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Abstract

The concept of bearingless motors, which combine both motoring and rotor bearing
capabilities, is appealing especially in high speed and high power machine applications.
Although extensive research has been carried out on permanent magnet and reluctance
types of bearingless motors, studies on the induction motor type are less successful.
This thesis addresses the bearingless induction motor based on the concept of dual-pole
windings, one controlling the motor torque and the other the generated radial forces. A
modelling approach is undertaken to investigate the effect of induction machine design
on radial force generation and motor levitation under both steady state and transient
conditions. The simulation is based on the dynamic reluctance mesh model embedded in
vector control systems for the decoupled control of torque, flux and radial force. This is
achieved through modification of a previously developed computer software for
modelling induction motors in order to model the control of bearingless induction

motors.

Both the squirrel cage and wound rotor induction motors are investigated and their
suitability for generating controlled bearing relief forces assessed. Vector control
schemes for the bearingless cage and wound rotor induction motors were also designed
and simulated. A mixed field oriented vector control scheme, which incorporates the
simple rotor field orientation for motoring control and an airgap field orientation for
rotor levitation control, is introduced and found to be advantageous in bearingless
induction motor control. Apart from investigating totally bearingless conditions, the
study also investigates bearing relief capabilities for a vector controlled cage and wound
rotor induction motor in which the rotor movement is restricted by bearings but with the
bearing load cancelled by suitably directed radial force. The effects of real winding
topologies, stator and rotor slotting and iron saturation on the performance of bearing

relief and bearingless induction motors are also presented.

Finally, suggestions for future work is included in order to further investigate

bearingless induction motors and its applications.
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Chapter 1: Introduction

Chapter 1

Introduction

1.1.  Bearingless motor

Alternating current (AC) motor drives are reaching power and speed ranges exceeding
that of direct current (DC) drives due to developments in inverter and control strategies.
High speed and high power impose problems of lubrication on conventional rolling
element bearings. AC drives may incorporate magnetic bearings as they provide support
of rotors without any physical contact offering the following advantages (Matsumura ef
al., 1997):

e frictionless operation

o reduced frictional wear

e low vibration

¢ high rotational speed capability

e use in special environments such as vacuum, ultra-low temperature and toxic or

flammable atmosphere

¢ low maintenance

This enables the use of AC drives for high speed and high power applications.
Applications include for high-speed spindles for machine tools, turbomolecular pumps,
liguid helium pumps and turbogenerators (Dussaux, 1990, Matsumura et al., 1997,
Brown, 1999). However, there are still many problems in AC drives with magnetic
bearings. One problem is where there is a long axial shaft length required by bearings.
This reduces the critical speed of the shaft (Fukao, 2000). Furthermore, long shaft
lengths operating at high speeds create flexible shafts that require increased attention to

control (Knospe and Collins, 1996). A problem in small, high speed rotating machinery
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is the magnetic bearing design which is limited in terms of its size and mass. Constraint
in the former is usually due to a limited operating space whereas the latter is to avoid

adverse effects to shaft dynamics (Maslen et al., 1988).

One of the possible solutions to reduce the problems associated with magnetic bearings
in high speed motor applications is to use bearingless motors which are capable of
producing both motoring operation and rotor levitation without the presence of separate
magnetic bearing systems. All desirable properties of separate magnetic bearing systems
are achievable by the bearingless motors (Bleuler, 1992). Therefore, most applications

involving the former are applicable to the latter.

According to Chiba (1994), any electric machine that can be made equivalent to a DC
machine through coordinate transformation can act as a bearingless motor. Successful
operation has been reported for several bearingless motor types, for example the
permanent-magnet (PM) motor (Bichsel, 1992; Oshima et al., 1996), reluctance motor
(Chiba et al., 1991(a)) and induction motor (Chiba ez al., 1991(b)). In the proposed
bearingless motors, the main M-pole (m pole pair) winding is augmented by an
auxiliary N-pole (n pole pair) levitation winding, in such a way that the interaction
between the M- and N-pole fields generates radial forces that can levitate the rotor. A
general theory of pole number combination for the main and levitation windings of a
permanent magnet synchronous type or an induction motor type bearingless motor was
carried out by Okada ef al. (1995) and Ohishi ez al. (1995) showing that the condition
M- N=%2 (m -n == 1) produces a constant radial force acting on the rotor.
Bearingless motors utilising only a single set of windings have also been put forward by
Salazar and Stephan (1993), Osama and Lipo (1999), Santisteban and Stephen (1999)
and Khoo et al. (2002).

In this thesis only the induction type motor is considered for bearingless motor
investigations. This is due both to the widespread use of induction motors in domestic
and industry applications and the fact that there has been less successful research into
using this short airgap type of machine for rotor levitation. Furthermore, induction type

bearingless motors have been found to be capable of producing a stronger levitation
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force when compared to bearingless PM and reluctance motors (Okada ef al., 1996;

Fengxiang et al., 2001).

1.2. Literature review on bearingless induction motors

Research into induction type bearingless motors having a 4-pole main winding and
2-pole levitation winding has experimentally studied the possibility of controlled radial
forces suitable for levitation both under no load (Chiba ef al., 1995) and load conditions
(Chiba et al., 1997). These experiments used a vertical rig with one end of the shaft held
by bearings. No true levitation of a bearingless induction machine has been reported.
The problem is a challenging one, the radial force produced varies under load. There are
two reasons for this. The first reason is due to reduction in the main magnetising current
and consequently the main 4-pole field caused by the 4-pole currents induced in the
rotor. Furthermore, a phase delay is introduced which causes force interactions between
two perpendicular axes (y- and x- axes). Thus, information of the amplitude and
orientation of the revolving magnetic field is necessary for control of a bearingless
induction motor in order to ensure the radial force produced is in agreement with the
reference radial force. Therefore, field-oriented vector control schemes for the induction
type bearingless motors have also been introduced by Schob and Bichsel (1994), Chiba
et al. (1997), Suzuki et al. (2000) and Deng et al. (2002).

Secondly, the reduction in the force magnitudes and a phase delay with respect to the
radial force command also occurs in the bearingless induction motors operating under
load due to the 2-pole levitation currents induced in the squirrel cage (Nomura ef al.,
1993). In order to overcome the effects of the 2-pole rotor currents, phase-lead
compensation was introduced in the levitation winding controllers (Nomura ez al., 1993)
or else the rotor cage was modified such that only 4-pole currents were allowed to flow

(Chiba et al., 1996; Chiba and Fukao, 1998). An alternative is through a wound rotor.

Successful finite element modelling of a bearingless wound rotor induction motor under
transient conditions has been reported by Cai and Henneberger (2001). Force
production comparison between a cage rotor and wound rotor type bearingless IM was

also investigated by Cai and Henneberger (2001). They have found that the force
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production in the cage rotor type motor is weakened due to the cage rotor inducing not
only a 4-pole but also a 2-pole field which tries to oppose the airgap field asymmetry
responsible for force production. This behaviour does not occur in the wound rotor type
motor investigated by them since the rotor has the same pole number as the motoring
winding. Hence, Cai and Henneberger (2001) have shown that the bearingless wound
rotor IM is more efficient in building radial forces compared to the cage rotor type. A
decoupled motoring and levitation control system for the wound rotor type motor was
also proposed by Cai and Henneberger (2001) but no modelling results of a controlled

bearingless motor was reported.

Effects of rotor eccentricity on a finite element model of bearingless induction motors
have been presented by Yahia and Henneberger (1998) and Baoguo and Fengxiang
(2001). Both papers report that the force produced by the motor increases as the
levitation winding current is increased. Furthermore, rotor eccentricities were also
observed to cause an increase in the force produced for a fixed value of levitation
winding current. This is due to the unbalance magnetic pull of the eccentric rotor (Yahia
and Henneberger, 1998). Analytical force expressions of a bearingless induction motor

with rotor eccentricity are also presented by (Baoguo and Fengxiang, 2001).

1.3. Dynamic reluctance mesh modelling of an induction motor

The literature review on bearingless induction motors has shown that no successful
experimental levitation has been reported. Therefore, this thesis intends to employ the
use of a modelling approach to investigate the problems associated with true bearingless
induction motors. This will build a foundation from which others can develop
experimental test rigs with confidence. Furthermore, a modelling approach is
considered as it allows various machine designs and control schemes to be considered
easily without incurring the time consuming and costly aspects associated with

experimentation.

There are basically four approaches to modelling electrical machines, namely the simple
equivalent circuit, dg- representation, dynamic reluctance mesh modelling (DRMM)

and finite element modelling (FEM). The characteristics of these modelling techniques
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are summarised in Table 1.1. As the name suggests, the simple equivalent circuit
modelling technique is based on employing the equivalent circuit of electric machines
to investigate its performance. However, this only enables steady state conditions to be
investigated. This modelling technique uses the least amount of computation time
compared to the other methods but because it only provides an approximate model of
the machine, it is the least accurate of all. The dq- representation modelling technique
models the machine based on a two-axis lumped parameter circuit in which circuit
equations and variables are transformed to represent separately its effect on the direct
and quadrature axes of the machine. This enables the machine to be modelled

dynamically and is equally applicable to steady-state conditions.

Slmple.equ.lvalent Dq- . DRMM FEM
circuit representation
¢ steady state ¢ dynamic and e dynamic and ¢ dynamic and
conditions steady state steady state steady state
conditions conditions conditions
approximate e poor machine ¢ good machine difficult system

machine model model model model
¢ good system e good system good field

o fast - simplistic model model model

calculations e fast computation e relatively fast e relatively slow
computation '~ computation
— —»
seconds Computation time days
F

Most accurate

Less accurate Accuracy

Table 1.1: Electrical machine modelling techniques.

The FEM method of modelling electric machines is based on meshing the machine
using triangular or rectangular elements within which the energy in each element is
minimized based on predefined boundary conditions. This method of modelling is able
to provide the most accurate results when compared to the other methods. However, the
computation time required is long since generally dense meshes are required. On the
other hand, the DRMM technique of modelling electrical machines is based on the
simple concept of reluctance meshes, as an alternative to finite elements of the FEM
technique. In the DRMM technique, the magnetic field behaviour in the machine is

mapped onto an equivalent lumped circuit network which is then coupled to the
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electrical circuits. The modelling of an induction motor using the DRMM technique has
been developed by Abdel-Kader (1979), Amin (1982), Ostovic (1986 and 1988) and
Sewell et al. (1999) whereas modelling of a permanent magnet and switched reluctance
motors have also been reported by Roisse et al. (1998) and Nakamura et al. (2005)

respectively.

As the study in this thesis requires a dynamic magnetic field model of the machine
embedded in a vector-controlled system, the use of the simple equivalent circuit
technique is ruled out. The dg- representation and DRMM methods of modelling an
induction motor are chosen for the investigations presented in this thesis. The former
modelling technique is chosen since it provides convenience in incorporating field
oriented control strategies proposed for the bearingless induction motors. On the other

hand, the choice of the DRMM technique as opposed to FEM is discussed here.

Finite element models are considered inappropriate due to the very long computation
times associated with the problem dynamics. Although FEM provides a better field
model of an electrical machine, the DRMM method incorporates user experience to
model the most important flux paths in the machine since the qualitative direction and
spatial variation of the fields in the machine are predictable with sufficiently good
accuracy. Hence, the resulting lumped equivalent circuit mesh may be coarse in
comparison with a conventional FEM mesh whilst still yielding good results. The
DRMM approach includes all of the sources of key operating problems in induction
motors, which are winding MMF harmonics, slotting effects, skew, saturation of main
flux paths, and saturation of leakage flux paths. It can be argued that a coarse FEM
mesh can produce relatively comparable computation time to that of DRMM mesh,
however this requires the user to develop their own FEM package. However, the
DRMM approach will always have fewer nodes, and therefore reduced computation
time when compared to even the sparsest FEM mesh. Furthermore, it is much simpler to
mesh the airgap of electrical machines using the DRMM method compared to a coarse
FEM mesh since the use of narrow triangle mesh elements in the latter should be

avoided to ensure accurate and stable solutions (Silvester and Ferrari, 1996).
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The DRMM method provides speed of computation which is crucial when small time
steps are required to incorporate control and/or power electronic schemes for electrical
machines. These features are essential for the bearingless induction motor studies of this
thesis. Generally, FEM simulations of induction motors require large time steps which
can cause discrepancies between the actual FE model and the incorporated control
and/or power electronic schemes. Currently, there are few commercially available
packages which combine FE and system modelling and those that are available are
slow. In a project such as this one, understanding the behaviour of the machine and
control is more important than absolute precision of calculation and this requires a large

problem space to be examined in a relatively short period of research.

Based on the discussion stated above, the DRMM method was chosen to model the
bearingless induction motors investigated in this thesis as the method creates a machine
model that is complex enough to model the most significant flux paths accurately within
reasonable computation time. Furthermore, since the study presented here is intended to
study the feasibility of bearingless induction motors, only a relatively good field model
is required which is provided by the DRMM. In future, with advances in computing
abilities, FEM analysis of bearingless induction motors is favourable compared to

DRMM. For the moment, the DRMM method is employed.

1.4. Thesis overview

This thesis employs the use of a modelling approach to investigate the performance of
vector controlled bearingless induction motors. Therefore, in Chapter 2, a
computationally efficient simulation software (from here onwards referred to as the
Dynamic Circuit Modelling (DCM) software) for modelling induction machines based
on the dynamic reluctance mesh modelling (DRMM) technique is introduced. The state
variables, state equations and numerical solution techniques employed in the software
are also presented. Further modifications and improvements to the software in order to

model a bearingless induction motor for this study are also reviewed.

In Chapter 3, derivations of the force expressions in an induction motor containing an

M-pole motoring winding and an N-pole levitation winding are carried out. The force
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expressions are derived for two cases, one for a motor having its rotor fixed by
conventional bearings and the second for a motor having a rotor perturbed from the
axial centre line of the machine. The former force derivations will be useful in studying
bearing relief capability of induction motors whereas the latter will be useful when

designing position control for a totally bearingless induction motor.

The forces created in a bearingless induction motor arise from interactions between the
main motoring and the levitation fields. This leads to the use of field-oriented vector
control schemes to control a levitated induction motor. Chapter 4 proposes control
schemes for bearingless induction motors having two different rotor structures; one
having a cage rotor while the other contains a rotor that does not allow any N-pole rotor
currents to be induced. The reason for having the second type of rotor will be apparent
in Chapter 6. Three vector control schemes are proposed in Chapter 4 for each of the
two bearingless IM types; namely based on indirect rotor field orientation (IRFO),
indirect airgap field orientation (IAFO) and mixed field orientation (MFO). It will be
shown that the IRFO vector control scheme for the cage rotor type motor will always
produce a force in the x- direction even when unwanted since the force produced is
dependent on the airgap field which is not kept constant in the rotor frame. Therefore,
an indirect airgap field oriented (IAFO) control scheme is also proposed. Finally, the
mixed field oriented (MFO) scheme, in which the M-pole winding is rotor field oriented
whereas the N-pole field is oriented onto the M-pole airgap flux, is put forward since no
extra advantage is gained by having the torque (M-pole winding) being airgap field

oriented.

In Chapter S, the electrical parameters of a 4-pole cage and 4-pole wound rotor
induction motor are derived. These motors will provide the motoring field in the
bearingless induction motors investigated in this thesis. The levitation field in the
bearingless motors is provided by an additional 2-pole winding added into the stator of
each of the 4-pole motors. Therefore, Chapter 5 will also describe the design and
parameter derivation of the 2-pole levitation winding. With the 4+2 pole cage and
wound rotor induction motors, the vector control schemes proposed in Chapter 4 for the
bearingless cage rotor motor and a motor with no N-pole levitation rotor circuit,

respectively, will be simulated to investigate the levitation and lateral force produced in
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these motors. This simulation is carried out in MATLAB Simulink using a two-axis
lumped parameter circuit model of the bearingless IM. Before presenting the simulation
results, Chapter 5 also includes the controller design for both the 4- and 2-pole winding

required for the vector control scheme simulations.

The study of bearingless induction motors in this thesis also includes a study on bearing
relief capabilities. The term bearing relief means that the rotor movement is still
restricted by conventional bearings but with the bearing load being cancelled by
suitably directed radial forces created in the motor by the incorporation of the N-pole
levitation winding. In Chapter 6, DCM simulations of a linear iron bearing relief cage
rotor motor under direct on-line start and MFO vector control conditions are presented.
It will be shown that the cage rotor will cause the 2-pole levitation field to experience a
very high slip. This high slip introduces leakages effects that cause lower then expected
force values to be produced by the motor. Therefore, in order to generate the required
radial force in the motor, considerably higher 2-pole currents are required than predicted
from the force expressions derived in Chapter 3. Hence, the possibility of reducing the
high slip leakage effects through the suppression of induced N-pole currents in the rotor

will be examined in Chapter 7.

The suppression of the induced N-pole currents due to the levitation winding is
achieved using the 4+2 pole wound rotor bearingless IM since the rotor is wound with
the same number of poles as the motoring field. Therefore, in Chapter 7, simulation of a
direct on-line start 4+2 pole linear wound rotor IM under bearing relief conditions is
carried out using the DCM software. This is to investigate the radial force production in
the wound rotor type motor which will be compared with the cage rotor type motor. The
chapter will also present results from a DCM simulation of the same linear iron motor
controlled using the MFO vector control scheme. Finally, the effects of non-linear iron
on the performance of the wound rotor motor under direct on-line start and vector

control conditions will also be investigated.

Chapter 8 discusses the results of an MFO vector controlled bearingless wound rotor IM
modelled using the DRMM technique by way of the DCM software. However, due to

ability of the rotor to move freely in the bearingless motor, the x- and y- direction
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position controllers required in the simulation will first be designed. A verification of
the force expressions derived for a perturbed rotor motor in Chapter 3 is also discussed
thorough comparison with DCM simulation results investigating the effect of unbalance
magnetic pull force due to rotor displacements in a motor supplied only with the

motoring field.

The numerical solution technique used within the DCM software is controlled by key
parameters to ensure that convergence and accuracy is achieved in all the simulations
carried out. Therefore, Chapter 9 will discuss the numerical effects associated with the

parameter choices on the results of the DCM simulations presented in thesis.
Finally in Chapter 10, a conclusion to the study of bearingless induction motors

including the main findings of the work of this thesis is presented. Possible areas in

which future work can be directed will also be proposed.

10
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Chapter 2

Dynamic Circuit Modelling (DCM) software

2.1 Introduction

The time consuming and costly aspects of experimentation faced by designers in search
of enhanced machine performance have resulted in the creation of computer simulation
software capable of considering many design variations. Although simulation software
for machine design purposes (such as finite element based packages) produces accurate
and detailed results of machine performance, designers are often forced to compromise
the simulation undertaken by considering either two-dimensional approximations or
steady state conditions in order to manage the computational intensity. This is a
consequence of the large number of variables necessary to accurately characterise the
state of the machine and the very long computation times associated with the problem
dynamics. Restriction to the two-dimensional case and/or steady state operation
undermines the utility of the simulations, especially when transient analysis and three-

dimensional effects such as skew are important.

Therefore, another approach to modelling electrical machines based on the simple
concept of reluctance meshes, as an alternative to finite elements, was developed by
Abdel-Kader (1979), Amin (1982), Ostovic (1986 and 1988) and Sewell ez al. (1999) in
which the magnetic field behaviour in the machine is mapped onto an equivalent
lumped circuit network. A computer simulation software employing the dynamic
reluctance mesh modelling technique was also developed by Sewell er al. (1999) to
model three-dimensional induction motors in transient and steady state conditions. The
key to the efficiency of this approach is the fact that in most parts of the machine, the

qualitative direction and spatial variation of the magnetic field are predictable with

11
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sufficiently good accuracy from experience, and hence well approximated by the
behaviour of a simple lumped circuit element. Therefore, the resulting lumped
equivalent circuit mesh may be coarse in comparison with conventional finite element
mesh, as mentioned in Section 1.2, whilst still yielding good results. This provides a
significant saving in both computational time and memory consumption. In fact, the
results obtained from the reluctance mesh model of a conventional induction motor
have previously shown excellent agreement with experimental results (Sewell et al,
1999).

In this chapter, a brief description of this computationally efficient dynamic reluctance
mesh modelling technique is presented. The Dynamic Circuit Modelling (DCM)
computer simulation program initially developed by Sewell e al. (1999) and further
enhanced in this work is introduced in this chapter. Details of both the modifications
and its use to produce the results presented in Chapters 5, 6, 7 and 8 of this thesis are
discussed. First, this chapter will look at how an induction motor is modelled using the
reluctance mesh approach before introducing the state variables, state equations and
numerical solution techniques employed in the DCM program. However, comparison
between the results of the DCM simulation of a conventional induction motor and
experimental results will not be presented here as the basic algorithm and code have

already been extensively validated by Sewell et al. (1999).

2.2 Creating the reluctance mesh

In this model, a typical induction machine stator and rotor geometry is discretised into a
number of cells in which the flux may be realistically considered to flow
perpendicularly to the inter-cell boundaries as shown in Figure 2.1(a). At each
boundary, a node is defined, at which point the MMF is sampled. Each cell is
represented by a reluctance element of width, w, length, /, and depth, d, which connects
two nodes, as shown in Figure 2.2, and is physically consistent with flux flowing along
the element and uniformly distributed in its cross-section. Given the geometry of the
stator and rotor laminations, a segment for both the stator and rotor reluctance mesh is

created as shown in Figure 2.1(b) with the dimensions of each reluctance element in the

12
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segment being determined from the lamination geometry as shown in Table 2.1. The

stator element node numbers seen in Figure 2.1(b) start from 1000, for coding reasons.

MMF sample
point or node

width, w

length, /

Figure 2.2: A reluctance element cell.

13



Chapter 2: Dynamic Circuit Modelling (DCM) software

Node number Length, / Width, w
0 ) [2% )(rm,, —sd, -0.5bid.) bid,
0 2 0.5bid, +(sd, —0.5bd.) w,
1 3 0.5bid, +(sd, —0.5bd) w,
2 4 0.5bd, (2% )(rm,, —sd, -0.5bid,)
3 5 0.5bd, (2% )(r,m,, —sd, —0.5bid,)
2 3 (2% )(r,m,, ~0.5bd.) 0.5bd,

Table 2.1(a): Dimensions of rotor reluctance elements.

Node number Length, / Width, w

1000 | 1001 (2% )(r,m,, +sd, +0.5bid, ) bid,

1000 | 1002 0.5bid, +(sd, - 0.5bd.) tw,

1001 | 1003 0.5bid, +(sd, ~0.5bd,) w,

1002 | 1004 0.5bd, (2% )(rm +sd, +0.5bid )
1003 | 1005 0.5bd, (2% )(r,,,,,,, +sd, +0.5bid )
1002 | 1003 (2% )(r,,,,h +0.5bd.,) 0.5bd.

Table 2.1(b): Dimensions of stator reluctance elements.

14
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Each reluctance element is designated to be of type ‘linear’ iron, ‘non-linear’ iron or
‘air’. In the case of non-linear iron, a suitable experimental B-H curve defines the
permeability, otherwise an appropriate relative permeability value x = constant, is
given. The slots on both the stator and rotor side can be left open or semi-closed by
modelling the reluctance element between the teeth as an ‘air’ element. The placement
of MMF sources on each stator and rotor tooth were chosen using Ampere’s law to
correctly model the location of both the stator and rotor bar currents (Sewell er al.,

1999). The reluctance of each element in the mesh is obtained by
R=—— 21

where u is the permeability of the element determined by its given type. As stated

above, this assumes uniform flux flow in each element, although, if required, the
reluctance of any element in the model can be defined more generally in terms of the
MMF difference between the end of the element nodes, possibly obtained from pre-

processing simulations of flux flows in the motor using a local finite element analysis.

Therefore, assuming uniform flux flow, the flux flowing through a reluctance element,

shown in Figure 2.2, is calculated using

_ fz - fl
¢ R (2.2)

where £, is the MMF at node 2, f; is the MMF at node 1 and R is the reluctance of

the element as given by (2.1). If the reluctance element is in series with an MMF source,

21=f2+mef_fl (2.3)
R

where F,,is the potential of the MMF source.

After a segment of the stator and rotor is discretised and represented as an equivalent
reluctance element lumped circuit, the node numbers, dimensions and type of each
reluctance element are put into two data files. At the start of the DCM program, these

data files together with a data file representing the ‘non-linear’ type B-H curve, and a
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file containing the motor’s physical and running parameters are loaded. As the stator
and rotor teeth are symmetrical, the program then replicates both segments, from the
data files, according to the number of stator and rotor bar slots respectively to create a

complete slice, or axial section, of the induction motor.

Correctly modelling the reluctance mesh of the airgap is crucial in a dynamic
simulation. In this model, flux is assumed to flow radially across the airgap at all times,
as shown by the inset figure in Figure 2.3. Therefore, the airgap reluctance elements are
allocated on the basis of the overlap area between pairs of rotor and stator tooth tips. As
the rotor rotates the overlaps between rotor and stator teeth change. Hence, the airgap
reluctance element values and the reluctance mesh vary depending on the instantaneous
position of the rotor as shown in Figure 2.3. In the DCM program, these elements are
dynamically created at each time step. For this reason, these airgap reluctance elements
are referred to as dynamic reluctance elements while all other reluctance elements will

be regarded as fixed elements.

Stator

/
,/ Rotor _ .~
-~
7 N
i/ "
\
| A 21
]
\ !
\
/
\
N /
................................................. \\\~ -7

Figure 2.3: Creation of airgap elements based on overiap between stator and rotor tooth. As the
rotor moves by r30, a new set of airgap elements are created (solid lines). The set of rotor teeth
after the movement is drawn slightly lower than before the movement (dashed lines) for clarity.
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The stator and rotor slots are filled by a three-phase winding and a squirrel cage bar
respectively. The model is capable of modelling a fractional or full pitch double layer
stator winding. Figure 2.4 illustrates part of the reluctance mesh created by the DCM

program for a bearingless induction motor.

Stat Levitation
n?e:l: / winding
V\ Main
winding

Rotor /'

mesh

Figure 2.4: Reluctance mesh model.

In order to obtain experimentally verifiable simulations, the model is made quasi-3D to
allow for rotor skew along its axis. The motor is divided into a number of axial sections
with each section of the rotor being offset from its predecessor by a small angle to
model the skew. Adjacent axial sections are only coupled through the rotor and stator
electrical circuits as it is assumed that axially directed flux is negligible which is a
physically realistic assumption. This dramatically improves the computational
efficiency of the model. Therefore, after creating a slice or axial section from the stator
and rotor segments, the DCM program then replicates the slice or section according to

the user-defined number of sections with each rotor section being offset by

skew angle in mechanical degrees

skew offset = _
number of sections

The incorporation of skew in the DCM simulation program is an advantage when
compared to two-dimensional finite element simulations of an induction motor in which

skew is not taken into account.
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Rectangular
stator
section \
Trapezoidal rotor
section

Figure 2.5: Modelling rotor skew.

Generally, in an unskewed machine, the area of each rotor tooth in contact with the
airgap would be reasonably considered to be rectangular. However, in this reluctance
element model, the area is defined to be trapezoidal, as in Figure 2.5, to account for the
skew. This also has important numerical consequences when calculating the torque
generated in the motor from the virtual work principle as it relies upon the rate of
change of the dynamic airgap elements with rotor position. This rate of change is
continuous when the rotor tip elements are defined as trapezoidal shaped elements and
this avoids any unrealistic steps in torque, unlike the case of rectangular shaped
elements. Furthermore, a trapezoidal area takes into account zigzag leakage paths more

realistically.
2.3 State variables and state equations solved

The model enforces conservation of the rate of change of flux entering each node i, (for

example see Figure 2.4)

0 :
Z—a_’_¢u(jr’fj)zo (24)

As there are a total of Nnode nodes in the reluctance-mesh, a set of equations is

recovered linking together all the nodal MMFs, f, in the simulation. The magnetic
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model is coupled to the stator and rotor electrical models by applying Ampere’s and
Faraday’s laws. Satisfaction of Ampere’s law requires placing MMF sources in the teeth
of both the rotor and stator as shown in Figure 2.1. Each of the three phase windings on
the stator and the wound rotor comprise three independent phase loops and knowledge
of the winding distribution allows the appropriate current to be used to determine each
tooth MMF source. In the case of the cage rotor, each bar current is regarded as an
independent quantity. Faraday’s law is enforced for each independent electrical loop in
the motor. These loops comprise each of the phases of the stator winding. For the cage
rotor, the independent electrical loops consist of pairs of adjacent rotor bars. Having
identified the electrical loops, the teeth fluxes which couple with each of them is clear
from the winding distribution of the stator and the pairing of rotor bars. Hence, an

equation of the form

Vi00p® = Ricop Lioop (1) = N pyms %Z¢(t)=0 2.5)

teeth

is formed. V,,,, is either the imposed stator voltage or 0 for the cage rotor loops, and

R,,, and N, are known from the machine specification.

Finally, the rotor dynamics are encapsulated by

o 99 _ (2.6)

T =0 @2.7)

rmech

D\ mech
T_J ¥ meci __Ba)
dt

In (2.7), the torque T generated by the motor is calculated in the model using the virtual
work principle on each airgap reluctance element. Based on this principle, the torque is
calculated from the change of magnetic energy due to a virtual perturbation of the rotor

in the 6 direction (Mizia ef al, 1988). Therefore,

OE
T = Z@ (2.8)

where E is the magnetic energy stored in each airgap reluctance element and is given by
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B2
E= gap Alg (29)
2u,

To summarise, the state variables being solved by the model are the nodal MMFs, the
MMF sources due to the rotor bar currents, the stator winding’s phase current and the

position and velocity of the rotor

X= [foi.fi""thnode—l’FRmmf,O’FRmmf,l""’FRmmf,Nbar—l’Isa’Isb’I:c’gmcch’wrmech]? (210)

where Nbar is the number of rotor bars. The model employs the MMF sources due to the
rotor bar currents F, .. as state variables as it is more convenient to use than the bar

currents themselves since according to Ampere’s law the current flowing through rotor

bar i is given by

I..=F,

Rmmfi+! —

F i (2.11)

ri =

A matrix A(x) consisting the set of state equations constructed from (2.4), (2.5), (2.6) and
(2.7) in which

Nnode x conservation of flux rate equations, eq.(2.4)
A(x) = n x electrical loop equations, eq. (2.5) (2.12)
2 dynamic equations, eq.(2.6) and (2.7)

where n =3+ Nbar -1.
2.4  Solving the model

The model is simulated directly in the time domain which is better for non-linear

conditions and in the presence of control schemes, when compared to simulations in the

frequency domain. Determining the state variables x,,, at time 7+ Af, given the values

of the state variables x, at time ¢, involves linearising the state equations using the

well-known multi-variable Newton Raphson method for non-linear systems of
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equations (Press, 2002). As the state equations are in the form of first order differential
equations, the Crank-Nicolson approach of approximating the state variables x is also

adopted in the solving process in which

xi |I+At/2 = (]' - a)xi.t+A! + wi‘t (2 13)
@l X X 2.14)
dt At

t+A1/2

where a<0.5 for stability with 0.5 giving the most accurate results. The Crank-
Nicolson method is an implicit scheme which generally allows larger time step At
values to be utilised and provides greater stability compared to explicit schemes.
Therefore, although several other approximation techniques can be employed, the

Crank-Nicolson approach was chosen due to its well-proven efficiency and reliability.

Once the equations are linearised, the matrix A obtained is sparse and relatively large.

Therefore, the model solves for the variables x at time 7+ Ar using a linear

t+At
conjugate gradient solver (Van Der Vorst, 1992) exploiting efficient sparse matrix

operations. The conjugate gradient technique is iterative and in order to initiate the

solution x,,,, at time f+Ar, a simple linear prediction scheme is employed based on

the previous two solutions x, and x,_,, as given by

x?, =x, +(x, - x,,) (2.15)
t+At t t t-At

where x? ,, is the prediction of the solution at time 7 + Az .

Furthermore, the conjugate gradient technique also requires preconditioning for robust

operations whereby the solution of
Ax/, =b (2.16)
is reformulated as

A'Ax’, =A7'b (2.17)
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where A™' is an approximation to the inverse of A, ie. A"A=I. In the DCM
software, the preconditioning is achieved using an incomplete LU decomposition with
partial fill based on a ‘threshold’ criterion, allowing for control over the trade off
between memory usage and computation time. If a small value of ‘threshold’ is used,
the solver requires more memory but the time taken to solve is reduced. A zero or
negative value of threshold implies the use of a full LU decomposition for solving the

matrix,

In practise, the conjugate gradient solver will perform reliably if a sensible prediction

and reasonable preconditioning is available. Without reasonable preconditioning the

iterative routine will stall unless the prediction x” ,, is very close to the solution x,,,,,

thus requiring very small time steps. However, the prediction and preconditioning
method utilised in the DCM software was proven to produce reasonable results with
acceptable computational time when a large time step Az is used. Even so, the time step
At in the software is adaptive. If the residual error during the Newton Raphson cycle at
time 7+ A7 increases compared with that in the previous time step or the linear equation
solver fails to solve the linear equations within a predefined number of iterations, the
time step Af is halved. If the halved time step provides successful convergence, the

time step is doubled, subject to it being below the predefined maximum value Af_ , in

preparation for the next solving process. Successful convergence of the linear solver is

obtained when its rms error is less than the solver tolerance 1ol

(2. error’ <tol,,,,) whereas successful solving of a particular time step is achieved

when the rms residual error from the Newton Raphson loop is less than the Newton

Raphson (NR) tolerance fol,;. The flow chart of the DCM software developed by
Sewell et al. (1999) is shown in Figure 2.6.

In the reluctance mesh model, a large part of the mesh corresponding to the fixed
reluctance elements remains the same during the linear solver iteration at a particular
time step. This provides scope for improving the preconditioner by allowing certain
parts of the matrix (relating to the fixed reluctance elements) to be reused. There is also

a possibility of further improving the adaptive time step control loop in order to provide
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a more efficient solving technique for the software. However, this was not explored in

this thesis since the aim here is to utilise and modify the DCM software sufficiently

enough to simulate a bearingless induction motor and not to optimise the software to the

possible limits of the solver.
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*  rotor & stator
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Figure 2.6(a): Flow chart of DCM software.
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Line C from Figure 2.6(a) Line A
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Figure 2.6(b): Flow chart of DCM software (continued).
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2.5 Program developments

The DCM software introduced above only models a squirrel cage induction motor. In
order to use the DCM software to model and simulate a bearingless induction motor,
several modifications were made to the original code which will be presented here. It is
noted that all modifications listed in this section (a-g) are by no means optimised to the
maximum limit but to the extent of providing reasonable computation time and memory

usage for all simulation conditions presented in Chapters 5 to 8.

a) Improvements to linear equation solver

Several changes were made to the preconditioner of the linear equation solver to
improve its memory efficiency. However, this causes a slight increase in the
computational time. Therefore, the solving section of the software was recoded to speed
up the computation. The end result of the modification is a solver that utilises
significantly less memory compared to the original code but with the same
computational time per simulation run. The changes applied to the solver in this
software were done such that the memory usage and computational time required to
simulate the vector controlled bearingless induction motor with the free moving rotor
(presented in Chapter 8) is reasonable on a typical PC. For example, the simulation of
the vector controlled non-linear bearingless wound rotor IM with the free moving rotor,
presented in Section 8.5, was completed in 95 minutes and required a maximum

memory usage of 3.26M bytes.

b)  Solving for conservation of flux equations

As mentioned in Section 2.3, the DCM software solves for conservation of rate of
change of flux equation on each node in the reluctance mesh model. This was in order
to be consistent with physics whereby reluctance elements being magnetic storage
elements in magnetic circuits are analogous to capacitances in electric circuits.
However, when implementing the conservation of rate of change of flux with time, as in

equation (2.4), on each node numerically in the software, rounding errors are produced
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due to the non-existence of a grounding point. This causes residual flux at each node
which in turn causes offsets in the three-phase rotor flux linkages as observed in the

simulation of a vector controlled 4-pole wound rotor IM shown in Figure 7.5.

Therefore, the DCM software was modified such that conservation of flux, entering and
leaving, on each node was solved instead of rate of change of flux using the following

equation
Z¢,,-(fi,f,»)=0 (2.18)

This ensures that no residual flux exists in any node. Hence, the matrix of state equations

to be solved by the DCM software becomes

Nnode x conservation of flux equations, eq. (2.18)
Ax)= n x electrical loop equations, eq.(2.5)

_ _ (2.19)
2 dynamic equations, eq.(2.6) and (2.7)

with n =3+ Nbar -1.

All the simulations presented in Chapters 5, 6, 7 and 8, performed using the DCM
software, were simulated based on solving for conservation of flux equation at each
node in the model, i.e. using equation (2.18), except in Sections 6.2 and 7.2 in which
simulations solving for both conservation of rate of change of flux and conservation of
flux equations were presented to demonstrate the effects of residual flux observed when

the former state equations are solved for.

¢) Modelling a wound rotor

Bearingless induction motors with two different rotor structures, cage and wound rotor,
will be investigated in this thesis. As the original DCM software is only capable of
modelling motors with a cage rotor, modifications were added to the code to include
modelling of a three-phase wound rotor. The subroutine written to incorporate the rotor
winding is called after the stator winding incorporation subroutine is called, as indicated
by “(c)’ in Figure 2.6(a). The subroutine enables the DCM software to model a fractional

or full pitch double layer rotor winding. Similar to the stator winding, for each of the
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three-phase rotor windings, three independent phase loops are identified to create three

extra state equations of the form shown in equation (2.5) in which V,,_ is set to zero to

op
model the short-circuited rotor windings. Hence, with the wound rotor IM, the state
variables being solved by the model are the nodal MMFs, the three rotor winding phase

currents, the stator winding phase currents and the position and velocity of the rotor, i.e.

