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Abstract 

The ability to resolve the individual frequency components of a complex sound is known 

as frequency selectivity. The auditory system seems to act as a series of overlapping 

band-pass filters or auditory filters (AF), the width of which describe frequency 

selectivity. It is a fundamental and extensively studied property of the auditory system, 

yet its neural basis is not fully understood. This is due, in part, to the fact that two 

distinct approaches are taken to explore it; psychophysics and physiology, the results of 

which are difficult to reconcile. AF are measured in quite different ways in the two sub-

fields. 

Psychophysics measures the ability of the system as a whole by using masking 

paradigms to measure the bandwidth of AF from behavioural data. A preferred method 

in human psychophysics is notched noise (NN) masking using forward masking with 

fixed signal level, since it does not suffer from confounds like suppression and off-

frequency listening. In physiology bandwidth can be measured for single cells, or a 

population of cells, at various levels of the auditory system, and is traditionally done by 

observing the number of action potentials elicited in response to pure tone stimuli. The 

auditory system is known to be highly non-linear and so comparing the results of such 

vastly different approaches is problematic. Also, psychophysics measures the detection 

threshold of 'signal' sounds; how this compares to mean spike rates used in physiology 

is not clear. 

Attempts have been made in the past to apply the same method in animals to measure 

both psychophysical and physiological bandwidths, with varying degree of success. No 

successful attempt has been made to use an up-to-date method used in human 

psychophysics. In this thesis I take a step towards comparing psychophysical and 

physiological results by 1) developing a novel method that allows forward masked NN 

bandwidths to be measured behaviourally in the ferret, and 2) applying the same 
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psychophysical paradigm to measuring bandwidth in guinea pig inferior colliculus (IC) 

and primary auditory cortex (A1) neurons. In addition a signal detection theory (SDT) 

approach is used on the physiological data to make results more comparable to 

psychophysical ones. 

Results from the behavioural method show that it can be used to successfully measure 

both forward and simultaneously masked NN bandwidths in the same animal, and that 

these measurements are in close agreement with one another and with bandwidths 

measured using previous methods. Results from the guinea pig physiology study show 

that bandwidths measured from IC neurons using the psychophysical NN paradigm are 

narrower than pure tone estimates of bandwidth, in the same neurons. However, the NN 

estimates are in close agreement with auditory peripheral and perceptual bandwidths, a 

finding which differs substantially from previous studies. Unexpectedly, however, 

bandwidths estimated from A1 neurons using masking show much finer tuning at high 

frequencies than seen further down the auditory system. This tuning is not only 

narrower than pure tone tuning in these neurons, but also finer than psychophysically 

measured estimates, which represent the auditory system as a whole. However, this 

may be related to the greater non-linearity of cortical neurons compared with those in 

the midbrain and lower. 

This work demonstrates that it is possible to reconcile different measurements of tuning 

in the auditory system by using appropriate methods. It also highlights the complex 

nature of auditory neurons and how care must be taken when measuring frequency 

selectivity using different approaches. In addition it provides a method for measuring 

auditory bandwidths psychophysically and physiologically in the same animal, allowing 

a direct comparison between the two; a vital step in investigating the neural basis of 

perceptual frequency selectivity. 
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Just noticeable difference (JND) 
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Local field potential (LFP) 
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Medial olivocochlear (MOC) 
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Notched noise (NN) 

One-interval two-alternative forced choice (1I2AFC) 

Otoacoustic emission (OAE) 

Outer hair cell (OHC) 

Post-/Peri-stimulus time histogram (PSTH) 

Primary auditory cortex (A1) 

Rate against level function (RLF) 

Receiver operating characteristic (ROC) 

Rippled noise (RN) 

Root mean square (RMS) 

Signal detection theory (SDT) 

Signal frequency (SF) 

Signal to noise ratio (SNR) 

Simultaneously masked notched noise masking (Sim) 

Single-unit (SU) 

Spectro-temporal response field (STRF) 

Stimulus-frequency otoacoustic emissions (SFOAE) 

Superior olivary complex (SOC) 

Tucker-Davis Technologies (TDT) 

Two-interval two-alternative forced choice (2I2AFC) 
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つF = Distance in Hz between the centre frequency of the signal and the closest edges of 
the bands of the notched noise masker. 

dB SPL = Level in decibels referenced to 20 µPa (Sound Pressure Level). 

mmHg = millimetre of mercury, equivalent to 133.32 Pa. 
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CHAPTER 1: General introduction 

The aim of auditory neuroscience is to understand how sound in the real world is 

detected, manipulated,  analysed, and represented by the brain (and sensory nervous 

system) to allow the person or animal to gain information about their environment. This 

understanding can be sought at different levels. One can identify and investigate the way 

in which different aspects of sound are perceived, such as pitch, loudness, spatial 

location, and object segregation, as well as the system's limits and fidelity. It is possible 

to infer details about the auditory system using such psychoacoustic information, and 

this type of analysis is known as psychophysics. 

As far as we know the only information carrying elements in the brain are action 

potentials elicited (or fired) from neurons. All information about the external world that 

is captured by the sense organ (in this case the ear) must therefore be represented by 

the activity of neurons. Auditory neuroscience is also concerned with how different 

features of sound, such as frequency, level, object identity and location, are represented 

in this neural activity, and how accurate this representation is. This physiological level 

gives more access to the actual mechanisms driving the perception of hearing. A 

complete understanding of hearing arguably requires being able to explain how the low 

and high levels are linked. 

One of the most fundamental features of sound is frequency, which is very closely 

related to the perception of pitch. Sound is caused by the vibration of objects causing air 

molecules (or any other medium) to 'pulse', i.e. have alternating regions of low pressure 

(rarefaction) and high pressure (condensation). These waves of pulses move out from 

the vibrating body, with the molecules not moving a net amount. Frequency simply 

describes the speed with which these molecules move, or the number of pulses in a 

given distance or time. The pulses can have very complicated patterns, which reflect the 

nature of the object and its movement. There is therefore an evolutionary advantage to 
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being able to extract such information from sound, e.g. being able to identify the deep 

rumbling of an avalanche or the high pitched squeak of prey, will aid survival. 

Any first step in such information extraction requires the complex pulses in sound to be 

broken down into smaller, constituent pieces; a particular sound can then be identified 

by the quantities of these ╅building blocks╆ that are present. One useful metric to use is 

the speed of the pulses, or frequency of the sound. Slow pulses are described by low 

frequency and fast pulses by high. Sounds of one frequency are known as tones or pure 

tones. A complex sound (one which contains multiple frequency components) can 

simply be represented by the summation of its individual frequency components, and 

conversely, can be broken down into individual frequency components. A very useful 

way of representing this (borrowed from a description of heat transfer in engineering) 

is to describe a single frequency as a sinusoid, with the number of pulses represented by 

the number of periods in a given distance/time. All sounds can then be summed from 

and decomposed into sinusoids of various amplitude, frequency and phase. Such 

construction and deconstruction is known as Fourier analysis (Fourier, 1822). It turns 

out that the auditory system represents sound in a very similar way. 

Any sound can be broken down into a continuum of infinitesimally narrow frequency 

components, but the auditory system is not perfect and can only represent these 

frequencies at a certain fidelity. An important problem in auditory research is to 

describe the accuracy with which it does this, also known as 'frequency resolution'. This 

ability forms the basis of many complex tasks such as picking out separate voices in a 

musical harmony, or more practically, identifying speech in a noisy environment. 

Perceptually, one measure of this, known as 'frequency discrimination', is the smallest 

difference in frequency between sounds separated in time, that can be detected by the 

auditory system (Shower and Biddulph, 1931). This usually involves playing two tones 

consecutively and getting the person/animal to identify if they are the same or different 

in frequency. The just noticeable difference (JND) is the lowest frequency difference that 

can be accurately detected, and changes for different frequencies and levels of a pure 

tone. 

Another more general approach, and one that is the basis of my research and this thesis, 

is to measure the ability to separately identify the individual sinusoidal components in a 

complex sound (Moore, 2003). This is commonly referred to as ╅frequency selectivity╆, or 

simply frequency resolution or frequency analysis. Here the feature of interest is 
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whether, and under what circumstances, a sound (usually a pure tone) is detectable. The 

sound of which the detectability is being tested is often called the 'signal'. 

In the rest of this General introduction I will be describing the development of the field of 

frequency selectivity research and the important concepts and discoveries along the 

way. Each sub-section describes a separate aspect of the field and wherever possible has 

been placed in a chronological and logical order. However, since all these aspects 

developed in parallel, it becomes difficult to present them linearly and at times 

knowledge is assumed that is not fully described until later on. 

 

 

 

 

Figure 1.1 

A schematic showing the constituent parts of the auditory periphery and how sound is transcribed 

into neural activity. Sound enters the ear and vibrates the tympanic membrane. These vibrations 

are then transferred to the cochlea where they spread along the BM according to frequency. This 

activity can be thought of as a filter bank; a series of overlapping filters than run along the BM. The 

vibration causes hair cells to move, causing auditory nerve cells to fire, demonstrated in the 

neurogram; darker colour means higher firing. This neurogram was produced by an auditory nerve 

model of 100 units (log spaced in frequency) in response to the sound wave shown. Middle ear image 

taken from http://imgarcade.com/1/ear-inside/. 
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1.1 The auditory periphery 

For hundreds of years the outer, middle and inner ear, also known as the auditory 

periphery, has been thought of as a resonator system (Du Verney, 1683). This 

'resonance' theory has been refined over time (Helmholtz, 1877; Barton, 1908) such 

that now we understand all the resonating features of the auditory periphery and how 

they result in a neural place code. 

The outer ear comprises the pinna (the visible portion) and the ear canal (or meatus) 

(Figure 1.1). Sound enters the ear, travels down the ear canal and causes the ear drum 

(or tympanic membrane) to vibrate. The ear drum marks the divide between the outer 

and middle ear. Three small bones (or ossicles) connect the ear drum to the cochlea, in 

the inner ear, and efficiently transfer the vibrations between the two. The cochlea 

contains an elongated chamber bisected by the cochlea partition, which consists of the 

basilar membrane (BM) and organ of Corti. This chamber is curled into a spiral, which 

has no impact on its mechanics and is believed to be purely space saving, therefore often 

the cochlea is described as a straight chamber as if it had been 'unravelled'. It is filled 

with a near-incompressible fluid, and the mechanics of the cochlea are such that the 

vibrations of the ossicles cause pressure waves to form within this fluid. The BM is 

relatively narrow and stiff at the base (end closest to the ossicles) and wider and less 

stiff at the apex. It is free to vibrate and the pressure wave in the cochlear fluid causes it 

to move like a travelling wave; this wave grows from the basal end, gradually increases 

in amplitude, before abruptly stopping after it has reached maximum amplitude. The 

thickness, density, and shape of the BM is such that the travelling wave peaks at 

different points depending on the frequency of the sound, with higher frequency sounds 

causing a peak towards the base of the cochlea, and lower frequency sound towards the 

apex. Hair cells all along the organ or Corti convert the movement of the BM into neural 

activity, more specifically they release neurotransmitters that cause auditory nerve 

fibres (ANF) to produce action potentials, and so by observing where along the cochlea 

the neurons are firing one can work out the frequency characteristics of the sound. This 

gradual change from high to low frequency represented by the 'place' of neural activity 

is known as a tonotopic map (or cochleotopic), and is seen throughout the auditory 

system (Moore, 2003). From the cochlea the neural activity is propagated throughout 

the auditory system and the job of separating, analysing, and interpreting the sound 

begins. 



  CHAPTER 1: General introduction 

5 
 

1.2 The basilar membrane and its non-linearities 

In many ways a major part of understanding frequency selectivity is understanding the 

mechanics of the cochleae. This is the first point at which the vibrations of sound are 

transferred into electrochemical signals, and therefore has a significant impact on the 

properties and limits of the system as a whole. So much so that it is widely accepted that 

psychophysical estimates of frequency selectivity, which are the result of the entire 

auditory system, 'reflect the filtering properties of the cochlea' (Moore, 1995). 

One major feature is that the vibration of the cochlear partition is not just passive but 

has an active component. Von Békésy (1944) looked at the movement of the BM in dead 

cochlea in response to very loud sounds, and found that psychophysical bandwidth 

measures were far too sharp to be fully due to these passive mechanics. There must 

therefore be an active component, designed to sharpen tuning, that is only present when 

the cochlea is alive. This too was corroborated in other studies where a link between the 

physiological condition of the cochlea and tuning was found; the healthier the cochlea, 

the sharper the tuning, with dead cochlea tuning being the broadest (Rhode, 1971, 1973; 

Rhode and Robles, 1974; Rhode, 1978; Sellick et al., 1982). Early research focussed on 

the basal end of the cochlea, due to it being relatively accessible in animals, and this 

effect is particularly noticeable in this region. It was later shown that this active 

component is most probably due to the activity of several rows of hair cells on the organ 

of Corti known as the outer hair cells (OHC) (Ashmore, 1987; Smith et al., 1987; 

Hudspeth, 2008). 

Moreover it was found that mechanical frequency selectivity varies with position along 

the BM (Von Békésy and Wever, 1960; Rhode, 1978). By playing a tone of a certain 

frequency and recording the movement of the BM in response, it is possible to build an 

input/output (I/O) function, describing the relative output level in response to a certain 

input level. It was found that the active component causes a gain in output for the region 

on the BM tuned to the frequency of the tone. This results in a non-linear I/O function. 

Regions further away do not receive this gain, and show linear I/O functions (Sachs and 

Abbas, 1974), as do dead cochleae. An example of each can be seen in Figure 1.2. For a 

given frequency the cochlear gain is linear for low levels of sound (in Figure 1.2 the red 

line is parallel to the blue line < 30 dB SPL (decibel sound pressure level)), above which 

it decreases in effectiveness. For very high levels, the active component has little effect 

and the passive mechanics of the BM dominate, resulting in no active gain. 

Psychophysical studies of such functions in humans show that the cut off level after 
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which gain is no longer as effective (the first 'kink' in the red line of Figure 1.2) is 20-

55 dB SPL (Murugasu and Russell, 1995; Oxenham and Moore, 1997; Ruggero et al., 

1997; Russell and Nilsen, 1997). The result of such localised gain is to sharpen tuning. 

Let us say, for example, a pure tone of 5 kHz is played. It will cause the BM to vibrate 

over a wide region, with maximum activity around the region representing 5 kHz. The 

active gain boosts the response over this 5 kHz region comparatively more than the rest 

of the BM. If we assume the system has a fixed resolution (or constant ╅internal noise╆) 

then this relative increase at the 5 kHz region will make it more distinct from the activity 

on the rest of the BM. Sharpest tuning therefore occurs when gain is maximal, for 

healthy cochleae and low levels of sound. This also means measures of tuning are 

dependent on stimulus level. This is discussed in more detail in 1.4 Auditory filter shape. 

In the previous paragraph I described the passive component of BM activity as 'linear' 

and the active component as 'non-linear'. It may be prudent to define what is meant by 

this. A linear system must have both 'homogeneity' and 'superposition'. 

Homogeneity: If the input of a system is altered by a scale factor, then the output 

must also be altered by the same scale factor, and be otherwise unchanged. For 

example, if the level of a sound is doubled, then the level of the internal response to 

that sound should also double, without adding any other frequency components. 

This results in a linear I/O function. 

Superposition: The output of a system to a number of simultaneously occurring 

inputs should be the same as the outputs of the system to each of those individual 

inputs, summed up. For example, a complex sound made up of two pure tones of 

frequency f1 and f2, with amplitudes A and B, respectively, should elicit the same 

response as A × the response to just frequency f1, plus B × the response to just 

frequency f2. This is expressed algebraically as: 

繰 蕃布 欠沈血沈沈 否 噺 布 欠沈繰岫血沈岻沈  (1.1) 

where S is a function describing the response of the system, fi is each individual 

frequency component in the complex sound, and ai is its amplitude. 

The active gain makes the system non-linear because for a given sound the boost that is 

applied, over regions of the BM, is frequency dependent. Effectively the values of ai are 

not the same for both sides of equation (1.1). 
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Not only is the BM non-linear in this way, but it was found that the maximum gain that 

can be applied varies along the length of the BM. Hicks and Bacon (1999) measured gain 

psychophysically in humans and found that the maximum amount of gain increased with 

increasing tone frequency (and therefore more basal BM activity). Cooper and Yates 

(1994) examined activity of ANF of the guinea pig and inferred activity on the BM from 

it, using tonotopic maps described in Liberman (1982) and Robertson et al. (1980). They 

found a compressive non-linearity (so called because of the 'compressed' region of the 

I/O function (red line in Figure 1.2)) along most of the BM, which increased with 

frequency; there was none for frequencies below 500 Hz.  

The non-linear nature of frequency selectivity is not just present in the early stages of 

the auditory system but is a running theme throughout (see 1.8.5 Central non-

linearities). It has implications for any attempt to quantify tuning, and has led to the 

wide variety of methods and measurements described later in this chapter. If the system 

were linear then any method to measure bandwidth would produce the same answer. 

However, non-linearities mean different methods, or the same method with slightly 

different parameters, will give different results. Neither result is correct or incorrect, 

just affected differently by the non-linearities in the system. It is therefore very 

important to take note of method and parameters when looking at measures of tuning. 

As mentioned previously the field of neuroscience has two main branches: 

psychophysics and physiology. The study of frequency selectivity is no exception, and 

the two branches have developed in parallel with much crossover between the two. 

However, below I describe the development of each separately, starting with 

psychophysics since this is where the first ground breaking studies were conducted. 
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Figure 1.2 

Example I/O functions for the cochlea. For a healthy cochlea, in which OHCs are intact and able to 

provide active gain, the I/O function for a pure tone will look like the red line. For low input levels 

(< 30 dB SPL) the active component provides gain, increasing the relative level at output. At 

intermediate input levels this gain drops off, creating the compressive region seen at 30-80 dB SPL 

input levels. At high levels (> 80 dB SPL) the cochlear gain is no longer effective and the system 

becomes linear once more. The blue line represents a linear system, so for a dead cochlea or for a 

region of the BM far away from the area tuned to the frequency of the test tone. 
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1.3 Psychophysics 

1.3.1 The discovery of masking 

At the core of almost all psychophysical investigations into frequency selectivity lies the 

phenomenon of masking. This is defined as 'the process by which the threshold of 

audibility of one sound is raised by the presence of another (masking) sound' (ANSI, 

1994). Early psychophysical studies showed that a sound could be rendered less 

detectable by the presence of another sound played at the same time; they named this 

disruptive sound the 'masker'. Moreover the effectiveness of this masker to reduce the 

detectability of the signal is greater if the two are closer in frequency (Mayer, 1894; 

Wegel and Lane, 1924). These early experiments were conducted using pure tones, but 

it was shown that this was also true for maskers that were narrow bands of noise 

(sound that has energy over a small range of frequencies) (Fletcher and Munson, 1937). 

The amount of masking (another way of describing the decrease in signal detectability) 

is also dependent on the level of the masker, with a 1 dB increase in masker level 

resulting in a 1 dB increase in signal detection threshold (at least for most frequencies in 

the audible human range) (Hawkins Jr and Stevens, 1950). In other words, the threshold 

at which a signal can be detected in noise is a relatively constant signal-to-noise ratio 

(SNR). This led to the idea that frequency selectivity could be explored by manipulating 

the characteristics of the signal and masker, be it frequency, level, temporal, and 

observing the effect this has on the detectability of the signal. 

Even now over a hundred years later the mechanisms behind masking are still not fully 

understood, but are believed to be multifaceted and not just caused by a single feature of 

the auditory system. One contributing factor is BM mechanics resulting in interference 

between stimuli called 'suppression', which is described in more detail later. However, 

central (i.e. neural) mechanisms also contribute (Costalupes et al., 1984). This is 

described in more detail later in 1.8.9 Mechanisms behind masking. 
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Figure 1.3 

A Detection threshold of the signal against bandwidth of masker: 1) Masker bandwidth low so low 

amount of masking, 2) Masker bandwidth equals CB so amount of masking reaches maximum, 3) 

Wider masker bandwidth adds no more energy into filter so signal detection level remains constant. 

B Detection threshold of signal against size of notch: 1) No notch so masking at maximum, 2 & 3) As 

notch width increases less masker energy falls into the filter, meaning lower detection thresholds of 

the signal. 

 

1.3.2 Power spectrum model 

Arguably the birth of the field as we know it came with (Fletcher, 1940). Here Fletcher 

conducted a series of experiments in which he measured the detection threshold of a 

fixed level pure tone in the presence of a narrow band masker centred on the frequency 

of the signal. He observed that as the bandwidth of the masker increased (effectively 

getting louder) the detection threshold of the signal increased at a steady rate. However, 

at a certain point the detection threshold abruptly stopped increasing and remained 

constant for all larger bandwidths, despite the masker still getting louder (Figure 1.3 

panel A). He dubbed this point the 'critical bandwidth' (CB) and used it as a measure of 

frequency selectivity. To explain this phenomenon Fletcher suggested that the auditory 
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periphery acts as a series of band-pass filters that overlap one another and run along the 

full length of the BM. These filters allow only a narrow range of frequencies through 

determined by the CB; all frequencies outside have no effect. The main factor 

determining the detection threshold of a signal is the amount of masker energy falling 

into the filter surrounding it, i.e. the more masker energy in the filter, the harder the 

signal is to detect. As the masker increases in bandwidth, with its spectrum level staying 

constant, more energy falls into the filter and the detection threshold of the signal 

increases. Once the bandwidth of the masker reaches the CB no further frequencies can 

pass into the filter and so the amount of effective masking energy reaches a maximum. 

Since the signal level is constant, the detection threshold also stays constant. In this way 

the detection threshold of the signal can also be thought of as a constant SNR at the 

output of this filter. He also assumed that when detecting a pure tone one always picks 

the filter with the best SNR at the output. Such a filter became known as an auditory 

filter (AF) and this set of assumptions became known as the 'power spectrum model' of 

masking, since only the long term power spectra of the stimuli are important and the 

phase and short term temporal effects are ignored (Patterson, 1986). 

1.3.3 Band-widening and the critical ratio 

The method described above is known as 'band-widening' and has been used 

extensively to measure AF bandwidth (Zwicker et al., 1957). Studies using this method 

reported much variability between subjects but in general CB increased with signal 

frequency, meaning higher frequencies have broader filters. The idea of the CB persists 

to this day despite many problems. One major problem, which does not just affect band-

widening but many psychophysical methods, is off-frequency listening (Johnson┽Davies 
and Patterson, 1979). This refers to the assumption that as the frequency characteristics 

of the masker change, the auditory system keeps using the same AF. If the filter with the 

highest SNR is always picked by the homunculus, or whatever mechanism detects the 

sound in higher order brain regions, then as the masker bandwidth is increased other 

neighbouring filters may give a better SNR. This would mean the CB wasn't just 

representing one filter but several different ones at different points, which would lead to 

much broader estimates of bandwidth. Another problem is that band-widening is very 

susceptible to stimulus variability (Patterson and Henning, 1977). Fletcher made a 

simplifying assumption that AFs are rectangular which we now know isn't true (see 

1.4 Auditory filter shape for more details); they are in fact more like Gaussian functions 

with long sloping tails. The majority of power therefore passes through the centre (tip) 

of the filter and a relatively small amount through the edges (tails); masking energy 
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passing through the tails contributes a relatively small amount to the overall SNR at the 

output. Small short term fluctuations in the level and frequency of the masker therefore 

have a far greater impact on signal detection than the subtle changes in masking that 

occur as the masker bandwidth approaches the CB. Also the bandwidth of the masker 

has a significant effect on its envelope (the shape of a sound's amplitude in time); the 

narrower the band, the more its natural envelope fluctuates. Therefore the 

instantaneous level of narrow bands are much more variable and uncontrollable than 

broader bands, leading to much more variability in detection threshold. This problem is 

most notable when measuring the centre of the filter, meaning that both tip and tail 

measurements of the AF are dominated by fluctuations in noise. This causes a lot of 

variation between identical measurements and makes it difficult to give a definitive 

answer on CB. The problem is so severe that band-widening was actually damned with 

the description 'totally unsuited to measure the critical bandwidth' (Bos and de Boer, 

1966). 

Another method, that is a simplification of band-widening, is finding the 'critical ratio' 

(CR). This is done by measuring the detection threshold of a signal in the presence of a 

broadband masker. It is assumed that the AF is filled fully with masker energy and so 

the detection threshold of the signal, multiplied by a factor K, represents CB. This factor, 

however, has to be estimated using a more detailed method, such as band-widening, and 

was found to vary with signal frequency and across individuals (Patterson, 1986; Moore 

et al., 1997). 

1.3.4 Masking with pure tones 

A more direct approach to exploring the AF is to establish the detection threshold of a 

pure tone signal, of fixed frequency, in the presence of a tone masker, of various 

frequencies. In this way one can directly explore the graded change from no masking, 

when the masker frequency is far away from that of the signal, to maximum masking, 

when the two frequencies are the same (Chistovich, 1957; Houtgast, 1973; Zwicker, 

1974). This has the added benefit of exploring the shape of the filter in more detail. 

However, this method also suffers from off-frequency listening and, additionally, from a 

consequence of the non-linearity of the BM known as 'two tone suppression' (Kemp and 

Chum, 1980; Ruggero et al., 1992). Because pure tones don't just elicit an infinitesimally 

small response on the BM, it is possible for the activity of two pure tones to interact with 

one another. At certain distances apart on the BM the activity caused by the pure tones 

cancel each other out, dampening the response to the stimulus. In the tone masking 
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experiment, therefore, certain masker frequencies will be damped mechanically on the 

BM and the detection threshold of the signal will be affected adversely, since it is not 

known exactly how it affects different stimuli. On top of this it was found that at some 

frequencies the pure tone masker and signal can combine in such a way that beats are 

audible. These beats can be used as cues for the presence of the signal even if the signal 

is inaudible, thus causing lower detection thresholds (Plomp and Steeneken, 1968; 

Rodenburg et al., 1974; Terhardt, 1974; Wightman et al., 1977; Patterson, 1986). A 

variant was also developed, using a narrow band masker as opposed to a tone, in an 

attempt to alleviate the problem of beats (Zwicker, 1954; Glasberg et al., 1982). The 

occurrence of beats was reduced, but they were not eliminated and the problem persists 

(Buus, 1985). 

1.3.5 Rippled noise 

Another method that emerged in the late 70's was to use rippled noise (RN), or comb-

filtered noise, to probe bandwidth (Houtgast, 1974, 1977; Pick et al., 1977). The idea is 

to use broadband noise that has been modulated in frequency to have peaks and 

troughs, and to find the detection threshold of a pure tone signal for various modulation 

rates. The amount of masking depends on the precise relationship between the peaks 

and the troughs of the masker power spectrum and the filter. Generally speaking 

though, the higher the modulation rate, the more 'ripples' fall into the filter and the 

more masking occurs. By looking at the change in signal detection threshold with 

modulation rate, it is possible to work out the size of the filter. This method does not 

suffer from problems of beats and the effect of off-frequency listening is somewhat more 

complicated but thought to be less severe than band-widening or tone masking. 

1.3.6 Notched noise masking 

All the methods mentioned above have their faults, most notably that of off-frequency 

listening. Notched noise (NN) masking emerged to deal with this persisting problem, 

and is the method that has prevailed. It was first used by Webster et al. (1952) but didn't 

become a commonly used method until the mid-70's (Patterson, 1976; Patterson and 

Henning, 1977; Weber, 1977; Fidell et al., 1983; Glasberg and Moore, 1986; Dubno and 

Dirks, 1989). The basic idea is similar to that of band-widening, but inverted in 

frequency; instead of slowly 'filling' the AF with the masker, it is emptied. As in all other 

methods, the signal is a pure tone but here the masker consists of two narrow bands of 

noise separated by a gap or 'notch' in frequency (see Figure 1.3 panel B). This notch is 

usually centred on the frequency of the signal, and the detection threshold of the signal 
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is determined for notches of increasing width, i.e. the two bands of noise move further 

apart in frequency. As the notch increases, less of the masker energy falls inside the 

filter, causing less masking and the detection threshold of the signal drops. By looking at 

the rate at which the threshold drops with notch width one can infer the size, as well as 

the shape of the AF (see 1.4 Auditory filter shape). In some cases the masker is not two 

distinct bands that move further apart in frequency, but broadband noise with a notch of 

increasing size cut out; this is more commonly referred to as 'band stop' noise. The two 

band version has the benefit of constant masker power regardless of notch width. Also 

constant bandwidth means a constant amount of natural envelope fluctuation, removing 

any potential bias in detection thresholds. 

When the notch width is very large, only a very small amount of the masker energy falls 

into the far tails of the filter. These tails attenuate almost all the energy so the changes in 

SNR at the output of the AF with notch width are very subtle. In band-widening these 

subtle differences are swamped by the small changes in masker energy passing through 

the centre of the filter. With notched noise the only masking energy passing through the 

filter is in these edges, so there is nothing to swamp it. This makes determining the 

edges of the filter far more accurate (Moore and Glasberg, 1983b). Also, since the noise 

bands symmetrically flank the signal, in frequency, the AF with the best SNR will always 

be the one centred on the signal. Off-frequency listening is therefore not a problem since 

all other filters will have a poorer SNR and thus will be ignored (Patterson and Nimmo 

Smith, 1980). (This is only true if AFs are also symmetric, which is technically not the 

case, although they are very close approximations. This is discussed in more detail in 

1.4 Auditory filter shape below). Both these factors make the notched noise method 

better than tone masking, band-widening and the critical ratio (Patterson, 1986). 

Another important aspect of the AF, which has a dramatic effect on estimates of 

frequency selectivity, is its shape. This line of research developed in parallel with the 

psychophysical methods described in this section, mainly in conjunction with notched 

noise masking, and is described in the following section. 
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1.4 Auditory filter shape 

The width of the AF is the crucial feature when looking at frequency selectivity, and this 

is dependent on its shape. One benefit of describing filter shape, beyond obtaining an 

insight into the workings of the auditory system, is that fewer detection thresholds need 

be measured to obtain a bandwidth estimate. Also one can get an impression of how 

reliable the data are by how closely they match the stereotypical shape. 

As mentioned previously, in his 1940 paper Fletcher simplified AF shape to a rectangle, 

but also found that regardless of shape, the bandwidth of the AF increased with signal 

frequency (SF) (Fletcher, 1953). He used a full spectrum broadband masker to mask 

pure tone signals of different frequencies. As the frequency of the signal increased so did 

the detection threshold. The masker was the same throughout so the difference must be 

caused by an increase in masking energy passing through the AF, therefore larger AFs. 

This is at least partly due to the decrease in cochlear gain with increasing frequency, 

described in 1.2 The basilar membrane and its non-linearities. 

 

 

Figure 1.4 

Examples of a roex(p,r) and a gammatone function. Gammatone parameters: a = 1, n = 4, b = 700, 

f = 5 kHz. The order (n) determines the steepness of the sides, the bandwidth (b) determines how 

wide it is. Roex parameters: p = 30, r = 5e-4, CF = 10 kHz. p determines how steep the slopes are, r 

determines the position of the floor. The slopes appear straight due to the logarithmic scale on the 

'Gain' axis. 
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Schafer et al. (1950) first investigated the shape of the filter using band-widening and 

showed that the AF was not rectangular since there was no discontinuity in the 

detection threshold function. They dubbed the new AF shape a 'universal-resonance 

filter' with gradually sloping sides. This was corroborated by a notched noise study 

(Webster et al., 1952) and later a pure tone masking study (Small Jr, 1959). Swets et al. 

(1962) compared a number of potential filter shapes, namely rectangular, universal-

resonance and Gaussian filter using band-widening, and showed that the critical 

bandwidth depended greatly on the assumed filter shape. Investigation into the precise 

AF shape was therefore critical. Patterson (1974) and Margolis and Small (1975) used 

low pass and high pass noise to investigate the shape, but detailed investigation didn't 

really take off until notched noise became established. Patterson (1976) used notched 

noise and showed that the Gaussian function was a good approximation to the AF close 

to the centre of the filter but that the tails dropped off too fast. Patterson and Nimmo 

Smith (1980) showed that a rounded exponential function would make a much better fit, 

and in Patterson et al. (1982) the roex(p,r) function was first suggested as the AF shape. 

This function is 

激岫訣岻 噺 岫な 伐 堅岻岫な 髪 喧訣岻e貸椎直髪 堅 (1.2) 

where W is the filter weighting function, g is the deviation from the centre of the filter, p 

is the parameter defining the slopes of the function, and r defines the floor of the filter 

(see Figure 1.4). At the same time the symmetry of the filter was investigated by using 

asymmetrically spaced notch widths. It was found that the AF was slightly broader on 

the lower edge than the upper. This lead to a variant of the roex(p,r) with two p 

parameters; one defining the slope of each tail, allowing for an asymmetric AF. However, 

for moderate noise levels AF was found to be only very slightly asymmetric, on a linear 

frequency scale, such that an approximation of symmetry is entirely reasonable 

(Patterson, 1974; Patterson and Nimmo Smith, 1980; Patterson, 1986). More refinement 

led to the roex(p,w,t) and roex(p,w,p,t) functions in which the upper and lower edges, 

and lower edge only, respectively, of the roex function have two slope variables 

(Glasberg et al., 1984b; Glasberg and Moore, 2000). This creates 'skirts' allowing 

shallower slopes further away from the centre of the filter, and steeper slopes more 

centrally, although it has been argued that these additional filter functions are 'too 

flexible' to be of much use (Rosen et al., 1998). 

These skirts are an influence of the theory of an active and a passive component to 

cochlear mechanics, described above in 1.2 The basilar membrane and its non-
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linearities. In this situation the passive component can be thought of as a broad, low gain 

filter with shallow slopes, and the active component as a narrow, high gain filter with 

steep slopes. The active component would dominate at frequencies close to the signal, 

and the passive component for frequencies further away. This would lead to an AF with 

steep slopes near the centre, and shallower slopes further away. In Glasberg et al. 

(1999) they did away with the AF shape completely and attempted to directly fit a two 

filter model to notched noise data; such a model is known as a 'cascade filter' model. 

This, however, did not fit such data as well as a roex(p,r) based fitting procedure 

(Glasberg and Moore, 2000). 

The roex is not the only modern function to describe AF shape. In Holdsworth et al. 

(1988) it was suggested that a gammatone function could be used to simulate AF shape. 

Such a function is simply the product of a sinusoid and a gamma distribution, and has 

the following formula in the time domain, 

訣欠兼兼欠建剣券結岫建岻 噺 欠建津貸怠e貸態訂長痛 cos岫に講血建 髪 剛岻 (1.3) 

where f is the centre frequency (in Hz), 皇 is the phase of the carrier (in radians), a is the 

amplitude, b is the filter bandwidth (in Hz), n is the filter order, and t is time (in 

seconds) (see Figure 1.4). This function has the advantage of having fewer parameters 

than the roex and has a fixed slight asymmetry determined by its order. Also it has a 

simple implementation in the time domain meaning that it is perfectly suited for use in 

filter bank models which require quick and effective filtering of a signal in the time 

domain. The disadvantage, however, is that because of its fixed shape and fewer 

parameters (which is an advantage for finding stable fits to data), it does not always fit 

notched noise data as well as the roex. The roex, gammatone functions, cascade models 

and all their variants are all used today to describe frequency selectivity for different 

implementations since they each have their advantages and disadvantages. A nice 

description of these can be found in (Lyon et al., 2010). 

