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Abstract 

 

The prolific rate at which advances in photonics have been made in recent years has 

increased the need for accurate and efficient computer aided design tools. New 

device technologies and material systems mean the designer is faced with many 

more degrees of freedom with which to optimise a design. Because of this versatile 

techniques that yield results accurately and quickly are foremost in the designers 

mind. 

 

Throughout this work a well proven technique, the Spectral Index (SI) method is 

extended and generalised to a wide variety design situations of practical importance. 

 

The design of a novel Silicon Germanium based device was used to prove the 

suitability of an iterative design methodology in developing and optimising practical 

waveguiding components. The novel development of the SI method for the accurate 

analysis of waveguide losses is then presented further extending its suitability to the 

analysis and design of rectangular rib waveguides. Following this the generalisation 

of the SI method to structures of non-rectangular cross-section is presented allowing 

for the analysis of a wider range of optical rib waveguides. 

 

A novel implementation of the SI method is then developed for the analysis of the 

whispering gallery class of resonant modes supported by cylindrical dielectric disc 

and ring structures, allowing for the characterisation of the optical properties of this 

important class of devices. 
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A 3D circuit analysis technique based upon a robust implementation of the SI 

method in its complex form is developed that allows for the characterisation of any 

waveguide system that may be represented by a number of discrete waveguide 

components. Finally the SI method is generalised to the full 3D exact analysis of 

optical waveguiding structures. 
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Chapter 1 Introduction 

 

1.1 Background and Motivation for the Work Described in the 

Thesis 

 

Efficient and accurate analysis methods are essential tools for the design and 

optimisation of both traditional and emerging optical waveguide based technologies. 

The rapid turnaround of designs, from drawing board to fabrication, is a major factor 

in their overall success in today�s technology climate. Along with this, the ever 

increasing desire for systems with greater functionality and higher bandwidth 

inevitably results in an increase in the complexity of modern integrated 

optoelectronic circuits (OEICs).  

 

The concept of integrated optics was proposed by S. E. Miller of Bell Laboratories in 

1969, [1.1]. In its most basic form the device consisted of a source, a waveguide and 

a detector each fabricated in a dissimilar material system and hence were of a hybrid 

nature, [1.2]. The hybrid approach, although being most versatile, requires assembly 

of the separate components each of which, whilst being relatively easy to fabricate, 

will suffer greatly in performance if poorly assembled. Accurate alignment of 

components is required and any mismatch introduces a loss mechanism (cf. 

impedance mismatch in transmission line circuits) and, at best, results in poor 

performance. Monolithic integration of all the components is therefore desired,
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whereby all the components are fabricated on a single substrate avoiding any post 

production assembly of components and hence alignment issues, [1.3]. 

 

The progress of monolithic integration is reliant on the required device functions 

being feasible in the material system. Silicon (Si), being the most common and 

favourable semiconductor device material, is appealing for optoelectronic 

applications as it is ideally suited to large scale manufacture of monolithic OEICs. 

Although Si is transparent over the all important optical communication range (1.3-

1.55µm), [1.4]-[1.5], the material had traditionally been overlooked for use in 

communications systems due to it being an indirect band gap material and hence, 

unsuitable for active device applications. Recent developments in active Si based 

material alloys, [1.6]-[1.8], namely SiGe, have seen a resurgence of interest in Si as a 

viable alternative to the more traditional III-V group of compounds, such as Gallium 

Arsenide (GaAs) and Indium Phosphide (InP). 

 

The development of novel devices, fabrication methods and new technologies form 

the major contributions to the field of optoelectronics. But, the reliance upon the 

computer aided design (CAD) process as an enabling factor for the increased rate at 

which these developments take place should not be underestimated. The reduction in 

the length of the design cycle for existing and emerging optical technologies pushes 

forward new developments that may otherwise be hindered for reasons of economy. 

 

In order to determine the stability of any design within a range of fabrication and 

operational tolerances, and to arrive at the optimum design, it is necessary to carry 
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out the modelling process for a range of parameters. Therefore analysis methods that 

readily lend themselves to an iterative design procedure are sought that are not only 

accurate but fast. Such methods allow for the efficient exploration of device 

operation across a range of parameters and also allow the designer to retain an 

intuitive grasp for the operation of a device. 

 

Computer based analysis methods are required to model a wide range of optical 

components, from simple longitudinally invariant rectangular rib waveguides 

through to complex optical circuits. Many methods have developed to date but the 

different approaches generally fall into one of three categories; numerical, semi-

analytical or analytical. Numerical methods, such as those based on finite differences 

[1.9]- [1.13], are generally accepted as the most versatile and accurate approaches, 

relying on the discretisation of the problem space. They are therefore readily applied 

to devices of complex cross-section, passive and active materials and full 3D 

analysis of complex circuits, but this generality comes at the expense of 

computational overheads. Memory requirements and computation time may make 

numerical methods impracticable unusable in a general design environment. 

Analytical methods are applicable only in the simplest of cases and so are restricted 

in their range of use. Semi-analytical approaches, [1.15]- [1.18], form a compromise, 

in that they make use of a priori knowledge of the solution typically gained from 

experimental analysis, or make use of approximations without loss of accuracy. The 

problem is thus greatly simplified and results in the production of accurate results 

with minimal computational effort. Therefore semi-analytical techniques lend 

themselves extremely well to an iterative design process. The Spectral Index (SI) 
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method, [1.19]-[1.21], is one such approach that has traditionally been applied to the 

analysis of air clad semi-conductor rib waveguides with great success. Throughout 

this thesis the philosophy of the SI method is used as a basis for the formulation of 

semi-analytical approaches to the analysis of a wider range of components and 

devices. The suitability of the method is also demonstrated through application to the 

successful design of optical components and circuits. 

 

Component fabrication issues are an important consideration in the design process. 

Process tolerances may not only result in differences in dimensions, but severely 

affect the geometry of the device. Optimisation of device performance within the 

constraints of fabrication issues is therefore an important consideration. 

Generalisation of the SI method to the analysis of rib waveguides of arbitrary cross 

section is the first novel contribution of the present work and was developed to 

account for the anisotropy of the vertical etching processes that produce waveguides 

of trapezoidal cross section, [1.22]. Such trapezoidal cross sections may also occur 

as a result of design of electro-optic devices, where they can be employed to 

beneficially tailor electrical characteristics such as current distribution, and so the 

approach is more widely applicable to the design of such devices. 

 

Mono-modal propagation is a desired characteristic of many optical waveguides and 

has been achieved in rib waveguide structures of large cross section with respect to 

wavelength, [1.23]-[1.24], that are suitable for coupling to single mode optical fibres. 

Single mode operation is achieved by ensuring that all the modes except the 

fundamental are highly attenuated. One method of accomplishing this is by 
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controlling the leakage of these higher order modes into the substrate. Alternatively, 

by designing the waveguide so that the propagation constants of the higher order 

modes lie below that of the outer slab regions mono-modal propagation may be 

obtained. When the outer slab regions of the rib waveguides support guided modes 

an additional loss mechanism is introduced. The calculation of this additional loss is 

important for the accurate design of mono-modal waveguide systems and is 

introduced for the first time in this thesis. 

 

Along with longitudinally invariant waveguides other optical components play 

important roles in developing the functionality of OEICs. One such component is the 

circular dielectric resonator, that has recently found favour as a wavelength selective 

device because of the high Q�s that may be realised through their use, [1.25]-[1.26]. 

A novel SI based approach is developed in this work that allows for the efficient 

analysis of theses promising components. 

 

1.2 Thesis Organisation 

 

The following outlines the organisation of the work contained in this thesis. In cases 

where a novel technique has been introduced comparisons with results gained from 

existing methods are drawn as appropriate and discussed in context with the work 

described. 

In chapter 2 the motivation of this work is expanded in context with the present state 

of the art in optical waveguide modelling. The principles of wave optics are then 
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introduced and discussed. From the starting point of the source free Maxwell�s 

equations for non-magnetic isotropic media, the general wave equation is derived in 

Cartesian coordinates and consequently simplified in lieu of approximations that are 

valid for given situations. As a pre-emptor to the development of the SI approach to 

dielectric resonators, the general wave equation in cylindrical coordinates is derived. 

The concept of modes is discussed and the method of false position, key in the 

development of the SI method, is then described. This is followed an introduction to 

the variational boundary condition that is another key element in the formulation of 

the SI approach. Circuit concepts as applied to optical waveguides are outlined. 

Methods commonly applied to the analysis of optical waveguides are then 

introduced and discussed within the framework of this thesis. 

 

In chapter 3 the SI method is described in detail, introducing the fundamental 

concepts of the approach, its suitability and its limitations. The application and 

extension of the method prior to this work is also discussed. 

 

In chapter 4 the suitability of the SI method to an iterative design process is 

demonstrated through the development of a novel waveguide based device - a rib 

waveguide based spot size converter (SSC). The design was fabricated and 

consequently experimentally analysed as part of this work and resulted in the first 

such SSC demonstrated in silicon-germanium (SiGe). This chapter also covers the 

material properties of SiGe that required consideration in producing a successful 

design and draws attention to some of the many variables the designer is faced with. 
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Chapter 5 extends the SI method for the first time to the analysis of rib waveguides 

of arbitrary cross-section. The method provides the means for the inclusion of non-

rectangular cross-sections that results from the fabrication process, but is generally 

applicable to devices of arbitrary cross section that fall within the remit of the SI 

approach. 

 

In chapter 6 a novel technique for the accurate analysis of a waveguide loss 

mechanism is developed that has importance for the design of single mode 

waveguide systems. 

 

Chapter 7 builds upon the philosophy of the SI method to develop a technique for the 

analysis of circular dielectric resonators that operate in the whispering gallery mode 

regime. Operated in this mode, dielectric resonators yield extremely high Q factors 

making them highly desirable components for inclusion in optical signal processing 

circuits e.g. wavelength division multiplexing (WDM) circuits. The basic method is 

then extended to the analysis of ring dielectric resonators. 

 

In chapter 8 the SI method is applied to the analysis of a full 3D circuit based upon 

multi-mode interference (MMI) components. The analysis of such  circuits with a 

high aspect ratio (micrometers wide and millimetres long) using purely numerical 

methods would prove prohibitive in terms of computational effort, requiring 

enormous run times and memory resources. The efficiency the SI approach allows 

for a full circuit simulation on a standard pc in a matter of minutes, providing 

important information such as field profiles and device insertion loss. 
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Chapter 9 introduces a novel technique, again for the analysis of 3D circuits. 

Whereas the technique introduced in the previous chapter is based upon a scattering 

matrix approach the new technique generalises the SI method to the analysis of fully 

three dimensional structures. Finally, chapter 10 draws together the main conclusions 

of this work, together with a discussion on further study that may build upon the 

work introduced here. 
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Chapter 2 Background Theory and Analysis Techniques 

 

This chapter presents an overview of the electromagnetic fundamentals that provide 

the basis for the work developed in this thesis. Maxwell�s equations as they apply to 

the material properties at optical frequencies are given, together with the boundary 

conditions for optical waveguides. From here the wave equations for longitudinally 

invariant waveguides are derived in both rectangular and cylindrical co-ordinate 

systems. The concept of waveguide modes is then introduced along with the 

classification of propagation regimes. The method of false position and variational 

principle are described, both of which, although being applicable to a variety of 

analysis techniques, are fundamental to the development of the Spectral Index 

method used as a basis throughout this work. The chapter then continues by 

introducing some of the more common methods employed in the solution of 

Maxwell�s equations. 

 

2.1 Optical fields and Maxwell�s equations 

 

Being a time dependent electromagnetic wave, an optical field can be completely 

described by Maxwell�s equations, [2.1]. In a source free region Maxwell�s 

equations in their differential form are 

 

 
B

E
t

∂
∇× = −

∂

GG
 (2.1) 



Background Theory and Analysis Techniques 

 13

 

 
D

H
t

∂
∇× =

∂

GG
 (2.2) 

 

 0D∇⋅ =
G

 (2.3) 

 

 0B∇⋅ =
G

 (2.4) 

 

where E
G

, H
G

, D
G

 and B
G

 are the time dependent vectors of the electric and magnetic 

fields, the displacement vector and the magnetic induction vector respectively. The 

introduction of Maxwell�s two constitutive relationships provides the mechanism to 

relate the dependence of the optical field to the characteristics of the guiding medium 

and are defined for the isotropic media considered as 

 

 İD E=
G G

 (2.5) 

 

 B Hµ=
G G

 (2.6) 

 

These introduce the dielectric permittivity, ε and the magnetic permeability, µ, of the 

medium. The dielectric permittivity is further defined as ε = ε0εr, where εr is the 

relative permittivity or dielectric constant of the medium and ε0 the free space 

permittivity. The magnetic field is defined similarly as µ = µ0µr, but in the context of 

this work only non-magnetic materials are considered, µr = 1, and thus only the free 
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space permeability, 0µ , is used in (2.6). At optical frequencies it is more common to 

consider the refractive index of the material, n, which is given by İr . It is further 

noted that the refractive index is frequency dependent and is, in general, a complex 

quantity. 

 

2.2 Boundary conditions for optical waveguides 

 

Maxwell�s equations, as stated in (2.1)-(2.4), hold true for homogenous regions. 

Commonly, optical waveguides rely on an abrupt change in refractive index across a 

surface to provide a confinement mechanism. It is therefore necessary that the 

quantities under investigation satisfy certain boundary conditions across the interface 

separating the different media. Figure 2-1 illustrates this situation where the differing 

media are classified by their refractive indices n1 and n2, where n
G

 is the unit normal 

to the interface.  The conditions, in the absence of surface charge and surface 

currents, are   

 

 
( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

0,      0

0,      0

n E E n H H

n D D n B B

× − = × − =

⋅ − = ⋅ − =

G G G GG G

G G G GG G  (2.7) 

 

which for non-magnetic media maybe stated as; the tangential component of the 

fields E
G

 and H
G

 are continuous across the boundary, the normal component of the 

field, H
G

, and the normal component of the electric flux, D
JG

. The latter further 
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implies that the electric field is subject to a jump due to the discontinuity in the 

refractive indices of the media as it is required that 

 

 
1 21 n 2 nİ İE E=  (2.8) 

 

 

Figure 2-1 Illustration of the boundary between two different media. 

 

2.3 The wave equation � rectangular coordinates 

 

Figure 2-2 illustrates a typical rib waveguide together with the co-ordinate system 

adopted in this thesis. From Maxwell�s equations a general vector wave equation 

may be derived for either the electric or magnetic field that describes totally the 

optical field supported by a waveguide of refractive index distribution ( )n n , ,x y z= . 

Assuming a time dependence of j te ϖ , eliminating H
G

 between equations (2.1) and 

(2.2) and replacing the time derivatives with jϖ 

 

n
G

2 2 2n ,  ,  E H
G G

1 1 1n ,  ,  E H
G G
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Figure 2-2 Illustration of a typical rib waveguide geometry and reference co-ordinate system. 

 

 

 
2E k E∇×∇× =  (2.9) 

 

where the local plane wave propagation constant or wavenumber, k, is given by 

 

 ( )0 0 0

2Ȧ µ İ Ȧ µ İ İ n ,rk x y
π
λ

= = =  

 

and λ is the free space wavelength. Using the identities 

 

 ( )2 2 2n n n 0E E E

2∇×∇× = ∇∇⋅−∇

∇⋅ = ∇ ⋅ + ⋅∇ =
G G G  (2.10) 

 

the general vector wave equation for the electric field is obtained 

z 

x

y 
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2

2

2
0

E k
E k E

k

 ⋅∇
∇⋅ +∇ + = 

 

GG G
 (2.11) 

 

The general vector wave equation for the magnetic field may be derived in a similar 

manner by eliminating E
G

 between equations (2.1) and (2.2) to obtain 

 

 ( )2 2 2

2

1
0H k H k H

κ
 ∇ + ∇⋅ × ∇× + = 
 

G G G
 (2.12) 

 

The geometry of the waveguide or an a priori knowledge of the nature of the fields 

supported by the guide may allow simplifications to be made to the full vector case, 

through the application of certain approximations. Considering waveguides that are 

longitudinally invariant in the direction of propagation, z, field solutions of the form 

 

 ( ) ( ) ( ) ( )Ȧ ȕ Ȧ ȕ
, ,     ,

j t z j t z
E E x y e H H x y e

− −= =
G G

 (2.13) 

 

are sought. The simplification that 
n

0
z

∂
=

∂
 is introduced, as the refractive index 

distribution is now only a function of the coordinates x and y. The total field may 

now be derived from just the transverse component of the electric (Ex, Ey) or 

magnetic (Hx, Hy) fields. Therefore, for the electric field, equation  (2.11)  reduces to 
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2 2 2 2 2

2

2 2 2 2 2

1 1x x x
x x y

E E E k k
E k E E

x y z x k x x k y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2.14) 

or 

 

2 2 2 2 2
2

2 2 2 2 2

1 1y y y

y y x

E E E k k
E k E E

x y z y k y y k x

∂ ∂ ∂    ∂ ∂ ∂ ∂
+ + + + = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2.15) 

 

and similarly for the magnetic field, equation (2.12) reduces to 

 

 
2 2 2

2 2 2

2 2 2 2 2

1 1 yx x x x
x

HH H H H
k k H k

x y z y k y y k x

∂∂ ∂ ∂ ∂∂ ∂   + + + + = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (2.16) 

or 

 

2 2 2

2 2 2

2 2 2 2 2

1 1y y y y x
y

H H H H H
k k H k

x y z x k x x k y

∂ ∂ ∂ ∂ ∂∂ ∂   + + + + = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (2.17) 

 

 

The vector equations, (2.14)-(2.17), should then be solved, subject to the appropriate 

boundary conditions, dictated by the nature of the waveguide or requirements of the 

model to yield an eigenvalue problem that is generally solved for the propagation 

constant β. The approaches to solving these equations for the fields supported by the 

waveguide fall into one of three classes; (a) vectorial, (b) semi-vectorial or (c) scalar.  

 

The solutions of the general vector equations, which provide the most accurate 

results, take into account all six field components. Solution for either the E
G

 field or 

H
G

 field can then be used to calculate the other via Maxwell�s equations.  
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Semi-vectorial or polarised fields are five component solutions in which one 

transverse field component is assumed zero. The remaining transverse component, 

deemed the principal component, is used to classify the field either transverse 

electric (TE) or transverse magnetic (TM). In the TE case the component Ex (or Hy) 

is non-zero and for TM the component Ey (or Hx) is non-zero. Thus in this case the 

corresponding right hand sides of equations (2.14)-(2.17) become zero, effectively 

decoupling the polarisations, resulting in reduced equations for the principal field 

components. In the TE case the resulting wave equations are 

 

 
2 2 2 2

2

2 2 2 2

1
0x x x

x x

E E E k
E k E

x y z x k x

 ∂ ∂ ∂ ∂ ∂
+ + + + = ∂ ∂ ∂ ∂ ∂ 

 (2.18) 

 

 

2 2 2

2 2

2 2 2 2

1
0

y y y y

y

H H H H
k k H

x y z x k x

∂ ∂ ∂ ∂∂  + + + + = ∂ ∂ ∂ ∂ ∂ 
 (2.19) 

 

and likewise for the TM case 

 

 

2 2 2 2
2

2 2 2 2

1
0

y y y

y y

E E E k
E k E

x y z y k y

∂ ∂ ∂  ∂ ∂
+ + + + = ∂ ∂ ∂ ∂ ∂   (2.20) 

 

 
2 2 2

2 2

2 2 2 2

1
0x x x x

x

H H H H
k k H

x y z y k y

∂ ∂ ∂ ∂∂  + + + + = ∂ ∂ ∂ ∂ ∂ 
 (2.21) 
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In the scalar field solution no discrimination is made between the polarisations. The 

field equations are thus reduced to a pair of scalar Helmholtz equations 

 

 

2 2 2
2

2 2 2
0E k E

x y z

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂   (2.22) 

and 

 
2 2 2

2

2 2 2
0H k H

x y z

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂ 

 (2.23) 

 

for the electric and magnetic fields respectively. The scalar approximation further 

requires that the field and its derivative are continuous throughout the solution space. 

 

In structures of high refractive index contrast, significant coupling occurs between 

field polarisations and so the accurate modelling of these structures requires the 

solution of the full vector equations. In weakly guiding structures, i.e. those with low 

refractive index contrasts, the field components remain uncoupled and may be 

modelled using the semi-vectorial and scalar approximations. 

 

In the case of the work presented here, which predominantly features air-clad rib 

waveguide structures with high refractive index contrasts between the guiding and 

cladding regions, the semi-vectorial approximation is successfully applied taking 

advantage of the relatively weak coupling of the field components that only take 

place in the rib region , [2.2], i.e. not general but for rib-like structures. 



Background Theory and Analysis Techniques 

 21

2.4 The wave equation � cylindrical coordinates  

 

For a wave guiding system that contains circular boundaries or when dealing with 

fields that have cylindrical wavefronts it is advantageous to solve the wave equation 

in cylindrical coordinates, [2.7], where the conventional co-ordinate system has been 

dropped in favour of that depicted in order to maintain consistency with the rib 

geometry of figure 2-2. The following presents the derivation of the vector wave 

equation in cylindrical co-ordinates and its subsequent simplification to its polarised 

form. 

