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Abstract

Self-excited oscillations in a collapsible-tube flow driven by fixed upstream flux have

been observed by numerical and laboratory experiments. In this thesis we attempt

to understand the mechanism of onset of these oscillations by focusing on a reduced

physical model. We consider flow in a finite-length planar channel, where a segment

of one wall is replaced by a membrane under longitudinal tension. The upstream flux

and downstream pressure are prescribed and an external linear pressure distribution

is applied to the membrane such that the system admits uniform Poiseuille flow as a

steady solution. We describe the system using a one-dimensional model that accounts

for viscous and fluid inertial effects. We perform linear stability analysis and weakly

nonlinear analysis on the one-dimensional model, the resulting predictions are tested

against two-dimensional Navier–Stokes numerical simulation.When the membrane has

similar length to the rigid segment of channel downstream of the membrane, we find

that in a narrow parameter regime we consider “mode-2” oscillations (i.e. membrane

displacements with two extrema) are largely independent of the downstream segment

but are driven by divergent instabilities of two non-uniform steady configurations of

the membrane. When the downstream segment is much longer than the membrane, our

analysis reveals how instability is promoted by a 1:1 resonant interaction between two

modes, with the resulting oscillations described by a fourth-order amplitude equation.

This predicts the existence of saturated sawtooth oscillations, which we reproduce in

full Navier–Stokes simulations of the same system. In this case, our analysis shows

some agreements with experimental observations, namely that increasing the length of

the downstream tube reduces the frequency of oscillations but has little effect on the

conditions for onset. We also use linear stability analysis to show that steady highly-

collapsed solutions, constructed by utilizing matched asymptotic expansions, are very

unstable, which allows the possibility that they are a precursor to slamming motion

whereby the membrane becomes transiently constricted very close to the opposite rigid

wall before rapidly recovering.
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Chapter 1
Introduction

In the human body, there are a lot of highly elastic vessels, such as arteries, veins and

pulmonary airways. These vessels usually play an important role in conveying fluids,

such as blood and air, which support human life. When fluid flows in the vessels, trac-

tions (pressure and viscous stress) deform them. The deformation of vessels in turn

affects the internal flow field. Thus, we arrive at the problem of fluid-structure inter-

action. The interaction is related to many physiological phenomena, such as Korotkoff

sounds generated during blood-pressure measurement, the action of cardiac and venous

valves, and wheezing during forced expiration. The study of flow in elastic tubes is not

only of significant interest in biomechanical and biomedical applications, but is also an

interesting fluid-mechanical problem in its own right.

In the past several decades, the study of collapsible-tube flows has been exceed-

ingly fruitful. Numerous studies, covering analytical methods, numerical simulations

and experiments, have been presented; a number of review articles are available (Ped-

ley, 1977; Shapiro, 1977; Kamm & Pedley, 1989; Grotberg, 1994; Pedley & Luo,

1998; Grotberg, 2001; Bertram, 2003; Heil & Jensen, 2003; Grotberg & Jensen, 2004;

Bertram, 2008; Grotberg, 2011; Heil & Hazel, 2011).

1.1 Biological background

The human body is permeated by tubes transporting fluids of many kinds: blood ves-

sels, lymphatics, airways, ureters, a urethra, and so on (Bertram, 2004). Some studies

for blood vessels were reviewed in Pedley (1980) and Ku (1997). The propagation of

the pulse wave through the arterial system is a well-known and well-understood exam-

1
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ple of a physiological flow. The analysis of pulse waves is facilitated by the fact that

under normal conditions the arteries are subject to a positive transmural (internal minus

external) pressure. In this configuration the vessels are relatively stiff, and the variation

of internal fluid pressure causes only small deformations. There are, however, many

examples of fluid-conveying vessels that are subject to negative transmural pressure,

which induces the vessels to buckle and collapse non-axisymmerically. Buckled ves-

sels are very flexible and even small changes in fluid pressure can induce large changes

of their cross-sectional area. This leads to a strong interaction of fluid and solid me-

chanics, which gives rise to many intriguing phenomena, such as the propensity to

develop flow limitation and large-amplitude self-excited oscillations.

Flow limitation is the Bernoulli effect manifesting itself in collapsible-tube flow.

When the tube is forced to collapse by the transmural pressure, the reduction of its

cross-sectional area increases the local fluid velocity. The Bernoulli effect then re-

duces the internal fluid pressure, leading to a further increase in tube contraction. Flow

limitation can cause an increasingly strong collapse of the lung airways and possibly

so-called negative effort dependence, whereby an increase in expiratory effort (at a

given lung volume) beyond a certain level can lead to a reduction in expiratory flow

rate. There are two other mechanisms accounting for flow limitation in the literature.

One is analogous to the limitation of compressible fluids at the speed of sound in rigid-

walled pipes. The flow limits when the flow velocity equals to the speed of propagation

of pressure pulse waves at some point, the choke point, within the elastic tube. In this

case, any lowering of downstream pressure below that required to achieve a flow ve-

locity equal to the speed of wave propagation has no effect on the maximum flow rate,

or on the distribution of pressure upstream of the choke point, since the downstream

pressure disturbance produced by lowering the downstream pressure cannot propagate

upstream past the choke point. The wave-speed explanation of flow limitation has

been tested by experiments (Elliott & Dawson, 1977; Kamm & Shapiro, 1979). An-

other mechanism is responsible for flow limitation in a predominantly viscous flow in

a long elastic tube which is highly collapsed over a narrow region under high external

pressure (Jensen, 1998).

In the following, three physiological phenomena relating to collapsible tubes, wheez-

ing, snoring and phonation, extensively investigated in the fluid mechanics research

community, will be discussed.
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1.1.1 Wheezing

Wheezes are continuous audible lung sounds, which are superimposed on the normal

breath sounds. The word “continuous” means that the duration of a wheeze is longer

than 250 ms. They are clinically defined as more or less musical sounds and can be

characterized by their location, intensity, pitch, duration in the respiratory cycle, and

relationship to the phase of respiration (Meslier et al., 1995). Forced exhalation is

accompanied by wheezing in even the healthy at low lung volumes (Forgacs, 1967).

Wheezing is also associated with some obstructive respiratory diseases. Forgacs et al.

(1971) pointed out that inspiratory wheezes heard with the unaided ear close to the

patient’s mouth are an important clinical sign. Noisy inspiration is common in chronic

bronchitis and asthma, and the degree of narrowing of the central bronchi can be in-

ferred from the loudness of that noise; silent inspiration in the presence of severe ex-

piratory obstruction is a sign of primary emphysema (Forgacs et al., 1971). Recently,

medical groups proposed to use wheezes to estimate the degree of airway obstruction

and to be a diagnostic criterion of obstructive airway disease partially replacing spirom-

etry (the measurement of the volume of air that a person can move into and out of the

lungs, using a spirometer)(e.g. Gavriely & Cugell, 1995; Gavriely, 1996; Pasterkamp

et al., 1997; Leuppi et al., 2006). They suggested that the degree of airway constriction

can be estimated by analysing changes in spectral curves of wheezes.

To better understand the physics of wheezing, Grotberg & Gavriely (1989) and

Gavriely et al. (1989) modelled airways as collapsible tubes, investigating oscillations

arising in collapsible tubes experimentally and theoretically. Broadly speaking, two

forms of oscillations in collapsible tubes, milking and flutter, are common in experi-

mental studies. In the milking a collapse point is created and moves upstream when

it opens; in the flutter the point of collapse does not move upstream. Gavriely et al.

(1989) compared their experimental results with predictions from the fluid-dynamic

flutter theory and the vortex-induced wall vibrations mechanism, and concluded that

viscous flutter in flow-limited collapsible tubes is the more probable mechanism for the

generation of oscillations in the collapsible tube model and is a possible mechanism for

the generation of respiratory wheezes. Doherty et al. (1998) even reported a clinical

example to show evidence in support of the dynamic flutter theory of wheeze produc-

tion. They performed spectral analysis for an unusual low pitched sound from a case

of relapsing polychondritis (an uncommon, chronic disorder that is characterized by

recurrent episodes of inflammation of the cartilage of various tissues of the body) pre-
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senting as tracheomalacia (a condition in which degeneration of trachea tissue occurs),

and found that it has the characteristics of sounds produced by flutter in flow-limited

collapsible tubes. The generation of a wheeze has links to wall vibration of airways

and to turbulent flow in airways, both of which are induced by stenosis (Sera et al.,

2003). Before wheezes can be used as a clinical diagnostic index, however, flow-field

patterns around stenosis must be clarified and dependence of possible mechanisms of

wheeze generation on stenosis models, must be determined. In previous studies, the

geometry of the stenosis models were idealised, namely, either cylindrical and sym-

metrical or asymmetrical with uniform distensiblility. More recently, Sera et al. (2003)

experimentally examined a more realistic tracheostenosis model by including spatial

variation of wall distensibility. Using this model, they explored the mechamism of

wheeze production by focusing on the turbulence intensity. They found the turbulence

intensity in expiratory flow is about twice that in inspiratory flow, and larger vortices

existed in post-stenosis in expiratory flow, and concluded that this might contribute to

wheeze generation.

1.1.2 Snoring

Snores are common breath sounds produced in adults during sleep. They are less com-

monly encountered in children, except when upper airway narrowing is present. The

clinical significance of snores is not completely clear. In the majority of snorers, the

soft palate (see figure 1.1) is the main vibrating object. With the mouth closed, nasal

inhalation causes the soft palate briefly to obstruct the airway in the naso-pharyngeal

space. With the mouth open and inflow occuring over both the upper and lower surfaces

of the soft palate (from the nose and mouth, respectively), the soft palate obstructs both

airways in turn as it moves between the tongue and the posterior pharyngeal wall. In

addition to palatal snoring, snoring may result from collapse of the pharyngeal airway

itself.

To understand the mechanism of snoring, Gavriely & Jensen (1993) established a

simple theoretical model of the upper airway, consisting of a movable wall in a channel

segment that connects to the airway opening via a conduit with a resistance. They sug-

gested that snoring may be modelled as a series of dynamic closure events of the upper

airways. Their theoretical prediction of the time course of wall motion during col-

lapse compared well with the rate of appearance of repetitive sound structures during

snoring. Huang et al. (1995) devised experimental models of palatal and pharyngeal
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Figure 1.1: Sagittal section of upper respiratory system illustrating the inter-
nal anatomy of the nasal cavity, pharynx, larynx, and trachea, reproduced from
http://biology-forums.com/index.php?action=gallery;sa=

view;id=8486.

http://biology-forums.com/index.php?action=gallery;sa=view;id=8486
http://biology-forums.com/index.php?action=gallery;sa=view;id=8486
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snoring, which simulated the movement of the soft palate in palatal snoring and the

rhythmic collapse and opening of the pharynx observed during pharyngeal snoring, re-

spectively. Using these simplified models they studied the biomechanics of snoring,

and supposed that the instabilities in the structure of the pharynx may be due to flut-

ter in palatal snoring and static divergence in pharyngeal snoring. Flutter and static

divergence are two distinct modes of instability within the framework of linear anal-

ysis on the stability of flow over flexible structures. Flutter instability drives small

disturbances on a steady state into a cycle with increasing amplitude; static divergence

instability pushes small disturbances away from the steady state in an accelerating man-

ner. Focusing on palatal snoring, Huang (1995) modelled the palate as an aerofoil with

a control surface at its trailing edge, then explored the mechanism of palatal snoring

employing well-understood aerodynamics of the aerofoil. Some human snore samples

were compared with results from the ideal model experiments, and similarity was seen.

By analysing the induced sound, they proposed that the antiphase relation of the pres-

sure variations from the oral and nasal airways is a good test of whether snoring is

caused by the soft palate vibration.

Considering local differences in anatomical and physiological properties between

pharyngeal regions, Fodil et al. (1997) presented a two-element model, which consists

of a series of two individualised segments, each having its own compliance. They

studied the steady state solutions of the model and found the model has the capabil-

ity to demonstrate rich mechanical behaviours. Motivated by the fact that snoring and

obstructive apnoea only occur during sleep, Huang & Ffowcs Williams (1999) inves-

tigated a ‘piston’ model in which the neuromuscular physiology is coupled to the me-

chanics of airways. Theoretical results on the model exhibit three kinds of behaviour:

unimpeded breathing, snoring, and obstructive sleep apnoea. They suggested that the

increased latency of the reflex muscle activation in sleep, as well as the reduced strength

of the reflex, have important clinical consequences.

Aittokallio et al. (2001) described a spatially continuous model by including spatial

variation in the cross-sectional area and the velocity in the upper airway. By introduc-

ing three significant components of the respiratory system (the respiratory pump drive,

the stiffness of the pharyngeal soft tissues, and the overall support of the muscles sur-

rounding the upper airway), their model has the capability to predict the nasal flow

velocity profile and to reproduce the characteristic changes in flow profile that are clin-

ically observed in snorers and non-snorers during sleep. In addition to theoretical and

experimental analysis, fully numerical simulation has been used to investigate the snor-
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ing mechanism. Liu et al. (2007) developed a three-dimensional finite element model

of the human head and neck, which predicted noise levels of snoring agreeing with

the measured results by Rogelio Perez-Padilla et al. (1993) and Wilson et al. (1999).

Recently, Aittokallio et al. (2009) reviewed mathematical modelling in understanding

sleep-disordered breathing. They pointed out that combining experimental measure-

ments with mathematical modelling has the potential to provide mechanistic insights

into the individual factors underlying the disease progression, which may finally enable

tailored treatment alternatives for each patient.

1.1.3 Phonation

Vocalisation is fundamental to human communication and thus to quality of life; this is

therefore the most important example in the body of flow-induced oscillation. The hu-

man vocal folds are a pair of muscular folds located in the central section of the larynx

known as the glottis (see figure 1.2). The position and shape of the folds can be actively

controlled; for instance, during breathing the glottis tends to be fully open, but it can

close completely when holding one’s breath. When the folds are brought close together

and the subglottal (upstream) pressure is increased beyond the so-called phonation-

threshold pressure, air driven through the narrow gap can excite flow-induced oscil-

lations that provide the main source of sound during speech and singing. The fre-

quency of oscillation can be actively controlled by adjusting the folds’ position, shape

and internal tension. Stroboscopic observations show the existence of several distinct

types of oscillations, often associated with different vocal registers, such as the modal

register used in normal speech and characterized by large-amplitude, low-frequency

oscillations (approximately 100/200 Hz for males/females), during which the folds

collide, or the falsetto register in which the folds are highly stretched and perform

small-amplitude, high-frequency oscillations without contact.

In early research, the two-mass model of Ishizaka & Flanagan (1972) was widely

used. They considered that in the real larynx the vocal folds operate as an aerodynamic

oscillator and their motion is a self-determined function of physical parameters, such as

subglottal pressure, vocal-fold tension, and vocal-tract configuration. To reflect these

self-oscillating properties, Ishizaka & Flanagan (1972) approximated the vocal folds

as a self-oscillating sound source composed of two stiffness-coupled masses, on which

the pressure acts as predicted by Bernoulli’s theory. Results show that the two-mass

model demonstrates principal features of vocal folds’ behaviour in the human. Due
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Figure 1.2: Coronal section of the larynx, showing the false and true vocal folds, repro-
duced from http://www.gbmc.org/home_voicecenter.cfm?id=1552.

http://www.gbmc.org/home_voicecenter.cfm?id=1552
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to its simplicity, the model has been improved by many subsequent investigations. For

example, Titze (1973, 1974) increased the number of masses used to represent the vocal

folds, Pelorson et al. (1994) modified the geometry of the masses and used additional

flow theory to estimate the point of flow separation within the glottis, and Story &

Titze (1995) incorporated the contribution of the vocal fold body. However, the model

needs some inputs (e.g. lumped parameter values and orifice coefficients) from detailed

experimental data or more sophisticated models.

Numerical simulation (especially finite element simulation) has the capability to

investigate in detail flow and structure behaviour, making it superior to multi-mass

models. Based on basic laws of continuum mechanics, Alipour et al. (2000) developed

a finite element model to obtain the oscillatory characteristics of the vocal folds. The

model is capable of accommodating inhomogeneous, anisotropic material properties

and the irregular geometry of the boundaries. de Oliveira Rosa et al. (2003) presented

a three-dimensional finite element model to simulate the larynx during vocalization.

The model considers the whole larynx (including false vocal folds and laryngeal ven-

tricles, see figure 1.2) in three dimensions and not just the true vocal folds. They in-

corporated a contact-impact algorithm to deal with the physics of the collision between

both true vocal folds. The simulation results showed that the simulated larynx can re-

produce the vertical and horizontal phase difference in the tissue movements and that

the false vocal folds affect the pressure distribution over the larynx surfaces. Hunter

et al. (2004) employed a three-dimensional biomechanical model to simulate dynamic

vocal fold abduction (the movement which separates a limb or other part from the axis,

or middle line, of the body in functional anatomy) and adduction (the action by which

the parts of the body are drawn towards its axis). The model was made of 1721 nearly

incompressible finite elements. The results showed that the system mechanics seems to

favour abduction over adduction in both peak speed and response time, even when all

intrinsic muscle properties were kept identical. Using numerical simulation together

with experiments on synthetic vocal fold models, Thomson et al. (2005) explored the

aerodynamic transfer of energy from glottal airflow to vocal fold tissue during phona-

tion. Their results confirmed the hypothesis that a cyclic variation of the orifice profile

from a convergent to a divergent shape leads to a temporal asymmetry in the average

wall pressure, which is the key factor for the achievement of self-sustained vocal fold

oscillations.

More recently, two review articles (Alipour et al., 2011; Kniesburges et al., 2011)

extensively surveyed mathematical models, numerical methods and experimental tech-
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niques used in study of phonation process.

1.2 Self-excited oscillations in a collapsible-tube flow

1.2.1 Physical models

Oscillations in collapsible tubes can be reproduced experimentally by using a Starling

resistor. In a pressure chamber, a finite-length thin-walled elastic tube (typically made

of latex rubber) is mounted on two rigid tubes. In the tube, fluid (typically air or water)

is driven, either by applying a controlled pressure drop between two ends of the rigid

tubes or by controlling the flow rate. In terms of macroscopic flow variables (flow

rate and pressure variations) and their dependence on the system parameters, early

collapsible tube experiments, reviewed in Bertram (2003), identified a large number

of different types of oscillations, ranging from high- to low-frequency oscillations (see

figure 1.3). However, the mechanisms responsible for the onset of some of them remain

poorly understood.

In a Starling Resistor, a fully three-dimensional fluid-structure problem has to be

considered. This complication makes a rational theoretical analysis very difficult. In

order to reduce this difficulty, Pedley (1992) introduced a two-dimensional analogue

of a Starling Resistor. It comprises a two-dimensional channel, one wall of which

has a segment replaced by a membrane under longitudinal tension. Viscous flow is

driven along the channel by an imposed pressure drop or flow rate. The external pres-

sure and the internal flow determine the deformation of the membrane. Although two-

dimensional flow is almost impossible to produce experimentally, this system has at-

tracted considerable theoretical attention due to its relative simplicity. In fact, it still

admits self-excited oscillations and some other phenomena existing in the Starling Re-

sistor.

1.2.2 Theoretical models

In order to describe behaviours of collapsible tubes analytically or numerically, four

classes of theoretical model have been established: lumped-parameter models, one-

dimensional models, two-dimensional models and three-dimensional models.

In the lumped-parameter model the system’s behaviour is governed by a set of or-

dinary differential equations describing the temporal evolution of a small number of



CHAPTER 1. INTRODUCTION 11

(a) (b)

(c) (d)

Figure 1.3: The dimensionless time-varying pressure and flow-rate at each end of the
tube (P1, P2, Q1, Q2) and the dimensionless tube cross-sectional area A at the narrowest
point, ‘throat’, recorded during self-excited oscillations in a flexible-tube flow, repro-
duced from Bertram (1986). (a) Oscillation at 16.08 Hz, with upstream pressure pu =
201 kPa, external pressure pe = 186.5 kPa and mean pressure difference pe− p̄2 =100
kPa (where p2 is the dimensional downstream end pressure). (b) Oscillation at 4.17
Hz, with pu =64 kPa, pe =79.7 kPa and pe − p̄2 =60 kPa. (c) Oscillation at 2.72 Hz,
with pu =33 kPa, pe =51.8 kPa and pe − p̄2 =40 kPa. (d) ‘Two out of three beats’
oscillation at 4.09 Hz, with pu =99 kPa, pe =101.4 kPa and pe − p̄2 =50 kPa.
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scalar variables (such as the cross-sectional area, the transmural pressure and the fluid

velocity at the point of strongest collapse, etc.). Conrad (1969) studied the unsteady

pressure-flow relations in a short collapsible tube by drawing an analogy with Van

der Pol’s equation. Bertram & Pedley (1982) presented a simple, third-order model

based on fluid-mechanical principles to describe unsteady flow in a short segment of

collapsible tube held between two rigid segments and contained in a pressurised cham-

ber. They found that the energy loss in the seperated-flow region downstream of the

point strongest collapse played an important role in the development of self-excited

oscillations. In particular, if this energy loss was completely neglected (correspond-

ing to attached, inviscid flow with completed pressure recovery, that is, the pressure

downstream of the collapsed point is the same as the pressure upstream of the col-

lapsed point), the tube was found always to choke if the flux was increased sufficiently

(i.e. the tube completely closed at some point along its length in finite time). In con-

trast, if the enegy loss associated with flow separation was made as large as possible

(corresponding to the formation of a parallel-sided jet beyond the collapsed point in

the tube, along which there is no pressure recovery, that is, the pressure downstream

of the collapsed point is the same as the pressure at the collapsed point), Bertram &

Pedley (1982) found that steady flow was always possible and no oscillations were

predicted. They found that self-excited oscillations arose only if some energy loss and

some pressure recovery are allowed. Although the lumped-parameter models success-

fully capture many important flow features, they cannot incorporate phenomena such

as wave propagation, due to the lack of the inclusion of spatial dimensions.

In the one-dimensional model, a long-wavelength approximation is employed to

simplify the Navier–Stokes equations by reducing the spatial dimensions. For an in-

compressible fluid in a horizontal tube, the typical equations used in one-dimensional

models, the conservation-of-mass equation and the momentum equation are

∂A

∂ t
+

∂ (uA)

∂x
= 0, (1.1a)

∂u

∂ t
+u

∂u

∂x
=− 1

ρ

∂ p

∂x
−Fu. (1.1b)

Here A = A(x, t) is the cross-sectional area of the collapsible tube, u = u(x, t) is the

cross-sectionally averaged axial fluid velocity, ρ the fluid density, p = p(x, t) is the

fluid pressure and F = F(A,u, t) > 0 is a friction term. By representing the relation

between the transmural pressure (ptm = p− pext , where pext is the external pressure
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exerted on the collapsible tube) at any point and the cross-sectional area A at that point

as a ‘tube law’, the elastic properties of the tube are coupled into the model. In the

standard tube law, the transmural pressure ptm is taken to be a single-valued function

of the cross-sectional area A. The function has the general form

ptm(x, t) = P(A(x, t),x). (1.2)

Using (1.2), the local problem (assuming that the flow domain is unbounded in the

streamwise direction) has been fully studied (e.g. the detailed analysis of linear and

nonlinear wave propagation in Kamm & Shapiro (1979)). For the global problem

(where the tube is of finite length), the constitutive equation for the tube wall with

a large axial tension T0 and negligible wall inertia, needs to be extended by including a

term representing longitudinal tension and curvature in the tube wall as

ptm(x, t) = P(A(x, t),x)−T0
∂ 2A

∂x2 , (1.3)

which allows the application of boundary conditions at two ends (e.g. McClurken et al.,

1981; Cancelli & Pedley, 1985). A rational derivation of the tube law from shell theory,

which gives formal justification for (1.3) for small amplitude long-wavelength defor-

mations of a thin-walled elliptical tube at least, has been presented by Whittaker et al.

(2010c). To represent the separated-flow effect found in Bertram & Pedley (1982)

(mentioned above), Cancelli & Pedley (1985) slightly modified (1.1b) as

∂u

∂ t
+χu

∂u

∂x
=− 1

ρ

∂ p

∂x
, (1.4)

where χ = 1 for upstream and 0 < χ < 1 for downstream of the separation point, and

χ is an indicator of the magnitude of energy loss and pressure recovery: If χ = 1 there

is no energy loss (no separation); if χ = 0 there is no pressure recovery. The small

viscous losses represented by F in (1.1b) were found to be of minor importance and

were therefore neglected. In the Starling resistor, the abrupt change in cross-sectional

shape and area between the throat (the most collapsed point) of the collapsible tube

and the downstream rigid pipe can cause flow separation. The sudden onset of separa-

tion during collapse is believed to be largely responsible for bringing about reopening,

thereby allowing relaxation oscillation (Cancelli & Pedley, 1985). However, Bertram

et al. (1989) found the unphysiologically sudden change from compliant to rigid tubes
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is not a pre-condition for self-excited oscillations in a variety of frequency bands to

occur. More recently, following the the ideas of Cancelli & Pedley (1985), Anderson

et al. (2013) presented a numerical implementation of the one-dimensional model in

a segregated approach by treating the cross-sectional area function A(x, t) as a known

parameter, which targeted the simulation of obstructive sleep apnea particularly with a

completely closing geometry. The one-dimensional models indeed give some insights

into the physical mechanisms of the generation of the self-excited oscillations in the

Starling resistor. However, without the help of two- or three-dimensional flow field

analysis, these mechanisms are still not very clear.

The two-dimensional model in essence is a channel problem with the flow gov-

erned by the two-dimensional Navier–Stokes equations and the deformable wall mod-

elled as a membrane (e.g. Matsuzaki & Matsumoto, 1989; Rast, 1994; Luo & Ped-

ley, 1995, 1996, 1998, 2000) or an elastic beam (e.g. Jensen & Heil, 2003; Cai &

Luo, 2003; Luo et al., 2008). The fluid-membrane model used in early studies (e.g.