Another universal feature of AF shape is that of level dependence. The highly non-linear 

nature of the active filter described above means that the level of the fixed stimulus has 

an effect on the final AF shape. It was noted in several studies calculating filter shape at 

various fixed levels of signal and masker, that as level increases, AF get broader 

(Patterson, 1986; Moore, 1987; Glasberg and Moore, 1990; Rosen et al., 1992; Rosen and 

Baker, 1994; Baker et al., 1998; Baker and Rosen, 2006). This broadening is a result of a 

shallower slope on the lower edge of the AF, so as level increases asymmetry also 

increases. In addition this is a true change in AF shape and not just a non-linearity or 
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change in efficiency of the detector following the filter (Lutfi and Patterson, 1984). Since 

AF is affected by level, it is very important, when comparing bandwidth measures across 

studies, to make sure they use the same psychophysical experiment, with the same 

stimulus parameters. 

Developments in AF shape were driven mainly by improvements in the notched noise 

method, which was refined over many years, exploring the effects of stimulus duration, 

frequency, level, temporal arrangements and many more (Moore and Glasberg, 1981; 

Moore et al., 1984; Moore et al., 1987). This led to the classic (and much referenced) 

measurement of frequency selectivity in humans, using simultaneous masking and fixed 

masker level, presented in Glasberg and Moore (1990). Two key features of masking 

experiments (that do not only apply to notched noise masking) concern the temporal 

arrangement of the stimuli, and which stimulus should be kept fixed in level. These have 

been a matter for debate and are described in the next two sub-sections. 
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1.5 Fixed signal versus fixed masker level 

Detection threshold of a signal is usually determined psychophysically by varying the 

level of the stimuli and producing a psychometric function, which describes the 

relationship between stimulus level and proportion correct of the psychophysical task. 

Levels are set such that at one extreme the signal is not detectable and the subject 

performs at chance (i.e. proportion of trials that are correct is equivalent to if the subject 

was randomly guessing), and at the other extreme they correctly identify the signal 

100 % of the time. The function transitions smoothly between the two extremes and 

detection threshold is (usually) taken to be the stimulus level at the steepest point of 

this psychometric function. In a two-interval two-alternative forced choice (2I2AFC) 

task (one of the standard psychophysical tasks), this transition usually takes the shape 

of a logistic function with minimum 50 % correct (since there are 2 intervals) and peak 

100 %. Threshold is determined at 75 % correct. An example of such a psychometric 

function can be seen in Figure 3.3. 

To create a psychometric function only the level of one stimulus needs to vary, the other 

is kept fixed. The question is which one to keep fixed: the signal or the masker? Keeping 

the signal level fixed is known as the 'isoresponse' approach and is believed to reflect 

taking the output SNR of the AF to determine signal detection. When the masker level is 

kept fixed this is known as the 'isolevel' approach and is believed to reflect using the 

SNR at the input to the AF to determine signal detection. In a linear system the two are 

simply inversions of one another, and it is not important which one is used. However, in 

a non-linear system (like the auditory system) they will give different answers and the 

choice becomes relevant (Eustaquio-Martin and Lopez-Poveda, 2011). 

In early notched noise experiments there did not appear to be a difference between the 

bandwidth measures of each approach (Moore and Glasberg, 1981; Glasberg and Moore, 

1982) and so due to easier implementation, the fixed masker level approach was 

generally adopted. However, in the 90's a series of papers were published asserting that 

it would be better to fix the signal level (Rosen et al., 1992; Rosen and Baker, 1994; 

Baker et al., 1998; Rosen et al., 1998). There were several reasons for this. One reason is 

that in the fixed masker level condition, maskers with very wide notches still determine 

detection even if they are too far away to have any impact. When a signal is detected 

without a masker, one still gets a psychometric function from the detection task. This is 

attributed to 'internal noise' causing variable success around threshold. If the notch is so 

wide that the masker has no impact on signal detection, the detection threshold will be 



CHAPTER 1: General introduction 

20 
 

determined by this internal noise and not the masker. Therefore if the signal level is 

varied it becomes difficult to know exactly which of these is causing the masking when 

the notch is large and the stimulus masking low. If the signal level is fixed at a level 

above absolute threshold, then one can be sure that the signal is always detectable and 

that any effective masking is being done by the stimulus. Also Rosen et al. (1992), Rosen 

and Baker (1994), Baker et al. (1998) and Rosen et al. (1998) showed that filter shape 

was dependent on stimulus level (see 1.4 Auditory filter shape) and created a model to 

describe this. They found that fixing the signal level gave a much better fit to their model 

and a clearer explanation of cochlear mechanics. Also results matched up very closely 

with measurements made directly on the BM. Recent studies, however, have contested 

this view (Eustaquio-Martin and Lopez-Poveda, 2011; Lopez-Poveda and Eustaquio-

Martin, 2013). They show, using a model of the auditory periphery, that when the signal 

level is fixed the notched noise method tends to underestimate the sharpness of the AF. 
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1.6 Forward versus simultaneous masking 

A key feature of all masking experiments is that (at least) two sounds are played: a 

signal and masker. However, the two do not have to be presented at the same time for 

masking to occur. When the two are played at the same time it is known as simultaneous 

masking. If, however, the masker immediately precedes the signal, masking still occurs, 

and this is known as forward masking (Fwd) (Mayer, 1876; De Mare, 1940; Lüscher and 

Zwislocki, 1947; Munson and Gardner, 1950; Zwislocki et al., 1959; Plomp, 1964; Elliott, 

1971; Widin and Viemeister, 1979; Jesteadt et al., 1982; Moore and Glasberg, 1983a; 

Nelson, 1991; Plack and Oxenham, 1998). Figure 2.3 shows an example of both temporal 

arrangements in a notched noise experiment. Masking can also occur if the masker 

directly follows the signal. This is known as backward masking but is very weak and 

poorly understood (Elliott, 1971). Forward masking is thought to be partly due to the 

mechanics of the BM. Short duration maskers (clicks ~ 100 づsょ can lead to 'ringing' on 

the BM, in which activity persists beyond the end of the masker presentation (Duifhuis, 

1970, 1973; Plack and Moore, 1990). This means that activity evoked by the signal and 

masker occur on the BM at the same time, effectively producing simultaneous masking 

(Sim). It is caused by the finite response time of the AFs, and is most prominent at low 

frequencies. This effect, however, is negligible for longer duration maskers and higher 

frequencies (Vogten, 1978; Gorga et al., 1980; Carlyon, 1988). Forward masking is 

therefore thought to be mainly neural in nature and its origins are a topic of much 

debate (see 1.8.7 Physiological characteristics of forward masking and 1.8.8 Theories 

behind psychophysical forward masking  for more details). 

What is known is that forward masking is not as effective as simultaneous masking, and 

decays with distance between masker offset and signal onset; this decay is roughly 

proportional to the log of the time distance (Moore and Glasberg, 1981; Moore and 

Glasberg, 1983a; Oxenham and Moore, 1995). Duration also has an impact, with the 

amount of masking increasing for masker lengths up to at least 50 ms (Fastl, 1976), and 

up to 200 ms in some studies (Kidd Jr and Feth, 1982; Zwicker, 1984). The effectiveness 

of the masker also increases with increasing masker level, but this relationship is not 

linear (like simultaneous masking) (Moore and Glasberg, 1983a), and a 1 dB increase in 

masker level only increases the detection threshold of the signal by about 0.6 dB 

(Jesteadt et al., 1982), down to as little as ~ 0.2 dB SPL (Plack and Oxenham, 1998). The 

function describing the change in detection threshold with masker level is known as a 

'growth of forward masking' function. 
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In every psychophysical experiment in which the two temporal arrangements have been 

used (not just for notched noise but also for tone masking and others), forward masked 

estimates of bandwidth have been narrower than simultaneous (Houtgast, 1973, 1974; 

Leshowitz and Lindstrom, 1977; Wightman et al., 1977; Vogten, 1978; O╆Loughlin and 
Moore, 1981; Glasberg et al., 1984a; Moore et al., 1984; Weber and Patterson, 1984). In 

one study forward masking was only 17 % narrower (Moore and Glasberg, 1981), but in 

others the difference has been more than a factor of 2 (Houtgast, 1977; Moore, 1978). 

This sometimes substantial difference has been attributed to the suppression or ╅two 

tone inhibition╆, described in 1.3.4 Masking with pure tones above (Sachs and Kiang, 

1968; Heinz et al., 2002). The idea is that, just like with tone masking, the interaction 

between signal and masker on the BM mechanically damps the activity in certain 

regions of the BM causing less masking, leading to wider bandwidth estimates. Because 

the amount and effect of suppression is not well understood, recent notched noise 

experiments tend to favour the forward masking arrangement since this does not suffer 

from this phenomenon. In addition a comparison between notched noise and rippled 

noise experiments using both forward and simultaneous masking arrangements 

(Glasberg et al., 1984a), showed no difference between the methods with simultaneous 

masking. However, the notched noise forward masked estimates were significantly 

narrower than both simultaneous masked arrangements and the forward masked 

rippled noise. 
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1.7 Behavioural measures in animals 

All of the psychophysical experiments described above were conducted in humans, 

however, psychophysical experiments have also been conducted in animals. The 

attraction is not simply to learn more about frequency selectivity across the animal 

kingdom, but also the potential for physiological experiments that are not possible in 

humans. Comparing both in the same animal model has the potential to help us 

understand much more about the mechanisms of auditory frequency resolution. 

Conducting a psychophysical experiment in an animal is much more difficult than in a 

human, since one needs to train the animal to learn a relatively complex and at times 

abstract task through operant conditioning, instead of simply telling them what to do. 

Also motivating the animal to do the task is difficult since monetary reward, or simply 

doing the investigator a favour, does not work with animals as it does with humans. 

Furthermore even without these disadvantages, much psychophysical work in humans 

selects the highest performing/highly trained subjects; the length of training and 

relative limit in population size makes this unrealistic for animal research. 

Many tasks have been developed to obtain signal discrimination responses of an animal, 

each often tailored for that species. Examples include lever pressing, go/no-go and 

localisation tasks. Also various ways of motivating the animal, such as rewards for 

correct behaviour, punishment for incorrect behaviour, food/water regulation 

combined with food/water reward for correct behaviour, and many more. Each method 

has its own characteristics of response, which must be taken into account when 

comparing studies. For example, shock avoidance tasks, where a shock can only occur 

following inaction, tend to encourage false alarm responses since a miss usually means 

shock and pain. However, tasks are usually designed to minimise cognitive load (so that 

any incorrect responses are a result of detection ability and not task confusion) and 

minimise bias. 

All the methods described in previous sections for measuring frequency selectivity in 

humans have also been tried in animals, coupled with a behavioural task described in 

the previous paragraph. Band-widening has been used in a range of animals such as the 

cat (Watson, 1963; Pickles, 1975), chinchilla (Miller, 1964; Clark et al., 1975; Seaton and 

Trahiotis, 1975), rat (Gourevitch, 1965; Gourevitch, 1970), monkey (Gourevitch, 1970), 

dolphin (Au and Moore, 1990) and even goldfish (Fay, 1974). The critical ratio has been 

favoured in many studies with animals, due to it requiring much fewer measurements 

therefore much quicker and easier implementation. Such studies have been conducted 
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in the cat (Watson, 1963; Pickles, 1975; Nienhuys and Clark, 1979), chinchilla (Miller, 

1964; Seaton and Trahiotis, 1975; Niemiec et al., 1992), mouse (Ehret, 1975), macaque 

(Gourevitch, 1970), parakeet (Dooling and Saunders, 1975), dolphin (Johnson, 1971; Au 

and Moore, 1990) and even beluga whale (Johnson et al., 1989). The results of some of 

these can be seen plotted in Figure 1.5, compared to a human estimate from (Green et 

al., 1959). This demonstrates the general trend of animals having broader bandwidth 

estimates than humans. 

Tone masking experiments have been conducted in the gerbil (Burkey and Gans, 1991), 

parakeet (Saunders et al., 1978b) (also using a narrowband masker (Saunders et al., 

1978a)) and budgie (Dooling and Searcy, 1985). Each of these only used simultaneous 

masking, however. One study in the patas monkey (Smith et al., 1987) did use a forward 

tone masker but did not measure the same using simultaneous masking, so no 

comparison between the two is possible. Three studies did compare forward with 

simultaneous tone masking in the chinchilla (McGee et al., 1976), macaque (Serafin et al., 

1982) and parakeet (Kuhn and Saunders, 1980). The first did not find a difference 

between the two stimulus arrangements but in the latter two, forward masked 

bandwidths were narrower than simultaneous. This matches up with the findings of 

human psychophysics. In Saunders et al. (1979) band-widening, critical ratio and 

simultaneous tone masking were all used to measure bandwidth in the parakeet, and the 

results were very similar across the board. Even more remarkably the same 

experiments were conducted in humans and the results were similar between method 

and the two species. They concluded therefore that the mechanisms governing 

frequency selectivity are the same in the auditory system of both species. 

All of these methods have their problems, which have been described in detail in the 

previous sections. There have also been a few notched noise experiments conducted in 

animals. In Niemiec et al. (1992) forward masked notched noise was compared to 

critical ratio, band-narrowing (band-widening but in reverse) and rippled noise in the 

chinchilla. They found that the critical ratio gave much broader AF bandwidths than 

human ones (Glasberg and Moore, 1990), and the estimates got progressively narrower 

for band-narrowing and rippled noise. Notched noise yielded the narrowest bandwidths, 

which were similar to results in humans. In Halpern and Dallos (1986) notched noise 

was used to investigate frequency selectivity in the chinchilla. They even used both 

forward and simultaneous masking. The results, however, were inconclusive since their 

detection threshold versus notch width plots were non-monotonic (resulting in an AF 

with a 'dip' in the centre), which is almost unheard of. They did find, though, that 
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bandwidth widened with increasing level of masker (the masker level was fixed). One of 

the most relevant studies, for this thesis, is Evans et al. (1992). Evans managed to train 

guinea pigs to perform a behavioural notched noise task and used this (as well as 

rippled noise) to estimate filter bandwidths for several frequencies. The relationship 

between signal frequency and bandwidth from this study can be seen plotted in Figure 

1.6. Another set of (currently unpublished) behavioural bandwidth measures, that are 

relevant for a later chapter in this thesis, are plotted against signal frequency in Figure 

3.9 (filled red circles). They are of the ferret, measured using a continuous (and 

therefore simultaneous) notched noise masker, made by other researchers at the 

Institute (Sollini and Alves-Pinto, unpublished). 

All three of the notched noise studies just mentioned used simultaneous masking with 

fixed masker, which is not regarded as the best method to use in human psychophysics. 

Behavioural research in animals lags behind that of human studies, in no small measure 

due to how much more difficult and time consuming it is. Also results are much more 

variable. For further detailed study of frequency selectivity it would be useful to apply 

an up-to-date method, such as that described in Oxenham and Shera (2003). Here 

symmetric and asymmetric notched noise maskers are used in both forward and 

simultaneous arrangements, with signal level kept fixed. Also roex functions are fitted to 

the resulting detection threshold plots. 

 

Figure 1.5 

Critical ratio plotted against tone frequency for different mammalian species. Figure taken from 

Yost and Shofner (2009) (adapted from Fay (1988)). 
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Overall the aim of psychophysical research into frequency selectivity is to measure the 

ability of the entire auditory system of an organism. Masking experiments have been 

developed and refined over the decades to effectively measure AFs; the concept through 

which frequency selectivity is described. Because of the linear, one-to-one relationship 

between masker level and detection threshold (at least for simultaneous masking; 

roughly two-to-one for forward masking), these psychophysical bandwidths have 

widely been regarded to reflect cochlear tuning. However, to investigate whether this is 

true, and see if this bandwidth representation is maintained throughout the auditory 

system, a physiological investigation is required. 

 

 

 

Figure 1.6 

CF vs ERB for guinea pig data. Open circles denote AN bandwidth estimates. Error bars and crosses 

denote psychophysical results from rippled noise (CFN; comb-filtered noise) and notched noise 

(BSN; band stop noise) respectively. Dotted line shows line of best fit for both psychophysical sets of 

points. Taken from Evans (2001). 
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1.8 Physiology 

Another major branch of auditory neuroscience is physiology, in which neural activity 

evoked by sound is investigated. More specifically the activity of a neuron (or population 

of neurons) in response to auditory stimuli is explored, in an attempt to learn more 

about the neuron(s)'s role in auditory perception. This usually involves measuring 

electrophysiological activity from one or several brain regions that collectively form the 

auditory system. These extend from the cochlea in the periphery up to cortex. Each area 

has its own neuronal architecture and connections to other areas, which help it to 

perform specific functions in processing the incoming signal. Further on I will be 

discussing experiments in different auditory structures and so to provide some context, 

here is a brief description of the auditory system. 

 

 

Figure 1.7 

The main ascending pathways in the mammalian auditory system. AN is the auditory nerve coming 

directly from the cochlea. CN is the cochlea nucleus, with ventral and dorsal regions denoted 

separately. SO is the superior olivary complex. NLL the nuclei of the lateral lemniscus. IC is the two 

nuclei of the inferior colliculus. MGB is the medial geniculate body in the thalamus. A1 is primary 

auditory cortex. Image taken from http://www.urmc.rochester.edu/labs/davis-

lab/projects/functional_pathways_in_the_auditory_system. 
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1.8.1 The central auditory system 

Figure 1.7 shows the nuclei and the main ascending connections in the auditory 

pathway. The auditory system is unique among many sensory modalities in that there 

are several stages between the peripheral sense organ and the fore brain. Significant 

pre-processing occurs here before a sound can be identified and interpreted by higher 

brain regions. Figure 1.7 only shows some of the connections between the nuclei. There 

are many more on the ascending pathway and substantial efferent connections from 

cortex back down to allow feedback and higher level control. These efferent connections 

even go down as far as the OHCs in the cochlea allowing active manipulation of cochlear 

mechanics. However, in this study only the afferent pathway up to primary auditory 

cortex (A1) is of interest and this is described below. The pathway is actually made up of 

two interconnected pathways, one on each side of the body, with duplicate regions at 

each stage. The following description is only of one half. 

In the cochlea the mechanical energy of sound is first converted into electrical energy in 

the hair cells. From here the first connection up the auditory pathway is the auditory 

nerve (AN). This is a thick bundle of neurons that relay the neural activity from the 

cochlea to the cochlea nucleus (CN). It consists of high and low spontaneously firing cells 

that carry different types of information about sound. Many physiological experiments 

consider the AN response to fully represent cochlear activity. The next stage is the CN, 

which is actually split into dorsal (DCN) and ventral (VCN) regions. Here orderly and 

abundant input from AN creates several topographic maps of frequency equivalent to 

cochlear activity. The VCN is the more primary-like region, thought to mainly act as a 

relay for ascending information. DCN has extensive efferent connections from higher 

brain regions, as well as complex inhibitory circuits and a high proportion of intrinsic 

connections, leading to the belief that it is involved with more complex auditory 

processing. For example, such inhibitory circuits could reject unwanted signals, enhance 

weak ones, enhance the SNR in a noisy signal or have a disinhibitory role. Next along is 

the superior olivary complex (SOC). This is split into lateral and medial olives, the 

former being involved in calculating inter-aural level difference, and the latter inter-

aural time difference, both of which are important for sound localisation. Little is known 

about the role of the lateral lemniscus (LL) but it is present in all mammals and has 

neurons very similar to collicular ones. Next comes the inferior colliculus (IC). This is 

one of the largest sub cortical nuclei in the vertebrate brain and almost all ascending 

neurons terminate here. It also has connections to almost every known auditory brain 

region, making it the most interconnected auditory structure. This suggests that it plays 
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a vital role in both the ascending and descending pathways. It is split into 3 regions: 

central, lateral and dorsal nuclei. The central nucleus is exclusively auditory and 

contains several laminae of tonotopically organised, non-frequency-overlapping 

neurons. It is essential for normal hearing and is the most primary-like region of the IC. 

The lateral nucleus is the target of considerable non-auditory input, leading to the idea 

that it is involved with multisensory integration. The dorsal region has the most 

projections from the cerebral cortex and its role is unknown. The medial geniculate 

body (MGB) is the auditory portion of the thalamus and is split into several sub-nuclei 

by neuronal architecture and connections. Its role is multi-facetted and complex but has 

mainly ascending projections. The final stage is auditory cortex, the most afferently 

innervated region being A1; from here auditory activity propagates throughout cortex. 

Its structure (like all cerebral cortex) is laminar, with complex interconnections both 

laterally and longitudinally. It is very complex and not well understood, but is thought to 

deal with high level processing. For a more detailed description of all the auditory brain 

regions just described, see Schreiner and Winer (2005). 

Each of these areas has been explored and recorded from using a variety of methods, 

teaching us much about the inner workings of the auditory system. Bandwidth measures 

of neurons have also been made in an attempt to see how they fit together to manifest 

the overall ability of the system. Before I go into too much detail on this, it is important 

to explain a few commonly used methods that help to characterise multiple aspects of 

neuronal activity (and which have formed the cornerstone of many fields of 

neurophysiological research, not just frequency selectivity). 

1.8.2 Frequency response area 

The first successful recording of auditory neurons was in the AN of the guinea pig in 

1954 (Tasaki, 1954). Much of the study looked at the shapes of action potentials and 

firing properties in response to pure tones. It was also the first time a frequency 

response area (FRA), also known as an excitatory frequency tuning curve (eFTC), was 

recorded. An example, from a single neuron recorded in this study, can be seen in Figure 

1.8 panel A. Such a plot is created by recording the firing rate of a neuron (or population 

of neurons) in response to a pure tone of various frequencies and levels. The frequency 

of the tone is plotted on the horizontal axis (in Hz or kHz) and the level on the vertical 

(in dB SPL). Firing rate is represented by colour. It illustrates the following key 

characteristics of a neuron: 
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Threshold: The lowest level of signal that still elicits an increased firing rate. This is 

simply the level of the tip of the FRA (× in Figure 1.8 panel A). 

Characteristic frequency (CF): The CF is the frequency that still elicits a response at 

threshold. Simply the frequency of the tip of the FRA. 

Best frequency (BF): The frequency that elicits the maximum firing rate. 

Bandwidth: This is measured in a number of different ways, one of which is width of 

the FRA at a certain level above threshold, e.g. 10 dB in Figure 1.8 panel A. This is 

described in more detail below. 

Most neurons are tuned to a certain frequency, resulting from the main innervations 

they receive from the cochlea, but they also respond to others. This is especially true for 

higher sound level stimuli. The conditions under which a neuron fires reveals a lot about 

its role, and certain types of cells have distinct FRA shape that allow them to be 

identified. Figure 1.8 panel A shows the classic 'V' shape of a primary-like neuron, but 

more complex neurons have much more complicated FRA shape. 

Bandwidth is most commonly measured from an FRA by calculating the Q10. This is 

described be the following simple formula: 

芸怠待 噺 稽激怠待系繋 where稽激怠待 噺 拳件穴建月剣血繋迎畦など穴稽欠決剣懸結建月堅結嫌月剣健穴┻ (1.4) 

Variants of this also exist as Qn where n describes the amount of dB above threshold the 

width of the FRA is measured at. Another measure, more common in psychophysics, is 

the equivalent rectangular bandwidth (ERB). This equates to finding the width of the 

rectangular filter that passes the same amount of energy, and has the same gain as the 

AF. For the FRA this is described by 

継迎稽 噺 畦堅結欠剣血繋迎畦劇月堅結嫌月剣健穴 ┻ (1.5) 

Since the area of the FRA is in units of level × frequency, and threshold is in level, ERB is 

a frequency value. QERB is also sometimes seen, which is simply ERB divided by CF, but 

this is fairly rare.  
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Figure 1.8 

Example FRA and iFTC. A Plot of firing rate in response to a tone of various frequencies and levels; 

blue = low, red = high. × marks the point representing CF and threshold. BW10 is the width of the 

FRA 10 dB above threshold. Grey dashed line indicates RLF. B Firing rate in response to tone masker 

with various frequencies and levels. White × marks the frequency and level of the signal tone. Blue 

region indicates masking. 

 

1.8.3 Rate against level function 

Another useful plot of neural activity that is used to characterise certain properties of a 

neuron, is the rate against level function (RLF). This is a plot of firing rate against level of 

a single frequency stimulus, and is actually a subset of the FRA, indicated by the dashed 

line in Figure 1.8. The RLF is usually made using the CF of the unit. An example can be 

seen in Figure 2.6 panel B. Key features include threshold, saturation (maximum firing 

rate), slope, dynamic range (range of levels between threshold and saturation) and the 

shape (monotonic/non-monotonic). 

1.8.4 Tone-on-tone masking 

This is similar to the tone masking described in 1.3.4 Masking with pure tones, whereby 

a pure tone masker of various frequencies and levels is played in conjunction with a 

pure tone signal of fixed frequency and level (usually CF, just above threshold). The 

firing rate in response to the signal is measured and plotted against masker frequency 

and level, and is often referred to as an inhibitory frequency tuning curve (iFTC). An 

example can be seen in Figure 1.8 panel B. This method allows the exploration of 

masking by inhibition, since any reduction in response to the signal caused by the 

masker is masking. In some cases the masker can actually cause a higher firing rate in 

response to the signal; this is known as facilitation. Important features are the same as 
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in FRA (i.e. threshold, CF, BF, bandwidth, shape) except here decrease in firing rate is the 

area of interest. 

1.8.5 Central non-linearities 

As mentioned previously one of the key discoveries, which significantly shaped auditory 

research, is that with simultaneous masking, a 1dB increase in masker level results in a 

1 dB increase in detection threshold of a signal (Hawkins Jr and Stevens, 1950). This 

implies that the auditory system is linear, however we know that cochlear mechanics 

are highly non-linear, and the fact that forward masking exists proves that the system 

can't be linear. So what exactly is happening in the central auditory system? The answer 

is a number of non-linear processes that manifest in overall linear behaviour. 

A highly useful tool in exploring these non-linearities is the RLF of a neuron. In many 

neurons it is a monotonic, sigmoid shape with a surprisingly narrow dynamic range over 

which firing rate varies. In the AN, RLFs are monotonic, but have regions where firing 

rates increase rapidly, and regions where they increase more slowly. This is thought to 

reflect the linear (rapid) and compressive (slowly increasing) regions of the BM I/O 

function (see 1.2 The basilar membrane and its non-linearities). In central neurons, no 

link has been made of RLF shape with cochlear non-linearity. However, it is common to 

observe strong non-linearities such as non-monotonicity, which are often thought to 

reflect inhibition. Therefore RLFs across the auditory system appear to be hallmarks of 

many different sources of non-linearity. 

One such non-linearity is the auditory system's solution to the 'dynamic range problem' 

with encoding the level of a stimulus (Viemeister, 1988), caused by the surprisingly 

small dynamic range of neurons mentioned above. Neurons use neurotransmitters and 

the movement of different ions, e.g. Na+ and K+, to produce and propagate action 

potentials; these molecules/ions become depleted during firing and must be 

replenished. The maximum rate at which this can occur is limited by the biology of the 

neuron, and the range over which it can accurately change its firing rate is known as the 

dynamic range. The majority of ANFs have low thresholds and saturate quickly, giving a 

dynamic range of just 35 dB (Sachs and Abbas, 1974; Evans and Palmer, 1980). Other 

neurons with slightly higher thresholds tend to have larger dynamic ranges, since most 

of the input sound levels they respond to are in the compressive region of the BM I/O 

function, meaning the dynamic range of the inputs from their OHCs is already wider. 

However, even with these characteristics they can still not account for the full ~120 dB 

range of human hearing through firing rate alone. To get around this neurons do not 
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encode rate in a fixed firing rate, but their firing rate adapts to the stimulus. Dean et al. 

(2005) recorded RLF from neurons in the guinea pig IC in response to broadband noise 

of different levels. Level was varied randomly with the large majority (80 %) coming 

from a narrow (12 dB) range of levels. This was repeated for several different ranges of 

level from 33 - 81 dB SPL. The RLFs show a clear reduction in the maximum firing rate, 

and the dynamic range shifts towards higher levels, with increasing level of input. This 

shows that the neurons are adapting their firing rates to the most common input level in 

a highly non-linear manner. 

1.8.6 Shifts in RLFs 

A very similar phenomenon occurs in tone-in-noise masking experiments, that has 

revealed much about the origins of masking. A pure tone signal (set at the CF of a 

neuron) is simultaneously masked by a broadband noise, and an RLF is recorded. This is 

repeated for several different levels of masker, and the effect on RLF observed. In a 

completely linear system one would expect to get 'excitatory masking', in which the 

response of the neuron in the signal + masker condition is simply the sum of the 

neuron's response to the signal and masker individually. This would result in the floor of 

the RLF rising (the magnitude dependent on the level of the masker) but all other 

features remaining the same. An example can be seen in Figure 1.9 (a). However, if there 

is non-linear masking, the dynamic range of the RLF might shift to a higher SNR, and the 

amount of shift is dependent on the level of the masker. An example can be seen in 

Figure 1.9 (b). (In the figure, taken from Delgutte (1989)┸ it is referred to as ╅suppressive╆ 
masking, although such a shift can also be caused by other non-linear mechanisms. Also 

theoretically there could be a shift to a lower SNR, or a change in shape, depending on 

the nature of the non-linearity). In fact neurons throughout the auditory system display 

both kinds of masking, with most excitatory masking occurring in the AN (Delgutte, 

1989), and being almost completely absent in A1. Since this shift in RLF is present at 

every stage of the auditory system, it has been used as an indicator of the amount of 

masking that might be occurring at each stage. 
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Figure 1.9 

Schematic of the effect of excitatory and suppressive masking on a neuron's RLF (taken from 

Delgutte (1989)). 

 

 

 

 

Figure 1.10 

Growth of simultaneous masking in different brain areas. The RLF of neurons in a tone-in-noise 

experiment shift roughly linearly with increasing masker level. This plot show the amount it shifts 

per 1 dB increase in masker level. Labels 1, 3 and 4 relate to type I, III and IV neurons in CN. Solid 

line refers to results for IC neurons with an I shaped FRA, dashed lines are ± 1 standard deviation. O 

and V refer to neurons with that shaped FRA. Taken from Ramachandran et al. (2000). 
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Studies in the AN of the cat, looking at the response to a pure tone in the presence of a 

simultaneous broadband masker, showed a shift in RLF of 0.61 dB (Costalupes et al., 

1984) and 0.79 dB (Gibson et al., 1985) per 1 dB increase in masker level. Gibson et al. 

(1985) also recorded from neurons in the CN and found that the shift in VCN and DCN 

type I and III units (more primary) is 0.86 dB/dB, and 1.04 dB/dB for DCN type IV (more 

complex). In the IC of the guinea pig Rees and Palmer (1988) found the shift to be 0.97 

dB/dB, and in the decerebrate cat Ramachandran et al. (2000) found the shift in I type IC 

neurons to be 1.04 dB/dB. Figure 1.10 shows a plot of the results from (Ramachandran 

et al., 2000). Open symbols show neurons with solely excitatory input, whereas the solid 

line and filled symbols show neurons with both excitatory and inhibitory input. In A1 

RLF was found to shift linearly with masker level (i.e. 1 dB/1 dB) as seen in 

psychophysics (Phillips and Cynader, 1985; Phillips, 1990; Ehret and Schreiner, 2000). 

These results show a clear trend that the effect of masking stimulus on RLF develops up 

the auditory pathway, reaching its maximum as early as the IC. From this point onwards 

the rate of shift in RLF can fully account for the change in masking seen 

psychophysically, i.e. the 1dB/dB change in threshold with masker level. Also, inhibitory 

inputs seem to be a major source contributing to masking. 

This analysis has also been conducted using non-simultaneous masking (a mixture of 

both forward and backward masking). In Costalupes et al. (1984) a non-simultaneous 

masker was also used to measure the RLF of cat ANFs, and was found to shift at a 

markedly smaller rate than with the simultaneous masker. This was also seen in guinea 

pig IC neurons in Rees and Palmer (1988), where RLF with a simultaneous masker 

shifted at 0.86 dB/dB and only 0.31 dB/dB with a non-simultaneous masker. (Rates 

were calculated by fitting straight lines to the data points above 0 dB noise spectrum 

level in Figure 9 (a) of the paper). In Gibson et al. (1985) a method similar to non-

simultaneous masking was used, in which a pure tone was played continuously at a fixed 

level, which was abruptly reduced for a period of 200 ms; they called it an 'interrupted 

tone'. The firing rate in this lower level region was then taken, and the process repeated 

for various continuous tone levels, producing an RLF. This is equivalent to having a fixed 

level tone signal, with a varying level non-simultaneous tone masker of the same 

frequency. They found that the rate of shift in RLF was 0.33 dB/dB in AN, 0.37 dB/dB in 

VCN, and 0.47 dB/dB in DCN. These together suggest that the difference between the 

two forms of masking is caused by suppression on the BM, since the behaviour of the 

two centrally is very similar, and that this is still evident at least to the level of the IC. 
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Shifts in RLF are useful indicators for masking, but they only describe the suppressive 

type and not excitatory (see Figure 1.9). To see the full amount of masking at different 

stages of the auditory system it is necessary to use a signal detection theory (SDT) 

approach (see 1.8.11 Signal detection theory section) (Young and Barta, 1986). Such 

studies have been conducted, looking at the growth of forward masking in the AN using 

SDT (Relkin and Pelli, 1987). Relkin and Turner (1988) found that detection threshold of 

a pure tone signal increased at 0.1 ‒ 0.5 dB per 1 dB increase in masker level, whereas 

the psychophysical rates of Jesteadt et al. (1982) and Plack and Oxenham (1998) were 

0.6 dB and > 0.2 dB respectively. This potentially tenuous relationship was corroborated 

in Turner et al. (1994), in which a direct comparison between psychophysical and 

physiological (in AN) growth of forward masking showed the latter to be 64 % or 36 % 

of the former (depending on envelope on/off ramps). These studies clearly indicate that 

forward masking is not just manifested in the periphery and that central mechanisms 

contribute. By extension, the similarity in behaviour between the shifts in 

simultaneously and non-simultaneously masked RLFs as one moves up the auditory 

system, may suggest that central mechanisms also contribute to simultaneous masking. 

So what exactly are these central mechanisms and how is forward masking manifested? 

Many physiological experiments have been conducted to measure forward masking, and 

help answer this question. 