X= [foaf;1"'1anod¢—l9]ra’Irb’Irc’I.\'a’Isb’Isc’emech’wrmcch]r (220)

where 7,  are the phase currents of the three-phase rotor winding. Consequently, the

matrix A(x) consisting of the set of state equations is now given by

Nnode x conservation of flux equations, eq.(2.18)
A(x)= 6 x electrical loop equations, eq. (2.5) (2.21)
2 dynamic equations, eq.(2.6) and (2.7)

when the motor contains a wound rotor. Therefore, by comparing the set of state
variables and state equations of the cage rotor motor, given by equations (2.10) and
(2.12), to that of the wound rotor motor, the latter DCM modelled motor type has a total
of Nbar -3 less state variables and state equations to solve and thus reduces the

amount of memory usage and computation time for each simulation run.

d)  Addition of vector control

current control loop
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Figure 2.7: Vector control of a conventional induction motor.
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The DCM software was also modified to include vector control of a conventional as

well as a bearingless induction motor. The objective of the vector control subroutine is
to obtain the values of driving voltages V', of the stator winding for the next simulation

time step. Therefore, in the DCM software, the vector control subroutine is called in the
postprocessor section of the software just before calling the subroutine that updates the
state variables and makes the prediction of the state variables for the next simulation time
is called, as indicated by ‘(d)’ in Figure 2.6(b). The vector control routine is also called at
the start of the simulation, replacing the ‘obtain driving voltages’ block shown in Figure
2.6(a), to obtain the stator winding terminal voltages at the start.

The vector control scheme for a conventional motor involves two control loops, consisting
of an inner current control loop and an outer speed control loop as shown in Figure 2.7,
with the control being performed in the dq- rotating frame. Therefore, the inputs of the
control loops (for example the feedback stator currents) have to be transformed from the
three-phase quantities into their equivalent dq quantities. This is achieved by, firstly,
transforming the three-phase quantities (x,,x,and x,) into the equivalent two-phase

quantities (x,,and x,,) in the stator frame (denoted by ‘s’ in the subscript) using the rms

convention given by

x| 12 0 0 ]i 2.22)
S v e

where x can be the stator phase currents or flux linkages in the motor depending on the

controlled variable. Then, the fixed two-phase quantities (x ,and x ;) are transformed

into the dg- rotating frame quantities (x_, and x, ) using
X, cosf, sinf, | x,,
= ' (2.23)
X, -sinf, cosb, | x,

where 6, is the angle of the flux vector used for the vector control orientation.

Consequently, the output of the control loops (for example the stator driving voltages)
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will have to be transformed back from the dg- rotating frame to the three-phase quantities,
via the fixed two-phase quantities, using the following equations:

[x,, | [cos6, -sinf, | x,
| X, - sin8, cosf, | x, (2.24)
[ x V2 o |

YN [} 2.25)
o) v )

=)

=
o

©

In the DCM software, within the vector control subroutine, four separate subroutines
were written to compute the transformations from the three-phase quantities into their
equivalent dq quantities, and back, using equations (2.22) to (2.25). However, before

being able to transform the currents /_,_ into the feedback currents i,,, when modelling

the current control, any circulating zero sequence current has to be eliminated. This is
achieved in the vector control subroutine by constructing the respective line currents

I,. ., from the three stator phase currents I, , using equation (2.26), before

reconstructing the phase currents /_,, from the line currents, using equation (2.27), to be

used in the vector control.
. =1_-1
Ilme—sa sa sb (226)
Iline—sb =I.rb _Isc
Iline—:c = I:c - Im

isa = (Ih'ne—sa - Iline—sb )/ 3
isb = (Iline-sb - Iline—sc )/ 3 (227)
isc = (Iline—sc - Ih'm—:a )/ 3

The PI controllers are modelled in the DCM software by difference equations obtained
from the digital equivalent of the controllers designed in the continuous s-plane. The
digital equivalent controllers were achieved through the Bilinear Transform (Franklin ez
al, 1998) with a sampling time chosen such that the sampling frequency ratio (i.e.

Seamp / controller bandwidth ) exceeds 15. Therefore, the DCM software requires the

user to input the PI controller parameters as well as the sampling times 1, ;.
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associated with the current control loop, and ¢,,,, ,, associated with the speed control

loop, into a data file.

If the simulation time ¢ + Ar exceeds the sampling time for the controller, the inputs to
the current control loop (7, ) and speed control loop (@, ) are linearly interpolated to

obtain the stator phase currents and rotor speed values at the sampling time using the

following relationship

t -t
xinter = xt + [&—:I(XHAI - xt) (228)
At
where x represents either the individual stator phase currents /,,_ or the rotor speed @,
and 7, is the sampling time and is a multiple of ¢, , and 7, . Figure 2.8 shows the

flow chart of the vector control subroutine written for the DCM software.
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Figure 2.8: Flow chart of vector control subroutine for the DCM software.
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e) Incorporation of levitation winding

The forces required to levitate the rotor in a bearingless motor are generated by
incorporating an extra set of windings on the stator. Therefore, the DCM software was
modified to enable a second set of double-layer stator winding, wound in either
fractional or full-pitch configuration, to be modelled. The additional code written in the
DCM software to incorporate the second set of stator winding is added to the original
subroutine written to incorporate the first set of stator winding as indicated by ‘(e)’ in
Figure 2.6(a). The addition of the levitation stator winding increases the number of state
variables and state equations to be solved by three. Therefore, for a cage rotor type

bearingless motor

X= Ifo,flr--aanodc—l,FRmmf,o’FRmmf,p---’

FRmmf,Nbar—l’I::aIsA:aIZ ’]:::,Ig’lgiemech7wrm¢chr (229)
whereas for the wound rotor type motor
x=|fo fisos Frotetr s T oo 230)

M M M N N N
I Isb ’I.rc ’Isa’lxb’lsc’amcch ’wrmechr

sa

where /Y _and 17, are the phase currents of the M-pole main and N-pole levitation

stator windings, respectively. The matrix A(x) of the set of state equations in the

bearingless motor is then defined as

Nnode x conservation of flux equations, eq.(2.18)
A(x) = n x electrical loop equations, eq. (2.5) (2.31)
2 dynamic equations, eq.(2.6) and (2.7)

6 + Nbar -1, for cage rotor
where n = )
9 , for wound rotor

31



Chapter 2: Dynamic Circuit Modelling (DCM) software

f)  Force calculations

After solving the state variables in the bearingless induction motor, the forces acting on
the rotor are evaluated by the postprocessor. Similar to the torque calculation, the forces
are determined using the virtual work principle on each airgap reluctance element.
Based on this principle, the radial force due to an airgap reluctance element is obtained
from the change of magnetic energy E stored in the element due to a virtual change in
its length in the radial direction. Therefore, radial force due to airgap element ‘7’ is

given by

G,

= — 232
rad, i 6lg ( )

where E; is the magnetic energy E stored in the element and is obtained from equation
(2.9). On the other hand, the tangential force is obtained from the change of magnetic
energy E stored in each airgap element due to a virtual movement of the rotor in the

tangential direction, which is given by

1 6E, 2.33)
F . o=——"i 2.
e 00

The y- and x- directed forces acting on each rotor tooth (F,, and F,, respectively) are

then obtained by resolving the sum of the radial and tangential forces due to all the airgap

elements connected to the rotor tooth using the following equation

1 mec Fra ]

F, cos(ﬁﬂ + @ /2) —sm(ﬁn S /2) Z d,

' = . mech (234)
F,, sin (0,, +@meck | 2) + cos(ﬂ,, +8;., / 2) ZF"“'

where 8, is the mechanical angular position of the rotor tooth relative to the 0° axis and

6" is the skew angle of the rotor in mechanical degrees. Hence, the total forces acting

on the rotor F, and F, are given by the summation of the individual forces acting on each

rotor tooth, i.e.
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[Fy} 2F (2.35)

F7|3F,

A subroutine was written to evaluate the forces acting on the rotor in the DCM software
based on the equations stated above. This subroutine is called just before the simulation
results are written to an output file at each time step, as indicated by ‘(f)’ in Figure
2.6(b).

g) Modelling a free-moving rotor

In Chapter 8, simulations of a bearingless wound rotor induction motor will be
presented. In the bearingless motor simulated, the rotor is free to move. Therefore, to
accurately simulate the motor, a model of the free-moving rotor in the DCM software is
essential. When the rotor is held fixed by bearings, the length of all the airgap
reluctance elements is equal to the airgap length, / ,. However, when the rotor is
allowed to move, the length of each airgap reluctance element ‘i’ is evaluated every

time it is created using the following equation
l,,=1, - Aycosf, — Axsin 6, (2.36)

with Ay and Ax being the displacements experienced by the rotor in the y- and x-
directions, respectively. In equation (2.36), 6, is the angular position of each airgap
reluctance element ‘7°. It is assumed that the displacements of the rotor are small such
that the stator and rotor teeth are still considered to be parallel as they pass each other.
A subroutine was written in the software to calculate the angular position of each airgap
element and it is called each time equation (2.36) is used to obtain the length of each
airgap reluctance element created at every time step in the simulation, part ‘(g)’

indicated in Figure 2.6(a).

The additional state variables to be solved by the DCM software, due to the modelling

of a free-moving rotor, are the displacements Ay and Ax as well as the velocities y and
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x . The state equations related to the four new state variables are obtained from the

mechanical equations of movement in the y- and x- direction in which

. dy
Yy (2.37
Y7 )
F-MY _Dy-Kky-F_, =0 (2.38)

y r dt 34 load~y .

x—g‘.zo (2.39)

t
F,-M, 3’7‘ _Di-Ke-F,, =0 (2.40)

where M, is the mass of the rotor, D represents the friction and K represents the
stiffness. In equations (2.38) and (2.40), F,

vad-y and F, .,  are the load forces acting on

the motor in the y- and x- directions respectively. The forces F, and F, in the above

equations are the forces produced by the motor obtained from the virtual work principle
using equation (2.35). Hence, for the bearingless wound rotor IM, the vector of state

equations to solve is given by

x=lfo’fi""’anode—l’If’I:’If’]:l’lf’ljl’ (241)

I:”IbN’I:,’emch s D ; mech ’y’yr'x’x]r
with the matrix A(x) of the set of state equations defined as

" Nnode x conservation of flux equations, eq. (2.18)
6 x electrical loop equations, eq.(2.5)

2 dynamic equations, eq.(2.6) and (2.7)

Alx)= equation (2.37)

equation (2.38)

equation (2.39)

equation (2.40)

(2.42)
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Chapter 3

Force production in a self-levitating motor

3.1, Introduction

In a bearingless motor, both the main M-pole torque production winding and the
levitation N-pole winding produces a particular rotating airgap flux density, which will
interact to produce a non-uniformly distributed airgap flux density. It is this non-
uniform flux density distribution which will produce Maxwell forces acting on the rotor.
In previous research, a reluctance-type (Chiba et al., 1991(a)) and induction-type (Chiba
et al., 1991(a), 1995 and Chiba et al., 1997) bearingless motor had been proposed in
which both motors consisted of an additional two-pole winding wound onto the stator
having an existing four-pole torque producing winding. The choice of pole number for
both the stator windings were specifically chosen by Chiba et al. based on their ability
of producing an imbalance in the airgap magnetic field at certain places in the airgap, as

shown in Figure 3.1, which creates levitation forces.

FY
A
e 52 Increase in
s S airgap flux
2 gap
’ L density
/ + \
{l + \
! ! \
b o B e !

Reduction in N
airgap flux = s
density Wi [P 0

Figure 3.1: Imbalance in airgap field due to interaction between the 4-pole field (dashed lines) and
the 2-pole field (solid lines).
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However, no mathematical justification or general theory of pole number combination
between the main torque production winding and the levitation winding was presented
by Chiba e? al.

A general theory on the choices of pole number combination for a permanent magnet
synchronous type and induction type bearingless motors was, however, carried out by
Okada et al. (1995). It was shown that a levitation winding having a pole number of
plus or minus two of the motoring winding pole number was able to produce constant
radial force acting on the rotor. The force expression was obtained by adding up the
force contributions AF on each infinitesimal area AS due to the airgap flux density, B

given by

BZ

AF(G): 24,

AS

For the permanent magnet type motor, Okada ef al. (1995) obtained the airgap flux
density B, used in the force equation above, by adding up the flux density contributions
due to the permanent magnet rotor and the levitation winding wound onto the stator. In
the case of the induction motor type, the airgap flux density B was obtained by adding
up the field contributions of both the main and levitation winding stator currents
together with the field contributions due to the rotor currents induced by the two stator
fields. By separating the field contributions of each winding into their corresponding
stator and induced rotor fields, the analysis required the use of induced coefficient.

Therefore, in order to implement the equations, knowledge of the induced coefficient

value is required.

In this chapter, a mathematical analysis similar to that by Okada ez al. (1995) is utilised
to obtain expressions for the levitation (y- direction) and lateral (x- direction) forces
acting on the rotor of an induction motor having both the main and levitation winding
on the stator. In the analysis presented here, the force expressions will be derived from
field distributions that is assumed to incorporate both the contributions from the stator
winding and the induced rotor currents, i.e. without the use of induced coefficients.

Furthermore, the force equations derived in this chapter are believed to be more
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consistent with vector control concepts, as compared to those derived by Okada et al.
Firstly, in Section 3.2, the force expressions will be derived for an induction motor
having a uniform airgap length. This will be used to model an induction motor having
bearing relief capabilities, which will be simulated in this thesis in Chapters 5, 6 and 7.
Secondly, the force expressions for an induction motor with a non-uniform airgap
length, in which the rotor is assumed to be subjected to a perturbation from its centre,
will be derived in Section 3.3. This will be useful when designing position control for a
totally bearingless induction motor, which will be presented in Chapter 8. Before the
force expressions are derived the airgap flux density distribution due to the N-pole (n
pole pair) levitation winding is first obtained for both the fixed and perturbed rotor

conditions in the respective sections.

3.2. Forces acting on a rotor fixed by bearings

3.2.1.  Flux distribution of levitation winding

The N-pole (n pole pair) levitation winding is assumed to be modelled as a current sheet

of units A/rad, which has the following current distribution
If(O,t)=IF sin(@t —n6 - 9) 3.1

where ¢ is the phase difference in mechanical radians between the peak of the main

winding current and the peak of the radial force winding current. The flux density

distribution arising from this stator current distribution can be obtained by way of

Ampere’s Law,
§H dl=1,, (3.2)

where H is the magnetic intensity, c is the closed path along which the line integral is
taken and L, is the current enclosed by the closed path. In order to perform this
calculation it is assumed that the iron in the stator and rotor are infinitely permeable.
Hence, the contribution to the line integral, for the closed loop path, ¢, through the rotor

and stator are negligible and only the flux density in the airgap will be considered.
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Ampere’s
Law closed
loop path, ¢

Figure 3.2: Ampere’s Law path.

As in Figure 3.2, the line integral crosses the airgap at ¢ and ¢+ z/n. Due to

symmetry, the flux density at the two airgap crossings of the closed path, c, will be

identical in value but opposite in direction. Therefore, equation (3.2) reduces to

fH-dI=1,,

. 33
2B,(p.1),0 = 44, - NI 3.3)
where Bf(¢,t) is the flux density at angle ¢, /, is the airgap length, 4, is the
permeability of vacuum and N7 is the total current enclosed by the closed loop path, c.
The term NI in this equation is obtained by integrating equation (3.1), which models
the current sheet of the levitation winding, over the range ¢ and ¢+ 7/n. Hence,

n
i

@
2B, (p.t¥,0 = o [ sin(ef ~n6 - $)dé
@

- fli{]F cos(mt —n((o+—;£) - ¢j— Iz cos(a)t -ney - ¢)}
n

_2Po 1 cos(wt - np - 9))
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Therefore, the flux density distribution of the radial force winding is given as
Bf(¢,t)= -Bg cos(a)t—nqo—¢) 3.4
for an arbitrary angle ¢, where

B, =te1, (3.5)

nl

It is helpful to rewrite equation (3.1) in terms of two current components, one having a
peak in the y- direction (#=0°) and the other at right angles to it, i.e. in the x-
direction. By separating the current distribution due to the levitation winding into the
two components, an alternative expression for its flux density distribution could be
derived which will assist in deriving the forces acting on the rotor in the y- and x-

directions. Therefore, equation (3.1) then becomes

If(9,t)= I, sin(wt —n6)—1I,, cos(wt —n6) (3.6)

where I, =1, cosg and I, = I, sing are the peak currents of the two components in
the current sheet of the N-pole radial force winding. As before, the flux density
distribution arising from the stator current distribution of equation (3.6) can again be

obtained using Ampere’s Law (equation (3.3)), whereby

o+
2B, (o, t)lgo = U, IIF, sin (@t - n6)- I, cos(wt —n6)dé
?
24 3 : N
=- { cos(ot —np)+1,, sin (w? ne)}
n

Hence, the flux density distribution of the radial force winding can also be written as
B, (q),t): -B, cos(a)t —n(o)—BF2 sin (a)t —n(p) 3.7

for an arbitrary angle ¢, where
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H, Ho
B = nl Ig and B, =T'IF2 (3.8)

g0 £0

It is evident that equation (3.7) is the flux density distribution due to the levitation
winding current distribution given by equation (3.1) since the former can be obtained
from expanding the cos( ) term of equation (3.4) to give B,, =B,cos¢ and
B, =B.sing. Having derived the flux density distribution due to the N-pole
levitation winding, i.e. equation (3.4) and its alternative representation given by

equation (3.7), the forces acting on the rotor in the y- and x- direction can be derived.
3.2.2. Derivation of force expressions

The flux density acting on the surface of the rotor due to the main M-pole (m pole pair)
winding stator current and induced M-pole rotor current is assumed to be sinusoidal and

given by
BY(8,t)= BY cos(wt —m6) (3.9)

where B is the peak magnetic flux density and @ is the mechanical angular

coordinate. It is also assumed that this flux density is equal to the airgap field.

As derived in section 3.2.1, the additional N-pole winding in the stator produces a

sinusoidal flux density distribution given by
BY(6.1)=-B7 cos(wt —nb - @) (3.10)

where BY is the peak flux density of the N-pole flux distribution and ¢ is the phase
difference between the peak of the M-pole flux density distribution to that of the N-pole
flux density distribution. Similar to the flux density due to the main winding, it is
assumed that equation (3.10) acts on the surface of the rotor, which is assumed equal to
the airgap field, and is due to the N-pole winding stator current and induced N-pole

rotor current.
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Therefore, the magnetic flux density distribution in the airgap of the induction motor

can be obtained through the superposition of equations (3.9) and (3.10) and expressed as

B(6,t)=BY(6,1)-BY(6.1) (3.11)
= BY cos(wt — mB)+ By cos(wt —né - 9)

This airgap flux density is responsible of producing an attractive force on a surface
element of the rotor, AS, which can be written as

B2

AF(8)= o AS (3.12)

Hence, the x- and y- direction forces produced in the motor are obtained by resolving
equation (3.12) into its horizontal and vertical components and integrating it over the

surface of the rotor, of length /_, as shown below.

1
1
1
1
!

Figure 3.3: Horizontal and vertical forces on the rotor.

F,= ZﬁAF(H)cosG (3.13)
F, = fiAF(@)Sine (3.14)

41



Chapter 3: Force production in a self-levitating motor

3221, Levitation force

The levitation or y-direction force exerted on the rotor is given by equation (3.13) and

by substituting equation (3.12) this becomes,

rl,

27
F,= IB(G, t)’ cos8 do
0

0

The equation above is then solved by further substituting equation (3.11),

BM cos?(wt — m6)

n
F,= r, I +BY’ cos’ (w1 — n — ) cos@dé (3.15)

2
Hooly 2BY B cos(wt - m6)cos(wt - n6 - ¢)

where m and n are positive integers larger than or equal to 1. The limits of the integral
and the periodicity of the integrand in equation (3.15) results in certain terms within the

integral to be zero, when expanded, due to the terms reducing to integrals of the form,

2
Jacos(b-k6)do =0 (3.16)
0
2n
[asin(b - k6)d6 =0 (3.17)

0

for all values of b and non-zero integers k. This can be observed by solving each term in

equation (3.15) in turn.

The first term integrates to zero as shown below,

27
-2rl—’ J‘sz cos’(wt —m6)cos6 db
0 0

2 gM* 3.18
= 2r—l’- I -l?"?—[l + cos(2t - 2m6)|cosd d6 (3.18)
Ho %
rl, %R’ 1 1
=i I—ﬁ—{cosﬁ +—cos(2wt — (2m +1)9)+ —cos(20t — (2m - 1)9)] dé
2u, 5 2 2 2

=0
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since all cos( ) terms are of the form given in equation (3.16). The second term of

equation (3.15) also reduces to zero because it is similar to the first term with B ?

replaced by B) " and m replaced by n in the cosz( ) term.

The integration of the final term in equation (3.15) is given by equation (3.19) below.

2r
ZLI’- I2B£‘ By cos(wt — mB)cos(wt — n6 — )cos dé
Ho %

cos(—(m—-n+l)9+¢)+ cos(— (m—n—l)9+¢)

2x pM pN
= 2rI’ J‘BL;EF— +cos(2ot — (m +n+1)6 - ¢) do (3.19)
Hoo +cos(2ot — (m+n-1)9 - )
=0, when m-n = 1
However, when m — n = £1, the above equation integrates to give
| 2 gh g cos(~ (m - n+1)8 + @)+ cos(~ (m - N -1)9 + ¢)
2r,uz —Lz——f— +cos(2ot —(m+n+1)9 - ¢) do
0 0 _ _ _
+cos(2ot — (m+n-1)0 - ¢) (3.20)

_zﬂo 0

= iBfBﬁncos¢
24,

27 pM pN
LS | &—Z—BLcos(0+¢)d9

which is the only non-zero term in equation (3.15).

Hence, the levitation force expression, given by equation (3.15), reduces to a constant

force,

_rl B

Ho

F B} cos¢ (3.21)

y

when the difference between the main winding pole number, M, and the levitation

winding pole number, N, is +2.
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3222 Lateral force

Equation (3.14) represents the lateral or x- direction force acting on the rotor, which

upon substitution of equation (3.12) becomes:

2n
F. = [B(6,1) sin6 a6

iy 2u, %

As for the levitation force, the expression for B(9, t), as given in equation (3.11), was

substituted into the above equation to give,

BM” cos*(wt —m#8)
2z

> I +BY* cos* (ot - n8 - ¢) sin 6 d6 (3.22)
Hoo, 2BY BY cos(wt — m6)cos(wt —n6 - ¢)

F=rl’

x

The similar method employed to solve for the levitation force will be employed here

where each term of equation (3.22) will be solved in turn.

The first term does not contribute to the x- direction force as shown below

2%
ErlL jBﬁ"Z cos’(wt —mO)sin 8 d6
Ho %
rl 27!BM2
= | _«.’2_[1 + cos(2wt - 2m8))sin 6 46 (3.23)
Hy %

ZﬂBMz 1 1

= I—"—[sin 6 +—sin(2ot - (2m -1)9) - =sin (20t — (2m + 1)9)] do
2uy 3 2 2 2

=0

rl,

as all sin( ) terms in this integration are of the form given in equation (3.17). Likewise,

the second term of equation (3.22) also reduces to zero because it is similar to the first

term, in which B¥ is replaced by By * and m replaced by n in the cos?( ) term.

The final term to be considered from equation (3.22) also integrates to zero as shown in

equation (3.24).
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Y cos(wt — m8)cos(wt — nb — ¢)sin 6 d6

sin(~ (m - n-1)9 +g)- cos(~ (m~ n+1)6 +§) (3.24)
+sin (2ot - (m +n-1)9 - ¢) dé
—sin(201 - (m +n+1)9—¢)

_rl, FB¥BY
2,7 2

=0, when m-n # 1

However, if m—n =11, this final term becomes

sin(—(m—n—l)B +¢)—sin(—(m——n+l)9 +¢)
+sin (20t — (m+n-1)9 - ¢) do

r, BB

2 2 .
o +sin(20t - (m +n+1)9 - ¢) (3.25)
w pMpN '
-1 Ii 2 sin(0 + ¢)d6
24, 5 2
=F i r, BYB) rsin ¢
0
Therefore, the lateral force expression reduces to,
l M
F = + 1B, B sing, whenm —n = +1 (3.26)
24,

However, unlike the levitation force, equation (3.26) clearly illustrates that the direction
of the lateral force is dependent on the relationship between the main winding pole

number, M and the levitation control winding pole number, N.

Based on equations (3.21) and (3.26), an induction motor, with a motoring M-pole
stator winding, is capable of producing magnetic bearing forces when an additional
winding having a pole number N = M = 2 is wound onto the stator. The magnitude of

this force is obtained from

|[Fl=\F; +F = rI”BM (3.27)

where F, and F, are given by equations (3.21) and (3.26).
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Despite equations (3.21) and (3.26), the force expressions become much more useful if

it is derived using a levitation winding flux density distribution B, (6.1) which is

separated into two separate components lying along the y- and x- axis respectively.

Therefore equation (3.10), could be separated into two separate components to give

B} (8,1)=-Bj cos(wt —n8) - BY. sin(wt - n) (3.28)

where By, =By cos¢ and B) =Bl sing are the peak flux densities of the two

components aligned with the y- and x- axis respectively when B is aligned with the y-
axis as shown in Figure 3.4. It is important to note that equation (3.28) is identical to

equation (3.7) derived in section 3.2.1 with B,, being replaced by By, and B, by

B

Figure 3.4: Graphical representation of the peak airgap flux densities due to the M-pole main
winding and N-pole levitation winding.

Therefore, the terms By cos¢ and B) sing in the levitation and lateral force

expressions given by equations (3.21) and (3.26) respectively could be rewritten as

M
F, =" py (3.29)
Ho
I mB
F =+ gy (3.30)
24,
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whenM-N=1+2orm-n==l1.

Equations (3.29) and (3.30) are much more useful in comparison to equations (3.21) and
(3.26) because it clearly illustrates that the levitation and lateral forces acting on the

rotor could be directly controlled by the peak magnitudes of the levitation winding flux

density components Bﬁ; and B}, respectively. However, in order for the equations to
be applicable, the flux density component By must be aligned with the peak airgap

flux density of the main winding BY with BJ lying in quadrature.

Equations (3.29) and (3.30) correspond with the findings of Okada e al. (1995) for a
permanent magnet type bearingless motor. However, unlike the results presented by
Okada et al. (1995), it is clear from the derivation above that the direction of the lateral

force F, is dependant on the M-N pole combination, that is F, acts in the positive x-

direction when M — N = +2 and is negative when M — N = -2. In the case of an
induction type motor, the force relationship derived by Okada et al. (1995) utilised a
formulation based on separating the flux density distributions in terms of contributions
from the stator currents and from their induced rotor currents, in which induced
coefficients were involved in the formulation. This introduces an additional term
dependant upon the induced coefficients to be multiplied with equations (3.29) and
(3.30), which increases the complexity in calculating the forces since a value of the
induced coefficients is required. Furthermore, force expressions for the induction motor
derived in this section are believed to be more consistent with vector control concepts,

as compared to those derived by Okada ef al.

3.3. Forces acting on a perturbed rotor

The force expressions derived in the previous section are only relevant for machines
with rotors fixed by conventional bearings, thus making it relevant for bearing relief
applications. In a totally bearingless machine, however, the interaction between the flux
densities of the main winding and the additional stator winding will produce radial
forces acting on a free moving rotor. This will cause the rotor to experience

perturbations from its central position. Expressions for the radial forces acting on the
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rotor due to the perturbations experienced will be derived in this section. These
expressions are thought to be useful when designing the position control compensator
for a totally bearingless induction motor, which will be presented in this thesis in
Chapter 8. However, it is crucial to comprehend that the rotor perturbations will also
result in a change in the airgap flux density distribution in the machine, which will be

looked into firstly.

3.3.1.  Flux distribution of the levitation winding due to a perturbed rotor

Rotor

Stator

- X

Ampere’s
Law closed
loop path, ¢

Figure 3.5: Ampere’s Law path for a perturbed rotor machine.

Assuming that the rotor has been perturbed in the ¢ direction by a distance Am, a non-

uniform airgap length is created between the rotor and the stator as shown in Figure 3.5.

The airgap length in the machine at a general mechanical angle 6 can then be expressed

as

1,(6)= lgo[l —;ﬂcos(e —¢)} (3.31)

g0
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where /,, is the airgap length when the rotor is centred. It is also assumed that the

perturbation is small, thus making first order approximations applicable in the
derivations wherever necessary. Equation (3.31) can also be expressed in terms of small

perturbations, Ax and Ay, in the direction of the positive x- and positive y- axis

respectively,

1©)=1, l—lA—ycosﬁ—;ﬁsine (3.32)

£0 £0

In order to obtain an expression for the airgap flux density due to the N-pole winding in
a perturbed rotor machine, Ampere’s Law is again considered. Figure 3.5 shows the
Ampere’s Law closed loop path for the perturbed motor machine. The same closed loop

path is also shown in Figure 3.6, but with the stator and rotor being rolled out.

9i= 0 sll; A cv; [N 27;
Stator NS P o At .I 3
| 81—1(9)¢+ v 1.-10)+a10)
Rotor [ o e o “4\

A}pere’s Law closed
loop path, ¢

Figure 3.6: Ampere’s Law path for a perturbed rotor machine with the stator and rotor rolled
out.

Therefore, assuming that the rotor and stator iron are infinitely permeable, Ampere’s

Law requires:

§H-d| =1,,

n
oy

jHl +J‘H Ly = jl(e 1)d6 (3.33)

H(e 1)1(9) [H(e, z)+ AH (0,0)]1(6)+ A1(0)]= 1(6.1)A6

H(6,)A1(6)+1(6)AH (6.1) = -1(6.1)A6
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If the last line of equation (3.33) was divided by A@ and the limit of A@ is taken as it

approaches zero,

i
A;TO[H(G £)249) A’(a) 10 M 6.1) ’)} ~1(6,1)
H(o,) 282 az(e) +1(6) aH;z 1) _16.1) (3.34)

55[11(9,:)1(9 )]=-16.1)

Hence, an expression for the airgap flux density B} (6,f) due to the N-pole winding in

the perturbed rotor can be obtained from the last line of equation (3.34) with the
knowledge that B = g H and that the expression for 1 (9, t) is given by equation (3.6).

Therefore,

2 [y @.¥6)= -1, 0

5187 ©.HO)=-u,1,6.1) (3.35)
and by substituting equation (3.6) into equation (3.35) and integrating both sides,

BY'(6,tY,(6)= —yojlm sin(wt —n@)- I, cos(wt —n6 o

= —-"i"—[lm cos(wt —n6)+ 1, sin(wt - no)
n

Hence,
BY(6,1)=- —~ ( )[Im cos(wt - n6)+ I, sin(wt - nd)]
=- , #o [IF1 cos(ot — n6)+ I, sin(ot - nG)]
nlgo[l - A—ycosé? - gsin 0:!
Lo 1,
_ B,(6.1)
1-—= Ay cosf - éﬁsm 0:]
Lo L

50



Chapter 3: Force production in a self-levitating motor

As the perturbation is assumed to be small and first order approximations apply, the
airgap flux density distribution of the N-pole winding due to a perturbed rotor can be

simplified to be:

BY'(6,1)~ B} (B,t{1+lA—ycos9+;£sin9 (3.36)

£0 g0

where B}’ (6,1) is the airgap flux density distribution of a centred rotor due to the N-

pole winding, as in equation (3.28).

The effect of rotor eccentricity on the airgap field of a non-salient pole machine had
been investigated previously by Swann (1963) by means of a mathematical analysis
employing conformal transformation. Swann proved that an approximate calculation of
the airgap flux density distribution on a perturbed rotor using Ampere’s Law was able
to yield results which were in good agreement to those derived through the
mathematical analysis. Hence, the use of equation (3.36) as the airgap flux density
distribution due to the levitation winding for a perturbed rotor (derived from Ampere’s

Law) throughout this thesis is justified.

The effect of the rotor perturbation on the flux density distribution due to main M-pole
winding is similar to that derived for the N-pole levitation winding. Hence, the airgap
flux density distribution of the M-pole winding due to a perturbed rotor can also

simplified to

BM'(8,t)~ B (0,t{1+?’—cos9+%‘£sin0 (3.37)

g0 £0

with B (6,¢) being the airgap flux density distribution of a centred rotor due to the M-

pole winding, as given in equation (3.9).
3.3.2. Force derivations for the perturbed rotor case

In order to derive the force expressions for the perturbed rotor condition, the total airgap

flux density distribution is required and it is obtained from

51



Chapter 3: Force production in a self-levitating motor

B'(6,1)=BY(6,t)- B} (6,1)

20 80 20 20

=BM (9,1{1+—IA—y—cose+le—sin 6] - B} (0,t{1+lA—ycose+;£sin 6:| (3.38)

where B (8,t)= B cos(wt ~m8) and
B} (6,1)=-By, cos(wt —n8)- By, sin(wt —nb)

are the airgap flux density distributions of the unperturbed rotor due to the main and

levitation windings respectively.

With this, the expression for the forces acting on the perturbed rotor can be obtained as

in Section 3.2.2 but with the airgap flux density now given by equation (3.38), where

2
F, = 7. [B(6,¢) coso de (3-39)
24, 4
A SR 3.40
F = B'(6,t) sin6 do (3.40)
24, %

However, before proceeding with the integration, it would be worthwhile to look further

at the expression for B'(6,7)".

From equation (3.38),
B(6.1) = B (0,1) - 2B (6,1)B} (6,1)+ B} (6.1) (3.41)

which can be simplified by employing first order approximations whereby

2
|:l+ﬂcos0+;£sin9} z{l+2—lA—ycos¢9+2—14—{sin0 (3.42)

£0 80 80 20

Therefore, through substitution of (3.36) and (3.37) and application of (3.42), equation
(3.41) becomes:
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B'(6,1) = (Bf,” (6.t -2BY(6,1)BY (6.)+ BY (6,1)’ {1 + 2-IA—Xc056 + Z;ﬁsin e}

£0 g0

= B(0,t)2|:1 + ZIA—ycosﬁ + 2;£sin 9}

80 g0

= B(6,t)’ +2B(9,t) LA—y cosf + ;ﬁsin B:I (3.43)

80 g0

In the equation above,
B(6.t)= B, cos(wt - m6)+ By, cos(wt —n8)+ BY. sin(wt - nb)
which is the total airgap flux density of the unperturbed rotor due to both M- and N-pole

windings. Therefore, the levitation and lateral force due to the perturbed rotor can now

be obtained by substituting equation (3.43) into equations (3.39) and (3.40).

3.3.2.1. Levitation force

The perturbed rotor levitation force, obtained from (3.39) and (3.43) is given by

2

F,= 2rlz I {B(G, 1)’ +2B(6,1) |iIA—y cosf + ;ﬁsin 0:” cos@db

0 0 80 g0

(3.44)

27 2n
uF IB(H,t)Z cosf db + LA IB(B, 1)’ Y cosh+ A% i 6} cos@do
2:“0 0 l‘O 0 IgO IgO

=Fy+AFy

where F, is the unperturbed levitation force, as given by equation (3.29), when

m—n = +1. Thus, the only term of equation (3.43) left to be considered is the levitation
force due to the perturbations in the x and y direction,
2

fB(&, t)*[Aycosé + Axsin 6]cos6 dé (3.45)

Holgo o

rl,

AF =

y

In order to simplify the integration of equation (3.45), the terms inside the integral are

taken in two separate groups.
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Firstly, the term B(6,)’ is given by

B(6,1) = [B:” cos(wt —m6)+ By, cos(wt —n8)+ B, sin(wr - nl9)]2
= B cos*(wt - m6)+ Bgz cos(wr —n6)+ B sin*(wt - n6)
+ 2B cos(wt —mO)BY, cos(wt —n6)+ 2B cos(wt - mO)BY. sin(wt —nb)
+ 2B} cos(wt —n6)B) sin(wt - nd) (3.46)

which expands into the following five terms:

A. B By [cos(—(m —n)8) + cos(2w1 — (m + n)9)|
B. B,'Bysin(20t - (m+n)p)~sin(~ (m - n)p)]

BM BFA; BN 2

C. 2 o ‘2" (3.47)
BMZ N2 BN2
D. —2—cos(2a)t 2m6)+ %—T cos(201 — 2n6)

E. BBy, sin(2ot - 2n6)
The second group of terms in the integral of equation (3.45), when expanded becomes

[Aycosé + Axsin8)cosé = —L}z'—y—(l +c0s20)+ %sin%? (3.48)

Therefore AF), can be obtained from the integral over the range of 0 to 27 of the five
terms in equation (3.47), taken in turn, multiplied by equation (3.48),

2n
AF, = rII I(A+B+C+D+E{—Z(l+cos20)+—sm2c9}d9 (3.49)
# 0°g0 0

Firstly, the integration of A and B of (3.47) with (3.48) integrates to zero

n
rl, A+B{—— 1+cos26)+éx-—sm26]d9 0 (3.50)
ﬂolgo 0 2
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since it gives rise to terms of the form cos(kwt-(mtntc))) and
sin(kat — (m + n + c)9) which integrate to zero over the limits considered, with

k=0or2,¢c=00r2and m-n=x= 1. Furthermore, sincem,n>1, thusm+n>3.

Secondly equation (3.49) also consists of,

2n
| (D+E{-é2¥—(l+00520)+ %sinw}dé’ (3.51)

/uo g0 0

rl,

which upon expansion and simplification becomes

e BNBNAx Ay(BNz—Bh;z W
By 4Fx + B e ) cos(Za)t —Z(n +1)9)
( N2 _ pw?
BNBNAx Ay(B -B x )
4| 2B i ! cos(2at - 2(n - 1))
Lol 4 8 (3.52)
ﬂollo _!% (BNBNA AX(BN2 _BNZ)\ > do
+| Bl Y + o8 Fx sin(2wt—2(n‘1)9)
4 8
k /
(BNBNA Ax(BNz—Bgz)\
o ZPrlY OB TR T in(ot - 2(n+1)9)
4 8 ) J
\

The pole number N, and hence the pole pair number n, of the levitation windings is a

non-zero positive integer, therefore

27 x trig 2wt), n=1
0,n>1

Ttrig(2a)t - 2(n - 1)9)d¢9 = {

where trig( ) represents either cos( ) or sin( ). Hence, (3.52) integrates to

o 2B, By (Aysin 20t — Ax cos201) (3.53)

2

4pgl g |+ (Bﬁ)’,2 - BﬁzkAy cos 201 + Axsin 2a1)
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when n = 1 and zero when n > 1. Finally,

jc{ 1+ cos26)+ ~sin 29] dé

Mol g0 0

2 N2 N2
1, % B,)" B B
= B [ﬂ(l+00529)+é£sin29:|d6
Bl 2 2 2 |2 2

(3.54)

]
=L ﬂ7t(B¢’,“2+B,q";2+B1,"{t2)
IUOIgO 2

since the integral of cos(26) and sin (26) over the considered range is zero.

