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ABSTRACT.

This thesis is concerned primarily with the practical implementation of Bayesian methodology within the

context of the pharmaceutical industry. The implementation includes the development, where appropriate,

of analytic approximations to the posterior distributions of interest and graphical methods for mapping prior

assumptions to posterior inference. Two critical areas within pharmaceutical research, critical in the sense of

the controversy which they have aroused, have been investigated.

First, Bayesian methods for theanalysis of two-treatment crossover designs which fell in to disfavourin the

late 1970's and early 1980's because of the US Food and Drug Administration's published view that the

two-treatment two-period design was not the design of first choiceif unequivocal evidence of a treatment

effect was required were developed. Eachtype of design considered and for which methods are developed

are illustrated with examples from clinicaltrials which have already been reported in the medical literature.

Second, a Bayesian method is developed whose purpose is toclassify test compounds into one of several

toxicity classeson the basis of an LDSO estimate. The method is generalised to deal with a DOn-standard LDSO

problem related tothe prediction of results from a future LDSO experiment. Both oftheseapplicatious arose

out of a practical consultancy session within the context of a statistics group in the chemicaJ/pharmaceutical

industry.

As part of the methods required forcarrying out these analyses the zerosand weights associated with some

non-standard orthogonal polynomial are developed as a result of which a new asymptotic expansion of the

Behrens-F'JSher densityis developed. Further applications of the polynomials orthogonal to t-kernels are

developed including problems associated with predictionin clinical trials.

A FORTRAN program whichhas been implemented at a laboratory level within the pharmaceutical toxicology

department at CIBA-GEIGY in Switzerlandisprovided SAS programs for a variety ofthe analyses developed

for the two-treatment crossoverdesigns are provided as are SAS programs for determining the zeros and

weights of a number of differentclassesof orthogonal polynomials.
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1 INTRODUCTION.

There have been at least two major hindrances to the use of Bayesian methods in practice. Firstly, there have

been the philosophical objections to the use of prior distributions and secondly there have been the purely

numerical and practical problems associated with multidimensional integration.As Racine et al(1986) point

out, much of the philosophical debate has been conductedin an arid, theoretical atmosphere in which the

practical benefits of Bayesian methods have been largely ignored. The last ten years have seen a number of

attempts to bring to the attention of applied statisticians and scientists Bayesian ideas and their implementation

in practical contexts. This has been particularly true in the medical and biological sciences, the reason perhaps

being that,

"Since the biostatisticians evidently refuse to go to Bayes, the Bayesianswill have

to come to biostatisticsif thcy wish to demonstrate the value of their viewpoint for

statistical applications in biology and medicine" (Breslow,1989).

It is precisely inthis spirit that Spiegelhalter and Freedman(1988) proposed a staged introduction of Bayesian

ideas into clinical trials, Racine et aI(1986) compiled four applications of Bayesian methods in the pharma-

ceutical industry and Grieve(1988) showed how some predictive problems in pharmaceutical research could

be relatively easily tackled in a Bayesian framework. Americahas also not been without its innovators and as

Breslow(1989) points out important applications of Bayesian ideas to biomedical problems have been reported

by Dempster, Rubin, their students and pharmaceutical industry collaborators.

It is not unduly surprising that so many recent applications of Bayesian methods to biomedical problems have

been developed either wholly, or partially, within the pharmaceutical industry. Ncwdrugs arc not developed

by serendipity, butarise out of a long, complex, development process at each stage of which information is

gleaned about a new chemical entity and used either to plan the next stage of experimentation or to cease

investigation ofthis particular chemical entity and to perhapsbegin investigation of a different one, discovered

in an earlier screening phase. Such a development process mirrors closely the cyclic portrait of the scientific

method given by Box(1976,1980,1983) in which knowledge at a particular stage ofthe cyclic process drives the

experimental design of the nextstageleading to ina-eased knowledge which inturn drives subsequent cycles.

Box argues thatthis view of the scientific method fits precisely into the framework of Bayesian statistics since

today's posterior is tomorrows prior.

Inmany biomedical applications, and in particular pharmaceutical industry clinicaltrials, there isconsiderable

prior knowledge concerning the chemical entity under test to ignore whichis undesirable, as Newman(1983)

forcibly argues:

"Each clinical trial should start with fairly strong prior information about efficacy

and safety yetthis is ignored as the data are subjected to techniques related to

non-informative priors. The process of approval must in some way balancethe

benefits against therisk of serious and rare side-effects. Without consideration of

the prior probabilities and the losses involved the statistics end up as numbers

floating in a whirlwind ofprcjudice and intuition".

