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Abstract

The concept of bearingless motors, which combine both motoring and rotor bearing

capabilities, is appealing especially in high speed and high power machine applications.

Although extensive research has been carried out on permanent magnet and reluctance

types of bearingless motors, studies on the induction motor type are less successful.

This thesis addresses the bearingless induction motor based on the concept of dual-pole

windings, one controlling the motor torque and the other the generated radial forces. A

modelling approach is undertaken to investigate the effect of induction machine design

on radial force generation and motor levitation under both steady state and transient

conditions. The simulation is based on the dynamic reluctance mesh model embedded in

vector control systems for the decoupled control of torque, flux and radial force. This is

achieved through modification of a previously developed computer software for

modelling induction motors in order to model the control of bearingless induction

motors.

Both the squirrel cage and wound rotor induction motors are investigated and their

suitability for generating controlled bearing relief forces assessed. Vector control

schemes for the bearingless cage and wound rotor induction motors were also designed

and simulated. A mixed field oriented vector control scheme, which incorporates the

simple rotor field orientation for motoring control and an airgap field orientation for

rotor levitation control, is introduced and found to be advantageous in bearingless

induction motor control. Apart from investigating totally bearingless conditions, the

study also investigates bearing relief capabilities for a vector controlled cage and wound

rotor induction motor in which the rotor movement is restricted by bearings but with the

bearing load cancelled by suitably directed radial force. The effects of real winding

topologies, stator and rotor slotting and iron saturation on the performance of bearing

relief and bearingless induction motors are also presented.

Finally, suggestions for future work is includedIn order to further investigate

bearingless induction motors and its applications.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1. Bearingless motor

Alternating current (AC) motor drives are reaching power and speed ranges exceeding

that of direct current (DC) drives due to developments in inverter and control strategies.

High speed and high power impose problems of lubrication on conventional rolling

element bearings. AC drives may incorporate magnetic bearings as they provide support

of rotors without any physical contact offering the following advantages (Matsumuraet

al., 1997):

• frictionless operation

• reduced frictional wear

• low vibration

• high rotational speed capability

• use in special environments such as vacuum, ultra-low temperature and toxic or

flammable atmosphere

• low maintenance

This enables the use of AC drives for high speed and high power applications.

Applications include for high-speed spindles for machine tools, turbomolecular pumps,

liquid helium pumps and turbogenerators (Dussaux, 1990; Matsumuraet al., 1997;

Brown, 1999). However, there are still many problems in AC drives with magnetic

bearings. One problem is where there is a long axial shaft length required by bearings.

This reduces the critical speed of the shaft (Fukao, 2000). Furthermore, long shaft

lengths operating at high speeds create flexible shafts that require increased attention to

control (Knospe and Collins, 1996). A problem in small, high speed rotating machinery
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Chapter 1: Introduction

is the magnetic bearing design which is limited in terms of its size and mass. Constraint

in the former is usually due to a limited operating space whereas the latter is to avoid

adverse effects to shaft dynamics (Maslen et al., 1988).

One of the possible solutions to reduce the problems associated with magnetic bearings

in high speed motor applications is to use bearingless motors which are capable of

producing both motoring operation and rotor levitation without the presence of separate

magnetic bearing systems. All desirable properties of separate magnetic bearing systems

are achievable by the bearingless motors (Bleuler, 1992). Therefore, most applications

involving the former are applicable to the latter.

According to Chiba (1994), any electric machine that can be made equivalent to a DC

machine through coordinate transformation can act as a bearingless motor. Successful

operation has been reported for several bearingless motor types; for example the

permanent-magnet (PM) motor (Bichsel, 1992; Oshima et al., 1996), reluctance motor

(Chiba et al., 1991(a)) and induction motor (Chibaet al., 1991(b)). In the proposed

bearingless motors, the main M-pole (m pole pair) winding is augmented by an

auxiliary N-pole (n pole pair) levitation winding, in such a way that the interaction

between the M- and N-pole fields generates radial forces that can levitate the rotor. A

general theory of pole number combination for the main and levitation windings of a

permanent magnet synchronous type or an induction motor type bearingless motor was

carried out by Okadaet al. (1995) and Ohishiet al. (1995) showing that the condition

M - N = ± 2 (m - n = ± 1) produces a constant radial force acting on the rotor.

Bearingless motors utilising only a single set of windings have also been put forward by

Salazar and Stephan (1993), Osama and Lipo (1999), Santisteban and Stephen (1999)

and Khoo et al. (2002).

In this thesis only the induction type motor is considered for bearingless motor

investigations. This is due both to the widespread use of induction motors in domestic

and industry applications and the fact that there has been less successful research into

using this short airgap type of machine for rotor levitation. Furthermore, induction type

bearingless motors have been found to be capable of producing a stronger levitation

2



Chapter 1:Introduction

force when compared to bearingless PM and reluctance motors (Okada etal., 1996;

Fengxiang etal., 2001).

1.2. Literature reviewon bearingless induction motors

Research into induction type bearingless motors having a 4-pole main winding and

2-pole levitation winding has experimentally studied the possibility of controlled radial

forces suitable for levitation both under no load (Chiba etal., 1995) and load conditions

(Chiba etal., 1997). These experiments used a vertical rig with one end of the shaft held

by bearings. No true levitation of a bearingless induction machine has been reported.

The problem is a challenging one, the radial force produced varies under load. There are

two reasons for this. The first reason is due to reduction in the main magnetising current

and consequently the main 4-pole field caused by the 4-pole currents induced in the

rotor. Furthermore, a phase delay is introduced which causes force interactions between

two perpendicular axes (y- and x- axes). Thus, information of the amplitude and

orientation of the revolving magnetic field is necessary for control of a bearingless

induction motor in order to ensure the radial force produced is in agreement with the

reference radial force. Therefore, field-oriented vector control schemes for the induction

type bearingless motors have also been introduced by Schob and Bichsel (1994), Chiba

etal. (1997), Suzukiet al. (2000) and Dengetal. (2002).

Secondly, the reduction in the force magnitudes and a phase delay with respect to the

radial force command also occurs in the bearingless induction motors operating under

load due to the 2-pole levitation currents induced in the squirrel cage (Nomura etal.,

1993). In order to overcome the effects of the 2-pole rotor currents, phase-lead

compensation was introduced in the levitation winding controllers (Nomuraet al., 1993)

or else the rotor cage was modified such that only 4-pole currents were allowed to flow

(Chiba etal., 1996; Chiba and Fukao, 1998).An alternative is through a wound rotor.

Successful finite element modelling of a bearingless wound rotor induction motor under

transient conditions has been reported by Cai and Henneberger (2001). Force

production comparison between a cage rotor and wound rotor type bearingless 1M was

also investigated by Cai and Henneberger (2001). They have found that the force

3



Chapter 1: Introduction

production in the cage rotor type motor is weakened due to the cage rotor inducing not

only a 4-pole but also a 2-pole field which tries to oppose the airgap field asymmetry

responsible for force production. This behaviour does not occur in the wound rotor type

motor investigated by them since the rotor has the same pole number as the motoring

winding. Hence, Cai and Henneberger (2001) have shown that the bearingless wound

rotor 1M is more efficient in building radial forces compared to the cage rotor type. A

decoupled motoring and levitation control system for the wound rotor type motor was

also proposed by Cai and Henneberger (2001) but no modelling results of a controlled

bearingless motor was reported.

Effects of rotor eccentricity on a finite element model of bearingless induction motors

have been presented by Yahia and Henneberger (1998) and Baoguo and Fengxiang

(2001). Both papers report that the force produced by the motor increases as the

levitation winding current is increased. Furthermore, rotor eccentricities were also

observed to cause an increase in the force produced for a fixed value of levitation

winding current. This is due to the unbalance magnetic pull of the eccentric rotor (Yahia

and Henneberger, 1998). Analytical force expressions of a bearingless induction motor

with rotor eccentricity are also presented by (Baoguo and Fengxiang, 2001).

1.3. Dynamic reluctance mesh modelling of an induction motor

The literature review on bearingless induction motors has shown that no successful

experimental levitation has been reported. Therefore, this thesis intends to employ the

use of a modelling approach to investigate the problems associated with true bearingless

induction motors. This will build a foundation from which others can develop

experimental test rigs with confidence. Furthermore, a modelling approach is

considered as it allows various machine designs and control schemes to be considered

easily without incurring the time consuming and costly aspects associated with

experimentation.

There are basically four approaches to modelling electrical machines, namely the simple

equivalent circuit, dq- representation, dynamic reluctance mesh modelling (DRMM)

and finite element modelling (FEM). The characteristics of these modelling techniques

4



Chapter 1: Introduction

are summarised in Table 1.1.As the name suggests, the simple equivalent circuit

modelling technique is based on employing the equivalent circuit of electric machines

to investigate its performance. However, this only enables steady state conditions to be

investigated. This modelling technique uses the least amount of computation time

compared to the other methods but because it only provides an approximate model of

the machine, it is the least accurate of all. The dq- representation modelling technique

models the machine based on a two-axis lumped parameter circuit in which circuit

equations and variables are transformed to represent separately its effect on the direct

and quadrature axes of the machine. This enables the machine to be modelled

dynamically and is equally applicable to steady-state conditions.

Simple equivalent
circuit

• steady state
conditions

• approximate
machine model

• fast - simplistic
calculations

Dq-
representation

DRMM FEM

• dynamic and
steady state
conditions

• difficult system
model

• good field
model

• relatively slow
computation

seconds

• dynamic and
steady state
conditions

• poor machine
model

• good system
model

• dynamic and
steady state
conditions

• good machine
model

• good system
model

..
• fast computation • relatively fast

computation

Computation time days

Less accurate Most accurateAccuracy

Table 1.1: Electrical machine modeUing techniques.

The FEM method of modelling electric machines is based on meshing the machine

using triangular or rectangular elements within which the energy in each element is

minimized based on predefined boundary conditions. This method of modelling is able

to provide the most accurate results when compared to the other methods. However, the

computation time required is long since generally dense meshes are required. On the

other hand, the DRMM technique of modelling electrical machines is based on the

simple concept of reluctance meshes, as an alternative to finite elements of the FEM

technique. In the DRMM technique, the magnetic field behaviour in the machine is

mapped onto an equivalent lumped circuit network which is then coupled to the

5



Chapter 1: Introduction

electrical circuits. The modelling of an induction motor using the DRMM technique has

been developed by Abdel-Kader (1979), Amin (1982), Ostovic (1986 and 1988) and

Sewell et al. (1999) whereas modelling of a permanent magnet and switched reluctance

motors have also been reported by Roisse et al. (1998) and Nakamura et al. (2005)

respectively.

As the study in this thesis requires a dynamic magnetic field model of the machine

embedded in a vector-controlled system, the use of the simple equivalent circuit

technique is ruled out. The dq- representation and DRMM methods of modelling an

induction motor are chosen for the investigations presented in this thesis. The former

modelling technique is chosen since it provides convenience in incorporating field

oriented control strategies proposed for the bearingless induction motors. On the other

hand, the choice of the DRMM technique as opposed to FEM is discussed here.

Finite element models are considered inappropriate due to the very long computation

times associated with the problem dynamics. Although FEM provides a better field

model of an electrical machine, the DRMM method incorporates user experience to

model the most important flux paths in the machine since the qualitative direction and

spatial variation of the fields in the machine are predictable with sufficiently good

accuracy. Hence, the resulting lumped equivalent circuit mesh may be coarse in

comparison with a conventional FEM mesh whilst still yielding good results. The

DRMM approach includes all of the sources of key operating problems in induction

motors, which are winding MMF harmonics, slotting effects, skew, saturation of main

flux paths, and saturation of leakage flux paths. It can be argued that a coarse FEM

mesh can produce relatively comparable computation time to that of DRMM mesh,

however this requires the user to develop their own FEM package. However, the

DRMM approach will always have fewer nodes, and therefore reduced computation

time when compared to even the sparsest FEM mesh. Furthermore, it is much simpler to

mesh the airgap of electrical machines using the DRMM method compared to a coarse

FEM mesh since the use of narrow triangle mesh elements in the latter should be

avoided to ensure accurate and stable solutions (Silvester and Ferrari, 1996).

6



Chapter 1:Introduction

The DRMM method provides speed of computation which is crucial when small time

steps are required to incorporate control andlor power electronic schemes for electrical

machines. These features are essential for the bearingless induction motor studies of this

thesis. Generally, FEM simulations of induction motors require large time steps which

can cause discrepancies between the actual FE model and the incorporated control

andlor power electronic schemes. Currently, there are few commercially available

packages which combine FE and system modelling and those that are available are

slow. In a project such as this one, understanding the behaviour of the machine and

control is more important than absolute precision of calculation and this requires a large

problem space to be examined in a relatively short period of research.

Based on the discussion stated above, the DRMM method was chosen to model the

bearingless induction motors investigated in this thesis as the method creates a machine

model that is complex enough to model the most significant flux paths accurately within

reasonable computation time. Furthermore, since the study presented here is intended to

study the feasibility of bearingless induction motors, only a relatively good field model

is required which is provided by the DRMM. In future, with advances in computing

abilities, FEM analysis of bearingless induction motors is favourable compared to

DRMM. For the moment, the DRMM method is employed.

1.4. Thesis overview

This thesis employs the use of a modelling approach to investigate the performance of

vector controlled bearingless induction motors. Therefore, in Chapter 2, a

computationally efficient simulation software (from here onwards referred to as the

Dynamic Circuit Modelling (DCM) software) for modelling induction machines based

on the dynamic reluctance mesh modelling (DRMM) technique is introduced. The state

variables, state equations and numerical solution techniques employed in the software

are also presented. Further modifications and improvements to the software in order to

model a bearingless induction motor for this study are also reviewed.

In Chapter 3, derivations of the force expressions in an induction motor containing an

M-pole motoring winding and an N-pole levitation winding are carried out. The force

7



Chapter 1: Introduction

expressions are derived for two cases; one for a motor having its rotor fixed by

conventional bearings and the second for a motor having a rotor perturbed from the

axial centre line of the machine. The former force derivations will be useful in studying

bearing relief capability of induction motors whereas the latter will be useful when

designingposition control for a totally bearingless induction motor.

The forces created in a bearingless induction motor arise from interactions between the

main motoring and the levitation fields. This leads to the use of field-oriented vector

control schemes to control a levitated induction motor. Chapter 4 proposes control

schemes for bearingless induction motors having two different rotor structures; one

having a cage rotor while the other contains a rotor that does not allow anyN-pole rotor

currents to be induced. The reason for having the second type of rotor will be apparent

in Chapter 6. Three vector control schemes are proposed in Chapter 4 for each of the

two bearingless 1M types; namely based on indirect rotor field orientation (IRFO),

indirect airgap field orientation (IAFO) and mixed field orientation (MFO). It will be

shown that the IRFO vector control scheme for the cage rotor type motorwill always

produce a force in the x- direction even when unwanted since the force produced is

dependent on the airgap field which is not kept constant in the rotor frame. Therefore,

an indirect airgap field oriented (IAFO) control scheme is also proposed. Finally, the

mixed field oriented (MFO) scheme, in which the M-pole winding is rotor field oriented

whereas the N-pole field is oriented onto the M-pole airgap flux, is put forward since no

extra advantage is gained by having the torque (M-pole winding) being airgap field

oriented.

In Chapter 5, the electrical parameters of a 4-pole cage and 4-pole wound rotor

induction motor are derived. These motors will provide the motoring field in the

bearingless induction motors investigated in this thesis. The levitation field in the

bearingless motors is provided by an additional 2-pole winding added into the stator of

each of the 4-pole motors. Therefore, Chapter 5 will also describe the design and

parameter derivation of the 2-pole levitation winding. With the 4+2 pole cage and

wound rotor induction motors, the vector control schemes proposed in Chapter 4 for the

bearingless cage rotor motor and a motor with no N-pole levitation rotor circuit,

respectively, will be simulated to investigate the levitation and lateral force produced in

8



Chapter 1: Introduction

these motors. This simulation is carried out in MA TLAB Simulink using a two-axis

lumped parameter circuit model of the bearingless 1M. Before presenting the simulation

results, Chapter 5 also includes the controller design for both the 4- and 2-pole winding

required for the vector control scheme simulations.

The study of bearingless induction motors in this thesis also includes a study on bearing

relief capabilities. The term bearing relief means that the rotor movement is still

restricted by conventional bearings but with the bearing load being cancelled by

suitably directed radial forces created in the motor by the incorporation of the N-pole

levitation winding. In Chapter 6, DCM simulations of a linear iron bearing relief cage

rotor motor under direct on-line start and MFO vector control conditions are presented.

It will be shown that the cage rotor will cause the 2-pole levitation field to experience a

very high slip. This high slip introduces leakages effects that cause lower then expected

force values to be produced by the motor. Therefore, in order to generate the required

radial force in the motor, considerably higher 2-pole currents are required than predicted

from the force expressions derived in Chapter 3. Hence, the possibility of reducing the

high slip leakage effects through the suppression of induced N-pole currents in the rotor

will be examined in Chapter 7.

The suppression of the induced N-pole currents due to the levitation winding is

achieved using the 4+2 pole wound rotor bearingless 1M since the rotor is wound with

the same number of poles as the motoring field. Therefore, in Chapter 7, simulation of a

direct on-line start 4+2 pole linear wound rotor 1M under bearing relief conditions is

carried out using the DCM software. This is to investigate the radial force production in

the wound rotor type motor which will be compared with the cage rotor type motor. The

chapter will also present results from a DCM simulation of the same linear iron motor

controlled using the MFO vector control scheme. Finally, the effects of non-linear iron

on the performance of the wound rotor motor under direct on-line start and vector

control conditions will also be investigated.

Chapter 8 discusses the results of an MFO vector controlled bearingless wound rotor 1M

modelled using the DRMM technique by way of the DCM software. However, due to

ability of the rotor to move freely in the bearingless motor, the x- and y- direction

9



Chapter 1: Introduction

position controllers required in the simulation will first be designed. A verification of

the force expressions derived for a perturbed rotor motor in Chapter 3 is also discussed

thorough comparison with DCM simulation results investigating the effect of unbalance

magnetic pull force due to rotor displacements in a motor supplied only with the

motoring field.

The numerical solution technique used within the DCM software is controlled by key

parameters to ensure that convergence and accuracy is achieved in all the simulations

carried out. Therefore, Chapter 9 will discuss the numerical effects associated with the

parameter choices on the results of the DCM simulationspresented in thesis.

Finally in Chapter 10, a conclusion to the study of bearingless induction motors

including the main findings of the work of this thesis is presented. Possible areas in

which future work can be directed will also be proposed.

10
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Chapter 2

Dynamic Circuit Modelling (DCM) software

2.1 Introduction

The time consuming and costly aspects of experimentation faced by designers in search

of enhanced machine performance have resulted in the creation of computer simulation

software capable of considering many design variations. Although simulation software

for machine design purposes (such as finite element based packages) produces accurate

and detailed results of machine performance, designers are often forced to compromise

the simulation undertaken by considering either two-dimensional approximations or

steady state conditions in order to manage the computational intensity. This is a

consequence of the large number of variables necessary to accurately characterise the

state of the machine and the very long computation times associated with the problem

dynamics. Restriction to the two-dimensional case and/or steady state operation

undermines the utility of the simulations, especially when transient analysis and three-

dimensionaleffects such as skew are important.

Therefore, another approach to modelling electrical machines based on the simple

concept of reluctance meshes, as an alternative to finite elements, was developed by

Abdel-Kader (1979), Amin (1982), Ostovic (1986 and 1988) and Sewell et al. (1999) in

which the magnetic field behaviour in the machine is mapped onto an equivalent

lumped circuit network. A computer simulation software employing the dynamic

reluctance mesh modelling technique was also developed by Sewell et al. (1999) to

model three-dimensional induction motors in transient and steady state conditions. The

key to the efficiency of this approach is the fact that in most parts of the machine, the

qualitative direction and spatial variation of the magnetic field are predictable with

11



Chapter 2: Dynamic Circuit Modelling (DCM) software

sufficiently good accuracy from experience, and hence well approximated by the

behaviour of a simple lumped circuit element. Therefore, the resulting lumped

equivalent circuit mesh may be coarse in comparison with conventional finite element

mesh, as mentioned in Section 1.2, whilst still yielding good results. This provides a

significant saving in both computational time and memory consumption. In fact, the

results obtained from the reluctance mesh model of a conventional induction motor

have previously shown excellent agreement with experimental results (Sewellet al.,

1999).

In this chapter, a brief description of this computationally efficient dynamic reluctance

mesh modelling technique is presented. The Dynamic Circuit Modelling (DCM)

computer simulation program initially developed by Sewellet al. (1999) and further

enhancedin this work is introduced in this chapter. Details of both the modifications

and its use to produce the results presented in Chapters 5, 6, 7 and 8 of this thesis are

discussed. First, this chapter will look at how an induction motor is modelled using the

reluctance mesh approach before introducing the state variables, state equations and

numerical solution techniques employed in the DCM program. However, comparison

between the results of the DCM simulation of a conventional induction motor and

experimental results will not be presented here as the basic algorithm and code have

already been extensivelyvalidated by Sewell etal. (1999).

2.2 Creating the reluctance mesh

In this model,a typical induction machine stator and rotor geometry is discretised into a

number of cells in which the flux may be realistically considered to flow

perpendicularly to the inter-cell boundaries as shown in Figure 2.1(a). At each

boundary, a node is defined, at which point theMMF is sampled. Each cell is

represented by a reluctance element of width,w, length,I, and depth,d, which connects

two nodes, as shownin Figure 2.2, and is physicallyconsistent with flux flowing along

the element and uniformly distributed in its cross-section. Given the geometry of the

stator and rotor laminations, a segment for both the stator and rotor reluctance mesh is

created as shown in Figure 2.1(b) with the dimensions of each reluctance element in the

12
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segment being determined from the lamination geometry as shown in Table 2.1. The

stator element node numbers seen in Figure 2.1 (b) start from 1000, for coding reasons.
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Figure 2.1: Discretisation of stator or rotor teeth into reluctance cells.
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Figure 2.2: A reluctance element cell.
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Node number Length, I Width, w

0 1 (2Ys, )<rmesh-sd, - 0.5bid,) bid,

0 2 0.5bid, + (sd, - 0.5bd,) lw,

1 3 0.5bid, + (sd, - 0.5bd,) lw,

2 4 0.5bd, ( 2Ys, )<rmesh- sd, - 0.5bid,)

3 5 0.5bd, (2YsJ(rmesh -sd, -0.5bid,)

2 3 ( 2Ys, )<rIM.h- O.Sbd, ) 0.5bd,

Table 2.1(a): Dimensionsof rotor reluctance elements.

Node number Length, I Width, w

1000 1001 (2Yssyrmesh +sd. +0.5bid.) bids

1000 1002 0.5bid. + (sd. - 0.5bds) Iws

1001 1003 0.5bid. + (sd. - 0.5bd,) Iws

1002 1004 0.5bds (2YsJ(rm,m + sd ,+ 0.5bids)

1003 1005 0.5bds (2YsJ(rmem + sd ,+ 0.5bids)

1002 1003 (2YsJ(rmesh +0.5bds) 0.5bds

Table 2.1(b): Dimensions of stator reluctance elements.
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Each reluctance element is designated to be of type 'linear' iron, 'non-linear' iron or

'air'. In the case of non-linear iron, a suitable experimental B-H curve defines the

permeability, otherwise an appropriate relative permeability valueu,= constant, is

given. The slots on both the stator and rotor side can be left open or semi-closed by

modelling the reluctance element between the teeth as an 'air' element. The placement

of MMF sources on each stator and rotor tooth were chosen using Ampere's law to

correctly model the location of both the stator and rotor bar currents (Sewell et al.,

1999). The reluctance of each element in the mesh is obtained by

9t=_I_
pwd

(2.1)

where P is the permeability of the element determined by its given type.As stated

above, this assumes uniform flux flow in each element, although, if required, the

reluctance of any element in the model can be defined more generally in terms of the

MMF difference between the end of the element nodes, possibly obtained from pre-

processing simulationsof flux flows in the motor using a local finite element analysis.

Therefore, assuming uniform flux flow, the flux flowing through a reluctance element,

shown in Figure 2.2, is calculated using

(2.2)

where 12 is the MMF at node 2,1; is the MMF at node 1 and9t is the reluctance of

the element as given by (2.1). If the reluctance element is in series with an MMF source,

(2.3)

whereFmm! is the potential of the MMF source.

After a segment of the stator and rotor is discretised and represented as an equivalent

reluctance element lumped circuit, the node numbers, dimensions and type of each

reluctance element are put into two data files. At the start of the DCM program, these

data files together with a data file representing the 'non-linear' type B-H curve, and a
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file containing the motor's physical and running parameters are loaded.As the stator

and rotor teeth are symmetrical, the program then replicates both segments, from the

data files, according to the number of stator and rotor bar slots respectively to create a

complete slice, or axial section, of the induction motor.

Correctly modelling the reluctance mesh of the airgapIS crucial in a dynamic

simulation. In this model, flux is assumed to flow radially across the airgap at all times,

as shown by the inset figure in Figure 2.3. Therefore, the airgap reluctance elements are

allocated on the basis of the overlap area between pairs of rotor and stator tooth tips.As

the rotor rotates the overlaps between rotor and stator teeth change. Hence, the airgap

reluctance element values and the reluctance mesh vary depending on the instantaneous

position of the rotor as shown in Figure 2.3. In the DCM program, these elements are

dynamically created at each time step. For this reason, these airgap reluctance elements

are referred to as dynamic reluctance elements while all other reluctance elements will

be regarded as fixed elements .

......_ _- _.. - _ -- -__ --'" _- -

Figure 2.3: Creation of airgap elements based on overlap between stator and rotor tooth.As the

rotor moves by rM, a new set of airgap elements are created (solid lines). The set of rotor teeth

after the movement is drawn slightly lower than before the movement (dasbed lines) for clarity.
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The stator and rotor slots are filled by a three-phase winding and a squirrel cage bar

respectively. The model is capable of modelling a fractional or full pitch double layer

stator winding. Figure 2.4 illustrates part of the reluctance mesh created by the DCM

program for a bearingless induction motor.

Levitation
Stator

mesh "--.

Rotor~
mesh

winding

Figure 2.4: Reluctance mesh model.

In order to obtain experimentally verifiable simulations, the model is made quasi-3D to

allow for rotor skew along its axis. The motor is divided into a number of axial sections

with each section of the rotor being offset from its predecessor by a small angle to

model the skew. Adjacent axial sections are only coupled through the rotor and stator

electrical circuits as it is assumed that axially directed flux is negligible which is a

physically realistic assumption. This dramatically improves the computational

efficiency of the model. Therefore, after creating a slice or axial section from the stator

and rotor segments, the DCM program then replicates the slice or section according to

the user-defined number of sections with each rotor section being offset by

if:
skew angle in mechanical degrees

skew 0 set = .
number of sections

The incorporation of skew in the DCM simulation program is an advantage when

compared to two-dimensional finite element simulations of an induction motor in which

skew is not taken into account.
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stator
section =«.

Trapezoidal rotor
section

Machine
- - axis

Figure 2.5: Modelling rotor skew.

Generally, in an unskewed machine, the area of each rotor tooth in contact with the

airgap would be reasonably considered to be rectangular. However, in this reluctance

element model, the area is defined to be trapezoidal, as in Figure 2.5, to account for the

skew. This also has important numerical consequences when calculating the torque

generated in the motor from the virtual work principle as it relies upon the rate of

change of the dynamic airgap elements with rotor position. This rate of change is

continuous when the rotor tip elements are defined as trapezoidal shaped elements and

this avoids any unrealistic steps in torque, unlike the case of rectangular shaped

elements. Furthermore, a trapezoidal area takes into account zigzag leakage paths more

realistically.

2.3 State variables and state equations solved

The model enforces conservation of the rate of change of flux entering each node i, (for

example see Figure 2.4)

(2.4)

As there are a total of Nnode nodes in the reluctance-mesh, a set of equations is

recovered linking together all the nodal MMFs, f, in the simulation. The magnetic
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model is coupled to the stator and rotor electrical models by applying Ampere's and

Faraday's laws. Satisfaction of Ampere's law requires placing MMF sources in the teeth

of both the rotor and stator as shown in Figure 2.1. Each of the three phase windings on

the stator and the wound rotor comprise three independent phase loops and knowledge

of the winding distribution allows the appropriate current to be used to determine each

tooth MMF source. In the case of the cage rotor, each bar current is regarded as an

independent quantity. Faraday's law is enforced for each independent electrical loop in

the motor. These loops comprise each of the phases of the stator winding. For the cage

rotor, the independent electrical loops consist of pairs of adjacent rotor bars. Having

identified the electrical loops, the teeth fluxes which couple with each of them is clear

from the winding distribution of the stator and the pairing of rotor bars. Hence, an

equation of the form

d
Vloop (I) - Rloop I loop (I) - N tums - L ;(1) = 0

dt t.eth

(2.5)

is formed. Vloop is either the imposed stator voltage or 0 for the cage rotor loops, and

Rloop and N turns are known from the machine specification.

Finally, the rotor dynamics are encapsulated by

d8
OJ r 1II6ch - dl = 0 (2.6)

T - J dOJrm•ch B 7' 0OJ r mech - 1 load =
dt

(2.7)

In (2.7), the torqueT generated by the motor is calculated in the model using the virtual

work principle on each airgap reluctance element. Based on this principle, the torque is

calculated from the change of magnetic energy due to a virtual perturbation of the rotor

in the e direction (Mizia el ai, 1988). Therefore,

T=IaE
ae (2.8)

where E is the magnetic energy stored in each airgap reluctance element and is given by
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(2.9)

To summarise, the state variables being solved by the model are the nodal MMFs, the

MMF sources due to the rotor bar currents, the stator winding's phase current and the

position and velocity of the rotor

(2.10)

where Nbar is the number of rotor bars. The model employs the MMF sources due to the

rotor bar currentsFRmmf,i as state variables as it is more convenient to use than the bar

currents themselves since according to Ampere's law the current flowing through rotor

bar i is given by

I .= F.R if' 1 - F.Rmmf .r,J mm .1+ .' (2.11)

A matrix A(x) consisting the set of state equations constructed from (2.4), (2.5), (2.6) and

(2.7) in which

[

Nnode x conservation of flux rate equations, eq. (2.4)]

A{x) = n x electrical loop equations, eq. (2.5)

2 dynamic equations, eq. (2.6) and (2.7)

(2.12)

where n = 3+ Nbar - 1.

2.4 Solving the model

The model is simulated directly in the time domain which is better for non-linear

conditions and in the presence of control schemes, when compared to simulations in the

frequency domain. Determining the state variablesxt+l1t at time t +At, given the values

of the state variables xt at time t, involves linearising the state equations using the

well-known multi-variable Newton Raphson method for non-linear systems of
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equations (Press, 2002).As the state equations are in the form of first order differential

equations, the Crank-Nicolson approach of approximating the state variablesx is also

adopted in the solvingprocess in which

xl =(I-aL
t• +axtI t+ l1t/2 )AI. +ut I.

(2.13)

dt t+M/2 dt
(2.14)dx,

where a ~0.5 for stability with 0.5 giving the most accurate results. The Crank-

Nicolson method is an implicit scheme which generally allows larger time step M

values to be utilised and provides greater stability compared to explicit schemes.

Therefore, although several other approximation techniques can be employed, the

Crank-Nicolson approach was chosen due to its well-proven efficiencyand reliability.

Once the equations are linearised, the matrix A obtained is sparse and relatively large.

Therefore, the model solves for the variablesxt+ l1t at time t+ M using a linear

conjugate gradient solver (Van Der Vorst, 1992) exploiting efficient sparse matrix

operations. The conjugate gradient technique is iterative and in order to initiate the

solution xt+ l1t at time t + M, a simple linear prediction scheme is employed based on

the previous two solutions xt and Xt-M as given by

(2.15)

where X~M is the prediction of the solution at timet + M.

Furthermore, the conjugate gradient technique also requires preconditioning for robust

operations whereby the solution of

(2.16)

is reformulated as

A--lA P - A- -lb
Xt+!1t - (2.17)
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where A -t is an approximation to the inverse of A, i.e.A -iA = I. In the DCM

software, the preconditioning is achieved using an incomplete LV decomposition with

partial fill based on a 'threshold' criterion, allowing for control over the trade off

between memory usage and computation time. If a small value of 'threshold' is used,

the solver requires more memory but the time taken to solve is reduced. A zero or

negative value of threshold implies the use of a full LV decomposition for solving the

matrix.

In practise, the conjugate gradient solver will perform reliably if a sensible prediction

and reasonable preconditioning is available. Without reasonable preconditioning the

iterative routine will stall unless the predictionI;+AI is very close to the solutionII+A/'

thus requiring very small time steps. However, the prediction and preconditioning

method utilised in the DCM software was proven to produce reasonable results with

acceptable computational time when a large time stept:J is used. Even so, the time step

t:J in the software is adaptive. If the residual error during the Newton Raphson cycle at

time t + t:J increases compared with that in the previous time step or the linear equation

solver fails to solve the linear equations within a predefined number of iterations, the

time step M is halved. If the halved time step provides successful convergence, the

time step is doubled, subject to it being below the predefined maximum valuet:Jrnax, in

preparation for the next solving process. Successful convergence of the linear solver is

obtained when its rms error is less than the solver tolerance tolsolver

(~Lerror/ < tol solver) whereas successful solving of a particular time step is achieved

when the rms residual error from the Newton Raphson loop is less than the Newton

Raphson (NR) tolerance tolNR' The flow chart of the DCM software developed by

Sewell et al. (1999) is shown in Figure 2.6.

In the reluctance mesh model, a large part of the mesh corresponding to the fixed

reluctance elements remains the same during the linear solver iteration at a particular

time step. This provides scope for improving the preconditioner by allowing certain

parts of the matrix (relating to the fixed reluctance elements) to be reused. There is also

a possibility of further improving the adaptive time step control loop in order to provide
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a more efficient solving technique for the software. However, this was not explored in

this thesis since the aim here is to utilise and modify the DCM software sufficiently

enough to simulate a bearingless induction motor and not to optimise the software to the

possible limits of the solver.

start

Load data files:
• machine parameters
• rotor& stator

segment mesh

Skew each slice

8--8

yes

Line D Line B

LineC continued inFigure 2.6(b) Line A

Figure 2.6(a): Flow chart of DCM software.
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from Figure 2.6(a) LineALineC

Linear equation solver
(BiCGSTAB)

Line D LineB

Correct estimates of state
variables based on errors

Return to original
estimates

Return to original
estimates

Return to original ,_J-~

estimates

yes

end

Figure 2.6(b): Flow chart of DCM software (continued).
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2.5 Program developments

The OCM software introduced above only models a squirrel cage induction motor. In

order to use the OCM software to model and simulate a bearingless induction motor,

several modifications were made to the original code which will be presented here.It is

noted that all modifications listed in this section (a-g) are by no means optimised to the

maximum limit but to the extent of providing reasonable computation time and memory

usage for all simulationconditions presented in Chapters 5 to 8.

a) Improvements to linear equation solver

Several changes were made to the preconditioner of the linear equation solver to

improve its memory efficiency. However, this causes a slight increase in the

computational time. Therefore, the solving section of the software was recoded to speed

up the computation. The end result of the modification is a solver that utilises

significantly less memory compared to the original code but with the same

computational time per simulation run. The changes applied to the solver in this

software were done such that the memory usage and computational time required to

simulate the vector controlled bearingless induction motor with the free moving rotor

(presented in Chapter 8) is reasonable on a typical PC. For example, the simulation of

the vector controlled non-linear bearingless wound rotor 1Mwith the free moving rotor,

presented in Section 8.5, was completed in 95 minutes and required a maximum

memory usage of3.26M bytes.

b) Solving for conservation of flux equations

As mentioned in Section 2.3, the OCM software solves for conservation of rate of

change of flux equation on each node in the reluctance mesh model. This was in order

to be consistent with physics whereby reluctance elements being magnetic storage

elements in magnetic circuits are analogous to capacitances in electric circuits.

However, when implementingthe conservation of rate of change of flux with time, as in

equation (2.4), on each node numerically in the software, rounding errors are produced

25



Chapter 2: Dynamic Circuit Modelling (DCM) software

due to the non-existence of a grounding point. This causes residual flux at each node

which in tum causes offsets in the three-phase rotor flux linkages as observed in the

simulation of a vector controlled 4-pole wound rotor 1M shown in Figure 7.5.

Therefore, the DCM software was modified such that conservation of flux, entering and

leaving, on each node was solved instead of rate of change of flux using the following

equation

~'ij(!;,fJ= 0
j

(2.18)

This ensures that no residual flux exists in any node. Hence, the matrix of state equations

to be solved by the DCM software becomes

f
Nnode x conservation of flux equations, eq. (2.18)J

A{x) = n x electrical loop equations, eq. (2.5)

2 dynamic equations, eq. (2.6) and (2.7)
(2.19)

with n = 3+ Nbar - 1.

All the simulations presented in Chapters 5, 6, 7 and 8, performed using the DCM

software, were simulated based on solving for conservation of flux equation at each

node in the model, i.e. using equation (2.18), except in Sections 6.2 and 7.2 in which

simulations solving for both conservation of rate of change of flux and conservation of

flux equations were presented to demonstrate the effects of residual flux observed when

the former state equations are solved for.

c) Modelling a wound rotor

Bearingless induction motors with two different rotor structures, cage and wound rotor,

will be investigated in this thesis.As the original DCM software is only capable of

modelling motors with a cage rotor, modifications were added to the code to include

modelling of a three-phase wound rotor. The subroutine written to incorporate the rotor

winding is called after the stator winding incorporation subroutine is called, as indicated

by '(c)' in Figure 2.6(a). The subroutine enables the DCM software to model a fractional

or full pitch double layer rotor winding. Similar to the stator winding, for each of the
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three-phase rotor windings, three independent phase loops are identified to create three

extra state equations of the form shown in equation (2.5) in whichV/oop is set to zero to

model the short-circuited rotor windings. Hence, with the wound rotor1M, the state

variables being solved by the model are the nodal MMFs, the three rotor winding phase

currents, the stator winding phase currents and the position and velocity of the rotor, i.e.