Therefore, from the contribution of equations (3.50), (3.53) and (3.54) to equation
(3.49), the levitation force due to the perturbation, AF,, when n = 1 becomes

2B’ Ay + Bg’vay(Z +cos2mt)+ B Ay(2 - cos 20t)
(¥ 4
aF, = 2L (B2 B Wesin 201 (3.55)

+2B5 Bj. (Aysin 20t — Ax cos 20t)

However, when n > 1, equation (3.53) becomes zero, and thus,

AR =T Y (BM2 BY+ B”’) (3.56)

g ;“’IgO 2

As in equation (3.44), the levitation force acting on a perturbed rotor, with a main and

levitation winding pole combination of M — N = +2, can be expressed as

Fy:Fy+AFy
where
1,78, By,
’ r_é_—whenM N=12orm-n=+%l
Ho

and AF is as given in equations (3.55) or (3.56) depending on the value of ».
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It can be observed that with a perturbed rotor, the levitation force is now dependent on

both Bj, and By, . Furthermore, when n = 1, the levitation force will no longer be

constant but will experience oscillations due to the terms cos(207) and sin(2a1).

3322 Lateral force

Similar to the levitation force, by substituting equation (3.43) into (3.40), the lateral

force acting on the perturbed rotor is obtained

0 o g0 20

2
F, = 2rI’ I{B(@, 1)’ +2B(6,1) LA—y cosé + Iéis'm 0]} sin@ d@

(3.57)

sinfdo + = IB(G t)2|: cos® +;—&x—sm0:|sm0 déo

20

2pu_
=F, +AF,

with F, being the unperturbed lateral force experienced by the bearingless machine

when m —n =21, as in (3.30).

Again, the remaining term to be considered is the lateral force due to the perturbations,

AF,_, given by

2r
= IB(G, 1)*[Ay cos8 + Axsin8sin 8 d6

,uolgo 0

n
_ rl, I(A+B+C+D+E{A—;sin20+—A2—x(l—cos29)]d9

Hotgo 0

(3.58)

with the terms A, B, C, D and E representing the expansion of the term B(B,t)2 , as in
(3.47).

The integral of the above equation will, again, be done in turn starting with

(3.59)

I(A + B{—Z}isin 20 + —Az—x(l - cosZG)} dé=0

Holgo o
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Equation (3.59) integrates to zero because the expansion of the integrand gives rise to
terms of the form cos(kwr —(m+n+ ¢)9) and sin(kot —(m + n+c)d) which integrate
to zero in the limits considered, where k=0 or 2, ¢ =0 or 2 and m — n = £1 with

m — n >3 due to m and n being positive non-zero integers.

The next part of (3.58) to be considered is

2n
[&2 +E{%sin 29+$‘5"-(1 —cosZH)} do (3.60)

,uolgo 0

rl,

which integrates to give

A |~2BaBs(Aycos2at + Axsin20t) (3.61)

Z

dul,o |+ (Bﬁ;z ~ B,’;’CZXAysin 20t - Ax cos 2mt)

when n = 1 and zero when n > 1.Lastly,

2n
e IC[ﬂsin 26 + ﬂ(l - 00529)} de
/‘olgo 0 2 2

2 BM2 BNZ BNZ
T, I A it [gsinw%é-x-(l—cosZG)]dG (3.62)
/‘olgo ol 2 2 2

2
_ _A—"n(Bj”2+BF’§2+Bg2)
Holgo 2

By considering equations (3.59), (3.61) and (3.62), there exists two possible solutions to

the lateral force, AF,, exerted on the rotor due to the perturbation.

Whenn=1,
(2B Ax + B Ax(2 - cos 2t) + BY, Ax(2 + cos 20))

= 4’:’7 {+(B§;2 —B,’,f,’cz)Aysin 20t | 5.63)
- 2B} BY (Ay cos 20t + Axsin 201)
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However, when n > 1, the contribution of (3.60) to (3.58) becomes zero, and thus,

aF, = T 8% (g, gre  pr2) (3.64)
:uOIgO 2

Finally, the total lateral force acting on a perturbed rotor, with a main and levitation

winding pole combination of M — N = 12, can be expressed as

F, =F_+AF,

where

rl, 7B B,
i__________

F, = B whenM —-N =+20rm—n=+1
2pu,

and AF is dependant on the value of n, as shown in (3.63) and (3.64).

From the analysis carried out in this chapter, it can be concluded that the forces acting
on the rotor of a bearingless motor, in conditions of constant or varying airgap length,

are dependant on the peak flux density due to the main M-pole winding in the stator

B as well as the flux densities due to the N-pole levitation winding By, and By . If

the magnitude and position of these peak flux densities can be ascertained in the motor,

then a suitable force control scheme could be designed to maintain levitation of the

rotor.
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Chapter 4

Vector control of a bearingless induction motor

4.1. Introduction

In Chapter 3, the expression for the forces acting on a fixed rotor of a bearingless IM
having an M-pole torque production stator winding and an N-pole levitation stator

winding was derived as

M pN
F _ rlzﬂo BI;), (41)
g 24,
£ ooy B By 42)
. 24,

when M — N = +2. From these equations, it is clear that the forces are dependent on the

peak field on the rotor surface due to the M-pole winding, B,', and the peak of the
N-pole winding fields, By, and By, . It is assumed that B corresponds to the net
airgap flux linkage vector, w', and Bj and Bj correspond to the net airgap flux
linkage vector of the N-pole winding, Zf' Therefore, a field-oriented vector control

scheme leads to the control of a levitated induction motor. It is a requirement that, in

order for (4.1) and (4.2) to be valid, the peaks B)’ and B, must lie in the same radial
direction, measured in electrical radians, at all instants in time, whilst B)) lies in
quadrature. Therefore, in the vector control schemes both B) and Bj, are required to

be aligned with the d- axis of the rotating frame with Bj, aligned with the g-axis.
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The vector control schemes introduced in this chapter will be designed for induction
motors having two types of rotor structures. Section 4.3, considers a vector control
scheme for a motor with squirrel cage rotor whereas Section 4.4 considers a control
scheme for an induction motor without any induced N-pole rotor currents, for example a
wound rotor having an M-pole winding. For each type of bearingless IM, three different
vector control schemes will be proposed. The first scheme involves an indirect rotor
field orientation (IRFO) in which both M- and N- pole winding quantities are oriented
onto the M-pole rotor flux. However, it will be shown that in the IRFO control of the

cage type motor a force in the x- direction F, will always be produced, even when
unwanted, since By, is aligned on /), which is non-zero in the rotor frame. Therefore,

to ensure that F, is present only when required, both the M- and N- pole winding

quantities must be oriented onto the M-pole airgap flux. Hence, an indirect airgap field
oriented (IAFQO) vector control scheme will also be proposed in Sections 4.3 and 4.4.
Finally, a mixed field oriented (MFO) scheme, in which the M-pole winding is rotor
field oriented whereas the N-pole field is oriented onto the M-pole airgap flux, will also
be designed for the bearingless motor having either a cage rotor or a rotor that does not
induce any N-pole currents. The MFO scheme will be shown to be beneficial, as it has a
simpler design compared to the IAFO scheme since the torque (M-pole winding)
control of the motor can be rotor field oriented without compromising the efficiency of

the force (N-pole winding) control.

However, before considering the various vector control schemes for the bearingless

induction motor, a relationship between forces acting on the rotor and the airgap flux

linkage vectors ' and y’ will first be derived.

4.2. Relationship between the forces acting on the rotor and the

airgap flux linkage vectors

This relationship will be derived in two parts. First, an expression relating the peak

airgap flux linkage 17, to the peak airgap field B, is obtained which is applicable to
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both the main winding and levitation winding. This expression is then used to relate the

x- and y- direction forces to the airgap flux vectors .'/if and u_/f )

4.2.1.  Relationship between peak /, and peak B,

The relationship between the peak airgap flux density, {7, to the peak airgap field, B,,

is obtained using the basic equations relating the airgap flux, flux linkage and flux
density in a rotating ac machine.
For a P-pole (p pole pair) machine, the flux linkage spans an area

_ DI,
=

A

(4.3)

where D is the diameter and /, is the length of the rotor. The flux density in the airgap of

the machine is assumed to be sinusoidal, hence the average flux density, Ba, is given by

B, 1 IBD sinédé
7 o0 (4.4)
_ 2B,

T

where 0 is in electrical degrees.

The relationship between the average airgap flux density and the maximum flux in the

airgap is known to be

¢,=B, -4

upon which substitution of equations (4.3) and (4.4), can be expressed as

g, = 5L 4.5)
p

Hence, the maximum airgap flux linkage in the machine is given by
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f!o 2rl,
P

V;o =N¢ﬁ¢?a =N¢ﬁ' (46)
where 7 is the radius of the rotor. In equation (4.6), Ny is the effective fundamental
turns, which, for a machine having N; number of total turns in series per phase, can be
expressed as

N, =k,N, 4.7)

€

with k,, being the winding factor (Chapman, 1999).

Therefore, a relationship between the peak flux density in the airgap and the peak flux
linkage is available from (4.6),

B, =—2¥ 4.8)
2rl kN,

The peak airgap field could also be related to the terminal voltage applied to the
windings of the induction motor. Figure 4.1 shows the per phase equivalent circuit of an

induction machine.

Figure 4.1: Per phase equivalent circuit of an induction motor.

The back emf stator voltage induced in the machine is represented in the equivalent

circuit as E,.. The peak of this voltage can also be written as
n d o
Em = N ¢0 = wN¢ﬂ¢a (49)

7 dr

where @ = 27f for a machine operating with a frequency, f.
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In the induction motor, E,, is assumed to be approximately equal to the rms terminal

voltage, V. Therefore, by substituting equation (4.5) and (4.7) into equation (4.9),

A

B, 2rl,

E,=V\2 =ak,N,

Hence,

B rl
T

7z » (4.10)

Equation (4.10) now relates the rms terminal voltage applied to the machine to the peak
flux density in the airgap. Therefore, by rearranging, the peak flux density in the airgap

of the machine can also be expressed as

5 __V2p @.11)
° 47#krirIz

This final expression is useful when calculating the amount of rms terminal voltage
required to produce a certain value of peak airgap flux density. However, currently the

most useful expression will be equation (4.8).

A relationship between the forces acting on the rotor and the airgap flux linkage vectors

v and Z:V can now be derived by employing the relationship between peak airgap

flux density, i, , and the peak airgap field, B, given by (4.8).
4.2.2.  Relationship between F,, F, and the airgap flux vectors

In the vector control schemes considered in this chapter and throughout this thesis, all
the three-phase (a, b, and c) quantities of the motor are transformed into an equivalent

two-phase stationary af quantity through the rms convention. For example, applying

the rms convention on the three phase stator currents implies that the magnitude of the
stator current vector i, is equal to the rms phase current i, ie. |i,|= \i2, +i%, =i ,.

Therefore, using this convention,
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x,] [1/d2 0 o %
[xﬂ]_{ o 1/V6 —1/J€] i (4.12)

where x represents either the stator voltage v, , stator current /. or the flux linkages in
the motor . These 2-phase aff quantities are then transformed onto the dq reference

frame, rotating at the synchronous speed w,, using the following relationship
Xy = e X, (4.13)

Therefore, based on the rms convention, the equivalent dq axis flux linkage

components are related to the peak magnitude of the airgap flux vectors lgfl and ZIZ
by
M
v, vt R (4.14)
=== W +V, '
72 Ve T
v, v, N2 N2 19

Therefore, from (4.8) and (4.14), the peak field, B for the main M-pole winding of

the bearingless induction motor can be expressed as

2 2
BY = ﬁm“wf’ Ve (4.16)

° T 2rLkMNM

where & and N™ are the winding factor and the total number of turns in series per

phase of the main stator winding, respectively.
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Similarly, for the N-pole levitation winding,

BY =\BY’+BY’ = 2MWVes *Vor (4.17)

B 2n kN NY

zws

Therefore, By, and By, can be expressed as

2nyl

By =B = > l,k{,iN” (4.18)
N
BY =B = oy, (4.19)

“ 2r kY NY

Equation (4.1) shows that the y- direction force, F, is related to the peak airgap fields
BM and Bj,, whereas equation (4.2) relates the x- direction force, F, to BY and By, .

Therefore, B, and B will be used to control the amount of force produced in the

motor.

Through substitution of (4.18) and (4.19) into (4.1) and (4.2), the x- and y- direction

forces acting on the rotor are expressed as

F B n 2’
y — V/oa (4.20)
x 2J—ﬂok N qu

with BY given by (4.16). This equation can now be inverted to determine the value of

Y and yY required to achieve the reference forces F, and F, needed to levitate

the rotor:

l:'//od:l 2«/_ﬂokNNN[ *

vt |7 B F'j‘ (4.21)

X
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4.3. Vector control schemes for a bearingless cage rotor IM

The vector control schemes considered in this section are designed for a bearingless
squirrel cage induction motor in which both the main M-pole rotor current as well as the
levitation N-pole rotor current are induced. Three different vector control schemes are
proposed for the cage rotor type bearingless IM. The first scheme involves an indirect
rotor field orientation (IRFO) in which both M- and N- pole winding quantities are
oriented onto the M-pole rotor flux. However, it will be shown in Section 4.3.1 that a

force in the x- direction F_ will always be produced, even when unwanted, in the motor
since By is aligned on y,, which is non-zero in the rotor flux frame. Therefore, to

ensure that F, is present only when required, both the M- and N- pole winding
quantities must be oriented onto the M-pole airgap flux. Hence, an indirect airgap field
oriented (IAFO) vector control scheme will also be proposed in Sections 4.3.2.
However, there is no extra advantage of having the torque (M-pole winding) control of
the rotor to be airgap field oriented. Hence, a mixed field oriented (MFO) scheme, in
which the M-pole winding is rotor field oriented whereas the N-pole field is oriented

onto the M-pole airgap flux, will also be designed for a cage rotor motor.
4.3.1. Indirect Rotor Field Orientation (IRFO)

Vector control schemes rely on orientation to a vector. In a rotor flux orientation
scheme, the d-axis of the reference frame rotating at synchronous speed, a, is aligned

with the rotor flux vector. Therefore,
V=0 (4.22)

Hence, equations (A.11) to (A.14) governing the behaviour of an induction motor in the

dq rotating frame, as derived in Appendix A, reduce to

. d . L d
Va = Rslsd + o-Ls ;t'l.\'d —weo-le.\'q + —LTEWHJ (423)

67



Chapter 4: Vector control of bearingless induction motor

v, =Ri, +0L, :1d7i"’ +w,0Lj , +0, %y/,d (4.24)
R, d L ,
O = T'//rd +:17'//rd _-l:iersd (425)
R .
0=- L Lo’sq + wsll//rd (426)
where
LL-I
oL, ==t =e 4.27)
wsl = we - wr (428)

The rotor flux due to the motoring M-pole winding, | is controlled by i, since

equation (4.25) rearranges to give

W =Ly, (4.29)
where
w1 (4.30)

1 = 1
d d
m S‘rﬁw +1°

; . . M, .
with s representing the derivative operator, % ,and ¥ = R_;”- is the rotor time constant

r

of the main motoring winding.

The force acting on the rotor is dependent on the peak field on the rotor surface due to

the main M-pole motoring winding, B), which in turn is proportional to

,Wﬁz +,/,£Z2 as in equation (4.16). The flux linkages, y,; can be related to Vrda

through

v )
m=ﬁmﬂw¢m5 (4.31)
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Wi = (LY - L) (4.32)
which was derived from the manipulation of the following flux linkage equations
'//rdq = Lrirdq + Laisdq (433)

'//odq = Loirdq + Loisdq (434)

As in a normal vector control scheme, i;] controls the main torque produced by the

motor. The main flux orientation angle, " | measured in electrical radians, is obtained

from the integration of the synchronous speed, ®,, which is the sum of the electrical

slip speed of the main rotor flux, oY , and the electrical rotational speed of the rotor,

o . Therefore,

6" = (@} +o0!)at (4.35)
with
M__ 1 m (4.36)
wsl _T—MI-M_Isq .
r *mrd

as obtained from (4.26). This gives the standard indirect rotor field orientation (IRFO)

scheme.
The main assumption governing the vector control scheme of the bearingless induction
motor is that the N-pole levitation winding field rotates at the same electrical

synchronous speed, relative to the stator, as the M-pole main field. Hence, the electrical

orientation angle of the N-pole field is defined as

oY =6 (4.37)
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Therefore, in order to implement the vector control scheme for both the M- and N-pole
windings which is restrained by (4.37), an expression for the electrical slip speed of the
N pole field, @} , is required.

Both the M and N pole fields are rotating at the same electrical angular speed, »,, thus

the rotor will then rotate at a mechanical speed of

M
r mech = we wd (43 8)
m

4]

The electrical slip speed between the N pole field and the rotor is then given as

o
a)s’ :n|: : —wrmech:l (439)

m-—n
oV =( )a), +Z oM (4.40)
m

Similar to the main winding currents, it is assumed that i%, controls y/;, with

wh=Li., (4.41)
and

oo (4.42)
mrd ST:V'l'l

It is important to note that the levitation winding N-pole field will sweep past the rotor

with a large slip in which slip currents are consequently induced in the rotor. Therefore,

due to the rotor field orientation scheme, a component of i,’: must exist, as a direct

outcome of equation (4.26). This can be expressed as
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N _ N _NiN
lsq—orient =0y T, 1, (443)

This component of g-axis current is termed is’:_o,,.,,,, as it is required to synchronise the

orientation of the N-pole field to the M-pole field. In order to introduce a lateral, or x-

N
sq-con

directional, force an extra i:; component represented as i is required. Therefore,

NN Y (4.44)

sq sq-—orient sq—con

This is"; will cause an N-pole torque, 7", to be produced which could be fed forward

onto the main motoring torque controlled by ifg where

T =k"igi, (4.45)

N2

. L .
with k¥ =3n LON and the value of i ¥*+i¥" equals the phase rms magnitude of the

r

N-pole winding stator current.

As derived in Chapter 3, the x- and y- direction forces acting on the rotor are controlled

by the peak airgap flux densities, By, and Bj, of the N-pole winding respectively.
These flux density peaks are related to the airgap flux linkage vector, _l/{l:. Therefore,

we can choose:
By <y, (4.46)
By <y, (4.47)

as this will ensure that both flux density peaks B,’ and By, occur in the same direction

in order for the y- direction force expression previously derived in Chapter 3 to be valid.
From (4.37), the N-pole rotor field is also oriented on the d-axis of the rotating

reference frame to give
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W, =0 (4.48)
This implies that
W =(LY =LYy (4.49)

which is obtained by rearranging equations (4.33) and (4.34) in terms of the N-pole

winding inductances and its dq axis components of rotor flux linkage, airgap flux
linkage and stator currents. The consequence of (4.47) and (4.49) is that when i:’:_w,,,

the current responsible for F,, is zero and only "

sq—orient

is present, y,, will also be

present. Thus an unwanted F, will be produced by i

sq—orient *

Figure 4.2 illustrates the

rotor field oriented vector control scheme for the bearingless induction motor with no

field weakening.
o, PI If‘;)?_p ‘
PI = 2/3
i iM‘ — W' ejﬂ
-l Pl |—sdip <¢
isq
, [ 3/2
i e’
5q ‘_—-
0
| Equation oy e > I 6, .g.’-
> (4.36) +
BN
m r
A
\ 2 N
. N v.vd
5| Equation L BL [ e 2/3
(4.40) i - o el? v
N q PI _i’ ‘ sabe
Dy Equation y
(4.43) i i
e o (e 32 fei
i N e’
e sq—orient ’.vd
sq—con 4"" ‘.

Figure 4.2: Indirect rotor field orientation (IRFO) vector control for a bearingless squirrel cage

induction motor.
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N.
sq—con

The N-pole stator winding current references, i, and i will be derived from the

feedback control of y; and y,, based on respective reference values obtained using
equation (4.21) from given values of F, and F, . Customarily, in a totally bearingless
induction motor, F, and F, are obtained from positional feedback of the rotor vertical

and horizontal displacements respectively. However, F; and F. could also be given

constant values or step references for bearing relief purposes in which conventional

bearings are still present at either end of the rotor.
43.2.  Indirect Airgap Field Orientation (IAFO)

As previously seen, the IRFO vector control scheme designed will always produce a

force in the x-direction even when it is not required. This was a direct consequence of a

non-zero N-pole airgap flux linkage t//,f; component. Therefore, an airgap field oriented

vector control scheme would be able to overcome this problem.

With this vector control design, the d-axis of the rotating reference frame is now aligned

to the airgap flux vector. Therefore,

Woe =0 (4.50)

Before proceeding, it is thought useful to have the equations governing the behaviour of

an induction motor, as given in Appendix A, expressed in terms of i, and v, . This is

derived in Section A.2. Hence, the behaviour of the induction motor can also be
represented by equations (A.20) to (A.23). However, due to the airgap field orientation,

these equations reduce to

, L, d. .\ d
vsd = R.rlsd +[6Ls —_L_:(Lr —Lo)i|[—‘;l.\'d —a)elsq)-*—;t—'iyod (451)

d . 4.52
v, =Ri, +{0'Ls ——%(L, —Lo)](ztsq +a)ezsdj+w,¢//od (4.52)
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R L d . d . _
O = L Wod +—L_EWM —ersd —(Lr _Lo)[Elsd _w;llsq} (453)
. d . L .
0=-R,i, —(L, _Lo)Elsq +o, z-’-l//od -(L,-L,)i, (4.54)

The implementation of the airgap field orientation vector control scheme for a

bearingless induction motor is not too different from the rotor field orientation scheme

discussed in the previous section.

In the rotor field orientation, w? is controlled only by i* However, with the airgap

field orientation, 7 is related to both i* and i/ as obtained from (4.53) where

1 L
M _ : o . .
Vi = H[Loz,d + 2 —L)si,, — 00X )} (4.55)
Since the force acting on the rotor is dependent on 4, this has to remain constant in
order to develop a constant force. However, from (4.55), it is clear that y; will change

with i for a constant i,; . Hence, for this vector control scheme, v has to be kept

constant through flux linkage control.

The main torque produced by the motor is still controlled by ifj . Similarly, the main
flux orientation angle, @, is again obtained from the integration of the synchronous
speed, w,, which is the sum of the electrical slip speed of the main airgap flux, ol

and the electrical rotational speed of the rotor, o M as in (4.35).

However, since the airgap flux vector is considered and not the rotor flux, the

expression for the electrical @ M is now obtained from (4.54) to give
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, d .
RiY +(L, —L")Zi?g
j| (4.56)

sl
L .
[L_r Voa — (Lr - La )Isd

o

As with the rotor field orientation, the N-pole levitation winding field rotates at the

same synchronous speed as the M-pole main field. Thus, the electrical orientation angle

of the N pole field, 6., is defined to be equal to the M-pole field orientation angle 6,
i.e. 8Y =6 . Consequently, the expression for the electrical slip speed of the N-pole
field, @7 , given by equation (4.40) is still valid.

Despite the airgap field vector orientation scheme, iV must exist in the motor in

sq—orient
order to maintain the orientation of the N pole field. Therefore, from equation (4.54) we

have:

L

o

v | L .
a)sl .l: : ‘//od _(Lr —Lo)ls }
v ‘ (4.57)

sq—orient R, + (L, _La )S

Even though if;_o,,.e,,, exists, this does not imply the existence of a By, field in the

motor. This is because Bp , and consequently the x- directional force acting on the

rotor, is zero since

By <y (4.58)
By <y, (4.59)
and

Vo =0 (4.60)
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due to the airgap field orientation. Hence, in order to introduce a lateral, or x- directed,

force the control field Bj has to be applied. This is achieved by creating a Yoy

component relative to ., orientated by the angle 8" . The straightforward method of

N
sq—con>

attaining this is through i as was seen in the IRFO scheme.

This airgap field oriented vector control scheme for a bearingless induction motor with

N are

no field weakening is represented in Figure 4.3. The values for i’ and A
obtained in the same manner as in the IRFO vector scheme described in Section 4.3.1.

Comparing Figure 4.2 and Figure 4.3 shows that the difference between the IAFO

. N*
and 7

sq—orient

scheme and the IRFO scheme mainly lies in the expressions for o

together with the addition of a ¢

M control loop required to produce the correct i’ .

The feedback signal for the w control loop is obtained using equation (4.55).

Equation f' i:: oM
(4.55 "
) +— ji‘q‘
,M‘ - -
i
PI 1;9__, PI V: — P o » 2/3 i
. M . e
Ve PL 2 AN >
M M
i
= o [ 32 Vo
M e’
q ‘_
0
P Equation @,/ 2 @, I 0 ’$+
(4.56) ’? r
m A
A
v " o
Equation T P
= (4.40) v = o o/f =P 2/3 ~
N 9 PI sq ‘ sabe
Dy Equation K
(4.57) N
| *q Tsabe
e p e /? = 3/2
sq—orient ] o
& : <

Figure 4.3: Indirect airgap field orientation (IAFO) vector control for a bearingless squirrel cage
induction motor.
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4.3.3. Mizxed Field Orientation (MFO)

When IRFO is used for both the M- and N-pole windings, an x- direction force will

always be produced in the bearingless induction motor when i’ is non-zero. When

sq-orient

an IAFO scheme is used for both windings, the control of the M-pole main winding

requires an extra ¥/, control loop and a more complicated M-pole field slip speed, @ ,

equation. However, the unwanted x-direction force seen in the IRFO scheme could be
theoretically eliminated. Therefore, it is clear that for the N-pole radial force winding,
the d- axis rotating frame has to be oriented on the M-pole airgap field in order to
produce the levitation forces acting on the rotor. However, there is no extra advantage

on having an airgap field orientation control on the main M-pole winding.

In this section, the M-pole winding d- axis components of voltage, currents and flux

linkages are all oriented onto the M-pole rotor flux vector, _n//_fl . Therefore, ,, is zero

and v is obtained from (4.29) and (4.30). The main flux orientation angle, 8, is as

given by (4.35) where the expression for o’ , from (4.36), still applies.

The main assumption governing the vector control scheme of the levitated induction
motor still holds whereby the N-pole field rotates at the same synchronous speed as the

M-pole main field. Thus, the expression derived for w,;, (4.40), is again valid.

sl

However, the electrical orientation angle of the N pole field, 8", is no longer equal to

6M . This is due to the fact that all the d-axis components of voltage, currents and flux
linkages of the N pole winding, now has to be oriented onto the main M-pole airgap

field vector, Zf . Therefore,

6 =6 1[.&] (4.61)
Y od

where ¥ and y? are as given by (4.31) and (4.32).

oq

S

E
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Equation (4.61) ensures an airgap field orientation for the N-pole winding whereby v/,

N
sq—orient >

is now zero. This N-pole field experiences slip and introduces i which must exist

in the motor, obtained from equation (4.57) as in the IAFO scheme of section 4.3.2. As

N
sq—orient

explained in the previous section, 7 does not imply the existence of a B, field in

N
sq—con

the motor since By, is proportional to v, . Hence, i is again used to introduce a

w,, component in order to obtain an x-directional force. This vector control scheme

combining an IRFO scheme for the M-pole main field and an IAFO scheme for the N-

pole levitation field will be termed mixed field orientation (MFO) and is as shown in

Figure 4.4.
- .M‘ - -
I i v
;>_?_+ Pl (- PI = . 2/3 ”
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I - e
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Figure 4.4: Mixed field orientation (MFO) vector control for a bearingless squirrel cage induction
motor.

As in the two other vector control schemes, the N-pole stator winding current

references, i and i",, are to be derived from the feedback control of v/, and v,
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based on their respective reference values obtained from F,and F, using equation

(4.21). Furthermore, in a totally bearingless induction motor, F, and F, is then

obtained from positional feedback of the rotor’s vertical and horizontal displacements

respectively.

4.4. Vector control implementations for a bearingless IM without

N- pole secondary circuit

In section 4.3, three different vector control schemes were introduced for a bearingless
squirrel cage induction motor. In the cage rotor motor, both M- and N-pole rotor

currents are induced in the rotor. Therefore, expressions for the electrical slip speed,

o) and is";_o,,.,,,, of the N-pole winding are vital in the vector control schemes. From

equations (4.43) and (4.57), a large ¥ current will be present in the cage rotor

sq—orient
. B . . . . . N
motor, irrespective of its vector control scheme, since it is directly proportional to @

which can be very high (for example " = 25Hz in a 50Hz supplied 2-pole levitation
winding). Therefore, it is anticipated that high slip effects will influence the behaviour
of a cage rotor bearingless IM. Hence, the IRFO, IAFO and MFO vector control
schemes for a motor with a rotor structure that provides suppression of any N-pole
induced rotor currents are proposed in this section. Suppression of the N-pole rotor
currents can be achieved by having an M-pole wound rotor or a custom-built cage rotor
structure which will only allow M-pole currents to be induced. Chiba et al. (1996) have

previously proposed several cage rotor structures which provide suppression of induced

N-pole rotor currents.

If the bearingless induction motor has no N-pole induced rotor currents, or no N-pole
secondary circuit, the vector control scheme would be less complicated. The main point
to stress is that without the N-pole secondary circuit, only the vector control scheme
involving the levitation winding will change. The vector control for the main M-pole
winding established previously would remain the same. Secondly, the changes
associated with the absence of the N-pole secondary circuit applies to both the rotor and

airgap field vector control schemes.
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The key assumption governing the vector control scheme of the levitated induction

motor still holds whereby the N-pole field rotates at the same synchronous speed as the
M-pole main field. Furthermore, the electrical orientation angle of the N-pole field 8%
is still defined to be equal to 8" or 8~ depending on whether the motor is rotor field
or airgap field orientated respectively. However, for the mixed field orientation scheme,

6" is given by (4.61).

N

rig and

In the new vector control scheme, without the N-pole secondary circuit present, i

n//,";q no longer exist. Therefore, the rotor equations associated with the N-pole winding

no longer exist and @] has no meaning. Previously, in all the cage rotor vector control

schemes, i, consisted of two components, i and i as given by (4.44). The

sq—onient sq—con *
first component, if;_m,,,, arose from the slip experienced by the N-pole field whereas

the second component, i, , was responsible for producing a lateral force in the

motor. Nevertheless, in the subsequent vector control schemes, i,";_o,,.,,,, does not exist
since @) is no longer applicable. Therefore, only if;_m is left. Henceforth, in the

vector control schemes to be considered, the current responsible for producing a lateral

force in the motor will no longer be termed i¥__ but will just be represented by i .-

sg—-con
Furthermore since,
wh, =Li, (4.62)

a direct relationship is obtained between the forces acting on the rotor and the N-pole

stator winding currents iy and i,’z. Through substitution of equation (4.62) into

equation (4.20):
F, | mBYaL) |ig
F,| 2J2u k¥ NY|iy (4.63)
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Therefore, the N-pole stator winding current references i, and i, can now be directly

related to F, and F, by inverting equation (4.63) to give

i | 2\2uk) N [F;
el T F‘ (4.64)

X

As before, F y and F; can be obtained from positional feedback of the rotor vertical and

horizontal displacements respectively, or from step references depending on whether the

motor is totally bearingless or the forces are created for bearing relief purposes.
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Figure 4.5: IRFO vector control for a bearingless induction motor without an N-pole secondary
circuit.
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An indirect rotor field oriented vector control scheme for the bearingless induction

motor without an N-pole secondary circuit is shown in Figure 4.5. In the caged rotor
scheme, an unwanted F, was anticipated to be produced by if;_m,,, . However, this will

N
sq—orient

not become a problem in the IRFO scheme of Figure 4.5, since i is no longer

relevant.

If equation (4.56) is used, instead of equation (4.36), to calculate @) the bearingless
induction motor would instead be airgap field oriented. However, as mentioned in
Section 4.3.2, an additional w control loop, with a feedback signal obtained using
equation (4.55), is required to produce i . Figure 4.6 illustrates the new indirect airgap

field oriented vector control scheme for the bearingless induction motor.
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Figure 4.6: IAFO vector control for a bearingless induction motor without an N-pole secondary

circuit.
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The mixed field orientation vector control scheme consists of an indirect rotor field
orientation vector control for the M-pole winding and an airgap field oriented control
scheme for the N-pole winding. This mixed field oriented vector control scheme for the

bearingless induction motor without an N-pole secondary circuit is shown in Figure 4.7.
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Figure 4.7: MFO vector control for a bearingless induction motor without an N-pole secondary

circuit.

In the cage rotor bearingless motor, the mixed field oriented vector control was

preferred because it gave a simpler control for the M-pole winding compared to the

IAFO scheme and it was also able to ensure no extra contribution to F, is produced by
the existence of if"l_om, as was seen in the IRFO scheme. However, for the bearingless

induction motor without an N-pole secondary circuit, there seem to be no great
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advantage towards the performance of the mixed field orientation vector control scheme

when compared with the equivalent indirect rotor field orientation scheme.
The vector control schemes for the bearingless induction motor, with squirrel cage rotor

or a rotor without an N-pole rotor circuit, introduced in this chapter will be simulated

using MATLAB Simulink in the following chapter.
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Chapter 5

Simulation of vector control methods for generating levitation

and lateral forces

5.1. Introduction

Chapter 4 proposes vector control schemes for bearingless induction motors with two
different rotor structures; one having a cage rotor while the other rotor suppresses any
N-pole induced rotor currents. The latter type of rotor can be achieved using a wound
rotor having the same pole number as the main M-pole winding, since it does not allow
any N-pole currents to flow, resulting in a bearingless motor with no N-pole rotor
circuit. In this thesis, the motoring field of the two bearingless motors investigated is
provided by a 4-pole cage and a 4-pole wound rotor induction mbtor. The levitation
field of the motor is provided by an additional 2-pole winding added to the stator of
each of the 4-pole motors. Both the 4+2 pole cage and wound rotor bearingless IM
together with their respective vector control schemes proposed in Chapter 4 will be

computationally simulated in this chapter using MATLAB Simulink.

Before presenting the simulation results of the vector controlled bearingless induction
motors, the equivalent circuit parameters of the 4-pole (M = 4) cage and wound rotor
induction motors are evaluated in Section 5.2. Then, the 2-pole (N = 2) levitation
winding is designed and its equivalent circuit parameters calculated. In order to
implement the vector control schemes proposed in Chapter 4, the current, speed and
flux control compensators for both the 4 and 2-pole windings will also be designed.
Finally, with the designed levitation winding and compensators, all the vector control

schemes proposed in Chapter 4 will be simulated for both rotor structures.
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5.2. Derivation of the 4-pole machine parameters

In this section the equivalent circuit parameters of the 4-pole cage rotor and wound
rotor motors chosen to provide the motoring capabilities of the bearingless induction

motors studied in this thesis are evaluated.

5.2.1. Squirrel cage induction motor

The cage induction motor is based on a Brook Crompton, 4-pole, A- connected three-

phase induction motor having a 48/40 slot combination and the following data:

Rated power 15kW
Rated frequency 50Hz
Rated line voltage (rms) 415V
Rated line current (rms) 27.08A
Rated speed 1450
Rated torque, 7, ,, 99.5Nm
Rotor moment of inertia, J 0.071kgm?

Total number of turns per phase, N 176

Winding factor, k% 0.958

Table 5.1: Machine parameters of the 4-pole Brook Crompton induction motor.

The drawings of the stator and rotor laminations of the motor were utilised to create the

reluctance mesh employed to model the motor as presented in Section 2.2. The values

of the stator phase resistance R, of 1.04Q and the referred rotor resistance R, of 0.76Q

were obtained from the data sheet provided by Brook Crompton for the motor. The
equivalent circuit inductances of this motor were evaluated by performing no load and
locked rotor tests (Alger, 1995) using direct on-line (DOL) start simulations with the
DCM software. The resistance and derived parameters of the cage motor is summarised

in Table 5.2 assuming equal split in leakage inductance between the stator and rotor.
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RM 1.04Q2 (from data sheet)
RM 0.76Q (from data sheet)
F i 267.75mH
! End 267.75mH
LY 264.20mH

Table 5.2: Equivalent circuit parameters of the squirrel cage induction motor.

A DOL start DCM simulation for this induction motor was then compared to a DOL
start simulation performed in Simulink based on the parameters of Table 5.2. In both

simulations, load torque equal to 7’

-aea (5€€ Table 5.1) is applied to the motor at 1s. The
comparison between the two simulation results is presented in Figure 5.1. It was found
that during transient conditions there is a slight difference between the two simulations
as observed in the torque variation shown in Figure 5.1(b). This is due to the fact that
the Simulink model is unable to show slotting effects in the machine since it relies on a
lumped parameter circuit to model the cage induction motor. The DCM simulation,
however, is able to show these slotting effects during transient conditions and can be
considered to produce a more reliable result. Once the motor reached steady state, the
results between the DCM and Simulink simulations were found to be consistent with

each other even under full load.

