prior to classification for all the classifiers

expect random forest was the function ‘rfe’ within the ‘caret’ package [97] in the

open source software R. The ‘rfe’ function found the subset of attributes that

maximised the accuracy of the classification. The ‘train’ function trained the

various classifiers based on maximising the AUC performance measure using a

parameter grid search.
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C.2 Wrapper Feature Selection

Table C.1: The features selected and their rank of importance based on applying
naive Bayes wrapper for the analysis performed in Chapter 5.

Attribute Nifedipine Ciprofloxacin Ibuprofen

Subset Size 25 30 30
TPD IC delta (x1) 4(17) 4(14) 4(7)

TPD IC delta 95% CI (x2) 4(22) 4(2) 4(18)
RD all (x3) 5 4(1) 4(3)

RD first drug (x4) 4(19) 4(3) 4(1)
RD first BNF (x5) 5 4(6) 4(2)

RR all (x6) 4(21) 4(29) 4(10)
RR first drug (x7) 4(10) 4(27) 4(5)
RR first BNF (x8) 4(5) 4(24) 4(12)

OR all (x9) 4(25) 4(30) 4(9)
OR first drug (x10) 4(9) 4(28) 4(6)
OR first BNF (x11) 4(4) 4(25) 4(11)
AB month all (x12) 4(16) 4(23) 4(19)

AB month first drug (x13) 4(7) 4(16) 4(25)
AB month first BNF (x14) 4(3) 4(20) 4(27)

TPD filter 1 (x15) 4(15) 5 4(29)
TPD filter 2 (x16) 5 5 5

LEOPARD (x17) 5 4(18) 4(26)
Read code Lv 5 (x18) 4(18) 4(21) 4(28)

Age all (x19) 4(8) 4(7) 4(15)
Age first drug (x20) 4(2) 4(5) 4(8)
Age first BNF (x21) 4(1) 4(4) 4(4)
Gender all (x22) 5 4(11) 5

Gender first drug (x23) 4(11) 4(12) 4(17)
Gender first BNF (x24) 4(6) 4(13) 4(21)

Dosage (x25) 4(13) 4(26) 4(20)
Experimentation (x26) 5 4(17) 4(13)

Noise (x27) 4(24) 4(19) 4(14)
Illness progression (x28) 5 4(15) 4(24)
AB month Lv 3 (x29) 4(23) 4(9) 4(16)
AB month Lv 4 (x30) 4(14) 4(22) 4(23)
Read code Lv 4 (x31) 4(12) 4(10) 5

Read code Lv 3 (x32) 4(20) 4(8) 4(22)
Read code Lv 2 (x33) 5 5 4(30)
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C.3 Preliminary Work

The following is extracted from my conference paper title ‘Attributes for causal

inference in longitudinal observational databases’:

Feature Selection

In this study we apply a multivariate filter, the Correlation-based Feature Se-

lection (CFS) algorithm [69], as this algorithm is not dependent on a specific

classifier. The CFS algorithm finds the optimal feature subset based on the

trade-off between how correlated the class labels are to the feature subset and

how intercorrelated the features of the subset are.

The feature selection was applied to the attributes descirbed in Tables C.2-C.3.

The data used in this study are extracted from The Health Improvement Network

database (www.thin-uk.com) and can be found at: http://www.ima.ac.uk/reps.

Results

Table C.4 shows that the optimal attribute subset to use for ADR discovery is

LEOPARD, RD13BNF , ABratio Level 3, Gender Ratio and Read Code Level.

The temporal and strength attributes had the greatest correlation with the class

labels, whereas 75% of the dosage attributes has a zero correlation measure.

Discussion

The results show that the temporal and strength attributes are key for signalling

ADRs as these had the highest correlation with the class labels but the specificity

attributes Gender Ratio and Read Code level offered potentially new in sight than
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Table C.2: Attribute Summary Table

Feature Criterion Description
RR, RD, OR Strength The Risk Ratio, Risk Difference and

Odds Ratio for all prescriptions.
RR13d,RD13d,OR13d Strength The Risk Ratio, Risk Difference and

Odds Ratio for drugs prescribed for the
first time in 13 months.

RR13BNF ,RD13BNF

,OR13BNF

Strength The Risk Ratio, Risk Difference and
Odds Ratio for drugs corresponding to a
bnf that has not been prescribed in the
last 13 months.

IC∆ Strength The TPD Information Component as
calculated in [128]

lowerIC∆ Strength The lower 95% interval of the Informa-
tion Component as calculated in [128]

Age STDEV Specificity Standard deviation of patient’s age who
experience medical event after drug di-
vided by standard deviation of the ages
for all the patients.

Gender Ratio Specificity Male proportion of patients experiencing
the medical event within 30 days of the
drug divided by male proportion of pa-
tients prescribed the drug.

RR drug / RR bnf Specificity The RR of the drug divided by the RR
for all the drugs in the same family.

Read Code Level Specificity The specificity level of the medical event:
general (level 1)- specific (level 5).

ABratio Level 2 Temporality How often the level 2 version of the med-
ical event is recorded after the prescrip-
tion compared to before.

ABratio Level 3 Temporality How often the level 3 version of the med-
ical event is recorded after the prescrip-
tion compared to before.

LEOPARD [161] Temporality 1 if the drug is prescribed significantly
more after the medical event than before,
0 otherwise.

OEfilt1 [128] Temporality 1 if the IC∆ is greater the month before
the drug than the month after, 0 other-
wise.

OEfilt2 [128] Temporality 1 if the IC∆ is greater on the day of pre-
scription compared to the month after, 0
otherwise.
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Table C.3: Attribute Summary Table

Feature Criterion Description
Dosage Ratio Dosage Average dosage of patients experiencing

the medical event within 30 days of the
drug divided by average dosage of pa-
tients prescribed the drug.

High Low Ratio Dosage Proportion of patients given the high-
est dosage that experience the medical
event (within 30 days) divided by the
proportion of patients given the lowest
dosage that experience the medical event
(within 30 days).

Spearman’s rank Dosage The Spearman’s rank correlation coef-
ficient between the patient dosage and
{0, 1} indicating if the patient experi-
enced the medical event within 30 days.

Pearson
product-
moment

Dosage The Pearson product-moment correla-
tion coefficient between the patient
dosage and {0, 1} indicating if the pa-
tient experienced the medical event
within 30 days.

Repeat1 Experiment Number of patients that have medical
event in at least two distinct hazard peri-
ods and not in their non-hazard periods
divided by the number of patients that
have at least two distinct hazard periods
and have medical event in one hazard pe-
riod.

Repeat2 Experiment Number of patients that have medical
event in two distinct hazard periods and
not in their non-hazard periods divided
by the occurrence in the non-hazard pe-
riods.
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available via the temporal and strength attributes. The experiment and dosage

attributes investigated in this paper did not offer sufficient additional information

than what could be gained from the RD13BNF or the LEOPARD attributes,

although there does appear to be some correlation between the class labels and

both the Pearson’s correlation rank attribute and the Repeats attributes.