(2.20)

where Irobe are the phase currents of the three-phase rotor winding. Consequently, the

matrix A(x) consisting of the set of state equations is now given by

[

Nnode x conservation of flux equations, eq. (2.18)]

A{x) = 6 x electrical loop equations, eq. (2.5)

2 dynamic equations, eq. (2.6) and (2.7)

(2.21)

when the motor contains a wound rotor. Therefore, by comparing the set of state

variables and state equations of the cage rotor motor, given by equations (2.10) and

(2.12), to that of the wound rotor motor, the latter DCM modelled motor type has a total

of Nbar - 3 less state variables and state equations to solve and thus reduces the

amount of memory usage and computation time for each simulation run.

d) Addition of vector control

current controlloopr------------------------------------------------ 1
I I
I • V· I
I i, ,abc I Dynamic

reluctance
mesh model of

1M

Figure 2.7: Vector control of a conventional induction motor.
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The DCM software was also modified to include vector control of a conventional as

well as a bearingless induction motor. The objective of the vector control subroutine is

to obtain the values of driving voltagesVabc of the statorwinding for the next simulation

time step. Therefore, in the DCM software, the vector control subroutine iscalled in the

postprocessor section of the software just beforecalling the subroutine that updates the

state variables and makes the prediction of the state variables for the next simulation time

is called, as indicated by '(d)' in Figure 2.6(b). The vector control routine is alsocalled at

the start of the simulation, replacing the 'obtain driving voltages' block shown in Figure

2.6(a), to obtain the statorwinding terminal voltages at the start.

The vector control scheme for a conventional motor involves two control loops, consisting

of an inner current control loop and an outer speed control loopas shown in Figure 2.7,

with the control being performed in the dq- rotating frame. Therefore, the inputs of the

control loops (for example the feedback stator currents) have to be transformed from the

three-phase quantities into their equivalent dq quantities. This is achieved by, firstly,

transforming the three-phase quantities(x a , Xb and x,) into the equivalent two-phase

quantities(xsa and xsp) in the stator frame (denoted by's'in the subscript) using therms

convention given by

(2.22)

where x can be the stator phase currents or flux linkages in the motor depending on the

controlled variable. Then, the fixed two-phase quantities(x saand X sp) are transformed

into the dq- rotating frame quantities ( xsd and xsq ) using

(2.23)

where e'l/ is the angle of the flux vector used for the vector control orientation.

Consequently, the output of the control loops (for example the stator driving voltages)
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will have to be transformed back from the dq- rotating frame to the three-phase quantities,

via the fixed two-phase quantities, using the following equations:

(2.24)

(2.25)

In the DCM software, within the vector control subroutine, four separate subroutines

were written to compute the transformations from the three-phase quantities into their

equivalent dq quantities, and back, using equations (2.22) to (2.25). However, before

being able to transform the currentsI sabe into the feedback currentsi sdq when modelling

the current control, any circulating zero sequence currenthas to be eliminated. This is

achieved in the vector control subroutine by constructing the respective line currents

Iline-sabc from the three stator phase currentsIsabc' using equation (2.26), before

reconstructing the phase currentsj sabe from the line currents, using equation (2.27), to be

used in the vector control.

Iline-sa = I sa - I sb

lline-sb = I sb - Ise

Iline-se = I se - Iso

(2.26)

i; = (Iline-sa - Iline-sb)/ 3

Isb = (Iline-sb - lline-se)/ 3

I se = (Iline-se - i.:»3

(2.27)

The PI controllers are modelled in the DCM software by difference equations obtained

from the digital equivalent of the controllers designed in the continuous s-plane. The

digital equivalent controllers were achieved through the Bilinear Transform (Franklin et

al., 1998) with a sampling time chosen such that the sampling frequency ratio (i.e .

.( / controller bandwidth) exceeds 15. Therefore, the DCM software requires the
J samp

user to input the PI controller parameters as well as the sampling times tsamp-i ,
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associated with the current control loop, andtsamp=m » associated with the speed control

loop, into a data file.

If the simulation time t + At exceeds the sampling time for the controller, the inputs to

the current control loop (Isabc ) and speed control loop((i) r ) are linearly interpolated to

obtain the stator phase currents and rotor speed values at the sampling time using the

following relationship

(2.28)

where x represents either the individual stator phase currentsI,abc or the rotor speed(i) r

and tsamp is the sampling time and is a multiple oftsamp-i and tsamp-DJ. Figure 2.8 shows the

flow chart of the vector control subroutine written for theDeM software.

no

es

Interpolatephasecurrents Interpolete rotor speed
useVsabc

obtained from oor

previous lsabe

sampling time
Speed control 00*

r

Transform 'abc' to(X.~ to dq

I .'---~
sd

Transformdq to (X.~ to 'abc'

Vsabc

Figure 2.8: Flow chart of vector control subroutine for the DCM software.
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e) Incorporation of levitation winding

The forces required to levitate the rotor in a bearingless motor are generated by

incorporating an extra set of windings on the stator. Therefore, the DCM software was

modified to enable a second set of double-layer stator winding, wound in either

fractional or full-pitch configuration, to be modelled. The additional code written in the

DCM software to incorporate the second set of stator winding is added to the original

subroutine written to incorporate the first set of stator winding as indicated by '(e)' in

Figure 2.6(a). The addition of the levitation stator winding increases the number of state

variables and state equations to be solved by three. Therefore, for a cage rotor type

bearingless motor

x = lto,h, ... , fNNXh-l' FRmm/,o,FRmm[,l, ... ,

FRmmf.Nbar-l,I~,Ilj, ,I~ ,I:a,I~,I~, Bm"eh'aJrmechI (2.29)

whereas for the wound rotor type motor

X = Vo,h, ... ,fNrrod..-l,Ira,I rh ,Ire'

I:: ,I:: ,I:: ,I! ,I::' ,I:: ,8m•ch ,aJrm•ch J
(2.30)

where I~ and r: are the phase currents of the M-polemain and N-pole levitation

stator windings, respectively. The matrixA(x) of the set of state equationsin the

bearingless motor is then defined as

[

Nnode x conservation of flux equations, eq. (2.18)]

A{x) = n x electrical loop equations, eq. (2.5)

2 dynamic equations, eq. (2.6) and (2.7)

(2.31)

{
6 + Nbar - 1, for cage rotor

where n= .
9 , for wound rotor
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t) Force calculations

After solving the state variables in the bearingless induction motor, the forces acting on

the rotor are evaluated by the postprocessor. Similar to the torque calculation, the forces

are determined using the virtual work principle on each airgap reluctance element.

Based on this principle, the radial force due to an airgap reluctance element is obtained

from the change of magnetic energyE stored in the element due to a virtual change in

its length in the radial direction. Therefore, radial force due to airgap element'i' is

given by

F _BE;
rad.i - at

g

(2.32)

where E; is the magnetic energy E storedin the element and is obtained from equation

(2.9). On the other hand, the tangential force is obtained from the change of magnetic

energy E stored in each airgap element due to a virtual movement of the rotor in the

tangential direction, which is given by

F . = _!_ aE;
tan, 1 r Bf}

(2.33)

The y- and x- directed forces acting on each rotor tooth(Fy,r and F, r respectively) are

then obtained by resolving the sum of the radial and tangential forces due toall the airgap

elements connected to the rotor tooth using the following equation

(2.34)

where f}rt is the mechanical angular position of the rotor tooth relative to the 0° axis and

ez: is the skew angle of the rotorin mechanical degrees. Hence, the total forces acting

on the rotor F; and F, are given by the summation of the individual forces acting on each

rotor tooth, i.e.

32



Chapter 2: Dynamic Circuit Modelling (DeM) software

(2.35)

A subroutine was written to evaluate the forces acting on the rotor in the DCM software

based on the equations stated above. This subroutine is called just before the simulation

results are written to an output file at each time step, as indicated by'(f)' in Figure

2.6(b).

g) Modelling a free-moving rotor

In Chapter 8, simulations of a bearingless wound rotor induction motor will be

presented. In thebearingless motor simulated, the rotor is free to move. Therefore, to

accurately simulate the motor, a model of the free-moving rotor in the DCM software is

essential. When the rotor is held fixed by bearings, the length of all the airgap

reluctance elements is equal to the airgap length,IgO' However, when the rotor is

allowed to move, the length of each airgap reluctance element'i' is evaluated every

time it is created using the following equation

I = I 0 - '::\ycosOj - Ax sinOJg.' g
(2.36)

with .::\y and Ax being the displacements experienced by the rotor in the y- andx-

directions, respectively. In equation (2.36),OJ is the angular position of each airgap

reluctance element'i', It is assumed that the displacements of the rotor are small such

that the stator and rotor teeth are still considered to be parallel as they pass each other.

A subroutine was written in the software to calculate the angular position of each airgap

element and it is called each time equation (2.36) is used to obtain the length of each

airgap reluctance element created at every time step in the simulation, part '(g)'

indicated in Figure 2.6(a).

The additional state variables to be solved by the DCM software, due to the modelling

of a free-moving rotor, are the displacements.::\y and tJx as well as the velocitiesy and
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X. The state equations related to the four new state variables are obtained from the

mechanical equations of movement in the y- and x- direction in which

y- dy = 0
dt

(2.37)

dj; .
Fy -Mr dt -Dy-Ky-Fload_y = 0 (2.38)

x- dx = 0
dt

(2.39)

dx
F -M --lli-Kx-F = 0

x r dt load=x

(2.40)

where M, is the mass of the rotor,D represents the friction andK represents the

stiffness. In equations (2.38) and (2.40),F,oad-Y and F,oad-x are the load forces acting on

the motor in the y- and x- directions respectively. The forces Fy andF, in the above

equations are the forces produced by the motor obtained from thevirtual work principle

using equation (2.35). Hence, for the bearingless wound rotor 1M, the vector of state

equations to solve is given by

x = Vo,h, ..·,fNlIode-t,l:,l: ,1:,I~,l~,l~,

I:,I:,IcN,BtrNch ,OJrm•ch ,y,y,x,xJ

(2.41)

with the matrix A(x) of the set of state equations defined as

A{x)=

Nnodex conservation of flux equations, eq. (2.18)

6 x electrical loop equations, eq. (2.5)

2 dynamic equations, eq. (2.6) and (2.7)

equation (2.37)

equation (2.38)

equation (2.39)

equation (2.40)

(2.42)
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Chapter 3

Force production in a self-levitating motor

3.1. Introduction

In a bearingless motor, both the main M-pole torque production winding and the

levitation N-pole winding produces a particular rotating airgap flux density, which will

interact to produce a non-uniformly distributed airgap flux density. It is this non-

uniform flux density distribution which will produce Maxwell forces acting on the rotor.

In previous research, a reluctance-type (Chibaet aI., 1991(a)) and induction-type (Chiba

et aI., 1991(a), 1995 and Chibaet al., 1997) bearingless motor had been proposed in

which both motors consisted of an additional two-pole winding wound onto the stator

having an existing four-pole torque producing winding. The choice of pole number for

both the stator windings were specifically chosen by Chibaet al. based on their ability

of producing an imbalance in the airgap magnetic field at certain places in the airgap, as

shown in Figure 3. 1, which creates levitation forces.

Fy

Reduction in
airgap flux -~~.....:::= ....:-tt-tt-
density

Increase in

-J4J.~~~~- airgap flux
density

Figure J.l: Imbalance in airgap field due to interaction between the 4-pole field (dashed lines) and
the 2-pole field (solid lines).
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However, no mathematical justification or general theory of pole number combination

between the main torque production winding and the levitation winding was presented

by Chiba et al.

A general theory on the choices of pole number combination for a permanent magnet

synchronous type and induction type bearingless motors was, however, carried out by

Okada et al. (1995). It was shown that a levitation winding having a pole number of

plus or minus two of the motoring winding pole number was able to produce constant

radial force acting on the rotor. The force expression was obtained by adding up the

force contributions M on each infinitesimalareaM due to the airgap flux density,B

given by

For the permanent magnet type motor, Okada et al. (1995) obtained the airgap flux

densityB, used in the force equation above, by adding up the flux density contributions

due to the permanent magnet rotor and the levitation winding wound onto the stator. In

the case of the induction motor type, the airgap flux densityB was obtained by adding

up the field contributions of both the main and levitation winding stator currents

together with the field contributions due to the rotor currents induced by the two stator

fields. By separating the field contributions of each winding into their corresponding

stator and induced rotor fields, the analysis required the use of induced coefficient.

Therefore, in order to implement the equations, knowledge of the induced coefficient

value is required.

In this chapter, a mathematical analysis similar to that by Okada et al. (1995) is utilised

to obtain expressions for the levitation (y- direction) and lateral (x- direction) forces

acting on the rotor of an induction motor having both the main and levitation winding

on the stator. In the analysis presented here, the force expressions will be derived from

field distributions that is assumed to incorporate both the contributions from the stator

winding and the induced rotor currents, i.e. without the use of induced coefficients.

Furthermore, the force equations derived in this chapter are believed to be more
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consistent with vector control concepts, as compared to those derived by Okada et al.

Firstly, in Section 3.2, the force expressions will be derived for an induction motor

having a uniform airgap length. This will be used to model an induction motor having

bearing relief capabilities, which will be simulated in this thesis in Chapters 5, 6 and 7.

Secondly, the force expressions for an induction motor with a non-uniform airgap

length, in which the rotor is assumed to be subjected to a perturbation from its centre,

will be derived in Section 3.3. This will be useful when designing position control for a

totally bearingless induction motor, which will be presented in Chapter 8. Before the

force expressions are derived the airgap flux density distribution due to the N-pole (n

pole pair) levitation winding is first obtained for both the fixed and perturbed rotor

conditions in the respective sections.

3.2. Forces acting on a rotor fixedby bearings

3.2.1. Flux distribution of levitation winding

The N-pole (n pole pair) levitation winding is assumed to be modelled as a current sheet

of units Alrad, which has the following current distribution

I,(B,t)= IF sin(aJt - nB -;) (3.1)

where (J is the phase difference in mechanical radians between the peak of the main

winding current and the peak of the radial force winding current. The flux density

distribution arising from this stator current distribution can be obtained by way of

Ampere's Law,

(3.2)
c

where H is the magnetic intensity, c is the closed path along which the line integral is

taken andIenc is the current enclosed by the closed path. In order to perform this

calculation it is assumed that the iron in the stator and rotor are infinitely permeable.

Hence, the contribution to the line integral, for the closed loop path, c, through the rotor

and stator are negligibleand only the flux density in the airgap will be considered.
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Ampere's
Law closed --w.
loop path, c

Figure 3.2: Ampere's Law path.

As in Figure 3.2, the line integral crosses the airgap atrp and rp+ s]», Due to

symmetry, the flux density at the two airgap crossings of the closed path,c, will be

identical in value but opposite in direction. Therefore, equation (3.2) reduces to

c

(3.3)

where BA rp,t) is the flux density at anglerp, IgO is the airgap length, 110 is the

permeability of vacuum andNI is the total current enclosed by the closed loop path,c.

The term NI in this equation is obtained by integrating equation (3.1), which models

the current sheet of the levitation winding, over the rangeqJ and rp+ 1l/ n . Hence,

1r
!p+-

n

2BArp,tYgo = 110 f IF sin(mt - ne - ¢}de
!p

= ~ {IF cos(an ~n(1I' + :) ~ (Il)~ IF COS(tJJl ~nil' ~ (Il)}

= - 2110 {IF cos(mt - nip - ¢)}
n
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Therefore, the flux density distribution of the radial force winding is given as

(3.4)

for an arbitrary anglerp, where

(3.5)

It is helpful to rewrite equation (3.1) in terms of two current components, one having a

peak in the y- direction «() = 00
) and the other at right angles toit, i.e. in the x-

direction. By separating the current distribution due to the levitation winding into the

two components, an alternative expression for its flux density distribution could be

derived which will assistin deriving the forces acting on the rotor in the y- and x-

directions. Therefore, equation (3.1) then becomes

If (O,t) = I FI sin(aJt - nO)- I F2 cos(aJt - nO) (3.6)

where IFI = IF cos¢J and I F2 = I F sin ¢J are the peak currents of the two components in

the current sheet of the N-pole radial force winding. As before, the flux density

distribution arising from the stator current distribution of equation (3.6) can again be

obtained using Ampere's Law (equation (3.3», whereby

IT
tp+-

N

2B Arp, t ~ gO = J-lo JI FI sin (aJt - n(}) - I F2 cos(aJt -n(})dB
tp

Hence, the flux density distribution of the radial force winding can also be written as

(3.7)

for an arbitrary anglerp, where
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BFI =~IFI andBF2 =~IF2
nlgo nlgo

(3.8)

It is evident that equation (3.7) is the flux density distribution due to the levitation

winding current distribution given by equation (3.1) since the former can be obtained

from expanding the cos() term of equation (3.4) to giveBF! = BF cos¢> and

BF2 = BF sin¢>. Having derived the flux density distribution due to the N-pole

levitation winding, i.e. equation (3.4) and its alternative representation given by

equation (3.7), the forces acting on the rotor in the y- and x- direction can be derived.

3.2.2. Derivation of force expressions

The flux density acting on the surface of the rotor due to the main M-pole (m pole pair)

winding stator current and induced M-pole rotor current is assumed to be sinusoidaland

given by

B~(8,t)=B~ cos(OJt-m8) (3.9)

where B~ is the peak magnetic flux density and 8 is the mechanical angular

coordinate.It is also assumed that this flux density is equal to the airgap field.

As derived in section 3.2.1, the additional N-pole windingin the stator produces a

sinusoidal flux density distribution given by

(3.10)

where B; is the peak flux density of the N-pole flux distribution and¢ is the phase

difference between the peak of the M-pole flux density distribution to that of the N-pole

flux density distribution. Similar to the flux density due to the main winding, it is

assumed that equation (3.10) acts on the surface of the rotor, which is assumed equal to

the airgap field, and is due to the N-pole winding stator current and induced N-pole

rotor current.
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Therefore, the magnetic flux density distribution in the airgap of the induction motor

can be obtained through the superposition of equations (3.9) and (3.10) and expressed as

B{e,t}= B:! {e,/}- B; {e,/}

= B:! cos{OJt - me}+ B~ cos{OJt - ne - fjJ}
(3.11)

This airgap flux density is responsible of producing an attractive force on a surface

element of the rotor, M, which can be written as

(3.12)

Hence, the x- and y- direction forces produced in the motor are obtained by resolving

equation (3.12) into its horizontal and vertical components and integrating it over the

surface of the rotor, oflengthlz, as shown below.

Figure 3.3: Horizontal and vertical forces on the rotor.

27rl

r, = II M'{e}cose
o 0

(3.13)

27r1z

r, = I I M'{e)sinB
o 0

(3.14)
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3.2.2.1. Levitation force

The levitation or y-direction force exerted on the rotor is given by equation(3.13) and

by substituting equation(3.12) this becomes,

The equation above is then solved by further substituting equation(3.11),

B~2 COS2(tDI- mB)
I 211'

r J N
2

2{ )Fy =_z_ +BF cos \tDl-nB-¢ cosBdB
2#0 0 M N ( ) ( )+ 2Bo BF cos\tDl - mB COS\tDI- nB - ¢

(3.15)

where m and n are positive integers larger than or equal to 1. The limits of the integral

and the periodicity of the integrand in equation(3.15) results in certain terms within the

integral to be zero, when expanded, due to the terms reducing to integrals of the form,

211'

Ja cos(b - kB)dO = 0
o

(3.16)

211'Jasin(b -kB)dO = 0
o

(3.17)

for all values ofb and non-zero integersk. This can be observed by solving each term in

equation (3.15) in tum.

The first term integrates to zero as shown below,

I 211'

~ JB~2 cos2(tDl-mB)cosBdO
2#0 0

I 211'BM2

= ~ J-o-ll + cos(2tDt - 2mB)]cosB dB
2#0 0 2

(3.18)

I 211'BM2 [1 1 ]
=~ J_o- cosB+-cos(2tDt-(2m+l)9)+-cos(2tDt-(2m-l)9) dB

2#0 0 2 2 2

=0
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since all cos( ) terms are of the form given in equation (3.16). The second term of

equation (3.15) also reduces to zero because it is similar to the first term withB~2

replaced byB:2 andm replaced byn in the cos? ( ) term.

The integration of the final term in equation (3.15) is given by equation (3.19) below.

I 21T

.!....!_ f 2B~ B: cos(aJt- mB)cos(aJt - nB -(J)cosBdB
2po 0

2 M N [cos(-(m-n+l~+(J)+cos(-(m-n-l~+(J)]
rl fITB B= _z 0 F + cos(2aJt - (m+ n + 1~ - ¢) dB
2po 0 2 ( ( \n)+ cos 2aJt- m+ n -lp - (J

(3.19)

= 0, when m-n# ±1

However, whenm - n = ±1, the above equation integrates to give

21T M N [cos(-(m-n+l~+¢)+cos(-(m-N -1)9+¢)]
rl fB B

_z 0 F + cos(2aJ{ -(m+ n + 1)9 - (J) dB
2po 0 2 ( ( \n)+cos 2aJ{- m+n-lp-¢

I 2ITBMBN
=.!....!_ f 0 F cos(O +¢)dB

2po 0 2

= rlz BM BN 1(cos(J
2

0 F

Po

(3.20)

which is the only non-zero term in equation (3.15).

Hence, the levitation force expression, given by equation (3.15), reduces to a constant

force,

F rl zJd3~ BN '"= F cos~
y 2#0

(3.21)

when the difference between the main winding pole number, M, and the levitation

winding pole number,N, is ± 2 .
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3.2.2.2. Lateral force

Equation (3.14) represents the lateral or x- direction force acting on the rotor, which

upon substitution of equation (3.12) becomes:

I 2tr

r, =~ JB(B,tYsinBdB
2j..Jo 0

As for the levitation force, the expression forB(B,t), as given in equation (3.11), was

substituted into the above equation to give,

(3.22)

The similar method employed to solve for the levitation force will be employed here

where each term of equation (3.22) will be solvedin tum.

The first term does not contribute to the x- direction force as shown below

I 21r

~ JB~2 cos2(aJt-mB)sinBdB
2f..lo 0

I 2tr BM2
=!.2_ J_o-ll+ cos(2aJ( -2mB)]sin B dB

2f..Lo 0 2

= rlz 7B~2 [sinB+.!sin(2aJt-(2m-l)9)-.!sin(2aJt-(2m+l)9)]dB
zu, 0 2 2 2

=0

(3.23)

as all sin ( ) terms in this integration are of the form given in equation (3.17). Likewise,

the second term of equation (3.22) also reduces to zero because it is similar to the first

term, in which B~2 is replaced byB:2 andm replaced byn in the cos2( ) term.

The final term to be considered from equation (3.22) also integrates to zero as shown in

equation (3.24).
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rl 211'

_z f 2B~ B; cos(mt - mB)cos(mt - nB -(6)sinBdB
2#0 0

2 M N [Sin(- (m- n-1)1 + (6)- cos(- (m- n+ 1)1 +(6)]
rl fll'B B .

=_z 0 F +sm(2mt-(m+n-I)1-(6) dB
2#0 0 2 ( ( \n)- sin 2mt - m+ n + 117 - (6

(3.24)

= 0, when m-n 1:- ±1

However, if m - n = ±1, this final term becomes

rl 2

f
1l'BM BN [Sin(- (~- n -1)1 + (6)- sin (- (m- n+ 1)1 + (6)]

_z 0 F + sm(2mt - (m+ n - 1)9 - (6) dB
2#0 0 2 ( (

+ sin 2mt - m+ n + 1}8 - (6)

rl 211' BM BN
= _z f ± 0 F sin(O+(6)dB

2#0 0 2

= ± rlz B~B; trsin (6
2#0

(3.25)

Therefore, the lateral force expression reduces to,

F rlz7lB~ BN .
x = ± F sm;, whenm -n = ±I

2/10
(3.26)

However, unlike the levitation force, equation (3.26) clearly illustrates that the direction

of the lateral force is dependent on the relationship between the main winding pole

number, M and the levitation control winding pole number, N.

Based on equations (3.21) and (3.26), an induction motor, with a motoring M-pole

stator winding, is capable of producing magnetic bearing forces when an additional

winding having a pole number N= M ± 2 is wound onto the stator. The magnitude of

this force is obtained from

(3.27)

where Fy and F, are given by equations (3.21) and (3.26).
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Despite equations (3.21) and (3.26), the force expressions become much more useful if

it is derived using a levitation winding flux density distributionBf (B. t) which is

separated into two separate components lying along the y- and x- axis respectively.

Therefore equation (3.10), could be separated into two separate components to give

B7 (B, t) = -B~ cos(aJt - nB) - B! sin(aJt - nB) (3.28)

where B~ = B% cos¢ and B':x = B% sin ¢ are the peak flux densities of the two

components aligned with the y- and x- axis respectively whenB~ is aligned with the y-

axis as shown in Figure 3.4.It is important to note that equation (3.28) is identical to

equation (3.7) derived in section 3.2.1 withBFI being replaced byB~ and BF2 by

!
I

i
!
I

!
~ _..;...I > X

BN
FX

Figure 3.4: Graphical representation of the peak airgap flux densities due to the M-pole main
winding and N-pole levitation winding.

Therefore, the termsB% cos¢ and B% sin¢ in the levitation and lateral force

expressions given by equations (3.21) and (3.26) respectively could be rewritten as

F = 71z7d3~ BN
y 2 Fy

Po
(3.29)

(3.30)
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when M - N = ±2 or m - n= ±1.

Equations (3.29) and (3.30) are much more useful in comparison to equations (3.21) and

(3.26) because it clearly illustrates that the levitation and lateral forces acting on the

rotor could be directly controlled by the peak magnitudes of the levitation winding flux

density componentsB;-;' and B~ respectively. However, in order for the equations to

be applicable, the flux density componentB~ must be aligned with the peak airgap

flux density of the main windingB~ with B~ lying in quadrature.

Equations (3.29) and (3.30) correspond with the findings of Okada et al. (1995) for a

permanent magnet type bearingless motor. However, unlike the results presented by

Okada et al. (1995), it is clear from the derivation above that the direction of the lateral

force F, is dependant on the M-N pole combination, that isF, acts in the positive x-

direction when M - N = +2 and is negative when M - N= -2. In the case of an

induction type motor, the force relationship derived by Okada et al. (1995) utilised a

formulation based on separating the flux density distributions in terms of contributions

from the stator currents and from their induced rotor currents, in which induced

coefficients were involved in the formulation. This introduces an additional term

dependant upon the induced coefficients to be multiplied with equations (3.29) and

(3.30), which increases the complexity in calculating the forces since a value of the

induced coefficients is required. Furthermore, force expressions for the induction motor

derived in this section are believed to be more consistent with vector control concepts,

as compared to those derived by Okada et al.

3.3. Forces acting on a perturbed rotor

The force expressions derived in the previous section are only relevant for machines

with rotors fixed by conventional bearings, thus makingit relevant for bearing relief

applications. In a totally bearingless machine, however, the interaction between the flux

densities of the main winding and the additional stator winding will produce radial

forces acting on a free moving rotor. This will cause the rotor to experience

perturbations from its central position. Expressions for the radial forces acting on the
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rotor due to the perturbations experienced will be derived in this section. These

expressions are thought to be useful when designing the position control compensator

for a totally bearingless induction motor, which will be presented in this thesis in

Chapter 8. However, it is crucial to comprehend that the rotor perturbations will also

result in a change in the airgap flux density distribution in the machine, which will be

looked into firstly.

3.3.1. Flux distribution of the levitation winding due to a perturbed rotor

Ampere's
Law closed
loop path, c

Figure 3.5: Ampere's Law path for a perturbed rotor machine.

Assuming that the rotor has been perturbed in the¢ direction by a distanceAm, a non-

uniform airgap length is created between the rotor and the stator as shown in Figure 3.5.

The airgap length in the machine at a general mechanical anglee can then be expressed

as

(3.31)

48



Chapter 3: Force production in a self-levitating motor

where IgO is the airgap length when the rotor is centred. It is also assumed that the

perturbation is small, thus making first order approximations applicable in the

derivations wherever necessary. Equation (3.31) can also be expressed in terms of small

perturbations, Ax and Ay, in the direction of the positive x- and positive y- axis

respectively,

(3.32)

In order to obtain an expression for the airgap flux density due to the N-pole winding in

a perturbed rotor machine, Ampere's Law is again considered. Figure 3.5 shows the

Ampere's Law closed loop path for the perturbed motor machine. The same closed loop

path is also shown in Figure 3.6, but with the stator and rotor being rolled out.

0=0 rp
I,..:

21t

Rotor

Ampere's Law closed
loop path, C

Figure 3.6: Ampere's Law path for a perturbed rotor machine with the stator and rotor rolled
out.

Therefore, assuming that the rotor and stator iron are infinitely permeable, Ampere's

Law requires:

c

tr

2 4 <P+/i

f HJ1gJ+f H ilg2 = f I(B,t}iB
J 3 <P

H(B,t}l(B)- [H(B,t)+ W(B,t)J!(B)+ Al(B)] = I(B,t )AB

(3.33)

H(B,t)Al(B)+ I(B)W(B,t) = -I(B,t)AB
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If the last line of equation (3.33) was divided byl:J.eand the limit of l:J.e is taken as it

approaches zero,

!!:O[H(e,/)I:J./(e) + ue) MI(e,/)] = -/(e,/)
Ae l:J.e

H(e,/)a~:) -uo) aHa~'/) = -/(e,t)

a
ae [H(e,t~(e)] = -/(e,/)

(3.34)

Hence, an expression for the airgap flux densityBr (e, I) due to the N-pole winding in

the perturbed rotor can be obtained from the last line of equation (3.34) with the

knowledge that B = 1-I0H and that the expression forI(e,t) is given by equation (3.6).

Therefore,

(3.35)

and by substituting equation (3.6) into equation (3.35) and integrating both sides,

Br (e,IYg (e) = -1-10 f 1FI sin(OJI- ne)-I F2 COS(OJI- ne}Je

= - 1-10 [I FI COS(OJI- ne)+ 1F2 sin (OJI- ne)]
n

Hence,

= - [1-10 J [I FI COS(OJI- ne)+ 1F2 sin(OJt - ne)]
I l:J.y B!:J.x· en 1-- cos - - sm

gO Igo Igo

Bf(e,t)

= [1 - l:J.ycose - !:J.x sin eJ
Igo Igo
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As the perturbation is assumed to be small and first order approximations apply, the

airgap flux density distribution of the N-pole winding due to a perturbed rotor can be

simplifiedto be:

(3.36)

where B; (e,t) is the airgap flux density distribution of a centred rotor due to the N-

pole winding, as in equation (3.28).

The effect of rotor eccentricity on the airgap field of a non-salient pole machine had

been investigated previously by Swann (1963) by means of a mathematical analysis

employing conformal transformation. Swann proved that an approximate calculation of

the airgap flux density distribution on a perturbed rotor using Ampere's Law was able

to yield results which were in good agreement to those derived through the

mathematical analysis. Hence, the use of equation (3.36) as the airgap flux density

distribution due to the levitation winding for a perturbed rotor (derived from Ampere's

Law) throughout this thesis is justified.

The effect of the rotor perturbation on the flux density distribution due to main M-pole

winding is similar to that derived for the N-pole levitation winding. Hence, the airgap

flux density distribution of the M-pole winding due to a perturbed rotor can also

simplifiedto

B~' (e, r) ~ B~ (e, tIl + L\y cose + L\x sineJ1 Igo Igo
(3.37)

with B~ (e,t) being the airgap flux density distribution of a centred rotor due to the M-

pole winding, as given in equation (3.9).

3.3.2. Force derivations for the perturbed rotor case

In order to derive the force expressions for the perturbed rotor condition, the total airgap

flux density distribution is required and it is obtained from
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B'(O,/)= B~'(O,/)-Br(O,/)

= B~ (o,tII + Ay coso + Ax sin oJ - B; (o,III + Ay coso + Ax sin oJ (3.38)t ~o ~o 1 ~o ~o

where B~(O,t)=B:: cos(mt-mO) and

B; (O,t) = -B;-;' cos(mt - nO)- B~ sin(mt -nO)

are the airgap flux density distributions of the unperturbed rotor due to the main and

levitation windings respectively.

With this, the expression for the forces acting on the perturbed rotor can be obtained as

in Section 3.2.2 but with the airgap flux density now given by equation (3.38), where

1 211'

, r. J '( )2Fy =_Z B O,t cosOdB
2#0 0

(3.39)

I 211'

F~= .z: JB'(o,tY sinOdO
2#0 0

(3.40)

However, before proceeding with the integration, it would be worthwhile to look further

at the expression forB' (0, IY .

From equation (3.38),

(3.41)

which can be simplified by employing first order approximations whereby

[1+ Ay costi + Ax Sine]2 ~ [1 + 2 Ay COSo+ 2 Ax Sine]
19o Igo 19o 19o

(3.42)

Therefore, through substitution of (3.36) and (3.37) and application of (3.42), equation

(3.41) becomes:
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B' (e,t)2 = (B;: (e,ty - 2B;: (e,t)B; (e,t)+ B; (e,t)2fl +2~y cose'+2Ax sin e]t 19o 19o

= B(e,tY[l + 2 .1y cose + 2 Ax sin e]
19o 19o

=B(e,tY +2B(e,tY[~Y cose+ Ax sine] (3.43)
19o 19o

In the equation above,

B(O,t) = B;: COS(aJt- mO)+ B~ COS(aJt- nO)+ B~ sin(aJt - nO)

which is the total airgap flux density of the unperturbed rotor due to both M- and N-pole

windings. Therefore, the levitation and lateral force due to the perturbed rotor can now

be obtained by substituting equation (3.43) into equations (3.39) and (3.40).

3.3.2.1. Levitation force

The perturbed rotor levitation force, obtained from (3.39) and (3.43) is given by

F; = rlz T{B(O,tY +2B(B,ty[dY coso+ ~ Sino]}cosOdO
z», 0 Igo Igo

rl 2J8 ( )2 rl 2J8 ( )2[ ~Y ~.] Ll ae=_z B B,t cosBdB+_z B B,t -cosB+-smB COSu u
2po 0 Po 0 I gO IgO

-r. +dFy

(3.44)

where Fy is the unperturbed levitation force, as given by equation (3.29), when

m - n = ±l. Thus, the only term of equation (3.43) left to be considered is the levitation

force due to the perturbations in the x and y direction,

(3.45)

In order to simplify the integration of equation (3.45), the terms inside the integral are

taken in two separate groups.
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Firstly, the term B{e,tY is given by

B{B, t y = [B~ cos(aJt - me)+ B~ cos(aJt - ne)+ B:Xsin{evt - ne)Y

= B~2 cos2{aJt - mB)+ B~ 2 cos2(aJt - nB)+ B:x2 sin 2(aJt- ne)

+ 2B~ cos(aJt - me)B:" cos(aJt - ne)+ 2B~ cos(aJt - me)B:X sin{aJt - ne)

+ 2B:;' cos(aJt - nB)B:X sin(aJt - nB) (3.46)

which expands into the following five terms:

A. B~ B~ [cos{- (m - n}9) + cos{2aJt - (m+ n}9)]

B. B~ B:X[sin{2aJt - (m +n}9)- sin(- (m -n}9)]

BM2 BN2 BN2
° FY FxC. --+--+--
222

(3.47)

BM2 [BN2 N2]
D. _O-cos(2{1)t-2me)+ ___!!__ BFx cos{2(1)t-2ne)

222

The second group of terms in the integral of equation (3.45), when expanded becomes

[AycosB + Ax sin B]cosB = Ay (l+cos2B)+ Ax sin2B
2 2

(3.48)

Therefore M'y can be obtained from the integral over the range of0 to 21l of the five

terms in equation (3.47), taken in turn, multiplied by equation (3.48),

I 2ft tA Ax ]M'y =~ J{A+B+C+D+E ~(1+cos2B)+-sin2e se
~~o 2 2

(3.49)

Firstly, the integration of A and B of(3.47) with (3.48) integrates to zero

rl 211" {Ay Ax. ]_z-J{A+B -{1+cos2e)+-sm2e de=O
fJolgo 0 2 2

(3.50)
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smce it gives rise to terms of the form cos(kaJt - (m± n ± c)9) and

sin(kaJl - (m± n ± c)9) which integrate to zero over the limits considered, with

k = 0 or 2, c = 0 or 2 and m - n= ± 1. Furthermore, sincem, n ~ I, thus m+ n ~ 3.

Secondly equation (3.49) also consists of,

1 ~ {A ~ ]...!...!_ J(D+E ~(I+cos2B)+-sin28 «e
poigo 0 2 2

(3.51)

which upon expansion and simplification becomes

(3.52)

The pole numberN, and hence the pole pair numbern, of the levitation windings is a

non-zero positive integer, therefore

21r {27r x trig (2aJl~ n= 1

ftrig(2aJl - 2(n -1)9}dB =
0, n » 1

o

where trig( ) represents either cos( ) or sin( ). Hence, (3.52) integrates to

rl 7r {2B~B~(AYSin2aJt-AxcOS2OJt) }

4P:lgo + (B~2 - B~2 ~AYCOS2011 + ~sin 201/)

(3.53)
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when n= 1 and zero when n > 1. Finally,

(3.54)

since the integral ofcos(20) and sin(20) over the considered range is zero.

