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Abstract 

 

Application of Reactive Melt Extrusion for Bioavailability Enhancement and 

Modified Drug Release 

Xu Liu, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisor:  Feng Zhang 

Hot melt extrusion (HME) has been widely applied to prepare amorphous solid dispersions 

(ASD) to improve the oral bioavailability of BCS Class II and Class IV compounds by increasing 

their kinetic solubility and dissolution rate. During the HME process, drug, polymer and other 

excipients are introduced into the barrel at different temperature setting and feed rates. The 

intermeshing screws mix and melt all materials using heat and an intense mechanical shearing 

force to achieve distributive and dispersive mixing and excellent homogeneity. The molecular 

level mixing allows close contact between API and excipients at high frequencies, which provide 

favorable environment to build drug-excipient intermolecular interactions to improve the 

physicochemical properties of ASD. 

Even though there are extensive reports about the pharmaceutical application of HME, 

most of the studies have been restricted to the manufacture of drug delivery systems where no 

clearly defined molecular level interaction are produced. Since the extrusion process is a high 

temperature and aggressive molecular level mixing process, lot of interactions would occur during 

the extrusion process, such as the ionic interaction, hydrogen bonding, pi-pi interaction, Van der 

Walls forces and lipophilic-lipophilic interactions. The rational design interactions between drug 

and excipients during the HME process would provide an inspiring strategy to overcome the 

drawback of HME, such as the thermal degradation of drug, poor physical stability of drug during 

the storage time or dissolution process. For ASD development, the polymer carriers play a critical 
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role in stabilizing the drug amorphous state. Polymer selection to prepare the ASDs is largely 

empirical. There is a need for rational polymer selection, enabling design of stable amorphous 

solid dispersion. Drug-polymer interactions have been observed to improve the physical stability 

of ASDs. Supramolecular synthon approach has been applied to design cocrystal with adjusting 

physicochemical properties. What’s more, supramolecular synthon approach has been exploited 

to design ASD with exceptional physical stability. Based on all those non-covalent interactions, it 

is possible to achieve the in-situ modification of solid forms of active pharmaceutical ingredients 

by mechanochemistry using extrusion process, without changing the pharmacology of the API.  

The major goal of this research is to explore rational design interaction between drug and 

excipients during the HME process to prepare salt, polyelectronic complexes, nanocomposites, 

cocrystal and coamorphous to improve the oral bioavailability of poorly water-soluble drugs and 

adjusting drug release rate. In Chapter 1, we reviewed the most commonly used methods for 

characterization of ASDs both in solid state or in aqueous media. The advantage and disadvantage 

of each method is briefly summarized. All methods are divided into three different categories: 

microscopic and surface analysis methods, thermal analysis methods and spectroscopic methods. 

The latest characterization techniques are also introduced. Last, we discuss how these methods are 

applied at different stages in the ASDs product development life cycle. In Chapter 2, we investigate 

the reaction between naproxen and meglumine at elevated temperature with different molar ratio and 

study the impact of this reaction on the physical stabilities and in vitro drug-release properties of melt-

extrudated naproxen amorphous solid dispersion. In Chapter 3, we use reactive melt extrusion to 

prepare sustained release lidocaine polyelectrolyte complex. In this study, the influence of the drug 

form (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, 

and dissolution properties of extrudates was investigated. In Chapter 4, we prepare exfoliated 

montmorillonite-Eudragit RS nanocomposites using reactive melt extrusion and investigate the 

influence of clay loading, clay types on clay-polymer interactions and drug release properties. The 

clays are used as the filler material with Eudragit RS at different concentration and theophylline was 
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the model compound. The resulting structure of the nanocomposites were characterized using TEM 

and XRPD. The hygroscopicity of the nanocomposites was investigated using DVS. The effect of the 

interfacial interaction between the polymer and the clay sheet, the clay loading as well as the clay type 

on the drug release behavior were further studied by the dissolution testing.  
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Chapter 1: Characterization of Amorphous Solid Dispersions1 

1.1    ABSTRACT 

The study of amorphous solid dispersions (ASDs) is currently one of the most 

exciting areas in pharmaceutics. Research has shown that ASDs offer unique advantages 

in improving the bioavailability of poorly water-soluble drugs over conventional delivery 

systems. The various formulations and manufacturing processes of ASDs affect their 

physicochemical stability, processability, and drug release characteristics. Therefore, the 

characterization of ASDs is critical in all stages of product development, including 

preformulation screening, formulation development, process scale-up, and commercial 

manufacturing. Proper characterization allows for the rational selection of formulation 

composition and manufacturing processing methods and allows for high-quality drug 

products. In this review, we present the most commonly used methods for characterizing 

the solid-state properties of ASDs, and we discuss their mechanisms, applications, 

advantages, and disadvantages. We also provide a brief overview of the methods used to 

characterize ASDs behavior in aqueous media. These methods are divided into three 

different categories: microscopic and surface analysis methods, thermal analysis methods, 

and spectroscopic methods. In addition, this article discusses a number of emerging 

techniques. Last, we discuss how these methods are applied at different stages in the ASDs 

product development life cycle. 

 
1  X. Liu, X. Feng, R.O. Williams, F. Zhang, Characterization of amorphous solid dispersions, Journal of 

Pharmaceutical Investigation 48(1) (2018) 19-41. Xu Liu is the major contribution to the research and draft 

of the article 
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1.2    INTRODUCTION 

Combinatory chemistry and high-throughput screening in drug discovery have 

resulted in a higher percentage of drug candidates that have poor aqueous solubility and 

poor dissolution characteristics. Up to 90% of the drugs under investigation and up to 40% 

of marketed drugs are poorly water soluble [1]. Oral delivery of these drug candidates is 

challenging. 

A number of strategies have been developed to enable oral delivery of these poorly 

water-soluble drugs. These strategies include the use of salts, prodrugs, cocrystals, self-

emulsifying formulations, and amorphous solid dispersions (ASDs) [2]. Among these 

methods, the use of ASDs is demonstrably the most promising approach to improve the 

dissolution characteristics and absorption of poorly water-soluble drugs [3]. 

The most common definition of ASD is “a molecular dispersion of one or more 

active ingredients in an inert carrier in the solid state prepared by the melting, solvent, or 

melt-solvent method” [4]. The improvement in bioavailability using ASD is attributed to a 

combination of thermodynamic and kinetic factors. 

In terms of thermodynamics, a significant increase in the dissolution rate and 

transient solubility of the API in an amorphous state occurs because the energy that would 

be required to disrupt the crystal lattice of crystalline drugs is not required to dissolve drugs 

in an amorphous state [5]. In terms of kinetics, the interactions between polymer and API 

molecules could delay or inhibit nucleation and crystal growth in the dissolution medium. 

As a result, the supersaturation of the drug could be maintained over an extended period of 

time to maximize drug absorption [6]. 

As more and more commercial ASD products enter the marketplace, ASD is 

becoming the preferred approach to improve the dissolution rate and apparent solubility of 

poorly water-soluble drugs. Due to the complex physicochemical properties of ASDs, 
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multifaceted analytical methods are needed to enable comprehensive characterization of 

the materials to help understand the relationship between the formulation and process 

variables and the in vivo performance of ASDs. 

In an ASD, all components are mixed on a molecular level. The challenges of ASD 

characterization arise from the desire to characterize the interaction between the drug and 

the polymer, phase separation during storage, the dissolution process, and physical stability 

prediction [7]. Many analytical techniques are now available to address these ASD 

characterization challenges. Fortunately, emerging sensitive technologies are providing 

more quantitative and qualitative information about the physicochemical properties of 

ASDs. 

A combination of characterization techniques are commonly used to characterize 

ASDs at different stages of product development. Several review articles simply focus on 

one particular technique in ASD characterization, so they do not offer a complete picture 

of ASD research [8-12]. In this paper, we offer a detailed discussion of the measuring 

principle, and we summarize the advantages and disadvantages of most classical methods. 

Last, we discuss the applications of different techniques to characterize ASDs at different 

product development stages. 

The characterization of ASDs in solid state can be performed using a wide variety 

of analytical techniques. There is no single superior method that can provide the full 

structural information of an ASD. The best approach is to apply a combination of 

techniques to achieve a comprehensive understanding of the solid-state properties of ASDs. 

Generally, ASD characterization methods can be divided into two major categories: 

methods that characterize ASDs in solid state, and methods that characterize the behavior 

of ASDs in aqueous media. 
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Table 1.1 shows the solid-state characterization methods. These methods can be 

classified based on their characterization level: the molecular level, the particulate level, 

and the bulk level. Molecular level methods characterize properties that can be detected 

between individual molecules. Particulate level methods characterize properties that can 

be detected through the analysis of particles. And, bulk level methods characterize 

properties that can be measured by using a relatively large amount of material [13]. 

Table 1.1: Classification of ASD characterization methods 

Molecular level Particulate level Bulk level 

FTIR 

Raman 

NIR 

SSNMR 

Fluorescence spectroscopy 

PXRD 

DSC 

MDSC 

TGA 

PLM 

SEM 

TEM 

XPS 

AFM 

Terahertz spectroscopy 

Dielectric spectroscopy 

Density 

Contact angle 

Flowability 

Karl Fischer titration 

 

Solution state characterization always includes not only the standard dissolution 

testing, which is covered by various regulatory guidance (e.g., USP, PhEur, JP), but also 

the solution-mediated phase transformation, recrystallization, and supersaturation that 

occur during the dissolution process. Characterizing the behavior of ASDs in aqueous 

media is the most challenging task in the study of ASDs. This paper focuses on solid-state 

characterization methods. However, a brief discussion of solution-state methods is also 

presented. Last, the conjunction method and new characterization techniques are also 

discussed. 
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1.3    METHODS USED TO CHARACTERIZE THE SOLID-STATE PROPERTIES OF ASDS 

In this review chapter, solid-state characterization methods are divided into three 

categories based on the mechanisms of analysis: (1) microscopic and surface analysis 

methods, (2) thermal analysis methods, and (3) spectroscopic methods. This section 

presents a detailed discussion of the methods in each category. 

1.3.1    Microscopic and surface analysis methods 

Microscopy is a powerful solid-state characterization technique. It is a versatile, 

rapid, and nondestructive process for analyzing small samples for a wide range of 

physicochemical properties, such as particle size, particle morphology, crystallinity, 

surface properties, and even dissolution behavior and thermal behavior [14]. In general, the 

microscopic and surface analysis methods employed in ASD characterization include 

polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), atomic force microscopy (AFM), and X-ray photoelectron 

spectroscopy (XPS). Table 1.2 summarizes the measurement time, sample status, 

application, advantages, and disadvantages of each technique.  
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Table 1.2: An overview of microscopic and surface analysis methods in ASD characterization.  (+) or (-) indicate whether the 

analytical technique is sample destructive or non-destructive, respectively. 

Analytical 

method 
Information Advantages Disadvantages 

Sample 

destructiveness 

Measurement 

time 

PLM 

(HSPLM) 

• Crystallinity (Birefringence), 

Amorphous, 

• Crystalline morphology & size 

• Polymorphic transitions 

• Crystallization route 

• High sensitive 

• Small sample size 

• Very little sample 

preparation 

• Easy to use 

• Semi-quantitative 

( - ) 

Min-sec 

SEM 

(EDS) 

• Particle morphology and size 

• Rapid measure surface crystal 

• Chemical distribution map 

(EDS) 

• High resolution 

• Small sample size 

• Require sample 

preparation (coating 

and vacuum setting) 

( - ) 

Min-hour 

TEM 

• Identify crystalline 

• Detect crystallinity degree 

• Drug-polymer miscibility 

• High resolution 

• Small sample size 

• Quantitative 

• Tedious sample 

preparation 

• Risk of electron 

beam damage for 

some samples 

( - ) 

Hours 

AFM 

• Surface topography 

• Phase separation 

• Drug-polymer miscibility 

• High resolution 

(nanoscopic) 

• Small sample size 

• Require sample 

preparation 

• (smooth sample 

surface) 

( - ) 

Hours 

XPS 
• Surface chemical composition 

• Drug-polymer interaction 

• High sensitive 

• Quantitative 

• Limited testing area 

(1µm) 

• Require sample 

preparation (high 

vacuum setting) 

( - ) 

Hours 
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1.3.1.1 Polarized light microscopy (PLM) and hot-stage polarized light microscopy 

(HSPLM) 

Among all the types of microscopy methods, PLM is one of the most useful for 

detecting small amounts of crystalline materials in ASDs. Solid forms can be distinguished 

by their optical properties when observed using plane polarized light and crossed 

polarizers, and this is especially true for crystalline and amorphous materials. 

Amorphous solids are isotropic, which means their molecules are oriented 

randomly with no long-range order. As a result, they have no double refraction, are 

nonbirefringent, and do not exhibit any interference colors when observed between crossed 

polarizers. However, most crystalline solids are anisotropic, which means their molecules 

are packed in a regular, long-range, three-dimensional order. Therefore, crystalline solids 

show interference colors or polarization colors, which allows for rapid detection based on 

birefringence. 

Telang et. al [15] used PLM to observe the onset of crystallization in ASDs with 

different formulations, and they found that PLM is a more sensitive tool than XRPD for 

investigating drug recrystallization in physical stability studies. Combined with other 

analytical approaches, PLM can be used to assess the kinetics of drug crystallization, 

polymorphic transitions, and crystallization in solid state or in aqueous media [16, 17]. 

Hot-stage polarized light microscopy (HSPLM) is another rapid and versatile 

method for observing the thermal behavior of samples using a polarized light microscope. 

In this method, the sample is heated in a furnace in which the heating or cooling rate can 

be accurately controlled. HSPLM is extensively applied in the initial formulation screening 

studies of ASDs. 
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During the process development of ASD, HSPLM is frequently applied to observe 

how the drugs interact with polymers in mixtures at elevated temperatures. Strong 

interactions (e.g., hydrogen bonding, ionic interaction) between the drug and excipients 

contributes to a lower drug melting point, improved stability of ASDs during storage, and 

enhanced dissolution performance [18]. During the heating process, the molten drug should 

be miscible with the polymer at a specific drug loading. During cooling, the drug should 

not recrystallize from the polymer–drug matrix.  

HSPLM is particularly useful to interpret or confirm the results acquired by 

differential scanning calorimetry (DSC), especially when overlapping events are observed 

on DSC thermal profiles. Liu et. al applied HSPLM to observe the in-situ formation of 

cocrystal and salt between drug and other excipients at elevated temperature [19, 20]. New 

crystalline phase was observed during the heating process, which was attributed to the 

reaction between the drug and excipients. The HSPLM results corresponded well with the 

DSC data. Although PLM is a powerful tool for characterizing ASD, it is not an infallible 

method for detecting birefringence to distinguish amorphous from crystalline materials. 

Some crystalline materials are isotropic, so they do not show birefringence or interference 

colors (and the reverse is true for anisotropic materials). In addition, it is difficult to use 

PLM to quantify the degree of crystallinity in a crystal or a mixture. In general, to fully 

characterize the crystalline state of a sample, PLM should be used in combination with 

other techniques such as X-ray diffraction or DSC. 

1.3.1.2 Scanning electron microscopy (SEM) and energy dispersive X-ray 

microanalysis (EDX) 

SEM is widely applied in the characterization of ASDs. SEM analysis uses a 

monochromatic electron beam to probe the surface and near-surface area of materials at a 
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higher magnification and resolution than a traditional light microscope. Compared to light 

microscopy, SEM has the following three major advantages: (1) an upper magnification of 

about 250,000X, (2) a large depth of field, and (3) a lateral spatial resolution of 3 nm or 

higher. 

SEM can be used to examine the effects of processing methods (e.g., spray drying, 

hot melt extrusion, electrospinning) on particle morphology [21-23]. It can also be used to 

observe changes in the morphology of the ASD sample after dissolution or a physical 

stability study [24, 25]. 

Energy dispersive X-ray microanalysis (EDX) is often combined with SEM to 

provide elemental information about the area probed by the electron beam. EDX analyzes 

the X-ray emission from the inner shells of atoms that have been ionized by the SEM beam. 

EDX analysis is ideal for the rapid and nondestructive elemental screening of samples. 

Figure 1.1 shows SEM–EDX mapping images of a pure drug sample and an ASD 

sample prepared by hot-melt extrusion (HME). A generally even distribution of chlorine 

(only present in the drug) is observed, and this is consistent with a homogeneous dispersion 

at the spatial resolution limit of this technique (i.e., several micrometers). 
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Figure 1.1: (a) SEM-EDX mapping images of a chlorine atom detected on pure drug 

particle. (b) SEM-EDX mapping images of a chlorine atom detected on an ASD prepared 

by HME. Adapted from reference [22]. 

1.3.1.3 Transmission electron microscopy (TEM) 

In addition to SEM, transmission electron microscopy (TEM) is a highly useful 

technique in the study of ASDs. It can produce both real-space images and electron 

diffraction patterns to identify crystalline drugs in ASDs [26]. Using TEM, Ricarte et al. 

[27] detected an overall 3% crystallinity in a spray-dried ASD based on hydroxypropyl 

methylcellulose acetate succinate (HPMCAS), which is below the practical lower detection 

limit of wide-angle X-ray scattering. When combined with EDX, TEM can be used to 

evaluate drug–polymer mixing status in ASD in the early stages of formulation and process 

development [28]. Figure 1.2 presents the results. In this study, the TEM micrograph 

reveals a continuous matrix without the definite boundary or localization of element within 
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the ASD. EDX line scan data show that the drug is homogeneously mixed with the polymer 

across the particle. 

 

 

Figure 1.2: (a) TEM image of the ASD. (b) EDX line scan of a particle. Red represents 

carbon, green is sulfur, and blue is chlorine. Only the drug contains sulfur and chlorine. 

Adapted from reference [28]. 

1.3.1.4 Atomic force microscopy (AFM) 

The main application of atomic force microscopy (AFM) in the study of ASDs is 

measuring the surface topography at sub-nanometer resolution. During AFM testing, a 

sharp probe tip (usually made of silicon (Si) or silicon nitride (Si3N4) located on the 

underside of a flexible cantilever raster scans over the sample surface. The detailed 

working mechanism of AFM is presented in these review articles [29, 30]. 
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Many characteristics of samples can be visualized directly using AFM, such as 

underlying molecular de-mixing mechanisms, mixture-specific separation rates, and bulk 

and surface evolution. These parameters are intrinsic and fundamental in the prediction of 

the long-term stability of an ASD [31]. Lamm et al. [32] used AFM to evaluate the phase 

behavior and morphology of solid dispersions consisting of copovidone and TPGS 1000 

prepared by hot-melt extrusion with various processing parameters and formulations. They 

concluded that AFM is a powerful technology for characterizing the effects of processing 

and composition on the phase behavior of the resulting extrudates. In summary, AFM is a 

robust method to study the phase behavior and molecular structure of ASDs, and it provides 

a novel analytical tool for the optimization of the ASD preparation process [33, 34]. 

1.3.1.5 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a surface analysis technique that can 

analyze the chemical composition of the surface of a substance based on atomic 

concentrations. The XPS spectrum is specific to the binding energies of most elements of 

interest in organic materials. The shift in the chemical bonding energy can be used to study 

drug and excipient interactions in ASDs. Specifically, XPS has excellent sensitivity in 

assessing the extent of protonation by measuring the shifts in the binding energy of selected 

atoms [35]. A discussion of the mechanism and basic theory of XPS analysis can be found 

in Lee and Flynn [36]. 

As XPS instruments become more readily available, more applications of XPS in 

ASD characterization have been published. Dahlberg et al. [37] used XPS to quantify the 

amount of drug present on the surface of ASDs prepared by spray drying and rotary 

evaporation. They found that the chemical surface composition directly influenced the 

wettability of the ASDs, which had a direct impact on dissolution performance and the 
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physical stability in the solid state. XPS offers a rapid screening tool for the selection of 

carrier and drug loading in the early development of ASDs. Song et al. [38, 39] applied 

XPS to investigate the acid–base interactions between the drug and excipient in ASDs. 

They used XPS to detect an increase in the binding energy of the basic nitrogen atoms in 

the drug, which indicated protonation of these nitrogen atoms. 

1.3.1.6 X-ray diffraction 

X-ray diffraction has been described as the gold standard in characterizing 

pharmaceutical materials in the solid state. It has shown great promise for the 

fingerprinting, quantification, and even the modeling of amorphous pharmaceutical 

systems [9]. X-ray diffraction is generally categorized into single-crystal diffraction and 

powder X-ray diffraction. 

Powder X-ray diffraction (PXRD) is more widely used than single-crystal 

diffraction for ASD solid characterization. It provides information on at least three 

important material attributes [40]. Table 1.3 summarizes the measurement time, sample 

status, application, advantages, and disadvantages of PXRD. 
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Table 1.3: A brief summary of PXRD in ASD characterization. (+) or (-) indicate whether the analytical technique is sample 

destructive or non-destructive, respectively. 

Analytical 

method 
Information Advantages Disadvantages 

Sample 

destructiveness 

Measurement time 

PXRD 

(scattering pair 

distribution 

function, PDF) 

- Polymorph screening, 

- Amorphous identification 

- Detect crystallinity degree 

- Recrystallization kinetic 

- Drug-polymer miscibility 

(PDF) 

- Microstructure of ASD (PDF) 

• Small sample 

size 

• Very little 

sample 

preparation 

• Easy to use 

• Qualitative 

and 

quantitative 

• Less sensitive 

(>5% 

crystallinity) 

• No chemical 

structure 

information 

( - ) 

   Mins 

 

  



 15 

 

To understand the basic theory and working mechanism of powder X-ray 

diffraction, the readers are recommended to read these articles written by Dinnebier and 

Gilmore [41, 42]. 

The first use of PXRD is to examine changes in the crystallinity and polymorphism 

of ASDs after manufacture or during stability studies. Because PXRD operates on bulk 

powders, it is very useful for the overall quantitative analysis of the crystalline content of 

a batch of ASD. A number of examples for the application of PXRD in the analysis of 

residual crystalline content in ASDs have been reported [43, 44]. 

Amorphization generally results in broad, diffuse scattering signals, while the 

signals for crystal materials are sharp Bragg reflections. For a mixture of amorphous and 

crystalline materials, the degree of crystallinity is the ratio of integrated crystalline intensity 

to the total integrated amorphous and crystalline intensity. The typical detection limits for 

crystalline content are in the 1–5% (w/w) range, depending on the reflection methods [7]. 

The second use of PXRD in the study of ASDs is the direct characterization of 

miscibility and amorphous structure with the total scattering pair distribution function 

(PDF). The PDF is obtained through an inverse Fourier transform of the reduced total 

scattering structure function F(Q), which is the subtracted, corrected, and normalized 

background diffracted intensity that includes both Bragg and diffuse scattering. The 

detailed theory and general application of PDF in PXRD are presented in [45, 46]. 

Nollenberger et al. [47] applied PDF to show that subtle changes in the polymer 

structure at the molecular level have a significant impact on the drug release profile of 

ASDs. Newman et al. [48] developed a method that uses PXRD coupled with PDF to assess 

the miscibility between amorphous drugs and polymers. They found that the PDF method 

is more sensitive than DSC for detecting phase separation. However, due to the inherent 
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limitations of conventional copper-anode X-ray laboratory sources, the PDF analysis data 

may not be reliable and may generate ambiguous and potentially incorrect results [49, 50]. 

The development of high-energy X-rays produced by synchrotron radiation 

allowed the use of short wavelengths to achieve a higher detection range. Araujo et al[40] 

used synchrotron X-ray diffraction and PDF to investigate the local chemical structure and 

ionic drug–polymer interactions in a lapatinib ASD prepared with hypromellose phthalate 

(HPMCP) and hypromellose (HPMC-E3). Based on the total PDF results, they found that 

the drug did not pack in the same way in these two formulations due to the different 

interactions between the drug and polymer carriers. 

Recent developments in PXRD can also provide useful information under non-

ambient conditions, such as PXRD equipped with variable temperature and humidity 

control, which provides new insights into the crystallization kinetics of amorphous drugs 

in ASDs [51]. Furthermore, when PXRD is used in conjunction with other techniques, such 

as second-harmonic generation microscopy, the sensitivity of PXRD for detecting drug 

crystallinity increases dramatically [52]. 

1.3.2    Thermal analysis methods 

The thermal analysis method is an indispensable and well-established routine tool 

for the characterization of ASD. The basic process of thermal analysis is measuring a 

material’s response (e.g., changes in energy, temperature, mass) to a change in the 

temperature of the sample. Thermal analysis methods are normally used to monitor 

endothermic processes (e.g., glass transition, melting, solid-solid phase transition) and 

exothermic processes (e.g., crystallization, chemical degradation). Commonly used 

thermal analysis methods include thermogravimetric analysis (TGA), differential scanning 

calorimetry (DSC), modulated differential scanning calorimetry (MDSC) and micro-nano 
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thermal analysis. Table 1.4 summarizes the measurement time, sample status, application, 

advantages, and disadvantages of each technique. 
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Table 1.4: A brief summary of TGA and DSC (MDSC) in ASD characterization. (+) or (-) indicates whether the analytical 

technique is sample destructive or nondestructive, respectively.  

Analytical 

method 
Information Advantages Disadvantages 

Sample 

destructiveness 

Measurement 

time 

TGA 

• Thermal stability 

• Moisture content 

• Solvent evaporation rate 

• Small sample 

size 

• Very little 

sample 

preparation 

• Easy to use 

• Difficult to identify 

chemical composition 

• Sample destroyed 

during analysis 

( + ) 

Min-hour 

DSC 

(MDSC) 

• Melting point 

• Glass transition temperature (Tg) 

• Identify crystalline and amorphous 

state 

• Detect crystallinity degree 

• Heat capacity 

• Drug crystallization tendency 

• Drug–polymer miscibility 

• Molecular mobility 

• Drug–drug and drug–polymer 

interaction 

 

• Small sample 

size 

• Very little 

sample 

preparation 

• Easy to use 

• Qualitative and 

quantitative 

• Sample destroyed 

during analysis 

• No information on the 

nature of the thermal 

events 

• Unable to resolve 

overlapping thermal 

events at the same 

time 

 

( + ) 

Min-hour 

Micro-

nano-
• Phase separation 

• Small sample 

size 
• Time consuming (-) 
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thermal 

analysis 
• Drug distribution uniformity 

assessment 

• Very little 

sample 

preparation 

• Identify phase 

chemical 

compositions 

based on 

transition 

temperature 

• Potential confusion of 

glass transition with 

other softening 

response 

 

Hour-day 

  

Table 1.4: continued. 
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1.3.2.1 Thermogravimetric analysis (TGA) 

TGA is one of the oldest thermal analytical methods. It has been used extensively 

in material characterization. This method involves monitoring the weight of a sample in a 

chosen atmosphere (air or nitrogen) as a function of temperature. In ASD characterization, 

TGA is routinely used to determine the thermal stability and volatile components analysis 

of the drug and polymer. This information can be used to define the temperature window 

in hot-melt extrusion to avoid thermal degradation [19]. TGA has also been used to study 

the evaporation profile of feed solutions for spray drying. TGA analysis has revealed that 

the drying kinetics of the binary solvent has a significant impact on the surface chemistry 

and particle morphology of spray-dried ASDs [53, 54]. TGA is commonly combined with 

other spectroscopic detection methods, such as IR or gas chromatography, to allow for the 

chemical identification of volatile materials released from samples. 