The reason the dosage attributes did not have a greater correlation with the

class labels may be due to a limiting factor of comparing different measurement

types. The dosages can be recorded via different measurement types for exam-

ple ‘mg’, ‘%’, ‘mm x cm xcm’ or the measure type may be missing. As it is

difficult to determine if x quantity of ‘mg’ is greater than y quantity of ’%’, the

dosage attributes were calculated only considering prescriptions measured in ‘mg’

(as this was the most popular). Unfortunately this resulted in occasional issues

due to ‘mg’ measured prescriptions of some drugs investigated always being the

same quantity or many prescriptions of a drug not being included in the dosage

attribute calculations. The experiment attributes were also limited if the drug

investigated was rarely repeated. Furthermore, the experiment attributes may

have been biased in this study due to using known ADRs, as if an ADR is known

and a patient experiences the ADR after the drug then the doctor is likely to no-

tice this and not prescribed the drug to that patient in the future. One possible

way to overcome this issue would be to use only newly discovered ADRs in the

data as the medical records may be more likely to have patients, who at the time

unknowingly experienced the ADRs, having a repeat prescription.

216



Table C.4: The results of the CFS algorithm ordered by the measure of correlation
with the class labels. Attributes not selected by the CFS algorithm have the
attribute they are most correlated to listed in the CFS rank column.

Attribute Class Correlation CFS Rank
LEOPARD 0.3238 1
OEfilt1 0.2637 LEOPARD
OEfilt2 0.2618 LEOPARD

RD13BNF 0.2347 2
RD13d 0.2248 LEOPARD
RD 0.2231 RD13BNF

ABratio Lv3 0.2231 3
ABratio Lv2 0.1755 ABratio Lv3

RR13d 0.1593 RD13BNF

OR13d 0.1593 RD13BNF

RR13BNF 0.1514 RD13BNF

OR13BNF 0.1514 RD13BNF

RR 0.1408 RD13BNF

OR 0.1408 RD13BNF

lowerIC∆ 0.135 RD13BNF

Pearson rank 0.1029 RD13BNF

Gender Ratio 0.0663 4
Repeats1 0.0651 LEOPARD
Repeats2 0.0651 LEOPARD

IC∆ 0.0608 RD13BNF

Read Code Lv 0.0279 5
RRDrug/RRBNF 0 -
Dosage Ratio 0 -

High Low Ratio 0 -
Age STDEV 0 -

Spearman’s’ rank 0 -
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Conclusion

In this paper we have applied feature selection to attributes we generated based on

the Bradford Hill causality criteria to determine suitable attributes to be used by

a general learning algorithm to identify side effects in LODs. This is the first time

suitable attributes for identifying causal relations between prescribed drugs and

medical events have been explored and the results now present the opportunity to

develop novel learning algorithms. We have found that the specificity attributes

offer additional information for ADR signalling and it would be advantageous to

include them into ADR signalling algorithms. Unfortunately the experiment and

dosage attributes were not very correlated with the class labels but this is likely

to be due to current limitations.

Possible future work could focus on developing a way to compare prescriptions

with different measurement types so all the prescription data can be used for

calculating the dosage attributes or involve developing attributes that cover the

remaining Bradford Hill causality criteria (plausibility, coherence, consistency and

analogy).
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Appendix D

SAP Result Tables

ADR Signalling Framework Results

The signals generated by the SAP framework on the unlabelled data for the drugs

Nifedipine, Ciprofloxacin, Ibuprofen, Budesonide and Naproxen.

Nifedipine

Read Code Medical Event Frequency

N131. Cervicalgia - pain in neck 3659

D00.. Iron deficiency anaemias 1281

81H.. Dressing of wound 7674

K15.. Cystitis 3156

461.. Urine exam. - general 1482

R090. [D]Abdominal pain 2520

H00.. Acute nasopharyngitis 1037
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1C9.. Sore throat symptom 2749

1D13. C/O: a pain 5013

16C2. Backache 2527

M18z. Pruritus NOS 1976

413.. Laboratory test requested 6064

H05z. Upper respiratory infection NOS 6865

M0z.. Skin and subcut tissue infection NOS 454

G84.. Haemorrhoids 1494

1972. Epigastric pain 1537

1M10. Knee pain 2690

M2yz. Other skin and subcutaneous tissue disease NOS 2102

A53.. Herpes zoster 1549

M01.. Furuncle - boil 342

K190z Urinary tract infection, site not specified NOS 5167

M12z1 Eczema NOS 2785

16C6. Back pain without radiation NOS 2385

2.... Examination / Signs 2845

R021z [D]Rash and other nonspecific skin eruption NOS 2875

H33.. Asthma 2792

N142. Pain in lumbar spine 4225

8HQ1. Refer for X-Ray 2421

H06z0 Chest infection NOS 14291

H27z. Influenza NOS 678

1C14. Blocked ear 994
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2D82. O/E - wax in auditory canal 1939

892.. Informed consent for procedure 1976

M03z0 Cellulitis NOS 2326

856.. Acupuncture 597

1625. Abnormal weight loss 581

M101. Seborrhoeic dermatitis 803

M2z0. Skin lesion 931

ZV583 [V]Attention to surgical dressings or sutures 347

ZV681 [V]Issue of repeat prescription 2994

8BMC. Prescription collected by pharmacy 1206

1922. Sore mouth 476

H02.. Acute pharyngitis 1055

8C1B. Nursing care blood sample taken 10786

2516. Abdomen examined - NAD 902

AB0.. Dermatophytosis including tinea or ringworm 1051

8H5B. Referred to urologist 975

M0... Skin and subcutaneous tissue infections 963

8CA.. Patient given advice 5746

E2B.. Depressive disorder NEC 3082

N094K Arthralgia of hip 2466

1A... Genitourinary symptoms 1313

41B1. Blood test due 2474

8H77. Refer to physiotherapist 1952

F587. Otalgia 1047
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K190. Urinary tract infection, site not specified 3347

8E... Physiotherapy/remedial therapy 2474

2F13. O/E - dry skin 2055

Z4A.. Discussion 4065

AB2.. Candidiasis 1156

TC... Accidental falls 4253

SP255 Postoperative wound infection, unspecified 568

25Q.. O/E - rectal examination done 484

22L.. O/E - wound healing 325

H26.. Pneumonia due to unspecified organism 382

M180. Pruritus ani 568

D21z. Anaemia unspecified 1690

M21z1 Skin tag 474

N2471 Leg cramps 1915

8BAA. Pain relief 1455

F502z Otitis externa NOS 1962

1J4.. Suspected UTI 1551

1.... History / symptoms 1610

1C... Ear/nose/throat symptoms 287

58D.. Ultrasound scan 259

AB01. Dermatophytosis of nail 939

M07z. Local infection skin/subcut tissue NOS 986

J43.. Other non-infective inflammatory gastroenteritis

and colitis

719
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67I.. Advice 1789

22J.. O/E - dead 231

F501. Infective otitis externa 1395

8B3A1 Medication increased 3450

N094. Pain in joint - arthralgia 1243

M161z Psoriasis NOS 599

R062. [D]Cough 959

176.. C/O - catarrh 370

8B314 Medication review 15307

M111. Atopic dermatitis/eczema 1320

1C3.. Earache symptoms 383

1CA2. Hoarse 430

1C12. Hearing difficulty 704

J520z Constipation NOS 965

2128. Patient’s condition the same 5198

F1310 Benign essential tremor 91

2227. O/E - rash present 836

8C9.. Reassurance given 671

A781. Viral warts 420

J50zz Intestinal obstruction NOS 134

C2621 Vitamin B12 deficiency 323

8H9.. Planned telephone contact 809

1D14. C/O: a rash 3294

N143. Sciatica 2510
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M12z0 Dermatitis NOS 1143