— DCM — Simulink —DCM Simulink

| |
"— 100%i load torque applied

e

Rotor mechanical speed (rpm)

(@) (b)

Figure 5.1: Comparison of DCM and Simulink simulations for a DOL start of cage IM under load:

(a) speed
(b) torque (DCM results exhibit high frequency slotting effects during transient)
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—DCM - Simulink
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Figure 5.1: Comparison of DCM and Simulink simulation for a DOL start cage IM under load:
(c) stator phase current

522 Wound rotor induction motor

The wound rotor induction motor considered for the bearingless motor is also based on
the same Brook Crompton, 4-pole induction motor introduced in the previous section.
However, instead of having shorted aluminium bars, the rotor slots are filled with a
short-circuited 4-pole three-phase winding. In order to be able to accommodate the
winding, the number of rotor slots was reduced from 40 to 36 with the rotor tooth
widths and slot openings reduced proportionally. The total number of series rotor turns
per phase was chosen to be 180. The stator phase resistance value was maintained at
1.04€) since the stator winding in the wound rotor motor is identical to that of the cage
motor of the previous section. The referred rotor resistance however was calculated

according to (Alger, 1995):

. 4.19gk’.N!L,
r = 6712 (51)
1x10°k,,C,

where ¢ is the number of phases, k. and N, are the stator winding factor and total
stator turns in series per phase respectively and k,, is the rotor winding factor. In
equation (5.1), L, is the mean length of rotor winding turn measured in centimetres and

C, is the total cross section of copper of all phases in the rotor slots stated in square

centimetres. The equations used to calculate Z, and C, are:

88



Chapter 5: Simulation of vector control methods for generating levitation and lateral forces

v 4
Lw = 212 +;r (5.2)
Iratcd
C, = (W)2N, (53)

where p is the number of pole pair of the rotor winding, 7, is the peak rated phase
current flowing in the winding and /,,,/500 represents the area occupied by a coil
carrying a maximum current equal to /., based on the assumption that the current
density in the induction motor is taken as SA/mm’. Withp =2, I_,, equal to the stator
winding rated current and N, =180, the values of L, and C, for the 4-pole rotor
winding can be calculated from equations (5.2) and (5.3). Therefore, given k. =0.958
and N =176 (from Table 5.1), k,, = 0.96, and the calculated values of L, and C,,

equation (5.1) computes to give R =0.99Q .

As for the cage motor, the remaining equivalent circuit parameters for the wound rotor
motor were evaluated by performing no load and locked rotor tests with direct on-line
(DOL) start simulations using the DCM program, assuming equal split in leakage

inductance between the stator and rotor. The results are:

RM 1.04Q
RM 0.99Q
LY 269.73mH

Y 269.73mH
LY 265.36mH

Table 5.3: Equivalent circuit parameters of the wound rotor induction motor.

The DCM simulation of the wound rotor motor, having full load applied after 1s, was
compared with the results from Simulink under the same load conditions with the
Simulink motor modelled by the parameters of Table 5.3. As in the cage motor, the

results shown in Figure 5.2 show dissimilarity between the two results during transient
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conditions mostly due to the slotting effects modelled by the DCM software but are not
present in the Simulink model.

—DOM —— Simulink| —DOM - Simulink
|

: &

[

Rotor mechanical speed (rpm)

Stator current (A)

100% load torque applied
Time (s)

(©)

Figure 5.2: Comparison of DCM and Simulink simulations for a DOL start of wound rotor IM
under load:

(a) speed
(b) torque (DCM results exhibit high frequency slotting effects during transient)

(c) stator phase current
5.3. Design and parameter derivation of the levitation winding

The constant forces required to levitate the rotor of a bearingless induction motor is a
result of interaction between the main M-pole winding and a second N-pole winding

where M — N =+2. Therefore, the two 4-pole motors introduced in Section 5.2 are
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supplemented with a 2-pole second winding wound on the stator. A 6-pole levitation

winding is also possible. This will be discussed in Chapter 7.

The 2-pole levitation winding will be wound onto the 48-slot stator of the original
4-pole induction motor. The total series turn per phase for the 2-pole winding could be

chosen from the induced rms voltage equation:

2B,

2
E, = T’; SN, =2 (5.4)

which was previously derived in Section 4.2.1 when E__, fand B, are known. If E__
is equal to the supply voltage (i.e. 415V at 50Hz) and the peak 2-pole airgap flux
density, By assumed to be 0.9T, the number of turns required for the 2-pole winding
N, =90 is obtained from equation (5.4). However, in the bearingless IM, the levitation

winding is only required to produce a relatively small peak flux density compared to the

main 4-pole winding in order to levitate the rotor. For example to levitate the rotor of
the 4-pole induction motor of weight 235.36N with B =0.9T, we can calculate By

by rearranging equation (3.27) to give:
2u
BY =——"°_|F 55
" r,aBY 17 )

Using this equation and |F | =23536N, By computes to give 17.4mT. This means that

the required 2-pole levitation winding supply voltage is much less than 415V and the

selection of the total series turn per phase for the 2-pole winding N, is rather arbitrary.

Hence, the total series turn per phase was chosen to be 48 instead of 90. The value 48
was chosen to reduce the space occupied by the levitation winding in the stator slots but

this choice is by no means optimised in terms of space utilisation.

The stator phase resistance, R; of the 2-pole winding was calculated using

4.19gN’L, (5.6)
* =~ Ix10°C,
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obtained from Alger (1995) where g is the number of phases and N, = 48 is the 2-pole
stator winding turns in series per phase. In equation (5.6), L, and C, are the stator
winding equivalence of L, and C, given by equations (5.2) and (5.3). Hence, R, of the

2-pole winding was found to be 0.83Q.

Two motors are considered in this thesis and in both motors the stator is identical.

Therefore, R, of the 2-pole winding calculated above applies to both motors. The 2-

pole levitation winding rotor resistance, on the other hand, would vary depending on the
rotor structure of the motor. In the cage IM, 2-pole currents will be induced. The

referred rotor resistance for a cage rotor is given by (Alger, 1995)

2 2
- 4.19gk. N, <a

7
’ 1x10° 6.7

where ais a constant dependant on the dimensions of the cage rotor. However, because

the cage rotor supports equivalent 4-pole and the 2-pole three-phase windings (¢ =3),
the referred rotor resistance of the 2-pole winding R can be related to that of the
4-pole R by the following equation:

NZpN2
— kws Nk

T oaMIaM2
kWS 'NLT

N'
r

x RM (5.8

With k" =0956, NY =48 turns per phase and k,;, N, and R} obtained from
Tables 5.1 and 5.2 respectively, R calculates to 0.057Q. The remaining parameters of
the 2 pole winding equivalent circuit for the squirrel cage motor was then obtained from
simulating no load and locked rotor conditions using the DCM program with the 4-pole
currents removed. The equivalent circuit parameter values for the 2-pole levitation

winding of the cage rotor bearingless motor are as shown in Table 5.4(b).

On the other hand, the 2-pole levitation winding of the wound rotor type bearingless

motor will not have any rotor circuit since the rotor is wound with a 4-pole winding.

Therefore, in the wound rotor motor, the referred rotor resistance R and rotor

inductance L of the 2-pole stator winding do not exist. The stator inductance LY can
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be derived from the no load test. Due to the fact that the 2-pole winding is to be wound
onto the same stator as the 4-pole wound rotor motor of Section 5.2.2, the no load DCM
simulation was performed with a 4-pole wound rotor in place to emulate the bearingless

induction motor to be designed without the 4-pole stator winding present. However, in

order to obtain the magnetizing inductance L) of the 2-pole winding, the value of the

stator leakage inductance /% is required. This is obtained by performing a locked rotor

test of the 2-pole stator winding motor having a 2-pole wound rotor. The parameters of

the 2-pole winding in the wound rotor induction motor is summarised in Table 5.4.

Total stator series turn per phase, N 48

Stator winding factor, k.. 0.956

(2)

Squirrel cage motor Wound rotor motor

RY 0.83Q 0.83Q

RY 0.057Q -

) o 58.30mH 58.76mH

L 58.30mH -

Y 58.12mH 58.57mH
b)

Table 5.4: Parameters of the 2-pole levitation winding.

5.4. Vector control simulations for sustained levitation of induction

motors

As mentioned at the start of this chapter, the vertical and lateral force control of two
vector controlled bearingless induction motors having different rotor structures will be
simulated using MATLAB Simulink. The first type has a squirrel cage rotor and a stator
having both a main 4-pole winding and a 2-pole levitation winding with respective
equivalent circuit parameters given in Tables 52 and 5.4. The second motor type

contains a 4-pole wound rotor with an identical stator to that of the first type. The
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equivalent circuit parameters for this motor are as given in Tables 5.3 and 5.4. The
current, speed and flux controllers of the proposed vector control schemes of Chapter 4
are designed from the equivalent circuit parameters presented in the previous two

sections.

5.4.1. Compensator design for the 4-pole and 2-pole windings
54.1.1.  Current control loops

In all the vector control schemes, two inner fast current control loops are required for
each stator winding of the bearingless induction motor, one for each d- and q- axis
current of the main and levitation winding. Due to symmetry, the current controls of the
d- and g- axis currents of each stator winding are controlled by an identical PI
controller.

For the main 4-pole winding, the transfer function between g'f;q and gﬁq required for

the control design is derived from equations (5.9) and (5.10) which govern the

behaviour of the induction motor in the dq rotating frame with the coupling terms

introduced after the control.

: d . . L,

vsd = R.\'Isd +0-Ls EISJ —0)20151-\'1 +L_’.Ey/rd (59)
, d . : L,

v, =Ri, +0L, El“' +w,0Li,+0, L—v/,d (5.10)

r

Thus, the 4-pole current control plant transfer function is given by

M M
g (5) _ YR, (5.11)
y_‘::q (s) st +1

where M = oMM / RM . The values of R and 7 are obtained from either Table 5.2,

for the cage rotor motor, or Table 5.3, for the wound rotor motor.
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From equation (5.11), the controller was designed in the continuous s-plane, by way of
root locus, with the objective of obtaining a high bandwidth while maintaining the

damping factor ¢ at a value of approximately 0.8. The parameters of the designed PI

current controller, with a transfer function given by

s +a”
G, =4 ¥4, (5.12)
s
for both the squirrel cage and wound rotor 4 pole induction motor is as shown in Table
5.5.

Squirrel cage IM  Wound rotor IM

Proportional gain, k¥ 27.39 33.85

Controller zero, a* 1630.67 1619.24

Table 5.5: PI current controller parameters designed for the 4-pole winding current control of the
bearingless induction motor.

This design gives a nominal closed loop bandwidth of 400Hz.

A PI controller is designed for the current loops of the 2-pole levitation winding. As the

2-pole winding also induces rotor currents in the cage rotor, the transfer function
between i, and v, can also be obtained from equations (5.9) and (5.10) with the
introduction of the corresponding coupling terms. Hence, from the parameters in Table
5.4 for the squirrel cage motor, the 2-pole current control plant transfer function is given
by

() 1204
vh.(5) 0435-107s+1

(5.13)

Employing similar methods as that used for the 4-pole current controller design, the
transfer function of the PI controller for the 2-pole winding currents is given in Table

5.6 and yields a nominal closed loop bandwidth of 400Hz with a damping ratio ¢ of

approximately 0.8.
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For the wound rotor bearingless induction motor, the transfer function between i ﬁ‘f,q and

gqu in the current loop of the 2-pole winding is derived from equations (5.14) and

(5.15)
) d . :
vsd = Rsl.\'d + Ls EI_ISd _a)eLsI.\'q (514)
] a, Li 5.15
vsq = Rsl.\'q + Ls Elsq +we :Isd ( . )

since the rotor is wound with a 4-pole winding which prohibits any 2-pole induced rotor
currents. Hence, from the parameters in Table 5.4, the 2-pole current control plant
transfer function is

inag8) _ 1
Y, (s) 58.757-1075+0.8304

(5.16)

The PI controller is designed to achieve a nominal closed loop bandwidth of 100Hz at

¢ = 0.8 and is given in Table 5.6. The bandwidth of 100Hz was chosen instead of
400Hz (i.e. similar to that of the squirrel cage type motor) because when the controller
with the 400Hz bandwidth was used in the vector control scheme, the results obtained in
the DCM simulations produced higher noise effects compared to the 100Hz bandwidth
controller. The current controller parameters designed for the 2-pole winding current

control loop is summarised in Table 5.6.

Squirrel cage IM  Wound rotor IM

Proportional gain, &, 0.63 58.24

Controller zero, a)’ 3616.43 398.29

Table 5.6: PI current controller parameters for the 2-pole winding current control of the

bearingless induction motor.

54.12.  Speed control loop

The g- axis stator current demand of the main 4-pole winding i, is responsible for

controlling the main torque produced in the motor. Hence, as in normal vector control
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schemes, if;" is derived from the speed loop. This loop is closed by a PI controller in

order to obtain zero steady state error. In addition, the PI controller is designed to have
a limited output and an anti-windup mechanism due to the large mechanical time
constant and the limit imposed on the magnitude of the stator currents in practical
situations. The high bandwidths of the current control loops enables its closed loop
dynamics to be neglected. Thus, the plant dynamics for the speed loop is dominated by
the mechanical dynamics of the motor. Therefore, the mechanical transfer function is

given by

kt
Js+B

G,(s)= (5.17)

with J being inertia of the rotor, B representing the mechanical friction and k, the
torque constant calculated using

ol
k = 3m 2 (518)

t LM

r

In both the cage and wound rotor IM, L and L (given by Table 5.2 or 5.3) are almost
identical. Therefore, the value of k, for the both motor types was calculated to be 1.6.

Hence, the plant for the speed loop is given by

1.6
0.0713s

G,(s5)= (5.19)
when the mechanical friction, B, is neglected. A PI controller is designed to obtain a

closed loop bandwidth of SHz at a damping factor of 0.8 to yield an s-plane controller
of

0.61(s +19.63)
s

G,(s)= (5.20)

5.4.1.3.  Flux linkage control loops

As stated in Section 4.3.2 of Chapter 4, the airgap field oriented vector control scheme

proposed for the two bearingless IM types require a flux linkage control in order that
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i}y’ maintains a constant ;. This is because the force acting on the rotor is dependent

on ., thus it has to remain constant in order to produce a constant force. This airgap
flux linkage control loop contains the dynamics of the current control loop and another

given by the transfer function between i%; and /¥ in the feedback path, which is

Vo) _ L
iM(s) stV +1

(5.21)

where 7M = I /R . Due to the high bandwidth of the inner current control loop, the
plant dynamics for the flux linkage loop is dominated by equation (5.21). A PI
controller is designed for the ' control loop for both motor types to achieve a

nominal closed loop bandwidth of 9Hz. The parameters of the designed PI controller are

as shown in Table 5.7.

Squirrel cage IM  Wound rotor IM

Proportional gain, k" 116.55 88.77

Controller zero, a” 36.49 36.84

Table 5.7: PI current controller parameters for the !//:Z control of the bearingless induction motor.

Flux linkage control is also required in order to produce ilfd; of the 2-pole winding
which will in turn produce the appropriate u_/qu values and achieve the correct
levitation forces. This control is only necessary in the cage type bearingless motor
because there is no direct relationship between F| ,; and gﬁ‘f,; as found in the wound rotor

type. Similar to the flux linkage control loop of the main 4-pole winding, the plant

dynamics for the flux linkage loop is dominated by the airgap flux dynamics since the

inner current control loop has a high bandwidth. The transfer function between i\, and

ﬂqu , is given by

gqu(s) hod 58.116-107°
iN(s) sti+l 103s+1

(5.22)
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where 7V =LY /Rf’ and is obtained from the parameters of the 2-pole squirrel cage

equivalent circuit in Table 5.4.

A PI controller is designed for the Zqu control loops to achieve a nominal closed loop

bandwidth of 9Hz. The controller transfer function is

1584 .06(s +35.73
6, (s)- 138406l +35.73)

(5.23)

Now that all the compensators required for the proposed vector control schemes for
both motor types have been designed, the vertical and lateral force control of the motors

can be simulated in MATLAB Simulink to achieve sustained levitation.
5.4.2. Indirect Rotor Field Orientation (IRFO)

In this section, the force simulation results of the IRFO vector control schemes for the
two machine types will be presented. At the start of the simulation, an iM*" value of
4.90A, for both types of motors, is applied in order to allow the main 4-pole flux to
build up. In both simulations, a step rotor speed reference @ * of 1500rpm is applied to
the speed control loop at 3s. Finally at 4s, a load torque equal to 90% of the rated torque
T,,, is given. An external load having inertia equal to the motor inertia of 0.0713kgm’

as well as a linear friction of 0.17_,, at 1500 rpm was also applied throughout the

simulation.

Cage rotor

The y- and x- direction force reference values F, ; and F. required to levitate the cage
rotor are 235.36N and ON respectively. Therefore, at 2s, a ., value of 13.56mWb and
u/;:' value of zero was applied to the d- and g- axis flux linkage control loop of the 2-

pole winding in the cage type motor respectively. This value of v and y, was

calculated from equation (4.21) and rewritten here for convenience,

99



Chapter S: Simulation of vector control methods for generating levitation and lateral forces

[wﬁ:] ZJ_#ok"NN[ ] (5.23)

v BM F

X

This is assuming that the magnitude of the main flux density BY =0.9T. The IRFO

control scheme for the cage rotor type motor to be simulated is shown in Figure 5.3.

- - M - VM - -
@, PI 1sg PI vzﬂ Lumped
K e & M e’? parameter
= P Y p —— circuit IM
¥ . model
i (4+2 pole)
a)r
N
sap

N
Wod

Voo

N

Flux [€— Ly
observer N*
‘_ Ve

Figure 5.3: IRFO control scheme for the 4+2 pole cage rotor type motor simulated in Simulink.

Wound rotor

For the wound rotor type motor, a reference F; value equal to the rotor weight of
253.36N and a zero reference F, is also applied at 2s. This will then derive a value for
i and i%" of 0.23A and 0A according to the relationship given in Chapter 4 (equation

(4.64)), which is again repeated here for convenience

I_'q

F, (5.24)
Ve 7130 an,' F'

x
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with the same assumption that BY =0.9T. Figure 5.4 illustrates the IRFO control

scheme for the wound rotor type motor.

- M* VM. .
&>Q—> PI "‘L»Q—b P |—2p Vieg »| Lumped
K M & M e’ parameter
= S /BN 4 circuit IM
K model
fod « i*, | @2pole)
i e’
0 a)
0 r
| Equation o, @, I 6 > $+
pl (436 i +
m 6Y
7 Y

e, S T P
= 1 .
SR %) | Voty| (416)
sd

F ) L PI ‘_v"’_.‘—
y —— Equation ’9_’_ 0
N

£ ] j
(5.24) i v | €

Figure 5.4: IRFO control scheme for the 4+2 pole wound rotor type motor simulated in Simulink.

In all the MATLAB Simulink simulations, the force produced in the bearingless motor
is obtained using equations (3.29) and (3.30):

F| rLmB"|B.
[F’} Y [B";}] (5.25)
o oq

x

with BY derived from Z‘:’dq (using equation (4.16)) and By, derived from " , using

equations (4.18) and (4.19) respectively. These flux linkages, on the other hand, are
derived from the stator currents and voltages as shown in Figure 5.5. Figure 5.5 also

applies to the wound rotor type motor when the N-pole ‘flux observer’ block is replaced

by equation (4.62). This is because in the wound rotor bearingless motor gz'dq can be

directly obtained from i.,, due to no induced 2-pole rotor currents.
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Figure 5.5: Block diagram of the vertical and lateral force control of the vector controlled

v

Equation

bearingless cage rotor IM simulated in Simulink.

Results for both motors

ek

-

The rotor mechanical speed, torque and i}, for both types of machine are shown in

Figures 5.6(a), (b) and (c) respectively. The 2-pole currents if;q are present in both

motors from 2s onwards. It is evident in Figures 5.6 (a)-(c) that the presence of i:",’,q has

no effect on the speed, torque and stator current of the 4-pole main winding waveforms.
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Figure 5.6: Results of the simulated IRFO controlled bearingless induction motor (both types):
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Figure 5.6: Results of the simulated IRFO controlled bearingless induction motor (both types):
(c) 4-pole winding dq- axis stator currents

The behaviour of the 2-pole winding stator currents between the two machines is
dissimilar. The 2-pole levitation winding stator currents of the squirrel cage and wound
rotor type bearingless induction motors are as shown in Figures 5.7(a) and (b)
respectively. For the wound rotor type motor, the 2-pole winding current controller is

able to maintain the levitation winding stator current values according to the applied

reference values i;; and i), of 0.23A and OA respectively from the moment the force

references Fy' and F, were applied at 2s.
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Figure 5.7: 2-pole winding stator currents of the IRFO controlled (a) squirrel cage and (b) wound
rotor type bearingless IM.

103



Chapter 5: Simulation of vector control methods for generating levitation and lateral forces

In the case of the squirrel cage type motor (Figure 5.7(a)), i%, is maintained at 0.23A, as

expected, from the reference v, of 13.56mWb given to the d- axis flux linkage control
loop of the 2-pole winding at 2s. The existence of a non-zero 2-pole g- axis stator

current i

%, from the moment y/,; was applied, is also expected in spite of /) being

set to zero. This is in order to maintain the orientation between the main 4-pole rotor

flux vector and the levitation 2-pole rotor flux vector as explained in Section 4.3.1.

[— -direction — y~dircction] |— edirection — y-direction|

Levitation field ] ©,*=1500rpm Levitation field t @*=1500rpm
i e e e N R R

Force (N)

: ! ! ! N ! 1 ' ‘
1 2 3 4 5 6 ( 1 2 3 4 5

(=]
L

J

(@ (b)

Figure 5.8: Force variation of the IRFO controlled (a) squirrel cage and (b) wound rotor type

bearingless induction motor.

The forces F, and F, produced by both the simulated motors are shown in Figure 5.8.

As explained in Section 4.3.1, the results of the simulation shows that the squirrel cage

type bearingless IM produces an F,, even when F] =0 was given, as indicated in
Figure 5.8(a). This is a direct consequence of the existence of i:;, required to maintain
orientation, which in turn produces a non-zero l//ﬁ‘; responsible for controlling F_ . This
is because in order to achieve rotor field orientation, whereby y,, =0, ., will have to

exist and will follow the variation of 7;,. Note that the value of i;, is high due to high

slip between the 2-pole field and the rotor speed. This can be reduced only by choosing
high M and N values. This is a natural disadvantage of having a cage rotor in which N-
pole currents can flow. Even so, the cage rotor type motor is able to achieve the

required F, to counteract the rotor weight. In comparison, Figure 5.8(b) shows that
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even with a rotor field orientation the wound rotor type bearingless induction motor is

successful in producing a stable F, even during acceleration and load conditions as
required. There is also no force produced in the x- direction since ://f,“; remains zero at

all times due to the zero if; as shown in Figure 5.7(b).

The airgap flux density due to the 4-pole winding B is shown in Figure 5.9 indicating

a magnitude of 0.9T in steady state which is similar for both the squirrel cage and

wound rotor type bearingless induction motor. This confirms the assumption used to

and g':,' using equations (5.23) and (5.24) as shown previously. The

calculate " .

¥ odg
airgap flux density due to the 2-pole winding Qﬁldq for both the motors are shown in
Figures 5.10(a) and (b) respectively. In both figures, B”, reaches a value of 17.4mT as
expected from the values given for v, and F, applied to the squirrel cage and wound
rotor type motor respectively. Figure 5.10(a) shows the presence of Wﬁ,’, in the cage

rotor motor which causes an F_ to be produced.

Levitation field | ®*=1500rpm

- applied —— —Pf

Flux density (T)

Motx_)ring field : 100% load torque
= applied Time (s) applied

Figure 5.9: Observed 4-pole winding airgap flux density in the IRFO controlled bearingless
induction motor (both types).
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Figure 5.10: Observed 2-pole winding airgap flux density of the IRFO controlled (a) squirrel cage

and (b) wound rotor type bearingless induction motor.

5.4.3. Indirect Airgap Field Orientation (IAFO)

Both motor types were also simulated based on the IAFO vector control scheme
proposed in Sections 4.3.2 and 4.4, respectively. The conditions of simulation and the
PI controllers are exactly as described in the previous section with the inclusion of a
v control to obtain i¥; . A constant flux linkage reference ;" of 1.3Wb is applied
to the flux linkage control loop from the start of the simulation. It is found that the
speed and torque variation for the IAFO controlled bearingless motors are found to be
almost identical to that of IRFO control scheme shown previously in Figures 5.6(a) and

(b). This is expected since the speed control loops in both schemes are the same.
However, the 4-pole winding stator currents gﬁq are different to that of the IRFO
scheme since i%] has to vary, as shown in Figure 5.11, in order to maintain a constant

airgap flux due to the 4-pole winding. This behaviour was found to be very similar in

both the squirrel cage and wound rotor type bearingless induction motor.

As in the IRFO scheme, the airgap field oriented 2-pole winding current ii: must also

be present in the cage rotor type motor in order to maintain the orientation between the

4-pole and the 2-pole fields.
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Figure 5.11: 4-pole winding stator currents of the IAFO controlled bearingless induction motor (for
events see Section 5.4.2).

However, unlike in the IRFO scheme, 7", is no longer constant. This is because in order

to maintain ", constant using the flux linkage control loop, % has to vary as shown

in Figure 5.12(a). Figure 5.12(b) illustrates the 2-pole winding stator currents in the

wound rotor type motor. The PI current controllers are able to maintain the current

values according to the applied reference values ifd; which are derived from the force

references F, and F, as seen in the IRFO scheme of the previous section.
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Figure 5.12: 2-pole winding stator currents in the IAFO controlled (a) squirrel cage and (b) wound

rotor type bearingless induction motor.
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The forces in the x- and y- direction produced in the IAFO vector controlled cage rotor

motor are shown in Figure 5.13. The normal forces F, and F, are maintained
according to the force references F, =235.36N and F, =0, respectively, in steady

state. However, at 3s when the rotor starts to accelerate, F, experiences a dip which

takes approximately 0.3s to return to the steady state value as indicated in Figure

5.13(a). This dip was also observed at 4s when the load was applied to the motor. This

behaviour is also observed in the variation of ", with time, which is responsible for
controlling F,. Therefore, in order to obtain constant wY,, and consequently constant
F,, the closed loop bandwidth of the flux linkage control loop has to be increased from
the present value of 9Hz. Figure 5.13(b) shows the time variation of F, when the flux
linkage control loop bandwidth is increased to SOHz. As seen in Figure 5.12, no F| is
produced since 1//,’,‘,’, =0 at all times due to the airgap field orientation, unlike that seen

in the IRFO controlled motor.

[— x-direction - y~direction| [— x-direction i
300 —Levitation field | |— ©*=1500rpm 300 . Levitation field | o*=1500rpm
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% 1” ........................................................................................................................................................... ‘. ...................................................
3 |
ls lm ........................................................................................................................................................... . ...................................................
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50 ........................................................................................................................................................... _ ...................................................
0 { T 1 f i r 1 ¥ t
) 1 2 3 4 5 6 1 2 3 4 5
-50 1 ! <
Motoring field 100% load torque Motoring field 100% load torque
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Figure 5.13: Force variation for the IAFO controlled bearingless cage rotor IM with a flux control
closed loop bandwidth of (a) 9Hz and (b) 50 Hz.

Successful creation of constant F, and F, forces under transient and steady state

conditions are also observed in the IAFO vector controlled wound rotor type bearingless

induction motor as indicated in Figure 5.14.
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Figure 5.14: Force variation for the IAFO controlled wound rotor type bearingless induction

motor.

5.4.4. Mixed Field Orientation (MFO)

As proposed in Sections 4.3.3 and 4.4, both the cage and wound rotor type motors can
be mixed field oriented vector controlled. Therefore, both the cage and wound rotor
type motors were simulated under the same conditions as described in Section 5.4.2,
employing the PI controllers designed in Section 5.4.1. In this vector control scheme,

the main 4-pole winding voltages, currents and flux linkages are oriented onto the 4-

pole rotor flux vector t//A:q whereas the 2-pole winding voltages, current and flux

linkages are oriented onto the 4-pole airgap flux vector g/_':iq. This means that the MFO

vector control scheme for the bearingless induction motor is a hybrid between the IRFO
and IAFO vector control schemes, and the results obtained from the simulation are

identical to the results presented in Sections 5.4.2 and 5.4.3.

The speed and torque variation for the MFO controlled bearingless motors are identical

to that in Figures 5.6(a) and (b) obtained from the IRFO vector controlled bearingless
induction motor. Furthermore, the 4-pole winding stator currents i’ are also found to

be similar to that of the IRFO scheme shown previously in Figure 5.6(c).
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As stated above, in the MFO vector controlled cage induction motor, the 2-pole winding
currents g'z,q are oriented onto the 4-pole airgap flux vector. Hence, its variation is
identical to that shown in Figure 5.12(a) for the IAFO vector controlled squirrel cage
type motor. Furthermore, because of the airgap field orientation for the 2-pole field, the
normal forces F, and F, in the MFO vector controlled cage rotor motor are able to be
maintained according to the force references F; =235.36N and F, =0, respectively,
at steady state as shown in Figure 5.15. F, also experiences identical dips during

transient conditions as seen in Figure 5.13(a) for the IAFO vector controlled motor
which is eliminated when the closed loop bandwidth of the flux linkage loop is

increased. In addition, no F, is produced since the 2-pole winding is airgap flux vector

oriented despite the main 4-pole winding being rotor field oriented.
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Figure 5.15: Force variation in the MFO controlled squirrel cage type bearingless motor.

On the other hand, the time variation of i, for the MFO vector controlled wound rotor

type motor is found to be exactly the same as that of the IAFO vector control scheme

demonstrated in Figure 5.12(b). Consequently, constant F, and F, forces under

transient and steady state conditions are observed in this vector control scheme as

shown in Figure 5.16 which is identical to that of the IAFO vector controlled wound
rotor type motor (Figure 5.14).
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Figure 5.16: Force variation in the MFO controlled bearingless wound rotor motor.

5.5. Chapter summary and discussion

The results obtained from the MATLAB Simulink simulations show that an IRFO
vector controlled bearingless squirrel cage induction motor is able to achieve a y-
direction force to levitate the rotor. However, an unwanted but predicted x- direction

force is also produced by this vector control scheme. This is due to the fact that in order

to have zero F_, the g- axis 2-pole airgap flux linkage w., must be zero, which is not
the case when the 2-pole winding is rotor field oriented. In the IRFO scheme, u/f,‘; will
be proportional to il . However, in order to maintain the orientation between the 4-pole

and 2-pole rotor fields, a large i, was present in the motor due to the large slip speed of

the 2-pole field as explained in Section 4.3.2.

When the cage type motor is controlled using the IAFO vector control scheme,

successful normal forces are obtained. An F, equal to the rotor weight is produced

which remains constant even during transient conditions provided that v, is very
closely controlled as indicated in Figure 5.13. Furthermore, a zero F, is produced since
., is successfully controlled at zero by the g-axis flux linkage control despite the

existence of the orientation component of i¥ . However, because the 4-pole field was
q p
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also subject to an IAFO control scheme, a y,; control loop had to be added to the

vector control scheme which results in a slightly more complicated control scheme

compared to the IRFO scheme proposed for the cage type motor.

The final simulation carried out on the cage type motor is the mixed field orientation
vector control scheme This control scheme is also able to produce the required forces to
levitate the rotor without having the need for the main 4-pole field to be airgap field
oriented. This scheme is advantageous because it incorporates the simple IRFO vector
control scheme for successful torque control of the main winding as well as

incorporating the IAFO control scheme required for the 2-pole levitation winding in

order to ensure no unwanted F, is produced despite the existence of the orientation i,’: .

However, as observed in Figure 5.15, the force obtained in the MFO vector control
scheme experiences a dip during transient conditions in an identical manner to that of

the IAFO scheme (see Figure 5.13). Therefore, the MFO control scheme for the squirrel

cage type motor also requires a closely controlled _t/{i"dq control loop in order to maintain

constant F, and F, during transient conditions.

The simulation of the wound rotor type motor under the IRFO, IAFO and MFO vector
control schemes all showed that constant normal forces are achieved under all
conditions as required by the force references. However, under the IRFO vector control

scheme both the 4-pole and 2-pole winding currents, voltages and flux linkages are

oriented onto !//Ir" which means that when the torque current if; is present, B will no

longer be aligned with B, and will not be in quadrature with B,, . Therefore, the forces
F, and F, will no longer be constant since in order for the constant forces to be

produced and governed by equation (5.25), the peak flux densities BY, and B} must be

aligned with each other. Hence, the IAFO and MFO vector control schemes are the only
control schemes suitable for the wound rotor type motor. Even so, as observed for the
control of the cage rotor motor, the MFO vector control scheme is at an advantage since
it incorporates a simpler IRFO control for the main 4-pole winding whilst still being
able to produce the necessary forces via the IAFO control scheme required for the 2-

pole levitation winding.
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In conclusion, the mixed field oriented (MFO) vector control scheme is chosen to
control both the squirrel cage and wound rotor type bearingless induction motors. The
simulation of these motors under the MFO vector control scheme will also be repeated
using the DCM model in Chapter 6 for the cage rotor type motor, and in Chapter 7 for
the wound rotor type motor. A comparison of the results obtained from the MATLAB

Simulink and DCM simulations of these MFO vector controlled motors will also be

discussed in the appropriate chapters.
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Chapter 6

Dynamic circuit modelling (DCM) of a bearing relief cage

rotor induction motor

6.1. Introduction

The study of bearingless induction motors in this thesis also entails a study on bearing
relief capabilities in which the rotor movement is still restricted by conventional
bearings. However, the bearing load is cancelled by suitably directed radial forces
created in the motor through the incorporation of the N-pole levitation windings. In this
chapter, the simulation of a bearing relief cage rotor motor will be presented, as it is the
most common type of induction motor. The motor consists of two stator windings in
which the main torque production winding is of a 4-pole nature and the levitation
winding is a 2-pole winding. The parameters of both windings are given in Sections
5.2.1 and 5.3. An uncontrolled simulation of the 4+2 pole bearing relief motor, in which
both stator windings are started directly on-line, will be presented in Section 6.3. This is
to investigate the radial force production and to verify the theory of bearingless

induction motors.

A vector controlled simulation of the same motor will be discussed in Section 6.4. In
this simulation, the bearing relief motor is controlled in a mixed field oriented (MFO)
frame whereby the main 4-pole winding is rotor field oriented and the 2-pole levitation
winding is 4-pole airgap field oriented. This vector control scheme was chosen based on
the successful MATLAB Simulink simulations for the 4+2 pole cage rotor motor under
the MFO vector control scheme and based on a two-axis lumped parameter model of the
motor (refer Section 5.4.4). A comparison between the DCM and the MATLAB

Simulink simulation results will be presented in Section 6.5.
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6.2. Vector control of a cage rotor IM in DCM

Firstly, the results of a linear 4-pole cage rotor IM simulated in DCM with an indirect
rotor field orientation (IRFO) vector control scheme will be presented. As the
simulation is of a linear iron motor, the relative permeability of all reluctance elements
of type ‘linear iron’ is fixed in which x4, =1350. In order to utilise the s-plane current
and speed loop controllers of Section 5.4.1 in the DCM simulation, the PI controllers
are transformed into the discrete z-plane using the Bilinear Transform (Franklin et. al,
1998) in which s=(2/t Xz—l/z+l). The current loop sampling time ¢ is

samp samp-i

chosen to be 100us and the speed loop sampling time £, ,, is 2ms. In the simulation, a

step rotor speed reference @, of 1500rpm was applied to the speed control loop at 3s
with a load torque equal to 90% of the rated torque 7, given at 4s. An external load
having inertia equal to the rotor inertia of 0.0713kgm? as well as a linear friction of

0.17,_,, at 1500 rpm was also applied throughout the simulation. The maximum

simulation time step is 50us with a Newton Raphson error tolerance set to 1x10% and a
maximum of 15 iterations per time step. The linear equations solver error tolerance is

1x10”7 with a maximum of 200 iterations and a maximum threshold of 1x107.

Time Event Throughout simulation (0-5s)

0 iM* = 4.90A applied (to build up
external load inertia =

main flux)
3s * = 1500rpm applied 0.0713kgm2 and linear friction of
4s 90% of T, applied 0.17,,, at 1500 rpm applied
rated

Table 6.1: Sequence of events occurring in the simulation of the vector controlled 4-pole cage rotor
motor.

Figure 6.1(a) shows the speed variation of the IRFO vector controlled motor. The rotor
reaches within 5% of the 1500rpm reference speed in 0.23s from the moment @, was

applied (i.e. at 3s). The speed control maintains the speed at 1500rpm after the load
torque is applied. The corresponding torque variation is shown in Figure 6.1(b). From

the moment the rotor starts to rotate (3s onwards), the torque was observed to
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experience an oscillation of 900Hz (as shown in the inset graph of Figure 6.1(b)). This
oscillating behaviour is also observed in all the vector control simulation results
reported in this chapter (Section 6.2 and 6.4). Therefore, when referring to the value of
the vector controlled quantities obtained from the simulations the average value of the
oscillating waveform is taken which is obtained by numerical integration. These

oscillations are not understood.
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Figure 6.1: (a) speed and (b) torque variation with time of the IRFO vector controlled 4-pole cage
rotor IM.

The stator currents i, and i, are presented in Figures 6.2(a) and (b). In both figures,
i, and i, (shown as the darker set of lines in Figure 6.2), are obtained by transforming

the af- axis stator currents using the IRFO controller orientation angle 6.. These are

compared with the stator currents obtained from ‘direct’ orientation (shown as the
lighter set of lines in Figure 6.2) in which the angle of the peak rotor flux in the motor,

DFT
er

6”7 is used in the transformation. In the simulation, is obtained from carrying

out a spatial discrete Fourier transform (DFT) of the actual rotor flux density flowing in

each inner rotor tooth element, as depicted in Figure 6.3, using equation (6.1)

X0)= 23 00 122 6.1

n=0

where k is the index of the DFT, x, is the flux density flowing in the inner reluctance

element of rotor tooth » and N is the total number of rotor teeth in the motor.
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Figure 6.2: Stator current variation with time of the IRFO vector controlled 4-pole cage rotor IM:

(a) d- axis (b) q- axis.
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Figure 6.3: The inner, tooth-tip and airgap reluctance elements

As observed in Figure 6.2, i, and i, (obtained using é,) are similar to the currents

obtained from ‘direct’ orientation in the time region

of 0 to 4s, indicating that the IRFO

orientation angle é, is able to track the exact position of the peak rotor field in steady

state conditions. However, when load is applied at

stator currents experiences an oscillation, which is

4s, the ‘direct’ orientation dq- axis

found to be at slip frequency. The

discrepancy between 6, and 6”7 is shown in Figure 6.4 which illustrates the variation

of the difference between the two angles. This
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oscillating behaviour when the load torque is applied whereby the difference is between

-1.7° and 2.0° electrical.

|<— ©*=1500rpm
5 H H H H

Angle difference (degrees
electrical)

Motgring field . 7 100% load torque
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Figure 6.4: Difference between the IRFO angle and peak rotor flux angle obtained from DFT.