Therefore, from the contribution of equations (3.50), (3.53) and (3.54) to equation

(3.49), the levitation force due to the perturbation,My, when n = 1 becomes

1M? = rlz1t

y 411olgo

2B~ 2.1y+ B~ 2.1Y(2+ cos2liJt) + BZ 2.1Y(2- cos2aJt)
I.....N2 N2\..

+ \f"Fy - BFx px sm 2liJt

+ 2B~B:X (.1ysin 2liJt - .1xcos2liJt)

(3.55)

However, when n> 1, equation (3.53) becomes zero, and thus,

(3.56)

As in equation (3.44), the levitation force acting on a perturbed rotor, with a main and

levitation winding pole combination ofM - N= ±2, can be expressed as

where

rl z 1d3~ B;-;' N 2 1F = when M - = ± or m - n = ±
y 2po'

and My is as given in equations (3.55) or (3.56) depending on the valueofn.
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It can be observed that with a perturbed rotor, the levitation force is now dependent on

both B~ and B;:". Furthermore, whenn = I, the levitation force will no longer be

constant but will experience oscillations due to the termsCOS(2lVt) and sin(2lVt).

3.3.2.2. Lateral force

Similar to the levitation force, by substituting equation (3.43) into (3.40), the lateral

force acting on the perturbed rotor is obtained

, rl 2f1r{ ()2 ()2[~Y Ax.]} .F" = _z B e,t + 2B fJ,t -cose + -sme smedfJ
2po 0 Igo Igo

rl 2f1r ( )2. rl 2f1r 2[~ Ax.] . (3.57)= _z B fJ,t sme dfJ + _z B(fJ, t) - cosfJ+ - smfJ sme de
2p_ 0 )Jo 0 Igo Igo

=F" «sr;

with F" being the unperturbed lateral force experienced by the bearingless machine

when m - n= ±1, as in (3.30).

Again, the remaining term to be considered is the lateral force due to the perturbations,

~'" given by

I 21r

~,,=~ fB(fJ,ty[~ycosfJ+Axsine]sinfJde
polgo 0

rl 2f1r {~y . Ax ( )]=_z_ (A+B+C+D+E -sm28+- l-cos2fJ de
Polgo 0 2 2

(3.58)

with the terms A, B, C, D and E representing the expansion of the termB(e,tY, as in

(3.47).

The integral of the above equation will, again, be done in turn starting with

I 21r {~ Ax ]~ f(A+B ~sin28+-(1-cos2e) dfJ=O
pigo 0 2 2

(3.59)
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Equation (3.59) integrates to zero because the expansion of the integrand gives rise to

terms of the formcos(kwt - (m± n ± c)e) and sin(kwt - (m ± n ± c)9) which integrate

to zero in the limits considered, wherek = 0 or 2, c = 0 or 2 andm - n = ±1 with

m- n ~3 due tom and n being positive non-zero integers.

The next part of(3.58) to be considered is

/ 2fT {~ Ax J__!_.:._ J(D+E 1sin2B+-(I-cosW) ae
Po/go 0 2 2

(3.60)

which integrates to give

717r {- 2B ~ B:" (Ay cos 2mt+ Ax sin 2OJt) 1
4J.1:1gO + (B;;

2
- B:" 2 }Ay sin 2mt - Ax cos 2mt)J

(3.61)

when n =1 and zero when n> I.Lastly,

/ 2". [L\ L\x J__!_.:._ JC1sin2B +-(1- cos2B) dB
polgo 0 2 2

Q
M2 BN2 N

2Jrl z 2 B0 Fy BFx ~y. Ax
=--J -+-+- [-smW+-(I-COS2B)ldB

Pol gO 0 2 2 2 2 2 'j
(3.62)

By considering equations (3.59), (3.61) and (3.62), there exists two possible solutions to

the lateral force,AF'x' exerted on the rotor due to the perturbation.

Whenn= 1,

2B~2 Ax+ B~2 Ax(2 - cos2mt)+ B~2 Ax(2+ cos2mt)

+ (B~ 2 _ B~ 2
~ysin 2mt

- 2B~B:" (Aycos2mt + Ax sin2mt)

(3.63)
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However, when n> 1, the contribution of(3.60) to (3.58) becomes zero, and thus,

(3.64)

Finally, the total lateral force acting on a perturbed rotor, with a main and levitation

winding pole combination ofM - N= ±2, can be expressed as

where

rlz1d3~B:X h
F", = ± , w enM - N = ±2 orm - n = ± 1

2#0

and M'", is dependant on the value ofn, as shown in (3.63) and (3.64).

From the analysis carried out in this chapter, it can be concluded that the forces acting

on the rotor of a bearingless motor, in conditions of constant or varying airgap length,

are dependant on the peak flux density due to the main M-pole winding in the stator

B~ as well as the flux densities due to the N-pole levitation windingB~ and B:X. If

the magnitude and position of these peak flux densities can be ascertained in the motor,

then a suitable force control scheme could be designed to maintain levitation of the

rotor.
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Chapter 4

Vector control of a bearingless induction motor

4.1. Introduction

In Chapter 3, the expression for the forces acting on a fixed rotor of a bearingless 1M

having an M-pole torque production stator winding and an N-pole levitation stator

winding was derived as

rlz1d3~ B~
F =---.;_

y 2#0

F = + rl ztrB~ B:X
x - 2#0

(4.1)

(4.2)

when M - N = ±2. From these equations, it is clear that the forces are dependent on the

peak field on the rotor surface due to the M-pole winding,B~, and the peak of the

N-pole winding fields, B;;' and B:X. It is assumed thatB~ corresponds to the net

airgap flux linkage vector, f//:, and B~ and B:X correspond to the net airgap flux

linkage vector of the N-pole winding,v", Therefore, a field-oriented vector control
-0

scheme leads to the control of a levitated induction motor. It is a requirement that, in

order for (4.1) and (4.2) to be valid, the peaksB~ and B;;' must lie in the same radial

direction, measured in electrical radians, at all instants in time, whilstB:X lies in

quadrature. Therefore, in the vector control schemes bothB~ and B~ are required to

be aligned with the d- axis of the rotating frame withB:X aligned with the q-axis.
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The vector control schemes introduced in this chapter will be designed for induction

motors having two types of rotor structures. Section 4.3, considers a vector control

scheme for a motor with squirrel cage rotor whereas Section 4.4 considers a control

scheme for an induction motor without any induced N-pole rotor currents, for example a

wound rotor having an M-pole winding. For each type of bearingless 1M, three different

vector control schemes will be proposed. The first scheme involves an indirect rotor

field orientation (IRFO) in which both M- and N- pole winding quantities are oriented

onto the M-pole rotor flux. However, it will be shown that in the IRFO control of the

cage type motor a force in the x- directionF, will always be produced, even when

unwanted, sinceB:X is aligned on'I'~ which is non-zero in the rotor frame. Therefore,

to ensure thatF, is present only when required, both the M- and N- pole winding

quantities must be oriented onto the M-pole airgap flux. Hence, an indirect airgap field

oriented (lAFO) vector control scheme will also be proposed in Sections 4.3 and 4.4.

Finally, a mixed field oriented (MFO) scheme, in which the M-pole winding is rotor

field oriented whereas the N-pole field is oriented onto the M-pole airgap flux, will also

be designed for the bearingless motor having either a cage rotor or a rotor that does not

induce any N-pole currents. The MFO scheme will be shown to be beneficial, as it has a

simpler design compared to the IAFO scheme since the torque (M-pole winding)

control of the motor can be rotor field oriented without compromising the efficiencyof

the force (N-pole winding) control.

However, before considering the various vector control schemes for the bearingless

induction motor, a relationship between forces acting on the rotor and the airgap flux

linkage vectors1//: and 1//: will first be derived.

4.2. Relationship between the forces acting on the rotor and the

airgap flux linkage vectors

This relationship will be derived in two parts. First, an expression relating the peak

airgap flux linkagerjt 0 to the peak airgap fieldiJ0 is obtained which is applicable to
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both the main winding and levitation winding. This expression is then used to relate the

x- and y- direction forces to the airgap flux vectorsf//M and v".
_0 -0

4.2.1. Relationship between peakIjJ" 0 and peakB0

The relationship between the peak airgap flux density,Ij/0' to the peak airgap field,B0 ,

is obtained using the basic equations relating the airgap flux, flux linkage and flux

density in a rotating ac machine.

For a P-pole (p pole pair) machine, the flux linkage spans an area

A = 7!Dl:
2p

(4.3)

where D is the diameter andlz is the length of the rotor. The flux density in theairgap of

the machine is assumed to be sinusoidal, hence the average flux density,Bav, is given by

1 1T A

s; =- Js,sin611B
7l 8=0

A

2Bo
=--

(4.4)

where e is in electrical degrees.

The relationship between the average airgap flux density and the maximum flux in the

airgap is known to be

~ =B ·A'1'0 av

upon which substitution of equations (4.3) and (4.4), can be expressed as

(4.5)

Hence, the maximum airgap flux linkage in the machine is given by
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(4.6)

where r is the radius of the rotor. In equation (4.6),Neff is the effective fundamental

turns, which, for a machine havingN, number of total turns in series per phase, can be

expressed as

(4.7)

with kw being the winding factor (Chapman, 1999).

Therefore, a relationship between the peak. flux density in the airgap and the peak. flux

linkage is available from (4.6),

(4.8)

The peak. airgap field could also be related to the terminal voltage applied to the

windings of the induction motor. Figure 4.1 shows the per phase equivalent circuit of an

induction machine.

v
R'_,
s

Figure 4.1: Per phase equivalent circuit of an induction motor.

The back emf stator voltage induced in the machine is represented in the equivalent

circuit asEm. The peak. of this voltage can also be written as

(4.9)

where OJ = 2!if for a machine operating with a frequency,f
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In the induction motor,Em is assumed to be approximately equal to the rms terminal

voltage, V Therefore, by substituting equation (4.5) and (4.7) into equation (4.9),

Hence,

= 47ifk N Borlz
V t; w t

,,2 P (4.10)

Equation (4.10) now relates the rms terminal voltage applied to the machine to the peak

flux density in the airgap. Therefore, by rearranging, the peak flux density in the airgap

of the machine can also be expressed as

(4.11)

This final expression is useful when calculating the amount of rms terminal voltage

required to produce a certain value of peak airgap flux density. However, currently the

most useful expression will be equation (4.8).

A relationship between the forces acting on the rotor and the airgap flux linkage vectors

I//M and I//
N

can now be derived by employing the relationship between peak airgap
-0 _0

flux density, r;/o' and the peak airgap field,Bo given by (4.8).

4.2.2. Relationship between Fy, F; and the airgap flux vectors

In the vector control schemes considered in this chapter and throughout this thesis, all

the three-phase (a, b, and c) quantities of the motor are transformed into an equivalent

two-phase stationaryap quantity through the rms convention. For example, applying

the rms convention on the three phase stator currents implies that the magnitude of the

stator current vectort, is equal to the rms phase currentiph, i.e. Itsl = ~i;a + i;p = iph.

Therefore, using this convention,
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(4.12)

where x represents either the stator voltagevs, stator current is or the flux linkages in

the motor f//. These 2-phaseap quantities are then transformed onto the dq reference

frame, rotating at the synchronous speedOJ e' using the following relationship

(4.13)

Therefore, based on the rms convention, the equivalent dq axis flux linkage

components are related to the peak magnitude of the airgap flux vectorsIf//~I and If//~I
by

(4.14)

(4.15)

Therefore, from (4.8) and (4.14), the peak field,B~ for the main M-pole winding of

the bearingless induction motor can be expressed as

(4.16)

where kM and NM are the winding factor and the total number of turns in series per
ws Is

phase of the main stator winding, respectively.
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Similarly, for the N-pole levitation winding,

(4.17)

Therefore, B~ and B:X can be expressed as

(4.18)

(4.19)

Equation (4.1) shows that the y- direction force,Fy is related to the peak airgap fields

B~ and B~, whereas equation (4.2) relates the x- direction force,F, to B~ and B~.

Therefore, B~ and B:X will be used to control the amount of force produced in the

motor.

Through substitution of (4.18) and (4.19) into (4.1) and (4.2), the x- and y- direction

forces acting on the rotor are expressed as

(4.20)

with B~ given by (4.16). This equation can now be inverted to determine the value of

II/~. and II/~. required to achieve the reference forcesF; and r; needed to levitate

the rotor:

(4.21)
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4.3. Vector control schemes for a bearingless cage rotor 1M

The vector control schemes considered in this section are designed for a bearingless

squirrel cage induction motor in which both the main M-pole rotor current as well as the

levitation N-pole rotor current are induced. Three different vector control schemes are

proposed for the cage rotor type bearingless 1M. The first scheme involves an indirect

rotor field orientation (IRFO) in which both M- and N- pole winding quantities are

oriented onto the M-pole rotor flux. However, it will be shown in Section 4.3.1 that a

force in the x- directionFx will always be produced, even when unwanted, in the motor

since B~ is aligned on 'I/~ which is non-zero in the rotor flux frame. Therefore, to

ensure thatF, is present only when required, both the M- and N- pole winding

quantities must be oriented onto the M-pole airgap flux. Hence, an indirect airgap field

oriented (IAFO) vector control scheme will also be proposed in Sections 4.3.2.

However, there is no extra advantage of having the torque (M-pole winding) control of

the rotor to be airgap field oriented. Hence, a mixed field oriented (MFO) scheme, in

which the M-pole winding is rotor field oriented whereas the N-pole field is oriented

onto the M-pole airgap flux, will also be designed for a cage rotor motor.

4.3.1. Indirect Rotor Field Orientation (IRFO)

Vector control schemes rely on orientation to a vector. In a rotor flux orientation

scheme, the d-axis of the reference frame rotating at synchronous speed,au, is aligned

with the rotor flux vector. Therefore,

II' = 0." rq (4.22)

Hence, equations (A.II) to (A.14) governing the behaviour of an induction motor in the

dq rotating frame, as derived in AppendixA, reduce to

(4.23)
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(4.24)

(4.25)

(4.26)

where

(4.27)

(4.28)

The rotor flux due to the motoring M-pole winding,'11'::, is controlled by i::, since

equation (4.25) rearranges to give

M LM.M
IJI rd = 0 Imrd (4.29)

where

.M l'M
I - I
mrd - M + 1 sd

STr

(4.30)

. . h deri . d M L~. h .WIth s representmg t e envatrve operator, -, andT = -M IS t e rotor time constant
dt r R

r

of the main motoring winding.

The force acting on the rotor is dependent on the peak field on the rotor surface due to

the main M-pole motoring winding, B~, which in turn is proportional to

~'II'~:/ + 'II'~2 as in equation (4.16). The flux linkages,'II'~q can be related to 'II'::q

through

M L~ M (LM LM).M
'II'od = LM '1/rd + r - 0 Isd

o

(4.31)
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M (LM LM).M'1/oq = r - 0 lsq (4.32)

which was derived from the manipulation of the following flux linkage equations

(4.33)

(4.34)

As in a normal vector control scheme,i~ controls the main torque produced by the

motor. The main flux orientation angle,e~,measured in electrical radians, is obtained

from the integration of the synchronous speed,OJe' which is the sum of the electrical

slip speed of the main rotor flux,OJ;:, and the electrical rotational speed of the rotor,

OJ ~ • Therefore,

8~ = J(m:f + m~ )dt (4.35)

with

(4.36)

as obtained from (4.26). This gives the standard indirect rotor field orientation (JRFO)

scheme.

The main assumption governing the vector control scheme of the bearingless induction

motor is that the N-pole levitation winding field rotates at the same electrical

synchronous speed, relative to the stator, as the M-pole main field. Hence, the electrical

orientation angle of the N-pole field is defined as

(4.37)
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Therefore, in order to implement the vector control scheme for both the M- and N-pole

windings which is restrained by (4.37), an expression for the electrical slip speed of the

N pole field, (j)~ , is required.

Both the M and N pole fields are rotating at the same electrical angular speed,(j)e , thus

the rotor will then rotate at a mechanical speed of

m
(4.38)

The electrical slip speed between the N pole field and the rotor is then given as

N [OJe
]OJ si = n --;;-- OJ r mech (4.39)

Hence, by substituting (4.38),

N _(m-n) n M
OJsI - --;;;- OJ. + m OJsI (4.40)

Similar to the main winding currents, it is assumed thatj~ controls 'I'~ with

N LN.N
Ij/ rd = 0 1mrd

(4.41 )

and

·N _ 1 iN
'mrd - N 1 sd

ST, +
(4.42)

N L~
where T =-., RN

r

It is important to note that the levitation winding N-pole field will sweep past the rotor

with a large slip in which slip currents are consequently induced in the rotor. Therefore,

due to the rotor field orientation scheme, a component ofi~ must exist, as a direct

outcome of equation (4.26). This can be expressed as
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Chapter 4: Vector control of bearingless induction motor

(4.43)

This component of q-axis current is termedi~-Orient as it is required to synchronise the

orientation of the N-pole field to the M-pole field. In order to introduce a lateral, or x-

directional, force an extrai~ component represented asi~-con is required. Therefore,

·N·N ·N
1sq = 1sq-orlent + 1sq-con (4.44)

This i~ will cause an N-pole torque,TN, to be produced which could be fed forward

onto the main motoring torque controlled byi~ where

(4.45)

LN2

with k'' = 3n~ and the value of i~2 +iZ
2

equals the phase rms magnitude of the
Lr

N-pole winding stator current.

As derived in Chapter 3, the x- and y- direction forces acting on the rotor are controlled

by the peak airgap flux densities,B;;' and B!, of the N-pole winding respectively.

These flux density peaks are related to the airgap flux linkage vector,f//:. Therefore,

we can choose:

(4.46)

(4.47)

as this will ensure that both flux density peaksB~ and B;-;' occur in the same direction

in order for the y- direction force expression previously derived in Chapter 3 to be valid.

From (4.37), the N-pole rotor field is also oriented on the d-axis of the rotating

reference frame to give
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(4.48)

This impliesthat

N (LN LN).N'If oq = r - 0 1sq (4.49)

which is obtained by rearranging equations (4.33) and (4.34) in terms of the N-pole

winding inductances and its dq axis components of rotor flux linkage, airgap flux

linkage and stator currents. The consequence of (4.47) and (4.49) is that wheni~-con'

the current responsible forFx, is zero and onlyi~-Orienl is present, I//~ will also be

present. Thus an unwantedF; will be produced byi~-orient. Figure 4.2 illustrates the

rotor field oriented vector control scheme for the bearingless induction motor with no

field weakening.

·N
',abc

Figure 4.2: Indirect rotor field orientation (lRFO) vector control for a bearingless squirrel cage

induction motor.
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The N-pole stator winding current references,i':a* and i~:co" will be derived from the

feedback control ofI//~ and I//~ based on respective reference values obtained using

equation (4.21) from given values ofF; and Fx*. Customarily, in a totally bearingless

induction motor, F; and r: are obtained from positional feedback of the rotor vertical

and horizontal displacements respectively. However,F; and r; could also be given

constant values or step references for bearing relief purposes in which conventional

bearings are still present at either end of the rotor.

4.3.2. Indirect Airgap Field Orientation (IAFO)

As previously seen, the IRFO vector control scheme designed will always produce a

force in the x-direction even when it is not required. This was a direct consequence of a

non-zero N-pole airgap flux linkageI//~ component. Therefore, an airgap field oriented

vector control scheme would be able to overcome this problem.

With this vector control design, the d-axis of the rotating reference frame is now aligned

to the airgap flux vector. Therefore,

III =0
T oq

(4.50)

Before proceeding, it is thought useful to have the equations governing the behaviour of

an induction motor, as given in AppendixA, expressed in terms ofisdq and I//odq' This is

derived in Section A.2. Hence, the behaviour of the induction motor can also be

represented by equations (A.20) to (A.23). However, due to the airgap field orientation,

these equations reduce to

(4.51)

(4.52)
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Chapter 4: Vector control of bearingless induction motor

(4.53)

(4.54)

The implementation of theairgap field orientation vector control scheme for a

bearingless induction motor is not too different from the rotor field orientation scheme

discussed in the previous section.

In the rotor field orientation, IJI~ is controlled only by i~ . However, with the airgap

field orientation, ~ is related to bothi~ and i!: as obtained from (4.53) where

M _ 1 [L' i, (L L)I. M ·M )~IJIod - M + 1 0

'

sd + -L r - 0 \SI sd - (j)si 1sq
Sfr r

(4.55)

Since the force acting on the rotor is dependent on ~, this has to remain constant in

order to develop a constant force. However, from (4.55), it is clear that ~ will change

with i!: for a constant i~. Hence, for this vector control scheme, ~ has to be kept

constant through flux linkage control.

The main torque produced by the motor is still controlled byi::. Similarly, the main

flux orientation angle, ()~, is again obtained from the integration of the synchronous

speed, aJe' which is the sum of the electrical slip speed of the main airgap flux,aJ~,

and the electrical rotational speed of the rotor,aJ~ as in (4.35).

However, since the airgap flux vector is considered and not the rotor flux, the

expression for the electricalaJ ~ is now obtained from (4.54) to give
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Chapter 4: Vector control of bearingless induction motor

(4.56)

As with the rotor field orientation, the N-pole levitation winding field rotates at the

same synchronous speed as the M-pole main field. Thus, the electrical orientation angle

of the N pole field,B:, is defined to be equal to the M-pole field orientation angleB~,

i.e. 0: = O~.Consequently, the expression for the electrical slip speed of the N-pole

field, aJ~ , given by equation (4.40) is still valid.

Despite the airgap field vector orientation scheme,iN . nt must exist in the motor insq=one

order to maintain the orientation of the N pole field. Therefore, from equation (4.54) we

have:

(4.57)

Even though iZ-orient exists, this does not imply the existence of aB;-;' field in the

motor. This is becauseB;-;', and consequently the x- directional force acting on the

rotor, is zero since

(4.58)

(4.59)

and

(4.60)
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due to the airgap field orientation. Hence, in order to introduce a lateral, or x- directed,

force the control field Bi:x has to be applied. This is achieved by creating a1fI~

component relative to1fI~ orientated by the anglee:.The straightforward method of

attaining this is throughiZ-con, as was seen in the IRFO scheme.

This airgap field oriented vector control scheme for a bearingless induction motor with

no field weakening is represented in Figure 4.3. The values fori~* and iZ~con are

obtained in the same manner as in the IRFO vector scheme described in Section 4.3.1.

Comparing Figure 4.2 and Figure 4.3 shows that the difference between the IAFO

scheme and the IRFO scheme mainly lies in the expressions forliJ:Z and i~~orient

together with the addition of a ~ control loop required to produce the correcti::*

The feedback signal for the ~ control loop is obtained using equation (4.55).

Figure 4.3: Indirect airgap field orientation (lAFO) vector control for a bearingless squirrel cage

induction motor.
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4.3.3. Mixed Field Orientation (MFO)

When IRFO is used for both the M- and N-pole windings, an x- direction force will

always be produced in the bearingless induction motor wheni~-orient is non-zero. When

an IAFO scheme is used for both windings, the control of the M-pole main winding

requires an extra ~ control loop and a more complicated M-pole field slip speed,OJ~ ,

equation. However, the unwanted x-direction force seen in the IRFO scheme could be

theoretically eliminated. Therefore, it is clear that for the N-pole radial force winding,

the d- axis rotating frame has to be oriented on the M-pole airgap field in order to

produce the levitation forces acting on the rotor. However, there is no extra advantage

on having an airgap field orientation control on the main M-pole winding.

In this section, the M-pole winding d- axis components of voltage, currents and flux

linkages are all oriented onto the M-pole rotor flux vector,v". Therefore, rIr: is zero
_r

and ~ is obtained from (4.29) and (4.30). The main flux orientation angie, ()~, is as

given by (4.35) where the expression forOJ~ , from (4.36), still applies.

The main assumption governing the vector control scheme of the levitated induction

motor still holds whereby the N-pole field rotates at the same synchronous speed as the

M-pole main field. Thus, the expression derived forOJ~ , (4.40), is again valid.

However, the electrical orientation angle of the N pole field,()N, is no longer equal to

()~ . This is due to the fact that all the d-axis components of voltage, currents and flux

linkages of the N pole winding, now has to be oriented onto the main M-pole airgap

field vector, v" .Therefore,
_0

(4.61)

where ",M and ",M are as given by (4.31) and (4.32).If/ od If/ oq
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Equation (4.61) ensures an airgap field orientation for the N-pole winding wherebyIf/~

is now zero. This N-pole field experiences slip and introducesi~-orient' which must exist

in the motor, obtained from equation (4.57) as in the IAFO scheme of section 4.3.2. As

explained in the previous section,i~-orient does not imply the existence of aB:X field in

the motor sinceB:X is proportional to If/~. Hence, iZ-con is again used to introduce a

If/~ component in order to obtain an x-directional force. This vector control scheme

combining an IRFO scheme for the M-pole main field and an IAFO scheme for the N-

pole levitation field will be termed mixed field orientation (MFO) and is as shown in

Figure 4.4.

·N'.abe

Equation
(4.31)&

.M (4.32)
'sa - .......~_:__.:__j

Figure 4.4: Mixed field orientation (MFO) vector control for a bearingless squirrel cage induction

motor.

As in the two other vector control schemes, the N-pole stator winding current

references iN· and iN· are to be derived from the feedback control ofIf/Nd and If/:q, sd sq=con 0
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based on their respective reference values obtained fromF; and F,;using equation

(4.21). Furthermore, in a totally bearingless induction motor,F; and F
J
; is then

obtained from positional feedback of the rotor's vertical and horizontal displacements

respectively.

4.4. Vector control implementations for a bearingless 1M without

N- pole secondary circuit

In section 4.3, three different vector control schemes were introduced for a bearingless

squirrel cage induction motor. In the cage rotor motor, both M- and N-pole rotor

currents are induced in the rotor. Therefore, expressions for the electrical slip speed,

OJ~ and iZ-orient of the N-pole winding are vital in the vector control schemes. From

equations (4.43) and (4.57), a largeiZ-orient current will be present in the cage rotor

motor, irrespective of its vector control scheme, since it is directly proportional toOJ ~

which can be very high (for exampleOJ:; = 25Hz in a 50Hz supplied 2-pole levitation

winding). Therefore, it is anticipated that high slip effects will influence the behaviour

of a cage rotor bearingless 1M. Hence, the IRFO, IAFO and MFO vector control

schemes for a motor with a rotor structure that provides suppression of any N-pole

induced rotor currents are proposed in this section. Suppression of the N-pole rotor

currents can be achieved by having an M-pole wound rotor or a custom-built cage rotor

structure which will only allow M-pole currents to be induced. Chibaet al. (1996) have

previously proposed several cage rotor structures which provide suppression of induced

N-pole rotor currents.

If the bearingless induction motor has no N-pole induced rotor currents, or no N-pole

secondary circuit, the vector control scheme would be less complicated. The main point

to stress is that without the N-pole secondary circuit, only the vector control scheme

involving the levitation winding will change. The vector control for the main M-pole

winding established previously would remain the same. Secondly, the changes

associated with the absence of the N-pole secondary circuit applies to both the rotor and

airgap field vector control schemes.
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Chapter 4: Vector control of bearingless induction motor

The key assumption governing the vector control scheme of the levitated induction

motor still holds whereby the N-pole field rotates at the same synchronous speed as the

M-pole main field. Furthermore, the electrical orientation angle of the N-pole fieldeN
is still defined to be equal toe~or e: depending on whether the motor is rotor field

or airgap field orientated respectively. However, for the mixed field orientation scheme,

eN is given by (4.61).

In the new vector control scheme, without the N-pole secondary circuit present,i~q and

1f.I~ no longer exist. Therefore, the rotor equations associated with the N-pole winding

no longer exist andOJ: has no meaning. Previously, in all the cage rotor vector control

schemes,i~ consisted of two components,i~-orient and i~-con' as given by (4.44). The

first component,i~-orient' arose from the slip experienced by the N-pole field whereas

the second component,i~-con' was responsible for producing a lateral force in the

motor. Nevertheless,in the subsequent vector control schemes,i~-orient does not exist

since OJ: is no longer applicable. Therefore, onlyi~_con is left. Henceforth, in the

vector control schemes to be considered, the current responsible for producing a lateral

force in the motor will no longer be termedi~-con but willjust be represented byi~ .

Furthermore since,

N LN.N
If odq = 0 1sdq (4.62)

a direct relationship is obtained between the forces acting on the rotor and the N-pole

·N dstator winding currents1sd an i~. Through substitution of equation (4.62) into

equation (4.20):

(4.63)

80



Chapter 4: Vector control of bearingless induction motor

Therefore, the N-pole stator winding current referencesi~· and i~· can now be directly

related to F; and Fx· by inverting equation (4.63) to give

(4.64)

As before, F; and Fx· can be obtained from positional feedback of the rotor vertical and

horizontal displacements respectively, or from step references depending on whether the

motor is totally bearingless or the forces are created for bearing relief purposes.

F*---.t
x 1...-__ --'

Figure 4.5: IRFO vector control for a bearingless induction motor without an N-pole secondary

circuit.
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An indirect rotor field oriented vector control scheme for the bearingless induction

motor without an N-pole secondary circuit is shown in Figure 4.5. In the caged rotor

scheme, an unwantedFx was anticipated to be produced byi~-orient. However, this will

not become a problem in the IRFO scheme of Figure 4.5, smcei~-orient is no longer

relevant.

If equation (4.56) is used, instead of equation (4.36), to calculateOJ~ the bearingless

induction motor would instead be airgap field oriented. However, as mentioned in

Section 4.3.2, an additionalvi,:! control loop, with a feedback signal obtained using

equation (4.55), is required to producei~·. Figure 4.6 illustrates the new indirect airgap

field oriented vector control scheme for the bearingless induction motor.

Equation
(4.31)&

.M (4.32)
1.d --t~_:__':___j

F'-~~x L--__ ---'

Figure 4.6: IAFO vector control for a bearingless induction motor without an N-pole secondary

circuit.
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The mixed field orientation vector control scheme consists of an indirect rotor field

orientation vector control for the M-pole winding and an airgap field oriented control

scheme for the N-pole winding. This mixed field oriented vector control scheme for the

bearingless induction motor without an N-pole secondary circuit is shown in Figure 4.7.

M
Equation (j)si

(4.36)

eM
r

+

eN

~·M 0

1'9 Equation
~ LM. M (4.31) &

~rd = 0 Imrd
·M (4.32)

B~Isd

.N"

F'
i:

y

F'
x

Figure 4.7: MFO vector control for a bearingless induction motor without an N-pole secondary

circuit.

In the cage rotor bearingless motor, the mixed field oriented vector control was

preferred because it gave a simpler control for the M-pole winding compared to the

IAFO scheme and it was also able to ensure no extra contribution toF, is produced by

the existence ofiN . t as was seen in the IRFO scheme. However, for the bearingless
sq=onen

induction motor without an N-pole secondary circuit, there seem to be no great
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advantage towards the performance of the mixed field orientation vector control scheme

when compared with the equivalent indirect rotor field orientation scheme.

The vector control schemes for the bearingless induction motor, with squirrel cage rotor

or a rotor without an N-pole rotor circuit, introduced in this chapter will be simulated

using MATLAB Simulink in the following chapter.
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Chapter 5

Simulation of vector control methods for generating levitation

and lateral forces

5.1. Introduction

Chapter 4 proposes vector control schemes for bearingless induction motors with two

different rotor structures; one having a cage rotor while the other rotor suppresses any

N-pole induced rotor currents. The latter type of rotor can be achieved using a wound

rotor having the same pole number as the main M-pole winding, since it does'not allow

any N-pole currents to flow, resulting in a bearingless motor with no N-pole rotor

circuit. In this thesis, the motoring field of the two bearingless motors investigated is

provided by a 4-pole cage and a 4-pole wound rotor induction motor. The levitation

field of the motor is provided by an additional 2-pole winding added to the stator of

each of the 4-pole motors. Both the 4+2 pole cage and wound rotor bearingless 1M

together with their respective vector control schemes proposed in Chapter 4 will be

computationally simulated in this chapter using MATLAB Simulink.

Before presenting the simulation results of the vector controlled bearingless induction

motors, the equivalent circuit parameters of the 4-pole(M = 4) cage and wound rotor

induction motors are evaluated in Section 5.2. Then, the 2-pole(N = 2) levitation

winding is designed and its equivalent circuit parameters calculated. In order to

implement the vector control schemes proposed in Chapter 4, the current, speed and

flux control compensators for both the 4 and 2-pole windings will also be designed.

Finally, with the designed levitation winding and compensators, all the vector control

schemes proposed in Chapter 4 will be simulated for both rotor structures.
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5.2. Derivation of the 4-pole machine parameters

In this section the equivalent circuit parameters of the 4-pole cage rotor and wound

rotor motors chosen to provide the motoring capabilities of the bearingless induction

motors studied in this thesis are evaluated.

5.2.1. Squirrel cage induction motor

The cage induction motor is based on a Brook Crompton, 4-pole,L\- connected three-

phase induction motor having a 48/40 slot combination and the following data:

Rated power 15kW

Rated frequency 50Hz

Rated line voltage (rms) 415V

Rated line current (rms) 27.08A

Rated speed 1450

Rated torque, Trat.d 99.5Nm

Rotor moment of inertia,J 0.071kgm2

Total number of turns per phase,N: 176

Winding factor, k!! 0.958

Table 5.1: Machine parameten of the 4-pole Brook Crompton induction motor.

The drawings of the stator and rotor laminations of the motor were utilised to create the

reluctance mesh employed to model the motor as presented in Section 2.2. The values

of the stator phaseresistanceRsof 1.040 and the referred rotor resistanceR~ ofO.760

were obtained from the data sheet provided by Brook Crompton for the motor. The

equivalent circuit inductances of this motor were evaluated by performing no load and

locked rotor tests (Alger, 1995) using direct on-line (DOL) start simulations with the

DCM software. The resistance and derived parameters of the cage motor is summarised

in Table 5.2 assuming equal split in leakage inductance between the stator and rotor.
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RM 1.040 (from data sheet)s

RM' 0.760 (from data sheet)r

LM 267.7SmH
s

LM 267.75mH
r

LM 264.20mH
0

Table 5.2: Equivalent circuit parameters of the squirrel cage induction motor.

A DOL start DCM simulation for this induction motor was then compared to a DOL

start simulation performed in Simulink based on the parameters of Table 5.2. In both

simulations, load torque equal toTrated (see Table 5.1) is applied to the motor at Is. The

comparison between the two simulation results is presented in Figure 5.1. It was found

that during transient conditions there is a slight difference between the two simulations

as observed in the torque variation shown in Figure 5.l(b). This is due to the fact that

the Simulink model is unable to show slotting effects in the machine since it relies on a

lumped parameter circuit to model the cage induction motor. The DCM simulation,

however, is able to show these slotting effects during transient conditions and can be

considered to produce a more reliable result. Once the motor reached steady state, the

results between the DCM and Simulink simulations were found to be consistent with

each other even under full load.

1- IXM - sinwlinkl
I 700.,-----,.----+:;.-""i7\i\ii7'l'::-::-:r.===::r---,1100 i .~. 100o/~load torque.applied

1=~\~r~;F: a:: ..
11: ···.....• • • • • • • •i• • • • • • • • • • • • • • • •• • •i • • • • • • • • • • • • •1m • • • • • • •

1m
• • • • • • • • •i~.···• • •·.·.I~.··.~\~.J···J• • • • • • • • • •:• • • • • •

~ : ;: , ; ;..... -100 ' ·..···..·····~·········· ··Aj.····..·..········~········....5

- 200: : :~ _~l _oi~ i" ~ , 5 :300 .L.._.... _... _.• • _• . ,_• • • ....:."1'_... _... _. _.... _···--'..r...·_..·_···-'--·c .. _ ... _... _... _.... _ ... r:..._..._...._...___J.• • • .

TiIre(s) Tnne(s)

(a) (b)

Figure 5.1: Comparison of DCM and Simulink simulations for a DOL start of cage 1M under load:

(a) speed

(b) torque (DCM results exhibit high frequency slotting effects during transient)
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1- IXM -_Simulinkl

~r---~---:--~====~==~
200 -----------------,-----------------50 --,----------,-----

,-... ISO -;------------------i -----------------,--
<I: :
'-' 100 4. : -----------------,--
d :

~
6
:Ei -so
til -100

-ISO ,------------------1
-200 .!_----'-------+:,;--~='__.__._:____---j-__,_,~--j

100% load torque applied

Tnre(s)

(c)

Figure 5.1: Comparison of DCM and Simulink simulation for a DOL start cage 1M under load:

(c) stator phase current

5.2.2. Wound rotor induction motor

The wound rotor induction motor considered for the bearingless motor is also based on

the same Brook Crompton, 4-pole induction motor introduced in the previous section.