Luo & Pedley, 1995, 1996, 1998, 2000) involves several ad hoc assumptions. First,

the direction of the wall movement has to be assumed because the membrane equa-

tion alone cannot determine the movement of the material points of the elastic wall

(Luo & Pedley, 1996). Secondly, the membrane model ignores the axial stiffness and

hence the longitudinal stretch of the elastic wall is only balanced by a uniform tension

and the transmural pressure. Thirdly, the bending stiffness of the wall is ignored. To

avoid these ad hoc assumptions, the fluid-beam model was proposed to study steady

(Cai & Luo, 2003) and then unsteady flows (Luo et al., 2008). In terms of steady

behaviour, the beam model agrees well with the membrane (constant-tension) model

as long as the additional stretch-induced tension is small compared to the initial con-

stant tension. Some numerical simulations made by Luo et al. (2008) are shown in

figure 1.4. The two-dimensional channel model is a rational and (at least in prin-

ciple) physically realisable system which can be interpreted as an approximation to

the flow in a strongly collapsed three-dimensional tube. However, as Heil & Jensen

(2003) suggested, the two-dimensional model excludes many potentially important

three-dimensional effects: (i) when the tube is moderately collapsed the flow field

presents strong three-dimensionality; (ii) the flow separation in two-dimensional flows

is significantly different from that in there-dimensional flows; (iii) as the tube changes

from an axisymmetric to a non-axisymmetrically buckled state its wall stiffness varies

drastically.

The first rigorous three-dimensional computational model of flow in collapsible
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Figure 1.4: Wall shape, instantaneous streamlines (thin lines) and vorticity contours
(thick lines) during self-excited oscillations of a collapsible channel using a fluid-beam
model, reproduced from Luo et al. (2008).
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tubes was given in Heil (1995). The key contribution of Heil (1995) is that a large

displacement, geometrically nonlinear shell theory was proposed to describe the de-

formation of the collapsible tube which was modelled as a thin-walled elastic shell.

By using nonlinear shell theory, firstly steady viscous (Stokes) flow (Heil, 1997, 1998)

and, later, finite-Reynolds-number flow (Hazel & Heil, 2003), in three-dimensional

collapsible tubes were studied. Then unsteady cases were considered: Heil & Waters

(2008) presented a combination of theoretical and computational analysis of three-

dimensional unsteady finite-Reynolds-number flows in collapsible tubes whose walls

perform prescribed high-frequency oscillations; Heil & Boyle (2010) explored the on-

set of self-excited oscillations and the subsequent large-amplitude oscillations in three-

dimensional collapsible tubes with full coupling between the fluid and solid mechanics.

In all these models, self-excited oscillations are found at least numerically, e.g. in

the lumped-parameter model of Bertram & Pedley (1982), the one-dimensional model

of Cancelli & Pedley (1985); Jensen (1992), the two-dimensional model of Luo &

Pedley (1996, 1998, 2000); Jensen & Heil (2003), and the three-dimensional model of

Heil & Boyle (2010); Whittaker et al. (2010b).

1.2.3 Sloshing mechanism

However, no simple and satisfactory theoretical analysis that is compatible with ex-

isting numerical or experimental results was presented until the sloshing mechanism

was described by Jensen & Heil (2003). By combining rational asymptotic analysis

with direct numerical simulation, Jensen & Heil (2003) identified a simple and clear

mechanism that not only is responsible for the initial instability but also controls the

large-amplitude oscillations that develop subsequently. This and some following stud-

ies (e.g. Heil & Waters, 2006, 2008; Whittaker et al., 2010d,a) show that the mecha-

nism operates in two and three dimensions.

The mechanism is as follows. When viscous effects are weak, the channel or tube

supports a family of inviscid normal modes, in which transverse wall deformations

generate predominantly axial oscillations of the fluid in the entire tube. If the am-

plitude of the resulting sloshing flows is greater in the rigid upstream section than in

its downstream counterpart, then there can be a net influx of kinetic energy into the

system in the presence of a mean flow. If this influx exceeds any additional losses,

such as viscous dissipation, oscillations can grow by extracting energy from the mean

flow. For the two-dimensional model, Jensen & Heil (2003) presented predictions for
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the frequency and growth rates of instabilities arising through this mechanism, in the

limit of large wall tension. Assuming the flow is driven by a fixed pressure drop, they

showed that the required upstream/downstream asymmetry of the sloshing flow can be

generated by making the rigid downstream part longer than its upstream counterpart.

The theoretically predicted critical Reynolds number at which oscillations grow is in

excellent agreement with results from direct numerical simulation for Navier–Stokes

equations, even in cases in which the tension is relatively small and oscillations are of

modest frequency (Jensen & Heil, 2003).

In three dimensions, by using asymptotic analysis of high-frequency oscillations

of fluid-conveying elastic tubes, Heil & Waters (2006) showed that, for sufficiently

small amplitudes, the three-dimensional unsteady flow induced by the wall motion is

independent of the steady through-flow. Furthermore, the average axial velocities that

are generated by the wall motion are much smaller than the corresponding transverse

velocities, suggesting that the dominant flow occurs in the tube’s cross-sections. This

is very different from the two-dimensional case investigated by Jensen & Heil (2003),

where wall oscillations drive axial sloshing flows which play an important role in the

onset of the self-excited oscillations. Instead, by analysing the system’s energy bud-

get under prescribed high-frequency wall oscillations, Heil & Waters (2008) showed

that efficient extraction of energy from the mean flow via the sloshing mechanism

requires the tube to perform oscillations about a non-axisymmetric mean configura-

tion. Moreover, by using numerical simulations of fully-coupled three-dimensional

fluid-structure interaction, Heil & Boyle (2010) showed self-excited oscillations read-

ily arise from steady equilibrium configurations in which the tube is buckled non-

axisymmetrically, and that short tubes tend to approach an approximately axisym-

metric equilibrium configuration in which the oscillations decay whereas sufficiently

long tubes develop sustained large-amplitude limit-cycle oscillations. These findings

are consistent with experimental results showing that self-excited oscillations read-

ily develop from the steady-state configurations in which the tube is strongly buckled

(Bertram et al., 2008).

In a series of papers, Whittaker et al. (2010d,c,b,a, 2011) performed asymptotic

analysis of self-excited oscillations based on three-dimensional theoretical models in

which the Navier–Stokes equations are coupled to large displacement elasticity the-

ory. First, they analysed the fluid (Whittaker et al., 2010d,a) and solid (Whittaker

et al., 2010c) mechanics of the problem in isolation. Then, combining these results,

they studied the development of small-amplitude long-wavelength high-frequency os-



CHAPTER 1. INTRODUCTION 18

cillations in an elastic tube of initially elliptical cross section (Whittaker et al., 2010b).

Their results provided the first asymptotic predictions for the onset of self-excited oscil-

lations in three-dimensional collapsible tube flows. They suggested that, at least in the

parameter regime that they considered, self-excited oscillations in three-dimensional

systems can arise through the sloshing mechanism.

1.2.4 Pressure- vs. flux-driven system

In the laboratory, flow in a Starling resistor can be driven by either a given pressure

drop or a given inlet volume flux. Therefore, two kinds of boundary conditions, fixed

pressure-drop or fixed flux, can be imposed on a collapsible tube flow. In the frame of

collapsible channel flows, it is found these two systems (pressure- and flux-driven) can

demonstrate significantly distinct stability behaviour.

Using a fluid-membrane model with fixed inlet flow, Luo & Pedley (1996) de-

scribed a kind of low-frequency self-excited oscillation numerically. Here, the pri-

mary instability is mode-2 (the channel width perturbation has two spatial extrema).

The oscillation cannot be explained by the sloshing mechanism proposed by Jensen &

Heil (2003), in which a pressure-driven model was used. The asymptotic analysis of

Jensen & Heil (2003) predicted that the primary instability is mode-1 (with a single

spatial maximum in the width perturbations), which can lead to self-excited oscilla-

tions. Furthermore, combining numerical simulation with linear stability analysis, Luo

et al. (2008) found a cascade structure of instabilities for a fluid-beam model with inlet

flow. They discovered that, under small perturbations to steady solutions for the same

Reynolds number, the system loses stability by passing through a succession of un-

stable zones, with mode number increasing as the wall stiffness, Cλ , is decreased (see

figure 1.5). The cascade structure was also reported in earlier one-dimensional models

(Jensen, 1990, 1992). The cascade phenomenon for a flow-driven system was repro-

duced by Liu et al. (2009) using the commercial package ADINA. Liu et al. (2009)

also confirmed that the lowest unstable mode number is primarily determined by the

nature of the inlet boundary conditions; it is mode-1 if the system is pressure-driven,

and mode-2 if it is flow-driven. However, they did not show whether the cascade struc-

ture still exists if the system switches from being flow-driven to pressure-driven. More

recently, Liu et al. (2012) found that the stability structure for the pressure-driven sys-

tem is not a cascade as in the flow-driven case, and the mode-2 instability is no longer

the primary mode of self-excited oscillation. Instead, mode-1 instability becomes the
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Figure 1.5: Neutral stability curve in the (Cλ , Re)-space, reproduced from Luo et al.

(2008), where Cλ is dimensionless extensional stiffness and Re is Reynolds number.
The system is stable on the left of the branches and the top of Mode 2, and on the right
of branches (below Mode 2), it is unstable.
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dominant unstable mode. The mode-2 neutral curve is found to be completely en-

closed by the mode-1 neutral curve in the pressure drop and wall stiffness space; hence

no purely mode-2 unstable solutions exist in the parameter space investigated.

1.2.5 Local vs. global modes

Flow instabilities in collapsible channel or tube can be described in two different ways:

models of local instabilities in unbounded domains without boundary conditions; and

models of global instabilities in bounded or non-uniform domains confined by bound-

ary conditions. Local instabilities can manifest themselves in different ways. Absolute

instabilities occur if perturbations grow in time at every fixed point in the unbounded

domain. Convective instabilities are characterized by the fact that, even though the

overall norm of the perturbation grows in time, perturbations ultimately decay locally

at every fixed point in the unbounded domain; in other words, the growing perturba-

tion is transported, or convected, towards infinity. Related to collapsible-channel (tube)

flows, there are two categories of local modes: hydrodynamic modes, which may be

perturbed by a flexible wall; and ‘surface’ or ‘wall’ modes, which only exist in the

presence of flexible walls. Among the former group, two modes are worth highlight-

ing: the Tollmien–Schlichting (TS) mode, which could not exist without viscosity; and

the ‘Womersley’ mode in a rigid channel, corresponding to an axially uniform oscil-

latory flow. For a channel having one wall rigid and the other a massless membrane,

the wall modes are either ‘static divergence’ (SD) or ‘travelling-wave flutter’ (TWF)

(following Carpenter & Garrad (1985, 1986)): while SD is stable (in the absence of

wall damping), TWF is long-wave unstable at all non-zero Reynolds numbers (Stewart

et al., 2010b).

It is instructive to interpret global instabilities in terms of the underlying local

modes of instabilities in homogeneous channels or tubes. Motivated by the method of

Doaré & de Langre (2006), Stewart et al. (2009) decomposed the global mode (mode

1) of instabilities into four wall modes in the compliant segment (i.e. upstream- and

downstream-propagating SD and TWF) and showed that global growth arises through

wave reflections at the boundaries between the flexible and compliant segments even

when local modes are convectively stable, initially using a one-dimensional analogue

of the Starling resistor. For the two-dimensional Starling resistor analogue, Stewart

et al. (2010a) solved an Orr–Sommerfeld-like equation to identify the full spectra of

local modes in both the rigid and compliant channel segments, without making any
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Figure 1.6: The flow domain, showing variables and parameters. The membrane oc-
cupies 0 < x∗∗ < L∗∗; the channel is rigid otherwise. Fixed upstream volume flux and
zero downstream pressure are given at inlet and outlet of the channel, respectively.

long-wavelength or high-frequency approximations. Stewart et al. (2010a) expressed

the flow in the rigid segments of the channel as a linear combination of infinitely many

hydrodynamic modes, which include one Wormersley mode and one TS mode, ex-

pressed the flow in the compliant segment of the channel as a linear combination of

four wall modes (two TWF and two SD) and infinitely many hydrodynamic modes, and

then matched truncated mode expansions across junctions using a technique developed

by Manuilovich (2004). Stewart et al. (2010a) found that at high membrane tension

the sloshing mechanism (Jensen & Heil, 2003) at the global level can be explained as

a consequence of wave reflections of SD and TWF modes at the junctions with the

rigid channel segments (Stewart et al., 2009) at the local level. However, an analysis

of the system’s energy budget by Stewart et al. (2010a) suggests that at low membrane

tension, the dominant source of energy responsible for the growth of the oscillations

switches from the influx of kinetic energy (the signature of the sloshing mechanism) to

a reduction in the total viscous dissipation in the flow, indicating that the oscillations

are governed by a different mechanism. At low tensions, Stewart et al. (2010a) also

found wave-like flow features in the downstream rigid section via the excitation of hy-

drodynamic modes. For the three-dimensional model of Starling resistor, the approach

that constructs global modes by local modes have not been considered. However, many

local modes of instabilities of fluid flow in a flexible three-dimensional tube have been

found, reviewed by Kumaran (2003), such as ‘viscous modes’ (Kumaran, 1995) and

‘wall modes’ (Kumaran, 1998), which may form the base of the construction in the

three-dimensional case.
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1.3 Formulation of a one-dimensional model

In this thesis, theoretical analysis is focused on a one-dimensional model of flexible-

channel flow, which was previously presented by Stewart et al. (2009). The only dif-

ference is that here the flow is subject to a fixed upstream volume flux rather than a

fixed upstream pressure.

1.3.1 Navier–Stokes equations

We consider a planar channel through which a fluid is driven by a prescribed upstream

volume flux. One wall of the channel contains a segment of thin elastic membrane

under constant longitudinal tension T0 and subject to an external pressure p∗∗ext. The

channel walls elsewhere are rigid, and the membrane is assumed massless and free of

any internal dissipation in the one-dimensional model. When the membrane is flat, the

channel has uniform width a and the membrane has length L∗∗. The lengths of the rigid

segments of the channel upstream and downstream of the membrane are L∗∗
1 and L∗∗

2 ,

respectively.

We introduce Cartesian coordinates (x∗∗,y∗∗) (see figure 1.6) so that the channel

walls lie at y∗∗ = 0 and y∗∗ = a (where the channel walls are rigid, that is for −L∗∗
1 ≤

x∗∗< 0 and L∗∗< x∗∗≤ L∗∗+L∗∗
2 ), or y∗∗= 0 and y∗∗= h∗∗(x∗∗, t∗∗) (where the channel

wall is flexible, for 0 ≤ x∗∗ ≤ L∗∗ ). Here h∗∗(0, t∗∗) = h∗∗(L∗∗, t∗∗) = a for all time t∗∗.

The velocity u∗∗ = (u∗∗,v∗∗) of fluid of density ρ and dynamic viscosity µ is governed

by the Navier-Stokes equations

∇∗∗ ·u∗∗ = 0, (1.5a)

ρ
Du∗∗

Dt∗∗
=−∇∗∗p∗∗+µ(∇∗∗)2u∗∗, (1.5b)

where p∗∗ is the fluid pressure and ∇∗∗ = (∂/∂x∗∗,∂/∂y∗∗). Given fixed upstream

flux q∗∗0 =
∫ a

0 u∗∗(x∗∗ = −L∗∗
1 )dy∗∗, we introduce a velocity scale U0 = q∗∗0 /a. We

nondimensionlize as

(x∗,y∗,h∗,L∗
1,L

∗,L∗
2) = (x∗∗,y∗∗,h∗∗,L∗∗

1 ,L∗∗,L∗∗
2 )/a, t∗ = t∗∗U0/a,

u∗ ≡ (u∗,v∗) = (u∗∗,v∗∗)/U0, (p∗, p∗ext) = (p∗∗, p∗∗ext)/ρU2
0 , (1.6)

see figure 1.7. In this case the dimensionless fixed upstream flux q∗0 =
∫ 1

0 u∗(x∗ =
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Figure 1.7: The flow domain, showing dimensionless variables and parameters.
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Figure 1.8: The flow domain, showing rescaled variables and parameters.

−L∗
1)dy∗ = 1. With the Reynolds number defined as Re = ρaU0/µ , the dimensionless

Navier-Stokes equations are

∇∗ ·u∗ = 0, (1.7a)

Du∗

Dt∗
=−∇∗p∗+

1
Re

(∇∗)2u∗, (1.7b)

where ∇∗ = (∂/∂x∗,∂/∂y∗).

1.3.2 Boundary-layer equations

To facilitate theoretical analysis, we assume that the membrane shape is only deter-

mined by the normal stress balance, given by

p∗ = p∗ext(x
∗)−T ∗h∗x∗x∗(1+(h∗x)

2)−3/2, (1.8)

on y∗ = h∗(x∗, t∗), 0 ≤ x∗ ≤ L∗, where T ∗ = T0/(ρU2
0 a) and p∗ext(x

∗) is the nondimen-

sionless external pressure distribution. Here, for simplicity, we only include the effects

of constant longitudinal tension T ∗, and neglect the effects of bending stiffness, wall

damping and wall inertia.

Suppose now that all three segments of the channel are long compared to the chan-



CHAPTER 1. INTRODUCTION 24

nel width, we make a long-wavelength rescaling by writing

x∗ = xL∗, v∗ =
v

L∗ , t∗ = tL∗, Re =
L∗

R
,

T ∗ = T (L∗)2, L∗
1 = L1L∗, L∗

2 = L2L∗, (1.9)

and denoting

(y∗,h∗) = (y,h), u∗ = u, (p∗, p∗ext) = (p, pext), q∗0 = q0. (1.10)

See figure 1.8 for rescaled configuration. Then (1.7) is transformed to

∇ ·u = 0, (1.11a)

ut +(u ·∇)u =−px +R(uyy +(L∗)−2uxx), (1.11b)

(L∗)−2[vt +(u ·∇)v] =−py +(L∗)−2
R(vyy +(L∗)−2vxx), (1.11c)

where u ≡ (u,v) and ∇ = (∂/∂x,∂/∂y), which reduces with error O((L∗)−2) to the

unsteady boundary-layer equations,

ux + vy = 0, (1.12a)

ut +uux + vuy =−px +Ruyy, (1.12b)

py = 0. (1.12c)

Along the rigid parts of the channel walls we impose (u,v) = (0,0), while along y =

h(x, t),0 < x < 1 the non-slip and kinematic conditions are

u = 0, v = ht . (1.13)

The membrane is assumed to move in the vertical direction only. The normal-stress

condition reduces, with error O((L∗)−2), from (1.8) to

p = pext(x)−T hxx, (y = h(x, t),0 ≤ x ≤ 1). (1.14)
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1.3.3 Integrated equations

Integrating (1.12) across the width of the channel, we obtain the mass and momentum

integral equations

ht +qx = 0, (1.15a)

qt +
(

∫ h

0
u2dy

)

x
=−hpx +R[uy]

h
0. (1.15b)

where q(x, t)≡ ∫ h(x,t)
0 u(x,y, t)dy is the volume flux. To close this system of equations

we employ a von Kármán–Polhausen approximation, and assume that the axial velocity

component takes the self-similar form

u =
q

h
f
(y

h

)

, (1.16a)

where the function f satisfies

∫ 1

0
f (y)dy = 1, f (0) = f (1) = 0. (1.16b)

Let

α =
∫ 1

0
[ f (y)]2 dy, β = f ′(0)− f ′(1)> 0, (1.17)

then (1.15b) becomes

qt +α

(

q2

h

)

x

=−hpx −
Rβq

h2 . (1.18)

For Poiseuille flow, we have f (y) = 6y(1− y), α = 6/5 and β = 12. For a flow that is

not fully developed, α will be closer to 1 and β ≫ 12. Since β and R always appear

in the combination Rβ , any variation in the magnitude of β can be accommodated by

a change in R. Thus it is sufficient to use the Poiseuille value β = 12. However α

is an independent parameter approximately between 1 and 6/5. We retain α = 6/5 in

most part of the thesis and analyse the effect of the variation of α between 1 and 6/5
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in §2.2.2. Therefore, (1.15) becomes

ht +qx = 0, (1.19a)

qt +
6
5

(q2

h

)

x
=−hpx −

12Rq

h2 . (1.19b)

According to equation (1.19a), qx = 0 in the rigid segment of the channel upstream

of the membrane (−L1 ≤ x ≤ 0) and the rigid downstream segment (1 ≤ x ≤ 1+L2)

due to h = 1 there. Furthermore, with the prescribed volume flux q0 = 1 at x = −L1,

it can be found that q = 1 in the entire rigid upstream segment (−L1 ≤ x ≤ 0). From

(1.19b) we have

px =−12R, (1.20)

in the rigid upstream segment, and

px =−12Rq−qt , (1.21)

in the rigid downstream segment. Integrating (1.20) from x =−L1 to x = 0 and (1.21)

from x = 1 to x = 1+L2, we obtain

p = p(−L1, t)−12RL1, (x = 0), (1.22)

and

p =
(

12Rq+qt

)

L2, (x = 1). (1.23)

Applying the normal-stress condition (1.14) at x = 1, we obtain

(

12Rq+qt

)

L2 = pext(x)−T hxx. (1.24)

In order that the system admit h = 1 and q = 1 for −L1 ≤ x ≤ 1+L2, we assume that

pext(x) = 12R(L2 +1− x), (1.25)

for 0 ≤ x ≤ 1. With the normal-stress condition (1.14) and the prescribed external

pressure (1.25), the simplified model for flow in the compliant segment of the channel
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is derived from the integral equations (1.19), which can be expressed as

ht +qx = 0, (1.26a)

qt +
6
5

(

q2

h

)

x

= T hhxxx +12R

(

h− q

h2

)

, (1.26b)

for 0 ≤ x ≤ 1, with boundary conditions

h = 1, (x = 0), (1.27a)

q = 1, (x = 0), (1.27b)

h = 1, (x = 1), (1.27c)

T hxx =−(12R(q−1)+qt)L2, (x = 1). (1.27d)

If q, h and pext are given, the pressure can be expressed as

p(x, t) =















(12Rq+qt)(1+L2 − x), (1 ≤ x ≤ 1+L2),

12R(L2 +1− x)−T hxx, (0 ≤ x ≤ 1),

p(0, t)−12Rx, (−L1 ≤ x ≤ 0),

(1.28)

Thus, the pressure difference across the membrane is

∆p ≡ p(0, t)− p(1, t) = 12R−T (hxx(0, t)−hxx(1, t)). (1.29)

1.3.4 Energy Budget

The kinetic energy of the flow in the collapsible segment of the channel (scaled on

ρU2
0 a) takes the form

K(x, t) =
∫ h(x,t)

0

1
2u(x,y, t)2dy =

3
5

q2

h
, (1.30)

again assuming a parabolic velocity profile. By multiplying both sides of the momen-

tum equation in (1.19) by 6q/5h, we derive the corresponding energy equation for flow

in the channel, which takes the form (Stewart et al., 2009)

3
5

(

q2

h

)

t

+
18
25

(

q3

h2

)

x

+
3

25

(

q2qx

h2

)

=−6
5

qpx −
72R

5
q2

h3 . (1.31)
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In particular, for the flow in the rigid sections of the channel, the energy equation takes

simpler form because h = 1 and q = 1 or q(t).

Integrating along the channel, that is from x = −L1 to x = 1+L2, we can sum the

contributions from each region and split the energy equation into five components.

K +E = F +P −D , (1.32)

where

K =
3
5

∂

∂ t

(

∫ 1

0

q2

h
dx+L1 +q(1, t)2L2

)

, (1.33a)

F =
18
25

(1−q(1, t)3), (1.33b)

P =
6
5
(p(0, t)+12RL1) , (1.33c)

E =
6
5

∫ 1

0
ht pdx, (1.33d)

D =
72R

5

(

∫ 1

0

q2

h3 dx+L1 +q(1, t)2L2

)

+
3

25

∫ 1

0

q2qx

h2 dx. (1.33e)

Here K represents rate of exchange of kinetic energy, F net kinetic energy flux, P

rate at which upstream pressure does work on fluid, E rate at which fluid does work

on membrane and D viscous dissipation plus a non-conservative term which arises

from the von Kármán–Polhausen approximation. We notice that terms involving L1 in

P and D can cancel out and that in K can vanish. Therefore, in the following we

neglect the contributions from the upstream section of the channel in the energy budget

equation (1.32).

1.4 Formulation of a two-dimensional model

1.4.1 Fluid equations

In this thesis we also perform numerical simulations of the corresponding two-dimensional

fluid-structure interaction problem. In the two-dimensional flexible-channel problem,

the fluid governing equations are the dimensionless Navier-Stokes equations (1.7) and

the geometry configuration is shown in figure 1.7. At the inlet of the channel x∗ =−L∗
1,

unit-flux Poiseuille flow u∗ = (6y∗(1−y∗),0) is prescribed. At the outlet x∗ = L∗+L∗
2,
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we impose zero normal stress. The external pressure distribution consistent with (1.25)

is p∗ext = 12(L∗+L∗
2 − x∗)/Re in 0 ≤ x∗ ≤ L∗ such that the system admits steady unit-

flux Poiseuille flow along the channel. In this case there is no pressure difference across

the membrane and h∗ = 1.

1.4.2 Wall equations

We model the membrane as a thin-walled elastic Kirchhoff–Love beam of wall thick-

ness h∗∗0 and density ρw, which is subject to an axial (second Piola–Kirchhoff) pre-

stress σ∗∗
0 = T0/h∗∗0 (where T0 is the initial longitudinal tension) in the undeformed po-

sition. Using the Lagrangian coordinate ζ ∗∗ ∈ [0,L∗∗], the position vector to material

points on the undeformed wall is given by r∗∗w (ζ ∗∗) = (ζ ∗∗,a)T . The displacement field

d∗∗ = (d(x)∗∗,d(y)∗∗)T displaces material points to their new position R∗∗
w (ζ ∗∗, t∗∗) =

r∗∗w (ζ ∗∗)+d∗∗(ζ ∗∗, t∗∗). Because the beam is thin, the axial component of the second

Piola–Kirchoff stress tensor σ∗∗ is dominant during wall deformation. The Kirchhoff–

Love assumption results in only the geometrically nonlinear axial extensional stain,

γ = d
(x)∗∗
ζ ∗∗ +((d

(x)∗∗
ζ ∗∗ )2+(d

(y)∗∗
ζ ∗∗ )2)/2, being non-zero, where a subscript denotes a par-

tial derivative. The assumption of small strains enables us to apply the incrementally

linear constitutive relation σ∗∗ = σ∗∗
0 +Eγ , where E is the incremental Young’s mod-

ulus. The wall deformation is governed by the principle of virtual displacements (Heil

& Hazel, 2006)

∫ L∗∗

0

[

σ∗∗δγ +
E

12
(h∗∗0 )2κ∗∗δκ∗∗−

(

1
h∗∗0

√

A2

A1
f∗∗−ρw

∂ 2R∗∗
w

∂ t∗∗2

)

·δR∗∗
w

]

√

A1dζ ∗∗ = 0

(1.34)

where the traction on the wall (including fluid load and prescribed external pressure) is

f∗∗ = ρU2
0 (−p∗ext + p∗)N−µ

(

∇u∗∗+(∇u∗∗)T
)

·N, (1.35)

the wall curvature is

κ∗∗ =
(

d
(y)∗∗

ζ ∗∗ζ ∗∗

(

1+d
(x)∗∗

ζ ∗∗

)

−d
(x)∗∗

ζ ∗∗ζ ∗∗d
(y)∗∗

ζ ∗∗

)

/∆, (1.36)
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and

A1 ≡
∂r∗∗w

∂ζ ∗∗ ·
∂r∗∗w

∂ζ ∗∗ = 1, A2 ≡
∂R∗∗

w

∂ζ ∗∗ ·
∂R∗∗

w

∂ζ ∗∗ = ∆, (1.37)

with the outer normal on the wall

N = (−d
(y)∗∗

ζ ∗∗ ,1+d
(x)∗∗

ζ ∗∗ )T/∆, (1.38)

and

∆ ≡
√

(

1+d
(x)∗∗

ζ ∗∗

)2
+
(

d
(y)∗∗

ζ ∗∗

)2
. (1.39)

The first two terms in (1.34) represent the variation in the wall strain energy due to its

extension and bending, respectively. The last two terms represent the virtual work done

by the fluid traction f∗∗ acting on the deformed wall and the wall inertia. Apart from

the dynamical condition (1.35), fluid and solid interact via the no-slip and kinematic

conditions

u∗∗ =
∂R∗∗

w

∂ t∗∗
(1.40)

on the wall.