INI'RODUcnON. 1·1



Such a view is supported by Healy(1983),

• .... is it fair to regard the results of a phaseill trial in total isolation? The cost of
such atrial will not be small, but it can only be one stage in a long period of
development whose overall costwill usually be very large indeed. Certainly the
company's prior belief in the efficacy of the new productwill be fairly high, and it

will back this up with animal results and those from phases I andU".

These views have not received unanimous support. To illustrate, Spiegelhalter and Freedman (1988) provide
the following quote from Feinstein(l977),

" A statistical consultant who proposes a Bayesiananalysis should thereforebe

expected to obtain a suitably informed consent from the clinical client whose data
are to be subjected to the experiment."

and even more extreme reactions canbe found,

"..• I have yet to find a scientist who would be convinced by a posterior distribution
on the methotrexate and colon cancer questionif the prior hasbeen supplied by
a pharmaceutical company.·(Le Cam,l985)

Spiegelhalter and Freeedman(l988) identify three groups of individuals, who each have their own motivations,

and who interact with each other during the lengthy, complex developmental process which culminates in the

implementation of a new medical treatment, be it chemical or surgical. These groups they term the experi-

menters, the reviewers and the consumers. Theaim of the experimenters, amongst whom are individual
pharmaceutical companies, research organisations and clinicians, is to influence the consumers, who are the

clinicians who treat patients. They dothis by providing them with information whichhas, in a sense,been

"sanitised" to ensure objectivityby the reviewers, who are the editors of journalsand regulatory authorities
whom Sir DavidCox hascalled the "last holders of absolute powcr." A statistician's job is not completed when
the lastanalysis, Bayesian or not, isperformed since thought needs to be given tothe transmission of information
to these diverse groups of remote clients.

The problem is to determinewhat is the appropriate approach to transmission of information to these remote

clients. This issue is by no means new, in fact the term "remote clients" has been taken from Hildreth(1963)
in which he examines the difficulty of transmitting information to vaguelyknown clients, whose use of the
information may extend long after the statistician's contributionhasbeen completed. Hildreth considers what
parcels of information can be efficiently transmitted to remote clients and lists a number, among which are
the data, the likelihood and the posterior distributions derived from a series of representative prior dis-

tributions. Spiegelhalter and Freedman(l988) regardthis latter parcelas being the ideal solution butit may
be necessary to provide more than one parcel of information. There has been a growing degree of unanimity

INl'RODUCI10N. 1-2



between Bayesian and frequentist statisticians that in journal articles which report the results of clinical trials

the Results section should contain the data, or the likelihood, and that theDiscussion is the proper place for

Bayesian approaches, including posterior distributions.

In this thesis we investigate two particular areas of pharmaceutical research which have during the last 10-15

years generated considerable controversy, and research interest. First we consider two treatment crossover

studies and second LDSOstudies. Since1mwhen the FDA expressed concern about certain aspects of the

analysis of the two-period two-treatment crossover design there has been continuing debate about the

appropriateness of the design in general, and the traditional analysis proposed by Grizzle(1965). The recent

past has also seen considerable controversy concerning the ethics of conducting LDSOstudies. In particular

Zbinden and Fluri-Roversi(1981) have expressed doubts as to the value of the information to be extracted

from such studies.Our aim is to investigate the applicability of Bayesian methodology in these two areas, in

particular to derive methods for the transmission of information to remote clients whichwill allow them to

input their own beliefs and subsequently derive their own posteriordistributions,We do not restrict attention

to the simplest type of each of these studies but generalise to more complex two-treatment crossover designs

and also look at prediction in LDSOstudies.
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2 TWO TREATMENT CROSSOVER DESIGNS - A REVIEW.