However, instead of having shorted aluminium bars, the rotor slots are filled with a

short-circuited 4-pole three-phase winding. In order to be able to accommodate the

winding, the number of rotor slots was reduced from 40 to 36 with the rotor tooth

widths and slot openings reduced proportionally, The total number of series rotor turns

per phase was chosen to be 180. The stator phase resistance value was maintained at

1.040 since the stator winding in the wound rotor motor is identical to that of the cage

motor of the previous section. The referred rotor resistance however was calculated

according to (Alger, 1995):

(5.1)

where q is the number of phases,kws and N, are the stator winding factor and total

stator turns in series per phase respectively ands; is the rotor winding factor. In

equation (5. 1), L; is the mean length of rotor winding turn measured in centimetres and

C is the total cross section of copper of all phasesin the rotor slots stated in square
r

centimetres. The equations used to calculateL; and er are:
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(5.2)

c = (fraud )2N
r 500 r

(5.3)

wherep is the number of pole pair of the rotor winding,fraud is the peak rated phase

current flowing in the winding andIrated/500 represents the area occupied by a coil

carrying a maximum current equal toI rated based on the assumption that the current

density in the induction motor is taken as 5Nmm2
. With p = 2, I rat.d equal to the stator

winding rated current andN, = 180, the values ofL; and C, for the 4-pole rotor

winding can be calculated from equations (5.2) and (5.3). Therefore, given k~ = 0.958

and N: =176(from Table 5.1),k~ =0.96, and the calculated values ofL; and Cr,

equation (5.1) computes to giveR~' = 0.990 .

As for the cage motor, the remaining equivalent circuit parameters for the wound rotor

motor were evaluated by performing no load and locked rotor tests with direct on-line

(DOL) start simulations using the DCM program, assuming equal split in leakage

inductance between the stator and rotor. The results are:

RM l.040
s

RM' 0.990r

LM 269.73mH
s

LM 269.73mH
r

LM 265.36mH
0

Table 5.3: Equivalent circuit parameters of the wound rotor induction motor.

The DCM simulation of the wound rotor motor, having full load applied after Is, was

compared with the results from Simulink under the same load conditions with the

Simulink motor modelled by the parameters of Table 5.3.As in the cage motor, the

results shown in Figure 5.2 show dissimilaritybetween the two results during transient
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conditions mostly due to the slotting effects modelled by the DCM software but are not

present in the Simulink model.

SimulinkJ J-lXM SimulinkJ

Tnre(s) Tirre(s)

(a) (b)
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200 -------------------,-------------------,-------------

~ ISO ~;----------------+_--------------+_--------------- 5: ++++++++--+-+-1

1:: 100 ~ ------------------i-------------------i-----------------
<IJ j i-50 -"--,----===---____::j
~ SO -.------------------,-------------------i--------------------,-------------------,-------------------
uj _ ii, ~!"" '1111)"UI!!iI"II!~I' Ij

~ 0 ; ,. 1rtidt/i.'U\Witi"Wh ;'1:1 tlnn~.'.i'li.fnn~l;illft jnii ,!'-: -----1
Q O~ 1 U5 2

00 _;: .....• • • • • • • • • .• •,....:............F :.·········.
-ISO _l__ -'- -+.,.--------,---,~,--O-~---'--~~-

100% load torque applied

Tnre(s)

(c)

Figure 5.2: Comparison of DCM and Simulink simulations for a DOL start of wound rotor 1M

under load:

(a) speed

(b) torque (DCM results exhibit high frequency slotting effects during transient)

(c) stator phase current

5.3. Design and parameter derivation of the levitation winding

The constant forces required to levitate the rotor of a bearingless induction motor is a

result of interaction between the main M-pole winding and a second N-pole winding

where M - N = ±2. Therefore, the two 4-pole motors introduced in Section 5.2 are
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supplemented with a 2-pole second winding wound on the stator. A 6-pole levitation

winding is also possible. Thiswill be discussed in Chapter7.

The 2-pole levitation winding will be wound onto the 48-s10t stator of the original

4-pole induction motor. The total series tum per phase for the 2-pole winding could be

chosen from the induced rms voltage equation:

E = 27r.fk N 2BoTlz
mu.fi wt p (5.4)

which was previously derived in Section 4.2.1 whenEmu,jand B; are known. If Emu

is equal to the supply voltage (i.e. 415V at 50Hz) and the peak 2-pole airgap flux

density, B; assumed to be 0.9T, the number of turns required for the 2-pole winding

N, = 90 is obtained from equation (5.4). However, in the bearingless1M, the levitation

winding is only required to produce a relatively small peak flux density compared to the

main 4-pole winding in order to levitate the rotor. For example to levitate the rotor of

the 4-pole induction motor of weight 235.36N withB~ = 0.9T, we can calculateB;

by rearranging equation (3.27) to give:

(5.5)

Using this equation andIFI = 235.36N, B; computes to give 17.4mT. This means that

the required 2-pole levitation winding supply voltage is much less than 415V and the

selection of the total series tum per phase for the 2-pole windingN, is rather arbitrary.

Hence, the total seriestum per phase was chosen to be 48 instead of 90. The value 48

was chosen to reduce the space occupied by the levitation winding in the stator slots but

this choice is by no means optimised in terms of space utilisation.

The stator phase resistance,R, of the 2-pole winding was calculated using

R _ 4.19qN;Lts
s - lxl06Cs

(5.6)
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obtained from Alger (1995) whereq is the number of phases andNs= 48 is the 2-pole

stator winding turns in series per phase. In equation (5.6),Lts and C, are the stator

winding equivalence ofL; and C, given by equations (5.2) and (5.3). Hence,R, of the

2-pole winding was found to be 0.83!l

Two motors are considered in this thesis and in both motors the stator is identical.

Therefore,R, of the 2-pole winding calculated above applies to both motors. The 2-

pole levitation winding rotor resistance, on the other hand, would vary depending on the

rotor structure of the motor.In the cage1M, 2-pole currents will be induced. The

referred rotor resistance for a cage rotor is given by (Alger, 1995)

(5.7)

where a is a constant dependant on the dimensions of the cage rotor. However, because

the cage rotor supports equivalent 4-pole and the 2-pole three-phase windings(q = 3),

the referred rotor resistance of the 2-pole windingR~' can be related to that of the

4-pole R~' by the following equation:

(5.8)

With k~ = 0.956, N: = 48 turns per phase andk~, N~ and R~' obtained from

Tables 5.1 and 5.2 respectively,R~' calculates to 0.0570. The remaining parameters of

the 2 pole winding equivalent circuit for the squirrel cage motor was then obtained from

simulating no load and locked rotor conditions using theDCM program with the 4-pole

currents removed. The equivalent circuit parameter values for the 2-pole levitation

winding of the cage rotor bearingless motor are as shown in Table 5.4(b).

On the other hand, the 2-pole levitation winding of the wound rotor type bearingless

motor will not have any rotor circuit since the rotor is wound with a 4-pole winding.

Therefore, in the wound rotor motor, the referred rotor resistanceR~' and rotor

inductanceL~ of the 2-pole stator winding do not exist. The stator inductanceL~ can
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be derived from the no load test. Due to the fact that the 2-pole winding is to be wound

onto the same stator as the 4-pole wound rotor motor of Section 5.2.2, the no load DCM

simulation was performed with a 4-pole wound rotor in place to emulate the bearingless

induction motor to be designed without the 4-pole stator winding present. However, in

order to obtain the magnetizing inductanceL~ of the 2-pole winding, the value of the

stator leakage inductanceI~ is required. This is obtained by performing a locked rotor

test of the 2-pole stator winding motor having a 2-pole wound rotor. The parameters of

the 2-pole winding in the wound rotor induction motor is summarised in Table 5.4.

Total stator series tum per phase,N: 48

Stator winding factor, k~ 0.956

(a)

Squirrel cage motor Wound rotor motor

RN 0.830 0.830
s

RN' 0.0570r

LN 58.30mH 58.76mH
s

LN 58.30mH
r

LN 58.12mH 58.S7mH
0

(b)

Table 5.4: Parameters of the 2-pole levitation winding.

5.4. Vector control simulations for sustained levitation of induction

motors

As mentioned at the start of this chapter, the vertical and lateral force control of two

vector controlled bearingless induction motors having different rotor structures will be

simulated using MATLAB Simulink. The first type has a squirrel cage rotor and a stator

having both a main 4-pole winding and a 2-pole levitation winding with respective

equivalent circuit parameters given in Tables 5.2 and 5.4. The second motor type

contains a 4-pole wound rotor with an identical stator to that of the first type. The
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equivalent circuit parameters for this motor are as given in Tables 5.3 and 5.4. The

current, speed and flux controllers of the proposed vector control schemes of Chapter 4

are designed from the equivalent circuit parameters presented in the previous two

sections.

5.4.1. Compensator design for the 4-poleand 2-polewindings

5.4.1.1. Current control loops

In all the vector control schemes, two inner fast current control loops are required for

each stator winding of the bearingIess induction motor, one for each d- and q- axis

current of the main and levitation winding. Due to symmetry, the current controls of the

d- and q- axis currents of each stator winding are controlled by an identical PI

controller.

For the main 4-pole winding, the transfer function betweent~q and ~~qrequired for

the control design is derived from equations (5.9) and (5.10) which govern the

behaviour of the induction motor in the dq rotating frame with the coupling terms

introduced after the control.

(5.9)

(5.10)

Thus, the 4-pole current control plant transfer function is given by

(5.11)

where T~ = a" L~ / R~ . The values of R~ andT~ are obtained from either Table 5.2,

for the cage rotor motor, or Table 5.3, for the wound rotor motor.
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From equation (5.11), the controller was designed in the continuous s-plane, by way of

root locus, with the objective of obtaining a high bandwidth while maintaining the

damping factor ~ at a value of approximately 0.8. The parameters of the designed PI

current controller, with a transfer function given by

(5.12)

for both the squirrel cage and wound rotor 4 pole induction motor is as shown in Table

5.5.

Squirrel cage 1M Wound rotor 1M

Proportional gain,k~ 27.39 33.85

Controller zero, ~ 1630.67 1619.24

Table 5.5: PI current controUer parameters designed for the 4-pole winding current control of the

bearingless induction motor.

This design gives a nominal closed loop bandwidth of 400Hz.

A PI controller is designed for the current loops of the 2-pole levitation winding. As the

2-pole winding also induces rotor currents in the cage rotor, the transfer function

between ~~dq and ~~dq can also be obtained from equations (5.9) and (5.10) with the

introduction of the corresponding coupling terms. Hence, from the parameters in Table

5.4 for the squirrel cage motor, the 2-pole current control plant transfer function is given

by

~~dq(s)_..:.....__=------
~~dq (s) 0.435.10-3 S + 1

1.204
(5.13)

Employing similar methods as that used for the 4-pole current controller design, the

transfer function of the PI controller for the 2-pole winding currents is given in Table

5.6 and yields a nominal closed loop bandwidth of 400Hz with a damping ratio ~ of

approximately 0.8.
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For the wound rotor bearingless induction motor, the transfer function between!~q and

~~dqin the current loop of the 2-pole winding is derived from equations (5.14) and

(5.15)

(5.14)

(5.15)

since the rotor is wound with a 4-pole winding which prohibits any 2-pole induced rotor

currents. Hence, from the parameters in Table 5.4, the 2-pole current control plant

transfer function is

!~dq(S) _ 1

~~dq(s) 58.757.10-3 S+ 0.8304
(5.16)

The PI controller is designed to achieve a nominal closed loop bandwidth of 100Hz at

~ = 0.8 and is given in Table 5.6. The bandwidth of 100Hz was chosen instead of

400Hz (i.e. similar to that of the squirrel cage type motor) because when the controller

with the 400Hz bandwidth was used in the vector control scheme, the results obtained in

the DCM simulations produced higher noise effects compared to the 100Hz bandwidth

controller. The current controller parameters designed for the 2-pole winding current

control loop is summarised in Table 5.6.

Squirrel cage1M Wound rotor 1M

Proportional gain,k~ 0.63 58.24

Controller zero, a~ 3616.43 398.29

Table 5.6: PI current controller parameters for the 2-pole winding current control of tbe

bearingless induction motor.

5.4.1.2. Speed control loop

The q- axis stator current demand of the main 4-pole windingi:;· is responsible for

controlling the main torque produced in the motor. Hence, as in normal vector control
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schemes, i::· is derived from the speed loop. This loop is closed by a PI controller in

order to obtain zero steady state error. In addition, the PI controller is designed to have

a limited output and an anti-windup mechanism due to the large mechanical time

constant and the limit imposed on the magnitude of the stator currents in practical

situations. The high bandwidths of the current control loops enables its closed loop

dynamics to be neglected. Thus, the plant dynamics for the speed loop is dominated by

the mechanical dynamics of the motor. Therefore, the mechanical transfer function is

given by

(5.17)

with J being inertia of the rotor,B representing the mechanical friction andk, the

torque constant calculated using

(5.18)

In both the cage and wound rotor 1M,L~and L~ (given by Table 5.2 or 5.3) are almost

identical. Therefore, the value ofk, for the both motor types was calculated to be 1.6.

Hence, the plant for the speed loop is given by

()
1.6

G, S = 0.0713s (5.19)

when the mechanical friction,B, is neglected. A PI controller is designed to obtain a

closed loop bandwidth of 5Hz at a damping factor of 0.8 to yield an s-plane controller

of

()
0.61(s + 19.63)

G s = -~--_.,:..
c S

(5.20)

5.4.1.3. Flux linkage control loops

As stated in Section 4.3.2 of Chapter 4, the airgap field oriented vector control scheme

proposed for the two bearingless 1M types require a flux linkage control in order that
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i~· maintains a constant ~. This is because the force acting on the rotor is dependent

on ~, thus it has to remain constant in order to produce a constant force. This airgap

flux linkage control loop contains the dynamics of the current control loop and another

given by the transfer function betweeni~ and 'II'~ in the feedback path, which is

_'11'=~_..;.(s-,-) = _L,...::.~_

i:: (s) ST~ + 1
(5.21)

where T~ = L~ IR~. Due to the high bandwidth of the inner current control loop, the

plant dynamics for the flux linkage loop is dominated by equation(5.21). A PI

controller is designed for the ~ control loop for both motor types to achieve a

nominal closed loop bandwidth of9Hz. The parameters of the designed PI controller are

as shown in Table5.7.

Squirrel cage1M Wound rotor1M

Proportional gain,kiN 116.55 88.77

Controller zero,a~ 36.49 36.84

Table S.7: PI current controUer parameten for tbe'II'~ control of the bearingless induction motor.

Flux linkage control is also required in order to produce ~~~ of the 2-pole winding

which will in tum produce the appropriate'll'N values and achieve the correct
_odq

levitation forces. This control is only necessary in the cage type bearingless motor

because there is no direct relationship betweenF; and ~~: as found in the wound rotor

type. Similar to the flux linkage control loop of the main 4-pole winding, the plant

dynamics for the flux linkage loop is dominated by the airgap flux dynamics since the

inner current control loop has a high bandwidth. The transfer function between~~q and

v". ,is given by
_odq

N ( ) N 58.116 . 10-3'!!..odq S _ Lo _

t~q(s) - sr~ +1 - l.03s+1
(5.22)
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where T~ = L~/ R~ and is obtained from the parameters of the 2-pole squirrel cage

equivalent circuitin Table 5.4.

A PI controller is designed for theIf/N control loops to achieve a nominal closed loop
_odq

bandwidth of 9Hz. The controller transfer function is

G (s)= 1584.06(s+35.73)
C s

(5.23)

Now that all the compensators required for the proposed vector control schemes for

both motor types have been designed, the vertical and lateral force control of the motors

can be simulated in MA TLAB Simulink to achieve sustained levitation.

5.4.2. Indirect Rotor Field Orientation (IRFO)

In this section, the force simulation results of theIRFO vector control schemes for the

two machine typeswill be presented. At the start of the simulation, ani::· value of

4.90A, for both types of motors, is applied in order to allow the main 4-pole flux to

build up. In both simulations, a step rotor speed referenceOJ; of 1500rpm is applied to

the speed control loop at 3s. Finally at 4s, a load torque equal to 90% of the rated torque

T,ated is given. An external load having inertia equal to the motor inertia ofO.0713kgm2

as well as a linear friction of 0.1T,ated at 1500 rpm was also applied throughout the

simulation.

Cage rotor

The y- and x- direction force reference valuesF; and F.; required to levitate the cage

rotor are 235.36N and ON respectively. Therefore, at 2s, aIf/~. value of 13.56mWb and

If/~. value of zero was applied to thed- and q- axis flux linkage control loop of the2-

pole winding in the cage type motor respectively. This value ofIf/~. and If/~. was

calculated from equation (4.21) and rewritten here for convenience,
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(5.23)

This is assuming that the magnitude of the main flux densityB~ = 0.9T. The IRFO

control scheme for the cage rotor type motor to be simulated is shown in Figure 5.3.

o

Equation
(4.40)

Lumped
parameter
circuit 1M

model
(4+2 pole)

Figure 5.3: IRFO control scheme for the 4+2 pole cage rotor type motor simulated in Simulink.

Wound rotor

For the wound rotor type motor, a referenceF; value equal to the rotor weight of

253.36N and a zero referenceFx· is also applied at 2s. This will then derive a value for

iN. and iN. ofO.23A and OA according to the relationship givenin Chapter 4 (equation
3d sq

(4.64», which is again repeated here for convenience
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with the same assumption thatB~ = 0.9T. Figure 5.4 illustrates the IRFO control

scheme for the wound rotor type motor.

~ .
• Lumped

parameter
circuit 1M

model
;~ (4+2 pole)

.M e:" t+-t--.;;.;;:;..--tL.--.--....J
'"

o
M

Equation (j).1

(4.36)

Equation
(4.31) &

.M (4.32)
I,d ---"L...- __ ---J

F·---I~
" L...- __ ---I

Figure 5.4: IRFO control scheme for the 4+2 pole wound rotor type motor simulatedin Simulink.

In all the MA TLAB Simulink simulations, the force produced in the bearingless motor

is obtained using equations (3.29) and (3.30):

(5.25)

with BM derived from v", (using equation (4.16)) andB~dq derived from f//N using
o _odq -odq

equations (4.18) and (4.19) respectively. These flux linkages, on the other hand, are

derived from the stator currents and voltages as shown in Figure 5.5. Figure 5.S also

applies to the wound rotor type motor when the N-pole 'flux observer' block is replaced

by equation (4.62). This is because in the wound rotor bearingless motorf//N can be
-odq

directly obtained fromt~q due to no induced 2-pole rotor currents.
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+ J m,M'
vsa[3 Lumped

parameter
Vector circuit 1M I--
control N*

modelvsa[3

(4+2 pole)

·M
Is

·N
Isa[3

M·
Vsa[3

I~q~
BM

gM Flux Equation 0

observer (4.16) f----+
vN*

~ I B:a~
Equation

sa[3
(5.25)gN Flux

~
Equation f----+observer (4.18)&(4.19)

BN
~

Figure 5.5: Block diagram of the vertical and lateral force control of the vector controlled

bearingless cage rotor 1M simulated in Simnlink.

Results for both motors

The rotor mechanical speed, torque andi~q for both types of machine are shown in

Figures 5.6(a), (b) and (c) respectively. The 2-pole currentsi::'aq are present in both

motors from 2s onwards.It is evident in Figures 5.6 (a)-(c) that the presence ofi::'aq has

no effect on the speed, torque and stator current of the 4-pole main winding waveforms.
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Figure 5.6: Results of the simulated IRFO controlled bearingless induction motor (both types):

(a) speed

(b) torque
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----_ ... _-_... _-j----------------+--_ .. _--------_._---~--------- .. ------~- ... -- .. ---- ... -r ---"l--- -r, ---'r' ---+----

Time(s)

(er

Figure 5.6: Results of the simulated IRFO controlled bearingless induction motor (both types):

(c) 4-pole winding dq- axis stator currents

The behaviour of the 2-pole winding stator currents between the two machines is

dissimilar. The 2-pole levitation winding stator currents of the squirrel cage and wound

rotor type bearingless induction motors are as shown in Figures 5.7(a) and (b)

respectively. For the wound rotor type motor, the 2-pole winding current controller is

able to maintain the levitation winding stator current values according to the applied

reference valuesi~* and i~* of 0.23A and OA respectively from the moment the force

references F; and Fx* were applied at 2s.
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Figure 5.7: 2-pole winding stator currents of the IRFO controlled (a) squirrel cage and (b) wound

rotor type bearingless 1M.
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In the case of the squirrel cage type motor (Figure 5.7(a)),i~ is maintained at 0.23A, as

expected, from the referenceI//:a* of 13.56mWb given to the d- axis flux linkage control

loop of the 2-pole winding at 2s. The existence of a non-zero 2-pole q- axis stator

current i~, from the moment I//:a* was applied, is also expected in spite ofI//~* being

set to zero. This is in order to maintain the orientation between the main 4-pole rotor

flux vector and the levitation 2-pole rotor flux vector as explained in Section 4.3.1.

<I) 150
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Figure 5.8: Force variation of the IRFO controlled (a) squirrel cage and(b) wound rotor type

bearingless induction motor.

The forces F; and Fx produced by both the simulated motors are shown in Figure 5.8.

As explained in Section 4.3.1, the results of the simulation shows that the squirrel cage

type bearingless IM produces anFx, even when Fx* = 0 was given, as indicated in

Figure 5.8(a). This is a direct consequence of the existence ofi~, required to maintain

orientation, which in tum produces a non-zeroI//~ responsible for controllingFx' This

is because in order to achieve rotor field orientation, wherebyI//~ = 0, f//~ will have to

exist and will follow the variation ofi~. Note that the value ofi~ is high due to high

slip between the 2-pole field and the rotor speed. This can be reduced only by choosing

high M and N values. This is a natural disadvantage of having a cage rotor in which N-

pole currents can flow. Even so, the cage rotor type motor is able to achieve the

required F; to counteract the rotor weight. In comparison, Figure 5.8(b) shows that
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even with a rotor field orientation the wound rotor type bearingless induction motor is

successful in producing a stableFy even during acceleration and load conditions as

required. There is also no force produced in the x- direction sinceIf/~ remains zero at

all times due to the zeroi~ as shown in Figure 5.7 (b).

The airgap flux density due to the 4-pole windingB~ is shown in Figure 5.9 indicating

a magnitude of O.9T in steady state which is similar for both the squirrel cage and

wound rotor type bearingless induction motor. This confirms the assumption used to

calculate If/:;q and t~:using equations (5.23) and (5.24) as shown previously. The

airgap flux density due to the 2-pole windingB~dq for both the motors are shown in

Figures 5.10(a) and (b) respectively. In both figures,B:a reaches a value of 17.4mT as

expected from the values given forIf/:a* and F; applied to the squirrel cage and wound

rotor type motor respectively. Figure 5.1O(a) shows the presence ofIf/~ in the cage

rotor motor which causes anF; to be produced.
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Figure 5.9: Observed 4-poJe winding airgap flux density in the IRFO controlled bearingless

induction motor (both types).
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Figure 5.10: Observed 2-pole winding airgap flux density of the IRFO controlled (a) squirrel cage

and (b) wound rotor type bearingless induction motor.

5.4.3. Indirect Airgap Field Orientation (IAFO)

Both motor types were also simulated based on the IAFO vector control scheme

proposed in Sections 4.3.2 and 4.4, respectively. The conditions of simulation and the

PI controllers are exactly as described in the previous section with the inclusion of a

~ control to obtain i::* . A constant flux linkage referencef//~. of 1.3Wb is applied

to the flux linkage control loop from the start of the simulation.It is found that the

speed and torque variation for the IAFO controlled bearingless motors are found to be

almost identical to that ofIRFO control scheme shown previously in Figures 5.6(a) and

(b). This is expected since the speed control loops in both schemes are the same.

However, the 4-pole winding stator currents!~q are different to that of the IRFO

scheme sincei:: has to vary, as shown in Figure 5.11, in order to maintain a constant

airgap flux due to the 4-pole winding. This behaviour was found to be very similar in

both the squirrel cage and wound rotor type bearingless induction motor.

As in the IRFO scheme, the airgap field oriented 2-pole winding currenti~ must also

be present in the cage rotor type motor in order to maintain the orientation between the

4-pole and the 2-pole fields.
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Figure 5.11: 4-pole winding stator currents of the IAFO controlled bearingless induction motor (for

events see Section 5.4.2).

However, unlike in the IRFO scheme,i~ is no longer constant. This is because in order

to maintain If/~ constant using the flux linkage control loop,i~* has to vary as shown

in Figure S.12(a). Figure S.12(b) illustrates the 2-pole winding stator currents in the

wound rotor type motor. The PI current controllers are able to maintain the current

values according to the applied reference valuest~:which are derived from the force

references F; and Fx· as seen in the IRFO scheme of the previous section.
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Figure 5.12: 2-pole winding stator currents in the IAFO controlled (a) squirrel cage and(b) wound

rotor type bearingless induction motor.
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The forces in the x- and y- direction produced in the IAFO vector controlled cage rotor

motor are shown in Figure 5. 13. The normal forces F and F are maintainedy x

according to the force referencesF; = 235.36N and r: = 0, respectively, in steady

state. However, at 3s when the rotor starts to accelerate,F; experiences a dip which

takes approximately 0.3s to return to the steady state value as indicated in Figure

S.13(a). This dip was also observed at 4s when the load was applied to the motor. This

behaviour is also observed in the variation ofIf/! with time, which is responsible for

controlling Fy. Therefore, in order to obtain constantIf/!, and consequently constant

Fy, the closed loop bandwidth of the flux linkage control loop has to be increased from

the present value of 9Hz. Figure 5.13(b) shows the time variation ofF, when the flux

linkage control loop bandwidth is increased to 50Hz. As seen in Figure 5.12, noF, is

produced sinceIf/~= 0 at all times due to the airgap field orientation, unlike that seen

in the IRFO controlled motor.
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Figure 5.13: Force variation for the IAFO controlled bearingless cage rotor 1M with a flux control

closed loop bandwidth of (a) 9Hz and (b) 50 Hz.

Successful creation of constantFy and F; forces under transient and steady state

conditions are also observed in the IAFO vector controlled wound rotor type bearingless

induction motor as indicated in Figure 5.14.
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Figure 5.14: Force variation for the IAFO controlled wound rotor type bearingless induction

motor.

5.4.4. Mixed Field Orientation (MFO)

As proposed in Sections 4.3.3 and 4.4, both the cage and wound rotor type motors can

be mixed field oriented vector controlled. Therefore, both the cage and wound rotor

type motors were simulated under the same conditions as described in Section 5.4.2,

employing the PI controllers designed in Section 5.4.1. In this vector control scheme,

the main 4-pole winding voltages, currents and flux linkages are oriented onto the 4-

pole rotor flux vector v". whereas the 2-pole winding voltages, current and flux
_rdq

linkages are oriented onto the 4-pole airgap flux vectorv". . This means that the MFO
_odq

vector control scheme for the bearingless induction motor is a hybrid between the IRFO

and IAFO vector control schemes, and the results obtained from the simulation are

identical to the results presented in Sections 5.4.2 and 5.4.3.

The speed and torque variation for the MFO controlled bearingless motors are identical

to that in Figures 5.6(a) and (b) obtained from the IRFO vector controlled bearingless

induction motor. Furthermore, the 4-pole winding stator currentst~q are also found to

be similar to that of the IRFO scheme shown previouslyin Figure 5.6(c).
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As stated above, in the MFO vector controlled cage induction motor, the 2-pole winding

currents t~q are oriented onto the 4-pole airgap flux vector. Hence, its variation is

identical to that shown in Figure 5.12(a) for the IAFO vector controlled squirrel cage

type motor. Furthermore, because of the airgap field orientation for the 2-pole field, the

normal forces F; and F, in the MFO vector controlled cage rotor motor are able to be

maintained according to the force referencesF; = 235.36N andFx* = 0, respectively,

at steady state as shown in Figure 5. 15.F; also experiences identical dips during

transient conditions as seen in Figure 5.13(a) for the IAFO vector controlled motor

which is eliminated when the closed loop bandwidth of the flux linkage loop is

increased. In addition, noF; is produced since the 2-pole winding is airgap flux vector

oriented despite the main 4-pole winding being rotor field oriented.
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Figure 5.15: Force variation in the MFO controlled squirrel cage type bearingless motor.

On the other hand, the time variation oft~q for the MFO vector controlled wound rotor

type motor is found to be exactly the same as that of the IAFO vector control scheme

demonstrated in Figure 5.12(b). Consequently, constantF; and F, forces under

transient and steady state conditions are observedin this vector control scheme as

shown in Figure 5.16 which is identical to that of the IAFO vector controlled wound

rotor type motor (Figure 5.14).
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Figure 5.16: Force variation in the MFO controlled bearingless wound rotor motor.

5.5. Chapter summary and discussion

The results obtained from the MATLAB Simulink simulations show that an IRFO

vector controlled bearingless squirrel cage induction motor is able to achieve a y-

direction force to levitate the rotor. However, an unwanted but predicted x- direction

force is also produced by this vector control scheme. This is due to the fact that in order

to have zero F
x
, the q- axis 2-pole airgap flux linkageIf/~ must be zero, which is not

the case when the 2-pole winding is rotor field oriented. In the IRFO scheme,If/~ will

be proportional toi~. However, in order to maintain the orientation between the 4-pole

and 2-pole rotor fields, a largei~ was present in the motor due to the large slip speed of

the 2-pole field as explained in Section 4.3.2.

When the cage type motor is controlled using the IAFO vector control scheme,

successful normal forces are obtained. AnFy equal to the rotor weight is produced

which remains constant even during transient conditions provided thatIf/~ is very

closely controlled as indicated in Figure 5.13. Furthermore, a zeroF, is produced since

If/~ is successfully controlled at zero by the q-axis flux linkage control despite the

existence of the orientation component ofi~. However, because the 4-pole field was
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also subject to an IAFO control scheme, a'I/~ control loop had to be added to the

vector control scheme which results in a slightly more complicated control scheme

compared to the IRFO scheme proposed for the cage type motor.

The final simulation carried out on the cage type motor is the mixed field orientation

vector control scheme This control scheme is also able to produce the required forces to

levitate the rotor without having the need for the main 4-pole field to be airgap field

oriented. This scheme is advantageous because it incorporates the simple IRFO vector

control scheme for successful torque control of the main winding as well as

incorporating the IAFO control scheme required for the 2-pole levitation winding in

order to ensure no unwantedF, is produced despite the existence of the orientationi~ .

However, as observed in Figure 5.15, the force obtained in the MFO vector control

scheme experiences a dip during transient conditions in an identical manner to that of

the IAFO scheme (see Figure 5.13). Therefore, the MFO control scheme for the squirrel

cage type motor also requires a closely controlledf//N control loop in order to maintain
_odq

constantF; and F, during transient conditions.

The simulation of the wound rotor type motor under the IRFO, IAFO and MFO vector

control schemesall showed that constant normal forces are achieved under all

conditions as required by the force references. However, under the IRFO vector control

scheme both the 4-pole and 2-pole winding currents, voltages and flux linkages are

oriented ontof//~ which means that when the torque currenti!: is present,B~ will no

longer be aligned withB~ and will not be in quadrature withB~. Therefore, the forces

F and F will no longer be constant since in order for the constant forces to be
y x

produced and governed by equation (5.25), the peak flux densitiesB~ and B~ must be

aligned with each other. Hence, the IAFO and MFO vector control schemes are the only

control schemes suitable for the wound rotor type motor. Even so, as observed for the

control of the cage rotor motor, the MFO vector control scheme is at an advantage since

it incorporates a simpler IRFO control for the main 4-pole winding whilst still being

able to produce the necessary forces via the IAFO control scheme required for the 2-

pole levitation winding.
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In conclusion, the mixed field oriented (MFO) vector control scheme is chosen to

control both the squirrel cage and wound rotor type bearingless induction motors. The

simulation of these motors under the MFO vector control scheme will also be repeated

using the DCM modelin Chapter 6 for the cage rotor type motor, and in Chapter 7 for

the wound rotor type motor. A comparison of the results obtained from the MATLAB

Simulink and DCM simulations of these MFO vector controlled motors will also be

discussed in the appropriate chapters.
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Chapter 6

Dynamic circuit modelling (DCM) of a bearing relief cage

rotor induction motor

6.1. Introduction

The study of bearingless induction motors in this thesis also entails a study on bearing

relief capabilities in which the rotor movement is still restricted by conventional

bearings. However, the bearing load is cancelled by suitably directed radial forces

created in the motor through the incorporation of the N-pole levitation windings. In this

chapter, the simulation of a bearing relief cage rotor motor will be presented, as it is the

most common type of induction motor. The motor consists of two stator windings in

which the main torque production winding is of a 4-pole nature and the levitation

winding is a 2-pole winding. The parameters of both windings are given in Sections

5.2.1 and 5.3.An uncontrolled simulation of the 4+2 pole bearing relief motor, in which

both stator windings are started directly on-line, will be presented in Section 6.3. This is

to investigate the radial force production and to verify the theory of bearingless

induction motors.

A vector controlled simulation of the same motor will be discussed in Section 6.4. In

this simulation, the bearing relief motor is controlled in a mixed field oriented (MFO)

frame whereby the main 4-pole winding is rotor field oriented and the 2-pole levitation

winding is 4-pole airgap field oriented. This vector control scheme was chosen based on

the successful MATLAB Simulink simulations for the 4+2 pole cage rotor motor under

the MFO vector control scheme and based on a two-axis lumped parameter model of the

motor (refer Section 5.4.4). A comparison between theDeM and the MATLAB

Simulink simulation results will be presented in Section 6.5.
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6.2. Vector control of a cage rotor 1Min DCM

Firstly, the results of a linear 4-pole cage rotor 1M simulated in DCM with an indirect

rotor field orientation (IRFO) vector control scheme will be presented. As the

simulation is of a linear iron motor, the relative permeability of all reluctance elements

of type 'linear iron' is fixed in whichIJr = 1350. In order to utilise the s-plane current

and speed loop controllers of Section 5.4.1 in the DCM simulation, the PI controllers

are transformed into the discrete z-plane using the Bilinear Transform (Franklinet. ai,

1998) in which s = (2/tsamp Xz - 1/z + I). The current loop sampling timetsamp-i is

chosen to be l00J..1sand the speed loop sampling timetsamp-OJ is 2ms. In the simulation, a

step rotor speed reference(J); of 1500rpm was applied to the speed control loop at 3s

with a load torque equal to 90% of the rated torqueT,ated given at 4s.An external load

having inertia equal to the rotor inertia of 0.0713kgm2 as well as a linear friction of

0.1 T,ated at 1500 rpm was also applied throughout the simulation. The maximum

simulation time step is 50J..1swith a Newton Raphson error tolerance set to IxIO-6 and a

maximum of 15 iterations per time step. The linear equations solver error tolerance is

Ix10-7 with a maximum of200 iterations and a maximum threshold of Ixl0-s.

Time Event Throughout simulation (0-5s)

o i~· = 4.90A applied (to build up

main flux)

(J); = 1500rpm applied

4s 90% of T,ated applied

external load inertia=

0.0713kgm2 and linear friction of

0.1 T,ated at 1500 rpm applied

3s

Table 6.1: Sequence of events occurring in the simulation of the vector controlled 4-pole cage rotor
motor.

Figure 6.I(a) shows the speed variation of the IRFO vector controlled motor. The rotor

reaches within 5% of the 1500rpm reference speed in 0.23s from the moment(J); was

applied (i.e. at 3s). The speed control maintains the speed at 1500rpm after the load

torque is applied. The corresponding torque variation is shown in Figure 6.I(b). From

the moment the rotor starts to rotate (3s onwards), the torque was observed to
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experience an oscillation of 900Hz (as shown in the inset graph of Figure 6.1(b». This

oscillating behaviour is also observed in all the vector control simulation results

reported in this chapter (Section 6.2 and 6.4). Therefore, when referring to the value of

the vector controlled quantities obtained from the simulations the average value of the

oscillating waveform is taken which is obtained by numerical integration. These

oscillations are not understood.
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Figure 6.1: (a) speed and(b) torque variation with time of the IRFO vector controlled 4-pole cage

rotor 1M.

The stator currentsisd and isq are presented in Figures 6.2(a) and (b). In both figures,

isd and t; (shown as the darker set oflines in Figure 6.2), are obtained by transforming

A

the aJ3- axis stator currents using the IRFO controller orientation angleBr. These are

compared with the stator currents obtained from 'direct' orientation (shown as the

lighter set of lines in Figure 6.2) in which the angle of the peak rotor flux in the motor,

B:FT is used in the transformation. In the simulation,B:FT is obtained from carrying

out a spatial discrete Fourier transform (DFT) of the actual rotor flux density flowing in

each inner rotor tooth element, as depicted in Figure 6.3, using equation (6.1)

2 N-l ( 21Zkn)
X(k)=-Lxnexp j-

N n=O N
(6_1)

where k is the index of the DFT,xn is the flux density flowing in the inner reluctance

element of rotor tooth nandN is the total number of rotor teeth in the motor.
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Figure 6.2: Stator current variation with time of the IRFO vector controlled 4-pole cage rotor 1M:

(a) d- axis(b) q- axis.
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Figure 6.3: The inner, tooth-tip and airgap reluctance elements

~
As observed in Figure 6.2,isd and i; (obtained using Br) are similar to the currents

obtained from 'direct' orientation in the time region of 0 to 4s, indicating that the IRFO

orientation angleer is able to track the exact position of the peak rotor field in steady

state conditions. However, when load is applied at 4s, the 'direct' orientation dq- axis

stator currents experiences an oscillation, which is found to be at slip frequency. The

discrepancy betweener and B~FT is shown in Figure 6.4 which illustrates the variation

of the difference between the two angles. This angle difference also exhibits the
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oscillating behaviour when the load torque is applied whereby the difference is between

-1.70 and 2.00 electrical.
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Figure 6.4: Difference between the IRFO angle and peak rotor flux angle obtained from DFT.

From investigations of the fluxes flowing in a rotor tooth, it was observed that the

oscillations in e;>FT are due to the presence of residual flux at each node in the DCM

model. This is considered in more detail in Section 7.2. These residual fluxes arise from

the fact that the model solves for conservation of rate of change of flux equation on

each node. This means that any constant flux present at any node will not be dissipated.