We nondimensionlize variables in the wall problem as

(h∗0,ζ
∗,r∗w,d

∗,R∗
w) = (h∗∗0 ,ζ ∗∗,r∗∗w ,d∗∗,R∗∗

w )/a, κ∗ = aκ∗∗

(σ∗
0 ,σ

∗, f∗) = (σ∗∗
0 ,σ∗∗, f∗∗)/ρU2

0 , (1.41)

with other quantities defined in (1.6). Thus the dimensionless form of (1.34), (1.35)

and (1.40) are

∫ L∗

0

[

(

σ∗
0 +

E

ρU2
0

γ

)

δγ +
1
12

E

ρU2
0

(h∗0)
2κ∗δκ∗

−
(

∆

h∗0
f∗− ρw

ρ

∂ 2R∗
w

∂ (t∗)2

)

·δR∗
w

]

dζ ∗ = 0, (1.42)

f∗ = (−p∗ext + p∗)N− 1
Re

(

∇u∗+(∇u∗)T
)

·N, (1.43)
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u∗ =
∂R∗

w

∂ t∗
, on the wall. (1.44)

Equation (1.42) shows that assuming σ∗
0 ∼ E/(ρU2

0 ) the additional stress due to wall

stretch (∼ O(1/(L∗)2)) is small compared to pre-stress σ∗
0 when L∗ ≫ 1; the variation

of strain energy from bending is small compared to that from pre-stress when h∗0 ≪ L∗

(except possibly in boundary layers, e.g. at the ends of the membrane); wall inertia

is small compared to fluid load when ρwh∗0 ≪ ρ . We ignore wall inertia in our two-

dimensional numerical simulations. Equation (1.43) shows that at high Re, the load on

the wall is dominated by the normal traction (−p∗ext + p∗)N. For wall deformations of

small amplitude and long wavelength, material points on the wall will therefore move

predominately in the vertical direction so that ζ ∗ ≈ x∗, d(x)∗ ≈ 0 and d(y)∗ ≈ h∗− 1.

Then we have R∗
w = (x∗,h∗)T , γ = (h∗x∗)

2/2 and N = (−h∗x∗,1)
T/∆. From equation

(1.44) we get u∗ = 0 and v∗ = h∗t∗ . Furthermore, if we neglect the additional wall stress,

wall bending, wall inertia and the viscous stress in the fluid load, then equation (1.42)

can be simplified to

∫ L∗

0

[

σ∗
0 δγ −

(

1
h∗0

)

(−p∗ext + p∗)N ·δR∗
w∆

]

dx∗ = 0 (1.45)

Substituting R∗
w, γ and N into (1.45), we have

∫ L∗

0

[

T0

ρU2
0 a

h∗x∗(δh∗)x∗ − (−p∗ext + p∗)δh∗
]

dx∗ = 0. (1.46)

Integrating by parts for the first term in (1.46), we obtain

∫ L∗

0

[

− T0

ρU2
0 a

h∗x∗x∗ − (−p∗ext + p∗)

]

δh∗dx∗ = 0, (1.47)

where we use the fact δh∗ = 0 at x∗ = 0,L∗. Finally, using same notation of T ∗ in (1.8),

we recover a normal-stress condition for the fluid

p∗ = p∗ext −T ∗h∗x∗x∗, (1.48)

which is consistent with (1.14).
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1.4.3 Dimensionless wall equations

In the numerical simulation, all stress and tractions are non-dimensionalized on the

beam’s elastic modulus E, that is,

( ¯̄σ0, ¯̄σ , ¯̄f) = (σ∗∗
0 ,σ∗∗, f∗∗)/E, (1.49)

with other quantities defined in (1.6) and (1.41). Therefore, the dimensionless wall

problem (1.42) and the dynamical condition (1.43) become

∫ L∗

0

[

( ¯̄σ0 + γ)δγ +
(h∗0)

2κ∗δκ∗

12
−

¯̄f ·δR∗
w∆

h∗0

]

dζ ∗ = 0, (1.50)

and

¯̄f =
ρU2

0

E

(

(−p∗ext + p∗)I− 1
Re

(

∇u∗+(∇u∗)T
)

)

·N, (1.51)

Here we ignore wall inertia in the numerical simulation.

We define Q = µU0/(Ea), here µU0/a is another fluid pressure scale. Therefore

the parameter Q indicates the strength of the fluid-structure interaction. Then the fluid-

structure interaction problem is characterised by seven dimensionless parameters

L∗
1, L∗, L∗

2, h∗0, Q(≡ µU0/(Ea)), Re(≡ ρaU0/µ), T ∗(≡ T0/(ρU2
0 a)).

(1.52)

The pre-stress required in (1.50) and the ratio of the inertial pressure to the incremental

Young’s modulus required in (1.51) are given by ¯̄σ0 = ReQT ∗/h∗0 and ρU2
0 /E = ReQ,

respectively.

1.5 Structure of the thesis

In this thesis we study the mechanism of onset of self-excited oscillations in flexible-

channel flow with fixed upstream flux. Results are presented as follows.

In Chapter 2 we postulate that, in the one-dimensional fluid-membrane model de-

scribed in §1.3, the collapsible part of the channel, the membrane, has similar length

to the rigid segment of channel downstream of the membrane. Given the simplicity

of this model, due to a number of assumptions, we are able to carefully examine the
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stability of the uniform state of the model, investigating finite-amplitude evolution of

solutions of the model. We unfold a degenerate bifurcation with two zero eigenval-

ues, a Takens–Bogdanov bifurcation, and construct amplitude equations describing the

evolution of the system in the neighbourhood of this bifurcation point. In the frame-

work of this model, we find that “mode-2” oscillations (i.e. membrane displacements

with two extrema) can be driven by divergent instabilities of two non-uniform steady

configurations of the membrane.

In Chapter 3 we consider the case in which the downstream rigid segment is much

longer than the membrane. In this case the longer downstream segment influences

the resulting oscillations of the system. Using a similar approach to that employed in

Chapter 2, we perform a three-parameter unfolding of a degenerate bifurcation point

having four zero eigenvalues and construct a fourth-order set of amplitude equations.

Our analysis shows that the amplitude equations can describe oscillations invoked by

instabilities promoted by a 1:1 resonant interaction between two modes. The ampli-

tude equations also predict the existence of saturated sawtooth oscillations, which we

reproduce in full Navier–Stokes simulations of the two-dimensional channel system.

In Chapter 4 we study the highly-collapsed solutions of the simplified one-dimensional

model. We conjecture that these solutions are related to the emergence of large-

amplitude slamming oscillations that have been found not only in our simplified one-

dimensional model (§2.4) but also in a two-dimensional model (Stewart et al., 2010a).

Motivated by the work of Jensen (1998), we construct the leading-order approximation

of the highly-collapsed solution using the method of matched asymptotic expansions.

The linear stability analysis of the steady highly-collapsed solution reveals that they

are very unstable, which allows the possibility that they are a precursor to slamming.

Finally, in Chapter 5 we summarise all results of this thesis and suggest some di-

rections for future studies.



Chapter 2
Divergence-driven oscillations

In this chapter we study the one-dimensional model of flow in a flexible channel de-

scribed in §1.3, with the rigid segment of the channel downstream of the flexible

segment of the channel being of a length comparable to, or shorter than, the flexi-

ble segment itself. In the model an external linear pressure distribution is applied to

the flexible channel wall such that the uniform Poiseuille flow is a steady solution of

the model. We first consider the linear stability of the uniform state. Then we perform

weakly nonlinear analysis in the nearly inviscid limit. We also numerically solve the

partial differential equations governing the model. Finally we compare results from

stability analysis with numerical simulations and explain our findings.

2.1 Model

The model we consider in this chapter is described by (1.26, 1.27). An equivalent

model system (with pressure imposed upstream instead of flux) was tested against full

Navier–Stokes simulations in Stewart et al. (2010a). While quantitative accuracy can

be guaranteed only for sufficiently large R, and for T neither too large (avoiding high-

frequency motions) nor too small (avoiding large membrane gradients), the predictions

for R = O(1) were shown to capture many important features of large-amplitude oscil-

lations computed by two-dimensional Navier–Stokes simulations. We therefore pursue

our analysis of (1.26, 1.27), remaining conscious of the model’s potential limitations

for small R. In §2.2.2 below, we will vary the coefficient of the (q2/h)x term in (1.26b)

between 1 and 6/5, to assess the sensitivity of the model’s predictions to the velocity

profile assumption as mentioned in §1.3.3.

34
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In the numerical results reported below, we set L2 = 1 (unless specified otherwise)

and then seek solutions of (1.26, 1.27) as functions of R and T . The effects of taking

L2 ≫ 1 will be reported in next chapter. We first examine the linear stability of the

uniform state h = 1, q = 1.

2.2 Linear stability of the uniform state

Setting h = 1+Re(H(x)eσt), q = 1+Re(Q(x)eσt), where H, Q and σ are complex,

|H(x)| ≪ 1, |Q(x)| ≪ 1 and Re(σ) is a growth rate, we obtain from (1.26, 1.27) the

linear eigenvalue problem

Q′ =−σH, T H ′′′+
6
5

H ′+36RH − 12
5

Q′−12RQ = σQ, (2.1a)

with boundary conditions

H(0) = 0, Q(0) = 0, (2.2a)

H(1) = 0, T H ′′(1)+12RL2Q(1) =−σL2Q(1). (2.2b)

We use a Chebyshev approximation to solve the eigenvalue problem (2.1, 2.2). Trans-

forming the x-domain to [−1,1], we expand Q(x) and H(x) in Chebyshev series with

a vector of coefficients a, substitute into (2.1, 2.2) and require the resulting system

to be satisfied at Gauss–Lobatto collocation points. This yields a generalized matrix

eigenvalue problem of form Aa = σBa, where A and B are square matrices. We de-

note the resulting eigenmodes as ‘mode n’ when |H(x)| has n humps. We use this

method to identify neutral curves (on which Re(σ) = 0) in the (T,R)-plane, with the

corresponding eigenmodes.

When R = 0, the linearised equations (2.1, 2.2) admit simple solutions for which

σ = 0, representing static inviscid eigenmodes. In this case Q(x) = 0 and H satisfies

T H ′′′(x)+
6
5

H ′(x) = 0, H(0) = 0, H(1) = 0, H ′′(1) = 0. (2.3)

This eigenvalue problem has solutions

H(x) = sinnπx, T = Tn0 =
6

5n2π2 , (n = 1,2,3, · · ·). (2.4)
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Thus T10 ≈ 0.121585, T20 ≈ 0.0303964, etc. These asymptotes are analogous to the bi-

furcation points identified by Guneratne & Pedley (2006) in their study of the same sys-

tem using interactive boundary layer theory; the present model has bifurcation points

(2.4) for T = O(1), whereas in Guneratne & Pedley’s model they appear (in our nota-

tion) for T = O(R1/3), reflecting the failure of the present model to capture the struc-

ture of viscous boundary layers in steady flow. In compensation, however, the present

model provides a much more tractable guide to possible unsteady behaviour.

2.2.1 Numerical results

Figure 2.1(a) maps out in (T , R)-space two neutral curves, on each of which there

exists a static eigenmode with σ = 0, and one neutral curve on which there exists an

oscillatory eigenmode with Re(σ) = 0. We label the static neutral curves for mode n as

TCn (we show below that the corresponding bifurcations are transcritical) and similarly

label the oscillatory neutral curve as Hopfn. We anticipate that additional neutral curves

exist for smaller T . The curves TCn asymptote to T = Tn0 as R → 0 (see (2.4)). For

T > T10, the uniform state is linearly stable for all R. As T decreases across TC1, mode

1 becomes unstable (with a real eigenvalue passing through zero). The neutrally stable

eigenmode changes smoothly from mode 1 to mode 2 along the curve marked TC1–

TC2 (i.e. the number of humps in |H| increases from 1 to 2; the transition is indicated

with a circle). As T decreases across TC2, the static mode 2 eigenmode becomes stable,

but the uniform state then becomes unstable to an oscillatory mode 2 eigenmode via a

Hopf bifurcation as T decreases across Hopf2. The frequency of the neutrally stable

eigenmode falls to zero as R → 0, and the Hopf2 curve approaches the limit T → T20

as R → 0. The mode 3 and 4 disturbances for smaller T are broadly similar although

the Hopf3 curve does not extend to zero R. We found no evidence of a Hopf1 neutral

curve, consistent with previous studies of flux-driven systems (Liu et al., 2012). It is

notable that the neutrally stable oscillations change type continuously along the Hopf

neutral curve (from modes 2 to 3 to 4); in contrast, studies of the linear stability of

non-uniform states reveal the overlapping of distinct neutral curves (Jensen, 1990; Luo

et al., 2008).

Figures 2.1(b) and 2.2 show in greater detail the neutral curves in the neighbour-

hood of (T20, 0) (together with asymptotic approximations, derived below) and the

corresponding eigenvalue path. As seen in Figure 2.2, for R = 10−3 and T = 0.031,

there exist two real eigenvalues, one positive and one negative. As T decreases to
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Figure 2.1: (a) Neutral curves in (T , R)-space (solid), showing transcritical (TC) and
Hopf bifurcations for modes 1-4. Dashed lines show asymptototic approximations for
R ≪ 1: (2.7) (labelled TCA

1 ), (2.9) (labelled TCA
2 ) and (2.12) (labelled HopfA

2 ). The
uniform state is linearly stable for (T , R) above the neutral curves. Circles on the
neutral curves mark the points at which neutral oscillations change smoothly between
modes 1, 2, 3 and 4. (b) Neutral curves in the neighbourhood of (T20,0), showing in
addition the heteroclinic bifurcation (2.22) (labelled HetA), the homoclinic bifurcation
(2.23) (labelled HomA) and the saddle-node bifurcation (2.18) (labelled SNA). The
arrow shows the path mapped out in Figure 2.2 below. Figures 2.5 and 2.7 below
show PDE simulations conducted at the points marked with asterisks in (b) and (a)
respectively.
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Figure 2.2: The eigenvalue path as T varies from 0.031 to 0.029 for R = 10−3. The
numerical results are marked with circles and the solid lines show the asymptotic ap-
proximation (2.11). Arrows show decreasing T .

T ≈ T20 +2025R2/8π4 (see (2.9) below), the positive eigenvalue falls to zero, which

corresponds to crossing TC2 in Figure 2.1(b). As T decreases further to approximately

T20, these two eigenvalues coalesce, becoming complex conjugates with negative real

part. The real part of this conjugate pair then increases to zero as T decreases to

T ≈ T20 −175R/8π4 (see (2.12) below), which corresponds to crossing Hopf2 in Fig-

ure 2.1(b).

As suggested by Figure 2.2, the system has a double zero eigenvalue at T = T20,

R = 0, making this a Takens–Bogdanov bifurcation point. Although the governing

equations (1.26, 1.27) are likely to lose quantitative accuracy in this part of parameter

space, it is an important organising centre of the dynamical system, justifying a more

thorough analysis of the local dynamics near each end of the TCn curves.

2.2.2 Linear stability in the nearly inviscid limit

We derive parametric expansions of the linear stability problem (2.1, 2.2) in the neigh-

bourhood of the bifurcation points R = 0, T = Tn0, where Q0 ≡ 0 and H0 ≡ sinnπx
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(see (2.4)) at leading order, using

Q(x) = Q0(x)+ εQ1(x)+ ε2Q2(x)+ ε3Q3(x)+ · · · , (2.5a)

H(x) = H0(x)+ εH1(x)+ ε2H2(x)+ ε3H3(x)+ · · · , (2.5b)

T = Tn0 + εTn1 + ε2Tn2 + ε3Tn3 + · · · , (2.5c)

R = εR1 + ε2
R2 + ε3

R3 + · · · , (2.5d)

σ = εσ1 + ε2σ2 + ε3σ3 + · · · . (2.5e)

Here 0 < ε ≪ 1 and the coefficients in (2.5) are assumed to be of order unity as ε → 0;

it is convenient to introduce ε in (2.5) as it enables us to capture different balances

between parameters with a single expansion. Substituting (2.5) into (2.1, 2.2), a suc-

cession of boundary-value problems is recovered at increasing orders in ε . Solvability

conditions at each order yield predictions for the dependence of σ on the governing pa-

rameters. Details are provided in Appendix 2.A; these predictions are all independent

of L2, which is assumed to remain O(1) as ε → 0.

For R → 0 and T → T10, (2.37) yields

σ =− 5
48

(

144R+π4(T −T10)
)

, (2.6)

from which follows an approximation for the location of the neutral curve TC1, on

which σ = 0:

T = T10 −
144R

π4 . (2.7)

Figure 2.1(a) confirms the accuracy of this prediction (see TCA
1 ), which extends to

R ≲ 10−2.

We use (2.40, 2.42) to capture the behaviour of the dominant eigenvalues near

(T,R) = (T20,0), noting that the first solvability condition demands that T21 = 0 in

(2.5c). If we assume T = T20+ε2T22, R = εR1, σ = εσ1, so that T −T20 = O(R2) as

R → 0, (2.40) gives

4050R
2 +504Rσ +15σ2 +16π4(−T +T20) = 0. (2.8)
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Thus neutral stability along TCA
2 emerges when

T = T20 +
2025R2

8π4 , (2.9)

which agrees well with numerical predictions of TC2 in Figure 2.1(a,b). Alternatively,

if we assume R1 = 0, so that T = T20 +ε2T22, R = ε2R2, σ = εσ1 +ε2σ2, and hence

that T −T20 = O(R) as R → 0, then (2.40) and (2.42) give

T22 =
15σ2

1

16π4 , R2 =−18σ2
1 +25σ2

420
, (2.10)

so

σ ≈− 4
375

(

1575R±25
√

15π2
√

T −T20 +72π4(T −T20)
)

. (2.11)

The eigenvalue path predicted by (2.11) agrees well with numerical predictions (Fig-

ure 2.2). From (2.11), we conclude that neutrally stable oscillations arise when

T = T20 −
175R

8π4 , (2.12)

which is the asymptote of the Hopf2 neutral curve (see HopfA
2 in Figure 2.1(a,b)). In

this case, the leading-order frequency of neutrally stable oscillations is given by

σ =±4π2i

√

T20 −T

15
, (2.13)

showing that neutrally stable oscillations are very slow as (R,T )→ (0+,T20−).

Returning briefly to the discussion following (1.16), we now test the effect of vary-

ing the assumed axial velocity profile through changes in the coefficient α (say) of the

convective inertia term in (1.26b); α = 6/5 for Poiseuille flow. Repeating the analysis

in Appendix 2.A, we find that the asymptotes TCA
2 and HopfA

2 become

T = T20 +
1215R2

4π4α
and T = T20 −

21R(5α −1)
4π4α

(2.14)

as R → 0, T → T20, recovering (2.9) and (2.12) when α = 6/5. Recall that variation

between Poiseuille flow and a plug flow with boundary layers is accommodated by

changing α between 6/5 and 1 and rescaling R. It is evident from (2.14) that this does
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not lead to any qualitative change in the arrangement of the neutral curves, suggesting

that it is reasonable to retain α = 6/5 in the following analysis.

Figure 2.2 demonstrates how the oscillatory instability arises from the coalescence

of two static eigenmodes. This interaction becomes clearer when we extend our analy-

sis to include finite-amplitude effects.

2.3 Weakly nonlinear stability in the nearly inviscid limit

Returning to the full problem (1.26, 1.27), we introduce three time scales (τ0,τ1,τ2) =

(εt,ε2t,ε3t) and expand using

φ(x;τ0,τ1,τ2) = 1+ εφ0 + ε2φ1 + ε3φ2 + ε4φ3 + · · · , (2.15a)

T = Tn0 + εTn1 + ε2Tn2 + ε3Tn3 + · · · , (2.15b)

R = εR1 + ε2
R2 + ε3

R3 + · · · , (2.15c)

where φi ≡ (qi,hi,∂xhi,∂xxhi)
T, i = 0,1,2,3, etc.. After substituting (2.15) into (1.26,

1.27), a series of boundary-value problems emerges at increasing orders of ε . De-

tails may be found in Appendix 2.B. The leading-order eigenmode is given by (2.38).

Solvability conditions at each order yield amplitude equations describing the local dy-

namics.

2.3.1 Steady solutions near (T20,0)

If we assume T = T20 + ε2T22 and R = εR1, so that T −T20 = O(R2) as R → 0, we

obtain from (2.47) the amplitude equation

A
(

9πA(πA−180R)−10
(

2025R
2 +8π4 (T20 −T )

))

−2520RAt −75Att = 0.

(2.16)

Steady solutions of (2.16) satisfy A = 0 or

9π2A2 −1620πRA−10
(

2025R
2 −8π4(T −T20)

)

= 0, (2.17)
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which captures a saddle-node bifurcation at

T = T20 +
9315R2

8π4 , (2.18)

(shown as SNA in Figure 2.1(b)) and a transcritical bifurcation (given by (2.9)), which

are illustrated in Figure 2.3(a). Figure 2.3(a) shows that, for R = 10−3, the predicted

solution branches (2.17) agree well with numerical solutions of the steady version of

(1.26, 1.27) (setting q = 1, this is a nonlinear third-order problem for h(x), with a first

integral given by (2.68) below).

2.3.2 Oscillatory solutions near (T20,0)

If we assume R1 = 0 and T = T20 + ε2T22, R = ε2R2, so that T − T20 = O(R) as

R → 0, (2.47) gives

∂τ0,τ0A0 =
3

25
π2A3

0 +
16
15

π4A0T22, (2.19)

which is the analogue of (2.16) in the limit R → 0. Thus, to leading order with T < T20

and the assumed balance of parameters, disturbances are governed by a Hamiltonian

system, the phase portrait of which is illustrated in Figure 2.3(b). As Figure 2.3(a)

indicates, for T −T20 < 0 the uniform state coexists with two unstable mode-2 solutions

of opposite symmetry. To this level of approximation (which neglects viscous effects),

the uniform state is neutrally stable but coexists with a family of periodic orbits. Slowly

varying perturbations to (2.19) are captured by (2.50), which using (2.19) we can re-

express as

∂τ0,τ1A0 =− 21
625

π3A4
0 −

2
375

πA2
0

(

2025R2 +56π4T22
)

+
288
625

π2A2
0∂τ0A0

− 12
125

(

175R2 +8π4T22
)

∂τ0A0 +
29
50

π(∂τ0A0)
2. (2.20)

If we define A0(τ0,τ1,τ2) = A0(τ0,ετ0,ε
2τ0) ≡ B(τ), where τ = τ0, then with error

O(ε2) we can re-express (2.20) as

Bττ =
3

25
π2B3 +

16
15

π4BT22 +
ε

1875

(

−126π3B4 −20πB2 (2025R2 +56π4T22
)

+1728π2B2Bτ −360
(

175R2 +8π4T22
)

Bτ +2175πB2
τ

)

. (2.21)
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Figure 2.3: (a) Bifurcation diagram for R = 10−3, with T −T20 = O(R2). The solid
line denotes nonlinear steady solutions computed directly from (1.26, 1.27); the dashed
line denotes asymptotic solutions from (2.17). Close to the transcritical bifurcation
(TC2) there is an exchange of stability between stable (S) and unstable (U) solution
branches; there is a further change in stability at the saddle–node bifurcation (SN).
Insets show the shape of the membrane near each non-uniform solution branch. (b) For
T −T20 = O(R) and T < T20, the dynamics is approximately Hamiltonian with non-
uniform states (illustrated by insets) represented by saddle points in the (A0,∂τ0A0)-
phase plane. Here we illustrate heteroclinic and periodic orbits of (2.19) with T22 =−1,
with Hamiltonian (2.53) satisfying H = {16,32,48,64}π6/27.
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In Appendix 2.C, we use a Mel’nikov analysis to show that (2.21) has a heteroclinic

connection along

T = T20 −
375

(

185
√

6−32
)

R

11552π4 , (2.22)

and a homoclinic connection along

T = T20 −
2625R

248π4 . (2.23)

These asymptotes are plotted in Figure 2.1(b). The Mel’nikov analysis shows that,

when including weak viscous effects, a limit cycle exists for T in the parameter range

bounded by (2.12) and (2.23), when the uniform state is locally stable, implying that

the Hopf bifurcation is subcritical. This can be confirmed by application of the Hopf

bifurcation theorem (not shown).

2.3.3 Steady solutions near (T10,0)

In addition, near R → 0, T = T10, from (2.44), solutions with steady amplitude A= εA0

satisfy

A(24πA+5
(

144R+π4(T −T10)
)

) = 0, (2.24)

which indicates A = 0 or

A =−5
(

144R+π4(T −T10)
)

24π
. (2.25)

Hence we obtain the condition of a transcritical bifurcation, consistent with (2.7). In

the neighbourhood of (T,R) = (T10,R), a locally stable (unstable) inflated (collapsed)

steady state exists for T less than (greater than) the value given in (2.7).