 

Figure 2-3 Illustration of a dielectric disc and the reference coordinate system adopted in this work. 

 

With reference to Figure 2-3, restating equation (2.11) in the form  

 

 ( )2 2 0E E k E∇ −∇ ∇⋅ + =
JG JG JG

 (2.24) 

 

where  

y

r 

φ 
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2 2

2 2

n

n

E k E
E

k

− ∇ − ∇
∇⋅ = =

JG JGJG
 (2.25) 

 

has been used and n is the local refractive index. The terms in equation (2.24) may 

now be expressed in cylindrical coordinates as 

 

 ( )2 2 2 2

2 2 2 2

2 2�� �r r
r y

E EE E
E r E E y E

r r r r

φ φ
φφ

φ φ
∂   ∂

∇ = ∇ − − + ∇ + − + ∇   ∂ ∂   

JG
 (2.26) 

 

 ( ) ( ) ( ) ( )1�� �
E E E

E r y
r r y

φ
φ

∂ ∇ ⋅ ∂ ∇ ⋅ ∂ ∇ ⋅
∇ ∇⋅ = + +

∂ ∂ ∂

JG
 (2.27) 

 

 
( )1 1 yr

EErE
E

r r r y

φ

φ
∂∂∂

∇ ⋅ = + +
∂ ∂ ∂

JG
 (2.28) 

 

through use of the Laplacian in cylindrical coordinates 

 

 
2 2

2

2 2 2

1 1f f f
r

r r r r yφ
∂ ∂ ∂ ∂ ∇ = + + ∂ ∂ ∂ ∂ 

. 

 

Equations (2.3) and (2.5) give the condition  

 

 ( )2n 0E∇⋅ =
JG

 (2.29) 
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The refractive index, n, is constant with respect to φ hence
( )2n

0
φ

∂
=

∂
. Applying this 

condition to (2.29) gives 

 

 
( ) ( )2 2

2 2

1 1 1r yrn E n EE

r n r r n y

φ

φ

∂ ∂∂
− = +

∂ ∂ ∂
 (2.30) 

 

and its subsequent substitution into (2.28) yields 

 

 
( ) ( ) ( )2 2

2 2

1 1 1r yyr
rn E n EErE

E
r r y n r r n y

∂ ∂∂∂
∇ ⋅ = + − −

∂ ∂ ∂ ∂
 (2.31) 

 

Equations (2.26), (2.27) , (2.31) are now used to expand the wave equation (2.24) 

into its component parts resulting in 

 

 

( )

( )

( )

2 2

2 2

2 2

2 2

2 2

2 1 1
�

2 1 1 1� 0

1 1
�

yrr
r r

yrr

yr

y y

EE ErEE
r E k E

r r r r r r y

EE ErEE
E k E

r r r r r r y

EErE
y E k E

y r r r y

φ φ

φ φ
φ φ

φ

φ φ

φ
φ φ φ

φ

 ∂∂ ∂∂ ∂
∇ − − − + + +  ∂ ∂ ∂ ∂ ∂   

 ∂∂∂ ∂ ∂
∇ + − − + + + =  ∂ ∂ ∂ ∂ ∂   

 ∂∂∂ ∂
∇ − + + +  ∂ ∂ ∂ ∂   

 (2.32) 

 

For the TE like modes in the cylindrical case the principal field component is rE .In 

order to find the corresponding semi-vectorial wave equation for propagating modes 
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of the form 
( )Ȧj t v

e
φ−

, where v  is the angular propagation constant, consider the r 

component of  (2.32) 

 

 
( )2 2

2 2

2 1 1
� 0

yrr
r r

EE ErEE
r E k E

r r r r r r y

φ φ

φ φ
 ∂∂ ∂∂ ∂
∇ − − − + + + =  ∂ ∂ ∂ ∂ ∂   

 (2.33) 

 

Using equation (2.30) and the Laplacian in cylindrical co-ordinates  

 

 
2 2 2

2

2 2 2

1 v

y r r r r

∂ Ψ ∂ Ψ ∂Ψ
∇ Ψ = + + − Ψ

∂ ∂ ∂
 (2.34) 

 

for a φ  dependence je νφ− , where v  is the angular propagation constant. Equation 

(2.33) may be re-written as 

 

 

( ) ( )

( ) ( ) ( )

2 222

2 2 2 2 2

2 2 2
2

2 2 2 2

n n1 1 2 1 1
0

n n

n n1 1 1

n n

r yyr r r

r y yrr r
r

E EEE E E
r

y r r r r r r r y

E E ErEE E v
k E

r r r r r r y y r

φ

 ∂ ∂∂∂ ∂∂    = + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂∂  ∂  − − − + − + + −  ∂ ∂ ∂ ∂ ∂   

(2.35) 

 

Since the TE mode designation requires 0yE = , equation (2.35) may be simplified 

to 

 

 
( ) ( )2 22 2

2

2 2 2 2

n n2 1

n

v
r k

r y r r r n r r

∂ Ψ ∂ Ψ∂ Ψ ∂
Ψ = + + + Ψ

∂ ∂ ∂ ∂
 (2.36) 
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where 

 rrEΨ = . (2.37) 

 

and similarly for TM modes, 0rE = , thus 

 

 
( )222

2

2 2 2

n1 1 yy y

y y

EE Ev
E k E

r r r r y n y

∂∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 (2.38) 

 

2.5 Waveguide Modes 

 

The solutions of the previously developed wave equations yield the modal properties 

of the waveguide being analysed. Open optical waveguides, such as the air clad rib 

waveguide, support modes which may be considered in two classes; a discrete set of 

bound modes and a continuum of radiation modes that come together to form a 

complete set of functions describing the properties of the waveguide, [2.8]. 

 

Consider the simple case of the asymmetric 3-layer slab waveguide illustrated in 

figure 2-5, where n n ncore substrate cladding> > . The discrete set of bound modes are 

characterised by propagation constants, β , that are purely real and lie within the 

range 0 0n ncore substratek kβ< < . These modes are oscillatory within the core region and 

exponentially decay in the substrate and cladding regions, figure 2-5(a).  
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figure 2-4 3-layer dielectric slab waveguide. 

 

 

figure 2-5 Illustration of the modes supported by a 3-layer asymmetric slab waveguide; (a) guided 

mode, (b) substrate radiation mode and (c) substrate-cladding radiation mode. 

 

The total radiation field is comprised of radiation modes and leaky modes. Radiation 

modes are characterised by propagation constants below the cut-off for bound modes 

i.e. 00 ncladdingkβ< < . These are illustrated in figure 2-5 (b) and (c) for the cases of 

ncladding 

nsubstrate 

ncore 

y 

x 

z 

(a) (b) (c) 
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substrate radiation modes,  0 0n ncladding substratek kβ< <   and cladding-substrate 

radiation modes, 
00 ncladdingkβ< < , respectively.  Leaky modes are characterised by 

discrete solutions that yield complex propagation constants below cut off which lose 

power into the cladding as they propagate. These solutions are non-physical as the 

boundary conditions at infinity, 0E = , are not satisfied, but they serve to describe 

physically consistent characteristics that are further explored in chapters 5 and 6 as 

they apply to the lossy systems considered. 

 

2.5.1 Bound Mode Classification 

 

Throughout this work solutions are sought to the polarised wave equation under the 

approximation  (in a rectangular co-ordinate system) that the field components xE  

and 
yE  remain uncoupled. Two polarisations may then be defined in terms of the 

principal electric field component, xE  or yE , figure 2-6. Quasi-TE (Transverse 

Electric) modes,[2.9], which are defined by the experimentally observed polarisation 

such that 

 

 ( ) ( ), , ,0,x zE x y z E E≡
G

 (2.39) 

where  

 x zE E�  
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and Quasi-TM (Transverse Magnetic) modes are similarly defined by the observed 

polarisation such that 

 

 ( ) ( ), , 0, ,y zE x y z E E≡
G

 (2.40) 

 

where 

 y zE E�  

 

 

 

figure 2-6 Principal electric field components for the (a) quasi-TE mode and (b) quasi-TM mode. 

 

2.6 The Goos-Hänchen Shift and the Method of False Position 

 

Air-clad optical waveguides are, in general, open structures which may support 

modes that are unbounded in the plane of the cross-section. This results in an optical 

field that is not entirely confined to a finite region but one that extends to infinity. 

Ex Ey

(a) (b) 



Background Theory and Analysis Techniques 

 29

The open waveguide may support a finite number of discrete bound modes, together 

with a continuum of modes. The analysis of truly open waveguides becomes 

increasingly complex as the complexity of the waveguide increases; e.g. slab 

waveguide to rib waveguide etc., and generally analytical solutions to these 

waveguides do not exist. 

 

In this work advantage is taken of the fact that air-clad optical waveguides with high 

core/cladding refractive index contrasts may, due to the rapidly decaying field in the 

cladding region, be approximated by a partially closed system. The closed system 

results in one that is far less complex and time consuming to analyse without 

significant loss in accuracy. The approximation requires the imposition of an E=0 

condition along a suitably modified core/cladding interface. Considering the case of 

the 3-layer symmetric slab waveguide, figure 2-7, it is well known that rays 

travelling along the waveguide are not immediately reflected at the core cladding 

interface but penetrate a small distance into the cladding region before being 

reflected. This penetration into the cladding effectively widens the waveguide by an 

amount 2∆W and further results in a lateral displacement of the reflected ray from 

the incident ray by an amount ∆z, the Goos-Hänchen shift [2.10] . 

 

For large core/cladding refractive index contrasts, the field penetration depth 

becomes small and the approximation that 0E = along the boundary x W W= + ∆  is 

justified as the difference between the true field and the approximated field becomes 

negligible. The slab waveguide may now be replaced by its metal clad equivalent, 
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simplifying its analysis. This approach is fundamental to the analysis method used as 

a basis throughout this work, which is discussed in detail in chapter 3. 

 

 

figure 2-7 Ray diagram of a 3-layer slab waveguide illustrating the Goos Hänchen shift, ∆z. 

 

The amount by which the physical boundary is displaced is dependant upon the 

polarisation of the field component of interest, with respect to the boundary, [2.2]. In 

the case where the field component is incident normal to the interface the 

displacement n∆  is given by 

 

 
( )
( ) ( )

2

2 1
2 2 2

1

1cladding

n

core

n

n kβ
∆ =

−
 (2.41) 

where 

 2 2 2

1 0claddingk n k= ,  
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∆W 
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y 
z ∆z 

ncladding 

ncladding 

ncore W 
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 0

2
k

π
λ

=  

 

and β  is the propagation constant. For a field component tangential to the interface 

the displacement t∆  is given by 

 

 

( )
1

2 2 2

1

1
t

kβ
∆ =

−
 (2.42) 

 

2.7 The Variational Method 

Fundamental to the formulation of the Spectral Index method is the application of a 

variational method. The variational approach seeks to minimise the error between the 

true field and the field obtained through application of a trial function. Consider the 

eigenvalue problem such that 

 

 L λΨ = Ψ  (2.43) 

 

where L is a linear operator, Ψ is an eigenfunction and λ  the associated eigenvalue. 

The variational method seek to identify a function ( )λΦ , that maybe either scalar or 

vectorial, which is subject to the same boundary conditions as Ψ that in turn 

corresponds to a stationary value of Ψ .  
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Variational formulations have been applied to the analysis of optical waveguides, 

[2.3]-[2.4] and are used in Finite Element formulations, discussed in (§2.8.2). By in 

large the variational formulations that have been obtained have been so through a 

process of trial and error or through the application of general principles, [2.5]. 

 

Variational formulations form a basis from which approximate, but nevertheless 

accurate, solutions to practical problems that may otherwise prove to be extremely 

difficult, [2.6]. 

 

In the case of the SI method the variational expression is developed from the scalar 

wave equation in order to obtain a simple boundary condition, the exact nature of the 

expression and resulting boundary condition is introduced in the next chapter, (§3.6) 

 

2.8 Analysis Methods � An Introduction 

 

Efficient and accurate analysis methods are essential tools in the design and 

optimisation of optical waveguide based technologies. From simply determining the 

optical characteristics of simple waveguide structures figure 2-8, to the 

characterisation of more complex optical circuits, figure 2-9, computational 

techniques lend themselves extremely well to the design process. The boundaries of 

CAD software are continually being pushed forward by the industry�s demand for 

greater complexity, higher accuracy and increased efficiency.  
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figure 2-8 Schematic illustration of some common dielectric waveguiding structures; (a) rib 

waveguide, (b) strip-loaded rib waveguide, (c) buried rib waveguide, (d) buried strip waveguide, (e) 

diffused waveguide and (f) buried diffused waveguide. 

 

figure 2-9 Illustration of an integrated optical transceiver (Image © Bookham Technology). 

(a) (b) (c) 

(d) (e) (f) 
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The methods employed by CAD software can be considered to fall into one of three 

categories; numerical, semi-analytical and analytical. As eluded to in chapter 1, 

analytical methods are unsuitable for the analysis of all but the simplest of structures. 

The following will therefore concentrate on numerical and semi-analytical 

approaches and introduce the more common methods used in the solution of 

Maxwell�s equation for the analysis of optical wave-guiding structures. 

 

2.8.1 The Finite Difference Method 

 

The finite difference (FD) method, [2.11], is a numerical technique and one of the 

most frequently applied analysis techniques, [2.12]. The FD method discretises the 

problem domain by way of a rectangular mesh of points, figure 2-10(a). The 

discretisation of the problem space maybe uniform or variable, the latter used to 

improve accuracy by say allocating a finer mesh to small features and a coarser mesh 

to larger features of a structure, figure 2-10(b). The wave equation in either its scalar, 

semi-vectorial or vector form is then solved at each of the mesh points or nodes. 

These nodes may be chosen to either lie at the mesh points, figure 2-10(c), or at the 

centre of each cell, figure 2-10(d). Application of the correct boundary conditions at 

the mesh interfaces and discretisation of the wave equation results in an eigenvalue 

equation. The solution of the resulting eigenvalue equation may then be obtained via 

an iterative method or through the application of a sparse matrix routine. Also, as the 

open structures must be boxed for analysis, hence only a finite domain can be 

studied, the successful implementation of the FD method requires careful 
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consideration of the problem domain boundaries so they do not adversely affect the 

true field. 

 

Also as an orthogonal mesh is employed, structures with physical features that lie 

obliquely to the mesh require the approximation of those features through use of a 

staircase approximation, figure 2-10(e). This stair-casing results in the introduction 

of artificial dielectric corners resulting in a series of sharp field peaks along the 

staircase and as a result poor convergence and accuracy may be observed. This 

problem has been addressed with more recent work utilising structure-related (SR) 

co-ordinate systems, figure 2-10(f), such as that described in [2.22]. These allow the 

physical boundaries to be modelled exactly, thus overcoming the restrictions 

introduced by stair-casing. 

 

The relative ease of application of the method, together with its generality, maintains 

the popularity of the method. Difficulty arises though when considering large 

structures and those close to cut off, requiring large and/or dense meshes. The 

possibility of complex eigenvalues results in an additional level of complexity. Both 

of the aforementioned problems increase the computational requirements of the 

method in terms of both time and memory. 

 

2.8.2 The Finite Element Method 

The finite element (FE) method, [2.13] is another numerical method that discretises 

the problem domain. Here the domain is normally discretised into a set of
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figure 2-10 Finite difference discretisation schemes; (a) uniform orthogonal mesh, (b) non-uniform 

orthogonal mesh. Location of node points; (c) at mesh points, (d) at centre of cell, (e) staircased 

approximation to an oblique boundary, and (e) structure related co-ordinate system.. 

(a) (b) 

(c) (d) 

physical boundary (e) (f) 
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adjoining triangular elements, figure 2-11(b), although other geometric elements 

maybe used, such as rectangular that may provide for more accurate solutions when 

considering complex structures, [2.14]. This discretisation approach allows the 

standard method to more faithfully model arbitrary shapes. The field at the nodes of 

the triangles is then represented using interpolating polynomials and, through 

application of a variational principle, [2.15], a final eigenvalue equation can be 

formed.  

 

Again the method requires that open structures are boxed and a suitable boundary 

condition employed so as not to affect the true field. As with the FD method, for 

higher accuracy a denser mesh is required and the computational overheads increase. 

 

 

figure 2-11 Discretisation of an oblique walled rib waveguide; (a) FD staircase approximation to true 

boundary and (b) FE representation using a triangular mesh. 

 

true boundary 

staircased approximation

(a) (b) 
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2.8.3 Finite Difference Beam Propagation Method 

 

The finite difference beam propagation method (FD-BPM), [2.16]-[2.17], is the one 

of the most widely employed techniques for the analysis of propagation 

characteristics of optical systems. In its earliest formulation FD-BPM solved the 

scalar, paraxial wave equation and in later work has been extended to the vectorial 

case in order to accurately account for polarisation effects through solution of the 

vector wave equation, [2.18]. In its paraxial form the FD-BPM method precludes the 

analysis of structures with high index contrasts in the direction of propagation. The 

method also suffered in terms of accuracy when applied to structures with a large 

phase variation in the direction of propagation and those structures that rely on 

reflection for their operation. These issues have more recently been overcome 

through the development of wide-angle-BPM, [2.19], and bidirectional-BPM, [2.20]. 

More recently the introduction of structure dependent coordinate systems has 

improved the flexibility of the method, [2.21]-[2.22]. 

 

Computational times, as with the previous methods, suffer from the needs of 

increased accuracy and complexity of the problem domain. Again the open domain 

requires truncation with a suitable boundary condition so the accuracy of the solution 

is not compromised. Traditionally absorbing boundary conditions (ABC), [2.23], 

were employed, whereby reflections at the boundary of the domain are absorbed. 

ABCs are heavily problem specific and a more efficient approach, that of the 

transparent boundary condition (TBC), [2.24], was introduced, which allows 

outgoing waves to pass thus reducing unwanted reflections. More recently, perfectly 



Background Theory and Analysis Techniques 

 39

matched layers (PML), [2.25], have been employed with higher efficiency than the 

previous approaches. PMLs introduce a false layer that totally eliminates unwanted 

reflections at the imposed domain boundary. 

 

2.8.4 The Mode Matching Method 

The mode matching (MM) method, [2.26], is a semi-analytical technique that has 

been used for the analysis of composite waveguide structures. The structure is 

broken down into constituent elements and the fields in these elements described 

expanded as a complete set of modes. The elements are then brought back together 

by enforcing the expansion to obey the necessary boundary conditions at the 

interfaces of the elements. The method has been successfully used in the work 

described in chapter 8 in a modular approach to optical circuit analysis. This 

approach is similar in formulation to that encountered in transmission line theory and 

so the MM method is often referred to as an equivalent-network method. Open 

domains again require boxing and a discrete representation of the radiation field is so 

obtained. The speed/accuracy of the method is ultimately determined by the number 

of modes used in the total field expansion. 

 

2.8.5 The Effective index Method 

Offered as an improvement to the method of Marcatilli, [2.27], the effective index 

(EI) method, [2.28], represents a structure as a combination of slab waveguides, 

figure 2-12. The solution of the transcendental equations for the slab waveguides 

yeild the effective refractive indices, neff, of each slab. The effective indices of each 
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slab are then used to provide a final slab whose resulting effective index yields the 

propagation constants of the original structure. Because of its reliance of the outer 

slab regions to provide effective indices the method becomes in accurate when these 

regions are close to cut-off or support no modes, [2.29]. Due to its simplicity the 

method has found wide application and has undergone several extensions in order to 

increase it accuracy,  [2.30]-[2.33]. 

 

 

figure 2-12 Effective index representation for a slab waveguide where neff
rib is equivalent to neff

slab; (a) 

physical structure, (b) separation into distinct slab regions and (c) slab representation of the original 

structure. 

 

 

(a) (b) (c) 

neff
outer

neff
inner neff

outer
neff

slab neff
rib 
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2.9 Conclusion 

This chapter has introduced the fundamentals of electromagnetic theory as applicable 

to the analysis of optical waveguide structures composed of non-magnetic media in a 

source free environment. The wave equations, through consideration of the 

appropriate boundary conditions have been derived in both Cartesian and cylindrical 

coordinates. 

 

A brief overview of some of the more common numerical and semi-techniques 

applied to the solution of the wave equations was then given with an emphasis 

placed on introducing those methods that are discussed in later chapters. For an 

introduction to other techniques that are out of context with the work presented in 

this thesis and reader is referred to references [2.34]-[2.36] and [2.12]. Of the 

techniques introduced, the numerical methods, whilst being the most widely 

applicable and looked upon as providing benchmark results, suffer when considering 

large problem domains. The computational requirements of the methods then 

become prohibitive, requiring long run times on state-of-the-art workstations. 

Alternatively semi-analytical approaches can be extremely fast and efficient and of 

sufficient accuracy to allow their use in an iterative design environment. But these 

method suffer in terms of generality and for the most part need to be formulated with 

specific materials or geometries in mind. 
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Chapter 3 The Spectral Index Method 

 

The Spectral Index (SI) method forms the basis from which the work described in 

this thesis was developed. The SI method has traditionally been applied to the 

analysis of rectangular semi-conductor rib waveguides, [3.1]-[3.8], and was 

subsequently used to analyse multiple rib waveguide structures, [3.9]-[3.10]. Further 

developments led to its successful application to the analysis rib waveguide based 

spot-size transformers, [3.11], a subject that is given extensive coverage in chapter 4. 