Therefore, the DCM model was modified such that conservation of flux equation at

each node is being solved instead of the equation for the rate of change of flux. This

ensures that no constant flux exists at any node. The changes required for enforcing flux

conservation at each node are described in Section 2.S(b). Henceforth, all simulations in

this chapter are based on solving for flux conservation equation at each node of the

DCMmodel.

For this reason, the rotor flux oriented vector control of the cage rotor 1M was repeated

with the model solving for conservation of flux equation at each node.It was observed

that the speed and torque variation against time are similar to those obtained previously

when solving for conservation of rate of change of flux equation at each node.

However, isd and i; in the motor obtained from the IRFO controller angleer and from
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'direct orientation' usinge:JFJ' are now in agreement as observed in Figure 6.5. The

error between the two angles, shown in Figure 6.6, is also found to be less than 0.90

electrical, which is acceptable. A further reduction in this error can be obtained by

reducing the rotor time constantT r = L~ / R~ .

1

- using IRFD ocrtroIler mgIe forcootrol I
- using machine nta fill){ angle ('direct' oriflltatiOl1~

1- using IRFO controller angle foroontroI 1
- using machine rctorfill){ mgIe ('direct' orientation)
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Figure 6.5: Stator current variation of the IRFO vector controlled cage rotor motor with solution

based on solving conservation of flux equations: (a) d- axis Cb)q- axis,

~ (O,*=1500rpm
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Figure 6.6: Difference between the IRFO angle and peak rotor flux angle obtained from DFT in

DCM mode] solving for conservation of flux equations.

Finally, the results from the DCM simulation were compared with the results obtained

from a two-axis lumped parameter model simulation of the same IRFO vector

controlled 4-pole cage rotor IM carried out in MATLAB Simulink.It is observed that
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the speed, torque and dq- axis stator current variations of the two simulation methods

exhibit very close agreement as indicated by Figures 6.7(a)-(d).
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Figure 6.7: Comparison between the DCM and Simulink simulations of IRFO vector controlled

cage rotor 1M: (a) speed,(b) torque, (c) d- axis stator current and (d) q- axis stator current.

6.3. Simulation of radial forces

In this section, the results of the DCM modelled 4+2 pole linear cage rotor 1M

simulated under direct on-line (DOL) start condition are given. The motor is based on

the 4-pole cage rotor motor with a48/40 stator-rotor slot combination, introduced in

Chapter 5, onto which the 2-pole levitation stator winding designed in Section 5.3 is

incorporated. All reluctance elements in the DCM mesh of the motor were chosen to be

of type 'linear iron' with u, = 1350 except for the elements connecting each stator and

120



Cbapter 6: Dynamic circuit modelling (DCM) of a bearing relief cage rotor 1M

rotor tooth, which are of type'air' to model the semi-closed stator and rotor slots. The

motor was also modelled with only one rotor axial skew section with a skew angle of

15° electrical.

The terminals of both the stator windings in the model are directly connected to

sinusoidally varying voltage sources since the simulation is started direct on-line. The

main 4-pole winding is connected to a 415V rms voltage. In order to determine the rms

voltage applied to the levitation winding, knowledge of the peak airgap field produced

by the winding is required. This is obtained from equation (3.27), which relates the

magnitude of the required force to the peak fieldsB~ and B; due to the main and

levitation windings respectively, and repeated here for convenience

(6.2)

Knowing that B~ = 0.9T from the vector control simulation of the 4-pole cage rotor

motor and using equation (6.2), the value ofB; required to produce a force equal to the

rotor weight of 235.36N is 17.4mT. Hence, the terminal voltage for the levitation

winding can be evaluated using the following equation which was previously derived in

Chapter 4 (equation (4.10»,

(6.3)

where f =50Hz and the values of the 2-pole winding factork~ and total series tum per

phase N: are as given in Table 5.4(a). With a requiredB~= 17.4mT , the rms terminal

voltage of the 2-pole levitation winding applied in the simulation calculates to be 4.20V.

The magnitude of force obtained from the simulation is shown in Figure 6.8 at no load.

It can be observed that at steady state the force magnitude produced is only 46.59N.

This is 80.2% less than the expected force of 235.36N. To investigate the force

discrepancy, the actual 4- and 2-pole field values in theDeM model are evaluated.
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Figure 6.8: Force magnitude produced by the linear4+2 pole cage rotor motor.

Figures 6.9 and 6.10 show the magnitude of the peak fundamental 4-pole and 2-pole

fields in the motor, obtained by performing a Discrete Fourier transform (OFT) on the

flux densities of the rotor-tooth-tip and stator-tooth-tip reluctance elements,

respectively, around the rotor circumference. A summary of the average magnitudes of

the peak fundamental 4-pole and 2-pole fields from the DFT of the two different flux

density samplesin the motor is presented in Table 6.2. The average magnitude of the

peak fundamental 4-pole field is expected. However, the magnitude of the peak

fundamental 2-pole field obtained from the rotor-tooth-tip and stator-tooth-tip flux

density samples are approximately 9.2% and 19.54% of the expected magnitude of

17.4mT, respectively.

o 0.5 1.5 2 25 o 0.5 1.5 2 25

Tm:(s)

<a)

Tm:(s)

(b)

Figure 6.9: Peak magnitudes of <a)4-pole and(b) 2-pole fields from DFT of rotor-tooth-tip flux

density samples.
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Figure 6.10: Peak magnitudes of (a) 4-pole and(b) 2-pole fields from DFT of stator-tootb-tip flux

density samples.

Using rotor- Using stator-

tooth-tip tooth-tip

samples samples

Average magnitude of peak 2-pole field,IBfFT I

Average magnitude of peak 4-pole field,IB~FT I

1.6mT 3.4mT

O.91T O.92T

Table 6.2: Summary of peak fundamental 4-pole and 2-pole field average magnitudes obtained

fromDFT.

By substituting the values ofIB~FT I and IBfFT I obtained from the rotor-tooth-tip flux

density samples forB~ and B: ' respectively in equation (6.2), the force obtained from

the fundamental fields is 21.78N. This gives an error of 53.25% when compared to the

force magnitude obtained from the simulation. Similarly, the force obtained from the

fundamental fields is 46.86N when the values ofIB~FT I and IBfFT I obtained from the

stator-tooth-tip flux density samples is used in equation (6.2), which is comparable with

the force magnitude shown in Figure 6.8.
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Figure 6.11: 2-pole airgap flux density variation around the circumference of the cage rotor 1M at

time 2s taken on (a) stator side and (b) rotor side.
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Figure 6.12: Leakage paths of the airgap flux in the 4+2 pole cage rotor 1M on (a) stator side and
(b) rotor side.

The reduction of the 2-pole airgap field observed in the cage rotor motor is thought to

be due to relatively large leakage fluxes introduced by the large slip (25Hz at no load

when connected to a 50Hz supply) experienced by the 2-pole field. This is clearly seen

in Figure 6.1l(a) showing the 2-pole airgap field variation (at the stator tooth surface)

around the circumference with the 4-pole field de-activated and with a rotor speed of

lS00rpm. The stator currents cause the flux from the stator to zigzag across the airgap

and back into the stator tooth next to it, as illustrated in Figure 6.12(a). This causes the

flux density to increase at certain stator tooth tips and decrease in others. At the surface

of the rotor teeth however, the airgap field variation around the cage rotor

circumference is more sinusoidal, although the effect of zigzag leakage is still present as
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seen in Figure 6.11(b). This is because the larger rotor bar currents, and smaller rotor

slot opening (as compared to those on the stator), causes more flux to circulate around

the bars themselves and less is transferred across as zigzag leakage as shown in Figure

6.12(b).

It is also apparent from Figure 6.11(b) that the peak magnitude of the airgap flux

density variation on the rotor surface correspond to the magnitude of the fundamental 2-

pole field obtained from the DFT of the rotor-tooth-tip flux densities shown in Figure

6.9(b). The large difference between the flux density values on the stator tooth tips,

compared to the rotor tooth tips at the cage surface, is due to the fact that the flux

density variation is calculated on the tooth tip elements, and in the rotor most of the flux

is diverted into the slot opening reluctance element with less (in comparison with the

stator) flux flowing in to the rotor tooth tip element and across the airgap.

Therefore, it can be summarised thatin order to generate the required radial forces in

the 4+2 pole cage rotor motor, considerably higher 2-pole currents are required than

predicted from the simple force expression of equation (6.2) in order to compensate for

the high slip leakage effects observed in the motor. In addition, the 2-pole airgap field

waveform at the rotor and stator surface will be subject to high harmonics that will

cause increased losses and unwanted force disturbances. Although the latter can be

addressed through closed loop control, it is evident that the suppression of inducedN-

pole currents, due to the N-pole levitation winding, in the rotor is possibly a desirable

characteristic for radial force production that will be examined in Chapter7.

Hitherto, the radial force is directed in an arbitrary direction. In order to control the

direction in which the force is produced, the magnitude and phase of the 2-pole field

must be controlled. Even though the DOL simulationhas shown that the force produced

in the cage rotor motor is affected by the high slip leakage and high harmonics of the 2-

pole field, it is believed that the fundamental 2-pole field is sufficient to produce the

required levitation force under vector control conditions.
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6.4. Mixed Field Orientation (MFO) vector control simulation of a

bearing relief cage rotor 1M

Results of a DCM simulation of the vector controlled linear 4+2 pole cage rotor 1Mwill

be discussed in this section.A mixed field orientation(MFO) vector control scheme is

chosen, previously proposed in Section 4.3.3, in which the main 4-pole winding is rotor

field oriented with the 2-pole levitation winding oriented onto the peak 4-pole airgap

field. The proposed control scheme is shown in Figure 4.4 and repeated here for

convenience:

Dynamic
reluctance

mesh model
of 1M

(4+2 pole)

Figure 6.13: Mixed field orientation (MFO) vector control scheme for a bearingle!! cage rotor 1M.

In the simulation, an external load having inertia equal to the motor inertia of

O.0713kgm2 and a linear friction of 0.1T,.ated at 1500 rpm is applied from the start. The

current controllers for the4 and 2-pole systems in this vector control scheme, designed

in Chapter5, both have a natural frequency of 400Hz and a damping factor of 0.8. The
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speed controller, also designed in Chapter 5, has a natural frequency of 5Hz. As in

Section 6.2, these controllers are then transformed into the discrete z-plane using the

Bilinear transformation and implemented in the simulation with a sampling time of

100J.ls for the current control and 2ms for the speed control. The main 4-pole field is

given time to establish by applyingi~rof value 4.90A from the start of simulation. The

2-pole levitation winding current references i~· and i~:con' responsible for controlling

the forces F; and F; produced by the motor, are obtained from flux loop controllers

previously designed in Chapter 5 with a natural frequency of 9Hz and damping factor of

0.8. In the DCM simulation, the flux linkage references1//:: and I//~. are applied to the

flux control loops at 2s and the values are obtained from equation (4.21) which is

repeated here for convenience

(6.4)

with the required forcesF; = 235.36N, i.e. equal to the rotor weight, andFr· = ON. A

speed reference of 1500rpm was given at 3s and a load of 89.5SNm, which is equal to

90% of the rated torque~ated' was applied at 4s. The torque current is limited to 116%

of the rated i:-; .
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Figure 6.14: (a) speed and(b) torque variation with time of the vector controlled 4-pole cage rotor

bearing relief 1M.
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Figure 6.14 illustrates the speed and torque variation of the simulated bearing relief

induction motor. The motor is able to accelerate to the required speed of IS00rpm

within 0.3s of applying the step change in speed. Under full load condition (i.e. from 4s

onwards), the rotor experience a drop in speed to 1483rpm but this is restored by the

speed controller within O.ls. As the rotor speed reaches the required lS00rpm, a torque

of approximately 9Nm develops, as expected, due to the 10% of rated torque friction

applied.

The currents i~ and i:: of the main 4-pole winding as well asi~ and i~ of the 2-pole

levitation winding are as shown in Figure 6.15. As seen in Figure 6.15(a),i~ of the 4-

pole motoring winding is maintained at its reference value of 4.90A throughout the

simulation by the current controller. As expected, no q- axis currenti:: was available

from 0 to 3s since rotor is still stationary. During rotor acceleration, the current reaches

its limit of lSA before dropping to approximately 0.95A during steady state conditions.

When the load torque is appliedi;: settles at 12.4A.
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Figure 6.15: Stator current variation with time of the vector controlled 4-pole cage rotor bearing

relief 1M: (a) 4-pole winding(b) 2-pole winding.

The 2-pole levitation current i~ obtained from the simulation, as shown in Figure

6.1S(b), is maintained at zero when the rotor is stationary but increases to approximately
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33A when the rotor is rotating and subjected to full load, which is expected. This is

becausei~·, applied to the 2-pole current control loop, is made up of two components

·N· ·N· ·N·
I sq = 1sq-orient + 1sq=con

(6.5)

in which i~:orient is the current responsible for maintaining the orientation between 2-

pole field and the 4-pole field whereasi~:con is responsible for creatingF, . In the

simulation, i~:con is zero at all times sinceFx· = ON is demanded at all times by way of

the If/~ control loop. However, i~:orient is very large since it is proportional to the slip

frequency of the 2-pole field, which is very high (i.e. 25Hz in the motor of 50Hz supply

frequency if 50Hz), as given by equation (4.57) and repeated here:

(1):; -[t If/oJ - (L, - LoJ;" ]

R, +(L, -LJs
·N
1sq=orient

Figure 6.16 shows that the vector controlled motor is only successful in producing the

expected F; to levitate the rotor, with F, maintained at zero, when the rotor is

stationary (i.e. between 2and 3s). When the rotor starts to rotate, large values of forces,

F; and Fx, are observed particularly during rotor acceleration and full load conditions,

which was not expected from theory.
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Figure 6.16: Vector controlled forces in the x- and y- direction produced by the cage rotor motor.
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Even when the 2-pole levitation winding is 'directly' oriented (i.e. by using the actual

peak 4-pole airgap field position,B;r obtained from the spatial DFT of the non-

uniformly spaced airgap reluctance elements flux density samples), the forces produced

by the motor is similar to that shown in Figure 6.16. The spatial DFT on the flux

densities of the non-uniformly spaced airgap reluctance elements is performed using

equation (6.6)

1 2,..

x(k)=- jxj(coskOj + jsinkOj) dO
7r 0

(6.6)

where Xj and Bj are the flux density and mechanical angular position of each airgap

reluctance element i respectively. The integration was carried out numerically in the

DCM simulation using the trapezoidal rule. In the above equation,k represents the

index for the DFT. Whenk = 2, the above equation will give the magnitude and

electrical angular positionB;r of the peak 4-pole airgap flux density which is used in

the 'direct' orientation of the 2-pole levitation winding.

In order to investigate the large force values obtained in the vector controlled bearing

relief motor, the actual 4- and 2-pole field values in the DCM model is required. These

field values are obtained by performing a DFT on the non-uniformly spaced airgap flux

density samples using equation (6.6). The airgap flux density samplesxi> used in the

DFT, contain the dominant 4-pole and 2-pole fundamental fields as well as other field

harmonics arising from the two fundamentals. In order to obtain more accurate results

from the spatial DFT of the non-uniformly spaced flux density samples for the 2-pole

fundamental component and other smaller harmonic field components, the contribution

from the dominant 4-pole field was subtracted from each flux density valueXi. This was

achieved by firstly obtaining the spatial DFT magnitudeIB~FT I and phase angleLB~FT

of the peak 4-pole field using equation (6.6) with the harmonic indexk = 2 and Xi being

the flux density values obtained at each airgap reluctance element and containing all

field components. Then when obtaining the spatial DFT for other harmonic index values

(k :;; 2), the flux density valuesx; used in equation (6.6) are obtained from equation
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(6.7) in which the 4-pole field component is subtracted from the original flux density

values Xj as

(6.7)

where OJ is mechanical angular position of each airgap reluctance elementi. This

procedure is implemented every time the spatial DFT of the airgap reluctance element

flux densities is applied to the uncontrolled or vector controlled 4+2 pole cage rotor

motor. However, it has to be noted that the results from the spatial DFT of the non-

uniformly spaced airgap elements for harmonic index valuesk * 2, are susceptible to

numerical errors due to inaccuracies in equation (6.7). This is because any residual 4-

pole field component presentin x; will affect the magnitude and angle of the DFT

results whenk * 2.

Figure 6.17 shows the fundamental peak 4-pole and 2-pole fields obtain from the DFT

of the non-uniformly spaced airgap flux density samples.
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Figure 6.17: Peak fundamental magnitudes obtained from the DFT of airgap reluctance elements of

the vector controlled linear cage rotor motor: (a) 4-pole field and(b) 2-pole field.

The average magnitudes of the peak fundamental 4-pole and 2-pole fields obtained from

the DFT of the airgap flux densities in the vector controlled cage rotor motor during the

time intervals 2-3s (when rotor is stationary), 3-4s (rotor is accelerating and reaches
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steady state speed) and 4-5s (when full load torque is applied) are as summarised in

Table 6.3.

Average Average Fundamental
Simulation

magnitude of magnitude of force
force

peak 2-pole peak 4-pole magnitude,
magnitude,

field, IB~FJ'I field, IB~FJ'I IF2-41 IFI = ~Fx2 +Fy2

2-35 17.3mT 0.91T 237.46N 241.86N

3-45 50.7mT 0.90T 684.47N 647.67N

4-55 56.4mT 0.91T 771.25N 2333.6N

Table 6.3: Summaryof peak fundamental 4-pole and l-pole field average magnitudes obtained

from DFT of airgap element flul: densities.

The average magnitude of the peak 4-pole field are as expected, which is in the region

of 0.9T. On the other hand, the peak 2-pole field magnitude obtained from the OFT is

only similar to the expected 17.4mT when the rotor is stationary, between 2 and 3s.

When the rotor is in motion, the peak 2-pole magnitude given by the OFT is

approximately 3.08 times the expected value of 17.4mT. By substituting these values of

IB~FJ'I and IB~FJ'I for B~ and B: , respectively into equation (6.2), the forces obtained

from the fundamental fieldsjF2-41 during the three different time instances are as shown

in Table 6.3. These results indicate that the force magnitude given by the OFT force

analysis IF2-41 increases when the rotor starts to rotate. This is in agreement with the

force magnitude IFI obtained from the virtual work principle of the airgap elements

(shown in Figure 6.16). However, during rotor acceleration and under load,IF2-41 does

not agree with the forceIFI.

At this point the reason for the anomalies in the forcesF; and F; observed during rotor

rotation, as shown in Figure 6.16, are unknown and is a possible subject for future

investigations into the study of bearing relief cage rotor induction motors.
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6.S. Comparison with Simulink results

The results presented in the previous section can be compared with the results presented

in Section 5.4.4 of a two-axis lumped parameter model simulation of the same MFO

vector controlled bearing relief cage rotor motor carried out in MA TLAB Simulink.

Both the 4-pole currentsi:; and i:; and the 2-pole currentsi~ and i~ were found to be

similar for both simulations, Simulink and DCM. This is shown in Figures 5.6(c),

5.12(a) and 6.15. As observedin Figure 5. 15, the Simulink simulation shows that the

vector controlled motor is able to produce successful levitation force to compensate for

the rotor weight even when the rotor is rotating and subjected to full load. This is at

variance to the results obtained from the DCM simulation, shown in Figure 6.16, in

which it was found that the 235.36N levitation force is produced when the rotor is

stationary but the force values increased when the rotor started to rotate. As presented

previously, the fundamental force analysis carried out from the DCM simulation results

shows agreement in the trend that the force in the motor will increase when the rotor is

in rotation, which the two-axis lumped parameter model was unable to predict.

6.6. Chapter summary

This chapter presents an investigation of a linear 4+2 pole bearing relief cage rotor 1M.

The results of a DCM simulation of the motor under direct on-line start and MFO vector

control conditions were discussed. From the direct on-line start simulation of the motor,

it was found that the motor only produced a force magnitude of approximately 20% of

the expected 235.36N. This reduction in force is felt to be due to zigzag leakages

observed in the motor due to the high slip experienced by the 2-pole field. In order to

generate the required radial forces in the motor, considerably higher 2-pole currents are

required than predicted from the force expression of equation (6.2). This is in order to

compensate for the high slip leakage effects present in the motor due to the large slip

experienced by the 2-pole field (25Hz at no load when connected to a 50Hz supply).

The possibility of reducing the high slip leakage effects through the suppression of

induced N-pole currents in the rotor will be examined in Chapter 7. This will use a
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wound rotor instead of a cage one. The variation in radial force produced by the motor

compared to the reference force value due to the rotor inducing not only 4-pole but also

2-pole currents are in agreement with findings by Cai and Henneberger (2001) and

Chiba et al. (1996). Both Cai and Henneberger (2001) and Chiba et al. (1996) suggest

the use of a rotor that does not allow any levitation 2-pole rotor currents to flow in the

bearingless induction motor.

In the vector controlled simulation of the cage rotor motor, it was observed that the

motor only produces the predicted levitation force when the rotor was stationary. Once

the rotor started to accelerate and rotate, the force produced was much higher.As

explained in Section 6.4, the magnitude of force obtained from the simulation during

rotor rotation was not explainablefrom the DFT analysisof the fields in the motor, even

though the DFT force analysis showed that the force magnitude does increase when the

rotor rotates. Further investigations into the reason for this force behaviour were not

carried out in this thesis. It is a possible subject for future studies although it is not clear

how a high quality (small) N-pole field can be obtained when high slip frequency

N-pole currents are induced in the rotor. It is known that leakage effects of high slip

rotor currents severely compromise the sinusoidal nature of the surface airgap field. It is

for this reason that the remaining studies consider wound rotors where N-pole currents

at high slip are not induced.
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Chapter 7

Dynamic circuit modelling (DCM) of a bearing relief wound

rotor induction motor

7.1. Introduction

The results presented in Chapter 6 showed that a vector controlled bearing relief cage

rotor 1M produces levitation forces that are consistent with theory when the rotor is

stationary but further studies into the force behaviour during rotor rotation is required.

Furthermore, the direct on-line start investigations of the cage rotor motor indicates that

the reduction of high slip leakage effects occurring in the motor could be eliminated

through the suppression of induced N-pole levitation currents in the rotor. Therefore, in

this chapter, studies on a bearing relief motor with a wound rotor that suppress any N-

pole rotor currents are presented. The 2-pole levitation winding required to create a

bearingless 4+2 pole wound rotor 1M is identical to that in the cage rotor type motor.

The design of the PI controllers required for vector control was carried out in the

Chapter 5. This enabled the vector control schemes proposed in Chapter 4 for the

wound rotor type motor to be simulated using MATLAB Simulink, showing that the

mixed field oriented vector control was the most suitable vector control scheme for this

bearingless induction motor type. However, the MATLAB simulation was performed

based on a simplifieddq representation of the 4+2 pole wound rotor bearingless 1M.

In this chapter, simulations of the same 4+2 pole wound rotor induction motor under

bearing relief conditions carried out using the DCM technique, introduced in Chapter 2,

are presented.In Section 7.4, the DCM simulation is performed on a linear iron type

bearing relief motor. Non-linearity effects on the system performance are reported in
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Section 7.5.2. A comparison between the DCM simulation results and the MATLAB

Simulinksimulationresults is presented in Section 7.6.

Before the vector controlled simulation of the wound rotor bearingless motorIS

presented, this chapter will firstly present simulation results of a DCM modelled

indirect rotor field oriented (IRFO) vector controlled 4-pole wound rotor induction

motor without the presence of 2-pole levitation winding.An appraisal of the airgap flux

vector position and orientationwill also be presented as this vector position is crucial in

the vector control scheme of the bearing relief wound rotor induction motor. It will be

shown that an error of less than 50 between the controller airgap flux vector position and

the actual machine airgap flux position can cause a significantF" to be produced.

Secondly, an uncontrolled simulation of the linear iron 4+2 pole wound rotor induction

motor will be discussed in Section 7.3.As the motor is uncontrolled,i.e. it is started

directly on-line, the force producedwill be acting in no particular direction. Hence, only

the force magnitude will be of primary concern. The effects of non-linear iron on the

direct on-line start of the 4+2 pole wound rotor motor will also be presented in Section

7.5.1. The iron non-linearity was found to introduce large harmonic forces which

interfered with the fundamental force acting on the rotor when compared to that

obtained using the linear iron. These harmonic forces were due to the interaction

between other M± N = 2 pole combinations. Of these, the harmonic force from

interaction of the third harmonic of the 2-pole field, which has a 6-pole variation, with

the fundamental 4-pole field is large. Therefore, an uncontrolled simulation of a 4+6

pole wound rotor induction motor was also carried out in Section 7.5.3 as theoretically

this pole combination of main and levitation winding would not create any harmonic

fields capable of interacting with the 4-pole or 6-pole fundamental fields based on the

M ± N = 2 pole relationship.

7.2. Vector control of a wound rotor 1Min DCM

A 4-pole wound rotor 1M with only the 4-pole main winding is first simulated in DCM

with an indirect rotor field orientation (IRFO) vector control scheme. In order to utilise

the s-plane current and speed loop controllers (Section 5.4.1) in the DCM simulation,
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the PI controllers are transformed into the discrete z-plane using the Bilinear Transform

(Franklin et al., 1998), s= 2{z -I)/~samp (z + 1»).The sampling time is chosen such that

the sampling frequency ratio(i.e. /samp / controller bandwidth ) exceeds 15. Therefore,

the current loop samplingtimetsamp-i was set to 100J..l.swhereas the speed loop sampling

time tsamp+a: was chosen to be 2ms.

In all the simulations of this chapter, a step speed referencetV: of 1500rpm is applied to

the speed control loop at 3s with a load torque equal to 90% of the rated torqueT,ated (as

listed in Table 5.1) given at 4s.An extemalload having inertia equal to the rotor inertia

of 0.0713kgm2 as well as a linear friction of 0.1T,ated at 1500 rpm is also applied

throughout the simulation. The maximum simulation time step was set to 50J..l.swith a

Newton Raphson error tolerance set to lxlO-6 and a maximum of IS iterations per time

step. The linear equations solver error tolerance was set to Ixl0·7 with a maximum of

200 iterations and a maximumthreshold of 1x10.5
.

Figures 7.1 to 7.S were obtained from the linear iron(11, = 13S0)DeM simulation of

the IRFO vector controlled 4-pole wound rotor induction motor.As seen in Figure

7.1(a), the PI speed control produced a ramped response to the step speed reference of

1500rpm applied at 3s. The speed control was also able to maintain the speed at

IS00rpm even after the load torque was applied at 4s. The corresponding torque

variation is shown in Figure 7.1(b).As shown in the inset graph of Figure 7.1(b), the

torque is observed to experience an oscillation of 300Hz from the moment the rotor

starts to rotate (3s onwards). This oscillating frequency is equal to the main 4-pole stator

winding phase belt passing frequency as observed by the rotating field in the motor. The

term phase belt is the name given to the stator winding coil group and in the 4-pole

motor there are 6 phase belts per pole pair since the main winding has 3 phases.

Therefore, the 50Hz rotating field sees the 6 phase belts passing at 300Hz. This

oscillating behaviour is also observed in all the vector control simulation results

reported in this chapter (Sections 7.2 and 7.4). Therefore, when referring to the vector

controlled quantities, the average value of the oscillating waveform is taken which is

obtained by numerical integration.A similar oscillation, but at 900Hz, was observed in

the vector control simulations of the cage rotor (Sections 6.2 and 6.4). However, unlike
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the wound rotor, no possible explanation for the 900Hz could be found for the cage

rotor motor.

(i),*=1500rpm -.j (i),*=1500rpm-.j
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Figure 7.1: (a) speed and(b) torque variation of the IRFO vector controlled 4-pole wound rotor 1M.

The currentsisd and t; obtained from the simulation are shown in Figures 7.2(a) and

(b). The darker set of lines in the current variations were obtained by transforming the

aJ3- axis stator currents using the controller IRFO orientation angleer whereas the

currents plotted with the lighter set of lines use the angle of the peak rotor flux in the

motor, e~FT ('direct' orientation).e~FT is found from a carrying out a spatial discrete

Fourier transform (DFT) of the actual rotor flux flowing in each rotor tooth, using

equation (6.1).

- using IRFO controller angle for control
e ('direct' orientation)
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Figure 7.2: Stator current variation of the IRFO vector controlled 4-pole wound rotor 1M: (a) d-

axis (b) q- axis.
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It is clearly seen from Figure 7.2 that the IRFO orientation angle is able to track the

exact position of the peak rotor field in steady state conditions since both current plot

lines are very similar from 0 to 4s. However, when the load is applied at 4s, the dq- axis

stator currents obtained from the DFT anglee;wr experiences an oscillation, which is

found to be at slip frequency. Figure 7.3 shows the variation of the difference between

the IRFO orientation angle and the peak rotor flux DFT angle. This angle difference

also illustrates the oscillating behaviour observed when the q- axis stator current is non-

zero, i.e. when the load torque is applied. The angle difference observed is between

_2.6° and l.5° electrical.
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Figure 7.3: Difference between the IRFO angle and peak rotor flux angleB,DFT obtained from DFT.

The main reason behind obtaining the angle of the peak rotor flux from its spatial DFT

is to validate the IRFO vector control orientation angle. Another method of validating

the orientation angle is by obtaining the position of the peak rotor flux directly from the

rotor flux linkages of the three rotor phases. In order to obtain this peak rotor flux angle

(denoted here ase;aeh), the three phase rotor flux linkagesI/f;abe are calculated by

summing up the individual fluxes in the rotor tooth linked by each rotor phase winding

before transforming them into equivalent two phase rotor fluxesIf/;a/3' The superscript

'r' in ",r and JUr fJ is to denote that these flux linkages are obtained in the rotor frame,'f'rabe 'f'ra
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which is rotating with an electrical speedCD r : Therefore, the peak rotor flux angle is

given by

e;ach = tan-I (If/~ J + or, + r
If/ra

(7.1)

where r is an offset angle between the first stator tooth and the reference axis.It was

found that the IRFO orientation angleBr is also different toe;ach and the difference

between the two angles (Figure 7.4) also exhibits an oscillating variation with time as

seen in the difference betweener and the rotor flux DFT anglee~FT (Figure 7.3).

o=: 0 0 01 eDFTFurthermore, r IS smn ar to r .

O),*=ISOOrpm

Figure 7.4: Difference between the IRFO angle and peak rotor flux angle8';"h obtained from rotor

phase flux linkages.

It was found that the oscillations in the angles ofe;ach, obtained from equation (7.1), is

due to DC offsets observed in all the three phases of the rotor flux linkagesIf/;abc when

load was applied to the motor as shown in Figure705. The offsets in the individual rotor

phase flux linkages were found to be due to residual flux present at each node in the

DCM model. e~FT is also affected by the residual flux since it is obtained from the

DFT of the fluxes flowing in each rotor tooth. The residual flux on each node in the

model arises from the fact that the model solves for conservation of rate of change of
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flux equation on each node. This means that any constant flux present at any node will

not be dissipated, which in tum gives rise to the offsets in the flux linkages observed

when the fluxes are added up.
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Figure 7.5: Rotor three phase flux linkage variations in rotor frame.

Therefore, the DCM model was altered such that conservation of flux equation (given

by equation (2.8)) at each node is solved instead of equations for rate of change of flux.

This ensures that no constant flux exists in any node. The changes required for

enforcing nodal flux conservation are as described in Section 2.S(b), Henceforth, all

simulations are based on flux conservation on each node of the DCM model.

For this reason, the rotor flux oriented vector control of the wound rotor induction

motor was repeated with the model solving for conservation of flux equation at each

node. Without any change to the mechanical equations, the speed and torque variation

against time were found to be similar to those obtained previously when solving for

conservation of rate of change of flux equation at each node. However, the dq- axis

stator currentsin the motor obtained fromer, represented by the darker set of lines, and

()~FT , represented by the lighter set of lines, are now in agreement as seen in Figure 7.6.

The error between the two angles, shown in Figure 7.7, was also found to be less than

0.93° electrical on average, which is acceptable. However, this error can be reduced

further by altering the rotor time constantT r = L~/R~ .
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- using IRFO controller angle for control

using machine rotor flux angle ('direct' orientation)

- using IRFO controller angle for control
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Figure 7.6: Stator current variation of the IRFO vector controlled motor with solution based on

conservation of flux equations: (a) d- axis (b) q- axis.
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solution based on conservation of flux equations.

These results were then compared with the results obtained from a Simulink simulation

of the same IRFO vector controlled 4-pole wound rotor induction motor.It is observed

that the speed, torque and dq- axis stator current variations exhibits very close

agreement between the two simulation methods as indicatedby Figures 7.8(a)-(d).
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Figure 7.8: Comparison between the DCM and Simulink simulations of IRFO vector controlled

motor: (a) speed,(b) torque, (c) stator current d- axis and (d) stator current q- axis.

7.2.1. Verification of peak airgap flux position

The position of the peak 4-pole airgap flux is crucial in the mixed field orientation

(MFO) vector control scheme proposed for the bearingless wound rotor 1M. In the MFO

vector control scheme, the position of the controller peak 4-pole airgap fluxeo is

A

obtained indirectly from the controller peak rotor flux angleBr and the flux linkages

1j.I~ and 1j.I~ (defined in the rotor flux frame) as given by:

(7.2)

where
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M L~ M (LM LM).MIf/'od = "Mlf/'rd + r - 0 Isd
La

(7.3)

(7.4)

. (7 3) M 1 ·M d half'In equation . ,If/' rd = ( M / M) Isd an t e v ues0 inductances and resistance
s Lr R; + 1

are as given in Table 5.3.

This angle eo defines the orientation for the currents, voltages and flux linkages of the

2-pole levitation winding. Therefore, any error in this angle will cause an error in the

levitation and lateral forces produced. Hence, a verification of this controller angle is

vital in order to achieve successful control. From Figure 7.9, the time-varying difference

between Bo and Br shows a differencee of approximately 2.800 on average during

rotor acceleration and 2.420 average on load.
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Figure 7.9: Difference between the controller peak airgap flux anglego and controller peak rotor

flux angle B,.

In the previous section, the IRFO orientation angleer was verified by comparing it

with the angle B~FT obtained from performing a spatial discrete Fourier transform

(DFT) of the flux density flowing in each inner rotor tooth reluctance element.
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Therefore, assuming that the flux density flowing in the rotor tooth-tip (refer to Figure

6.3) is the same as the flux density in the airgap, use of the angleBo can be justified by

comparing it with the angleB:P given by performing a spatial DFT of the flux density

flowing in each rotor tooth tip reluctance element. Referring to Figure 7.10 it was found

that B:P lags Bo by an average of2.470 during rotor acceleration and1.450 average on

load. This implies thatB:P is closer to Br' with (Br = B;>FT). Therefore, the accuracy of

Bo is not verified from comparison withB:p.

l'
I
I
I
I
I
I
I
I

e:o

Blip
o

--------7 00

Figure 7.10: Graphical representation of the peak rotor and peak airgap flux positions obtained

from controUer and OFf of flux densitiesin tbe rotor tooth-tip and airgap reluctance elements.

Alternatively, one can verifyBo by carrying out the spatial DFT on the flux densities in

the actual airgap reluctance elements. This is denoted asB:r. However, due to the fact

that the airgap elements are non-uniformly spaced around the airgap circumference, a

non-uniform spatial direct Fourier transform (DFT) was utilized. Equation(6.6) was

used to perform the non-uniform spatial DFT, which is repeated here:

(7.6)

where Xj and Bj are the flux density and mechanical angular position of each airgap

reluctance elementi respectively. Whenk = 2, the above equation will give the

magnitude and electrical angular positionB:r of the peak 4-pole airgap flux densityin
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the 4-pole wound rotor motor. It is expected that this angle will be used to verify the
~

controller angle ea' From the simulation, it was found thate: leads e bya a

approximately Ea = 40 during rotor acceleration andEa = 4.150 on load.

Hence, there exists a difference betweene:ir and Ba' However, this difference

decreased to approximately 00 when the simulation was repeated with the controller

value of l~', the equivalent circuit's referred rotor leakage inductance, increased to

approximately 3 times its original value of 4.37mH and the mutual inductanceL~

maintained at 235.36mH. This result indicates that the controller angleBo obtained

using equation (7.3) could not accurately predict the actual position of the peak airgap

flux when using the equivalent circuit parameters of the motor derived in Chapter 5.

This could be due to the assumption of equal leakage reactance split on the stator and

rotor side used in the equivalent circuit parameter calculations of the 4-pole winding

based on the no load and locked rotor tests. Furthermore, the mesh employed to model

the stator and rotor teeth used in the parameter derivation tests can be considered to be

crude since it only has 1 slot leakage element modelling only the slot tip leakages. In

order to obtain much better results from the locked rotor test, which determines the

leakage inductances in the motor, more slot leakage elements would have to be included

across the middle of the stator and rotor slots as shown in Figure 7. 11.

STATOR ROTOR

Figure 7.11: Possible improvements to the reluctance mesh model for better slot leakage modelling.
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7.3. Simulationof radial forces

This section discusses an uncontrolled DCM simulation of normal forces produced by

the bearing relief wound rotor1M. This simulation is comparable to that performed for

the cage motor in Section 6.3 since the stator for both motors consists of a 4-pole main

winding as well as an additional 2-pole levitation winding on the stator. The only

exception is the 4-pole wound rotor replacing the cage rotor of Section 6.3. In the DCM

model, all reluctance elements were chosen to be of type 'linear iron' having a

u,= 13S0 with the exception of the slot tip leakage elements, which were chosen to be

of type 'air', due to the semi-closed slots on both stator and rotor side. The motor was

modelled with only one rotor axial skew section with a skew angle of ISOelectrical.