From investigations of the fluxes flowing in a rotor tooth, it was observed that the
oscillations in 8”7 are due to the presence of residual flux at each node in the DCM
model. This is considered in more detail in Section 7.2. These residual fluxes arise from
the fact that the model solves for conservation of rate of change of flux equation on

each node. This means that any constant flux present at any node will not be dissipated.

Therefore, the DCM model was modified such that conservation of flux equation at
each node is being solved instead of the equation for the rate of change of flux. This
ensures that no constant flux exists at any node. The changes required for enforcing flux
conservation at each node are described in Section 2.5(b). Henceforth, all simulations in
this chapter are based on solving for flux conservation equation at each node of the

DCM model.

For this reason, the rotor flux oriented vector control of the cage rotor IM was repeated
with the model solving for conservation of flux equation at each node. It was observed
that the speed and torque variation against time are similar to those obtained previously

when solving for conservation of rate of change of flux equation at each node.

However, i, and i, in the motor obtained from the IRFO controller angle 6, and from
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‘direct orientation’ using 6°" are now in agreement as observed in Figure 6.5. The

error between the two angles, shown in Figure 6.6, is also found to be less than 0.9°
electrical, which is acceptable. A further reduction in this error can be obtained by

reducing the rotor time constant 7, = I/ /RM .
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using machine rotor fhux angle (‘direct’ orientation; using machine rotor flux angle (‘direct’ orientation
E . j€— ©*=1500rpm
-~ : *= i i i |
< R ll‘_ e = - :
04
—
83
g 2
b B W, Lo Lo T DR
# L
A
0+ i t i i . . :
0 1 7 3 + 5 G =5 - . : t .
; Motoring field 100% load torque
Motoring field 100% load torque <— » .
ap;li edg Time (s) el il applied Time (s) & oslind
@ (b)

Figure 6.5: Stator current variation of the IRFO vector controlled cage rotor motor with solution

based on solving conservation of flux equations: (a) d- axis (b) - axis.
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Figure 6.6: Difference between the IRFO angle and peak rotor flux angle obtained from DFT in

DCM model solving for conservation of flux equations.

Finally, the results from the DCM simulation were compared with the results obtained
from a two-axis lumped parameter model simulation of the same IRFO vector

controlled 4-pole cage rotor IM carried out in MATLAB Simulink. It is observed that
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the speed, torque and dq- axis stator current variations of the two simulation methods

exhibit very close agreement as indicated by Figures 6.7(a)-(d).

—DCM —— Simulink —DCM - Simulink
1600 e 160 : i‘—m;ﬁlSOOrpm:
e O = 0rpm f H ¢ H
g_ L e G P ¥ I( -------------------------------------------- 140 : :
o 1200 1 e e S 120 -
eyl i o o
L R B e Sw
5 600 +----- g --------------------------------------- E~ 60
5 : : o i
S R ey T T S o R s e = 40 :
gt SR b e e R 2 : i
- H t ; $
S 97 i i i f 0 - s i r f 5
200 i 2 3 4 5 2 1 2 4 5
Motoring field 100% load torque Motoring field 100% load torque
< applied Time (s) < applied applied Time (s) < applied
(a) (b)
m— Py J——Tar
2 |— ©*=1500rpm
i } { | 1
~ ©r*<51500rpm | i i
S e e s e ................. ~
2
o
5 =
= =)
8 =
;
2 7 ‘ i
A TR U SV AROERE TR U TR P g S I ! ! !
0+ ; - ; ; ; 9 1 2 3 4 $ 6
0 1 2 3 4 5 6 -5 - i i ; i
b Motoring field 100% load torque
Motoring field 100% load torque 4 ” :
applied Time (s) applied applied Time (5) applied
(©) (d)

Figure 6.7: Comparison between the DCM and Simulink simulations of IRFO vector controlled

cage rotor IM: (a) speed, (b) torque, (c) d- axis stator current and (d) g- axis stator current.

6.3. Simulation of radial forces

In this section, the results of the DCM modelled 4+2 pole linear cage rotor IM

simulated under direct on-line (DOL) start condition are given. The motor is based on

the 4-pole cage rotor motor with a 48/40 stator-rotor slot combination, introduced in

Chapter 5, onto which the 2-pole levitation stator winding designed in Section 5.3 is

incorporated. All reluctance elements in the DCM mesh of the motor were chosen to be

of type ‘linear iron” with z, =1350 except for the elements connecting each stator and
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rotor tooth, which are of type ‘air’ to model the semi-closed stator and rotor slots. The
motor was also modelled with only one rotor axial skew section with a skew angle of

15° electrical.

The terminals of both the stator windings in the model are directly connected to
sinusoidally varying voltage sources since the simulation is started direct on-line. The
main 4-pole winding is connected to a 415V rms voltage. In order to determine the rms
voltage applied to the levitation winding, knowledge of the peak airgap field produced
by the winding is required. This is obtained from equation (3.27), which relates the

magnitude of the required force to the peak fields B and B; due to the main and

levitation windings respectively, and repeated here for convenience

2 2 _ rLaB) . (6.2)
|F|=,/Fy +F2 = P B .

Ho
Knowing that B} = 0.9T from the vector control simulation of the 4-pole cage rotor

motor and using equation (6.2), the value of By required to produce a force equal to the
rotor weight of 235.36N is 17.4mT. Hence, the terminal voltage for the levitation
winding can be evaluated using the following equation which was previously derived in

Chapter 4 (equation (4.10)),

BY2rl,

~ (6.3)

2
vy ~EY, = LNy

- J’i ws
where £ =50 Hz and the values of the 2-pole winding factor k., and total series turn per

phase NV are as given in Table 5.4(a). With a required B =17.4mT , the rms terminal

voltage of the 2-pole levitation winding applied in the simulation calculates to be 4.20V.

The magnitude of force obtained from the simulation is shown in Figure 6.8 at no load.
It can be observed that at steady state the force magnitude produced is only 46.59N.
This is 80.2% less than the expected force of 235.36N. To investigate the force
discrepancy, the actual 4- and 2-pole field values in the DCM model are evaluated.
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Figure 6.8: Force magnitude produced by the linear 4+2 pole cage rotor motor.

Figures 6.9 and 6.10 show the magnitude of the peak fundamental 4-pole and 2-pole
fields in the motor, obtained by performing a Discrete Fourier transform (DFT) on the
flux densities of the rotor-tooth-tip and stator-tooth-tip reluctance elements,
respectively, around the rotor circumference. A summary of the average magnitudes of
the peak fundamental 4-pole and 2-pole fields from the DFT of the two different flux
density samples in the motor is presented in Table 6.2. The average magnitude of the
peak fundamental 4-pole field is expected. However, the magnitude of the peak
fundamental 2-pole field obtained from the rotor-tooth-tip and stator-tooth-tip flux
density samples are approximately 9.2% and 19.54% of the expected magnitude of
17.4mT, respectively.
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Figure 6.9: Peak magnitudes of (a) 4-pole and (b) 2-pole fields from DFT of rotor-tooth-tip flux
density samples.
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Figure 6.10: Peak magnitudes of (a) 4-pole and (b) 2-pole fields from DFT of stator-tooth-tip flux

density samples.

Using rotor-  Using stator-

tooth-tip tooth-tip

samples samples
Average magnitude of peak 2-pole field, ‘Bf" I 1.6mT 3.4mT
Average magnitude of peak 4-pole field, iBf” | 0.91T 0.92T

Table 6.2: Summary of peak fundamental 4-pole and 2-pole field average magnitudes obtained
from DFT.

By substituting the values of |Bf” l and ‘Bf T | obtained from the rotor-tooth-tip flux

density samples for B} and By , respectively in equation (6.2), the force obtained from

the fundamental fields is 21.78N. This gives an error of 53.25% when compared to the

force magnitude obtained from the simulation. Similarly, the force obtained from the

fundamental fields is 46.86N when the values of |Bf” | and ’BZD T | obtained from the

stator-tooth-tip flux density samples is used in equation (6.2), which is comparable with

the force magnitude shown in Figure 6.8.
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Figure 6.11: 2-pole airgap flux density variation around the circumference of the cage rotor IM at
time 2s taken on (a) stator side and (b) rotor side.
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Figure 6.12: Leakage paths of the airgap flux in the 4+2 pole cage rotor IM on (a) stator side and
(b) rotor side.

The reduction of the 2-pole airgap field observed in the cage rotor motor is thought to
be due to relatively large leakage fluxes introduced by the large slip (25Hz at no load
when connected to a SOHz supply) experienced by the 2-pole field. This is clearly seen
in Figure 6.11(a) showing the 2-pole airgap field variation (at the stator tooth surface)
around the circumference with the 4-pole field de-activated and with a rotor speed of
1500rpm. The stator currents cause the flux from the stator to zigzag across the airgap
and back into the stator tooth next to it, as illustrated in Figure 6.12(a). This causes the
flux density to increase at certain stator tooth tips and decrease in others. At the surface
of the rotor teeth however, the airgap field variation around the cage rotor

circumference is more sinusoidal, although the effect of zigzag leakage is still present as
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seen in Figure 6.11(b). This is because the larger rotor bar currents, and smaller rotor
slot opening (as compared to those on the stator), causes more flux to circulate around

the bars themselves and less is transferred across as zigzag leakage as shown in Figure

6.12(b).

It is also apparent from Figure 6.11(b) that the peak magnitude of the airgap flux
density variation on the rotor surface correspond to the magnitude of the fundamental 2-
pole field obtained from the DFT of the rotor-tooth-tip flux densities shown in Figure
6.9(b). The large difference between the flux density values on the stator tooth tips,
compared to the rotor tooth tips at the cage surface, is due to the fact that the flux
density variation is calculated on the tooth tip elements, and in the rotor most of the flux
is diverted into the slot opening reluctance element with less (in comparison with the

stator) flux flowing in to the rotor tooth tip element and across the airgap.

Therefore, it can be summarised that in order to generate the required radial forces in
the 4+2 pole cage rotor motor, considerably higher 2-pole currents are required than
predicted from the simple force expression of equation (6.2) in order to compensate for
the high slip leakage effects observed in the motor. In addition, the 2-pole airgap field
waveform at the rotor and stator surface will be subject to high harmonics that will
cause increased losses and unwanted force disturbances. Although the latter can be
addressed through closed loop control, it is evident that the suppression of induced N-
pole currents, due to the N-pole levitation winding, in the rotor is possibly a desirable

characteristic for radial force production that will be examined in Chapter 7.

Hitherto, the radial force is directed in an arbitrary direction. In order to control the
direction in which the force is produced, the magnitude and phase of the 2-pole field
must be controlled. Even though the DOL simulation has shown that the force produced
in the cage rotor motor is affected by the high slip leakage and high harmonics of the 2-
pole field, it is believed that the fundamental 2-pole field is sufficient to produce the

required levitation force under vector control conditions.
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6.4. Mixed Field Orientation (MFO) vector control simulation of a

bearing relief cage rotor IM

Results of a DCM simulation of the vector controlled linear 4+2 pole cage rotor IM will
be discussed in this section. A mixed field orientation (MFOQ) vector control scheme is
chosen, previously proposed in Section 4.3.3, in which the main 4-pole winding is rotor
field oriented with the 2-pole levitation winding oriented onto the peak 4-pole airgap

field. The proposed control scheme is shown in Figure 4.4 and repeated here for

convenience:
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Figure 6.13: Mixed field orientation (MFO) vector control scheme for a bearingless cage rotor IM.

In the simulation, an external load having inertia equal to the motor inertia of

0.0713kgm2 and a linear friction of 0.17,,, at 1500 rpm is applied from the start. The

current controllers for the 4 and 2-pole systems in this vector control scheme, designed

in Chapter 5, both have a natural frequency of 400Hz and a damping factor of 0.8. The
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speed controller, also designed in Chapter 5, has a natural frequency of 5Hz. As in
Section 6.2, these controllers are then transformed into the discrete z-plane using the
Bilinear transformation and implemented in the simulation with a sampling time of

100us for the current control and 2ms for the speed control. The main 4-pole field is

given time to establish by applying i * of value 4.90A from the start of simulation. The
2-pole levitation winding current references i, and zsq «n» Tesponsible for controlling

the forces F, and F, produced by the motor, are obtained from flux loop controllers

previously designed in Chapter 5 with a natural frequency of 9Hz and damping factor of
0.8. In the DCM simulation, the flux linkage references /), and v, are applied to the

flux control loops at 2s and the values are obtained from equation (4.21) which is

repeated here for convenience

|i‘/’d‘:| ZJ—#okNNN[ ::| (6.4)

M
;//oq B F,

x

with the required forces F, = 235.36N, i.e. equal to the rotor weight, and F,| = ON. A

speed reference of 1500rpm was given at 3s and a load of 89.55Nm, which is equal to

90% of the rated torque 7, ,,, was applied at 4s. The torque current is limited to 116%

of the rated if:
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Figure 6.14: (a) speed and (b) torque variation with time of the vector controlled 4-pole cage rotor
bearing relief IM.
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Figure 6.14 illustrates the speed and torque variation of the simulated bearing relief
induction motor. The motor is able to accelerate to the required speed of 1500rpm
within 0.3s of applying the step change in speed. Under full load condition (i.e. from 4s
onwards), the rotor experience a drop in speed to 1483rpm but this is restored by the
speed controller within 0.1s. As the rotor speed reaches the required 1500rpm, a torque
of approximately 9Nm develops, as expected, due to the 10% of rated torque friction

applied.

The currents i%; and 7;, of the main 4-pole winding as well as i}, and i;, of the 2-pole

levitation winding are as shown in Figure 6.15. As seen in Figure 6.15(a), i of the 4-
pole motoring winding is maintained at its reference value of 4.90A throughout the
simulation by the current controller. As expected, no q- axis current if;’ was available

from O to 3s since rotor is still stationary. During rotor acceleration, the current reaches

its limit of 15A before dropping to approximately 0.95A during steady state conditions.

When the load torque is applied if: settles at 12.4A.
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Figure 6.15: Stator current variation with time of the vector controlled 4-pole cage rotor bearing

relief IM: (a) 4-pole winding (b) 2-pole winding.

The 2-pole levitation current i, obtained from the simulation, as shown in Figure

6.15(b), is maintained at zero when the rotor is stationary but increases to approximately
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33A when the rotor is rotating and subjected to full load, which is expected. This is
because i}, , applied to the 2-pole current control loop, is made up of two components

.N®.__.N* . N* 6.5
Isq = Isq—orient * Isq—con ( : )
in which i, is the current responsible for maintaining the orientation between 2-

pole field and the 4-pole field whereas i, ,, is responsible for creating F, . In the

simulation, ", is zero at all times since F, = ON is demanded at all times by way of

the u/:; control loop. However, is";i,,,,,,,, is very large since it is proportional to the slip

frequency of the 2-pole field, which is very high (i.e. 25Hz in the motor of SOHz supply
frequency if S0Hz), as given by equation (4.57) and repeated here:

L .
a)sl;/ .|: : V/ad _(Lr _La)lsd:|
N Lo
I —

sq—orient R’ + (L, _Lo )S

Figure 6.16 shows that the vector controlled motor is only successful in producing the

expected F, to levitate the rotor, with F, maintained at zero, when the rotor is

stationary (i.e. between 2and 3s). When the rotor starts to rotate, large values of forces,

F, and F_, are observed particularly during rotor acceleration and full load conditions,

which was not expected from theory.
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Figure 6.16: Vector controlled forces in the x- and y- direction produced by the cage rotor motor.
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Even when the 2-pole levitation winding is ‘directly’ oriented (i.e. by using the actual
peak 4-pole airgap field position, 67" obtained from the spatial DFT of the non-
uniformly spaced airgap reluctance elements flux density samples), the forces produced
by the motor is similar to that shown in Figure 6.16. The spatial DFT on the flux
densities of the non-uniformly spaced airgap reluctance elements is performed using

equation (6.6)
1 b2 4

X(k)=— Ix,. (coské, + jsink6,) d6 (6.6)
7 0

where x; and 6, are the flux density and mechanical angular position of each airgap

reluctance element i respectively. The integration was carried out numerically in the
DCM simulation using the trapezoidal rule. In the above equation, k represents the

index for the DFT. When k¥ = 2, the above equation will give the magnitude and
electrical angular position 67" of the peak 4-pole airgap flux density which is used in

the ‘direct’ orientation of the 2-pole levitation winding.

In order to investigate the large force values obtained in the vector controlled bearing
relief motor, the actual 4- and 2-pole field values in the DCM model is required. These
field values are obtained by performing a DFT on the non-uniformly spaced airgap flux
density samples using equation (6.6). The airgap flux density samples x;, used in the
DFT, contain the dominant 4-pole and 2-pole fundamental fields as well as other field
harmonics arising from the two fundamentals. In order to obtain more accurate results
from the spatial DFT of the non-uniformly spaced flux density samples for the 2-pole
fundamental component and other smaller harmonic field components, the contribution

from the dominant 4-pole field was subtracted from each flux density value x,. This was
achieved by firstly obtaining the spatial DFT magnitude |BjJ T l and phase angle /B>

of the peak 4-pole field using equation (6.6) with the harmonic index k¥ = 2 and x, being

the flux density values obtained at each airgap reluctance element and containing all

field components. Then when obtaining the spatial DFT for other harmonic index values

(k # 2), the flux density values x, used in equation (6.6) are obtained from equation
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(6.7) in which the 4-pole field component is subtracted from the original flux density

values x; as

X =%, —’Bf”lcos(ZBi - éBf”) 6.7)

where 6, is mechanical angular position of each airgap reluctance element i. This

procedure is implemented every time the spatial DFT of the airgap reluctance element
flux densities is applied to the uncontrolled or vector controlled 4+2 pole cage rotor
motor. However, it has to be noted that the results from the spatial DFT of the non-
uniformly spaced airgap elements for harmonic index values k& # 2, are susceptible to
numerical errors due to inaccuracies in equation (6.7). This is because any residual 4-

pole field component present in x; will affect the magnitude and angle of the DFT

results when k # 2.

Figure 6.17 shows the fundamental peak 4-pole and 2-pole fields obtain from the DFT

of the non-uniformly spaced airgap flux density samples.
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Figure 6.17: Peak fundamental magnitudes obtained from the DFT of airgap reluctance elements of

the vector controlled linear cage rotor motor: (a) 4-pole field and (b) 2-pole field.

The average magnitudes of the peak fundamental 4-pole and 2-pole fields obtained from
the DFT of the airgap flux densities in the vector controlled cage rotor motor during the

time intervals 2-3s (when rotor is stationary), 3-4s (rotor is accelerating and reaches
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steady state speed) and 4-5s (when full load torque is applied) are as summarised in
Table 6.3.

Average Average Fundamental Simulation
magnitude of  magnitude of force force
peak 2-pole peak 4-pole magnitude, magnitude,
field[B>7|  field,|B"| IF,.,| [l =JF2+F}

2-3s 17.3mT 0.91T 237.46N 241.86N
3-4s 50.7mT 0.90T 684.47N 647.67TN
4-5s 56.4mT 0.91T 771.25N 2333.6N

Table 6.3: Summary of peak fundamental 4-pole and 2-pole field average magnitudes obtained
from DFT of airgap element flux densities.

The average magnitude of the peak 4-pole field are as expected, which is in the region
of 0.9T. On the other hand, the peak 2-pole field magnitude obtained from the DFT is
only similar to the expected 17.4mT when the rotor is stationary, between 2 and 3s.
When the rotor is in motion, the peak 2-pole magnitude given by the DFT is
approximately 3.08 times the expected value of 17.4mT. By substituting these values of

|Bf" I and |Bf” ' for B and B}, respectively into equation (6.2), the forces obtained

from the fundamental fields |F, _4| during the three different time instances are as shown

in Table 6.3. These results indicate that the force magnitude given by the DFT force

analysis |F,_,| increases when the rotor starts to rotate. This is in agreement with the
force magnitude |F | obtained from the virtual work principle of the airgap elements
(shown in Figure 6.16). However, during rotor acceleration and under load, |F, ,| does

not agree with the force |F].
At this point the reason for the anomalies in the forces F, and F, observed during rotor

rotation, as shown in Figure 6.16, are unknown and is a possible subject for future

investigations into the study of bearing relief cage rotor induction motors.
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6.5. Comparison with Simulink results

The results presented in the previous section can be compared with the results presented
in Section 5.4.4 of a two-axis lumped parameter model simulation of the same MFO

vector controlled bearing relief cage rotor motor carried out in MATLAB Simulink.

Both the 4-pole currents 7,; and i,/ and the 2-pole currents i), and i, were found to be

similar for both simulations, Simulink and DCM. This is shown in Figures 5.6(c),
5.12(a) and 6.15. As observed in Figure 5.15, the Simulink simulation shows that the
vector controlled motor is able to produce successful levitation force to compensate for
the rotor weight even when the rotor is rotating and subjected to full load. This is at
variance to the results obtained from the DCM simulation, shown in Figure 6.16, in
which it was found that the 235.36N levitation force is produced when the rotor is
stationary but the force values increased when the rotor started to rotate. As presented
previously, the fundamental force analysis carried out from the DCM simulation results
shows agreement in the trend that the force in the motor will increase when the rotor is

in rotation, which the two-axis lumped parameter model was unable to predict.

6.6. Chapter summary

This chapter presents an investigation of a linear 4+2 pole bearing relief cage rotor IM.
The results of a DCM simulation of the motor under direct on-line start and MFO vector
control conditions were discussed. From the direct on-line start simulation of the motor,
it was found that the motor only produced a force magnitude of approximately 20% of
the expected 235.36N. This reduction in force is felt to be due to zigzag leakages
observed in the motor due to the high slip experienced by the 2-pole field. In order to
generate the required radial forces in the motor, considerably higher 2-pole currents are
required than predicted from the force expression of equation (6.2). This is in order to
compensate for the high slip leakage effects present in the motor due to the large slip
experienced by the 2-pole field (25Hz at no load when connected to a 50Hz supply).
The possibility of reducing the high slip leakage effects through the suppression of

induced N-pole currents in the rotor will be examined in Chapter 7. This will use a
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wound rotor instead of a cage one. The variation in radial force produced by the motor
compared to the reference force value due to the rotor inducing not only 4-pole but also
2-pole currents are in agreement with findings by Cai and Henneberger (2001) and
Chiba ef al. (1996). Both Cai and Henneberger (2001) and Chiba et al. (1996) suggest
the use of a rotor that does not allow any levitation 2-pole rotor currents to flow in the

bearingless induction motor.

In the vector controlled simulation of the cage rotor motor, it was observed that the
motor only produces the predicted levitation force when the rotor was stationary. Once
the rotor started to accelerate and rotate, the force produced was much higher. As
explained in Section 6.4, the magnitude of force obtained from the simulation during
rotor rotation was not explainable from the DFT analysis of the fields in the motor, even
though the DFT force analysis showed that the force magnitude does increase when the
rotor rotates. Further investigations into the reason for this force behaviour were not
carried out in this thesis. It is a possible subject for future studies although it is not clear
how a high quality (small) N-pole field can be obtained when high slip frequency
N-pole currents are induced in the rotor. It is known that leakage effects of high slip
rotor currents severely compromise the sinusoidal nature of the surface airgap field. It is
for this reason that the remaining studies consider wound rotors where N-pole currents

at high slip are not induced.
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Chapter 7

Dynamic circuit modelling (DCM) of a bearing relief wound

rotor induction motor

7.1. Introduction

The results presented in Chapter 6 showed that a vector controlled bearing relief cage
rotor IM produces levitation forces that are consistent with theory when the rotor is
stationary but further studies into the force behaviour during rotor rotation is required.
Furthermore, the direct on-line start investigations of the cage rotor motor indicates that
the reduction of high slip leakage effects occurring in the motor could be eliminated
through the suppression of induced N-pole levitation currents in the rotor. Therefore, in
this chapter, studies on a bearing relief motor with a wound rotor that suppress any N-
pole rotor currents are presented. The 2-pole levitation winding required to create a
bearingless 4+2 pole wound rotor IM is identical to that in the cage rotor type motor.
The design of the PI controllers required for vector control was carried out in the
Chapter S. This enabled the vector control schemes proposed in Chapter 4 for the
wound rotor type motor to be simulated using MATLAB Simulink, showing that the
mixed field oriented vector control was the most suitable vector control scheme for this
bearingless induction motor type. However, the MATLAB simulation was performed

based on a simplified dq representation of the 4+2 pole wound rotor bearingless IM.

In this chapter, simulations of the same 4+2 pole wound rotor induction motor under
bearing relief conditions carried out using the DCM technique, introduced in Chapter 2,
are presented. In Section 7.4, the DCM simulation is performed on a linear iron type

bearing relief motor. Non-linearity effects on the system performance are reported in
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Section 7.5.2. A comparison between the DCM simulation results and the MATLAB

Simulink simulation results is presented in Section 7.6.

Before the vector controlled simulation of the wound rotor bearingless motor is
presented, this chapter will firstly present simulation results of a DCM modelled
indirect rotor field oriented (IRFO) vector controlled 4-pole wound rotor induction
motor without the presence of 2-pole levitation winding. An appraisal of the airgap flux
vector position and orientation will also be presented as this vector position is crucial in
the vector control scheme of the bearing relief wound rotor induction motor. It will be
shown that an error of less than 5° between the controller airgap flux vector position and

the actual machine airgap flux position can cause a significant F, to be produced.

Secondly, an uncontrolled simulation of the linear iron 4+2 pole wound rotor induction
motor will be discussed in Section 7.3. As the motor is uncontrolled, i.e. it is started
directly on-line, the force produced will be acting in no particular direction. Hence, only
the force magnitude will be of primary concern. The effects of non-linear iron on the
direct on-line start of the 4+2 pole wound rotor motor will also be presented in Section
7.5.1. The iron non-linearity was found to introduce large harmonic forces which
interfered with the fundamental force acting on the rotor when compared to that
obtained using the linear iron. These harmonic forces were due to the interaction
between other M+ N=2 pole combinations. Of these, the harmonic force from
interaction of the third harmonic of the 2-pole field, which has a 6-pole variation, with
the fundamental 4-pole field is large. Therefore, an uncontrolled simulation of a 4+6
pole wound rotor induction motor was also carried out in Section 7.5.3 as theoretically
this pole combination of main and levitation winding would not create any harmonic
fields capable of interacting with the 4-pole or 6-pole fundamental fields based on the
M+ N =2 pole relationship.

7.2. Vector control of a wound rotor IM in DCM

A 4-pole wound rotor IM with only the 4-pole main winding is first simulated in DCM
with an indirect rotor field orientation (IRFO) vector control scheme. In order to utilise

the s-plane current and speed loop controllers (Section 5.4.1) in the DCM simulation,
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the PI controllers are transformed into the discrete z-plane using the Bilinear Transform

(Franklin ef al., 1998), s = 2(z - 1)/ (tmp (z+ 1)) The sampling time is chosen such that
the sampling frequency ratio (i.e. f,,, /controller bandwidth ) exceeds 15. Therefore,
the current loop sampling time 7., , was set to 100us whereas the speed loop sampling

time ¢ was chosen to be 2ms.

samp—@

In all the simulations of this chapter, a step speed reference @, of 1500rpm is applied to
the speed control loop at 3s with a load torque equal to 90% of the rated torque 7, ,, (as

listed in Table 5.1) given at 4s. An external load having inertia equal to the rotor inertia

of 0.0713kgm’ as well as a linear friction of 0.17,,,, at 1500 rpm is also applied

throughout the simulation. The maximum simulation time step was set to 50ps with a
Newton Raphson error tolerance set to 1x10® and a maximum of 15 iterations per time
step. The linear equations solver error tolerance was set to 1x107 with a maximum of

200 iterations and a maximum threshold of 1x10°7.

Figures 7.1 to 7.5 were obtained from the linear iron (4, =1350) DCM simulation of
the IRFO vector controlled 4-pole wound rotor induction motor. As seen in Figure
7.1(a), the PI speed control produced a ramped response to the step speed reference of
1500rpm applied at 3s. The speed control was also able to maintain the speed at
1500rpm even after the load torque was applied at 4s. The corresponding torque
variation is shown in Figure 7.1(b). As shown in the inset graph of Figure 7.1(b), the
torque is observed to experience an oscillation of 300Hz from the moment the rotor
starts to rotate (3s onwards). This oscillating frequency is equal to the main 4-pole stator
winding phase belt passing frequency as observed by the rotating field in the motor. The
term phase belt is the name given to the stator winding coil group and in the 4-pole
motor there are 6 phase belts per pole pair since the main winding has 3 phases.
Therefore, the 50Hz rotating field sees the 6 phase belts passing at 300Hz. This
oscillating behaviour is also observed in all the vector control simulation results
reported in this chapter (Sections 7.2 and 7.4). Therefore, when referring to the vector
controlled quantities, the average value of the oscillating waveform is taken which is
obtained by numerical integration. A similar oscillation, but at 900Hz, was observed in

the vector control simulations of the cage rotor (Sections 6.2 and 6.4). However, unlike
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the wound rotor, no possible explanation for the 900Hz could be found for the cage

rotor motor.
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Figure 7.1: (a) speed and (b) torque variation of the IRFO vector controlled 4-pole wound rotor IM.

The currents i, and i, obtained from the simulation are shown in Figures 7.2(a) and

(b). The darker set of lines in the current variations were obtained by transforming the
ap- axis stator currents using the controller IRFO orientation angle é, whereas the
currents plotted with the lighter set of lines use the angle of the peak rotor flux in the
motor, 7 (‘direct’ orientation). 87" is found from a carrying out a spatial discrete

Fourier transform (DFT) of the actual rotor flux flowing in each rotor tooth, using

equation (6.1).
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Figure 7.2: Stator current variation of the IRFO vector controlled 4-pole wound rotor IM: (a) d-

axis (b) q- axis.
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It is clearly seen from Figure 7.2 that the IRFO orientation angle is able to track the
exact position of the peak rotor field in steady state conditions since both current plot
lines are very similar from O to 4s. However, when the load is applied at 4s, the dq- axis
stator currents obtained from the DFT angle 8”7 experiences an oscillation, which is
found to be at slip frequency. Figure 7.3 shows the variation of the difference between
the IRFO orientation angle and the peak rotor flux DFT angle. This angle difference
also illustrates the oscillating behaviour observed when the g- axis stator current is non-
zero, i.e. when the load torque is applied. The angle difference observed is between

-2.6° and 1.5° electrical.

Angle difference (degrees electrical)

Motoring field 100% load torque
¢ applied Time (s) l ¢ applied

Figure 7.3: Difference between the IRFO angle and peak rotor flux angle 6" obtained from DFT.

The main reason behind obtaining the angle of the peak rotor flux from its spatial DFT
is to validate the IRFO vector control orientation angle. Another method of validating
the orientation angle is by obtaining the position of the peak rotor flux directly from the

rotor flux linkages of the three rotor phases. In order to obtain this peak rotor flux angle

(denoted here as 67*"), the three phase rotor flux linkages v, are calculated by

summing up the individual fluxes in the rotor tooth linked by each rotor phase winding

before transforming them into equivalent two phase rotor fluxes /;,,. The superscript

‘C in y’,, and v, is to denote that these flux linkages are obtained in the rotor frame,
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which is rotating with an electrical speed @, . Therefore, the peak rotor flux angle is

given by

ra

gres — tan_'[w:ﬂ }+w, +y 7.1

where 7 is an offset angle between the first stator tooth and the reference axis. It was

found that the IRFO orientation angle é, is also different to 67" and the difference
between the two angles (Figure 7.4) also exhibits an oscillating variation with time as
seen in the difference between &, and the rotor flux DFT angle 6”7 (Figure 7.3).

Furthermore, 6™ is similar to 6 .

Angle difference (degrees electrical)

100% load torque

Motoring field I
applied Time (s) 4 applied

Figure 7.4: Difference between the IRFO angle and peak rotor flux angle 6™ obtained from rotor

phase flux linkages.

It was found that the oscillations in the angles of 87*"  obtained from equation (7.1), is
due to DC offsets observed in all the three phases of the rotor flux linkages v, when

load was applied to the motor as shown in Figure 7.5. The offsets in the individual rotor
phase flux linkages were found to be due to residual flux present at each node in the
DCM model. 677 is also affected by the residual flux since it is obtained from the

DFT of the fluxes flowing in each rotor tooth. The residual flux on each node in the

model arises from the fact that the model solves for conservation of rate of change of
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flux equation on each node. This means that any constant flux present at any node will
not be dissipated, which in turn gives rise to the offsets in the flux linkages observed

when the fluxes are added up.
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Figure 7.5: Rotor three phase flux linkage variations in rotor frame.

Therefore, the DCM model was altered such that conservation of flux equation (given
by equation (2.8)) at each node is solved instead of equations for rate of change of flux.
This ensures that no constant flux exists in any node. The changes required for
enforcing nodal flux conservation are as described in Section 2.5(b). Henceforth, all

simulations are based on flux conservation on each node of the DCM model.

For this reason, the rotor flux oriented vector control of the wound rotor induction
motor was repeated with the model solving for conservation of flux equation at each
node. Without any change to the mechanical equations, the speed and torque variation
against time were found to be similar to those obtained previously when solving for

conservation of rate of change of flux equation at each node. However, the dg- axis
stator currents in the motor obtained from é, , represented by the darker set of lines, and

6P | represented by the lighter set of lines, are now in agreement as seen in Figure 7.6.

The error between the two angles, shown in Figure 7.7, was also found to be less than

0.93° electrical on average, which is acceptable. However, this error can be reduced

further by altering the rotor time constant 7, = L)' /R .
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Figure 7.6: Stator current variation of the IRFO vector controlled motor with solution based on

conservation of flux equations: (a) d- axis (b) q- axis.
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Figure 7.7: Difference between the IRFO angle and peak rotor flux angle obtained from DFT with

solution based on conservation of flux equations.

These results were then compared with the results obtained from a Simulink simulation
of the same IRFO vector controlled 4-pole wound rotor induction motor. It is observed
that the speed, torque and dq- axis stator current variations exhibits very close

agreement between the two simulation methods as indicated by Figures 7.8(a)-(d).
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Figure 7.8: Comparison between the DCM and Simulink simulations of IRFO vector controlled

motor: (a) speed, (b) torque, (c) stator current d- axis and (d) stator current q- axis.

721 Verification of peak airgap flux position

The position of the peak 4-pole airgap flux is crucial in the mixed field orientation

(MFO) vector control scheme proposed for the bearingless wound rotor IM. In the MFO

~

vector control scheme, the position of the controller peak 4-pole airgap flux &, is
obtained indirectly from the controller peak rotor flux angle é, and the flux linkages

w™ and t//f,‘g (defined in the rotor flux frame) as given by:

6, =0, +tan™ Yoo, =0 +¢ (7.2)
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LM

Woi = T vt + (L) =L )iy (1.3)
wit =LY -L))i, (7.4)

M

. 1 , . .
In equation (7.3), wM = S L‘y /R f! =1 i, and the values of inductances and resistance

are as given in Table 5.3.

This angle éo defines the orientation for the currents, voltages and flux linkages of the

2-pole levitation winding. Therefore, any error in this angle will cause an error in the
levitation and lateral forces produced. Hence, a verification of this controller angle is

vital in order to achieve successful control. From Figure 7.9, the time-varying difference

between éo and é, shows a difference & of approximately 2.80° on average during

rotor acceleration and 2.42° average on load.
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Figure 7.9: Difference between the controller peak airgap flux angle éo and controller peak rotor

flux angle é, .

In the previous section, the IRFO orientation angle é, was verified by comparing it

with the angle 6”7 obtained from performing a spatial discrete Fourier transform

(DFT) of the flux density flowing in each inner rotor tooth reluctance element.
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Therefore, assuming that the flux density flowing in the rotor tooth-tip (refer to Figure

6.3) is the same as the flux density in the airgap, use of the angle éa can be justified by

comparing it with the angle 6, given by performing a spatial DFT of the flux density
flowing in each rotor tooth tip reluctance element. Referring to Figure 7.10 it was found

that 6 lags éo by an average of 2.47° during rotor acceleration and 1.45° average on
load. This implies that 67 is closer to §,, with (6, = 6°7 ). Therefore, the accuracy of

6, is not verified from comparison with 67 .

T
|
!
!
!
!
|
!
|

Figure 7.10: Graphical representation of the peak rotor and peak airgap flux positions obtained
from controller and DFT of flux densities in the rotor tooth-tip and airgap reluctance elements.

Alternatively, one can verify é,, by carrying out the spatial DFT on the flux densities in
the actual airgap reluctance elements. This is denoted as 87" . However, due to the fact

that the airgap elements are non-uniformly spaced around the airgap circumference, a
non-uniform spatial direct Fourier transform (DFT) was utilized. Equation (6.6) was

used to perform the non-uniform spatial DFT, which is repeated here:

2n
x(k)=1 [ x(cosk8, + jsin k6,) d6 (1.6)

5

where x, and 6, are the flux density and mechanical angular position of each airgap
reluctance element i respectively. When k = 2, the above equation will give the

magnitude and electrical angular position 6. of the peak 4-pole airgap flux density in
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the 4-pole wound rotor motor. It is expected that this angle will be used to verify the
controller angle éo. From the simulation, it was found that 6% leads 6, by

approximately &, = 4° during rotor acceleration and ¢, = 4.15° on load.