The accuracy of the technique has also been enhanced through inclusion of the 

singular nature of the field at dielectric corners, [3.12]. Throughout this work the SI 

method is extended for the first time to the case of non-rectangular cross sections, 

circular geometries and three dimensional waveguide problems. In all these cases the 

basic underlying principles remain the same. Therefore this chapter covers, in detail, 

the philosophy and concepts of the SI approach to the analysis of semiconductor 

waveguide structures in the context of the three-layer rectangular rib waveguide, 

figure 3-1. Comparisons will be drawn with results from other methods where 

necessary indicating the advantages of the SI approach, or the method�s short-

comings, as appropriate. 

 

3.1 The SI method � an overview 

 

The SI method begins by modifying the physical semiconductor-air boundary in the 

transverse plane of the waveguide by replacing that boundary with a polarisation
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dependant evanescent boundary, upon which the field is set to zero. Exact solutions 

to the scalar wave equation are then formulated in the upper guiding or rib region 

and the underlying substrate region of the waveguide. These solutions are then 

matched along the boundary of the two regions using a variational principle to give a 

simple transcendental eigenvalue equation for the longitudinal propagation constant, 

ȕ. 

 

Figure 3-1 Transverse cross section of a three-layer semiconductor rib waveguide, where n2>n3>n1. 

 

3.2 Theory 

 

The SI method solves the two dimensional Helmholtz wave equation 
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where ( ) ( ), , , j zE x y z E x y e β−= , ( ),E x y  being the principal polarised electric field 

profile. β is the longitudinal propagation constant and ( ) ( )0, n ,k x y k x y= , where 0k  

is the free space wavenumber 2π
λ  and ( )n x,y  is the transverse refractive index 

profile. 

 

3.3 The effective structure 

 

As previously stated the SI method replaces the physical rib structure with an 

effective structure, whereby the structures physical boundary is displaced and the 

field set to zero along the effective boundary. This principle of effective penetration 

depths, as introduced in chapter 2, models the penetration of the optical field into the 

cladding and is most accurate when the penetration is small as is the case for air clad 

waveguides. For example air-clad III-V semiconductor based structures have a 

refractive index step, at the air/semiconductor boundary of approximately 1:3.  

 

Figure 3-2(a) illustrates the simple case of the 3-layer rib waveguide of width 2w, rib 

etch depth h and outer slab depth d. The refractive indices are such that 

2 3 1n n n> � . Imposition of the effective penetration depths results in a rib that is 

slightly larger that the physical rib, Figure 3-2(b), whose effective dimension are 

width 2W, etch depth H and outer slab depth D. The effective dimensions are 

polarisation dependant and are given by 

 

 W w ,       D d ,      H hn t= + ∆ = + ∆ =  (3.2) 



Chapter 3 The Spectral Index Method 

 49

for the case of TE polarisation and 

 

 W w ,       D d ,      H ht n= + ∆ = + ∆ =  (3.3) 

 

for the case of TM polarisation, where 

 

 ( )
21

2 2 2 1
1

2

ȕ       and      .t n t

n
k

n
−  ∆ = − ∆ = ∆ 

 
 (3.4) 

 

∆t and ∆n correspond to the effective penetration depths of the tangential and normal 

electric field components respectively. Figure 3-2 also serves to illustrate the 

coordinate system adopted and the boundary between the upper rib region, 1Ω  

( )0 Hy< < , and the underlying substrate region 2Ω  ( )0y > . 

 

 

Figure 3-2 Application of the method of effective penetration depths to a 3-layer rib waveguide 

illustrating; (a) physical structure and (b) effective structure together with coordinate system adopted 

and boundary at y=0. 
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Application of the effective structure renders equation (3.1) separable in regions 1Ω  

and 2Ω  which greatly simplifies the analysis. 

 

3.4 Field Distribution in Region 1Ω  

 

The field in region 1Ω  may in general be written as a separable solution for E such 

that 

 ( ) ( )
1

N

M M

m

E F x G y
=

=∑  (3.5) 

 

The lateral field distribution, ( )MF x , may then be described by a Fourier series. It 

has been shown, [3.3], that unless the mode sought is close to cut-off only the first 

term of the Fourier series is necessary for accurate representation of the field within 

the rib and so (3.5) may be simplified to 

 

 ( ) ( )E F x G y=  (3.6) 

 

The lateral field distribution may then be written as either 

 

 ( ) ( )1 1cos ,  
2W

F x s x s π= =  (3.7) 

 

for the fundamental symmetric mode or 
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 ( ) ( )2 2sin ,  
W

F x s x s π= =  (3.8) 

 

for the fundamental asymmetric mode. The corresponding functions describing the 

vertical field distribution, ( )G y , are then given by  

 

 ( )
( )( )

( )
1,2

1,2

sin H

sin

y
G y

H

γ

γ

+
=  (3.9) 

where 

 ( )
1

2 22 2
2 1,21,2 k sγ β= − −  (3.10) 

 

For clarity the following discussion will be restricted to the fundamental symmetric 

mode. Thus the field in the rib region is totally described by 

 

 ( ) ( )( )
( )

1

1

1

sin H
cos

sin

y
E s x

H

γ
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+

=  (3.11) 

 

3.5 Field Distribution in Region 2Ω  

 

In region 2Ω , the multi-layered substrate below the rib, a Fourier transform of E is 

used to reduce the dimensionality of the wave equation, (3.1), yielding 
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where use has been made of the transform pair 

 

 ( ) ( ) 1
, ( , )       and      , ( , )
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Comparing (3.12) to the equation of a slab waveguide whose layers have refractive 

indices, ni 
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 (3.14) 

 

it is seen that (3.12) is of the same form as (3.14), but with �spectral refractive 

indices� given by 
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 (3.15) 

 

and so may be solved in a similar manner. Thus the original problem has been 

reduced in dimensionality and is now far easier to solve in term of computational 

effort. The solution of  (3.12) is now written as 

 

 ( ) ( ) ( ), ,s y f s g s yφ =  (3.16) 

where  
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and 
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These expressions apply for both quasi-TE and quasi-TM modes if, for quasi-TM 

modes, Γ3 is multiplied by the pre-factor 
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3.6 The Variational Boundary Condition 

 

The definitions of  ( )f s  and ( ),g s y  ensure field continuity across 0y =  is 

achieved, but as a consequence the derivative of the field is discontinuous at 0y = . 

Maxwell�s equations in a source free system are thus not satisfied along this 

boundary as a discontinuity in the field or its derivative would imply an energy 

storage mechanism and hence a source of energy. A variational technique is 

therefore employed which seeks to minimises the difference in the derivative of the 
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field across the boundary through varying the trial functions for the field.  In the case 

of the rib waveguide the variational principle chosen is one which seeks to make ȕ , 

the longitudinal propagation constant, stationary and is given by 
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where Ω  is taken to mean all space in the transverse plane of the waveguide. This 

results in the most accurate prediction of ȕ  since first order errors in the trial 

functions for E give rise to second order errors in ȕ . From (3.21) the necessary 

variational boundary condition is derived and given by 
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Using (3.22) to match the solution in regions ȍ1,ȍ2 and applying Parseval�s theorem  

results in 
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where the subscripts + and � are used to denote the solution just below and just 

above the boundary respectively. A normalised gradient function is introduced such 

that, just below the rib 
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Using equation (3.11) the LHS of (3.23)may now be written as 
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and, through (3.24), (3.17) and (3.18) the RHS of (3.23) may be written as 
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Finally (3.23), (3.25) and (3.26) give the final transcendental equation for β  
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and is the principal result of the standard SI method. 

 

Equation (3.27) may then be solved relatively simply by bracketing the root and 

employing a bisection routine. For lossless waveguides, i.e. the situation where all 

indices are real, the solution of the transcendental equation using the bisection 

method on a standard personal computer takes less than a second with negligible 

memory usage. Because β is not known in advance, β in (3.4) is initially replaced 
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with 0 3nk . The value of β in (3.4) is then continually updated to yield the most 

accurate results. For systems with loss or gain, ȕ will be complex and it will be 

necessary to employ a suitable complex root finding algorithm. The method as 

presented yields highly accurate results for ȕ and accurate prediction of field 

profiles, [3.4]. Table 3-1 and figure 3-3 illustrate the accuracy of the SI method by 

presenting a comparison with a semi-vectorial finite difference (SV-FD) scheme of 

the normalised propagation constants for the fundamental quasi-TE and quasi-TM 

modes of a simple rib waveguide; w 3µm= , h d 1µm+ = ,  Ȝ=1.15µm  and refractive 

indices of  1n 1.0 (air)= , 2n 3.44 (GaAs)=  and 3 0.9 0.1n 3.40 (Ga Al As)= . The 

normalised propagation constant, b, is defined as, [3.13], 

 

 
2 2

2 3

2 2

2 3

b
n

n n

β −
=

−
 (3.28) 

 

and is sensitive to small changes in ȕ and so proves useful when discussing accuracy. 

Once ȕ has been successfully found the field profiles may be obtained in a straight 

forward manner. In the rib ȕ is substituted back into (3.11). Below the rib ȕ is 

substituted back into (3.16) and a Fast Fourier Transform routine being used to 

transform the field back into real space. Figure 3-4 illustrate the field profile for the 

fundamental quasi-TE mode supported by the rib waveguide of previously described 

with h 0.5µm= . 

 

As previously stated, retaining only the first term in (3.5) is sufficient for an accurate 

analysis. Figure 3-5 further demonstrates this point through a comparison of results 

computed via; single term SI, multiple-term SI and a SV-FD scheme. It is seen that 
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increasing the number of terms to two, results in almost complete agreement with the 

SV-FD scheme with a negligible impact on computational requirements. 

 

Spectral Index Method Semi-vectorial FD 

H(µm) 

quasi-TE quasi-TM quasi-TE quasi-TM 

0.1 0.3842 0.3410 0.3872 0.3442 

0.2 0.3617 0.3199 0.3665 0.3246 

0.3 0.3459 0.3055 0.3502 0.3096 

0.4 0.3337 0.2946 0.3368 0.2975 

0.5 0.3239 0.2860 0.3257 0.2877 

0.6 0.3161 0.2792 0.3167 0.2798 

0.7 0.3099 0.2740 0.3095 0.2738 

0.8 0.3052 0.2700 0.3042 0.2693 

0.9 0.3018 0.2671 0.3003 0.2661 

1.0 0.2994 0.2651 0.2977 0.2639 

 

Table 3-1 Comparison of the normalised propagation constants, b, of the fundamental quasi-TE and 

quasi-TM modes,calculated by the SI method and a semi-vectorial finite difference scheme for the rib 

waveguide of Figure 3-2(a) where W=3.0µm, D+H=1.0µm, n1=1.0, n2=3.44, n3=3.40 and Ȝ=1.15µm. 

 

3.7 Conclusions 

 

The SI method is an extremely efficient analysis technique that has been applied to 

rib waveguides of rectangular cross section. The method accurately predicts 

longitudinal propagation constants and field profiles for this class of waveguide. 

This, together with the relative simplicity of the method means it is ideally suited as 

a CAD tool for the analysis of the polarised modes of optical waveguides and to its 

extension to a wider range of optical components and circuits, which is the subject of 

the remainder of this thesis. 
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Figure 3-3 Graphical representation of the data in table 3-1 for the (a) fundamental quasi-TE mode 

and (b) the fundamental quasi-TM mode. 
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Figure 3-4 Optical field distribution of the fundamental quasi-TE mode of the rib waveguide where; 

W=3.0µm, H=0.5µm, n1=1.0, n2=3.44, n3=3.40 and Ȝ=1.15µm; (a) Contour plot, and (b) 3D Surface 

plot where the bold lines indicate the physical boundary of the rib structure. 
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Figure 3-5 Comparison of normalised propagation constant, b, of the fundamental quasi-TE mode 

computed by single and multi-term SI schemes versus a SV-FD scheme for the rib waveguide of table 

3-1. 

 

3.8 The SI Method: Admittance Formulation 

 

The SI method may alternatively be formulated in terms of admittances. In this 

formulation the method treats the rib waveguide as a short circuited transmission line 

transmission line, figure 3-6. This approach is utilised in later chapters where it is 

applied to the analysis of optical spot size transformers, (§4.5), and rib waveguides 

of non-rectangular cross section, (§5.2). 
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Figure 3-6 Schematic of a rib waveguide and the representation of the rib by a short circuited 

transmission line. 

 

At the base of the rib the electric field and magnetic field maybe be expressed as 

 

 ( ) ( )( )2 1

0 2W

1

,0 V cos
N

n x

n

E x
π+

=

=∑  (3.29) 

and 

 ( ) ( )( )2 1

0 2W

1

,0 I cos
N

n x

n

j H x
πµ +

=

− =∑  (3.30) 

 

where use has been made of  

 
E

j H
y

µ∂
= −

∂
 (3.31) 

 

and where N is the number of terms used in the field expansion and V and I are 

unknown voltage and current like coefficients to be determined. On the top surface 

Yrib 

Ysub 

s/c 

h 

d 
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of the effective rib (y = -H) the field and its derivative is required to be zero 

(equivalent to a short circuit) and the unknown coefficients may be linked 

conveniently through the well known ABCD matrix notation, [3.14], such that 

 

 
0

0

VA B 0
= =

0IC D

top

top

E

H

                  
 (3.32) 

 

where  

 

( )

( )

( )

,A D cos H

sin H
B

C sin H

nm n n nm

nm

nm

nm

nm nm nm

γ

γ
γ

γ γ

= =

=

= −

 (3.33) 

 

thus from (3.32)  

 0 0AV +BI =0  (3.34) 

 

Below the rib, define  

 I=YV  (3.35) 

 

where  

 ( ) ( ) ( ),

0

Yi j i js s s dsϕ ϕ
∞

= Γ∫ , (3.36) 

 

 ( ) ( ) ( ),0

0

2
cosi is sx x dsϕ ϕ

π

∞

= ∫  (3.37) 
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and ( )sΓ  is the standard plane wave response function. Combining (3.34) and (3.35) 

gives 

 

( )

1

0

0

Y B A V 0

B A V 0Y

− + = 
 

⇒ + =

 (3.38) 

 

which is solved by requiring 

 BY+A =0  (3.39) 

 

and is equivalent to the multiple term SI transcendental equation for even modes of a 

rib waveguide. 
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Chapter 4  SI Method Applied to the Design of a Novel SiGe 

Based Mode Spot Size Converter 

 

4.1 Introduction 

 

Recent years have seen the rapid evolution of silicon based optoelectronics. The 

absorption properties of Si1-xGex alloys make them excellent materials for the 

realisation of photodetectors operating at the near-infrared wavelengths of 1.3 and 

1.55µm which are important for fibre optic communication systems. An important 

design consideration for such systems is the efficient coupling of optical fibres to 

optoelectronic integrated circuits. This chapter details the design of a novel Si1-xGex 

rib waveguide spot size converter (SSC), or mode transformer, that performs two 

essential roles; the transformation of the large spot fibre to a small spot waveguide 

mode and subsequently the transferral of the mode from a passive silicon 

waveguiding region to an active Si1-xGex region where optical absorption may occur. 

This transformation is accomplished through use of a tapered waveguide structure.  

 

In the following chapter a brief overview of silicon optoelectronics is given, which 

sets the requirements for the following work. Material properties that require careful 

consideration when working within a Si1-xGex material system are then discussed. The 

concept of a SSC is introduced. Following this an analysis technique based on the SI 

method is used to investigate the local modal behaviour of the proposed 
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structure which was ultimately fabricated1. The SCC was then experimentally 

evaluated and comparisons drawn between those results and those predicted by the 

model. 

 

4.2 Silicon Optoelectronics 

 

Silicon (Si), being an indirect bandgap material has very poor abilities in the 

emission / absorption of light at room temperature (300K). Because of this Si had 

traditionally been overlooked for use in optical communications systems at the 

important wavelengths of 1.3 and 1.55µm  as the material was unable to offer 

practical active devices, although silicon based photodetectors dominate at 

wavelengths of 1µm< . Silicon is transparent over the important optical 

communications range 1.3 and 1.55µm  (its energy band gap being ≈1.2eV) and low 

loss waveguiding over this region has been demonstrated; [4.1]-[4.4] for silicon-on-

insulator waveguides, [4.5]-[4.6], and [4.7]-[4.9] for porous silicon based 

waveguides. The addition of Germanium (Ge), to form a SiGe alloy, has been used 

to enhance the refractive index of the material to produce waveguides that can be 

directly fabricated onto Si substrates, [4.10]-[4.14]. Furthermore the addition of Ge 

enhances the absorption coefficient at these wavelengths and recent years have seen 

the realisation of integrated SiGe based photodetectors for use over this range, 

[4.14]-[4.16]. Further advances have shown SiGe based light emitting diodes (LEDs) 

                                                 

1 This work was carried out as part of Technology Group (7) of the UKMoD Corporate Research 

Programme. 

 



Chapter 4  SI Method Applied to the Design of a Novel SiGe Based Mode Spot Size Converter 

 68

that operate at room temperature, [4.17]. More recently, the advantages offered by 

silicon as a photonic medium for the large scale integration of optical components, 

[4.18], have led to renewed interest in silicon based microphotonic circuits, [4.19]. 

 

4.3 Properties of Si and Si-Ge alloys 

 

The following outlines some of the material properties of Si and SiGe that require 

careful consideration throughout the design process. Several variables regarding 

geometry may present themselves during an iterative design process. The success of 

any design is therefore dependant upon the designer�s awareness of material issues in 

order to optimise the design whilst remaining within those constraints imposed by 

the materials properties. 

 

4.3.1 Strain 

 

Silicon and germanium have different lattice constants (the regular spacing between 

the materials atoms), giving rise to a lattice mismatch of ∼4% between the bulk Si 

and a Si-Ge alloy figure 4-1 (a). When SiGe is grown on a Si substrate the lattice 

symmetry of the Si-Ge becomes coherent with that of the Si substrate, figure 4-1 (b). 

This results in the SiGe layer becoming strained, [4.20]-[4.22]. This strain increases 

with epitaxial thickness until a critical layer thickness is reached at which point 

dislocations may form to relieve the strain in the layer, figure 4-2. These dislocations 

are both a loss mechanism and a cause of device failure and so need to be avoided. 

Dislocation free pseudomorphic growth of Si-Ge epilayers maybe achieved, 
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however, by ensuring that the SiGe layer thickness is kept below the critical 

thickness. 

 

Figure 4-1 Illustration of the crystal lattice structures of (a) Si and Si1-xGex, (b) strained Si1-xGex layer 

grown on Si. 

 

Figure 4-2 Illustration of a misfit dislocation. 
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For non-metastable material a Si1-xGex layer will be coherently strained if its 

thickness is less than a critical value, tc, given by the empirical formula [4.23] 

 

 3.6
0ct t x

−=  (4.1) 

 

where t0 =8.2 Å and x is the germanium fraction. The formula (4.1) is illustrated in 

figure 4-3. 

 

 

Figure 4-3 Critical thickness as a function of germanium content. 

 

4.3.2 Refractive index of Si 

 

The room temperature (∼300K) refractive index of Si at a wavelength of 1.55µm is 

3.477, [4.24]. This refractive index and hence the materials waveguiding properties 

can be altered by changing the concentration of charge carriers within the material. 
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The mechanism that shall be considered here is the effect of the density of charge 

carriers within the material. This has been studied previously, [4.25], and figure 4-4 

illustrates the change in refractive index with free carrier concentration. It should be 

noted though that losses increase with carrier concentration due to free carrier 

absorption. 

 

 

Figure 4-4 Carrier refraction at λ=1.55µm as a function of free carrier concentration, (reproduced 

from [4.25]). 

 

4.3.3 Refractive index of Si1-xGex 

 

The room temperature refractive indices of bulk silicon and germanium at a 

wavelength of 1.55µm are 3.477 and 4.275 respectively, [4.24]. Thus, as previously 

mentioned, Ge can be used to enhance the refractive index of Si. A relationship for 
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the refractive index of Si1-xGex as a function of Ge content, x, has been proposed 

[4.26] and is given by 

 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )1

n n
n nx x

Ge Si Eg Si Eg x
SiSi Ge

Eg Si Eg Ge
−

− −      = +
−  

 (4.2) 

 

 

where, Eg(Si) and Eg(Ge) are the energy gaps of the unstrained bulk materials. Eg(x) 

 is the indirect gap of the strained Si1-xGex, given by [4.27] 

 

 ( ) 21.1 1.02 0.52       (@ T=295k)Eg x x x= − +  (4.3) 

 

Figure 4-5 presents the change in refractive index with Ge content predicted by 

equations (4.2) and (4.3). 