1.8.7 Physiological characteristics of forward masking 

In Harris and Dallos (1979) the activity of ANFs in the guinea pig was measured in 

response to a tone-on-tone forward masking experiment (see 1.8.4 Tone-on-tone 

masking). As with psychophysical studies, there was a logarithmic relationship between 

masking and time between masker offset and signal onset (1.6 Forward versus 

simultaneous masking). This was independent of CF. They also found that in the same 

ANFs the iFTC (with just above threshold, CF signal) was very similar to its FRA. A 

similar finding was made in Brosch and Schreiner (1997) looking at forward masking in 

A1; tone inhibition persisted for 53 ‒ 430 ms with iFTC matching up closely with FRA, 

reducing in size with increased distance between masker and signal. Also the amount of 

masking was dependent on the level of the masker. Indeed Nelson et al. (2009) recorded 

from IC neurons in the awake macaque and found that some key features of growth of 

forward masking (maximum amount of masking, and recovery from masking) were 

already seen at the level of the IC. Additionally, forward masking already had a wide 

dynamic range at this level. So individual neurons display the same characteristics of 
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forward masking as seen psychophysically, and at various stages of the auditory system. 

In addition masking without the inclusion of suppression on the BM (i.e. non-

simultaneous), seems to reflect the excitatory characteristics of individual neurons. So 

what kind of mechanism could produce this forward masking so early on in the auditory 

system? There are two main theories, which are described in the section below. 

1.8.8 Theories behind psychophysical forward masking 

One theory is that psychophysical forward masking is caused by neural adaptation 

(Smith, 1977; Kidd and Feth, 1981; Jesteadt et al., 1982; Bacon, 1996; Nelson and Swain, 

1996), potentially already in ANF (Duifhuis, 1973; Smith, 1979). Adaptation is the 

phenomenon whereby the response of neurons to a constant stimulus diminishes over 

time (Kiang, 1965), and can develop over several seconds or even minutes (Javel, 1996). 

It is thought to be due to intrinsic mechanisms within neurons, synaptic depression 

(where neurotransmitters become depleted over time), or interactions between 

neurons (e.g. inhibitory feedback loops). Adaptation in the ANF cannot be the sole cause 

since it does not account for the full amount of forward masking seen psychophysically 

(as described in the previous section). Also cochlear implant patients show similar 

amounts of forward masking as normal hearing listeners, which means it cannot be 

solely manifested in the periphery (Shannon, 1990). 

Another theory is that it is caused by neural activity that persists in the central auditory 

system after the stimuli have ceased (Plomp, 1964; Penner, 1975; Zwicker, 1984; Moore 

et al., 1988; Oxenham and Moore, 1994). This is more commonly referred to as the 

'temporal window model' because it can be modelled by a BM non-linearity followed by 

integrating over a time invariant, linear temporal window (Festen and Plomp, 1983; 

Moore et al., 1988; Plack and Moore, 1990; Oxenham and Moore, 1994; Plack and 

Oxenham, 1998). In this model the only effective non-linearity is that in the periphery, 

and overall the auditory system acts linearly after that, at least in growth of masking. 

This model has the added benefit of also describing simultaneous masking, 

encapsulating the differences between the two temporal arrangements, such as amount 

and growth of masking. 

Which of these is the mechanism behind forward masking is still debated. Nelson et al. 

(2009) claims that adaptation and offset inhibition can completely account for forward 

masking instead of the persistent excitation of the temporal window model. In Oxenham 

(2001) a temporal window model was shown to fit more closely to psychophysical data 
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of growth of forward masking than adaptation, although they did not discount the 

possibility of adaptation being the cause. 

1.8.9 Mechanisms behind masking )t is clear that masking isn╆t caused by one mechanism┸ but is instead the cumulative 
effect of several. Suppression on the BM makes a sizeable contribution and is believed to 

fully represent the difference between forward and simultaneous masking. The amount 

of masking increases throughout the central auditory system and is most likely caused 

by neural adaptation, or persistent excitatory activity. Factors contributing to this 

include network interactions, synaptic depletion and intrinsic mechanisms in neurons. 

Another contributing factor is the activity of the medial olivocochlear system (MOC) 

(Guinan Jr, 1996, 2006). This system includes efferent connections from the SOC to the 

OHCs in the cochlea, which allows direct central control over cochlear gain. It has a time 

constant of roughly 100 ms and turns down the automatic gain on the BM. 

Such mechanisms are thought to aid many fundamental auditory functions such as noise 

cancellation, helping pick out useful auditory information from background noise 

(Winslow and Sachs, 1988; Kawase et al., 1993). There is evidence that this ability 

increases up the auditory pathway (as does masking) providing a noise free 

representation of salient sounds in A1 (Rabinowitz et al., 2013). Also similar non-linear 

adaptive processes seen in the visual system have been shown to improve the efficiency 

of neural coding (Brenner et al., 2000; Fairhall et al., 2001), so this may have the same 

effect in the auditory system. 

Regardless of the mechanisms behind it, masking has been a very useful tool in 

exploring frequency selectivity. The following section describes the various methods 

(including masking) that have been used to explore frequency selectivity 

physiologically, and what they have taught us. 

1.8.10 Physiological bandwidth measurements 

FRA 

Due to its relative simplicity leading to quick and easy implementation, the FRA has 

been the most popular way to describe frequency selectivity in neurons. It has been 

used to measure bandwidth in the AN of many species, such as the cat (Kiang, 1965; 

Wilson and Evans, 1971; Liberman, 1978), squirrel monkey (Geisler et al., 1974), gerbil 

(Ohlemiller and Echteler, 1990), mouse (Taberner and Liberman, 2005), pigeon (Sachs 

and Abbas, 1974), starling (Manley et al., 1985), guinea pig (Evans, 1972; Tsuji and 
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Liberman, 1997; Evans, 2001) and ferret (Sumner and Palmer, 2012). Many of these can 

be seen in Figure 1.11. The results across mammalian species are all very similar, 

showing a roughly linear (for log CF) increase in bandwidth with CF of similar rate. All 

these studies were conducted in anaesthetised animals since it is still very difficult to 

access the AN with chronic implants. The CN, too, has been extensively studied in this 

manner since its various types of cells have very distinct response characteristics which 

allow them to be identified without histological verification. Probably the most relevant 

study in the CN to the study in this thesis is Sayles and Winter (2010), which 

investigates bandwidth of single-units (SU) in the guinea pig. This will be explored in 

more detail later. 

 

 

 

 

Figure 1.11 

Physiological bandwidth estimates in the AN of 5 mammalian species, made using FRA. Data are 

from Taberner and Liberman (2005) for mouse, Liberman (1978) for cat, Tsuji and Liberman 

(1997) for guinea pig, Liberman (unpublished data) for chinchilla, and Ohlemiller and Echteler 

(1990) for gerbil. Figure taken from Taberner and Liberman (2005). 
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Much of what we know about the IC has come as a result of recording FRAs. Such 

experiments have been conducted in a range of species such as the cat (Rose et al., 1963; 

Gersuni et al., 1971; Langner and Schreiner, 1988; Schreiner and Langner, 1997), mouse 

(Ehret and Moffat, 1985; Egorova et al., 2001; Ehret et al., 2003), bat (Wenstrup et al., 

1986; Casseday and Covey, 1992), chinchilla (Wang et al., 1996), rat (Hernandez et al., 

2005) and guinea pig (LeBeau et al., 2001; Palmer et al., 2013). Schreiner and Langner 

(1997), showed us that the IC consists of discrete laminae of neurons arranged 

topographically in frequency and also other characteristics such as best modulation 

frequency, onset latency, bandwidth and binaural interaction type (Langner and 

Schreiner, 1988; Egorova and Akimov, 2013). Hernandez et al. (2005) investigated the 

bandwidth of IC neurons in the rat, looking at Q10, and compared this to a whole host of 

other brain regions and mammalian species, namely the mouse (Egorova et al., 2001), 

guinea pig (Syka et al., 2000), cat (Ramachandran et al., 1999) and albino rat (Kelly et al., 

1991). These can be seen in Figure 1.12. They show that the IC displays similar 

frequency selectivity across species (except albino rat) and that this is similar to the AN 

(Møller, 1978; Carlier and Pujol, 1982) and other brain regions in the rat. The growth of 

Q10 with CF is not as linear here as for the AN data in Figure 1.11, growing much more 

rapidly at higher CF. This trend may, however, only be true for the rat since it is mainly 

limited to these plots. Palmer et al. (2013) is possibly the most comprehensive look at 

FRA characteristics of guinea pig IC neurons. They compared responses to over 2000 

units from a number of anaesthetic and experiment types, and even calculated 

bandwidth with both the Q10 and ERB for each. They found that FRA shape in IC can 

generally be split into a number of different categories, which can help to identify the 

role of a cell; V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-

peaked. V shaped are the most primary like cells receiving only excitatory input, all 

other shapes are the result of complex excitatory and inhibitory inputs. 

FRAs recorded in A1 units, however, have shown much less homogeneous 

characteristics. Sutter (2000) showed that there is a huge variety in FRA shape, such 

that they should be thought of more as a continuum than fitting into discrete groups. 

FRA bandwidth investigations in A1 have also shown mixed, and at times conflicting, 

results. Suga (1977) showed that the bat A1 has a strong topographic arrangement of 

frequency and amplitude. Sally and Kelly (1988) and Phillips and Irvine (1981) each 

investigated the Q10 of A1 neurons in the albino rat and cat respectively (see Figure 

1.12). They both found that Q10 increased with frequency, in a very similar manner to 

experiments in lower brain regions described above.  
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Figure 1.12 

Physiological bandwidth measures of several mammalian species in the IC and other brain areas, 

made using FRA. 'Present results' are for the rat. Figure taken from Hernandez (2005). 
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Several studies have found tonotopicity in the A1 of the anaesthetised guinea pig 

(Wallace et al., 2000), cat (Phillips, 1985; Phillips et al., 1994), and awake marmoset 

(Bendor and Wang, 2008). However, Schreiner and Mendelson (1990) and Schreiner 

(1995) seemed to show that no tonotopicity exists in the cat A1, instead there is a non-

uniform spatial distribution of receptive fields. They suggested that cortex acts like a 

'self-organising mapping algorithm' and that there is no inherent frequency or 

bandwidth structure. Another experiment in A1 of the macaque (Recanzone et al., 2000) 

showed that there was no increase in Q10 with frequency, although this was in an awake 

behaving animals so is not directly comparable. Another study in awake behaving 

animals (Galván et al., 2001) used the local field potential (LFP) to measure bandwidth 

in guinea pig A1. They found that CF and tuning changed on a daily basis, suggesting that 

frequency and bandwidth isn't even fixed. Such seemingly contradictory findings show 

how complex and inexplicable cortex is compared to lower brain regions. 

Despite the relative simplicity of collecting FRA making it the most common method for 

describing physiological frequency selectivity, there is still speculation about what 

exactly it is measuring, and whether it is comparable to psychophysical methods. The 

first obvious difference between the two is that one utilises masking mechanisms, 

involving complex inhibitory and excitatory interactions, both within and between 

neurons, whereas the other simply uses excitatory input. Mechanisms behind masking 

are not fully understood but are known to be multifaceted and involve widespread 

interactions. Also maskers generally contain a much wider range of frequencies than the 

signal, so in masking experiments a much wider range of the cochlea is activated. 

Whether both these approaches measure the same feature of frequency selectivity is 

unknown, and seems somewhat doubtful in light of all the non-linearities observed in 

the auditory system. One such example is the BM I/O function (see 1.2 The basilar 

membrane and its non-linearities). Input sound levels over a range of ~20-55 to 

~90 dB SPL are known to be compressed in the cochlea, and are represented by a 

disproportionally narrow range of firing rates. Since FRA are produced using signal 

levels spanning a wide range of levels, they will certainly be affected by this non-

linearity. In masking experiments, however, only the detection threshold of the signal is 

important. By fixing the level of one stimulus in the centre of either the linear region of 

the BM I/O function from ~0-20 dB SPL, or the centre of the compressive region (see 

Figure 1.2), both signal and masker should be in the same portion of the I/O at 

threshold. Therefore at threshold the relationship between the two should be linear, and 

therefore this non-linearity should have no effect. Masking experiments have also been 
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conducted on physiological data to measure bandwidth, and explore the relationship 

between the pure tone and masking approaches. 

Masking 

Experiments using tone-on-tone masking (see 1.8.4 Tone-on-tone masking) have been 

conducted in most auditory regions in several species, such as the cat (Greenwood and 

Maruyama, 1965; Ramachandran et al., 1999), bat (Suga, 1969; Vater et al., 1992; Lu and 

Jen, 2001), starling (Nieder and Klump, 1999) and guinea pig (Ehret and Merzenich, 

1988; Prijs, 1989). Such experiments have shown that neurons have inhibitory side 

bands, or inhibitory regions flanking CF, which sharpen their tuning. These are evidence 

of the non-linear mechanisms throughout the central auditory system whose role it is to 

sharpen tuning. As well as the band-widening experiments described in the previous 

paragraph, rippled noise has also been used in an attempt to use one method for both 

psychophysical and physiological studies (Kate et al., 1974; Bilsen et al., 1975). 

However, as far as I am aware the notched noise has not been attempted at the SU level. 

It has, however, been used to measure bandwidth in animals physiologically at a much 

broader level. Auditory brainstem responses (ABR) in response to notched noise stimuli 

have been used to give a measure of global brainstem frequency selectivity (Popov et al., 

1997; Gall and Lucas, 2010; Henry and Lucas, 2010b, a; Lina and Lauer, 2013). 

There is evidence that measuring bandwidth using excitatory stimuli alone (e.g. FRA) is 

not equivalent to measuring bandwidth using masking methods. Ehret and Schreiner 

(1997) is a comprehensive study of bandwidth measured using FRA, band-widening and 

the critical ratio, in the A1 of the cat. They measured the CR and the CB (using band-

widening) with several different spectrum levels┸ effectively creating ╅tuning curves╆ 
using these two masking methods. They found that the tuning curves of the masking 

experiments differed substantially in shape from those measured using the FRA, and 

concluded that the two methods aren't measuring the same thing. In Egorova and Ehret 

(2008) FRA and iFTC of guinea pig IC neurons were measured and compared to the CB 

measured in the same cells. They were shown to be substantially different in shape and 

bandwidth, showing that tone masking too, is measuring something different to band-

widening. In both studies the masking experiments used simultaneous masking. If, in 

fact, the only non-linearity that affected results was cochlear in origin, then two-tone 

suppression should cause the only difference between pure tone and masking results. 

Such suppression has the effect of broadening bandwidth estimates (see 1.3.4 Masking 

with pure tones) and so masking bandwidths would be systematically broader than 
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pure tone ones. This is, however, not the case in either study just mentioned, providing 

more evidence that central non-linearities exist and have an effect on bandwidth 

estimates. 

In Ehret and Schreiner (1997) the neural CBs matched up with ones measured 

psychophysically using band-widening, from which they concluded that bandwidth does 

exist at the neural level but that it is independent of FRA. However, the mean firing rate 

in response to the stimuli was used to determine detection, which does not encompass 

all aspects of neural firing that may be used to determine psychophysical detectability 

(Young and Barta, 1986). Therefore unless this relationship is corroborated in a study 

using SDT, or a similar approach, it cannot be definitively said that the CB, as measured 

psychophysically, exists at the neural level. 

Other methods 

There have been several methods used to measure bandwidth physiologically and there 

is not one 'industry standard'. One popular method is reverse correlation. This involves 

playing either white noise, random tones or spectrally rippled noise and recording the 

spiking of the neuron in response. Simply reverse correlating the spike train (sequence of ど╆s and な╆s, where a 1 represents a spike) with the spectro-temporal representation of 

the sound gives a spectro-temporal response field (STRF). All random parts of the 

stimulus will cancel out and only those features that trigger spiking will remain. This 

gives information about the excitatory and inhibitory characteristics of the unit, not only 

in frequency but time. It can be used to measure bandwidth and has been used in several 

species (De Boer, 1967; De Boer and Jongkees, 1968; De Boer and Kuyper, 1968; De 

Boer, 1969; Ruggero, 1973; Miller et al., 2002; Escabí and Read, 2003). It has even been 

used in humans through intracranial depth electrodes over auditory cortex (Bitterman 

et al., 2008). This study found bandwidth to be far narrower than AN measurements in 

other animals and far narrower than expected. 

Another method that is emerging is to use the otoacoustic emissions (OAE) of the ear to 

measure bandwidth in the cochlea. This is the phenomenon whereby the cochlea 

produces a small audible response to sound stimuli, thought to be a by-product of 

cochlear amplification caused by the OHCs (Lilaonitkul and Guinan, 2009). It was found 

that stimulus-frequency otoacoustic emissions (SFOAE) could be used to measure 

bandwidth since the delay of the OAE after stimulus presentation is related to 

bandwidth. This provides a non-invasive physiological measure of bandwidth that can 

be used in humans. Shera et al. (2002) is such a study and they found that frequency 
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selectivity was much finer in humans than previously suspected. The findings were 

disputed by Ruggero and Temchin (2005), but have since been corroborated by two 

further studies; Shera et al. (2010a) and Joris et al. (2011). This technique has even been 

used to measure bandwidth in the tiger, an animal in which invasive techniques would 

also be impossible (Bergevin et al., 2012). 

1.8.11 Signal detection theory 

A fundamental assumption that must be made in all physiological studies, especially 

those using masking, and those making comparisons with psychophysical thresholds, is what constitutes ╅detection of a signal╆ in a neuron╂ )n behavioural studies the subject 
indicates whether they heard the signal or not, but with neurons there are spikes or 

other electrophysiological activity. Increasingly studies look at the precise pattern of 

spikes and relate this to the stimulus (this is known as temporal coding and is discussed 

in more detail in 2.2.7 Analysis: Different approaches) but most simply look at the mean 

firing rate of the neuron around the time of signal presentation. This mean firing rate is 

typically compared to the spontaneous rate of the neuron (mean firing rate in the 

absence of any stimulus) and some threshold criteria relative to spontaneous rate is 

used to determine when the two are different enough for the signal to be deemed ╅detected╆┻ )n the real world, however, animals must make decisions from single events 

and cannot wait for several repeats to average the response. Therefore detection of a 

signal must be unambiguous on a single trial. Just using mean firing rates throws away 

valuable information that could influence detectability, namely variance. Say, for 

example, a neuron had a very precise firing rate with very little variability in the absence 

of any stimulus. If there was a small increase in firing rate in response to a sound, then 

looking at just the firing rate of the neuron after a single trial one could be fairly sure 

whether the sound was present or not. Figure 1.13 panel A shows an example of such a 

situation. Now if there was a second neuron with a very variable firing rate in quiet, then 

the same small increase in response to the sound would make much less of a difference. 

Looking at just the firing rate of the neuron one could not be very certain if the sound 

was present or not (see Figure 1.13 panel B). The traditional approach would deem the signal to be just as detectable in each neuron but in reality that isn╆t true┻ 
An entire field of research is devoted to just this problem, known as signal detection 

theory (Green and Swets, 1966). This treats responses when a signal is present and 

responses when a signal is absent as samples from different probability distributions. By 

finding these distributions and determining the amount of overlap, the detectability of a 
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signal can be quantified. This approach was developed and used extensively in 

engineering, as well as psychophysics. (For a more comprehensive description see 

Macmillan and Creelman (2004)). However its use in physiological neuroscience has 

been rather limited despite its benefits. Relkin and Pelli (1987) used SDT on neural data 

to build neurometric functions to determine the detection threshold of a signal. They did 

this by recording the response of a neuron to a masker and signal, then also to just the 

masker on its own. This was repeated several times creating a distribution of responses 

for each case, and SDT used to describe how discriminable the signal was. (The idea was 

actually borrowed from visual sciences (Tolhurst et al., 1983; Parker and Hawken, 1985; 

Britten et al., 1996)). Since then it has been used in a number of studies (Young and 

Barta, 1986; Palmer et al., 2000; Nelson et al., 2009; Alves-Pinto et al., 2010), even 

specifically for the purpose of comparing psychophysical and physiological data 

(Stüttgen et al., 2011). 

 

 

 

Figure 1.13 

Signal detection theory demonstration. A Example of a neuron with precise firing, i.e. low variance. 

No signal (blue) and signal (red) distributions have very small overlap so discrimination between 

the two from a single trial is good. B Example neuron with erratic firing, i.e. high variance. 

Difference between mean firing rates of no signal and signal firing rate distributions is the same but 

there is much more overlap. This makes discrimination more difficult. 
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1.9 Comparison of frequency selectivity using 

psychophysics and physiology 

One of the fundamental goals of neuroscience research is to find out how neural activity 

in the brain leads to perception. How exactly does the firing of neurons result in our 

sense of the world? Frequency selectivity is no exception, as highlighted by the review 

King (1998). To begin to answer this question it is first necessary to observe the activity 

of neurons and the perception they represent, and begin to find relationships between 

the two. Only then will a causal relationship be investigable. In the world of frequency 

selectivity this means comparing bandwidth measurements made physiologically to 

ones made psychophysically, and there have been a number of studies which aimed to 

make a quantitative comparison of the two in the same species. 

Wilson and Evans (1971) compared psychophysically measured bandwidths using 

rippled noise, with FRA measured bandwidths in the AN, of the cat. Pickles (1975) used 

simultaneous band-widening to psychophysically measure bandwidth, and also 

compared this to FRA measured bandwidths in AN, also in the cat. They found that the 

behavioural CB was broader than AN bandwidth. This finding was corroborated by a 

further study (Pickles, 1979) behaviourally measuring bandwidth with band-widening 

and rippled noise, and comparing this to FRA measured bandwidth in the cat AN. They 

found that the behavioural measures were roughly 3 times broader. These studies, 

therefore, suggest that band-widening cannot be equated to FRA measured bandwidth, 

since they are significantly different. Pickles (1979) also measured bandwidth 

psychophysically with tone masking. He compared this to the FRA measured 

bandwidths in AN, and found that the results of these two methods matched up fairly 

closely. 

However, due to the highly non-linear nature of the auditory system, slight differences 

in the way in which measurements are made, lead to significantly different results. It is 

therefore necessary to use as similar a method as possible when comparing 

psychophysical and physiological bandwidths. An attempt to do this was made in Ehret 

and Merzenich (1985) where the CB of cat IC cells was measured using band-widening, 

and compared to the behavioural CBs of Pickles (1975) and Pickles (1979). They 

measured bandwidth at several different masker levels and the results can be seen in 

Figure 1.14. They found that bandwidth measures were level invariant, and did not 

match up closely to behavioural measures (despite the authors concluding otherwise). 

The scatter of results is large and there is a possibility that this caused the conclusion of 
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level invariance, but at least quantitative comparisons using the same method in the 

same species were being made. Later in Ehret and Schreiner (1997) they found neural 

CB of A1 cells matched up much more closely with behavioural CB. Another attempt to 

compare psychophysical and physiological bandwidth measures using the same method 

was made in Salvi et al. (1982). Here the same pure tone masking experiment was used 

and bandwidths, using auditory brain stem evoked potentials and behaviour, were 

measured in the chinchilla. Here the results were found to be very similar, suggesting 

that frequency selectivity is established at the periphery. 

All the behavioural methods just mentioned, however, suffer from problems; tone 

masking and band-widening both suffer from off-frequency listening, which confounds 

results, and band-widening suffers from other major problems leading to it being 

described as 'totally unsuited to measure the critical bandwidth' (Bos and de Boer, 

1966). Any true quantitative comparison would need to be made using notched noise 

masking, the currently accepted 'best practice' for measuring bandwidth 

psychophysically. One such study (which is highly relevant for the next chapter) is Evans 

(2001). This study was conducted in the guinea pig, comparing psychophysically 

measured notched noise and rippled noise bandwidths to FRA measured bandwidths in 

the AN using pure tones. Evans found a very close match between the two data sets and 

concluded that frequency selectivity is therefore established at the periphery. 

Another study which used notched noise masking, this time on physiological data, was 

Fishman and Steinschneider (2006). They recorded from multiple neurons in the A1 of the awake macaque using what they called a ╅two noise masking╆ approach ゅvery similar 
to simultaneous notched noise masking except with narrower (50 Hz) noise bands) and 

calculated bandwidth using roex functions as AF. They compared these results to 

behavioural ones from the macaque in Gourevitch (1970) (band-widening) and human 

(Glasberg and Moore, 1990) (notched noise). All measures matched up fairly closely and 

they concluded that therefore a representation of perceptual frequency resolution is 

available at the level of A1. 

Although these studies both used notched noise masking, they failed to make a 

comparison between identical methods in the same species, therefore suffering the 

caveat of any relationship being influenced by non-linearities in the auditory system, 

and species specific differences. Also, neither of the studies used SDT in the 

physiological measurements, making them less comparable to the psychophysical 
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results. A comparison of behavioural and neural data in the same species using notched 

noise masking would therefore be very informative. 

 

 

 

Figure 1.14 

Figure from Ehret and Merzenich (1985) showing bandwidth measures using the band-widening 

technique vs frequency, measured both behaviourally and neurally. Open symbols show results for 

SU from the IC of the cat with the value in dB referring to the level of the signal above threshold of 

the unit. The solid lines are the regression lines of the data; the upper for the neural data, the lower 

for the behavioural data taken from Pickles (1975) and Pickles (1979). The dashed line is the neural 

regression line adjusted to compensate for ╉overmasking╊. 
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1.10 Summary 

The field of frequency selectivity has developed along two fairly distinct lines: 

psychophysics and physiology. The first uses mainly masking experiments to measure 

perceptual bandwidths, and the latter mainly uses mean firing rates in response to pure 

tones. Due to the highly non-linear nature of the auditory system, different methods for 

measuring frequency selectivity give different answers, none of which can be said to be 

right or wrong. Also although the nature and origins of masking have been extensively 

explored, they are still not fully understood. Non-linearities of the BM play a large role, 

but non-linear central mechanisms must also contribute; this is evidenced by tone-in-

noise representations of masking evolving up the auditory system, the fact that forward 

masking exists, and the mixed correspondence between psychophysical bandwidths as 

well as physiological bandwidths made using different methods in different brain 

regions. Despite this, psychophysical methods have developed over the years and 

notched noise, forward masking, with fixed signal level is a method commonly used in 

human psychophysics nowadays; it has however never successfully been implemented 

in animal behavioural studies. In order to understand the neural origins of perceptual 

frequency selectivity it would be advantageous to compare psychophysical and 

physiological measurements made at different stages of the auditory system. Attempts 

to do this in the past have suffered from using outdated, problematic methods, or 

comparing bandwidth measures made using fundamentally different methods. What is 

needed is a direct comparison between the two subfields using the same most up-to-

date approach for both. 
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1.11 Aims and Objectives 

There are two main aims to the study in this thesis, both leading towards a unifying 

method to bridge the gap between psychophysics and physiology in frequency 

selectivity research: 

1) Physiologically measure frequency selectivity using a modern psychophysical 

method. 

2) Use an up-to-date psychophysical method, to measure bandwidth behaviourally 

in animals. 

The reasons for these aims have been outlined in this chapter. In order to bridge the two 

sub-fields, it is advantageous to use one method to measure bandwidth in both. This 

allows for a comparison of results without the caveat of methodological differences. Also 

previous attempts to do this used psychophysical methods that are now outdated, so it 

becomes necessary to repeat the process with an up-to-date methods. Also great 

advances have been made in human psychophysics that have never been implemented 

in animals. Almost all physiological data (at least at the single neuron level) cannot be 

collected in humans and must be collected in animals. Therefore using an up-to-date 

psychophysical method to measure behavioural and neural bandwidths in animals 

would be a very useful step toward this general aim. 

To do this I will be conducting two main experiments: 

1) Measure neural bandwidth, in the guinea pig, using notched noise with fixed 

signal, in both forward and simultaneous masking arrangements. Do this in the 

IC and A1. 

2) Train ferrets to perform a notched noise task, with fixed signal and both 

forward and simultaneous masking arrangements. 

As far as I am aware bandwidth has never been measured neurally using notched noise 

in such a way before. Seeing how such measures compare to behavioural results of the 

guinea pig (from the literature) as well as neural bandwidth measured using different 

methods, will teach us a lot. Also it can answer questions about the origins and limits of 

frequency selectivity. Guinea pigs will be used since they are an ideal experimental 

animal due to their size and similarity in hearing to humans. Any results could therefore 

potentially tell us something about human hearing. I will be recording in IC since it is 

one of the most crucial low level auditory brain structures and can tell us much about 

the auditory periphery. I will be recording in A1 since this is thought to be the seat of 
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perception, and we could learn much about an elusive brain region. Also I will be 

measuring bandwidth with both forward and simultaneous masking to see if the 

difference between the two, seen so commonly in psychophysics, is present at the neural 

level. I will also be using an SDT approach since this uses more of the available neural 

information to establish signal detection, and yields results far more comparable to 

psychophysics. 

Very few animal behavioural studies have managed to successfully use forward masking 

to obtain bandwidth estimates. This is the standard method used in human 

psychophysics so to bring animal studies up-to-date, it is important to develop a 

successful method to do this. I will be using a novel technique to try to obtain both 

forward, and simultaneously, masked estimates of bandwidth using the notched noise 

method in the ferret. I will be using the ferret since it is a very good behavioural animal 

that predominantly uses hearing to hunt for prey. This makes its dependence on hearing 

more similar to humans than many prey animals that might be used for such tasks. I will 

also be using both fixed signal, and fixed masker, arrangements to see if a difference can 

be found in their results. 
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1.12 Structure of thesis 

The remainder of this thesis is broken down into two data chapters and a summary. The 

first data chapter describes the physiological work I conducted in the guinea pig. It is 

comprised of two experiments; one in the IC, and the other in A1. Since there is much 

crossover between the two experiments, the chapter contains one introduction and one 

methods section for both. The introduction is a concise summary of the elements of the 

general introduction that are relevant to this chapter, since I feel this helps with clarity. 

A separate results and discussion section follows for each experiment. 

The second data chapter describes the psychophysical work I conducted in the ferret. 

This too begins with a concise introduction, summarising relevant elements of the 

general introduction. One of the main aims of this work was to establish and develop a 

novel behavioural method to measure frequency selectivity. I have included the results 

of its testing and validation in the methods section. The results section therefore only 

contains details of the frequency selectivity measurements made using this method. The 

discussion section refers to both the methods and results sections. 

The final chapter is a summary of the two data chapters, as well as a description of what 

we have learned from them and what future work can follow on. 
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CHAPTER 2: Guinea pig physiology 

2.1 Introduction 

Frequency selectivity is the ability to resolve the individual frequency components in a 

complex sound, and is a fundamental part of hearing. It is vital for identifying subtly 

different sounds, without which complex tasks, such as communication through speech, 

would be impossible. For over a century it has been known that the ear works as a 

frequency filter (Helmholtz, 1877), but it wasn't until the seminal study of Fletcher 

(1940), describing the auditory system as a sequence of overlapping band-pass filters, 

that research in this field truly began. Since then it has progressed along two distinct 

lines: psychophysics and physiology. 

In psychophysics the main metric used is the threshold of a tone (or narrowband noise) 

in the presence of a masking sound. The idea being that the closer a sound is in 

frequency to another, the more of a masking influence it has (Wegel and Lane, 1924), 

and by exploring this relationship it is possible to infer the shape and size of the 

auditory filters. Non-linearities throughout the auditory system mean that the method 

used to measure AF bandwidth has an effect on the result, and therefore its choice and 

precise parameters become very important. Notched noise masking has become the 

favoured method, since it does not suffer from problems arising from off-frequency 

listening (Johnson┽Davies and Patterson┸ なひばひ; Patterson and Nimmo Smith, 1980; O╆Loughlin and Moore, 1981) and is more accurate than other methods such as band-

widening (Bos and de Boer, 1966; Patterson and Henning, 1977). In addition, the 

forward masking stimulus arrangement has come to the fore since it does not suffer 

from some confounds caused by non-linearities of the cochlea, such as suppression, as 

simultaneous masking does (Sachs and Kiang, 1968; Heinz et al., 2002). This tends to 

make simultaneously masked bandwidth estimates broader than forward ones 
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(Houtgast, 1974; Leshowitz and Lindstrom, 1977; Moore and Glasberg, 1981; Moore, 

1987; Oxenham and Shera, 2003). Although there is still some controversy over the 

issue (Eustaquio-Martin and Lopez-Poveda, 2011; Lopez-Poveda and Eustaquio-Martin, 

2013), the current standard in human psychophysics is to determine detection 

thresholds by keeping the signal level fixed and varying the masker level (analogous to 

fixing the output level of the filter) (Rosen et al., 1992; Rosen and Baker, 1994; Baker et 

al., 1998; Rosen et al., 1998). These developments have mainly been made through 

human studies, but some animal studies have also contributed (Pickles, 1975; McGee et 

al., 1976; Kuhn and Saunders, 1980; Serafin et al., 1982). 

Frequency selectivity has been explored physiologically in most (if not all) known 

auditory brain regions, including the IC and A1, predominantly in animals. The main 

metric used is the firing rate of a cell (or population of cells) in response to a pure tone 

stimulus (Tasaki, 1954; Katsuki et al., 1958; Hernandez et al., 2005; Taberner and 

Liberman, 2005). Tone-on-tone masking is another frequently used method (Ehret and 

Merzenich, 1988; Ramachandran et al., 1999), but despite both using masking, neither 

approach can be said to measure bandwidth in the same way as psychophysical 

methods (Ehret and Schreiner, 1997). In addition, almost all physiological investigations 

only use the mean firing rates of cells and ignore their variability, thereby discarding 

important information when exploring the detectability of sound (Relkin and Pelli, 

1987). If we are to understand the neural basis of frequency selectivity, it would be 

useful to compare the performance of neurons against that of the subject as a whole (be 

it human or animal). This means comparing psychophysical and physiological measures 

of bandwidth, and due to the non-linear nature of the auditory system, using the same 

method for both. 

There have been some attempts to apply the same psychophysical method to neural and 

behavioural data in the same animal (Pickles, 1979; Ehret and Merzenich, 1985), but 

they met with little success. However, since then techniques for both collecting and 

analysing psychophysical and physiological data, and our understanding of frequency 

selectivity has grown. Therefore here I conducted a series of experiments using notched 

noise stimuli, similar to those used in Oxenham and Shera (2003), on single-units and 

multi-units (MU), as well as LFPs, in the IC and A1 of the guinea pig. The methods are the 

current standard in human psychophysics and have yet to be applied to animal 

physiology. In addition, a signal detection theory approach will be used (Green and 

Swets, 1966; Relkin and Pelli, 1987; Alves-Pinto et al., 2010) which takes into account all 
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aspects of neuronal activity that might give rise to discriminability, and makes the 

results even more comparable to those in psychophysics.  
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2.2 Methods 

2.2.1 Subjects 

Experiments were performed on 60 guinea pigs (Cavia porecellus) (24 tricolour, 36 

albino) of both sexes (10 male, 50 female) weighing 265-823 g. All tricolour guinea pigs 

were bred in house whereas all albinos (Dunkin-Hartley) were obtained from Harlan 

Laboratories. All experiments were carried out in accordance with UK Home Office 

regulations. 