K28y6 Epididymal cyst 185

M262. Sebaceous cyst - wen 659

67E.. Foreign travel advice 1570

73050 Irrigation of external auditory canal for removal

of wax

9722

8B21. Drug prescription 637

2315. Resp. system examined - NAD 1622

1D15. C/O: itching 715

4K... General pathology 1119

85D.. Injection given 737

F51.. Nonsuppurative otitis media + eustachian tube

disorders

94

8B3H. Medication requested 16644

16C5. C/O - low back pain 1507

H060. Acute bronchitis 2569

19EA. Change in bowel habit 812

8P... Removal of surgical material and sutures 230

M230. Ingrowing nail 521

E112. Single major depressive episode 328

R0300 [D]Appetite loss 203

R0040 [D]Dizziness 2585

7G223 Removal of suture from skin NEC 809

J082. Oral aphthae 645
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1C8.. Nasal symptoms OS 301

6896. Depression screening using questions 12687

16C.. Backache symptom 451

M244. Folliculitis 402

R021. [D]Rash and other nonspecific skin eruption 520

7NB16 [SO]Toe NEC 20

19FZ. Diarrhoea symptom NOS 374

ZV49z [V]Unspecified limb or other problem 1398

1739. Shortness of breath 1856

F4E51 Xanthelasma 31

1832. Ankle swelling 1681

8BAD. Chemotherapy 236

1982. Nausea present 440

H17.. Allergic rhinitis 504

M12.. Contact dermatitis and other eczemas 316

2D... Ear, nose + throat examination 610

5882. Spirometry 386

M036z Cellulitis and abscess of leg NOS 534

8H21. Admit medical emergency unsp. 470

68M.. Spirometry screening 381

70560 Carpal tunnel release 346

8HP2. Refer for microbiological test 285

Eu32z [X]Depressive episode, unspecified 832

1AG.. Recurrent urinary tract infections 294
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J1544 Helicobacter gastritis 15

ZGB62 Advice about side effects of drug treatment 55

M05.. Impetigo 242

2G5.. O/E - foot 5012

ZGB64 Advice to start drug treatment 112

8B35. Drug Rx stopped-medical advice 1671

J530. Anal fissure 173

C3541 Hypercalcaemia NEC 113

N2133 Olecranon bursitis 483

R1057 [D]Glucose, blood level abnormal 318

F4Kz1 Eye pain NOS 522

Z1B13 Change of dressing 348

6A... Patient reviewed 37926

Eu410 [X]Panic disorder [episodic paroxysmal anxiety] 13

F4D0. Blepharitis 1266

7K6WS Arthroscopic acromioplasty 23

165.. Temperature symptoms 217

2FD.. O/E - skin cyst 360

G3111 Unstable angina 120

73130 Myringotomy and insertion of short term grom-

met

26

1BK.. Worried 329

8B41. Repeated prescription 6599

N30z8 Bone infection NOS, of other specified site 70
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8B3A2 Medication decreased 1337

N0946 Arthralgia of the lower leg 3023

F52z. Otitis media NOS 624

E2003 Anxiety with depression 790

G57y9 Supraventricular tachycardia NOS 99

M03z1 Abscess NOS 157

G581. Left ventricular failure 1154

M01z. Boil NOS 182

8C1.. Nursing care 2782

G57y7 Sinus tachycardia 57

J5730 Rectal haemorrhage 1424

R0350 [D]Excessive thirst 36

ZV700 [V]Routine health checkup 152

8C15. Nursing care - dressing 1557

G30.. Acute myocardial infarction 1145

R0734 [D]Bloating 107

H041. Acute tracheitis 541

1BE1. Problem situation 238

E2C01 Anger reaction 10

168.. Tiredness symptom 1848

J521. Irritable colon - Irritable bowel syndrome 848

5.... Radiology/physics in medicine 706

F504. Impacted cerumen (wax in ear) 4067

7N511 [SO]Prostate 57
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8HQ2. Refer for ultrasound investign 403

8B24. Prescription given no examination of patient 907

SD... Superficial injury 446

7L143 Intravenous blood transfusion NEC 303

ZV411 [V]Other eye problems 420

AB200 Candidiasis of mouth 445

1B1X. Behavioural problem 3

ZGB17 Advice to stop treatment 18

8B316 Medication changed 2761

ZGB67 Advice about drug dosage 208

4JK21 High vaginal swab culture negative 7

H170. Allergic rhinitis due to pollens 768

7L172 Blood withdrawal for testing 12960

7H2B0 Paracentesis abdominis for ascites 6

ZV6D5 [V]Person consulting for explanatn of investiga-

tion findings

232

22Q.. Wound observation 237

N2179 Plantar fasciitis 789

R090B [D]Groin pain 651

M07yz Other spec local skin/subc infection NOS 646

ZV720 [V]Examination of eyes and vision 114

R1320 [D]Echocardiogram abnormal 28

G83.. Varicose veins of the legs 752

7K6Z2 Injection of therapeutic substance into joint 372
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1B5.. Incoordination symptom 2893

AB20. Candidiasis of mouth and oesophagus 368

79294 Insertion of coronary artery stent 64

A7811 Verruca plantaris 123

A7814 Plain wart 151

F4Kz4 Redness of eye NOS 282

Z1823 Chaperone refused 44

N135z Torticollis NOS 71

195.. Indigestion symptoms 365

1M... Pain 634

M12z2 Infected eczema 186

7G2E3 Dressing of skin NEC 731

1BT.. Depressed mood 908

S64.. Intracranial injury NOS 290

196.. Type of GIT pain 437

Table D.1: The medical events signalled by the SAP framework with the random
forest classifier for the drug Nifedipine. The medical events are ranked by the
confidence returned by the classifier for the medical event belonging to the ADR
class.