 

 

Figure 4-5 Change in refractive index with germanium content (@ T=295k, λ=1.55µm). 
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4.4 Mode Spot Size Converters 

 

Active optical devices are, in general, typified by having tightly bound elliptical spot 

sizes of large aspect ratio that make the task of coupling to the circular and larger 

modes supported by single mode optical fibres inefficient and highly sensitive to 

alignment tolerances. The situation is illustrated in figure 4-6, and has, over recent 

years, received considerable attention. Mode spot-size converters (SSCs) that allow 

efficient coupling of fibres to active devices have been demonstrated in III-V and 

polymer materials, [4.28]-[4.30]. It is important to note that the specific design of 

these SSCs is generally dictated by the material system of the device technology and 

the limitations it imposes. However, typically the design comprises three common 

regions; a tightly confined active device region, a tapered region and a more loosely 

confined passive input or output region. The tapered region provides a mechanism 

for the adiabatic transformation of the large spot size offered by a single mode fibre 

to the spot size at the active device. Such tapered devices may make use of lateral or 

vertical taper designs or a combination of both, [4.29]. The operation of taper based 

SSCs are similar in that, at the input facet the upper waveguide is cut-off, whilst the 

underlying waveguide supports a fundamental mode similar in profile to that of a 

single mode fibre. As the upper rib progressively widens in the direction of 

propagation it becomes the dominant guiding mechanism and at some point the light 

will shift totally from the lower to the upper rib undergoing a spot-size 

transformation. Figure 4-7 illustrates the optical field profiles at the input facet and 

the transformed field at the output facet. 
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Figure 4-6 Optical mismatch between fibre and detector input. 

 

 

Figure 4-7 Illustration of the optical fields at input and output stages of a taper based rib waveguide 

based SSC. 
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The approach adopted in this work was to use a laterally tapered rib on rib structure, 

figure 4-8. The active Si-Ge based device epitaxy is grown on top of a wider silicon 

mesa to produce the rib on rib structure. The wider mesa forms a large spot size rib 

waveguide in its own right, whose spot size can be optimised to closely match that of 

the fibre to provide the means for coupling light from the fibre source. The upper rib 

is tapered and as the width of this taper is increased the optical mode is driven from 

the lower guiding region into the upper active region as previously described. 

 

 

Figure 4-8 Rib on rib/taper mode spot size converter. 

 

 

The epitaxial structure being considered, figure 4-9, in this work consists of a lightly 

doped, 6µm thick, Si epitaxial layer which also includes a SiGe multiple quantum 
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discussed above. However these free carriers also introduce an additional loss 

mechanism, [4.25], and so the minimisation of the field in this layer is also desirable. 

 

The composition of the Si/Si1-xGex MQW absorption region was modelled by an 

equivalent uniform layer approximately 0.7µm deep with an effective refractive 

index of n=3.6  at a wavelength of 1.55µm. The refractive index of the Si1-xGex alloy 

was determined by the interpolation formula (4.2) with an average refractive index 

being taken across this region during the modelling process. The bulk Si materials 

were taken to have a refractive indices of n=3.477 and n=3.474, for the intrinsic and 

n+ materials respectively, at this wavelength. 

 

 

 

Figure 4-9 Epitaxial structure on which the device was to be fabricated. 
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4.5 SI Methodology 

 

An analysis technique based on the SI method described in the previous chapter was 

used to investigate the modal properties of the waveguiding structure.  The technique 

allowed for the efficient analysis of any cross-sectional refractive index profile of the 

rib-on-rib SSC along the length of the structure. This approach provides significant 

insight into the performance of the SSC whilst maintaining a high degree of 

computational efficiency and is well suited to an iterative design process such as that 

adopted here. The method is fully covered in [4.31], but an overview is given here 

for completeness, and is presented for the TE case only. 

 

4.5.1  Derivation of the transcendental equation 

 

With reference to the notation introduced in the previous chapter, (§3.8), the method 

proceeds in the same manner as the standard SI method, whereby the physical 

structure is replaced with another whose boundaries have been displaced and the 

field set to zero at these boundaries, as shown in figure 4-10. The field in each 

region; the upper rib (I), the underlying large rib (II) and the substrate (III), can then 

be represented as a superposition of local solutions of the wave equation. In region I, 

the principal field component, Ex, is well approximated by: 
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where: 
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In region II the field and its derivative can be expressed as: 
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at the top of region II, y=0, and similarly along the base of region II, y=-h′2: 
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In region III the field and its gradient can be expressed as a superposition of plane 

waves: 
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The coefficients of (4.6) and (4.7) are then related by the well known ABCD 

notation such that: 
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As V2 and I2 are also related by the response function of the substrate region 

conveniently expressed in the form: 

 

 22 VYI =  (4.10) 

 

(4.9) and (4.10) then yield the relationship: 

 

 ( ) ( ) 11 IDBYVAYC −=−  (4.11) 

 

Finally enforcing field continuity at y=0, (4.4) and (4.6) yield: 
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A variational expression is then used to match the field gradient at y=0 resulting in 

the final transcendental equation: 
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In practice the solution to (4.13) is obtained by evaluating Y, A, B, C then D and then 

using (4.11) to obtain I1, which is in turn substituted into (4.13). The values of the 

propagation constant, β, that satisfy (4.13) are those of the modal solutions of the 

structure. In order to ensure numerical stability during the solution of (4.13) the 
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concept of accessible modes is utilised, a more detailed description of which is given 

in  [4.31]. 

 

Figure 4-10 Diagram illustrating; (a) general structure, (b) use of effective boundaries, co-ordinate 

system, and separate regions considered during the SI analysis of a rib-on-rib waveguide 

 

4.6 Spectral Index Method Results 

 

Throughout the theoretical analysis it was assumed that the mode transformation 

occurs adiabatically, i.e. without power loss. The starting point for the design process 

was to identify the modal profiles at the start and finish of the tapered section, which 

are required to match the modes supported by the fibre and SiGe regions 

respectively. The composition of the Si1-xGex absorption region was fixed, as was its 

position in the epitaxial structure. This still allowed for a great degree of freedom 

during the design process, with the ability to completely specify the upper and lower 

rib geometries. The efficiency of the theoretical model could therefore be fully 

exploited by evaluating several designs in as short a time as possible. 
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The modal profiles shown in Figure 4-11 show the theoretical fields, of the final 

design, for three widths; the large spot input profile, the point at which the mode 

begins to move up into the tapered region and the small spot output profile. Figure 

4-12 depicts the variation in the propagation constant, β, with taper width, W. It is 

clearly seen that a rapid change in the guiding characteristics occurs around W = 

1.2µm as the mode is transformed between the two guiding extremes. In order to 

facilitate adiabatic mode size transformation, it is required that this change takes 

place as gradually as possible around this critical width. Specifically, an initial 

design that achieves this is one in which ( )( )d d dW
dz dW dz

β β=  is kept constant 

along the taper, [4.31]. It is also noted that once below this critical point the width of 

the taper may be reduced more rapidly, facilitating a shorter device. A similar 

approach, considering fibre coupling to a semiconductor laser, has been 

demonstrated in ref [4.32]. Although the aim is adiabatic performance, initial designs 

focused upon linear tapers. 

 

Figure 4-11 Theoretical Field profiles (Ex) of the fundamental TE mode taper widths; tw = 0.7µm, tw = 

1.2µm and  tw = 7 µm . 

(tw=0.7µm)                              (tw =1.2µm)             (tw =7µm) 

7µm
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Figure 4-12 Variation in propagation constant with taper width, tw. 

 

4.7 Experimental evaluation 

 

Investigations into the performance of the SSC were carried out through 

experimental evaluation of a 100µm long linear taper, figure 4-13. The position and 

intensity of the light emerging at the output facet of the SSC being determined 

experimentally using the arrangement shown in figure 4-14. A He-Ne laser of 

λ=1.52µm was used as the incident light source which was focused to a spot size of 

~4µm onto the large rib input face. The output from the SSC was then focused onto a 

near infrared (NIR) sensitive camera. The output from this camera was, in turn, 

processed by a personal computer and a digital storage oscilloscope (DSO) to enable 

image and data capture. The resulting modal profile and intensity distributions, in 

both the horizontal and vertical planes are shown in figure 4-15, and are seen to be in 

excellent agreement with theoretical predictions. 
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Figure 4-13 Image captured with a CCD camera mounted on a microscope at x100 magnification 

showing the tapered rib on rib device. 

 

 

Figure 4-14 Experimental set up used to obtain the modal profiles and intensity of the output of the 

SSC. 
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Figure 4-15 Experimentally determined mode (taken through the points of maximum intensity) and 

intensity profiles. A schematic representation of the output face of the SSC is drawn over the mode 

profile to indicate the boundaries of the upper and lower rib regions. 

 

4.8 SI method as an Optimisation Tool 

 

Whilst maintaining an input spot size equivalent to that of a single mode fibre, it was 

also required of the SSC that the field in the lossy substrate be minimised. During the 

design process efforts were made to minimise the field in the substrate. But, as can 

be seen from the simulations of the final SSC there is significant penetration of the 

field into the substrate at the input of the device, figure 4-16, and was unavoidable 

within the constraints of the first device run. The material composition and 

dimensions of the epitaxy were already determined prior to the commencement of 

the work previously described. 
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Figure 4-16 Optical field at the input of the SSC. 

 

In order to further reduce the field in the substrate it is necessary to increase the 

refractive index contrast between it and the guiding region. One approach is to use a 

low index substrate compatible with the fabrication process namely Bonded and 

Etched back Silicon on Insulator (BE-SOI). Another is to load the rib with an 

additional SiGe layer that effectively lifts the mode upwards into the rib region and 

away from the lossy substrate. Figure 4-17 and figure 4-18 illustrate the field profiles 

for the fundamental quasi-TE mode, implementing the two approaches. Both are 

seen to successfully reduce the field present in the substrate. This also further 

illustrates the suitability of the SI approach as its efficiency allowed for the rapid 

evaluation of proposed solutions to a problem targeted towards the optimisation of 

the design. At the time of the work the proposals where unable to be implemented 

due to the constraints of the project. 
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Figure 4-17 Optical field at the input of the SSC fabricated on a BESOI wafer. 

 

4.9 Conclusions 

Theoretical and experimental results have been presented illustrating the operation, 

and hence the suitability, of a Si1-xGex based mode spot size converter. To the best of 

the author�s knowledge this was the first demonstration of the principle in this 

material technology that had been published, [4.33]. The process used to arrive at a 

suitable design within the material constraints was an iterative one, benefiting fully 

from the computational efficiency of the theoretical design method, namely the SI.  

 

 

Excellent agreement is shown between the theoretical and experimental results 

further illustrating the suitability in adopting such a design methodology in 

establishing the basis of a good design. 
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Figure 4-18 Optical field at the input of the SSC for a SiGe strip loaded rib. 
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Chapter 5  Analysis of Waveguides of Non-Rectangular 

Cross Section 

 

The ubiquitous rib waveguide is now found in almost all modern OEICs. In its 

simplest form the rib waveguide is a symmetrical, passive and longitudinally invariant 

device performing the task of a basic signal carrier. Using the rib waveguide as a base 

geometry has led to the development of passive and active devices performing a 

variety of roles that readily lend themselves to integration. The removal of symmetry 

in the transverse plane allows the rib to perform as a passive polarization rotator, 

[5.1]-[5.3].The inclusion of active layers in the rib region allow for the realization of 

photodetectors, [5.4]-[5.9], and lasers, [5.10]-[5.11].  

 

In this chapter a novel implementation of the SI method is developed for the analysis 

of rib waveguides of arbitrary cross section. Two approaches are presented; the first, 

employing a stair-case approximation to the non-rectangular rib wall and the second 

treating the rib wall exactly. 

 

5.1 Introduction 

The optical characteristics of rib waveguides have been considered extensively in the 

literature and are generally considered to be ideal, i.e. rectangular with vertical side 

walls, for analysis purposes. However the fabrication process may lead to a physical 

device with a transverse cross section that is non-rectangular, [5.12]-[5.15]. The
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resulting real waveguide generally has sloped walls resulting in a trapezoidal cross 

section. Figure 5-1 illustrates the transverse profiles of semiconductor rib 

waveguides that are typically produced by various etching solutions on GaAs. Rib 

waveguides of non-rectangular cross sections may also be required by design for the 

provision of beneficial electronic effects in active devices, such as reducing the 

threshold current of a laser device through a reduction in the waveguide width, 

[5.16]. The analysis of non-rectangular geometries, although seemingly important, 

has received little attention in the literature. A few results have been published, 

[5.17]-[5.19], the former employing an equivalent circuit approach and the latter an 

effective index method. However, these approaches suffer when the device is close 

to cut-off in the outer slab regions. 

 

Figure 5-1 Waveguide profiles produced by various etching solutions on GaAs. 

 

  

5.2 Theoretical Development 

 

In developing the theory, the trapezoidal rib waveguide of figure 5-2 will be used as 

an illustrative example. In chapter 3, the following expression  
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Figure 5-2 Trapezoidal rib waveguide geometry. 

 

 

 
1

2

W

W

E
dx dsE

y y

φ
φ

π

+∞
∗∗

− +
− −∞− +

   ∂ ∂
=   ∂ ∂   

∫ ∫  (5.1) 

 

followed as a result of the application of the variational boundary condition, equation 

(3.21, §3.6). With reference to the circuit analogues introduced earlier (§3.8), the left 

hand side of equation (5.1)can be re-written as 

 

 * * *
W W W W

rib

W W W W

HE
dx E H dx E E dx E E Y YE

y E

∗ −
− − − − − − −

−− − − −−

 ∂
= = = = ∂ 

∫ ∫ ∫ ∫  (5.2) 

 

 

Equation (5.2) now effectively represents the admittance looking upwards into the 

base of the rib section of the waveguide. The rib may now be thought of as a non-

uniform terminated transmission line. Two formulations to the problem are described 
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in the following two sections. The first uses a stair-case approximation to the rib wall 

and treats the rib in a manner analogous to that of a multi-section transmission line. 

The second uses an exact representation of the rib wall avoiding the need for 

discretisation, and the rib is treated as a tapered transmission line that models the 

continuous variation found in the practical structure. 

 

5.2.1 Stair-cased Formulation 

 

A stair-case approximation to the sloped wall of the rib waveguide is illustrated in  

figure 5-3(a) and is used to represent the true transverse profile of the rib waveguide 

. The rib is now treated as a multi-section transmission line of n sections, figure 

5-3(b). 

 

 

Figure 5-3 Trapezoidal rib waveguide and its transmission line equivalent. 
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Each section may be described by a four port, two terminal network representation, 

as shown in Figure 5-1(c), where V1I1 and V2I2 represent the equivalent modal 

voltages/currents on the input and output ports respectively, i.e. the bottom and top 

surfaces of each section. The equivalent voltage and current at the input may then be 

related to those at the output by a transfer matrix, such that 

 

 1 2

1 2

V VA B

I IC D

    
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 (5.3) 

 

 

At the discontinuities between the waveguide/transmission line sections TE-TM 

mode conversion is known to be small, [5.20] and so is ignored. The effect of each 

discontinuity can then be modelled by an equivalent transformer network, [5.21]-

[5.23]. Considering the case of only a forward travelling (-ve y direction) field, 

figure 5-4, illustrates a transformer network representation of one discontinuity, with 

section 1 supporting m modes and section 2 supporting n modes. The V�s represent 

the equivalent modal voltages and the I�s the equivalent modal currents. The turn�s 

ratio, T, of the primary and secondary of each equivalent transformer is effectively 

the overlap between each mode in section 1 with all modes in section 2 such that 

 

 

 
2

2

w

1,2 1 2 1 2

w

T  dxϕ ϕ ϕ ϕ
+

−

= = ∫  (5.4) 

 



Chapter 5 Analysis of Waveguides of Non-Rectangular Cross Section 

 98

 

Figure 5-4 Transformer representation of a step discontinuity. 

 

Figure 5-5 Schematic illustration of the first step junction at the base of the rib. 
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Consider now the case of a sloped wall rib waveguide that has been stair-cased with 

m steps. Figure 5-5 illustrates the first step junction at the base of the rib with the 

electric field distribution across the base of the rib,  ( ,0)E x , being given by 

 

 ( )0 0 0( ,0) , wE x xϕ=
T

V  (5.5) 

 

and the derivative of the field with respect to y is then given by 
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In (5.5) and (5.6) the vector of N basis terms, 0ϕ , used in the field expansion has 

elements 
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where n is the nth term, 0V  and 0I  are the vectors of equivalent voltage and current 

amplitudes at y=0 and w0 is the width at the base of the rib.  1V  and 1I  on the top of 

the first step at 1y y=  are then obtained through the application of (5.3) such that 
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A, B, C, and D  are diagonal matrices, derived from standard transmission line 

theory, whose elements are given by 
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E
x y I
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ϕ

ϕ

            = ⋅  ∂           ∂ 

 (5.11) 

 

Applying the overlap given in (5.4) results in 
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 (5.12) 

 

Therefore applying the process recursively for all steps gives 
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"

…


 
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 (5.13) 

 

But it is required that ( ), 0mE x y = , therefore 

 

 0 0V I 0α β+ =  (5.14) 

 

Below the base of the rib the current and voltage are related through 

 

 I YV=  (5.15) 

where 

 ( ) ( ) ( ),

0

i j i jY s s s dsϕ ϕ
∞

= Γ∫  (5.16) 

and 
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 ( ) ( ) ( ),0

0

2
cosi is sx x dsϕ ϕ

π

∞

= ∫  (5.17) 

 

( )sΓ  is the standard plane wave response function of the layered substrate, (§3.6). 

From (5.14) and (5.15) 

 

 

( )

1

0

0

Y V 0

V 0Y

β α

β α

− + = 
 

⇒ + =

 (5.18) 

 

(5.18) is thus solved for β for the condition 

 

 0Yβ α+ =  (5.19) 

 

 and forms the principal result of this section. 

 

5.2.2 Exact Formulation 

 

The following presents the theoretical development of an SI based approach whereby 

the sloping wall of the waveguide is treated in an exact manner and w is now a 

continuous function of y, ( )w y . 

 

Defining 
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 ( ) ( )( ) ( )T
, , A yE x y x w yϕ=  (5.20) 

and 

 ( ) ( )( )( ) ( )
DT

, w , A y
E

x x w y j
y

ϕ γ∂
= −

∂
 (5.21) 

 

where the superscript D is taken to denote a diagonal matrix 

 

 ( ) ( ) ( )
2

, w cos
2

n

n x
x

w y w y

πϕ
 

=   
 

 (5.22) 

 

and  

 ( ) ( )

2

2 2 2

2
n

n
k y

w y

πγ β
 

= − −  
 

 (5.23) 

 

where, again, where n is the nth term of the field expansion. It is required that E be a 

solution to the scalar wave equation such that 

 

 ( )2 2 0k E∇ + =  (5.24) 

From (5.21) 
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( )( )( ) ( )

( ) ( ) ( ) ( ) ( )

2 DT

2

D D DT T T

, A y

A A y A y

d E d
x w y j

dy dy

j j j

ϕ γ

ϕ γ ϕ γ ϕ γ

 = − 
 

′
′ ′= − + − + −

 (5.25) 

and  

 

 ( )( ) ( )
D2

2 2 T 2

2
, A y

d
k E x w

dx
β ϕ γ

 
− + = − 

 
 (5.26) 

 

 

which implies that 

 

 ( ) ( ) ( ) ( ) ( )
D D DT T T

A A y A y 0j j jϕ γ ϕ γ ϕ γ
′

′ ′− + − + − =  (5.27) 

 

 

Applying the test function  

 

 ( )( )
( )

0

,
w y

x w y dxϕ∫  (5.28) 

 

to (5.27) yields 

 

 ( )( ) ( ) ( )D D

P y A A A 0
D

j j jγ γ γ′ ′− + − + − =  (5.29) 

 

where P(y) is a square matrix whose elements are given by 
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 ( )( )
( )

( )( )
0

, ,
w y

nm n m

d
P x w y x w y dx

dy
ϕ ϕ= ⋅∫  (5.30) 

 

Equations (5.20) and (5.21) 

 

 ( )DT T T
A A Ajϕ γ ϕ ϕ′ ′− = +  (5.31) 

implying that 

 ( ) ( ) ( ) ( ) ( )
D

A y P y A y A yjγ ′− = +  (5.32) 

 

Separating forward and backward modes, equation (5.29) gives 

 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

D D D D

f r f f

D D

f f

P y A A A A

                                                            A A

j j j j

j j

γ γ γ γ

γ γ

   ′ ′= − + + + − + +      
 ′ ′+ − + +  

 (5.33) 

 

and similarly equation (5.31) gives 

 

 ( ) ( ) ( )( )
D D

f r f r f rA A P y A A A Aj jγ γ ′ ′− + + = + + +  (5.34) 

 

Combining (5.33) and (5.34) results in the matrix equation 
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 
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 (5.35) 

 

Further, defining the equivalent voltage and current amplitude vectors V  and I  such 

that 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
D

f r f rV y A A    and   I y A Ay y j y yγ= + = − +  (5.36) 

 

 

Equation (5.35) may be re-written as 
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 (5.37) 

 

 

and subsequently as 
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 (5.38) 
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(5.38) further implies that 
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( )

( ) ( )
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DD
2

P y I

P yV y V 0

I y I 0

dy

e

γγ γ

 
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∫   
   =
   
   

 (5.39) 

 

Finally giving at the top of the rib ( )y H=  

 

 
( )
( )

( )
( )

V y V 0

I y I 0
y H

α β

γ δ
=

    
    =

        
 (5.40) 

 

It is required required that ( ), 0E x y H= = , therefore (5.40) may finally be 

expressed as 

 0 0V I 0α β+ =  (5.41) 

 

in a manner that exactly mimics (5.14). Below the rib the problem is treated in 

exactly the same manner as for the stair-cased approach described in the previous 

section, resulting in the final matrix equation 

 

 0Yβ α+ =  (5.42) 

 

which is the principal result of this section. 
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The following section will apply and compare the two approaches described above 

as well as drawing comparisons with results provided by a purely numerical 

approach. 