Hence, there exists a difference between 6" and éo. However, this difference
decreased to approximately 0° when the simulation was repeated with the controller

value of /', the equivalent circuit’s referred rotor leakage inductance, increased to
approximately 3 times its original value of 4.37mH and the mutual inductance LY

maintained at 235.36mH. This result indicates that the controller angle 6, obtained

using equation (7.3) could not accurately predict the actual position of the peak airgap
flux when using the equivalent circuit parameters of the motor derived in Chapter 5.
This could be due to the assumption of equal leakage reactance split on the stator and
rotor side used in the equivalent circuit parameter calculations of the 4-pole winding
based on the no load and locked rotor tests. Furthermore, the mesh employed to model
the stator and rotor teeth used in the parameter derivation tests can be considered to be
crude since it only has 1 slot leakage element modelling only the slot tip leakages. In
order to obtain much better results from the locked rotor test, which determines the
leakage inductances in the motor, more slot leakage elements would have to be included

across the middle of the stator and rotor slots as shown in Figure 7.11.
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Figure 7.11: Possible improvements to the reluctance mesh model for better slot leakage modelling.
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7.3. Simulation of radial forces

This section discusses an uncontrolled DCM simulation of normal forces produced by
the bearing relief wound rotor IM. This simulation is comparable to that performed for
the cage motor in Section 6.3 since the stator for both motors consists of a 4-pole main
winding as well as an additional 2-pole levitation winding on the stator. The only
exception is the 4-pole wound rotor replacing the cage rotor of Section 6.3. In the DCM
model, all reluctance elements were chosen to be of type ‘linear iron’ having a
4, =1350 with the exception of the slot tip leakage elements, which were chosen to be
of type ‘air’, due to the semi-closed slots on both stator and rotor side. The motor was

modelled with only one rotor axial skew section with a skew angle of 15° electrical.

As the motor is uncontrolled, the terminals of both stator windings are directly
connected to sinusoidally varying voltage sources. A 415V rms voltage was applied to
the 4-pole main windings. Similar to the cage rotor simulation, the applied voltage of

the 2-pole levitation winding is determined from (refer equation (4.12)):

29 v yv Br2rL 7.7

-\/-2— ws N

where f =50 Hz and the values of the 2-pole winding factor k) and total series turn

N N _
VY ~EY, =

N, are given in Table 5.4(a). However, a value of the peak field due to the levitation
winding, By, is required. This is evaluated from the relationship between the
magnitude of required force and the peak fields due to the main winding, B, and the

levitation winding, B ﬁ' , given by equation (3.27), repeated here for convenience,

' 2 2_rLﬂB£4 BN (78)
|F|= Fy +Fx ——370__ F

From the vector control simulation of the 4-pole induction machine carried out in the

previous section, the peak of the main 4-pole field B was found to be 0.9T. To

produce a force magnitude of 235.36N, to compensate for the rotor weight, a peak
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2-pole flux density By of 17.4mT is needed. Hence, by substituting BY of 17.4mT
into equation (7.7), a terminal voltage of 4.20V rms is required for the 2-pole levitation
winding, which is exactly the same as that applied for the cage type motor. As with the
cage rotor motor simulation, a load torque equal to the motor rated torque of 99.5Nm

was also applied after 1s of the simulation.

Figure 7.12 shows the force magnitude obtained from the direct on-line simulation of
the wound rotor IM. It is observed that in steady state at no load, the motor produces a
radial force magnitude of 235.97N, which is 0.26% more than expected. When the load
is applied, the force magnitude drops to 228.77N which is 3.1% of the no load force

acting on the rotor. This is due to the fields in the motor not being kept constant.

100% load torque

Force magnitude (N)

Time (s)

Figure 7.12: Force magnitude obtained from a direct on-line start of a bearing relief wound rotor

induction motor.

In order to verify the force magnitude obtained from the simulation, the actual peak 4-
and 2-pole field values are evaluated by performing a spatial discrete Fourier transform
(DFT) on the flux densities of the non-uniformly spaced airgap reluctance elements
around the rotor circumference using equation (7.6). As mentioned in Section 6.4, in
order to obtain more accurate results from the spatial DFT of the non-uniformly spaced
flux density samples for the 2-pole fundamental component and other smaller harmonic

field components (k # 2 in equation (7.6)), the contribution of the dominant 4-pole field

in each flux density sample x, was subtracted to obtain x; using the following equation:
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X, =x, —|Bf” |cos(26,. - £B)™ ) (7.9)

where le” | and ZB/™ are the magnitude and phase angle of the dominant 4-pole

field, obtained from equation (7.6) when k = 2, and 6, is mechanical angular position of

each airgap reluctance element i. This procedure is implemented every time the spatial
DFT of the airgap reluctance element flux densities is applied to the uncontrolled or
vector controlled 4+2 pole wound rotor motor. However, it has to be noted that the
results from the spatial DFT of the non-uniformly spaced airgap elements for harmonic

index values k # 2, are susceptible to numerical errors due to inaccuracies in equation

(7.9). This is because any residual 4-pole field component present in x, will affect the

magnitude and angle of the DFT results when k = 2.

Average magnitude of peak  Average magnitude of peak

2-pole field, B, | 4-pole field, | B, |
No load 16.1mT 0.91T
Full load 14.2mT 0.92T

Table 7.1: Summary of peak fundamental 4-pole and 2-pole field average magnitudes obtained
from DFT of airgap element flux densities.

Figure 7.13 shows the magnitude of the peak fundamental 4-pole and 2-pole fields in
the motor, obtained from the spatial DFT of the airgap reluctance element flux density
samples. The average magnitudes of the peak fundamental fields under no load and full
load conditions are as summarised in Table 7.1. The average magnitude of the peak
4-pole field are, as expected, in the region of 0.9T. On the other hand, at no load, the
peak 2-pole field magnitude is 7.5% less than the expected 17.4mT. By substituting

these values of ]Bf" | and IBZDW I for B and B} , respectively into equation (7.8), the

force obtained from the fundamental fields during no load and full load conditions can
be calculated as 219.12N and 195.25N respectively which corresponds to a difference

of 7.3% and 14.7% from the force obtained from the simulation. These differences in
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force magnitude could be due to numerical errors associated with the non-uniform DFT
results for the peak 2-pole filed magnitude mentioned above. Even so, these results
indicate that the forces obtained from the DFT peak magnitudes are in broad agreement

with the force obtained from the virtual work principle of the airgap elements.
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Figure 7.13: Magnitude of the fundamental fields of the wound rotor bearing relief induction motor
at direct on-line start: (a) 4-pole and (b) 2-pole.

The results indicate that the wound rotor bearing relief IM produces the constant force
magnitude of 235.36N required to levitate the rotor in comparison to the 46.59N force
obtained from the cage rotor motor shown in Figure 6.8. As discussed in Section 6.3,
the cage rotor was unable to generate the required radial forces due to the high slip
leakage effects introduced in the rotor by the 2-pole field which meant that considerably
higher 2-pole currents are required than predicted from the simple force expressions of
equation (7.8). In addition, the 2-pole airgap field waveform at the cage rotor surface
will be subject to high harmonics that will cause increased losses and unwanted force
disturbances. However, in the 4-pole wound rotor motor, the induced 2-pole rotor
current is suppressed. Therefore, the wound rotor does not exhibit any high slip leakage
effects as observed in the cage rotor type motor. This is evident in the 2-pole airgap flux
density variation around the circumference of the wound rotor motor as calculated at the
tooth-tips on the stator and rotor shown in Figure 7.14. This was obtained using the
same method as that for the squirrel cage machine, that is by running the direct on-line
simulation at steady state and deactivating the 4-pole field by setting the main stator

winding stator phase resistance to be very large. Figure 7.14 clearly illustrates that the
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airgap flux density in the wound rotor machine is sinusoidal in shape and does not
exhibit the zigzag leakage effects seen in the squirrel cage machine (Figure 6.11). The
peak magnitude also corresponds with the magnitude of the fundamental 2-pole field of
Figure 7.13(b). The reason for these good waveforms is that the wound rotor machine
has no 2-pole induced currents flowing at large slips. Therefore, the suppression of the
2-pole rotor current is a desirable characteristic for radial force production and thus the

wound rotor was selected for further control studies.
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Figure 7.14: 2-pole airgap flux density distribution around the circumference of the wound rotor

motor at time 0.8s taken on the stator and rotor side.

Hitherto, the radial force is directed in an arbitrary direction. In order to control the

direction in which the force is produced, the peak magnitude and phase of the 2-pole

field B f," must to be controlled such that it is aligned with the peak of the main 4-pole
field B . This is achieved through a vector control scheme, which was previously

designed for a bearing relief wound rotor induction machine in Section 4.4. Even
though three vector control schemes were proposed for the wound rotor bearingless
induction motor, the mixed field orientation (MFO) vector control scheme was chosen,
as summarised in Chapter 5, due to its simpler main winding control and airgap field
oriented vector control of the levitation winding which was able to produce the required

levitation force as observed from the MATLAB Simulink simulation results presented

in Section 5.4.4.
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7.4. Mixed field orientation (MFQO) vector control simulation

In this section, a DCM simulation of a vector controlled linear 4+2 pole wound rotor
induction motor with short-circuited 4-pole wound rotor will be presented. The vector
control scheme considered is a mixed field orientation (MFO) scheme, in which the
main 4-pole winding is rotor field oriented whereas the 2-pole levitation winding is
oriented onto the 4-pole airgap field, previously proposed in Section 4.4 for motors with
levitation N-pole rotor current suppression (refer to Figure 4.7). An external load having
inertia equal to the motor inertia of 0.0713kgm’ as well as a linear friction of 0.17,,,, at
1500 rpm was applied throughout the simulation. The current controllers for the 4- and
2-pole systems utilised in this vector control scheme was designed, in Chapter 5, with a
natural frequency of 400Hz and 100Hz respectively and a damping factor of 0.8. The
speed controller was also designed in Chapter 5 with a natural frequency of SHz. These
controllers were then transformed into the discrete z-plane using the Bilinear transform
and implemented in the simulation with a sampling time of 100us for the current control
and 2ms for the speed control. The main 4-pole field was given time to establish by

applying i** of value 4.90A from the start of simulation. Once the main 4-pole field
had been established, the force references, F y' of 235.36N, which is equal to the rotor

weight, and F, of ON, were applied at 2s. A speed reference of 1500rpm was given at

3s and a load of 89.55N, which is equal to 90% of the rated torque 7,

rated >

was applied at

4s.

Figure 7.15 illustrates the speed and torque variation of the wound rotor type bearing
relief induction motor simulated with the torque current limited to 116% of the rated
ifg . The speed variation against time clearly shows that the motor was able to accelerate
to the required speed of 1500rpm within 0.3s of applying the step change in speed. As
expected, the speed rises as a ramp. As the load torque is applied at 4s, the speed
variation experiences a drop to 1483Nm but this was quickly restored by the speed
controller within approximately 0.1s. As the rotor speed reached the required 1500rpm,
the torque did not settle down to zero, as expected, due to the 10% of rated torque

friction applied.
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Figure 7.15: (a) speed and (b) torque variation of the vector controlled 4-pole wound rotor bearing

relief IM.

The dg- axis stator currents of the main 4-pole winding and 2-pole levitation winding

are as shown in Figure 7.16. As shown in Figure 7.16(a), the d- axis stator current o

of the 4-pole motoring winding is maintained at its reference value of 4.90A throughout

the simulation by the current controller. As expected, no g- axis current iy, is available

from O to 3s as the rotor is still stationary. The current reaches its limit of 15A during

rotor acceleration before dropping to approximately 1.25A as the rotor speed remains

steady at 1500rpm and when the load torque is applied it settles at 12.7A.
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Figure 7.16: Stator current variation of the vector controlled 4-pole bearing relief IM: (a) 4-pole

winding (b) 2-pole winding.
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The 2-pole levitation current iﬁ, obtained from the simulation, as shown in Figure
7.16(b), is maintained at zero on average at all times. This current value was expected
since if; is dependent on the reference F,, which is equal to zero in the simulation, as

given by equation (4.64) derived in Chapter 4 and repeated here

:N* N N “

i | _ 220k Ny [ Fy (7.10)
i aBMNL) | F,
The d- axis current component of the levitation winding i), obtained is 0.23A after 2s
as expected. This is consistent with the value of i,;" calculated using the above equation
since F, applied to the simulation is 235.36N at 2s. The value of the peak 4-pole
fundamental field BY used in the calculation was 0.9T with values of the 2-pole
(N =1) levitation winding factor kY , total number of turns per phase NY . and

magnetizing inductance LY used are given by Table 5.4.

r—x- direction —— y- direction

Levitation field —ﬂ @*=1500rpm
300 Tapplied | . é

Force (N)

Motc)n'ng field . 100% load torque
applied Time (s) applied

Figure 7.17: Vector controlled forces in the x- and y- direction produced by the bearing relief

wound rotor motor.

The most important result of this simulation is in Figure 7.17, which shows that the

machine produces the required F, to levitate the rotor from the moment the force

reference Fy' —235.36N is applied. However, non-zero F, is observed when the rotor
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accelerates and when the load torque is applied. The mean value of F, is found to be

approximately 16.71N and 15.7N at these particular instances.

The cause of the non-zero F, is felt to be due to the fact that the peak airgap flux
position derived by the controller éo is different to the peak angle obtained from the

non-uniform DFT of the actual airgap reluctance element fluxes 6,” during transient

conditions as shown in Figure 7.18. The average angle difference between 6, and 6,

was found to be 4° during rotor acceleration (between 3 to 3.2s) and 4.15° when the
motor is subjected to full load. This result is identical to that observed in Section 7.2.1
for the vector control of just the 4-pole wound rotor motor since the bearing relief motor

simulated here uses the same 4-pole motor for torque production.

Levitation field ®*=1500rpm
20 applied I

Angle difference (degrees electrical)

-10

Motoring field 100% load torque
€ qppiicd Time () | applied

Figure 7.18: Difference between the actual peak airgap flux angle 6, and the controller peak

airgap flux angle é,, .

When the simulation of the bearing relief wound rotor IM was repeated with 6" used
as the orientation angle of the 2-pole levitation winding voltages, currents and flux
linkages (a form of ‘direct’ orientation) instead of the controller angle éa , the mean F

obtained was found to be approximately zero even during transient conditions as shown

in Figure 7.19. However, the force F, still experienced oscillations at a frequency of

300Hz but of larger amplitude (approximately 10N) as compared to that obtained using
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éo observed in Figure 7.17. As mentioned in Section 7.2, this 300Hz frequency, also
observed in F,, is the main 4-pole winding phase belt passing frequency as observed by

the rotating fields in the motor.

The results indicate that the controller angle éa inaccurately predicts the position of the

airgap flux since it is dependant on the equivalent circuit parameters of the 4-pole
winding that, as discussed previously in Section 7.2.1, were obtained from the no load
and locked rotor tests performed using the crude reluctance mesh which underestimated

the rotor leakage occurring in the motor.
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applied ! ! ]

300
250 A
200 -
150 1
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Figure 7.19: Forces in the x- and y- direction produced by the vector controlled bearing relief

wound rotor motor obtained using 0 as the 2-pole winding orientation angle.

From Figures 7.17 and 7.19, it can be concluded that a slight error in the orientation

angle 6,, in this case 4° error on average, will create an F, force even when the

reference x-direction force given was zero. The force F, is less affected by the error in

éo since it is governed by a cosf, function as compared to sin éo for F,.

The spikes observed in Figure 7.16(b), 7.17 and 7.19 are due to numerical effects of the

simulation and not due to any transients occurring in the bearing relief motor.
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7.5. Effects of non-linear iron on bearing relief IM performance

Thus far, all the results presented in this chapter have been obtained by simulating a
DCM model of the wound rotor induction motor in which all reluctance elements were
of type linear iron having a relative permeability 4, of 1350. In this section, the effects
of non-linear iron on the simulations of the 4+2 pole induction motor with a 4-pole
wound rotor at direct on-line start and with a mixed field oriented vector control scheme
will be presented. In the non-linear iron simulations, the permeability of each reluctance
element, set to be of type ‘non-linear iron’, is obtained from a cubic spline interpolation

of the B-H curve shown in Figure 7.20.
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Figure 7.20;: B-H curve of the non-linear iron.

7.5.1. Uncontrolled force simulation

Firstly, the effect of non-linear iron on the direct on-line simulation of the wound rotor
induction machine of Section 7.3 is investigated. The same rms voltage is applied to
both the 4-pole and 2-pole winding terminals, that is 415V for the former and 4.20V for
the latter. After 1s, full load torque is applied to the wound rotor motor. It is found that
with the introduction of non-linearity, the average no load force magnitude obtained
reduces to 203.83N from the linear value of 235.97N. On load, the force magnitude
drops further to 200.05N compared to the linear iron force of 228.77N. It is also noticed

that the 100Hz oscillation amplitude in the non-linear force magnitude variation
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increases to 67.7N peak-to-peak at full load from the linear value of 1.3N. Moreover, in
addition to the higher oscillation frequency of 100Hz, a low frequency oscillation of
9.5Hz was observed when the full load torque was applied. This frequency is related to
the number of rotor phase belts per pole pair, which is 6, and the slip frequency. The
frequency is always the product of the two (9.5Hz = 1.6Hz x 6 at full load in Figure
7.21).

[—— non-linear linear]

e i E ¢ 100% load torque
600 S .. Bl applied .|, SENENERHI el 5t

2.5

Time (s)

Figure 7.21: Force magnitude obtained from the direct on-line simulation of the 4+2 pole wound

rotor motor under linear and non-linear iron conditions.

Figure 7.22(a) and (b) respectively show the magnitude of the peak fundamental 4-pole
and 2-pole fields in the non-linear motor obtained from a DFT of the flux density
flowing in all non-uniformly spaced airgap reluctance elements. The average values of
the fundamental field magnitudes obtained are summarised in Table 7.2 in which it is
observed that these values are very similar to that obtained in the linear iron simulation
summarised in Table 7.1. However, due to the non-linearity introduced by the B-H
curve, triplen field harmonics are now observed to be present in the motor. The most
significant harmonic field observed is the third harmonic of the 2-pole field, having a 6-
pole variation and an average magnitude of 3.6mT at no load and 5.5mT at full load, as
shown in Figure 7.22(c). This 6-pole harmonic field will interact with the fundamental
4-pole field to create a harmonic force of 49.14N, on average, at no load and 74.17N, on
average, at full load. This is possible since this pole combination satisfies the criterion

of constant force production that is M~ N =+2. The 6-pole harmonic field was also
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observed to oscillate at 100Hz with a peak-to-peak amplitude of 4.8mT at full load. It is
due to this behaviour in the 6-pole harmonic that the force obtained from the simulation

experiences the 67.7N peak-to-peak oscillation at the 100Hz frequency mentioned

above.
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Figure 7.22: Peak fundamental and peak harmonic field magnitudes present in the non-linear
bearing relief motor: (a) fundamental 4-pole field, (b) fundamental 2-pole field and (c) 3™ harmonic
of the 2-pole field (i.e. 6-pole variation).

Average magnitude  Average magnitude Average magnitude

of peak 2-pole of peak 4-pole of peak 3™ harmonic

field, |B;"” | field, | B, | of 2-pole field, | By |
No load 16.5mT 091T 3.6mT
Full load 14.7mT 0.90T 5.5mT

Table 7.2: Summary of peak 4-pole, peak 2-pole and peak 6-pole harmonic field average

magnitudes obtained from DFT of airgap element flux densities in the non-linear simulation.
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In the linear iron simulation results, the magnitude of force obtained from the virtual
work principle (as seen in Figure 7.21) was found to be equal to the weight of the rotor
and was in broad agreement with the force calculated from the fundamental magnitudes

of the 4-pole and 2-pole fields using equation (7.8). In the non-linear iron simulation,

the force IF2_4| calculated using equation (7.8) from the DFT results for peak 4- and 2-
pole fundamental magnitudes (summarised in Table 7.2) was 225.21N and 198.24N on

no load and full load respectively. When |F2-4| is compared to the magnitude of force
obtained from the virtual work principle in the non-linear simulation |F|, the former is

more than the latter at no load but is slightly lower than |F | under load as shown in

Table 7.3.
Average force
verag Fundamental force Main harmonic force
magnitude from
from DFT, |F, ,| from DFT, |F, ,|
simulation, | F|
(from extracted data in (from extracted data in
(from virtual work . .
airgap) airgap)
principle)
No load 203.83N 2252IN 49.20N
Full load 200.05N 198.24N 79.34N

Table 7.3: Comparing force obtained from the simulation with the force calculated from

magnitudes of the peak 4-pole and 2-pole fields given by the DFT.

Therefore, it can be observed that the drop or rise in fundamental force to create the
virtual work derived force is dependent on both the magnitude and direction of the
harmonic force vector created from the interaction of the third harmonic of the 2-pole
field with the fundamental 4-pole field. It can be summarised that the force obtained
from the virtual work principle, shown in Figure 7.21, is the resultant force obtained
from the vectorial sum of fundamental and harmonic forces. In this direct on-line start
simulation, no in-depth analysis of the force vectorial sum is carried out since the main
objective of this simulation was to introduce the effect of non-linear iron on the force
produced in the 4+2 pole wound rotor motor and to determine if the wound rotor motor

produces the expected 235.36N force which was achieved in the linear iron simulation.
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However, the vectorial sum force analysis will be carried out in the vector control

simulation of the non-linear motor in Section 7.5.2.

As observed in the direct on-line start simulation, the iron non-linearity introduces
triplen spatial harmonics of the 2-pole and 4-pole fields in the wound rotor motor which
were not present in the linear iron simulation of Section 7.3. Furthermore, in this
simulation, the magnitude of field harmonics originally present in the linear iron
simulation, for example the 5% 7™ and 11" was found to have increased due to the
introduction of iron non-linearity. These harmonics have an associated pole number and
if the difference between the 4-pole harmonic pole number and the 2-pole harmonic
pole number is +2, a harmonic force is created. This can either oppose or strengthen the
fundamental force created from the fundamental field interactions depending on both
the magnitude and direction of the harmonic force. It was observed in the direct on-line
start that one of the harmonic forces is created from the interaction between the
fundamental 4-pole field and the third harmonic of the 2-pole field. However, other
harmonic field interactions can also create harmonic forces and some of these are shown

in Table 7.4.

Pole number 4-pole harmonic index,  2-pole harmonic index,
combination (M, N) K4 pote k2 pote

4+2 1 (fundamental) 1 (fundamental)
4+6 1 (fundamental) 3

12+10 3 5

12+14 3 7

20+18 5 9

20+22 5 11

28+26 7 13

28+30 7 15

Table 7.4: Harmonic pole number combinations in the 4+2 pole wound rotor motor.

In Table 7.4, only odd harmonics are considered to interact to create harmonic forces
since it was observed in the non-linear direct on-line start simulation that even

harmonics fields of both the 4-pole and 2-pole field were found to have very much

161



Chapter 7: Dynamic circuit modelling (DCM) of a bearing relief wound rotor IM

smaller magnitudes in comparison with the odd harmonics. The 4+6 pole combination is
regarded as the main contributor to the harmonic forces since it involves an interaction
with the dominant fundamental 4-pole field which typically has a peak magnitude of
0.9T. This 4-pole fundamental magnitude is more than 50 times that of the fundamental
2-pole field and hence is many more times larger than that of the 2-pole harmonic field
magnitudes since field harmonics of larger indices typically have smaller magnitudes
compared to the fundamental. Therefore, it is a valid assumption to ignore other
harmonic force contributions in all the non-linear simulation force analysis carried out
in this thesis. This assumption is verified from observation in the direct on-line start
simulation whereby it was found that the 4+6 pole combination created a harmonic
force magnitude of 49.20N at no load whereas the next pole combination in line in
Table 7.4, that is the 12+10 pole, only created a harmonic force magnitude of 0.9N

under the same conditions.
7.5.2. Vector controlled force simulation

The MFO vector control DCM simulation of the 4+2 pole bearingless wound rotor IM
(Section 7.4) is repeated with all iron elements given a ‘non-linear’ type and having its

permeability derived from the B-H curve shown in Figure 7.20. Since the peak airgap
flux position obtained from the controller, éo, inaccurately predicts the position of the

airgap flux in the linear iron simulation, this simulation was performed with the

2- pole winding orientation angle obtained directly from peak angle of the 4-pole airgap

field 6" .

The speed and torque variation obtained from the non-linear iron simulation simulated
with the proposed controllers, designed in Chapter S, with the torque current limited to
15A are as shown in Figure 7.23(a) and (b) respectively. It was observed that the speed
variation is very similar to that obtained from the linear iron simulation. However, the
torque variation experiences a low frequency oscillation of 9.5Hz during full load
condition (after 4s) which is similar to that observed in the non-linear iron direct on-line
simulation. As explained in Section 7.5.1, this 9.5Hz frequency is thought to be related
to the electrical slip frequency since it is obtained from multiplying the slip frequency

of 1.6Hz with the number of rotor phase belts per pole pair. This oscillation is also
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observed in the speed-time variation and could not be eliminated even with an increase

in the speed control closed loop bandwidth from 5Hz to 15Hz.
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Figure 7.23: (a) speed and (b) torque variation of the vector controlled non-linear bearing relief
motor.
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Figure 7.24: Stator current variation of the vector controlled non-linear wound rotor bearing relief

IM: (a) 4-pole winding (b) 2-pole winding,

The dg- axis stator currents of the main 4-pole winding and 2-pole levitation winding
are as shown in Figure 7.24. In Figure 7.24(a), the dq- axis stator currents of the 4-pole
motoring winding is observed to be similar to that of the linear simulation of Figure

7.16(a) with the exception of the 9.5Hz low frequency oscillation experienced at full

load. The average value of {Zq in both linear and non-linear simulations is observed to
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be the same. Similarly, the dq- axis stator current components of the 2-pole levitation
winding shown in Figure 7.24(b) behaves in the same manner as that shown in Figure
7.16(b). However, the non-linear 2-pole stator current also exhibits oscillations during

full load condition.

The radial forces for the non-linear iron wound rotor motor are shown in Figure 7.25.

The machine does not produce the required 235.36N y- direction force when the force

reference F; is applied. The F, obtained is 170.54N between 2 to 3 s when the rotor

was stationary, after which it drops slightly to 169.94N between 3 to 4s, during the time
the rotor had accelerated and reached steady state speed, before dropping further to

approximately 158.94N average during full load (between 4 to S s). Furthermore, a non-

zero F. is observed from the onset of F! =ON that is at 2s of the simulation. From
Figure 7.25 it is seen that F, has an average value of —11N, 5.76N and 4.09N during
the time intervals of 2 to 3s, 3 to 4s and 4 to 5s, respectively. The forces F, and F,

were also found to experience relatively large oscillations during rotor rotation when

compared to the forces obtained in the linear iron simulation.
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Figure 7.25: Vector controlled forces in the x- and y- direction produced by the non-linear bearing

relief IM obtained using 6.

As observed in the direct on-line start simulation, the non-linear iron introduces larger

harmonic field magnitudes in the wound rotor motor. This causes a reduction in £, as
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previously discussed. In order to analyse the forces F, and F, observed in Figure 7.25,

a vectorial sum of the fundamental force and main harmonic force is required which is
obtained from the magnitude and phase angle results of the spatial DFT of the flux
densities in each non-uniformly spaced airgap reluctance element. This analysis will be
performed at three different time intervals of the simulation, namely between 2 to 3s
when the rotor is stationary, 3 to 4s during which the rotor is accelerated and reaches
steady state condition and 4 to Ss when the full load torque is applied. The magnitude of
the fundamental 4-pole field together with the fundamental 2-pole field and its third
harmonic field obtained from the DFT is presented in Figure 7.26.
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Figure 7.26: Peak fundamental and harmonic field magnitudes present in the vector controlled
non-linear motor: (a) fundamental 4-pole field, (b) fundamental 2-pole field and (c) 3" harmonic of

the 2-pole field (i.e. 6-pole variation).
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The magnitude of the fundamental force vector |F, |, from the interaction of the 4-

pole (M = 4) and 2-pole (N = 2) fields, as well as the magnitude of the main harmonic

force vector |F 6.s|» from the interaction of the fundamental 4-pole (M = 4) and

harmonic 6-pole (N = 6) fields, can be obtained using equation (7.8). The direction in
which these forces are acting can be determined from the angle difference between the

peak 2-pole field and the peak of the 4-pole field obtained from the DFT, ¢, ,, as well
as the angle difference between the peak 6-pole harmonic and peak fundamental 4-pole

fields &, ,, respectively stated in electrical degrees. Therefore, the resultant force

magnitudes acting in the y- and x- direction is given by
By | [°°s¢2—4 °°S¢s-4} |-F—z—4|] (7.11)
F x—res Sin ¢2—4 Sin ¢6—4 |E_6—4|

Thus, the force values F, and F, observed in Figure 7.25 can be compared to the
forces F,_,, and F, ,, which will be determined at the three time intervals of 2-3s, 3-
4s and 4-5s in the following analysis. In order to facilitate the force vector analysis, a
summary of the average magnitudes of the peak 4-pole field le" l, peak 2-pole field
|Bf” | and peak 6-pole field |Bf’T | together with the average values of ¢, , and ¢,

are presented in Table 7.5. Angle zero is aligned to the positive y- axis.

Il I o T I
interval =4£B," - 4B, =4Bg - 4B,
2-3s 0.89T 14.9mT 2.5mT 0.06° 194.06°
3-4s 0.88T 13.2mT 3.3mT -0.44° 166.79°
4-5s 090T 11.6mT 5.5mT -2.53° 178.28°

Table 7.5: Summary of DFT results obtained from the airgap element flux density samples of the

vector controlled bearing relief non-linear wound rotor motor.
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Time interval 1: 2-3s (rotor stationary)

Figure 7.27(a) illustrates the 2, 4 and 6-pole angles obtained from the DFT. Figure
7.28(b) shows the differences ¢, , and ¢, ,.

[=2pole — 4pole 6 pole 400 : : —
:
53
2
.
g
2
!
=1
<
22 24 26 28 : ‘
o Levitation field iy <« Levitation field
[ opplied Time (s) applied Time (s)
(@ (b)
Figure 7.27: (a) Angles of the peak 2, 4 and 6-pole fields and (b) difference in angles during time
interval 2-3s.

With this information as well as the average magnitudes of the peak 2-pole, 4-pole and
6-pole fields given by the DFT, the fundamental force vector /', , and the main

harmonic force vector F, , can be obtained. By substituting B and B" of equation
(7.8) with the values of |Bf T l and |B.f = | respectively from Table 7.5, F, , calculates
as 197.43N.£0.06°. The force vector F,, calculates to be 33.24N.£194.06°. The
resultant force acting on the rotor F,,, =F +F, is as shown in Figure 7.28 in
which F, (acting at angle 0°) and F, . (acting at angle 90°) calculates to be

165.19N and -7.87N respectively from equation (7.11). The negative sign of F,_

indicates that the force is acting in the negative x- direction. These results are

summarised in Table 7.6, together with F, and F, values obtained from the simulation

during this time interval.
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F,, Fe, F, F

L y-res x-res

Harmonic force
197.43N£0.06° 33.24N2194.06° 165.19N -7.87N
analysis

Simulated force - - 170.54N -11.0N

Table 7.6: Summary of force vector analysis during the time interval 2-3s.

y, 0°
'\’e

194.06°

s e st i e 3 x

Fos |
|
|

Figure 7.28: Fundamental, main harmonic and resultant force vectors acting in the non-linear
bearing relief motor during the time interval of 2 to 3s.

Time interval 2: 3-4s (rotor accelerated and reaches steady state)

The angle of the peak 2-pole, 4-pole and 6-pole fields obtained from the DFT of the
airgap element flux density values during the time interval 3 to 4s is partly shown in

Figure 7.29(a). Figure 7.29(b) illustrates the angle differences ¢, , and ¢, ,. For this
interval F, , calculates to 174.56N.£-0.44° and F, , calculates as 43.64N.£166.79°.
Hence, the resultant force acting on the rotor F . for this time interval is as shown in
Figure 7.30 in which ? L. and F_,, calculates to be 132.07N and 8.63N respectively

from equation (7.11) as summarised in Table 7.7.
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Figure 7.30: (a) Position of peak 2, 4 and 6-pole fields (t = 3.8 - 3.95) and (b) difference in angles
during time interval 3-4s.

Fy Fe, F k

" — y-res x-res

Harmonic force
174.56N£-0.44° 43.64N£166.79° 132.07N 8.63N

analysis
Simulated force - - 169.94N 5.76N

Table 7.6: Summary of force vector analysis during the time interval 3-4s.

166.79°

| Foa
|

Figure 7.30: Fundamental, main harmonic and resultant force vectors acting in the bearing relief
motor during the time interval of 3 to 4s.
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Time interval 3: 4-5s (full load torque applied)

Figure 7.31(a) illustrates the angle of the peak 2, 4 and 6-pole fields obtained from the
DFT during the time interval 4.8 to 4.9s. The angle differences ¢, , and ¢, , are shown

in Figure 7.31(b). The results for this time interval are summarised in Table 7.8.

[—2pole — 4pole 6 pole| 400
s 12 w0
koy Ly 8
= 5T 100
) | 8E
2 %_;8_ 0
g 2° ] ] L
2 |
£ E o
A
ac Ve T 100/31 T
% load torque
Time (s) l‘_ applied ™ Time(s)
(a) (b)

Figure 7.31: (a) Angles of the peak fields from DFT (t = 4.8 — 4.95) and (b) difference in angles
during time interval 4-5s.

F2 4 F6 4 Fy~70.\‘ Fx—rcs

H ic force
g i 157.02£-2.53° 7039N/178.28° 865IN  -4.82N

analysis

Simulated force - - 158.94N 4.09N

Table 7.8: Summary of force vector analysis during the time interval 4-5s.

Q
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|E6-4

Figure 7.32: Force vectors acting in the bearing relief motor during the time interval of 4 to 5s.
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From this analysis, it is shown that, in the time interval 4-5s, the value of F,_ is
clearly very different to the force values observed in Figure 7.25 in which F, is

158.94N.

However, it can be observed that the harmonic force vector analysis results are in broad
agreement with the simulation, although some differences in force magnitude could be
due to numerical errors associated with the non-uniform DFT results for the peak 2-pole
field and peak 6-pole harmonic field magnitude and angle. This is because in order to
perform the DFT for harmonic index values k # 2 using equation (7.6), the dominant 4-
pole field component has to be subtracted from the non-uniformly spaced airgap flux

density values x, using equation (7.9). This means that if equation (7.9) is unable to
perfectly remove the dominant 4-pole field, a residual 4-pole field component would

still be present in x, which will affect the magnitude and angle of the DFT results when

k # 2 and also affect the fundamental and harmonic force magnitudes and angles
calculated from the DFT results. An improvement on the DFT calculation to minimise

numerical errors may yield better agreement.
7.5.3.  Uncontrolled force simulation using a 6-pole levitation winding

The reduction in force obtained from the 4+2 pole bearingless wound rotor induction
motor under non-linear iron conditions is mainly due to the existence of the third
harmonic of the 2-pole field which interacts with the dominant fundamental 4-pole
field. Therefore, it was thought that if the pole combination between the main winding
and levitation winding was changed to that of 4-pole and 6-pole, respectively, then no
harmonic of the 6-pole field would interact with the fundamental 4-pole field and vice
versa. This is shown in Table 7.9 in which the first available harmonic force in the 4+6
pole wound rotor motor is obtained from the interaction of the 5™ harmonic of the 4-
pole field with the 3™ harmonic of the 6-pole field. It has to be noted here that Table 7.9
shows only two combinations of the many possible harmonic field interactions to
illustrate the fact that none of the harmonic forces are capable of interacting with the

dominant 4-pole field. Furthermore, Table 7.9 only considers the possibility of
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interactions between odd harmonics to create harmonic forces as was assumed in the

4+2 pole wound rotor motor simulated in Section 7.5.1.

Pole number 4-pole harmonic index, 6-pole harmonic index,
combination (M, N) K4 pote K6 pole
4+6 1 (fundamental) 1 (fundamental)
20+18 5 3
28+30 7 5

Table 7.9: Harmonic pole number combinations in the 4+6 pole motor.

Therefore, the direct on-line simulation under linear and non-linear iron conditions,
were repeated with the new 4+6 pole stator winding combination on the existing 48/36
slot wound rotor induction motor described in Chapter S. However, in order to be
capable of inserting the 6-pole levitation winding onto the 48-slot stator, the number of
phases was reduced from 3 to 2. A total series turn per phase of 96 was chosen for the

6-pole levitation winding which is double that of the original 2-pole winding of Chapter

5. This corresponds to a winding factor k%, =0.906 and a stator phase resistance R" of

0.76€ calculated using
_419¢N, L, (7.12)
* 1x10°C,

obtained from Alger (1995), where N, =96 is the total 6-pole stator winding turns in
series per phase, L, is the mean length of the 6-pole winding turn in centimetres and
C, is the total cross section of copper of all phases in the stator slots due to the 6-pole

levitation winding stated in square centimetres. The equations used to calculate L, and

C, are

L, = 2L+%r (7.13)
L piea (7.14)

€ =00 /-
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where p is the number of pole pairs, /,,, is the peak rated current flowing in the
winding, and /,,,/500 represents the area occupied by a coil carrying a maximum
current equal to 7, , based on the assumption that the current density in the induction

motor is taken as SA/mm>.

Another important component required to simulate the direct on-line force simulation of
the 4+6 pole wound rotor motor is the rms terminal voltage applied to the levitation
winding. This was calculated using equation (7.7) to give an rms voltage of 2.73V when
the peak flux density produced by the 6-pole winding is chosen to be equal to that of the
previous 2-pole winding, i.e. By =17.4mT. This is acceptable since By is calculated
from equation (7.8) with the required force magnitude equal to 235.36N, which is
assumed to also be the rotor weight of the 4+6 pole wound rotor. The rms terminal
voltage applied to the main 4-pole winding is maintained at 415V. As in the simulations
described previously, a load torque equal to rated torque was applied at 1s of the

simulation.

The force magnitude obtained from the DCM simulation of the 4+6 pole bearingless
wound rotor IM under linear iron conditions is shown in Figure 7.33. It can be observed
that the force magnitude obtained in the 4+6 pole linear iron motor is 237.99N at no
load and 230.93N when full load is applied. This result is comparable with that obtained
in the 4+2 pole motor shown in Figure 7.12. It is also found that the force values given
in Figure 7.33 under linear iron conditions are in agreement with the fundamental forces
calculated from the magnitudes of the peak 4-pole and 6-pole fields given from the DFT

of the non-uniformly spaced airgap reluctance elements flux density values.