2.3.4 Overview

We summarise the behaviour revealed by this analysis in Figure 2.4. In Figure 2.4(a)

we divide (T,R)-parameter space (see Figure 2.1(b)) near the intersection of the Hopf2

and TC2 curves into seven regions (I-VII); in each region, a distinct phase plane de-

scribes the local dynamics. The corresponding bifurcation diagram is given in Fig-
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Figure 2.4: (a) shows how different phase portraits (labelled I–VII) arise in different re-
gions of parameter space near (T20,0), with bifurcation curves labelled as in Figure 2.1.
(b) Schematic bifurcation diagram for R → 0. Solid (dashed) lines represent stable
(unstable) steady solutions branches, with insets showing the corresponding membrane
shapes; the unstable limit cycle between Hopf2 and Hom is also dashed. Dotted lines
indicate that T10 is far from T20. The stability of the dot–dash line is not determined
here. (c) Steady solution branches for R = 0.02, computed from (1.26,1.27); unsta-
ble branches are shown dashed; the circle near T = 0.19 marks the transition between
mode 1 and mode 2 solutions. A simulation at T = 0.08 is shown in Figure 2.7 below.
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ure 2.4(b), encompassing the results near (T10,0) and (T20,0). In region I, the uniform

state (b) is an unstable focus; small disturbances will oscillate and grow, moving first

towards (and between) the two non-uniform steady solutions (saddle points labelled

a and c in Figure 2.4(b)) before moving away to another region of phase space (this

is addressed further in § 2.4 below); the inflated state that emerges from TC1 is one

possible attractor. In regions II and III, the uniform state becomes a stable focus and

an unstable limit cycle emerges, so that sufficiently large disturbances to the uniform

state will again oscillate and grow. There is a heteroclinic connection between two

non-uniform steady solutions (labelled a and c; see (2.22)) at the boundary between

regions II and III. The amplitude of the periodic solution increases as T increases up to

the value given by (2.23), marking the boundary between regions III and IV. In region

IV, the unstable limit cycle disappears, but the uniform state is still unstable to suffi-

ciently large perturbations. In region V small perturbations to the uniform state decay

monotonically. Crossing into region VI, there is an exchange of stability between the

uniform steady solution (b) and the non-uniform steady solution (a) via a transcritical

bifurcation given by (2.9). As T increases to the value given by (2.18), at the boundary

between regions VI and VII, two non-uniform steady solutions (one stable (a) and the

other unstable (c)) coalesce via a saddle-node bifurcation. In region VII, the uniform

state is unstable but the inflated solution branch emerging from TC1 remains a possible

attractor. As T increases across (2.7) (TC1), there is a further exchange of stability,

with restabilisation of the uniform state (b).

The steady solution structure shown in Figures 2.3(a) and 2.4(b) resembles surpris-

ingly closely that reported by Guneratne & Pedley (2006) (see their Figures 6(d,e) and

11, which also show a saddle-node bifurcation of mode 2); their results demonstrate

how the solution branches reconnect when the pressure external to the membrane is

altered, breaking the symmetry of the uniform state. Figure 2.4(c), which shows non-

linear steady solutions of (1.26, 1.27), shows how a small increase in R — in this case

to 0.02 — also has a profound effect on the solution structure, with the mode-2 saddle

node being replaced by a branch connecting mode-2 solutions emerging from TC2 to

mode 1 solutions emerging from TC1. A linear stability analysis of the non-uniform

states, using a Chebyshev method similar to that outlined in §2.2, reveals two addi-

tional Hopf bifurcations of non-uniform mode-2 states. Thus in general the system

is characterised by the existence of multiple non-uniform states, some of which are

unstable. In Chapter 4, we will revisit the turning point near T = 0.2 in Figure 2.4(c).

Our analysis for R ≪ 1 demonstrates the essential role of the two saddle points
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(a,c) in driving an oscillatory instability of the uniform state. Each saddle point has

an unstable manifold, representing a divergent instability. Growing oscillations are

predicted to pass close to each saddle point, being swept away by the local divergent

instability, before being drawn towards the opposite saddle. Thus monotonic instability

(an inviscid mechanism relying on the Bernoulli effect, which may be thought of as a

form of static divergence), coupled to the symmetry of two nearby steady states, is suf-

ficient to generate neutrally stable oscillations (Figure 2.3(b)); viscous effects perturb

this Hamiltonian structure to determine whether trajectories approach the uniform state

or diverge away from the saddle points (Figure 2.4(a)). This mechanism does not de-

pend on the conditions in the upstream and downstream rigid tubes (being independent

of L2, provided L2 is not too large), requiring only that upstream flux and downstream

pressure are prescribed.

Further evidence of the difference of this mechanism from the ‘sloshing’ mode

(described by Stewart et al. (2009, 2010a)) comes from an analysis of the energy budget

(Appendix 2.D), which shows that the dominant contributions are the work done by the

upstream pressure and viscous dissipation; the rate of kinetic energy transport is not

significant.

2.4 Large amplitude solutions

Figure 2.5 shows a representative simulation of (1.26, 1.27), obtained using methods

described in Appendix 2.E, for parameter values as indicated by the asterisk in Fig-

ure 2.1(b). This falls into region I (see Figure 2.4(a)): as predicted, the amplitude of a

small mode-2 disturbance grows until the trajectory encounters a nearby steady solu-

tion (a saddle point, illustrated in the phase portrait in Figure 2.4(a)), before diverging

rapidly (for t > 200 in this example) with h and ht at x = 0.25 both growing in mag-

nitude and the flux at x = 1 falling. At small amplitudes, the period of the growing

oscillation lies close to the predicted value (for T = 0.03, R = 10−3) of 30.96 (see

(2.13b)).

Figure 2.6 shows the corresponding spatial structure of this mode 2 solution as it

grows rapidly in amplitude. The channel width falls rapidly to zero close to x = 0.9,

with a very large curvature gradient appearing (Figure 2.6(b)). This appears to be

the early stage of a slamming event, as identified previously in simulations with fixed

upstream pressure (Stewart et al., 2010a) using both a one-dimensional model and two-
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Figure 2.5: (a) h at x = 0.25 (solid) and x = 0.75 (dashed) plotted versus time for T =
0.03 and R = 10−3; the out-of-phase motion is characteristic of a mode 2 oscillation.
(b) The corresponding downstream flux q(1, t). (c) A phase portrait that mimics that
shown in Figure 2.4(a); asterisks mark the location of steady solutions, shown as insets.
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Figure 2.6: Spatial structure of the solution shown in Figure 2.5 at three time instants
near a slamming event, showing (a) h(x, t), (b) membrane curvature (a proxy for pres-
sure) −hxx(x, t) and (c) flux q(x, t). (d) The large-amplitude steady mode 2 solution
that exists for R = 10−3, T = 0.03, showing a sharp constriction (note logarithmic
scale).
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dimensional simulations. Because T is small in this example, large spatio-temporal

gradients arise that prevented us from obtaining reliable simulations for larger times

using either a spectral or a finite-difference method.

To illustrate the difficulty, one can analyse the structure of large-amplitude steady

solutions arising for R ≪ 1 and RT ≲ 1 (see for example Figure 2.6(d)). These have

a sharp symmetric constriction at a location x = 1 − δ , where 0 < δ < 1 and typ-

ically δ ≪ 1. The membrane shape is determined by a balance between the terms
6
5(1/h)x and T hhxxx in (1.26b) with q = 1. Either side of the constriction, the pres-

sure is approximately uniform (hxxx = 0 to leading order), making the membrane shape

quadratic upstream and linear downstream (given that hxx(1) = 0 in steady flow). These

shapes meet at either side of the constriction with slope 1/δ ; the upstream region in-

flates to height O(1/δ ). The height and length scales in the constriction (H ≪ 1 and

X ≪ 1 respectively) satisfy the scalings TH 3 ∼ X 2 and H /X ∼ δ , implying that

H ∼ δ 2/T and X ∼ δ 3/T . The energy budget (2.68) determines the pressure drop

across the constriction and hence the curvature of the upstream region: viscous dissipa-

tion is dominated by the constriction, so that T/δ ∼ RX /H 3, giving δ ∼ (RT )1/2,

H ∼ R and X ∼ (R3T )1/2. Thus for the parameters used in Figure 2.6, the mini-

mum channel width of the steady solution has magnitude of order R = 10−3 (we find

hmin = 0.0167 in Figure 2.6(d)) and the constriction length is of magnitude of order

(R3T )1/2 = 5×10−6, exceeding the resolution capability of our unsteady code.

The long-term dynamics of the system can be illustrated more clearly at larger val-

ues of R and T . Figure 2.7 and the accompanying video (see Supplementary Informa-

tion) show a simulation with R = 0.02, T = 0.08, where linear theory predicts that the

uniform state shows a divergent instability (see the asterisk in Figure 2.1(a)); for these

parameter values there also exists a linearly stable inflated mode-1 steady solution and

a mode-2 steady solution that is unstable to an oscillatory instability (Figure 2.4(c)).

In this case, divergent instability of the uniform state (in 0 ≤ t ≲ 50) drives the solu-

tion first towards what appears to be a slamming event, and thereafter into sustained

oscillations. These include intermittent events (reminiscent of slamming) in which the

membrane comes into near contact with the opposite wall of the channel. Following

each slam, waves propagate up and down the channel, falling in amplitude until the

solution lies close to the mode-2 steady solution, before a growing oscillation drives

the system towards another slamming event.

This example demonstrates how an initial divergent instability can result in oscil-

lations, suggesting a potential outcome of the divergent instabilities described in two-



CHAPTER 2. DIVERGENCE-DRIVEN OSCILLATIONS 51

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

h

t

x = 0.25

x = 0.75

0 0.5 1
0.4
0.6
0.8

1
1.2

t = 100

1

Figure 2.7: A simulation at R = 0.02, T = 0.08, showing how an initially monotonic
instability leads to repetitive slamming. The insert shows the membrane shape h versus
x at t = 100. (In color.)

dimensional models of this system (Guneratne & Pedley, 2006; Kudenatti et al., 2012;

Pihler-Puzović & Pedley, 2013) (although the instability reported in these models may

be driven by ill-posedness rather than the mechanism reported here). It also emphasises

the role that intermittent slamming may play in sustaining large-amplitude oscillations.

2.5 Discussion

In this chapter we have examined the origin of a low-frequency mode-2 instability

appearing in a flexible channel flow, using the spatially one-dimensional model (1.26,

1.27) described in §1.3. We have assumed that the length of the downstream rigid

segment is comparable to that of the membrane. The application of a linear external

pressure gradient that ensures that (1.26, 1.27) have a uniform state as a steady solution

for any choice of T , R and L2. This state typically coexists with non-uniform steady

solutions. In the present problem there is an exchange of stability between the uniform

and non-uniform steady states at transcritical bifurcations (Figure 2.1), in a manner that

is qualitatively similar to the predictions of Guneratne & Pedley (2006). Depending on

parameter values, the different steady states can exhibit a monotonic instability driven

by an inviscid Bernoulli mechanism, whereby at fixed flux, a constriction increases

flow speed locally, decreases pressure and promotes further constriction.

Linear stability analysis of the uniform base state shows that, close to an organ-



CHAPTER 2. DIVERGENCE-DRIVEN OSCILLATIONS 52

ising centre in parameter space (T → T20, R → 0, L2 = O(1)), a mode-2 oscillation

emerges from an interaction between two steady modes (Figure 2.2). Asymptotic pre-

dictions of neutral curves emerging from this codimension-2 bifurcation point remain

reasonably accurate to moderate values of R (Figure 2.1), at least for the value of

L2 investigated here (in next chapter we find that for larger L2 the mode-2 instabil-

ity mechanism described here will still apply sufficiently close to (T,R) = (T20,0),

where oscillations are of very low frequency). In the nearly inviscid limit, the system

can exhibit an approximately Hamiltonian structure; from among a family of periodic

orbits (Figure 2.3(b)), one orbit is preserved in the presence of weak viscous effects.

This orbit turns out to be unstable and the associated Hopf bifurcation to be subcrit-

ical. The consequence is that oscillations of sufficiently large amplitude grow until

they encounter a nearby saddle point, before diverging to larger amplitude, a predic-

tion confirmed by simulations (Figure 2.6). An energy analysis (Appendix 2.D) shows

that the energy source for growing oscillations is work done by the upstream pres-

sure. During each cycle of oscillation, the system is driven towards, and then away

from, a nearby non-uniform steady solution (Figures 2.4(a), 2.6), allowing the mono-

tonic Bernoulli-driven instability of nearby steady states to drive the growth of oscilla-

tions. We also numerically solved our one-dimensional model to illustrate the resulting

large-amplitude behaviour. As also reported for flows driven by fixed upstream pres-

sure (Stewart et al., 2010a), what appears to be transient ’slamming’ motion can arise

during which the channel briefly becomes almost fully constricted, before recovering

rapidly (Figures 2.6, 2.7).

In conclusion, in this chapter we have shown how the growth of a mode-2 oscil-

lation in a flux-driven flexible-channel flow can be driven by divergent instability of

two unstable steady states. This mechanism is distinct from the sloshing instability re-

ported in the corresponding pressure-driven system. Larger amplitude motions can be

dominated by intermittent slamming events. In the next chapter we examine the effect

of increasing the length of the downstream rigid segment (which provides additional

coupling between pressure and flux at the downstream end of the channel, and hence

further potential routes to self-excited oscillation) and use numerical simulations of a

two-dimensional model (to resolve viscous and unsteady effects more accurately) to

test the robustness of our predictions.
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2.A Parametric expansions

We apply the expansion (2.5) to (2.1, 2.2). At O(1), the system may be represented

compactly as

Fφ0 = 0, B0φ0(0) = 0, B1φ0(1) = 0, (2.26a)

where φi ≡ (Qi,Hi,H
′
i ,H

′′
i )

T, i = 0,1,2,3, etc. Here F = FD∂x +FL is a linear

differential operator, where

FD =













1 0 0 0

0 1 0 0

0 0 1 0

−12 0 0 5Tn0













, FL =













0 0 0 0

0 0 −1 0

0 0 0 −1

0 0 6 0













; (2.27)

the boundary condition operators are

B0 =













1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0













, B1 =













0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 Tn0













. (2.28)

At O(ε j), j = 1,2,3, the system of equations may be expressed as

Fφ j = N j, B0φ j(0) = 0, B1φ j(1) = G j. (2.29a)

where

N j =













N j1

0

0

N j2













, G j =













0

0

0

G j(1)













, (2.30)
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and

N11 =−σ1H0, (2.31a)

N12 =−180R1H0 +60R1Q0 +5σ1Q0 −5T1H ′′′
0 , (2.31b)

N21 =−σ2H0 −σ1H1, (2.31c)

N22 =−180R2H0 −180R1H1 +60R2Q0 +5σ2Q0 +60R1Q1

+5σ1Q1 −5T2H ′′′
0 −5T1H ′′′

1 , (2.31d)

N31 =−σ3H0 −σ2H1 −σ1H2, (2.31e)

N32 =−180R3H0 −180R2H1 −180R1H2 +60R3Q0 +5σ3Q0 +60R2Q1

+5σ2Q1 +60R1Q2 +5σ1Q2 −5T3H ′′′
0 −5T2H ′′′

1 −5T1H ′′′
2 , (2.31f)

G1 =−T1H ′′
0 −12L2Q0R1 −L2Q0σ1, (2.31g)

G2 =−T2H ′′
0 −T1H ′′

1 −12L2Q0R2 −12L2Q1R1 −L2Q0σ2 −L2Q1σ1, (2.31h)

G3 =−T3H ′′
0 −T2H ′′

1 −T1H ′′
2 −12L2Q0R3 −12L2Q1R2 −12L2Q2R1

−L2Q0σ3 −L2Q1σ2 −L2Q2σ1. (2.31i)

The inhomogeneous terms in (2.29) must satisfy a solvability condition. To find this,

we introduce the inner product

⟨φ,ψ⟩ ≡
∫ 1

0
φψdx (2.32)

and then calculate the eigensolution φ† of the adjoint operator F † = −F T
D ∂x +F T

L .

This is defined so that the boundary condition terms vanish in

⟨(φ†)T ,Fφ0⟩= ⟨φT
0 ,F

†φ†⟩+(φ†)T
FDφ0|10, (2.33)

which requires that the corresponding adjoint boundary condition operators are

B
†
0 =













0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1













, B
†
1 =













1 0 0 −12

0 0 0 0

0 0 1 0

0 0 0 0













. (2.34)
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After calculating φ†, the solvability condition on (2.29) is

⟨(φ†)T ,N j⟩= (φ†)T
FDφ j|10, (2.35)

for the problem at O(ε j). The solution of the homogeneous problem, the solvability

conditions and the solutions of the inhomogeneous problems can be secured in succes-

sion.

For n = 1, we obtain

φ0 = A0













0

sinπx

π cosπx

−π2 sinπx













, φ† =C













2(1− cosπx)

1

−(sinπx)/π

(1− cos2πx)/6













, (2.36)

where A0 and C are constants; we assume C = 1 without loss of generality. Given φ0

and φ†, the first solvability condition (using (2.31a, 2.31b) in (2.35)) is

T11 =−48(15R1 +σ1)

5π4 , (2.37)

from which we obtain (2.6) and (2.7).

For n = 2, the leading-order eigenmode becomes

φ0 = A0













0

sin2πx

2π cos2πx

−4π2 sin2πx













, φ† =C













2(1− cos2πx)

1

−(sin2πx)/(2π)

(1− cos2πx)/6













. (2.38)

Given φ0 and φ†, the first solvability condition (using (2.31a, 2.31b) in (2.35)) is T21 =

0. This condition admits the solution of (2.29) at O(ε)

φ1 = A0













−(σ1/π)sin2 πx

(cos2πx+πxsin2πx−1)(15R1 +σ1)/π

(2πxcos2πx− sin2πx)(15R1 +σ1)

−4π2xsin2πx(15R1 +σ1)













. (2.39)
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At O(ε2), using (2.31c, 2.31d) in (2.35), we obtain second solvability condition as

T22 =
3
(

1350R2
1 +168R1σ1 +5σ2

1

)

16π4 (2.40)

and the solution of (2.29) at O(ε2), φ2 = A0 (φ21,φ22,φ23,φ24)
T, where

φ21 =
(2πx(cos2πx+2)−3sin2πx)σ1 (15R1 +σ1)−4π sin2(πx)σ2

4π2 , (2.41a)

φ22 =
sinπx

24π2 (4π sinπx(2700(2x−3)R2
1 +60(11x−17)σ1R1 +(19x−31)σ2

1

−12(15R2 +σ2))+3cosπx(450
(

4π2x2 +13
)

R
2
1 +240

(

π2x2 +3
)

σ1R1

+21σ2
1 +8π2x

(

xσ2
1 +30R2 +2σ2

)

)), (2.41b)

φ23 =
1

24π
(1350

((

4π2x2 +5
)

cos2πx+4π(5x−6)sin2πx+8
)

R
2
1

+120
((

6π2x2 +7
)

cos2πx+2π(14x−17)sin2πx+11
)

σ1R1

+38σ2
1 −4π sin2πx

(

(31−25x)σ2
1 +90R2 +6σ2

)

+ cos2πx
(

25σ2
1 +24π2x

(

xσ2
1 +30R2 +2σ2

))

), (2.41c)

φ24 =
1
3

π(x−1)cos2πx
(

8100R
2
1 +1020σ1R1 +31σ2

1

)

− 1
12

sin2πx(1350
(

4π2x2 −5
)

R
2
1 +120

(

6π2x2 −7
)

σ1R1 −25σ2
1

+24π2x
(

xσ2
1 +30R2 +2σ2

)

). (2.41d)

Using (2.41), we can deduce the third solvability condition, using (2.31e, 2.31f) in

(2.35), at O(ε3), which is

T23 =
3

40π4 (12150R2
1σ1 +30R1

(

225R2 +27σ2
1 +14σ2

)

+σ1
(

420R2 +18σ2
1 +25σ2

)

+60750R3
1). (2.42)

Equations (2.40, 2.42) yield predictions for the locations of the neutral curves TC2 and

Hopf2.

2.B Weakly nonlinear analysis

We apply the expansion (2.15) to (1.26, 1.27), writing φ(x;τ0,τ1,τ2) = φ(x) in short-

hand below.
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At O(1), we recover the uniform solution h = q = 1. At following order, the lin-

ear problem is the form (2.26), and the linear differential operators and the boundary

conditions operators are as defined in (2.27, 2.28). At O(ε j), j = 1,2,3, the systems of

equations are expressed as (2.29), where N j and G j are defined as in (2.30), but now

N11 =−∂τ1h0, (2.43a)

N12 =−180R1h0 +12∂xq0h0 −15Tn0∂x,x,xh0h0 +60R1q0 +5∂τ0q0 −12q0∂xh0

+12q0∂xq0 −5Tn1∂x,x,xh0, (2.43b)

N21 =−∂τ1h0 −∂τ0h1, (2.43c)

N22 =−180R1h2
0 −15Tn0∂x,x,xh0h2

0 −180R2h0 +10∂τ0q0h0 +12q0∂xq0h0

+12∂xq1h0 −15Tn1∂x,x,xh0h0 −15Tn0∂x,x,xh1h0 −180R1h1 +60R2q0

+60R1q1 +5∂τ1q0 +5∂τ0q1 −6q2
0∂xh0 −12q1∂xh0 −12q0∂xh1 +12h1∂xq0

+12q1∂xq0 +12q0∂xq1 −5Tn2∂x,x,xh0 −15Tn0h1∂x,x,xh0 −5Tn1∂x,x,xh1,

(2.43d)

N31 =−∂τ2h0 −∂τ1h1 −∂τ0h2, (2.43e)

N32 =−60R1h3
0 −5Tn0∂x,x,xh0h3

0 −180R2h2
0 +5∂τ0q0h2

0 −15Tn1∂x,x,xh0h2
0

−15Tn0∂x,x,xh1h2
0 −180R3h0 −360R1h1h0 +10∂τ1q0h0 +10∂τ0q1h0

+12q1∂xq0h0 +12q0∂xq1h0 +12∂xq2h0 −15Tn2∂x,x,xh0h0 −30Tn0h1∂x,x,xh0h0

−15Tn1∂x,x,xh1h0 −15Tn0∂x,x,xh2h0 −180R2h1 −180R1h2 +60R3q0 +60R2q1

+60R1q2 +5∂τ2q0 +5∂τ1q1 +10h1∂τ0q0 +5∂τ0q2 −12q0q1∂xh0 −12q2∂xh0

−6q2
0∂xh1 −12q1∂xh1 −12q0∂xh2 +12h2∂xq0 +12h1q0∂xq0 +12q2∂xq0

+12h1∂xq1 +12q1∂xq1 +12q0∂xq2 −5Tn3∂x,x,xh0 −15Tn1h1∂x,x,xh0

−15Tn0h2∂x,x,xh0 −5Tn2∂x,x,xh1 −15Tn0h1∂x,x,xh1 −5Tn1∂x,x,xh2, (2.43f)

G1 =−Tn1∂x,xh0 −L2∂τ0q0 −12L2R1q0, (2.43g)

G2 =−Tn2∂x,xh0 −Tn1∂x,xh1 −L2∂τ1q0 −L2∂τ0q1 −12L2R2q0 −12L2R1q1,

(2.43h)

G3 =−Tn3∂x,xh0 −Tn2∂x,xh1 −Tn1∂x,xh2 −L2∂τ2q0 −L2∂τ1q1 −L2∂τ0q2

−12L2R3q0 −12L2R2q1 −12L2R1q2. (2.43i)

Once again we impose the solvability condition (2.35) and solve the corresponding

boundary-value problem at each order.
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For n = 1, we obtain (2.36) with A0 = A0(τ0,τ1,τ2) and the solvability condition

T11A0 =−24
(

2∂τ0A0 +30R1A0 +πA2
0

)

5π4 . (2.44)

This yields (2.24).

For n = 2, we obtain (2.38) with A0 = A0(τ0,τ1,τ2) and solvability condition T21 =

0. The analogue of (2.39), now including nonlinear terms, is

q1 =−sin2 πx∂τ0A0

π
, (2.45)

h1 =
2sinπx

π
(πA2

0 sin3 πx+15A0(πxcosπx− sinπx)R1

+(πxcosπx− sinπx)∂τ0A0) (2.46)

and the second solvability condition (the analogue of (2.40)) is

T22A0 =− 3
80π4

(

3π2A3
0 −540πA2

0R1 −6750A0R
2
1 −840R1∂τ0A0 −25∂τ0,τ0A0

)

.

(2.47)

The second-order solution, including amplitude-dependent terms, is

q2 =− 1
8π2 (8π∂τ1A0 sin2 πx+πA0(12πx−8sin2πx+ sin4πx)∂τ0A0

−2(2πx(cos2πx+2)−3sin2πx)(15R1∂τ0A0 +∂τ0,τ0A0)), (2.48)

h2 =
1

96π2 (sinπx(3π2(25(cosπx+ cos3πx)−7cos5πx)A3
0

−360π(−15cosπx+5cos3πx+4π(2cos2πxx−3x+1)sinπx)R1A2
0

+12(225
((

8π2x2 +37
)

cosπx+16π(2x−3)sinπx
)

R
2
1 +240π(πxcosπx− sinπx)R2

−8π(cosπx+ cos3πx+π(x−4)sinπx+πxsin(3πx))∂τ0A0)A0

+4(48π(πxcosπx− sinπx)∂τ1A0

+30(
(

24π2x2 +103
)

cosπx+8π(11x−17)sinπx)R1∂τ0A0

+
((

24π2x2 +91
)

cosπx+4π(19x−31)sinπx
)

∂τ0,τ0A0))), (2.49)
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which generalises (2.41). The third solvability condition (extending (2.42)) becomes

T23A2
0 =

3
160π4 (90π2A4

0R1 +6πA3
0

(

180
(

25R
2
1 +R2

)

−13π∂τ0A0
)

−5∂τ0A0 (168R1∂τ0A0 +5∂τ0,τ0A0)

+4A2
0

(

15R1
(

450
(

9R
2
1 +R2

)

+41π∂τ0A0
)

+7π∂τ0,τ0A0
)

+A0(48600R
2
1∂τ0A0 +1680R2∂τ0A0 −58π∂τ0A2

0 +100∂τ0,τ1A0

+240R1 (7∂τ1A0 +17∂τ0,τ0A0)+97∂τ0,τ0,τ0A0)). (2.50)

2.C Mel’nikov analysis

To analyse (2.21), we set λ = −T22, and consider λ > 0. Equation (2.21) can be

rewritten as (Xτ ,Yτ) = (Y, f (X)+ εg(X ,Y )) where X = B, Y = Bτ and

f =
3

25
π2X3 − 16

15
π4λX , (2.51)

g =
1

1875

(

−126π3X4 −20πX2 (2025R2 −56π4λ
)

+1728π2X2Y

−360
(

175R2 −8π4λ
)

Y +2175πY 2
)

. (2.52)

The unperturbed system, (Xτ ,Yτ) = (Y, f (X)) is Hamiltonian with Xτ = HY , Yτ =

−HX and Hamiltonian

H =
Y 2

2
− 3π2X4

100
+

8π4λX2

15
. (2.53)

It has a centre at (X ,Y ) = (0,0) and saddle points at (X ,Y ) = (±4
√

5λπ
3 ,0).