 

5.3 Numerical Results 

 

Throughout the following the rib waveguide of figure 5-2 was used for analysis 

purposes. The waveguide is a typical example of a rib waveguide fabricated in a 

GaAs/AlGaAs material system, with n2 = 3.44 and n3 = 3.40 at a wavelength of 

λ=1.15µm. The wet etching processes employed in the fabrication of these guides 

typically result in non-rectangular cross sections as described earlier (§5.1). When 

determining the effect of the angle of slope, (α), the width of the rib at half its height 

was fixed. Using this approach the cross-sectional area of the rib remains constant 

with side wall slope and so only the effects on the optical properties of the guide due 

to change in wall slope are modelled. 

 

An initial vectorial finite difference simulation was carried out in order to ascertain 

the validity of the polarisation assumptions at the imposition of the effective 

penetration depths. Figure 5-6 depict the optical field distributions for the major and 

minor field components. The analysis was implemented with a rectangular mesh and 

hence the sloped wall was approximated in a stair-cased manner. As well as the 

singularities present at the re-entrant corners, singular fields are also observed along 

the stair-cased side walls and are a result of the approximation to the true structure.  
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Figure 5-6 Optical field distributions for the fundamental mode of a trapezoidal rib waveguide with a 

30° side wall slope; (a) principal field component and (b)minor field component. The white lines 

outline the true physical boundaries of the structure where H=0.5µm, D=0.5µm and the mid-height 

width = 3.0µm. 

 

The vectorial analysis revealed that the fields supported are essentially polarised and 

so further comparisons will be drawn with a semi-vectorial finite difference scheme. 

For the case of the stair-cased SI approach, the convergence of the normalised 

propagation constant, b, with the number of steps used in the stair-case 
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approximation was examined. Figure 5-7 illustrates the results and the difference in 

b between computed for 10 steps and 10000 steps equate to a difference in the fifth 

decimal place of β, well within the accuracy of the standard SI method. 

Computational times for the rib approximated by 100 stair-case steps were <10 

seconds. For the following SI simulations the rib was therefore approximated with 

100 steps retaining computational efficiency without loss of accuracy. 

 

Table 5-1 gives a comparison of the normalised propagation constants, b, for the 

fundamental quasi-TE of the rib waveguide described above. Two sets of results are 

given, those obtained by the SI method and those computed with two SV-FD 

schemes of increasing accuracy. Good agreement is observed between the SI method 

and those obtained by the more accurate SV-FD scheme. 

 

Figure 5-7 Convergence of the normalised propagation constant, b, with number of steps used to 

stair-case the sloping side wall as computed by the SI method.  The rib waveguide is as depicted in 

figure 5-2 with; h=0.5µm, d=0.5µm, w=3.0µm, n2=3.44, n3=3.40, λ=1.15µm and α=45°. 
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mesh size Slope  
α° 

SI method
200x0.02µm 400x0.01µm 

0 0.3247 0.3272 0.3265 
10 0.3278 0.3297 0.3291 
20 0.3310 0.3319 0.3314 
30 0.3343 0.3338 0.3333 
40 0.3382 0.3354 0.3349 

 

Table 5-1 Comparison of the normalised propagation constants, b, obtained via the SI method versus 

two semi-vectorial finite differences schemes of increasing accuracy. The rib waveguide is as 

depicted in figure 5-2 with; h=0.5µm, d=0.5µm, w=3.0µm, n2=3.44, n3=3.40 and λ=1.15µm. 

 

Figure 5-8 illustrates the normalised propagation constants versus side wall slope 

obtained by single and multi-term SI methodologies and compared to those obtained 

using a semi-vectorial finite difference scheme good agreement is obtained between 

the SV-FD scheme and the SI approaches using several terms in the field expansion 

in the rib. 

 

Figure 5-9 depicts the variation in the normalised propagation constant, b, with the 

overall rib height, H, such that D+H 1.0µm=  for side wall slopes of 0°, 10°, 20° and 

30°. The effect of increasing the height of the rib leads to a reduction in b as 

expected. The effect of increasing the side wall slope, α, is to widen the base of the 

rib and as the field is predominant in the region of the rib base the field effectively 

sees more of the higher index material resulting in an overall increase in b. Finally, 

figure 5-10 illustrates the optical field distributions predicted by the SI method for 

the cases of α = 0°, 30° and 50°. 



Chapter 5 Analysis of Waveguides of Non-Rectangular Cross Section 

 112

 

Figure 5-8 Normalised propagation constants for the fundamental quasi-TE mode of the waveguide 

of  Figure 5-2, versus side wall slope; where H=0.5µm, D=0.5µm and the mid-height width = 3.0µm. 

Figure 5-9 Normalised propagation constants for the fundamental quasi-TE mode of the waveguide, 

of  Figure 5-2, versus the full height of the rib; where H+D = 1.0µm and the mid-height width = 

3.0µm. 

N
or

m
al

is
ed

 p
ro

pa
ga

ti
on

 c
on

st
an

t,
 b

 

Side wall slope(α°) 

0.32 

0.33 

0.34 

0.35 

0.36 

0 5 10 15 20 25 30 35 40 45 50 

SVFD 
10 
8
5
3
1 

SI terms 

 

0.3 

0.31 

0.32 

0.33 

0.34 

0.35 

0.36 

0.37 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 
10 
20 
30 

N
or

m
al

is
ed

 p
ro

pa
ga

ti
on

 c
on

st
an

t, 
b 

H(µm)



Chapter 5 Analysis of Waveguides of Non-Rectangular Cross Section 

 113

 

Figure 5-10 Optical field distributions of the fundamental quasi-TE mode for side wall slopes of 

α=0°, 30°, 50°. The solid white lines schematically illustrate the physical structure. 

 

5.4 Conclusions 

 

This chapter has introduced a novel extension to the standard SI method that 

generalises it to the analysis of rib waveguides of non-rectangular cross section. The 

approach is shown to be accurate, for those cases where the field remains essentially 

polarised, through comparison with benchmark numerical methods whilst remaining 

computationally efficient. Although restricted to problems possessing lateral 

symmetry, the approach provides for a highly practical tool for the analysis of 

trapezoidal rib waveguides that are commonly found in optoelectronic integrated 

circuits. 

α=0° α=30°

α=50° 
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Chapter 6  The SI Method: Modelling the Slab Loss   

Mechanism 

 

 

The standard SI method as described in  [6.1] can be directly applied to the analysis 

of the complex propagation characteristics of optical rib waveguides, taking into 

account loss or gain. Rib waveguides that support leaky modes have been 

successfully analysed using the SI method, albeit in its discrete form, in [6.2]-[6.3]. 

In this chapter a discussion of application of the SI this method to the analysis of slab 

leakage waveguide losses is presented. The approach allows for the direct analysis 

and design of rib waveguides taking into account both substrate and, for the first 

time in the context of the SI method, slab loss mechanisms, where present, that 

previously required more numerically intensive approaches. 

 

6.1 Introduction 

 

The rib waveguide, is found in almost all semiconductor based integrated optical 

devices where it, in its most basic form, acts as a simple signal carrier. For low loss 

applications single mode rib waveguides are required and, for practical reasons, it is 

preferable that these waveguides have a relatively large cross section for ease of 

coupling to say, single mode fibres, [6.8]. Careful design allows the use of low loss 

mono-modal propagation in the oversized rib waveguides, whilst utilising loss 

mechanisms to rapidly attenuate the higher order modes, [6.3]-[6.8].



Chapter 6   The SI Method: Modelling the Slab Loss   Mechanism 

 118

Several techniques are commonly used for the analysis of the propagation 

characteristics of rib waveguides that were discussed in chapter 2, but to summarise; 

numerical approaches, such as finite difference techniques, allow for the accurate 

and complete analysis of all the propagation regimes but are computationally 

intensive, semi-analytical techniques such have been successfully used, but are 

restricted in their range of application. The SI Method is one of the semi-analytical 

approaches that has, in its discrete form, previously been applied to the design of 

single mode rib waveguide incorporating substrate leakage in the realisation of 

mono-mode low loss rib waveguides, [6.3], but this work neglected the leakage due 

to slab modes. The inclusion of the slab mode leakage mechanism has received 

coverage in the microwave literature, [6.4]-[6.7], but has received little theoretical 

attention in the field of optical waveguides, yet it is necessary for the accurate 

prediction of waveguide losses and is discussed in the remainder of this chapter. 

 

6.2 Theoretical Background 

 

Consider the transcendental equation, (§3.6), for the fundamental quasi-TE mode 
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∫  (6.1) 

 

The integrand of (6.1) is generally smooth and of the form depicted in  figure 6-1. If 

the waveguide possess a slab mode, in this case accomplished by increasing the 

depth D to 1.0µm, Γ (effectively the substrate response function) becomes singular 
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Figure 6-1 The integrand of equation (6.1). The outer slab regions do not support a guided mode and 

hence the integrand is smooth. 

 

for values of β corresponding to the surface modes of the outer slab regions, βslab. 

Figure 6-2 illustrates the nature of the integrand when the outer slab regions support 

a mode. The integrand becomes singular in at a values of s that correspond to the 

quasi- TE modes supported by the outer slab regions. The slab modes introduce a 

loss mechanism into an otherwise lossless system, for the case illustrated in figure 

6-2 or contribute to other losses present in the system, such as substrate leakage. 

 

Figure 6-3(a) illustrates the pole locations in the S-plane for lossless guided modes, 

i.e. real k and real β, located on the top sheet of the Riemann surface. The integral in 

(6.1) is then simply evaluated along the real axis. For the situation where the system  
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Figure 6-2 The integrand of equation 1, when the outer slab regions of the rib waveguide support a 

guided mode, D = 1.0µm. (a) shown over full range of integration, (b) restricted range. 

 

is lossy, these poles migrate across the real axis. Figure 6-3(b) illustrates this 

situation on the 2
nd

 sheet of the Riemann surface. The contour of integration must 

remain on the same side of the poles and not cross them to ensure that the integrand 

remains continuous and hence the integration can no longer be carried out purely 

along the real axis. The solution is therefore to deform the path of integration as 

depicted in figure 6-3 (c). 

 

In order to accurately evaluate analyse the loss contribution due to the slab modes of 

the rib waveguide the exact nature of the leaky poles have to be found and the 

calculation of the residue performed in order to evaluate the integral in equation (6.1) 

correctly, which will allow for the accurate determination of the complex 

propagation constants of the structure. We proceed by identifying the slab mode 
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Figure 6-3 Complex s-plane and the integration contour; (a) purely guided modes, (b) migration of 

poles across real axis as sytem becomes lossy, and (c)  leaky modes. 
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propagation constants so that the position of the poles in the S-plane may be 

identified via the relationship 

 

 2 2 2 2 2

0 0pole slab ribs k kβ β= −  (6.2) 

 

where ribβ  is the propagation constant of a guided rib mode, slabβ  is the propagation 

constant of a guided slab mode and 0k  is the wave number 2π
λ .The guided modes 

of the outer slab waveguides, as they are lossless, will possess purely real 

propagation constants, βslab and so the pole will initially lie on the real axis. But as 

the solution of (6.1) is an iterative process the value of spole will in general be 

complex. 

 

Once the position of the poles in the S-plane has been identified the domain of 

integration is divided up in order to isolate the singular parts of the integrand. For the 

simplified case of a single slab mode i.e. a single pole at s α= , the integral in 

equation (6.1) may be re-written as 

 

 
0 0

( ) ( ) ( ) ( )

d d

d d

f s ds f s ds f s ds f s ds

α α

α α

∞ − + ∞

− +

= + +∫ ∫ ∫ ∫  (6.3) 

 

where 

 

 
( )

( )
2

2
2 2

1

cos
( )

sW
f s

s s
= Γ

−
 (6.4) 

 



Chapter 6   The SI Method: Modelling the Slab Loss   Mechanism 

 123

The integral over the first and third sub-domains remains smooth and is evaluated 

numerically in the normal manner. However, the integral in the second sub-domain 

contains the singularity and requires careful evaluation. Here we evaluate the integral 

by extracting the singularity at s α= . The integral in the second sub-domain may be 

written as 
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d d d

d d d

A A
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s s

α α α

α α αα α
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− − −

= − +
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Due to symmetry  
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and thus 
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where A is the residue of ( )f s  evaluated at  s α=  and is given by 
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6.3 Numerical Results 

 

The method presented above was applied to the rib waveguide that is schematically 

depicted in figure 6-4. The waveguide is based upon a Silicon on Insulator (SOI) 

device, [6.9], such that; nguide = 3.5 and nsubstrate= 1.45 at λ=1.546µm, h=1.7µm, 

d=3.3µm and w=4.0µm. Such waveguides are designed to be mono-modal, relying 

on leakage mechanisms to suppress the higher order modes. The waveguides 

presented in [6.10] relied upon the slab leakage mechanism to attenuate higher order 

vertical modes that possessed effective indices (neff) lower than that of the 

fundamental slab mode. Thus, for mono-modal operation it is required that all rib 

modes other than the fundamental have an neff lower than the neff of the 

fundamental slab mode. The first five TE modes of the rib (calculated by the 

standard SI method) and outer slab regions of the waveguide depicted in figure 5 are 

given in Table 6-1. 

 

Figure 6-4 Transverse cross section of a SOI air clad rib waveguide. 
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Rib Waveguide Outer Slab Waveguide

TE0,0 3.4951127 TE0 3.4927883 

TE1,0 3.4842093 TE1 3.4710696 

TE2,0 3.4672937 TE2 3.4345872 

TE3,0 3.445187 TE3 3.382897 

 

Table 6-1 Effective indices of the first four TE modes of an SOI rib waveguide and its associated slab 

modes, for the rib waveguide of figure 6-4; nguide = 3.5 and nsubstrate= 1.45 at λ=1.546µm, h=1.7µm, 

d=3.3µm and w=4.0µm. 

 

As is seen from table 6-1 all the TE rib modes, except the fundamental have neff�s 

lower than that of the fundamental slab mode. However no information on the losses 

attributable to the slab leakage mechanism is provide. The SI approach as previously 

described in this chapter was used to analyse the same waveguide and the results for 

the first four modes are given below in table 6-2. 

 

Rib Waveguide Loss dB/cm

TE0,0 3.4942 0.0 

TE1,0 3.4854 0.1339 

TE2,0 3.4686 0.4254 

TE3,0 3.4452 0.9308 

 

Table 6-2 Predicted effective indices of the first four TE modes computed by the SI method modified 

to account for the slab leakage mechanism. The rib waveguide is as figure 6-4 with; nguide = 3.5 and 

nsubstrate= 1.45 at λ=1.546µm, h=1.7µm, d=3.3µm and w=4.0µm. 
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As table 6-2 shows, the SI method predicts that the fundamental mode is, as expected 

lossless. The losses of the higher order modes are seen to increase, again as 

expected, as higher order slab modes begin to contribute to the overall loss of the rib 

modes. 

 

6.4 Conclusions 

 

A numerical analysis of rib waveguide losses using the Spectral Index method has 

been presented. It has been shown that careful consideration of the nature of the 

integrand in the SI formulation is essential for the accurate prediction of waveguide 

losses attributable to the surface waves of the outer slab regions of a rib waveguide. 

This is particularly significant when oversized guides are used, relying on such 

losses to effectively provide mono-modal behaviour. Furthermore, accurate 

prediction of this loss mechanism is important for avoiding cross-talk, especially in 

the case of densely integrated optoelectronic circuits. 

 

 



Chapter 6   The SI Method: Modelling the Slab Loss   Mechanism 

 127

6.5 References 

 

[6.1] S. V. Burke, �Planar waveguide analysis by the spectral index method: II. 

Multiple layers, optical gain and loss�, Optical and Quantum Electronics, vol. 

26, pp. 63-77, 1994. 

[6.2] G. M. Berry, S. V. Burke, and J. M. Heaton, �Analysis of multilayered 

semiconductor leaky rib waveguides�, Computation in Electromagnetics, Second 

International Conference on, pp. 32-35, 1994. 

[6.3] J. M. Heaton, M. M. Bourke, S. B. Jones, B. H. Smith, K. P. Hilton, G. W. 

Smith, J. C. Birbeck, G. Berry, S. V. Dewar, and D. R. Wright, �Optimization of 

depp etched, single-mode GaAs/AlGaAs optical waveguides using controlled 

leakage into the substrate�, IEEE Journal of Lightwave Technology, vol. 17(2), 

pp. 267-281, 1999. 

[6.4] T. Rozzi, F. Moglie, A. Morini, E. Marchionna, and M. Politi, �Hybrid 

modes, substrate leakage and losses of slotline at millimetre-wave frequencies�, 

IEEE Transactions on Microwave Theory and Techniques, vol. 38(8), pp. 1069-

1078, pp. 941-943, 1990. 

[6.5] J. M. Grimm, and D. P. Nyquist, �Spectral analysis considerations relevant to 

radiation and leaky modes of open-boundary microstrip transmission lines�, 

IEEE Transactions on Microwave Theory and Techniques, vol. 41(1), pp. 150-

153, 1993. 

[6.6] J. S. Bagby, C, -H Lee, D. P. Nyquist, and Y. Yuan, �Identification of 

propagation regimes on integrated microstrip transmission lines�,  IEEE 

Transactions on Microwave Theory and Techniques, vol. 41(11), pp.1887-1894, 

1993. 



Chapter 6   The SI Method: Modelling the Slab Loss   Mechanism 

 128

[6.7] L. O. Mc. Millan, N. V. Shuley, and P. W. Davis, �Leaky fields on 

microstrip�, Progress in Electromagnetic Research, PIER, 17, pp. 323-337, 1997. 

[6.8] P. Souren, L. V. Pogossian, and A. Vonsovici, �The single mode Condition 

for Semiconductor Rib Waveguides with Large Cross Section�, IEEE Journal of  

Lightwave Tech., vol. 16(10), pp. 1851-1853, 1998. 

[6.9] A. G. Rickman, G. T. Reed, and F. Namavar, �Silicon-on-insulator optical rib 

waveguide loss and mode characteristics�, IEEE Journal of Lightwave 

Technology, vol. 12(10), pp. 1771-1776, 1994. 

[6.10] R. A. Soref, J. Schmidtchen, K. Petermann, �Large  Single Mode Rib 

Waveguides in GeSi-Si and Si-on-SiO2�, IEEE Journal of  Quantum Electronics, 

vol. 27(8), pp.1971-1974, 1991. 

 



 

 129

Chapter 7  Spectral Index Analysis of Dielectric Resonators 

 

 

7.1 Introduction 

In this chapter the spectral index approach is used in the development of a novel 

method for the analysis of the modes supported by resonant dielectric structures of 

circular geometry. The structures of interest are illustrated in figure 7-1 below. 

 

Figure 7-1 Schematci illustration of dielectric structures of circular geometry; (a) disc and (b) ring. 

 

 

Such structures are of particular interest as they yield high Q factors for a relatively 

small device and may be realised with dimensions comparative to the wavelength of 

operation, [7.1]-[7.3]. One implementation of circular resonators that has received 

much attention involves their use to provide a frequency dependant coupling 

mechanism between parallel rib waveguides, [7.4]-[7.9]. Figure 7-2 illustrates such a 

device in the form of a channel dropping filter. Light, at a resonance of the ring, is 

evanescently coupled from the input guide to the ring resulting in a resonant
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field that further couples, drops, to the output guide. Complete power transfer from 

the input guide to the output can be obtained using such a device. Such structure are 

typified by large core/cladding refractive index contrasts that allow for a small radius 

of curvature ensuring a low bending loss and as such are generally air clad devices or 

clad with low index oxides, see for example [7.6].  

 

 

Figure 7-2 Illustration of a channel dropping filter. 

 

A variety of methods exist with which to study the natural frequencies and scattering 

characteristics of dielectric disk resonators (DRs), and broadly fall into one of the 

three classes; analytical, semi-analytical or numerical. Among them are radial and 

axial mode-matching methods [7.10]-[7.11], effective dielectric constant method 

(EDC) [7.12]-[7.13], finite-element method (FEM) [7.14], frequency and time 

domain finite difference methods [7.15]-[7.16], surface and volume integral equation 

techniques [7.17]-[7.18]. Though being of some interest for remote sensing and 

antenna applications, knowledge of the resonant frequencies of isolated DRs is of 

little importance for practical optical applications. Optical DRs are commonly  

building blocks of complex structures, which include mechanisms for tuning and 

coupling to guiding or supporting surfaces. The resonant frequencies of a loaded DR 

input 
output 
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may differ significantly from those of the isolated DR making the standard 

perturbation techniques inapplicable in this case. Therefore, for accurate calculations 

of the microwave and optical properties of practical structures efficient and versatile 

approaches are needed. 