2.2.2 Surgical procedure 

All neurophysiological recordings were made in non-recovery experiments on 

anaesthetised animals. An experiment began with the animal being anaesthetised with 

an intra-peritoneal (i.p) injection of Urethane (0.9 ‒ 1.3 g.kg-1 in a 20% solution, Sigma), 

at a dose of approximately 4.5 ml.kg-1, followed by an intramuscular (i.m) injection of 0.2 

ml Hypnorm (Fentanyl citrate 0.315 mg.ml-1, Fluanisone 10mg.ml-1, Janssen). Afterward, a subcutaneous injection of ど┻に ml Atropine Sulphate ゅはどどづg┻ml-1, Phoenix Pharma) was 

administered to suppress bronchial secretions. Anaesthesia was maintained throughout 

the experiment by supplementary 0.2 ml i.m injections of Hypnorm whenever the 

forepaw reflex was evident. This was checked at least every 30 minutes. 

Once anaesthesia was established, the animal was transferred to the sound attenuating 

chamber (Whittingham acoustics Ltd) and the ears, head and throat shaved. Next, a 

tracheotomy was performed; the trachea was exposed, an incision made, and then 

cannulated with a polythene tube (2.4 mm external diameter, 2 mm internal diameter). 

This allowed the animal to be artificially respired with 100% oxygen (BOC Healthcare), 

mixed with air, throughout the experiment┻ The animal╆s core temperature was 
monitored and maintained at 38 °C by a thermal blanket and rectal thermometer 

connected to a homeothermic control unit (Harvard Apparatus). The heartbeat was 

monitored with an electrocardiogram (VetSpec), via two electrodes inserted into the 

skin on either side of the ribcage, and maintained at 300-360 beats per minute. End tidal 

CO2 level was monitored by a sensor in the ventilator (Harvard Apparatus) and 

maintained at 28-38 mmHg by adjusting the volume and rate of flow. 

Both tragi were removed to enable access to the ear canals and any obstructions cleared. 

Next, the animal╆s head was placed into a stereotaxic frame and hollow Perspex speculae 

positioned in the ear canals, such that the tympanic membrane was visible. The skull 

was exposed by making a midline incision along the scalp, the skin retracted and the 
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periosteum and temporalis muscles removed. The auditory bullae were exposed and a 

small hole drilled into each. Long polythene tubes (>20 cm) were inserted (0.5 mm 

internal diameter) and sealed using petroleum jelly (Vaseline). This helped equalise 

middle ear pressure since this cannot be done by the animal under anaesthesia. In order 

to increase the stability of recordings a small incision was made into the dura mater 

above the posterior cranial fossa, which allows cerebrospinal fluid to flow freely, 

minimising brain movement due to breathing. 

If the IC was the target, then a small rectangular craniotomy was made on the top of the 

skull, 10-14 mm behind bregma and 0-2.5 mm lateral from midline, on the right hand 

side. This allowed access to the right IC from directly above. If the target was A1 then a 

roughly 6×6 mm craniotomy was made on the right hand side of the skull using 

coordinates described in Wallace et al. (2000). In both cases, a dental drill (Minitech 

Dentimex) was used to cut though the skull, the dura mater removed and the exposed 

cortex covered with agar (1.5% agar in 0.9% saline). This protected the cortex from 

desiccation and improved stability. 

2.2.3 Recording equipment 

Extracellular recordings of neural activity were made using glass-coated tungsten 

electrodes, made in-house according to the methods in Bullock et al. (1988). Tip size 

was in the range of 2-12 µm to achieve high impedance for high signal to noise ratio 

recordings. Between 1 and 4 of these electrodes were mounted onto a printed circuit 

board allowing simultaneous, independent recording from each. In some experiments 

16 channel multi-electrode arrays (Neuronexus; A series), in both 1×16 single shank and 

4×4 four shank arrangements, were used instead. These have electrode sites 15 µm in 

diameter, so have lower impedance, and were only used to collect MU and LFP. 

Microelectrode boards were mounted onto a 16 channel high impedance Tucker Davis 

Technologies (TDT) head stage (RA16AC), which band-pass filters the signal (0.16 ‒ 

6000 Hz) before passing it onto a pre-amplifier (TDT; RA16PA) to be digitised. Next it 

passed a digital signal processor (TDT; RX7) under the control of Jan Schnupp's 

BrainWare, where it was further filtered and amplified. Action potentials were deemed 

to have occurred when the amplitude of the band-pass filtered (450-6000 Hz) signal 

crossed a certain threshold. This threshold was manually set by the experimenter to 

only pick out SU or MU activity. In addition the original unfiltered signal was recorded to 

allow LFPs to be extracted offline, by low pass filtering at 300 Hz. All analyses on 

recordings was done in Matlab (Mathworks). 
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2.2.4 Stimulus delivery 

All stimuli were generated by a digital circuit, created in RPvdsEx (TDT software), 

loaded onto an RX8 processor (TDT; System 3). Stimulus parameters and presentation 

order were controlled by Jan Schnupp's BrainWare on a Windows PC. Once generated 

the stimuli were passed to a 24-bit sigma-delta digital-to-analog converter, before being 

attenuated by programmable attenuators (TDT; PA5). Finally the signal passed through 

a power attenuator, which would reduce the output by 20 dB, before reaching the 

custom-modified tweeters (RadioShack; 40-1377) inserted into the hollow specula, 

creating a sealed system. The maximum output of the system was roughly 100 dB SPL 

(120 dB if the power attenuators were set to 0) and this was calibrated at the beginning 

of each experiment using a condenser microphone (Brüel and Kjaer; 4134). The 

microphone was placed a few millimetres from the tympanic membrane, and was fitted 

with a 1mm calibrated probe tube. The calibration consisted of 20 presentations of 50 

ms long white noise with no attenuation, the recordings were averaged,  and the Fourier 

transform taken and adjusted for the characteristics of the microphone. This process 

was repeated for each ear and the results checked to ensure the frequency response was 

flat. 

2.2.5 Data collection 

The head stage for the multi-electrode array was attached to the stereotaxic frame by a 

micro-drive unit (Burleigh) and a micro-manipulator arm (Kopf), allowing electrode 

placement to within 1µm. In order to do so, the skull of the guinea pig was levelled and 

the electrode array inserted into cortex from above, vertically dorso-ventrally, 11.5 mm 

behind bregma and 2 mm lateral of midline (Rapisarda and Bacchelli, 1977). The 

electrode was advanced to ~7 mm below the surface of the brain until auditory 

responsive units were found. Since IC is ~2-3 mm across and ~4-5 mm long, all 

penetrations were made in this range around the coordinates stated above. In a small 

number of experiments the exact location of electrode penetrations was verified 

histologically (see Figure 2.1). For A1 experiments visual landmarks were used; the 

micro-manipulator was mounted at a 45° angle to vertical and advanced into the region 

defined as A1 in Wallace et al. (2000) using blood vessels as guidance. Figure 2.2 shows 

an extract from the paper depicting this region and beside it a photo from an experiment 

with the area I deemed to be A1. Penetrations were made across this whole region and 

CF of units used to corroborate location. 
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For both brain regions the protocol for searching for units was similar; repeated 50 ms 

bursts of ~70 dB SPL broadband noise were played (at 450 ms intervals in IC, 800 ms in 

A1) and the electrode advanced until a responsive unit was found. Broadband noise was 

used because it has energy at all frequencies and is therefore the most likely stimulus to 

find auditory responsive neurons. The various sets of stimuli would then be played until 

either the unit stopped responding, or the full repertoire was recorded. At this point the 

electrode would be advanced further. Once the driven activity in response to the 

auditory signal ceased, the electrode was withdrawn and another penetration made in a 

different location. 

 

Figure 2.1 

Nissl stained slice of central IC from one experiment. Central IC and an electrode track are 

highlighted. 

 

Figure 2.2  

A Extract from Wallace et al. (2000) showing the location of A1. B Image of cortex from one 

experiment depicting the area identified as A1. 
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2.2.6 Stimulus sets 

Once a neuron (or unit) was located, several sets of stimuli were presented, each 

evaluating a different characteristic of the unit. Below is a description of these, arranged 

in the order they were presented. In each set, different stimulus conditions were 

presented in randomly interleaved order. The procedure was the same for both IC and 

A1, except in IC the stimulus presentation rate was 450 ms, while in A1 it was 800 ms. 

This is because it takes longer for response activity to dissipate in cortex (Ulanovsky et 

al., 2004). 

Frequency response area 

A series of pure tones, 10 ms in duration (5 ms cosine squared on/off ramps), of various 

frequencies and levels were presented to the unit. The range of levels was usually 20 to 

100 dB SPL in 5 or 10 dB steps, and the range of frequencies 200 ‒ 20,000 Hz in 0.05 to 

0.25 octave steps. The number of action potentials elicited by the unit in a window 

around the time of tone presentation was then calculated for each frequency and level 

combination. This window was chosen to be the region over which the unit displayed a 

firing rate above its spontaneous firing rate. These were then plotted in an FRA (see 

Figure 2.6 panel A for an example and 1.8.10 Physiological bandwidth measurements: 

FRA for more details). The CF was determined as the unique frequency which elicited an 

elevated firing rate (above spontaneous rate) for the lowest sound level, i.e. the 

frequency at the tip of the FRA. 

Rate against level function 

A 10 ms pure tone, with frequency set to CF, was presented 15 times at various levels, 

spanning the response range of the unit in 5 dB steps. The firing rate of the unit was 

calculated by taking the spike count in a small window around the time of signal 

presentation, and calculating the average firing rate for each stimulus level. Again, this 

window was chosen to be the region over which the unit displayed a firing rate above its 

spontaneous firing rate. Plotting firing rate against level gives the RLF. The threshold of 

the unit was deemed to be the point at which the RLF met the spontaneous firing rate 

and was determined visually (see Figure 2.6 panel B). 

Notched noise masking 

The signal was set as a 10 ms pure tone (5 ms cosine squared on/off ramps) with 

frequency at CF and level fixed at ~5-10 dB above threshold. Masker level varied 

between presentations, in 5 dB steps over the range 30-100 dB SPL, with an additional 

no masker condition. Level was varied in this arrangement since it is the current 
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standard in human psychophysics (Rosen and Baker, 1994). The characteristics of the 

masker were similar to those used in Oxenham and Shera (2003); each noise band was 

0.25 × CF in width, centred symmetrically about CF. Although AFs are known to be 

asymmetric, at moderate sound levels they are approximately symmetric, so only using 

symmetrically distributed notches should not cause a problem (Patterson, 1974; 

Patterson and Nimmo Smith, 1980; Patterson, 1986). Five different notch widths were used for each unit┸ with つF ゅdefined as the gap in frequency between CF and the closest 
edge of each noise band) linearly spanning the range 0 ズ 0.4 × CF. Masker duration was 

150 ms, inclusive of 5 ms on/off ramps. This, and the duration of the signal (10 ms, inc. 

5 ms on/off ramps), were established through validation experiments to maximise the 

amount of forward masking, while minimising the total stimulus presentation time. 

Forward masking was usually attempted first, with the signal immediately following 

masker, before simultaneous masking, with signal appearing 20 ms before the end the 

masker (130 ms after onset). Figure 2.3 shows a schematic of the stimuli. Each masker 

level and notch width combination was presented with the signal 30 times and without 

the signal a further 30 times. 

 

 

 

Figure 2.3 

Temporal and spectral characteristics of masker and signal in the forward and simultaneous 

masking arrangements. 
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2.2.7 Analysis 

In the notched noise experiment recording, the unit╆s response when the signal is both 
present and absent is the key to using SDT, but a problem still remains: what feature of the unit╆s response encodes information about frequency selectivity? The practical 

implication of this question is how to quantify the difference between the two 

conditions. 

Different approaches 

A number of different possibilities were considered, falling into two categories: a rate 

code or a temporal code. In a rate code only the number of spikes elicited by the unit 

encodes information, while in a temporal code the precise timing of these spikes is also 

informative. A rate code is simpler and robust to noise, both internal and external, 

whereas a temporal code has the capacity to carry much more information. One 

approach widely used in neuroscience which can be used in the context of a temporal 

code (Borst and Theunissen, 1999; Fonollosa et al., 2012) is information theory, but the 

relatively low presentation number means this is unsuitable for these data. Linear 

discriminant analysis (Duda et al., 2001) was another approach that was investigated 

but suffers from the same problem.  

Another multi-dimensional spike train classifying approach which did work was k-

means clustering (Ferrington et al., 1988; Helm et al., 2013). In this approach, the spike 

train is split into bins, and the number of spikes in each bin is calculated. Each bin is treated as a separate dimension and the value in each bin defines the spike train╆s 
location in multi-dimensional space. An iterative process is then used to split the data 

into two clusters. One parameter that has a large impact on the performance of the 

classifier is the size of the bins. A number of different bin sizes over the range 1-20 ms 

were tried and the average proportion correct for all stimulus conditions across all units 

for each of these time bins is shown in Figure 2.4. This plot shows a clear trend towards 

larger bin sizes yielding higher proportions correct, suggesting there is little information 

in precise spike timing. In most cases the easiest conditions, i.e. the ones with no 

masker, never reached 100% correct, which suggests that looking at timing actually 

hinders correct classification.  
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Figure 2.4 

Proportion correct across all stimulus conditions, across all units, using the k-means clustering 

classifier with various time bin sizes, versus the ROC rate code classifier. 

 

This theory is corroborated when looking at the higher proportion correct using a 

receiver operator characteristic (ROC) classifier, which uses a rate code. Here the spike 

count of each spike train was calculated in a window around the signal presentation 

time. These spike counts were then used to create an ROC curve, and the area under the 

curve (AUROC) taken to represent how discriminable the signal case was from the no 

signal case. This is a method widely used in SDT and has the advantage of being simple 

and computationally cheap to implement, and does not make assumptions about the 

statistics of the underlying distributions. It gives a score between 0.5 and 1, and can 

therefore be thought of as the proportion correct that would be obtained in an 

equivalent 2I2AFC task (Green and Swets, 1966; Macmillan and Creelman, 1991). For 

these reasons it was decided to use spike count with AUROC to represent how 

detectable the signal is in each stimulus condition. For further details on this approach 

see the 1.8.11 Signal detection theory. 

Notched noise analysis 

The first step in analysing the notched noise SU and MU data was to calculate the spike 

count in a window around the time of signal presentation, for each spike train from 

every stimulus condition. Figure 2.5 panels A and B show an example of these spike 

trains. The window was tailored for each unit to be the time over which the difference 

between signal and no signal presentations was maximal. A post stimulus time stimulus 

histogram (PSTH) was created using spike trains from all trials in which the signal was 
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presented, and a separate PSTH made from trials with no signal. The window was 

chosen to be the range, around the signal presentation, over which the two crossed. 

Since a rate code is used, this represents the area of maximum difference between the 

two. Figure 2.6 panels C and D shows examples. For the LFP data, the root mean square 

(RMS) in a 70 ms window after signal presentation was always taken. This represents 

the power of the LFP in response to the signal. 

The AUROC was then calculated using these values, and neurometric functions built 

from them, as if they were proportion correct values; one for each notch width (see 

Figure 2.5 panel C). These are similar to psychometric functions, only based on neural 

data instead of psychophysical. Detection threshold for a given notched noise masker 

was taken as the SNR at which the neurometric function intercepted 75% correct. This is 

a common criterion since it is the point at which the psychometric function is steepest in 

a 2 alternative choice case (Wichmann and Hill, 2001). Next the AF function was fitted to 

these threshold SNRs (see Figure 2.5 panel D) using the following procedure: 

1) A stereotypical spectral representation of the stimuli was made. This consisted 

of a vector of 20,000 elements, each representing a 1 Hz bin in frequency space 

from 0 ‒ 20 kHz, one for each stimulus. All frequency bins that were present in 

the stimulus were represented by a value of 1; the rest were filled with 0. For 

example, a 10 kHz, 0.1 × CF notched noise masker would have 1s in bins 6,501 ‒ 

9,000 and 11,001 ‒ 13,500, and 0s elsewhere. 

2) Initial parameters for the AF function were estimated, and the resulting AF 

function integrated over the spectral representations described in the previous 

step. The result was an SNR value for each notch width which could be 

compared to the threshold plot. 

3) The AF parameters were then manually tailored so that the simulated threshold 

plot was close to the experimental one. 

4) An optimisation procedure was then used to estimate the parameters of the AF 

that best fit the data; the summed squared difference between the simulated and 

experimental threshold plots, in dB, was minimised. 

The two parameter roex(p,r) function (Patterson et al., 1982) was used to represent the 

AF since this has the fewest parameters, increasing the stability of the optimisation. The 

roex function with just one slope parameter for both sides, i.e. symmetric filter, was 

used since the levels of stimuli are very close to threshold so the asymmetry of the AF 

should be negligible (Patterson, 1974; Patterson and Nimmo Smith, 1980; Patterson, 
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1986). Also since only symmetric notches were used, there is no benefit in using a 

higher order asymmetric function (Glasberg and Moore, 1990) (see 1.4 Auditory filter 

shape for more details). The final step in estimating bandwidth involved calculating the 

equivalent rectangular bandwidth of the fitted function. This was done by finding the 

width of the rectangular filter with equal gain and passing the same amount of energy as 

the auditory filter, i.e. the width of the rectangle with same height and area as the 

auditory filter shape in frequency space (see Figure 2.5 panel E). A two dimensional 

confidence region (spanning CF and ERB) was calculated for each ERB estimate by a 

bootstrapping method. Thirty random data points were selected, with replacement, 

from the 'signal present' spike counts, and thirty from the 'no signal'. CF and ERB were 

then calculated for these data by fitting a roex function, using the process described 

above. This was repeated 3000 times, and the ellipse encapsulating 95 % of the resulting 

data points used to represent the 95 % confidence region. 

FRA analysis 

In addition to the notched noise method, an ERB was calculated from the FRA. This is a 

method more commonly used to estimate filter width in physiology, and can therefore 

act as a good within-unit comparison between the two approaches. The edge of the area 

of the FRA over which the cell elicits an elevated firing rate is used to represent the AF. 

An algorithm was used to automatically calculate this edge using the following criteria: 

for each signal frequency, the lowest signal level that yielded a firing rate 1) at least 1 

spike higher than, 2) at least 10% higher than, and 3) at least 4 standard deviations 

above the spontaneous firing rate of the unit. The script then fitted a roex(p,r) function, 

with independent slope parameters for each side, to the edge of the FRA. ERB was 

calculated in the same way as above. 
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Figure 2.5  

A Single masker condition, showing all signal and non-signal presentations separated. Dotted line 

shows spike count window. B Raster plot for all masker conditions. C Neurometric function obtained 

from the raster plots by calculating the AUROC for each masker condition. D Threshold SNRs taken 

from neurometric function (black crosses) with auditory filter fit. E Auditory filter fit, in this case 

roex(p,r), with ERB. 
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Figure 2.6 

Example of plots for a since AI unit. A FRA with edge (white line) and CF (white circle). Red = high, Blue = 

low firing. B RLF at CF (10,500 Hz) with signal level used for notched noise marked by black arrow. C & D 

PSTHs and E & F neurometric functions for forward and simultaneous notched noise masking. Blue PSTH 

= masker only presentations, Red = masker + signal, grey dashed lines = response window. Each 

neurometric function is for a different notch width. G Filter estimates obtained for one unit from edge of 

FRA (black), forward masked (blue) and simultaneously masked (red) notched noise. The stereotypical 

filter used is the roex(p,r).  
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2.3 Results - IC 

A total of 139 single-units and 46 multi-units were successfully recorded from the 

guinea pig IC. Neuronexus electrodes were used to record 7 of the MU; results from 

these sites were not different to those recorded with tungsten electrodes so they have 

been combined. Further MU data were extracted from 80 of the SU recordings by, 

independently for each unit, 1) creating a histogram of the raw electrophysiological 

recordings, 2) fitting a Gaussian function weighted towards lower voltages (this fits the 

function more to the recorded noise, and ignores the extreme values representing 

spikes), 3) redefine threshold as the 3 standard deviation point and recalculate spike 

events, and 4) exclude all SU spikes. The noise floor (created by background 

electrophysiological activity and recording equipment error) was very Gaussian in 

nature and this meant the method worked remarkably well at isolating salient spiking 

activity. 

Figure 2.6 shows the suite of data that could be obtained from one unit. This example is 

of an SU (actually taken from A1). The FRA and RLF plots (panels A and B) were used to 

set the frequency and level of the signal, respectively, in notched noise (NN) 

experiments. Levels and notch widths of the masker were set independently for each 

unit to 1) ensure each neurometric function had a 75 % crossing, 2) maximise the 

spread of the neurometric functions, i.e. the differences in detection thresholds, and 3) 

minimise the number of different masker levels to keep experiment time low. Masker 

levels were always in 5 dB steps, and the same for all notch widths in a single NN 

experiment. Five notch widths were always used, spaced linearly from 0 × CF to 0.1 -

0.4 × CF; all were symmetric about CF. The reason for individually modifying the 

stimulus parameters for each unit, and the biggest problem facing this experiment, was 

the time constraint. It takes a long time to collect a neurometric function, since each 

point must be calculated from 60 stimulus presentations, each lasting 200 ms, with 

250 ms between each to allow neural activity to settle. Enough points need to be 

collected to build a neurometric function, and enough neurometric functions need to be 

collected to describe the AF. In IC, when recording with a glass coated tungsten 

electrode, it is considered very good to "hold" a unit for ~1 hour without it suddenly 

bursting, or the electrode drifting away, or the unit simply stopping responding. In order 

to make a useful comparison between the different bandwidth measuring methods, it is 

important to complete all measures in the same unit to prevent any findings being 

swamped by inter unit variability (of which there is much). Therefore the experiment 

was a balance between keeping the duration low enough to fit all the measurement 
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methods, while ensuring enough data was collected to still obtain decent measurements 

for each unit. Figure 2.6 panel E shows the final product: three filter estimates yielding 

an ERB each. Notice how the FRA estimated filter is much broader than the NN ones, and 

how the simultaneously masked filter is broader than the forward one. This will be 

discussed in more detail later. 

2.3.1 Unit characteristics 

The response characteristics of all the units that yielded a notched noise ERB estimate 

were investigated and units were split into two categories depending on whether they 

fired only to the onset of the masker or showed a sustained response, firing throughout 

the masker presentation. There were also a number of units that showed onset 

behaviour for high masker levels which gradually changed into a sustained response as 

the level of the masker dropped. These categorisations are summarised in Table 2.1. 

Most SU and MU showed sustained responses. The proportion was higher for MU which 

is unsurprising since it represents the combined activity of many cells. 

Threshold was calculated for each unit, defined as the lowest level at which the unit had 

a firing rate more than 3 standard deviations above its mean spontaneous firing rate. 

Assuming a normal distribution this equates to a 99.73 % confidence of elevated firing. 

Figure 2.7 panels A and C show these thresholds plotted against the CF of the unit for SU 

and MU respectively. Both sets of units have thresholds distributed fairly evenly across 

the range of hearing of the guinea pig, defined by the superimposed audiograms. Figure 

2.8 shows a similar plot for over 2000 SU recorded from the guinea pig IC, from Palmer 

et al. (2013). The units in the current study (Figure 2.7) fit in well with this large 

collection, so would appear to reflect typical IC cells. In addition, panels C and D show 

the level of the signal used in the notched noise experiments plotted against its 

frequency. These levels are on average 8 dB above the thresholds of the SU (mean 

7.7 dB, standard deviation 11.4 dB) and 6 dB for MU (mean 6.07 dB, standard deviation 

11.21 dB). Also, the ERBs estimated using the different stimulus temporal arrangements 

seem to be spread out evenly across units, indicating there is no bias of threshold or CF 

in the notched noise results. 
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Figure 2.7 

A & C Threshold of units derived from rate level functions plotted against CF, for SU and MU 

respectively. B & D Fixed level of signal for each notched noise experiment; blue = units yielding just 

a forward masked ERB, red = just simultaneous, and magenta = both. Audiograms of the guinea pig 

taken from Miller and Murray (1966), Heffner et al. (1971) and Prosen et al. (1978). 

 

 

 SU MU 

Onset 12 (23 %) 7 (20 %) 

Sustained 35 (67 %) 28 (80 %) 

Both 5 (10 %) 0 (0 %) 

 

Table 2.1 

Number of units that yielded a notched noise ERB with particular response characteristics. Units 

characterised according to their response to the 150 ms long masker. See text for further detail. 
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Figure 2.8 

Threshold against CF for 2,826 SU from guinea pig IC from Palmer et al. (2013) (not plotted in 

paper), compared to guinea pig audiogram of Prosen et al. (1978). 

 

2.3.2 SU results 

In total, 45 forward and 28 simultaneously masked notched noise ERB estimates were 

obtained from SU activity in 17 animals. These can be seen in Figure 2.9. Panel A shows 

the ERB of each unit plotted against its CF for both notched noise methods. Panels B and 

C show the 95 % confidence regions for these points. 

The clearest feature of these data is a linear increase, in log-log space, of ERB with CF, 

which is true for both NN methods. As a result, the lines of best fit were calculated by 

minimising the least squared mean error between the data points and a straight line, in 

log-log space, using the confidence regions to weight each point. This can be described 

by the following equation: 

argmin銚┸長 布 拳沈朝
沈退怠 岫継迎稽沈 伐 欠系繋沈 伐 決岻 (2.1) 

where 
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拳沈 噺 な 布 謬盤継迎稽沈 伐 結堅決珍匪態 髪 盤系繋沈 伐 潔血珍匪態戴待待待
珍退怠板  (2.2) 

where CFi and ERBi are the CF and ERB of a particular unit, i = 1, ..., N are all the units, a 

is the gradient and b the intercept of the line of best fit, cfj and erbj the CF and ERB of a 

bootstrapped simulated unit. The forward masked data have a slightly wider scatter 

than the simultaneous, which is borne out by the lower R2 value (0.62 to 0.89). 

Inspection of panel B, however, shows that those points furthest away from the line of 

best fit have very large confidence regions, all of which encompass the line. Also there 

seems to be little difference in the lines of best fit for the two methods. 

Additional data have been plotted in panel A showing bandwidth estimates from a 

number of previous studies in different auditory brain regions of the guinea pig, using 

different methods: IC (Palmer) uses pure tone FRAs of 2217 SUs in the IC (Palmer et al., 

2013); VCN (Sayles) uses roex(p) fits to pure tone FRAs of 432 SUs in the ventral 

cochlear nucleus (Sayles and Winter, 2010); ANF (Evans) uses roex(p) fits to pure tone 

FRAs of 80 SUs in auditory nerve fibres (Evans, 2001); Behaviour (Evans) uses 

psychophysical data, obtained by a lever-press task with both notched noise and rippled 

noise stimuli, from 10 guinea pigs (Evans et al., 1992). These are all in remarkably close 

agreement with each other and with notched noise data collected in this study. This is 

particularly true for high frequency units (> ~5 kHz), with lower CF units having 

potentially slightly narrower bandwidth estimates than these previous studies. 

Interestingly, the bandwidth estimates that are most disparate to my data are from 

Palmer's IC units, which are from the same brain area, although this difference is 

marginal. Looking more closely at the parameters of the lines in Table 2.2, the slopes of 

the NN lines are actually between that of Palmer et al. (2013) and those of Evans (2001) 

and Sayles and Winter (2010). This means that the rate at which the bandwidth 

increases with frequency is largest for Palmer et al. (2013) and smallest for Sayles and 

Winter (2010). The NN estimates grow at a rate between these two. 
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Figure 2.9 

A Forward and simultaneously masked notched noise ERB estimates plotted against CF of the SU 

(blue +, red o respectively) with lines of best fit (R2 = 0.62 and 0.89, ぽ2
red = 23.1 and 5.0 respectively). 

Lines of best fit for CF vs ERB plots for SU in the guinea pig from Evans (2001), Sayles and Winter 

(2010), Palmer et al. (2013). Also line of best fit for CF vs ERB plot from guinea pig psychophysics 

(Evans, 2001). B & C Data points in panel A with respective 95 % confidence regions calculated 

through bootstrapping. 
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Figure 2.10 

Similar to Figure 2.9 but for MU activity. A Forward and simultaneously masked lines of best fit, 

R2 = ね┻びふ and ね┻ぴひ┸ ぽ2
 red = 4.3 and 2.8 respectively. 
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2.3.3 MU results 

Figure 2.10 shows plots of a similar nature for MU data. In total 31 forward and 31 

simultaneously masked notched noise ERB estimates were made from MU activity in 13 

animals. These data show a similar relationship to the SU; a clear linear increase in ERB 

with CF, very close agreement with data from both temporal arrangements and previous 

studies, with similar goodness of fits (R2 of 0.68 and 0.75 for Fwd and Sim respectively). 

The rate of bandwidth increase is slightly smaller than with the SU (Table 2.2; forward 

NN slope is 0.60, simultaneous NN slope is 0.53), becoming more similar to the results of 

Evans and Sayles. Confidence regions are generally larger for MU, reflected in their lines 

of best fit having smaller reduced chi-squared values (Greenwood and Nikulin, 1996) - 

4.3 and 2.8 for Fwd and Sim MU, versus 23.1 and 5.0 for SU. This is unsurprising since 

MU activity provides a wider range of firing rates leading to higher variability. 

2.3.4 LFP results 

LFPs were extracted from 23 forward, and 17 simultaneously masked notched noise 

estimates from both MU and SU in 3 animals. These can be seen in Figure 2.11, along 

with confidence regions for each. The lines of best fit for these data show the closest 

agreement with one another (Fwd and Sim), and with the previous studies (other than 

Palmer et al. (2013)). The difference to the results for the other data types, however, is 

very slight and the LFP data have the poorest goodness of fit (R2 of 0.67 and 0.63 for 

Fwd and Sim) so this is unlikely to be meaningful; this poorer fit is most probably due to 

the relatively low number of data points. 
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Figure 2.11 

Similar to Figure 2.9 but for LFP activity. A Forward and simultaneously masked lines of best fit, 

R2 = 0.67 and 0.63, ぽ2
red = 9.9 and 10.3 respectively. 
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ERB = a × CFb 

a b 

Evans 

(Psychophysics) 
6.45 0.56 

Evans (ANF) 6.03 0.56 

Sayles (VCN) 9.77 0.50 

Palmer (IC) 2.19 0.73 

SU 

Fwd 2.63 0.64 

Sim 1.86 0.70 

FRA 10.47 0.60 

MU 

Fwd 3.89 0.60 

Sim 8.13 0.53 

FRA 30.20 0.51 

LFP 

Fwd 4.90 0.59 

Sim 3.72 0.62 

FRA 12.88 0.63 

 

Table 2.2 

Parameters of line describing the mean relationship between CF and ERB for the different data sets: 

Evans (2001), Sayles and Winter (2010), Palmer et al. (2013), and data from this chapter. CF and 

ERB are in Hz (hence the difference between equations described in original papers). Equation 

described in table is equivalent to log10(ERB) = b × log10(CF) + log10(a). 
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Figure 2.12 

Boxplot showing the median (red line) and quartiles (blue box) of the ratio between Fwd and Sim 

ERB estimates in the same unit. Sim ERBs are significantly wider than Fwd ones for SU and MU 

(Wilcoxon signed-rank, p-value 0.03 for both) but not for LFP (Wilcoxon signed-rank, p-value 0.13). 

Burgundy cross represents outlier off screen. 

 

2.3.5 Forward vs Simultaneous masking 

In human psychophysics it has long been noted that forward masked notched noise ERB 

estimates tend to be narrower than simultaneously masked ones (Houtgast, 1974; 

Leshowitz and Lindstrom, 1977; Wightman et al., 1977; Moore, 1978; Vogten, 1978; O╆Loughlin and Moore, 1981; Weber and Patterson, 1984; Oxenham and Shera, 2003). If 

this were true for the physiological recordings in this study, one might expect the lines 

of best fit for the simultaneously masked ERBs to sit above those for the forward 

masked ones. This is, however, not the case for any of the SU, MU or LFP data in Figure 

2.9, Figure 2.10 and Figure 2.11. One possibility is that the difference between the two is 

being overshadowed by the effects of natural inter-unit variability and different 

stimulus parameters for each unit. Therefore to test this theory without such confounds 

it would be necessary to compare both measurements made in the same unit with the 

same stimulus parameters. Fortunately, these conditions were satisfied for 22 SU, 20 MU 

and 12 LFP. For each of these units the simultaneously masked ERB measurement was 

divided by the forward masked one, and Figure 2.12 shows box plots of the results. A 

value larger than 1 indicates that the Sim measurement is broader, values less than 1 



  CHAPTER 2: Guinea pig physiology 

81 
 

mean the Fwd one is. For both SU and MU the ERB ratios are significantly larger than 1 

(sign rank p-values of 0.03 each), meaning the simultaneously masked ERBs are indeed 

broader. There is no significant difference for the LFP data (sign rank p-value of 0.13), 

however, this is most probably due to the low number of recordings (only 12) making a 

rejection of equality unlikely. 

The majority of units, however, showed even more non-linear and complex behaviour 

than this. Examples of the firing rate in response to the masker and signal plots for these 

units can be seen in the bottom panels of Figure 2.14. Teasing out the complex masking 

behaviour leading to these types of plots is much more difficult and beyond the 

capabilities of simply looking at their RLFs. It seems fairly remarkable that such units all 

yielded clean and clearly separated neurometric functions that gave an estimate of 

bandwidth. 

2.3.6 Mechanisms underlying masking in IC 

The benefit of using SDT to describe neural responses is that it uses both variability as 

well as mean firing rates to determine signal detection, as well as providing a result that 

is more comparable to psychometric data. A limitation is that it hides how masking 

occurs; is it driven by an increase in variability or a change in mean firing rate? Is the 

response to the signal simply being swamped by the response to the masker? Or is the 

response to the signal actively being suppressed? To attempt to answer these questions 

it becomes necessary to return to the original firing rate responses to the stimuli. 

Figure 2.13 panel A shows a plot of firing rate against proportion correct, for the 

forward masked notched noise experiment in a representative SU. Each point represents 

the mean firing rate of the unit in response to the signal, in the trials when the signal 

was present, for a single masker condition (i.e. level and notch width). This is equivalent 

to taking the mean firing rate of all the red trials in Figure 2.5 panel A, over the grey 

dotted window shown. Each point in the plot of Figure 2.13 panel A represents this 

mean firing rate for one of the boxes in Figure 2.5 panel B. The colour represents the 

notch width. Typically in physiology it is just this mean firing rate that is used to represent the unit╆s response┸ and plots such as this provide a good comparison 
between the SDT and non-SDT approach. The plot in Figure 2.13 panel A follows a very 

clear pattern; as firing rate increases, proportion correct increases linearly from 50 %, before plateauing or ╅saturating╆ at などど %. This is true for all notch widths and the 

relationship is tight with very little variability. Every SU showed this close linear 

relationship. (Some did not plateau at high firing rates, but this is due to those units 
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never reaching 100 % correct). To show this, a LOWESS local regression model 

(Cleveland, 1981) was used to calculate the line of best fit for the signal firing rate 

versus proportion correct plot (Figure 2.13 panel A) for each SU. This is a method that 

gives a line of best fit for scattered data and has been used extensively in many fields of 

research (Karikoski et al., 1998; Seki and Eggermont, 2002; Hen et al., 2004). The mean 

r2, the squared difference between a data point and the line of best fit, is calculated from this┻ A histogram of these ╅mean difference╆ values is plotted in Figure 2.13 panel C. 