Ciprofloxacin

Read Code Medical Event Frequency

1BT.. Depressed mood 625

2227. O/E - rash present 329

E2B.. Depressive disorder NEC 779
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A53.. Herpes zoster 364

892.. Informed consent for procedure 513

Z4A.. Discussion 2861

66R5. Rep.presc. treatment changed 515

C04.. Acquired hypothyroidism 324

32... Electrocardiography 363

D00.. Iron deficiency anaemias 468

R021z [D]Rash and other nonspecific skin eruption NOS 658

168.. Tiredness symptom 1006

8E... Physiotherapy/remedial therapy 686

D00y1 Microcytic hypochromic anaemia 164

J082. Oral aphthae 285

Eu32. [X]Depressive episode 139

1D14. C/O: a rash 1310

F4430 Anterior uveitis 9

8C1B. Nursing care blood sample taken 3263

E2741 Transient insomnia 164

81H.. Dressing of wound 4336

J520z Constipation NOS 433

R0720 [D]Difficulty in swallowing 90

E200. Anxiety states 573

R090B [D]Groin pain 468

J5730 Rectal haemorrhage 465

R0608 [D]Shortness of breath 1143
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7L172 Blood withdrawal for testing 3209

R021. [D]Rash and other nonspecific skin eruption 176

ZV57C [V]Palliative care 260

ZV682 [V]Expert advice request 43

G5y34 Ventricular hypertrophy 22

G5yy9 Left ventricular systolic dysfunction 11

S5yz1 Muscle injury / strain 46

2127. Patient’s condition worsened 1099

8B311 Medication given 2556

1D13. C/O: a pain 1931

8H77. Refer to physiotherapist 602

G580. Congestive heart failure 542

8B313 Medication commenced 929

Z1B13 Change of dressing 247

Z1K13 Removal of suture from skin 15

Z4G1B Giving encouragement to continue treatment 7

M18z. Pruritus NOS 576

8H9.. Planned telephone contact 581

E112. Single major depressive episode 87

Eu32z [X]Depressive episode, unspecified 356

ZV681 [V]Issue of repeat prescription 806

8H21. Admit medical emergency unsp. 340

K2710 Balanitis 77

22C2. O/E - oedema of ankles 383
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R060A [D]Dyspnoea 397

70652 Nerve conduction studies 18

8BAA. Pain relief 782

R0300 [D]Appetite loss 88

8C15. Nursing care - dressing 981

681.. Screening - general 905

771Qz Diagnostic rigid sigmoidoscopic exam of sigmoid

colon NOS

134

ZV583 [V]Attention to surgical dressings or sutures 121

N145. Backache, unspecified 387

7G2E3 Dressing of skin NEC 351

Ryu8A [X]Hyperglycaemia, unspecified 22

G84.. Haemorrhoids 487

R0700 [D]Nausea 59

2315. Resp. system examined - NAD 988

N2470 Swelling of limb 328

AB200 Candidiasis of mouth 501

1B13. Anxiousness 700

313B. Audiogram 86

ZZZZZ converted code 4445

1982. Nausea present 428

1M10. Knee pain 685

7C032 Unilateral total orchidectomy - unspecified 39

8C1.. Nursing care 1124
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173.. Breathlessness 2023

677B. Advice about treatment given 1826

M1535 Perioral dermatitis 17

761Fz Diagnostic fibreoptic endoscopic exam upper GI

tract NOS

158

7L17. Blood withdrawal 2638

70560 Carpal tunnel release 77

8H8.. Follow-up arranged 1439

C3652 Dehydration NEC 90

1B5.. Incoordination symptom 807

423.. Haemoglobin estimation 70

AB220 Candidal balanitis 67

2841. Confused 434

8B3A3 New medication commenced 293

R0420 [D]Swelling in head or neck 45

7L171 Venesection 610

ZV680 [V]Issue of medical certificate 1019

E2001 Panic disorder 192

ZL233 Under care of district nurse 55

H17.. Allergic rhinitis 158

8B316 Medication changed 727

G581. Left ventricular failure 318

E2003 Anxiety with depression 254

41D0. Blood sample taken 1984
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R0073 [D]Lethargy 157

8HB2. Medical follow-up 533

21262 Asthma resolved 106

ZV6D6 [V]Alcohol abuse counselling and surveillance 4

N2174 Achilles tendinitis 130

7L185 Intramuscular injection of vitamin B12 724

7G2A6 Insertion of hormone implant 54

J4101 Ulcerative colitis 103

C3661 Fluid retention 94

S6460 Minor head injury 6

A3B11 Meticillin resistant staphylococcus aureus 73

M1616 Guttate psoriasis 17

7N522 [SO]Epididymis 31

8H4B. Referred to rheumatologist 132

68... Screening 724

8H76. Refer to dietician 150

ZV700 [V]Routine health checkup 48

R1057 [D]Glucose, blood level abnormal 82

H51y7 Malignant pleural effusion 15

R1100 [D]Albuminuria 27

Z174L Skin care 36

J50zz Intestinal obstruction NOS 102

C11y3 Impaired fasting glycaemia 45

44120 Urea and electrolytes normal 24
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Eu410 [X]Panic disorder [episodic paroxysmal anxiety] 7

F4C71 Subconjunctival haemorrhage 90

A3A0. Gas gangrene 13

7G2EA Two layer compression bandage for skin ulcer 31

Table D.2: The medical events signalled by the SAP framework with the random
forest classifier for the drug Ciprofloxacin. The medical events are ranked by the
confidence returned by the classifier for the medical event belonging to the ADR
class.

Ibuprofen

Read Code Medical Event Frequency

D00.. Iron deficiency anaemias 1876

198.. Nausea 3084

K190z Urinary tract infection, site not specified NOS 5945

461.. Urine exam. - general 1842

M28.. Urticaria 1268

81H.. Dressing of wound 10761

2227. O/E - rash present 1717

D21z. Anaemia unspecified 2089

16E.. Feels unwell 2129

8H9.. Planned telephone contact 1386

H33.. Asthma 3253

M0z.. Skin and subcut tissue infection NOS 599

K190. Urinary tract infection, site not specified 4806

H06z0 Chest infection NOS 17499
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22L.. O/E - wound healing 600

1B5.. Incoordination symptom 3824

R021z [D]Rash and other nonspecific skin eruption NOS 3253

SP255 Postoperative wound infection, unspecified 887

Z4A.. Discussion 8370

1D14. C/O: a rash 6155

1982. Nausea present 987

168.. Tiredness symptom 2937

535.. Standard chest X-ray 1465

R090. [D]Abdominal pain 4220

67I.. Advice 3408

1922. Sore mouth 794

7G2E3 Dressing of skin NEC 817

8HB2. Medical follow-up 2143

J5730 Rectal haemorrhage 1473

66R5. Rep.presc. treatment changed 2890

H1y1z Nasal cavity and sinus disease NOS 907

M0... Skin and subcutaneous tissue infections 1766

AB2.. Candidiasis 3488

1J4.. Suspected UTI 2814

1A... Genitourinary symptoms 1976

2315. Resp. system examined - NAD 2992

C34.. Gout 3709

66R.. Repeat prescription monitoring 3230
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H30.. Bronchitis unspecified 1682

G20.. Essential hypertension 7883

4131. Blood test requested 2484

1C14. Blocked ear 1257

2F13. O/E - dry skin 2790

8B314 Medication review 13074

AB200 Candidiasis of mouth 681

E2B.. Depressive disorder NEC 5162

R062. [D]Cough 1180

J520z Constipation NOS 1422

M230. Ingrowing nail 1016

1BT.. Depressed mood 2678

F4D0. Blepharitis 1298

M07z. Local infection skin/subcut tissue NOS 1685

Eu32z [X]Depressive episode, unspecified 2044

G66.. Stroke and cerebrovascular accident unspecified 919

ZV720 [V]Examination of eyes and vision 147

8C1.. Nursing care 4083

8C15. Nursing care - dressing 2028

1AG.. Recurrent urinary tract infections 500

196.. Type of GIT pain 984

1737. Wheezing 1553

181.. Palpitations 1860

67E.. Foreign travel advice 3206
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182.. Chest pain 10791