 

In [7.19] an equivalent circuits approach was applied to study the characteristics of 

DRs coupled to transmission lines or to each other. Although simple, this method 

does not directly give the resonant frequencies and its application is limited to 

coupled modes with constant or linear coupling coefficients. Some attempts have 

been made to study the complex frequencies of DRs in a shielded microwave 

integrated circuit (MIC) environment and to estimate the degradation of the Q-

factors due to conductor loss. For example, a perturbation method was proposed in 

[7.20] for the indirect determination of the conductor Q-factors of DRs by computing 

the relative difference between perturbed and unperturbed resonant frequencies, 

however, these were required to be evaluated beforehand by using more rigorous 

methods. Resonant frequencies and field patterns for DRs located on a microstrip 

substrate or in a cavity have also been studied by the EDC method, [7.12]-[7.13], and 

the generalized impedance boundary conditions method (GIBC), [7.21]. 

Furthermore, the mode matching technique was widely applied to the investigation 

of DRs in a MIC environment [7.22]. 

 

For integrated optics applications, it is necessary to study the characteristics of DRs 

in a non-shielded layered environment. In this case the analysis becomes even more 

complicated since it requires consideration of the conditions at infinity. Surface 

integral equations techniques (IEs) were applied in [7.23] to study the resonant 
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frequencies of a dielectric disc on a dielectric substrate. In [7.24] the problem of 

optimizing the matching between the transmission lines and whispering gallery-

mode DRs was considered by using an approximate method based on the 

interpretation of the DR modes as a superposition of plane waves. A combination of 

the volume IE method and Galerkin technique was used to analyze DRs in an 

inhomogeneous environment, [7.25], for resonators with separable geometries.  

 

Although, as mentioned above, a number of accurate numerical methods exist, the 

computational requirements of these methods are high for studying the optical 

properties of dielectric resonators. The remainder of this chapter describes a semi-

analytical approach based on the SI method for the analysis of  a class of modes 

supported by circular dielectric resonators namely, the whispering gallery modes. 

 

7.2 Definition and classification of whispering gallery modes 

 

The resonances of interest in this work are those that fall into the category of 

whispering gallery modes (WGMs). Acoustic WGMs were first described by Lord 

Rayleigh, [7.26], when it was observed that high frequency sound waves tend to 

remain bound to concave surfaces. Likewise, the optical modes supported by 

dielectric resonators exhibit the same behaviour whereby, due to the mechanism of 

total internal reflection, the majority of the modal energy remains confined between 

boundaries defined by the concave circular wall of the resonator, r2, and an inner 

modal caustic, r1. Figure 7-3 (a) illustrates this from a ray optics view, while in 

figure 7-3(b) the field distribution of a WGM is shown schematically. In general, the 

guided WGMs of dielectric resonators are hybrid, and thus, the full vectorial 
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eigenvalue problem must be solved. However, as an initial approximation, it is often 

sufficient to regard them as either ±
lnmWGE ,,  (electric field being essentially 

transverse 0yE = ) or ±
lnmWGH ,,  (electric field being essentially axial, 0yH = ). Such 

an approximation simplifies the wave equations for the electric and magnetic fields 

so that only a single scalar Helmholtz equation for either radial electric or radial 

magnetic field component need be solved, [7.1]. The subscripts n,m,l denote the 

number of radial, azimuthal and axial field variations, respectively. The superscripts 

± denote the two possible rotating senses of the mode but, due to the axial symmetry 

the modal solutions are doubly degenerate and so there is no discrimination between 

the natural frequencies of each sense of rotation and so no further distinction is made 

between these two cases. 

 

 

 

Figure 7-3 (a) WGM ray diagram, (b) typical WGM field pattern. 
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It is known that WGMs are leaky, [7.27], thus the natural frequencies of the structure 

will be complex in nature, real imagjω ω ω= + , where realω  is the resonant frequency of 

the mode and imagω  is a decay constant of the mode. 

 

 

Figure 7-4 Cross-section of a resonator structure illustrating use of effective boundaries. 

 

7.3 Theory 

 

With reference to figure 7-4 the method proceeds in a manner similar to that detailed 

in chapter 3, that describes the SIM applied to the analysis of rectangular rib 

waveguides. Firstly the true boundaries of the structure are displaced by an amount 

determined from physically consistent arguments. On these displaced boundaries the 

field is set to zero yielding an equivalent problem that is significantly easier to solve. 

The problem space is then divided into 3 regions; (i) the air cladding, (ii) the disc 
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and (iii) the multi-layered substrate. The field in each region of the equivalent 

structure is then expressed as a superposition of local solutions of the wave equation. 

The solutions are then matched with a variational expression to yield a 

transcendental equation for the natural frequencies of the structure. 

 

7.3.1 Solution of the wave equation 

 

Chapter 2 introduced the vector wave equation in cylindrical coordinates (§2.4), 

which expanded into its component parts is given by 
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 (7.1) 

 

As discussed earlier WGMs are essentially polarised and so we assume either; 

0yE =
 

for WGE modes or 0yH =  for WGH modes. Equation (7.1) therefore 

polarises under these assumptions and, in each homogenous region, may be 

simplified to 

 

 
2 2

2

2 2 2

1 1
0r k

r r r r y

ψ ψ ψ ψ
θ

∂ ∂ ∂ ∂  + + + = ∂ ∂ ∂ ∂ 
 (7.2) 

 



Chapter 7   Spectral Index Analysis of Dielectric Resonators 

 136

where ψ  is to be understood to represent ( )rE r  for WGE modes and ( )E y  for 

WGM modes respectively. A process of separation of variables yield solutions of the 

form 

 

 ( ) ( ) ( )R r Y yψ θ= Φ  (7.3) 

 

Substituting (7.3) in (7.2) 
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Dividing equation (7.4) by (7.3) and separating k
2
 into its component parts gives 
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 (7.5) 

 

Considering only the y dependence only 
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Substituting (7.6) into (7.5) yields 
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Rearranging and multiplying (7.7) by 2r  

 

 
2

2 2

2

1
r

r d dR d
r k r
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 (7.8) 

 

For the process of the separation of variables to be valid then the left hand side of 

(7.8) (a function of r only) must be equal to the right hand side (a function of θ only) 

for all values of r and θ. Thus both sides must  be equal to a constant, denoted as 
2v . 

Equation (7.8) can therefore be written as two differential equations 
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and 
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Rewriting (7.9) gives 
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which describes the radial dependence of the optical field. Equation (7.11) is the 

general Bessel equation with solutions Jv(krr), Nv(krr), Hv
(1)

 (krr) and Hv
(2)

 (krr); 

where Jv and Nv are Bessel functions of the first and second kind respectively and 

Hv
(1)

 and Hv
(2)

 are Hankel functions of the first and second kind respectively. The 



Chapter 7   Spectral Index Analysis of Dielectric Resonators 

 138

constant v denotes the order of the equation which, in general, may be real, 

imaginary or complex. The solutions to equation (7.11) can be written as 

 

 ( ) ( )v r v rR AJ k r BN k r= +  (7.12) 

or 

 
( ) ( ) ( ) ( )1 2

v r v rR CH k r DH k r= +  (7.13) 

 

Equations (7.6) and (7.10) have solutions of the form 

 

 j yY e γ−=  (7.14) 

and 

 jve θ−Φ =  (7.15) 

 

respectively. Thus from equations (7.3) and equations (7.12)-(7.15) the complete 

solutions of the scalar wave equation in cylindrical coordinates are 

 

 ( ) ( )( ) jv j y

v r v rAJ k r BN k r e eθ γψ − −= +  (7.16) 

or 

 
( ) ( ) ( ) ( )( )1 2 jv j y

v r v rCH k r DH k r e eθ γψ − −= +  (7.17) 

 

Considering the dielectric resonator structures we require a solution that is circularly 

coherent, i.e. (0) (2 ) (4 ).... (2n )π π πΦ =Φ = Φ = Φ  where n = (1, 2, 3, 4�). Hence v 

is required to be a positive real integer, n, for the case of WGMs. 
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Further, for WGMs it is required that the radial field within the disc is oscillatory in 

nature and that the field outside of the resonator decays rapidly with radial distance. 

Thus it is obvious from the functional behaviour of the Bessel and Hankel functions 

that the field within the disc must be of the form given by (7.16) and outside of the 

disc solutions must be of the form given by (7.17). 

 

7.3.2 Determination of the Effective Structure 

 

As previously discussed the SIM relies heavily on the fact that the field outside of 

the guiding structure decays very rapidly away from the physical boundary of the 

guide. The resonant modes of the dielectric disc structures are, by their very nature, 

tightly confined to the guide with very little penetration of the optical field into the 

air cladding. Thus the use of effective penetration depths, as discussed in chapter 3 is 

justified.  

 

Within the structure the radial field dependence is represented solely in terms of the 

oscillatory Bessel functions and outside of the boundary of the disc by Hankel 

functions (as a rapidly decaying field is assumed), equations (7.12) and (7.13). It is 

now required that the small field penetration beyond the boundary of the resonator is 

suitably taken into account for by displacing the physical boundary a distance ∆r, at 

which point the optical field is set to zero. To accomplish this, the amplitude and 

gradient of the Bessel and Hankel functions are matched at the physical boundary 

while the Bessel function is chosen such that it is zero at the effective boundary.  
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Figure 7-5 Determination of effective penetration depths. 

 

Figure 7-5 illustrates the WGH case where the principal field component is 

tangential to the dielectric interface, the vertical curved wall. The normalised field 

amplitudes are matched at the dielectric/air boundary (r = w) such that 

 

 
( )
( )

( ) ( )
( ) ( )

2

2

n n

n n

J r H r

J w H w

α β
α β

=  (7.18) 

 

In (7.18), α and β are understood to represent the radial wavenumbers inside and 

outside of the dielectric disc respectively. Subsequently matching the normalised 

field gradients at this point gives 

 

 
( )
( )

( ) ( )
( ) ( )

2

2

n n

n n

J w H w

J w H w

α β
α β

α β
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In (7.18) it is required that ( ) 0nJ rα =  for
 tr w r= + ∆ , applying this condition to 

(7.19) gives 

 

 
( )( )
( )

( ) ( )( )
( ) ( )

2

2
0

n t n t

n n

J w r H w r

J w H w

α β
α β

α β

′′ + ∆ + ∆
− =  (7.20) 

 

Equation (7.20) can now be solved for the effective penetration depth, tr∆ , where the 

subscript t is used to denote the penetration depth due to the field component that is 

tangential to the interface. For the WGE case, principal field component normal to 

the interface, the discontinuity of the dielectric leads to a jump in the optical field 

relative to the change in refractive index. Following a similar process gives 

 

 
( )( )
( )

( ) ( )( )
( ) ( )

2

2 2
0

n

n n n n

disc n n

J w r H w r

J w H w

α βα β
α β

′′ + ∆ + ∆
− =  (7.21) 

 

where ndisc is the refractive index of the dielectric disc. Equation (7.21) can then be 

solved for  nr∆ . On the top surface of the disc the effective penetration depths remain 

the same as those for the standard rectangular rib case and are  

 

 
2 2 2 2 2

0 0

1 1 1
      and      

n
n t

g k kα α
∆ = ∆ =

+ +
 (7.22) 

 

for the WGH and WGE modes respectively. These lead to an effective structure with 

dimensions 
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 w ,  H h,  D dt nr r= + ∆ = = + ∆  

for the WGH modes and 

w ,  H ,  D dn tr r h= + ∆ = = + ∆  

 

for the WGE modes. 

 

7.3.3 Formulation of the Transcendental Equation � Dielectric Disc 

 

The problem of the dielectric disc, as illustrated in figure 7-6, can now be 

approached in the same manner as that of the standard rectangular rib discussed in 

chapter 3. The problem space is thus divided into 3 regions; (i) the air cladding, (ii) 

the disc (y < 0) and (iii) the substrate (y > 0).  

 

In the air/cladding region the optical field is everywhere set to zero. In the disc, 

region (ii), solutions to equation (7.2) are sought that identify the resonant modes of 

the structure, the solutions being of the form indicated by equations (7.16) and (7.17) 

 

Figure 7-6 Cross section of a dielectric resonator, where all dimension are understood to be that of 

the effective structure. 
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Considering the radial dependence of the optical field, R, given by equation (7.12) 

within the dielectric disc, Bessel functions of the second kind are singular at 0r =  

and thus cannot form part of the solution. The radial dependence of the optical field 

within the dielectric disc is therefore reduced to 

 

 ( ) ( )n rR r J k r=  (7.23) 

 

In equation (7.23) n deontes the order of the Bessel function (which is a real integer) 

and kr is chosen such that R(r) is zero for r = w in order to satisfy the requirement for 

the optical field to be zero at the boundary of the effective disc.  

 

The azimuthal dependence is given by 

 

 ( ) jne θθ −Φ =  (7.24) 

 

and the y dependence being of the same form as that for the rectangular rib 

 

 ( ) ( )
( )

sin

sin

y

y

k y H
Y y

k H

+
=  (7.25) 

 

which ensures a zero optical field across the top of the disc. 

 

Below the disc, region (iii), the Hankel transform of ψ  is taken. In general, for a 

function f(x) the transform pair is given by 
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( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( )

0

1

0

v v v

v v v v

g s H f x f x J sx x dx

g s H g s g s J sx s ds

∞

∞
−

≡ ≡

≡ ≡

∫

∫

 (7.26) 

 

Therefore for the case in question the transform pair is given by 

 

 

( ) ( ) ( )

( ) ( ) ( )

0

0

n

n

s r J sr r dr

r s J sr r ds

ψ ψ

ψ ψ

∞

∞

=
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∫

∫

 (7.27) 

 

Using the variational boundary condition 

 

 0

w

r
r

w

r dr
y

ψψ
+

− −

 ∂
= ∂ 

∫  (7.28) 

 

to match the solutions in regions (ii) and (iii) either side of y = 0, yields the final 

transcendental equation for the WGMs 

 

 ( ) ( )2

tan  y yk k H s s s dsψ
∞

−∞

= Γ∫  (7.29) 

 

where 
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 ( ) ( ) ( )
0

w

n r ns rJ k r J sr drψ = ∫  (7.30) 

 

and ( )sΓ  is given by the standard plane wave response function of the layered 

medium for 0y >  

 

 ( ) ( ) ( )
( ) ( )

2 2 3 2

2

2 2 3 2

sin cos

cos sin

D D
s

D D

 Γ Γ −Γ Γ
Γ = Γ  Γ Γ +Γ Γ 

 (7.31) 

 

where 

 

 ( ) ( )
1 1

2 2 2 22 2

2 2 3 3   ,   k s k sΓ = − Γ = −  (7.32) 

 

Equation (7.30) may be evaluated thus 
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 (7.33) 

 

The zero field condition requires that  

 

 ( ) 0n rJ k w =  (7.34) 
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hence 

 ( ) ( ) ( )( )1

2 2

r n r n

r

k J k w J sw
s w

k s
ψ −=

−
 (7.35) 

 

where rk  is known from (7.34) and yk  is given by 

 

 2 2 2   and    y rk k k k π
λ= − =  (7.36) 

 

In (7.29) only the first zero of the Bessel function is used to represent the radial field 

distribution (this should be compared with the use of only the fundamental transverse 

term used in the standard SIM). Higher order zeros may be included in the same 

manner as the standard SIM in order to increase the accuracy of the method. The 

expression for the field across the base of the resonator, omitting the θ dependence 

for clarity, then becomes 

 

 ( ) ( )
( )1

sin

sin

N
ym

m n r

m y

k y H
A J k r

k H
ψ

=

+
=∑  (7.37) 

 

where m is the number of terms and Am is the amplitude of the m
th

 term. Equation 

(7.29) is therefore replaced by a matrix equation of the form 

 

 

 0=M  (7.38) 
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where M  is a square matrix of order m, whose elements mmM  are given by 

 

 ( ) ( ) ( )tan  ym ym m m
k k H s s s s dsψ ψ

∞
∗

′ ′ ′
−∞

= Γ∫  (7.39) 

 

 

In (7.29) and (7.39) ky and Γ(s) are functions of angular frequency, ω, which is the 

only free variable. As stated earlier WGMs are complex in nature and so values of ω 

are sought in the complex frequency plane for which (7.29) and (7.39) are satisfied. 

 

 

7.3.4 Formulation of the transcendental equation � dielectric ring 

 

In the case of a dielectric ring, figure 7-7, the axis 0r =  is no longer part of the 

dielectric disc. Therefore the radial field dependence now includes the Bessel 

functions of the second kind that were previously omitted due to them being infinite 

at 0r = . The radial field dependence is thus given by  

 

 

 ( ) ( )v r v rR AJ k r BN k r= +  (7.40) 
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 Figure 7-7 Cross section of a dielectric ring resonator, where all dimension are understood to be that 

of the effective structure. 

 

where 

 ( ) ( ) 1 20  for    and  v r v rAJ k r BN k r r w r w+ = = =  (7.41) 

 

For 1r w= , rearranging (7.41) for B and substituting in (7.40) gives 
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( )

1

1

n r

n r n r

n r

J k w
R J k r N k r

N k w
= −  (7.42) 

 

which, for 1r w= , ensures that the zero field boundary condition, 0R = , is satisfied. 

For 2r w=  
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Rearranging and imposing the requirement that 0R =  at 2r w=  gives 

 

 ( ) ( ) ( ) ( )2 1 2 1n r n r n r n rR J k w N k w N k w J k w= −  (7.44) 

 

The solutions of (7.44) provide the values for rk  and their subsequent substitution in 

(7.41) gives the constant B. The transcendental equations are then formulated in the 

same manner as that for the dielectric disc in the previous section where ( )sψ  is 

now given by 

 

 ( )
( ) ( )( )1

2 2

r n n

r

k R r R sr
s w

k s
ψ −

 
 =

−  
 (7.45) 

 

7.3.5 Solution of the transcendental equation 

 

The following will consider the solution of the transcendental equations derived in 

the preceding section with particular emphasis paid to the evaluation of the 

numerical integrals.  

 

For clarity, the case of using a single basis term to describe the field in the disc is 

considered throughout the following and so the natural resonant frequencies of the 

cylindrical resonator structures are sought as the complex roots of the transcendental 

equation (7.29), which are of the form real imagjω ω ω= + . Once the complex 

frequency has been determined the Q, or Q-factor, of the resonator given by 
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2

real

imag

Q
ω
ω

=  (7.46) 

 

The field profiles may then be obtained though substitution of the calculated 

frequency back into the relevant expressions in a manner similar to that for the 

standard rectangular rib detailed in chapter 3.  

 

Equation (7.29) contains an integral that is to be evaluated numerically in the 

complex s-plane and requires careful consideration due to the nature of the integrand 

function. Figure 7-8 illustrates the integration path for a purely real resonant 

frequency, ω , in an open system with a slight material loss. In this case a branch cut 

of the Sommerfeld kind is chosen such that the upper Riemann surface has all 

outgoing waves decaying at infinity. 

 

Considering the case of WGMs, the natural resonant frequencies are now complex 

and the SI approach introduces a closed system preventing access to y = −∞ . 

Therefore only two branch points at 0 ss k n= ±  are present, the situation now being as  

illustrated in figure 7-9(a). 

 

In figure 7-9(a) the branch cut shown is equivalent to that of the Sommerfeld branch 

cut illustrated in figure 7-8, ensuring all waves decay at y = ∞ . In this case 

performing the integral along the real axis results in a discontinuous behaviour of the 

integrand and thus the integral is no longer analytic.  The branch cuts are therefore 
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modified whilst obeying the necessary conditions that; (i) they start form 0 sk n±  and 

(ii) they meet at ∞ . The situation is now illustrated in figure 7-9(b). 

 

 

Figure 7-8. Complex s-plane and the contour of integration for an open system with a slight material 

loss, with real natural frequency. 

 

 

In figure 7-9(a) the branch cut shown is the equivalent to that of the Sommerfeld 

branch cut illustrated in figure 7-8, ensuring all waves decay at y = ∞ . In this case 

performing the integral along the real axis results in a discontinuous behaviour of the 

integrand and thus the integral is no longer analytic.  The branch cuts are therefore 

modified whilst obeying the necessary conditions that; (i) they start from 0 sk n±  and 

(ii) they meet at ∞ . The situation is now illustrated in figure 7-9(b). 

 

 Sommerfeld contour 

 Sommerfeld branch cut

0 sk n−  0k−

0k− 0 sk n  
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In figure 7-9 the branch cut shown is the equivalent to that of the Sommerfeld branch 

cut illustrated in figure 7-8, ensuring all waves decay at y = ∞ . In this case performing 

the integral along the real axis results in a discontinuous behaviour of the integrand 

and thus the integral is no longer analytic.  The branch cuts are therefore modified 

whilst obeying the necessary conditions that; (i) they start form 0 sk n±  and (ii) they 

meet at ∞ . The situation is now illustrated in figure 7-9(b). 

 

Figure 7-9 Complex s-plane and the contour of integration imposed under the SI 

 

 

This ensures that the integral now remains smooth as 0k  moves across the real axis. 

Two regions have now been defined that depict the energy leakage regions. The 

shaded region in figure 7-9(b) has waves of the form r ij y y
e

γ γ− +
 and can therefore be 

said to represent outgoing and increasing waves, figure 7-10(a). The remainder of the 

 Sommerfeld contour   modified branch cuts 
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s-plane has waves of the form r ij y y
e

γ γ−
 and are thus incoming and decaying, figure 

7-10(b). 

 

 

Figure 7-10 Illustration of wave behaviour on corresponding to; (a) the shaded and (b) the non shaded 

regions of figure 7-9(b).  