Almost all of the units (44/45) have a mean r2 less than 0.005, showing that there is very 

little deviation from this mean, linear, saturating pattern. 

The region of interest for this study, however, is the firing rates at threshold; activity 

elsewhere will have no effect on the overall outcome. To see if the lack of overall 

variability is also evident in this crucial region, the firing rates for each notch width of a 

single-unit were taken at threshold, and the coefficient of variation calculated; this is the 

standard deviation of the 5 firing rates divided by their mean. (The SU have such a wide 

range of firing rates, and higher firing rates leads to higher variance, that simply looking 

at the variance of these threshold firing rates does not truly explain their variability 

from the mean. Incidentally the inverse of the coefficient of variance is another 

definition of SNR (Smith, 2003)). A histogram of the coefficient of variation values for all 

SU can be seen in Figure 2.13 panel E. They too show a very low amount of variability, 

with most of the units (40/45) having a coefficient of variation value of less than 0.15. 

This shows that mean firing rate in response to the signal is the sole driving force 

behind signal detection, i.e. variability in firing rate responses across trials, or complex 

masking behaviour when the signal is not present, play no part. In effect, using SDT 

gives the same answer as the traditional approach of simply looking at mean firing rate. 

The same exercise can be undertaken looking at the response of the unit to the masker, 

instead of the signal, against proportion correct, i.e. in Figure 2.5 panel A, calculate the 

firing rate over a window from 0 ms to the first dotted grey line, instead of between the two dotted grey lines┻ Such an investigation would show how closely a unit╆s response to 
the masker is related to the amount of masking. For example, if masking were solely due 

to depletion of neurotransmitters, and changes in ionic gradients that underlie action 

potentials, then one would expect there to be an inverse linear relationship between 

signal detection and response to the masker. In this case one would expect a mirror 

image of the plot in Figure 2.13 panel A. For the unit in panel A, the masker firing rate 

against proportion correct plot is shown in panel B. In this plot there is a clear and 

systematic spread across notch widths, with the widest notch reaching threshold at the 
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lowest firing rate┻ This ╅spread╆┸ which is not seen in the signal response┸ is seen in 
varying degrees for all units when looking at the response to the masker. As a result 

both the variability around the line of best fit (Figure 2.13 panel C) and across notch 

width at threshold (Figure 2.13 panel E) is larger than for the signal (this is shown by a 

higher mean and broader range of values). 

A potential confound between the results of looking at the response to the signal and the 

response to the masker, is that the length of the window over which the firing rate is 

calculated is different. For example, the signal is presented for 10 ms and the masker for 

150 ms, so the firing rates in response to the masker will have much higher variability 

since there is more time for spikes to occur. To check whether this has an effect on the 

results, the spike count over a short window (the same length as for the signal in the 

same trial) at the start of the masker presentation was taken. Results were exactly the 

same as seen in Figure 2.13 panels C and E. The process was repeated for a short 

window at the end of the masker presentation, to see how response to the masker 

directly before signal presentation affected proportion correct. For onset units this 

region had a firing rate of 0 and so showed no discernible relationship. For the sustained 

units, all firing rate vs proportion correct plots (Figure 2.13 panel B) were shifted 

towards lower firing rates, but the variability plots were almost identical to those in 

Figure 2.13 panels C and E. 

The plots in panels A and B came from a forward masked experiment in the same unit, 

and showed typical behaviour for all SU. The r2 and coefficient of variance values from 

this SU appear in the bars marked by the arrows in panels C and E; they are typical for 

all SU. Results for the simultaneous masked arrangement were also very similar, with 

tight agreement between signal firing rate and proportion correct, and a much looser 

relationship when looking at the masker firing rate (panels D and F). When looking at 

the variability of the entire curve (panel D), the relationship for the signal response is 

not quite as close as elsewhere, probably because it actually represents the signal + 

masker response (since masking is simultaneous) and the masker response shows 

higher variability. This increased variability is, however, not seen at detection threshold 

(panel F). So for simultaneous masking, as well as forward masking, the mean firing rate 

in response to the signal is the only important feature of neural activity for measuring 

detection threshold. In other words using the RLF in place of the neurometric function 

gives the same measurement of bandwidth. 
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Figure 2.13 

Firing rate versus proportion correct. A & B Proportion correct against firing rate in response to the 

signal and masker, respectively, for a single-unit. Results for each notch width plotted separately. × 

= firing rate at threshold (75 % correct). C & D Histogram of mean r2 difference between LOWESS 

trend line and data, for firing rate vs PCmax plots (curves in panels A & B). E & F Histogram of 

coefficient of variation for firing rates of different notches at threshold (× in panels A & B). Red = 

signal firing rates, blue = masker firing rates. Arrows indicate where the statistics of the unit in 

panel A & B appears. See text for more details. 
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Looking now at just the response to the masker and signal (ignoring proportion correct), 

we can learn more about the nature of masking that is occurring. In the case where all 

the masking seemed to be occurring within the unit, one would expect an inverse linear 

relationship between the two, i.e. as the response to the masker increases, the response 

to the signal should decrease by the same amount. Figure 2.14 panel C shows a plot for 

such a unit. Only a small proportion of the SU (11/45 in Fwd, 5/28 in Sim) showed this 

simple linear relationship between the two. We can further investigate the cause of this 

type of behaviour, and the nature of masking, by looking at RLFs in response to the 

masker and to the signal, for different stimulus conditions (see 1.8.3 Rate against level 

function for more details and examples). Figure 2.14 panels A and B show such an RLF, 

showing the same firing rates plotted in panel C, only plotted against masker level 

instead. Looking at the response to the signal first (panel A), there is a clear shift in the 

RLF towards higher masker levels with increasing notch width. This shift is in the 

direction that one would expect since larger notches means less masking, and therefore 

a higher masker level is required to elicit the same firing rate. Also the fact that there is 

this systematic shift, and the floor of the RLFs do not rise with masker level, suggests 

that masking is suppressive and not excitatory. Forward masking was used in this 

example (and the same pattern was seen in every forward masked unit (see Figure 2.14 

panel D for another example)) so the result is relatively unsurprising. However, the 

systematic shift was also seen in every simultaneously masked case, with only 4/28 

showing a rise in the floor of the RLF with increasing masker level; for all the others the 

floor was constant across notch width. So only a very small proportion showed any signs 

of excitatory masking. 

Since every RLF of the response to the signal has this systematic shift with notch width, 

the only way a 'linear' masker vs signal firing rate plot could occur (Figure 2.14 panel C) 

is if the RLF of the response to the masker has the same systematic shift, but in the 

opposite direction. Figure 2.14 panel B shows such a plot and is the link between the 

plots in panels A and C. Above, it was shown that using the RLF of the response to the 

signal in place of a neurometric function would yield the same estimates of bandwidth. 

In the case of the 'linear' unit described here, this would mean that using the RLF of the 

response to the masker would also yield the same answer, since the salient feature is the 

difference in SNR between notch widths, and this is the same for both RLFs. Such a unit 

would therefore display linear behaviour overall since bandwidth measurements would 

be invariant to method. This is, however, only true for a small proportion of the units, 

represented by those which fall into the '0' bar in Figure 2.13 panels C-F. 
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The majority of units showed a large variation across notch width in their firing rate in 

response to the masker vs proportion correct plots (as described above and shown in 

Figure 2.13 panel B). This too was reflected in their firing rate in response to the masker 

vs signal plot; an example is shown in Figure 2.14 panel F. The same systematic spread 

or 'separated' curves for different notch width is seen here. In total 33 % (15/45) 

forward and 32 % (9/28) simultaneous masked units displayed this clear systematic 

spread; 71 % (5/7) of these units showed a 'spread' in both forward and simultaneous 

temporal arrangements. For all of these, the reason for this spread was an invariance 

across notch width in RLF for the response to the masker, an example of which can be 

seen in Figure 2.14 panel E. For these units the response to the masker seems to be 

frequency invariant, and suggests that most (if not all) of the masking driving frequency 

selectivity has occurred before reaching this unit. This may be due to network 

interactions, such as inhibitory inputs directly into the unit, or masking occurring more 

peripherally and the excitatory input to the unit already showing the frequency 

selectivity. Estimates of bandwidth made by looking at the excitatory input of the 

masker would effectively be infinite. The behaviour of these units is therefore non-

linear. 

A higher proportion of units, however, showed much more complex firing rate in 

response to the masker vs signal plots, some of which can be seen in the lower panels of 

Figure 2.14. These represent 42 % (19/45) of the forward and 50 % (14/28) of the 

simultaneously masked units. Much more complicated masking interactions occur for 

these units than can be extracted by looking at the RLF and firing rate plots, reflecting a 

much higher degree of non-linearity. It is remarkable that such units still display 

frequency selectivity, and yield estimates of bandwidth. There also appears to be no 

relationship between CF and ERB (and their confidence intervals (CI)) of a unit, and 

these classifications. 
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Figure 2.14 

RLF and signal vs masker firing rate plots. A RLF of response to the signal for different notch widths. 

B Same as A but with response to the masker. C Firing rate in response to the signal plotted against 

that of the masker┻ All are from an SU with ╅linear╆ type firing rate plot┻ D, E & F are the same but for 

a unit with ╅separated╆ type firing rate plot┻ Lower panels depict units with ╅complex╆ type firing rate 
plots. 
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2.3.7 FRA based bandwidth 

An FRA was recorded for each unit to find its CF in order to tailor the notched noise 

stimuli to it. However, as mentioned previously, it is possible to obtain an independent 

bandwidth estimate using this information. In total ERB estimates were obtained in such 

a way from 139 SU (in 21 animals), 124 MU (in 17 animals) and 107 LFP sites (in 12 

animals) and these can be seen in Figure 2.15 panels A, C and D. To aid comparison to 

the notched noise results, the lines of best fit for the respective forward and 

simultaneously masked ERBs have also been plotted for each data type. Just like the NN 

data, the FRA derived estimates have a clear linearly increasing relationship, in log-log 

space, between CF and ERB, and the rate of increase is similar across the board. The 

most striking difference between the two measurement types is that the FRA ERBs are 

much broader than the NN ones; on average FRA ERBs are 2.7 times broader than NN 

for SU, 3.3 for MU and 3.5 for LFP. The variability is also higher with R2 values of 0.39, 

0.46, and 0.51 for SU, MU and LFP respectively. This result is in contrast with previous 

studies in the IC, VCN and ANF that use the FRA method (shown in panel A of Figure 2.9, 

Figure 2.10 and Figure 2.11), which show much more consistent results with one 

another and the NN data. One slight difference in method between the Palmer et al. 

(2013) and this one, is that Palmer et al. did not fit a roex function to the FRA. Instead 

they treated the FRA as the AF and calculated ERB directly by integrating the total 

amount of energy passed by the FRA (i.e. calculated its area) and scaling this by the 

threshold of the unit. To see what effect this methodological difference has on the 

estimates of bandwidth, ERBs for my data were recalculated using this ╅no roex╆ 
approach. These can be seen plotted against the individual data points from Palmer et al. 

(2013) in panel B of Figure 2.15, as well as the 95 % confidence regions of the lines of 

best fit plotted inset. The lines of best fit for both data sets have an identical slope of 

0.74, but are slightly offset. This difference, although significant for 300 - 10,000 Hz, is 

very small, and is completely overshadowed by the large variance in each data set. 
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Figure 2.15 

ERB estimates from FRAs of A single-units, C multi units, D LFPs (green points) with line of best fit 

(green line; R2 = 0.39, 0.46 and 0.51 respectively), and lines of best fit for forward (blue) and 

simultaneous (red) notched noise data, for each data type. Also included is the fit for the results 

from Palmer et al. (2013). B Comparison of individual SU ERBs and data from Palmer et al. (2013) 

using the exact method in the Palmer paper. Inset shows the lines of best fit and 95 % confidence 

region for each. 
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Another difference between the two methods may be in the exact parameters used to 

determine the edge of the FRA, i.e. the criteria which define a significant increase in 

firing rate of the unit. As described in 2.2.7 Analysis: FRA analysis above this threshold is 

determined by parameters of various spiking statistics such as 1) minimum spike count, 

2) mean, and 3) standard deviation of the firing rate. Differences in these parameters 

might have an effect on the average relationship between CF and ERB. To test this, ERBs 

were recalculated from the same FRA using a number of different threshold parameters; 

in total 80 separate sets of parameters were used, yielding 80 different lines of best fit. 

The mean line of best fit, and the 95 % confidence region, can be seen plotted in Figure 

2.16. Different threshold parameters clearly give a wide range of relationships between 

CF and ERB. Since the line from Palmer et al. (2013) sits within the 95 % confidence 

region, they cannot be said to be significantly different. Also, remarkably, roex functions 

were fitted to the FRA to obtain these bandwidth estimates suggesting that threshold 

parameter choice plays a larger role. 

One final check to see what effect stimulus parameters and guinea pig breed might have 

on the FRA bandwidth results, was made by collecting FRA from IC units recorded by 

other researchers at the Institute (Steadman and Mill, unpublished). These were 

recorded from the central IC of tricolour guinea pigs (as opposed to albinos used in my 

experiment) with glass-coated tungsten and Neuronexus electrodes. Stimulus 

parameters, however, were not the same, with pure tone signals being played for 50 ms 

(as opposed to 10 ms used in my experiment). The same bandwidth analysis, with 

identical parameters, was applied to these FRA, and the results can be seen in Figure 

2.17, separated into SU and MU. (Unfortunately the raw voltage traces were not 

recorded for these units so no LFP measures could be made). Quite clearly there is no 

difference between these bandwidth estimates, suggesting parameters determining 

threshold have a much larger impact than these factors. 
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Figure 2.16 

Effect of threshold parameters on average FRA calculated bandwidths. The green line represents the 

average line of best fits for ERBs estimated from the same FRAs but with 80 different combinations 

of threshold parameters. Shaded area shows 95 % confidence region. Over plotted are the lines of 

best fit for the results from Palmer et al. (2013) and the NN ERBs shown in Figure 2.9. 

 

 

 

Figure 2.17 

SU and MU plots from Figure 2.15 compared with ERBs made from FRAs recorded by other 

experimenters in the lab. The method for calculating the ERB is consistent across all points, however 

the stimuli used to derive the FRA differs between experimenters. 
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2.4 Results - A1 

In total successful recordings were made from 77 single-units and 120 multi-units (61 of 

which were extracted from SU recordings) in A1. 

2.4.1 Unit characteristics 

The response characteristics of all the units that yielded a notched noise ERB estimate 

were investigated and units were split into three categories depending on whether they 

fired only to the onset of the masker or showed a sustained response. There were also a 

number of units that showed onset behaviour for high masker levels which gradually 

changed into a sustained response closer to the threshold of the signal. These results are 

summarised in Table 2.3. The vast majority of units only responded to the onset of the 

masker for SU, with the proportion falling slightly for MU. 

Threshold was calculated for each unit, defined as the lowest level at which the unit had 

a firing rate more than 3 standard deviations above its mean spontaneous firing rate. 

Assuming a normal distribution this equates to a 99.73 % confidence of elevated firing. 

Figure 2.18 A and C show these thresholds plotted against the CF of the unit for SU and 

MU respectively. The thresholds and CF of units are spread fairly evenly across the 

range of hearing of the guinea pig, defined by the superimposed audiograms. Perhaps 

the SU units tend to have higher thresholds than the MU, although this may be due to the 

larger number of MU points. In addition, panels C and D show the level of the signal in 

the notched noise experiments against the CF of the unit. These levels are on average 

10 dB above the thresholds of SU (mean 10.04 dB, standard deviation 10.88 dB) and 

11 dB for MU (mean 10.75 dB, standard deviation 11.16 dB) . The majority of units gave 

forward masked ERBs but those that also gave simultaneous estimates are distributed 

evenly, meaning there is no bias of threshold or CF in the notched noise results. 

 

 SU MU 

Onset 27 (87 %) 29 (63 %) 

Sustained 2 (6.5 %) 11 (24 %) 

Both 2 (6.5 %) 6 (13 %) 

 

Table 2.3 

Number of units that yielded a notched noise ERB with particular response characteristics. Units 

characterised according to their response to the 150 ms long masker. See text for further detail. 
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Figure 2.18 

A & C Threshold of units derived from rate level functions plotted against CF, for SU and MU 

respectively. B & D Fixed level of signal for each notched noise experiment; blue = units with just a 

forward masked ERB, red = just simultaneously masked, magenta = both. Audiograms of the guinea 

pig taken from Miller and Murray (1966), Heffner et al. (1971) and Prosen et al. (1978). 

 

 

2.4.2 SU results 

The full set of results for the SU data can be seen in Figure 2.19. In total 30 forward and 

12 simultaneously masked notched noise and 77 FRA calculated bandwidth estimates 

were made from SU activity in 25 animals. Just like in the IC results, there is no obvious 

difference between the forward and simultaneous notched noise estimates in panel A. 

Unlike the IC, however, this is supported by a non-significant difference between the 

two measures within the same unit (panel B). Variability is also greater, reflected in the 

much lower R2 values of 0.27 and 0.09, for Fwd and Sim respectively. This suggests that 

units in cortex are not as homogeneous as in the IC, which is unsurprising given the 
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functional differences between the two brain regions. The surprisingly poor fit for the 

simultaneous data could, at least in part, be down to the low number of data points. 

Unfortunately since the surgical preparation is much less stable in cortex, it is much 

harder to record from a unit for any length of time. Couple this with the almost doubling 

in experiment duration (roughly 3 hours), and it became very difficult to record both NN 

methods before losing the unit. As a result the forward masked arrangement was 

favoured and only a small number of successful simultaneous estimates were obtained. 

Not many strong conclusions can therefore be made from the simultaneous data. 

The most notable feature of the NN data is ERBs that are much smaller for units with CF 

above ~2 kHz than expected or seen elsewhere. The IC NN data reflected closely the 

bandwidth estimates made in the studies of Palmer et al. (2013), Evans (2001) and 

Sayles and Winter (2010). However, here units around 10 kHz have ERB estimates 

roughly a third the size of all other measurements seen so far. What's more, this feature 

is not an aberration, since these data points actually have the smallest overall 

confidence regions (panel C). It almost seems like a linear fit may not be appropriate 

since low CF and high CF units are displaying quite different characteristics; large ERBs 

for units around 1 kHz deviate substantially from the line of best fit, although these 

points have very large confidence regions so should be largely ignored. Nonetheless the 

group of finely tuned high frequency units give the line of best fit a much shallower 

slope than for IC. Table 2.4 shows that the slopes are 0.32 and 0.24 for the forward and 

simultaneous NN data respectively. These are far shallower than for the studies 

mentioned above; Sayles and Winter (2010) has the shallowest slope with 0.50. 

However, the ERBs estimated using FRAs are once again broader than the NN estimates. 

Moreover they display almost identical lines of best fit to the FRA estimates made using 

IC units; the slope of the A1 is 0.55 (Table 2.4) and that of IC data is 0.60 (Table 2.2). 

This gives them a steeper slope than the NN estimates for the cortical data (panel A), 

meaning the different methods of calculating bandwidth in the same population of units 

give qualitatively different results. 
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Figure 2.19 

A Forward and simultaneously masked 

notched noise ERB estimates plotted against 

CF of the SU (blue +, red o respectively) with 

lines of best fit (R2 = 0.27 and 0.09, ぽ2red = 

20.3 and 13.0 respectively). CF vs ERB plots 

for SU in the guinea pig from (Evans, 2001), 

(Sayles and Winter, 2010), (Palmer et al., 

2013). Also for guinea pig psychophysics 

(Evans, 2001). B Box plot showing the 

median (red line) and quartiles (blue 

rectangle) of the ratio between Fwd and Sim 

ERBs in the same unit. No significant 

difference (Wilcoxon signed-rank, p-value = 

1). Burgundy cross represents outliers. C and 

D Data points in panel A with respective 

95 % confidence regions calculated through 

bootstrapping. E ERB estimates from FRAs, 

with line of best fit (green line; R2 = 0.65), 

and lines of best fit for forward (blue) and 

simultaneous (red) notched noise data of the 

respective type. 
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2.4.3 MU results 

In total 46 forward and 20 simultaneously masked notched noise, and 120 FRA 

calculated estimates were made using MU from 28 animals. These can be seen in Figure 

2.20. Panel A seems to suggest there is no difference between the two temporal 

arrangements of the NN methods, since they have very similar mean trends, variability 

and confidence regions around each point. However, the within unit comparison in 

panel B shows that simultaneous estimates are significantly broader.  

The spread of data points in panel A is fairly similar to that of the SU, reflected in the 

similar R2 values for the lines of best fit; both are ~0.3. The confidence regions of the 

data points are also much larger than in the SU, reflected in lower ぽ2red values, so we can 

be less sure of these results. Most notably, however, the smaller than expected ERB 

estimates seen with SU seem to not only be limited to high frequency units, but seems to 

be true for units of all frequencies; the large majority of forward masked data points fall 

below the lines of best fit for all the previous studies. This can be seen in the steeper 

slopes and larger intercepts; the mean NN data for A1 have slope 0.35 and intercept 

21.5, while for IC slope is 0.28 and intercept 45.6. 

Once again the FRA results are qualitatively different to the NN ones. In fact the results 

are very similar to those of the SU, with R2 of 0.64 and 0.65, and slope of 0.59 and 0.55 

for MU and SU respectively. 
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Figure 2.20 

Similar to Figure 2.19 but for MU 

activity. A Forward and simultaneously 

masked lines of best fit, R2 = 0.31 and 

0.09, ぽ2
red = 8.1 and 23.9 respectively. B 

Significant difference (Wilcoxon signed 

rank p-value < 0.01). C and D Data 

points in panel A with respective 95 % 

confidence regions. E FRA estimated 

ERBs, R2 = 0.64. 
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2.4.4 LFP results 

In total, 39 forward and 15 simultaneously masked notched noise, and 134 FRA 

calculated estimates were made using LFPs from 25 animals; Figure 2.21 shows results 

for these. Once again panel A shows no difference between forward and simultaneously 

masked estimates, and like the SU this is reflected in no significant difference between 

the two measures within the same unit (panel B). The trend of high CF units having the 

same fine tuning and low CF units' ERBs getting smaller, that we saw when moving from 

SU to MU, continues here as we move to LFP. Even fewer of the forward masked notched 

noise estimates sit above the data of Palmer et al. (2013), Evans (2001) and Sayles and 

Winter (2010), and the slope of the line of best fits grows steeper still, to 0.49 and 0.64 

for forward and simultaneously masked ERBs, respectively (Table 2.4). A large 

contributing factor to this steepening of slope, could be the small population of high 

frequency units (~20 kHz) that have very broad bandwidth estimates. Without these the 

line of best fit would be shallower and lower. The data points are also more tightly 

clustered together, resulting in a stronger linear fit (R2 value of 0.42) than either the SU 

or MU. Confidence intervals for each of these points are also smaller than MU so we can 

be surer of the result. 

The FRA calculated ERBs display the now familiar trend of being much broader than the 

NN ones. Here this difference is highlighted even further with FRA estimates being on 

average 4 times greater than NN, with a larger spread in values leading to a poorer 

goodness of fit (R2 of 0.51, as opposed to 0.65 and 0.64 for SU and MU). Additionally, the 

FRA measured bandwidths are also broader than those for SU and MU, by ~50 %. The 

rate of increase of ERB with CF is similar across all 3, reflected in the very similar slope 

values shown in Table 2.4 (0.55, 0.59 and 0.57 for SU, MU and LFP respectively), but the 

actual size is larger, reflected by the different intercept values in the same table (15.85 

and 12.30 for SU and MU, respectively, against 24.55 for LFP). 
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Figure 2.21 

Similar to Figure 2.19 but for LFP 

activity. A Forward and 

simultaneously masked lines of best 

fit, R2 = 0.42 and 0.09, ぽ2
red = 74.5 and 

67.5 respectively. B No significant 

difference (Wilcoxon signed rank p-

value = 0.24). C and D Data points in 

panel A with respective 95 % 

confidence regions. E FRA estimated 

ERBs, R2 = 0.51. 
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 ERB = a × CFb 

a b 

Evans 

(Psychophysics) 
6.45 0.56 

Evans (ANF) 6.03 0.56 

Sayles (VCN) 9.77 0.50 

Palmer (IC) 2.19 0.73 

SU 

Fwd 30.90 0.32 

Sim 60.26 0.24 

FRA 15.85 0.55 

MU 

Fwd 12.88 0.40 

Sim 30.20 0.30 

FRA 12.30 0.59 

LFP 

Fwd 7.24 0.49 

Sim 2.34 0.64 

FRA 24.55 0.57 

 

Table 2.4 

Parameters of line describing the mean relationship between CF and ERB for the different data sets: 

Evans (2001), Sayles and Winter (2010), Palmer et al. (2013), and data from this chapter. CF and 

ERB are in Hz (hence the difference between equations described in original papers). Equation 

described in table is equivalent to log10(ERB) = a × log10(CF) + log10(b). 

 

2.4.5 FRA bandwidth corroboration 

As with the IC data, the difference between FRA and NN estimated ERBs is large enough 

to warrant a more detailed look at what might be the cause. To do so I took FRAs 

recorded from A1 units in the guinea pig, using glass-coated tungsten electrodes, by 

another researcher at the Institute (Sollini, unpublished). I then calculated their 

bandwidth, using the same method as described in 2.2.7 Analysis: FRA analysis. This 

comparison can be seen in Figure 2.22. Once again, due to the difficulties of recording 

from auditory cortex, there are far fewer SU than MU. Also their CFs are higher than the 

majority of mine, since the researcher was only interested in high frequency units, 

which means unit characteristics must be extrapolated. Nevertheless, the mean trend 

and spread of these data are identical to those of the FRA estimated bandwidths from 

my own units. Even more compellingly, the stimulus used to create the FRAs in this new 
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data set were not the same as mine; my FRAs were made using 10 ms tone pips and his 

with 100 ms. One might therefore expect differences between bandwidth measures, but 

there are none. Once again we can conclude that there is nothing unusual about the units 

I have recorded that might explain this unusual finding. 

2.4.6 Mechanisms underlying masking in A1 

Masking is the main difference between the FRA and NN methods, but how is this 

masking manifested in the unit, and what causes it? To investigate this, a look at the 

firing properties of the unit is required. 

As with the IC data, firing rates in response to the signal were plotted against proportion 

correct for each unit. Once again there was a very close relationship between the two (if 

slightly messier than in IC). An example can be seen in Figure 2.23 panel A. This close 

relationship was similar for all SU, as can be seen in the signal bars in panels B and C of 

Figure 2.23; panel B describes the average least squared difference between the data 

points and their LOWESS regression line (see 2.4.6 Mechanisms underlying masking in 

IC), giving a measure of variability of the entire curve; panel C shows the coefficient of 

variation of firing rates at threshold, across notch widths (i.e. the standard deviation of 

the 5 firing rates at threshold for the different notch widths, is divided by their mean), 

giving a value of variability at threshold. All the variability values are small for the 

response to the signal, very similar to those in the IC, with 29/31 having an r2 value of 

less than 0.005 and a slightly higher proportion of 19/31 having a coefficient of 

variation value less than 0.15. The variability at threshold is slightly higher here than in 

IC, which reflects the slightly messier plots. This close relationship between signal 

response and proportion correct once again shows that mean firing rate fully 

determines detection thresholds (and therefore bandwidth estimates) and that 

variability and response in the absence of a signal have no effect. 

Performing the same analysis but on the response to the masker instead of signal, shows 

a much broader range of activity. The r2 plot is very similar to that of the IC, but as with 

the response to the signal, there is higher variability at threshold; in the IC the highest 

coefficient of variation was 1.1, whereas in A1 it is 1.9. This shows that a unit's response 

to the masker has even less in common with detection thresholds of the signal, and 

therefore masking, than in the IC. 

Plotting the response of a unit to the masker against that of the signal can tell us about 

the nature of masking in that unit. In the IC such plots could be categorised by 
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stereotypical shapes, which described the unit's masking activity as linear or varying 

amounts of non-linear. Unfortunately, similar plots for A1 units are all so complex and 

messy that such classification is impossible. Not one of the 31 forward masked and 12 

simultaneously masked units gave a 'linear' type plot as described in 2.4.6 Mechanisms 

underlying masking in IC, and only one could be said to display a 'separated' type plot. 

The lower panels of Figure 2.23 give examples of these. Such bizarre behaviour is almost 

certainly the result of a complex arrangement of excitatory and inhibitory units all the 

way up the auditory system and throughout auditory cortex. This is unsurprising since 

there are at least 5 synapses between the BM and cortical neurons; plenty of 

opportunity for complicated interactions. However, as with the complex neurons in IC, 

this behaviour is driven mainly by the response to the masker; the RLFs of the response 

to the signal are clean and show clear systematic separation between successive notch 

widths. It is this feature that determines the units' frequency selectivity and gives an 

estimate of bandwidth. The question of whether this activity is linear enough for the 

underlying assumptions of the power spectrum model remains open. 

 

 

 

Figure 2.22 

FRA estimated ERBs from Figure 2.19 (A) Figure 2.20 (B) panel E, compared with ERBs made from 

FRAs recorded by other experimenters in the lab. The method for calculating the ERB is consistent 

across all points, however the stimuli used to derive the FRA differs between experimenters. 

  



  CHAPTER 2: Guinea pig physiology 

103 
 

 

  

 

Figure 2.23 

A Example of the firing rate in response to the 

signal against proportion correct for an SU. × 

denote threshold. B Average difference 

between LOWESS fit and data points for the 

response to the signal (red) and masker 

(blue), for all SU. C Coefficient of variance for 

firing rates at threshold across notch width, 

for all SU. Lower panels: examples of complex 

nature of firing rate plots. 
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2.5 Discussion - IC 

Bandwidth estimates were obtained in three different ways from a number of units in 

the IC of the guinea pig. These units had CFs and thresholds that fairly evenly spanned 

the audible region of the guinea pig (as quantified by behavioural audiograms). Roughly 

20 % of SU and MU showed only an onset response to a long narrowband noise signal, 

which is consistent with other studies in the IC (Astl et al., 1996; Le Beau et al., 1996). 

Together these suggest that the units in this study give a balanced view of IC activity. 

One of the greatest challenges when trying to interpret the results of this chapter, is in 

working out how they fit in with other studies of frequency selectivity. The biggest 

problem behind this, and the driving force behind this study, is the lack of consistency in 

the method used to obtain the results. Because the idea of AF is fairly abstract, and there 

is not even a consensus on something as simple as their shape, there is not one 

established and "correct" way of obtaining an AF bandwidth. Add to this the number of 

steps required to convert neural activity into a bandwidth estimate, and the 

assumptions made along the way (what feature of neural activity to use, how to define 

detectability of a sound, how to define the AF from this), plus deciding the nature and 

specific parameters of the stimuli to elicit the neural activity in the first place, and there 

is enormous scope for diversity. Any subtle variation in any of these points makes 

comparison of results difficult, since one cannot be sure if differences or similarities 

between the two are caused by method. On top of this differences in species, surgical 

technique, anaesthesia, recording equipment, and data extraction technique, have an 

effect on results. With that in mind, in this discussion I have focused mainly on a few 

studies that are the most comparable to the one in this chapter, and point out the 

caveats in making comparisons between them. 

Let us start, however, with the most general and global feature of my results. For all data 

types and bandwidth calculation methods in this chapter, the clearest feature is a strong 

linearly increasing relationship between the CF and ERB of a unit, in log-log space. This 

means that as CF increases so does AF bandwidth. This is a trend seen in all 

psychophysical and almost all physiological studies of frequency selectivity in humans 

(Fletcher, 1940; Zwicker, 1974; Houtgast, 1977; Glasberg and Moore, 2000; Oxenham 

and Shera, 2003) and animals alike (Pickles, 1975; Ehret and Merzenich, 1985; Ehret 

and Merzenich, 1988; Syka et al., 2000; Evans, 2001), regardless of any differences 

described in the previous paragraph. The metric used to describe bandwidth and the 

parameters of the line describing the relationship between frequency and bandwidth 
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(i.e. slope and intercept of the straight line in log-log frequency space, or the scale and 

power of the line in linear frequency space) are the important features that vary 

between studies. It is this relationship that tells us most about frequency selectivity and 

is the feature of my results that I will be comparing most to other studies. All such plots 

in this thesis are in log-log space so I may refer to the 'rate of increase in bandwidth' as 

the slope of these CF vs ERB lines, and the 'absolute bandwidth' as the intercept (or 

vertical position on the plot). 

Three studies looking at bandwidth in the urethane anaesthetised guinea pig by 

calculating the ERB are probably the most comparable studies to my own (in terms of 

species and experimental preparation). These are Evans (2001), looking at individual 

auditory nerve fibres, Sayles and Winter (2010), SU in the ventro-cochlear nucleus, and 

Palmer et al. (2013), SU in the inferior colliculus. (Palmer et al. (2013) also used other 

types of anaesthetic but the difference in bandwidth between them was negligible so all 

anaesthetic types were combined). When looking at the bandwidth estimates from 

notched noise data in this chapter, not only is there a general linear increase in CF with 

ERB (positive slope), but the relationship between the two is in very close agreement 

with results from these three studies, in particular the results of Evans and Sayles. When 

the mean CF vs ERB lines are superimposed on the results for my MU and LFP data, they 

are indistinguishable (see Figure 2.10 and Figure 2.11). For the SU data there is an exact 

match for units above ~3 kHz with a slight tendency for my NN estimates to be 

narrower for frequencies below, but this difference is negligible (see Figure 2.9). Palmer 

et al. (2013) results are also similar, with a slight tendency towards broader filters for 

higher frequency (> 2 kHz) units, for all data types. 

Even more remarkably, all three studies just mentioned used the FRA (firing rate in 

response to pure tone stimuli) of a unit to calculate the ERB, which is very different to 

the SDT with notched noise masking approach used in my study. The mechanisms 

driving masking are still not fully known but they involve a complex relationship 

between cochlear mechanics and neural connectivity (see 1.8.9 Mechanisms behind 

masking for more details). In addition the NN masker contains bands of frequencies 

activating a wider region of the BM than a simple pure tone. Add to this the fact that the 

IC is further along the auditory pathway and receives input from almost every known 

auditory brain region (brain stem (Huffman and Henson Jr, 1990), CN (Oliver, 1984, 

1987), superior olivary complex (Glendenning et al., 1992), lateral lemniscus (Saint 

Marie et al., 1997), auditory thalamus (Anderse et al., 1980) and all auditory cortical 

regions (Winer et al., 1998)), and it becomes astonishing that there is such close 
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agreement between such vastly different bandwidth calculating methods and brain 

regions. 

As mentioned previously, FRAs were collected for each of the units that gave an NN 

estimate (and many others that did not), and ERBs were calculated from these FRA in 

order to see the relationship between notched noise and FRA derived measurements 

(see Figure 2.15). By using the exact same units, all manner of confounding differences 

are avoided and any relationship between the two is much more certain. Surprisingly 

when the NN estimates were compared to the FRA ones made in the same units, there 

was a large difference; although the rate of bandwidth increase was comparable across 

the board (for all data types), FRA bandwidth estimates were roughly 3 times broader. 