1.3.2.2 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) and modulated differential scanning 

calorimetry (MDSC) may be the most widely used methods in ASD characterization. In 

these techniques, the energy input associated with heating materials can be measured to 

detect thermal transitions such as the melting point, glass transition, polymorphic form 

transformation, and recrystallization. The theoretical background of DSC and MDSC can 

be found in [55]. 

Although DSC is an invaluable analytical tool, DSC has certain limitations when 

thermal transitions are weak or overlap. MDSC was designed to address these limitations. 

MDSC can separate overlapping thermal events and has higher sensitivity in measuring 

heat capacity. MDSC has been used to measure the crystallization tendency of drugs, 
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miscibility between the drug and polymer, glass transition, crystallinity/crystallization 

(e.g., crystal growth rate, degree of crystallinity), and molecular mobility (e.g., structural 

relaxation, viscosity) [8].  

1.3.2.2.1 Crystallization tendency 

Discerning the crystallization tendency of a drug is important in the development 

of an ASD. The crystallization tendency of an ASD is determined by the crystallization 

tendency of the drug [56-58]. DSC can be used to measure the drug crystallization 

tendency. Taylor’s group developed a simple DSC method to assess the crystallization 

tendency of organic molecules by using a heating–cooling–heating cycle [59]. Based on 

the melting and recrystallization behavior during the temperature cycle, the drug 

crystallization tendency is classified as Class I (strong), Class II (middle) and Class III 

(weak). Other DSC methods used to measure crystallization tendency include the reduced 

glass transition temperature rule (Trg, 2/3 rule) [60] and the fragility parameter [61]. In 

another case, Feng et al. [62] utilized an improved kinetic equation to evaluate the 

recrystallization process of melt-extruded ASD by fitting the DSC data into a mathematical 

model using a multivariate regression method. The recrystallization rate constant was 

assessed under accelerated conditions to predict the long-term crystallization tendency of 

the ASD.  

1.3.2.2.2 Miscibility between drug and polymer 

DSC is commonly used as a “rule of thumb” technique to evaluate the miscibility 

between the drug and polymer. Good miscibility is a prerequisite to form a physically stable 

ASD. A miscible ASD is defined as an ASD that consists of a single chemically 

homogeneous phase in which all components are mixed at the molecular level [8]. Since 
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ASD is a high-energy drug dispersion system, phase separation could occur due to 

thermodynamic factors (i.e., enthalpy, entropy of mixing) or environment factors (e.g., 

temperature, moisture). Figure 1.3 illustrates two potential routes of ASD recrystallization. 

Phase separation and crystallization have a negative impact on the performance of an ASD 

both in vitro and vivo. 

 

 

Figure 1.3: Two potential drug recrystallization routes from ASD. Adapted from 

reference [64]. 

Numerous articles have reported that the single Tg method indicates miscibility of 

the binary or ternary ASD [63-65]. However, the presence of a single Tg is not an infallible 

indicator of miscibility for a number of reasons [66]. First, some drugs and polymers have 

similar Tg s, and their glass transitions may overlap on DSC thermograms, which makes 

them difficult to discern. Second, the domain size in phase-separated ASD may fall below 

the DSC detection limit [48]. Last, but not the least, some drugs and polymers have broad 



 23 

glass transitions or a small heat capacity change at Tg, which makes it difficult to measure 

the Tg. 

Besides the single Tg method, many other methods are used to evaluate mixing 

homogeneity, such as melting point depression [67], evaluation of drug solubility in 

polymers (i.e., the solubility parameters method) [68, 69], solution calorimetry [70].  

1.3.2.2.3 Glass transition temperature 

For amorphous materials, the glass transition temperature (Tg) is a unique 

temperature range in which the properties of the material shift from the properties of a 

liquid to those of a solid. Figure 1.4 shows the relationships between temperature and 

volume, and enthalpy and entropy. Certain critical properties of ASDs are dependent on 

their glass transition temperature. These properties include the physical state of the drug 

and polymer [71], the miscibility between the drug and polymer [72, 73], and specific 

interactions [74, 75]. In addition, Tg can be used to guide the selection of the storage 

conditions for ASDs [76]. Gordon-Taylor, Fox, and Kwei equations can be used to 

calculate the theoretical Tg of multicomponent ASDs. The deviation of the experimental Tg 

from the theoretical Tg can be used to determine the mixing behavior and physical 

interaction between the drug and polymer [77]. 
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Figure 1.4: Volume, enthalpy, and entropy of the amorphous state in comparison to a 

crystal, including the supercooled liquid and glass regions. Tm represents the melting 

temperature, and Tk represents the Kauzmann temperature. Adapted from reference [8]. 

1.3.2.2.4 Residual crystallinity 

It is important to monitor the residual crystallinity of ASDs during their processing 

and storage, because recrystallization of the drug reduces the dissolution rate, which could 

reduce bioavailability. Comparing the melting enthalpy of the residual crystalline drug in 

ASDs against the melting enthalpy of the crystalline form of the pure drug can be used to 

determine the residual crystallinity [78]. Shah et al. [79] summarize the various thermal 

methods used to study the crystallization of ASDs. 

In summary, DSC is useful for both qualitative and quantitative analysis drug 

crystallization in ASDs. Although DSC may not detect low levels of crystalline material in 

ASDs, DSC is commonly combined with other techniques (e.g., XRPD, solid-state NMR) 

to monitor the crystallization in ASDs. 

1.3.2.2.5 Molecular mobility 
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The molecular mobility of a drug and polymer is generally considered a key 

attribute that determines the physical stability of ASDs. High molecular mobility can lead 

to faster phase separation, drug nucleation, and crystal growth. A large body of research 

focuses on the correlation between molecular mobility and physical stability [80, 81]. The 

most common indicators of molecular mobility are viscosity, structural relaxation time, 

and dielectric relaxation time [8]. Since all these properties are temperature dependent, 

DSC is the most commonly used method to measure molecular mobility as a function of 

temperature. Aso et al. [82] used DSC to study the crystallization rate of amorphous drugs 

and the relationship between changes in the structural relaxation time of amorphous drugs 

both in the absence povidone and in the presence of povidone. They found that the presence 

of povidone decreased the molecular mobility of amorphous drugs as the structural 

relaxation time of the drug increased, and they found that the recrystallization rate of the 

drug decreased in the presence of povidone. 

In summary, DSC and MDSC have a wider range of application in studying ASDs, 

ranging from testing the properties of the drug and polymer to preformulation screening of 

ASDs. Furthermore, with the development of new DSC thermal analytical methods and the 

combination of DSC with other spectroscopic and imaging methods, the application of 

DSC in ASD characterization continues to expand. 

1.3.2.3  Micro-nano thermal analysis 

Traditional thermal analysis can provide useful information on the bulk properties 

of ASDs. However, in some cases, it may be more desirable to analyze the surface 

properties rather than the bulk properties. The properties of free surfaces are directly 

responsible for crystal growth on the surfaces of ASDs [83]. Micro-nano thermal analysis 
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is a particularly important method of thermal analysis to identify the nature of the different 

phases present at the surface of ASDs [84, 85]. 

So far, the reported micro-nano thermal analysis methods include localized 

nanothermal analysis, thermal transition mapping, and thermal analysis by structural 

characterization. In localized nanothermal analysis, the traditional silicon-based AFM tip 

is replaced with a specialized micro-fabricated silicon-based probe with a miniature heater. 

This new probe not only allows researchers to generate topographic images, but also to 

conduct local thermal analyses at defined points on a surface [86, 87]. 

Zhang et al. [88] used nanothermal analysis to characterize the heterogeneity of 

carbamazepine ASD. By combining the topographic and phase images, they found that a 

5% drug-loading formulation formed a solid solution. At 50% drug loading, a portion of 

drug is dispersed as nanocrystals in the polymeric carrier. Figure 1.5 illustrates the work 

principle of local thermal analysis and thermal transition mapping. Qi et al. [89] applied 

thermal transition mapping to study the phase separation behavior of felodipine ASD. They 

found that thermal transition mapping was useful to identify both the size and chemical 

composition of the phase separation, which is difficult to achieve by conventional 

analytical methods. Thermal analysis by structural characterization is another micro-nano 

thermal analysis method recently developed to study the glass transition kinetics and 

thermal dissolution behavior of materials. Alhijjaj et al. [90, 91] used this method to 

analyze the influence of drug–excipient miscibility on the heterogeneity and spatial 

distribution of phase separation in ASDs. 
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Figure 1.5: The principle of localized nanothermal analysis and thermal transition 

mapping. Adapted from reference [86]. 

1.3.3 Spectroscopic methods 

Spectroscopic methods are based primarily on molecular and atomic-level changes 

that occur when the material is exposed to electromagnetic radiation. The changes include 

electronic transitions, vibrational transitions, and nuclear spin transitions. Based on the 

energy gap between the ground and excited states, spectroscopy methods can be divided 

into fluorescence spectroscopy, infrared spectroscopy, near-infrared spectroscopy, Raman 

spectroscopy, and nuclear magnetic resonance. Terahertz-pulsed spectroscopy is a new 

technique used to probe low-energy vibrations, such as intramolecular torsional vibrations, 

and intermolecular vibrations such as translations and liberations [92]. 

Using different setups, spectroscopy imaging may be performed on the macro-, 

micro-, and even nano- scales. For ASD characterization, spectroscopy could provide 

molecular-level information about local structure in amorphous solids, such as drug–
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polymer interaction, phase separation, and crystallization. Furthermore, spectroscopic tools 

can be applied in the on-line monitoring of ASDs during manufacturing process. Table 1.5 

summarizes the measurement time, sample status, application, advantages, and 

disadvantages of each technique. 
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Table 1.5: A brief summary of spectroscopy method in ASD characterization. (+) or (-) 

indicates whether the analytical technique is sample destructive or nondestructive, 

respectively. 

Analytical 

method 
Information Advantages Disadvantages 

Sample 

destructiveness 

Measurement 

time 

Fluorescence 

spectroscopy 

• Drug–polymer 

miscibility 

• Phase separation 

• Drug dissolution 

behavior in ASD 

• High sensitive 

• Small sample size 

• Very little sample 

preparation 

• Easy to use 

• Semi-quantitative 

( - ) 

sec 

FTIR 

• Drug–drug and drug–

polymer interaction 

• Polymorph screening 

• Crystalline and 

amorphous identification 

• Phase separation 

• Spatial chemical 

information with 

mapping setup 

• Fast data acquisition 

• Small sample size 

• Easy to use 

• No sample preparation 

required for ATR 

• Environmental 

humidity influence 

• Probes are not yet 

common 

( - ) 

sec 

NIR 

• Identify crystalline 

polymorphs and solvates 

• Sensitive to different 

water states 

• Spatial chemical 

information with 

mapping setup 

• Fast data acquisition 

• Small sample size 

• Easy to use 

• No sample preparation 

required 

• Use of probes 

• Ability to penetrate 

glass containers 

• Weak intensity 

• Significant baseline 

slope 

 

 

( - ) 

sec 

Raman 

• Drug–drug and drug–

polymer interaction 

• Phase separation 

• Drug–polymer 

miscibility 

• Drug dissolution 

behavior in ASD 

• Fast data acquisition 

• Small sample size 

• Easy to use 

• No sample preparation 

required 

• Use of probes 

• Ability to penetrate 

glass containers 

• Insensitive to water 

• Local heating of sample 

• Sample fluorescence 

• Photodegradation 

( -/+ ) 

sec 

Terahertz 

spectroscopy 
• Identify crystalline and 

amorphous state 

• Fast data acquisition 

• Small sample size 

• Spectrum affected by 

water 
( - ) 
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Analytical 

method 
Information Advantages Disadvantages 

Sample 

destructiveness 

Measurement 

time 

• Detect crystallinity 

degree 

• Polymorph screening 

• Crystallization kinetic 

 • Baseline slope 

• Relatively expensive 
sec 

Dielectric 

spectroscopy 

• Molecular mobility 

• Drug crystallization 

tendency 

• Fast data acquisition 

• Small sample size 

• No sample preparation 

required 

 

• Complicated 

mathematical modeling 

• Not a “fingerprint” 

technique 

 

( + ) 

Min-hour 

 

1.3.3.1 Fluorescence spectroscopy 

Fluorescence spectroscopy has been used to study the physical properties and 

dissolution behaviors of ASDs. It detects the fluorescence emitted when a substance is 

excited by UV-visible radiation. Fluorescence spectroscopy can be performed in different 

modes, including (1) emission scans with a constant excitation wavelength, (2) excitation 

scans with a constant emission wavelength, (3) synchronous scans of both 

monochromators, and (4) total luminescence scans. 

Fluorescence spectroscopy provides new approaches for probing the local behavior 

of drugs in ASDs (e.g., miscibility, phase separation) and the correlation of these behaviors 

to ASD performance. Tian et al. [93] have used fluorescence spectroscopy to evaluate 

drug–polymer miscibility and to investigate the correlation between miscibility and the 

physical stability of ASDs. The fluorescence spectroscopy data indicated that drug loading 

had a significant impact on the drug–polymer miscibility and indicated a strong correlation 

between poor miscibility and reduced physical stability. They observed a significant 

difference in intensity and emission maxima between crystalline Form I, a hypromellose-

Table 1.5: continued. 
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based ASD, and the povidone-based ASD. The difference between the fluorescence spectra 

of these two solid dispersions was attributed to the differences in the mobility of diflunisal 

in the glassy solid [94]. Fluorescence spectroscopy has also been used to study the 

dissolution behaviors of ASDs in aqueous environments [95, 96]. In these studies, the 

fluorophore was added to the aqueous phase and the emission spectrum was monitored as 

the drug concentration was increased. Liquid–liquid phase separation was observed in 

povidone-based ritonavir ASDs. 

1.3.3.2 Infrared spectroscopy  

Infrared spectroscopy (IR) is a form of vibrational spectroscopy that measures the 

absolute frequencies at which a sample absorbs various forms of radiation. The vibration 

occurs when there is a change in dipole moment. Based on the spectral range, infrared 

spectroscopy could be divided into far-IR (FIR: 400–20 cm−1), mid-IR (MIR: 4,000–400 

cm−1), and near-IR (NIR: 12,500–4,000 cm−1). All three IR regions have been employed to 

study ASDs [7]. 

IR spectroscopy can be used to measure drug–polymer interactions in ASDs by 

observing changes in peak shape or position. The changes in wavelength, bandwidth, and 

band intensity can also provide molecular-level information on the solid-state form of both 

the drug and polymer [11]. Therefore, FTIR can be used to identify molecular interactions 

and to evaluate the physical stability of ASDs. In addition, FTIR is a useful tool for 

measuring the distribution of the drug in the polymer matrix as well as phase separation. 

FTIR imaging has been used to study the moisture-induced phase separation in 

melt-extruded ASDs [97, 98]. FTIR spectroscopy has also been used successfully in 

combination with other analytical techniques (e.g., XRPD, DSC, AFM) [63, 99]. In-line 

NIR has been applied to monitor phase transformations during ASD production, such as 
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hot-melt extrusion and spray drying [100, 101]. Furthermore, the development of FTIR 

imaging technology has made possible the real-time monitoring of drug release from ASDs 

[102, 103]. 

Compared to other techniques, the advantage of FTIR is that samples in different 

physical states can be analyzed in a fast and noninvasive manner and with high chemical 

specificity. Given recent advancements in hardware and software, FTIR will continue to 

play a key role in ASD characterization, coupled with other advanced characterization 

methods. 

1.3.3.3 Raman spectroscopy  

Raman spectroscopy is a complement to IR spectroscopy. Raman spectroscopy 

depends on changes in the polarizability of a molecule while IR spectroscopy depends on 

changes in the dipole moment. Raman spectroscopy measures the relative frequencies at 

which a sample scatters radiation. This is unlike IR spectroscopy, which measures the 

absolute frequencies at which a sample absorbs radiation. 

Because light of shorter wavelengths is used, it is more common to combine Raman 

with microscopic analysis, as in confocal Raman microscopy [104, 105]. In addition, 

Raman spectroscopy has been extensively used to characterize ASDs in the investigation 

of drug–polymer interactions, miscibility, and phase distribution [106, 107]. Furthermore, 

chemical mapping with Raman spectroscopy has been employed to investigate in situ, real-

time dissolution mechanisms of ASDs [108]. 

1.3.3.4 Solid-state nuclear magnetic resonance 

Solid state nuclear magnetic resonance (SSNMR) has been proven to be a powerful 

tool for gathering molecular-level information on the dynamics and phase compositions of 
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ASDs based on dipolar correlation, spin diffusion, and relaxation measurements [109]. 

Table 1.6 summarizes the measurement time, sample status, application, advantages, and 

disadvantages of each technique. SSNMR is a stand-alone, nondestructive technique for 

the analysis of crystallization tendency [110], molecular mobility [111], miscibility, drug–

polymer interactions [112], degree of crystallinity, and crystallization kinetics of ASDs 

[113]. 
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Table 1.6: A brief summary of SSNMR in ASD characterization. (+) or (-) indicates whether the analytical technique is sample 

destructive or nondestructive, respectively. 

Analytical 

method 
Information Advantages Disadvantages 

Sample 

destructiveness 

Measurement 

time 

SSNMR 

• Amorphous identification 

• Detect crystallinity degree 

• Recrystallization kinetic 

• Drug–polymer miscibility 

• Drug–drug and drug–

polymer interaction 

• Molecular mobility 

• Microstructure of ASD 

• Small sample size 

• Very little sample 

preparation 

• Qualitative and 

quantitative 

• Risk of 

recrystallization during 

the analysis process 

• Relative expensive 

( - ) 

Hour-day 
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SSNMR has even been used to monitor the dissolution behavior of ASDs. A strong 

correlation has been found between the crystallization rate of amorphous drugs and their 

molecular mobility as measured by their enthalpy relaxation and H1 NMR relaxation times. 

The observation of spin diffusion effects with the 2D cross-polarization heteronuclear 

correlation experiment was used to probe the association between the amorphous drug and 

polymer. 

Proton-relaxation measurement using variable temperature SSNMR (VT-SSNMR) 

is a valuable new thermal analysis method for predicting the physical stability of 

amorphous pharmaceuticals. 13C and 15N SSNMR are often used to examine hydrogen 

bonding between donors and acceptors. In addition, the application of standalone T1 

relaxation, or T1 relaxation in combination with T1 measurements, has been used to 

determine whether an ASD has multiple domains or is homogeneous [112]. 

Song et al. [114] used SSNMR to investigate drug–excipient interaction in lapatinib 

ASDs. 15N SSNMR, 1HT1, and 1HT1 provided direct spectroscopic evidence for the ionic 

interaction between lapatinib and HPMCP. This interaction was the key driver in 

stabilizing lapatinib ASDs. Dahlberg et al. [115] employed NMR imaging technology to 

study the flutamide release profile of compacts of flutamide/HPMC ASDs in D2O at the 

beginning and after 6 h. The NMR data vividly demonstrated that the drug dissolution 

process from HPMC–based ASDs resulted from the following chain of events: water 

ingression of the tablet, hydration, mobilization, and the upward growth of the polymer gel 

layer. 
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1.4 METHODS FOR CHARACTERIZING ASD BEHAVIOR IN AQUEOUS MEDIA 

The ultimate success of an ASD in improving the bioavailability of a poorly water-

soluble drug is determined by its performance in the gastrointestinal tract after oral 

administration. The ability to monitor the extent and rate of drug solubilization is 

particularly important, since the drug release is the rate-limiting step in the absorption of 

these drugs. Inconsistent drug release from an ASD might lead to changes in bioavailability 

and concerns about safety or efficacy. Therefore, dissolution analysis is a critical 

characterization step in formulation screening, manufacturing process selection, and the 

monitoring of the physicochemical stabilities of ASDs during storage. The standardized 

dissolution test description and apparatus can be found in USP general chapter <711> 

[116]. 

The typical dissolution profiles of ASDs that show rapid initial buildup of drug 

supersaturation and then retardation of precipitation have been qualitatively characterized 

as a “spring and parachute.” It is challenging to explore the ASD dissolution mechanisms 

because several dissolution processes occur simultaneously. Figure 1.6 shows that the main 

contributors to the final dissolution performance of ASDs are (a) the recrystallization of 

the drug in the ASD or after precipitation from a supersaturated solution, (b) the formation 

of nanoparticles and microparticles during the dissolution, and (c) the dissolution of 

polymeric carriers [60].  
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Figure 1.6: Species generated when ASDs are added to aqueous solution simulating 

duodenal and intestinal contents. Adapted from reference [60]. 

Conventional dissolution methods only measure the drug concentration in 

dissolution media; they fail to offer any chemically or spatially resolved information about 

potential changes in the solid forms during the dissolution process. Given the limitations 

of conventional methods, innovative approaches have been developed in an attempt to 

provide a more holistic picture of drug release from ASDs. These approaches include UV 

imaging [117, 118], mid-IR [99, 102], NIR [119], Raman spectroscopy [104, 108, 120], 

magnetic resonance imaging [121, 122], 1H-NMR [123], particle analysis (e.g., 

asymmetrical flow field–flow fractionation, cryogenic TEM) [124, 125]. 

UV imaging provides not only the drug dissolution rate in real-time, but also 

information on how the polymer influences drug recrystallization in the dissolution 

medium [126]. Tres et al. (2015) combined integrated magnetic resonance imaging, a UV-

Vis flow cell system, and 1H-NMR to obtain a clear picture of drug release while 
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simultaneously measuring the dissolution profiles and the rates of both drug and polymer 

release from ASDs. MRI and 1H-NMR data showed that a compact containing 5% of the 

drug eroded linearly. A model drug and KollidonVA64 were released at approximately the 

same rate from the molecular dispersion. At high drug loading (e.g., 30%), the data 

indicated a slower water ingress into the compact, which corresponded to a slower 

dissolution rate of both drug and polymer [122]. 

IR and Raman spectroscopy can provide chemically specific information. Raman 

spectroscopy is not as sensitive to water as IR spectroscopy. Therefore, Raman 

spectroscopy is more suited to characterizing dissolution behavior in aqueous 

environments. Tres et al. (2015) utilized Raman spectroscopic imaging along with 

multivariate curve resolution (MCR) analysis to study real-time, in situ dissolution 

mechanisms that underpin ASDs, and these were collected directly from the dosage form 

itself. Their study found that amorphous felodipine crystallized at different rates in 

different regions of the compact surface, indicating that crystallization followed an initial 

stage of heterogeneous nucleation [108]. 

Langham and Booth et al. [121] used MRI to study the dissolution mechanism of 

spray-dried felodipine ASDs, and they found that drug loading has a profound impact on 

the physical behavior of the compact surface, which directly influenced drug dissolution 

performance. 

Each of these techniques has been applied to study the dissolution behavior of 

ASDs. A better understanding of drug release can be achieved when these techniques are 

used in rational combination. 
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1.5 CHARACTERIZATION TOOLS USED IN CONJUNCTION 

Most research studies combine different characterization techniques to build the 

most comprehensive profile of an ASD. Since each technique has specific limitations, the 

best practice is to combine two or more methods to provide sample information that cannot 

be achieved using a single method. In addition, simultaneous multi-method measurements 

on the same sample complement each other and either reveal important properties of ASD 

or increase confidence in the data interpretation of these complex systems [127]. Reported 

conjunction tools include DSC–FTIR [128, 129], DSC–Raman [130], DSC–PXRD [131], 

IR–AFM [99, 132], and MRI–FTIR–Raman imaging. 

Another example is the combined DSC–FTIR technique, a quick and easy 

analytical method used for collecting real-time thermodynamic and spectroscopic data 

from ASDs as they undergo thermal modifications [128]. FTIR provides real-time 

qualitative information that complements the heat flow changes measured by DSC. Lin et 

al. [133] used DSC–FTIR to investigate heat-induced drug–polymer interactions.  

The combined AFM–IR method is another promising technique for the evaluation 

of polymer–polymer and polymer–drug miscibility. AFM can achieve nanoscale 

resolution, but it fails to identify the chemical composition of different phases. IR can 

provide specific information about chemical composition, but it is typically limited in 

spatial resolution. Li et al. [134] successfully used AFM–IR to characterize drug–polymer 

miscibility, and they found that AFM–IR is a unique analytical tool for the study of the 

microstructure of ASDs. The information collected from their AFM–IR analysis 

contributed to a mechanistic understanding of ASD phase behaviors. 

Punčochová, Ewing et al. [104] employed three chemical imaging methods (MRI, 

ATR–FTIR spectroscopic imaging, and confocal Raman mapping) to understand the 

behavior of drug release from ASDs in a mixed polymer matrix. Each imaging method 
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contributed a different aspect of the dissolution process, as shown in Figure 1.7. A 

combination of these methods provides a powerful approach that can reveal the 

mechanisms and phenomena that control drug release from ASDs. They can also paint a 

global picture of different water penetration and polymer dissolution rates, which none of 

these techniques could conclusively determine alone. 

 

Figure 1.7: Scheme of image position relative to the tablet, provided by each imaging 

method. Adapted from reference [104]. 

1.6 EMERGING NEW TECHNIQUES 

1.6.1 Terahertz spectroscopy  

Terahertz spectroscopy (TPS) is a nondestructive technique that uses spectral 

information in the far-IR region of the electromagnetic spectrum to probe the long-range 

crystalline lattice vibrations, low-energy torsion, and hydrogen-bonding vibrations of 

pharmaceutical materials [12]. Over the past several years, TPS has received considerable 
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attention in the field of pharmaceutics research. TPS and imaging technology provide novel 

approaches to characterize ASDs. 

Since TPS relates to the intermolecular vibrations inside the lattice structure rather 

than intramolecular vibrations, TPS of amorphous materials shows no distinct spectral 

bands. Any recrystallization in an ASD may be monitored and qualified using TPS [135]. 

Using in situ temperature-dependent TPS, the distinctive spectral changes that occur with 

increasing temperature provide essential information about relaxation and crystallization 

processes [136]. In addition, TPS can be used to determine the onset and strength of 

molecular mobility, which underpins the crystallization of amorphous drugs [137]. 

1.6.2 Dielectric spectroscopy  

In dielectric spectroscopy, dipoles that have sufficient mobility respond to an 

external electric field. This response allows for the detection of molecular motions that 

have a relaxation time of 10−3–109 s over a wide temperature range (−170–300 °C) [138]. 

Dielectric spectroscopy is widely used to study complex systems in materials science, and 

it is attracting increasing attention as a powerful tool for the characterization of 

pharmaceutics materials [139]. 

Dielectric spectroscopy has been used to directly measure the time scale of 

intramolecular and molecular motion, since both the cooperative and noncooperative 

motion of drug molecules can be obtained from this analysis. Various models can be used 

to analyze the dielectric data that capture the functional dependence of the dielectric 

response on the frequency, time, or temperature of ASDs. Fitting the data to these models, 

or applying the appropriate curve resolution to deconvolute various overlapping motions, 

provides an insight into the temperature and frequency dependence of each mode of 
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motion. The time scale of physical instability can then be measured after identifying a link 

between specific modes of molecular motion and the crystallization tendency [80, 140].  