 

In practice there is no explicit need to follow the integration path as depicted in figure 

7-9(b), instead the path as depicted in figure 7-11 is chosen. This allows for a simpler 

representation of the contour in the numerical algorithm. 

 

7.4 Numerical Results 

 

The following section is illustrates the effectiveness of the SI approach in the 

analysis of cylindrical dielectric structures. Because of the lack of suitable results in 

the literature at the present time, comparisons are drawn with semi-vectorial and

y y 

(a) (b) 
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Figure 7-11 Complex S-plane and the numerically evaluated contour of integration. 

 

 

vectorial finite difference approaches, the later primarily being used to justify the 

polarised assumptions that are central to the SI methodology. 

 

7.4.1 The dielectric disc resonator 

 

Figure 7-12 illustrates the geometry of an air-clad circular dielectric resonator 

initially considered, consisting of a resonator of radius 4.5µm and height 4.5µm that 

has been etched into a layered substrate. The refractive indices of the disc and 

underlying substrate regions are 3.44 and 3.4 respectively, which are typical for an 

GaAs/AlGaAs material system at λ=1.15µm. 

0 sk n−  

0 sk n

integration contour 

 branch cut 



Chapter 7   Spectral Index Analysis of Dielectric Resonators 

 155

 

 

Figure 7-12 Geometry of a dielectric micro-disc resonator; nd=3.44 and ns=3.40. 

 

In order to justify the polarised assumptions used in the SI method and the semi-

vectorial finite difference (SVFD) method, a vectorial finite difference scheme was 

used to examine the field distributions and the extent of the hybrid nature of the 

WG15 mode. Figure 7-13 shows the resulting optical field distributions for the 

principal field component, ( )rE r , and the minor field component, ( )E y . As the 

diagrams are individually scaled a quantitive comparison was made of the total RMS 

electric field in each case, which yielded a ratio of 80:1. Since the minor field 

component is small, the polarised assumptions are justified. Also, the extent of the 

field penetration into the air cladding is seen to be slight and so the effective 

boundary approximation used in the SI method is also justified. 
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h = 4.5µm 
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Figure 7-14 and figure 7-15 illustrate the cross sectional field amplitudes, ( )rE r  

resulting from the SI and the SVFD approaches for the WG2 and the WG15 modes 

respectively. These illustrate the validity of the effective width approach used. For 

the lower order resonances the field penetration into the air cladding is greatest. It is 

therefore intuitive to assume that the effective width assumption be weakest for these 

resonances. Nevertheless it is seen that the agreement between both the SI and SVFD 

method appear very good, figure 7-14. Moving to the higher order WGMs, excellent 

agreement is observed, figure 7-15. 

 

Figure 7-13 Vector field distributions of the WG15 mode of the device depicted in figure 7-12; (a) 

principal component rE(r), (b) minor component E(y). 

 

Figure 7-16(a) and (b) illustrate the optical field distributions for the WGE15,1,1 mode 

as given by the SI method and the SVFD method and very good agreement is 

observed between the two, again the slight field penetration shown by the SVFD 

method further justifies the assumptions of the SI method. 

 

 

(b) (a) 
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Figure 7-14 Cross sectional field amplitude comparison for the WGE2 mode supported by the 

structure of figure 7-12. 

 

Figure 7-15 Cross sectional field amplitude comparison for the WGE15 mode supported by the 

structure of figure 7-12. 
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Figure 7-17 illustrates the convergence of the real part of the resonant wavelength 

predicted by the SI method with the number of terms used to represent the radial 

field distribution. It was found that 1 term was sufficient in providing agreement to 4 

decimal places (i.e. to within 0.1nm) for the higher order WG modes, n > 12. Figure 

7-18 compares the real component of the WG resonant wavelength obtained using 

the SI method with those obtained using SVFD schemes. SIM1,2,3 utilise 1,2 and 10 

terms in (7.29) respectively. SVFD1,2 employ a mesh size of 0.03 and 0.06µm 

respectively over a problem window of 20 x 30µm. In the case of the SVFD, 

convergence was obtained to 5 decimal places, with agreement being obtained to the 

4
th

 decimal place between the two methods. This is further illustrated in figure 7-9, 

which depicts the percentage difference between the real parts of the resonant 

wavelength calculated using the SI approach when compared to the SVFD results. In 

the case of single term SI, a 0.03% difference is achieved for the WGE15 mode. This 

equates to an accuracy of better than 1nm. Increasing the number of terms used 

leading to a marginal increase in computation time and gives within ~0.1nm for the 

resonant wavelength. 

 

Figure 7-16 Distributions for the WGE15,1,1 mode; (a) SI method, (b) SV-FD. 

 

(a) (b) 
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Figure 7-17 Resonant wavelength, real part. Convergence with number of terms used in the SI field 

expansion. 

 

 

Figure 7-18 Resonant wavelength, real part. Comparison of the SI approach with SV-FD. 
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Figure 7-19 Percentage difference in the SVFD results compared with the SI schemes for the real part 

of the resonant wavelength. 

 

 

The quality factors or Qs of the dielectric disc illustrated in figure 7-12 as computed 

by the SI method utilising single and multiple terms are given in table 7-1 for a range 

of WGMs. These are compared with those obtained from three SVFD schemes of 

increasing accuracy. Reasonable agreement is seen between the two sets of results 

and improves, as expected, for the higher order WGMs. The method of effective 

widths being weaker for the low order WGMs due to the high penetration of the field 

into the air cladding. 
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WGEx,1,1 
SI Method Terms used in rib 

field expansion 

Semi-vectorial Finite Difference 

Method 

Mesh size (µm), dx=dy 

x 1 5 10 0.1 0.05 0.03 

5 26.0455 26.2361 26.1559 35.60557 35.6088 35.9223 

10 86.6258 87.8294 87.6152 105.3472 105.2291 106.3471 

15 188.5118 191.8645 191.5677 221.0763 220.9545 223.5693 

20 336.5828 343.5479 342.8043 390.7318 390.0197 394.7403 

25 545.8289 556.3344 555.8512 619.2382 618.5820 626.5044 

30 814.0301 830.1652 829.5522 913.7674 912.5651 924.8995 

 

Table 7-1 The computed Q-factors for the WGMs of the device illustrated in figure 7-12; comparing 

the SI method against those results generated by SVFD schemes. 

 

Figure 7-20 again illustrates the WGE15,1,1 mode, but a further plot of the field in the 

plane of circular cross section is depicted showing the circular coherence of the 

WGM. 

 

Figure 7-20 Cross sectional field profile of the WGM15,1,1. 
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7.4.2 The Dielectric Ring Resonator 

Figure 7-21 illustrates the geometry of an air-clad circular dielectric ring resonator 

initially considered. The outer radius is fixed at 4.5µm and the inner radius is 

variable for the purposes of analysis.  

 

Figure 7-21 Geometry of a dielectric micro-ring resonator; nd=3.44 and ns=3.40. 

 

Figure 7-22 presents a SVFD analysis of the WGE 20,1,1 mode supported by the 

structure depicted in figure 7-21, where the inner radius (ri ) is increased from 0-

3.75µm. At the time of writing numerical instabilities in the implementation of the SI 

approach prevented a complete comparison of results, although preliminary results 

are given for two cases and are shown on the same figure. As can be seen the optical 

characteristics of the device remain unperturbed as the inner dielectric material is 

removed, due to the absence of field in this region, for r<3.0µm . As the inner radius 

is increased further and the inner boundary of the ring impinges upon the WGM field  
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Figure 7-22 Computed resonant wavelength (real part) versus the inner radius of the dielectric-ring 

resonator of figure 7-21, showing those obtained via an SVFD scheme together with preliminary 

results from the SI approach. 

 

Figure 7-23 Computed Q-factor versus the inner radius of the dielectric-ring resonator of figure 7-21, 

obtained via an SVFD. 
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a decrease in resonant wavelength frequency is observed, albeit small. The Q-factor, 

however is seen to increase dramatically, figure 7-23, as the inner radius increases. 

 

7.5 Conclusions 

 

Dielectric ring and disc resonators are attractive building blocks of various optical 

communications, lasers, and signal processing applications. Resonant frequencies 

and Q-factors were obtained for both circularly symmetric DRs using the SI method 

presented and compared with those obtained using a finite difference method 

implemented in cylindrical coordinates. Resonant frequencies of various modes can 

be located close to each other, and therefore for their proper classification, electric-

field spatial distributions in DR were computed and presented. Due to versatility of 

the finite difference method, the numerical results obtained for resonant frequencies 

including those of high order modes are of high accuracy. Unfortunately, its 

implementation is time and memory consuming. The spectral index method offers 

higher efficiency, providing accurate results for resonant frequencies and a 

reasonable estimation of quality factors. Nevertheless, results obtained by both 

methods need further verification against data obtained by applying an accurate full-

vectorial surface integral equation technique. However, the modelling undertaken 

provides quantitative and qualitative data, which provide a sufficient physical insight 

and guidance useful for practical design of photonic devices and systems containing 

disc dielectric resonators. 
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Chapter 8  The Spectral Index Method: Optical Circuit 

Analysis 

 

The ability to optimise the performance of optoelectronic circuits over a range of 

operational parameters and fabrication tolerances is foremost in the designers mind. 

To reduce chip length and provide increased component density, whilst at the same 

time enhancing performance over a range of wavelengths is a typical example.  The 

ability to investigate the effects of tolerancing and integration upon device 

performance is highly desirable for its successful exploitation. This chapter describes 

the extensions made to the Spectral Index (SI) method to provide a new simulation 

tool, well suited to the design and optimisation of multi-mode interference coupler 

based devices. 

 

8.1 Introduction 

 

Coupling of power between optical components takes place through both guided and 

radiation modes. When considering waveguide configurations and optical circuits 

derived from them the optical components may be considered as individual blocks, 

each containing one or more waveguides, and connected to each other at well 

defined ports. The complete circuit may be then described in terms of a scattering 

matrix (S-matrix), [8.1]. Essential to the development of the S-matrix is the accurate 

calculation of the modal propagation constants of the optical circuit�s constituent 

blocks. In the following work the efficiency of SI method is exploited in order to
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obtain the complete modal spectrum of each discrete waveguide block to a high 

accuracy in a matter of seconds. Once the modal properties of each block have been 

calculated they can then be joined using an S-matrix allowing a relatively simple 

representation of a complex circuit. Such circuits may have large aspect ratios, i.e. 

microns wide and millimetres in length. These would prove prohibitive for 3D 

numerical methods, such as the finite difference beam propagation method (FD-

BPM), as sufficient discretisation of the problem space would require significant 

computational resources. Additionally, computationally efficient FD-BPM 

algorithms assume paraxial propagation which is invalid for the classes of 

waveguide devices that support highly divergent fields, such as those discussed later 

in this chapter. FD-BPM applied to these devices would therefore require the 

implementation of wide-angle techniques (§2.8.3), resulting in a further increase in 

computational overheads. The suitability of the SI approach is demonstrated in the 

remainder of this chapter through its application to the design and optimisation of 

that range of multi-mode interference based devices for which the polarisation 

assumption of the SI method holds. 

 

8.2 Multi-mode Interference Devices 

 

Compact Multi-mode interference (MMI) based devices are extremely versatile 

components that form the basis of a wide range of optoelectronic devices, for 

example; couplers [8.2]- [8.5], optical beam splitters/recombiners [8.6], switches 

[8.7] and more recently wavelength multiplexers/demultiplexers [8.8]-[8.11]. MMI 

components are designed around the principle of self imaging, [8.12]-[8.13], which 

is described in [8.12] as 
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�Self-Imaging is a property of multimode waveguides by which an input 

field profile is reproduced in single or multiple images at periodic 

intervals along the propagation direction of the guide�. 

 

A MMI device consists of a central multi-moded waveguide with N single mode 

input waveguides and M single mode output waveguides. Figure 8-1 illustrates a 3x3 

MMI splitter. 

 

Figure 8-1 Illustration of a 3x3 MMI splitter. 

 

8.3 The SI Approach 

 

The following outlines the application of the SI method to the problem of circuit 

analysis; obtaining the modal characteristics of each waveguide section, propagation 

of the modal field and joining the sections to form a circuit through overlap integrals. 
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8.3.1 Field Descriptions 

 

Using the SI method the complete modal spectrum of each discrete waveguide 

section can be obtained in a straightforward manner. Typical computation times 

being < 1 minute for the examples given in the following sections. The total field, 

( ), ,guide x y zΨ , in an input guide at 0z =  is then given by the superposition of all 

modes of that guide 

 

 ( ) ( ), ,

,

, ,0 ,guide n m n m

n m

x y A E x yΨ =∑  (8.1) 

 

where the subscripts n, m denote the lateral and vertical mode numbers respectively 

and ,n mA  are modal amplitudes.  

 

8.3.2 Overlap Integrals 

 

The excitation of an optical field in an output guide by the field in an input guide is 

determined by the overlap of those fields. Assuming excitation by an input field 

( ), ,guide x y zΨ  at 0z =  that is normalised such that 

 

 ( ) ( ), , 1x y x y∗Ψ Ψ =∫∫  (8.2) 

 

the excited modal amplitudes, ,n mA  are then, in general, determined by the overlap 

integral 
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( ) ( )
( ) ( )

,

,

, ,

, ,

, ,

n m

n m

n m n m

x y E x y dxdy
A

E x y E x y dxdy

∗

∗

Ψ
= ∫∫
∫∫

 (8.3) 

 

which are subsequently normalised such that 

 

 ( ) ( ), ,, , 1n m n mE x y E x y dxdy∗ =∫∫ . (8.4) 

 

(8.3) then simplifies to 

 

 ( ) ( ), ,, ,0 ,n m n mA x y E x y dxdy∗= Ψ∫∫ . (8.5) 

 

In the case of the SI method the process of evaluating this type of overlap integral is 

greatly simplified due to the definitions describing the fields in the rib. Considering 

the two separate regions; the rib ( )1Ω  and the underlying multilayered substrate 

region ( )2Ω . The field in each of these regions as described earlier (§3.4) are,  

 

 ( ) ( )m m

m

E F x G y=∑  (8.6) 

in the rib and below the rib. 

 ( ) ( ) ( ), ,s y f s g s yφ =  (8.7) 

 

Performing the overlap between an input and output waveguide of the fields in each 

of these regions gives 
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 ( ) ( ) ( ) ( ) ( ) ( )
1

, , ,in out m m n n

m n

x y x y dxdy F x G y F x G y∗ ∗

Ω

   Ψ Ψ = ⋅   
   
∑ ∑∫∫  (8.8) 

 

for the rib region, where 1Ω  is taken to be the cross section of the input guide only 

and the subscripts m,n denote those modes in the input and output guides 

respectively. Re-writing (8.8) 

 

 ( ) ( ) ( ) ( ) ( ) ( )( )
0

, , ,

W H

m n m n

in out in out in out

m nW

x y x y dx F x F x dy G y G y

−
∗ ∗

−

 Ψ Ψ = ⋅ 
 
∑ ∑∫ ∫ (8.9) 

 

and performing the integral over x 

 

 ( ) ( ) ( ) ( ) ( )( )
0

, , ,  

H

m n

in out m n in out

m

x y x y dy s s G y G yδ
−

∗Ψ Ψ = −∑∫  (8.10) 

 

where ms  and ns  are given by 

 

 ( )2 1 2    ,   qs q W q Wπ π= −  

 

and ,q m n=  for symmetric and antisymmetric modes respectively. Finally (8.10) 

can now be reduced to 

 ( ) ( ) ( ) ( )( )
0

, , ,  

H

m n

in out in out

m

x y x y dy G y G y

−
∗Ψ Ψ = ∑∫  (8.11) 
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For the multilayered region below the rib 

 

 

( ) ( )

( ) ( )( ) ( ) ( )( )
2

, , ,

1
      , ,

2

in out

in in out out

s y s y

dydsds f s g s y f s g s y

ϕ ϕ

π Ω

′ =

′ ′ ′∫∫∫
 (8.12) 

  

where s  and s′  denote the spectral variable in the input and output guides 

respectively. Using the fact that 

 

 ( ) ( ) jsxf s dx F x e= ∫  (8.13) 

 

(8.12) may be expressed as 

 

 

( ) ( )
( ) ( )( ) ( ) ( )( )

2

, , ,

       , ,

in out

jsx js x

in in out out

s y s y

dxdydsds F x e g s y F x e g s y

ϕ ϕ
′

Ω

′ =

′ ′∫ ∫ ∫ ∫  (8.14) 

 

Performing the integral over x gives 

 

 ( ) ( ) ( ) ( ) ( )
2

, , ,  , ,in out in outs y s y dydsds s s g s y g s yϕ ϕ δ
Ω

′ ′ ′ ′= − ⋅∫∫∫  (8.15) 

 

Evaluating the integral over ds′  reduces (8.15) to 

 

 ( ) ( ) ( ) ( )
2

, , ,  , ,in out in outs y s y dyds g s y g s yϕ ϕ
Ω

′ = ⋅∫∫  (8.16) 
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In (8.16)  the integration with respect to y can be performed analytically leaving a 

function of s alone that is required to be integrated numerically. Thus it is seen that 

in the SI method evaluation of the overlap integral it is reduced to a one-dimensional 

integral. Provided one is dealing with an optical circuit that consists of rib 

waveguides etched to the same depth, as would usually be the case in practice. 

 

Where the output guide is offset with respect to the input guide by a distance d, 

figure 8-2, the x dependent terms for the output guide in (8.9) and (8.14) are 

modified such that 

 

 

( ) ( )

( ) ( ) ( ) ( )( )
0

, , ,

      

in out

W H

m n m n

in out in out

m nW

x y x y

dx F x F x d dy G y G y

−
∗ ∗

−

Ψ Ψ =

 − ⋅ 
 
∑ ∑∫ ∫

 (8.17) 

and 

 

( ) ( )
( ) ( )( ) ( ) ( )( )

2

, , ,

       , ,

in out

jsx js x

in in out out

s y s y

dxdydsds F x e g s y F x d e g s y

ϕ ϕ
′

Ω

′ =

′ ′−∫ ∫ ∫ ∫  (8.18) 

 

For multiple input guides the excitation is additive, so the overlaps are evaluated for 

each input guide and their contributions summed.  

 

8.3.3 Field Propagation 

 

Once the amplitudes of the excited modes have been obtained, the propagation of the 

excited modal field from the plane 0z =  to z L=  is then achieved through 
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 ( ) ,

,

,

, ,0 n mj L

z L n m

n m

E x y e
β−

=Ψ =∑  (8.19) 

 

 

 

Figure 8-2 Cross sectional and plan view of single waveguide to waveguide junction; (a) symmetric 

junction and (b) offset junction. 

 

The excitation of the output guides at z L=  is calculated in the same manner, 

whereby the overlap is performed between the normalised output field and the 

normalised MMI field. This process is then repeated for the whole circuit; 

calculation of the total excited field at an interface, propagation to the next interface, 

calculation of excited field and so on for each interface. The remainder of this 

chapter will apply the principles discussed above to the analysis of several MMI- 

based devices. 
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8.4 Analysis of MMI Based Optical Devices 

 

The following analyses of several MMI based devices are used to illustrate the 

applicability of the method previously discussed to a range of practical devices. The 

following sub-sections assume a constant epitaxial structure, figure 8-3, and a 

constant etch depth of d = 4.47µm. The corresponding refractive index distribution is 

given in table 8-1. The epitaxial structure has been successfully shown to provide an 

ideal basis for the fabrication of low loss rib waveguides suitable for integrated 

optical devices, [8.14]. The epitaxy allows for the fabrication of deeply etched rib 

waveguides with strong lateral confinement. The high lateral confinement reduces 

the cross-talk between waveguides allowing for higher levels of integration. These 

structures are also ideal for multimode interference devices where the high lateral 

confinement results in highly accurate self imaging [8.14]. 

 

Figure 8-3 Schematic of the epitaxial structure showing layer thickness (w), AlGaAs alloy 

composition (x) and their associated refractive indices (n). 
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Layer thickness(µm) Al (%) Refractive 

index, 

λ=1.064µm, n 

Cap layer (GaAs)        0.1       0 3.48043422 

Upper cladding (nc)        1.2       20 3.36755329 

Core layer (n0)        2.5       5 3.45189744 

Lower cladding (n1)        0.3       15 3.39552660 

Spacer layer         0.5       5 3.45189744 

Lower cladding (n2)        2.8       6.5 3.44339260 

Substrate (ns)        ___       0 3.48043422 

Table 8-1 Epitaxy parameters of the structure in figure 8-3, [8.14]. 

8.4.1 1xN MMI Optical Beam Splitter 

 

Optical beam or power splitting is an important requirement for OEICs. MMI 

devices allow accurate and low loss beam splitting over a relatively short device 

length, figure 8-4 illustrates a centre fed 1x2 splitter. The input and output 

waveguides, guides 1, 3 & 4 respectively, in figure 8-4, have a width of 4.4µm  and 

the MMI section is 17.6µm  wide. The etch depth is 4.7µm . The output waveguides 

are symmetrical about the 0x =  axis at a pitch of 8.8µm . The operational 

wavelength is 1.064µm .  

 

The efficiency of the splitter is ultimately determined by the length of the MMI 

section. Figure 8-5 shows the device insertion loss calculated using the SI 

approachversus MMI length. Insertion loss is defined as 

 

 ( )( )3 4 1Insertion loss(dB)=-10log /guide guide guideP P P+  (8.20) 
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where Pguide.. is the total power carried in the guide. 