This is highlighted in Table 2.2 where the slope of increase (b) varies between 0.5 and 

0.7 for all data types and bandwidth method, but the intercept (a) is markedly larger for 

the FRA method. 

What may be causing this systematic shift? Although the parameters used to define 

threshold for the FRA have been shown to have a significant effect on estimates of 

bandwidth, it is not enough to explain the difference. This can be seen in Figure 2.16, 

with the lines of best fit for the NN data sitting outside the 95 % confidence region 

around the average line of best fit for the FRA. Bandwidth measurements made using 

data collected by other researchers (who used the same experimental protocol) using 

the identical analysis method (as described in 2.2.7 Analysis: FRA analysis), show the 

same CF vs ERB relationship. This rules out any potential differences caused by guinea 

pig strain, stimulus parameters and experimental protocol, e.g. surgical preparation, 

anaesthetic, data collection method (see Figure 2.17). In addition, the FRA bandwidth 

measurements are not unusually broad for similar estimates from the IC literature. 

When the identical method is used as in Palmer et al. (2013), the bandwidth estimates 

match up very closely, any differences easily being covered by potential differences in 

threshold parameters. So it would seem that my FRA measured bandwidths are not 

unusual when compared to other similar data sets, yet show a clear difference to 

notched noise estimated bandwidths in the same unit. This suggests that bandwidth as 

defined by responses to pure tones are not the same as bandwidth calculated using NN 

masking, at least for IC neurons. This has been seen before in other similar studies using 

pure tones and a traditionally psychophysical method on physiological data. In Pickles 

(1979), Ehret and Merzenich (1988), Ehret and Schreiner (1997), and Egorova and 

Ehret (2008) comparisons between FRA and band-widening estimates of bandwidth for 

neurons in the cat AN, IC and A1 showed that they had very little in common with one 
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another, although there was no systematic difference between them. This may, however, 

be due to well-known problems with band-widening (see 1.3.3 Band-widening and the 

critical ratio).  

So how do the results of these different physiological bandwidth measuring methods 

compare to psychophysical ones, and therefore the performance of the whole system? 

The only psychophysical measure of frequency selectivity in the guinea pig that I know 

of was made in Evans et al. (1992). Evans trained 10 guinea pigs to perform a lever 

pressing task with notched noise and rippled noise stimuli to determine psychophysical 

measures of bandwidth. Although differences have been found between rippled noise 

and notched noise methods in humans (Glasberg et al., 1984a), no such difference has 

been found in animals (Pickles, 1975) and so it is probably safe to combine results from 

both. The NN results in this chapter match up very closely to these behavioural results; 

more closely, in fact, than those from the FRA. This notably close relationship would 

suggest that whatever quality the NN method is capturing, is consistent between 

behavioural and neural activity in the IC, but is not fully captured when looking at pure 

tone responses only. 

The parity between psychophysical and physiology using the same method contrasts the 

findings of Ehret and Merzenich (1985). In this study Ehret and Merzenich used the 

band-widening method (see 1.3.3 Band-widening and the critical ratio) to obtain critical 

band measurements from IC neurons and from the behaviour of the cat. They found that 

the rate of increase in bandwidth for both data types was roughly equal (slope of 0.702 

for neural and 0.768 for behavioural), but that the neural bandwidths were about 3 

times broader than the behavioural ones. Many problems have been found with the 

band-widening method, including off frequency listening, in which the recruitment of 

neighbouring AFs that have a better SNR confounds bandwidth estimates (see 

1.3.3 Band-widening and the critical ratio for more details). The impact of effectively 

sampling from a range of AF is to give a much broader estimate of bandwidth than 

actually exists. Off frequency listening does not exist for single cells, so this may be the 

cause of the disparity between results from the two data sets. A notched noise approach 

for both psychophysical and physiological data would not suffer from this problem. 

Another implication of the similarity between the NN IC results and those from the 

studies of Evans and Sayles, is that frequency selectivity may already be established at 

the periphery, and is maintained (at least) to the level of the IC. This theory is not new 

and studies comparing behavioural and neural estimates of frequency selectivity in 
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animals have come to this conclusion after observing the similarity between the 

bandwidth estimates of each method. The Evans study, which has been mentioned 

several times already, showed that ANF bandwidths were almost identical to 

behavioural ones. Bilsen et al. (1975) used rippled noise to calculate the bandwidth of 

SU in the CN of the cat, and compared these to psychophysical results (also using rippled 

noise in the cat) from Houtgast (1974) and Wilson and Evans (1971). The similarity 

between the two led them to hint at a causal relationship. Both of these studies are 

concerned with more peripheral auditory brain regions than the IC, however there is 

also evidence that this frequency selectivity is maintained up to the IC. Salvi et al. (1982) 

calculated psychophysical and evoked potential tuning curves (implanted chronic 

electrodes in the vicinity of the IC) in the chinchilla, using tone-on-tone masking for 

both. The close agreement between the two led them to conclude that "tuning takes 

place primarily at the periphery". My results fit in nicely with the conclusions of these 

studies. Furthermore, if masking experiments reflect cochlear and psychophysical 

tuning (at least up to the level of the IC) then if pure tone-measured bandwidths diverge 

from this, they must no longer reflect cochlear tuning. Perhaps excitatory inputs from 

the cochlea are pooled as one moves up the auditory system, giving progressively 

broader bandwidth estimates when using pure tone stimuli. Peripheral tuning is 

maintained only through mixed signal/masking mechanisms, and therefore it becomes 

important to use NN, or other masking methods, when measuring physiological 

bandwidths. 

Another trend that is evident in the results of this study is that simultaneously masked 

estimates of bandwidth are broader than forward ones (at least for SU and MU). This is a 

well-established phenomenon in psychophysics, seen widely in human studies of all 

type (Houtgast, 1973, 1977; Wightman et al., 1977; Moore, 1978; Vogten, 1978; Moore 

and Glasberg, 1981; O╆Loughlin and Moore┸ なひ81; Glasberg et al., 1984a; Moore et al., 

1984; Weber and Patterson, 1984; Moore et al., 1987; Oxenham and Shera, 2003), and 

has been observed in animal studies, both psychophysical (Kuhn and Saunders, 1980; 

Serafin et al., 1982) and physiological (Harris et al., 1976). In humans the difference 

between the two temporal arrangements is substantial (Houtgast, 1977; Moore and 

Glasberg, 1981; Oxenham and Shera, 2003), with forward masked bandwidths being 

reported to be as much as half that of simultaneous masking. However, the difference 

between the two in this study is slight and only weakly significant. One reason for this 

could be that the effect of suppression in the guinea pig is thought to be much less 

pronounced than in humans (Prijs, 1989). Since the difference between forward and 
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simultaneously masked bandwidth measures is thought to be mainly due to suppression 

(Sachs and Kiang, 1968; Houtgast, 1974; Moore, 1978; Heinz et al., 2002), this result is 

unsurprising. So it seems that this difference, seen most prolifically in psychophysical 

studies, can be identified at the neural level in the IC. This adds weight to the argument 

that it is caused by a non-linearity on the BM, namely suppression. 

An investigation into the mechanisms of masking in the SU shows variations in the 

masking characteristic between units. A small proportion of units showed 'linear' type 

behaviour when comparing their response to the masker and the signal. These were 

characterised by a simple relationship between the two: as masking increases, masker 

firing rate decreases, and signal firing rate increases at the same rate (see 

2.3.6 Mechanisms underlying masking in IC). Such units fit nicely with the assumptions 

of the power spectrum model described in 1.3.2 Power spectrum model. The majority of 

units, however, showed varying degrees of non-linear masking behaviour. One feature 

that appeared in roughly a third of SU was a spread in firing rate in response to masker 

vs signal curves with notch width. For these units the summation of energy at the output 

of the AF does not explain everything and there is an additional frequency dependence 

on firing rates; although RLFs of the response to the signal (which fully drives detection 

thresholds) displays frequency selectivity, this is not the case for the response to the 

masker, whose RLFs are invariant across notch width. This implies that these 

'separated' units (see Figure 2.14) do not display the expected frequency selectivity in 

the excitatory response to the notched noise maskers. Again this could suggest that 

excitatory inputs are pooled together across many units further down the auditory 

system, losing the fine frequency selectivity seen through masking. For half the units the 

firing rate in response to the masker vs signal plots showed much more complex, non-

linear behaviour, suggesting very complicated masking interactions. However, for all of 

the units investigated, the RLF of the firing rate in response to the signal are clear and 

systematically separated across notch width, seemingly showing no link to this complex 

behaviour. This is reflected in the fact that no pattern is found across CF, ERB or their 

confidences, across these different unit classifications; the only feature that matters for 

bandwidth measurements is the response to the signal at threshold. Perhaps the 

assumptions of the power spectrum model are not violated by such seemingly non-

linear behaviour. 

One final noteworthy feature of the data is how similar the results of the different data 

types are (SU, MU and LFP). MU is an amalgamation of electrophysiological activity in a 

small region, and LFP is the same but over a much larger area (Destexhe et al., 1999; 
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Katzner et al., 2009). Although LFPs contain post-synaptic potentials and other non-

spiking activity (Manning et al., 2009; Kajikawa and Schroeder, 2011), they contain a 

high proportion of combined spiking activity and can therefore be treated as a 'proxy' 

for the assessment of neuronal outputs (Buzsáki et al., 2012). The only trend across data 

types seen in my data is that the confidence of each bandwidth estimate goes down, and 

the variability between them goes up, as one moves from SU to MU to LFP. This suggests 

that the activity of neurons in the IC is linear and homogenous. MU and LFP are simply 

the summation of the activity of a larger number of neurons than SU. The tonotopic 

representation of frequency in the IC means that as the area of neural summation is 

increased, the extra neurons have CFs progressively further away. The activity would 

still be dominated by the characteristics of the closest neurons, so the mean activity 

would still be the same as with SU. However, the variance would increase since a wider 

range of responses is being summed. This fits in with our understanding that the IC is 

concerned with representing low level acoustic features that are used by brain regions 

higher up the chain (Nelken et al., 2005). 
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2.6 Discussion - A1 

Bandwidth estimates were obtained from single- and multi-unit, and LFP activity in 

primary auditory cortical neurons of the anaesthetised guinea pig. Three different 

methods were used to make these measurements: forward and simultaneous notched 

noise masking, and the firing response of a unit to pure tone stimuli (FRA). The idea 

behind this study is to compare the different methods in the same populations of units, 

and see what the resulting measurements teach us about frequency selectivity in A1. 

Both SU and MU had CFs and thresholds spread evenly across the range of hearing of the 

guinea pig, as defined by the guinea pig audiogram (see Figure 2.18). In addition the 

majority responded only to the onset of stimuli (87 % in SU, 63 % in MU) and did not 

have a sustained response. This is a well-established property of auditory cortical 

neurons (Phillips, 1985; deCharms and Merzenich, 1996; Eggermont, 1997; DeWeese et 

al., 2003). Together these suggest that the units in this study give an unbiased view of A1 

activity. 

When comparing the results of this study to others in the field, it important to be aware 

that there are far fewer studies in A1 than other auditory brain regions, and a scarce 

number in the guinea pig. The most popular animal is the cat and so many of the 

comparisons made here will have the caveat of this species difference. Also cortex is far 

less homogeneous than lower brain regions and so results are not as consistent across 

the literature. Nevertheless, here I have tried to compare my data to the most relevant 

studies and to include those with conflicting findings. 

Firstly, the most prominent feature of my results is a linear increase in bandwidth with 

frequency, across all data types and method. This is seen in my IC data, all 

psychophysical studies in humans and animals, and every physiological study of 

frequency selectivity mentioned so far. In Phillips and Irvine (1981) the bandwidth of 

cat A1 neurons was investigated by calculating Q10 from FRAs. They found a general 

increase with CF similar to that seen in other species and brain areas (Hernandez et al., 

2005; Taberner and Liberman, 2005). However, Schreiner and Mendelson (1990) is a 

similar study in cat A1 and no such trend was found. Q10 did not seem to increase with 

BF and bandwidth varied non-uniformly across A1. They concluded that there are 

functional maps in A1 that run orthogonal to the cochleotopic organisation of frequency. 

This was backed up by a further study Schreiner (1995). Recanzone et al. (2000) also 

found no increase in bandwidth with BF, although this study was conducted in awake 

behaving macaque. They also found no systematic organisation of bandwidth in A1. So 
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there are mixed results for even this fundamental feature of frequency selectivity seen 

elsewhere. 

Another clear trend present in my data is that of sharper high frequency tuning, when 

estimated using NN, than seen in the IC or in any of the other auditory brain regions 

described in the previous sections. For all the three data types collected, units with CF 

higher than ~2 kHz have NN bandwidths about 2-3 times narrower than the IC and 

periphery. Also the bandwidth estimates of this population of neurons have very small 

confidence regions meaning we can be fairly certain that this result is not just a fluke of 

statistics. In addition the bandwidth estimates for low frequency (< 2 kHz) MU and LFP 

are progressively narrower than in SU. 

A concern when looking at notched noise experiments in cortex is that many of the 

assumptions behind the power spectrum model may be violated here. Mainly the 

assumption of a linear summation of sound energy. Neurons in auditory cortex have 

been shown to display highly non-linear characteristics. In Sutter (2000), the FRAs of A1 

neurons of the cat were investigated in an attempt to categorise their shape, as has been 

done in many other brain regions. They found a vast range of shapes and non-monotonic 

behaviour that was not as prevalent in neurons in lower brain regions. As a result they 

thought of FRA shape in the A1 as more of a continuum that cannot be categorised 

clearly and easily. In addition they concluded that FRA shape is established by 'complex 

patterns of inhibition and excitation accumulating along the auditory pathways, 

implying that central rather than peripheral filtering properties are responsible for 

certain psychophysical phenomena'. In Ehret and Schreiner (1997), a similar study in A1 

cat neurons was conducted, but in addition bandwidth using the band-widening 

technique was estimated (see 1.3.3 Band-widening and the critical ratio). They found 

that FRA shape is so different from the AF calculated using band-widening, that the two 

aren't measuring the same thing. They concluded that 'spectral integration in the way 

proposed to be the basis for the perception of tones in noise is not present at the level of 

the A1'. In Bar-Yosef et al. (2002) the response of cat A1 neurons to modified bird song 

was investigated to see the effect of subtle manipulations to natural sounds. They found 

that the slightest change in stimulus property had a vast effect on the response of the 

neuron and that therefore A1 units respond to a very specific combination of stimulus 

characteristics. They concluded that this 'pose[s] a challenge to models based on linear 

summation of energy' such as the power spectrum model used in NN experiments. So 

the activity of neurons in A1 might be so non-linear that obtaining a realistic bandwidth 

estimate is impossible. The relationship between the response of my A1 units to masker 
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and signal (see 2.4.6 Mechanisms underlying masking in A1) adds some credence to this 

point; all units showed very non-linear behaviour when compared to the more 

homogeneous results in IC. Does this cast doubt on any bandwidth estimates made in A1 

neurons? 

Evidently further investigation of whether this non-linear behaviour is affecting my 

results is necessary. There are relatively few NN studies looking at frequency selectivity 

of A1 neurons, let alone in the guinea pig, so in many cases it is best to compare my A1 

results with my IC data. They use the same method and experimental preparation so the 

only difference should be between neural activity in the respective brain areas. With 

that in mind I compared the neurometric functions of the units in the A1 study with 

those if the IC. One of the consequences of linearity required by the power spectrum 

model is that the only difference between the neurometric functions of successive notch 

widths is a shift in threshold; all other features should remain unchanged. For example, 

if the slopes or maxima of the functions show a systematic shift across notch width in a 

unit, or are significantly different for different populations of units, then we might 

conclude that the assumption of linearity is violated. Figure 2.24 shows a comparison of 

the mean neurometric shape (and ± 1 standard deviation) across all notch widths of SU 

in the IC and A1 data. The plots show that there is no difference between the two brain 

areas, for both forward and simultaneously masked NN experiments. Moreover the 

effect of notch width on neurometric shape was investigated by calculating the mean 

neurometric shape for each size of notch width across all SU; there was no difference 

here either. Finally, the A1 units were split into 2 groups: those with CF above, and those 

with CF below 3 kHz. There was no difference in neurometric function shape between 

these populations as a whole, or when segregated by notch width. This means that the 

A1 neurometric functions are no different to those of the IC neurons and so cannot 

explain the sharper tuning we see for neurons with higher CF. 
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Figure 2.24 

Mean neurometric function, with ± 1 standard deviation, for all notch widths for A1 and IC units, for 

forward A and simultaneously B masked NN experiments. 

 

There is also evidence in other studies of sharper tuning in A1, which would agree with 

my findings. Bartlett et al. (2011) found finer tuning in SU of both A1 and the thalamus 

of the awake marmoset than typically seen in AN, and much finer than other 

anaesthetised animal studies (Miller et al., 2002; Moshitch et al., 2006). They concluded 

that anaesthesia probably broadens bandwidth estimates. However, the fine tuning seen 

in my study may refute this as the cause. Also Bitterman et al. (2008) found very fine 

tuning in human auditory cortex, recorded using intracranial depth electrodes in 

response to natural stimuli. Their bandwidth estimates were far narrower than typically 

described in other mammals and substantially exceeded the tuning attributed to human 

auditory periphery. Although there are vast differences between species, anaesthesia 

and method, the qualitative findings of these studies are similar to my notched noise 

results. 

These findings were not seen, however, in Fishman and Steinschneider (2006), one of 

the more similar studies to my own. Fishman used a notched noise type experiment, 

using roex function fits, to estimate bandwidth of MU and current source density 

recordings (similar in nature to LFP) in A1. This study was in awake macaques, using 

noise bands of only 50 Hz and presenting the masker and signal simultaneously, so does 

have differences to my own, but is more similar than many other studies described 

above. They found that psychophysical bandwidths matched up very closely to 

behavioural estimates in the same animals, across all data types. Also they matched up 

nicely with results of another psychophysical bandwidth study in the macaque 
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(Gourevitch, 1970), although this used band-widening. The only psychophysical 

bandwidth estimates in the guinea pig that I could compare my results to, are from 

Evans et al. (1992), where notched and rippled noise was used. Results from this paper 

do not match up exactly with my A1 bandwidths, especially at high frequencies; a 

finding in opposition to Fishman's. What would especially fine tuning mean for A1 units? 

If SUs show markedly finer tuning than the ability of the system as a whole, then this 

would imply some sort of sub-optimal coding. One, perhaps, where the average activity 

of a population of neurons is taken, only a small proportion of which are finely tuned for 

the stimulus. Alternatively more complex interactions between units across various 

auditory cortical regions may be inefficient, making the overall perception slightly 

poorer. However, the evolutionary basis for this may be slightly dubious. 

So far I have been mainly talking about my NN results, but what of the bandwidth 

estimates calculated using the FRA? Once again these were much broader than the NN 

results in A1 and broader than the NN results in the IC and peripheral guinea pig 

auditory brain regions. In fact, these bandwidth estimates are very similar to the FRA 

bandwidths in the IC. If superimposed the two are almost indistinguishable. Notably the 

difference between FRA and NN bandwidths is no longer a simple case of scale, as it is in 

the IC, but the rate at which bandwidth increases with CF is actually different as well. 

This can be seen in Table 2.4 where the slopes of the lines of best fit are substantially 

different. (This is most prominent for SU). The difference in A1, therefore, is a 

qualitative difference as well as quantitative. 

As mentioned previously in this chapter, the edge of the FRA is used to represent the AF, 

and the firing characteristics that determine the edge of the FRA are controlled by a set 

of parameters. The values of these parameters are not predefined and are established 

experimentally. Is there a chance that this difference between the two methods is due to 

the choice of these parameters? To investigate this, I refit the FRA 80 times using 

different combinations of values for these parameters. I then calculated a line of best fit 

for each resulting bandwidth vs CF plot. (A similar procedure was undertaken with the 

IC data in 2.3.7 FRA based bandwidth). The mean (± 1 standard deviation) of these lines 

of best fit can be seen in Figure 2.25. Looking at this plot it is clear that the difference 

between methods is not caused by the choice of threshold parameters and there truly is 

a fundamental difference between the two measures. Also, again I calculated bandwidth 

using the FRAs of A1 units collected by another researcher in the lab (Sollini, 

unpublished) and compared them to my own; the results were identical. This difference 

in method is therefore not a fluke of the specific cells or animals used in this study. As 
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mentioned above, this is similar to the findings of Ehret and Schreiner (1997), where it 

was deemed that excitatory pure tone bandwidths, and those measured through 

masking, are not comparable. This is also seen in my IC data, but not in studies looking 

at more peripheral brain regions, namely VCN and AN (Evans, 2001; Sayles and Winter, 

2010). Perhaps then cochlear tuning is maintained throughout the auditory system, 

right up to cortex, only within inhibitory or masking activity. As one moves up the 

auditory system, purely excitatory inputs are summed across ever growing populations 

of neurons, expressing activity over a growing region of the cochlea. This would lead to a 

large bandwidth estimate when using a purely excitatory input, and a much narrower 

one when using a masking paradigm. Or perhaps there is some other more complex 

reason behind the difference. Either way, it is clear that great care must be taken when 

using different methods for measuring frequency selectivity. 

Forward and simultaneously masked NN estimates were also compared with one 

another in the same units, and were found to be non-significantly different for SU and 

LFP, but slightly significantly different for MU. This, however, is probably a result of a 

very low number of units. Because of the difficulties of recording in A1 only 12 SU 

yielded both forward and simultaneous estimates. This number was 13 for LFP. MU, 

however, had 20 which probably resulted in the just significant difference. 

Another feature of note is the similarity between SU, MU and LFP results. For the NN 

results the low frequency tuning is slightly different across the data types (sharpening 

for MU and LFP), but for high frequencies they are very consistent. This has not been 

found in many studies, which instead report bandwidths that are systematically broader 

than for SU and MU (Eggermont, 1996; Noreña and Eggermont, 2002; Noreña et al., 

2008; Eggermont et al., 2011; Kajikawa and Schroeder, 2011; Gaucher et al., 2012). One 

of their explanations is that LFP reflects mainly thalamic input and that tuning is sharper 

in cortex than the thalamus. This may be true for the FRA measured bandwidths, which 

seem to be slightly broader for LFP than SU and MU. The difference between the two, of 

~50 %, in A1 matches with the findings of Noreña and Eggermont (2002), in which 

bandwidth was measured using FRA. No similar studies using NN exist, so perhaps this 

is just a phenomenon of pure tone excitatory tuning curves. 
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Figure 2.25 

Mean line of best fit for FRA calculated bandwidth of SU using a range of different fitting 

parameters (green line), with 95 % confidence region (light green area). Lines of best fit for NN 

estimated SU for comparison; forward (blue) and simultaneously (red) masked arrangements. 
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CHAPTER 3: Ferret psychophysics 

3.1 Introduction 

Frequency selectivity describes the ability of a person or animal to resolve the individual 

frequency components in a complex sound, a fundamental feature of hearing vital for 

communication and survival. From the earliest days of its study, the auditory system has 

been modelled as a series of band-pass filters, overlapping one another and running 

along the full frequency range of hearing (Fletcher, 1940). In this model frequency 

selectivity is described by the width of these auditory filters. The goal of psychophysical 

research into frequency selectivity has been to calculate the size and shape of these 

filters and thereby characterise the properties of the auditory system. The main tool for 

doing so has been masking; establishing the detection threshold of one sound in the 

presence of another masking sound. Many different approaches have been used such as 

band-widening (Zwicker et al., 1957), tone masking (Chistovich, 1957; Houtgast, 1973) 

and rippled noise (Houtgast, 1974; Pick et al., 1977). Band-widening has been found to 

be very inaccurate for measuring bandwidth (Bos and de Boer, 1966; Patterson and 

Henning, 1977), tone masking is susceptible to  interactions between signal and masker 

producing audible 'beats' which confound results (Plomp and Steeneken, 1968; 

Rodenburg et al., 1974; Terhardt, 1974; Wightman et al., 1977; Patterson, 1986), and 

each of these suffer from problems caused by off-frequency listening (Johnson┽Davies 
and Patterson, 1979; Patterson and Nimmo Smith, 1980; O╆Loughlin and Moore, 1981). 

As a result notched noise masking has emerged as the favoured method (Patterson, 

1976; Patterson and Nimmo Smith, 1980; Moore et al., 1984; Moore et al., 1987; 

Glasberg and Moore, 1990) since it suffers from none of these problems. It has been 

developed over the years in human psychophysics and a number of features adapted 

and adopted, such as forward masking. This has superseded simultaneous masking since 

it does not suffer from problems caused by the non-linearity of the cochlea, such as 
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suppression (Sachs and Kiang, 1968; Heinz et al., 2002), which leads to broader 

bandwidth estimates made with simultaneous masking than forward (Houtgast, 1974; 

Leshowitz and Lindstrom, 1977; Moore and Glasberg, 1981; Moore, 1987; Oxenham and 

Shera, 2003). Also keeping the level of the signal fixed and varying the level of the 

masker when determining detection threshold has emerged as the favoured method 

(Rosen et al., 1992; Rosen and Baker, 1994; Baker et al., 1998; Rosen et al., 1998), 

although this is still somewhat controversial (Eustaquio-Martin and Lopez-Poveda, 

2011; Lopez-Poveda and Eustaquio-Martin, 2013). 

These developments have mainly been made in human studies, although animal 

behavioural studies in a wide range of animals have also contributed. Most of these 

studies have used band-widening (Watson, 1963; Miller, 1964; Gourevitch, 1970; 

Pickles, 1975) and tone masking (Saunders et al., 1978b; Dooling and Searcy, 1985; 

Burkey and Gans, 1991), but a few have used notched noise (Halpern and Dallos, 1986; 

Evans et al., 1992; Niemiec et al., 1992). Almost all these studies used simultaneous 

masking with only a handful using forward (McGee et al., 1976; Kuhn and Saunders, 

1980; Serafin et al., 1982; Smith et al., 1987), and only one comparing forward and 

simultaneous notched noise masking (Halpern and Dallos, 1986). This study, however, 

did not successfully manage to measure the AF with forward masking. Also not one 

animal behavioural study that I have found has kept the signal level fixed and varied the 

masker level. It is therefore of interest to estimate AF widths in animals using methods 

from modern human psychophysics. 

It is the aim of this experiment to develop a method for measuring both forward and 

simultaneously masked bandwidth measurements in the same animal, and use this to 

calculate bandwidth across frequency. This will be done by using a similar approach to 

that of  Halpern and Dallos (1986), in which the masker is played in short repeating 

bursts with short gaps between, and short signal bursts played in these gaps to achieve 

forward masking. Unlike the aforementioned study, simultaneous masking will be 

achieved using the same stimuli but with the signal bursts appearing during the masker 

bursts. By using the same method it is hoped that the same animal can easily switch 

between the two tasks without needing retraining, and a direct comparison of the two 

masking types can be made. The ferret will be used, since it is a good behavioural 

mammal (Kelly et al., 1986), with a one-interval two-alternative forced choice (1I2AFC) 

lateralisation task to obtain individual trial data. This method gives lower and more 

reliable thresholds (Sollini, 2013) than the pure detection task used in Kelly et al. 

(1986), and would result in less bias in simultaneous cortical recordings. If this method 
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can be made to work, then animal behavioural techniques can be brought more in line 

with human studies and we could learn more about the effect that methodological 

differences have on bandwidth estimates. 
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3.2 Methods 

A number of ferrets were trained to perform a behavioural task to be used in 

conjunction with notched noise masking stimuli to measure their frequency selectivity. 

A novel method was introduced to allow stimulus paradigms that are comparable with 

recent human psychophysical methods. This Methods section does not only describe the 

experiment and how the data was collected and analysed, but also the development and 

validation of the novel approach. 

3.2.1 Animals 

In total 4 male and 4 female pigmented ferrets (Mustela Putorius), all of whom were 

bred in house, were trained to perform the behavioural task. Table 3.1 below shows the 

ages of the ferrets at the start and end of their training. All ferrets were housed 

independently bar 2 females (Lola and Lacey) who were housed together. The housing 

environment complied with the Code of Practice for the Housing and Care of Animals in 

Designated Breeding and Supplying Establishments issued under section 21 of the 

Animals (Scientific Procedures) Act 1986. Certain physiological processes of the ferret, 

such as breeding cycle, weight gain/loss, hair gain/loss, are seasonal, triggered by hours 

of daylight and temperature. To keep the ferrets in good health the animal environment 

was changed according to the season, with winter in November-February, spring in 

March, summer in April-September, and autumn in October. Temperature was set at 17 

and 19°C ± に┦C for winter and summer respectively, and at 18°C ± に┦C for spring and 

autumn. Also light was varied seasonally with 8 hrs. light/16 hrs. dark in winter, 12 hrs. 

light/12 hrs. dark in spring and autumn, and 16 hrs. light/8 hrs. in summer. For the time 

that the ferrets were performing the behavioural task, they were kept on water 

regulation. This involved removing water from their home environment meaning all the 

water they received was during the behavioural sessions. This fluid intake was 

supplemented by 'wet mash' which consisted of water mixed with ground protein 

pellets (their normal diet) and a food supplement (Cimicat, Petlife International Ltd., 

UK). While on water regulation ferrets performed two behavioural sessions a day, for up 

to 14 (but usually 10-11) consecutive days. After such a period animals were given 

water ad libitum for a minimum of 3 days. After 3 consecutive regulation periods (with 

intervening rests) the animals were given a longer rest. These respites were intended to 

allow the animals to regain any weight lost during water regulation. Since such weight 

loss is common, the weight of each animal was monitored daily and not allowed to fall 

20 % below normal. 
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Ferret 
Age ゅin monthsょ at┼ 

Start of training End of training 

Hendrix 38 43 

Lily 5 10 

Leeroy 6 10 

Lex 12 13 

Lola 18 23 

Lacey 18 23 

Manuel 10 11 

Naomi 21 23 

 

Table 3.1 

Ferret ages at start and end of training. 

 

3.2.2 Ferret arena 

Figure 3.1 contains a schematic of the ferret arena. All behavioural experiments were 

performed in a raised cage (60 cm between room floor and cage floor) with wire mesh 

top and sides, and hard PVC floor, within a sound attenuated room. The cage is T-shaped 

with a rectangular central platform (26 × 20 cm) extending from the centre of a longer 

platform (30 × 100 cm). The central platform has a water spout, surrounded by a small 

brass cone, three small fences and two posts containing an LED beam breaker. The small 

fences and cone are used to align the ferret's body and head, minimising the variability 

in head position between behavioural trials. When the ferret aligns itself on the platform 

the beam between the posts is broken; this ensures a trial only occurs when the ferret is 

aligned correctly. Two water dispensing modules flank the cage, one on each end of the 

longer platform, with water spouts protruding into the cage. Each water spout contains 

an infrared sensor which is used to detect ferret licks. Four speakers (ADAM, A3X), with 

frequency response range 60 Hz - 50 kHz, stand on raised platforms (centre of tweeter 

75 cm, subwoofer 65 cm above floor), facing the central water spout at a distance of 88 

cm. If the point directly in front of the central platform (also the direction the ferret 

faces at the start of each trial) is taken as 0° on a compass, then the 4 speakers are 

arranged with their centres at 75°, 90°, 270° and 285°. To ensure that all speakers and 

room furniture do not adversely affect the delivery of stimuli, a maximum length 



CHAPTER 3: Ferret psychophysics 

124 
 

sequence (MLS) measurement was taken regularly to determine the frequency response 

of the setup (Rife and Vanderkooy, 1989). An example of such a recording, with 

frequency responses from each speaker, can be seen in Figure 3.2. Such recordings were 

also used to ascertain the level of the stimuli in dB SPL by referencing to a 1 kHz pure 

tone calibrator (B&K; 4231). 

All speakers, water spout infrared sensors, and central LED beam breaker are connected 

via an audio interface system (MOTU 24 I/O) to a computer. Here an in-house software 

program (sitafc, written in VBA) takes all the apparatus input and uses this to 

automatically control the experiment i.e. determine correct/incorrect behaviour, 

dispense water as appropriate, play the appropriate stimulus at the appropriate time, 

record all events, etc. The system is designed to be fully automated so that the ferret 

triggers trials, which are controlled by the software. 

 

 

 

Figure 3.1 

Behavioural arena. Four speakers placed at 75°, 90°, 270° and 285° relative to directly in front of 

the ferret╆s head at a distance of ふふ cm. The central platform extends from a longer cage area, 

flanked by water spouts. The masker is played from the 75° and 285° speakers (blue lines) and 

signal played from 90° or 270° (red lines). Water spouts, speakers and the LED beam breaker are all 

connected to a computer which controls the experiment.  
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Figure 3.2 

Frequency response functions in the behavioural arena from each speaker. MLS, with n = 17 and 

sample rate 96 kHz, were played from each speaker and recorded by a キ╊ free-field microphone 

ゅGRAS┹ Type ぱねBFょ placed in the location of the ferret╆s head┻ The power spectral density was 
calculated in dB referenced to 20 µPa. Level was calculated by recording a 1 kHz tone played from 

each speaker and comparing the RMS with that of a 1 kHz calibrator (B&K; 4231). 

 

 

3.2.3 Behavioural task 

In human psychophysics one of the most common tasks is a 2I2AFC. A masker is played 

twice in quick succession with the signal following one of the masker presentations, and 

the participant is asked to select which interval the signal appeared in. A psychometric 

function from this has range 50 % to 100 % correct, and can usually be fit by a logistic 

(or similar) function. Detection threshold is then taken at 75 % correct. This technique is 

very successful and is therefore used extensively in humans (Macmillan and Creelman, 

2004). A variant is used in animal psychophysical studies (Walker et al., 2009; Bizley et 

al., 2013a; Bizley et al., 2013b), however its cognitive complexity makes it difficult to 

implement and maintain high performance. Another commonly used method is the 

go/no-go task where the animal is trained to respond to a certain stimulus arrangement 

and do nothing for another (McGee et al., 1976; Koay et al., 1998). Another method, and 

often the two are combined, is a shock-avoidance task where the animal performs a 

discrimination task and is given a small electric shock for incorrect behaviour (Green, 

1975; Willott et al., 1984). 
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One problem with negative reinforcement, such as shock avoidance, is that it encourages 

the animal to err on the side of caution causing the under-sampling of false positives, 

introducing an inherent bias (Willott, 2001). Also it causes a lot more stress in the 

animal, compared to water/food regulation, which has been shown to weaken the 

conditioning (Bechtholt et al., 2004). A disadvantage of the go/no-go method arises 

when making physiological recordings during a behavioural task (Brosch et al., 2005); 

movement is coordinated by motor cortex, which may have related activity in auditory 

cortex (Brosch et al., 2005). This means that some of the neural activity recorded during 

a sound trial will actually be in response to motor activity (or the planning of motor 

activity). Additionally neural activity in primary auditory cortical regions have been 

shown to reflect decision activity about which way the animal should respond (Bizley et 

al., 2013b). In a go/no-go task one response requires movement and the other does not, 

so one will contain motor signals as well, and the other will not. This creates an inherent 

bias in any physiological recordings. Therefore, despite behavioural benefits of the 

go/no-go task (Burdick, 1979), a 1I2AFC type task requiring a response to each stimulus 

presentation would be preferable when physiological as well as behavioural data is 

being collected. There would still be unavoidable interference from motor cortex, and 

related decision activity, but at least it would affect each response equally. 