413.. Laboratory test requested 7598

1B321 Weakness of leg 177

8C1L. Wound care 884

23... Examn. of respiratory system 1535

ZV681 [V]Issue of repeat prescription 3691

81H5. Change of dressing 635

8B41. Repeated prescription 6877

R021. [D]Rash and other nonspecific skin eruption 894

F51y0 Eustachian tube dysfunction 742

F502z Otitis externa NOS 2593

E112. Single major depressive episode 569

1Y... Patient feels well 2684

AB20. Candidiasis of mouth and oesophagus 513

K28y8 Pain in testis 258

2841. Confused 1066

D00y1 Microcytic hypochromic anaemia 618

1.... History / symptoms 2793

M05.. Impetigo 1098

6A... Patient reviewed 70321

7G2E. Dressing of skin or wound 1255

1739. Shortness of breath 2489

8CA.. Patient given advice 9574

N2133 Olecranon bursitis 919

238



73050 Irrigation of external auditory canal for removal

of wax

9848

A07y0 Viral gastroenteritis 355

8HQ2. Refer for ultrasound investign 857

1D13. C/O: a pain 12907

8C1B. Nursing care blood sample taken 12573

H02.. Acute pharyngitis 2993

E200. Anxiety states 2845

AD30. Scabies 554

8H76. Refer to dietician 698

N20.. Polymyalgia rheumatica 2441

Z1B13 Change of dressing 498

M03z. Cellulitis and abscess NOS 1473

G65.. Transient cerebral ischaemia 1212

662.. Cardiac disease monitoring 17235

J0250 Dental abscess 909

1B8.. Eye symptoms 1863

7M0G1 Aspiration of other lesion of organ NOC 65

8H8.. Follow-up arranged 4686

8H5B. Referred to urologist 1159

J64.. Cholelithiasis 544

7NB00 [SO]Shoulder NEC 60

81HZ. Wound dressing NOS 1866

R012z [D]Gait abnormality NOS 155
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2D82. O/E - wax in auditory canal 2078

ZV680 [V]Issue of medical certificate 4916

M18z. Pruritus NOS 2310

892.. Informed consent for procedure 3444

TGyz3 Accidental injury NOS 70

D41yz Other specified disease of blood or blood forming

organ NOS

148

1D131 C/O - pain in hallux 256

S2420 Fracture of scaphoid 83

R0701 [D]Vomiting 170

H060. Acute bronchitis 3311

G33.. Angina pectoris 3241

R0222 [D]Lump, localized and superficial 517

212.. Patient examined 3042

7G2B1 Injection of therapeutic substance into skin 183

41D0. Blood sample taken 8004

2128. Patient’s condition the same 14124

N30z8 Bone infection NOS, of other specified site 275

G30.. Acute myocardial infarction 629

4K... General pathology 1181

8BAA. Pain relief 4430

7G22. Removal of repair material from skin 1713

F501. Infective otitis externa 2790

AB0.. Dermatophytosis including tinea or ringworm 1382
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173B. Nocturnal cough / wheeze 492

1C9.. Sore throat symptom 8963

N2243 Ganglion unspecified 216

8C9.. Reassurance given 1597

2126. Patient’s condition improved 22539

M15y1 Intertrigo 1556

M0203 Paronychia of finger 249

Z1B.. Dressing of skin or wound 677

7L172 Blood withdrawal for testing 13906

AB220 Candidal balanitis 102

A53.. Herpes zoster 2338

C3652 Dehydration NEC 117

8H7R. Refer to chiropodist 941

7G251 Drainage of lesion of skin NEC 189

H00.. Acute nasopharyngitis 1627

ZV49z [V]Unspecified limb or other problem 3605

F1382 Spasmodic torticollis 118

ZL146 Under care of deputising GP 245

R0052 [D]Insomnia NOS 2374

246.. O/E - blood pressure reading 7872

7G0C1 Biopsy of lesion of skin NEC 35

N2410 Myalgia unspecified 2246

SN52. Drug hypersensitivity NOS 251

M03z0 Cellulitis NOS 3272
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8HQ1. Refer for X-Ray 7376

F4Kz4 Redness of eye NOS 282

ZV583 [V]Attention to surgical dressings or sutures 550

R0400 [D]Facial pain 568

7L171 Venesection 1946

7L11y Other specified injection of therapeutic sub-

stance

66

173.. Breathlessness 3310

M101. Seborrhoeic dermatitis 1018

R065z [D]Chest pain NOS 195

H26.. Pneumonia due to unspecified organism 489

19FZ. Diarrhoea symptom NOS 728

677B. Advice about treatment given 6676

8B311 Medication given 8307

19B.. Flatulence/wind 629

32... Electrocardiography 2209

SN530 Allergic reaction 110

ZV6D5 [V]Person consulting for explanatn of investiga-

tion findings

283

7L17. Blood withdrawal 11641

1B320 Weakness of arm 68

M244. Folliculitis 773

R0608 [D]Shortness of breath 2053

F4G01 Orbital cellulitis 56
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N23y4 Spasm of muscle 597

E2001 Panic disorder 933

1954. Indigestion 1326

4617. MSU = abnormal 173

ZGB62 Advice about side effects of drug treatment 75

SP2y2 Postoperative pain 289

1D15. C/O: itching 1097

D00zz Iron deficiency anaemia NOS 52

N2241 Ganglion of joint 115

R082. [D]Retention of urine 440

N2457 Shoulder pain 1446

R0043 [D]Vertigo NOS 1898

C2943 Iron deficiency 130

ZZZZZ Converted code 21209

1A7.. Vaginal discharge symptom 1047

585.. Other diagnostic ultrasound 412

4618. Urine dipstick test 1090

704A0 Therapeutic lumbar epidural injection 121

M12.. Contact dermatitis and other eczemas 580

F586. Otorrhoea 286

7G090 Cauterisation of lesion of skin NEC 230

M200z Corns NOS 127
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Table D.3: The medical events signalled by the SAP framework with the random
forest classifier for the drug Ibuprofen. The medical events are ranked by the
confidence returned by the classifier for the medical event belonging to the ADR
class.
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Budesonide

Read Code Medical Event Frequency

R090. [D]Abdominal pain 1436

K190z Urinary tract infection, site not specified NOS 1626

N245. Pain in limb 5360

1A1.. Micturition frequency 892

892.. Informed consent for procedure 1286

D00.. Iron deficiency anaemias 670

413.. Laboratory test requested 3881

8C9.. Reassurance given 540

19C.. Constipation 2650

A53.. Herpes zoster 703

1D14. C/O: a rash 2553

2227. O/E - rash present 601

N142. Pain in lumbar spine 2397

1B8.. Eye symptoms 875

1B8Z. Eye symptom NOS 352

1M10. Knee pain 1999

N131. Cervicalgia - pain in neck 2365

Z4A.. Discussion 3827

K190. Urinary tract infection, site not specified 1513

TC... Accidental falls 1528

R021z [D]Rash and other nonspecific skin eruption NOS 1396

16C2. Backache 1185
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M244. Folliculitis 394