2.1 Introduction.

The central feature of a crossover clinical trial is that each patient receives more than one of the treatments

in the study. In the simplest two treatment, two period design with treatments A and B, patients are randomly

allocated to one of the treatment sequences A~ or B~A. Patients allocated to sequence A~ receive

treatment A during the first treatment period and treatment B during the second, while patients allocated to

sequence B~A receive treatment B followed by treatment A. Such designs, or similar, more complicated

designs with more than two treatments and/or periods, are attractive to clinical investigators due mainly to

an intuitive belief that the comparison of different treatments on the same patients is likely to be more efficient

than comparing treatments on different patients. Such intuition has two elements. First, each patient ishis,

or her, own control;this increases the precision of treatment comparisons because they are made within

patients rather between patients. Second, patients can express preferences for one or more of the trial

treatments. The former element is perhaps the more important since it has important ethical and economic

consequences. Ethical, in that the investigatorwill wish to minimise the number of patients receiving less

efficacious treatments; economic, in that the use of fewer patientswill reduce the cost of experimentation.

The basic argumentin favour of crossover designs is that to obtain a given treatment-comparison precision,

a within-patient comparison requires fewer patients than does a between-patient comparison; crossover

designs are therefore more ethical and less costly. The second element is potentially important for diseases

in which objective measurement of the disease is difficult or impossible.

These, or similar arguments, in favour of crossover designs would make them the designs of choicein a large

number of clinicaltrials were it not for three disadvantages. First, crossover designs are clearly not applicable

in diseases in which either the treatments are expected to effect a cure, or in which the natural history of the

disease, or condition, is such that it would vanish within a short period, for example the common cold. Second,

crossover designs with a large number of treatments and/or periods are potentially disadvantageous because

the number of patients dropping out may become large. Finally,if the effect of a treatmentis not confined

to the period in which itis applied, or if the effect of a treatment differs from period to period, then estimates

of treatment differences may be biased.

It was this last possibility which lead the Biometric and Epidemiology Methodology Advisory Committee

(BEMAC) of the American Food and Drug Administration (FDA) to conclude with respect to the two-period

crossover design that it "isnot the design of choice in clinicaltrials when unequivocal evidence of treatment

effect is required". Instead they recommended"in most cases, the completely randomized (or randomized

block) design with baseline measurementswill be the design of choice because it furnishes unbiased estimates

of treatment effects without appeal to any modelling assumptions save those associated with the randomization

procedure itself." (FDA,1977; see also O'Neill,1978).

Fuelled by the FDA's publicised concern over the use of the two-period crossover design, the late 1970's and

early 1980'switnessed the re-emergence of research interest in crossovers (historically, research interest began

in agriculture; see, for instance, Cochran etal, 1941).This increase in research effort, together with the FDA

view that "estimation of treatment effects from the crossover depends on an assumption thatwill require

convincing support, from prior information or from the experimental data themselves.... (FDA,19'n )

motivated my examination of the use of Bayesian methods in the analysis of crossover designs. Inthis section

the standard analyses of two treatment crossover designs are reviewed. Included are the standard two period

design (Grizzle,l965), two period designs with baseline measurements, and the extra-period designs (Bb-

butt, 1984).
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2.2 Grizzle's Models for the Two-Period Two-Treatment Crossover.

The standard, classical approach, to the analysis of the two-period crossover design for clinical trials was

proposed by Grizzle(1965) - see also Grizzle(1974) and Grieve(1982). Suppose patients have been randomised

to one of the treatment sequences A~ or B-+A, where A and B are the treatments, and that a single

observation is made on each patient during each of the two treatment periods, which are separated bya

washout period. Assume that the trial producesn I patients in the first sequence group andn 2 patients in the

second and lety,/& denote the response of the jth patient in the ith sequencein the kth period Under these

assumptions Grizzle(l965) considers the following two statistical models :

(i-l.2:j-l • ..• n,:k-l.2;l-1.2:r" l)

(i-l.2:j-l • ..• n,:k-l.2:1-1.2)

where u. n t • -c,. A" are the overall mean, period, direct treatment and carryover effects (also termed residual

effect or period by treatment interaction) respectively, and1;'1and E'/t are the random patient and error

effects,which are assumed tobe independently, normally distributed with zero means and variancesa:and

a:respectively. For convenience of exposition we reparametrise models I and II by defining,

n 1- -n 2 - n: -c 1- --C 2 - -c;AI - -A 2 - A.

that is we consider acell mean model with means defined asinTable 2.1.

TABLE 2.1 Cell Means for Model I.