In Kelly et al. (1986), Hine et al. (1994) and Alves-Pinto et al. (2012) such a task was 

used in ferrets. In a single trial a stimulus was either presented or not. The ferret was 

trained to approach one location to answer 'stimulus detected' and another for 'stimulus 

not detected'. Such an association is still quite abstract and has a high cognitive load. 

This means that confusion due to the task, and not psychophysical detection, is more 

likely, which would interfere with results. Also it takes a long time to train the animals 

and the association is more likely to be lost. As a result I used a slightly adapted version 

of this 1I2AFC task that incorporates lateralisation, which makes the task easier and 

more likely to succeed. Instead of randomly presenting or not presenting the stimulus 

and training the ferret to approach one of two separate locations to answer which 

occurred, the target stimulus appears randomly at one of the two locations and the 

animal must approach the source. This removes the extra cognitive load since ferrets are 

predatory animals and are evolutionarily shaped to localise and approach sounds, 

making the task far more natural (Harrison, 1992; Iversen, 1994). As a result this 

approach has been shown to produce lower thresholds in the ferret when compared to 

Kelly's (Sollini, 2013). 
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The ferrets were trained to perform such a task with the signal coming from either the 

90° or 270° speaker, with the closest water spout as the associated answer point. 

(Although the two are separated in location, the ferrets had no problem associating the 

speaker with the water spout). This was done gradually in stages; first copious amounts 

of water were given upon licking any water spout to gain an association between the 

spouts and water, then gradually water reward was reduced until the ferret was only 

given water when it aligned itself properly on the central platform. Next a high level, 

long duration, broadband test stimulus was introduced, appearing randomly from either 

side speaker with equal probability. The stimulus was very easy to detect and localise 

and ferrets very quickly (usually on the first trial) went to investigate the sound and lick 

the water spout for a water reward, associating the water spout with the stimulus from the nearby speaker┻ This process is known as ╅shaping╆ and took between ぬ-10 sessions 

depending on the ferret (failing completely with one ferret). From then on the water 

reward at the centre was reduced gradually to only a few drops, every 10 trials with 

almost all water reward coming from a correct answer. This is done because head 

movement and noise caused by licking at the centre spout can affect the attention and 

hearing of the ferret when the stimulus is being played, which could adversely affect the 

experiment. The small proportion of trials for which a centre reward is given are 

discarded. Next the signal was made progressively more narrowband and shorter in 

duration until it was appropriate for the task. The final step was to gradually introduce a very wide notch ゅつF of ど┻の × SF) masker from the two speakers at 75° and 285°, initially 

very low level; effectively providing a very low amount of masking (if any). The aim is to 

accustom the ferret to the masker without making the task too difficult. They needed to 

learn to ignore the masker, and all of them did. With this done the ferret was ready to 

perform the behavioural task. 

As mentioned above, a trial was triggered by the ferret and the procedure went as 

follows: 

1) The masker plays from the 75° and 285° speakers continuously. The notch width 

of the masker is fixed for a session, but the level is randomly selected from a list 

of predetermined values┻ Randomly selecting the level is known as the ╅method of constant stimuli╆ and prevents errors of habituation and expectation which 
result from the subject from being able to predict stimulus level (Laming and 

Laming, 1992). 

2) The ferret aligns itself on the central platform, breaking the LED beam, which 

allows signals from the central water spout to be relayed to the computer. 
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3) It licks the central water spout, which is picked up by the infrared sensor and 

relayed to the computer. If the central water spout is licked for a certain short 

duration and the LED beam is broken, a trial begins. 

4) After a delay, random in length between 0.5 and 2 seconds, the signal is played 

for a short duration from either the 90° or the 270° speaker, randomly chosen 

with equal probability. The delay is there to stop the ferrets from gaining a 

detection advantage by anticipating the start of the signal, or leaving the spout 

early. Also the level of the signal is randomly chosen from a predetermined list. 

5) The ferret then moves to a water spout on either side of the cage. If this is the 

side the signal came from it receives a water reward of ~0.3 ml and this trial is deemed a ╅correct╆ trial┻ )f it goes to the other side┸ it is deemed an ╅incorrect╆ 
trial, no water is given, and the same trial is repeated. This is done to reduce bias 

caused by ferrets only answering on one side since doing so would result in no 

water reward ever. Results from repeat trials are not included in further analysis┻ )f the ferret doesn╆t lick a side spout within ぬど seconds┸ the trial times 
out and no response is expected or accepted. 

6) The masker level is adjusted and the process repeats until either an hour has 

passed or the ferret has had enough (usually going to sleep). 

The responses of individual trials are taken and proportion correct calculated across all 

trials for each stimulus condition to make psychometric functions. This process is 

described below. 

3.2.4 Psychometric functions 

In a given behavioural session the frequency properties of the signal and masker are 

fixed, i.e. single notch width, and the levels change randomly between trials. In every 

case one stimulus is fixed in level and the other varies, depending on the experiment. 

This way a psychometric function can be built comparing proportion correct across SNR. 

One way of calculating proportion correct using SDT is to use the following formula: 

鶏系 噺 なに 岫茎 伐 繋岻 髪 なに (3.1) 

where H is the hit rate and F is the false alarm rate of one of the distributions in Figure 

1.13, defined as:   

茎 噺 お建堅件欠健嫌潔剣堅堅結潔建剣券堅件訣月建お建堅件欠健嫌建剣建欠健剣券堅件訣月建  (3.2) 
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繋 噺 な 伐 お建堅件欠健嫌潔剣堅堅結潔建剣券健結血建お建堅件欠健嫌建剣建欠健剣券健結血建 ┻ (3.3) 

 

This method, and the example described in 1.8.11 Signal detection theory, is usually 

used in a detection task where one distribution represents 'signal present', and the 

other 'signal absent'. Also it assumes that there is no bias towards answering one way or 

the other. In the 1I2AFC task the ferrets perform, in each trial the signal appears on one 

side and doesn't on the other, which makes it slightly different to (easier than) a pure 

detection task. Also, slight differences in the amount of water given at each answer 

spout can affect the likelihood of a ferret answering at a certain side. Some ferrets 

simply develop a tendency to preferably answer at a certain spout for unknown reasons, 

and so bias is an issue. Calculating the proportion correct for the other side, i.e. 

reversing the sides in the formulae so that equation (3.2) uses trials from the left and 

equation (3.3) from the right, gives a different answer if there is bias. Which one 

therefore is correct? To combat this I used a slight variation of equation (3.1) known as 

PCmax defined by the following formula: 

鶏系鱈叩淡 噺 も 峭ヂに も貸怠岫茎岻 伐 も貸怠岫繋岻に 嶌┻ (3.4) 

where も is the standard normal cumulative distribution function┸ and H and F are 

defined as above. PCmax is equivalent to taking the average d╆  of both sides with a ヂに 

scale factor to account for the 2AFC aspect making the task easier. For more details see 

Macmillan and Creelman (2004). 

Levels of stimuli are chosen so that the resulting psychometric function crosses 75 % 

correct. Ideally it would be best to sample the full range of the psychometric function 

(from 50 % to 100 %), but with the ferrets there was a tendency to sample from the top to maintain ╅stimulus control╆┻ Near detection threshold of the signal┸ and below┸ the task 
becomes very difficult and the ferret will get many trials wrong. Without the water 

reward acting as positive reinforcement the animal can become disheartened and lose 

the understanding of the task and start to simply randomly answer even when the task 

becomes easy and the signal is clearly audible. This is known as losing stimulus control, 

which adversely affects the results. Therefore making sure there are always trials that 

are easy, i.e. sampling the top of the psychometric function, maintains good behaviour. 

In sessions where the signal was fixed in level, in a proportion of trials (roughly 20 %) 
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the signal was played at a higher level to ensure the task was easy, for the reasons just 

mentioned. These easier trials were discarded. 

Once all the points of a psychometric function were collected for a particular set of 

stimuli (i.e. signal frequency, notch width and temporal arrangement), a logistic function 

was fitted to the PCmax vs SNR points using a least squares error method. The formula of 

the equation used is as follows: 

健剣訣件嫌建件潔岫鯨軽迎┹ 糠┸ 兼┸ 嫌岻 噺 なに 髪  なに 髪 糠な 髪 結貸聴朝眺貸陳鎚  (3.5) 

 

where s describes the slope of the function, m the position of the centre, and 1 - ゎ the 

maximum of the function┻ Some ferrets ╅guess╆ the answer for a proportion of trials no 

matter how detectable the signal is. This means that the psychometric function will 

never reach 100 %, and so the ゎ value is included to account for this proportion of 

guesses. In general this logistic function fit the psychometric data very well. 

3.2.5 Bandwidth estimates 

When bandwidth was being calculated, the procedure described above would be 

repeated for a number of different notch widths for a single signal frequency, so that 

there were a number of psychometric functions. The logistic function in equation (3.5) 

would be fitted to all these psychometric functions, using a least squares error approach, 

in parallel such that all had the same ゎ and s. This is because one of the consequences of 

the assumption of linearity, required for the power spectrum model, is that only m 

should change between notch widths. Using this method also gave much more stable 

fits. Threshold for each notch width was then taken at the 75 % correct point of the 

corresponding logistic function (although in the parallel fit case this is arbitrary since 

the difference between each logistic function is the same at all proportions correct). An 

example can be seen in Figure 3.3. An AF function was then fitted to the threshold SNRs 

using the following procedure. 

1) The spectra of the stimuli were built by taking their spectral shape and scaling 

them to the level at the detection threshold of the signal. For example, for a 

single stimulus condition a vector 20,000 elements long of 0s was created, each 

point representing a 1 Hz bin in frequency space. Ones were inserted at every 

frequency bin in which the masker had energy. These bins were then scaled to 

have the correct height in µPa corresponding to the level of the masker at 
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detection threshold. This was repeated for the signal, and the two summed. The 

resulting vector represents the sound energy (in frequency space) for that 

stimulus condition. This was repeated for each notch width using the levels of 

each stimulus at detection threshold. 

2) The AF function was evaluated, with initial parameters (established through 

experimentation), over the range 1-20 kHz (using 1 Hz bins). Several initial 

parameters were tried to ensure a stable fit. 

3) This AF vector was then multiplied with the stimulus sound energy vectors 

described in step 1) and the results summed. This gives the total power of the 

stimuli passing through the AF at threshold for each notch width. 

4) The resulting power values were converted into dB (by × など log怠待岫懸欠健憲結嫌岻) and 

the amount each value deviated from the mean was calculated. 

5) A least squares method was then used to optimise the AF parameters to 

minimise the difference between these values across notch widths. 

This method is slightly different to that described in 2.2.7 Analysis: Notched noise 

analysis but has the advantage of not needing to fit a gain parameter, which makes the 

fits more stable, and is more in line with the assumption that detection threshold is 

equivalent to a constant SNR at the output of the AF (see 1.3.2 Power spectrum model 

for more details).  

The final step is to calculate the ERB, as described in 2.2.7 Analysis: Notched noise 

analysis┻ Because this method of fitting the AF shape doesn╆t involve a gain parameter, 

gain is arbitrarily set at 1, meaning the area under the curve is equivalent to the ERB. 
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Figure 3.3 

Example of stages in analysis. A Psychometric functions for each notch width, with logistic functions 

fitted in parallel. Threshold SNR taken at 75 % correct. B Same threshold SNR values from panel A 

plotted against notch width. This threshold plot represents the drop in threshold with increasing 

notch width. C AF is fitted to the threshold SNR by constructing spectral shapes of stimuli (scaled to 

the appropriate threshold SNR), integrating over the AF, and minimising the difference in SNR 

across notches. ERB of the AF is calculated as the width of the rectangular filter with equal height 

and power (green line). 
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3.2.6 Bootstrapping 

In some cases, when it was desirable to obtain a confidence region on a result, a 

bootstrapping method was used. Figure 3.5, Figure 3.7 and Figure 3.8 show examples of 

psychometric functions with confidence intervals for each point, and Figure 3.9 shows 

bandwidth estimates with confidence regions. To obtain these, the original trial results 

for a given stimulus condition were taken and recreated as a vector of 0s and 1s; 0 

representing an incorrect answer, and 1 a correct one. A simulated result was then 

created by selecting from these trials with replacement. For example, imagine a ferret 

gets 20 presentations of a certain signal with a certain level, combined with a certain 

notch width masker of a certain level, in a certain temporal arrangement, and gets 13 

trials correct. A vector would be created with 13 ones and 7 zeroes. A random element 

of this vector would be selected 20 times to create a simulated proportion correct for 

that specific stimulus condition. (This is equivalent to selecting a sample from a 

binomial distribution with p = 13/20 and n = 20). This is done for every stimulus 

condition to obtain a simulated data set. Whatever analysis that is applied to the real 

data is then applied to this simulated data set and a simulated result is produced. In the 

case of the psychometric function this means a simulated proportion correct for an SNR, 

and a simulated bandwidth estimate in the bandwidth case. If this is repeated a number 

of times (usually at least 500), a distribution of points around the true calculated value 

is produced. Taking the 5 % and 95 % quantiles of this distribution gives the 

approximate 95 % confidence interval which is then applied to the original data points. 

3.2.7 Stimulus arrangement in novel method 

As mentioned previously, a novel method was used to obtain bandwidth measurements 

in the ferret with the behavioural task described above. It involves notched noise 

masking but unlike almost all other animal behaviour studies, allows forward as well as 

simultaneous masking in the same animal without retraining. Essentially it involves 

playing the masker in repeated bursts with silent gaps between, and interleaving short 

signal bursts in these gaps. By ensuring that both stimuli have the same cycle length 

(duration of stimulus burst plus silence), it is easy to induce forward, partially forward 

and simultaneous masking by simply varying the time delay between the two. Figure 3.4 

shows an example of simultaneous and forward masking with 4 signal bursts. The 

standard approach used in almost all animal behaviour studies is to use simultaneous 

masking with the masker playing constantly and the signal briefly appearing within it. A 

similar stimulus arrangement to the new method was used to induce forward masking 

in the chinchilla in McGee et al. (1976), but was not used for the simultaneous masking. 
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The benefit of using the same 'bursting' approach for both cases is that the ferret need 

not be retrained for the separate tasks. Instead the temporal relationship between signal 

and masker can be switched between trials in the same sessions with little notice. 

The benefits described above are all theoretical and the method could be rendered 

useless by several possible problems. It therefore had to be tested before it could be 

deemed appropriate for measuring frequency selectivity. Also stimulus parameters had 

to be refined to give the best possible measures of bandwidth. This validation and 

refinements are described below. (Some parameters of the stimuli, e.g. duration and 

envelope, vary seemingly inconsistently between consecutive sections below. This is 

because the measurements were not necessarily made in the order they are presented, 

so refinements made in one section may not be present at the beginning of the next). 

 

 

Figure 3.4 

Temporal arrangement of stimuli. Ten masker bursts with 4 signal bursts in the simultaneous and 

forward masking arrangements. Masker bursts are 50 ms in duration followed by 50 ms silence 

between. Signal bursts are 25 ms in duration with 75 ms silence between. A cycle is therefore 

100 ms. 
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3.2.8 Testing on a human subject 

There was a chance that the constant bursting of the stimuli would create confusion, 

resulting in informational masking that would make it impossible to produce a reliable 

psychometric function based on sound masking. Also the brief duration of the stimuli 

might mean very little masking occurs, making any meaningful notched noise 

experiment inaccurate and unusable. The first set of tests were therefore conducted on 

myself. I used 5 signal bursts, 50 ms in duration (inc. 25 ms cosine squared on/off 

ramps), embedded in 50 ms masker bursts (inc. 25 ms cosine squared on/off ramps) 

with 50 ms of silence between bursts. The signal was 1/32 octave wide narrowband 

noise centred on 10 kHz. The masker was 1 kHz wide narrowband noise linearly centred 

on 10 kHz played, appearing at the same time as (simultaneous) and immediately 

preceding (forward) the signal. Masker level was kept fixed at 30 dB SPL and signal level 

varied. Stimuli were generated in Matlab and delivered through a pair of headphones 

(Sennheiser HD 600) in a sound attenuated booth (Industrial Acoustics Company, 

Winchester, UK). In a single trial the signal would be played randomly in the left or right 

ear with equal probability and I had to state which side it came from. Figure 3.5 shows 

the psychometric functions produced from 50 repetitions of each signal level for each 

temporal arrangement. A logistic function has been fit to each set of results. 

 

Figure 3.5 

Human test of the behavioural task. Four 50 ms narrowband noise signals (25 ms cosine squared 

on/off ramps, 1/32 octave around 10 kHz) embedded in 50 ms masker bursts (25 ms cosine squared 

on/off ramps, 1 kHz wide narrowband noise centred on 10 kHz). In the forward masked condition 

the signal and masker immediately alternated, in the simultaneous arrangement the two appeared 

at the same time with 50 ms silences between. Error bars made with bootstrapping. 
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The first notable feature is that both psychometric functions are reasonably monotonic; 

proportion correct increasing with SNR. This is as expected for such a task. Also, whilst 

performing the task I did not experience any confusion between the stimuli, and both 

temporal arrangements sounded very similar meaning switching between the two was 

not problematic. A second notable feature of the figure is the almost 40 dB difference in 

threshold between the forward and simultaneous masking arrangements. Simultaneous 

masking is known to be much stronger than forward masking so this fits in with what 

would be expected. The difference between the two, however, is surprisingly large, 

which suggests that the amount of forward masking is very small. Three ways in which 

forward masking can be increased is to a) reduce the distance between signal and 

masker, b) increase the duration of the masker, or c) reduce the duration of the signal. 

Since there is no gap between signal and masker so this could not be reduced, the signal 

was reduced to 25 ms, and the masker made longer and its envelope changed. 

3.2.9 Room acoustics 

Another potential problem is the acoustics of the ferret arena. Although every effort is 

taken to reduce echoes in the behavioural room, i.e. sound proof booth, minimal 

reflective surfaces, cage suspended above the ground, it is not anechoic. Therefore there 

is potential for echoes to 'smear' the stimuli temporally meaning that the short gaps 

between stimuli are actually being 'filled in'. This would mean that when the stimuli are 

in the forward masking arrangement, true forward masking is not actually occurring 

since masker energy is still present. To test whether this could be a problem, recordings 

of the masker and signal bursts were made in the ferret arena, using the same setup for 

recording MLS described in 3.2.2 Ferret arena. Figure 3.6 shows the average envelope of 

2500 signal and 4200 masker cycles, in dB. The envelope of the original sound bursts 

are overlaid for comparison. The signal was the same narrowband noise used in 

3.2.8 Testing on a human subject above, but reduced to 25 ms (inc. 12.5 ms cosine 

squared on/off ramps). The masker was the same 1 kHz wide narrowband noise used in 

3.2.8 Testing on a human subject, but the envelope was changed to 150 ms in duration 

with 5 ms on/off ramps, since the longer duration and steeper ramps produce more 

masking. (Steeper slopes also produce more spectral splatter, a spread of power across 

frequency, but the difference between the two ramp lengths is small enough to not 

adversely affect the experiment).  

Panels A and B of Figure 3.6 show that the signal and masker do indeed continue as 

echoes after they have stopped being played (since the blue lines deviate from the red 
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lines). These echoes start roughly 20 dB down from the peak and decay at ~1 dB/ms for 

both stimuli. Since the detection threshold of the signal is being measured in this 

experiment, the levels of stimuli are very low and in many cases these echoes will be 

below the level of audibility for the ferret, so their impact should be small. However, this 

is an issue to be aware of; as with all free-field experiments there is the inevitable 

possibility of non-pure forward masking. 

 

 

 

Figure 3.6 

Effect of room reverberations. A Recording of 2500 cycles of the 25 ms cosine-squared signal 

averaged together and the envelope taken (blue line). The envelope for a single cycle of the original 

signal is overlaid for comparison (red line). Both are presented in dB relative to the maximum to 

allow easy comparison. B Same but for the 150 ms masker. Only the region around the end of the 

masker is shown since the rest does not deviate from the original. The amount the recording 

deviates from the original shows the temporal effect of reverberations. 
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3.2.10 Testing on a ferret 

The final hurdle was to see whether the ferrets took to the task or not. I didn't find the 

bursting of the stimuli confusing, but would the ferrets? Also, would this method 

provide enough masking to effectively explore the edges of the AF? The only way to 

answer this question was to try it out on a ferret.  

A ferret was shaped and trained to perform the behaviour task described in 

3.2.3 Behavioural task with the bursting stimuli. Firstly the experiment described in 

3.2.8 Testing on a human subject was carried out in the ferret; forward and 

simultaneous masking with 50 ms narrowband signal and 50 ms masker. The signal was 

the same 1/32 octave wide narrow band noise centred on 10 kHz used before. Pure 

tones were not used due to their propensity to form standing waves; the reflection of a 

pure tone combines with the original pure tone, producing areas in the room where the 

level is higher than the original, and areas where the signal is obliterated (Auld, 1973). 

Because a pure tone only has one phase value, this event is likely. Noise contains many 

frequencies with random phase so this ordered summation is far less likely. Therefore 

narrow band noise gives much more control over stimulus level across the arena. 

Twenty signal bursts were played over the space of 2 second in each trial; much shorter 

and the task would be too hard for the ferret, much longer and the signal would still be 

audible once the ferret had left the central platform, compromising control over the 

stimulus level. 

Figure 3.7 panel A shows the psychometric functions produced for both temporal 

conditions. Very encouragingly both conditions yielded clear, monotonically increasing 

psychometric functions, transitioning smoothly from 50 % to just under 100 % correct. 

The maximum of both functions was less than 100 % due to the 'guess' rate described 

earlier. Also the ferret psychometric functions are shallower showing more of a 

variability in detection threshold. Shallower slopes suggest more confusion in the task 

(Green, 1995) but these features are commonly seen in animal psychophysics (Tolhurst 

et al., 1983; Gleich et al., 2006) and do not suggest the task is too difficult. Also again the 

simultaneous masking arrangement has a higher detection threshold than the forward 

one. Remarkably, the two are very similar to the human ones, being only 5 dB higher in 

both cases. 

So the ferrets took to the task and gave usable psychometric functions. But what of the 

amount of masking? To test whether there is enough masking to explore the filter shape, 

a wide notched noise masker was compared to the no notch condition, in the 
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simultaneous masking arrangement. The signal was the same 1/32 octave narrowband 

noise centred on 10 kHz as before, except the duration was 25 ms (inc. 12.5 ms cosine 

squared on/off ramp) for the reasons described in 3.2.8 Testing on a human subject. The 

no notch masker was the same 1 kHz wide narrowband noise as before with 50 ms 

duration, and the wide notch was made up of two 500 Hz wide bands of noise separated 

by 10 kHz, centred linearly on 10 kHz, also 50 ms in duration. (This can also be referred 

to as 0.0 × SF and 1.0 × SF, where SF is signal frequency). All notches that would be used 

to measure the bandwidth fall in this range, so if the difference in threshold between the 

two is very small, then the dynamic range is not enough to obtain any accurate results. 

The psychometric functions produced using both these maskers can be seen in Figure 

3.7 panel B. Again both functions are monotonic and of similar steepness to those in 

panel A. The no notch function may be slightly shallower but this could be due to the 

relatively low number of trials. Importantly there is a 40 dB difference between the two 

which should provide enough space for further psychometric functions to slot in 

between, allowing for accurate AF measurement. 

 

 

 

Figure 3.7 

Psychometric functions from a single ferret using the novel stimulus paradigm. A Simultaneous vs 

forward masked arrangements with logistic function fit to each (red and blue lines). Signal is 10 

consecutive 1/32 octave narrowband noise bursts centred on 10 kHz, 50 ms in duration (25 ms 

cosine squared on/off ramps). Masker is continuous 50 ms 1 kHz wide narrowband noise centred on 

10 kHz bursts separated by 50 ms. In the simultaneous case both stimulus bursts start together, in 

the forward case they alternate without gap. Confidence intervals obtained through bootstrapping 

method. B No notch vs wide notch (10 kHz wide centred on 10 kHz) with 500 Hz wide noise bands 

(pink and green lines). Masker duration same as in panel A. Signal has the same frequency 

properties as in panel A but is shorter (25 ms with 12.5 ms cosine squared on/off ramps). Both 

stimulus bursts have peak intensity at the same point in a cycle (25 ms) causing simultaneous 

masking. 
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One final test that was done was to see how masking changed for intermediate masker 

and signal arrangements, between fully simultaneous and fully forward. We know that 

simultaneous masking is stronger than forward, so if the masker level is kept fixed and 

the signal position slowly moved further away from the masker, then the detection 

threshold of the signal should decrease since less masking occurs. This transition should 

be gradual if we are truly seeing the effects of sound masking. Figure 3.8 shows the 

results of finding proportion correct for various masker and signal positions. In panel A 

the 50 ms with 25 ms cosine squared on/off ramps was used, with the 25 ms signal. The 

envelope of each burst can be seen superimposed onto the plot; masker in blue, signal in 

red. Each proportion correct point (black circle) corresponds to the position of the 

signal it sits in the centre of, each of which are relative to the masker burst. For example, 

the PCmax point at 25 ms corresponds to the simultaneous masking position where the 

signal and masker peak simultaneously. The point at 62.5 ms corresponds to the signal 

immediately following the masker. Masker level was fixed midway between the two 

psychometric functions in Figure 3.8 panel A so that the signal was fully masked in the 

simultaneous position, and not masked in the forward position. And indeed the 

proportion correct increases gradually as the signal moves further from the masker, 

plateauing at ~90 % correct. The increase is rather rapid though, so the same duration 

masker with steeper slopes was tried, and the results can be seen in panel B. Here the 

slope is much shallower between the 25 and 37.5 ms positions, resulting in proportion 

correct reaching a maximum at 62.5 ms instead of at 50 ms in panel A. This is due to 

more masker energy being present and the sharper drop. Both these plots show that the 

type of masking we are seeing is consistent with true sound energy masking and that the 

novel stimuli are appropriate for AF measurements. 

So the testing seems to suggest that there are no major hurdles to using this method and 

it should yield suitable bandwidth estimates. These bandwidths were measured at 

different SF and using slightly different methods, all of which is described in the 

following section. 
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Figure 3.8 

Proportion correct versus stimulus temporal arrangement. Blue shaded area represents the shape 

and position of the envelope of the masker in a single cycle. Red shaded areas represent the shape of 

the envelope of the signal, and its various positions relative to the masker. Signal has a duration of 

25 ms (inc. cosine-squared on/off ramps of 12.5 ms). Scale on right axis. Black points and lines show 

PCmax for each signal position, i.e. 87.5 ms point represents the PCmax for the trials where the signal 

starts 75 ms after the masker starts. Confidence intervals calculated using bootstrapping method. A 

represents results for the 50 ms masker, with 25 ms cosine-squared on/off ramps. B represents 

results for the 50 ms masker, with 5 ms cosine-squared on/off ramps.  
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3.3 Results 

After the novel method had been validated, the task of calculating AF size and shape 

began. The overall aim was to measure AF widths using fixed signal level, forward 

masking, but it would also be interesting to see how the different methods affect results. 

With that in mind, both forward and simultaneous masking, with fixed signal level and 

fixed masker level bandwidth estimates were made. The results can be seen in Table 3.2 

and Figure 3.9. 

 

 

 

Figure 3.9 

Bandwidth estimates of individual ferrets at different signal frequencies using different methods. 

Signal frequencies are 1, 3, 7 and 10 kHz. Square points show fixed signal level (10 dB above 

threshold), and circular points show fixed masker level (60 dB SPL) measures. Blue points are in the 

forward masked arrangement (no gap between signal and masker), and red points show the 

simultaneous arrangement. All error bars produced using bootstrapping method, n = 500. Red filled 

circles are bandwidth estimates made in the ferret using fixed masker, simultaneous masking by 

previous researchers. 
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Figure 3.10 

Psychometric functions for each bandwidth measure in Figure 3.9, with logistic function 

fits and threshold SNR (red dots). Inset: threshold SNR against notch width. 
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SF 

(kHz) 
Fixed 

Fwd/ 

Sim 
Ferret 

ERB 

(Hz) 

95 % CI bound 

Lower Upper 

1 Signal Fwd Manuel 230 217 434 

1 Signal Fwd Naomi 301 233 422 

1 Masker Fwd Leeroy 540 370 995 

3 Signal Fwd Lacey 1387 1049 2136 

7 Signal Fwd Lola 1378 1160 1806 

10 Signal Fwd Lola 1989 1676 2242 

10 Masker Sim Leeroy 1199 1044 1397 

10 Masker Fwd Leeroy 2045 1586 2626 

10 Masker Sim Manuel 1553 1158 2244 

10 Masker Fwd Manuel 1880 1350 2457 

10 Masker Fwd Lex 1433 1117 1842 

 

Table 3.2 

Bandwidth results for different ferrets, methods and signal frequency. 

 

The same analysis method was used for each of the ferrets and signal frequencies shown 

in the figure; PCmax calculated, logistic functions fitted in parallel to the resulting 

psychometric functions, SNR at threshold taken for each notch width, and a roex(p,r) 

function fitted using an optimisation procedure (see 3.2.5 Bandwidth estimates for more 

details). In some cases (empty circles), the masker level was kept fixed at 60 dB SPL, and 

in others (squares) the signal level was fixed at 10 dB above the absolute detection 

threshold of the signal at that frequency. Absolute threshold was calculated by building 

a psychometric function for the signal without a masker and taking the signal level at 

75 % correct. Figure 3.10 shows the psychometric functions and their logistic fits for 

each of the bandwidth measurements in Figure 3.9. Inset for each panel is the 

corresponding threshold against notch width plot, which is used to fit the AF function. In 

each case masker bursts were 150 ms in duration (inc. 5 ms cosine squared onset/offset 

ramps) with 10 consecutive 25 ms signal bursts (inc. 12.5 ms cosine squared 

onset/offset ramps), both repeating in 200 ms cycles. In some cases simultaneous 
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masking was used (red points in Figure 3.9), with the signal appearing 100 ms after the 

start of a masker burst (ending 20 ms before the masker starts to ramp off), and in 

others forward masking was used (blue points), with the signal appearing immediately 

after the masker. The signal had frequency components 1/32 of an octave around the 

frequency stated. Frequency parameters of the masker were similar to those used in 

Oxenham and Shera (2003); two narrow bands of noise 0.25 × SF wide, with 5 different 

notch widths, 0, 0.1, 0.2, 0.3 and 0.4 × SF spaced symmetrically (in linear frequency 

space) about SF. Error bars were made using the bootstrapping method described in 

3.2.6 Bootstrapping with n = 500. Bandwidth estimates made by other researchers (red 

filled circles) have been included for comparison. These were made at the Institute in 

the same behavioural arena, with ferrets from the same colony, using the same 

equipment, and methods, i.e. PCmax, roex fitting, etc. (Sollini and Alves-Pinto, 

unpublished). The stimuli were different however: masker was constantly played at a 

fixed level in a behavioural session, signal was presented in a single burst longer than 

25 ms (simultaneous masking). 

Overall, the results at each SF are fairly consistent across method and ferret, at least at 

10 kHz where the majority of bandwidths were measured. Certainty of bandwidth (i.e. 

error bar size) also appear to be fairly evenly spread, without a bias towards method, 

frequency, or ferret. The only comparisons between forward and simultaneous masking 

are at 10 kHz, with fixed masker. Both forward and simultaneous bandwidths were 

estimated in two males; Manuel and Leeroy. Surprisingly for both ferrets the 

simultaneous masked bandwidths are actually narrower than the forward ones (1199 

against 2045 Hz, and 1553 against 1880 Hz for simultaneous and forward masking 

respectively); when taking into account the confidence intervals of the estimates this 

difference is only significant for Leeroy. A comparison of fixed signal and fixed masker 

levels can be made at 1 kHz and 10 kHz. At 1 kHz the fixed signal level estimates of 

Manuel and Naomi (female) are remarkably similar (230 and 301 Hz respectively) as 

are the 95 % confidence intervals (217-434 and 233-422 Hz respectively). The fixed 

masker level, by comparison, gives a broader bandwidth (540 Hz) and larger confidence 

interval (370 - 995 Hz). This broader fixed masker level is, however, not seen in the 

10 kHz ERBs which all match up fairly closely, with the Lex (male) measure being 

slightly (and significantly) narrower. Finally, a comparison between the novel method 

and the traditional method (filled red circles) reveals not a great difference, with every 

new measure falling within the range of the old. At 1 kHz the forward fixed masker 

measure of Leeroy matches very closely the bandwidth and spread seen in the 
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traditional, simultaneous, fixed masker condition; whereas the fixed signal measures of 

Manuel and Naomi are on the narrower end of this range. At 3 kHz the new method 

gives a quite broad measure which is still within the range of the old method, and the 

same is true at 7 kHz. At 10 kHz the new method tends to give slightly broader 

bandwidth estimates, although they are all still within the range of results for the 

traditional method. 

Measuring bandwidth at several signal frequencies allows us to see how bandwidth 

changes with frequency, an important feature often discussed in the previous chapter. 

Figure 3.11 shows the forward masked, fixed signal psychometric bandwidth measures 

plotted beside physiological bandwidth measures in the ferret. One (grey filled circles) 

is from SU in the ferret AN made using the FRA (with roex function fit), a method 

described in more detail in 2.2.7 Analysis: FRA analysis (Sumner and Palmer, 2012). The 

other is from SFOAEs of the ferret, some of which are the same animals used in this 

thesis. These measurements were carried out at the Institute by Andy Oxenham and 

Chris's Sumner, Bergevin, and Shera, using the method described in Shera et al. (2010b) 

and are yet to be published. The brown line shows the mean and the yellow area the 

95 % confidence region. Both sets of peripheral data match up very closely with one 

another, and correspond perfectly with the two behavioural measures at 1 kHz in both 

bandwidth and spread. The higher psychophysical frequencies do not match up quite as 

closely, with the largest difference being seen at 3 kHz, with the psychophysical 

bandwidth estimate being roughly twice as broad. (This point, however, had the 

messiest psychometric functions and non-monotonic threshold plot, which is reflected 

in the large CI). At 7 and 10 kHz the bandwidth estimates are only slightly broader than 

the mean AN and OAE data. However, there is a general trend for bandwidth to increase 

with SF, which is a feature of frequency selectivity seen throughout auditory science. 