 

Figure 8-4 Schematic of a 1x2 MMI splitter (all dimensions are in microns). 

 

From figure 8-5 the optimum MMI length can be predicted and was found to be 

502µmL = . Figure 8-6 illustrates the optical field intensity profile along the device 

for 502µmL = , clearly showing the equally split field at the output guides. A 

relationship between the number of output guides and the length of the MMI section 

for a symmetrically fed 1xN optical beam splitter is given in [8.6] as 

 

 L N= Λ  (8.21) 

where 

 2

0nW λΛ = , (8.22) 

4.4 17.6 8.8 
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Figure 8-5 Insertion loss of the 1xN splitter calculated using the SI method versus the MMI guide 

length, L. 

Figure 8-6 The optical field intensity pattern in the 1x2 splitter MMI guide calculated using the SI 

method. 
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where n is the effective refractive index of the guide (neff = 3. 3.44739) and 0λ  is the 

free space wavelength. The pitch of the output guides being given by p W N= . 

Equations (8.21) and (8.22) predict an optimal MMI length of 501.8µm which is in 

agreement with the simulated results. Figure 8-7 - Figure 8-9 illustrate the geometry 

and simulation of a 1x4 splitter with an MMI guide effective index of neff = 3. 

3.44746. Again the analysis was found to match the theory presented in [8.6], 

predicting an MMI section length of 564.5µm. 

 

 

Figure 8-7 Schematic of a 1x4 MMI splitter (all dimensions are in microns). 

 

8.4.2 NxN Power Recombiner 

 

MMI devices can also perform the reverse role to the previously discussed power 

splitters. Power in N input guides may be combined and evenly distributed amongst 

N output guides. Figure 8-10 illustrates a 2x2 3dB coupler that combines the power 

at the inputs and evenly couples it to the output waveguides. 
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Figure 8-8 Insertion loss of the 1x4 splitter calculated using the SI method versus the MMI guide 

length, L. 

 

 

Figure 8-9 The optical field intensity pattern in the 1x4 splitter MMI guide calculated using the SI 

method 
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Figure 8-10 2x2 power recombiner. 

 

A relationship between the number of output guides and the length of the MMI 

section for a symmetrically fed NxN optical beam recombiner as given in [8.6] is 

 

 4L N= Λ  (8.23) 

and 

 2

0nW λΛ =  (8.24) 

 

These equations predict a length of 2008µm for the MMI guide. Figure 8-11 

illustrates the SI simulations of the three modes of operation of the device; (a) and 

(b) acting as a 3dB coupler and (c) as a power recombiner/3dB coupler. 

 

8.4.3 1x2 Optical Switch 

MMI devices can provide a simple optical switching solution. By cascading a 1xN 

splitter and an NxN recombiner and then electrically modulating the refractive 

indices of the input guides to the recombiner, so as to introduce an optical phase shift 
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along its length, an optical switch may be formed. The case of a 1x2 optical switch is 

illustrated in figure 8-12. By modulating the electro-optic guides (eog3 and eog4) the 

optical beam can be switched between the output guides 6 and 7. 

 

 

 

 

Figure 8-11 SI simulations of a2x2 MMI recombiner operating as; (a),(b) 3dB coupler, and (c) 3dB 

recombiner 3dB coupler. All dimensions in microns. 
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Figure 8-12  Illustration of a 1x2 optical switch (all dimensions in microns). 

 

From equations (8.21) and (8.23) the lengths L1 and L2 are given as 502µm and 

2008µm respectively. The electro-optic guides were taken to add a phase change of 

0-2π when electrically modulated. The operation of the switch was then 

characterised by usingplotting the power contrast between the two output guides 6 

and 7, being given by 

 

 
3 410log( )contrast eog eogP P P= . (8.25) 

 

Figure 8-13 illustrates the simulated power contrast between the output waveguides 

simulated using the SI method. Two cases are illustrated; one for the modulation of 

guide eog3 only with no bias applied to guide eog4, and secondly the modulation of 

guide eog4 only with no bias applied to guide eog6. The complete switching of 

power from one guide to the other can clearly be seen to occur at 
2

nπ  for 

1,3,5.....n = . The point at which switching occurs may be controlled by applying a 

constant bias to one electro-optic guide whilst the other is modulated, figure 8-14. 

Figure 8-15 further demonstrates the switching process and shows the optical field 

totally switched to either output guide. 
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Figure 8-13 SI simulation of the power contrast of the output waveguides for the 1x2 switch 

illustrated in figure 8-12 as a function of applied phase change. 

 

Figure 8-14 SI simulation of the power contrast of the output waveguides for the 1x2 switch 

illustrated in figure 8-12 with the eog3 modulated and the eog4 biased at 0.25π. 
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Figure 8-15 Contour plot of the optical field in the MMI guide (guide 5 in figure 8-9); (a) switched to 

output guide 6, and (b) switched to output guide 7 (all dimensions in microns). 

 

8.5 Conclusion 

The efficiency and accuracy of the SI method has been exploited and applied for the 

first time to a scattering matrix approach to the analysis of optical waveguide 

circuits. The method presented has been applied to a range of structures of practical 

importance and the results obtained are shown to agree with other published work. 

Although the method has been demonstrated through application to MMI based 

devices any situation where the circuit maybe decomposed into a number of discrete 

waveguide blocks lends itself to an analysis by the method presented. MMI devices 

are by their nature �wide angle� and accurate analysis by purely numerical methods, 

such as FD-BPM, would prove extremely costly in terms of computational resources. 

The SI based approach requires minimal effort yielding results for complex circuits 

in a matter of minutes to a high degree of accuracy. 
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Chapter 9  Generalised 3D Spectral Index Method 

 

9.1 Introduction 

The previous chapter introduced the use of a mode matching method based upon the 

Spectral Index (SI) method for the analysis of optical circuits. In this chapter an 

alternative SI based approach to propagation analysis in three-dimensional rib 

waveguide based optical circuits is presented. 

 

Figure 9-1 Illustration of a tapered rib waveguide formed from a simple three-layer slab waveguide. 

 

 

A full theoretical development of the method is presented in this chapter, along with 

a discussion of the implementation and application to a typical practical problem 

illustrative of including taper-based spot-size converters. Comparisons with direct 

numerical methods show the new technique to be sufficiently accurate for the design 

of many optoelectronic components. 
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Figure 9-2 Transverse cross section of the tapered waveguide of figure 9-1 taken at an arbitrary point 

along its length. 

 

9.2 Theory 

 

Consider a simple three-dimensional, z-variant, air clad rib waveguide such as the 

tapered structure illustrated in Figure 9-1 and in the plane of cross-section in figure 

9-2. It is fair to assume, due to the high refractive index contrast at the air-

semiconductor boundary, that any scattered field will be predominantly into the 

substrate, with very little field present in the air region. Under this condition the 

actual structure may be replaced with an effective structure whose boundaries are 

displaced a small distance into the air region, the field at and outside of these 

boundaries being set to zero, [9.1]. This approach forms one of the key assumptions 

of the SI method presented earlier in this thesis and results in an effective structure 

that is significantly easier to analyse. The boundary displacements are, as for the 

standard SI method, polarisation dependant and are given by  

 n2 

 n3 

n1, air 
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w(z) 
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 t n t22 2
20

1 1
         ,         

nkβ
∆ = ∆ = ∆

−
 (9.1) 

 

where ∆n and ∆t denote the displacement on those boundaries that are normal and 

tangential to the principal field component respectively. Here the subscripts t and n 

denote the tangential and normal component of the principal field component 

respectively, β is the local propagation constant of the fundamental mode, k0 is the 

free space wave number and n2 is the refractive index of the guide. The significance 

of this approximation is that the field in the resulting structure can now be 

completely determined from the field at the base of the effective rib 0y = . Therefore 

the field in a fully three-dimensional structure is characterised by the field on a two 

dimensional surface. 

 

The standard method proceeds by representing the field as an expansion of the local 

solutions of the wave equation in both the rib and the multi-layered substrate, which 

are then matched at their interface with a variational boundary condition resulting in 

a simple transcendental equation. But as the waveguide being considered is no 

longer invariant in the direction of propagation the trial function for the field in the 

rib requires modification from that used in the standard SI method, (chpt. 3). 

Consequently the variational principle is now expected to include an additional term 

reflecting the modification of this trial function. The field in the substrate region 

however, can still be represented as a superposition of plane waves that exactly 

satisfies the wave equation. 
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9.2.1 The Variational Expression 

 

Consider the variational expression 
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 (9.2) 

 

where an additional integral is included over the standard expression, (§3.6) to 

account for the extension to a three dimensional domain. In equation (9.2) n, now a 

function of (x,y,z), is the local  refractive index and E is an approximation to the 

electric field the true expression for which is required to satisfy the wave equation 
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Integrating equation (9.2) by parts 
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where Ω1 and Ω2 are the rib and underlying substrate regions respectively, figure 

9-2. It is required that equation (9.4) be minimised to k0
2
 for the exact solution of E, 

therefore re-writing equation (9.4) in order to identify the condition for which this 

occurs. 
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Equation (9.5) can be re-written as  
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In the volume 2Ω  for the exact solution of E, the wave equation (9.3) is satisfied 

exactly, i.e. 
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Applying (9.7) to (9.6) gives 
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It can now be seen that the right hand side of equation (9.8) is minimised to k0
2
 when 

the variational boundary condition 
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is satisfied. 

 

9.2.2 Field Formulation 

 

For cases where the waveguide geometry is slowly varying in the direction of 

propagation, the field may be approximated by the simple trial function 
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where in general W is the effective width of the rib and is consequently a function of 

z, 1s
2W

π
=  and β is the propagation constant of the local fundamental mode of the 

waveguide. γ1 and the local normalisation constant N(z) are given by 
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and A(z) is a slowly varying envelope. Using equation (9.10) the following term 

appearing in equation (9.9) can be evaluated 
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Below the rib a 2D Fourier transform of  (9.10) is taken such that 
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thus allowing the field in the substrate to be expressed as a simple superposition of 

plane waves. For these plane waves a response function of the layered substrate, 

Γ(s,t), can be found such that 
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Consequently the following term in (9.9) is obtained from Parseval�s theorem 
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The first term in equation (9.9) is evaluated as 
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where advantage has been taken of the fact that 
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noting that the definition of N(z) ensures that 
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Neglecting second order terms, which physically corresponds to the case of quasi-

paraxial propagation, (9.16) becomes 
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Therefore substituting equations (9.12), (9.15) and (9.19) into equation (9.9) gives 
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which is the expression A(z) must satisfy. 

 

For a z invariant waveguide such that A=1 and β is constant, equation (9.13) gives 
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noting that 
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Equation (9.20) Then becomes 
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which upon noting that 
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yields the standard SI dispersion equation for the fundamental mode of a z-invariant 

rib waveguide, (§3.6) 
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Equation (9.23) is satisfied as β is defined as the local propagation constant of the rib 

waveguide. 

 

9.3 Implementation and Numerical Results 

 

The following section details the implementation and solution of the previously 

presented theory. 
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9.3.1 Practical Implementation 

 

In order to solve  (9.20) for A(z) it is necessary to discretise (9.10) as a superposition 

of simple basis terms, a technique commonly applied in the analysis of microstrip 

lines [9.2]-[9.5]. In order to achieve this, the structure is modelled as a sequence of 

overlapping segments each of which has a fixed width, figure 9-3. Within each 

segment, A(z) is represented by a triangular function whose amplitude is an unknown 

of the discretised problem, such that overall A(z) is approximated in a piecewise 

linear manner, figure 9-4. These overlapping segments have certain numerical 

advantages, which recommend their use. Firstly, the two-dimensional Fourier 

transform of each is separable which significantly reduces the calculation time 

(evaluation of two one dimensional Fourier transforms instead of one two 

dimensional Fourier transform). Furthermore, as the field in each of these segments 

is zero on all its edges these transforms converge more quickly than if �rooftop� 

functions had been chosen. Secondly, and more significantly, this representation 

does not lead to spurious air-semiconductor interfaces in the x-y plane, which would 

occur if the segments did not overlap. 

 

Figure 9-3 Tapered rib waveguide and its subsequent representation as overlapping uniformegments. 
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Figure 9-4 Triangular basis function representation of the field at the base of the rib. 

 

To obtain the discrete equivalent to (9.20) the basis functions are defined such, that 

for p≠1 and p≠P 
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and for p=1 and p=P 
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(9.25) 

 

In the input guide the field is initially assumed to consist only of the incident guided 

mode. In the output guide, the field is modelled as a transmitted guided mode, which 

is augmented with additional basis functions to model the field disturbances, which 

are localised to the discontinuity. 

 

If P overlapping segments are used to expand the field, then along with the 

amplitude of the transmitted guided mode there are P+1 unknowns to be found. The 

Rayleigh-Ritz approach, [9.6], is applied to the variational expression using the P 

segment functions as the test functions along with an additional one in the output 

guide (shown dashed in figure 2). Thus upon substitution into equation (9.20) a 
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linear system of P+1 equations in P+1 unknowns is recovered which is of moderate 

order and straight forward in its solution. Therefore using (9.24) and (9.25), equation 

(9.20) can be re-expressed as 
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 (9.26) 

where 
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and A1, the amplitude of the incident field is taken as 1 without loss of generality. 

Expressing equation (9.26) in matrix form 

 

 ( )− ⋅ = +W X A Y Z  (9.28) 

 

where W  and X  are square matrices whose elements are given by 
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Y  and Z  are vectors with elements 
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 (9.30) 

 

and A  is the vector of unknown basis function amplitudes. 

 

9.3.2 Numerical Results 

 

Figure 9-5 schematically illustrates the geometry of a linear embossed tapered 

waveguide that was analysed by the new method discussed. The dimensions of the 

taper are Win = 3µm, Wout = 1.6µm, H = 1µm and Ltaper = 100µm, with material 

refractive indices being taken as nsub = 3.40 and nrib = 3.44 at a wavelength of 

1.15µm. In order to verify the accuracy of the method presented, comparisons were 

drawn with those results obtained via a finite difference beam propagation method 

(FD-BPM), (§2.8.3). Quantitative comparisons of the field along the base rib 

obtained by both methods were made. Also examined was the convergence of the 
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solution of the new method presented with number of overlapping segments used to 

define the taper.  

 

In order to quantitatively compare the results produced by the Spectral Index method 

(hence for the referred to as 3D-SI) and the FD-BPM, a measure of the field, E0, 

across the base of the rib was used, where E0 is defined as 

 

 

 ( ) ( )0

0

2
cos  , 0

W
x

E z dx E x y
W W

π
= =∫  (9.31) 

 

 

 

The results are shown in figure 9-6. It is clearly seen that very good agreement is 

obtained between the methods. Figure 9-7 show the field distribution obtained by 

each method. Again very good agreement between the methods is obtained. In the 

case of the field generated by the FD-BPM the penetration of the field into the air 

cladding can just be made out. The fact that this field penetration is small further 

goes to justify the use of the effective boundary approximation used in developing 

the 3D-SI approach.  
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Figure 9-5 Schematic illustration of a linear embossed tapered rib waveguide. 

 

Finally, figure 9-8 depicts the convergence of the field across the base of the rib 

predicted by the 3D-SIM with the number of segments used to describe the taper. As 

opposed to the FD-BPM, which may typically use a longitudinal mesh size of 1µm 

or even 0.5µm for the structure analysed, excellent convergence is seen in the case of 

the 3D-SI for equivalent step sizes of 5µm. This cruder sampling allows for 

substantially reduced computation times without loss of accuracy. Computation 

times in the order of minutes are achieved with the 3D-SI, which compares 

favourably to FD-BPM approaches typically requiring ~1 hour. As the 3D-SI 

requires only a 2D discretisation of the problem space, compared to a 3D 

discretisation required by FD-BPM, along with the ability to employ a coarser 

discretisation without loss of accuracy, the method requires little in the way of 

computational resources. 
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Figure 9-6 Comparison of field amplitudes across base of rib, E0, given by 3D-SIM and FD-BPM. 

 

 

Figure 9-7 Field distributions along the base of the rib (a) FD-BPM, (b) 3D-SIM. The broken white 

lines indicate the physical boundary of the structure. 
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Figure 9-8 Convergence of the field, E0, predicted by the 3D-SIM with number of segments, P, used 

to describe taper. 

 

9.4 Conclusions 

 

A novel and highly efficient method based on the spectral index method that is 

suitable for the analysis of a broad range of optoelectronic integrated components 

and circuits. The method presented is based on rigorous field theory, with both the 

theoretical derivation and its practical implementation being detailed in this work. 

The method was validated through the analysis of a tapered rib waveguide and 

ensuing comparison with results obtained from an existing technique, namely FD-

BPM. Extension of the method to other structures e.g. y-branches, bends and t-

junctions  can be envisaged and is possible with modification of the basis functions 

chosen. 
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Chapter 10 Conclusions 

 

 

The following will review the work the main conclusions of the work presented in 

this thesis and draw on those conclusions, where necessary, for suggestions of 

further work. 

 

The Spectral Index (SI) method is a well established method for the analysis of 

rectangular, air-clad semiconductor rib waveguides. It has been shown to be highly 

accurate and computationally efficient when compared to the more exact, benchmark 

numerical methods. The philosophy of the basic SI method lends itself well to 

exploitation in the analysis of a wider range of optoelectronic components and 

circuits that fall within the remit of the key assumptions of the basic method; that the 

devices have a high core/cladding refractive index contrast resulting in negligible 

field penetration into the cladding and that the modes supported by the structure are 

essentially polarised. 

 

The aim of this work was to therefore develop and extend the SI method to a wider 

class of waveguiding components and circuits and further demonstrate its suitability 

as a practical design tool. In respect of the latter, an extension of the SI method for 

the analysis of optical modes spot size converters (SSC) was used to design a novel 

silicon germanium (SiGe) based SSC. The experimental device described was the 

first of its type to be demonstrated in this material system. The design process being
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greatly aided by the efficiency of the SI method and its suitability for use as an 

iterative computer aided design tool. The application of a theoretical design tool to 

practical problems is not a straight-forward one. Knowledge of the material system 

has been shown to be an important consideration, together with the tolerancing and 

limitations of the fabrication process. 

 

Semiconductor optical waveguide are often though of as ideal components with 

regards to modelling; rectangular waveguides are rectangular, side walls are smooth 

etc. The chemical processes involved in semiconductor fabricated have their own 

properties that can result in a waveguide that is far from ideal. In order to address 

this problem from a designer�s point of view a novel extension to the SI method was 

developed for the modal analysis of rib waveguides with sloping side walls. 

 

Accurate determination of modal propagation constants are required in order to 

implement a successful design. Knowledge of waveguide losses is an essential 

requirement characterising the overall performance of waveguiding components. The 

SI method in its complex form was applied for the first time to the analysis of 

waveguide losses attributable to the slab leakage mechanism, a mechanism that plays 

an essential part in the successful implementation of large, single mode rib 

waveguides � a class of waveguide that is of importance for it ease of coupling to 

optical fibres.  

 

The novel extension of the SI method to a cylindrical co-ordinate system was carried 

out in order to provide an analysis tool for the characterisation of an important class 

of optical components �dielectric disc resonators. When operated in the whispering 
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gallery mode such devices are able to realise high Qs and are thus ideally suited for 

use as wavelength selective components. Essential to their successful exploitation 

are accurate design tools that reveal the optical characteristics. The SI 

implementation was shown to accurately predict the resonant wavelengths of the 

devices which are seen to be in very good agreement with those results produced by 

benchmark numerical methods. A fair estimation of the quality factors or Qs yielded 

by such devices was obtained. The subsequent extension of the approach to the 

analysis of dielectric ring resonators has been described and initial results provide an 

indication of the accuracy of the method. The method as applied to the dielectric 

rings is further believed to be extendable to the case of uniform waveguide bends. At 

the time of writing numerical instabilities in the algorithm�s implementation 

hindered progress in this area. 

 

The efficiency of the basic SI method was further exploited where it formed the basis 

of a mode matching approach to three dimensional optical circuit analysis. The 

method was proven in the design of several multi-mode interference waveguide 

based devices. The accurate prediction of waveguide characteristics and field 

profiles, together with the relative ease with which full circuit design curves can be 

obtained, make this a powerful method for the analysis of complete circuits that 

would otherwise require huge computational resources or prove prohibitive 

altogether. 

 

A further novel extension of the SI generalises the basic approach to the analysis of 

three dimensional waveguiding structures. The previously described approach relied 

upon the representation of a complex optical circuit by a series of connected 
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�building blocks�, the optical properties of which were computed in isolation before 

being connected through a scattering matrix. IN the generalised approach the three-

dimensional structure is represented and simulated in its entirety. The methodology 

was demonstrated through application to a simple longitudinally variant tapered 

waveguide and the results were in excellent agreement with those produced by a 

finite difference beam propagation algorithm. The accuracy and efficiency obtained 

through the SI implementation provides confidence in its suitability for further 

application to a wide range of waveguide components and circuits that may compose 

many different components. 

 

 

Overall the SI method in, now, its many formulations has been shown to be a 

powerful tool for the analysis of the optical properties of a wide range of practically 

important waveguides and photonic integrated circuits. 
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