Having observed that the 4+6 pole wound rotor motor produces a force equal to the
rotor weight under linear conditions, as was observed in the 4+2 pole motor, a non-
linear direct on-line start simulation of the 4+6 pole motor was then carried out with the
same voltage applied to both the main and levitation windings as in the linear case. The

result is shown in Figure 7.33.
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Figure 7.33: Force magnitude obtained from the linear and non-linear direct on-line simulation of
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Figure 7.34: Peak fundamental and harmonic field magnitudes in the 446 pole motor simulated

under non-linear iron conditions: a) fundamental 4-pole field, (b) fundamental 6-pole field and (c)

sub harmonic 2-pole field.
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Figure 7.33 shows that the 4+6 pole combination of the non-linear motor is only capable
of producing an average force magnitude of 190.84N at no load and 192.47N at full
load which is almost similar to the results obtained in the 4+2 pole non-linear wound
rotor motor shown in Figure 7.21. This indicates that a significant harmonic force may
be created from harmonic field interaction with one of the fundamental fields.
Theoretically, no significant harmonic force should be produced, as neither harmonic
field of the 6-pole field should interact with the fundamental 4-pole field and vice versa
as shown in Table 7.9. Nevertheless, from applying the spatial DFT procedure to the
airgap flux density values at each time step in the simulation, it was found that a 2-pole
sub harmonic field was present in the non-linear 4+6 pole wound rotor induction motor
as shown in Figure 7.34(c). The 2-pole sub harmonic field arose from the modulation of
the 6-pole field by the saturated 4-pole field. This 2-pole sub harmonic field was then
able to interact with the fundamental 4-pole field to create a harmonic force with an
average magnitude of 57.33N, at no load and an average 83.63N on full load. Figures
7.34(a) and (b) also show the magnitude of the peak fundamental 4-pole and 6-pole
fields obtained from the spatial DFT of the airgap flux density. The average values of
the peak magnitudes obtained from the DFT are summarised in Table 7.10. It is
observed that the peak 6-pole fundamental field magnitude in the 4+6 pole motor is
approximately the same as for the peak 2-pole fundamental field magnitude in the 4+2

pole motor (Figure 7.22(b)).

Average magnitude

A magnitude  Average magnitude
verage maght ge maght of peak 2-pole sub

of peak 4-pole of peak 6-pole .
harmonic
field,|B>™ field, | B>
cal| " field, B2
No load 16.6mT 091T 4.2mT
Full load 14.8mT 0.90T 6.2mT

Table 7.10: Summary of the peak magnitudes of 4-pole, 6-pole and 2-pole sub harmonic fields
obtained from DFT of airgap element flux densities in non-linear 4+6 pole wound rotor motor.
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From Table 7.10, the force calculated from the peak fundamental magnitudes of the 4-
pole and 6-pole fields, using equation (7.8), was 226.58N and 199.63N respectively on
no load and full load. However, the magnitude of force obtained from the virtual work
principle in the non-linear case is much less than the fundamental force magnitudes
stated above at no load and on load. As mentioned in Section 7.5.1, the drop or rise in
fundamental force to create the virtual work principle force is dependent on both the
magnitude and direction of the harmonic force vector. In this case, the harmonic force is
created from the interaction of the 2-pole sub harmonic field with the fundamental 4-
pole field. The force obtained from the virtual work principle in the 4+6 pole motor is

the resultant force obtained from the vectorial sum of fundamental and harmonic forces.

Figure 7.33 also shows that the oscillation amplitude in the force magnitude also
increases to 16.2N peak-to-peak under no load and 43.4N peak-to-peak under full load
compared to 0.2N and 3.2N peak-to-peak respectively in the linear iron simulation. The
force oscillation was found to have a frequency of 300Hz. Even so, it is clear that the
force oscillation amplitude observed in the 4+6 pole motor is much less than that of the
4+2 pole motor, which had peak-to-peak amplitude of 68N as shown in Figure 7.21. In
addition to the higher oscillation frequency of 300Hz, a low frequency oscillation of
9.5Hz, similar to that observed in the 4+2 pole motor, was also observed when the full
load torque was applied. This is approximately equal to muitiplying the electrical slip
frequency in the induction motor of 1.6Hz with the number of rotor phase belts per pole
pair, which is 6, again. It can be concluded that the 4+6 pole number combination has

little effect in reducing the force magnitude reduction and oscillation under non-linear

iron conditions.

The non-linear simulations of both the 4+2 pole motor and the 4+6 pole wound rotor
motor results in a 9.5Hz oscillation during full load. In order to investigate if the
observed low frequency oscillation relates to the choice of 48/36 slot combination of the
4+2 pole and 4+6 pole motor, which can cause the stator and rotor phase belts to be
perfectly aligned at certain instances in time, the linear and non-linear direct on-line
start simulations for the 4+6 pole wound rotor motor was repeated but with a different

stator-rotor slot combination. A slot combination of 48/40 was chosen. The simulations
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were only repeated using the 4+6 pole motor because the oscillating behaviour on load

was observed to be almost identical in both machines.

The 3-phase, 4-pole main and 2-phase, 6-pole levitation stator windings in the new
48/40 slot motor are exactly the same as that of the 48/36 slot motor since the stator slot
number is unchanged. However, in order to maintain the 4-pole rotor winding in the 40-
slot rotor, the number of phases was reduced from 3 to 2 with each phase occupying 5

slots per pole. Therefore, the referred rotor resistance had to be recalculated using
equation (5.1) to give R of 0.75Q. The rms voltage of 415V and 2.73V calculated

previously for the 48/36 slot motor, were applied directly to the terminals of the main

and levitation windings of the 48/40 slot motor respectively.

—non-linear Iinear]

800 1 00% loafi torque
applied !

Time (s)

Figure 7.35: Force magnitude obtained from the linear and non-linear direct on-line simulation of

the 4+6 pole motor with a 48/40 slot combination.

The force obtained from the linear and non-linear iron simulation is as shown in Figure
7.35. For linear iron, the force magnitude is 238.05N (no load) and 230.90N (full load),
which are similar to that obtained in the 48/36 slot motor shown in Figure 7.33.
However, when the simulation was repeated under non-linear conditions, it was found
that at the force magnitude drops to 191.22N (no load) and 180.66N (full load), which is
also similar to that obtained in the 48/36 slot motor shown in Figure 7.33. At full load

the force for the 48/40 slot motor experiences a low frequency oscillation of
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approximately 7.3Hz. This value of frequency can be approximately obtained from
multiplying the electrical slip frequency of the motor (1.8Hz) with the number of rotor
phase belts per pole pair, which is 4 in the 2-phase, 4-pole rotor. The exact physical
understanding of this low frequency oscillation occurring under load needs to be
developed but its dependency on slip and the number of rotor phase belts appear to be
verified as shown in Table 7.11. It is apparent that the low frequency oscillation is

independent of the supply frequency of the motor.

Supply frequency = 25Hz | Supply frequency = S0Hz
No 50% 100% No 50% 100%

load Trated Tntod load Tm,d Tmed

36-slot rotor
(6 rotor phase belts per 0 47Hz 9.5Hz 0 47Hz 9.5Hz

pole pair)

40-slot rotor
(4 rotor phase belts per 0 36Hz 73Hz 0 36Hz 7.3Hz

pole pair)

Table 7.11; Investigations on the low frequency oscillating behaviour observed in the non-linear
4+6 pole bearing relief IM under different load conditions and at different supply frequencies.

7.6. Comparison with Simulink results

The results of the linear and non-linear DCM simulations of the MFO vector controlled
bearing relief 4+2 pole wound rotor motor can be compared with the MATLAB
Simulink results of the same motor under MFO vector control discussed in Section
5.4.4. The Simulink results were carried out with the 2-pole winding currents, voltages
and fluxes being oriented onto the 4-pole airgap field using the controller angle 6, and
it is clear from Figure 5.16 that the Simulink results show that perfect levitation can be
obtained using the dq representation of the motor with no force in the x- direction.

However in the DCM simulation, it was observed in Figure 7.17 that the controller

angle éo, obtained using the same method and equivalent circuit parameters as that of
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the Simulink simulation, although providing the required F, force, also caused an
unwanted F, to be produced during rotor acceleration and on load. This was found to
be due to an error occurring between the controller peak airgap field position angle
éo and the actual peak airgap field position angle 8" obtained from applying a DFT on
the flux density values of the airgap elements in the DCM model at every time step of
the simulation. Therefore, it may be concluded that the two axis lumped parameter
model may not be sufficient for fully modelling the leakage effects that influence the
positioning of the airgap field.

Furthermore, the Simulink simulation of the bearing relief motor does not provide
insight into the non-linear iron effects on the force production of the motor. This is
because it cannot fully model a non-linear motor and does not include the capability of

investigating the harmonic field interactions that affect the force production.

7.7. Chapter summary

Linear DCM simulations of the direct on-line start 4+2 pole wound rotor IM have
shown that radial forces equal to the rotor weight can be achieved and that the required
winding voltages and currents are as predicted from theory. However, when the direct
on-line start simulation incorporated a non-linear iron, the force produced in the 4+2
pole motor is reduced compared to the linear iron motor indicating that higher 2-pole
current is required to achieve the required force. This was due to introduction of a 6-
pole harmonic field in the non-linear motor which interacts with the dominant 4-pole
field to create an extra force. The force that is produced by the motor is a result of the
fundamental force, produced from the interaction of the main 4-pole and levitation 2-

pole field, and the forces due to interaction of higher field harmonics.

In the MFO vector controlled simulation of the linear 4+2 pole motor, a vertical bearing
relief force to compensate the rotor weight is obtained during both steady state and
transient conditions. There is no lateral force F, as requested by the control scheme

provided that the 2-pole levitation winding currents, voltages and fluxes are perfectly

oriented onto the peak 4-pole airgap field. However, if there is an error in the controller
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airgap flux angle 6,, then a lateral force F, is produced during acceleration and load

conditions. Simulation with non-linear iron saw the introduction of a 6-pole harmonic
field in the non-linear motor which interacts with the dominant 4-pole field and creates
a large harmonic force. From the vector analysis of the fundamental and harmonic
forces in the vector controlled motor it is concluded that the force produced by the
simulation is indeed a resultant of the fundamental and harmonic forces. Because the
harmonic force is not necessarily aligned with the 4-pole field, the harmonic force not

only affects the levitation force F, but also causes a lateral force F, to be produced.

Because the 6-pole harmonic field present in the non-linear simulation of the 4+2 pole
motor is a 3™ harmonic of the 2-pole field, it was thought that a pole number
combination of 4+6 between the main and levitation winding could eliminate any
possibilities of the 3™ harmonic of the levitation winding field interacting with the
dominant 4-pole field. However, it was found that even though the 4+6 pole wound
rotor motor produces the expected force magnitude to levitate the rotor under linear
simulation, with non-linear iron there was observed a 2-pole sub harmonic field, created
in the motor from the modulation of the 6-pole field by the saturated 4-pole field.
Therefore, it can be concluded that in order to achieve successful forces in the non-
linear bearing relief motor, compensation of the main harmonic forces produced by the
motor is required. This is necessary since bearing relief is basically an open-loop
process in which one has to inject a given N-pole current to yield the required force.

The existence of harmonic fields must be taken into account when deriving the required

N-pole current.

Apart from the harmonic forces experienced in the non-linear simulations, it was
observed that under full load a low frequency oscillation of 9.5Hz is present in the force
variation against time. This frequency is thought to be related to the electrical slip speed
in the motor since it is approximately equal to the electrical slip speed multiplied by the
number of rotor phase belts per pole pair. Is was found that this low frequency
oscillation still occurs when a different stator and rotor slot combination is chosen, with
its value changing according to the new values of rotor phase belts per pole pair. Further

understanding is required here to find the mechanism for oscillation reduction.
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Chapter 8

Dynamic circuit modelling (DCM) of a bearingless wound

rotor induction motor

8.1. Introduction

As presented in Chapter 7, a vector controlled 4+2 pole wound rotor motor under
bearing relief condition was simulated in which the rotor is held fixed by bearings. In
this chapter, simulations of a totally bearingless motor will be presented whereby the
rotor is allowed to move freely in the motor. As the objective of the simulation is to
maintain the free-moving rotor at the centre, a position control loop is required which is
designed in Section 8.3. However, the controller design requires the use of the force
expressions for the perturbed rotor motor derived previously in Section 3.3.2. Compared
to the force expression for the fixed rotor case, the rotor perturbation introduces
additional terms in the force expressions which are associated with the rotor movement.
Therefore, in Section 8.2, the effect of rotor displacement on the force produced in the

wound rotor IM will be investigated and compared with the force expressions derived in

Section 3.3.2.

In Section 8.4, the results of a linear iron simulation of the 4+2 pole MFO vector
controlled bearingless wound rotor motor, incorporating the designed position controller
and modifications to the DCM software to allow for the free-moving rotor, will be
presented. Two different results will be presented in this section whereby in the first
simulation the 2-pole levitation winding orientation angle is obtained indirectly by the
controller whereas in the second simulation the orientation angle is obtained directly
from the DFT of the actual airgap element’s flux density values. This arises from the

linear iron bearing relief simulation results presented in Section 7.4 where it was
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observed that the orientation angle provided by the controller did not accurately predict
the position of the peak 4-pole airgap flux onto which the 2-pole levitation winding is
oriented. This causes an unwanted x- direction force to be produced. However, Section
8.4 highlights the fact that the position controllers in the bearingless induction motor are
able to produce the required levitation force while maintaining the x- direction force at
zero as demanded even when there is a slight error in the controllers prediction of the 2-

pole levitation winding orientation angle.

A simulation of the same motor under non-linear iron conditions will also be presented
in Section 8.5. This is to investigate if the non-linearity effects of the iron previously
observed in the bearing relief motor could be compensated for by the incorppration of
the position controllers. The main effects are namely the reduction of the y- direction
force produced in the motor as well as a non-zero x- direction force due to harmonic
forces and the low frequency oscillation observed when the motor was subjected to
load. Finally, in Section 8.5, a comparison between the DCM simulation results of the
4+2 pole bearingless wound rotor motor and the results of the same motor simulated

using a 2 axis lumped parameter model in MATLAB Simulink will be discussed.

8.2. Effect of rotor displacement on the force produced in the

wound rotor IM

In this section the results of an investigation into the effect of rotor displacement on the
force produced by the motor is presented. The investigation is carried out using the
DCM model of the 4-pole wound rotor induction motor, introduced in Chapter 5,
excited by only the 4-pole stator winding (i.e. without the presence of the 2-pole
levitation winding). Figure 8.1 shows the force produced by the motor simulated using
the DCM model as the rotor is displaced in the y- direction under non-rotating rotor
condition at no load. It was observed that a movement in y- direction only produces
force in the y- direction, i.e. no x- direction force is produced by the displacement.
When the DCM simulations were repeated with the rotor rotating at rated speed and at
no load, the force produced due to the rotor displacement in the y- direction was

observed to be similar to that when the rotor was stationary. It was also observed that
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the simulation results of the x- direction force variation with rotor displacement in the

x- direction are identical to that shown in Figure 8.1.

[4— Full load Simulation « Theoretical ==No Load simulation}
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Figure 8.1: Y- direction force variation with rotor displacement obtained from the theoretical force

expression and DCM simulations under no load and full load conditions.

It is clear from the simulation curve of Figure 8.1 that as the rotor moves closer towards
the stator, the force produced increases in the direction of the displacement. The force
produced by the displacement is termed the unbalance magnetic pull experienced by the

perturbed rotor. The slope of the force-displacement variation in the linear region (less

than + 50% of the airgap length) is calculated to be15.56 x 10° Nm™.

When the simulations are repeated but with the rotor now subjected to a full load torque
of 99.5Nm, the unbalance magnetic pull force produced is larger compared to that
obtained at no load as shown in Figure 8.1. The increase in unbalance magnetic force
produced by the motor under full load condition is due to the fact that the induced rotor
currents creates a 4-pole field which will interact with the 2-pole non-uniform airgap
variation to create 6-pole and 2-pole harmonic components. These harmonic
components will then interact with the main 4-pole field of the motor to create a
constant force (since the difference between the poles are + 2) that will add to the
unbalance magnetic pole force. It is also evident that the unbalance magnetic pull force

increases almost quadratically at full load when the rotor displacements are larger than
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50% of the airgap length. However, slope of the force-displacement variation in the

linear region (less than + 50% of the airgap length) is calculated to be 23.55x 10 Nm™.

These slopes can be compared with the force expressions derived in Section 3.3.2 for

perturbed rotor condition, which is given by:

F BY A
y = apy| o7 | K (gur g2, pa] Y
F, BY | I Ax (8.1)
1 .
where k£ = rz’” and Ay and Ax are the displacements experienced by the rotor in the
Ho

y- and x- direction respectively.

. . . 2 2 )
In the bearingless induction motor, By << B)". Therefore, the forces acting on the

perturbed rotor is approximated by:
Fy e B | g Y
F, “|BN| Lo ° |Ax (8.2)

In the force-displacement investigation of the wound rotor motor carried out using the

DCM software, the 2-pole excitation is not present, i.e. BF"; = By, = 0. Hence, equation

(8.2) becomes:

mz N Bj,zm
F] 1o " L* (8.3)

which is the expression for the unbalance magnetic pull exerted on the perturbed rotor.
Therefore, with r =82.26mm, /, =0.15m, /,, =0.58mm and assuming B) =0.9T,
the theoretical slope of this equation is calculated to be 20.82 x 10°Nm™ which is of the
same order to the slope calculated from the no load and full load simulation curves in

Figure 8.1. Furthermore, the ‘theoretical’ force-displacement variation, calculated using

equation (8.3), and shown in Figure 8.1 is observed to be close to the variation obtained
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from the DCM simulations especially within the region of + 0.1mm from the centre line

of the motor.

Therefore, it can be concluded that the force expressions derived in Section 3.3.2 are
justified by the DCM simulation assuming that the rotor movement can be controlled
within +50% of the airgap length when the rotor is stationary or rotating at synchronous
speed before applying a load torque or a non-zero i, . Having shown that the derived

force expression for the perturbed or free-moving rotor is valid, the position loop

controller of the bearingless induction motor can be designed.

8.3. Radial position compensator design

Fy —> kf=—Fozf);7—
y' =0
—» G,(5) »
y

Figure 8.2: Position control loop

In the 4+2 pole bearingless wound rotor IM, the dg- axis stator current demands of the

levitation 2-pole winding i% and i;’ are respectively responsible for controlling the
forces F, and F, produced in the motor. Hence, in the vector control scheme of the

bearingless wound rotor IM, if;; are derived from the position control loops. Figure 8.2

shows the y- direction position control loop. The x- direction control loop is identical to
that of Figure 8.2. The high bandwidths of the current control loops enables its closed
loop dynamics to be neglected. Thus, the plant dynamics for the position control loop is

dominated by the motor’s equation of motion in the y- and x- direction which is given

F | ¥
]n )] -
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where M, is the mass of the rotor. The forces F, and F, in equation (8.4) are the forces

acting on the free moving rotor given by equation (8.1). However, equation (8.1) can be

written in terms of the 2-pole dq- currents using the relationship between BF’“;‘ and

Way, =Liiy, derived in Section 4.2.2 for the wound rotor IM, repeated here for

convenience,

B N

Py Voa

BFy qu

where &, = _£§n_~ . Therefore, equation (8.1) is rewritten as
2rik, N,

I I e

F,| k|iy R B (8.6)
where

242, 224k N
kf = iﬂfnLN (8.7)
and
4
k, =—=
> 2uds (8.8)

By substituting equation (8.6) into (8.4) and rearranging, the relationship between the

input, i, (i), and output, y (x), of the plant in Figure 8.2 is given by

M [y}zL[i,d}szy [ ]+k k; (, gz{y} (3.9)
x| ki x

Equation (8.9) shows that the plant is non-linear since the last term in the equation is

dependent on the input and output of the plant. Therefore, by considering small motions

about the operating point (x, = y, = 0), equation (8.9) becomes
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M[@}} =_1_{&“'j|+k2Bj‘z[®}+k k? (z 521 [ay]
& kf &N & i X9=yo=0 &
—— /

:q - ~ o \
b

-
[

a

+ 2k k2 (G + &Y {

-

)’o] (8.10)

Xo

4

At the operating point, x, =y, =0. Therefore, term ‘d’ in equation (8.10) becomes

zero. The term ‘c’ in the same equation can also be written as

&y
x=yo=0| OX

where B =\BY’ +Bﬁ;2). Generally, in the bearingless IM, BY* << BM*  Hence term

N2  .N2 & 2
ey i) |2 ]-ka

¢’ of equation (8.10) can be neglected. Thus, equation (8.10) simplifies to be

5); __1_ 5’2’1 M2 5)/
M’[&:] B kf |:5i~}+k2Bo [dx] (8.11)
—_—

sq
———

The terms on the right of equation (8.11) represents the force produced by the perturbed
rotor which is similar to the findings in the previous section given by equation (8.2). In
this equation, term ‘i’ is the force expression in the motor when the rotor is fixed at the
centre whereas term ‘i’ is associated with the unbalance magnetic pull experienced by

the perturbed rotor investigated previously. Hence, the linearised plant transfer function

in the position control design is obtained from equation (8.11) to give:

§s) _ &ls) _ 1 |
G()—&d((s) &i(s) k ‘M.s* —k,B" ®12

Figure 8.3 shows the linearised y- direction position control loop. The control loop for

in the x- direction is identical.
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Figure 8.3: Linearised position control loop

Therefore, through substitution of (8.7) and (8.8) into (8.12), the plant transfer function

for the 4+2 pole wound rotor motor is given by:

1015.683
s2-20.82x10°

G,()=>; (8.13)

since M, =24kg, (1/k,)=1015.683, r=82.26mm, /,=0.15m, /,, =0.58mm and

assuming BY =0.9T.

From equations (8.12) and (8.13), it is clear that the plant of the position control loop is
of 2™ order and the plant has two poles of the same magnitude but opposite signs. One

of the plant poles is unstable, i.e. on the right half of the s-plane, at s = Vk,BY : /M, or

s = 931.4 in the investigated motor. Therefore, a phase lead controller was chosen in the
control scheme such that it cancels the stable pole on the left half of the s-plane (s = -
931.4). The controller was designed in the continuous s-plane, by way of root locus, to

achieve a nominal closed loop bandwidth of 48Hz (300rad/s) and a damping factor ¢ of
approximately 1.0 to give:

(s+931.4)

(s +2500) (8.14)

G,(s)=64.05x10°

With this designed controller, a vector controlled totally bearingless 4+2 pole wound

rotor motor could be simulated using the DCM reluctance mesh model software.
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8.4. Vector control simulation of a linear iron bearingless wound

rotor IM

In this section, the linear iron 4+2 pole vector controlled wound rotor motor will be
simulated under bearingless conditions. In order to achieve this, the motor is modelled
using the reluctance mesh model and simulated with the DCM software. However, due
to the fact that the rotor in a bearingless motor is allowed to move freely, modifications
to the DCM software were added to model the free-moving rotor as described in Section
2.5(g). The vector control scheme applied to the wound rotor motor is based on the
mixed field orientation (MFO) scheme in which the main 4-pole winding will be rotor
field oriented with the 2-pole levitation winding being oriented onto the peak 4-pole
airgap field. This vector control scheme was proposed in Section 4.4 wherein the

orientation of the 2-pole winding was achieved using equation (4.61) and repeated here
for convenience.
M

6,=06, +taﬂ"[%j (8.15)
In this linear iron simulation, all reluctance elements were chosen to be of type ‘linear
iron’ having a u, =1350 with the exception of the slot tip leakage elements, which
were chosen to be of type ‘air’, due to the semi-closed slots on both stator and rotor
side. The motor is modelled with only one rotor axial skew section with a skew angle of
15° electrical. Similar to the bearing relief simulation in Section 7.4, an external load
having inertia equal to the motor inertia of 0.0713kgm’ as well as a linear friction of
0.17,,, at 1500 rpm is applied throughout the simulation. The current controllers for
the 4 and 2-pole systems utilised in this vector control scheme (designed in Chapter 5)
have a natural frequency of 400Hz and 100Hz respectively and a damping factor of 0.8.
The speed controller employed in this scheme, also designed in Chapter Five, has a
natural frequency of SHz. These controllers were then transformed into the discrete z-
plane through a Bilinear Transform using equation (7.1) and implemented in the
simulation with a sampling time of 100us for the current control and 2ms for the speed
control. The main 4-pole field is given time to establish by applying i);" of value 4.90A

from the start of simulation. A speed reference of 1500rpm is then given at 3s and a
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load of 89.55N, which is equal to 90% of the rated torque T, , is applied at 4s. In the

bearing relief simulation, the 2-pole stator current references i, and i, were obtained

from step references F, and F, in which

i i F,
e BN o (8.16)
sq y

However, in the bearingless motor simulation, i’ and i,’:' are obtained respectively

from the y- and x- direction position control with the phase lead controller designed in

+ N~ feed

the previous section together with feed forward signals i ; j N feed

and i, (derived from

F/*‘and F}**' respectively) as shown in Figure 8.3. The position controllers are also
transformed into the discrete z-plane through the Bilinear Transform (Franklin et. al,
1998), s = 2(z —1)/{¢ on, (z +1)), and implemented in the simulation with a sampling
time of 100ps, which is similar to the sampling time of the 4- and 2-pole winding

current controllers.

In the DCM simulation, the weight of the rotor is only assumed to act on the motor after
2s when the main 4-pole field has been established. This is achieved by either letting the
mass of the rotor M, to be very large between the time interval 0 to 2s or introducing an

arbitrarily large artificial friction D which is only present during the first 2s of the

simulation. Therefore, Fyf“d and F/*of the position control loops are applied after 2s

from the start of the simulation, in which both signals were set to be equal to the y- and

x- direction load forces experienced by the motor.

In this simulation, F;** = 235.36N, since the only load force acting in the y- direction
is the rotor weight of 235.36N, and because no x- direction load force is applied to the
motor, Fxf”" = ON. In order to ensure that the free moving rotor does not hit the stator in

the DCM simulation, an artificial spring force is also introduced which is governed by a

tangent function, given by

F._. =tan(2688.66y) for-0.58<y<0.58

sp-y

F___ =tan(2688.66x) for—0.58 <x<0.58 (8.17)

sp-x
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where y and x are the rotor displacements in the y- and x- directions respectively, as

shown in Figure 8.4.
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Figure 8.4: Tangent function of the artificial spring force

This function ensures that if and when the rotor experiences a displacement equal to the
airgap length /g of 0.58mm, a large spring force comes into action to push the rotor

back towards the centre of the motor.

The vector controlled linear bearingless motor simulated using the phase lead controller
of equation (8.14) was unable to keep the rotor centred. However, when the bandwidth
of the 2-pole levitation winding current controller was increased to 400Hz, i.e. similar
to the bandwidth of the main 4-pole winding current control, the designed position
control was able to maintain the non-rotating rotor at the centre of the motor. This is
because when designing the position controller to have a bandwidth of 50Hz, the
dynamics of the current controller was neglected. However, this is only true if the
current controller bandwidth is much larger than the bandwidth of the position
controller. Therefore, in all the simulations of the bearingless induction motor presented
in this chapter, the bandwidth of 2-pole levitation current controller was increased to

400Hz. The new 2-pole current controller transfer function is

~248.4(s +1500)
\)

(8.18)

G

c
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The result of the vector controlled linear bearingless motor simulation, with the 2-pole
winding oriented by the controller angle éo and a 2-pole current controller bandwidth

of 400, shows the predicted levitation force being achieved, as given in Figure 8.5(a).

This is because a y- direction force F, of 235N average is obtained from the moment

the load force is applied. It is also apparent from Figure 8.5(a) that the x- direction

position control is able to ensure that on average no x- direction force F, acts on the

rotor, as expected.

| —x- direction y- direction |
Position control ®*=1500rpm
350 S :
gy ! : |
300 - ’
250 -
g 200 -
Q5150
2
=)
B~ 100 -
50 -
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50 9 1 ' F ' :
7 Motoring field 100% load torque
applied Time (s) l ¢ applied
(@)
[— - direction - y- direction|
0 . Position control o*=1500rpm
T applied |  — P mm
et B B 0.02

Rotor displacement from centre

g g : ! H -0. 02
a8 Mot.oring field l 100% load torque
¢ applied Time (s) applied
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Figure 8.5: Vector controlled (a) forces and (b) rotor displacements from the centre in the x- and y-

direction produced by the linear bearingless motor. For motor speed and torque see Figure 8.7.

The x- and y- direction displacements experienced by the rotor from the motor centre

are as shown in Figure 8.5(b). It is clear from this figure that from 2s onwards, when the
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position control is in operation, the rotor is maintained levitated at the centre of the

motor even during acceleration (at 3-3.5s) and full load (after 4s) conditions. The

control effort signals 72" and the reference forces F, obtained from the simulation

are presented in Figure 8.6. These signals are obtained from the currents 7y, ,, and i,

shown in the position control of Figure 8.3 through the following relationships:

ctrl Ly
[Fym} _ L)l (8.19)
Fx kf Isqctrl
F'} 1 I’Z}
y M
¢ P (8.20)
.N
|:Fx kf [’sq
[— x- direction —— y- direction [—x- direction y—dmuiml
- Position 1 €— o T_-l 500rpm' 40 Position control |— o*=1500rpm

applied . — P |

-400 Mot: el d: : 100% load torque -20 Mok')ringﬁeld' : [ ¢ 100% load torque
Time (s)

€ ypplied applied applied Time (s) applied

(@) (b)
Figure 8.6: (a) control effort F" and (b) force references F, produced by the position control in

the bearingless wound rotor motor.

As seen in Figure 8.6(a), the position control produces forces £ < and F™ which are

large in comparison to the force produced by the motor especially during the time
period when the rotor is accelerating. This is because on closer inspection of Figure
8.5(b), it is observed that from 2s onwards, when the position control is in operation, the
rotor experiences some displacements in the x- and y- direction. For example, in the
time interval 3 to 3.5s coinciding with rotor acceleration, the average displacement
observed in the positive y- direction is Sum. Even though this displacement is minute,

i e less than 0.9% of the airgap length, the associated unbalance magnetic force in the
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y- direction produced by the rotor displacement, calculated using equation (8.3), is

104.1IN. This force has to be counteracted by the force produced by the position

controller F y“" . When full load is applied, the rotor experiences average displacements

of 0.6um and 2.1um in the positive x- and y- directions respectively, which cause
unbalance magnetic pull forces of 12.43N and 43.7N acting in the positive x- and y-

directions. From Figure 8.6(a), the value of F;”’ averages at -110N (negative sign
indicating that the force is acting in the negative y- direction) during rotor acceleration
whereas when full load is applied ;"' is —50.3N and F,;"' is —14.5N. Therefore, the
magnitudes and directions of Fy“” and F shown in Figure 8.6(a) are justified since

these forces have to counteract the unbalance magnetic force produced by the rotor

movement. The forces F, and F. shown in Figure 8.6(b) are expected due to the fact

that

L ctrl feed 821
F,=F . T (8.21)
whereby in the bearingless motor simulated F**/ =235.36N and F**/ =ON.

Figure 8.7 illustrates the speed and torque variations of the linear iron simulation of the

bearingless motor simulated with the torque current limited to 116% of rated i
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applied { | ; 160 “PP"""’
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Figure 8.7: (a) speed and (b) torque variation of the vector controlled 4+2 pole wound rotor linear

bearingless IM.
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The dq- axis stator currents of the main 4-pole winding and 2-pole levitation winding in

the motor are as shown in Figure 8.8. As observed in Figure 8.8(a), the dq- axis stator

currents i and if: of the 4-pole motoring winding are similar to that obtained in the

bearing relief simulation shown in Figure 7.17(a). On the other hand, the behaviour of

the 2-pole levitation currents i%, and i,,, oriented onto the peak 4-pole airgap field by
éo , are slightly different to that in the bearing relief scheme since they are dependent on

F, and F, respectively based on the relationship given by equation (8.16).
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Figure 8.8: Stator current variation of the vector controlled linear bearingless IM: (a) 4-pole

winding (b) 2-pole winding.

From Figure 8.8(b), the d- axis current component of the levitation winding /", obtained
is 0.22A between 2s and 3s. This is consistent with the value of i, calculated using
equation (8.16) since during this time interval F, =226.17N, as shown in Figure 8.6(b).
Similarly, the average value of if;, in Figure 8.8(b), throughout the simulation is
consistent with the value of i’} calculated using the same equation with " taken from
Figure 8.6(b). The value of the peak 4-pole fundamental field B) used in the
calculations was 0.9T with the values of the 2-pole (N =1) levitation winding factor

kY , total number of turns per phase N Y, and magnetizing inductance L are as given

by Table 5.4.
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The results presented in this section are based on an MFO vector control scheme in

which the 2-pole levitation winding is oriented onto the 4-pole airgap field using the
angle éo obtained using equation (8.15). In Section 7.2.1, it has been shown that in the
simulation of the vector controlled wound rotor motor, the angle &,, provided by the
controller, could not accurately predict the position of the peak 4-pole airgap field. This
caused a non-zero F, to be produced in the vector controlled bearing relief motor
simulation (refer Section 7.4) during rotor acceleration and on load even though F.' is
set to zero. However, with the position control present, the force F, can be maintained
at zero at all times, albeit the existence of the angle difference between the actual
position of the peak airgap flux 6, and éo as shown in Figure 8.9. The average angle

difference during rotor acceleration is 4° and at full load it is 4.15° which are exactly the

same as that observed in the bearing relief simulation (Figure 7.18).

Position control or*=1500rpm
applied 7

3 — — —

10 e ..................... T T

Angle difference (degree electrical)

100% load torque
applied

-1 Motoring field

applied Time (s)

g—

Figure 8.9: Angle difference between the actual peak airgap flux position 6™ and the position

predicted by the controller 630 in the bearingless induction motor.

Therefore, the position controller placed in the vector control scheme of the bearingless
induction motor produces the required forces to levitate the rotor as predicted by theory
even though an error in the orientation angle of the 2-pole levitation winding is present.

As is observed in the bearing relief simulation, the effects of error in the 2-pole winding
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orientation angle is overcome by orienting the levitation winding using the actual 4-pole
peak airgap flux position 6" obtained from a spatial DFT of the flux densities of the

airgap reluctance elements. Therefore, the vector controlled simulation of the

bearingless motor under the same simulation conditions is repeated with the

2-pole winding currents, voltages and fluxes oriented using the angle 6, instead of 6,.
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Figure 8.10: Vector controlled (a) forces and (b) rotor displacements from the centre in the x- and

y- direction produced by the bearingless motor oriented using 0,

Figure 8.10(a) shows that the direct orientation of the bearingless motor produces the

expected F, of 235.4N and zero F, on average. These force variations are also

evidently similar to that in Figure 8.5(a), obtained when the 2-pole winding was

197



Chapter 8: Dynamic circuit modelling (DCM) of a bearingless wound rotor induction motor

oriented using éo. The x- and y- direction displacements experienced by the rotor from

the motor centre are also shown in Figure 8.10(b). The displacements shown in Figure
8.10(b) are much less compared to the displacements observed when the 2-pole winding
is oriented using éa shown in Figure 8.5(b). This is because 8 ensures that the 2-pole
winding currents, voltages and fluxes are more accurately aligned with the 4-pole peak
airgap flux. The maximum displacement experienced by the rotor, in any direction,

from the motor centre is observed to be 2um, which is 0.3% of the 0.58mm airgap

length.

From the results presented it can be considered that both methods of orientation for the
2-pole levitation winding, that is by either using é,, or 67, provides position control of
the free moving rotor under transient and steady state conditions in the bearingless
wound rotor motor. The movements experienced by the rotor in both simulations are
negligible compared to the airgap length. Therefore, due to the similarities in these
results, further simulations reported in this chapter are performed with the 2-pole
levitation winding being oriented using the actual peak airgap flux position 6"

obtained from the DFT of flux densities in the airgap reluctance elements.

8.5. Saturation effects on system performance

In this section, the effects of non-linear iron on the vector controlled 4+2 pole
bearingless motor will be investigated. As observed in the bearing relief simulation of
the same motor in Section 7.5.2, the saturation effects introduced by the non-linear iron

causes a reduction in the levitation force F, and a non-zero F, due to the existence of

harmonic forces. Furthermore, a low frequency oscillation is observed in the force
variations with time when the motor is subjected to a load torque. Therefore, it is
evident that a non-linear iron simulation of the vector controlled bearingless IM should
also be carried out. In the non-linear iron simulations presented in this section, the
permeability of each reluctance element set to be of type ‘non-linear iron’ is obtained

from a cubic spline interpolation of the B-H curve shown in Figure 7.21.
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The non-linear iron bearingless wound rotor motor is controlled using the MFO vector
control scheme whereby the main 4-pole winding is rotor field oriented and the 2-pole
levitation winding being oriented onto the machine 4-pole peak airgap field position

67 . The motor is simulated under the exact same conditions as that of Section 8.4 with

the position controller designed in Section 8.3. However, it was observed that the
position controller could not maintain the rotor levitated when the speed reference of

1500rpm was applied the motor at 3s, i.e. when the rotor starts accelerating.

As observed in Figure 8.1 it is observed that when motor torque is non-zero or 7 is

non-zero, larger unbalance magnetic pull force variation with rotor displacement is
present in the motor compared to the no load variation. Furthermore, at full load the
slope of the force-displacement variation is very different to the theoretical slope when
the displacement is more than 50% of the airgap length. The design of the position
control loop is dependent on the slope of the force-displacement variation since this
slope determines the pole location of the plant in the position control loop shown in
Figure 8.3. The position controller designed in Section 8.3 was based on the theoretical
slope of 20.82x10°Nm™ and it was observed that the position controller design using

this plant was unable to keep the rotor centered in the non-linear bearingless induction

motor when if; is non-zero. Therefore, for non-linear bearingless induction motor

simulation, a new position controller was designed with the plant having a force-
displacement variation slope of 68.44x10°Nm™ which is the slope of the ‘full load
simulation’ curve of Figure 8.1 in the rotor displacement region of 0.3 to 0.45mm. This
new compensator is designed in the continuous s-plane, using the root locus technique,
for the position control loop shown in Figure 8.3, to achieve a nominal closed loop

bandwidth of 15Hz and a damping factor ¢ of 1.0. Hence, the transfer function of the
designed compensator is given by

(s+1689)

(5 +5000) (8.22)

G,_,,(s)=207.05x10°

With this new controller, the simulation of the bearingless motor under non-linear iron

conditions is repeated with feed forward signals F,*’ =23536N and F/* =0ON

applied at 2s after the start of the simulation.
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Figure 8.11 illustrates the forces produced with the new position controller as well as

the displacements experienced by the free moving rotor in the x- and y- directions. It is

clear that the position controller given by (8.22) is able to keep the rotor at the centre of

the motor from the moment the motor experiences its rotor weight (at 2s).
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Figure 8.11: Vector controlled (a) forces and (b) rotor displacements from the centre in the x- and

y- direction produced by the non-linear bearingless motor.