As the motor is uncontrolled, the terminals of both stator windings are directly

connected to sinusoidally varying voltage sources.A 41SV rms voltage was applied to

the 4-pole main windings. Similar to the cage rotor simulation, the applied voltage of

the 2-pole levitation winding is determined from (refer equation (4.12»:

(7.7)

where f =SOHz and the values of the 2-pole winding factork: and total series tum

N: are given in Table S.4(a). However, a value of the peak field due to the levitation

winding, B~, is required. This is evaluated from the relationship between the

magnitude of required force and the peak fields due to the main winding,B~, and the

levitation winding,B~, given by equation (3.27), repeated here for convenience,

(7.8)

From the vector control simulation of the 4-pole induction machine carried out in the

previous section, the peak of the main 4-pole fieldB~ was found to be 0.9T. To

produce a force magnitude of 23S.36N, to compensate for the rotor weight, a peak
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2-pole flux density B~ of 17.4mT is needed. Hence, by substitutingB~ of 17.4mT

into equation (7.7), a terminal voltage of 4.20V rms is required for the 2-pole levitation

winding, which is exactly the same as that applied for the cage type motor. As with the

cage rotor motor simulation, a load torque equal to the motor rated torque of 99.5Nm

was also applied after 1s of the simulation.

Figure 7.12 shows the force magnitude obtained from the direct on-line simulation of

the wound rotor 1M.It is observed that in steady state at no load, the motor produces a

radial force magnitude of 235.97N, which is 0.26% more than expected. When the load

is applied, the force magnitude drops to 228.77N which is 3.1% of the no load force

acting on the rotor. This is due to the fields in the motor not being kept constant.
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Figure 7.12: Force magnitude obtained from a direct on-line start of a bearing relief wound rotor

induction motor.

In order to verify the force magnitude obtained from the simulation, the actual peak 4-

and 2-pole field values are evaluated by performing a spatial discrete Fourier transform

(DFT) on the flux densities of the non-uniformly spaced airgap reluctance elements

around the rotor circumference using equation (7.6). As mentioned in Section 6.4, in

order to obtain more accurate results from the spatial DFT of the non-uniformly spaced

flux density samples for the 2-pole fundamental component and other smaller harmonic

field components (k « 2 in equation (7.6)), the contribution of the dominant 4-pole field

in each flux density sampleXi was subtracted to obtainx; using the following equation:
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(7.9)

where IB~FTI and L.B~FT are the magnitude and phase angle of the dominant 4-pole

field, obtained from equation (7.6) whenk = 2, and OJ is mechanical angular position of

each airgap reluctance elementi. This procedure is implemented every time the spatial

OFT of the airgap reluctance element flux densities is applied to the uncontrolled or

vector controlled 4+2 pole wound rotor motor. However, it has to be noted that the

results from the spatial DFT of the non-uniformly spaced airgap elements for harmonic

index values k::t; 2, are susceptible to numerical errors due to inaccuracies in equation

(7.9). This is because any residual 4-pole field component present inx; will affect the

magnitude and angle of the OFT results whenk::t; 2.

Average magnitude of peak Average magnitude of peak

2-pole field,IB~FTI 4-pole field,IB~FTI

No load 16.1mT O.91T

Full load 14.2mT O.92T

Table 7.1: Summary of peak fundamental4-pole and l-pole field average magnitudes obtained

from DFT of airgap element flux densities.

Figure 7. 13 shows the magnitude of the peak fundamental 4-pole and 2-pole fields in

the motor, obtained from the spatial OFT of the airgap reluctance element flux density

samples. The average magnitudes of the peak fundamental fields under no load and full

load conditions are as summarised in Table 7.1. The average magnitude of the peak

4-pole field are, as expected, in the region of O.9T. On the other hand, at no load, the

peak 2-pole field magnitude is 7.5% less than the expected 17.4mT. By substituting

these values ofIB~FTI and IB~FTI for B: and B: , respectively into equation (7.8), the

force obtained from the fundamental fields during no load and full load conditions can

be calculated as 219.12N and 195.25N respectively which corresponds to a difference

of 7.3% and 14.7% from the force obtained from the simulation. These differences in
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force magnitude could be due to numerical errors associated with the non-uniform DFT

results for the peak 2-pole filed magnitude mentioned above. Even so, these results

indicate that the forces obtained from the DFT peak magnitudes are in broad agreement

with the force obtained from the virtual work principle of the airgap elements.
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Figure 7.13: Magnitude of tbe fundamental fields of the wound rotor bearing relief induction motor

at direct on-line start: (a) 4-pole and(b) 2-pole.

The results indicate that the wound rotor bearing relief 1M produces the constant force

magnitude of 235.36N required to levitate the rotor in comparison to the 46.59N force

obtained from the cage rotor motor shown in Figure 6.8. As discussed in Section 6.3,

the cage rotor was unable to generate the required radial forces due to the high slip

leakage effects introduced in the rotor by the 2-pole field which meant that considerably

higher 2-pole currents are required than predicted from the simple force expressions of

equation (7.8). In addition, the 2-pole airgap field waveform at the cage rotor surface

will be subject to high harmonics that will cause increased losses and unwanted force

disturbances. However, in the 4-pole wound rotor motor, the induced 2-pole rotor

current is suppressed. Therefore, the wound rotor does not exhibit any high slip leakage

effects as observed in the cage rotor type motor. This is evident in the 2-pole airgap flux

density variation around the circumference of the wound rotor motor as calculated at the

tooth-tips on the stator and rotor shown in Figure 7.14. This was obtained using the

same method as that for the squirrel cage machine, that is by running the direct on-line

simulation at steady state and deactivating the 4-pole field by setting the main stator

winding stator phase resistance to be very large. Figure 7.14 clearly illustrates that the
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airgap flux density in the wound rotor machine is sinusoidal in shape and does not

exhibit the zigzag leakage effects seen in the squirrel cage machine (Figure 6.11). The

peak magnitude also corresponds with the magnitude of the fundamental 2-pole field of

Figure 7.13(b). The reason for these good waveforms is that the wound rotor machine

has no 2-pole induced currents flowing at large slips. Therefore, the suppression of the

2-pole rotor current is a desirable characteristic for radial force production and thus the

wound rotor was selected for further control studies.
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Figure 7.14: 2-pole airgap flux density distribution around the circumference oftbe wound rotor

motor at time 0.8s taken on tbe stator and rotor side.

Hitherto, the radial force is directed in an arbitrary direction. In order to control the

direction in which the force is produced, the peak magnitude and phase of the 2-pole

field B: must to be controlled such that it is aligned with the peak of the main 4-pole

field B~. This is achieved through a vector control scheme, which was previously

designed for a bearing relief wound rotor induction machine in Section 4.4. Even

though three vector control schemes were proposed for the wound rotor bearingless

induction motor, the mixed field orientation (MFO) vector control scheme was chosen,

as summarised in Chapter 5, due to its simpler main winding control and airgap field

oriented vector control of the levitation winding which was able to produce the required

levitation force as observed from the MATLAB Simulink simulation results presented

in Section 5.4.4.
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7.4. Mixed field orientation (MFO) vector control simulation

In this section, a DCM simulation of a vector controlled linear 4+2 pole wound rotor

induction motor with short-circuited 4-pole wound rotor will be presented. The vector

control scheme considered is a mixed field orientation (MFO) scheme, in which the

main 4-pole winding is rotor field oriented whereas the 2-pole levitation winding is

oriented onto the 4-pole airgap field, previously proposed in Section 4.4 for motors with

levitation N-pole rotor current suppression (refer to Figure 4.7).An external load having

inertia equal to the motor inertia ofO.0713kgm2 as well as a linear friction ofO.lT,ated at

1500 rpm was applied throughout the simulation. The current controllers for the 4- and

2-pole systems utilisedin this vector control scheme was designed, in Chapter 5, with a

natural frequency of 400Hz and 100Hz respectively and a damping factor of 0.8. The

speed controller was also designed in Chapter 5 with a natural frequency of 5Hz. These

controllers were then transformed into the discrete z-plane using the Bilinear transform

and implementedin the simulation with a sampling time of 100llS for the current control

and 2ms for the speed control. The main 4-pole field was given time to establish by

applying i~· of value 4.90A from the start of simulation. Once the main 4-pole field

had been established, the force references,F; of 235.36N, which is equal to the rotor

weight, and Fx· of ON, were applied at 2s. A speed reference of 1500rpm was given at

3s and a load of89.55N, which is equal to 90% of the rated torqueT,ated' was applied at

4s.

Figure 7. 15 illustrates the speed and torque variation of the wound rotor type bearing

relief induction motor simulated with the torque current limited to 116% of the rated

i~ . The speed variation against time clearly shows that the motor was able to accelerate

to the required speed of 1500rpm within 0.3s of applying the step change in speed. As

expected, the speed rises as a ramp. As the load torque is applied at 4s, the speed

variation experiences a drop to 1483Nm but this was quickly restored by the speed

controller within approximately 0.1 s. As the rotor speed reached the required 1500rpm,

the torque did not settle down to zero, as expected, due to the 10% of rated torque

friction applied.
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Figure 7.15: (a) speed and(b) torque variation of the vector controlled 4-pole wound rotor bearing

relief IM_

The dq- axis stator currents of the main 4-pole winding and 2-pole levitation winding

are as shown in Figure 7.16. As shown in Figure 7.16(a), the d- axis stator currenti::
of the 4-pole motoring winding is maintained at its reference value of 4.90A throughout

the simulation by the current controller. As expected, no q- axis currenti~ is available

from 0 to 3s as the rotor is still stationary. The current reaches its limit of 15A during

rotor acceleration before dropping to approximately 1.2SA as the rotor speed remains

steady at 1500rpm and when the load torque is applied it settles at 12.7A.

20~Le~v~~~ti~on~fi~le~ld~~ ~~~~~~-----.
applied: '

f:: .:It·····il··········~················f
6 5 ~~ .,
~ ~

o --+---,
tit

-5+-~M~o~to~nn~·-gfi~e·ld~----~----1---~~~~

applied

0.25

0.3 -.-==.:.;;=r==::.:.::._ct------!==~__:::!:~.::.::.:::.c:.:,.------,

..............+ : 1. ; .

i-

t ~ ~ ~
100% load torque

Time(s) applied

(b)

, ,
, "

0.2 , ( '1" ..
0.15 ; :, : ~ .

! i
0.1 ·r ·i T ·T ..

0.05 ~ ·· ·T···"[·· t..··..····..··(·
o - - -+-

Time(s)

(a)

Figure 7.16: Stator current variation of the vector controlled 4-pole bearing relief 1M: (a) 4-pole

winding (b) 2-pole winding.
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The 2-pole levitation current i~ obtained from the simulation, as shown in Figure

7.16(b), is maintained at zero on average at all times. This current value was expected

since i~ is dependent on the referenceFx·, which is equal to zero in the simulation, as

given by equation (4.64) derived in Chapter 4 and repeated here

(7.10)

The d- axis current component of the levitation windingi~ obtained is 0.23A after 2s

as expected. This is consistent with the value ofi~* calculated using the above equation

since F; applied to the simulation is 235.36N at 2s. The value of the peak 4-pole

fundamental field B: used in the calculation was 0.9T with values of the 2-pole

(N = 1) levitation winding factor k~, total number of turns per phaseN:, and

magnetizing inductanceL~ used are given by Table 5.4.

v- direction I

Motoring field
applied Time (s)

~ 100% load torque
applied

Figure 7.17: Vector controlled forces in the x- and y- direction produced by the bearing relief

wound rotor motor.

The most important result of this simulation is in Figure 7.17, which shows that the

machine produces the requiredF; to levitate the rotor from the moment the force

reference p' = 235.36N is applied. However, non-zeroF, is observed when the rotor
y
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accelerates and when the load torque is applied. The mean value ofF, is found to be

approximately 16.71N and 15.7N at these particular instances.

The cause of the non-zeroF, is felt to be due to the fact that the peak airgap flux

A

position derived by the controllerBo is different to the peak angle obtained from the

non-uniform DFT of the actual airgap reluctance element fluxes«: during transient

conditions as shown in Figure 7.18. The average angle difference betweene:ir and {}0

was found to be 4° during rotor acceleration (between 3 to 3.2s) and 4.15° when the

motor is subjected to full load. This result is identical to that observed in Section 7.2.1

for the vector control of just the 4-pole wound rotor motor since the bearing relief motor

simulated here uses the same 4-pole motor for torque production.
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Figure 7.18: Difference between tbe actual peak airgap flux anglee,: and tbe controller peak

airgap flux angleeo.

When the simulation of the bearing relief wound rotor 1M was repeated withe:ir used

as the orientation angle of the 2-pole levitation winding voltages, currents and flux

linkages (a form of 'direct' orientation) instead of the controller angleeo' the meanF,

obtained was found to be approximately zero even during transient conditions as shown

in Figure 7.19. However, the forceF, still experienced oscillations at a frequency of

300Hz but of larger amplitude (approximately ION) as compared to that obtained using
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A

Bo observed in Figure 7.17. As mentioned in Section 7.2, this 300Hz frequency, also

observed inF
y
, is the main 4-pole winding phase belt passing frequency as observed by

the rotating fields in the motor.

The results indicate that the controller angleeo inaccurately predicts the position of the

airgap flux since it is dependant on the equivalent circuit parameters of the 4-pole

winding that, as discussed previously in Section 7.2.1, were obtained from the no load

and locked rotor tests performed using the crude reluctance mesh which underestimated

the rotor leakage occurring in the motor.
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Figure 7.19: Forces in the x- and y- direction produced by the vector controlled bearing relief

wound rotor motor obtained usingB;: as the 2-pole winding orientation angle.

From Figures 7.17 and 7.19, it can be concluded that a slight error in the orientation

angle eo' in this case 40 error on average, will create anF; force even when the

reference x-direction force given was zero. The forceF, is less affected by the error in

Bo since it is governed by acoseo function as compared to sinBo for Fx'

The spikes observed in Figure 7.16(b), 7.17 and 7.19 are due to numerical effects of the

simulation and not due to any transients occurring in the bearing relief motor.
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7.5. Effects of non-linear iron on bearing relief 1M performance

Thus far, all the results presented in this chapter have been obtained by simulating a

DeM model of the wound rotor induction motor in which all reluctance elements were

of type linear iron having a relative permeabilityu, of 1350. In this section, the effects

of non-linear iron on the simulations of the 4+2 pole induction motor with a 4-pole

wound rotor at direct on-line start and with a mixed field oriented vector control scheme

will be presented. In the non-linear iron simulations, the permeability of each reluctance

element, set to be of type 'non-linear iron', is obtained from a cubic spline interpolation

of the B-H curve shown in Figure 7.20.
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Figure 7.20: B-H curve of the non-linear iron.

7.S.1. UncontroUed force simulation

Firstly, the effect of non-linear iron on the direct on-line simulation of the wound rotor

induction machine of Section 7.3 is investigated. The same rms voltage is applied to

both the 4-pole and 2-pole winding terminals, that is 415V for the former and 4.20V for

the latter. After Is, full load torque is applied to the wound rotor motor.It is found that

with the introduction of non-linearity, the average no load force magnitude obtained

reduces to 203.83N from the linear value of 235.97N. On load, the force magnitude

drops further to 200.05N compared to the linear iron force of228.77N. It is also noticed

that the 100Hz oscillation amplitude in the non-linear force magnitude variation
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increases to 67.7N peak-to-peak at full load from the linear value of 1.3N. Moreover, in

addition to the higher oscillation frequency of 100Hz, a low frequency oscillation of

9.5Hz was observed when the full load torque was applied. This frequency is related to

the number of rotor phase belts per pole pair, which is 6, and the slip frequency. The

frequency is always the product of the two (9.5Hz= 1.6Hz x 6 at full load in Figure

7.21).
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Figure 7.21: Force magnitude obtained from the direct on-line simulation of the 4+2 pole wound

rotor motor under linear and non-linear iron conditions.

Figure 7.22(a) and (b) respectively show the magnitude of the peak fundamental 4-pole

and 2-pole fields in the non-linear motor obtained from a DFT of the flux density

flowing in all non-uniformly spaced airgap reluctance elements. The average values of

the fundamental field magnitudes obtained are summarised in Table 7.2 in which it is

observed that these values are very similar to that obtained in the linear iron simulation

summarised in Table 7.1. However, due to the non-linearity introduced by the B-H

curve, triplen field harmonics are now observed to be present in the motor. The most

significant harmonic field observed is the third harmonic of the 2-pole field, having a 6-

pole variation and an average magnitude of3.6mT at no load and 5.5mT at full load, as

shown in Figure 7.22(c). This 6-pole harmonic field will interact with the fundamental

4-pole field to create a harmonic force of 49.14N, on average, at no load and 74.17N, on

average, at full load. This is possible since this pole combination satisfies the criterion

of constant force production that is M - N= ±2. The 6-pole harmonic field was also
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observed to oscillate at 100Hz with a peak-to-peak amplitude of 4.8mT at full load. It is

due to this behaviourin the 6-pole harmonic that the force obtained from the simulation

expenences the 67.7N peak-to-peak oscillation at the 100Hz frequency mentioned

above.
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Figure 7.22: Peak fundamental and peak harmonic field magnitudes present in the non-linear

bearing relief motor: (a) fundamental4-pole field,(b) fundamental2-pole field and (c) 31'11harmonic

of the 2-pole field (Le. 6-pole variation).

Average magnitude Average magnitude Average magnitude

of peak 2-pole of peak 4-pole of peak 3rdharmonic

field, IB~F1'I field, IB~F1'I of 2-pole field,IB~F1'I

No load 16.5mT O.91T 3.6mT

FuUload 14.7mT O.90T 5.5mT

Table 7.2: Summary of peak 4-pole, peak 2-pole and peak 6-pole harmonic field average

magnitudes obtained from DFT of airgap element flux densities in the non-linear simulation.
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In the linear iron simulation results, the magnitude of force obtained from the virtual

work principle (as seen in Figure 7.21) was found to be equal to the weight of the rotor

and was in broad agreement with the force calculated from the fundamental magnitudes

of the 4-pole and 2-pole fields using equation (7.8). In the non-linear iron simulation,

the force IF2-41 calculated using equation (7.8) from the OFT results for peak 4- and 2-

pole fundamental magnitudes (summarised in Table 7.2) was 22S.21N and 198.24N on

no load and full load respectively. WhenIF2-41 is compared to the magnitude of force

obtained from the virtual work principle in the non-linear simulation IFI, the former is

more than the latter at no load but is slightly lower than IFI under load as shown in

Table 7.3.

Average force
Fundamental force Main harmonic force

magnitude from
from OFT, IF2-41 from OFT,IF6-41

simulation, IFI
(from extracted data in (from extracted data in

(from virtual work
airgap) airgap)

principle)

No load 203.83N 22S.21N 49.20N

FuUload 200.0SN 198.24N 79.34N

Table 7.3: Comparing force obtained from the simulation with the force calculated from

magnitudes of thepeak 4-pole and l-pole fields given by the DFT.

Therefore, it can be observed that the drop or rise in fundamental force to create the

virtual work derived force is dependent on both the magnitude and direction of the

harmonic force vector created from the interaction of the third harmonic of the 2-pole

field with the fundamental 4-pole field.It can be summarised that the force obtained

from the virtual work principle, shown in Figure 7.21, is the resultant force obtained

from the vectorial sum of fundamental and harmonic forces. In this direct on-line start

simulation, no in-depth analysis of the force vectorial sum is carried out since the main

objective of this simulation was to introduce the effect of non-linear iron on the force

produced in the 4+2 pole wound rotor motor and to determine if the wound rotor motor

produces the expected 23S.36N force which was achieved in the linear iron simulation.
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However, the vectorial sum force analysis will be carried out in the vector control

simulation of the non-linear motor in Section 7.5.2.

As observed in the direct on-line start simulation, the iron non-linearity introduces

triplen spatial harmonics of the 2-pole and 4-pole fields in the wound rotor motor which

were not present in the linear iron simulation of Section 7.3. Furthermore, in this

simulation, the magnitude of field harmonics originally present in the linear iron

simulation, for example the 5th
, 7th

, and 11th, was found to have increased due to the

introduction of iron non-linearity. These harmonics have an associated pole number and

if the difference between the 4-pole harmonic pole number and the 2-pole harmonic

pole number is ±2, a harmonic force is created. This can either oppose or strengthen the

fundamental force created from the fundamental field interactions depending on both

the magnitude and direction of the harmonic force.It was observed in the direct on-line

start that one of the harmonic forces is created from the interaction between the

fundamental 4-pole field and the third harmonic of the 2-pole field. However, other

harmonic field interactions can also create harmonic forces and some of these are shown

in Table 7.4.

Pole number 4-pole harmonic index, 2-pole harmonic index,

combination (M, N) k4-poIe k1-pole

4+2 1 (fundamental) 1 (fundamental)

4+6 1 (fundamental) 3

12+10 3 5

12+14 3 7

20+18 5 9

20+22 5 11

28+26 7 13

28+30 7 15

Table 7.4: Harmonic pole number combinations in the 4+2 pole wound rotor motor.

In Table 7.4, only odd harmonics are considered to interact to create harmonic forces

since it was observed in the non-linear direct on-line start simulation that even

harmonics fields of both the 4-pole and 2-pole field were found to have very much
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smaller magnitudes in comparison with the odd harmonics. The 4+6 pole combination is

regarded as the main contributor to the harmonic forces since it involves an interaction

with the dominant fundamental 4-pole field which typically has a peak magnitude of

0.9T. This 4-pole fundamental magnitude is more than 50 times that of the fundamental

2-pole field and hence is many more times larger than that of the 2-pole harmonic field

magnitudes since field harmonics of larger indices typically have smaller magnitudes

compared to the fundamental. Therefore, it is a valid assumption to ignore other

harmonic force contributions in all the non-linear simulation force analysis carried out

in this thesis. This assumption is verified from observation in the direct on-line start

simulation whereby it was found that the 4+6 pole combination created a harmonic

force magnitude of 49.20N at no load whereas the next pole combination in line in

Table 7.4, that is the 12+10 pole, only created a harmonic force magnitude of 0.9N

under the same conditions.

7.5.2. Vector controUed force simulation

The MFO vector controlOeM simulation of the 4+2 pole bearingless wound rotor 1M

(Section 7.4) is repeated with all iron elements given a 'non-linear' type and having its

permeability derived from the B-H curve shown in Figure 7.20. Since the peak airgap

flux position obtained from the controller,Bo, inaccurately predicts the position of the

airgap flux in the linear iron simulation, this simulation was performed with the

2- pole winding orientation angle obtained directly from peak angle of the 4-pole airgap

field et·

The speed and torque variation obtained from the non-linear iron simulation simulated

with the proposed controllers, designedin Chapter 5, with the torque current limited to

15A are as shown in Figure 7.23(a) and (b) respectively.It was observed that the speed

variation is very similar to that obtained from the linear iron simulation. However, the

torque variation experiences a low frequency oscillation of 9.5Hz during full load

condition (after 4s) which is similar to that observed in the non-linear iron direct on-line

simulation. As explained in Section 7.5.1, this 9.5Hz frequency is thought to be related

to the electrical slip frequency since it is obtained from multiplying the slip frequency

of 1.6Hz with the number of rotor phase belts per pole pair. This oscillation is also
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observed in the speed-time variation and could not be eliminated even with an increase

in the speed control closed loop bandwidth from 5Hz to 15Hz.
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Figure 7.23: (a) speed and(b) torque variation of the vector controlled non-linear bearing relief

motor.
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Figure 7.24: Stator current variation of the vector controlled non-linear wound rotor bearing relief

1M: (a) 4-pole winding (b) 2-pole winding.

The dq- axis stator currents of the main 4-pole winding and 2-pole levitation winding

are as shownin Figure 7.24. In Figure 7.24(a), the dq- axis stator currents of the 4-pole

motoring winding is observed to be similar to that of the linear simulation of Figure

7.16(a) with the exception of the 9.5Hz low frequency oscillation experienced at full

load. The average value of!~q in both linear and non-linear simulations is observed to
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be the same. Similarly, the dq- axis stator current components of the 2-pole levitation

winding shown in Figure 7.24(b) behaves in the same manner as that shown in Figure

7.16(b). However, the non-linear 2-pole stator current also exhibits oscillations during

full load condition.

The radial forces for the non-linear iron wound rotor motor are shownin Figure 7.25.

The machine does not produce the required 235.36N y- direction force when the force

reference F; is applied. TheF; obtained is 170.54N between 2 to3 s when the rotor

was stationary, after which it drops slightly to 169.94N between 3 to 4s, during the time

the rotor had accelerated and reached steady state speed, before dropping further to

approximately l58.94N average during full load (between 4 to 5 s). Furthermore, a non-

zero F; is observed from the onset ofFx· = ON that is at 2s of the simulation. From

Figure 7.25 it is seen thatFx has an average value of -lIN, 5.76N and 4.09N during

the time intervals of 2 to 3s, 3 to 4s and 4 to Ss, respectively. The forcesF; and F,

were also found to experience relatively large oscillations during rotor rotation when

compared to the forces obtained in the linear iron simulation.
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o
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Figure 7.25: Vector controlled forcesin the x- and y- direction produced by the non-linear bearing

relief IM obtained usinge;:.

As observed in the direct on-line start simulation, the non-linear iron introduces larger

harmonic field magnitudes in the wound rotor motor. This causes a reduction inF; as
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previously discussed. In order to analyse the forcesF; and Fx observed in Figure 7.25,

a vectorial sum of the fundamental force and main harmonic force is required which is

obtained from the magnitude and phase angle results of the spatial DFT of the flux

densities in each non-uniformly spaced airgap reluctance element. This analysis will be

performed at three different time intervals of the simulation, namely between 2 to 3s

when the rotor is stationary, 3 to 4s during which the rotor is accelerated and reaches

steady state condition and4 to Ss when the full load torque is applied. The magnitude of

the fundamental 4-pole field together with the fundamental 2-pole field and its third

harmonic field obtained from the DFT is presented in Figure 7.26.
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Figure 7.26: Peak fundamental and harmonic field magnitudes present in the vector controlled

non-linear motor: (a) fundamental4-pole field,(b) fundamental2-pole field and (c) 3""harmonic of

the 2-pole field (i.e. 6-pole variation).
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The magnitude of the fundamental force vectorIF 2-41, from the interaction of the 4-

pole (M = 4) and 2-pole (N= 2) fields, as well as the magnitude of the main harmonic

force vector IF 6-41, from the interaction of the fundamental 4-pole(M = 4) and

harmonic 6-pole (N= 6) fields, can be obtained using equation (7.8). The direction in

which these forces are acting can be determined from the angle difference between the

peak 2-pole field and the peak of the 4-pole field obtained from the DFT,¢J2-4' as well

as the angle difference between the peak 6-pole harmonic and peak fundamental 4-pole

fields ¢J
6
-4' respectively stated in electrical degrees. Therefore, the resultant force

magnitudes actingin the y- and x- direction is given by

(7.11)

Thus, the force valuesF; and F; observed in Figure 7.25 can be compared to the

forces F
y
_

re
• and Fx-res which will be determined at the three time intervals of 2-3s, 3-

4s and 4-5s in the following analysis. In order to facilitate the force vector analysis, a

summary of the average magnitudes of the peak 4-pole fieldIB~FT I, peak 2-pole field

IB~FT Iand peak 6-pole fieldIB~FT I together with the average values of¢J2-4 and ¢J6-4

are presented in Table 7.5. Angle zero is aligned to the positive y- axis.

Time IBfFTI IB~FTI IB~FTI
¢J2-4 ¢J6-4

interval
_ LEDFT _ LEDFT _ LEDFT _ LEDFT
- 2 4 - 6 4

2-35 0.89T 14.9mT 2.5mT 0.060 194.060

3-45 0.88T 13.2mT 3.3mT -0.440 166.79°

4-55 0.90T 11.6mT 5.5mT -2.530 178.28°

Table 7.5: Summaryof DFI' results obtained from the airgap element flux density samples of the

vector controlled bearing relief non-linear wound rotor motor.

166



Chapter 7: Dynamic circuit modelling (DCM) of a bearing relief wound rotor 1M

Time interval 1: 2-3s (rotor stationary)

Figure 7.27(a) illustrates the 2, 4 and 6-pole angles obtained from the DFT. Figure

7.28(b) shows the differences¢2-4 and ¢6-4'
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Figure 7.27: (a) Angles of the peak 2,4 and 6-pole fields and (b) difference in angles during time

interval 2-3s.

With this information as well as the average magnitudes of the peak 2-pole, 4-pole and

6-pole fields given by the DFT, the fundamental force vectorF 2-4 and the main

harmonic force vectorF 6-4 can be obtained. By substitutingB:! and B: of equation

(7.8) with the values ofIB~FT I and IB~FT I respectively from Table 7.5,F 2-4 calculates

as 197.43NLO.06°. The force vector F6-4 calculates to be 33.24NL194.06°. The

resultant force acting on the rotorF res = F y=res +F x-res is as shown in Figure 7.28 in

which F
y
-res (acting at angle 0°) andFx-res (acting at angle 90°) calculates to be

16S.19N and -7.87N respectively from equation (7.11). The negative sign ofFx-res

indicates that the force is acting in the negativex- direction. These results are

summarised in Table 7.6, together withF; and F; values obtained from the simulation

during this time interval.
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F2-4
F

6
_
4 Fy-res Fx-res

Harmonic force
197.43NLO.06° 33.24NL194.06° 165.19N -7.87N

analysis

Simulated force 170.54N -11.0N

Table 7.6: Summary of force vector analysis during tbe time interval 2-3s.

e;

194.06°

-------~x

Figure 7.28: Fundamental, main barmonic and resultant force vectors acting in tbe non-linear

bearing relief motor during tbe time interval of 2 to 3s.

Time interval2: 3-4s (rotor accelerated and reaches steady state)

The angle of the peak 2-pole, 4-pole and 6-pole fields obtained from the DFT of the

airgap element flux density values during the time interval 3 to 4s is partly shown in

Figure 7.29(a). Figure 7.29(b) illustrates the angle differencesrP2-4 and rP6-4. For this

interval F 2-4 calculates to 174.56N L -0.44° and F6-4 calculates as 43. 64N L 166.79°.

Hence, the resultant force acting on the rotorF res for this time interval is as shown in

Figure 7.30 in whichFy-res and Fx-res calculates to be 132.07N and 8.63N respectively

from equation (7.11) as summarised in Table 7.7.
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Figure 7.30: (a) Position of peak 2, 4 and 6-pole fields(t = 3.8 - 3.9s) and (b) difference in angles

during time interval 3-4s.

F2-4
F

6
_
4 Fy-res Fx-res

Harmonic force
174.S6NL-O.44° 43.64NL166.79° 132.07N 8.63N

analysis

Simulated force 169.94N 5.76N

Table 7.6: Summary of force vector analysis during the time interval 3-4s.

y,OO~
~ 8

5.-41

166.79°
____ --------~x

1£6-4
1

Figure 7.30: Fundamental, main harmonic and resultant force vectors acting in the bearing relief

motor during the time interval of 3 to 4s.
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Time interval 3: 4-Ss (full load torque applied)

Figure 7.31(a) illustrates the angle of the peak 2, 4 and 6-pole fields obtained from the

DFT during the time interval 4.8 to 4.9s. The angle differencestP2-4 and tP6-4 are shown

in Figure 7.31(b). The results for this time interval are summarised in Table 7.8.

1-2po1e 4po1e 6po1el

Ture(s)

(a) (b)

Figure 7.31: (a) Angles of the peak fields from DFT(t = 4.8 - 4.9s) and(b) difference in angles

during time interval 4-5s.

F
2
_
4

F
6
_
4 Fy-res «:

Harmonic force
lS7.02L-2.53° 70.39NL178.28° 86.51N -4.82N

analysis

Simulated force 158.94N 4.09N

Table 7.8: Summary of force vector analysis during the time interval 4-5s.

178.28°
-------~x

IE64

Figure 7.32: Force vectors acting in the bearing relief motor during the time interval of 4 to 5s.
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From this analysis, it is shown that, in the time interval 4-5s, the value ofFy_res IS

clearly very different to the force values observed in Figure 7.25 in whichF ISy

158.94N.

However, it can be observed that the harmonic force vector analysis results are in broad

agreement with the simulation, although some differences in force magnitude could be

due to numerical errors associated with the non-uniform OFT results for the peak 2-pole

field and peak 6-pole harmonic field magnitude and angle. This is because in order to

perform the OFT for harmonic index valuesk:l; 2 using equation (7.6), the dominant 4-

pole field component has to be subtracted from the non-uniformly spaced airgap flux

density values Xi using equation (7.9). This means that if equation (7.9) is unable to

perfectly remove the dominant 4-pole field, a residual 4-pole field component would

still be present inx; which will affect the magnitude and angle of the OFT results when

k :I; 2 and also affect the fundamental and harmonic force magnitudes and angles

calculated from the DFT results. An improvement on the OFT calculation to minimise

numerical errors may yield better agreement.

7.5.3. UncontroUed force simulation using a 6-pole levitation winding

The reduction in force obtained from the 4+2 pole bearingless wound rotor induction

motor under non-linear iron conditions is mainly due to the existence of the third

harmonic of the 2-pole field which interacts with the dominant fundamental 4-pole

field. Therefore, it was thought thatif the pole combination between the main winding

and levitation winding was changed to that of 4-pole and 6-pole, respectively, then no

harmonic of the 6-pole field would interact with the fundamental 4-pole field and vice

versa. This is shown in Table 7.9 in which the first available harmonic force in the 4+6

pole wound rotor motor is obtained from the interaction of the5th harmonic of the 4-

pole field with the 3rd harmonic of the 6-pole field. It has to be noted here that Table 7.9

shows only two combinations of the many possible harmonic field interactions to

illustrate the fact that none of the harmonic forces are capable of interacting with the

dominant 4-pole field. Furthermore, Table 7.9 only considers the possibility of
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interactions between odd harmonics to create harmonic forces as was assumed in the

4+2 pole wound rotor motor simulated in Section 7.5.1.

Pole number 4-pole harmonic index, 6-pole harmonic index,

combination (M, N) k4-pole k6-pole

4+6 1 (fundamental) 1 (fundamental)

20+18 5 3

28+30 7 5

Table 7.9: Harmonic pole number combinations in the 4+6 pole motor.

Therefore, the direct on-line simulation under linear and non-linear iron conditions,

were repeated with the new 4+6 pole stator winding combination on the existing 48/36

slot wound rotor induction motor described in Chapter 5. However, in order to be

capable of inserting the 6-pole levitation winding onto the 48-slot stator, the number of

phases was reduced from 3 to 2. A total series tum per phase of 96 was chosen for the

6-pole levitation winding which is double that of the original 2-pole winding of Chapter

5. This corresponds to a winding factork! = 0.906 and a stator phase resistanceR~of

0.760 calculated using

(7.12)

obtained from Alger (1995), whereN, = 96 is the total 6-pole stator winding turns in

series per phase,Lts is the mean length of the 6-pole winding tum in centimetres and

C is the total cross section of copper ofall phases in the stator slots due to the 6-pole
s

levitation winding stated in square centimetres. The equations used to calculateLts and

c,are

7r
L = 2L+-r

ts p (7.13)

C =(Ir
_
d )2N

s 500 s

(7.14)
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where p is the number of pole pairs,IratMl is the peak rated current flowing in the

winding, and fraUd/500 represents the area occupied by a coil carrying a maximum

current equal tofraUd based on the assumption that the current density in the induction

motor is taken as 5A1mm2.

Another important component required to simulate the direct on-line force simulation of

the 4+6 pole wound rotor motor is the rms terminal voltage applied to the levitation

winding. This was calculated using equation (7.7) to give an rms voltage of2.73V when

the peak flux density produced by the 6-pole winding is chosen to be equal to that of the

previous 2-pole winding, i.e.B~ =17.4mT. This is acceptable sinceB~ is calculated

from equation (7.8) with the required force magnitude equal to 235.36N, which is

assumed to also be the rotor weight of the 4+6 pole wound rotor. The rms terminal

voltage applied to the main 4-pole winding is maintained at 415V.As in the simulations

described previously, a load torque equal to rated torque was applied at Is of the

simulation.

The force magnitude obtained from the DeM simulation of the 4+6 pole bearingless

wound rotor 1M under linear iron conditions is shown in Figure 7.33.It can be observed

that the force magnitude obtainedin the 4+6 pole linear iron motor is 237. 99N at no

load and 230.93N when full load is applied. This result is comparable with that obtained

in the 4+2 pole motor shownin Figure 7.12. It is also found that the force values given

in Figure 7.33 under linear iron conditions are in agreement with the fundamental forces

calculated from the magnitudes of the peak 4-pole and 6-pole fields given from the DFT

of the non-uniformly spaced airgap reluctance elements flux density values.

Having observed that the 4+6 pole wound rotor motor produces a force equal to the

rotor weight under linear conditions, as was observed in the 4+2 pole motor, a non-

linear direct on-line start simulation of the 4+6 pole motor was then carried out with the

same voltage applied to both the main and levitation windings as in the linear case. The

result is shown in Figure 7.33.
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Figure 7.33: Force magnitude obtained from the linear and non-linear direct on-line simulation of

the 4+6 pole motor.
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Figure 7.34: Peak fundamental and harmonic field magnitudes in the 4+6 pole motor simulated

under non-linear iron conditions: a) fundamental4-pole field,(b) fundamental 6-lwle field and (c)

sub harmonic 2-pole field.
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Figure 7.33 shows that the 4+6 pole combination of the non-linear motor is only capable

of producing an average force magnitude of 190.84N at no load and 192.47N at full

load which is almost similar to the results obtained in the 4+2 pole non-linear wound

rotor motor shown in Figure 7.21. This indicates that a significantharmonic force may

be created from harmonic field interaction with one of the fundamental fields.