1.6.3 X-ray micro-computed tomography 

X-ray micro-computed tomography is a 3D image reconstruction technique that 

uses X-rays for medical imaging and materials science analyses. Compared to X-ray 

diffraction methods in which X-rays are reflected by an ordered array of atoms, X-ray 

micro-computed tomography generates 3D X-ray images based on the electron density 

differences observed between different phases contained within a sample. X-ray micro-

computed tomography has been used in ASD characterization to visualize and quantify the 

structure of spray drying particles, such as wall thickness and internal structures [141, 142]. 

It is difficult to use X-ray micro-computed tomography to distinguish samples that 

have similar attenuation coefficients, such as amorphous and crystalline materials. This 

limitation can be overcome by applying synchrotron radiation to improve the phase 

contrast [143]. Qi et al. [91]  have used X-ray micro-computed tomography as a 

quantitative method to characterize the drug phase separation in patches prepared by hot-

melt extrusion and injection molding. 

1.7 CHARACTERIZATION METHODS IN DIFFERENT STAGES OF PRODUCT 

DEVELOPMENT 

The final quality of ASD-based products (including in vitro stability, in vitro 

dissolution, and in vivo performance) can be governed by the various physiochemical 

properties of ASD intermediates and ASD final products. These properties include 

molecular mobility, miscibility, glass transition temperature, hygroscopicity, and 

crystallinity. It is critical to characterize the primary quality attributes of ASDs at different 

stages in the product life cycle to ensure final product quality and meet project timelines. 
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Figure 1.8 provides a brief overview of the various characterization techniques used at 

different stages of ASD-based product development. 

 

 

Figure 1.8: An overview of the application of various characterization methods at 

different stages of ASD-based product development. Modified from reference [127]. 

1.7.1 Preclinical studies 

The major limitation of ASD products are their thermodynamic instability and their 

tendency to recrystallize during storage [144, 145]. A desirable ASD product should 

maintain its amorphous state from the time of manufacture until drug administration. A 

proper formulation composition and optimal manufacturing process are important to 

develop a stable amorphous product with enhanced bioavailability. Before using ASD 
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techniques to formulate a poorly water-soluble drug, it is important to understand whether 

the compound has the desired physiochemical properties (e.g., crystallization tendency, 

melting point, hygroscopicity, thermal stability) at preclinical stage. It has been proven that 

a compound must have a low crystallization tendency in order to be formulated as an ASD. 

The physiochemical properties of the drug are the primary criteria for selecting the 

manufacturing process both at the laboratorial scale and the industry scale [146]. 

Techniques such as PLM (HSPLM), TGA, DSC (MDSC), or PXRD are the most 

commonly used methods to probe the physicochemical properties of a drug. Polymer 

screening is another important aspect for ASD development, since good miscibility 

between the drug and the polymer is generally believed to be the prerequisite for physically 

stable ASDs. Techniques that have been explored for miscibility evaluation include DSC 

(MDSC), FTIR, PXRD, SSNMR, AFM, SEM, TEM, and Raman mapping. Last, other 

equally important aspects of a preformulation study for the development of an ASD include 

the drug loading, the selection of other formulation ingredients, primary drug dissolution, 

supersaturation studies, and stability studies. 

1.7.2 Clinical phase study 

A clinical study generally consists of phase I, phase II, and phase III studies. Each 

phase has a different purpose and emphasis, so each phase requires different 

characterization methods to ensure the product meets the clinical study requirements. 

In a phase I study, the formulation and process should be selected based on the 

preformulation study. Comprehensive studies on the kinetic miscibility between the 

candidate drugs and the selected polymers require various thermal and spectroscopic 

analyses. DSC (or MDSC), FTIR, NIR, and Raman spectroscopy are the core methods used 

to characterize the drug–excipient interaction and miscibility. SSNMR and PXRD (PDF) 



 45 

measurement can be used to determine the intensity of properties such as molecular 

interaction and crystallinity. Furthermore, the in vitro drug release from ASDs in 

biorelevant dissolution media is commonly used in the rational screening of formulations 

for human clinical trials. Finally, process analytical technology (PAT), which includes 

FTIR, NIR, and Raman spectroscopy, could also be used to monitor the manufacturing 

process to ensure product quality. 

In a phase II study, the intermediate ASDs are always formulated into solid oral 

dosage forms such as tablets or capsules. The compatibility between the intermediate ASDs 

and other excipients, such as filler, binders, and lubricants, should be thoroughly 

investigated using DSC and Raman spectroscopy. In addition, the effects of downstream 

processing, such as roller compaction, on the physical stability of ASDs should not be 

ignored. 

In a phase III study, reliable PAT methods should be used continuously to monitor 

the manufacturing process in real time. Since poor physical stability is the inherent 

shortcoming of ASDs, solid-state analytical methods of higher sensitivity (e.g., solid-state 

NMR or Raman spectroscopy) should be used to analyze the critical quality attributes of 

the intermediate and final ASD products.  

1.7.3 Commercial product manufacturing 

Managing the commercial production of ASD-based products is more challenging 

than traditional products that contain crystalline drugs. Reports have shown that nearly 100 

solid oral dosages of small molecular drug products were recalled by the FDA, and these 

reports indicate that failure in the dissolution rate specification was the prominent cause 

for recall. Since the dissolution performance of an ASD product is closely related to the 

physical state of the drug [147], the commercial manufacturing process should focus on 
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the long-term stability of the product. In addition, qualitative and quantitative analyses of 

product quality attributes are required to support the technology transfer and manufacturing 

scale-up. 

1.8    SUMMARY 

Effective characterization methods play a critical role in the development of ASDs, 

although the complexities of ASDs present unique characterization challenges. Various 

techniques have been applied to analyze the critical quality attributes of ASDs. These 

techniques help us to better understand their thermodynamics and molecular-level 

processes, such as glass transition, molecular mobility, and the molecular interactions 

between the drug and polymer. This type of information is essential to the rational selection 

of formulation compositions and manufacturing processes of ASDs. 

Over the past decade, significant progress has been made in the characterization of 

ASDs. This paper has summarized the basic methods that are widely applied in the 

characterization of ASDs in both the solid state and solution state. With more sensitive and 

accessible analytical tools, pharmaceutical scientists are gaining a better understanding of 

ASDs, which will lead to greater success in the delivery of poorly water-soluble drugs. 
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Chapter 2: Reactive Melt Extrusion to Improve the Dissolution 

Performance and Physical Stability of Naproxen Amorphous Solid 

Dispersions 2 

2.1    ABSTRACT 

The purpose of this chapter was to investigate the reaction between naproxen 

(NPX) and meglumine (MEG) at elevated temperature and to study the effect of this 

reaction on the physical stabilities and in vitro drug-release properties of melt-extruded 

naproxen amorphous solid dispersions (ASDs). Differential scanning calorimetry, hot-

stage polarized light microscopy, Fourier transform infrared spectroscopy, and X-ray 

photoelectron spectroscopy analyses demonstrated that in situ salt formation with proton 

transfer between NPX and MEG occurred at elevated temperature during the melt extrusion 

process. The amorphous NPX–MEG salt was physically most stable when two components 

were present at a 1:1 molar ratio. Polymeric carriers, including povidone, copovidone, and 

SOLUPLUS, did not interfere with the reaction between NPX and MEG during melt 

extrusion. Compared to the traditional NPX ASDs consisting of NPX and polymer only, 

NPX–MEG ASDs were physically more stable and remained amorphous following four 

months storage at 40 °C and 75% RH (relative humidity). Based on non-sink dissolution 

testing and polarized light microscopy analyses, we concluded that the conventional NPX 

ASDs composed of NPX and polymers failed to improve the NPX dissolution rate due to 

the rapid recrystallization of NPX in contact with aqueous medium. The dissolution rate of 

NPX–MEG ASDs was two times greater than the corresponding physical mixtures and 

conventional NPX ASDs. This study demonstrated 

 
2 Published in: X. Liu, L. Zhou, F. Zhang, Reactive Melt Extrusion to Improve the Dissolution 

Performance and Physical Stability of Naproxen Amorphous Solid Dispersions, Molecular Pharmaceutics 

14(3) (2017) 658-673. Xu Liu is the major contribution to the research and draft of the article 
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that the acid–base reaction between NPX and MEG during melt extrusion 

significantly improved the physical stability and the dissolution rate of NPX ASDs.  

2.2    INTRODUCTION 

Oral drug delivery is preferred due to the convenience of self-administration, the 

ease of handling of the dosage form by the patient, and the lower manufacturing cost of the 

final drug product[1]. Oral bioavailability is the most common pharmacokinetic parameter 

used to assess a drug candidate’s suitability for oral administration, which is mainly limited 

by drug solubility and the dissolution rate in aqueous media. Combinatory chemistry and 

high-throughput screening techniques have resulted in many drug candidates that have poor 

aqueous solubility and poor dissolution characteristics, and this presents challenges for 

developing oral dosage forms. It has been reported that up to 90% of drugs under 

investigation, and up to 40% of marketed drugs, are poorly water soluble[2]. A number of 

strategies have been developed to enable oral delivery of poorly water-soluble drugs. 

Prodrug approach is commonly explored during the lead candidate optimization by drug 

discovery chemists. Cocrystal, salt form, micronization, nano particulate, self-emulsifying 

formulation, and amorphous solid dispersion are common strategies used by formulation 

scientists[3]. Among all these methods, salt formation and amorphous solid dispersion 

have been proven to be the most promising approaches to improve the dissolution 

characteristics and kinetic solubility of poorly water-soluble drugs. 

Salt formation is the preferred approach for enhancing the aqueous solubility and 

dissolution rate of poorly water-soluble drugs with ionizable groups[4]. A salt is generally 

defined as a crystalline or amorphous material that has a solid-state assembly in which a 

proton is transferred from the acidic moiety to the basic moiety. Salt form is such a common 

strategy that more than 50% of marketed drugs contain salts in order to optimize their 
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biopharmaceutical properties[5]. Depending on the type of counterion, salts can be 

categorized as inorganic, organic, polymeric, or macromolecular salts. It has been 

confirmed that the solubility and stability of a salt depends largely on the type of counterion 

and the acid/base strength[6]. Salt forms of drug substances act as self-buffering agents 

that control the pH of the diffusion layer surrounding the dissolving particles, thereby 

creating a favorable microenvironment for enhanced drug solubility and a more rapid 

dissolution rate. In some cases, converting drugs into their salt forms may still not be 

sufficient to meet the bioavailability requirement, because salts do not offer a markedly 

improved dissolution advantage. In other cases, weak salts are prone to disproportionately 

convert to intrinsically less soluble free acids or bases during product storage and in 

aqueous media[7]. 

Another strategy for formulating drugs that have poor aqueous solubility and 

dissolution rate is represented by amorphous solid dispersion[8]. The most widely accepted 

definition of amorphous solid dispersion is “a molecular dispersion of one or more active 

ingredients in an inert carrier in the solid state prepared by the melting, solvent, or melting-

solvent method”[9].The conversion of a crystalline drug to an amorphous state with 

disruption of the crystal lattice can lead to a nonequilibrium high-energy state, which 

improves transient solubility and the dissolution rate. However, the inherent crystallizing 

tendency of drugs in the amorphous state may lead to a decrease in solubility and 

dissolution rate upon storage, which has greatly restricted the application of amorphous 

solid dispersion.  

Salts and amorphous solid dispersions are effective strategies for enhancing the 

solubility and dissolution rates of poorly water-soluble drugs, but both methods have their 

inherent shortcomings. Therefore, in certain circumstances, it may be desirable to combine 

these two approaches to prepare amorphous solid dispersion of the salt form of a drug. A 
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multicomponent amorphous solid dispersion system composed of a drug, a functional 

excipient, and an amorphous polymer matrix is considered to be a promising system for 

the enhancement of the dissolution of poorly water-soluble drugs with acceptable physical 

stability throughout their shelf life[10]. The application of acid–base reaction in preparing 

amorphous solid dispersions has recently attracted significant attention, and the reaction 

can provide sufficient intermolecular interactions between the components to inhibit phase 

separation and recrystallization. The acid–base interactions between drugs and inorganic 

additives[11], between other low molecular weight components[12, 13], or between 

polymers[14], play significant and critical roles in both amorphous miscibility and physical 

stability[15]. Subrata et al. have converted ibuprofen from its crystalline acid to an 

amorphous salt form by co-milling it with kaolin. The dissolution rate of ibuprofen was 

improved, and the amorphous kaolin-bound ibuprofen was physically stable at 40 °C and 

75% RH for up to 10 weeks[16]. 

A series of studies conducted by Rades et al. indicated that salt formation was one 

of the major mechanisms for the increased physical stability and dissolution enhancement 

of co-amorphous drug delivery systems, which are composed of two or more low molecular 

weight components that form a homogeneous amorphous single phase[17]. Song et al.[18, 

19] revealed the strong intermolecular acid–base interactions of polystyrene sulfonic acid 

with two weakly basic anticancer drugs, lapatinib and gefitinib. This interaction 

significantly improved the dissolution of both drugs and effectively inhibited their 

recrystallization under accelerated storage conditions. Most of the investigation in this 

research area was conducted using laboratory-scale preparative techniques, such as solvent 

evaporation, melting methods, or with mechanical activation, which may be difficult for 

industrial manufacture. There are very limited number of studies combining salts and 

amorphous solid dispersions to improve the bioavailability of poorly water-soluble drugs. 
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Currently, most pharmaceutical salts are synthesized in solution state. The use of 

solvents can cause environmental, health, and safety concerns. In addition, the removal of 

solvents involves complicated crystallization and purification procedures, which may 

result in undesired polymorphs and solvates. A very interesting alternative to solution 

synthesis is the mechanochemical synthesis of pharmaceutical salts without the addition of 

solvents or by using only nominal amounts of solvents[20]. A salt can be obtained by 

proton transfer through a solid-state reaction conducted with the assistance of mechanical 

energy, such as ball milling and solvent-assisted co-grounding. However, the yields of 

these processes are low, and the scale-up is also challenging. 

Among the various methods for preparing amorphous solid dispersions, melt 

extrusion has attracted much attention due to several advantages: it does not require the use 

of a solvent, it is easy to scale up, it is a continuous process, and melt-extrudates have 

favorable physical properties such as denser particles and good flowability[21]. During 

melt extrusion, the rotating screws provide intensive mixing, and they convert mechanical 

into the thermal energy so that the drug is dissolved in polymer melt during extrusion. 

Since it is conducted at an elevated temperature, melt extrusion provides a favorable 

environment for the solid-state chemical reaction. Reactive melt extrusion has historically 

referred to combining chemical reactions and polymer melt extrusion into a single process 

carried out continuously in a screw extruder[22]. It has been widely applied in the plastic 

and food industries to improve the properties of materials and products, such as mechanical 

strength of plastic materials and digestibility of food[23, 24]. Even though pharmaceutical 

melt extrusion has been extensively studied, more research in reactive melt extrusion for 

pharmaceutical applications is needed. Reactive melt extrusion has been applied to prepare 

complex drug delivery systems including cocrystals, salts and amorphous solid 

dispersions[25]. The unique applications of reactive melt extrusion include (a) reducing 
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thermal degradation of the drug in melt extrusion by depressing the melting point of the 

drug[26], (b) improving physical stability of the amorphous solid dispersion during storage 

and during the dissolution process[27], and (c) designing sustained, controlled, and 

targeted drug delivery systems[28].  

Table 2.1 presents the chemical structures and critical attributes of the drugs and 

excipients used in this study. We selected naproxen (NPX) as the model compound. It is a 

weak acid with a pKa of 4.15 and a melting point of 155 °C[29]. NPX is a Class II drug 

according to the biopharmaceutics classification system (BCS). The bioavailability of NPX 

is rate-limited by its solubility and dissolution rate[30]. Consequently, extensive research 

has been conducted to improve its dissolution behavior. Due to the strong π–π interaction 

of the naphthalene ring and the hydrogen bonding of carboxylic acid groups, NPX shows 

a very strong recrystallization tendency, and it is challenging to prepare physically stable 

NPX amorphous solid dispersions with high drug loading. 

We selected meglumine (MEG) as the salt-forming base in this study. MEG is a 

highly water-soluble amino sugar with a pKa of 8.03 and a melting point of 129 °C[31]. It 

is an FDA-approved excipient commonly used as a salt former for oral and intravenous 

drug administration. 

It is generally accepted that salt formation would be expected if the pKa between 

an acid and a base is greater than 3[32, 33]. In our study, based on the pKa difference 

between NPX and MEG (pKa = 3.88), we hypothesized that in situ proton transfer 

between NPX and MEG could occur during melt extrusion. We further hypothesized that 

this strong intermolecular interaction would effectively enhance the dissolution 

performance and physical stability of NPX ASDs. We used differential scanning 

calorimetry (DSC) and hot-stage polarized light microscopy (HSPLM) to study the 

thermally induced in situ acid–base reaction between NPX and MEG, both with and 
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without the presence of polymers. We applied Fourier transform infrared spectroscopy 

(FTIR) and X-ray photoelectron spectroscopy (XPS) to determine whether proton transfer 

took place between NPX and MEG. We investigated the dissolution properties of ASDs 

prepared by reactive melt extrusion under non-sink conditions using 0.1 N HCl solution as 

the dissolution medium. Finally, we used X-ray powder diffraction (XRPD) and polarized 

light microscopy (PLM) to determine the physical stabilities of ASDs under accelerated 

storage conditions. 

Table 2.1: Chemical structures and selected physicochemical properties of naproxen, 

meglumine and polymers. 

Components Chemical Structure 

Experimental Glass 

Transition (Tg) and 

Melting Temperature 

(Tm) (°C) 

Molecular 

Weight 

(g/mol) 

Naproxen 

 

Tm: 155 

Tg: 5 
230.26 

Meglumine 

 

Tm: 129 

Tg: 17 
195.22 

SOLUPLUS® 

 

Tg: 70 118,000 
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Kollidon®VA64 

 

Tg: 101 45,000 

Kollidon®K30 

 

Tg: 149 50,000 

 

2.3    MATERIALS 

Naproxen (NPX) was purchased from Nexconn Pharma Techs. Co., Ltd. 

(Shenzhen, China). Meglumine (MEG) was donated from EMD Millipore (Billerica, MA). 

Soluplus® (SOLUPLUS), Kollidon®VA64 (PVPVA64), and Kollidon®K30 (PVPK30) 

were kindly supplied by BASF (Ludwigshafen, Germany). We purchased Acetonitrile 

(HPLC grade) from Fisher Scientific (Waltham, MA). All other reagents and solvents were 

analysis grade or better. 

2.4    METHODS  

2.4.1    Physical Mixture Preparation and NPX–MEG Salt Prepared by Solvent 

Method 

An agate mortar and pestle were used to prepare small-batch physical mixtures of 

NPX and MEG at various molar ratios (10:1, 10:4, 10:7, 10:10, 7:10, 4:10, and 1:10) for 

DSC and HSPLM analyses. The large-batch physical mixtures for reactive melt extrusion 

were initially mixed using a mortar and pestle, then we transferred the physical mixtures 

Table 2.1: continued. 
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to plastic bottles and further blended them for 30 min in a Turbula shaker mixer to ensure 

homogenous mixing. 

The NPX–MEG salt was prepared for comparison purposes. As modified from a 

published method[34], the NPX–MEG salt was prepared by dissolving equimolar amounts 

of NPX (16.11 g, 0.07 mol) and MEG (13.67 g, 0.07 mol) in 100 mL of ethanol. This 

solution was stirred at room temperature (25 °C) to allow the ethanol to evaporate. 

Following the complete evaporation of the solvent, we dried the precipitate in a vacuum 

oven for 24 h and stored it in a desiccator at room temperature. 

2.4.2    NPX–MEG Complexes Prepared by Melting Method 

The physical mixtures of NPX and MEG at different molar ratios were melted in 

aluminum dishes in an oven with the temperature setting at 180 °C until a clear melt was 

observed. The material melted in less than 2 min. The aluminum dishes were removed from 

oven and cooled down under room temperature. The samples were then stored in a 

desiccator at room temperature for further analysis. 

2.4.3    NPX ASDs Prepared by Reactive Melt Extrusion 

We performed reactive melt extrusion using a Leistriz Nano 16 extruder (Leistritz 

Corporation, Allendale, NJ). The reactive melt extrusion formulations are shown in Table 

2.2. The screw configuration and barrel temperatures are shown in Figure 2.1. About 100 

g of each formulation was fed into the extruder barrel at a rate of 3.5 g/min using an 

automatic feeder. The rotation speed of the screw was 150 rpm. Because of the good 

thermal stability of NPX and MEG, the barrel temperature was set above the melting point 

of NPX-MEG complex. Barrel temperature for the 1st heating zone, 2nd heating zone, and 

3rd heating zone was set at 150, 160 and 175 °C, respectively. The same screw 
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configuration and barrel temperature setting were used for all the extrusion experiments. 

The extrudates were collected in a stainless steel pan and cooled to ambient temperature. 

The extrudates were milled using a coffee grinder and screened through US mesh #30. The 

milled extrudates were stored in a desiccator at room temperature for further analysis. 

 

Figure 2.1: Screw configuration and barrel temperature setting for the reactive melt 

extrusion. Data in the screw code (GFA X-XX-XX) represent the trilobal screw, pitch 

length (mm) and screw length (mm), respectively. Data in the screw code (KB X-X-XX-

XX) indicate the number of kneading segments, trilobal screw, screw length (mm) and 

the angle (°). 

Table 2.2: Composition and glass transition temperature of NPX ASDs prepared by 

reactive melt extrusion. 

Polymer type 
NPX 

(% Wt) 

MEG 

(% Wt) 

Polymer  

(% Wt) 

Tg 

(°C) 

SOLUPLUS 
48.7 41.3 10.0 27.69 

48.7 - 51.3 31.63 

PVPVA64 48.7 41.3 10.0 32.80 
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48.7 - 51.3 43.70 

PVPK30 
48.7 41.3 10.0 32.25 

48.7 - 51.3 49.00 

 

2.4.4    Differential Scanning Calorimetry (DSC) 

DSC analysis was performed using a Model Q20 DSC (TA Instruments, Newcastle, 

DE) equipped with a refrigerated cooling system 40. We used nitrogen as the purge gas 

with a flow rate of 50 mL/min. The instrument was calibrated with indium. For sample 

analysis, 2–5 mg of material was accurately weighed and sealed inside standard TA DSC 

pans. For the characterization of the NPX and MEG interaction, we heated physical blends 

from 20 °C to 175 °C, cooled them down to −20 °C, and then heated them again from −20 

°C to 175 °C. The temperature ramp rate was kept constant at 10 °C/min. For the 

characterization of ASD, we used a temperature range of 20°C to 175 °C and a heating rate 

of 10 °C /min. The DSC data were analyzed using the TA-Universal Analysis 2000 

software (TA Instruments, Newcastle, DE). The experimental glass transition temperature 

(Tg) of various molar ratios of NPX–MEG amorphous mixtures were compared with the 

theoretical Tg values calculated from Gordon-Taylor equation: 

𝑇𝑔(𝑚𝑖𝑥)  =
𝑇𝑔1 ∙ 𝑊1 + 𝐾 ∙ 𝑇𝑔2 ∙ 𝑊2

𝑊1 + 𝐾 ∙ 𝑊2
 

where Tg (mix) is the Tg of the NPX–MEG amorphous mixtures. The variables W1, Tg1, and 

W2, Tg2 are weight fractions and glass transition temperatures of the components NPX and 

MEG, respectively. The letter K is a constant, and it can be further calculated with Simha–

Boyer equation: 

Table 2.2: continued. 
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𝐾 =
𝜌1 ∙ 𝑇𝑔1

𝜌2 ∙ 𝑇𝑔2
 

where ρ1 and ρ2 are the amorphous densities of NPX (1.265 g/cm3)[30] and MEG (1.100 

g/cm3) [35], respectively.  

Quench cooled NPX was analyzed for Tg. NPX was melted in an aluminum pan at 165 °C. 

The pan was removed from the DSC chamber and quenched in liquid nitrogen to prepare 

amorphous NPX. For Tg identification, the DSC chamber was equilibrated at -30 °C prior 

to sample loading. A temperature ramp from -30 °C to 40 °C at 10 °C/min was used to 

measure the Tg. 

2.4.5    Polarized Light Microscopy (PLM) and Hot-Stage Polarized Light 

Microscopy (HSPLM) 

We conducted the PLM measurement using an Olympus BX-53 polarized light 

microscope (Olympus Corporation of the Americas, Center Valley, PA) equipped with a 

QImaging QICAM digital camera (QImaging, Surrey, Canada). We mounted samples on 

the slides, smeared them with silicone oil, covered them with slips, and observed them 

under the microscope with the same intensity of light. The images were captured using 

QImaging Ocular software (QImaging, Surrey, Canada). 

We used the Linkam T95 hot-stage system (Linkam Scientific Instrument, 

Tadworth, United Kingdom) for hot-stage analysis. The sample slide was placed in the hot-

stage furnace and heated from 25 °C to 180 °C at 10 °C/min. The changes in sample 

morphology during the heating were recorded with Linksys 32 software for further 

analysis. 
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2.4.6    X-Ray Powder Diffraction 

The X-ray diffraction pattern of the samples was determined using a Rigaku 

MiniFlex 600 X-ray diffractometer (Rigaku Corporation, Tokyo, Japan) equipped with a 

copper X-ray Tube (λ = 1.5406 Å). The measurements were conducted with acceleration 

voltage of 40 kV and a current of 15 mA. The scanning range was 2–45° (2-theta), with a 

step width of 0.02°, and the scanning speed was 3°/min. The results were analyzed with 

software MDI Jade 8.5 (Materials Data, Inc., Livermore, CA). 

2.4.7    Fourier Transform Infrared Spectroscopy (FTIR) 

We performed FTIR measurements using a Thermo Nicolet iS50 spectrometer 

(ThermoFisher Scientific, Waltham, MA) equipped with an attenuated total reflection 

accessory. We placed sufficient samples on the germanium crystal surface, then applied 

constant torque using the built-in pressure tower to achieve uniform contact between the 

solid and the crystal. The samples were analyzed at ambient room temperature with the 

following setting: 4,000–600 cm−1, 64 scans, resolution of 2 cm−1. The peak positions were 

determined using OMNIC software peak picking function (ThermoFisher Scientific, 

Waltham, MA). 

2.4.8    X-Ray Photoelectron Spectroscopy 

We obtained XPS data using a PHI VersaProb II spectrometer (Physical 

Electronics, Minneapolis, MN) with monochromic Al Kα radiation (1,486.6 eV) at a pass 

energy of 20 eV and 160 eV for high-resolution and survey spectra, respectively. The 

pressure during analysis was 8.5 × 10−9 Torr. Before the data analysis, the C–C component 

of the C 1s peak was set to a binding energy of 284.8 eV to correct for the charge on each 

sample. We performed quantification and curve fitting in CasaXPS® (Version 2.3.25) 

using elemental sensitivity factors supplied by the manufacturer. 
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2.4.9    Non-Sink Dissolution Testing 

Non-sink dissolution testing was performed in a simulated gastric fluid (0.1 N 

hydrochloric acid, pH 1.2, 900 mL) at 37 °C ± 0.5 °C using the USP Type II apparatus 

(Model Varian VK7025, Agilent Technology Inc., Santa Clara, CA) at a paddle speed of 

50 rpm. We introduced powder samples that contained the equivalent of 150 mg of NPX 

into each dissolution vessel. Three mL dissolution samples were withdrawn at specific time 

points (2, 5, 10, 15, 30, 45, and 60 min) through Vankel Full Flow® 10-µm filters, without 

sample replacement. The samples were filtered through a 0.45-µm filter and diluted with 

an equal volume of acetonitrile to prevent any precipitation. We tested all samples in 

triplicate.  