We use Mel’nikov theory to investigate the dynamics of the perturbed Hamiltonian

system (2.21) because it gives a algebraic method to measure difference between orbit

in unperturbed system and its perturbed counterpart. We expand about a solution of the

unperturbed system using X = X0 + εX1, Y = Y 0 + εY 1, where X0
τ = Y 0, Y 0

τ = f (X0).

Then X1
τ =Y 1 and Y 1

τ = f ′(X0)X1+g(X0,Y 0). The tangent to the unperturbed solution

is (Y 0, f (X0)), and its normal is therefore (− f (X0),Y 0). The distance between the

unperturbed and perturbed solution is given by the function

D = ((− f (X0),Y 0)) · (X1,Y 1) =− f (X0)X1 +Y 0Y 1 (2.54)
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Now

Dτ =− f ′(X0)X0
τ X1 − f (X0)X1

τ +Y 0
τ Y 1 +Y 0Y 1

τ

=− f ′(X0)Y 0X1 − f (X0)Y 1 + f (X0)Y 1 +Y 0( f ′(X0)X1 +g(X0,Y 0))

= Y 0g(X0,Y 0). (2.55)

Thus the Mel’nikov function (Guckenheimer & Holmes, 1983) M =
∫ τ

Y 0g(X0,Y 0)dτ

can be used to identify closed orbits in the perturbed system.

A pair of heteroclinic orbits (X0
±(τ),Y

0
±(τ)) (see Figure 2.3(b)) lie along

Y 2

2
− 3π2X4

100
+

8π4λX2

15
=

64π6λ 2

27
. (2.56)

Thus we have

Y 0
±(X

0
±) =±

π
√

6400π4λ 2 −1440π2λ (X0
±)2 +81(X0

±)4

15
√

6
, (2.57)

for X0
± between ±4

√
5λ/π .

On the upper orbit, we use the Mel’nikov function

M+ =
∫ ∞

−∞
Y 0
+(τ)g(X

0
+(τ),Y

0
+(τ))dτ =

∫ 4
√

5λπ
3

− 4
√

5λπ
3

g(X0
+,Y

0
+(X

0
+))dX0

+

=
512π4λ 3/2

(

16
(

60+31
√

6
)

π4λ −375
(

45+14
√

6
)

R2

)

10125
√

5
. (2.58)

The condition M+ = 0 implies that the upper heteroclinic orbit is preserved under the

perturbation, which yields a heteroclinic connection along (2.22) for sufficiently small

ε . No heteroclinic connection exists for the lower orbit for λ > 0, but for later reference

we define the corresponding Melnikov function as

M− =
512π4λ 3/2

(

16
(

−60+31
√

6
)

π4λ +375
(

45−14
√

6
)

R2

)

10125
√

5
. (2.59)

Second, the unperturbed system possesses a family of concentric periodic orbits



CHAPTER 2. DIVERGENCE-DRIVEN OSCILLATIONS 61

(XH (τ),Y H (τ)) (see Figure 2.3(b)) lying on

Y 2

2
− 3π2X4

100
+

8π4λX2

15
= H , (2.60)

where 0 < H < 64π6λ 2/27. Then we have

Y H
± (X) =±

√
2

√

H +
3π2X4

100
− 8

15
π4X2λ . (2.61)

We introduce a subharmonic Mel’nikov function (Guckenheimer & Holmes, 1983),

defined as

MH =
∫ TH

0
Y H (τ)g(XH (τ),Y H (τ))dτ (2.62)

=
∫ X2

X1

g(XH ,Y H
+ (XH ))dXH +

∫ X1

X2

g(XH ,Y H
− (XH ))dXH ,

where T H is the period, X1 and X2 (X1 < X2) are the intersection of the periodic orbit

and X axis, to determine the condition of each periodic orbit being preserved under

perturbation, that is MH = 0.

Two limits of these periodic orbits are of interest. First, the orbits collapse onto

the equilibrium point (0,0) as H → 0, which means limH →0 MH = 0 gives a critical

condition for the existence of a periodic orbit in the perturbed system, i.e. a Hopf

bifurcation. For small H , we have

X1,2 =± 1
2π2

√

15H

2λ
+O(H 3/2), (2.63)

g(X ,Y H
± (X)) =± 24

125

√
2H

(

8π4λ −175R2
)

+
58H π

25
+O(H 3/2,X2). (2.64)

Then, the subharmonic Mel’nikov function becomes

MH =
48

25π2

√

3
5λ

H
(

8π4λ −175R2
)

. (2.65)

Hence the condition for the Hopf bifurcation is consistent with (2.12).

Second, we obtain the heteroclinic orbits (2.57) as H → 64π6λ 2/27, which means

limH →64π6λ 2/27 MH = 0 is a condition for the existence of a periodic orbit with infi-

nite period, i.e. a homoclinic orbit, in the perturbed system. We obtain (using (2.58,
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2.59))

lim
H →64π6λ 2/27

MH = M++M−, (2.66)

so a homoclinic bifurcation emerges along (2.23).

2.D Energy Budget

For the steady flow, q = 1 and h = h(x), thus (1.33) is simplified as

K = 0, (2.67a)

F = 0, (2.67b)

P =
6
5
(12R(L2 +1)−T hxx(0)) , (2.67c)

E = 0, (2.67d)

D =
72R

5

(

∫ 1

0

1
h3 dx+L2

)

. (2.67e)

The energy balance (1.32) then implies

12R

∫ 1

0

(

1− 1
h3

)

dx = T hxx(0), (2.68)

representing a balance between viscous dissipation and the rate of working of upstream

pressure forces.

Here we define the time average of a quantity g over a period of oscillation T1 as

g =
1
T1

∫ t+T1

t
gdt ′. (2.69)

For the special case g = ft , where f is periodic with period T1, it follows that g =

0. Thus, averaging each component of the energy budget (1.32) over one period of

oscillation, we obtain

K = 0, (2.70a)

F =
18
25

(1−q(1, t)3) =
18
25

(1−q(1, t)3), (2.70b)
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P =
6
5

p(0, t) =
6
5

(

12R(L2 +1)−T hxx(0, t)
)

, (2.70c)

E =
6
5

∫ 1

0
ht pdx,

=
6
5

∫ 1

0
ht (12R(L2 +1− x)−T hxx)dx,

=
6
5

∫ 1

0
ht (12R(L2 +1− x))dx− 6

5

∫ 1

0
T hthxxdx,

=
6
5

(

∫ 1

0
h(12R(L2 +1− x))dx

)

t

− 6T

5

(

hxht |10 −
∫ 1

0
hxhxtdx

)

,

=
6
5

(

∫ 1

0
h(12R(L2 +1− x))dx

)

t

+
6T

10

(

∫ 1

0
h2

xdx

)

t

,

= 0, (2.70d)

D =
72R

5

(

∫ 1

0

q2

h3 dx+q(1, t)2L2

)

+
3

25

∫ 1

0

q2qx

h2 dx,

=
72R

5

(

∫ 1

0

q2

h3 dx+q(1, t)2L2

)

+
3

25

∫ 1

0

q2qx

h2 dx ≡ D1 +D2. (2.70e)

Thus, the energy budget becomes

F +P = D1 +D2. (2.71)

For small-amplitude oscillations, expressed by qi and hi, i = 1,2, . . . as given in

Appendix 2.B, the time-averaged energies (2.70) take the form

F = O(ε5), D2 = O(ε5), (2.72)

P = D1 =
72
5
(1+L2)R2ε2 +

54
5

A2
0R2ε4 +O(ε5), (2.73)

confirming a dominant balance between work done by the upstream pressure and vis-

cous dissipation.

2.E Numerical method

To investigate the evolution of small disturbances, we require numerical solutions of

(1.26, 1.27) with given initial conditions. For time derivatives, we use a first-order

semi-implicit time-stepping scheme; we use an implicit representation only for the
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highest spatial derivatives in each equation. Denoting [·]t=tk ≡ [·]k, the time-discretized

governing equations are

hk+1 −hk

∆t
+[qx]

k+1 = 0, (2.74)

qk+1 −qk

∆t
+

[

6
5

(

q2

h

)

x

]k

= T hk [hxxx]
k+1 +12R

[(

h− q

h2

)]k

. (2.75)

For spatial derivatives, we use a spectral method. To apply a Chebyshev approximation,

we use a coordinate transform x̂ = 2x−1 to rescale the flow domain (0 ≤ x ≤ 1) to the

numerical domain (−1 ≤ x̂ ≤ 1). We expand h and q at timestep k+1 as a series of l

Chebyshev polynomials of the first kind in the form

h(x̂)≈
n

∑
l=0

alTl(x̂), q(x̂)≈
n

∑
l=0

blTl(x̂) (2.76)

where al and bl are undetermined numerical coefficients. Then the spatial derivatives

can be expressed in terms of derivatives of Chebyshev polynomials and the undeter-

mined numerical coefficients. The approximated solution is represented by its value at

the Gauss–Lobatto points x̂i = cos iπ/n for i = 0,1, . . . ,n. Denoting [·]x̂=x̂i,t=tk ≡ [·]ki ,

the discretized governing equations and boundary conditions are, for 1 ≤ i ≤ n−1,

hk+1
i +2 [qx̂]

k+1
i ∆t = hk

i , (2.77)

qk+1
i −8T hk

i [hx̂x̂x̂]
k+1
i ∆t = qk

i −
[

12
5

(

q2

h

)

x̂

]k

i

∆t +12R

[(

h− q

h2

)]k

i
∆t, (2.78)

hk+1
0 = 1, (2.79)

hk+1
n = 1, (2.80)

qk+1
0 +

4L T [hx̂x̂]
k+1
0 ∆t

1+12R∆t
=

qk
0 +12R∆t

1+12R∆t
, (2.81)

qk+1
n = 1. (2.82)

We used the initial conditions h = 1+Ainit(1− x̂2), q = 1 with Ainit ≪ 1.

For the calculations reported here, we found that 64 Chebyshev polynomials were

typically sufficient to meet the required spatial accuracy; results were validated against

a finite difference method from (Stewart et al., 2009, 2010a). 128 modes were used in

Figure 2.6.



Chapter 3
Resonance-driven oscillations

In Chapter 2, we found a degenerate bifurcation point, in a parameter regime near

which growing oscillations around a uniform state can arise that are driven by diver-

gent instabilities of nearby steady (but unstable) flexible segment configurations, in a

manner that is independent of the downstream segment. This instability mechanism is

by no means exclusive and its range of applicability is restricted to certain parameter

regimes. In order to obtain a broader view of the origin of instabilities, we consider in

this chapter the case when the downstream rigid segment is substantially longer than

the flexible segment.

The model is briefly recalled in §3.1, and then the linear stability of the uniform

state is described in §3.2, restricting attention to the neighbourhood of the degenerate

bifurcation point. We identify three dominant balances between parameters, associated

with three distinct branches of the primary Hopf neutral curve, from which we derive

leading-order approximations of the linear stability problem in §3.3. One limit, in

particular, forms the basis for a weakly nonlinear analysis in §3.4, from which we

derive a fourth-order amplitude equation. This has two independent parameters and

a rich phenomenology, which we sketch briefly. Predictions from this reduced-order

model are tested against simulations of the full one-dimensional model and against

two-dimensional Navier–Stokes simulations in §3.5. Our results are summarised and

discussed in §3.6.

65
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3.1 Model

In this chapter we consider the one-dimensional model governed by (1.26, 1.27) and

also the corresponding two-dimensional fluid-structure interaction problem formulated

in §1.4, which we solve numerically using a demonstration-driver from the finite-

element library oomph-lib (Heil & Hazel, 2006).

According to descriptions in §1.4.3, the two-dimensional problem can be charac-

terised by seven dimensionless parameters

L∗
1 =

L∗∗
1

a
, L∗ =

L∗∗

a
, L∗

2 =
L∗∗

2

a
, h∗0 =

h∗∗0

a
,

Q =
µU0

Ea
, R =

µL∗∗

ρa2U0
, T =

T0a

ρU2
0 (L

∗∗)2
. (3.1)

The parameter Q indicates the strength of the fluidstructure interaction, R measures

the strength of viscous effects (a form of inverse Reynolds number) and T is a dimen-

sionless tension. Under small viscous stress (L∗/R ≫ 1), the variation of the initial

longitudinal tension along the membrane is negligible (Pedley, 1992). From equation

(1.50) we infer that during flow-induced wall deformation, changes in membrane ten-

sion due to stretching are small compared to T if (L∗)5QT/(Rh∗0)≫ 1 and the effects

of bending are small if (L∗)5QT/(R(h∗0)
3) ≫ 1. In two-dimensional simulations we

subject the ends of the beam to pinned boundary conditions, fixing their positions but

allowing them to rotate freely; we set the wall thickness h∗0 = 0.01 and Q = 0.01, and

choose appropriate values of other parameters to ensure the viscous stress, wall stretch-

ing and the wall bending terms are all negligibly small. Simulations are reported in §3.5

below.

For convenience, we rewrite the boundary condition of the one-dimensional model

(1.27d) as

L T hxx =−(12R(q−1)+qt) , (x = 1), (3.2)

where L = 1/L2. Equation (3.2) accounts for viscous and unsteady pressure drops

along the downstream rigid segment in 1 < x < 1+1/L . Here we focus our attention

on the case where the downstream rigid segment is longer than the membrane, that is

L ≪ 1. We first examine the linear stability of the uniform state h = 1, q = 1.
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3.2 Linear stability of the uniform state

Solving the linear eigenvalue problem (2.1, 2.2) as in Chapter 2, we obtain eigenvalue

and eigenmodes then neutral curves for small L . In the following, we focus on the

neutral curves in the vicinity of the degenerate bifurcation point (T , R) = (T20, 0).

3.2.1 Numerical results

The linearised equations (2.1, 2.2) show that static neutral curves (on which σ = 0) are

independent of L while oscillatory neutral curves (on which σ ̸= 0) depend on L .

This is illustrated by Figure 3.1(a), which shows static and oscillatory neutral curves in

(T , R)-parameter space for L = 1, 0.1 and 0.01 (a wider view of (T , R)-parameter

space is given in Figure 2.1(a)). The static neutral curve in T > T20, labelled TC2,

defines a transcritical bifurcation to a mode-2 steady solution; the oscillatory neutral

curve in T < T20, labelled Hopf2, defines a Hopf bifurcation to mode-2 oscillations.

The uniform state is linearly stable for R values above each neutral curve. As L de-

creases, a wobble appears on the Hopf2 curve and the parameter range over which the

uniform state is stable reduces. Defining T = T −T20, Figure 3.1(b) shows in greater

detail some mode-2 oscillatory neutral curves in (−T , R)-space (together with their

asymptotic approximations, derived below). As L decreases, the wobble becomes

more evident and it lies closer to T = T20; we can then identify distinct upper-, lower-

and middle-branch behaviour. As R decreases for fixed L , first −T decreases like

O(R2) on the upper branch, then −T increases on the middle branch, and finally −T

decreases like O(R) on the lower branch. Figure 3.1(c) demonstrates the correspond-

ing frequency of eigenmodes on the Hopf2 curve. On the upper branch, the frequency

of mode-2 oscillations is approximately
√

27L /8 (as we show in (3.13) below), inde-

pendent of −T . However, the frequency is approximately 4π2
√

−T /15 (see (3.27)

below) on the lower branch, independent of L .

Figure 3.2 depicts eigenvalue paths as the parameter pair (−T , R) crosses the

Hopf2 curve close to the turning point between the middle and lower branches. As seen

in Figure 3.2(a), for R = 6×10−4 and −T = 10−6, there exist two pairs of complex

conjugate eigenvalues with almost the same negative real part, both of which are mode

2. As −T increases, the imaginary part of the conjugate pair with large imaginary part

falls while that of the conjugate pair with small imaginary part rises, until they nearly

coalesce. Then, the real part of the higher-frequency modes ascends through zero,
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Figure 3.1: (a) Neutral curves of static mode-2 perturbations (in T > T20, labelled TC2,
solid) and of oscillatory mode-2 perturbations (in T < T20, labelled Hopf2, solid) for
L = 1, 0.1 and 0.01. Dashed lines show the asymptotes (3.12) (labelled UpperL)
and (3.26) (labelled LowerL), the asymptotes (3.51) and (3.52) from Chapter 2 (la-
belled TCA

2 and SNA) and the asymptotes (3.81) for L = 0.01 (labelled Hopflower) that
coalesces with the SNA at the closed circle. The open circle on SNA denotes a Takens–
Bogdanov point. The crosses denote the parameters used in the PDE simulations in
§3.5. (b) Hopf2 curves for L = 0.1, 0.01 and 0.001 (solid), in addition to the dashed
lines showing the asymptotes (3.12) (labelled UpperL) and (3.26) (labelled LowerL)
and dash-dot lines showing the asymptotes (3.10) (labelled UpperA), (3.20, 3.21) (la-
belled LowerA) and (3.32, 3.33) (labelled MiddleA) for L = 0.001. (c) Frequency of
neutral mode-2 oscillations for L = 0.1, 0.01 and 0.001 (solid), as well as dashed
lines showing the asymptotes (3.13) (labelled |σ |Lupper) and (3.27) (labelled |σ |Llower);
the dash-dot lines show the asymptotes (3.11) (labelled |σ |Aupper), (3.20, 3.21) (labelled
|σ |Alower) and (3.32, 3.33) (labelled |σ |Amiddle) for L = 0.001.

which corresponds to crossing the middle branch of the neutral curve in Figure 3.1(b).

Subsequently, the pair collide and split into two positive real eigenvalues. In the mean-

time, the lower-frequency pair remain stable but coalesce and become two negative real

eigenvalues. The eigenvalue path in Figure 3.2(c), for R = 2×10−4, is similar to that

in Figure 3.2(a) except that it is the lower-frequency modes that become unstable on

crossing the lower branch of the neutral curve; this resembles the behaviour analysed

in Chapter 2. The intermediate case is shown in Figure 3.2(b). This mode interac-

tion is strongly reminiscent of a 1:1 resonance, and suggests a possible mechanism of

self-excited oscillation consistent with the conjecture of Mandre & Mahadevan (2010).

Figure 3.1(c) shows how the frequency of neutral modes approaches zero as L → 0,

T → 0 and R → 0. Thus the structure illustrated in Figure 3.2 collapses to the origin

in this limit, yielding four zero eigenvalues.

For larger R, corresponding to moving up the middle and upper branches of the

Hopf2 curve, there are further changes to the pattern of eigenvalues. Figure 3.3 il-

lustrates the eigenvalue paths towards the upper end of the upper branch. As −T

increases, the eigenvalue pair with initially higher frequency remains stable, while two

real eigenvalues coalesce to form a conjugate pair that become unstable.

In Figure 3.4 we replot the oscillatory neutral curves of Figure 3.1(b) to reveal their

dependence on L . In Figure 3.4(a) we plot −T /L versus R/L 1/2 and find that the

upper branches of the neutral curves coalesce, which suggests that the upper branch
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Figure 3.2: Eigenvalue paths as −T varies from 10−6 to 10−3 with L = 0.01 and
(a) R = 6× 10−4, (b) R = 4.27× 10−4 (from (3.22)) and (c) R = 2× 10−4. Circles
represent numerical results from (2.1, 2.2) while asterisks represent asymptotic results
from (3.20, 3.21) for the same value of T . In (b), two stars are the pair of eigenvalues
on coalescence, from (3.24). Arrows show increasing −T .
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Figure 3.3: Eigenvalue path as T varies from 0.0306 to 0.028 with L = 0.01 and
R = 1/22. Circles represent numerical results from (2.1, 2.2) while asterisks represent
asymptotic results from (3.9).

has the scaling R2 ∼−T ∼ L as L → 0, T → 0 and R → 0. Similarly, by plotting

−T /L versus R/L , collapse of the data in Figure 3.4(c) suggests the lower branch

and the lower turning point have the scaling R ∼ −T ∼ L . For the middle branch,

we plot −T /L 3/2 versus R/L 1/2 (Figure 3.4(b)). In this case, a rough coalescence

can be seen, sufficient to motivate investigation of this scaling relationship. We recall

from Chapter 2 that TC2 follows the scaling T ∼ R2, independent of L .

3.3 Parametric asymptotics

We now seek asymptotic approximations of the linear stability problem by expand-

ing the solution in the neighbourhood of (T ,R,L ) = (0,0,0), seeking to unfold the

patterns traced out by the four eigenvalues close to the origin. We assume different

relations between the parameters in order to capture behaviour on the lower, middle

and upper branches of the Hopf2 curve. We make expansions using

Q(x) = Q0(x)+ εQ1(x)+ ε2Q2(x)+ ε3Q3(x)+ · · · , (3.3a)

H(x) = H0(x)+ εH1(x)+ ε2H2(x)+ ε3H3(x)+ · · · , (3.3b)

σ = εσ1 + ε2σ2 + ε3σ3 + · · · , (3.3c)
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Figure 3.4: Oscillatory mode-2 neutral curves for L = 0.1, 0.01 and 0.001 (solid), in
addition to the dash-dot lines showing the asymptotes (3.10) (labelled UpperA), (3.20,
3.21) (labelled LowerA) and (3.32, 3.33) (labelled MiddleA). The circle in panel (c)
represents the coalescence point from (3.22, 3.23).
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where 0 < ε ≪ 1 is a tuning parameter; the coefficients in (3.3) are assumed to be of

order unity as ε → 0. Details of the expansions are provided in Appendix 3.A.

3.3.1 Upper branch: R2 ∼−T ∼ L

Motivated by Figure 3.4(a) we scale the parameters as

T = ε2
T2, R = εR1, L = ε2

L2. (3.4)

Here T2, R1 and L2 are assumed to be of order unity as ε → 0. Upon substituting

(3.3) and (3.4) into (2.1, 2.2), one homogeneous system (3.70) and a series of inhomo-

geneous systems (3.71, 3.72) are recovered in succession. Solutions of (3.70) can be

derived directly. For each inhomogeneous system, the existence of non-trivial solutions

requires a solvability condition, which provides conditions on coefficients appearing at

previous orders.

At O(1), solutions of (3.70) are

Q0 = 0, H0 = A0 sin2πx+B0(1− cos2πx). (3.5)

Here A0 and B0 are constants. The A0 component is a typical “mode-2" solution,

whereas the B0 component has the same wavelength but a single extremum in h at

the mid-point of the membrane.

At O(ε), the solvability condition of (3.71) requires B0 = 0, which admits solutions

Q1 = A0σ1(cos2πx−1)/2π, (3.6a)

H1 = A1 sin2πx+B1(1− cos2πx)+A0(15R1 +σ1)xsin2πx. (3.6b)

Here A1 and B1 are constants. Thus the single-humped mode (B1) persists but with

smaller magnitude than the primary mode-2 component. Note that Q1(1) = 0, so that

the downstream rigid channel segment has no influence at this order.
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At O(ε2), the solvability conditions of (3.72) give the conditions

B1 =−A0(15R1 +σ1)(12L2 +5σ1(12R1 +σ1))

4π2(6L2 −5σ1(12R1 +σ1))
, (3.7a)

T2 =
3
(

6L2
(

1350R2
1 +168R1σ1 +5σ2

1

)

+σ1(12R1 +σ1)
(

1350R2
1 +240R1σ1 +11σ2

1

))

16π4(6L2 −5σ1(12R1 +σ1))
,

(3.7b)

which admits solutions H2 and Q2. We find that

Q2(1) = σ1

(

15R1 +σ1

2π
A0 −B1

)

=− 18L2B1

12L2 +5σ1(12R1 +σ1)
, (3.8)

which means that there exists a weak flux perturbation influenced by the downstream

rigid segment. In particular, the B1 mode drives sloshing in the downstream segment

that brings in the coupling to L . The first condition (3.7a) slaves the single-humped

mode to the primary mode-2 solution. The second condition (3.7b) gives a quartic for

σ1, which we re-express as

12L
(

2025R
2 −8π4

T
)

+24R
(

2025R
2 +126L +40π4

T
)

σ

+10
(

1269R
2 +9L +8π4

T
)

σ2 +1116Rσ3 +33σ4 = 0. (3.9)

Figure 3.3 shows how (3.9) successfully approximates the solution of (2.1, 2.2).

If we assume σ is purely imaginary and isolate the real and imaginary parts of

(3.9), we obtain explicit expressions for the upper branch of the Hopf2 curve and the

corresponding neutral frequency as

T =
9
(

−1183L −59700R2 +31
√

3
√

(3L +200R2)(161L +2400R2)
)

4000π4 ,

(3.10)

and

σ =±i

√

21L

50
−72R2 +

3
50

√
3
√

483L 2 +39400L R2 +480000R4. (3.11)

Good agreement between (3.10, 3.11) and predictions from the linearised equations

(2.1, 2.2) can be seen in Figure 3.1(b, c) and Figure 3.4(a), although the approximation

(3.10) (labelled UpperA in Figure 3.1(b)) does not capture the upper turning point in
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the neutral curve.

Assuming 1 ≫ R2 ∼ −T ≫ L in (3.10), the upper branch of the Hopf2 curve

asymptotes to

−T =
405
8π4 R

2, (3.12)

shown in Figure 3.1(a, b) as UpperL; the approximate neutral frequency in (3.11) be-

comes

σ =±i

√

27L

8
, (3.13)

as shown in Figure 3.1(c). Interestingly, the neutral curve asymptote (3.12) is indepen-

dent of L , whereas the oscillation frequency (3.13) is independent of T . In addition,

setting σ = 0 in (3.9) recovers the locations of the TC2 curve, T = 2025R2/8π4 pro-

vided L > 0 (Chapter 2), shown as TCA
2 in Figure 3.1(a).