1A... Genitourinary symptoms 760

AB0.. Dermatophytosis including tinea or ringworm 645

M03z0 Cellulitis NOS 1236

16C5. C/O - low back pain 1189

461.. Urine exam. - general 518

K15.. Cystitis 1687

2F13. O/E - dry skin 1066

F501. Infective otitis externa 1082

M0z.. Skin and subcut tissue infection NOS 272

1B5.. Incoordination symptom 1407

8H77. Refer to physiotherapist 1176

8B24. Prescription given no examination of patient 524

ZV583 [V]Attention to surgical dressings or sutures 233

M12z0 Dermatitis NOS 514

16C6. Back pain without radiation NOS 1831

81H.. Dressing of wound 3827

M07z. Local infection skin/subcut tissue NOS 736

1BT.. Depressed mood 1238

1J4.. Suspected UTI 1133

41D0. Blood sample taken 3193

8B4.. Previous treatment continue 5212

D21z. Anaemia unspecified 561

1D15. C/O: itching 494
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2D82. O/E - wax in auditory canal 762

8H9.. Planned telephone contact 664

E2001 Panic disorder 432

7L172 Blood withdrawal for testing 6199

8C1B. Nursing care blood sample taken 4453

M101. Seborrhoeic dermatitis 438

N143. Sciatica 1198

7L17. Blood withdrawal 4396

M02z. Cellulitis and abscess of digit NOS 254

6A5.. Ongoing review 273

8B41. Repeated prescription 3431

22J.. O/E - dead 125

N0946 Arthralgia of the lower leg 1112

J155. Gastritis unspecified 324

8CA.. Patient given advice 4064

N094K Arthralgia of hip 1182

66R.. Repeat prescription monitoring 1212

E2B.. Depressive disorder NEC 1434

AB01. Dermatophytosis of nail 574

16E.. Feels unwell 789

16C.. Backache symptom 314

M2yz. Other skin and subcutaneous tissue disease NOS 986

E200. Anxiety states 1170

J520z Constipation NOS 471
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6A... Patient reviewed 28334

2516. Abdomen examined - NAD 557

677B. Advice about treatment given 2990

2126. Patient’s condition improved 8208

H06z0 Chest infection NOS 20537

1955. Heartburn 634

8C1.. Nursing care 1349

7G22. Removal of repair material from skin 668

F59.. Hearing loss 653

E2273 Impotence 607

F502z Otitis externa NOS 783

M0... Skin and subcutaneous tissue infections 634

G20.. Essential hypertension 2258

N0945 Arthralgia of the pelvic region and thigh 519

M12.. Contact dermatitis and other eczemas 223

1C3.. Earache symptoms 556

4618. Urine dipstick test 355

R0300 [D]Appetite loss 82

M111. Atopic dermatitis/eczema 1739

R090B [D]Groin pain 358

2.... Examination / Signs 3388

M12z1 Eczema NOS 2033

424.. Full blood count - FBC 451

1C9.. Sore throat symptom 3604
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8C15. Nursing care - dressing 771

7.... Operations, procedures, sites 259

ZV725 [V]Radiological examination NEC 63

22L.. O/E - wound healing 182

8E... Physiotherapy/remedial therapy 1413

58D.. Ultrasound scan 205

8BAA. Pain relief 890

1.... History / symptoms 1628

8BI.. Other medication review 448

M2z0. Skin lesion 454

22C2. O/E - oedema of ankles 577

M12z2 Infected eczema 276

J0931 Coated tongue 33

R0734 [D]Bloating 71

16Z3. Recurrence of problem 499

Z1B.. Dressing of skin or wound 252

N2132 Lateral epicondylitis of the elbow 570

J5730 Rectal haemorrhage 516

J521. Irritable colon - Irritable bowel syndrome 787

4131. Blood test requested 1374

73050 Irrigation of external auditory canal for removal

of wax

3217

F301z Trigeminal neuralgia NOS 65

2128. Patient’s condition the same 3380
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662.. Cardiac disease monitoring 6147

K3110 Gynaecomastia 40

SP255 Postoperative wound infection, unspecified 244

M161z Psoriasis NOS 265

1C14. Blocked ear 523

1AA.. Prostatism 298

N145. Backache, unspecified 682

6896. Depression screening using questions 5625

6A2.. Coronary heart disease annual review 758

K20.. Benign prostatic hypertrophy 390

N094. Pain in joint - arthralgia 764

R0902 [D]Colic NOS 37

M01.. Furuncle - boil 244

C34.. Gout 741

M03z1 Abscess NOS 161

M03z. Cellulitis and abscess NOS 339

N2470 Swelling of limb 362

TJ... Drugs and other substances-adverse effects in

theraputic use

281

N135z Torticollis NOS 78

19FZ. Diarrhoea symptom NOS 250

1A53. Lumbar ache - renal 405

F4Kz1 Eye pain NOS 207

7K36. Diagnostic arthroscopy of knee 129
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8B21. Drug prescription 309

K271. Balanoposthitis 98

J0854 Angular stomatitis and cheilitis 170

8B314 Medication review 6558

G65.. Transient cerebral ischaemia 325

2G5.. O/E - foot 1275

196.. Type of GIT pain 369

R0081 [D]Excessive sweating 80

36150 Gastroscopy abnormal 22

AB200 Candidiasis of mouth 1042

33C.. Circulatory function tests 274

67E.. Foreign travel advice 1578

32... Electrocardiography 789

4.... Laboratory procedures 521

M180. Pruritus ani 308

F51y0 Eustachian tube dysfunction 388

R021. [D]Rash and other nonspecific skin eruption 364

M2400 Alopecia unspecified 100

246.. O/E - blood pressure reading 1966

J64.. Cholelithiasis 249

16ZZ. General symptom NOS 377

F340. Carpal tunnel syndrome 399

2D... Ear, nose + throat examination 659

41B1. Blood test due 1127
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7M07z Cryotherapy to organ NOC NOS 184

46... Urine examination 294

R0103 [D]Tremor NOS 201

SE... Contusion (bruise) with intact skin 223

K4211 Vulvitis unspecified 88

1D131 C/O - pain in hallux 70

N2133 Olecranon bursitis 256

E2003 Anxiety with depression 528

212.. Patient examined 1243

N2410 Myalgia unspecified 527

AD30. Scabies 197

1B321 Weakness of leg 44

J573. Haemorrhage of rectum and anus 231

J0250 Dental abscess 322

1M11. Foot pain 349

8H4B. Referred to rheumatologist 239

8H5B. Referred to urologist 430

K28y8 Pain in testis 70

K10y0 Pyelonephritis unspecified 23

N0940 Arthralgia of unspecified site 255

15C.. Vaginal irritation 135

F504. Impacted cerumen (wax in ear) 1240

M05.. Impetigo 452

C2943 Iron deficiency 76
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ZV700 [V]Routine health checkup 64