2.4.10    Intrinsic Solubility of Naproxen in 0.1 N HCl Solution 

In order to measure the intrinsic solubility of naproxen, excess amount of naproxen 

drug substance was added into 0.1 N HCl solution. The vials were stored inside an 

incubator shaker (Lab-Line Instruments, Melrose Park, IL) set at 37 °C and 100 rpm. After 

24 hours of agitation, the suspensions were filtered through 0.2 µm PTFE filters. The 

filtrates were analyzed using the HPLC method described in 2.4.11. 

2.4.11    High-Pressure Liquid Chromatography 

The Dissolution samples were analyzed using a Waters 2998 HPLC system (Waters 

Corporation, Milford, MA) equipped with a Thermo scientific Hypersil GOLD C8, 50 × 3 

column, 3 µm (ThermoFisher Scientific, Waltham, MA). We used the mobile phase, 

consisting of a 75:25 (v/v) mixture of 0.05% (v/v) trifluoroacetic acid in water and 

acetonitrile at a flow rate of 1.0 mL/min with an injection volume of 10 µL. The retention 

time for NPX was 3.5 min and was detected at 236 nm. We constructed calibration curves 

using standard solutions of known concentrations. Empower software was used to 
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automatically calculate the peak area. The linearity, accuracy and precision of the method 

were verified.  

2.4.12    Physical Stability Evaluation 

NPX–MEG complexes prepared using the melting method were sealed in glass 

bottles and stored in the desiccators under ambient temperature for the physical stability 

study. Melt-extruded NPX ASDs were sealed in closed HDPE bottles with a silicate 

desiccator and stored at the ICH (International Council for Harmonization) accelerated 

stability conditions of 40 °C and 75% RH. We removed the bottles from the stability 

chamber (Darwin Chambers Company, St. Louis, MO) at specific time points for analysis. 

2.5    RESULTS AND DISCUSSION 

2.5.1    Reaction between NPX and MEG at Elevated Temperature 

2.5.1.1 Characterization of NPX and MEG Interactions at Elevated Temperature Using 

DSC 

            The Solid-state reaction between acid and base at elevated temperatures is likely to 

occur[36]. However, in the literature, there have been few reports on the acid–base reaction 

during melt extrusion. The pKa rule is generally accepted to predict salt formation in 

solution. Since the pKa difference between NPX and MEG is 3.88, NPX is likely to react 

with MEG to form an organic salt in solid state at elevated temperature. 

The interaction between NPX and MEG in physical mixtures at elevated 

temperature was initially studied using DSC analysis with a heating-cooling-heating 

temperature cycle. Figure 2.2A and Figure 2.2B present the thermograms of NPX–MEG 

mixtures at various molar ratios from the first and second heating scans, respectively. The 

numbers in the sample labels represent the molar ratio between NPX and MEG. As shown 



 84 

in Figure 2.2A, pure MEG and NPX melted at 129 °C and 155 °C, respectively. The NPX–

MEG binary mixtures demonstrated interesting thermal behaviors. We observed 

endothermic events (124 °C) below the individual melting points of both NPX and MEG 

in all binary NPX–MEG mixtures. We attributed these low “eutectic-like” endothermic 

events to the suppression of MEG melting in the presence of NPX. Except for the 10–4, 

10–10 and 1–10 NPX–MEG samples, low “eutectic-like” melting point depression of NPX 

was also detected in 10–1, 10–7, 7–10, and 4–10 NPX–MEG samples. However, the 

melting peak of NPX was not observed in the samples of 10–4 and 1–10 NPX–MEG 

samples. In the 10–4 NPX–MEG sample, a new sharp melting peak at 133 °C appeared 

after the melting of MEG at 124 °C. The possible reason for this result might be that all of 

NPX fully formed a eutectic mixture with MEG at this molar ratio. For the 1–10 NPX–

MEG sample, we attribute the disappearance of the NPX melting peak to the dissolution 

of NPX crystals in the molten MEG.  

 

 

Figure 2.2: continued to next page. 
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Figure 2.2: DSC thermograms of NPX, MEG and physical mixtures of different molar 

ratios. (A) The first heating scan; (B) The second heating scan. The numbers in the 

sample names represent the molar ratio between NPX and MEG. For example, “10–1 

NPX–MEG” mixture contains NPX and MEG at 10 to 1 molar ratio. 

The most interesting thermogram was observed with NPX and MEG at a 1:1 molar 

ratio. As shown in Figure 2.2A, it shows an endothermic event at 124 °C, an overlapping 

endothermic event at 128 °C, an exothermic event at 138 °C, and a sharp endothermic peak 

at 162 °C. The thermal event at 162 °C is consistent with the melting point of the NPX–

MEG salt prepared by solvent method. We hypothesized that these two overlapping 

thermal events at 128 °C and 138 °C resulted from the reaction between NPX and MEG at 

the elevated temperature. Figure 2.3 also shows similar thermal behaviors that we observed 

when polymers including SOLUPLUS, PVPVA64, and PVPK30 were incorporated into 

the equimolar mixture of NPX and MEG at 10%, w/w. 
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Figure 2.3: DSC thermograms of NPX–MEG physical mixtures with or without the 

presence of polymers. The molar ratio between NPX and MEG was 1:1 and the 

percentage of the polymer was 10%, w/w. 

The second heating scans of all samples are overlaid in Figure 2.2 B. Pure NPX and 

MEG showed a very strong recrystallization tendency. NPX melt crystallized during the 

cooling (data not presented) and melted again at 155 °C in the second heating. We were 

able to prepare amorphous NPX by quenching NPX melt in liquid nitrogen. Tg of NPX was 

measured to be 5 °C. MEG remained amorphous during the cooling. In the second heating, 

the glass transition event was observed at 17 °C. Amorphous MEG recrystallized at 79 °C 

before melting again at 125 °C. Except for the 10–1 and 1–10 NPX–MEG samples, all 

samples revealed a single Tg without any additional thermal events in the second heating. 

We conclude that NPX and MEG each fully dissolved in the other to form a homogenous 
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amorphous dispersion during the first heating. As presented in the later sections, we used 

PLM and XRPD analysis to confirm the amorphous properties of these samples.  

The glass transition temperature (Tg) plays a pivotal role in physical stability, 

chemical stability, and mechanical properties of amorphous materials. Figure 2.4 presents 

a comparison between experimental and theoretical Tg as a function of NPX weight 

percentages. The theoretical Tg was calculated using the Gordon–Taylor equation. This 

equation was based on the condition that the entropy of mixing in an amorphous mixture 

is purely combinatorial[37]. Any significant deviation of the experimental Tg from the 

theoretical Tg indicates strong intermolecular interactions between individual components. 

In the current study, we observed a large positive deviation of experimental Tg from 

theoretical Tg, which suggests a strong attractive interaction between NPX and MEG. The 

largest deviation of 30.96 °C was observed when NPX and MEG were equimolar, which 

corresponded to 54.12% NPX, w/w. We concluded that the positive deviation in the Tg of 

amorphous NPX–MEG complexes was due to the strong acid–base interaction between 

NPX and MEG. Strong interaction between individual components affects not only the 

miscibility, but also the physical stability of the resulting solid dispersions. This occurs 

because the stronger the intermolecular interactions are, the higher the Tg and a greater 

amount of thermal energy is required to attain the molecular mobility necessary to undergo 

the transition.  

This large positive deviation of experimental Tg from theoretical Tg has been 

reported in a study that investigated various amorphous salt forms of propranolol and 

nicardipine with different counterions[6]. Similar phenomena have also been reported for 

polymeric salts and inorganic salts[18, 38]. In addition, the networking of strong ionic 

interactions and the hydrogen bonding between the multiple components make salts an 

attractive tool to design supramolecular drug-delivery systems[39, 40]. 



 88 

 

Figure 2.4: Comparison of experimental Tg with theoretical Tg calculated with Gordon-

Taylor equation for NPX–MEG complexes containing different percentages of NPX. 

2.5.1.2 Characterization of NPX and MEG Interactions at Elevated Temperature Using 

HSPLM 

We applied HSPLM to further understand the thermal events observed in the DSC 

analysis. Figure 2.5 shows a correlation between the DSC thermogram and the HSPLM 

photomicrographs observed at the 10 °C/min heating rate for the physical mixture of 

equimolar NPX and MEG. NPX and MEG were easily distinguishable under a light 

microscope because NPX crystals are irregularly spherical and MEG crystals are needle 

shaped. When NPX and MEG were tested individually, no thermal event was observed 

under HSPLM until the respective melting temperatures (133 °C for MEG and 159 °C for 

NPX) were reached. For the NPX–MEG physical mixture, MEG began to melt around 

125 °C. As NPX crystals gradually dissolved in the molten MEG, a new crystalline phase 
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began to grow out of the melt. The solubilization of NPX in MEG melt overlapped with 

the formation of new crystals. The newly formed crystals melted at 165 °C. The melting 

temperature of this new crystalline material agreed well with that of the NPX–MEG salt 

prepared with the solvent method. Based on this result, we concluded that the crystalline 

phase was the crystalline NPX–MEG salt. Similar results were observed in the physical 

mixture containing 10% (w/w) polymers. These polymers did not interfere with the 

formation and melting of the NPX–MEG salt. The results of DSC and HSPLM analyses 

indicate that NPX and MEG reacted with each other and formed an in situ NPX–MEG salt 

when thermally treated.  

 

 

Figure 2.5: DSC thermogram and HSPLM photomicrographic images of an equimolar 

mixture of MEG and NPX. The heating rate was 10 °C/min. NPX crystals are cubic-like, 

while MEG crystals are needle-shaped. 
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                Crystallization of the molecular complex following the solubilization of one 

component into the melt of the other component has been reported with other drug delivery 

systems, including coamorphous materials and cocrystals. Jensen et al.[13] investigated the 

formation mechanism of coamorphous materials of indomethacin–tryptophan and 

furosemide–tryptophan during ball milling. It was reported that the formation of the 

coamorphous material was a continuous solid dissolution process, and the single 

component that more rapidly amorphized served as a solvent for the other component upon 

ball milling. The rate of amorphizing was the rate limit step for the formation of the 

coamorphous material. However, they did not find any intermediate state in the milling 

process. The reason for this phenomenon was attributed to the rate of amorphizing in ball 

milling is very slow compared to the melting method. The real-time monitoring of in situ 

formation of intermediates during the mechanochemical milling is challenging[41]. In the 

current study, the amorphization rate during melting process for the component with the 

lower melting point was much faster and produced a large amount of “solvent” for the 

higher melting point component. The higher melting point component first dissolved in the 

molten component and was then transformed into a more stable crystalline state. Finally, 

this new crystalline material melted with further increase in temperature. Similar results 

have been reported in thermally-induced carbamazepine and nicotinamide cocrystal 

formation[26, 42]. In conclusion, the results from the HSPLM analysis indicate that NPX 

and MEG formed an NPX–MEG salt in situ at elevated temperature. 

2.5.1.3 Characterization of NPX–MEG Molecular Interactions Using FTIR and XPS 

Methods 

Acid and base reactions can be categorized as an ionic interaction with proton 

transfer or a nonionic interaction with varying degrees of proton sharing through H-
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bonding[43]. A complete proton transfer between the acidic and the basic components 

occurs when the pKa value (pKa of base – pKa of acid) is larger than 3.0. The pKa of NPX 

and MEG are 4.15 and 8.03, respectively. Therefore, we anticipated the transfer of protons. 

However, the transfer of protons between the two compounds is also affected by the 

packing of the molecules and the process conditions[43]. We have utilized spectroscopic 

tools, including FTIR and XPS, to determine whether the interaction between NPX and 

MEG was ionic with proton transfer or nonionic with proton sharing. 

We applied FTIR to investigate the nature of the intermolecular interaction between 

NPX and MEG in the complex formed at elevated temperature. The intermolecular ionic 

and hydrogen bonding in NPX salt, cocrystals, and solid dispersions with PVPK30 have 

been well explored with FTIR so far[44-46]. Figure 2.6 presents the FTIR spectra of 

various samples. For NPX–MEG complexes, the most significant spectra change occurred 

in two regions. The first region is between 3,000 and 3,500 cm−1, a region where the bands 

for O−H and N−H stretches are positioned. The second region is between 1,500 and 1,800 

cm−1, at which the bands for C=O stretch of the carboxylic acid groups are positioned. 

Within the second region, the symmetric C=O stretch of the unionized carboxylic acid 

group can be located between 1,700 and 1,725 cm−1, and the antisymmetric C=O stretch of 

the respective ionized carboxyl group can be located between 1,540 and 1,650 cm−1[47]. 
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Figure 2.6: FTIR spectra of NPX, MEG, NPX–MEG salt prepared by solvent method, 

and the selected 10-4 NPX–MEG, 10-10 NPX–MEG and 4-10 NPX–MEG complexes 

prepared by melting method. 

For the NPX drug substance, one broad band at 3,197 cm−1 was attributed to 

hydroxyl group stretching of the carboxyl acid group. Two sharp bands at 1,726 and 1,684 

cm−1 were assigned to the free carboxylic acid group (monomer) and hydrogen bonded 

carboxylic acid group (dimer), respectively. Based on the intensity of bands 1,726 and 

1,684 cm−1, the majority of the NPX molecules were not engaged in hydrogen bonding. 

For MEG, two bands at 3,327 and 3,242 cm−1 were attributed to the stretch of N−H and 

O−H groups, respectively. In FTIR spectra of the crystalline NPX–MEG salt prepared by 

solvent method, a band for the C=O stretch of the ionized carboxyl group was observed at 

1,558 cm−1, while the C=O stretch band for the unionized carboxylic acid was absent. 

Furthermore, the band for N−H stretching shifted from 3,327 cm−1 to 3,370 cm−1, 
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indicating that the secondary amine group of MEG was involved in the salt formation with 

NPX. 

Compared to the NPX–MEG salt prepared by the solvent method, the 10–10 NPX–

MEG sample showed a similar spectrum. The presence of C=O stretching of the ionized 

carboxyl group at 1,558 cm−1 and the absence of C=O stretching of the carboxylic acid 

group at 1,726 cm−1 suggested salt formation between NPX and MEG upon melting. A 

broader peak at 3,327 cm−1 also indicated that the change of the molecular arrangement 

after amorphization of the salt and the hydroxyl groups of MEG could also be involved in 

the formation of the stable amorphous system. The similar spectrum was also obtained in 

the 4–10 NPX–MEG sample, which indicated that most of the NPX complex with MEG 

forms a salt. For the 10–4 NPX–MEG sample, salt formation also can be inferred from the 

appearance of the ionized carboxyl group absorption peak at 1,558 cm−1. Due to the excess 

of NPX, the carboxylic acid peak at 1,726 cm−1 still could be observed. This sample showed 

the presence of both crystalline free acid as well as the ionized form. 

XPS generates nitrogen 1s spectra with the binding energy specific to the nitrogen 

chemical, and the local electronic environment and has recently been shown to be 

particularly useful at identifying the nature of intermolecular interactions in two-

component acid–base systems. This results in a large positive chemical shift due to nitrogen 

protonation[48, 49]. Figure 2.7 shows the nitrogen 1s peak in the XPS spectra of MEG, the 

NPX–MEG salt prepared by the solvent method, and the NPX–MEG equimolar complex 

prepared by the melting method. First, due to the secondary amine group (C−NH−) in the 

chemical structure of MEG, a single nitrogen 1s photoemission peak around 399.3 eV was 

observed for pure MEG. For the NPX–MEG salt prepared by solvent method, a new 

nitrogen 1s photoemission peak was observed at a higher binding energy (401.5 eV) 

because of the nitrogen protonation of the secondary amine group (C−NH2+−) in MEG. 
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The binding energy shift as a result of complete protonation is typically in the range of 1.3–

2.5 eV for secondary amine group, as reported in the literature[19, 48]. The NPX–MEG 

complex prepared by the melt method shows the same new nitrogen 1s photoemission peak 

at 401.5 eV. The nitrogen XPS result reveals that nitrogen atoms of MEG in the NPX–

MEG complex (C−NH2+−) have acquired a positive charge through proton transfer from 

the carboxylic acid group of NPX, shifting its photoemission to a higher energy. The XPS 

result indicates that the interaction in the NPX–MEG complex prepared by the melt method 

is identical to the ionic bonding in the NPX–MEG salt prepared by solution state. 

 

 
Figure 2.7: N 1s XPS spectra of MEG, NPX–MEG salt prepared by solvent method and 

NPX–MEG equimolar complex prepared by melting method. 

Based on the C=O bond stretch shift in FTIR spectra and based on the binding 

energy shift in the nitrogen 1s region of the XPS spectra, we conclude that the interaction 

between NPX and MEG at the elevated temperature was ionic with proton transfer. 
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2.5.1.4 Characterization of the Physical Stability of NPX–MEG Complex Using PLM 

and XRPD 

It was thought that the strength of the ionic interaction will not only affect the Tg 

but also the physical stability of the amorphous mixtures, which is controlled by 

thermodynamic and kinetic factors. Both NPX and MEG have a strong crystallization 

tendency. Pure NPX has a strong recrystallization tendency and amorphous NPX could 

only be prepared by quenching NPX melt in liquid nitrogen. When exposed to ambient 

temperature, the resulting amorphous NPX would recrystallize within one minute. The 

recrystallization tendency of NPX results from the strong stacking tendency of aromatic 

naphthalene and the hydrogen bonding tendency of carboxylic acid groups[45]. A strong 

recrystallization tendency is also observed in MEG DSC result, which is a Class II 

compound according to the classification method proposed by Taylor’s group[50].  

We used XRPD and PLM to evaluate the physical stability of the NPX–MEG 

samples prepared by the melting method. We stored samples along with silica gel in glass 

bottles at 25 °C. As shown in Figure 2.8A, except for the 10–1 and 1–10 NPX–MEG 

samples, all other samples prepared using the melt method were amorphous at their initial 

time point. After seven months of storage, all the samples were characterized with XRPD, 

and the patterns are overlaid in Figure 2.8B. Only the 10–10 and 10–7 NPX–MEG samples 

remained amorphous. Characteristic peaks (4.358°, 9.177°, 18.161° and 21.881°), which 

appeared in the 4–10 and 7–10 NPX–MEG samples indicate that both materials 

recrystallized into a mixture of NPX–MEG salt and MEG crystals. For the 10–1 and 10–4 

NPX–MEG samples, the characteristic peaks (6.739°, 12.699°, 18.800° and 22.500°) 

indicate that crystalline diffraction was primarily attributed to NPX crystals. In conclusion, 

the component in molar excess was the component that recrystallized during the storage. 
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Figure 2.8: XRPD patterns of the NPX–MEG complex at different molar ratios. (A) at 

initial time point; (B) following 7 months storage at 25 °C/desiccator. 
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PLM, a more sensitive method than XRPD[12], was also used to further investigate 

the physical stability of 10–7 and 10–10 NPX–MEG samples, and the results are presented 

in Figure 2.9. At the initial time point, birefringence was not observed, and both samples 

were amorphous. The presence of a low level of crystalline material was observed with 

both samples, and the amount of the crystal clusters for the 10–7 NPX–MEG sample was 

significantly more than that of the 10–10 NPX–MEG sample following seven months of 

storage. We conclude that NPX–MEG was the most stable amorphous salt at an equimolar 

ratio. 

 
Figure 2.9: PLM images of 10-7 NPX–MEG and 10-10 NPX–MEG samples at t=0 month 

(Top); and following 7 months storage, at 25 °C sealed in glass bottles with desiccator 

(Bottom). 

The physical stability of amorphous NPX–MEG at an equimolar ratio could be 

attributed to the highest Tg and the strong ionic interaction between NPX and MEG, as 

discussed in the thermal analysis section. However, there is no clear correlation between 
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the Tg values and physical stabilities of 10–7 and 7–10 NPX-MEG samples. Even though 

both samples have a similar Tg, the 10–7 NPX–MEG sample was more physically stable 

than the 7–10 NPX–MEG sample. This observation suggests that Tg may not be the only 

factor in defining the physical stability of NPX–MEG dispersions. Other factors also play 

a crucial role in governing the physical stability of solid dispersions, such as glass-forming 

ability, recrystallization tendency of the compounds, and the combining effects of 

thermodynamic and kinetic factors that govern the formation of nuclei and crystalline 

growth[51]. 

A similar phenomenon has been observed for indomethacin–meglumine 

amorphous salts prepared by the solvent method[12]. In that study, a 1:1 indomethacin–

meglumine formulation was more physically stable than a 3:1 indomethacin–meglumine 

formulation. For a 3:1 indomethacin–meglumine formulation, excess indomethacin 

crystalized during heating. With the development of co-amorphous drug delivery systems, 

several reports also focused on the influence of small molecules on the physical stability 

of the NPX amorphous state[30, 52-54]. The results demonstrated that hydrogen bonding 

between the carboxylic acid group of NPX and small molecules was the primary reason for 

the improved physical stability during the storage and for the supersaturation during 

dissolution testing. The optimal molar ratio between NPX and the small molecules was 

reported to be 1:1. NPX crystal lattice is based on the π–π interaction between NPX 

naphthalene rings and the hydrogen bonding between carboxylic groups[45]. Perlovich et 

al. studied the contribution of different energetic terms of the structural fragments of NPX 

molecule on stabilizing NPX crystal lattice[55]. It was reported that the most significant 

impact (43.2%) was attributed to the π–π interaction between NPX naphthalene rings. The 

crystal structure of MEG is mainly stabilized by the intermolecular hydrogen bonding 

between the nitrogen atom and one of the hydroxyl groups of an adjacent molecule[35]. In 
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this study, FT-IR and XPS data indicated the carboxylic acid group of NPX complexed 

with secondary amine group of MEG by ionic interaction and formed a heterodimer. Based 

on the energy barrier for the crystallization of NPX, we infer the MEG cations are position 

between the NPX naphthalene rings.  This spacial arrangement attributes to the physical 

stability of amorphous NPX–MEG complex at equimolar ratio. Similar microstructure has 

been reported in the flunixin-MEG complex[56]. In its crystal structure, flunixin molecules 

are inserted between the MEG layers and are linked by hydrogen bonding. 

            In summary, our data indicate that the ionic interaction between NPX and MEG 

and the unique microstructure of the NPX–MEG complex improved the physical stability 

of amorphous NPX by inhibiting the π–π interaction of NPX naphthalene rings and NPX 

dimer formation induced by the hydrogen bonding between the carboxylic groups of NPX. 

2.5.2    Properties of Amorphous NPX Solid Dispersions Prepared by Reactive Melt 

Extrusion 

2.5.2.1    Investigations of NPX and MEG Interaction in ASDs Using FTIR and XPS 

Methods 

The All the samples have been characterized with FTIR after the reactive melt 

extrusion, and the results are shown in Figure 2.10. The data indicate that the presence of 

polymers did not impact the NPX–MEG amorphous salt formation during reactive melt 

extrusion. In Figure 2.10A, for NPX ASDs with MEG prepared by reactive melt extrusion, 

the significant decreasing peak intensity of the carboxylic acid group at 1,726 and 1,684 

cm−1 and the appearance of the ionized carboxyl group absorption peak at 1,558 cm−1 

indicate an acid–base interaction between NPX and MEG during the extrusion process. A 

broader peak that appeared at 3,327 cm−1 also suggests the amorphization of NPX-MEG 

salt. Although we could still observe small absorption bands at 1,776 cm−1 in the NPX–
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MEG–SOLUPLUS, NPX–MEG–PVPVA64, and NPX–MEG–PVPK30 ASDs, this may 

be attributed to carbonyl groups from the polymers. 

 

 

Figure 2.10: continued next page. 
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Figure 2.10: FTIR spectra of NPX ASDs with MEG (A) and without MEG (B). 

In summary, the FTIR results of the NPX–MEG–SOLUPLUS, NPX–MEG–

PVPVA64 and NPX–MEG–PVPK30 ASDs were similar to the samples prepared by the 

melting method, and the addition of polymers did not influence salt formation. Figure 2.10 

B shows the FTIR spectrum of the conventional NPX ASDs without MEG. The ionized 

carboxyl group absorption peak was not observed with the NPX–SOLUPLUS, NPX–

PVPVA64, and NPX–PVPK30 ASDs since the acid–base interactions could not take place 

between NPX and the polymers. The absorption peak of the free carbonyl group at 1,726 

cm–1 for NPX still could be observed in the all three ASDs, and the relative peak intensity 

decreased in the following order: SOLUPLUS > PVPVA64 > PVPK30. The reason for this 

result could be attributed to the different hydrogen bonding abilities of polymers with NPX. 

Several reports have shown that the amide group of PVPK30 has a strong hydrogen 

bonding ability with the NPX carboxylic acid group, leading to the reduction in the peak 
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intensity of the NPX free carbonyl group at 1,726 cm–1[45, 57, 58]. Since PVPVA64 has 

fewer amide groups than PVPK30, we can infer that the hydrogen bonding ability of 

PVPVA64 is less than that of PVPK30. The order of reduction in peak intensity at 1,726 

cm–1 indicates that PVPK30 has the strongest hydrogen bonding interaction with NPX, 

while SOLUPLUS has the weakest hydrogen bonding interaction with NPX. The 

interaction between NPX and polymers also affects the physical stability of the solid 

dispersion as discussed in the following section. 

XPS data further confirmed the FTIR results, as shown in Figure 2.11. There are 

two nitrogen environments in NPX–MEG ASDs. One is the amide group of the polymers 

(i.e., SOLUPLUS, PVPVA64, and PVPK30 have amide groups in their chemical 

structures) and the other is the amine group of MEG. The two nitrogen environments result 

in two X-ray photoemission peaks at 401.5 and 399.7 eV, respectively. The nitrogen 1s 

photoemission peak that appeared at 399.7 eV is attributed to the amide group of the 

polymers. Due to the electron-withdrawing nature of the carbonyl group, where the 

electrons of the nitrogen atom are delocalized by resonance, the amide group of the 

polymer shows 0.4 eV higher bonding energy than the amine group of the MEG. The 

nitrogen 1s photoemission peak that appeared at 401.5 eV matched well with the nitrogen 

1s photoemission peak of the NPX–MEG salt, which suggests that NPX and MEG formed 

a salt during reactive melt extrusion.  
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Figure 2.11: N 1s XPS spectra of NPX–MEG salt prepared by solvent method and NPX–

MEG ASDs prepared by reactive melt extrusion with different polymers.   

2.5.2.2    Evaluation of Dissolution Performance Using Non-Sink Dissolution Testing 

The solubility enhancement achievable with melt-extruded NPX ASDs was 

evaluated using a non-sink dissolution testing. The results are presented in Figure 2.12. We 

used 0.1 N HCl as the dissolution medium to simulate the gastric environment. The 

equilibrium solubility of NPX in 0.1 N HCl at 37 °C was measured to be 29.21 µg/mL. We 

used sufficient amounts of ASD samples for the dissolution testing so that the nominal 

concentration of NPX was 166.7 µg/mL.   