Theoretically, no significant harmonic force should be produced, as neither harmonic

field of the 6-pole field should interact with the fundamental 4-pole field and vice versa

as shown in Table 7.9. Nevertheless, from applying the spatial OFT procedure to the

airgap flux density values at each time step in the simulation, it was found that a 2-pole

sub harmonic field was present in the non-linear 4+6 pole wound rotor induction motor

as shown in Figure 7.34(c). The 2-pole sub harmonic field arose from the modulation of

the 6-pole field by the saturated 4-pole field. This 2-pole sub harmonic field was then

able to interact with the fundamental 4-pole field to create a harmonic force with an

average magnitude of 57.33N, at no load and an average 83.63N on full load. Figures

7.34(a) and(b) also show the magnitude of the peak fundamental 4-pole and 6-pole

fields obtained from the spatial OFT of the airgap flux density. The average values of

the peak magnitudes obtained from the OFT are summarised in Table 7.10.It is

observed that the peak 6-pole fundamental field magnitude in the 4+6 pole motor is

approximately the same as for the peak 2-pole fundamental field magnitude in the 4+2

pole motor (Figure 7.22(b».

Average magnitude Average magnitude
Average magnitude

of peak 2-pole sub
of peak 4-pole of peak 6-pole

harmonic
field,IB~l'T I field,IB~l'T I

field,IBfl'T I

No load 16.6mT 0.91T 4.2mT

Full load 14.8mT 0.90T 6.2mT

Table 7.10: Summary of tbepeak magnitudes of 4-pole, 6-pole and l-pole sub barmonic fields

obtained from DFf of airgap element flux densities in non-linear 4+(1pole wound rotor motor.
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From Table 7.10, the force calculated from the peak fundamental magnitudes of the 4-

pole and 6-pole fields, using equation (7.8), was 226.58N and 199.63N respectively on

no load and full load. However, the magnitude of force obtained from the virtual work

principle in the non-linear case is much less than the fundamental force magnitudes

stated above at no load and on load. As mentioned in Section 7.5. 1, the drop or rise in

fundamental force to create the virtual work principle force is dependent on both the

magnitude and direction of the harmonic force vector.In this case, the harmonic force is

created from the interaction of the 2-pole sub harmonic field with the fundamental 4-

pole field. The force obtained from the virtual work principle in the 4+6 pole motor is

the resultant force obtained from the vectorial sum of fundamental and harmonic forces.

Figure 7.33 also shows that the oscillation amplitude in the force magnitude also

increases to 16.2N peak-to-peak under no load and 43.4N peak-to-peak underfull load

compared to 0.2N and 3.2N peak-to-peak respectively in the linear iron simulation. The

force oscillation was found to have a frequency of 300Hz. Even so, it is clear that the

force oscillation amplitude observed in the 4+6 pole motor is much less than that of the

4+2 pole motor, which had peak-to-peak amplitude of 68N as shown in Figure 7.21. In

addition to the higher oscillation frequency of 300Hz, a low frequency oscillation of

9.5Hz, similar to that observed in the 4+2 pole motor, was also observed when the full

load torque was applied. This is approximately equal to multiplying the electrical slip

frequency in the induction motor of 1.6Hz with the number of rotor phase belts per pole

pair, which is 6, again. It can be concluded that the 4+6 pole number combination has

little effect in reducing the force magnitude reduction and oscillation under non-linear

iron conditions.

The non-linear simulations of both the 4+2 pole motor and the 4+6 pole wound rotor

motor results in a 9.5Hz oscillation duringfull load. In order to investigate if the

observed low frequency oscillation relates to the choice of 48/36 slot combination of the

4+2 pole and 4+6 pole motor, which can cause the stator and rotor phase belts to be

perfectly aligned at certain instances in time, the linear and non-linear direct on-line

start simulations for the 4+6 pole wound rotor motor was repeated but with a different

stator-rotor slot combination.A slot combination of 48/40 was chosen. The simulations
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were only repeated using the 4+6 pole motor because the oscillating behaviour on load

was observed to be almost identical in both machines.

The 3-phase, 4-pole main and 2-phase, 6-pole levitation stator windings in the new

48/40 slot motor are exactly the same as that of the 48/36 slot motor since the stator slot

number is unchanged. However, in order to maintain the 4-pole rotor winding in the 40-

slot rotor, the number of phases was reduced from 3 to 2 with each phase occupying 5

slots per pole. Therefore, the referred rotor resistance had to be recalculated using

equation (5.1) to giveR~' of 0.750. The rms voltage of 415V and 2.73V calculated

previously for the 48/36 slot motor, were applied directly to the terminals of the main

and levitation windings of the 48/40 slot motor respectively.
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Figure 7.35: Force magnitude obtained from the linear and non-linear direct on-line simulation of

the 4+6 pole motor with a48/40 slot combination.

The force obtained from the linear and non-linear iron simulation is as shown in Figure

7.35. For linear iron, the force magnitude is 238.05N (no load) and 230.90N (full load),

which are similar to that obtained in the 48/36 slot motor shown in Figure 7.33.

However, when the simulation was repeated under non-linear conditions, it was found

that at the force magnitude drops to 191.22N (no load) and 180.66N (full load), which is

also similar to that obtained in the 48/36 slot motor shown in Figure 7.33. At full load

the force for the 48/40 slot motor experiences a low frequency oscillation of
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approximately 7.3Hz. This value of frequency can be approximately obtained from

multiplying the electrical slip frequency of the motor (1.8Hz) with the number of rotor

phase belts per pole pair, which is 4 in the 2-phase, 4-pole rotor. The exact physical

understanding of this low frequency oscillation occurring under load needs to be

developed but its dependency on slip and the number of rotor phase belts appear to be

verified as shown in Table 7.11. It is apparent that the low frequency oscillation is

independent of the supply frequency of the motor.

Supply frequency = 25Hz Supply frequency = 50Hz

No 50% 100% No 50% 100%

load Trated Trated load Trated Trated

36-slot rotor

(6 rotor phue belts per 0 4.7Hz 9.5Hz 0 4.7Hz 9.5Hz

pole pair)

40-slot rotor

(4 rotor phue belts per 0 3.6Hz 7.3Hz 0 3.6Hz 7.3Hz

pole pair)

Table 7.11: Investigations on the low frequency oscillating behaviour observed in the non-linear

4+6 pole bearing relief 1M under different load conditions and at different supply frequencies.

7.6. Comparison with Simulink results

The results of the linear and non-linear DCM simulations of the MFO vector controlled

bearing relief 4+2 pole wound rotor motor can be compared with the MATLAB

Simulink results of the same motor under MFO vector control discussed in Section

5.4.4. The Simulink results werecarried out with the 2-pole winding currents, voltages

and fluxes being oriented onto the 4-pole airgap field using the controller angleBo and

it is clear from Figure 5. 16 that the Simulink results show that perfect levitation can be

obtained using the dq representation of the motor with no force in the x- direction.

However in the DCM simulation, it was observed in Figure 7. 17 that the controller

angle B
o
' obtained using the same method and equivalent circuit parameters as that of
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the Simulink simulation, although providing the required F; force, also caused an

unwantedF/: to be produced during rotor acceleration and on load. This was found to

be due to an error occurring between the controller peak airgap field position angle

Bo and the actual peak airgap field position angleB:!' obtained from applying a DFT on

the flux density values of the airgap elements in the DCM model at every time step of

the simulation. Therefore, it may be concluded that the two axis lumped parameter

model may not be sufficient for fully modelling the leakage effects that influence the

positioning of the airgap field.

Furthermore, the Simulink simulation of the bearing relief motor does not provide

insight into the non-linear iron effects on the force production of the motor. This is

because it cannot fully model a non-linear motor and does not include the capability of

investigating the harmonic field interactions that affect the force production.

7.7. Chapter summary

Linear DCM simulations of the direct on-line start 4+2 pole wound rotor 1M have

shown that radial forces equal to the rotor weight can be achieved and that the required

winding voltages and currents are as predicted from theory. However, when the direct

on-line start simulation incorporated a non-linear iron, the force produced in the 4+2

pole motor is reduced compared to the linear iron motor indicating that higher 2-pole

current is required to achieve the required force. This was due to introduction of a 6-

pole harmonic field in the non-linear motor which interacts with the dominant 4-pole

field to create an extra force. The force that is produced by the motor is a result of the

fundamental force, produced from the interaction of the main 4-pole and levitation 2-

pole field, and the forces due to interaction of higher field harmonics.

In the MFO vector controlled simulation of the linear 4+2 pole motor, a vertical bearing

relief force to compensate the rotor weight is obtained during both steady state and

transient conditions. There is no lateral forceF" as requested by the control scheme

provided that the 2-pole levitation winding currents, voltages and fluxes are perfectly

oriented onto the peak 4-pole airgap field. However, if there is an error in the controller
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airgap flux angleBa, then a lateral forceF" is produced during acceleration and load

conditions. Simulation with non-linear iron saw the introduction of a 6-pole harmonic

field in the non-linear motor which interacts with the dominant 4-pole field and creates

a large harmonic force. From the vector analysis of the fundamental and harmonic

forces in the vector controlled motor it is concluded that the force produced by the

simulation is indeed a resultant of the fundamental and harmonic forces. Because the

harmonic force is not necessarily aligned with the 4-pole field, the harmonic force not

only affects the levitation forceFy but also causes a lateral forceF" to be produced.

Because the 6-pole harmonic field present in the non-linear simulation of the 4+2 pole

motor is a 3rd harmonic of the 2-pole field, it was thought that a pole number

combination of 4+6 between the main and levitation winding could eliminate any

possibilities of the 3rd harmonic of the levitation winding field interacting with the

dominant 4-pole field. However, it was found that even though the 4+6 pole wound

rotor motor produces the expected force magnitude to levitate the rotor under linear

simulation, with non-linear iron there was observed a 2-pole sub harmonic field, created

in the motor from the modulation of the 6-pole field by the saturated 4-pole field.

Therefore, it can be concluded that in order to achieve successful forces in the non-

linear bearing relief motor, compensation of the main harmonic forces produced by the

motor is required. This is necessary since bearing relief is basically an open-loop

process in which one has to inject a given N-pole current to yield the required force.

The existence of harmonic fields must be taken into account when deriving the required

N-pole current.

Apart from the harmonic forces experienced in the non-linear simulations, it was

observed that under full load a low frequency oscillation of9.SHz is present in the force

variation against time. This frequency is thought to be related to the electrical slip speed

in the motor since it is approximately equal to the electrical slip speed multiplied by the

number of rotor phase belts per pole pair. Is was found that this low frequency

oscillation still occurs when a different stator and rotor slot combination is chosen, with

its value changing according to the new values of rotor phase belts per pole pair. Further

understanding is required here to find the mechanismfor oscillation reduction.
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Chapter8

Dynamic circuit modelling (DCM) of a bearingless wound

rotor induction motor

8.1. Introduction

As presented in Chapter 7, a vector controlled 4+2 pole wound rotor motor under

bearing relief condition was simulated in which the rotor is held fixed by bearings. In

this chapter, simulations of a totally bearingless motor will be presented whereby the

rotor is allowed to move freely in the motor.As the objective of the simulation is to

maintain the free-moving rotor at the centre, a position control loop is required which is

designed in Section 8.3. However, the controller design requires the use of the force

expressions for the perturbed rotor motor derived previously in Section 3.3.2. Compared

to the force expression for the fixed rotor case, the rotor perturbation introduces

additional terms in the force expressions which are associated with the rotor movement.

Therefore, in Section 8.2, the effect of rotor displacement on the force produced in the

wound rotor 1Mwill be investigated and compared with the force expressions derived in

Section 3.3.2.

In Section 8.4, the results of a linear iron simulation of the 4+2 pole MFO vector

controlled bearingless wound rotor motor, incorporating the designed position controller

and modifications to the DCM software to allow for the free-moving rotor, will be

presented. Two different results will be presented in this section whereby in the first

simulation the 2-pole levitation winding orientation angle is obtained indirectly by the

controller whereas in the second simulation the orientation angle is obtained directly

from the DFT of the actual airgap element's flux density values. This arises from the

linear iron bearing relief simulation results presented in Section 7.4 where it was
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observed that the orientation angle provided by the controller did not accurately predict

the position of the peak 4-pole airgap flux onto which the 2-pole levitation winding is

oriented. This causes an unwanted x- direction force to be produced. However, Section

8.4 highlights the fact that the position controllers in the bearingless induction motor are

able to produce the required levitation force while maintaining the x- direction force at

zero as demanded even when there is a slight error in the controllers prediction of the 2-

pole levitation winding orientation angle.

A simulation of the same motor under non-linear iron conditions will also be presented

in Section 8.5. This is to investigate if the non-linearity effects of the iron previously

observed in the bearing relief motor could be compensated for by the incorporation of

the position controllers. The main effects are namely the reduction of the y- direction

force produced in the motor as well as a non-zero x- direction force due to harmonic

forces and the low frequency oscillation observed when the motor was subjected to

load. Finally, in Section 8.5, a comparison between the OCM simulation results of the

4+2 pole bearingless wound rotor motor and the results of the same motor simulated

using a 2 axis lumped parameter model in MATLAB Simulinkwill be discussed.

8.2. Effect of rotor displacement on the force produced in the

wound rotor 1M

In this section the results of an investigation into the effect of rotor displacement on the

force produced by the motor is presented. The investigation is carried out using the

OCM model of the 4-pole wound rotor induction motor, introduced in Chapter 5,

excited by only the 4-pole stator winding (i.e. without the presence of the 2-pole

levitation winding). Figure 8.1 shows the force produced by the motor simulated using

the OCM model as the rotor is displaced in the y- direction under non-rotating rotor

condition at no load.It was observed that a movement in y- direction only produces

force in the y- direction, i.e. no x- direction force is produced by the displacement.

When the OCM simulationswere repeated with the rotor rotating at rated speed and at

no load, the force produced due to the rotor displacement in the y- direction was

observed to be similar to that when the rotor was stationary.It was also observed that
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the simulation results of the x- direction force variation with rotor displacement in the

x- direction are identical to that shown in Figure 8.1.

: airgap length, 19o ! : . :
············r··········+···········+·············;····.... ····;············n···················rooo.

··············r·sooo
.

·············rooo.
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Displacement iny- direction (mm)

Figure 8.1: Y- direction force variation with rotor displacement obtained from the theoretical force

expression and DCM simulations under no load and full load conditions.

It is clear from the simulation curve of Figure 8.1 that as the rotor moves closer towards

the stator, the force produced increases in the direction of the displacement. The force

produced by the displacement is termed the unbalance magnetic pull experienced by the

perturbed rotor. The slope of the force-displacement variation in the linear region (less

than ± 50% of the airgap length) is calculated to be 15.56 x 106 Nm-1
.

When the simulations are repeated but with the rotor now subjected to a full load torque

of 99.5Nm, the unbalance magnetic pull force produced is larger compared to that

obtained at no load as shown in Figure 8.1. The increase in unbalance magnetic force

produced by the motor under full load condition is due to the fact that the induced rotor

currents creates a 4-pole field which will interact with the 2-pole non-uniform airgap

variation to create 6-pole and 2-pole harmonic components. These harmonic

components will then interact with the main 4-pole field of the motor to create a

constant force (since the difference between the poles are± 2) that will add to the

unbalance magnetic pole force. It is also evident that the unbalance magnetic pull force

increases almost quadratically at full load when the rotor displacements are larger than
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50% of the airgap length. However, slope of the force-displacement variation in the

linear region (less than± 50% of the airgap length) is calculated to be 23.55x 106 Nm-1.

These slopes can be compared with the force expressions derived in Section 3.3.2 for

perturbed rotor condition, which is given by:

(8.1)

where k = rlz1! and ~y and Llx are the displacements experienced by the rotor in the
2#0

y- and x- direction respectively.

N2 M2 •
In the bearingless induction motor,BF «Bo . Therefore, the forces acting on the

perturbed rotor is approximated by:

(8.2)

In the force-displacement investigation of the wound rotor motor carried out using the

DeM software, the 2-pole excitation is not present, i.e.B~ = B:X = O. Hence, equation

(8.2) becomes:

(8.3)

which is the expression for the unbalance magnetic pull exerted on the perturbed rotor.

Therefore, with r = 82.26mm, Iz = 0.15m, IgO = 0.58mm and assumingB': = 0.9T ,

the theoretical slope of this equation is calculated to be 20.82x 106 Nm-1 which is of the

same order to the slope calculated from the no load and full load simulation curves in

Figure 8.1. Furthermore, the 'theoretical' force-displacement variation, calculated using

equation (8.3), and shown in Figure 8.1 is observed to be close to the variation obtained
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from the DCM simulations especially within the region of± O.lmm from the centre line

of the motor.

Therefore, it can be concluded that the force expressions derived in Section 3.3.2 are

justified by the DCM simulation assuming that the rotor movement can be controlled

within ±50% of the airgap length when the rotor is stationary or rotating at synchronous

speed before applying a load torque or a non-zeroisq : Having shown that the derived

force expression for the perturbed or free-moving rotor is valid, the position loop

controller of the bearingless induction motor can be designed.

8.3. Radial position compensator design

F)Oad = Mg

,..-_--,1.-------' .N
I sd -ctrl

Current
+ control loop

·N· ·N
'sd 1 'ad

sf;+l
y

Plant
y

Figure 8.2: Position control loop

In the 4+2 polebearinglesswound rotor 1M, the dq- axis stator current demands of the

levitation 2-pole winding i:: and i~· are respectively responsible for controlling the

forces F and F produced in the motor. Hence, in the vector control scheme of the
y x

bearingless wound rotor1M, i~ are derived from the position control loops. Figure 8.2

shows the y- direction position control loop. Thex- direction control loop is identical to

that of Figure 8.2. The high bandwidths of the current control loops enables its closed

loop dynamics to be neglected. Thus, the plant dynamics for the position control loop is

dominated by the motor's equation of motion in the y- and x- direction which is given

by

(8.4)
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whereM, is the mass of the rotor. The forcesF; and F~ in equation (8.4) are the forces

acting on the free moving rotor given by equation (8.1). However, equation (8.1) can be

written in terms of the 2-pole dq- currents using the relationship betweenB~ and

f//~ = L~i~ derived in Section 4.2.2 for the wound rotor 1M, repeated here for

convenience,

(8.5)

where k} = .f!.n N • Therefore, equation (8.1) is rewritten as
»u;»;

[F;] __1 [i~] k BM2[Y] k k21.N2 'N2(Y]. - k ·N + 2 0 + 2 I Ysd + lsq
F f I X X

JC sq
(8.6)

where

(8.7)

and

(8.8)

By substituting equation (8.6) into (8.4) and rearranging, the relationship between the

input iN (iN) and output,Y (x), of the plant in Figure 8.2 is given by
'3d sq )»

M [
Y] __ l [i~] k BM2[Y]+k kdN2 +iN2{Y]

r • • - k ·N + 2 0 X 2 I ysd sq X
X f lsq

(8.9)

Equation (8.9) shows that the plant is non-linear since the last term in the equation is

dependent on the input and output of the plant. Therefore, by considering small motions

about the operating point(xo = Yo = 0), equation (8.9) becomes
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+2k k2'OiN +OiN{YO]21~sd sq
Xo

(8.10)

d

At the operating point, Xo = Yo = O. Therefore, term 'd' in equation (8.10) becomes

zero. The term 'c' in the same equation can also be written as

N2 InN 2 N2) all' h b . gl N2 M 2where BF = 'PFY +BFx . Gener y, m t e eann ess 1M,BF «Ba .Hence term

'c' of equation (8.10) can be neglected. Thus, equation (8.10) simplifies to be

(S.ll)

The terms on the right of equation (8.11) represents the force produced by the perturbed

rotor which is similar to the findings in the previous section given by equation (8.2). In

this equation, term 'i' is the force expression in the motor when the rotor is fixed at the

centre whereas term 'ii' is associated with the unbalance magnetic pull experienced by

the perturbed rotor investigated previously. Hence, the linearised plant transfer function

in the position control design is obtained from equation (S.ll) to give:

(S.12)

Figure 8.3 shows the linearised y- direction position control loop. The control loop for

in the x- direction is identical.
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Figure 8.3: Linearised position control loop

Therefore, through substitution of (8.7) and (8.8) into (8.12), the plant transfer function

for the 4+2 pole wound rotor motor is given by:

G (s)- 1015.683
p - 24s2 - 20.82X 106 (8.13)

since Mr =24kg, (1/kt)=1015.683, r=82.26mm, I: =O.15m, Igo =O.58mm and

assuming B~ = O.9T .

From equations (8.12) and (8.13), it is clear that the plant of the position control loop is

of 2ndorder and the plant has two poles of the same magnitude but opposite signs. One

of the plant poles is unstable,i.e. on the right half of the s-plane, at s = ~ kl3~
2

/ M r or

s = 931.4 in the investigated motor. Therefore, a phase lead controller was chosen in the

control scheme such that it cancels the stable pole on the left half of the s-plane(s = -

931.4). The controller was designed in the continuous s-plane, by way of root locus, to

achieve a nominal closed loop bandwidth of 48Hz (300rad/s) and a damping factor ~ of

approximately 1.0 to give:

3 (s+931.4)
G (s) = 64.05 x 10 ( )

c s+2500
(8.14)

With this designed controller, a vector controlled totally bearingiess 4+2 pole wound

rotor motor could be simulated using theDCM reluctance mesh model software.
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8.4. Vector control simulation of a linear iron bearingless wound

rotor 1M

In this section, the linear iron 4+2 pole vector controlled wound rotor motor will be

simulated under bearingless conditions.In order to achieve this, the motor is modelled

using the reluctance mesh model and simulated with the OCM software. However, due

to the fact that the rotor in a bearingless motor is allowed to move freely, modifications

to the OCM software were added to model the free-moving rotor as described in Section

2.5(g). The vector control scheme applied to the wound rotor motor is based on the

mixed field orientation (MFO) scheme in which the main 4-pole winding will be rotor

field oriented with the 2-pole levitation winding being oriented onto the peak 4-pole

airgap field. This vector control scheme was proposed in Section 4.4 wherein the

orientation of the 2-pole winding was achieved using equation (4.61) and repeated here

for convenience.

(8.15)

In this linear iron simulation,all reluctance elements were chosen to be of type 'linear

iron' having a u, = 1350 with the exception of the slot tip leakage elements, which

were chosen to be of type 'air', due to the semi-closed slots on both stator and rotor

side. The motor is modelled with only one rotor axial skew section with a skew angle of

15° electrical. Similar to the bearing relief simulation in Section 7.4, an external load

having inertia equal to the motor inertia of 0.0713kgm2 as well as a linear friction of

0.1 T,.aud at 1500 rpm is applied throughout the simulation. The current controllers for

the 4 and 2-pole systems utilised in this vector control scheme (designed in Chapter 5)

have a natural frequency of 400Hz and 100Hz respectively and a damping factor ofO.8.

The speed controller employed in this scheme, also designed in Chapter Five, has a

natural frequency of 5Hz. These controllers were then transformed into the discretez-

plane through a Bilinear Transform using equation (7. 1) and implemented in the

simulation with a sampling time of 100J,1sfor the current control and 2ms for the speed

control. The main 4-pole field is given time to establish by applyingi::· of value 4.90A

from the start of simulation. A speed reference of 1500rpm is then given at3s and a
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load of 89.55N, which is equal to 90% of the rated torqueTl'Qled'is applied at 4s. In the

bearing relief simulation, the 2-pole stator current referencesi~· and i~· were obtained

from step referencesF; and Fx· in which

(8.16)

However, in the bearingless motor simulation,i~· and i~· are obtained respectively

from the y- and x- direction position control with the phase lead controller designed in

the previous section together with feed forward signalsi~-feed and i~-feed (derived from

F/ed and Ffeed respectively) as shown in Figure 8.3. The position controllers are also

transformed into the discrete z-plane through the Bilinear Transform (Franklinet. ai,

1998), s = 2{z -1)jVsamp (z + 1)), and implemented in the simulation with a sampling

time of 100J.1s,which is similar to the sampling time of the4- and 2-pole winding

current controllers.

In the DCM simulation, the weight of the rotor is only assumed to act on the motor after

2s when the main 4-pole field has been established. This is achieved by either letting the

mass of the rotorMT to be very large between the time interval 0 to 2s or introducing an

arbitrarily large artificial friction D which is only present during the first 2s of the

simulation. Therefore, F/ed and Ffeed of the position control loops are applied after 2s

from the start of the simulation, in which both signals were set to be equal to the y- and

x- direction load forces experienced by the motor.

In this simulation, F/ed = 23536N, since the only load force acting in the y- direction

is the rotor weight of 235.36N, and because no x- direction load force is applied to the

motor, F;eed= ON. In order to ensure that the free moving rotor does not hit the stator in

the DCM simulation, an artificial spring force is also introduced which is governed by a

tangent function, given by

F = tan(2688.66y) for - 0.58:5;y:5; 0.58sp-y

Fsp-x = tan{2688.66x) for - 0.58Sx:5; 0.58 (8.17)
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where y and x are the rotor displacements in the y- and x- directions respectively, as

shown in Figure 8.4.
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Figure 8.4: Tangent function of the artificial spring force

This function ensures that if and when the rotor experiences a displacement equal to the

airgap length19o of 0.58mm, a large spring force comes into action to push the rotor

back towards the centre of the motor.

The vector controlled linear bearingless motor simulated using the phase lead controller

of equation (8.14) was unable to keep the rotor centred. However, when the bandwidth

of the 2-pole levitation winding current controller was increased to 400Hz, i.e. similar

to the bandwidth of the main 4-pole winding current control, the designed position

control was able to maintain the non-rotating rotor at the centre of the motor. This is

because when designing the position controller to have a bandwidth of 50Hz, the

dynamics of the current controller was neglected. However, this is only true if the

current controller bandwidth is much larger than the bandwidth of the position

controller. Therefore, in all the simulations of the bearingless induction motor presented

in this chapter, the bandwidth of 2-pole levitation current controller was increased to

400Hz. The new 2-pole current controller transfer function is

248.4{s + 1500)
G =--~---'-

c s
(8.18)
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The result of the vector controlled linear bearingless motor simulation, with the 2-pole
A

winding oriented by the controller angleBo and a 2-pole current controller bandwidth

of 400, shows the predicted levitation force being achieved, as given in Figure 8.5(a).

This is because a y- direction forceF, of 235N average is obtained from the moment

the load force is applied.It is also apparent from Figure 8.5(a) that the x- direction

position control is able to ensure that on average no x- direction forceF, acts on the

rotor, as expected.
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Figure 8.5: Vector controlled (a) forces and(b) rotor displacements from the centre in the x- and y-

direction produced by the linear bearingless motor. For motor speed and torque see Figure 8.7.

The x- and y- direction displacements experienced by the rotor from the motor centre

are as shown in Figure 8.S(b). It is clear from this figure that from 2s onwards, when the
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position control is in operation, the rotor is maintained levitated at the centre of the

motor even during acceleration (at 3-3.5s) and full load (after 4s) conditions. The

control effort signalsF;rrl and the reference forcesF; obtained from the simulation

are presented in Figure 8.6. These signals are obtained from the currentsi~qctrl and i~;
shown in the position control of Figure 8.3 through the following relationships:

[F
Crrl] [.N]y = _1_ 1sd ctrl

ctrl k ·Nr; f lsqclrl

(8.19)

(8.20)

(a) (b)

Figure 8.6: (a) control effortF;t7I and (b) force referencesF; produced by the position control in

the bearingless wound rotor motor.

As seen in Figure 8.6(a), the position control produces forcesF;trl and Fxctrl which are

large in comparison to the force produced by the motor especially during the time

period when the rotor is accelerating. This is because on closer inspection of Figure

8.5(b), it is observed that from 2s onwards, when the position control is in operation, the

rotor experiences some displacements in the x- and y- direction. For example, in the

time interval 3 to 3.5s coinciding with rotor acceleration, the average displacement

observed in the positive y- direction is Sum. Even though this displacement is minute,

i.e. less than 0.9% of the airgap length, the associated unbalance magnetic force in the
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Y: direction produced by the rotor displacement, calculated using equation (8.3), is

104.1N. This force has to be counteracted by the force produced by the position

controller F;trl. When full load is applied, the rotor experiences average displacements

of O.6j..lmand 2.1j..lm in the positive x- and Y: directions respectively, which cause

unbalance magnetic pull forces of 12.43N and 43.7N acting in the positive x- and Y:

directions. From Figure 8.6(a), the value ofF;trl averages at -llON (negative sign

indicating that the force is acting in the negative y- direction) during rotor acceleration

whereas when full load is appliedF;trl is -SO.3N andF;trl is -14.SN. Therefore, the

magnitudes and directions ofF;trl and Fx
ctrl shown in Figure 8.6(a) are justified since

these forces have to counteract the unbalance magnetic force produced by the rotor

movement. The forcesF; and r; shown in Figure 8.6(b) are expected due to the fact

that

F· = Fctrl + Ffeed
)IX )IX )IX

(8.21)

whereby in the bearingless motor simulatedF;eed = 235.36N andF!eed = ON.

Figure 8.7 illustrates the speed and torque variations of the linear iron simulation of the

bearingless motor simulated with the torque current limited to 116% of ratedi;: .
ror*=1500rpm ror*=1500rpm

. .
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(a) (b)

Figure 8.7: (a) speed and(b) torque variation of the vector controlled 4+2 pole wound rotor linear

bearingless 1M.
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The dq- axis stator currents of the main 4-pole winding and 2-pole levitation winding in

the motor are as shown in Figure 8.8. As observed in Figure 8.8(a), the dq- axis stator

currents i:: and i:: of the 4-pole motoring winding are similar to that obtained in the

bearing relief simulation shown in Figure 7.17(a). On the other hand, the behaviour of

the 2-pole levitation currentsi:a and i~, oriented onto the peak 4-pole airgap field by

eo' are slightly different to that in the bearing relief scheme since they are dependent on

F; and r: respectively based on the relationship given by equation (8.16).

0.3
15

$ $ 0.2 : r====IIt::':"":'::'::::1110 I0.1 + j · • ..··.······j·····..······ill! j j ..

~ 5+---~----~----74~--~ .....················s
~ 3 0
~ ~

-0.2 +-----:-_;__-:----..,-_;_----'~----i-----..__---
Motoring field 100% load torque
applied applied

o -0.1 + ! .,. !

(a) (b)

Figure 8.8: Stator current variation of the vector controlled linear bearingless IM: (a) 4-I)Ole

winding (b) 2-pole winding.

From Figure 8.8(b), the d- axis current component of the levitation windingi:a obtained

is O.22A between 2s and 3s. This is consistent with the value ofi~· calculated using

equation (8.16) since during this time intervalF;= 226.17N, as shown in Figure 8.6(b).

Similarly, the average value ofiZ, in Figure 8.8(b), throughout the simulation is

consistent with the value ofi~· calculated using the same equation withr; taken from

Figure 8.6(b). The value of the peak 4-pole fundamental fieldB~ used in the

calculations was O.9T with the values of the 2-pole(N = 1) levitation winding factor

k''. total number of turns per phaseN: , and magnetizing inductanceLN are as given_, 0

by Table 5.4.
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The results presented in this section are based on an MFO vector control scheme in

which the 2-pole levitation winding is oriented onto the 4-pole airgap field using the

angle Bo obtained using equation (S.lS). In Section 7.2.1, it has been shown that in the

simulation of the vector controlled wound rotor motor, the angleBo' provided by the

controller, could not accurately predict the position of the peak 4-pole airgap field. This

caused a non-zeroF, to be produced in the vector controlled bearing relief motor

simulation (refer Section 7.4) during rotor acceleration and on load even thoughFx· is

set to zero. However, with the position control present, the forceF, can be maintained

at zero at all times, albeit the existence of the angle difference between the actual

position of the peak airgap fluxe:ir and Bo as shown in Figure S.9. The average angle

difference during rotor acceleration is 4° and at full loadit is 4.15° which are exactly the

same as that observed in the bearing relief simulation (Figure 7.1S).

((),·=1500rpm
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Cl)

Q)
Cl) 10e
01)
Cl)

'0
'-" 5
Cl)

~e 0

~
Cl) -5

J
-10 torque

Time (s)

Figure 8.9: Angle difference between the actual peak airgap flux positionf).IM' and the position

predicted by the controllerf). in tbe bearingless induction motor.

Therefore, the position controller placed in the vector control scheme of the bearingless

induction motor produces the required forces to levitate the rotor as predicted by theory

even though an error in the orientation angle of the 2-pole levitation winding is present.

As is observed in the bearing relief simulation, the effects of error in the 2-pole winding
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orientation angle is overcome by orienting the levitation winding using the actual 4-pole

peak airgap flux positione:' obtained from a spatial DFT of the flux densities of the

airgap reluctance elements. Therefore, the vector controlled simulation of the

bearingless motor under the same simulation conditions is repeated with the

2-pole winding currents, voltages and fluxes oriented using the anglee:ir instead ofBo.
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Figure 8.10: Vector controlled (a) forces and(b) rotor displacements from the centre in the x- and

y_ direction produced by the bearingless motor oriented usingBoaJr.

Figure 8.10(a) shows that the direct orientation of the bearingless motor produces the

expected F; of 235.4N and zero F, on average. These force variations are also

evidently similar to that in Figure 8.5(a), obtained when the 2-pole winding was
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oriented usingBo. The x- and y- direction displacements experienced by the rotor from

the motor centre are also shown in Figure 8.10(b). The displacements shown in Figure

8.1O(b)are much less compared to the displacements observed when the 2-pole winding

is oriented usingBo shown in Figure 8.5(b). This is becauseB:r ensures that the 2-pole

winding currents, voltages and fluxes are more accurately aligned with the 4-pole peak

airgap flux. The maximum displacement experienced by the rotor, in any direction,

from the motor centre is observed to be 2~m, which is 0.3% of the O.58mm airgap

length.

From the results presented it can be considered that both methods of orientation for the

2-pole levitation winding, that is by either usingBo or B:r, provides position control of

the free moving rotor under transient and steady state conditions in the bearingless

wound rotor motor. The movements experienced by the rotor in both simulations are

negligible compared to the airgap length. Therefore, due to the similarities in these

results, further simulations reported in this chapter are performed with the 2-pole

levitation winding being oriented using the actual peak airgap flux positionB:ir

obtained from the DFT of flux densities in the airgap reluctance elements.

8.5. Saturation effects on system performance

In this section, the effects of non-linear iron on the vector controlled 4+2 pole

bearingless motorwill be investigated.As observed in the bearing relief simulation of

the same motor in Section 7.5.2, the saturation effects introduced by the non-linear iron

causes a reduction in the levitation forceFy and a non-zeroF, due to the existence of

harmonic forces. Furthermore, a low frequency oscillation is observed in the force

variations with time when the motor is subjected to a load torque. Therefore, it is

evident that a non-linear iron simulation of the vector controlled bearingless1M should

also be carried out.In the non-linear iron simulations presented in this section, the

permeability of each reluctance element set to be of type 'non-linear iron' is obtained

from a cubic spline interpolation of theB-H curve shown in Figure 7.21.
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The non-linear iron bearingless wound rotor motor is controlled using theMFO vector

control scheme whereby themain 4-pole winding is rotor field oriented and the 2-pole

levitation winding being oriented onto the machine 4-pole peak airgap field position

B:r. The motor is simulated under the exact same conditions as that of Section 8.4 with

the position controller designed in Section 8.3. However, it was observed that the

position controller could not maintain the rotor levitated when the speed reference of

l500rpm was applied the motor at 3s, i.e. when the rotor starts accelerating.

As observed in Figure 8.1 it is observed that when motor torque is non-zero orisq is

non-zero, larger unbalance magnetic pull force variation with rotor displacement is

present in the motor compared to the no load variation. Furthermore, at full load the

slope of the force-displacement variation is very different to the theoretical slope when

the displacement is more than 50% of the airgap length. The design of the position

control loop is dependent on the slope of the force-displacement variation since this

slope determines the pole location of the plant in the position control loop shown in

Figure 8.3. The position controller designed in Section 8.3 was based on the theoretical

slope of 20.82xlO~m-l and it was observed that the position controller design using

this plant was unable to keep the rotor centered in the non-linear bearingless induction

motor when iM is non-zero. Therefore, for non-linear bearingless induction motorsq

simulation, a new position controller was designed with the plant having a force-

displacement variation slope of 68.44xlO~m-l which is the slope of the 'full load

simulation' curve of Figure 8.1 in the rotor displacement region of 0.3 to 0.4Smm. This

new compensator is designed in the continuous s-plane, using the root locus technique,

for the position control loop shownin Figure 8.3, to achieve a nominal closed loop

bandwidth of 15Hz and a damping factor ~ of1.O.Hence, the transfer function of the

designed compensator is given by

3 (s + 1689)
G n1 (s) = 207.05x 10 ( 00)

c- S + 50
(8.22)

With this new controller, the simulation of the bearingless motor under non-linear iron

conditions is repeated with feed forward signalsF;eed = 235.36N andF! .. d = ON

applied at 2s after the start of the simulation.
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Figure 8.11 illustrates the forces produced with the new position controller as well as

the displacements experienced by the free moving rotor in the x- and y- directions.It is

clear that the position controller given by (8.22) is able to keep the rotor at the centre of

the motor from the moment the motor experiences its rotor weight (at 2s).