Assuming L 3/2 ≪T ≪L ∼R2, by balancing terms in (3.9) at increasing order,

we derive eigenvalues

σ = σ1 +σ2 + · · · , (3.14)

where σ1 ≫ σ2 and σ1, σ2 satisfy

8100L R
2 +72R

(

14L +225R
2)σ1 +30

(

L +141R
2)σ1

2

+372Rσ1
3 +11σ1

4 = 0, (3.15a)

σ2 =−96π4
T σ1(12R+σ1)(15R+σ1)

2/
(

233754
R

5 +22355347R
4σ1

+23335 ·23 ·43R
3σ1

2 +223213 ·197R
2σ1

3 +3702Rσ1
4 +55σ1

5
)

, (3.15b)

respectively, which represent the overlap with the middle branch, as we will see below.

3.3.2 Lower branch: R ∼−T ∼ L

Motivated by Figure 3.4(c) we now assume

T = ε2
T2, R = ε2

R2, L = ε2
L2. (3.16)
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Here T2, R2 and L2 are assumed to be of order unity as ε → 0. Upon substituting

(3.3) and (3.16) into the linearised equations (2.1, 2.2), one homogeneous system and

a series of inhomogeneous systems (see Appendix 3.A.2) are recovered in succession,

following the pattern in the upper-branch calculation.

At O(1), solutions of (3.73) are as in (3.5). At O(ε), the solvability condition of

(3.74) is again B0 = 0, which admits solutions

Q1 = A0σ1(cos2πx−1)/2π, (3.17a)

H1 = A1 sin2πx+B1(1− cos2πx)+A0σ1xsin2πx, (3.17b)

missing a viscous term present in (3.6b).

At O(ε2), the solvability conditions of (3.75) are

B1 =−A0σ1
(

12L2 +5σ2
1

)

4π2
(

6L2 −5σ2
1

) , T2 =
3σ2

1

(

30L2 +11σ2
1

)

16π4
(

6L2 −5σ2
1

) , (3.18a,b)

which secures solutions Q2 and H2 containing two new coefficients A2 and B2. Notice

that (3.18) corresponds to (3.7) in the limit of R1 → 0. Then Q0, H0, Q1, H1, Q2 and

H2 are inserted into inhomogeneous terms of the next order problem, in order to take

into account viscous effects.

At O(ε3), the solvability conditions of (3.76) are

B2 =
(

60A1σ1

(

−2160L
3

2 −2484L
2

2 σ2
1 +275σ6

1

)

+A0
(

26365L
3

2 R2 −432L
2

2 (559L2 −4185R2)σ
2
1 −2232 ·5 ·1327L

2
2 σ4

1

+1500(−22L2 +45R2)σ
6
1 +5311 ·23σ8

1

)

)

/
(

240π2 (6L2 −5σ2
1

)(

180L
2

2 +132L2σ2
1 −55σ4

1

)

)

, (3.19a)

σ2 =
24
(

−630L 2
2 R2 +3L2(−9L2 +35R2)σ

2
1 +125R2σ4

1

)

900L 2
2 +660L2σ2

1 −275σ4
1

. (3.19b)

Here we finally see the appearance of viscous terms, plus additional interactions not

present in (3.7). The solvability conditions (3.18b) and (3.19b) give the eigenvalue

σ = σ1 +σ2, (3.20)



CHAPTER 3. RESONANCE-DRIVEN OSCILLATIONS 77

where σ1 and σ2 satisfy

σ1
2 =

−45L −40π4T ±
√

2025L 2 +6768L π4T +1600π8T 2

33
, (3.21a)

σ2 =
24
(

−630L 2R+3L (−9L +35R)σ1
2 +125Rσ1

4)

900L 2 +660L σ1
2 −275σ1

4 . (3.21b)

From (3.20, 3.21), the asymptote of the Hopf2 curve (which we denote LowerA) and

the corresponding neutral frequency (|σ |Alower) can be determined. We see good agree-

ment between these predictions and solutions of (2.1, 2.2) in Figure 3.1(b, c) and Fig-

ure 3.4(c). The lower-branch approximation captures the lower turning point in the

neutral curve but does not connect smoothly to the upper-branch approximation, show-

ing the need for a middle-branch approximation, given below.

Figure 3.2 shows eigenvalue paths computed from (3.20, 3.21) and from (2.1, 2.2),

which again agree well. Equation (3.20) captures the coalescence of two pairs of con-

jugate eigenvalues, which takes place when

R =
11
(√

11−6
)

L

90
(√

11−11
) ≈ 0.0427L , (3.22)

−T =
9
(

47−12
√

11
)

L

200π4 ≈ 0.0033L ; (3.23)

the corresponding pair of eigenvalues are

σ =−

(

539−31
√

11
)

L

660
± i

√

√

√

√

(

36
√

11−66
)

L

55
. (3.24)

The agreement between the asymptotic and numerical results can be observed in Fig-

ure 3.2(b). In Figure 3.4(c) we see that the coalescence point lies close to the lower

turning point of the mode-2 neutral curve. As (3.24) and Figure 3.2(b) indicate, when

the two modes interact they are almost neutrally stable, with small decay rate of O(L ).

The rapid rise in growth rate of one mode is characteristic of a 1:1 resonance. Note that

the two interacting eigenmodes are each of mode-2 type, with a two-humped A0 con-

tribution supplemented with a smaller one-humped B1 contribution (see (3.18a)).

Assuming R ∼−T ≪ L , the two eigenvalue components are given from (3.21a)
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and (3.21b) as

σ1 =±4π2i

√

−T

15
+ · · · , σ2 =− 12

125

(

175R+8π4
T
)

+ · · · , (3.25)

thus the real part of σ vanishes when

−T =
175
8π4 R, (3.26)

shown in Figure 3.1(a, b) as LowerL, and the approximate neutral frequency is

σ =±4π2i

√

−T

15
, (3.27)

shown in Figure 3.1(c) as |σ |Llower. Here we recover results given in Chapter 2 for the

case where the downstream rigid channel is sufficiently short to have no leading-order

influence. In this case, the dominant balance in the boundary condition (2.2) at x = 1

is H ′′ = 0, implying zero pressure perturbation. The neutral oscillation is captured by

the A0 mode in (3.17), and does not require a contribution from the B1 mode.

Assuming L 3/2 ≪−T ≪ L ≪ R ≪ L 1/2, i.e. beyond the turning point of the

lower-branch approximation, by balancing terms in (3.21a) and (3.21b) at increasing

order, we obtain

σ1 =±i

√

30
11

L
1/2 ± 16π4i

5

√

6
55

T√
L

+ · · · , (3.28)

σ2 =−6R

55
− 3L

5
− 2016π4RT

125L
+ · · · , (3.29)

Thus the two approximate eigenvalues are

σ =−
(

6R

55
+

3L

5
+

2016π4RT

125L

)

± i

(

√

30
11

L
1/2 +

16π4

5

√

6
55

T√
L

)

+ · · · ,

(3.30)

which represent the overlap with the middle branch, as we see below.
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3.3.3 Middle branch: R(−T )∼ L 2

In order to connect the upper limit of the lower branch (3.30) to the lower limit of the

upper branch (3.14, 3.15), we introduce a third region. Motivated by Figure 3.4(b), we

introduce the scalings

T = ε3
T3, R = εR1, L = ε2

L2. (3.31)

Here T3, R1 and L2 are assumed to be of order unity as ε → 0. Upon substituting

(3.3) and (3.31) into the linearised equations (2.1, 2.2), one homogeneous system and

a series of inhomogeneous systems (see Appendix 3.A.3) are recovered in succession.

Defining

f (R,L ,σ) = 8100L R
2 +72R

(

14L +225R
2)σ +30

(

L +141R
2)σ2

+372Rσ3 +11σ4, (3.32a)

g1(T ,R,σ) = σ(12R+σ)(15R+σ)
((

1350R
2 +240Rσ +11σ2)2

−960π4(15R+σ)T
)

, (3.32b)

g2(R,σ) = 10
(

233754
R

5 +22355347R
4σ +23335 ·23 ·43R

3σ2

+223213 ·197R
2σ3 +3702Rσ4 +55σ5), (3.32c)

using the method in previous subsections, we derive two solvability conditions f (R1,L2,σ1)=

0 and σ2 = g1(T3,R1,σ1)/g2(R1,σ1), which give the eigenvalue

σ = σ1 +σ2, (3.33)

where σ1 satisfies f (R,L ,σ1) = 0 and σ2 = g1(T ,R,σ1)/g2(R,σ1). We can see

qualitative agreement between the neutral curves and the corresponding neutral fre-

quency determined from (3.32, 3.33) and from the linearised equations (2.1, 2.2) in

Figure 3.1(b, c) and Figure 3.4(b).

Assuming L 3/2 ≪T ≪L ∼R2, by balancing terms in (3.32) at increasing order,

we recover the same eigenvalues in (3.14, 3.15), matching the middle- and upper-

branch solutions.

Assuming L 3/2 ≪−T ≪ L ≪ R ≪ L 1/2, by balancing terms in (3.32) at in-
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creasing order we have

σ1 =±i

√

30
11

L
1/2 − 6R

55
+ · · · , (3.34)

σ2 =±16π4i
5

√

6
55

T√
L

− 3L

5
− 2016π4RT

125L
+ · · · , (3.35)

Thus we have two approximate eigenvalues being same as that in (3.30); thus the

middle-branch solution matches onto the lower-branch solution.

As is evident from (3.32), the dominant physical balance on the middle branch

is intricate and we do not attempt to pursue it further. The oscillation mechanism

described in Chapter 2 explains the behaviour at the base of the lower branch. The

instability is amplified by the resonant mode interaction illustrated in Figure 3.2. The

first impact of the downstream rigid channel is to generate the lower bend in the mode-

2 Hopf neutral curves. Beyond the other bend, on the upper branch of the Hopf2 curve,

there is less evidence of resonance (Figure 3.3), but nevertheless a mode interaction

generates instability. We focus now on this branch, investigating how nonlinearity

influences the interaction between the two mode-2 eigenmodes.

3.4 Weakly nonlinear theory for the upper branch

3.4.1 Derivation of amplitude equations

Returning to the scalings used in §3.3.1, we expand variables as

φ(x;τ0,τ1) = 1+ εφ0 + ε2φ1 + ε3φ2 + ε4φ3 + · · · , (3.36)

where τ0 = εt, τ1 = ε2t, φ ≡ (q,h)T and φi ≡ (qi,hi)
T, i = 0,1,2,3, etc. Here τ0, τ1,

qi, hi, T2, R1 and L2 (see (3.4)) are assumed to be of order unity as ε → 0.

The leading-order system is

q0x = 0, (3.37a)

6h0x −12q0x +5T20h0xxx = 0, (3.37b)

h0 = 0, q0 = 0, (x = 0), (3.37c)

h0 = 0, 12R1q0 +q0τ0 = 0, (x = 1), (3.37d)
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and so, as in (3.5),

q0 = 0, h0 = A0 sin2πx+B0(1− cos2πx). (3.38)

Here A0 and B0 are functions of τ0 and τ1.

The first-order system is

q1x =−h0τ0, (3.39a)

6h1x −12q1x +5T20h1xxx =−180R1h0 +60R1q0 +5q0τ0

−12q0h0x +12h0q0x +12q0q0x −15T20h0h0xxx. (3.39b)

h1 = 0, q1 = 0, (x = 0), (3.39c)

h1 = 0, 12R2q0x +12R1q1x +q1τ0 +L2T20h0xx = 0, (x = 1). (3.39d)

Solvability conditions for the first-order system require that

B0τ0 +B0(πA0 +15R1) = 0, (3.40a)

5(B0τ0τ0 +12R1B0τ0)−6B0L2 = 0. (3.40b)

This system has a divergently unstable mode for R1 > 0, which we suppress by en-

forcing B0 = 0. Thus the solution of the first-order system is (cf. (3.6))

q1 = A0τ0(cos2πx−1)/2π, (3.41a)

h1 = A1 sin2πx+B1(1− cos2πx)

− A2
0

4
(cos2πx− cos4πx)+(15A0R1 +A0τ0)xsin2πx. (3.41b)

Here A1 and B1 are arbitrary functions of τ0 and τ1. The sin2πx mode appears in h0 in

(3.38), so we assume A1 = 0 without loss of generality.

Solvability conditions for the second-order system require that

A0
(

72π2B1 −4050R
2
1 +80π4

T2 −36πA0τ0

)

+72π (15R1B1 +B1τ0)

= 45
(

πA2
0(πA0 +30R1)+8R1A0τ0

)

+3A0τ0τ0, (3.42a)
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π
(

9L2A2
0 +10(12R1B1τ0 +B1τ0τ0)

)

= 3
(

4πL2B1 +60L2R1A0 +4
(

L2 +75R
2
1

)

A0τ0 +45R1A0τ0τ0

)

+5A0τ0τ0τ0,

(3.42b)

which generalises (3.7).

By using the original parameters T , R, L , time t and defining amplitude functions

A = εA0, B = ε2B1, we can therefore assemble terms to give

h = 1+A(t)sin2πx+B(t)(1− cos2πx)

− A(t)2

4
(cos2πx− cos4πx)+(15RA(t)+At)xsin2πx+ · · · , (3.43a)

q = 1+At(cos2πx−1)/2π +
1

8π2

(

60πRAtxcos2πx+2πA(t)At sin2πx−30RAt sin2πx

−πA(t)At sin4πx−8π2Btx+4πBt sin2πx+4πAttxcos2πx−2Att sin2πx
)

+ · · · ,
(3.43b)

where, from (3.42), the nonlinear fourth-order system governing A and B is

A
(

72π2B−4050R
2 +80π4

T −36πAt

)

+72π (15RB+Bt)

= 45
(

πA2(πA+30R)+8RAt

)

+3Att , (3.44a)

3
(

4πL B+60L RA+4
(

L +75R
2)At +45RAtt

)

+5Attt

= π
(

9L A2 +10(12RBt +Btt)
)

. (3.44b)

The linearised system about A = 0, B = 0 is consistent with the quartic equation (3.9).

From (3.43a) we can write h at x = 0.25 and x = 0.75 in terms of A(t) and B(t) as

follows,

h(0.25, t) = 1+

(

1+
15
4

R

)

A− A2

4
+B+

1
4

At , (3.45a)

h(0.75, t) = 1−
(

1+
45
4

R

)

A− A2

4
+B− 3

4
At . (3.45b)

We use time-average of h over one period to represent the magnitude of asymmetries
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of h about h = 1. By time-averaging (3.45) we obtain

h(0.25, t) = 1+

(

1+
15
4

R

)

A− A2

4
+B, (3.46a)

h(0.75, t) = 1−
(

1+
45
4

R

)

A− A2

4
+B, (3.46b)

where bars denote time-averaged quantities. Applying time-averaging to (3.44b) we

get

A2 =
4
3

B+
20R

π
A. (3.47)

Substituting (3.47) into (3.46) we eliminate A2 terms

h(0.25, t) = 1+

(

1+

(

15
4
− 5

π

)

R

)

A+
2
3

B, (3.48a)

h(0.75, t) = 1−
(

1+

(

45
4
+

5
π

)

R

)

A+
2
3

B. (3.48b)

From (3.48) we find that h(0.25, t) and h(0.75, t) are equal to 1 if A and B vanish.

Since A ≫ B and R ≪ 1, the leading approximation of asymmetries are A and −A for

h(0.25, t) and h(0.75, t) respectively.

3.4.2 Steady solutions and their stability

For L ≫ R2 ∼ T , from (3.44b) where terms involving L are dominant, we recover

B ≈−15RA

π
+

3A2

4
− At

π
. (3.49)

Substituting B and Bt into (3.44a), we have

A
(

80π4
T −20250R

2 +9πA(πA−180R)
)

= 2520RAt +75Att . (3.50)

This amplitude equation was derived in Chapter 2 for the case L = O(1). This has a

transcritical bifurcation (TCA
2 ) for

T = 2025R
2/8π4 (3.51)
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and a saddle-node bifurcation (SNA) at

T = 9315R
2/8π4, (3.52)

both of which are illustrated in Figure 3.1(a). The approximation TCA
2 agrees well with

the numericallly predicted TC2. For T < 0 and −T ≫ R2, (3.50) is approximately

Hamiltonian, with nested periodic orbits confined between A = 0 and two steady non-

uniform solutions with 80π2T +9A2 = 0 (Chapter 2). The uniform state A = 0 loses

stability to a mode-2 equilibrium state as T increases through the transcritical bifur-

cation. These bifurcations are independent of L and so are shared by the full system

(3.44). The steady solutions of (3.50) are indicated in the bifurcation diagram in Fig-

ure 3.5. We now turn to oscillatory instabilities of these solutions, governed by (3.44).

We can eliminate R from (3.44) by rescaling as

T = R
2
T̂ , L = R

2
L̂ , t = t̂/R, σ = σ̂R, A = RÂ, B = R

2B̂; (3.53)

then (3.44) becomes

Â
(

72π2B̂−4050+80π4
T̂ −36πÂt̂

)

+72π
(

15B̂+ B̂t̂

)

= 45
(

πÂ2(πÂ+30)+8Ât̂

)

+3Ât̂ t̂ , (3.54a)

3
(

4πL̂ B̂+60L̂ Â+4
(

L̂ +75
)

Ât̂ +45Ât̂ t̂

)

+5Ât̂ t̂ t̂

= π
(

9L̂ Â2 +10
(

12B̂t̂ + B̂t̂ t̂

)

)

. (3.54b)

Using (3.54a), we can eliminate Ât̂ t̂ and Ât̂ t̂ t̂ in (3.54b). Thus, Ât̂ t̂ is the highest deriva-

tive in (3.54a) and B̂t̂ t̂ is the highest derivative in (3.54b), allowing (3.54) to be written

as a system of four first-order equations, with two parameters T̂ and L̂ .

For L̂ ̸= 0, (3.54) has the equilibrium points (Â, B̂) = (0,0) and

(

Â±, B̂±
)

=





270±
√

10
√

9315−8π4T̂

3π
,
5
(

14985−8π4T̂ ±48
√

10
√

9315−8π4T̂

)

6π2



 .

(3.55)

The equilibria (3.55) are shown in Figure 3.5, with the transcritical bifurcation TCA
2

and the saddle-node bifurcation SNA arising as predicted in (3.51, 3.52). By calculat-

ing the eigenvalues of the Jacobian matrix at these equilibria we find an additional Hopf
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Figure 3.5: Equilibrium curves of (3.54) with L̂ = L /R2 = 1, where stable branches
are labelled by solid lines and unstable branches labelled by dashed lines. Two insets
show mode shapes.

bifurcation point Hopflower for (Â−, B̂−) and (for sufficiently large L̂ ) two Hopf bifur-

cation points Hopf1
upper and Hopf2

upper for (Â+, B̂+). The bifurcation points are shown

on Figure 3.6(a). We find that Hopf1
upper emerges from SNA at a Takens–Bogdanov

bifurcation point when L̂ = 3375 and that Hopflower connects to Hopf2
upper on SNA at

a fold-Hopf bifurcation point when L̂ = 23 ·3 ·5 ·23 ·337 ≈ 9.3×105, at which point

neutral oscillations have frequency of approximately 2.5× 106. Details are given in

Appendix 3.B. We illustrate the corresponding emergence of Hopflower from SNA in

Figure 3.6(b) for L = 0.01. For L̂ < 3375, we find that steady stable states exist only

for T̂ lying between HopfA
2 and Hopflower, as illustrated in Figure 3.5.

Being fourth-order, there is potential for (3.54) to exhibit complex dynamics, which

we do not aim to describe in detail here. By way of illustration, however, Figure 3.6(c)

shows where limit cycles emerging from HopfA
2 first undergo a period-doubling bifur-

cation, while Figure 3.6(d) shows how subsequent period-doublings lead to apparently

chaotic dynamics. Our primary interest is in the structure of the oscillations close to

HopfA
2 , which we now investigate in the limit in which L̂ is small. This corresponds

to the upper limit of the upper branch in Figure 3.1, where the oscillation frequency is

determined primarily by the length of the downstream rigid segment.
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Figure 3.6: (a) Neutral curves of (3.54) in (T̂ , L̂ )-space. Symbols denote the location
of the fold-Hopf point at L̂ ≈ 9.3×105 (solid circle) and the Takens–Bogdanov point
at L̂ = 3375 (open circle). (b) Neutral curves in (T , R)-space (T > 0) for L = 0.01.
(c) Stars represent the onset of period-doubling bifurcations. Solid and dashed lines are
the oscillatory neutral curve HopfA

2 and its two-term approximation given by (3.56a)
respectively. The vertical dash-dotted line represents (3.100). The shaded region illus-
trates (3.66) for L̂ ≪ 1, within which oscillations develop sawtooth behaviour. (d) Ât̂

values of 10 iterations of Poincaré maps from (3.54) as T̂ changes from −0.7 to −0.6,
where L̂ = 100 and the Poincaré section is Â = 0, Ât̂ < 0.
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3.4.3 Oscillations arising for small L̂

From (3.10, 3.11), the HopfA
2 curve, plotted on Figure 3.6, and the corresponding fre-

quency can be re-expressed in terms of T̂ and L̂ using (3.53). Then, as L̂ → 0, the

two-term approximations are

T̂ =−405
8π4 +

99L̂

128π4 +O(L̂ 2), (3.56a)

σ̂ =±i

√

27L̂

8
− 25L̂ 2

1024
+O(L̂ 3). (3.56b)

Equation (3.56a) is illustrated in Figure 3.6(c). Recall that the one-term approximations

correspond to the asymptotes UpperL and |σ |Lupper in Figure 3.1.

We now simplify (3.54) for small L̂ in the neighbourhood of the HopfA
2 curve. We

rescale Â = L̂ 1/2Ã, B̂ = L̂ 1/2B̃ and introduce two time scales {t̃1, t̃2}= {L̂ 1/2,L̂ }t̂.

Then, motivated by (3.56a), we set T̂ =−405/8π4 + L̂ T̃ and expand

Ã = Ã0 + L̂
1/2Ã1 + L̂ Ã2 + · · · , B̃ = B̃0 + L̂

1/2B̃1 + L̂ B̃2 + · · · . (3.57)

Under the rescalings and expansions, (3.54) becomes a succession of amplitude equa-

tions at increasing orders in L̂ 1/2. At O(1), we have 15Ã0 = 2πB̃0 and 15Ã0t̃1 =

2πB̃0t̃1 , which gives B̃0 = 15Ã0/(2π).

At O(L̂ 1/2), we have

4π
(

πÃ0B̃0 +15B̃1 + B̃0t̃1

)

= 5
(

15πÃ2
0 +90Ã1 +4Ã0t̃1

)

, (3.58a)

3
(

60Ã0 +4πB̃0 +300Ã1t̃1 +45Ã0t̃1t̃1

)

= 10π
(

12B̃1t̃1 + B̃0t̃1t̃1

)

, (3.58b)

which gives

B̃1 =
9πÃ2

0 +90Ã1 −2Ã0t̃1

12π
, Ã0t̃1t̃1 =−27

8
Ã0 +

9
4

πÃ0Ã0t̃1 . (3.59a,b)
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At O(L̂ ), we have

4πÃ0
(

20π3
T̃ −675Ã1 +18πB̃1 −9Ã0t̃1

)

=

3
(

15π2Ã3
0 +2700Ã2 −24π2Ã1B̃0 −360πB̃2 +120Ã0t̃2 −24πB̃0t̃2

+120Ã1t̃1 −24πB̃1t̃1 + Ã0t̃1t̃1

)

, (3.60a)

π
(

9Ã2
0 +10

(

12B̃1t̃2 +12B̃2t̃1 +2B̃0t̃1t̃2 + B̃1t̃1t̃1

))

=

180Ã1 +12πB̃1 +900Ã1t̃2 +12Ã0t̃1 +900Ã2t̃1 +270Ã0t̃1t̃2

+135Ã1t̃1t̃1 +5Ã0t̃1t̃1t̃1 , (3.60b)

which gives

B̃2 =
(

−80π4
T̃ Ã0 −9π2Ã3

0 +1620πÃ0Ã1 +8100Ã2 −180Ã0t̃2 −60πÃ0Ã0t̃1

−180Ã1t̃1 +15Ã0t̃1t̃1

)

/(1080π), (3.61a)

Ã0t̃1t̃2 =
9πÃ2

0

(

35−34πÃ0t̃1

)

5120
+

9πÃ0
(

Ã0t̃2 + Ã1t̃1

)

8

+
Ã0t̃1

(

99−128π4T̃ −42πÃ0t̃1

)

2304
− 9Ã1

(

3−2πÃ0t̃1

)

16
− Ã1t̃1t̃1

2
. (3.61b)

Setting θ(τ) = Ã0(t̃1, t̃2)+L̂ 1/2Ã1(t̃1, t̃2), with t̃1 = τ and t̃2 = L̂ 1/2τ , from (3.59b,

3.61b), we have, with error O(L̂ ),

θττ +
27
8

θ − 9π

4
θθτ = L̂

1/2

(

63π

29 θ 2 +

(

99−128π4T̃
)

2732 θτ −
153π2

285
θ 2θτ −

7π

263
θ 2

τ

)

.

(3.62)

The leading part of (3.62),

θττ +
27
8

θ − 9π

4
θθτ = 0, (3.63)

is a Liénard equation, which has the trivial solution θτ = 3/2π . The substitution

η(θ) = θτ leads to

ηηθ +
27
8

θ − 9π

4
θη = 0, (3.64)
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Figure 3.7: The phase portrait of (3.63). The closed orbits (moving inwards) are from
(3.65) with C = 1, 0.5, 0.3 and 0.2. The open orbits (upwards) are from (3.65) with
C = 1, 0.5, 0.3, 0.2 and -0.2. The dashed line is η = 3/2π .

which is an Abel equation of the second kind and has solution

θ 2 − 8
9π

(

η +
3

2π
ln

∣

∣

∣

∣

η − 3
2π

∣

∣

∣

∣

)

=C, (3.65)

with integral constant C. Since θ = θ(τ), we use η = η(τ) in the following. The

solution (3.65) represents a closed orbit and an open orbit for C ≥ 4ln(2π/3)/3π2

(≈ 0.0999) and an open orbit for C < 4ln(2π/3)/3π2 (see figure 3.7).

A Mel’nikov analysis (Appendix 3.C) reveals how the forcing terms on the right-

hand-side of (3.62) imply stability on particular orbits for different values of T̃ . We

confirm numerical evidence that the Hopf2 bifurcation is supercritical and show that a

stable limit cycle grows to large amplitude as T̃ → 9/160π4 from above. Thus for

9L̂

160π4 < T̂ +
405
8π4 <

99L̂

128π4 , (L̂ ≪ 1) (3.66)

a region indicated in Figure 3.6(c), oscillations are approximated by members of the

family of closed orbits shown in Figure 3.7. As the oscillations grow in amplitude,

they take on a pronounced “sawtooth” structure, with h(0.25, t) ≈ 1+L 1/2θ rising

linearly with time (along θτ = 3/2π), then falling abruptly before rising linearly again.