As well as different stimulus arrangements, different methods were also tried in the 

analysis stage, to make results comparable to a wider range of studies and to see the 

effect decisions in analysis have on the results. The first was to fit gammatone functions 

to the psychophysical data (another popular AF function described in more detail in 

1.4 Auditory filter shape) instead of the roex. The main differences between the two are 

that the GTF has one fewer parameter and a fixed slight asymmetry. The GTF has a fixed 

order value which controls the steepness of its slopes; in human studies it is usually set 

at the 4th order (Patterson et al., 1992). Since human bandwidth estimates tend to be 

narrower than those of animals (Glasberg and Moore, 1990; Oxenham and Shera, 2003), 

and to my knowledge there is no established order of GTF used in ferrets, I fitted several 
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orders of GTF. The results can be seen in Figure 3.12, beside the roex fitted results from 

Figure 3.9 for comparison. The first clear feature is the similarity between the two filter 

types; for most of the measurements, regardless of frequency, method or ferret, all GTF 

order ERBs fall within the 95 % CI of the roex. (Perhaps this is why the GTF has not 

superseded the roex, and both are still used to represent AF today). The other notable 

feature is that for 4 of the data sets the GTF order has a significant impact, with lower 

orders giving narrower bandwidth estimates; for Lola's 10 kHz data the difference 

between the 2nd and 8th order GTF is almost a factor of 8. Also the confidence regions 

for the higher orders tend to be the smallest and match up most closely with that of the 

roex. (The biggest violation of this is Lacey's 3 kHz measure, which, as previously 

mentioned, is particularly messy). This highlights the importance of choosing the correct 

order when fitting GTF. 

 

 

Figure 3.11 

Comparison of psychophysics and physiology in the ferret. Blue squares are forward masked, fixed 

signal, psychophysical data from Figure 3.9 showing bandwidth versus signal frequency. Grey dots 

show bandwidth estimates made from SU in the ferret AN plotted against CF  taken from Sumner 

and Palmer (2012). Brown line and yellow shaded area show mean OAE measured bandwidth of the 

ferret with 95 % confidence region (unpublished). 
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Figure 3.12 

Gammatone versus roex filter. Coloured points are 

ERBs using roex filter; they are the same as in 

Figure 3.9. Black × are ERBs made using the GTF 

(see 1.4 Auditory filter shape  for further details) on 

the same data set; orders 2-8 of the filter are shown. 

Error bars calculated using n = 500 bootstrapping. 
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Another difference in analysis that was tried was to do away with the logistic fit of the 

psychometric functions and simply use the raw data to determine threshold. In this 

approach threshold SNR is taken as the point at which the straight line connecting two 

consecutive raw psychometric data points intercepts the 75 % correct line. This method 

does not take into account any other points on the psychometric function and is 

susceptible to small fluctuations in data points near threshold. The results of this slightly 

different method can be seen in Figure 3.13. Each plotted pair of points shows the 

logistic fitted results in the left (same as Figure 3.9) and raw psychometric function 

results on the right. Across each of the measures there is no systematic difference 

between the two methods; in some the raw bandwidth is marginally higher and in 

others marginally lower. One clear trend, however, is that every one of the 'raw' 

measures has a larger confidence interval; in some cases this difference is quite extreme 

(3 kHz Lacey, 10 kHz Fwd Leeroy, 10 kHz Lex). Also the bootstrapping method used to 

obtain the error bars had a higher failure rate, meaning many more of the simulated 

results could not give a bandwidth estimate. This is clearest for the 3 kHz Lacey point 

where the failure rate goes from 8.7 % with the fit to 82.3 % without. These findings are 

unsurprising since fitting logistic functions is meant to reduce variability and increase 

stability of the results, and not introduce bias. 

One further method tweak was to not only fit a single AF, but to fit a filter bank of AF, 

allowing for potential off-frequency listening. According to the power spectrum model 

(see section in 1.3.2 Power spectrum model) the filter with the highest SNR will be used 

to detect a signal. Since there are continuously overlapping filters along the full 

frequency range of hearing, AFs with centres slightly away from the signal frequency 

might give a better fit. Fitting an array of overlapping filters instead of just one AF allows 

for this selectivity. This was done by following the same procedure described in 

3.2.5 Bandwidth estimates but where the AF is fitted, a series of overlapping AFs are 

fitted instead, with the one with the highest SNR for a given notch width determining the 

AF used. The centre of each successive AF in the bank was set at 0.01 × SF steps above 

and below SF out as far as ± 0.2 × SF. In one instance the parameter for bandwidth (p for 

roex, b for GTF) was kept fixed for each successive AF, and in another instance it 

increased with filter centre frequency at a rate consistent with the single AF fits seen so 

far, i.e. a straight line was fitted to the plot of ERB vs SF of points in Figure 3.9, the slope 

taken, and this used to determine the relationship between bandwidth in successive AF. 

However, both methods yielded almost identical results, which showed very little 

difference to the single AF fits used so far in this study. This suggests either the ferrets 
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do not use off frequency selectivity, or the method is too sensitive for the data, and the 

simpler version does the same job. 

 

 

 

 

  

Figure 3.13 

Raw psychometric functions versus logistic function fits. In each pair of 

data points, the left describes ERB calculated by fitting logistic 

functions (in parallel) to the raw psychometric data (same as in Figure 

3.9), and the right point describes ERB calculated by taking threshold 

from the raw psychometric data, i.e. take the 0.75 PCmax crossing of 

the raw psychometric functions in Figure 3.10, not the logistic fits. 

Other parameters are the same as in Figure 3.9 and described in the 

legend. Bootstrapping with n = 500 used to obtain error bars. Values 

below each point describe the proportion of bootstrapped simulations 

that did not yield an ERB for the fit and raw psychometric data. 
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3.4 Discussion 

One of the main aims of this chapter was to test the viability of a novel method for 

measuring bandwidth behaviourally in the ferret. If proven, the task was to optimise it 

and measure bandwidth, exploring the effect of slightly different experimental 

paradigms. The novel method should allow such comparisons in the same animals to 

remove subject variability. I believe that all these aims were met and the method a 

success. 

Every effort was taken to make the room as echo free as possible to allow enough 

'silence' between masker bursts to enable true forward masking. Recordings of the 

stimuli in the arena showed that the maximum level of the echoes is 20 dB below 

stimulus level, and that these decay rapidly. This is important since any echoes lingering 

after the stimulus has stopped could prevent true forward masking. Since the levels of 

stimuli used around threshold (the area of interest) are low, the effect of these echoes is 

minimised and should not adversely affect the experiment. The proof of concept was 

established in a human test, with clear psychometric functions for the forward and 

simultaneous masking cases separated by 40 dB. This was replicated in the ferret, with 

the animals seemingly showing no problems with the constantly bursting nature of the 

stimuli, such as confusion or loss of motivation. (In addition, the similarity in the 

difference between simultaneous and forward masked threshold estimates in humans 

and ferrets adds weight to the argument that echoes do not have an adverse effect, since 

the human study was conducted over headphones without these echoes). Also the 

dynamic range of an AF measurement was tested, by comparing a no notch with a wide 

notch masker condition (in the simultaneous arrangement), and the difference between 

the two psychometric functions (40 dB) was adequate for accurate measurement. 

Further investigation showed that the masking properties of the different temporal 

arrangements were consistent with true forward and simultaneous masking; the 

simultaneous masking position gave a much higher signal detection threshold, meaning 

masking is stronger, consistent with observations of simultaneous and forward masking 

elsewhere (Moore, 2003). Also proportion correct changed smoothly from 50 % to 

100 % as the temporal arrangement of stimuli moved from fully simultaneous to fully 

forward positions, consistent with true sound masking of this nature. Finally the 

envelope properties of the stimuli were optimised to produce maximum forward 

masking (Kidd Jr and Feth, 1982; Zwicker, 1984) while still maintaining a viable 

behavioural task. 
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The new method was then used to calculate bandwidth estimates for different signal 

frequencies, different temporal arrangements, and with a different stimulus being kept 

fixed in level. The first clear feature is a general increase in bandwidth with signal 

frequency, with ERBs increasing from an average 357 Hz at 1 kHz, to an average 

1683 Hz at 10 kHz. This is a trend seen in all psychophysical and almost all physiological 

studies of frequency selectivity in humans (Fletcher, 1940; Zwicker, 1974; Houtgast, 

1977; Glasberg and Moore, 2000; Oxenham and Shera, 2003) and animals alike (Pickles, 

1975; Ehret and Merzenich, 1985; Ehret and Merzenich, 1988; Syka et al., 2000; Evans, 

2001).  

A surprising finding is the comparison between forward and simultaneously masked 

measures. ERBs for each temporal arrangement were measured in two ferrets (Manuel 

and Leeroy, both male) at 10 kHz and in both cases the simultaneous estimate was 

narrower. This difference was, however, only significant in one of them (Leeroy). This is 

in direct contrast to the findings of almost all human psychophysical studies (Houtgast, 

1973, 1977; Wightman et al., 1977; Moore, 1978; Vogten, 1978; Moore and Glasberg, 

1981; O╆Loughlin and Moore┸ なひぱな; Glasberg et al., 1984a; Moore et al., 1984; Weber and 

Patterson, 1984; Moore et al., 1987; Oxenham and Shera, 2003) and some animal studies 

(Kuhn and Saunders, 1980; Serafin et al., 1982). One animal study, however, found no 

difference between the two measures (McGee et al., 1976), although this was with a tone 

masker, not preventing off frequency listening. This strange finding may be a result of 

not taking into account the growth of forward masking (Moore and Glasberg, 1981). A 

given increase in masker level does not yield the same increase in masking when using 

forward masking, e.g. a 1 dB increase in masker level may only raise the detection 

threshold of a signal by 0.3 dB (Moore, 2003). This is known as the growth of forward 

masking and is described in more detail in 1.6 Forward versus simultaneous masking. 

For simultaneous masking this relationship is roughly one-to-one (Hawkins Jr and 

Stevens, 1950) and such a problem does not arise. However, if the masker level is kept 

fixed (as in this case) then a 1 dB increase in the amount of masking would not equate to 

a 1 dB shift in threshold SNR. As a result signal detection thresholds for successive notch 

widths would appear to be closer together than they truly are, producing broader filter 

estimates. To make the simultaneous and forward masked estimates comparable it 

would be necessary to take into account the effect of this growth of forward masking 

first. 

One such growth of forward masking function was calculated for a single ferret (Lex) at 

10 kHz. The same signal and no notch masker used for the 10 kHz AF measurement 
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were used; 10 consecutive 25 ms (12.5 ms on/offset ramps) bursts of 1/32 octave 

narrowband noise centred on 10 kHz as the signal, each immediately following a 150 ms 

(5 ms on/offset ramps), 5 kHz wide (centred on 10 kHz) noise burst as masker. Masker 

level was fixed, and the signal level varied to produce a psychometric function; this 

process was repeated for several different masker levels. Logistic functions were fit to 

each psychometric function, and the signal level at 75 % correct taken. This threshold 

signal level is plotted against masker level in Figure 3.14 panel A. The growth of forward 

masking is almost perfectly linear, with the line of best fit having a slope of 0.4337. This 

means that a 1 dB increase in masker level only produces an extra 0.4337 dB of masking. 

In order to make the forward and simultaneous AF fits comparable to one another, it is 

first necessary to convert all signal levels to their equivalent masker level (Glasberg and 

Moore, 1982; Jesteadt et al., 1982; Moore and Glasberg, 1983a; Plack and Oxenham, 

1998). When this is done, the difference between the detection threshold of successive 

notch widths increases and the threshold plot becomes steeper. The resulting narrower 

bandwidth estimates can be seen in Figure 3.14 panel B and Table 3.3, alongside the 

other bandwidth measures at the same frequencies. Since the growth of forward 

masking was measured for Lex at 10 kHz, only this point (black *) has the completely 

correct conversion factor. However, there is evidence that its slope is frequency 

invariant (Jesteadt et al., 1982), so the corrected bandwidth measures for other ferrets 

and frequencies (grey *) are reasonable approximations. Each of these corrected 

bandwidths are smaller than the uncorrected ones, as expected. Moreover this decrease 

is noticeable; corrected values are on average 0.51 times the size. In both 10 kHz, 

forward vs simultaneous masking comparisons this makes the forward estimate 

narrower than the simultaneous one, agreeing with all the frequency selectivity studies 

mentioned above. 
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Figure 3.14 

A Growth of forward masking for Lex using a 10 kHz signal and no notch masker of various fixed 

levels. Each point represents the signal level at threshold against the level of masker used. Inset: 

equation of line of best fit; SL = Signal Level (dB SPL), ML = Masker level (dB SPL). B Bandwidth 

measures, taken from Figure 3.9, with growth of forward masking correction superimposed (*). The 

black * uses the growth of forward masking curve for that ferret, at that frequency; the grey ones do 

not. 

 

 

 

SF 

(kHz) 
Ferret 

ERB (Hz) 

Fwd  

Fwd ‒ growth of 

forward masking 

corrected 

Sim  

1 Leeroy 540 266 - 

10 Leeroy 2045 995 1199 

10 Manuel 1880 1082 1553 

10 Lex 1433 699 - 

 

Table 3.3 

Bandwidth results for fixed masker level experiments, including correction for growth of forward 

masking. 
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A comparison between the signal fixed and masker fixed method, therefore becomes 

significantly dependent on whether the growth of forward masking correction is used. 

At 1 kHz the uncorrected, forward masked, fixed masker bandwidth estimate of Leeroy 

is significantly broader than both fixed signal counterparts of Manuel and Naomi. (owever┸ if the correction based on Lex╆s など kHz growth of forward masking is true, 

then there is no difference between these 1 kHz measurements. The lack of difference 

matches up closely with the findings of Moore and Glasberg (1981) and Glasberg and 

Moore (1982), where AF bandwidth was measured at 1 kHz using notched noise, 

forward masking, compensating for the growth of forward masking. The opposite is true 

at 10 kHz: with correction, the forward masked fixed masker bandwidths of Leeroy, 

Manuel and Lex are all smaller than the fixed signal measurement of Lola; without the 

correction they are indistinguishable. This highlights the importance of taking the 

growth of forward masking into account. If the 10 kHz, bandwidth estimate of Lola were 

indicative of all fixed signal level measures at this frequency, then this method gives 

broader AF estimates than the fixed masker method. This would be the opposite of the 

findings of Lopez-Poveda and Eustaquio-Martin (2013), which used modelling to 

investigate the potential difference between the two. They used a model of the auditory 

periphery, based on the frequency response of the chinchilla BM from Meddis et al. 

(2001) followed by a temporal window integrator (see 1.8.8 Theories behind 

psychophysical forward masking) with parameters based on the human study Oxenham 

(2001). For a signal of ~9.6 kHz (the frequency to which the BM model was tuned), 

estimates of a known filter size were accurate when using the fixed masker technique. 

However, measurements made using the fixed signal approach tended to underestimate 

the true bandwidth by ~ 20 %, deteriorating further at high levels (> 50 dB SPL). How 

then are the 10 kHz bandwidth estimates in this thesis at least twice as large for the 

fixed signal as opposed to the fixed masker level? One reason may be that the results of 

Lopez-Poveda come from a model optimized to a different mammalian species. Also 

with the ferrets, the signal was fixed ~10 dB above threshold, which is ~13 dB SPL 

(Kelly et al., 1986), lower levels than were explored in Lopez-Poveda and Eustaquio-

Martin (2013). Perhaps bandwidth measurements at this low level (in the linear portion 

of the BM I/O function (see 1.2 The basilar membrane and its non-linearities)) do not 

underestimate the true value as much. 

Using forward masking and fixed signal level is the current practice in human 

psychophysics, whereas in animal psychophysics the traditional method is to use 

continuous simultaneous masking with fixed masker level. Previous estimates of 
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bandwidth measured behaviourally in the ferret by other researchers at the Institute, 

using the traditional method, are compared to the results of the novel method used in 

this thesis in Figure 3.9 and Figure 3.14 (open shapes versus filled circles). 

Unsurprisingly these results are no different to the simultaneous fixed masker level 

results of Leeroy and Manuel at 10 kHz (open red circles, vs solid red circles), since the 

methods are fundamentally identical. More surprisingly though, all of the ERB estimates 

from the novel method, regardless of which stimulus level is fixed, or temporal 

arrangement of the signal and masker, fall within the range of previous estimates. At 

1 kHz the forward values seem to be on the narrower end of the range covered by 

previous estimates, whereas the opposite is true at frequencies 3, 7 and 10 kHz. At 

10 kHz, in fact, the newer forward masked, fixed signal level estimate is broader than all 

bar 1 of the previous measurements. Also the relatively large confidence intervals 

suggest that perhaps the variability in animal behavioural studies, which is much higher 

than in humans, is so large as to swamp out any benefit of the more up-to-date 

approach. Although it is very important to compare bandwidth estimates made using 

the same method, due to systemic non-linearities causing inherent differences in 

method, perhaps it is not as vital in animal studies. 

A comparison was also made between the psychophysical bandwidths of the ferret 

calculated in this study, and physiological bandwidths measured in the ferret periphery 

through AN and OAE recordings. The two physiological measures match up 

exceptionally well with one another, and perfectly with the lowest frequency 

psychophysical results, 1 kHz. The measurements at this frequency are very similar and 

their mean and confidence regions sit in the centre of and exactly span the range 

covered by both physiological measures. This harmony is remarkable since the 

machinery of the entire auditory system sits between the two measurements; one 

representing the initial point of neural auditory activity, and the other overall 

perception. Higher frequencies do not match up quite as closely, with the 3 kHz ERB 

being ~3 times broader. (As mentioned previously, however, this measure was 

particularly inaccurate so it should not be given too much credence). At 7 and 10 kHz 

this difference is smaller, appearing within 50 % of the mean physiological results. One 

possible interpretation of this, driven mainly by the agreement at 1 kHz, is that 

frequency selectivity is established at the periphery. This is a contested theory that has 

studies showing evidence for (Bilsen et al., 1975; Salvi et al., 1982; Evans, 2001) and 

against (Pickles, 1975; Pickles, 1979; Ehret and Merzenich, 1985). In each of these, 

physiological recordings have been compared to psychophysical ones and have been 
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shown to be in agreement or contrast. All the studies just mentioned rejecting this 

theory, however, used band-widening, which is known to be highly inaccurate. This 

could easily therefore lead to different bandwidth measurements from physiological and 

psychophysical data, which would lead to the conclusion that the periphery and 

perception have different tuning properties. The body of evidence for the peripheral 

establishment of frequency selectivity is therefore growing. 

The comparison between roex and GTFs also showed a reassuring consistency, 

suggesting that the choice of filter does not have a major effect on results. In some cases 

this is only true for GTF orders of 4 (the standard order used in human studies) or 

higher. Also the use of logistic functions fitted in parallel (a restriction I have not seen 

used before) does not bias the results, but simply reduces variability and makes fits 

more stable. Both these findings suggest that the precise details of the analysis carried 

out at these stages does not carry an inherent bias. This would suggest that results from 

other studies using slightly different analysis methods would still be comparable to 

those in this study.  
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CHAPTER 4: Summary and future work 

The two main aims of this study were to 1) measure frequency selectivity in the IC and 

A1 of the guinea pig, using an up-to-date human psychophysical method, and 2) develop 

a behavioural task that would allow the same method to be used for behavioural data in 

the ferret. The idea is to unify psychophysical and physiological frequency research, by 

developing one method for both. Due to the non-linear nature of the auditory system 

this is an important step in comparing results from both sub-fields, with the aim of 

finding the neural basis of frequency selectivity. So what has this study achieved? 

A current human psychophysical method for measuring frequency selectivity is notched 

noise forward masking with fixed signal level, as used in Oxenham and Shera (2003). 

This was applied to guinea pig IC cells and was found to match up very closely with 

results from previous studies in more peripheral guinea pig auditory brain regions 

(Evans, 2001; Sayles and Winter, 2010), as well as guinea pig psychophysics (Evans et 

al., 1992). This suggests that cochlear tuning is maintained up to the level of the IC, if not 

further. Remarkably the methods used to measure bandwidth in studies in the more 

peripheral brain regions are markedly different to the NN method; they use excitatory 

pure tone responses, or FRA. In order to test methodological differences, I used the FRA 

method to estimate bandwidth in the same units in which NN estimates were made; FRA 

bandwidths were roughly 3 times broader than NN ones. This clear difference between 

the two methods in the same neurons was also seen in A1, suggesting that the two 

methods are not measuring the same feature of frequency selectivity. Perhaps cochlear 

tuning is maintained throughout the auditory system through inhibitory/masking 

activity, and FRA show only excitatory input. This sums activity over a wider region of 

the cochlea as one moves to higher brain regions, giving the impression of broader AFs. 

Bandwidth estimates using NN in A1 were found to be much narrower for high 

frequencies than in the IC, and also narrower than psychophysical estimates in the 
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guinea pig. This may be due to the highly non-linear nature of A1 neurons violating one 

of the principal assumptions of the power spectrum model, despite a check of 

neurometric functions finding no evidence for this. Other studies have found finer 

tuning in A1 than measured psychophysically, so the finding is not unprecedented 

(Bitterman et al., 2008; Bartlett et al., 2011). 

Also an SDT approach (used extensively in psychophysics) was used with the NN 

bandwidth measurements, instead of the traditional method of using only mean firing 

rates in response to the signal. SDT allows other features of neural activity, such as 

variance and the effect of masking activity in the absence of a signal, to factor into the 

detection of the signal. An investigation of the relationship between detectability 

measured using SDT and mean firing rates showed that there was no difference, 

suggesting that none of the extra available neural information is used. This was true for 

both IC and A1 neurons, showing that using mean firing rates is comparable to 

psychophysical methods of signal detection, at least in both these brain regions. 

The relationship between CF and ERB for the guinea pig data from this thesis are plotted 

together with AN results from the ferret, in Figure 4.1 panel A. The FRA bandwidths of 

the IC and A1 are so similar, that the mean of the two has been plotted. For the same 

reason the mean of the forward and simultaneously masked NN results for IC and A1 are 

plotted. The difference between the FRA and NN methods are very clear in this plot. Also 

note the similarity between bandwidths of the ferret AN and the NN bandwidths in IC 

(which in turn match up closely with the guinea pig AN bandwidths of Evans (2001)). 

Despite the two having very different evolutionary pressures, i.e. predator versus prey, 

cochlear frequency selectivity seems to be similar for both species. Frequency selectivity 

comparisons between these species are therefore not unwarranted. 

A method was also developed to allow both forward and simultaneous notched noise 

masked bandwidths to be  measured behaviourally in the ferret. It relies on the signal 

and masker being played in bursts, with the temporal relationship between the two 

determining the type of masking. The method worked well. Ferrets took to the task and 

easily ignored the masker without losing motivation. Measurements showed that it was 

possible to achieve forward masking as well as simultaneous, with little noticeable 

audible difference between the two, meaning a ferret does not need to be retrained to 

switch between them. Bandwidth estimates were made for a number of different signal 

frequencies, in both forward and simultaneous arrangements, with some having the 

masker level fixed and others the level of the signal fixed. Results for these different 
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methods were similar, in contrast to human studies in which simultaneously masked 

bandwidths are broader than forward ones (Moore et al., 1984), and in which it has 

been suggested that varying the masker level leads to overly narrow bandwidth 

estimates (Lopez-Poveda and Eustaquio-Martin, 2013). Perhaps the variability in animal 

behavioural data is larger in comparison to similar human data, so that any underlying 

differences caused by method are hidden. 

Also psychophysically measured bandwidths were very similar, across frequency, to 

physiological bandwidths measured at the periphery in the ferret; in the AN (Sumner 

and Palmer, 2012) and cochlea, the latter using SFOAEs (unpublished). This suggests 

that frequency selectivity is established at the periphery and maintained throughout the 

auditory system. 

 

 

 

Figure 4.1 

A Relationship between CF and ERB for various physiological studies; guinea pig IC and A1 NN from 

this thesis, guinea pig IC and A1 average using FRA from this thesis, ferret AN using FRA from 

Sumner and Palmer (2012). B Relationship between signal frequency and ERB for various notched 

noise psychophysical studies; ferret forward masked fixed signal level from this thesis (see Figure 

3.11), ferret simultaneously masked fixed masker level from other researchers at the Institute Sollini 

and Alves-Pinto (unpublished), guinea pig simultaneously masked fixed masker level from Evans et 

al. (1992), human psychophysics from Oxenham and Shera (2003) (both forward and simultaneous 

NN masking with fixed signal level). 
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Figure 4.1 panel B shows how the ferret behavioural results (using forward notched 

noise masking, with fixed signal level; blue squares) compare to psychophysical results 

in other species. The dashed red line shows the mean relationship between frequency 

and bandwidth for notched noise experiments in the ferret, using the traditional 

continuous masker with fixed level (these were collected by other researchers at the 

Institute; Sollini and Alves-Pinto, unpublished). At 1 kHz the new bandwidths are 

narrower, but for the other frequencies they are slightly broader. The spread of 

'previous' bandwidths, however, completely encompasses the newer estimates, showing 

there is actually little difference. The grey line shows the results from Evans et al. (1992) 

for the guinea pig. This too sits in the region of the ferret psychophysics, matching up 

precisely at 1 kHz. So not only do guinea pig bandwidths match up with those of ferrets 

in the AN, but also for the entire auditory system through psychophysics. Both species, 

however, have broader tuning than humans, as measured in Oxenham and Shera (2003). 

The method used to measure both forward masked estimates (blue points for human 

and ferret) are identical, yet the ferret bandwidths are 3 times broader than the human 

ones. The clear difference is unsurprising since physiological studies suggest humans 

have narrower tuning at the periphery (Shera et al., 2002; Shera et al., 2010b) and in A1 

(Bitterman et al., 2008). This may be a result of the development of language forcing 

very fine frequency selectivity, an evolutionary pressure unparalleled anywhere else in 

the animal kingdom. Inferring properties of human frequency selectivity from results of 

the guinea pig and ferret must therefore be done with great care. 

The finding that animals have broader AFs than humans has interesting consequences 

beyond the study of frequency selectivity, for example in auditory scene analysis 

(Bregman, 1990; Darwin et al., 1995). This is the ability of the auditory system to 

separate elements of sound into groups or auditory objects. It relies heavily on inter-

aural differences in the detection of a sound, to identify its location in space, as well as 

its frequency characteristics. Poorer frequency selectivity would result in a poorer 

ability to segregate auditory objects. 

Another interesting consequence is to do with the way in which sound is encoded. ANFs, 

and neurons higher up the auditory pathway (Langner and Schreiner, 1988), have been shown to fire preferentially to a certain phase of a sound┸ or ╉phase lock╊ (Johnson, 

1980; Palmer and Russell, 1986). This is a result of the way in which hair cells release 

neurotransmitter to elicit action potentials. The frequency of a sound can therefore not only be inferred from the ╉place code╊ along the BM┸ but also from the precise inter-spike time intervals┸ or a ╉temporal code╊┻ Young and Sachs (1979) recorded from ANF 
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of the cat in response to synthesised vowel sounds and found that combining firing rate, 

place and temporal firing information provided a much more stable representation of 

the vowel sounds than simply using the firing rate of different neurons along the BM. 

This was especially true for sounds with higher level and the representation of the 

vowel provided by firing rate alone degenerated even at levels within the conversational 

range. Temporal coding therefore plays a key role.  

 

Figure 4.2 

Representations of a harmonic complex tone with an f0 of 440 Hz (taken from Oxenham (2012)). A 

Time waveform. B Power spectrum of the same waveform. C AF bank representing cochlear filtering. 

D Excitation pattern, or the time-averaged output of the AFs. E Sample time waveforms at the 

output of the filter bank at f0 and the 4th, 8th and 12th harmonics. 
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Another auditory phenomenon in which temporal coding is important, and one closely 

related to frequency selectivity, is the perception of pitch. The ANSI (1994) defined pitch as ╉that auditory attribute of sound according to which sounds can be ordered on a scale 

from low-to-high╊┸ and is the perceptual correlate of the periodicity of sounds┹ the way 
in which their waveform repeats throughout time. In the same way as frequency, the 

faster the repetition in the waveform the ╉higher╊ the perception of pitch┻ A pure tone 
will elicit a strong perception of pitch and in such a case, frequency and pitch are 

directly related. One might therefore expect that poorer frequency selectivity leads to 

poorer pitch perception. However, complex sounds can also have pitch and the 

relationship between frequency and pitch becomes much more complicated. A key factor governing the pitch of a sound is its harmonics┸ and whether they are ╉resolved╊ or ╉unresolved╊┻ Most naturally occurring periodic sounds have a fundamental 

frequency component (which is equivalent to a pure tone of frequency f0) with several 

harmonics (flanking pure tones of lower amplitude at integer multiples of f0). Figure 4.2 

panel A shows the waveform of such a sound, with panel B showing its spectrum. If we 

treat the BM as a sequence of overlapping AFs (Figure 4.2 panel C) we can filter the 

sound accordingly. Figure 4.2 panel E shows the resulting output of 4 of the AFs (at f0, 

the 4th, 8th and 12th harmonicsょ┸ and panel D shows the ╉excitation pattern╊ or the time 
averaged output of the AFs. For the first two AFs in panel E, only one of the harmonics 

passes through the filter and the resulting output is a pure tone of fixed amplitude at the 

centre frequency of the filter; this harmonic is said to be resolved. For the last two AFs 

multiple harmonics pass through the same filter and the output has a modulated 

envelope; these harmonics are said to be unresolved. The frequency of these 

modulations is the same as f0, and the more harmonics pass through the AF, the more 

defined this modulation is. 

ANFs responding to the output of an AF with unresolved harmonics could phase lock to 

the modulation rate of the signal, which would be at frequency f0. This phase locking 

would be stronger for more pronounced modulations, so the more unresolved the 

harmonics, the stronger the phase locking. This leads to two possible encoding 

strategies of pitch; 1) in which spectral cues are used, by observing the peaks of the 

excitation pattern which will give the location of the resolved harmonics, and 2) in 

which temporal cues are used by taking the phase locked response of all the filters with 

unresolved harmonics. Solving the problem of which coding strategy is used has been 

the source of much research (Loeb et al., 1983; Shackleton and Carlyon, 1994; Shamma 
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and Klein, 2000; Qin and Oxenham, 2005; Schouten et al., 2005; Schroeder, 2005; Sayles 

and Winter, 2008; Cedolin and Delgutte, 2010; Carlyon et al., 2012). 

Studies looking at the ability of SU in ferret auditory cortical regions show that 

regardless of decoding strategy, the psychophysical ability of the animal can be 

completely explained by the combined activity of small ensembles of SU (Walker, 2008; 

Bizley, 2010). Importantly, temporal information in spike patterns were found to be 

important for accurate pitch discrimination (Walker, 2008). A recent study by Walker et 

al. (2014) showed, through a psychophysical pitch discrimination task, that ferrets 

preferentially use unresolved harmonics in their pitch detection, whereas humans tend 

to use resolved harmonics. This has also been found in the other species, such as the 

gerbil (Linge and Klumpe, 2009) and marmoset (Bendor, Osmanski & Wang, 2012). 

All this fits together nicely with the findings in this thesis that guinea pigs and ferrets 

have broader AFs than humans, neurally and behaviourally. Broader filters means more 

of the harmonics will pass through the same filters making more of them unresolved. 

Temporal coding of pitch in ferret auditory cortex would therefore be important since 

most of the information about pitch will be carried by AN phase locking. Broader filters, 

therefore, do not result in poorer pitch perception, but a shift in coding strategy. 

So what future work follows on from this thesis? One of the main findings of the guinea 

pig physiology experiments is a clear difference between the FRA and NN methods for 

measuring bandwidth, in both IC and A1. FRA measured bandwidths in AN and VCN, 

however, match up with IC NN measurements. It would be interesting to see if the 

disparity seen in IC and A1 is present in either of these early auditory brain areas. This 

would answer the question of whether the two methods diverge as one moves up the 

auditory system, or whether they measure different features of frequency selectivity 

throughout. One of the factors that would severely limit performing an NN experiment 

in the AN, is time. The AN is an unstable place to record from, and holding a unit for tens 

of minutes is very difficult. Even in IC collecting a forward and simultaneous NN 

estimate took almost 2 hours, so using the approach used in this thesis is impractical. If 

instead of measuring full neurometric functions, finding threshold and using this to fit 

an AF function, the parameters of the AF were fit directly, experiment duration could be 

cut dramatically. An adaptive procedure, such as that described in Shen and Richards 

(2013), could be used to pick stimuli in real time that would be maximally informative 

for fitting AF parameters. Using this method Shen showed that a stable and accurate 

roex fit could be obtained in a human 2I2AFC notched noise task in under 150 trials. 
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This is a fraction of the almost 4000 trials required for a single NN estimate in the 

experiments in this thesis. Such a reduction in experiment duration could make AN NN 

measurements of bandwidth possible. 

Another benefit of such an adaptive method would be that much more comprehensive 

FRAs and RLFs, and even tone-on-tone masking plots could be made in the same unit, in 

the time that is saved (at least in brain areas where recording is more stable). More 

detailed FRA would lead to more precise measurements of bandwidth using this 

method. Equally more extensive RLFs could allow the unit to be classified as monotonic 

or non-monotonic, allowing a further exploration of its linearity. Collecting tone masking 

data in every unit, using both forward and simultaneous masking, would allow another 

bandwidth measuring method currently used in physiology to be assessed. It would also 

allow a more detailed look at the mechanisms of masking in these units, e.g. inhibitory 

side bands implying inhibitory inputs. This would make a broader study of the effect of 

method on bandwidth, as well as a more detailed investigation into how non-linearities 

affect bandwidth measurements in different brain areas. This would determine whether 

the sharp tuning seen in A1 is true or whether it is an artefact of non-linearity. 

A similar adaptive or tracking algorithm might be applied in the ferret behavioural task 

to reduce the multiple month duration, 1 measurement currently takes. This may, 

however, be unrealistic since it is already very difficult to make the task easy enough to 

maintain stimulus control over the ferrets; such an algorithm would target threshold, 

when the signal is barely audible, and therefore the task would be very difficult. It seems 

that future work in the ferret behaviour must follow the familiar mantra of 'collect more 

data'. Currently there are very few points at each frequency using the same method, so it 

is hard to know what affect variability, in time and subject, has on the results. If several 

measurements are made at each frequency, using both forward and simultaneous 

masking, and keeping the signal or masker levels fixed, then more concrete assertions 

can be made about the effect these methodological differences have on bandwidth 

measurements. 

However, the main future work that can be conducted from the research in this thesis 

(and the main driving force behind it), is to measure frequency selectivity 

simultaneously from physiological and psychophysical data, in the same animal. The 

next step is to implant chronic electrodes into the cortex (and maybe other brain regions 

in the future) of the ferret, and record from neurons while the animal is performing the 

behavioural task. This allows bandwidth measurements from both data types to be 



  CHAPTER 4: Summary and future work 

167 
 

made using an up-to-date psychophysical method, with comparisons free from the 

caveat of species differences (or even subject differences), methodological differences, 

or anaesthesia. Additionally the relationship between neural activity in a trial and its 

outcome, i.e. correct/incorrect, could be explored, to see whether neural activity driving 

signal detection can be identified. Work like this would be invaluable in searching for 

the neural correlates of frequency selectivity, and get us one step closer to 

understanding the almost inconceivably extraordinary capabilities of the brain. 
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