Sequence Periods

Group 1 2

A~ Il+n+-c Il-n--C+A

B-+A Il+n--c Il-n+-C-A

We also define N - n 1+ n2' q - N I(n I n2)' a2 - a: + a: .and a~ - a: + 2a: .Model II may be derived from

Model I by setting1o.. - O. (It should be noted that treatment effect refers to the difference between the effects

of treatments A and B, and that a test for treatment effect is a test of the null hypothesisHo: -c- O. These

remarks apply equally to period and carryover effects.) These parametrisations follow Selwynet ,"(1981),

Grieve(1985) and Racineet ,"(1986). The cell means model described above is convenient for exposition;

however in Model I there arc problems of estimability -sec GrizzIe(l965) for details.

2.3 ADalysis of Variance (ANOVA) for Model II.

Under Model II the standard ANOVA isas shown inTable 2.2 (see Grizzle,196S; GrizzIe,1974; Grieve,l982).

CorrespondiDgto thesums of squares for periods and treatments the least-squares estimates of the parameters

are,

it - (y 1.1 - Y 1.2+ Y2,I - Y2.2)/4

and
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(2.1)

It is clear from Table 2.2 that a valid test for treatment effect under Model II may be made by forming the

ratio of the treatment and error mean squares, which wewill denote byF ~ • and that this will have au

F-distribution with 1 and N-2 degrees of freedom (df) under the null hypothesis of no treatment effect.

TABLE 2.2 ANOYA for Model II.

Sums of

Squares

Expected

Mean SquaresSource df

Patients N-l

Periods - - - - z
(YI.I-Yl.z+Yz .t -Yz.z) 12q

Treatments - - - - z
(YI..-YI.Z-Yz .r +Yzz) 12q

Error N-2

2.4 Analysis of Model I.

The incorporation ofx. in Model I results in a less simple analysisthan under Model Il.Under Model I the

expected value of.:c given above is't - X./2 and it is therefore no longer an unbiased estimate of the direct

treatment effect. On the other hand, an unbiased estimate ofx. does exist, being given by,

and therefore underthis model an unbiased estimate of-ris,

i - i + 1../2 - (y 1.1 - Yz.I)/2.

The significance of the carryover effectmay be tested by noting that,

var(A.) - qa~/2

and that the expected value of the sum of squares,

is (N - 2) a ~ , so that since ~ and SSP are independent,

2(N-2)A.2

F,," qSSP

follows an F-distribution with 1 and (N-2)df. It may also be shown that,

'!WO TREA'IMENI' CROSSOVER DESIGNS - A REVIBW.
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and althoughE(SSE + SSP) .. 2( N - 2)02
, it does not have ax2distribution (see Grizzle,l965). Because

of this Grizzle suggests that the sum of squares,

be used for testing the significance of"C under Model I since its expected valueis (N - 2) 0 2 and it is

X~distributed, independently of:cso that,

4(N - 2)i2

FI- qSSI

follows an F-distribution with 1 and (N-2) df.

Grieve(1987b) also considers the problem ofmaking inferences about"C under ModelI. He shows that

under this model,

tJar(i) - qa!/8 • E(iA) - o.

Further since SSE/a=-X~-z and SSP1a~-X~-z it follows that,

[8(N - 2)] 1/2[i - ("C - "-/2)]

(qSSE)I/Z

and

[8(N - 2)] 1/2[A/2 - "-/2]
- t(qSSP)1/2 N-2

Thus the problem of testing the significance of treatment effects under Modellisequivalent to aBehrens-FISher

problem since-t may be written as a weighted sum of independent t-statistics with different variances. From

a Bayesian perspectivethis result was first pointed outby Grieve(1985). Since no universally acceptable

solution to the Behrens-FISher problemexists,the choice of procedure to be usedwill depend on one's belief

in the "correctness" ofthe competing schools of statistical inference - frequency, fiducial or Bayesian.

Grieve(l987b) compares various approximate solutions to the Behrens-FISher problem as it relates to the

two-period crossover. For the moment wewill consider only Grizzle's originalanalysis based on first period

data alone, butwill return to Behrens-Fisher aspects later when dealing with a Bayesian approach.

Based on work by Larson and Bancroft(1963), Grizzle(1965) proposes that because the test for carryoveris

a prel;m;nary test, in that themain interest focuses on the treatment effect,it should be carried out at a higher

level of significancethan usual, namely 10%.If the hypothesis of no carryoveris rejected, Model I should be

used to test for a treatment effect,using F 1 ; if accepted Modelnshould beused and F ~is used to test for

treatment effect. FlgW'e21summarises Grizzle's approach tothe analysis of the two-period crossoverdesign.