When the dissolution profiles (solid circle, Figure 2.12A, C, and E) of the physical 

mixtures without MEG were compared to the corresponding profiles (open circle, Figure 

2.12B, D and F) NPX-polymer ASDs, we found no significant differences. For the physical 

mixtures, the concentration (ranging between 25 and 29 µg/mL) of NPX at 60 min was 
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close to its equilibrium solubility in 0.1 N HCl solution. The absence of dissolution 

improvement in the physical mixtures containing MEG was due to the inability of MEG to 

elevate both the microenvironment and macroenvironment pH of the dissolution medium. 

MEG dissolved quickly in 0.1 N HCl solution to impact microenvironment pH. As far as 

the macroenvironment pH is concerned, dissolved MEG had little impact on the pH of the 

dissolution media, and it remained the same following the dissolution testing. 
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Figure 2.12: continued next page. 
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Figure 2.12: Dissolution profiles of NPX melt–extruded ASDs with or without MEG, and 

their matching physical mixtures in 900 mL 0.1 N HCl solution using USP apparatus II at 

50 rpm (n=3). 

Surprisingly, the dissolution rate of NPX–polymer ASDs was slower than the 

corresponding physical mixtures, and supersaturation was not achieved. A comparison of 

the dissolution profiles of NPX–polymer ASDs and their corresponding physical mixtures 

are presented in Figure 2.12A (SOLUPLUS), Figure 2.12C (PVPVA64), and Figure 2.12E 

(PVPK30). The improvement in the dissolution performance of these ASDs was 

anticipated, since NPX was dispersed at the molecular level and was present at a higher 

energy stage in these samples. Based on the visual observation, the poor disintegration of 

these melt-extruded granules and their fast crystallization contributed to the poor 

dissolution performance of these ASDs. NPX ASD granules aggregated to form large 

chunks as soon as they were introduced into the dissolution medium. We used the PLM 

technique to study the behavior of NPX–polymer ASDs in contact with the dissolution 

medium, and the results are presented in Figure 2.12. When NPX–PVPK30 ASDs came 

into contact with 0.1 N HCl solution, disintegration of the granules did not occur. Instead, 

NPX immediately crystallized on the surface of the ASD particles, and we observed rapid 

growth of the crystals. After 5 min, the surface of the ASDs was fully covered with NPX 
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crystals. The presence of hydrophobic NPX crystals on the surface of the granules could 

also explain the aggregation of ASD granules in the dissolution medium. 

When MEG was present in ASDs, the dissolution rate of NPX ASDs was 

significantly improved and supersaturation was achieved across all three formulations. A 

comparison of the dissolution properties of the NPX ASDs containing MEG, and their 

matching physical mixtures, is presented in Figure 2.12B (SOLUPLUS), Figure 2.12D 

(PVPVA64), and Figure 2.12F (PVPK30). At 60 min, the concentration of NPX was 174%, 

177%, and 165% of equilibrium solubility for NPX–MEG–SOLUPLUS, NPX–MEG–

PVPVA64, and MEG–NPX–PVPK30 ASDs, respectively. 

We attribute the improved dissolution performance to three factors: (1) MEG and 

NPX reacted and formed a salt in situ during the melt extrusion; therefore, the 

microenvironment pH was elevated by MEG to enhance the solubility of NPX. (2) The 

equilibrium solubility of NPX and the NPX–MEG salt in 0.1 N HCl solution was 

determined to be 29.21 and 44.87 µg/mL, respectively. (3) The MEG-NPX salt improved 

the disintegration of the melt-extruded granules and changed the recrystallization behavior 

of NPX in the dissolution medium. 

We also used PLM to examine the behavior of the NPX–MEG–polymer ASDs in 

contact with 0.1 N HCl solution, and the results are presented in Figure 2.13. As discussed 

earlier, the granules did not disintegrate, when NPX–PVPK30 ASDs came into contact 

with the 0.1 N HCl solution. In contrast, NPX–MEG–PVPK30 ASDs granules 

disintegrated as soon as they came into contact with the 0.1 N HCl solution. After 5 

minutes, NPX recrystallization was also observed. However, the NPX crystals were much 

smaller than the crystals observed with the NPX–PVPK30 ASDs. The same dissolution 

behaviors were observed in SOLUPLUS and PVPVA64 polymer carrier ASDs as well. 
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Figure 2.13: PLM images of NPX–MEG ASD and NPX–MEG–PVPK30 ASD in contact 

with 0.1 N hydrochloric acid solution (X100 magnification). 

The incorporation of pH-modifiers in ASDs has been reported to be an effective 

technology for enhancing the dissolution performance and bioavailability of poorly water-

soluble compounds[59, 60]. This enhancement has been attributed to the modulation of 

microenvironment pH and the maintenance of the structural amorphousness of a drug via 

the intermolecular hydrogen-bonding between the drug and the polymer carrier. However, 

in those studies, the investigation of interaction between drugs and pH-modifiers in their 

solid and aqueous states was not conducted. Our study demonstrates that salt formation 

between an acidic drug and an alkaline excipient during melt extrusion can substantially 

change the dissolution property of a drug. Similar observations also have been reported in 

the freeze drying and spray drying process[61, 62]. Finally, it also has been reported that 

MEG can form molecular complexes with drugs in solution to achieve the solubilization 

effect, due to the ionic interaction between drugs and MEG[39, 63]. Our preliminary data 
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indicate that NPX and MEG have the potential to from a molecular complex in dissolution 

media. The complexation between NPX and MEG in aqueous media requires further 

investigation.  

2.5.2.3    Evaluation of Physical Stabilities of NPX ASDs 

We employed PLM and XRPD to determine the physical state of ASDs prepared 

by reactive melt extrusion and stored along with a desiccant in induction-sealed HDPE 

bottles stored at 40 °C and 75% RH for four months. Figure 2.14 and Figure 2.15 show the 

results of PLM and XRPD, respectively. These results indicate that NPX–MEG ASDs were 

physically more stable than the conventional NPX ASDs without MEG. NPX–MEG–

PVPVA64 and NPX–MEG–PVPK30 ASDs remained amorphous following four months 

of storage under the accelerated storage conditions, and low level of crystallization was 

observed with NPX–MEG–SOLUPLUS sample. In contrast, the conventional NPX ASDs 

without MEG showed a different extent of recrystallization. As shown in Figure 2.14A and 

Figure 2.14A, the PLM and XRPD data indicate that the initial physical state of all samples 

was amorphous, since no crystal cluster was detected on PLM observation, and the halo 

patterns were also shown on the XRPD profiles. However, under accelerated storage 

conditions, the samples presented different physical stabilities. PLM images of samples 

following 4 months storage are presented in Figure 2.14B. For conventional NPX ASDs 

without MEG, the type of polymer used has a great influence on physical stability. NPX–

SOLUPLUS ASD showed the poorest physical stability. After one week of accelerated 

stability study, many small crystal clusters were detected by PLM in the NPX–SOLUPLUS 

ASD (Figure 2.16). As time passed, the small crystal clusters grew quickly and formed 

long columnar crystals both inside and outside the NPX–SOLUPLUS ASD sample 

particles after one month of accelerated stability study (Figure 2.16). The characteristic 
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peak positions shown on the XRPD profile in Figure 2.15B suggests that the 

recrystallization derives from NPX crystals. 

We observed a similar phenomenon in the NPX–PVPVA64 ASD sample after three 

weeks of accelerated stability study. The XRPD profile suggests that the recrystallization 

was due to NPX crystals. The major difference is that the crystal morphology changed from 

acicular crystals to plate-shaped crystals. This can be attributed to the ability of the 

polymers to hydrogen bond to the surface of the NPX recrystallization particle, leading to 

a change in NPX crystallization tendency and morphology [64]. Interestingly, no 

recrystallization was observed in the NPX–PVPK30 ASD sample during the accelerated 

stability study, which was confirmed by PLM and XRPD. 

Similar observations were also found by Paudel and Van den Mooter in their 

investigation of the miscibility and physical stability of NPX–PVPK25 ASD prepared by 

the melting method[65]. They found that NPX had a strong hydrogen bonding interaction 

with the amide group of PVPK25. The solubility of crystalline NPX in PVPK25 was as 

high as 70% (w/w). The different physical stability of the NPX ASDs with different 

polymers can be attributed to the anti-plasticizing effect (Tg) and the hydrogen bonding 

interaction ability of the polymers. Since the Tg of polymers decreased in the following 

order: PVPK30 (Tg = 149 °C) > PVPVA64 (Tg = 101 °C)  > SOLUPLUS (Tg = 70 °C); the 

Tg of NPX ASDs with different polymers also follow the same order: NPX-PVPK30 (Tg = 

49 °C) > PVPVA64 (Tg = 43 °C)  > SOLUPLUS (Tg = 32 °C). Furthermore, as discussed 

in the FTIR characterization section, compared to PVPVA64 and SOLUPLUS, PVPK30 

has the strongest hydrogen bonding interaction with NPX. Both of these factors give rise 

to the excellent physical stability of the NPX–PVPK30 ASD. 

Compared to the conventional NPX ASDs without MEG, except for the small 

amount of recrystallization we observed in NPX–MEG–SOLUPLUS, the NPX–MEG 
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ASDs were physically more stable and remained amorphous following four months of 

storage under accelerated storage conditions. As shown in Figure 2.14B, NPX–MEG–

SOLUPLUS showed plate-shaped crystals that formed inside the sample particles. The 

characteristic peak positions shown on the corresponding XRPD profile in Figure 2.15B 

suggests that this recrystallization results from NPX–MEG salt crystals. In addition, the 

amount of the recrystallization in NPX–MEG–SOLUPLUS was much less than NPX–

SOLUPLUS ASD sample. No recrystallizations were detected by PLM or XRPD during 

the accelerated stability study in both NPX–MEG–PVPVA64 and NPX–MEG–PVPK30. 

The results suggest that the addition of MEG in the reactive melt extrusion formulation 

significantly enhances the physical stability of NPX ASDs.  
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Figure 2.14: PLM images of NPX ASDs prepared by reactive melt extrusion (A) Initial; 

(B) Following 4 months storages at 40 °C/desiccator. 
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Figure 2.15: XRPD patterns of NPX ASDs prepared by reactive melt extrusion (A) 

Initial; (B) Following 4 months storages at 40 °C/desiccator. 
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Figure 2.16: PLM images of NPX–SOLUPLUS ASD physical stability at different time 

points. 

2.6    SUMMARY 

Our study demonstrated the in-situ salt formation between NPX and MEG during 

the reactive melt extrusion process. We directly observed this reaction using DSC and 

HSPLM techniques. A large positive deviation from the theoretical values of the 

experimental Tg of the NPX–MEG complex prepared using the melt method with various 

molar ratios suggests that a strong ionic interaction occurs between NPX and MEG. The 

transfer of protons from NPX to MEG during the complex formation was further confirmed 

by FTIR and XPS analyses. The physically most stable complex was formed when NPX 

and MEG were present at a 1:1 molar ratio. The presence of a polymer did not interfere 

with the reaction. We successfully prepared NPX–MEG ASDs with SOLUPLUS, 

PVPVA64, and PVPK30 by reactive melt extrusion. Non-sink dissolution testing and 

accelerated stability study indicated that in situ salt formation was an effective approach to 

improve the dissolution properties and the physical stability of NPX ASDs. The ionic 
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interaction between NPX and MEG contributed to the improved physical stability of NPX 

ASDs during accelerated stability testing, and it enhanced drug dissolution in aqueous 

media. 
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Chapter 3: Influence of lidocaine forms (salt vs. freebase) on properties 

of drug–Eudragit® L100-55 extrudates prepared by reactive melt 

extrusion 3 

3.1    ABSTRACT 

This study examines the preparation of sustained-release lidocaine polyelectrolyte 

complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic 

polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine–

Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates 

was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that 

polyelectrolyte could only form via the acid–base reaction between Eudragit L100-55 and 

lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically 

more stable than the lidocaine hydrochloride extrudate during the storage under stressed 

condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer 

solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% 

drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5.  

Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-

55 was solubilized and sustained-release was not achieved in water and aqueous media at 

pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug 

release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with 

drug being released over 10 hours. The release of lidocaine hydrochloride from the 

extrudates in these media was primarily controlled by microenvironment pH. It is 

 
3 Published in: X. Liu, X. Ma, E. Kun, X. Guo, Z. Yu, F. Zhang, Influence of lidocaine forms (salt vs. 

freebase) on properties of drug–eudragit® L100-55 extrudates prepared by reactive melt extrusion, 

International Journal of Pharmaceutics 547(1) (2018) 291-302. Xu Liu is the major contribution to the 

research and draft of the article 
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concluded that different forms of lidocaine resulted in different drug–polymer interactions 

and distinctive physicochemical properties of extrudates. 

 3.2    INTRODUCTION 

Over the past decades, great efforts have been made to develop novel drug delivery 

systems that can sustain drug release to achieve the required duration of therapeutic 

activity, to control the drug release rate, or to deliver the drug to specific tissues [1]. 

Pharmaceutics scientists have given considerable attention to polyelectrolyte complexes, 

which have wide applications in developing sustained drug delivery system, controlled 

drug delivery, functional nanomaterials, gene therapy, and oral delivery of macromolecules 

[2-4]. In general, polyelectrolyte complexes result from the association complexes formed 

between oppositely charged molecules via ionic interaction at stoichiometric or non-

stoichiometric ratios [5, 6]. 

Polyelectrolyte complexes can be categorized based on their components. These 

categories include polymer–drug, polymer–polymer, polymer–drug–polymer, polymer–

surfactant, and polymer–protein [7]. Polyelectrolyte–drug complexes have been widely 

used in formulations for a variety of purposes, such as improving the dissolution of poorly 

water-soluble drugs [8], modifying drug release [9, 10], taste masking [11], and improving 

drug chemical stability [12]. 

Conventionally, most polyelectrolyte–drug complexes are prepared using the 

solvent method, in which the polymers and the drug are dissolved separately in an organic 

solvent, in buffers, or in pure water before they are mixed together [7]. The solvents are 

removed by freeze drying, spray drying, or other drying technologies when the oppositely 

charged particles are fully complexed. Right now, most solvent methods used to prepare 

polyelectrolyte complexes remain in the lab phase due to several disadvantages, such as 
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low manufacturing efficiency, scale-up difficult, or toxicity of the organic solvent. Very 

few studies focus on using melt extrusion to prepare polyelectrolyte complexes in solid 

state. 

In recent years, melt extrusion (ME) has proved to be a promising technique to 

prepare solid dispersions for various applications [13]. In the current study, ME was 

explored as a method to prepare polyelectrolyte–drug complexes. Compared to traditional 

processing techniques, the advantages of ME include the fact that it requires no solvent, it 

is a continuous process with high efficiency, and it is easy to scale up. During the ME 

process, the drug, polymer, and other excipients are fed into barrels at different 

temperatures, and the rotating screws mix and melt the materials using heat and intense 

mechanical shearing forces to achieve molecular-level mixing [14]. Due to the high 

temperatures and the aggressive mixing environment, ME provides favorable and flexible 

processing conditions for solid-state chemical reactions. 

Reactive melt extrusion (RME) is a special extrusion process in which individual 

components are bonded by a chemical reaction [15]. It has provided the means to perform 

continuous, large-scale, and highly efficient mechanochemical synthesis that is adaptable 

to an industry manufacturing process [16]. It is also widely used in the polymer and food 

industry to improve the properties of various products [17]. 

The application of RME to pharmaceuticals is still in the primary stage, although 

pharmaceutical melt extrusion has been extensively studied and a number of commercial 

products on the market are produced using extrusion technology. Several reports describe 

the use of RME to prepare materials such as cocrystals [18, 19] and salts [20, 21]. These 

reports show the great potential of RME in pharmaceutics. Using RME in pharmaceutical 

applications provides multiple advantages, among others: (1) RME prevents the thermal 

degradation of the drug and excipients during the extrusion process, (2) it improves the 
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physical stability of amorphous drugs during dissolution or storage time, and (3) it is useful 

for the preparation of sustained, controlled, and targeted drug delivery systems [21].  

Several studies employ RME to prepare polyelectrolyte–drug complexes to 

improve the dissolution rate of poorly water-soluble drugs with desirable physical stability 

[22, 23], taste masking [11], and targeted drug delivery [10]. However, very few studies 

focus on the influence of the ionization state of the model drug on the formation of 

polyelectrolyte complexes during the ME process. The literature also reports contradictions 

regarding the effect of the drug’s chemical nature on the drug–polymer ionic interaction. 

Some reports indicate that the salt form of the drug can still complex with the ionic polymer 

during ME [24, 25]; however, some of the literature finds that only the free drug can 

complex with the oppositely charged components in solid state [26, 27]. In this study, we 

investigate the complexation behavior between an ionic polymer and the same drug in 

different forms. 

For the model drugs in this study, we selected lidocaine and its salt, lidocaine 

hydrochloride, which are two chemicals commonly used as local anesthetics. As the 

polymer carrier, we selected Eudragit L100-55, an anionic copolymer based on methacrylic 

acid and ethyl acrylate (soluble above pH 5.5). Our prototype formulation consists of 30% 

drug and 70% polymer. At this drug loading level, the molar ratio between the methacrylic 

acid groups in Eudragit L100-55 and the amine groups in lidocaine is 2.9:1. Table 3.1 

presents the chemical structures and critical attributes of the drug and excipients used in 

this study
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Table 3.1: Chemical structures and selected physicochemical properties of lidocaine, 

lidocaine HCl, and Eudragit L100-55. 

Components Chemical Structure 

Experimental Glass 

Transition (Tg) and 

Melting 

Temperature (Tm) 

(°C) 

Molecular 

Weight 

(g/mol) 

Lidocaine 

 

Tm: 68 

Tg: -60 
234.34 

Lidocaine HCl 

 

Tm: 79 

Tg: 34 
270.80 

Eudragit®  

L100-55 

 

Tg: 123 320,000 

 

This study compares the interactions between the acidic polymer Eudragit L100-55 

and the alkaline drug lidocaine, in either freebase or hydrochloride salt form, in sustained-

release hydrophilic matrices prepared by melt extrusion. This study also investigates the 
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influence of the drug–polymer interactions on the physicochemical properties of the 

extrudates. We investigate the miscibility, and possible interaction, between the drug and 

polymer using DSC, XRPD, PLM, ATR-IR, and Raman spectroscopy. This study 

compares the physical stability of lidocaine–Eudragit L100-55 and lidocaine 

hydrochloride–Eudragit L100-55 extrudates under accelerated storage conditions using 

PLM and XRPD. The extruded granules’ swelling ability and microenvironment pH are 

also evaluated. Last, dissolution testing is performed in purified water with or without 0.15 

M NaCl and in different pH buffer media. 

 

3.3    MATERIALS  

Lidocaine and lidocaine hydrochloride were purchased from MP Biomedicals, LLC 

(Solon, OH, USA). Eudragit® L100-55 was donated from Evonik industries (Darmstadt, 

Germany). Methanol (HPLC grade) and Bromophenol blue were purchased from Fisher 

Scientific (Waltham, MA, USA). All other reagents and solvents were of analytical grade 

or better. 

3.4.    METHODS 

3.4.1    Melt Extrusion 

A Haake MiniLab co-rotating twin-screw extruder (Thermo Fisher Scientific, 

Dreieich, Germany) was used to prepare the extrudates. Process parameters and 

formulation compositions are summarized in Table 3.2. The drug and polymer are mixed 

using a Turbula® Shaker-Mixer (Glen Mills, Clifton, NJ) for 10 min. The blends were 

manually fed into the extruder at approximately 1 g/min. The barrel temperature was set at 

155 °C, and the screw speed was at 150 rpm. After cooling to ambient temperature, 
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extrudates were milled using a coffee grinder and screened into different granule sizes. We 

used 16 to 18-mesh granules to evaluate physical stability and dissolution. 

Table 3.2: Composition and processing conditions for lidocaine and lidocaine HCl 

extrudates. 

Formulation 

Composition 

Eudragit L100-55 

(% wt) 

Drug 

Lidocaine  

(% wt) 

Lidocaine HCl 

(% wt) 

Lidocaine 

Formula 
70 

30 - 

Lidocaine HCl 

Formula 
- 30 

Process 

conditions 

Barrel temperature: 155 °C 

Feeding rate: 1 g/min 

Screw speed: 150 rpm 

 

3.4.2    Differential Scanning Calorimetry (DSC) 

DSC analysis was performed using a Model Q-20 DSC (TA Instruments, 

Newcastle, DE) equipped with the RCS 40 (TA Instrument, Newcastle, DE) refrigerated 

cooling system accessory under a dry nitrogen purge (50 mL/min). Calibration was 

performed with an indium, and an empty TA aluminum pan was used as a reference. 

Samples were accurately weighed (3–5 mg) into aluminum pans and crimped with 

aluminum lids. To characterize drug–polymer miscibility, physical mixtures at various 

weight ratios were first heated from 20 °C to 180 °C. After being cooled down to -20°C, 

the mixtures were heated for the second time from -20 °C to 180 °C. Heating from 20 °C 

to 180 °C at a rate of 10 °C/min was applied to characterize extrudates. The temperature 
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ramp rate was kept constant at 10 °C/min in this study. DSC data were analyzed using the 

TA-Universal Analysis 2000 software (TA Instrument, Newcastle, DE). 

3.4.3    Polarized Light Microscopy (PLM) 

PLM measurement was conducted using an Olympus BX-53 polarized light 

microscope (Olympus Corporation of Americas, Center Valley, PA) equipped with a 

QImage digital camera (QImaging, Surrey, Canada). The samples were dispersed in several 

drops of silicon oil on the slides and covered by slips. The samples were observed with a 

first-order compensator at 200X magnification. Images were captured using QImaging 

software (QImaging, BC, Canada). 

3.4.4    X-ray Powder Diffraction (XRPD) 

XRPD measurement were determined using a Rigaku MiniFlex 600 X-ray 

diffractometer (Rigaku Corporation, Japan) equipped with a copper X-ray tube. Milled 

samples were placed on a silicon sample holder and measurement was conducted with an 

acceleration voltage of 40 kV and a current of 15 mA for angles of 5–45 ° (2-theta) with a 

speed of 5 °/min and a step size of 0.02 °. The results were analyzed with MDI Jade (version 

8.5, Material Data, Inc., Livermore, CA) and plotted with OriginLab (version 9.0, 

OriginLab Corporation, Northampton, MA). 

3.4.5    Fourier Transform Infrared Spectroscopy (FTIR) 

            Molecular interactions between the drug and polymer were examined with ATR-

FTIR. FTIR measurements were performed using a Thermo Nicolet iS50 spectrometer 

(Waltham, MA). Sufficient samples were placed on the germanium crystal surface, then 

constant torque was applied using the building-in pressure tower to achieve uniform 

contact between the solid and the crystal. All samples were analyzed at ambient room 
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temperature with a total of 32 scans at 4 cm−1 resolution of 600–4,000 cm−1. The peak 

positions were determined using OMNIC software peak picking function (ThermoFisher 

Scientific, Waltham, MA). 

3.4.6    Raman Spectroscopy 

            All Raman measurements were performed using a Thermo Nicolet iS50 Raman 

spectrometer (ThermoFisher Scientific, Waltham, MA). The spectrometer was equipped 

with a 1064 nm diode laser (Innovative Photonic Solution, Monmouth Junction, NJ), a 

single-element InGaAs detector, and XT-KBr interferometer. The analysis was carried out 

at room temperature utilizing a laser wavelength of 1,064 nm. Spectra were the average of 

128 scans, taken at a 4 cm−1 resolution with a laser power of 500 mW. Data were further 

processed using OMNIC software. 

3.4.7    Dissolution Testing 

            Dissolution testing of extruded granules (16–18 mesh size) was carried out in 900 

mL media at 37 °C using USP Type II apparatus (Model Varian VK7025, Agilent 

Technology Inc., Santa Clara, CA) at a paddle speed of 75 rpm. The dissolution media 

were purified water, a 0.1 N hydrochloric acid solution (pH 1.2), and citrate–phosphate 

buffers (pH 4.5, 5.5, 6.8). Samples that contained the equivalent of 120 mg of lidocaine 

were introduced into each dissolution vessel. Dissolution samples were withdrawn at 

predetermined time points using an autosampler (Model Varian VK7025, Agilent 

Technology Inc., Santa Clara, CA). The samples were filtered through Vankel Full Flow 

10 µm filters. The drug concentration was measured by the UV method at 240 nm 

wavelength with an Infinite M200 UV-Vis spectrophotometer (Tecan Group Ltd., 

Mannedorf, Switzerland). All samples were tested in triplicate. 
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3.4.8    Comparison of Dissolution Profiles 

            To compare the drug release profiles in different dissolution media, the similarity 

factor f2 was used. As proposed by Moore and Flanner, the f2 value was calculated using 

the following equation [28]: 

f2 = 50 × log {[1 + (
1

n
) ∑(Rt − Tt)

2

n

t=1

]

−0.5

× 100} 

where Rt and Tt are the cumulative percentage of drug released for the reference and test 

assay, respectively, at time t, and n is the number of time points. The f2 value is a measure 

of the similarity between the two release profiles, it and ranges from 0 to 100. Based on 

the FDA guidelines, the dissolution profiles are similar when the f2 value falls in the range 

of 50–100. 

3.4.9    Measurement of Surface pH of Extruded Granules by Slurry pH Method 

            The pH of the concentrated slurry is considered to reflect the pH of the solid surface 

[29]. The surface pH of the extruded granules was measured using the slurry-pH method. 

Slurries of granules in distilled water were prepared. The equilibrium pH was measured 

with a Sartorius pH meter (Denver Instrument, Bohemia, NY). Each sample measurement 

was repeated three times. 

3.4.10    Swelling Ability and Microenvironment pH Measurement 

 The extruded granules’ swelling ability, fronts movements, and microenvironment 

pH were evaluated using the experimental setting previously reported by Ferrero et al. [30]. 

Briefly, the devices consisted of two Plexiglass discs (diameter 50 mm, thickness 5 mm) 

connected by four stainless steel screws. The tablets were clamped between those two 

discs. The device was introduced into the dissolution apparatus vessel containing 900 mL 

of dissolution medium at 37 °C with a paddle rotation speed of 100 rpm. At defined time 
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intervals (5, 30, 180, 300, 480, 660, and 1440 min), the devices were removed from the 

dissolution apparatus and photographed. The pictures were analyzed using Image J 1.6.0 

software (NIH, USA) to measure the matrix swelling and the position of the fronts. The 

interface between the tablet and the dissolution medium at the beginning of the experiment 

was set by position 0. The inward movement of the fronts represented by a negative value, 

while the outward movement was indicated by a positive value.  

The tablets were prepared by compressing about 400 mg of lidocaine or lidocaine 

hydrochloride loaded extruded granules (estimated to contain approximately 120 mg of LC 

or LH) in a hydraulic press (BVA hydraulics, Kansas City, MO), equipped with flat-faced 

punches 11 mm in diameter and a compression pressure of 3,000 psi. Each tablet contained 

0.05% (w/w) of the pH dye indicator Bromophenol blue, which shows blue color above 

pH 4.6 and turns yellow below pH 3.0. 