8H8.. Follow-up arranged 1847

C3652 Dehydration NEC 28

F52z. Otitis media NOS 1426

8CAK. Patient given telephone advice out of hours 570

R0904 [D]Abdominal cramps 43

893.. Post operative monitoring 130

J10y4 Oesopheal reflux without mention of oesophagi-

tis

1108

535.. Standard chest X-ray 914

1J... Suspected condition 651

Z1B13 Change of dressing 191

ZV411 [V]Other eye problems 204

D00y1 Microcytic hypochromic anaemia 233

F4D0. Blepharitis 499

G3... Ischaemic heart disease 781

8A... Monitoring of patient 199

2127. Patient’s condition worsened 927

N2452 Pain in leg 656

Table D.4: The medical events signalled by the SAP framework with the random
forest classifier for the drug Budesonide. The medical events are ranked by the
confidence returned by the classifier for the medical event belonging to the ADR
class.
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Naproxen

Read Code Medical Event Frequency

E2B.. Depressive disorder NEC 1677

R090. [D]Abdominal pain 1077

D00.. Iron deficiency anaemias 627

K190z Urinary tract infection, site not specified NOS 1507

1C9.. Sore throat symptom 1707

R021z [D]Rash and other nonspecific skin eruption NOS 1034

1BT.. Depressed mood 858

535.. Standard chest X-ray 402

H06z0 Chest infection NOS 4417

G84.. Haemorrhoids 541

C04.. Acquired hypothyroidism 588

H02.. Acute pharyngitis 640

8H9.. Planned telephone contact 392

D21z. Anaemia unspecified 797

413.. Laboratory test requested 3664

461.. Urine exam. - general 445

892.. Informed consent for procedure 1173

Z4A.. Discussion 2371

H05z. Upper respiratory infection NOS 2634

1A... Genitourinary symptoms 530

81H.. Dressing of wound 2969

M230. Ingrowing nail 372
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1D14. C/O: a rash 1456

66R.. Repeat prescription monitoring 797

H00.. Acute nasopharyngitis 380

2315. Resp. system examined - NAD 547

H30.. Bronchitis unspecified 514

K190. Urinary tract infection, site not specified 902

M07z. Local infection skin/subcut tissue NOS 574

H060. Acute bronchitis 823

AB2.. Candidiasis 801

E200. Anxiety states 707

173.. Breathlessness 873

66R5. Rep.presc. treatment changed 911

M18z. Pruritus NOS 638

M244. Folliculitis 247

2F13. O/E - dry skin 590

2227. O/E - rash present 337

7L17. Blood withdrawal 4328

H1y1z Nasal cavity and sinus disease NOS 286

1Z... History/symptom NOS 632

1CA2. Hoarse 172

16E.. Feels unwell 411

7G22. Removal of repair material from skin 497

8B4.. Previous treatment continue 2945

662.. Cardiac disease monitoring 5045
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R0608 [D]Shortness of breath 556

G20.. Essential hypertension 2348

8H76. Refer to dietician 199

G66.. Stroke and cerebrovascular accident unspecified 232

H06z1 Lower resp tract infection 867

SP255 Postoperative wound infection, unspecified 278

1982. Nausea present 232

761Fz Diagnostic fibreoptic endoscopic exam upper GI

tract NOS

146

1B5.. Incoordination symptom 902

8B41. Repeated prescription 1709

J10y4 Oesopheal reflux without mention of oesophagi-

tis

466

7L172 Blood withdrawal for testing 5052

1737. Wheezing 395

1922. Sore mouth 196

8C1.. Nursing care 721

8C17. Nursing care - injections 388

M05.. Impetigo 226

196.. Type of GIT pain 184

F4D0. Blepharitis 318

19EA. Change in bowel habit 234

E2273 Impotence 628

M180. Pruritus ani 243
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1739. Shortness of breath 571

22L.. O/E - wound healing 147

2516. Abdomen examined - NAD 326

J1011 Reflux oesophagitis 189

4618. Urine dipstick test 296

AD30. Scabies 106

8B314 Medication review 3576

M2300 Ingrowing great toe nail 166

J520z Constipation NOS 308

ZV681 [V]Issue of repeat prescription 1485

E2001 Panic disorder 231

E2003 Anxiety with depression 440

N2133 Olecranon bursitis 361

7L18. Intramuscular injection 1066

M12z1 Eczema NOS 764

Z174N Wound care 63

8C15. Nursing care - dressing 539

M0... Skin and subcutaneous tissue infections 488

F4Kz1 Eye pain NOS 160

G3111 Unstable angina 24

R060A [D]Dyspnoea 233

M2yz. Other skin and subcutaneous tissue disease NOS 645

6A... Patient reviewed 21724

D00y1 Microcytic hypochromic anaemia 197
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8B3R. Drug therapy discontinued 534

36140 Gastroscopy normal 21

1J4.. Suspected UTI 702

K28y6 Epididymal cyst 75

23... Examn. of respiratory system 272

7G2E3 Dressing of skin NEC 263

8BI.. Other medication review 301

1972. Epigastric pain 800

4.... Laboratory procedures 342

R0701 [D]Vomiting 38

41D0. Blood sample taken 3007

7C242 Standard circumcision 33

8CA.. Patient given advice 2562

4142. Blood sample -¿ Haematol Lab 426

1Y... Patient feels well 765

E112. Single major depressive episode 107

ZV583 [V]Attention to surgical dressings or sutures 149

G5y34 Ventricular hypertrophy 19

73050 Irrigation of external auditory canal for removal

of wax

2577

7L064 Amputation below knee 4

J3030 Unilateral inguinal hernia - simple 56

G30.. Acute myocardial infarction 162

J5747 Anal pain 65
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R0700 [D]Nausea 35

K2414 Acute epididymitis 54

8H5B. Referred to urologist 319

677B. Advice about treatment given 1684

Eu431 [X]Post - traumatic stress disorder 31

7P051 Ultrasound of abdomen 31

2126. Patient’s condition improved 6857

8CAL. Smoking cessation advice 1621

ZZZZZ Converted code 4290

7G2A9 Subcutaneous injection of hormone antagonist 87

G581. Left ventricular failure 230

M15y1 Intertrigo 441

7H220 Exploratory laparotomy 35

8B311 Medication given 2296

J66y6 Obstructive jaundice NOS 13

8H21. Admit medical emergency unsp. 115

F587. Otalgia 510

44121 Urea and electrolytes abnormal 48

R090F [D]Acute abdomen 12

8B42. Previous treatment repeat 1333

8B24. Prescription given no examination of patient 293

1B8Z. Eye symptom NOS 274

7701z Other excision of appendix NOS 26

SK160 Other hip injuries 31
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M111. Atopic dermatitis/eczema 444