Correspondingly the downstream constriction near x = 0.75 opens rapidly but closes

slowly. We illustrate this behaviour in more detail below through comparison with
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PDE simulations. For the sawtooth oscillations we have approximately

B =
15R

2π
A. (3.67)

In this case from (3.48) the time-averaged h(0,25, t) and h(0.75, t) are simplified as

h(0.25, t) = 1+

(

1+
15
4

R

)

A, (3.68)

h(0.75, t) = 1−
(

1+
45
4

R

)

A, (3.69)

which means that if A < 0 (A > 0) the time-averaged h−1 over one period is negative

(positive) at x = 0.25 and positive (negative) at x = 0.75, and the size of the latter is

larger than that of the former by 7.5R|A|. Once parameters R, T and L are given, A

can be calculated from (3.44). These asymmetries can be observed qualitatively in Fig-

ure 3.8(a) (h(0.75, t)> 1 > h(0.25, t)) and Figure 3.10(a) (h(0.75, t)> 1 ≈ h(0.25, t)),

suggesting that A < 0.

3.5 Testing the asymptotic predictions

We now return to the full PDEs (1.26, 1.27) to validate the predictions of the linear

and weakly nonlinear analysis (§3.5.1). We then undertake a more stringent test of the

one-dimensional model by presenting some simulations of the full two-dimensional

Navier–Stokes problem (§3.5.2). In the former case, discrepancies may arise because

the parameters R, T and L are not sufficiently close to zero; in the latter case, we

cannot expect quantitative agreements with the one-dimensional model as the one-

dimensional model is derived on the basis of some ad hoc assumptions.

3.5.1 One-dimensional simulations

Using the method given in §2.E, we perform numerical simulations of the one-dimensional

model (1.26, 1.27) for parameter values near the Hopf2 and TC2 bifurcation points, as

indicated by the crosses in Figure 3.1(a). We again write T = T20+T̂ R2, fix R = 0.01

and L = 0.01 and use the initial condition h = 1+Ainit sin2πx with Ainit = 0.01.

Figure 3.8 shows, for T̂ = −0.7 and −0.75 (the two crosses near UpperL in Fig-

ure 3.1(a) are almost indistinguishable), that a mode-2 oscillatory instability arises
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Figure 3.8: Simulations of the one-dimensional model (1.26, 1.27) for R = 0.01 and
L = 0.01. (a) The time trace of membrane displacements at x = 0.25 and x = 0.75 for
T̂ = −0.7; the out-of-phase motion is characteristic of a mode-2 oscillation. (b) The
final limit cycle represented by h(0.25, t)− 1 scaled by L 1/2 and its time derivative
scaled by L for T̂ =−0.7 (solid) and for T̂ =−0.75 (dashed).
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from the uniform steady state as expected, to yield a sustained mode-2 sawtooth os-

cillation. The oscillation shown in Figure 3.8(a, b) has period of about 40, which is

close to the predicted period 37 of the neutral oscillation at the nearby Hopf bifurca-

tion point (see (3.11)). Slightly decreasing T , we see period doubling in Figure 3.8(b),

which agrees qualitatively with the prediction from the fourth-order amplitude equation

(3.54) (see Figure 3.6(c)). For these parameter values, L̂ = 100 and period-doubling is

predicted for T̂ ≈ −0.6236 via asymptotics (Figure 3.6(c)), whereas the PDE results

indicate that it lies in the interval (−0.75,−0.7).

Figure 3.9 shows simulations for parameter values near TC2 and Hopflower (see the

crosses on Figure 3.1(a)). For T̂ = 5, linear stability analysis suggests that the uniform

steady state should be destabilized by divergent instability (see Figure 3.5, 3.6(a)),

which is confirmed by the PDE simulation shown in Figure 3.9(a). The simulation

predicts that the uniform steady state finally goes to a mode-2 steady state. In contrast,

for T̂ = 6.4 in Figure 3.9(b), the uniform state is divergently unstable before going

to a small-amplitude oscillation about the mode-2 steady state. Thus the simulations

provide evidence for the existence of Hopflower, placing it in the range 5 < T̂ < 6.4,

whereas the weakly nonlinear analysis predicts that it lies at T̂ ≈ 4.6343 for these

values of L and R (see (3.81)).

3.5.2 Two-dimensional Simulations

In the two-dimensional numerical simulations, we fix L∗
1 = 5, L∗ = 10, L∗

2 = 100 (so

that L = 0.1), and R = 0.01. These parameters comfortably satisfy the constraints

given in §3.1 for membrane stretching and bending effects to be weak. To investigate

the evolution of the system, as in Stewart et al. (2010a), we firstly slightly perturb the

linear external pressure supporting the uniform state, to get a steady state with a slightly

deformed membrane shape. Then we use the steady state as the initial condition for

the unsteady simulation. We undertook grid convergence studies in order to ensure that

predictions were accurate; in order to avoid a grid-scale instability in the downstream

segment, for the initial guess we used a coarse structured grid which was then refined

adaptively.

For these parameters, we find that a Hopf bifurcation (resembling Hopf2) is lo-

cated in the range 0.017 < T < 0.018, whereas the linear stability analysis of the one-

dimensional model predicts that Hopf2 lies at T ≈ 0.03004 for these values of R and

L (Figure 3.1(a)). Decreasing T , sawtooth oscillations are seen when T = 0.0167
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Figure 3.9: Simulations of the one-dimensional model (1.26, 1.27) for R = 0.01 and
L = 0.01. The time trace of the membrane displacements at x = 0.25 and x = 0.75 for
T̂ = 5 (a) and T̂ = 6.4 (b). The insets show the shape of the corresponding mode-2
steady solutions.
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Figure 3.10: two-dimensional simulations for R = 0.01 and L = 0.1. (a) The time
trace of the channel width at x = 0.25 and x = 0.75 for T = 0.0167. (b) The final limit
cycle for T = 0.0167, 0.0165, 0.0164 (with amplitude increasing as T falls). (c) The
time trace of the channel width at x = 0.25 and x = 0.75 for T = 0.0163.
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(Figure 3.10(a)). The accompanying video illustrates the structure of the internal flow

field, which show minimal evidence of flow separation or of disturbance propagating

into the downstream segment. The downstream constriction opens within 30% of the

total period. Figure 3.10(b) shows that the limit cycle becomes distorted as T de-

creases further; period doubling was not observed. Instead, as T is reduced to 0.0163,

the system goes to a mode-1 (inflated) steady state rather than a stable limit cycle

(Figure 3.10(c)). In this example, we can see a few transient sawtooth oscillations

increasing in amplitude and period, with “ringing” taking place when the tube opens

abruptly at its downstream end.

Figure 3.11 shows similar behaviour to Figure 3.9, but for T = 0.03 (resembling

the case of T̂ = 5) and T = 0.0315 (resembling the case of T̂ = 6.4), which suggests

that the analogue of Hopflower exists in the range 0.03 < T < 0.0315. We also find

a transcricritical bifurcation point resembling TC2 in the range 0.024 < T < 0.026,

whereas the linear stability analysis of the one-dimensional model predicts that TC2

lies at T ≈ 0.03071 for the value of R (Figure 3.1(a)).

3.6 Discussion

In this chapter, by exploring the one-dimensional model (1.26, 1.27) of an idealised

two-dimensional flexible-channel flow system, we have been able to understand in de-

tail the conditions leading to instability, and the role played by the downstream rigid

channel. We have explored the neighbourhood of an organising centre in parameter

space, in the hope that it presents a microcosm of the broader range of possible be-

haviour, while still being accessible to asymptotic analysis. The singular point we have

investigated is one at which the inviscid problem admits neutrally stable wave-like dis-

turbances; analogous bifurcation points were identified independently by Guneratne

& Pedley (2006) using a two-dimensional model based on interactive boundary-layer

theory. We have identified three important classes of behaviour: low-frequency tran-

siently growing oscillations (arising along the lower branch of the Hopf2 curve), that

are largely independent of L2 (see Figure 3.1(b, c)) but are driven by divergent instabil-

ities of nearby saddle points (for details see Chapter 2); a 1:1 resonance (Figure 3.2(b)),

mediated by L2, leading to an abrupt bend in the Hopf2 curve (see Figure 3.4(c), where

the lower branch of the Hopf2 curve joins the middle branch); and higher-frequency

(yet still slow) oscillations that induce a weak sloshing motion in the downstream rigid
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Figure 3.11: two-dimensional simulations for R = 0.01 and L = 0.1. The time trace
of the channel width at x = 0.25 and x = 0.75 for T = 0.03 (a) and 0.0315 (b). The
insets are the shape of the corresponding mode-2 steady solutions.
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tube, arising along the upper branch of the Hopf2 curve (see Figure 3.4(a)). The down-

stream sloshing couples two types of membrane deflection (3.43a): a two-humped

sin(2πx) disturbance, made slightly asymmetric by viscous and convective inertia ef-

fects; and a smaller-amplitude single-humped (1−cos(2πx)) mode. These modes have

similar frequency and the same wavelength, promoting their interaction. The resulting

oscillations arise at moderate Reynolds numbers (Figure 3.1(a)) and can saturate to

give stable limit cycles (Figure 3.6(d)).

By performing a three-parameter unfolding of a degenerate bifurcation, we have

derived a fourth-order amplitude equation (3.54), itself having two independent param-

eters, describing behaviour in a neighbourhood of the organising centre, which captures

the upper branch of the Hopf2 curve. We have not attempted to classify the full proper-

ties of (3.54), but instead have focussed on a few prominent features. First, in addition

to the primary Hopf instability of the uniform state, (3.54) predicts an additional Hopf

bifurcation of a non-uniform steady state (Hopflower in figures 3.5 and 3.6(a)). We

had previously seen an indication of such a bifurcation (see Figure 2.4), arising even

when L2 = 1, indicating that the behaviour we report need not be restricted to the limit

L2 ≫ 1 but nevertheless involves coupling with the downstream rigid channel. Sec-

ond, the oscillations arising from the uniform state develop a characteristic sawtooth

structure as they grow in amplitude (Figure 3.7), for which the constriction near the

downstream end of the membrane opens rapidly but closes slowly. We have validated

both of these asymptotic predictions by comparison with numerical simulations of the

full one-dimensional model (1.26, 1.27), as shown in figures 3.8 and 3.9.

In a much more stringent test of these predictions, we have also replicated this

behaviour using full two-dimensional Navier–Stokes simulations (Figure 3.10). This

provides reassuring justification for our detailed study of the one-dimensional model,

as well as demonstrating the robustness of its predictions in this regime of parame-

ter space. Because we are investigating small-amplitude low-frequency oscillations in

a slender domain, the internal axial velocity profile remains roughly parabolic with-

out undergoing flow reversal; these are conditions under which the one-dimensional

model might be expected to provide an effective approximation, even at moderately

high Reynolds numbers. However some predictions of the one-dimensional model

that are particularly sensitive to parameters, such as a period-doubling cascade (Fig-

ure 3.6(a) and 3.8(b)) may not be expected to be robust, particularly as amplitudes

grow and timescales fall. Further computational studies, in both two and three dimen-

sions and with a wider range of wall models, will therefore be needed to assess the
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wider relevance of the instability mechanisms identified here.

3.A Parametric expansions

3.A.1 Upper Branch

Upon substituting (3.3) and (3.4) into the linearised equations (2.1, 2.2), one homoge-

neous system and a series of inhomogeneous systems are recovered in succession.

At O(1), we obtain

Q′
0 = 0, (3.70a)

6H ′
0 −12Q′

0 +5T20H ′′′
0 = 0, (3.70b)

H0 = Q0 = 0, (x = 0), (3.70c)

H0 = 0, (12R1 +σ1)Q0 = 0, (x = 1). (3.70d)

At O(ε), we obtain

Q′
1 =−σ1H0, (3.71a)

6H ′
1 −12Q′

1 +5T20H ′′′
1 =−(180R1H0 −60R1Q0 −5σ1Q0), (3.71b)

H1 = Q1 = 0, (x = 0), (3.71c)

H1 = 0, (12R1 +σ1)Q1 =−(σ2Q0 +L2T20H ′′
0 ), (x = 1). (3.71d)

At O(ε2), we obtain

Q′
2 =−(σ2H0 +σ1H1), (3.72a)

6H ′
2 −12Q′

2 +5T20H ′′′
2 =−(180R1H1 −60R1Q1 −5σ2Q0 −5σ1Q1 +5T2H ′′′

0 ),

(3.72b)

H2 = Q2 = 0, (x = 0), (3.72c)

H2 = 0, (12R1 +σ1)Q2 =−(σ3Q0 +σ2Q1 +L2T20H ′′
1 ), (x = 1). (3.72d)

To solve these linear boundary value problems, we obtain the general solutions with

four undetermined coefficients; then we substitute the general solutions into boundary

conditions, which leads to a linear system of algebraic equations (homogeneous or in-

homogeneous) with four unknowns. The resultant algebraic system for (3.70) is under-
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determined and its solution exists unconditionally. For the inhomogeneous systems

(3.71, 3.72), we impose solvability conditions following the approach given in Chapter

2. The same method is used for the lower and middle branches in the following and the

weakly nonlinear analysis for the upper branch in §3.4.

3.A.2 Lower Branch

Upon substituting (3.3) and (3.16) into the linearised equations (2.1, 2.2), one homo-

geneous system and a series of inhomogeneous systems are recovered in succession.

At O(1), we obtain (3.70a, 3.70b, 3.70c) with

H0 = 0, σ1Q0 = 0, (x = 1). (3.73)

At O(ε), we obtain (3.71a, 3.71c) with

6H ′
1 −12Q′

1 +5T20H ′′′
1 = 5σ1Q0, (3.74a)

H1 = 0, σ1Q1 =−((12R2 +σ2)Q0 +L2T20H ′′
0 ), (x = 1). (3.74b)

At O(ε2), we obtain (3.72a, 3.72b, 3.72c) with

H2 = 0, σ1Q2 =−(σ3Q0 +(12R2 +σ2)Q1 +L2T20H ′′
1 ), (x = 1). (3.75)

At O(ε3), we obtain

Q′
3 =−(σ3H0 +σ2H1 +σ1H2), (3.76a)

6H ′
3 −12Q′

3 +5T20H ′′′
3 =−(180R2H1 −5σ3Q0 −60R2Q1 −5σ2Q1 −5σ1Q2 +5T2H ′′′

1 ),

(3.76b)

H3 = Q3 = 0, (x = 0), (3.76c)

H3 = 0, σ1Q3 =−(σ4Q0 +σ3Q1 +(12R2 +σ2)Q2 +L2T2H ′′
0 +L2T20H ′′

2 ), (x = 1).

(3.76d)

3.A.3 Middle Branch

Upon substituting (3.3) and (3.31) into the linearised equations (2.1, 2.2), one homoge-

neous system and a series of inhomogeneous systems are recovered in succession. At

O(1), we obtain (3.70a, 3.70b, 3.70c, 3.70d). At O(ε), we obtain (3.71a, 3.71b, 3.71c,
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3.71d). At O(ε2), we obtain (3.72a, 3.72c, 3.72d) and

6H ′
2 −12Q′

2 +5T20H ′′′
2 =−(180R1H1 −60R1Q1 −5σ2Q0 −5σ1Q1), (3.77)

At O(ε3), we obtain (3.76a, 3.76c) and

6H ′
3 −12Q′

3 +5T20H ′′′
3 =−(180R1H2 −60R1Q2 −5σ3Q0 −5σ2Q1 −5σ1Q2 +5T3H ′′′

0 ),

(3.78a)

H3 = 0, (12R1 +σ1)Q3 =−(σ4Q0 +σ3Q1 +σ2Q2 +L2T20H ′′
2 ), (x = 1).

(3.78b)

3.B Hopf bifurcation along the non-uniform branches

For the equilibrium point (Â−, B̂−), the eigenvalue σ̂ satisfies

24L̂ b
(

27
√

10−b
)

+48
(

5b
(

297
√

10−5b
)

+63(L̂ −3375)
)

σ̂

+10
(

2b
(

297
√

10−5b
)

+9(L̂ −9354)
)

σ̂2 +1116σ̂3 +33σ̂4 = 0, (3.79)

where b ≡
√

9315−8π4T̂ (≥ 0). If σ̂ = iω , for ω nonzero and real, then

ω2 = 2 ·32 ·5 ·7 ·1993− 4b
(

6264
√

10−97b
)

3
+2

√

34527219932 +
4b∆lower

3
,

(3.80)

when (b,L̂ ) lies on the oscillatory neutral curve Hopflower

L̂ =
33 ·5 ·7 ·62233−2b

(

33 ·7247
√

10−3032b
)

+31
√

36527219932 +12b∆lower

126
,

(3.81)

where ∆lower ≡−35 ·5·7 ·47 ·9833
√

10+2b
(

32 ·5 ·59 ·36061−4b
(

243513
√

10−391b
))

.

When b = 0, that is T̂ = 9315/8π4, the Hopflower curve merges with the SNA curve at

L̂ = 23 ·3 ·5 ·23 ·337, as seen in Figure 3.6(a), which suggests a fold-Hopf bifurcation.

At the fold-Hopf bifurcation point, the equilibrium has a zero eigenvalue and a pair of

purely imaginary eigenvalues σ̂ = ±2232 · 5 · 7 · 1993i. Figure 3.6(a) also shows that

the Hopflower curve lies along T̂ ≈ 4.5129 when L̂ ≪ 1.
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For the equilibrium point (Â+, B̂+), the eigenvalue σ̂ satisfies

−24L̂ b
(

27
√

10+b
)

−48
(

5b
(

297
√

10+5b
)

−63(L̂ −3375)
)

σ̂

−10
(

2b
(

297
√

10+5b
)

−9(L̂ −9354)
)

σ̂2 +1116σ̂3 +33σ̂4 = 0. (3.82)

From (3.82), the nonzero frequency ω satisfies

ω2 = 2 ·32 ·5 ·7 ·1993+
4b
(

6264
√

10+97b
)

3
∓2

√

34527219932 +
4b∆upper

3
,

(3.83)

on the oscillatory neutral curve Hopf1
upper/Hopf2

upper

L̂ =
33 ·5 ·7 ·62233+2b

(

33 ·7247
√

10+3032b
)

∓31
√

36527219932 +12b∆upper

126
,

(3.84)

where ∆upper ≡−35 ·5 ·7·47 ·9833
√

10+2b
(

32 ·5 ·59 ·36061−4b
(

243513
√

10−391b
))

.

The Hopf1
upper curve originates from a Takens–Bogdanov bifurcation point with dou-

ble zero eigenvalues located on the SNA curve when L̂ = 3375. The Hopf2
upper curve

smoothly connects to the Hopflower through the fold-Hopf bifurcation point. These

curves are shown in Figure 3.6(a).

3.C Mel’nikov analysis

The perturbed system (3.62) can be rewritten as (θτ ,ητ)
T = f (θ ,η)+ εg

(

θ ,η ,T̃
)

,

where ε = L̂ 1/2(≪ 1) and

f =

(

η ,
9π

4
θη − 27

8
θ

)T

, (3.85a)

g =

(

0,
63π

29 θ 2 +

(

99−128π4T̃
)

2732 η − 153π2

285
θ 2η − 7π

263
η2

)T

. (3.85b)

The unperturbed system, i.e. ε = 0, has a one-parameter family of periodic orbits
(

θC(τ),ηC(τ)
)

, C ∈ (4ln(2π/3)/3π2,∞) and corresponding period TC.

The Mel’nikov function (Holmes, 1980, Section 2.C) for the perturbed system
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along the cycle
(

θC(τ),ηC(τ)
)

of period TC of the unperturbed system is given by

M(C,T̃ ) =
∫ TC

0
exp

[

−
∫ τ

0
∇ ·f

(

θC(s),ηC(s)
)

ds

]

f
(

θC(τ),ηC(τ)
)

∧g
(

θC(τ),ηC(τ),T̃
)

dτ (3.86)

We evaluate the exponential part of the integrand in the Mel’nikov function, using

(3.63), as

exp

[

−
∫ τ

0
∇ ·f

(

θC(s),ηC(s)
)

ds

]

= exp

[

−9π

4

∫ τ

0
θC(s)ds

]

= exp

[

−2π
∫ τ

0

θC
ss

2πθC
s −3

ds

]

=
3−2πθτ(0)
3−2πθτ(τ)

=
3−2πη(0)
3−2πη(τ)

. (3.87)

The wedge product in the integrand is

f
(

θC(τ),ηC(τ)
)

∧g
(

θC(τ),ηC(τ),T̃
)

=η
(63π

29 θ 2 +

(

99−128π4T̃
)

2732 η

− 153π2

285
θ 2η − 7π

263
η2
)

. (3.88)

Then the condition of periodic orbits of the unperturbed system being preserved under

small perturbations, M(C,T̃ ) = 0, becomes

∫ TC

0

η
(

20η
(

−99+128π4T̃ +42πη
)

+81π(−35+34πη)θ 2
)

23040(−3+2πη)
dτ = 0. (3.89)

We denote the intersections of periodic orbits and θ = 0 as (0,ηC
1 ) and (0,ηC

2 ),

(0 < ηC
1 < 3/2π , ηC

2 < 0). Thus (3.89) gives, using (3.65),

∫ ηC
2

ηC
1

F1(η ,C)dη + T̃

∫ ηC
2

ηC
1

F2(η ,C)dη = 0, (3.90)
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where

F1 =
η
(

π(4η(375−274πη)+27Cπ(35−34πη))+36(35−34πη) ln
(

3
2π −η

))

2880(3−2πη)2
√

π(9Cπ +8η)+12ln
(

3
2π −η

)

,

(3.91a)

F2 =− 8π5η2

27(3−2πη)2
√

π(9Cπ +8η)+12ln
(

3
2π −η

)

. (3.91b)

As C → 4ln(2π/3)/3π2 and ηC
1,2 → 0, we have

ηC
1,2 ≈±

3
√

3π2C+4ln 3
2π

2
√

2π
, (3.92)

F1 ≈
11πη2

432
√

3
(

3π2C+4ln 3
2π

)

, F2 ≈− 8π5η2

243
√

3
(

3π2C+4ln 3
2π

)

. (3.93)

Thus, the condition (3.90) for small-amplitude orbits approximately is T̃ = 99/128π4(≈
0.0079), consistent with (3.56a).

For large C, numerical evaluation of the integrals in (3.90) is difficult. In this case,

the unperturbed closed orbit in Figure 3.7 can be divided into two parts, which approx-

imately are

ηupper =
3

2π
− exp

[

−3
4

π2 (C−θ 2)
]

, ηlower =−9
8

π
(

C−θ 2) . (3.94)

Thus (3.89) gives, using ηdτ = dθ ,

Iupper + Ilower = 0, (3.95)

with

Iupper =
∫ θ2

θ1

20ηupper
(

−99+128π4T̃ +42πηupper
)

+81π(−35+34πηupper)θ
2

23040(−3+2πηupper)
dθ ,

(3.96)

Ilower =
∫ θ1

θ2

20ηlower
(

−99+128π4T̃ +42πηlower
)

+81π(−35+34πηlower)θ
2

23040(−3+2πηlower)
dθ .

(3.97)
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Figure 3.12: Relations between ηC
2 , C and T̃ in (3.90). The solid line is from (3.90)

as ηC
2 decreases from 0 to -4 and the dashed line is from (3.94) (a) and from (3.95) (b)

as C increases from 0.5 to 2. The dotted line is the asymptote (3.100). Eliminating C,
the relation between ηC

2 and T̃ is given in (c), in which the stars denote results from
the fourth-order system (3.54) with L̂ = 0.4.
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Figure 3.13: Contours from (3.65) (solid) and limit cycles from (3.62) (dashed) and
(3.54) (dotted) with C = 0.3, 0.5 and 0.7 (increasing outwards) and corresponding
respectively to T̃ = 0.0038, 0.0018 and 0.0010, where L̂ = 0.1 (a) and 0.4 (b).
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For the leading-order approximation, θ1,2 =∓
√

C, which gives

Iupper =
1

11520π5/2

(

√
Cπ
(

432+270π +459Cπ3 +1280π5
T̃

)

−280
√

3π3/2D+

[

1
2

√
3Cπ

]

+4
√

3exp

[

3Cπ2

4

]

(

9−160π4
T̃
)

erf

[

1
2

√
3Cπ

]

)

, (3.98)

Ilower =
1

4320π2
√

4+3Cπ2

(

3π
√

C (4+3Cπ2)
(

27+18Cπ2 +160π4
T̃
)

+2
√

3
(

27+54Cπ2 +160π4
T̃
)

ln

[

1+
1
2

π

(

3Cπ −
√

3
√

C (4+3Cπ2)

)]

)

,

(3.99)

where D+(x) is the Dawson integral exp[−x2]
∫ x

0 exp[t2]dt and erf(x) is the error func-

tion. For large C, the dominant part of (3.89) gives

T̃ =
9

160π4 (≈ 0.000577), (3.100)

(see Figure 3.12).

As ηC
1,2 increases from zero, we can use (3.90) to numerically evaluate T̃ for the ex-

istence of a limit cycle in the perturbed system (3.62), as seen in Figure 3.12. Because

T̃ falls as C increases, we infer that the Hopf bifurcation is supercritical. In Figure 3.13,

it is observed that limit cycles predicted from the Mel’nikov analysis agree well with

the fourth-order amplitude equations (3.54) and the second-order asymptotics (3.62).

Interestingly, the oscillation grows to large amplitude at finite T̃ , a prediction sup-

ported by solutions of the fourth-order system (3.54). When T̃ falls sufficiently below

9/160π4, the limit cycle of (3.54) is destroyed and the solution diverges; this can be

explained by assuming T̂ +405/8π4 ∼O(L̂ 1/2), in which case the term T̃ θτ in (3.62)

is promoted to leading order, turning the limit cycles in Figure 3.7 into divergent spi-

rals. Our simulations indicates that there exists a critical value of L̂ between 1 and 10,

above which the limit cycle diverges after a period doubling cascade but below which

no period doubling appears before the limit cycle diverges.