3.4.11    Physical Stability of Extrudates 

            The extrudates were sealed in glass bottles along with a silicate desiccator and 

stored inside an environmental chamber at 40 °C and 75% RH. Samples were removed 

from the stability chamber (Darwin Chambers Company, St. Louis, MO) at specific time 

points to assess the potential crystallization of the drugs upon storage.  

3.5    RESULTS AND DISCUSSION 

3.5.1    Interactions between Drugs and Eudragit L100-55 at Elevated Temperatures 

The DSC was used to assess the effect of different forms of lidocaine (freebase vs. 

HCl salt) on the interaction with Eudragit L100 55 at elevated temperatures. Figure 3.1 

presents thermograms of the drug substances, polymer, and their mixtures with Eudragit 

L100-55 (30% drug content, as an example). Lidocaine and lidocaine HCl melt at 68 °C 
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and 75 °C, respectively. The glass transition temperature of EL was measured as 110 °C. 

Depression of the melting point was observed for both lidocaine (from 68 to 65 °C) and 

lidocaine HCl (from 75 to 66 °C) in their physical mixtures with Eudragit L100-55 at 30% 

drug loading level.  

 

Figure 3.1: DSC thermograms of (a) Eudragit L100-55, (b) lidocaine, (c) lidocaine HCl , 

(d) physical mixture: 30% lidocaine and 70% Eudragit L100-55, (e) physical mixture: 

30% lidocaine HCl and 70% Eudragit L100-55, (f) extrudate: 30% lidocaine and 70% 

Eudragit L100-55; (g) extrudate: 30% lidocaine HCl and 70% Eudragit L100-55. 

The glass transition temperature (Tg) is a crucial factor for amorphous solid 

dispersions; it reflects the physical state of the drug and polymer carrier, the miscibility of 

the drug with the carrier, and the potential for specific interactions between the drug and 

excipients [31]. The difference between the experimental Tg and the theoretical Tg was 

characterized in order to determine the interaction for the two forms of lidocaine and 
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Eudragit L100-55. The experimental Tg deviated from the theoretical Tg in a pattern that 

indicates miscibility between the drug and polymer [32]. A negative deviation 

(experimental Tg < theoretical Tg) suggests strong destabilizing homonuclear (drug–drug 

and polymer–polymer) interactions, while a positive deviation indicates strong stabilizing 

heteronuclear (drug–polymer) interactions [33]. 

Two heating cycles (15–120 °C) were applied in order to measure the Tg of drug–

polymer mixtures at various drug weight percentages. Amorphous blends were prepared 

from the physical blends in the first heating, and the second heating was used to measure 

the Tg of the resulting blends. Theoretical Tg was calculated using the Gordon–Taylor 

equation. In order to calculate the theoretical Tg, the density values of lidocaine, lidocaine 

HCl, and Eudragit L100-55 were determined to be 1.138, 1.223, and 1.142 g/cm3, 

respectively, using a helium pycnometer (Micromeritics, Norcross, GA). The Tg of 

lidocaine, lidocaine HCl, and Eudragit L100-55 was -60 °C [34], 34 °C, and 124 °C, 

respectively. Figure 3.2 presents Tg as a function of drug loading. A positive deviation was 

observed for lidocaine–Eudragit L100-55 mixtures, suggesting strong interaction between 

lidocaine and Eudragit L100-55. The heteronuclear interactions (lidocaine–Eudragit L100-

55) in the dispersions were stronger than the sum of the homonuclear interactions 

(lidocaine–lidocaine and Eudragit L100-55–Eudragit L100-55). In comparison, a negative 

deviation was observed for lidocaine HCl–Eudragit L100-55 mixtures, indicating a less 

favorable interaction between lidocaine HCl and Eudragit L100-55. In summary, the 

interaction of lidocaine freebase with Eudragit L100-55 is much stronger than that of 

lidocaine HCl. It was hypothesized that the ternary amine group in lidocaine interacts 

strongly with the carboxylic acid group in Eudragit L100-55 via acid–base interaction. 

However, for lidocaine HCl, the ternary amine group is protonated with hydrochloric acid. 

As a weaker acid, methacrylic acid in Eudragit L100-55 cannot replace hydrochloric acid 
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in lidocaine HCl. IR analysis of melt extrudates presented in the following section confirm 

this hypothesis regarding drug–Eudragit L100-55 interactions. 

 

 

                   Figure 3.2: continued in next page. 
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Figure 3.2: Theoretical and experimental glass transition temperature as a function of 

drug weight fraction. (A) lidocaine, (B) lidocaine HCl. Theoretical values were calculated 

using the Gordon–Taylor equation. The error bar represents the standard deviation of 

triplicate analysis. 

Baghel et al. [35] report using strong drug–polymer interaction to inhibit the 

crystallization of ASDs. In their study, the Tg deviations of a cinnarizine ASD were 

opposite when either polyvinylpyrrolidone (PVP) or polyacrylic acid (PAA) was used as 

the polymer carrier. Cinnarizine–PVP ASDs exhibited a negative deviation. In contrast, 

cinnarizine–PAA showed a positive deviation due to ionic interaction.  

3.5.2    Melt Extrusion of Eudragit L100-55 and Lidocaine Blends 

Table 3.1 lists the formulation, composition, and processing conditions for 

lidocaine–Eudragit L100-55 and lidocaine HCl–Eudragit L100-55 extrudates. The drug 

loading in the extrudates was maintained at 30%. In this composition, the molar ratio 
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between the acrylic acid groups in Eudragit L100-55 and the amine groups in lidocaine 

was 2.9:1. 

A Haake MiniLab corotating extruder was used to process the formulations. The 

barrel temperature was set above both the Tg and the melting point of the drug. Because of 

the plasticization effect of lidocaine and lidocaine HCl, plasticizer was not needed to 

process either formulation. Both extrudates were clear as they exited the die, indicating 

solubilization of the drugs in polymer melt. The extrudates were then cooled to ambient 

temperature and reduced to granules in the size range of 16 to 18-mesh using a coffee 

grinder. The HPLC method was used to verify that the drug content was within 5% of the 

theoretical drug loading. 

For both lidocaine and lidocaine HCl, melt extrudates consisting of 30% drug and 

70% Eudragit L100-55 were amorphous. Figure 3.1 presents DSC thermograms of the 

extrudates. Figure 3.3 presents X-ray diffractograms of the physical blends and the melt 

extrudates. The Tg of the LC–EL and LH–EL extrudates was 70 °C (Figure 3.1f) and 88 

°C (Figure 3.1g), respectively. 
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Figure 3.3: X-ray diffractograms of (a) lidocaine, (b) lidocaine HCl, (c)  physical mixture 

of 30% lidocaine and 70% Eudragit L100-55, (d) physical mixture: 30% LH and 70% 

Eudragit L100-55, (e) extrudate: 30% lidocaine and 70% Eudragit L100-55, and (f) 

extrudate: 30% lidocaine HCl and 70% Eudragit L100-55. 

3.5.3    Characterization of Drug–polymer Interaction Using FTIR and Raman 

Spectroscopy 

FTIR analysis of amorphous lidocaine, amorphous lidocaine HCl, lidocaine–

Eudragit L100-55 and LH–Eudragit L100-55 physical mixture, and lidocaine–Eudragit 

L100-55 extrudate was performed to investigate the molecular interactions between the 

drugs and the polymer [36, 37]. Figure 3.4 presents the representative spectra. The IR 

spectra of Eudragit L100-55, amorphous lidocaine and amorphous lidocaine HCl are used 

as a reference. The intermolecular interactions between the drug and polymer could be 
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depicted by the emergence of new peaks, a shift in the position of the exiting peaks, or a 

change in the shape of peaks in the spectra [38]. According to previous studies, the 

indicative bands of the acid–base interaction between the drug and Eudragit L100-55 focus 

mainly on the region from 1,800 cm−1 to 1,000 cm−1 [39, 40]. In this study, the analysis of 

spectral changes are focused primarily on highlighted three distinct regions to determine 

the drug–polymer interactions at a molecular level: Region I (1,800–1,630 cm−1), Region II 

(1,590–1,420 cm−1), and Region III (1,340–1,200 cm−1).  

 

         Figure 3.4: continued in next page. 
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Figure 3.4: IR spectra of (A) Eudragit L100-55 (EL), lidocaine (LC), LC-EL physical 

mixture, and LC-EL extrudate; (B) Eudragit L100-55, lidocaine hydrochloride (LH), LH-

EL physical mixture and LH-EL extrudate. 

Spectral changes in Region I are suggestive of H-bonding interactions between 

Eudragit L100-55 and both forms of lidocaine. The sharp peaks in Region I can be assigned 

to the stretching of carbonyl groups of both the polymer and the drugs. Specifically, the IR 

spectrum of Eudragit L100-55 shows the characteristic bands of the C=O stretching of the 

carboxylic acid groups (1,705 cm−1) and the C=O stretching of the esterified carboxylic 

groups (1,730 cm−1). In the spectra of the amorphous drugs, peaks at 1,664 cm−1 and 1,685 

cm−1 represent C=O stretching of the amide group in lidocaine (Figure 3.4A) and lidocaine 

HCl (Figure 3.4B), respectively. The IR spectrum of the physical mixture is a simple 

summation of the drug and polymer spectra, which shows no shifting of the carbonyl 

stretching of the amide. On the other hand, the peak of the amide C=O group in the 
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spectrum of the lidocaine–Eudragit L100-55 extrudate was hypsochromically shifted to 

1,730 cm−1. We attributed this blue shift to the H–bonding between the carboxylic groups 

of Eudragit L100-55 and the amide carbonyl groups of lidocaine. 

In addition, the intensity of the C=O stretching of the carboxylic acid groups at 

1,705 cm−1 from Eudragit L100-55 decreased significantly, indicating a potential acid–base 

interaction between Eudragit L100-55 and lidocaine. The carboxylic group functioned as 

an H-bond donor, and the amide carbonyl group served as an H-bond acceptor. A similar 

shift of the IR signal due to C=O stretching of the amide group was also observed in the 

lidocaine HCl–Eudragit L100-55 extrudate.  

Sharp peaks in the spectra of Region II can be assigned to the N–H bending of 

drugs. To be specific, two peaks at 1,472 cm−1 and 1,540 cm−1 were observed in the IR 

spectrum of the lidocaine HCl (Figure 3.4B). One peak represented secondary amide N–H 

bending next to the aromatic ring, and the other peak represented ternary amine N–H+ 

bending. In contrast, lidocaine exhibited only one high-intensity peak located at 1,497 cm−1 

(Figure 3.4A) due to the lack of an N–H+ group. For the physical mixture of LC–Eudragit 

L100-55, only a single peak, located at 1,497 cm−1, was observed in the IR spectrum. This 

indicates that the drug is presented in its free form in the polymeric matrix. Interestingly, 

two distinct peaks at 1,472 cm−1 and 1,540 cm−1 were observed in lidocaine–Eudragit 

L100-55 extrudate. Furthermore, the wavenumbers of these two peaks are identical to the 

peaks of N–H and NH+ bending in the lidocaine HCl spectrum (Figure 3.4B). It was 

therefore concluded that acid–base interactions occur between the amine group of lidocaine 

and the carboxylic acid group of Eudragit L100-55 during the melt extrusion process. At 

30% drug loading, the molar ratio between the methacrylic acid in Eudragit L100-55 and 

lidocaine is 2.9:1. Therefore, there was an excess quantity of methacrylic acid to produce 

an ionic interaction with lidocaine. This ionic interaction contributed to the improved 
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physical stability of the lidocaine–Eudragit L100-55 extrudate during the storage. For the 

lidocaine HCl–Eudragit L100-55 formulation, IR signals in Region II remained the same 

after melt extrusion.  

Similar results between two forms of lidocaine and acidic excipients have been 

reported in a buccal mucoadhesive film prepared with Carbopol, lidocaine, and lidocaine 

HCl. Salt formation between the acidic carboxylic group of Carbopol and lidocaine was 

reported, but only H-bonding interaction was observed between Carbopol and lidocaine 

HCl [27]. Shimada et al. used DSC and NMR to investigate the characteristics of an 

amorphous complex formed between indomethacin and lidocaine HCl or lidocaine [26, 

41]. They find that the interaction mode of indomethacin with lidocaine HCl differs from 

that of indomethacin with lidocaine. The interaction between indomethacin and lidocaine 

promotes the formation of a stable amorphous complex via acid–base salt formation; 

however, a specific interaction between indomethacin and lidocaine HCl was absent.  

Spectral Region III contains additional evidence of an acid–base interaction 

between Eudragit L100-55 and lidocaine. A weak peak located at 1,239 cm−1 can be 

attributed to C–C–NH+ bending of the amine group. It is noteworthy that this specific peak 

was observed with lidocaine HCl (Figure 3.4B) and with the lidocaine–Eudragit L100-55 

extrudate (Figure 3.4A), while it was absent with amorphous lidocaine and the lidocaine–

Eudragit L100-55 physical mixture. 

Our Raman results (Figure 3.5) also show the same conclusion as the FTIR results. 

The Raman spectrum shows the characteristic region that illustrates significant differences 

between the physical mixture and the extrudate. In this region (Fig. 3.5A), Eudragit L100-

55 shows only a broad peak at 1,724 cm−1, which is attributed to the C=O stretching 

vibration (Socrates, 2004). lidocaine spectra show two high-intensity peaks at 1,664 cm−1 
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and 1,594 cm−1, which are attributed the C=O stretching vibration and HNC scissoring 

vibration, respectively (Badawi et al., 2015). 

 

 

            Figure 3.5: continued in next page. 
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Figure 3.5: Raman spectra of (A) Eudragit L100-55 (EL), lidocaine (LC), LC–EL 

physical mixture, and LC–EL extrudate; (B) Eudragit L100-55, lidocaine hydrochloride 

(LH), LH–EL physical mixture and LH–EL extrudate. 

These high-intensity peaks also appeared in the lidocaine–Eudragit L100-55 

physical mixture. However, the carbonyl group peak disappeared in the lidocaine–Eudragit 

L100-55 extrudates, and the intensity of the HNC scissoring vibration peak decreased 

substantially. Due to the different chemical structure of the carbonyl group, lidocaine HCl 

shows two different peaks at 1,670 cm−1 and 1,657 cm−1 (Fig. 3.5B). A high-intensity peak 

at 1,592 cm−1, representing HNC scissoring vibration, could still be observed in lidocaine 

HCl spectra. The spectra of the lidocaine HCl–Eudragit L100-55 physical mixture is simply 

the overlap between the lidocaine HCl and Eudragit L100-55. The carbonyl group 

disappeared in the spectra of the lidocaine HCl–Eudragit L100-55 extrudates, but the 
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intensity of the tertiary amine group remained the same. This means that the lidocaine HCl 

and Eudragit L100-55 did not show any ionic interaction with each other.  

To conclude the spectroscopic investigation using FTIR and Raman, the 

polyelectrolyte complex formation of lidocaine (a weak alkaline drug) and Eudragit L100-

55 (an acidic polymer) was demonstrated. However, lidocaine HCl could not complex with 

Eudragit L100-55. Based on the difference between these interactions, one should expect 

the physical stability and the dissolution behavior of the lidocaine–Eudragit L100-55 and 

lidocaine HCl–Eudragit L100-55 extrudates to differ as well. 

3.5.4    Effect of Drug–Polymer Interaction on the Physical Stabilities of Extrudates 

Melt-extruded granules were placed on stability to assess the effect of drug–

polymer interactions on their physical stabilities. Of the two pure drug substances, 

lidocaine crystalizes much faster than lidocaine HCl. lidocaine crystalizes readily from its 

melt during DSC analysis even at a cooling rate of 20 °C/min. Because of its strong 

crystallization tendency, lidocaine is categorized as a Class 1 compound in the 

crystallization classification system proposed by Baird and Taylor [42]. lidocaine HCl has 

a much lower crystallization tendency and does not crystalize when its melt is cooled at 10 

°C/min. Also, the Tg of the lidocaine–Eudragit L100-55 extrudate (70 °C) was lower than 

that of lidocaine HCl–Eudragit L100-55 extrudate (88 °C). Based on these two factors, one 

would conclude that the lidocaine–Eudragit L100-55 extrudate is more likely to crystallize 

during storage.  

However, the experimental results of this study contradict this expectation. Figure 

3.6 shows the XRPD patterns and PLM images of extrudates after 4 months storage at 40 

°C / 75% RH. The lidocaine–Eudragit L100-55 extrudate remained amorphous, and no 

crystal clusters were detected. In contrast, characteristic diffractions (2 theta of 14.458°, 
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16.619°, and 25.220°) of crystalline lidocaine HCl were observed in the XRPD pattern of 

the lidocaine HCl–Eudragit L100-55 extrudate. Crystallization of the lidocaine HCl–

Eudragit L100-55 extrudate was also observed under a polarized light microscope. The 

physical stability study results imply that the ionic interaction between lidocaine and 

Eudragit L100-55 contributed to the physical stability of the amorphous dispersion system. 

Similar research has also reported that the ionic interaction between drugs and excipients 

provide sufficient momentum to inhibit phase separation and recrystallization [36, 43]. 

 

 

Figure 3.6: XRPD patterns (A) and PLM images (B) of extrudates of lidocaine (LC)–

Eudragit L100-55 (EL) and lidocaine HCl (LH)–Eudragit L100-55 (EL) following 4 

months of storage at 40 °C with a desiccator. 
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3.5.5    Comparison of Dissolution Properties 

The drug release properties of the extruded granules of 16 to 18-mesh were 

evaluated in water and buffer solutions at different pH. Since both Eudragit L100-55 and 

the drug have pH-dependent solubility, one would anticipate that the dissolution of 

lidocaine and lidocaine HCl from extruded granules would be a function of the pH of the 

dissolution medium. Additionally, one would anticipate that lidocaine and lidocaine HCl 

affect drug release by altering the microenvironment pH. The swelling behavior and the 

microenvironment pH of the extruded granules were investigated to elucidate the 

difference in the drug release mechanisms of granules containing two different forms of 

lidocaine. 

3.5.5.1    Dissolution of Extruded Granules in Water 

Figure 3.7 presents the drug release profiles of granules in purified water with or 

without NaCl as an ionic strength modifier. In purified water, drug release from the 

lidocaine–Eudragit L100-55 granules was faster than the lidocaine HCl–Eudragit L100-55 

granules. Drug release from the lidocaine–Eudragit L100-55 granules plateaued at 80% in 

3 h. In contrast, a sustained release of lidocaine HCl from the lidocaine HCl–Eudragit 

L100-55 granules (over 10 h) was achieved. 
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Figure 3.7: Dissolution profiles of 400 mg melt-extruded lidocaine (LC) and lidocaine 

hydrochloride (LH) 16–18 mesh granules (30% drug loading) in 900 mL water (with or 

without NaCl) using USP apparatus II at 75 rpm (n = 3). The error bar represents the 

standard deviation. 

Experiments were conducted to study the swelling behavior and microenvironment 

pH of the granules in water in order to understand this dissolution phenomenon. A blend 

of extruded granules and bromophenol, a pH indicator, were compressed into tablets. These 

tablets were clamped between two Plexiglass discs, and they were subjected to dissolution 

testing in water. At low pH (< 3.0), bromophenol appears yellow, but turns blue at neutral 

and high pH (> 4.6). As shown in Figure 3.8, lidocaine–Eudragit L100-55 and lidocaine 

HCl–Eudragit L100-55 tablets displayed different swelling kinetics and microenvironment 

pH. The different front movement of the gel layer thickness of lidocaine and lidocaine HCl 

tablets was observed during the dissolution process.  
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Figure 3.8: continued in next page. 
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Figure 3.8: Swelling and microenvironmental pH visualization of lidocaine (LC) and 

lidocaine HCl (LH) melt-extruded granules in water (A) and pH 5.5 buffer (B) (USP 

apparatus II, 75 rpm, tablets compressed from granules were clamped between two 

Plexiglass discs). 

When the lidocaine tablet was exposed to the dissolution medium, the color of the 

pH indicator (bromophenol blue) turned dark blue, and the hydrogel layer progressively 

expanded into three layers simultaneously: The outside layer consisted of the erosion front, 

the middle layer consisted of the diffusion front, and the inside layer consisted of the 

swelling front. The erosion front expanded quickly, but the radius of the unwetted portion 

of the matrix (the swelling front) decreased slowly at a nearly constant rate. The diffusion 

front slowly followed the swelling front expansion to the outside. As time progressed, the 

color of the indicator faded from dark blue to light blue, from the swelling front to the 

erosion front of the layer.  
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For lidocaine HCl tablets, the pH indicator turned light yellow, and the wetting and 

swelling also produced a small increase in the diameter of the tablet. Compared to the 

lidocaine tablet, the erosion front movement was much smaller. A dense white layer formed 

at the outside of the tablet, preventing water from penetrating to the inside of the tablet. 

This resulted in a slower rate of swelling front expansion. The similar front movement and 

microenvironment pH of the lidocaine and lidocaine HCl tablets also have been observed 

in pH 5.5 citric phosphate buffer. 

The microenvironment of the surface of the lidocaine–Eudragit L100-55 tablet was 

alkaline, while the surface microenvironment of the lidocaine HCl–Eudragit L100-55 

tablet was acidic. This microenvironment pH effect was due to the self-buffering of the 

solubilized drug substances. Using the pH-slurry method, the pH of the microenvironment 

was measured as 6.50 and 2.46 for the lidocaine–Eudragit L100-55 and lidocaine HCl–

Eudragit L100-55 granules, respectively. Although Eudragit L100-55 does not swell in 

water, the swelling observed in the lidocaine–Eudragit L100-55 formulation was triggered 

by the alkaline microenvironment induced by the solubilized drug. The loose polymer 

chain structure in the gel–layer allows lidocaine to transfer quickly to the dissolution 

medium. As a result, drug release was much faster for lidocaine–Eudragit L100-55 

granules. For lidocaine HCl–Eudragit L100-55 granules, the deprotonation and subsequent 

swelling of the polymer chain would be hindered due to the acidic microenvironment. This 

resulted in the slower drug release and the release was similar in pH 1.2, 4.5, 5.5 and water. 

The drug release of lidocaine–Eudragit L100-55 granules in pure water was 

dependent on the ionic strength. When the ionic strength of water was adjusted to 0.15 M 

using sodium chloride, drug release of lidocaine–Eudragit L100-55 granules accelerated, 

and a complete release was achieved in 2 h. In comparison, the drug release of lidocaine 

HCl–Eudragit L100-55 granules was not affected by the increase in ionic strength. In the 
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lidocaine–Eudragit L100-55 extrudate, lidocaine interacted with Eudragit L100-55 via 

ionic complexation to form a polyelectrolyte. At higher ionic strength, the lidocaine cation 

in the lidocaine–Eudragit L100-55 complex were exchanged by the competing Na+, 

resulting in a faster and complete drug release [44, 45]. 

            Similar experimental results have also been observed by other polyelectrolyte drug 

delivery systems [23, 46]. Jenquin et al. found that the interaction between the drug and 

polymer significantly influences drug release profiles. The polymer matrices consisting of 

salicylic acid and Eudragit RL polymer released only 40% of the drug in pure water after 

24 h. However, when the sample was switched to a high ionic strength solution (0.15 M 

NaCl), the matrix released more than 95% of the drug after 12 h. Kindermann also found 

that the addition of electrolytes can enhance drug release from naproxen–Eudragit E PO 

polyelectrolyte complex prepared by HME. 

3.5.5.2    Dissolution of Extruded Granules in Aqueous Media at Different pH 

             Since the solubility of both lidocaine and Eudragit L100-55 is pH dependent, one 

might anticipate that drug release from the extruded granules is a function of the pH of the 

dissolution media. Four different media were evaluated in this study: 0.1 N HCl (pH 1.2) 

and citrate–phosphate buffers (pH 4.5, 5.5, 6.8). Figure 3.9 presents the dissolution 

profiles. 
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Figure 3.9: Dissolution profiles of 400 mg, 16–18 mesh, melt-extruded lidocaine (LC) 

and lidocaine HCl (LH) granules (30% drug loading) in 900 mL dissolution media using 

USP apparatus II at 75 rpm (n = 3). The error bar represents the standard deviation. 

             Lidocaine HCl–Eudragit L100-55 granules exhibited similar drug release profiles 

across three different pH: 1.2, 4.5 and 5.5. Drug release was extended over 12 h. The f2 

(similarity factor) value of the dissolution profiles at pH 1.2 and pH 4.5 is 54, and the f2 of 

profiles at pH 1.2 and pH 5.5 is 74. Even though Eudragit L100-55 is soluble in aqueous 



 156 

media at pH 5.5, lidocaine HCl–Eudragit L100-55 matrix remained intact at pH 5.5 for the 

first 6 h due to the acidic microenvironment pH induced by the solubilized drug. 

             Drug release from lidocaine–Eudragit L100-55 granules was significantly different 

from the lidocaine HCl–Eudragit L100-55 granules. The release rate also varied 

significantly at different pH levels. At pH 1.2, the drug release from the lidocaine–Eudragit 

L100-55 granules was about half the release from the lidocaine HCl–Eudragit L100-55 

granules. At pH 4.5, drug release from the lidocaine–Eudragit L100-55 granules decreased 

further. At pH 5.5, drug release from the lidocaine–Eudragit L100-55 granules accelerated 

suddenly and became faster than that of the lidocaine HCl granules. 

              Compared to lidocaine HCl granules, lidocaine granules are different in several 

aspects. First, lidocaine as a freebase dissolves more slowly than lidocaine HCl in a given 

dissolution medium. Second, solubilized lidocaine induces an alkaline microenvironment, 

as shown in Figure 3.8A. This increase in microenvironmental pH exerts two opposing 

effects on lidocaine release: On one hand, higher pH can slow down drug release due to 

the decrease in drug solubility. On the other hand, higher pH can accelerate drug release 

by inducing greater swelling and solubilization of Eudragit L100-55. When the pH of the 

dissolution media increased from 1.2 to 4.5, the decrease in lidocaine solubility was 

predominant. At pH 5.5, the swelling and solubilization of Eudragit L100-55 was 

predominant. As shown in Figure 3.8B, at pH 5.5, the lidocaine–Eudragit L100-55 matrix 

swelled to a much greater extent than the lidocaine HCl–Eudragit L100-55 matrix.  

              The drug release of lidocaine was the slowest at pH 4.5. The reason for this could 

be that lidocaine and Eudragit L100-55 interact the most strongly at this pH level. Borodkin 

et al. have studied the effect of pH on the interaction between a polycarboxylic acid ion-

exchange resin and eleven basic drugs at equilibrium [1]. They found that, in all cases, the 

extent of resin–drug interaction reached a maximum at a pH range of 4.5–5.5, although the 

extent of the interaction varied considerably based on the particular drug being evaluated. 