However, as observed in Figure 8.11, the force variations /7, and F, as well as the

rotor displacements in the y- and x- direction each experiences a low frequency

oscillation of 9.5Hz during full load condition as observed previously in the bearing

relief motor. The 9.5Hz oscillation may be considered as a plant disturbance. As such,

the oscillations will appear in the force demands (Figure 8.12(b)) in order to counteract
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the disturbance and hence keep the displacements near to their zero demands. Since the
position controller bandwidth (15Hz) is higher than the disturbance frequency, the
9.5Hz position oscillation is small as seen in Figure 8.11(b) (i.e. 3um peak-to-peak in
both the y and x displacements). The position controllers are able to compensate for the

reduction in F, and the non-zero F, produced by the motor due to the harmonic forces
introduced by the iron non-linearity. In the bearing relief simulation, with a demand

F, of 235.36N, the force produced in the motor is only 170.54N during the time

interval of 2 to 3s when the rotor is still stationary (Figure 7.26). However, in the

bearingless non-linear motor simulation, shown in Figure 8.11(a), the force F,

produced is as demanded which is 235.4N. Assuming a linear relationship between F,

and F,, this means that the demanded force in the bearingless induction motor F, can

be set as 324.87N during this time interval. This is calculated from

y-bearing relict (8.23)

This implies that the position controller has to provide a force F;’” of at least 89.51N
calculated using equation (8.21) since F;/*? =23536N. This amount of F/™ is in
agreement with the amount of reduction in F, experienced in the bearing relief motor

due to the harmonic forces. Therefore, the position control is capable of compensating

for the harmonic forces occurring in the non-linear 4+2 pole wound rotor motor.

The values of F;‘” and F; calculated above for the bearingless motor are consistent

with Figure 8.12 which shows the control effort signals F." and the reference forces

F,; obtained from the simulation.
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Figure 8.12: (a) control effort F;" and (b) force references F,; produced by the position control in

the non-linear bearingless motor.

Another issue encountered in the non-linear iron bearing relief simulation is the £

present in the motor due to harmonic force even when zero reference F! is applied.

Referring to Figure 7.26, the force produced in the bearing relief motor is -11N during
the time interval of 2 to 3s when the rotor is still stationary. In the bearingless motor
simulation the force F, produced is as demanded, which is approximately ON on
average as shown in Figure 8.11(a). Therefore, the controller must provide a force ™
in the region of 11N to compensate for the negative force observed in the bearing relief
simulation. In actual fact, the control effort ™ produced by the position control is
28.03N during the time interval 2 to 3s as shown in Figure 8.12(b). Even so, the force
produced by the motor could be maintained at ON as required. In order to create /™" of
28.03N, the rotor has to move in the negative x- direction as shown in Figure 8.12(b).
However, this movement is very small, i.e. 0.4um. The displacements experienced by
the rotor are very small, in region of micrometers, even after experiencing transient
conditions during rotor acceleration and load. Hence it can be said that the vector

controlled bearingless induction motor with the position controller of (8.22) is

successful in producing sustainable rotor levitation even under non-linear iron

conditions.
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Figures 8.13 and 8.14 show the speed, torque and dq- axis stator currents of the 4- pole
as well as the 2-pole windings of the non-linear bearingless induction motor. Apart from
successful levitation, the motor is able to start up from rest at 3s and reach a steady state

speed of 1500rpm mechanical within 0.3s as observed in previous bearing relief

simulations.
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Figure 8.13: (a) speed and (b) torque variation of the vector controlled 4+2 pole bearingless non-
linear motor.
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Figure 8.14: Stator current variation of the vector controlled bearingless non-linear IM: (a) 4-pole

winding (b) 2-pole winding.

The bearingless motor also exhibits the 9.5Hz oscillation during full load and this is

apparent in the torque variation of Figure 8.13(b). This behaviour is also present in the
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dg- axis currents of the 4-pole and 2-pole winding. Figure 8.14(a) illustrates that i*/ and

ifj of the 4-pole winding is unaffected by the position control and is similar to the

variations observed in the non-linear bearing relief motor (Figure 7.25(a)). The 2-pole
winding currents on the other hand are expected to be different from the bearing relief

currents since iy and iy, are related to the force references F, and F, which varies in

the bearingless motor due to the position control.
8.6. Comparison with Simulink results

In this section, the DCM simulation results of the MFO vector controlled 4+2 pole
bearingless motor is compared with results obtained from MATLAB Simulink of the
same motor simulated under the same vector control scheme and simulation conditions.
The Simulink simulation is performed by closing two position control loops around the
vector controlled simulation model proposed for the bearing relief motor shown in
Figure 4.7. As in the Simulink bearing relief simulation presented in Section 5.4.4, the
bearingless motor simulation is carried out with the 2-pole winding currents, voltages
and fluxes being oriented onto the 4-pole peak airgap field using the controller angle

6,.

o

Figure 8.15 shows the forces F,,, the rotor displacements in the x- and y- direction,
controller efforts F;"’ and reference forces F,; obtained from the Simulink simulation

with phase lead compensator in the position control loops. Figure 8.15(a) shows that the
control scheme is able to perfectly control the forces produced in the motor and it is
observed that the forces produced exactly opposes the load forces applied to the motor,
which in this case is just the rotor weight of 235.36N. Therefore, the position controller
does not have to create any extra force, as shown in Figure 8.15(c) since the feed
forward signal is sufficient to create the required 2-pole levitation winding currents.
This in turn means that the rotor does not experience any displacement as seen in Figure

8.15(b) implying perfect rotor levitation at the motor centre when simulated using the

dq representation of the motor.
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of a bearingless wound rotor induction motor

However, it is apparent from the DCM simulation result of the linear iron bearingless

motor (Section 8.4) that this is untrue due to the fact that the force created in the motor

will always include harmonic forces from harmonic field interactions. Even though the

harmonic forces are small in the linear iron motor (only approximately 3N), this will

always cause the force produced in the motor to be slightly more or less than the load

force causing the rotor to be displaced from the centre and remain off-centre due to the

inability of the phase lead compensator to eliminate any steady state errors present as

observed in Figure 8.5(b).
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Figure 8.15: Simulink simulation results of the bearingless wound rotor motor (with phase lead

compensators): (a) Fy, (b) rotor displacements in x- and y- direction, (c) controller effort and (d) x-

and y- direction reference forces.
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This highlights the insufficiency of using the 2- axis lumped parameter model to
simulate the behaviour of the bearingless motor in which effects of harmonic field
interactions are significant. Moreover, because the 2- axis lumped parameter model
utilised in Simulink simulation is unable to fully model a non-linear motor, no insight
into the non-linear effects on the rotor levitation in the bearingless motor can be

obtained.
8.7. Chapter summary

This chapter has shown that the design of the position control loop for the control of a
bearingless induction motor has to include the effect of unbalance magnetic pull acting
on the perturbed rotor. The effect of unbalance magnetic pull appears on the root locus
of the system plant as two identical poles, one stable and another unstable. This effect
was predicted from the force expressions derived in Chapter 3 for the perturbed rotor
case. This mathematical analysis agrees with results obtained from the DCM simulation
showing the effect of rotor displacement on the force produced by the motor when the
rotor displacement is in the region of + 50%. Section 8.4 showed that the designed
position controller could levitate the rotor of the vector controlled bearingless linear
iron motor under stationary rotor condition as well as when the rotor is rotating at
synchronous speed under no load. When the vector controlled bearingless linear wound
rotor motor was simulated with the designed position controller, the simulation showed

that the rotor could be levitated at the centre of the motor.

When the effect of iron non-linearity was introduced, the rotor of the vector controlled
bearingless linear motor could be levitated at the rotor centre, under both transient and
steady state conditions. However, this was only achieved when a new position
controller was designed to incorporate the fact that the slope of the unbalance magnetic
pull force-displacement variation of the motor increases due to harmonic field
components interacting with the main motoring field. This is in contrast to the bearing
relief motor whereby only the linear iron motor is able to produce sufficient levitation
force to compensate for the rotor weight acting on the bearings holding the rotor in

place. The bearingless motor was also capable of eliminating the F, reduction and non-
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zero F_ observed in the bearing relief motor due to the incorporation of iron non-

linearity. This is because the position controller produces the required force to
compensate for the harmonic forces present in the non-linear iron motor. The low
frequency oscillation observed during load in the non-linear iron simulation of the
bearing relief motor is present in the non-linear bearingless motor simulation, but is
only of marginal significance in the closed loop position control. Further investigations

into the cause of this low frequency oscillation is recommended for future work into the

study of bearingless induction motors.

207



Chapter 9: Numerical issues relating to the DCM software simulations

Chapter 9

Numerical issues relating to the DCM software simulations

9.1. Introduction

The numerical solution technique used within the DCM software (refer to Section 2.4)
is controlled by several parameters to ensure that convergence and accuracy is achieved.

The time step control loop is determined by a user-defined maximum time step As, .

The state equations in the model are solved successfully at each time step when the
residual error from the Newton Raphson linearisation is less than a user-defined

tolerance, fol,, . Therefore, fol,, will determine how accurately the state equations are

solved at each time step. The linear equation solver has two control parameters, i.e. the

threshold and a tolerance tolg,, . The threshold parameter determines the partial fill of

the incomplete LU decomposition preconditioner. A zero or negative threshold value
means that a complete LU decomposition is performed on the matrix, thus requiring
only one iteration of the linear equation solver to obtain the solution. However, this
requires a large amount of memory. Therefore, the threshold parameter allows for
control over the trade off between memory usage and computation time. The

convergence of the linear equation solver is obtained when the rms residual error is less

than a tolerance value, ol predefined by the user. In all the simulations presented in

Chapters 5, 6, 7 and 8, the following values of control parameters were used:

Af__= 50us wolg,, = 1x107
tol = 1x10% threshold = 1x107

Table 9.1;: Numerical solver control parameter values used.
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In this chapter, general guidelines in choice of the numerical solver control parameters
will be presented. However, the guidelines presented here might not be optimal for all
applications of the DCM software but has been proven to be robust for use when

modelling the bearingless induction motors considered in this thesis.
9.2. Choice of maximum time step

The DCM simulation starts with a time step value Ar equal to the user-defined
maximum time step As, . If the residual error during the Newton Raphson cycle at a
particular simulation time ¢ + Az increases compared to that at the previous time step ¢,
or the linear equation solver fails to solve the linear equations within a predefined

number of iterations, the time step Ar is halved. Therefore, the choice of Ar, . for each

simulation is rather crucial. If a large value of At, . is chosen, the efficiency of the

Newton Raphson linearisation is reduced. Hence, at each time step the number of
iteration steps required is increased, especially in the case of a non-linear iron motor.
Furthermore, a large time step can cause the predicted solution to be far from the actual
solution which also increases the number of iterations required to arrive at the solution.
There is also the possibility of divergence if the prediction is too far away from the
actual solution. On the other hand, choosing small values of Az, ensures convergence,
as the Newton Raphson linearisation of the equations becomes more efficient, thus
requiring less number of iterations to achieve convergence. However, the use of small

time step values will increase the total computation time of the simulation.

Investigation of the choice of Af_, to achieve reasonable computation time whilst

obtaining reasonable results was performed on the vector controlled simulation of the
non-linear bearingless wound rotor IM presented in Section 8.5. Three Ar,  values
were chosen, ie. 100us, 50us and 25us, with all other solver control parameters
remaining unchanged as given in Table 9.1. The computation time and memory usage

required to simulate the motor for Ss are summarised in Table 9.2.
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Ar,.  Computationtime Memory usage

100us 1hour 4 minutes 3.28MB
50us 1 hour 35 minutes 3.28MB
25us 2 hours 48 minutes 3.28MB

Table 9.2: Computation time and memory usage for simulations with different values of As__.

As expected, the largest Az, considered in the investigation, i.e. 100us, is simulated

with the least computation time. However, the results obtained showed that it produces
almost twice the amount of overshoot in the x- direction displacement experienced by
the rotor during the start of rotor rotation (at 3s) compared to the results obtained when
At = 50ps (refer to Figure 8.11). The difference in overshoot is approximately 42%
of the actual airgap length (0.584mm) in the motor which is considered to be quite
large. On the other hand, the results obtained in the simulation using Az,,, = 25us were
found to be very similar to that of 50us (presented in section 8.5) with a maximum x-
direction displacement overshoot difference of only 6% of the actual airgap length.
However, the computation time required for the Ar,, = 25us simulation is almost
double the time required to simulate with a 50ps maximum time step. Hence, it can be
concluded that the choice of Af,_ = 50us is realistic as it is able to produce reasonably
accurate results within a sensible computation time. It is observed that for all three
simulations, the memory usage is unchanged at 3.28MB showing that the choice of

At . does not affect the amount of memory usage during the simulation.

9.3. Newton Raphson iteration loop tolerance parameter

The numerical accuracy of the DCM simulation results is principally determined by the

tolerance value fol,; set on the Newton Raphson iteration loop. In each iteration loop,

the residual error from the Newton Raphson linearisation is compared with the value

tol,,. When the rms error is less than tol,, and within the predetermined maximum

number of iterations allowed, the loop is terminated and the results are output to a file.

Generally, in all simulations presented in this thesis, the number of Newton Raphson
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iterations required is found to be less than 10. Therefore, the choice of the maximum
number of iterations for the Newton Raphson loop is rather arbitrary provided that
convergence is achieved at each time step. Having chosen the maximum number of
iterations allowed in the Newton Raphson loop, setting a large tolerance tol,, value
will mean that the state equations are not solved with sufficient accuracy. This will
produce incorrect results and can lead to non-physical behaviour. If too small a value is

chosen for fol,,, more iterations are required to reach convergence and there is a
possibility of it not being achieved at all (for example when tol,, is near machine
precision) due to rounding errors. Hence, the accuracy of the DCM software simulations

is sensitive to the choice of fol,j .

As was performed for the maximum time step control parameter, a study on the choice

of tol,,, keeping all other parameters unchanged, to achieve reasonable results was

performed on the vector controlled simulation of the non-linear bearingless wound rotor
IM presented in Section 8.5. The computation time and memory usage required to

simulate the motor for 5s is summarised in Table 9.3.

tol, Computation time Memory usage

1x10°  Simulation did not converge -

1x10* 1 hour 28 minutes 3.28MB
1x10¢ 1 hour 35 minutes 3.28MB
1x10” 1 hour 50 minutes 3.20MB

Table 9.3: Computation time and memory usage for simulations with different values of 1o/, .

It is shown that the largest tolerance value allowed for the bearingless motor simulation

is 1x10™ since the use of fol = 1x10” resulted in a failure of the software. The

computation times required to simulate all three cases are comparable with a maximum

difference of 22 minutes between the fol,, values of 1x10™ and 1x10°. Furthermore,

the memory usage is constant with changes in fol,, . Therefore, it can be said that the

computation time and memory usage of the DCM software is insensitive to the Newton

Raphson tolerance fol,, parameter. It was found that the results obtained from the three
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simulations having different 70/, values were found to be very similar to that presented
in Section 8.5 (tol,, = 1x10%). Therefore, the results presented in this thesis, which
used tol,, of 1x10°, could have been simulated using a tolerance of 1x10™* without

greatly affecting the accuracy of the results.
9.4. Linear equation solver control parameters

The linear equation solver of the DCM software is controlled by two control

parameters, i.e. the threshold and a tolerance frolg,, . The general guidelines in

choosing both these parameters for the bearingless induction motor model application

are presented in this section.

a)  Threshold parameter

Computation
time Memory usage
A
i
'\ time taken to time taken to
\formulate ILU iterat
¥ iterate "\

L]

infinity 0 Threshold infinity

-

0 Threshold
(a) (b)

Figure 9.1: The effect of threshold on computation time and memory usage.

The threshold parameter determines the partial fill of the incomplete LU decomposition
preconditioner. A zero or negative threshold value means a complete LU decomposition
is performed on the matrix and thus subsequently requires a short iteration time since
only one iteration of the linear equation solver is necessary. However, complete LU
decomposition requires a long time to formulate the complete LU matrix (proportional

to N°) and a large memory usage is involved. An infinite threshold value on the other
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hand, requires hardly any time to formulate the incomplete LU (ILU) matrix and uses
minimal memory but needs a large computation time to iterate the equations. However,
convergence may not be achieved in this case. Therefore, the threshold parameter
allows for control over the trade off between memory usage and computation time
based on the graphs shown in Figure 9.1. Ideally the threshold value is chosen to be at
the minimum point of the total time curve in Figure 9.1(a) as this ensures the least
amount of computation time with reasonable memory usage. However, generally the
threshold value is chosen to be as small as possible (within the ellipse indicated in
Figure 9.1(a)) to achieve convergence of the linear equation solver. In all the DCM

simulations presented in this thesis, a threshold value of 1x10”° was used.

b)  Solver tolerance (0lsoiver

Similar to the Newton Raphson iteration loop tolerance parameter t0l,,, the linear
equation solver tolerance fol,,, parameter controls the accuracy of the linear equations
that is being solved. If a large value of roly,, is used, the results from the linear

equation solver will not be solved accurately enough, causing the prediction of the next
iteration to be far from the actual solutions. This can cause the number of iterations
required to increase and might even cause divergence from the solution. Generally the
value of 10/, should be smaller than foly; to ensure that the linear equations are
solved to a higher accuracy compared to the linearisation done by the Newton Raphson.

In the simulations carried out in this thesis, a general rule of choosing o/, to be 10

times less than #0/,, was found to be sufficient.

Investigation of the choice of tolg,, to achieve sensible computation time whilst
obtaining reasonable results was performed on the vector controlled simulation of the
non-linear bearingless wound rotor IM presented in Section 8.5. Three tol,,  values
were chosen, i.e. 1107, 1x107 and 1x10° with all other solver control parameters
remaining unchanged as given in Table 9.1. The computation time and memory usage

required to simulate the motor for Ss is summarised in Table 9.4.
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tol,, Computation time Memory usage
1x10” 1 hour 24 minutes 3.28MB
1x107 1 hour 35 minutes 3.28MB
1x10™"° 1 hour 30 minutes 3.28MB

Table 9.4: Computation time and memory usage for simulations with different values of ro/_, .

As expected, the computation time and memory usage in the three cases are comparable

indicating that they are insensitive to changes in #olg,, . In addition, the results

obtained from the three simulations show very close similarities indicating the

simulations of the bearingless motor, carried out with fol,,, = 1x107, could have been

performed with the tolerance set to 1x107,

9.5. Chapter summary

From the analysis presented in this chapter, it can be concluded that the computation
time for each DCM simulation is principally affected by the maximum time step Ar,__
parameter and the fhreshold parameter of the linear equation solver. However, the
threshold parameter is chosen based on a trade off between the memory usage and the
computation time. Therefore, having chosen the smallest threshold parameter value that
provides robust convergence, within a reasonable amount of memory usage, the user is

able to determine a suitable Ar_ value to provide sufficiently fast computation.
Although large Ar,_ values give a fast computation, it reduces the efficiency of the

Newton Raphson linearisation and can cause poor prediction of the solutions that in turn

affects the solver convergence. Therefore, there is an upper limit to the choice of Az, .

The accuracy of the equations solved by the solver is generally determined by the

Newton Raphson iteration loop tolerance fol,, and the linear equation solver tolerance
t0l,,,, . Generally, t0lg,,, is chosen to be smaller than tol,; (roughly 10 times less) to

ensure relatively accurate solution of the linear equations. On the other hand, the choice

of tol,, is set by an upper limit since a large fol,, will mean that the state equations are
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not solved with sufficient accuracy, resulting in wrong results and the possibility of

divergence in the solver. Hence, the accuracy of the DCM software simulations is most
sensitive to the choice of #ol,, compared to foly,,, . Lastly, the amount of memory
usage is only determined by the threshold parameter and is insensitive to changes in

other control parameters of the solver.

Finally, it can be concluded that the values of the control parameters used in all the

DCM simulations presented in this thesis are sufficient to achieve accurate results for

the investigation of bearingless induction motors.
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Chapter 10

Conclusions and future work

Previous research into the induction motor type bearingless motors has shown problems
related to achieving successful rotor levitation. The aim of this thesis was to utilize a
modelling approach to investigate the problems associated with true bearingless
induction motors and to extend existing knowledge through the new insight attained. A
dynamic magnetic field model of the machine embedded in a vector-controlled system
was developed using the dynamic reluctance mesh modelling technique introduced in
Chapter 2. The investigations were carried out on two, model, bearingless induction
motors having different rotor structures. One motor had a cage rotor structure whereas
the other had a wound rotor. The wound rotor form restricts rotor currents to those
associated with pole number (M) of the motoring winding. The main findings of this
thesis are summarised below. Suggestions for future research work follow. An IEE
journal paper on this work has been accepted for publication (Ungku Amirulddin et al.,
2005).

10.1. Vector control methods for levitation and lateral force

production

In Chapter 3, the derived y- and x- direction forces acting on a rotor of an M-pole
induction motor augmented by an additional N-pole levitation winding were found, as
expected, to be dependent on the peak airgap fields due to the M-pole motoring winding
and the N-pole levitation winding. The airgap fields correspond to the net airgap flux
linkage vector of both windings. Hence, a field-oriented vector control scheme leads to
the effective control of a levitated induction motor. Chapter 4 describes the three vector

control schemes proposed for each of the bearingless motor types considered in this
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thesis; namely based on indirect rotor field orientation (IRFO), indirect airgap field
orientation (IAFO) and mixed field orientation (MFO).

In Chapter 5, the simulations of the vector control schemes for a 4+2 pole bearingless
cage rotor IM were performed based on a two-axis lumped parameter circuit. These
showed that all three schemes were able to produce the required y- direction force to
compensate for the rotor weight. However, it was found that the IRFO vector controlled
motor also produced an unwanted, but predicted, x- direction force. This was due to the
fact that in order to have a zero x- direction force, the g- axis 2-pole airgap flux linkage

w,, must be zero. This is not the case when the 2-pole winding is rotor field oriented

which leads to the conclusion that the levitation winding has to be airgap field oriented
in order to produced decoupled force control. Therefore, only the IAFO and MFO
vector control schemes are appropriate for the control of the cage rotor type bearingless
motor. Even so, the MFO vector control scheme is at an advantage since it incorporates
a simpler rotor field oriented control for the main 4-pole winding whilst still being able
to produce the necessary forces via a 4-pole airgap field orientation for the 2-pole

levitation winding.

Similarly, in Chapter 5, the simulation of the 4+2 pole wound rotor type motor under
the IRFO, JAFO and MFO vector control schemes all showed that constant normal
forces are achieved under all conditions as required by the force reference demands.
However, under the IRFO vector control scheme, both the M-pole and N-pole winding

currents, voltages and flux linkages are oriented onto the main M-pole rotor flux vector.

This means that when the torque current i}/ is present, the main airgap field B, will

no longer be aligned with the N-pole field B, and will not be in quadrature with B, .

Therefore, the derived force expressions of Chapter 3 will no longer be valid as they
require the peak flux densities B, and B, to be in alignment with each other. Hence,
as for the cage rotor type motor, the IAFO and MFO vector control schemes are the
only control schemes suitable for the wound rotor type motor. Nevertheless, as observed
for the control of the cage rotor motor, the MFO vector control scheme is preferred for

the same reason as stated for the cage rotor type motor.
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10.2. Modelling of a bearing relief cage rotor IM

The results of a linear 4+2 pole bearing relief cage rotor IM modelled using the dynamic
reluctance mesh modelling (DRMM) technique using the DCM software were presented
in Chapter 6. The simulation results showed that under direct on-line start the motor
produced lower than expected force values. This was felt to be due to the extremely
high zigzag leakage fluxes observed in the motor. These substantial leakages arose from
the high slip experienced by the 2-pole field. Therefore, it is concluded that in order to
generate the required radial forces in the cage rotor motor, considerably higher 2-pole
currents are required than predicted from the derived force expressions to compensate
for the high slip effects. When the reluctance mesh modelled motor was simulated with
an MFO vector control scheme, the predicted levitation force was only produced when
the rotor was stationary. Once the rotor started to accelerate and rotate, the force
produced was much higher. This is different to the results obtained from the simulation
of the same motor modelled using the two-axis lumped parameter technique as observed
in Chapter 5. The magnitude of the force obtained from the simulation of the vector
controlled motor during rotor rotation was not readily explainable from the harmonic
fields in the motor obtained from a DFT analysis of the airgap flux density samples of
the airgap reluctance elements, even though the DFT analysis results agreed with the

observation of increase in force magnitude when the rotor rotates.

10.3. Modelling of a bearing relief wound rotor IM

It is clear from the direct on-line start simulation of a cage rotor bearingless IM,
presented in Chapter 6, that a high quality (small) N-pole field is difficult to achieve in
the motor when high slip frequency N-pole rotor currents are induced. It is known that
leakage effects of high slip rotor currents severely compromise the sinusoidal nature of
the airgap magnetic field. Therefore, it can be concluded that bearingless induction
motors containing rotors that do not allow N-pole currents to be induced at high slip are
an advantage. For this reason, simulations of a 4+2 pole wound rotor bearingless IM

modelled using the DRMM technique was presented in Chapter 7.
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Linear simulations of the direct on-line start wound rotor type motor concluded that
radial forces equal to the rotor weight can be achieved and that the required winding
voltages and currents are as predicted from theory. When the DRMM modelled 4+2
pole motor was subject to an MFO vector control scheme, successful bearing relief
compensation from the rotor weight was achieved during both steady state and transient

conditions. However, it is evident from the simulation that even a small error in the

controller airgap flux angle éo (approximately 4° electrical), will cause a lateral force
F, to be produced during acceleration and load conditions when it is not requested.

Therefore, it is concluded that in order to ensure no lateral force F. exists unless it is

requested, the 2-pole levitation winding currents, voltages and fluxes have to be

perfectly oriented onto the peak 4-pole airgap field.

The inclusion of iron non-linearity into the simulations of the direct on-line and vector
controlled wound rotor type motor introduced airgap field harmonics which are capable
of interacting with each other to create harmonic forces. More importantly, if one of the
levitation field harmonic interacts with the dominant fundamental motoring field a
significantly large harmonic force is produced. This large harmonic force will either
enforce or reduce the fundamental force in the motor. It was observed that the force
produced by the simulation is a resultant of the fundamental and harmonic forces.
Furthermore, in the vector controlled motor where the motor is required to compensate
for the rotor weight acting in the negative y- direction, the large harmonic force was

found to not only cause a reduction of the levitation force F, but also to cause a lateral

force F, to be produced even when it was not requested. This is due to the fact that the

levitation field harmonic is not necessarily aligned with the motoring M-pole field.
Therefore, it can be concluded that in order to achieve successful forces in the

non-linear bearing relief motor, compensation of the main harmonic forces produced by

the motor is also required.

Apart from the harmonic forces experienced in the non-linear simulations, it was
observed that under full load a low frequency oscillation of 9.5Hz (in the 4+2 pole
motor) is present in the force variation against time. This frequency is thought to be

related to the electrical slip speed in the motor since it is approximately equal to the
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electrical slip speed multiplied by the number of rotor phase belts per pole pair. Is was
found that this low frequency oscillation is still present when a different stator-rotor slot
combination was chosen, with its value being dependent on the new electrical slip speed
and number of rotor phase belts per pole pair. However, from the investigations carried
out, the oscillation frequency was found to be independent of the supply frequency.
Further understanding is required here to find the mechanism for controlling these

oscillations.

Insight into the effects of non-linear iron on the performance of the bearing relief motor
was not provided from the Simulink simulation of the same motor presented in Chapter
5 since the two-axis lumped parameter circuit model in Simulink was unable to fully
model a non-linear motor. Furthermore, the Simulink model does not include the
capability of investigating the harmonic field interactions that affect the force
production. Therefore, it is concluded that the two axis lumped parameter model may

not be sufficient for fully modelling the performance of the bearingless induction motor.

10.4. Modelling a vector controlled, bearingless, wound rotor IM

It is apparent in Chapter 8 that the position control design for the vector controlled
bearingless induction motor must include the effect of unbalance magnetic pull caused
by the perturbed rotor. The unbalance magnetic pull force expression, derived in
Chapter 3 and used in the position control design, was verified from an investigation of
the effect of rotor displacement on the force produced by the motor under only an M-
pole excitation as shown in Section 8.2. When the designed position control loop was
used in the DCM simulation of the vector controlled bearingless linear iron wound rotor
IM, the control scheme was successful at keeping the rotor centred under both transient
and steady state conditions. However, the choice of sampling time and bandwidth of the

position controller is crucial to ensure successful control.

The effect of non-linear iron on the performance of the position control scheme of the
bearingless wound rotor motor is dependent on the plant of the motor. This is because
the introduction of non-linearity causes an increase in the slope of the unbalance

magnetic pull force-displacement variation and hence a position controller has to be
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designed to cope with this large slope. With the correct controller design, the position
control incorporated in the bearingless motor was also capable of compensating for the
effect of harmonic forces present due to the iron non-linearity. The low frequency
oscillation observed during load in the non-linear iron simulation of the bearing relief
motor is still present in the non-linear bearingless motor simulation. However, this is
only of marginal significance in the closed loop position control. From comparison of
the DCM simulation results of the bearingless induction motor with those of the
Simulink simulation, the inadequacy of the two-axis, lumped parameter model to
simulate the behaviour of the bearingless motor is further highlighted. This is because
the effects of harmonic field interactions, which have been shown to be significant in
the bearingless motor, are not included in the two-axis lumped parameter model.
Moreover, because the two-axis lumped parameter model utilised in the Simulink
simulation is unable to fully model a non-linear motor, no insight into the non-linear

effects on the rotor levitation in the bearingless motor could be obtained.

Clearly, with such a complex interaction of MMF and saturation harmonics in a
practical induction motor, a detailed magnetic machine model is essential for the
development of effective control schemes and for the understanding of the processes of
force production. Therefore, it is perhaps not surprising that no experimental results for

a fully levitated induction motor rotor have yet been reported.

10.5. Recommended future work

The following areas were identified as possible extensions to the work presented in the

thesis:

o An experimental validation of the effects of iron non-linearity on the
performance of a bearing relief wound rotor induction motor as pointed out from

the computational analysis shown in Chapter 7.
¢ In the modelling of the bearingless cage rotor motor, further investigations into
reducing the high slip leakage effects on the force production is required

possibly through higher main (M-pole) and levitation (N-pole) winding pole
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number combinations in which the slot numbers can be optimised to control
leakage reluctances. For such designs, bearing relief schemes for cage machines

may be much more effective compared to those observed in this thesis.

Following from the investigations carried out in Chapter 7, methods for
harmonic force compensation in the non-linear bearing relief wound rotor IM
could be investigated. In addition, further research into the physical
understanding of the low frequency oscillations observed in the non-linear
bearing relief and bearingless wound rotor IM operating under load is also

required in order to find mechanisms to reduce this behaviour.

Investigations of a three-dimensional dynamic reluctance mesh modelled vector

controlled bearingless induction motor.

The common use of fast switching semiconductor devices, such as insulated gate
bipolar transistors (IGBT), in pulse-width modulation (PWM) inverter schemes
for AC motor drives will introduce high frequency motor currents. These
currents have a tendency to flow to earth via the motor bearings capacitively.
Therefore, research into the use of bearing relief capabilities to minimise the

flow of high frequency bearing currents could be worthwhile.

Although, most research into bearingless motors has currently been centred on
the permanent magnet type motor, a study on a vector controlled bearingless
permanent magnet motor modelled using the dynamic reluctance mesh

modelling technique may also help in the control design and operation of these

devices.
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Appendix A

Equations governing the behaviour of an induction motor

In this Appendix the equations governing the behaviour of an induction motor is
derived in terms of the rotating dq reference frame, which is required in vector control
schemes. These equations are generally written in equivalent 2-phase stator variables.

The stator coils, termed the saf coils, are fixed in space. Therefore, the stator voltage

equation can be written as

d
v. =i R +— Al
-8 -5 dt K; ( )

In (A1), v,, i, and y_ are complex vectors representing the stator voltage, current

and flux linkage, and are defined by
V, =V, t Vg

I, =i, + Jig

V.=Vt JVss

Similarly, the rotor is represented by its equivalent 2-phase coils, ra’’, which are

fixed onto the rotor and rotates in space at the rotor speed, @,. The rotor voltage v, ,

current i, and flux linkage y  vectors are defined by:
vV, =Vt Ve
i, =l + Jip

223



Appendix A: Equations governing the behaviour of an induction motor

Z, = !//ra' + j'//rﬂ’
respectively. Hence, the rotor voltage equation is given by

d
=0=i R +—
v, =0=iR +—y, (A2)

where y/,, and y ;. are the total flux linkage in the rotor coils. The rotor voltage is

zero since the rotor coils are short-circuited. In order for equations (A.1) and (A.2) to
be useful, both equations must be written in the same reference frame. This requires
transforming from the o’f’ frame to the af frame, which is achieved using:

= e-jwrl i

ira'ﬂ' Zraf

(A.3)

=J o1

Viwr =€ Voo

Hence, (A.2) can be transformed onto the stator frame thorough of substitution of

(A.3) to give:

. d ,
0=1i,R, +:17Zmp ~JoO Y, (A4)

A.l. Induction machine equations in terms of /,and y

The stator and rotor flux linkage vectors, Vs and Y, g0 can be represented by

Vs = Lilsas + Lolrap

(A.5)

U4 Y = Loisaﬂ +Lrl.raﬂ

—TQ,

In order to achieve a rotor field oriented vector control scheme, the stator and rotor

voltage equations have to be expressed in terms of i, and v, . Therefore, by
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rearranging the equations in (A.5), the terms 7,,, and Vs in (A.1) and (A.4) can be

eliminated to yield
d L d
Vg =l,agR +0L, — (A.6)
—saf “saf’ts sdt -saﬂ L dt
R, LR .d
O—Z_Z’aﬂ Lr _saﬂ d '// .] ’Zraﬁ (A.7)

Equations (A.6) and (A.7) are respectively the stator and rotor dynamic equations
governing the behaviour of the induction motor in the fixed stator aff frame. It has to
be noted that both (A.6) and (A.7) consist of two equations each due to the real and

imaginary quantities of the complex vectors.

The next step is to represent the equations in which all the stator and rotor quantities

are on the rotating dq frame. The dq frame travels at a speed @, relative to the fixed

stator ap frame. Hence, the aff frame quantities can be transformed into the dq frame

through

— ptiog
Xop =€ " " Xq (A8)

where x may be v, i, or y,.

Substituting this transformation into (A.6), and through differentiating by parts and

simplifying, gives the stator voltage vector equation in the dq frame:

d d L,
Ys .\'dqu + ais a_lsdq +_]60 Oi' '.rdq +2_7W .] (] L W rdq (A9)
LL -L

where dl., = —’——}J—"— Similarly, through (A.8), the rotor voltage equation (A.7) is

r

transformed into the dq frame to produce
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0= Rr LoRr . d ,
- L Zrdq - Lr lsdq +Ezrdq +Ja):lz,dq (AIO)

r

where 0, =0, - 0,.

Finally, equations (A.9) and (A.10) can be separated into real and imaginary parts to

yield the four equations governing the behaviour of the induction motor in the dq

frame:

Vg =14R, +0L, %im -o,0Li, +%:-gt-z,d -0, ﬁ—"’u_/,, (A1)
v, =i R ol %qu +w,0L,i, + %% y, to. é—‘r’v_f,d (A.12)
0= f—z - Ljf’ . +;;d;u_/,d -0, (A13)
0= % v - Li?, i+ _37 v, o, (A.14)

A.2. Induction machine equations in terms of i, and v

In order to express the dynamic equations of the induction motor in terms of i, and

Y i the term Yo in equations (A.9) and (A.10) would have to be eliminated. This

— O

is achieved using the flux linkage vector equations in the dq frame where

v =Lig+Li, (A.15)

—rdq

V/ d =Lol.sdq +Lolrdq (A16)

L _odq

By rearranging (A.16), an expression for i, is obtained which can then be

substituted into (A.15) to give
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/4 g~ (Lr = Lo )i

—rdg L

Hence, by substituting (A.17) into (A.9) and (A.10):

_ L d. .
Xxdq =l:dqRJ +[0-Ls +L_(L, _Lo)](zl;dq +.]0)tl:dq)

d .
+Ezodq +j(0,zodq

+ jw.rl [—Lu_l_m - (Lr - Lo )!sdq]

(A.17)

(A.18)

(A.19)

Equations (A.18) and (A.19) are the stator and rotor equations of the induction motor

in terms of i, and ¥ iy’ which will be useful in an airgap field oriented vector

control scheme. Again, both these equations can be separated into real and imaginary

parts to yield another set of four equations governing the behaviour of the induction

motor in the dq frame:
[ L, d.  \.d
R-flxd | Ls __L—:(Lr _Lo):[zl.rd —wcl.rq)-’-_d?'//od —waWW

_ L, d . ) d
v. =Ri_+|0L, _L_,(L' _L")I;t_l" +w,1,d)+zwoq +0Y .4

L d d
= Woa = Ry = (L, =L, )i

"1 L, dt
[ _(Lr —Lo )i:qj|
R

L d d
Sy 4%y _Ri, —(L -L,)=
O La qu + Lo dt qu rlsq ( r ? ) dt I"q

L
+ w:l |:L—’Wod - (Lr - La )isd ]
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