Chapter 4
Highly-collapsed solutions

As described in §2.4, the system (1.26, 1.27) can allow steady and unsteady large-

amplitude solutions. In this chapter we study the highly-collapsed configurations for

high Reynolds number and focus on the turning point near T = 0.2 of Figure 2.4(c). By

dividing the collapsible segment of the channel into three parts (see Figure 4.1), we first

obtain the leading-order approximation of the large-amplitude solutions by employing

the method of matched asymptotic expansions, similar to the work of Jensen (1998). In

this approximation the region II solution has its shape determined by an inertia/tension

balance (4.24) but viscous dissipation in the constriction (4.41e) still plays a dominant

role. Then from the leading-order approximations we deduce a third-order system

governing the temporal variations of the approximations. We also analyse the linear

stability of the steady solutions of the third-order system.

4.1 Transformation

Here we study (1.26, 1.27) with small R (≪ 1). We scale T and L2 by R using

T =
T

R
, L2 =

L

R
, (4.1)

where T , L = O(1). Thus, the system becomes

ht +qx = 0, (4.2a)

R

(

qt +
6
5

(

q2

h

)

x

)

= T hhxxx +12R
2
(

h− q

h2

)

, (4.2b)

107
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..
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x = x0

.

x = 1

.

x = 1 + L2
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p = 0
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I

.
II

.

III

.

h(x, t)

1

Figure 4.1: Schematic of large-amplitude solution of (1.26, 1.27).

with boundary conditions

h = 1, q = 1, (x = 0), (4.3a)

h = 1, T hxx =−(12R (q−1)+qt)L , (x = 1). (4.3b)

As illustrated in figure 4.1, we divide the interval [0,1] into three parts: (I) 0 ≤ x <

x0 and x0 − x = O(1), (II) x− x0 = O(R) and (III) x0 < x ≤ 1 and x− x0 = O(1). We

assume that h is lowest at x = x0(t). The overlap regions between I and II and between

II and III are R ≪ x0 − x ≪ 1 and R ≪ x− x0 ≪ 1, respectively.

In region I, we make expansions as

h = h10 +O(R), q = q10 +O(R), (4.4)

then the dominant part of (4.2) is

h10t +q10x = 0, (4.5a)

h10xxx = 0, (4.5b)

with boundary conditions

h10 = 1, q10 = 1, (x = 0). (4.6)

In region II, we enlarge h and stretch x using

h = RH(ξ , t), x = x0 +Rξ , (4.7)
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where H = O(1) and ξ = O(1), and write

q = Q(ξ , t). (4.8)

Thus (4.2) is transformed to

R
2Ht +Qξ = 0, (4.9a)

R
2Qt +

6
5

(

Q2

H

)

ξ

= T HHξ ξ ξ +12R

(

R
3H − q

H2

)

. (4.9b)

We expand using

H = H0 +O(R), Q = Q0 +O(R), (4.10)

then the dominant part of (4.9) is

Q0ξ = 0, (4.11a)

6
5

(

Q2
0

H0

)

ξ

= T H0H0ξ ξ ξ , (4.11b)

so Q0 = Q0(t). We note that (4.11b) admits solutions satisfying H0(ξ , t) = H0(−ξ , t).

In region III, we make expansions as

h = h30 +O(R), q = q30 +O(R), (4.12)

then the dominant part of (4.2) is

h30t +q30x = 0, (4.13a)

h30xxx = 0, (4.13b)

with boundary conditions

h30 = 1, T h30xx =−q30tL , (x = 1). (4.14)



CHAPTER 4. HIGHLY-COLLAPSED SOLUTIONS 110

4.2 Leading-order solutions

4.2.1 Region III

We first investigate solution in region III. From h = RH, we have hx = Hξ . Matching

h and hx in the overlap region between II and III, we have

lim
x→x+0

h30(x, t) = 0, (4.15)

lim
x→x+0

h30x(x, t) = lim
ξ→+∞

H0ξ (ξ , t). (4.16)

Similarly matching q in the overlap region between II and III, we have

lim
x→x+0

q30(x, t) = lim
ξ→+∞

Q0(ξ , t)≡ Q0(t). (4.17)

Thus, (4.13b), (4.14) and (4.15) have solution

h30 = (x− x0)

(

1
1− x0

+
L (1− x)Q1t

2T

)

, (x0 < x ≤ 1) (4.18)

where Q1(t) = q30(1, t), so that (4.16) becomes

lim
ξ→+∞

H0ξ (ξ , t) =
1

1− x0
+

L (1− x0)Q1t

2T
(4.19)

Expressed as the outer limit of the solution in region II, (4.18) and (4.19) give

H0 ∼
(

1
1− x0

+
L (1− x0)Q1t

2T

)

ξ , (4.20)

in the overlap region between II and III.

Integrating (4.13a) from x0 to 1, using

∫ 1

x0

h30tdx =
∂

∂ t

(

∫ 1

x0

h30dx

)

+ x0t lim
x→x+0

h30(x, t) =
∂

∂ t

(

∫ 1

x0

h30dx

)

, (4.21)

∫ 1

x0

q30xdx = q30(1, t)− lim
x→x+0

q30(x, t) = Q1(t)−Q0(t), (4.22)
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we have

Q0 −Q1 =

[

1− x0

2
+

L (1− x0)
3Q1t

12T

]

t

, (4.23)

4.2.2 Region II

Next, we consider the solution in region II. Integrating for ξ once, noting from (4.20)

that H0ξ ξ → 0 as ξ → ∞, (4.11b) gives

H0ξ ξ =
3Q2

0

5T H2
0

. (4.24)

Due to the symmetry of H0 about ξ = 0, then H0ξ (0, t) = 0, and we have

H2
0ξ =

6Q2
0

5T

(

1
H00

− 1
H0

)

, (4.25)

where H00(t) = H0(0, t). In the overlap region between II and III, from (4.20), we have

6Q2
0

5T H00
=

(

1
1− x0

+
L (1− x0)Q1t

2T

)2

, (4.26)

due to 1/H0 → 0 as ξ → ∞ in the overlap region.

Then writing H0 = H00H̃0(ξ̃ , t), ξ = (5T H3
00/6Q2

0)
1/2ξ̃ , we have

H̃2
0ξ̃

= 1− 1

H̃0
, H̃0(0, t) = 1; (4.27)

the implicit solution of (4.27) is

ξ̃ =±
(

√

H̃0(H̃0 −1)+ ln
(

√

H̃0 +
√

H̃0 −1
)

)

. (4.28)

It follows (for later reference) that

∫ +∞

−∞

dξ

H3
0

= I

√

5T

6Q2
0H3

00

, (4.29)
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where

I =
∫ +∞

−∞

dξ̃

H̃3
0

= 2
∫ +∞

0

dξ̃

H̃3
0

= 2
∫ +∞

1

ξ̃H̃0
dH̃0

H̃3
0

=
8
3
. (4.30)

4.2.3 Region I

Finally, we present the solution in region I. In the overlap region between I and II, we

have

lim
x→x−0

h10(x, t) = 0, (4.31)

lim
x→x−0

h10x(x, t) = lim
ξ→−∞

H0ξ =− lim
ξ→+∞

H0ξ =−
(

1
1− x0

+
L (1− x0)Q1t

2T

)

. (4.32)

Similarly matching q in overlap region between I and II, we have

lim
x→x−0

q10(x, t) = lim
ξ→−∞

Q0(ξ , t) = Q0(t). (4.33)

Thus, from (4.5b), (4.6), (4.31) and (4.32), we have

h10 =
(x− x0)

(

2T
(

−x+ x0 +2xx0 − x2
0

)

+L x(−1+ x0)
2x0Q1t

)

2T (−1+ x0)x
2
0

. (4.34)

Integrating (4.5a) from 0 to x0, using

∫ x0

0
h10tdx =

∂

∂ t

(

∫ x0

0
h10dx

)

− x0t lim
x→x−0

h10(x, t) =
∂

∂ t

(

∫ x0

0
h10dx

)

, (4.35)

∫ x0

0
q10xdx = lim

x→x−0
q10(x, t)−q10(0, t) = Q0(t)−1, (4.36)

we have

1−Q0 =

[

(2− x0)x0

6(1− x0)
+

L (1− x0)x
2
0Q1t

12T

]

t

. (4.37)

Thus we have two mass conservation conditions (4.23, 4.37) and the matching con-

dition (4.26) for the four unknowns Q0, Q1, x0, H00. One further condition is needed

to close the system.



CHAPTER 4. HIGHLY-COLLAPSED SOLUTIONS 113

4.3 Energy balance

The energy budget (1.32) for the flow in 0 ≤ x ≤ 1+L2 can be written as

K +E = F +P −D , (4.38)

where

K =
3
5

∂

∂ t

(

∫ 1

0

q2

h
dx+q(1, t)2L2

)

, (4.39a)

F =
18
25

(1−q(1, t)3), (4.39b)

P =
6
5

p(0, t), (4.39c)

E =
6
5

∫ 1

0
ht pdx, (4.39d)

D =
72R

5

(

∫ 1

0

q2

h3 dx+q(1, t)2L2

)

+
3

25

∫ 1

0

q2qx

h2 dx. (4.39e)

with

p = 12(L2 +1− x)R−T hxx, (0 < x < 1). (4.40)

The dominant contributions to energy balance at order O(1/R) are

K ≈ 3L

5R

(

q(1, t)2)

t
≈ 3L

5R

(

Q2
1

)

t
, (4.41a)

F ≈ 0, (4.41b)

P ≈−6T

5R
hxx(0, t)≈−6T

5R
h10xx(0, t)

=−6T

5R

(

2(−1+2x0)

(−1+ x0)x
2
0

+
L (−1+ x0)Q1t

T x0

)

, (4.41c)

E ≈ 3T

5R

(

∫

I+III
h2

xdx

)

t

=
3T

5R

(

4−7x0 +4x2
0

3(1− x0)2x0
− L (1−2x0)Q1t

3T
+

L 2(1− x0)
2Q2

1t

12T 2

)

t

, (4.41d)

D ≈ 72R

5

∫

II

q2

h3 dx ≈ 72Q2
0

5R

∫ +∞

−∞

dξ

H3
0

=
192
5R

√

5T Q2
0

6H3
00

. (4.41e)
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Thus, the energy budget gives

[

L Q2
1 +T

(

4−7x0 +4x2
0

3(1− x0)2x0
− L (1−2x0)Q1t

3T
+

L 2(1− x0)
2Q2

1t

12T 2

)]

t

+2T

(

2(1−2x0)

(1− x0)x
2
0

− L (1− x0)Q1t

T x0

)

+64

√

5T Q2
0

6H3
00

= 0. (4.42)

Equations (4.23), (4.26), (4.37) and (4.42) constitute a system for Q1(t), Q0(t),

x0(t) and H00(t). Once the system is solved, (4.18) and (4.34) can be used as asymp-

totic solutions of (1.26) and (1.27).

4.4 Steady solutions

For the steady case, the system gives

Q1 = Q0 = 1, (4.43a)

H00 =
6(1− x0)

2

5T
, (4.43b)

1−2x0

x2
0

+
100T

9(1− x0)2 = 0 (4.43c)

and the asymptotic solutions of (1.26, 1.27) are

q = 1, (4.44a)

h =















(x− x0)(x− x0 −2xx0 + x2
0)

(1− x0)x
2
0

, 0 ≤ x < x0,

x− x0

1− x0
, x0 < x ≤ 1.

(4.44b)

It suggests that the steady solution with one sharp constriction is only determined

asymptotically by T (= RT ).

From Figure 4.2, we can see good agreement between asymptotic and numerical

steady solutions for small R. From (4.43c), we derive that 1/2 < x0 < 1 due to T > 0,

and find that two steady solutions coalesce when

T =
9(5

√
5−11)

200
= TSN ≈ 0.0081. (4.45)
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Figure 4.2: Position of collapsed point of highly-collapsed steady solutions of (1.26,
1.27) vs. T for R = 0.02 (a) and 0.001 (b). Solid lines represent numerical results
directly from (1.26, 1.27) while dashed lines represent asymptotic results from (4.43c).

In this case, we have

x0 =

√
5−1
2

, (4.46)

H00 =
40(3

√
5−7)

3(11−5
√

5)
≈ 21.5738. (4.47)

The coalescence suggests a saddle-node bifurcation: two steady solutions (lower-branch

and upper-branch) coexist when T < TSN, and no steady solution exists when T >

TSN.

It is easily shown that h in (4.44b) represents two types of membrane shape: mode

1 (without upstream bulge) and mode 2 (with upstream bulge). We note that the mode

1 solution transforms to the mode 2 solution as x0 increases through 2/3 with T =

0.0075, rather than through (
√

5−1)/2 with the saddle-node point T = TSN.

4.5 Linear stability of steady solutions

In the following, we study the linear stability of steady solutions (4.43) of the dy-

namical system (4.23), (4.26), (4.37) and (4.42). We add some small time-dependent
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perturbation on the steady solution

Q1 = 1+ εQ11(t)+ · · · , (4.48a)

Q0 = 1+ εQ01(t)+ · · · , (4.48b)

x0 = x00 + εx01(t)+ · · · , (4.48c)

H00 = H000 + εH001(t)+ · · · , (4.48d)

where ε is a small quantity. Upon substituting (4.48) into (4.23), (4.26), (4.37) and

(4.42), we obtain two systems of equations at O(1) and O(ε). The system at O(1) is

(4.43) as expected and therefore 1/2 < x00 < 1. The system at O(ε) is

0 = 6(2Q01 + x01t)−12Q11 −
L (1− x00)

3Q11tt

T
, (4.49a)

0 = 12T (1− x00)
2Q01 +2T (2− (2− x00)x00)x01t +L (1− x00)

3x2
00Q11tt , (4.49b)

0 = 6(1− x00)
3(H001 −2H000Q01)+10H2

000T x01 +5H2
000L (1− x00)

3Q11t , (4.49c)

0 = 48
√

30

√

T

H3
000

(1− x00)
3x3

00H001 −H000

(

32
√

30

√

T

H3
000

(1− x00)
3x3

00Q01

−12T (1− x00)(2− x00(5−4x00))x01 − x00(1−2x00)
(

6L (1− x00)
3x00Q11t

+2T (2− (2− x00)x00)x01t +L (1− x00)
3x2

00Q11tt

)

)

(4.49d)

Using (4.43b, 4.43c), (4.49) is simplified to

9(−1+2x00)
(

−6(−1+ x00)
2Q11 +(1+2(−2+ x00)x00)x01t

)

+50L (−1+ x00)x
2
00(1+2(−1+ x00)x00)Q11tt = 0, (4.50a)

x00
(

300L (−1+ x00)x
2
00(−3+2x00)Q11t +9(−1+2x00)(8+7(−2+ x00)x00)x01t

+50L (−1+ x00)x
2
00(2+(−4+ x00)x00)Q11tt

)

= 108
(

(−1+ x00)
2x00(−1+2x00)Q11 +

(

1−2x00 + x3
00

)

x01
)

, (4.50b)
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with

H001 =
1

81(1−2x00)2(−1+ x00)
40x2

00

(

54(−1+2x00)((−1+ x00)Q11 + x01)

−300L (−1+ x00)x
2
00Q11t −27(−1+ x00)(−1+2x00)x01t −50L (−1+ x00)

2x2
00Q11tt

)

,

(4.51a)

Q01 = Q11 −
x01t

2
+

25L (−1+ x00)x
2
00Q11tt

27−54x00
. (4.51b)

Finally, we have a third-order ordinary differential equation governing perturbation

Q11(t)

108(−1+ x00)
2(−1+2x00)

(

−1+ x00 + x2
00

)

Q11

−27x00(1−2x00)
2(−1+ x00)(2+(−2+ x00)x00)Q11t

+50L x2
00(−2+ x00(5+4x00(2−3x00(3+(−3+ x00)x00))))Q11tt

+50L x3
00(−1+ x00)

2(−1+ x00(3+4(−1+ x00)x00))Q11ttt = 0. (4.52)

We write Q11 = eσt , then the eigenvalue σ satisfies the cubic equation

108(−1+ x00)
2(−1+2x00)

(

−1+ x00 + x2
00

)

−27x00(1−2x00)
2(−1+ x00)(2+(−2+ x00)x00)σ

+50L x2
00(−2+ x00(5+4x00(2−3x00(3+(−3+ x00)x00))))σ

2

+50L x3
00(−1+ x00)

2(−1+ x00(3+4(−1+ x00)x00))σ
3 = 0. (4.53)

Figure 4.3 shows eigenvalues from (4.53) as x00 increases from 0.55 to 0.8 for

L = 0.1, 0.06 and 0.03. At x00 = 0.55, there exist a positive real eigenvalue and a pair

of complex conjugate eigenvalues with positive real part. At x00 = 0.8, there exist a

negative and two positive real eigenvalues. For different L the progression of eigen-

values from x00 = 0.55 to 0.8 varies. We show three typical cases. When L = 0.1,

the positive real eigenvalue increases after decreases as x00 increases up to 0.8. As x00

increases from 0.55, the pair of complex conjugates eigenvalues split into two positive

real eigenvalues before one of them decreases through zero at xSN (= (
√

5− 1)/2).

When L = 0.06, first the pair of complex conjugate eigenvalues split into two positive

real eigenvalue. The small one decreases through zero at xSN. The large one coalesces

with the positive real eigenvalue, then spit into a pair of complex conjugate eigenvalues

before they become two positive real eigenvalues again. When L = 0.03, the positive
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Figure 4.3: The real and imaginary parts of eigenvalues from (4.53) with L = 0.1,
0.06 and 0.03 (from top to bottom). The stars in panel (a), (c) and (e) indicate turning
points where σ = 0.

real eigenvalue decrease through zero at xSN. The pair of complex conjugate eigen-

values have increasing real part before they split into two positive real eigenvalues.

Therefore, we conclude that the sharp steady solution (4.44) is unstable.

In Figure 4.4 we can see that the eigenvalues computed from (4.53) successfully

capture some low-frequency modes of instabilities directly calculated from (1.26, 1.27)

for both steady states. However, our asymptotic analysis for small R presented here

doesn’t have capability to capture the Hopf bifurcation near the turning point in Fig-

ure 2.4(c), which is maybe because R used there isn’t small enough.

In the limit of L ≪ 1 and L ≫ 1, we have asymptotic roots of (4.53): for L ≪ 1,

then there are three roots given by σ = −a/b and σ2 = −b/(L d)+ (a/b− c/d)/2,

where

a = 108(x00 −1)2(2x00 −1)
(

x2
00 + x00 −1

)

, (4.54a)

b =−27(1−2x00)
2(x00 −1)x00((x00 −2)x00 +2)≥ 0, (4.54b)

c = 50x2
00(x00(4x00(2−3x00((x00 −3)x00 +3))+5)−2)< 0, (4.54c)

d = 50(x00 −1)2x3
00(x00(4(x00 −1)x00 +3)−1)≥ 0; (4.54d)
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Figure 4.4: Highly collapsed steady solutions of (1.26, 1.27) and their eigenvalues of
linear stability analysis (lower-branch in left panel and upper-branch in right panel).
Here parameters are R = 0.005, T = 1.25 and L2 = 5 (second row) and 50 (third
row), that is T = 0.00625 and L = 0.025 (second row) and 0.25 (third row). Stars
represent eigenvalues directly computed from (1.26, 1.27) while circles represent three
asymptotic eigenvalues from (4.53).
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for L ≫ 1, the roots are given by σ = −c/d and σ2 = −a/(L c). Due to a = 0 at

x00 = (
√

5− 1)/2, we have −a/b > (<)0 and −a/c < (>)0 when x00 < (>)(
√

5−
1)/2. Therefore, for L ≪ 1, there is one positive eigenvalue and a pair of conjugate

complex eigenvalues for the lower-branch steady solution (Figure 4.4(c), x00 < (
√

5−
1)/2) and there is one negative eigenvalue and a pair of conjugate complex eigenvalues

for the upper-branch steady solution (Figure 4.4(d), x00 > (
√

5− 1)/2); for L ≫ 1,

there is one positive eigenvalue and a pair of conjugate complex eigenvalues for the

lower-branch steady solution (Figure 4.4(e), x00 < (
√

5 − 1)/2) and there are three

real eigenvalues (two positive and one negative) for the upper-branch steady solution

(Figure 4.4(f), x00 > (
√

5−1)/2). Figure 4.4 gives a good validation of the prediction.

4.6 Conclusion

In this chapter we have investigated solutions of (1.26, 1.27) that are severely collapsed

over a narrow region near the downstream end of the collapsible segment of the chan-

nel. We have split the flow into the three regions shown in Figure 4.1, using R as a

small parameter in constructing matched asymptotic expansions for each region. We

have assumed that the width of the collapsed region is O(R) and the minimum channel

width h at the most collapsed point is also O(R).

We have found that the leading-order shape of the membrane in region I, from the

upstream end to the narrow collapsed region, is parabolic (see (4.34)), and the leading-

order shape of the membrane in region III, from the collapsed region to the downstream

end, is linear (see (4.18)). Based on these leading-order solutions, we have constructed

a system, comprising two mass conservation conditions (4.23, 4.37), one matching

condition (4.26) and one energy budget (4.42), to describe the dynamics of the highly-

collapsed membrane. By analysing the steady version of the leading-order solutions,

we have found a saddle-node bifurcation at some T = TSN for given small R: no

steady solutions exist when T > TSN; If T > TSN two steady solutions coexist. The

asymptotic prediction has been validated by the numerical solutions of (1.26, 1.27), as

shown in Figure 4.2.

We also have examined the linear stabilities of the steady solutions and have found

that they are unstable in the framework of the asymptotic analysis we used. Although

we have not found slamming motion, identified in §2.4 and Stewart et al. (2010a), in

the asymptotic framework, the unstable steady solutions are compatible with the arising
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Figure 4.5: Steady solution of (1.26, 1.27) with three sharp constrictions for R = 0.001
and T = 0.3.

of slamming motion. In the future work, we can explore the dynamic of the system of

(4.23, 4.37, 4.26, 4.42) in detail to check whether it can give some signal of slamming

motion.

Here we only consider the solution with one sharp constriction. But the system

also has solutions with multiple sharp constrictions (steady solutions with multiple

sharp constrictions can be determined by shooting method easily, see Figure 4.5). Our

method used in this chapter maybe able to extend to the case of multiple sharp con-

strictions.



Chapter 5
Conclusion and future work

Overall, the focus of this thesis has been on instabilities of a collapsible-channel flow

with the upstream flux fixed, which is a canonical problem in physiological fluid me-

chanics to understand the origin of self-excited oscillations in the Starling Resistor.

Unlike the case of pressure-driven flow (e.g. Jensen & Heil, 2003), we stress the im-

portance of prescribing a flow flux at the upstream end of the channel. That is because

mode-2 oscillations in this system have been reported previously in numerical simula-

tions (Luo & Pedley, 1996) but there has been relatively little progress in determining

the mechanisms that might lead to the growth of instabilities. The work presented

in this thesis has proposed two instability mechanisms (see Chapter 2 and Chapter

3) which are probably related to the self-excited oscillations observed in numerical

simulations and experiments. For example, Bertram & Tscherry (2006) reported that

increasing the length of the downstream tube reduced the frequency of oscillations

but had little effect on the conditions for onset. This is mirrored in our model by

oscillations arising along the upper end of the upper branch of the Hopf2 curve (see

(3.12), (3.13)), with frequency of magnitude q∗∗0 /a
√

L∗∗L∗∗
2 and onset Reynolds num-

ber (3.12) that is independent of L∗∗
2 , suggesting a possible mechanistic connection

with their observations.

Although our theoretical predictions have good agreement with some experimental

results relating to self-excited oscillations, we can improve our model in future work

by including some physical factors neglected in our present work. The first factor that

should be added is wall inertia. As demonstrated in numerical simulations of Luo &

Pedley (1998), wall inertia has a negligible effect on the self-excited oscillations in

blood flow in arteries and veins, or experiments with water as the fluid; but for air flow

122
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Figure 5.1: Bifurcation diagrams for (a) b =−0.001 and (c) b = 0.001 relating to TC1

and (b) b =−0.001 and (d) b = 0.001 relating to TC2.

in the lung, or experiments with air as fluid, wall inertia is found to play an important

role in destabilizing the system.

In present work we adopt linear external pressure distribution (1.25) imposing on

the membrane to guarantee the existence of the uniform steady state of (1.26, 1.27):

h = 1 and q = 1. With a perturbed version of (1.25) as

pext(x) = 12R(L2 +1− x)+b, (5.1)

we redo weakly nonlinear analysis in §2.3, assuming b = O(ε2), and find that the tran-

scritical bifurcations TC1 and TC2 shown in Figure 2.4(b) are destroyed (Figure 5.1(a))

or replace by one (Figure 5.1(b), (d)) or two saddle-node bifurcations (Figure 5.1(c)).

The effect of other variations of external pressure can be examined in future work.

Although in the present work our focus is on the instabilities of collapsible-channel

flow, we also have observed sustaining large-amplitude ‘slamming’ oscillations re-

peatedly, which are initially predicted by Stewart et al. (2009) in one-dimensional
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pressure-driven model then and subsequently confirmed in two-dimensional Navier–

Stokes-based simulations. This near-singular behaviour is of particular interest be-

cause of its central role in the dynamics of the system, and its potential relevance to

the motion of vocal folds, which can repeatedly come into contact during phonation

(Thomson et al., 2007). During slamming oscillations the collapsible segment expe-

riences short periods of almost fully constriction near its downstream end. For some

parameter settings (such as in the nearly inviscid limit) the constriction can be very

sharp, which places great demands on any computational scheme and challenges the

assumptions of any long-wave length model. In particular, when the flow is evolving

very rapidly, the assumption that the velocity profile is proportional to the local volume

flux, as in (1.16), is likely to be insufficient; one possible improvement would be to in-

clude additional dependence on the local pressure gradient, as proposed by Bessems

et al. (2007).

Our one-dimensional model (1.26, 1.27) is independent of the length of the up-

stream rigid segment L1, and so are the instability mechanisms we propose. How-

ever, the corresponding two-dimensional model given in §1.4 needs L1 as input. If the

upstream rigid segment is longer than the downstream one (L1 > L2) in the pressure-

driven model the sloshing won’t take place (Jensen & Heil, 2003). Thus a question

arises: will the results we predict still be seen in the case when upstream pressure is

fixed but L1 is large? In the framework of linear stability analysis of one-dimensional

model, we can say yes by comparing boundary condition (3.6c) in Stewart et al. (2009)

with the second part of (2.2a). Further work needs to be done to check whether in

general prescribing the upstream flow rate is equivalent to a very large upstream length

in a flexible-tube system.
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