The authors conclude that the sharp decrease of the resin–drug interaction below pH 4.5 is 

caused by the diminishing number of anionic sites on the resin. They also conclude that the 
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decreasing interaction above pH 5.5 could be attributed to a declining affinity of the resin 

for amine drugs relative to alkali metal cations from the buffer medium. In addition, the 

increasing portion of drug in unionized form could also contribute to this result. When the 

pH of the dissolution medium was increased to 6.8, Eudragit L100-55 became soluble and 

complete drug release was achieved within 1 h for both lidocaine and lidocaine HCl 

containing extrudates. 

                Interaction between lidocaine and Eudragit L100-55 in polymer melt during melt 

extrusion is different from that in solution state during dissolution testing. The ionic 

interaction between lidocaine and Eudragit L100-55 in solution state is dependent on the 

ionization state of these two compounds, which is a function of microenvironment pH. 

Even though there was no ionic interaction between lidocaine HCl and Eudragit L100-55 

in melt extruded granules, complexation between lidocaine HCl and Eudragit L100-55 in 

pH 5.5 buffer media was observed. As shown in Figure 3.10, extruded lidocaine HCl-

Eudragit L100-55 granules became a translucent gel at the end of 24 hours. In contrast, 

lidocaine-Eudragit L100-55 granules completely dissolved at the end of 24 hours. Solution-

state interaction between lidocaine and Eudragit L100-55 during dissolution testing needs 

to be further investigated. 
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Figure 3.10: Image of dissolution vessel content at 24 hours in pH 5.5 buffer; lidocaine 

HCl-Eudragit L100-55 extrudate (vessel on the left) and lidocaine-Eudragit L100-55 

extrudate (vessel on the right). 

                In summary, the release of lidocaine from melt-extruded granules in aqueous 

buffers was a function of the drug form and the pH of the dissolution media. Drug release 

was also significantly impacted by the microenvironmental pH induced by the solubilized 

drug. At pH 6.8, no sustained release was achieved for either lidocaine or lidocaine HCl 

due to the solubilization of Eudragit L100-55. Release of lidocaine HCl over 10 h was 

consistent across pH 1.2, 4.5, and 5.5; and it was controlled by diffusion mechanisms. For 

lidocaine, drug release was highly variable across pH 1.2, 4.5, and 5.5. The slowest release 

was observed at pH 4.5.  

3.6     SUMMARY 

A polyelectrolyte matrix system for the sustained release of lidocaine was 

developed through the melt extrusion of either lidocaine freebase or its hydrochloride salt. 

Our study demonstrates that these two different forms resulted in different drug–polymer 
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interactions and distinctive release properties. Both lidocaine and lidocaine HCl were 

uniformly dispersed in molecular state in Eudragit L100-55. However, only lidocaine 

formed a polyelectrolyte with Eudragit L100-55 via the acid–base ionic interactions 

between the ternary amine in lidocaine and the methacrylic acid groups in Eudragit L100-

55. Because of this ionic interaction, the lidocaine-Eudragit L100-55 extrudate was 

physically more stable than the LH-Eudragit L100-55 extrudate during storage, despite the 

lower glass transition temperature of the extrudate and faster crystallization of lidocaine.  

The release of the drug from the milled extrudate was a function of the dissolution 

media pH and the particular form of lidocaine, since both lidocaine and Eudragit L100-55 

exhibited pH-dependent solubility. Drug release was also impacted by the 

microenvironment pH induced by the dissolved drug. Solubilized lidocaine increased the 

pH, while solubilized lidocaine HCl reduced the pH on the surface of the extrudates. The 

release of lidocaine HCl in water and in buffers at pH 1.2, 4.5, and 5.5 was consistent (over 

10 h) across these four dissolution media. In contrast, the release of lidocaine in water and 

in buffers at pH 1.2, 4.5, and 5.5 was highly variable, with the slowest release observed at 

pH 4.5. Since lidocaine formed ionic bonds with Eudragit L100-55 in the extrudate, the 

release of lidocaine occurred via ion exchange and diffusion. As a result, the release of 

lidocaine in purified water was accelerated at higher ionic strength. Eudragit L100-55 was 

soluble at pH 6.8, and both forms were released in 1 h.  

Lidocaine HCl–Eudragit L100-55 extrudates maintained a low microenvironment 

pH and showed pH-independent release profiles in various dissolution media. The drug 

dissolution rate and release mechanism of lidocaine–Eudragit L100-55 extrudates changed 

significantly as the dissolution medium or ionic strength varied, which directly correlated 

with the drug–polymer interaction. Last, the ionic interaction between lidocaine and 

Eudragit L100-55 also contributed to the improvement of its physical stability. The choice 
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of drug form should be considered carefully when using melt extrusion to prepare 

controlled drug delivery systems. 
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Chapter 4: A Clay-Polymer Nanocomposites Prepared by Reactive Melt 

Extrusion for Sustained Drug Release 4 

4.1    ABSTRACT 

Clay-polymer nanocomposites have exhibited a great potential as carriers for 

controlled release drug delivery. This study aims to prepare exfoliated montmorillonite-

Eudragit RS nanocomposites using reactive melt extrusion and investigate the influence of 

claying loading, clay types (sodium montmorillonite (Cloisite Na) vs. organomodified 

montmorillonite (Cloisite 20)) on clay-polymer interactions and drug release properties. 

The clays were used as the filler material at various levels in Eudragit RS and theophylline 

was used as the active pharmaceutical ingredient. The resulting structure of 

nanocomposites structure was characterized using TEM and XRPD. The hygroscopicity of 

the nanocomposites was investigated using DVS. The effect of the interfacial interaction 

between the polymer and clay sheet, the clay loading as well as the clay type on the drug 

release behavior were further studied by dissolution testing. TEM and XRPD data show 

that when the clay content is increased from 5% to 15% by weight, the nanocomposites 

structure switches from a fully exfoliated state to intercalated structures or partial 

exfoliation with stacked clay layers. FT-IR and ssNMR results suggest that Cloisite Na and 

Cloisite 20 layers exhibit different interaction strengths with polymer networks, by creating 

compacted complex structures. The addition of nanoclay in the formulation could robustly 

adjust drug release profiles and the clay concentration and the type are important factors 

that affect the crossing-linking density of the nanocomposites, by adjusting in the drug 

release properties. This study indicates that the clay-Eudragit RS nanocomposites provide 

 
4 X. Liu, X. Lu, Y. Su, E. Kun, F. Zhang, Clay-Polymer Nanocomposites Prepared by Reactive Melt 

Extrusion for Sustained Drug Release, Pharmaceutics 12(1) (2020) 51. Xu Liu is the major contribution to 

the research and draft of the article 
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an improved oral controlled drug delivery system that minimize the drug dosing frequency, 

potentially leading to improved patient compliance. 

4.2    INTRODUCTION 

Oral controlled drug delivery systems are a recognized protocol to prepare materials 

that can effectively encapsulate drug molecules and release them at the target site for a 

defined period of time and in a controlled manner. In addition to improving the drug 

efficacy, specificity, therapeutic index and tolerability of corresponding drugs, oral 

controlled drug delivery systems can also reduce the patient expenses as well as the risks 

of toxicity[1, 2]. Because of their multiple and unique advantages, oral controlled drug 

delivery systems have attracted intense interest from pharmaceutical scientists and 

formulators for over four decades. Meanwhile, innovative controlled release formulations 

have remarkably driven the oral drug delivery market to soar in recent years[3, 4]. The 

incorporation of active pharmaceutical ingredient (API) or biological molecules into the 

biodegradable polymers for controlled release application has increased dramatically[5].   

Hot-melt extrusion (HME) of biodegradable polymers with API, for controlling or 

modifying the drug release has received increased attention in pharmaceutical literature in 

recent years[6, 7]. Compared with traditional processing techniques, the advantages of 

HME include solvent-free of processing, continuous processing with high efficiency, and 

ease in scaling up[8]. During the HME process, drug, polymer and other excipients are first 

fed into the barrel at different temperature settings. The rotating screws then mix and melt 

the materials using heat and intense mechanical shearing force to achieve the molecular 

level mixing and excellent homogeneity. Because of the high temperature, dispersive and 

distributive mixing in twin screw extrusion cause suspended drug particles to de-aggregate 

in the polymer melt, resulting in a more uniform distribution of fine particles. This makes 
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HME a favorable process for the solid-state chemical reaction. Reactive melt extrusion 

(RME) has historically referred to combining chemical reactions and polymer melt 

extrusion into a single process carried out continuously in a screw extruder[9]. RME has 

been widely applied in the plastic and food industries to improve the properties of material 

and products, such as polymer chemical modification and food digestibility[10, 11]. 

Recently, RME have been introduced in pharmaceutical area to prepare cocrystal[12], 

coamorphous[13], salt[14], and polyelectrolytes complex[15] to improve the oral 

bioavailability of poorly water soluble drugs. Although there is an increasing number of 

HME studies in pharmaceutics, the study of RME for sustained release delivery remains 

limited. In this study, we utilize RME to prepare clay-polymer nanocomposites for 

sustained drug release. 

Nanocomposites based on polymer and clay are attractive materials for 

development of controlled drug delivery systems due to their advantageous properties such 

as (1) high drug encapsulation efficiency, (2) enhanced stability of API against pH 

variation and enzyme action, (3) low burst release of drug, and (4) a controlled and targeted 

drug release profile[16-18]. In general, nanocomposites are dispersions of two or more 

components at the nanometric scale with optimized properties compared to the pure 

materials, which can be obtained by dispersing clay layers or sheets into a polymeric 

matrix[19, 20]. Clay-polymer nanocomposites can be prepared by various processes, such 

as melt blending, solution blending, in-situ polymerization, and mechano-chemical 

processing[21, 22]. The intercalation of layered structures with polymers can be performed 

by noncovalent bonding involving a cation- or anion-exchange reaction[23]. Through the 

interaction between clay and polymer, nanocomposites provide different characteristics 

from the parent components, including barrier effects, swelling index, mucoadhesion 

ability, mechanical and thermal stability. The barrier properties of the polymer-based 
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nanocomposites play a pivotal role in determining dissolution rate, drug uptake, drug 

release profile, and release mechanism[24]. The presence of clays in the polymer matrix 

affects the barrier properties by acting as release retardants for drugs and carriers, thereby 

promoting stable, controlled drug release in the dissolution media, increasing the solubility 

of the API, and conferring improved mechanical and thermal properties to the 

nanocomposites[25, 26]. All of these properties are strongly influenced by the surface area 

and ion exchange capacity of the clay, the type of interactions between clay and polymer 

and the clay-polymer ratio[27].  

There are several different types of clays used in the drug delivery systems, such as 

kaolin, montmorillonite, saponite, laponite, halloysite and so on[16, 28]. Montmorillonite 

(MMT) has become prominent among other clays because of its abundance, environment 

friendliness, and well -studied chemistry. MMT is a natural material with high internal 

surface area, high cation exchange capacity (CEC), high adsorption and swelling ability, 

low or null toxicity, good biocompatibility and, furthermore,  it is a material “generally 

recognized as safe” (GRAS) by the FDA[18, 29, 30]. MMT is a layered hydrated aluminum 

silicate which belongs to the smectite group of phyllosilicates. The layer thickness of each 

platelet is in the order of 1nm and the lateral dimension is approximately 200 nm. Cloisite 

Na is a natural MMT without any modification and Cloisite 20 is an organic modified 

MMT with quaternary ammonium salts. Because of the presence of long alkyl chains, the 

interlayer spacing of MMT is enhanced, resulting in hydrophobic MMT. MMT has the 

empirical formula Al2O3·4SiO2· H2O, and due to the substitution of some Al3+ with Mg2+, 

it carries an overall negative charge on its hydrophilic platelet surface. Because of its 

permanent negative charge, MMT has been used to prepare nanocomposites by 

electrostatic interactions with cationic polymers such as chitosan and gelatin [29, 31]. In 

this study, layered silicate nanocomposites have been prepared by melt intercalation.  
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There is many study focus on the application of nanocomposites as a drug delivery 

system[32, 33]. However, there are few paper focusing on the influence of the clay-

polymer interaction on the drug release profiles[34]. No study has compared the effect of 

Cloisite Na and Cloisite 20 on the resulting Cloisite/Eudragit RS nanocomposites so far. 

There are also few reports on their structural confinement properties and on the 

mechanisms that underlie their polymer interactions. Bee et al have investigated the effect 

of Cloisite Na and Cloisite 20 on the morphology, mechanical and thermal properties of 

the resulting poly (methyl methacrylate) (PMMA) nanocomposites prepared using a 

Brabender mixer[35]. They found that Cloisite 20 shows better compatibility with PMMA 

compared with Cloisite Na. It was found that Cloisite 20 formed nanocomposites with 

PMMA, while Cloisite Na only formed microcomposites. The results show that the 

properties of the Cloisite 20 nanocomposites surpassed the neat PMMA and 

PMMA/Cloisite Na microcomposites, which is attributed to the formation of more 

favorable polymer-filler interaction. However, the author overlooked the influence of the 

composites structure on the polymer-filler interaction since insufficient mixing process 

might limit the polymer-filler interaction. Considering the importance of the water 

permeation and the different surface properties of Cloisite Na and Cloisite 20, our 

hypothesis in this study was that the dispersion of Cloisite nanoplatelets into the Eudragit 

RS matrix might easily control the water uptake and the drug release rate and the difference 

of the interactions between polymers and pristine clay or organically modified clay and 

polymers would impact the drug release behaviors. 

In this study, Cloisite Na and Cloisite 20 were selected as model clays. The 

chemical formula of Cloisite Na is Al2O3·4SiO2·H2O, the basal spacing is 1.2 nm and its 

cation exchange capacity has been reported to be approximately 92 meq/100g [30]. Cloisite 

20 is prepared from Cloisite Na with hydrogenated tallow (HT, ~ 65% C18; ~ 30% C16; 
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and ~ 5% C14) and the modifier concentration is 95 meq/100g and the basal spacing is 2.4 

nm. Eudragit RS, a cationic copolymer of ethyl acrylate, methyl methacrylate, and a low 

content of methacrylic acid ester with quaternary ammonium groups, was selected as the 

polymer carrier. Figure 4.1 presents the chemical structures and critical attributes of the 

drug and excipients used in this study. The objective of this study was to compare the 

difference of the interfacial interactions between polymers and pristine clay and organically 

modified clay in sustained release hydrophobic matrices prepared by hot melt extrusion, 

and to investigate the influence of the clay-polymer interactions on the physicochemical 

properties of the extrudates. The nanocomposite structure and possible interaction between 

clays and polymer were investigated by DSC, XRPD, TEM, FT-IR, ssNMR and DVS. 

Dissolution testing was performed in pH 6.8 phosphate buffer dissolution medium to 

investigate the influence of the clay loading, clay type and polymer-clay interaction on 

permeability and drug release properties. 

 

 

Figure 4.1: Chemical structures and critical properties of Cloisite Na, Cloisite 20, 

theophylline and Eudragit RS. 
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4.3    MATERIALS  

Cloisite Na and Cloisite 20 were donated by Southern Clay Products, Inc 

(Gonzales, TX). Eudragit® RS was donated by Evonik Industries (Darmstadt, Germany). 

Anhydrous theophylline USP was purchased from Acros Organics (Pittsburgh, PA). 

Sodium phosphate monobasic and sodium phosphate dibasic were purchased from Fisher 

Scientific (Waltham, MA). All other reagents and solvents were analysis grade or better. 

4.4    METHODS  

4.4.1    Preparation of Nanocomposites 

Clay-polymer nanocomposites were prepared using a Leistritz Nano 16 extruder 

(Leistritz Corporation, Allendale, NJ). The composition of the various powder blends is 

summarized in Table 4.1. A Turbula® Shaker-Mixer (Glen Mills, Clifton, NJ) was used to 

prepare powder blends for extrusion. A twin-screw volumetric feeder (Brabender 

Technologie, Ontario, Canada) was used to feed the powder blends at a rate of 300 g/hr. 

The screw profile is shown in Figure 4.2. The screw speed was set at 100 rpm and the barrel 

temperature was at 160 °C.  

Preparation of theophylline granules was performed in two steps. In the first step, 

clay and polymer nanocomposites were prepared. In the second step, blends of the milled 

nanocomposites and theophylline (20% loading) were extruded to incorporate the drug. 

Milling of extrudates was carried out using a Comill (QUADRO, Ontario, Canada). The 

milled extrudates were stored in a desiccated chamber at room temperature for further 

analysis. 
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Table 4.1: Composition, extrusion torque, and images of extrudates. 

Extrusion 

time    
Formula # 

Clay Polymer Drug 
Average Torque (G.m) Extrudates Images 

Cloisite Na Cloisite 20 Eudragit RS Theophylline 

1st 

extrusion to 

prepare 

clay-

polymer 

nanocompo

sites 

1 - - 100% 

- 

883 
 

2 5% - 95% 841 
 

3 - 5% 95% 751 
 

4 10% - 90% 984 
 

5 - 10% 90% 761 
 

6 15% - 85% 1156 
 

7 - 15% 85% 887 
 

2nd 

extrusion to 

incorporate 

theophyllin

e 

1-1 - - 80% 

20% 

477 
 

2-1 4% - 76% 781 
 

3-1 - 4% 76% 663 
 

4-1 8% - 72% 1202 
 

5-1 - 8% 72% 734 
 

6-1 12% - 68% 1436 
 

7-1 - 12% 68% 873 
 

Screw speed: 100 rpm; feed rate: 300 g/h.
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Figure 4.2: Screw configuration and barrel temperature for reactive melt extrusion of 

theophylline granules. 

Data in the screw code (GFA X-XX-XX) represent the trilobal screw, pitch length (mm) and screw 

length (mm), respectively. Data in the screw code (KB X-X-XX-XX) indicate the number of 

kneading segments, trilobal screw, screw length (mm) and the angle (°). 

4.4.2    Transmission Electron Microscopy (TEM) and Scanning Electronic Microscopy 

(SEM) 

Dispersions of Cloisite Na and Cloisite 20 in Eudragit RS were examined using a high-

resolution FEI Tecnai TEM (ThermoFisher Scientific, Hillsboro, OR) with an acceleration voltage 

of 100 kV. The exposure time varied from 0 to 100 seconds. Ultrathin sections of nanocomposites 

were prepared with a Leica Ultracut UC7 ultramicrotome (Leica Microsystems Inc., Buffalo 

Grove, IL) equipped with a diamond knife. All samples were placed on 200 mesh copper grids 

before loading into the instrument. The surface morphology of the theophylline granules following 

dissolution testing was examined using Zeiss Supra40 SEM (Carl Zeiss, Thornwood, NY). All 

samples were tested with 5 kV accelerating voltage and 30 µm aperture coated with 15 nm Pt. 

4.4.3    Differential Scanning Calorimetry (DSC) 

DSC analysis was performed using a Model Q-2000 DSC (TA Instruments, Newcastle, 

DE) equipped with the RCS 90 (TA Instrument, Newcastle, DE) refrigerated cooling system 

accessory under a dry nitrogen purge (50 mL/min). Calibration was performed with an indium 
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standard and an empty TA aluminum pan was used as the reference. Samples were accurately 

weighed (3-5 mg) in aluminum pans and crimped with aluminum lids. Samples were heated from 

20 to 350 °C at a heating rate of 10 °C/min. The DSC data were analyzed using the TA Universal 

Analysis 2000 software (TA Instrument, Newcastle, DE).  

4.4.4    X-Ray Powder Diffraction (XRPD) 

XRPD analysis was performed using a Rigaku MiniFlex 600 X-ray diffractometer (Rigaku 

Corporation, Japan) equipped with a copper X-ray tube (wavelength λ= 0.154 nm). Milled samples 

were placed on a silicon sample holder and the measurement was conducted with an acceleration 

voltage of 40 kV, and a current of 15 mA, 2-theta angles between 5° and 45° with a scan speed of 

1°/min, and a step size of 0.02°. The results were analyzed with the MDI Jade 8.5 software 

(Material Data, Inc., Livermore, CA) and plotted with OriginLab version 9.0 software (OriginLab 

Corporation, Northampton, MA). The thickness of the silicate layer was calculated using Bragg’s 

equation: 

𝑛𝜆 = 2𝑑 sin 𝜃 

Where n is order reflection; λ is the X-ray wavelength (1.54 A); θ is the angle of the basal 

spacing peak of clay; and d is the thickness of the clay silicate layer. 

4.4.5    Fourier Transform Infrared Spectroscopy (FT-IR) 

Molecular interactions between clay and polymer were examined with FT-IR. The 

measurements were performed using a Thermo Nicolet iS50 spectrometer (Waltham, MA). 

Samples were placed on a germanium crystal surface. A constant torque was applied using the 

built-in pressure tower to achieve uniform contact between the sample and the crystal. All samples 

were analyzed at ambient room temperature with a total of 32 scans at a 4 cm-1 resolution from 

600 cm-1 to 4000 cm-1. The peak positions were determined using the OMNIC software peak 

picking function (ThermoFisher Scientific, Waltham, MA). 
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4.4.6    Solid-state NMR (ssNMR) 

All ssNMR experiments were performed on a triple-channel 400 MHz Bruker AVANCE 

III spectrometer (Bruker BioSpin, Billerica, MA) in the Biopharmaceutical NMR Lab (BNL) at 

Pharmaceutical Sciences, MRL (Merck & Co., Inc. West Point, PA). One-dimensional (1D) 13C 

spectra were obtained at magic angle spinning (MAS) of 12 kHz with a Bruker 4 mm HFX MAS 

probe in double-resonance mode tuned to 1H and 13C-nucleus frequencies. 13C spectra were 

referenced to the tetramethylsilane (TMS). All spectra were acquired at 298 K and processed in 

Bruker Topspin software (Bruker Corporation, Billerica, MA). 1D 13C cross-polarization (CP) 

transfers were performed with a radio-frequency (RF) strength of 80–100 kHz during a 2 ms 

contact time. The power level was ramped linearly over a depth of 15-20 kHz on the 1H channel 

to enhance CP efficiency. 1H heteronuclear decoupling for 13C was performed at a RF strength of 

100 kHz using the SPINAL-64 pulse sequence. 1H spin-lattice relaxation times in the laboratory 

frame (T1) were determined by 13C-detected saturation recovery experiments [36]. 

4.4.7    Dynamic Vapor Sorption (DVS) 

The water sorption-desorption isotherms of the clay dispersion were determined using a 

TA VTI-SA+DVS analyzer (TA Instruments, Newcastle, DE). Two relative humidity cycles were 

performed for each sample at 25 °C and water was used as the testing medium. In each cycle, 

relative humidity was raised in 5 steps, 15% ramp per step, from 0% to 75% and then back to 0%. 

A rate of change in mass per time unit (dm/dt) of 0.001%/min was set as the equilibration 

parameter. At each stage, DVS held the set parameters for 30 mins once dm/dt reached  

0.001%/min. The DVS water sorption limits were calculated by averaging the mass difference 

between 75% relative humidity and 0% relative humidity of each cycle.  

4.4.8    Dissolution Testing 

Dissolution testing of 30-35 mesh theophylline granules was carried out in 900 mL of 

phosphate buffer with a pH of 6.8 at 37 °C ± 0.5 °C using the USP Type II apparatus (Varian 

VK7025, Agilent Technology Inc., Santa Clara, CA) at a paddle speed of 75 RPM. 500 mg 
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theophylline granules were introduced into each dissolution vessel. Three milliliter dissolution 

samples were withdrawn at specific time points (0.5, 1, 2, 4, 6, 9, 12, and 24 h) using an 

autosamplers (Varian VK7025, Agilent Technology Inc., Santa Clara, CA) without sample 

replacement. The samples were filtered through Vankel Full Flow 10 µm filters. The drug 

concentration was measured with a UV-Vis spectrophotometer at 245 nm (Infinite M200, Tecan 

Group Ltd., Mannedorf, Switzerland). All samples were tested in triplicate. 

4.5    RESULTS AND DISCUSSION 

4.5.1    Preparation of Cloisite-Eudragit RS Nanocomposites and Theophylline Granules 

Four methods commonly used to prepare clay-polymer nanocomposites are in situ template 

synthesis, solution intercalation, in situ intercalative polymerization, and melt intercalation. In this 

study, melt intercalation was applied to prepare clay-Eudragit RS nanocomposites. Melt 

intercalation was carried out using an intermeshing corotating twin-screw extruder. Twin-screw 

extrusion is solvent free, efficient, and easy to scale up. Cloisite-Eudragit RS nanocomposites were 

initially prepared using melt extrusion. Powder blends of the milled nanocomposites and 

theophylline were then extruded to prepare theophylline granules. The composition, extrusion 

torque, and extrudate images are listed in Table 4.1. The advantage of nanocomposites is that the 

relatively small amount of clay loading (1%-20% by weight) would results in the best combination 

of property improvements to the hybrid materials [37]. Due to the torque limitation of the twin-

screw extruder in this study, the maximum clay loading was set at 15%. At a given clay loading, 

Cloisite Na-containing formulations demonstrated higher extrusion torque than Cloisite 20-

containing formulations, indicating stronger Cloisite Na-Eudragit RS interactions. 

As shown in Table 4.1, transparent Eudragit RS extrudate became translucent with the 

incorporation of Cloisite. Theophylline granules were opaque, indicating that the drug was not 

fully solubilized in the extrudates. Both the dispersion of Cloisite in Eudragit RS and crystallinity 

of theophylline were thoroughly characterized, and the results are presented in later sections.    
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4.5.2     Characterization of Cloisite-Eudragit RS Nanocomposites 

4.5.2.1    The Nanocomposites Structure 

Physical properties such as permeability and mechanical strength are defined by the 

morphology of the clay-polymer nanocomposite. The preparation of nanocomposites requires 

uniform dispersion of the layered silicate in the polymer matrix at the nanometer scale. Based on 

the physical state of the clay layers and their morphology, clay-polymer nanocomposites can be 

categorized into three types: aggregated, intercalated, and exfoliated [38]. In the aggregated 

structure, the clay tactoids are well distributed in the polymer matrix, but the single clay layers are 

not delaminated. In the intercalated structure, the clay tactoids are delaminated to some extent and 

the polymer chains diffuse into the galleries between them. In the exfolicated structure, the clay 

tactoids are completely broken apart into single layered platelets, which are homogeneously 

dispersed in the polymer matrix. When aggregation of the clay platelets occurs due to intercalation 

without complete exfolication, then the tortuous path is correspondingly reduced. As a result, the 

exfoliated structure is the most desirable state as it can provide excellent barrier and mechanical 

properties at low clay contents [21, 26]. In general, the goal of compounding clay-polymer 

nanocomposites is to achieve complete exfoliation of the layered silicate in a polymer matrix. 

During reactive melt extrusion, delamination and dispersion of the clay particles occur in two 

steps: (1) the clay particles shear apart and the polymer chains intercalate to clay galleries; and (2) 

polymer chains enter the galleries of the clay and push platelets apart, which eventually allows the 

platelets to peel off the intercalated clay stack[38].  

The structure of Cloisite Na-Eudragit RS nanocomposites was investigated using XRPD 

and TEM techniques. As shown in Figure 4.3A, the major diffraction peak of Cloisite Na at 7.73° 

(Figure 4.3A-a), corresponding to a mean interlayer spacing of 11.8 nm, was present in the 

diffraction pattern (Figure 4.3A-b) of the Cloisite Na-Eudragit RS physical mixture. At 5% and 

10% Cloisite Na loadings, the peak at 7.73° was absent in the XRPD patterns of the 

nanocomposites (Figure 3A-d, e and f), indicating complete exfoliation of nanoclay platelets in the 
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polymer matrix. At 15% Cloisite Na loading, a new broad peak at 3.11° implied the formation of 

an ordered intercalated nanocomposite. The decrease in 2θ angle reflects the enlarged d-spacing 

of clay platelets and increased gallery gap due to the intercalation of Eudragit RS.  