ZL233 Under care of district nurse 20

2841. Confused 203

7G2E. Dressing of skin or wound 324

R062. [D]Cough 284

G3... Ischaemic heart disease 641

AB0.. Dermatophytosis including tinea or ringworm 421

Z1779 Outpatient care 30

M161z Psoriasis NOS 244

32... Electrocardiography 579

R047. [D]Epistaxis 226

M271. Non-pressure ulcer lower limb 980

4131. Blood test requested 969

R0822 [D]Acute retention of urine 13

G65.. Transient cerebral ischaemia 282

79360 Implantation of intravenous cardiac pacemaker

system

15

8H7R. Refer to chiropodist 260

1968. Abdominal discomfort 185

ZV680 [V]Issue of medical certificate 1629

R0905 [D]Epigastric pain 52

E2900 Grief reaction 65

22C2. O/E - oedema of ankles 434

2G5.. O/E - foot 920
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1B321 Weakness of leg 33

M270. Decubitus (pressure) ulcer 161

7L185 Intramuscular injection of vitamin B12 686

R0733 [D]Abdominal distension, gaseous 19

Z1B13 Change of dressing 166

173B. Nocturnal cough / wheeze 94

7NB13 [SO]Lower leg NEC 98

7G2EA Two layer compression bandage for skin ulcer 14

R021. [D]Rash and other nonspecific skin eruption 172

M0z.. Skin and subcut tissue infection NOS 149

7G251 Drainage of lesion of skin NEC 58

G3071 Acute non-ST segment elevation myocardial in-

farction

27

8BAA. Pain relief 1332

F4504 Ocular hypertension 147

22Q.. Wound observation 164

7B2A. Diagnostic cystoscopy 293

A3Ay2 Clostridium difficile infection 17

K3110 Gynaecomastia 30

8C1L. Wound care 190

2128. Patient’s condition the same 3954

7G2E1 Dressing of burnt skin NEC 44

H03.. Acute tonsillitis 544

8HB2. Medical follow-up 851
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J50zz Intestinal obstruction NOS 46

7L1H0 Direct current cardioversion 10

7L123 Myocardial perfusion scan 13

J5031 Faecal impaction 16

N2243 Ganglion unspecified 74

8HQ1. Refer for X-Ray 2396

7G033 Excision of lesion of skin NEC 146

Eu32z [X]Depressive episode, unspecified 488

N094M Arthralgia of knee 322

81HZ. Wound dressing NOS 497

M1610 Psoriasis unspecified 416

7B2Az Diagnostic cystoscopy NOS 115

F4E51 Xanthelasma 28

ZGB66 Advice to stop drug treatment 35

A0745 Helicobacter pylori gastrointestinal tract infec-

tion

10

7G2B1 Injection of therapeutic substance into skin 17

K10y0 Pyelonephritis unspecified 14

G831. Varicose veins of the leg with eczema 315

1.... History / symptoms 695

761F1 Diagnostic gastroscopy NEC 74

44120 Urea and electrolytes normal 68

7G223 Removal of suture from skin NEC 363
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782Gz Diagnostic endosc retrograde exam

bile+pancreatic ducts NOS

15

77352 Injection of sclerosing substance into haemor-

rhoid

29

8B35. Drug Rx stopped-medical advice 529

M07z1 Infection toe 95

F5611 Benign paroxysmal positional vertigo or nystag-

mus

232

8CA40 Pt advised re wt reducing diet 171

SK150 Other finger injuries, unspecified 89

Ryu8A [X]Hyperglycaemia, unspecified 7

Eu411 [X]Generalized anxiety disorder 15

C3540 Hypocalcaemia NEC 16

R0102 [D]Spasms NOS 14

F4005 Eye infection 11

1C14. Blocked ear 325

R082. [D]Retention of urine 103

R0400 [D]Facial pain 141

R1100 [D]Albuminuria 14

G2... Hypertensive disease 1284

F4200 Background diabetic retinopathy 78

C11y3 Impaired fasting glycaemia 96

C2621 Vitamin B12 deficiency 103

G57y7 Sinus tachycardia 12
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8C9.. Reassurance given 291

761Fy Diagnostic fibreoptic endoscopic exam upper GI

tract OS

15

R0043 [D]Vertigo NOS 534

Z4G1B Giving encouragement to continue treatment 23

7M05z Laser therapy to organ NOC NOS 11

8B3A1 Medication increased 956

Z1K13 Removal of suture from skin 22

ZV57C [V]Palliative care 84

SD... Superficial injury 202

TE640 Insect bite NOS 130

246.. O/E - blood pressure reading 2878

M0212 Paronychia of toe 62

8BAB. Pain control 461

78105 Endoscopic cholecystectomy 63

42QE0 INR - international normal ratio normal 3

7M371 Radiotherapy NEC 145

SN52. Drug hypersensitivity NOS 78

19FZ. Diarrhoea symptom NOS 140

2D82. O/E - wax in auditory canal 472

K253. Phimosis 37

G73z0 Intermittent claudication 209

4K1.. Histology 149

8A... Monitoring of patient 91
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1AG.. Recurrent urinary tract infections 107

2127. Patient’s condition worsened 861

R090z [D]Abdominal pain NOS 39

ZL146 Under care of deputising GP 34

R0904 [D]Abdominal cramps 27

68... Screening 1200

N2470 Swelling of limb 342

ZV49z [V]Unspecified limb or other problem 1085

ZV654 [V]Other counselling NEC 93

M03z0 Cellulitis NOS 828

7B2B5 Insertion of urethral catheter 4

R1431 [D]Electrocardiogram (ECG) abnormal 12

K20.. Benign prostatic hypertrophy 390

31340 Audiogram bilateral abnormality 7

1B13. Anxiousness 582

1C8.. Nasal symptoms OS 166

77282 Examination of rectum under anaesthetic 11

R0901 [D]Abdominal colic 79

72550 Trabeculectomy 29

F563. Labyrinthitis 193

TJ... Drugs and other substances-adverse effects in

theraputic use

422

H33zz Asthma NOS 26

R0720 [D]Difficulty in swallowing 63
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6791. Health ed. - smoking 2170

M2y45 Epidermal cyst 35

F501. Infective otitis externa 600

7NB16 [SO]Toe NEC 20

NyuBC [X]Osteopenia 132

G5730 Atrial fibrillation 283

G580. Congestive heart failure 368

7M0G1 Aspiration of other lesion of organ NOC 20

Z1745 Ear care 19

M01.. Furuncle - boil 225

679.. Health education - subject 188

F4Ey4 Cyst of eyelid NOS 20

7717z Other excision of colon NOS 8

Z174O Post-surgical wound care 16

N0810 Loose body in joint, unspecified joint 19

K272z Other penile inflammatory disorder NOS 5

M1271 Sunburn 39

8HB20 Medical follow-up - normal 69

G20z. Essential hypertension NOS 201

ZV6D5 [V]Person consulting for explanatn of investiga-

tion findings

149

7G2AC Insertion of gonadorelin analogue implant 21

G5731 Atrial flutter 20

7M340 Local anaesthetic nerve block 36
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R012z [D]Gait abnormality NOS 26

AB200 Candidiasis of mouth 181

R1103 [D]Microalbuminuria 41

8BA.. Other misc. therapy 174

7920y Saphenous vein graft replacement of coronary

artery OS

7

Table D.5: The medical events signalled by the SAP framework with the random
forest classifier for the drug Naproxen. The medical events are ranked by the
confidence returned by the classifier for the medical event belonging to the ADR
class.
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