400

300

200
g
Q) 100
8
0~

0

-100

-200 torque

Time (s)

(a)

I-x- direction y- direction I
Position control 1 14-- Cl),*=lSOOrpm

mm
0.02 .-------~--------------

(b)

Figure 8.11: Vector controlled (a) forces and(b) rotor displacements from the centre in the x- and

y_direction produced by the non-linear bearingless motor.

However, as observed in Figure 8.11, the force variationsFy and F, as well as the

rotor displacements in the y- and x- direction each experiences a low frequency

oscillation of 9.5Hz during full load condition as observed previously in the bearing

relief motor. The 9.5Hz oscillation may be considered as a plant disturbance. As such,

the oscillations will appearin the force demands (Figure 8.12(b)) in order to counteract
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the disturbance and hence keep the displacements near to their zero demands. Since the

position controller bandwidth (15Hz) is higher than the disturbance frequency, the

9.5Hz position oscillation is small as seen in Figure 8.11(b) (i.e. 3J,1mpeak-to-peak in

both the y and x displacements). The position controllers are able to compensate for the

reduction in F; and the non-zeroF; produced by the motor due to the harmonic forces

introduced by the iron non-linearity. In the bearing relief simulation, with a demand

F; of 235.36N, the force produced in the motor is only 170.54N during the time

interval of 2 to 3s when the rotor is still stationary (Figure 7.26). However, in the

bearingless non-linear motor simulation, shown in Figure 8.11(a), the forceF;

produced is as demanded which is 235.4N. Assuming a linear relationship betweenF;

and F;, this means that the demanded force in the bearingless induction motorF; can

be set as 324.87N during this time interval. This is calculated from

• F;,-~I F·F . = x ............reIiefy-bcaringkcsl F y-~ ......
y- bcariog relief

(8.23)

This implies that the position controller has to provide a forceF;trl of at least 89.51N

calculated using equation (8.21) sinceF:·d = 235.36N. This amount ofF;trl is in

agreement with the amount of reduction inFy experienced in the bearing relief motor

due to the harmonic forces. Therefore, the position control is capable of compensating

for the harmonic forces occurring in the non-linear 4+2 pole wound rotor motor.

The values of Fyctri and F; calculated above for the bearingless motor are consistent

with Figure 8.12 which shows the control effort signalsF;trl and the reference forces

F· obtained from the simulation.
1:)'
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Figure 8.12: (a) control effort»: and (b) force referencesF; produced by the position control in

the non-linear bearingless motor.

Another issue encountered in the non-linear iron bearing relief simulation is theFx

present in the motor due to harmonic force even when zero referencer; is applied.

Referring to Figure 7.26, the force produced in the bearing relief motor is -llN during

the time interval of 2 to 3s when the rotor is still stationary. In the bearingless motor

simulation the force F, produced is as demanded, which is approximately ON on

average as shown in Figure 8.II(a). Therefore, the controller must provide a forceFxctrl

in the region of lIN to compensate for the negative force observed in the bearing relief

simulation. In actual fact, the control effortFx
ctrl produced by the position control is

28.03N during the time interval2 to 3s as shown in Figure 8.12(b). Even so, the force

produced by the motor could be maintained at ON as required. In order to createFxctrJ of

28.03N, the rotor has to move in the negative x- direction as shown in Figure 8.12(b).

However, this movement is very small, i.e. O.4J.!m.The displacements experienced by

the rotor are very small, in region of micrometers, even after experiencing transient

conditions during rotor acceleration and load. Hence it can be said that the vector

controlled bearingless induction motor with the position controller of (8.22) is

successful in producing sustainable rotor levitation even under non-linear iron

conditions.
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Figures 8.13 and 8.14 show the speed, torque and dq- axis stator currents of the 4- pole

as well as the 2-pole windings of the non-linear bearingless induction motor. Apart from

successful levitation, the motor is able to start up from rest at 3s and reach a steady state

speed of 1500rpm mechanical within 0.3s as observed in previous bearing relief

simulations.
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Figure 8.13: (a) speed and(b) torque variation ofthe vector controlled 4+2 pole bearingless non-

linear motor.
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Figure 8.14: Stator current variation of the vector controlled bearingless non-linear IM: (a) 4-pole

winding (b) 2-pole winding.

The bearingless motor also exhibits the 9.5Hz oscillation during full load and this is

apparent in the torque variation of Figure 8.13(b). This behaviour is also present in the
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dq- axis currents of the 4-pole and 2-pole winding. Figure 8.14(a) illustrates thati:: and

i~ of the 4-pole winding is unaffected by the position control and is similar to the

variations observed in the non-linear bearing relief motor (Figure 7.25(a». The 2-pole

winding currents on the other hand are expected to be different from the bearing relief

currents since i~ and iZ are related to the force referencesF; and F,; which varies in

the bearingless motor due to the position control.

8.6. Comparison with Simulinkresults

In this section, theDeM simulation results of theMFO vector controlled 4+2 pole

bearingless motor is compared with results obtained from MATLAB Simulink of the

same motor simulated under the same vector control scheme and simulation conditions.

The Simulink simulation is performed by closing two position control loops around the

vector controlled simulation model proposed for the bearing relief motor shown in

Figure 4.7. As in the Simulink bearing relief simulation presented in Section 5.4.4, the

bearingless motor simulation is carried out with the 2-pole winding currents, voltages

and fluxes being oriented onto the 4-pole peak airgap field using the controller angle

Bo'

Figure 8. 15 shows the forcesFxy' the rotor displacements in the x- and y- direction,

controller efforts F: and reference forcesF; obtained from the Simulink simulation

with phase lead compensator in the position control loops. Figure 8.15(a) shows that the

control scheme is able to perfectly control the forces produced in the motor and it is

observed that the forces produced exactly opposes the load forces applied to the motor,

which in this case is just the rotor weight of235.36N. Therefore, the position controller

does not have to create any extra force, as shown in Figure 8.15(c) since the feed

forward signal is sufficient to create the required 2-pole levitation winding currents.

This in tum means that the rotor does not experience any displacement as seen in Figure

8.15(b) implying perfect rotor levitation at the motor centre when simulated using the

dq representation of the motor.
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However, it is apparent from the DCM simulation result of the linear iron bearingless

motor (Section 8.4) that this is untrue due to the fact that the force created in the motor

will always include harmonic forces from harmonic field interactions. Even though the

harmonic forces are small in the linear iron motor (only approximately 3N), this will

always cause the force produced in the motor to be slightly more or less than the load

force causing the rotor to be displaced from the centre and remain off-centre due to the

inability of the phase lead compensator to eliminate any steady state errors present as

observed in Figure 8.5(b).
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Figure 8.15: Simulink simulation results of the bearingJess wound rotor motor (with phase lead

compensators): (a) F~,(b) rotor displacements in x- andy- direction, (c) controller effort and (d) x-

and y- direction reference forces.
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This highlights the insufficiency of using the 2- axis lumped parameter model to

simulate the behaviour of the bearingless motor in which effects of harmonic field

interactions are significant. Moreover, because the 2- axis lumped parameter model

utilised in Simulink simulation is unable to fully model a non-linear motor, no insight

into the non-linear effects on the rotor levitation in the bearingless motor can be

obtained.

8.7. Chapter summary

This chapter has shown that the design of the position control loop for the control of a

bearingless induction motor has to include the effect of unbalance magnetic pull acting

on the perturbed rotor. The effect of unbalance magnetic pull appears on the root locus

of the system plant as two identical poles, one stable and another unstable. This effect

was predicted from the force expressions derived in Chapter 3 for the perturbed rotor

case. This mathematical analysis agrees with results obtained from the DCM simulation

showing the effect of rotor displacement on the force produced by the motor when the

rotor displacement is in the region of± 50%. Section 8.4 showed that the designed

position controller could levitate the rotor of the vector controlled bearingless linear

iron motor under stationary rotor condition as well as when the rotor is rotating at

synchronous speed under no load. When the vector controlled bearingless linear wound

rotor motor was simulated with the designed position controller, the simulation showed

that the rotor could be levitated at the centre of the motor.

When the effect of iron non-linearity was introduced, the rotor of the vector controlled

bearingless linear motor could be levitated at the rotor centre, under both transient and

steady state conditions. However, this was only achieved when a new position

controller was designed to incorporate the fact that the slope of the unbalance magnetic

pull force-displacement variation of the motor increases due to harmonic field

components interacting with the main motoring field. This is in contrast to the bearing

relief motor whereby only the linear iron motor is able to produce sufficient levitation

force to compensate for the rotor weight acting on the bearings holding the rotor in

place. The bearingless motor was also capable of eliminatingtheF; reduction and non-
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zero F" observed in the bearing relief motor due to the incorporation of iron non-

linearity. This is because the position controller produces the required force to

compensate for the harmonic forces presentin the non-linear iron motor. The low

frequency oscillation observed during load in the non-linear iron simulation of the

bearing relief motor is present in the non-linear bearingless motor simulation, but is

only of marginal significance in the closed loop position control. Further investigations

into the cause of this low frequency oscillation is recommended for future work into the

study of bearingless induction motors.
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Chapter 9

Numerical issues relating to the DCM software simulations

9.1. Introduction

The numerical solution technique used within the DCM software (refer to Section 2.4)

is controlled by several parameters to ensure that convergence and accuracy is achieved.

The time step control loop is determined by a user-defined maximum time step ~mar .

The state equations in the model are solved successfully at each time step when the

residual error from the Newton Raphson linearisation is less than a user-defined

tolerance, tol NR' Therefore, tol NR will determine how accurately the state equations are

solved at each time step. The linear equation solver has two control parameters, i.e. the

threshold and a tolerancetol Sow.r'The threshold parameter determines the partial fill of

the incomplete LU decomposition preconditioner. A zero or negativethreshold value

means that a complete LU decomposition is performed on the matrix, thus requiring

only one iteration of the linear equation solver to obtain the solution. However, this

requires a large amount of memory. Therefore, thethreshold parameter allows for

control over the trade off between memory usage and computation time. The

convergence of the linear equation solver is obtained when the rms residual error is less

than a tolerance value,tol Sow.rpredefined by the user. Inall the simulations presented in

Chapters 5, 6, 7 and 8, the following values of control parameters were used:

~_=50J..lS

tol
NR

= IxIO-6

tolSow.r= IxIO-

threshold = 1x 1O-s

Table 9.1: Numerical solver control parameter values used.
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In this chapter, general guidelines in choice of the numerical solver control parameters

will be presented. However, the guidelines presented here might not be optimal for all

applications of theDeM software but has been proven to be robust for use when

modelling the bearingless induction motors considered in this thesis.

9.2. Choiceof maximumtime step

The DCM simulation starts with a time step valueIlt equal to the user-defined

maximum time stepIlt_. If the residual error during the Newton Raphson cycle at a

particular simulation timet + Ilt increases compared to that at the previous time stept,

or the linear equation solver fails to solve the linear equations within a predefined

number of iterations, the time stepIlt is halved. Therefore, the choice of Ilt,,_ for each

simulation is rather crucial.If a large value of Ilt,,_ is chosen, the efficiency of the

Newton Raphson linearisation is reduced. Hence, at each time step the number of

iteration steps required is increased, especially in the case of a non-linear iron motor.

Furthermore, a large time stepcan causethe predicted solution to be far from the actual

solution which also increases the number of iterations required to arrive at the solution.

There is also the possibility of divergenceif the prediction is too far away from the

actual solution. On the other hand, choosingsmall values of Ilt..- ensures convergence,

as the Newton Raphson linearisation of the equations becomes more efficient, thus

requiring less number of iterations to achieve convergence. However, the use of small

time step valueswill increase the total computation time of the simulation.

Investigation of the choice of Ilt",_ to achieve reasonable computation time whilst

obtaining reasonable results was performed on the vector controlled simulation of the

non-linear bearingless wound rotor 1M presented in Section 8.5. Three Ilt_ values

were chosen, i.e. lOOJ..ls,SOJ..lSand 2SJ..ls, with all other solver control parameters

remaining unchanged as givenin Table 9.1. The computation time and memory usage

required to simulate the motor for 5s are summarised in Table 9.2.
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& max Computation time Memory usage

100llS Ihour 4 minutes 3.28MB

SOilS 1 hour 35 minutes 3.28MB

2SIlS 2 hours 48 minutes 3.28MB

Table 9.2: ComputatioD time and memory usage for simuiatioDswith differeDt values ofI!J _ •

As expected, the largest&_ considered in the investigation, i.e.IOOIlS, is simulated

with the least computation time. However, the results obtained showed that it produces

almost twice the amount of overshoot in thex- direction displacement experienced by

the rotor during the start of rotor rotation (at 3s) compared to the results obtained when

&_ = SOJ.lS(refer to Figure 8.11). The difference in overshoot is approximately 42%

of the actual airgap length (0.S84mm) in the motor which is considered to be quite

large. On the other hand, the results obtained in the simulation usingMmax = 251-1swere

found to be very similar to that of SOilS(presented in section 8.5) with a maximumx-

direction displacement overshoot difference of only 6% of the actual airgap length.

However, the computation time required for the&,,_ = 2SIlS simulation is almost

double the time required to simulate with aSOilS maximum time step. Hence, it can be

concluded that the choice of M_= SOilSis realistic as it is able to produce reasonably

accurate results within a sensible computation time. It is observed that for all three

simulations, the memory usage is unchanged at 3.28MB showing that the choice of

M does not affect the amount of memory usage during the simulation._
9.3. Newton Rapbson iteration loop tolerance parameter

The numerical accuracy of theDeM simulation results is principally determined by the

tolerance valuetol
NR

set on the Newton Raphson iteration loop. In each iteration loop,

the residual error from the Newton Raphson linearisation is compared with the value

tolNR. When the rms error is less thantolNR and within the predetermined maximum

number of iterations allowed, the loop is terminated and the results are output to a file.

Generally, in all simulations presented in this thesis, the number of Newton Raphson
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iterations required is found to be less than 10. Therefore, the choice of the maximum

number of iterations for the Newton Raphson loop is rather arbitrary provided that

convergence is achieved at each time step. Having chosen the maximum number of

iterations allowed in the Newton Raphson loop, setting a large tolerancetolNR value

will mean that the state equations are not solved with sufficient accuracy. This will

produce incorrect results and can lead to non-physical behaviour. If too small a value is

chosen for tol NR' more iterations are required to reach convergence and there is a

possibility of it not being achieved at all (for example whentol NR is near machine

precision) due to rounding errors. Hence, the accuracy of the DCM software simulations

is sensitive to the choice oftol NR.

As was performed for the maximum time step control parameter, a study on the choice

of tol NR' keeping all other parameters unchanged, to achieve reasonable results was

performed on the vector controlled simulation of the non-linear bearingless wound rotor

1M presented in Section 8.5. The computation time and memory usage required to

simulate the motor for Ss is summarised in Table 9.3.

tolNR Computation time Memory usage

lxlO-3 Simulation did not converge

lxlO-4 1 hour 28 minutes 3.28MB

lxlO-6 1 hour 35 minutes 3.28MB

lxlO-9 1 hour 50 minutes 3.20MB

Table 9.J:ComputatioD time aDd memory ulage for limuJatioD. with differeDt value. oftol,..

It is shown that the largest tolerance value allowed for the bearingless motor simulation

is Ixl0-4 since the use oftolNR= lx10-3 resulted in a failure of the software. The

computation times required to simulate all three cases are comparable with a maximum

difference of 22 minutes between thetol NR values of 1x 10-4 and1x 10-9. Furthermore,

the memory usage is constant with changes intol NR' Therefore, it can be said that the

computation time and memory usage of the DCM software is insensitive to the Newton

Raphson tolerancetol NR parameter.It was found that the results obtained from the three
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simulations having different tolNR values were found to be very similar to that presented

in Section 8.5 (tolNR = IxIO-6). Therefore, the results presented in this thesis, which

used tolNR of 1x10-6, could have been simulated using a tolerance of 1x 10'" without

greatly affecting the accuracy of the results.

9.4. Linear equation solver control parameters

The linear equation solver of theoeM software is controlled by two control

parameters, i.e. the threshold and a tolerance tolSow.r . The general guidelines in

choosing both these parameters for the bearingless induction motor model application

are presented in this section.

a) Threshold parameter

Computation
time

I

~time taken to
\formulate ILU

\,1,,,,,,,,
"
'".......... - -......

Threshold infinity

Memory usage

o infinityo

<a)

Threshold

(b)

FilUre 9.1: Theeffect of thresholdon computation time and memory us_se.

The threshold parameter determines the partial fill of the incomplete LV decomposition

preconditioner. A zero or negative threshold value means a complete LV decomposition

is performed on the matrix and thus subsequently requires a short iteration time since

only one iteration of the linear equation solver is necessary. However, complete LV

decomposition requires a long time to formulate the complete LV matrix (proportional

to N3) and a large memory usage is involved.An infinite threshold value on the other
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hand, requires hardly any time to formulate the incomplete LU(Il.U) matrix and uses

minimal memory but needs a large computation time to iterate the equations. However,

convergence may not be achieved in this case. Therefore, thethreshold parameter

allows for control over the trade off between memory usage and computation time

based on the graphs shown in Figure 9.1. Ideally thethreshold value is chosen to be at

the minimum point of the total time curve in Figure 9.I(a) as this ensures the least

amount of computation time with reasonable memory usage. However, generally the

threshold value is chosen to be as small as possible (within the ellipse indicated in

Figure 9.I(a» to achieve convergence of the linear equation solver. In all theDeM

simulations presented in this thesis, athreshold value of IxIO-!Iwas used.

b) Solver tolerancetolSolver

Similar to the Newton Raphson iteration loop tolerance parametertolNR, the linear

equation solver tolerancetol Solver parameter controls the accuracy of the linear equations

that is being solved.If a large value oftolSolver is used, the results from the linear

equation solverwill not be solved accurately enough, causing the prediction of the next

iteration to be far from the actual solutions. This can cause the number of iterations

required to increase and might even cause divergence from the solution. Generally the

value of tol Solver should be smaller thantolNR to ensure that the linear equations are

solved to a higher accuracy compared to the linearisationdone by the Newton Raphson.

In the simulations carried out in this thesis, a general rule of choosingtol SOMr to be 10

times less thantolNR was found to be sufficient.

Investigation of the choice oftol SOMr to achieve sensible computation time whilst

obtaining reasonable results was performed on the vector controlled simulation of the

non-linear bearingless wound rotor 1M presented in Section 8.5. Threetolsolver values

were chosen, i.e. IxIO-s, IxIO-7 and IxIO-lO, with all other solver control parameters

remaining unchanged as given in Table 9.1. The computation time and memory usage

required to simulate the motor for Ss is summarisedin Table 9.4.
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tolNR Computation time Memory usage

IxIO-5 1 hour 24 minutes 3.28MB

IxlO-7 1 hour 35 minutes 3.28MB

IxlO- lO 1 hour 30 minutes 3.28MB

Table 9.4: ComputatioD time aDd memory usage for simulatioDs with difl'ereDt values of101_.

As expected, the computation time and memory usage in the three cases are comparable

indicating that they are insensitive to changes intol Solw,' In addition, the results

obtained from the three simulations show very close similarities indicating the

simulations of the bearingless motor, carried out withtolSoIw, = IxIO-7
, could have been

performed with the tolerance set to1x 10-5.

9.5. Chapter summary

From the analysis presented in this chapter, it can be concluded that the computation

time for each DCM simulation is principally affected by the maximum time step!!J_

parameter and thethreshold parameter of the linear equation solver. However, the

threshold parameter is chosen based on a trade off between the memory usage and the

computation time. Therefore, having chosen the smallestthreshold parameter value that

provides robust convergence, within a reasonable amount of memory usage, the user is

able to determine a suitableill max value to provide sufficiently fast computation.

Although large !!Jmax values give a fast computation, it reduces the efficiency of the

Newton Raphson linearisation and can cause poor prediction of the solutions that in tum

affects the solver convergence. Therefore, there is an upper limit to the choice of!!J_ .

The accuracy of the equations solved by the solver is generally determined by the

Newton Raphson iteration loop tolerancetolNR and the linear equation solver tolerance

to/Solver'Generally, to/somr is chosen to be smaller thantolNR (roughly 10 times less) to

ensure relatively accurate solution of the linear equations. On the other hand, the choice

of tol NR is set by an upper limit since a largetol NR will mean that the state equations are
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not solved with sufficient accuracy, resulting in wrong results and the possibility of

divergence in the solver. Hence, the accuracy of theDeM software simulations is most

sensitive to the choice oftolNR compared totol Somr. Lastly, the amount of memory

usage is only determined by thethreshold parameter and is insensitive to changes in

other control parameters of the solver.

Finally, it can be concluded that the values of the control parameters used in all the

DeM simulations presented in this thesis are sufficient to achieve accurate results for

the investigation of bearingless induction motors.
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Chapter 10

Conclusions and future work

Previous research into the induction motor type bearingless motors has shown problems

related to achieving successful rotor levitation. The aim of this thesis was to utilize a

modelling approach to investigate the problems associated with true bearingless

induction motors and to extend existing knowledge through the new insight attained. A

dynamic magnetic field model of the machine embedded in a vector-controlled system

was developed using the dynamic reluctance mesh modelling technique introduced in

Chapter 2. The investigations were carried out on two, model, bearingless induction

motors having different rotor structures. One motor had a cage rotor structure whereas

the other had a wound rotor. The wound rotor form restricts rotor currents to those

associated with pole number(M) of the motoring winding. The main findings of this

thesis are summarised below. Suggestions for future research work follow.An lEE

journal paper on this work has been accepted for publication (Ungku Amirulddinet al.,

2005).

10.1. Vector control methods for levitation and lateral force

production

In Chapter 3, the derived y- and x- direction forces acting on a rotor of an M-pole

induction motor augmented by an additional N-pole levitation winding were found, as

expected, to be dependent on the peak airgap fields due to the M-pole motoring winding

and the N-pole levitation winding. The airgap fields correspond to the net airgap flux

linkage vector of both windings. Hence, a field-oriented vector control scheme leads to

the effective control of a levitated induction motor. Chapter 4 describes the three vector

control schemes proposed for each of the bearingless motor types considered in this
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thesis; namely based on indirect rotor field orientation (IRFO), indirect airgap field

orientation (IAFO) and mixed field orientation (MFO).

In Chapter 5, the simulations of the vector control schemes for a 4+2 pole bearingless

cage rotor 1M were performed based on a two-axis lumped parameter circuit. These

showed thatall three schemes were able to produce the required y- direction force to

compensate for the rotor weight. However, it was found that the IRFO vector controlled

motor aIso produced an unwanted, but predicted, x- direction force. This was due to the

fact that in order to have a zero x- direction force, the q- axis 2-pole airgap flux linkage

f//~ must be zero. This is not the case when the 2-pole winding is rotor field oriented

which leads to the conclusion that the levitation winding has to be airgap field oriented

in order to produced decoupled force control. Therefore, only the IAFO and MFO

vector control schemes are appropriate for the control of the cage rotor type bearingless

motor. Even so, the MFO vector control scheme is at an advantage since it incorporates

a simpler rotor field oriented control for the main 4-pole winding whilst still being able

to produce the necessary forces via a 4-pole airgap field orientation for the 2-pole

levitation winding.

Similarly, in Chapter 5, the simulation of the 4+2 pole wound rotor type motor under

the IRFO, IAFO and MFO vector control schemes all showed that constant normal

forces are achieved under all conditions as required by the force reference demands.

However, under the IRFO vector control scheme, both the M-pole and N-pole winding

currents, voltages and flux linkages are oriented onto the main M-pole rotor flux vector.

This means that when the torque currenti:: is present, the main airgap fieldB': will

no longer be aligned with the N-pole fieldB~ and will not be in quadrature withB~.

Therefore, the derived force expressions of Chapter 3 will no longer be valid as they

require the peak flux densitiesB~ and B': to be in alignment with each other. Hence,

as for the cage rotor type motor, the IAFO and MFO vector control schemes are the

only control schemes suitable for the wound rotor type motor. Nevertheless, as observed

for the control of the cage rotor motor, the MFO vector control scheme is preferred for

the same reason as stated for the cage rotor type motor.
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10.2. Modelling of a bearing relief cage rotor 1M

The results of a linear 4+2 pole bearing relief cage rotor 1M modelled using the dynamic

reluctance mesh modelling(DRMM) technique using the OCM software were presented

in Chapter 6. The simulation results showed that under direct on-line start the motor

produced lower than expected force values. This was felt to be due to the extremely

high zigzag leakage fluxes observed in the motor. These substantial leakages arose from

the high slip experienced by the 2-pole field. Therefore, it is concluded that in order to

generate the required radial forcesin the cage rotor motor, considerably higher 2-pole

currents are required than predicted from the derived force expressions to compensate

for the high slip effects. When the reluctance mesh modelled motor was simulated with

an MFO vector control scheme, the predicted levitation force was only produced when

the rotor was stationary. Once the rotor started to accelerate and rotate, the force

produced was much higher. This is different to the results obtained from the simulation

of the same motor modelled using the two-axis lumped parameter technique as observed

in Chapter 5. The magnitude of the force obtained from the simulation of the vector

controlled motor during rotor rotation was not readily explainable from the harmonic

fields in the motor obtained from a OFT analysis of the airgap flux density samples of

the airgap reluctance elements, even though the OFT analysis results agreed with the

observation of increase in force magnitude when the rotor rotates.

10.3. Modelling of a bearing relief wound rotor 1M

It is clear from the direct on-line start simulation of a cage rotor bearingless1M,

presented in Chapter 6, that a high quality (small) N-pole field is difficult to achieve in

the motor when high slip frequency N-pole rotor currents are induced. It is known that

leakage effects of high slip rotor currents severely compromise the sinusoidal nature of

the airgap magnetic field. Therefore, it can be concluded that bearingless induction

motors containing rotors that do not allow N-pole currents to be induced at high slip are

an advantage. For this reason, simulations of a 4+2 pole wound rotor bearingless 1M

modelled using the DRMM technique was presented in Chapter 7.
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Linear simulations of the direct on-line start wound rotor type motor concluded that

radial forces equal to the rotor weight can be achieved and that the required winding

voltages and currents are as predicted from theory. When the DRMM modelled 4+2

pole motor was subject to an MFO vector control scheme, successful bearing relief

compensation from the rotor weight was achieved during both steady state and transient

conditions. However, it is evident from the simulation that even a small error in the

controller airgap flux angle80 (approximately 4° electrical), will cause a lateral force

F, to be produced during acceleration and load conditions when it is not requested.

Therefore, it is concluded that in order to ensure no lateral forceF exists unless it isx

requested, the 2-pole levitation winding currents, voltages and fluxes have to be

perfectly oriented onto the peak 4-pole airgap field.

The inclusion of iron non-linearity into the simulations of the direct on-line and vector

controlled wound rotor type motor introduced airgap field harmonics which are capable

of interacting with each other to create harmonic forces. More importantly, if one of the

levitation field harmonic interacts with the dominant fundamental motoring field a

significantly large harmonic force is produced. This large harmonic force will either

enforce or reduce the fundamental force in the motor. It was observed that the force

produced by the simulation is a resultant of the fundamental and harmonic forces.

Furthermore, in the vector controlled motor where the motor is required to compensate

for the rotor weight acting in the negative y- direction, the large harmonic force was

found to not only cause a reduction of the levitation forceFy but also to cause a lateral

force F, to be produced even when it was not requested. This is due to the fact that the

levitation field harmonic is not necessarily aligned with the motoring M-pole field.

Therefore, it can be concluded that in order to achieve successful forces in the

non-linear bearing relief motor, compensation of the main harmonic forces produced by

the motor is also required.

Apart from the harmonic forces experienced in the non-linear simulations, it was

observed that under full load a low frequency oscillation of 9.5Hz (in the 4+2 pole

motor) is present in the force variation against time. This frequency is thought to be

related to the electrical slip speed in the motor since it is approximately equal to the
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electrical slip speed multiplied by the number of rotor phase belts per pole pair. Is was

found that this low frequency oscillation is still present when a different stator-rotor slot

combination was chosen, with its value being dependent on the new electrical slip speed

and number of rotor phase belts per pole pair. However, from the investigations carried

out, the oscillation frequency was found to be independent of the supply frequency.

Further understanding is required here to find the mechanism for controlling these

oscillations.

Insight into the effects of non-linear iron on the performance of the bearing relief motor

was not provided from the Simulink simulation of the same motor presented in Chapter

5 since the two-axis lumped parameter circuit model in Simulink was unable to fully

model a non-linear motor. Furthermore, the Simulink model does not include the

capability of investigating the harmonic field interactions that affect the force

production. Therefore, it is concluded that the two axis lumped parameter model may

not be sufficient for fully modelling the performance of the bearingless induction motor.

10.4. Modelling a vector controlled, bearingless, wound rotor1M

It is apparent in Chapter 8 that the position control design for the vector controlled

bearingless induction motor must include the effect of unbalance magnetic pull caused

by the perturbed rotor. The unbalance magnetic pull force expression, derived in

Chapter 3 and used in the position control design, was verified from an investigation of

the effect of rotor displacement on the force produced by the motor under only anM-

pole excitation as shown in Section 8.2. When the designed position control loop was

used in the DCM simulation of the vector controlled bearingless linear iron wound rotor

1M, the control scheme was successful at keeping the rotor centred under both transient

and steady state conditions. However, the choice of sampling time and bandwidth of the

position controller is crucial to ensure successful control.

The effect of non-linear iron on the performance of the position control scheme of the

bearingless wound rotor motor is dependent on the plant of the motor. This is because

the introduction of non-linearity causes an increase in the slope of the unbalance

magnetic pull force-displacement variation and hence a position controller has to be
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designed to cope with this large slope. With the correct controller design, the position

control incorporated in the bearingless motor was also capable of compensating for the

effect of harmonic forces present due to the iron non-linearity. The low frequency

oscillation observed during load in the non-linear iron simulation of the bearing relief

motor is still present in the non-linear bearingless motor simulation. However, this is

only of marginal significance in the closed loop position control. From comparison of

the DCM simulation results of the bearingless induction motor with those of the

Simulink simulation, the inadequacy of the two-axis, lumped parameter model to

simulate the behaviour of the bearingless motor is further highlighted. This is because

the effects of harmonic field interactions, which have been shown to be significant in

the bearingless motor, are not included in the two-axis lumped parameter model.

Moreover, because the two-axis lumped parameter model utilised in the Simulink

simulation is unable to fully model a non-linear motor, no insight into the non-linear

effects on the rotor levitation in the bearingless motor could be obtained.

Clearly, with such a complex interaction of MMF and saturation harmonics in a

practical induction motor, a detailed magnetic machine model is essential for the

development of effective control schemes and for the understanding of the processes of

force production. Therefore, it is perhaps not surprising that no experimental results for

a fully levitated induction motor rotor have yet been reported.

10.5. Recommended future work

The following areas were identified as possible extensions to the work presented in the

thesis:

• An experimental validation of the effects of iron non-linearity on the

performance of a bearing relief wound rotor induction motor as pointed out from

the computational analysisshown in Chapter 7.

• In the modelling of the bearingless cage rotor motor, further investigations into

reducing the high slip leakage effects on the force production is required

possibly through higher main (M-pole) and levitation (N-pole) winding pole
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number combinations in which the slot numbers can be optimised to control

leakage reluctances. For such designs, bearing relief schemes for cage machines

may be much more effective compared to those observed in this thesis.

• Following from the investigations carried out in Chapter 7, methods for

harmonic force compensation in the non-linear bearing relief wound rotor 1M

could be investigated. In addition, further research into the physical

understanding of the low frequency oscillations observed in the non-linear

bearing relief and bearingless wound rotor 1M operating under load is also

required in order to find mechanisms to reduce this behaviour.

• Investigations of a three-dimensional dynamic reluctance mesh modelled vector

controlled bearingless induction motor.

• The common use of fast switching semiconductor devices, such as insulated gate

bipolar transistors (IGBT), in pulse-width modulation (PWM) inverter schemes

for AC motor drives will introduce high frequency motor currents. These

currents have a tendency to flow to earth via the motor bearings capacitively.

Therefore, research into the use of bearing relief capabilities to minimise the

flow of high frequency bearing currents could be worthwhile.

• Although, most research into bearingless motors has currently been centred on

the permanent magnet type motor, a study on a vector controlled bearingless

permanent magnet motor modelled using the dynamic reluctance mesh

modelling technique may also help in the control design and operation of these

devices.

222



Appendix A: Equations goveming the behaviourof an induction motor

Appendix A

Equations governing the behaviour of an induction motor

In this Appendix the equations governing the behaviour of an induction motor is

derived in terms of the rotating dq reference frame, which is required in vector control

schemes. These equations are generally written in equivalent 2-phase stator variables.

The stator coils, termed thesaJ3coils, are fixed in space. Therefore, the stator voltage

equation can be written as

.R dv =1 +-11/
_s z.s s dt+: (A. I)

In (A. I), ~s, t, and 11/s are complex vectors representing the stator voltage, current

and flux linkage, and are defined by

11/s = II/sa + ilf/sp

Similarly, the rotor is represented by its equivalent 2-phase coils, ra'J3', which are

fixed onto the rotor and rotates in space at the rotor speed,OJ,. The rotor voltage ~"

current i and flux linkage If/ vectors are defined by:-, -,

~, = V,a' + jv,p'
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'If = 'Ifra' + j 'Ifrp'_r

respectively. Hence, the rotor voltage equation is given by

Vr = 0 = irRr +!!_'If- - dt ':" (A2)

where 'lfra, and 'lfrp' are the total flux linkage in the rotor coils, The rotor voltage is

zero since the rotor coils are short-circuited. In order for equations (A. I ) and(A2) to

be useful, both equations must be writtenin the same reference frame. This requires

transforming from thea.'a" frame to thea~frame. which is achieved using:

. _ -)OJ,t·
!ra'p' - e !ra/3

(A3)
-)OJ I

til - e r Ilf
'!:...ra'p' '!:...ra/3

Hence, (A.2) can be transformed onto the stator frame thorough of substitution of

(A.3) to give:

O . Rd.= !r~" r +-'If ~" - JOJr'lf ~""'" dt _r"", _r"",
(A.4)

A.I. Induction machine equations in terms ofi.and 'If r

The stator and rotor flux linkage vectors,'If and 'If , can be represented by
-sap -rap

(AS)

In order to achieve a rotor field oriented vector control scheme. the stator and rotor

voltage equations have to be expressed in terms ofi, and fI/ .: Therefore, by
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rearranging the equations in(AS), the terms trap and 1//sap in (AI) and (A.4) can be

eliminated to yield

. R .T d . L; d
~sap = !sap s+ O"Ls dt !sap + --1//L dt-rap

r

(A6)

O
Rr i.s., d .
--Ilf ---I +-11' -j(1) II'- L '!:....rOlp L -sap dt '!:....rap r '!:....rap

r r
(A.7)

Equations (A.6) and (A.7) are respectively the stator and rotor dynamic equations

governing the behaviour of the induction motor in the fixed statoraJ3 frame. It has to

be noted that both (A.6) and (A.7) consist of two equations each due to the real and

imaginary quantities of the complex vectors.

The next step is to represent the equations in which all the stator and rotor quantities

are on the rotating dq frame. The dq frame travels at a speed(1). relative to the fixed

stator aJ3 frame. Hence, theaJ3 frame quantities can be transformed into the dq frame

through

x = e+jtIJ
; x

-a{3 -dq
(A.8)

where x may be vs, is or I//r·

Substituting this transformation into(A6), and through differentiating by parts and

simplifying, gives the stator voltage vector equation in the dq frame:

d _;r L, d . Lo
. R + oi. i +j·OJ UL i + --JU + jOJ -'If

~sdq = !sdq s sdt _sdq e=r:« _sdq L dt 'Lrdq , L 'Lrdq
r r

(A.9)

where aL, = LsLi - L! . Similarly, through (AS), the rotor voltage equation (A. 7) is
r

transformed into the dq frame to produce
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O
R, LoR, . d .
--'1/ ---1 +-'1/ +]0) IIf- L _,dq L _sdq dt _,dq s/ '!:...,dq, ,

(AIO)

where 0)sl = 0)e - 0),.

Finally, equations (A9) and (AIO) can be separated into real and imaginary parts to

yield the four equations governing the behaviour of the induction motor in the dq

frame:

(A. I I )

(A.12)

(A.13)

O
R, LoR, . d
--II' ---1 +-'" +0) ,,,- L '!:...,q L -sq dt '!:...rq s/ '!:...rd, ,

(A14)

A.2. Induction machine equations in terms of Land'I/o

In order to express the dynamic equations of the induction motor in terms of~sdq and

'1/ ,the term '1/ in equations (A9) and (A.I0) would have to be eliminated. This
_odq -,dq

is achieved using the flux linkage vector equations in the dq frame where

(A. IS)

(A.16)

By rearranging (A. 16), an expression for~rdq is obtained which can then be

substituted into (A. IS) to give
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'IF -~lIf -(L -L )i
'!:....rdq - L '!:....odq r 0 _sdq

o

(A.17)

Hence, by substituting (A.17) into (A.9) and (A. I0):

(A. IS)

0= Rr 11/ + Lr !!_lIf -R i -(L -L )!!_;
L -odq L dt '!:....odq r _sdq r 0 dt -sdq

o 0

+i"'.[~:'i/ ... -( L, - L.)1"" ]

(A.19)

Equations (A. IS) and (A.19) are the stator and rotor equations of the induction motor

in terms of isdq and 11/ odq" which will be useful in an airgap field oriented vector

control scheme. Again, both these equations can be separated into real and imaginary

parts to yield another set of four equations governing the behaviour of the induction

motor in the dq frame:

(A.20)

(A.21)

(A.22)

(A.23)
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