A similar pattern was also observed with Cloisite 20-Eudragit RS nanocomposites. Cloisite 

20 exhibited a diffraction peak at 2.80°, corresponding to a d-spacing of 2.42 nm (Figure 4.3B). 

Positioning of the diffraction peak at such a low 2θ angle is due to the intercalation by the tallow 

surfactants. At 5% and 10% clay loading, Cloisite 20 was fully exfoliated in the polymer matrix. 

At 15% clay loading, a broad peak at 2θ of 2.38° corresponding to a gallery gap of 2.42 nm was 

observed, due to the intercalation of the polymer chain.   

 

 

             Figure 4.3: continued in next page. 
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Figure 4.3: XRPD patterns of Cloisite, Eudragit RS, and their extruded nanocomposites. Part A: 

(a) Cloisite Na; (b) 5% Cloisite Na-95% Eudragit RS physical mixture; (c) Eudragit RS; (d) 

nanocomposite containing 5% Cloisite Na; (e) nanocomposite containing 10% Cloisite Na; (f) 

nanocomposite containing 15% Cloisite Na. Part B: (a) Cloisite 20; (b) 5% Cloisite 20-95% 

Eudragit RS physical mixture; (c) Eudragit RS; (d) nanocomposite containing 5% Cloisite Na; 

(e) nanocomposite containing 10% Cloisite Na; (f) nanocomposite containing 15% Cloisite Na. 

TEM results agreed well with XRPD results. Dark lines or areas in the TEM images 

represent clay, and the off-white phase was Eudragit RS (Figure 4.4). The TEM images of Cloisite-

Eudragit RS showed the exfoliated or intercalated structure, depending on clay loading. Fine and 

uniform dispersion of Cloisite sheets in Eudragit RS was observed. Most Cloisite sheets aligned 

perpendicularly to the sample cutting surface. At 5% and 10% loadings, Cloisite Na and Cloisite 

20 were uniformly dispersed in the Eudragit RS matrix and an exfoliated nanocomposite structure 

was observed. At 15% clay loading, the clay sheets became denser and the intercalated 

nanocomposite structures were observed. It was concluded that the clay type did not impact the 

dispersion status of the clay in Eudragit RS. The coherent order of the stacked layers strongly 

depended on the clay loading.  
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Figure 4.4: TEM images of Cloisite-Eudragit RS nanocomposites prepared using RME.  (A) 5% 

Cloisite Na, (B) 10% Cloisite Na, (C) 15% Cloisite Na, (D) 5% Cloisite 20, (E) 10% Cloisite 20, 

(F) 15% Cloisite 20. 

Exfoliation of Cloisite clays by Eudragit RS was mainly driven by the ionic interactions. 

As shown in Figure 4.1, quaternary ammonium group in Eudragit RS is positively charged while 

clay sheet surface is negatively charged.  Since the drug molecules could not penetrate through the 

clay sheets, the increase in tortuosity as a result of ionic interaction would lead to slower diffusion 

[39]. The interaction could also reduce the hygroscopicity of Eudragit RS because less quaternary 

ammonium groups are available to interact with water molecules following the clay-polymer 

complexation.  

At 5% and 10% clay loadings, all nanocomposites showed similar exfoliated structures 

regardless of clay types. For Cloisite 20, 86% of the intercalating sites are blocked by the ternary 

ammonium surfactant. The decrease in the available intercalating sites of Cloisite 20 could lead to 
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fewer interactions between the clay and Eudragit RS, potentially impacting drug release behaviors. 

FT-IR and ssNMR techniques were applied to investigate the molecular mechanisms of Eudragit 

RS-Cloisite interactions. 

4.5.2.2    Investigation of Cloisite-Eudragit RS Interactions Using FT-IR 

Due to isomorphous substitution, the silicate layers of Cloisite are negatively charged, 

which is balanced by interlayer Na+. During the extrusion process, the ion-exchange reaction took 

place, and the quaternary ammonium groups of Eudragit RS replace the Na+ and get ionically 

bound to the silicate layers. This type of interaction has been reported in other nanocomposites 

prepared with MMT and cationic polymers such as chitosan and gelatin [29, 31, 40]. 

Interactions between Cloisite and Eudragit RS were studied using FT-IR technique. The 

functional groups involved in molecular interaction could be reflected in the emergence of a new 

band, shift in band position, or change in band shape in FT-IR spectra [41]. The band assignment 

for Cloisite Na, Cloisite 20 and Eudragit RS FT-IR spectra (Figure 4.5A) is summarized in Table 

2. The bands indicative of the Cloisite-Eudragit RS interactions are in the range of 500-1800 cm-1 

[42]. These bands are associated with bending, deformation, and stretching of Si-O-Si, structural 

OH, and adsorbed water.  

In the IR spectrum of Cloisite Na, the band at 1636 cm-1 (Figure 4.5A) is attributed to in-

plane bending of water in the hydration sphere of the interlayer Na+ ion [42]. The broad band in 

the region of 950-1100 cm-1 is associated with Si-O stretching vibrations [43]. For Cloisite 20, the 

ionic interactions between the intercalated surfactant and silicate surfaces significantly impact the 

arrangement of SiO4 tetrahedral layers. The loading and alkyl chain length of the surfactant 

significantly impact the shape and wavenumber of the bands discussed above. In the FT-IR 

spectrum of Cloisite 20, the frequency of in-plane bending of water in the hydration sphere of the 

interlayer Na+ ion shifted from 1636 cm-1 to 1645 cm-1, while the intensity of this band decreased 

significantly. In addition, the peak of Si-O stretching vibrations in plane split into two peaks, one 

at 1036 cm-1 and another at 1027 cm-1 (Figure 4.5A).  
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Two notable changes in the FT-IR spectra of the clay-polymer nanocomposites indicate 

the interactions between Cloisite Na and Eudragit RS (Figure 4.5B). Firstly, the 1636 cm-1 band 

indicative of water molecules hydrating the interlayer Na+ disappeared because of the displacement 

of the interlayer Na+ and associated water molecules by Eudragit RS [44, 45]. Secondly, the board 

band in the region of 950-1100 cm-1, corresponding to the vibration of Si-O, split into two peaks 

at 1038 and 1028 cm-1. The splitting of the Si-O vibration band is affected by not only the chemical 

nature of the intercalated components, but also the basal spacing of the clay sheets. Because 

smaller basal spacing leads to less significant splitting, the splitting was less at higher Cloisite Na 

loading (by comparing Figure 4.5B), As illustrated in the XRPD and TEM results discussed earlier, 

the interlayer space decreases significantly with increased the clay loading. In addition to peak 

splitting, a new band attributed to perpendicular Si-O stretching was observed at 1078 cm-1[46]. 

The intercalation of the Eudragit RS or surfactants into the Cloisite interlayer space resulted in a 

marked interlayer swelling during which a perpendicular adsorbate orientation is reached, 

accounting for the appearance of the new peak at 1078 cm-1. Furthermore, with the decrease in 

clay loading, SiO4 tetrahedra oriented toward a more ordered arrangement. Therefore, 

perpendicular Si-O vibration became more significant [46, 47]. The similar results were observed 

in Cloisite 20-Eudragit RS nanocomposites (Figure 4.6). It is difficult to differentiate the 

interaction between Eudragit RS and Cloisite Na or Cloisite 20 at the same clay loading level 

through FT-IR analysis.  

           The results not only indicate the clays were entrapped in the polymer matrix, but also that 

the clay layers interacted with polymer network to create a compacted complex structure for both 

Cloisite Na and Cloisite 20. 
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Table 4.2: Band assignment for Cloisite Na, Cloisite 20A, and Eudragit RS. 

Components IR absorption Band (cm−1) Band Assignment 

Cloisite Na 1636 δ (O-H) for adsorbed H2O 

 1078 γ (Si-O) (out-of-plane) 

 1007 γ (Si-O) (in-of-plane) 

 919 δ (Al-Al-OH) 

Cloisite 20 1645 δ (O-H) for adsorbed H2O 

 1467 δ (C-H) of Aliphatic 

 1080 γ (Si-O) (out-of-plane) 

 1035 γ (Si-O) (in-of-plane)  

 1027 γ (Si-O) (in-of-plane) 

 919 δ (Al-Al-OH) 

Eudragit RS 1728 δ(C=O) for ester group 

 1448 δ(C-H) of alkyl chains 

 1386 δ(C-H) of alkyl chains 

 1238 γ (O=C-O) for ester group 

 1147 γ (O=C-O) for ester group 

δ = Bending vibration; γ = Stretching vibration. 

 

 

           Figure 4.5: continued in next page. 
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Figure 4.5: FT-IR spectra of extruded Cloisite–Eudragit RS nanocomposites. (A) 10% Cloisite 

Na–90% Eudragit RS nanocomposite, individual components, and their physical mixture; (B): 

(a) 5% Cloisite Na–95% Eudragit RS physical mixture; (b) Cloisite Na nanocomposite at 5% 

clay loading; (c) Cloisite Na nanocomposite at 10% clay loading; (d) Cloisite Na nanocomposite 

at 15% clay loading. 

 
 

             Figure 4.6: continued in next page 
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Figure 4.6: FTIR profiles of Cloisite 20 extrudates. (A) From bottom to top, (a) 5% Cloisite 20-

95% Eudragit RS physical mixture; (b) Cloisite 20 extrudates at 5% clay loading; (c) Cloisite 20 

extrudates at 10% clay loading; (d) Cloisite 20 extrudates at 15% clay loading. (B)  From bottom 

to top, (a) 5% Cloisite 20-95% Eudragit RS physical mixture; (b) Cloisite 20 nanocomposite at 

5% clay loading; (c) Cloisite 20 nanocomposite at 10% clay loading; (d) Cloisite 20 

nanocomposite at 15% clay loading. 
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4.5.2.3    Investigation of Cloisite Na-Eudragit RS Interactions Using ssNMR 

            In previous studies, ssNMR was utilized to characterize the molecular interaction 

between Cloisite-polymer nanocomposites. For example, dynamic behavior of the local 

domains in between Cloisite and polymer is considered of important to understand the 

macroscopic properties of a nanocomposite [48]. Molecular motions at frequencies of the 

order of the Larmor frequency (MHz regime) can strongly influence the nuclear spin-lattice 

relaxation processes in the laboratory (T1). We utilized 13C-detected saturation recovery 

experiments to measure the Eudragit RS 1H spin-lattice relaxation times in the laboratory 

frame [36]. The 1H T1 of Eudragit RS only was measured as 1.1 s and decreased to 0.8 s 

upon the incorporation of Cloisite Na, presumably exhibiting enhanced molecular 

dynamics. As a hypothesis, it may indicate that Eudragit RS molecules were well dispersed 

in between Cloisite Na layers and formed as a flexible dispersion, comparing to its original 

dense polymer assemblies. Besides molecular motions, ssNMR has been often utilized to 

probe intermolecular drug-polymer interactions [49]. Therefore, we further analyzed the 

Cloisite-polymer dispersion using 13C CPMAS. The 13C resonances of Eudragit RS are 

tentatively assigned. In Figure 4.7, The 1D 13C spectra comparison exhibits an interesting 

spectral difference at 54.8 ppm between Eudragit RS only and Cloisite Na-Eudragit RS 

dispersions. This peak can be tentatively assigned as the polymer C23, adjacent to –

N+(CH3)3 in one of sidechains. While relative intensity of all other carbons remains 

unchanged, the loss of C23 intensity may suggest the perturbation of its surrounding proton 

network as well as molecular mobility, both of which attenuate the magnetization transfer 

during 1H-to-13C CP. For example, C23 can reside in a more diluted proton environment 

and exhibit faster molecular dynamics if the –N+(CH3)3 sidechain is involved in between 

Cloisite Na layers. These molecular details will be further investigated by utilizing more 
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quantitative multiCP and two-dimensional site-specific ssNMR experiments in future 

studies [49, 50]. 

 

Figure 4.7: 1D 13C spectral comparison between Eudragit RS (red) and Cloisite Na–

Eudragit RS dispersions (blue). Enlarged spectra were displayed in an overlaid manner. 

Tentative 13C chemical shift assignments are labeled using 13C numbers 

correspondingly shown in the Eudragit RS molecule structure. 

4.5.2.4    Hygroscopicity of Nanocomposites 

Eudragit RS is a copolymer of ethyl acrylate, methyl acrylate, and 3.3% (molar) of 

methacrylic acid ester with quaternary ammonium groups (trimethylammonioethyl 

methacrylate chloride).  The ammonium groups are present as salt and make the polymer 

hygroscopic and permeable. Ion-exchange interaction between clay and polymer lowers 

the hygroscopicity of Eudragit RS. With the dispersion of silicate layers throughout the 

polymer matrix, the water barrier properties of the Eudragit RS are expected to be enhanced 

since water molecules must bypass impenetrable silicate platelets and permeate through a 

more tortuous diffusion path [37, 51].  



 190 

The moisture sorption isotherms were determined for Eudragit RS and its Cloisite 

nanocomposites. As shown in Figure 4.8A, hygroscopicity of nanocomposites ranked in 

the following order: 10% Cloisite Na  15% Cloisite Na   5% Cloisite Na   Eudragit RS 

only. The Cloisite Na nanocomposite at 10% clay loading was the least hygroscopic. An 

initial decrease followed with increase in hygroscopicity beyond a threshold value was also 

reported with other clay-polymer nanocomposites [51-53]. Duan et. al. reported the lowest 

water vapor transmission rate at 5% clay loading for MMT-PLA nanocomposites 

containing 1% to 6% clay. The experimental data agreed well with the predictions from the 

Nielsen “tortuous path” model [54]. Increase in hygroscopicity above a clay-loading 

threshold was attributed to nanoclay agglomeration effect [37]. The increase in water 

permeability can also be explained by the increasing level of nonexfoliated silicate layers 

that formed tactoids and intercalated structures [55]. Aggregates in the intercalated 

structure facilitated the diffusion of water molecules via the connecting pathways along the 

polymer-clay interfacial zones [56].  In Cloisite-Eudragit RS nanocomposites, Cloisite Na 

platelets started to aggregate at 15% clay loading due to the intercalation without complete 

exfoliation.  
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Figure 4.8: DVS profiles comparison of extruded Cloisite–Eudragit RS nanocomposites 

(35–50 mesh). (A) nanocomposites with different Cloisite Na loadings (B) 

nanocomposites with different Cloisite 20 loadings (C) nanocomposites with different 

clays at 10% loading (D) nanocomposites with different clays at 5% and 15% loadings. 

In our study, we found that the exfoliated nanocomposites could be achieved at 

10% Cloisite Na loading, which shows the maximum water-barrier effect. The exfoliated 

nanocomposites with higher clay loading could be made probably related with the higher 
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shear stresses generated during the twin screw extrusion process and the good miscibility 

of Cloisite Na and Eudragit RS. 

Yet, the moisture sorption of Cloisite 20-Eudragit RS nanocomposites were similar 

across different Cloisite 20 loadings (Figure 4.8B). Equilibrium moisture content of 

nanocomposites containing 5% and 10% Cloisite 20 was 5.8% and 7.6% equilibrium 

moisture content was achieved at 25 °C/75% RH. The 15% Cloisite 20 nanocomposites 

even show slightly higher water hygroscopicity than Eudragit RS. 

At a given clay loading, Cloisite Na is more effective than Cloisite 20 in reducing 

hygroscopicity of Eudragit RS, even though Cloisite 20 itself is less hygroscopic than 

Cloisite Na [57, 58]. Our DVS data shown the hygroscopicity of Cloisite Na was about 15 

times than Cloisite 20 at 25 °C and 75 % RH condition (Figure 4.9). However, Cloisite Na 

nanocomposite show 32% less hygroscopicity than Cloisite 20 nanocomposites at 25 °C 

and 75 % RH at 10% clay loading (Figure 8C). This is attributed to difference in stronger 

clay-Eudragit RS interaction for Cloisite Na. For Cloisite 20-Eudragit RS nanocomposites, 

the intercalation of the polymer chain to the silicate layers enhances the exfoliation because 

the surfactant molecules cannot be squeezed out upon collapse of the layer.  
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Figure 4.9: DVS profiles comparison of Cloisite Na, Eudragit RS and Cloisite20. 

Moisture absorption of Eudragit RS is mainly controlled by its tertiary amine group. 

Due to the surfactant coating, Cloisite 20 has less cation exchange capacity compared with 

Cloisite Na. As a result, the quaternary ammonium groups of Eudragit RS have stronger 

interaction with the Cloisite Na.  

At the same clay loading, the transmission rate of water through the composites is 

more influenced by polymer-silicate layer interactions. The nanofiller did not influence the 

water sorption capacity in the amorphous domains, however, the polymer interacted with 

the clay in the interlayer space, leading to the lowered hygroscopicity of this phase. 

Different kinds of interactions between the polymer and inorganic platelets may affect the 

free volume in the matrix, the interfacial regions between the two different phases and the 

degree of delamination of the silicate layers. A number of studies compare the efficacy of 
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different filler types in specific polymer systems. Alexandre et al also compared the water 

barrier properties of polyamide 12/organically modified MMT nanocomposites [56]. They 

found that the water permeability and diffusivity decrease with increasing clay volume 

fraction up to 2.5%. However, the water barrier effect was not improved by further addition 

of clay. The loss of barrier properties was attributed to several concomitant effects, such as 

the change of the polymer crystallinity, the water-induced plasticization and the structure 

heterogeneity.  

             In summary, Cloisite Na nanocomposites are more effective in inhibiting water 

absorption than Cloisite 20 nanocomposites and this is attributed to the difference in the 

interactions between Eudragit RS and silicate layers. 

4.5.3    Characterization of Cloisite-Eudragit RS Nanocomposites Loaded with 

Theophylline 

4.5.3.1    Characterization of Physical State of Theophylline in Extrudate 

The theophylline extrudates were prepared at 160 C, significantly below the 

melting point (273 C) of theophylline. As shown in Figure 4.10, all major characteristic 

peaks (7.30, 12.77, 14.51, and 25.76) of theophylline were present in XRPD patterns 

of Cloisite Na or Cloisite 20-based theophylline granules. The intensity of theophylline 

diffraction increased with the increase in clay loading. These results indicated that the 

theophylline was not fully dissolved in the extrudates. The DSC data (Figure 4.11) 

confirmed XPRD results. Theophylline melts at 271 C with a melting enthalpy of 197 J/g 

(Figure 4.11A). The higher the clay loading is, the lower the theophylline melting enthalpy 

of the extrudates. Via DSC analysis, the percentage of theophylline remaining crystalline 

in Cloisite Na-based formulations was determined to be 45.4%, 54.83%, and 72.43% at 4, 

8, and 12% clay loading, respectively. Similar results have been observed in Cloisite 20-
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based formulations (Figure 4.11B). It is noteworthy that under the same clay loading, the 

drug crystallinity in Cloisite Na and Cloisite 20-based formulations are similar. 

 

     Figure 4.10: continued in next page. 
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Figure 4.10: XRPD patterns of theophylline granules (20%) based on Cloisite–Eudragit 

RS nanocomposites and individual components. (A) Cloisite Na–Eudragit RS 

nanocomposites at different clay to polymer ratios, (B) Cloisite 20-Eudragit RS 

nanocomposites at different clay to polymer ratios. 
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Figure 4.11: DSC profiles of theophylline granules (20%) based on Cloisite–Eudragit RS 

nanocomposites. (A) Cloisite Na–Eudragit RS nanocomposites at different clay to 

polymer ratios (B) Cloisite 20-Eudragit RS nanocomposites at different clay to polymer 

ratios. 
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Higher crystalline theophylline content at higher clay loading is due to two factors.  

Firstly, there is less Eudragit RS to solubilize theophylline in clay-polymer nanocomposites 

containing with a higher level of clay loading. Secondly, higher clay loading results in less 

distributive mixing. As discussed earlier, higher clay loading resulted in higher extrusion 

torque, which was indicative of a higher melt viscosity for the formulation. The distributive 

mixing during the extrusion process is limited due to the higher viscosity of the extrudates, 

which result in higher residual crystallinity in the formulation. 

In summary, theophylline exists in a partially crystalline state in both Cloisite Na 

and Cloisite 20 nanocomposite matrices and the clay type does not impact the physical 

state of drug during the extrusion process. 

4.5.3.2    Dissolution Study 

Our Eudragit RS is a copolymer of ethyl acrylate, methyl methacrylate and a low 

content of methacrylic acid ester with quaternary ammonium groups. Not soluble in 

aqueous media across the entire physiological pH range, Eudragit RS exhibits low 

permeability with pH-independent swelling. It is reported in the literature that Eudragit RS 

is used extensively in the preparation of matrix tablets for oral sustained release, in tablet 

coating and in the microencapsulation of drugs[59]. 

Since both Cloisite and Eudragit RS are insoluble in water, theophylline is released 

from the granules via a diffusion process. Release of theophylline follows these steps: (1) 

penetration of the dissolution medium into the theophylline granules, (2) dissolution of 

theophylline, and (3) diffusion of dissolved theophylline out of the matrix[60]. 

Since theophylline, a weakly-acidic drug, is unable to complex with Cloisite clays, 

theophylline release from the nanocomposite matrix is controlled by the ionic interactions 
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between the Cloisite and Eudragit RS. As discussed earlier, the ionic interactions reduce 

the water permeability and equilibrium moisture content of Eudragit RS. Change in drug 

release rate is also related to the changes in the local permeability due to the molecular 

level transformation of Eudragit RS in the presence of the silicate sheets[61]. Eudragit RS 

chains are ionically bound to the dispersed Cloisite layers through the positively charged 

quaternary amine group. This ionic interaction restricts polymer chain mobility.  

Drug release as a function of the clay content in the nanocomposites is plotted in 

Figure 4.12. Burst release in the initial 30 minutes observed for all theophylline granules 

was due to the release of theophylline located on the surface of the granules. After the 

initial burst, theophylline release followed a zero-order profile. As shown in Figure 4.12A, 

the addition of 5-10% Cloisite Na in nanocomposites resulted in slower drug release. The 

percentage theophylline released at 12 hours was reduced from 29% (clay-free granules) 

to 24% (5% Cloisite Na) and 16% (10% Cloisite Na). However, drug release accelerated 

with further increase of clay content to 15%. The trend in drug release rate as a function of 

Cloisite Na loading matched well with the DVS results discussed earlier. Equilibrium 

moisture content decreased with initial increase in Cloisite Na content. Beyond 10%, 

further increase in clay loading resulted in higher equilibrium moisture content. This 

increase in equilibrium content at 15% clay loading can be explained by the increasing 

quantity of nonexfoliated silicate layers that formed tactoids and intercalated structures, as 

revealed by the TEM and XRPD analyses. 

As shown in Figure 4.12B, the inclusion of Cloisite 20 in the Eudragit RS matrix 

showed a reduced impact on theophylline release compared to Cloisite Na. After 12 hours, 

the percentage of theophylline released was 29%, 26%, 22% and 30%, for formulations 

based on clay-polymer nanocomposites containing 0%, 5%, 10%, and 15% Cloisite 20, 

respectively. 
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It is concluded that the clay type has a critical influence on drug release profiles. 

As shown in Figure 4.12, compared with Cloisite 20, the Cloisite Na is more effective in 

hindering the release of theophylline. For Cloisite 20, the organic modification hindered 

its interaction with Eudragit RS. 

In summary, the presence of Cloisite nanoclay in the Eudragit RS matrix 

significantly impacted theophylline release profiles. Clay loading and clay type are the 

most important factors that would impacts the drug release behaviors.  

 

 

 

Figure 4.12: Dissolution profiles of 500 mg theophylline granules 30–35 mesh, 20% 

theophylline) in 900 mL phosphate buffer pH 6.8 using USP apparatus II at 75 RPM (n = 

3), (A) Cloisite Na nanocomposites of different clay loadings; (B) Cloisite 20 

nanocomposites of different clay loadings. 

As shown in Figure 4.13, dissolution samples showed different surface morphology 

after 24 hours of dissolution testing. After 24 hours of dissolution testing, the surface pore 

size of the Cloisite 20 samples and Eudragit RS sample is larger than that of the Cloisite 

Na samples. Difference in porosity are attributed to the different release rates. DSC and 

XRPD data indicated the Cloisite Na and Cloisite 20 samples had similar crystallinity. We 
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hypothesize that the difference in the porosity was attributed to the difference in the size 

of the drug crystals dispersed in the extruded granules, since Cloisite Na and Cloisite 20 

nanocomposites are water insoluble and the drug particles on the matrix surface are 

dissolved and released first. Upon exhaustion of the drug on the surface, the depletion zone 

will then increase progressively as the solid drug front recedes into the matrix while the 

larger pore size will facilitate the drug release from the matrix. Another important factors 

that will impact the drug release behaviors is the tortuosity, the molecular level interaction 

of polymer matrix with silicate layers and the interaction between the API molecule and 

the nanoclay. There are numerous mechanisms that may be involved in the interaction 

between clay and organic molecules. The predominant mechanism depends on largely on 

the type of clay, the functional groups of the polymer and the physical chemical properties 

of the API [62, 63]. 
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Figure 4.13: Dissolution profiles of 500 mg theophylline granules (30–35 mesh, 20% 

theophylline) in 900 mL phosphate buffer pH 6.8 using USP apparatus II at 75 RPM (n = 

3) and the SEM images of remaining nanocomposites collected at the end of dissolution 

testing. 

4.6    SUMMARY 

The study has demonstrated that both Cloisite Na and Cloisite 20 could be 

exfoliated in Eudragit RS through hot melt extrusion. The XRPD and TEM analyses of the 

nanocomposites have shown that under the same processing conditions, the 

nanocomposites’ structures depend on the clay loading and clay structure. When the clay 

content increases from 5% to 15% by weight, the nanocomposites structures switch from 

a fully exfoliated state to intercalated structures or partial exfoliation with stacked clay 

layers. FT-IR results indicated that Cloisite Na and Cloisite 20 layers show different 

interaction strength with the polymer network, which create a compacted complex 

structure. DVS data showed that the Cloisite Na nanocomposite is more effective in 

inhibiting the water absorption than the Cloisite 20 nanocomposite. ssNMR data shown the 
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quaternary ammonium groups of Eudragit RS engaged in the interfacial ionic interaction 

with the surface negative charged Cloisite clay sheet. Due to the less cation exchange 

capacity of Cloisite 20, Eudragit RS have stronger interaction with Cloisite Na. The 

hygroscopicity difference between Cloisite Na and Cloisite 20 nanocomposites could be 

attributed to the variation of the interaction between the clay sheet and polymer. The 

nanocomposites show high drug encapsulation efficiency, and theophylline exists in a 

crystal state in the matrix. The addition of nanoclay in the formulation could robustly adjust 

drug release profiles and the clay concentration and the clay type are the most important 

factors that impact the drug release behaviors, as they affect the crossing-linking density 

of the nanocomposites. 
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