'!Wo TRBATMBNT CROSSOVER DESIGNS - ARBVJBW.
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Test the null hypothesis

A.-OusingF~

Is it significant at the

10% level? NOYES

Only data from the first

period are used to test

-c - 0 - statisticF I

Data from both periods

are used to test-c - 0 -

statisticF ~

FIGURE 2.1 Grizzle's approach to the analysis of the two-period crossover.

2.5 Hills-Armitage Approach.

Grizzle's approach aboveis based on standard linear model theory with slight modifications for Model1.

Hills and Armitage(1979) provide a slightly different view leading to the same results.

Under Model II consider the differences,

which have expectations,

2n+2-c and -2n+2-c

respectively, and common variancecj, Then clearly sincedI,anddzJare independent,d I. + d2. andd I. - d2.

have expectations 4-c and - 4 n with common variance 2 qa~.It is therefore possible under Model IT to test

for both period and treatment effectsusing t-statistics which are the square-roots of the corresponding

F-statistics derivable from Table 2.2

Under Model I consider the sums,

with expectations

2n+2-c+A. and 2n+2-c-A.

respectively. ThereforesI. - S2. hasexpectation 2A.and variance 2 qa ~ ,so that againa standard t-statistic,

the square root ofF ~, maybe used to test for a carryover effect.
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2.6 Other Assumptions and Approaches.

Grizzle's and Hills and Armitage's approaches to the analysis of the two-period crossover are based on the

assumption that the data follow a normal-theory linear model. Clearly this is a strong assumption and needs

to be investigated for each individual case. One possibility would be to consider the use of transformations

- see the discussion and reply in Racineet al(1986). Alternative assumptions have been considered by many

authors.

Many authors consider two-period crossover designs in which the response variable is binary - Gart(1969),

Zimmermann and Rah1fs(1978),Hills and Armitage(1979), Prescott(1981), Armitage and Hills(1982), Fid-

ler(1984), Farewell(1985),Nagelkerkeetai(1986),KenwardandJones(1987a) and Jon esand Kenward(1987).

Layard and Arvesen(1978) consider the analysis of Poisson-distributed data basing their test procedures on

a conditional analysis following work byGart( 1975)and Hamilton and Bissonette(1975). Koch(1972) proposes

a non-parametric alternative to Grizzle's analysis. In essence Koch's approach is equivalent to replacing the

t-statistics outlined in section §2.5 by Wilcoxon statistics (see also Taulbee,1982 and Brunner and Neu-

mann,1987). Gomez-Marin and McHugh(1984) derive randomisation analogues of Grizzle's tests based on

a finite permutation model (see also McHugh and Gomez-Marin,1987). Zimmermann and Rahlfs(1980)

consider a multivariate normal analysis of the two-period crossover.

One final approach, more an aid to interpretation than an inferential procedure, is a graphical method

proposed by Huitson(1980) and Hews(1980) - see also Barkeret al(1982). The graphical method is as follows:

1) plot the period 2 observationY 2 for each patient against the period 1 observationY I, with the sequence

groups being separately identified.

2) add the linesY 2 - Y I and Y 2 + Y I - cwhere c is a constant equal to the mean total of period 1 and 2.

3) period, treatment and carryover effectswill be noticeable by separation of the centroids of the two groups

in different directions.

The types of separation which can occur are shown in Figure 2.2. For example, separation about the line

Y 2 - Y I indicates a treatment effect, while separation aboutY 2 + Y I - c indicates a carryover effect. Clearly

with real data the separation of the centroidswill not be perfect and the convex hulls of each sequence group

may be used as an aid to identifying the group centroids.

2.7An Example of the Basic Two-Period Two-Treatment Crossover.

The data displayedinTable 2.3 are taken from a study carried out by CmA-GEIGY to assess the effectiveness

of transdermal nitroglycerinincontrolling the symptoms of angina pectorisinpatients seeningeneral practice.

Results from this study are reported by Wheatley(1987).

Angina pectoris is a symptom and not a disease. The most common cause of the symptom is coronary artery

atheroma, which is a thickening of the inner lining of the arteries. The symptom is predominantly a discomfort

located in the chest or adjacent areas, brought on by an inadequate supply of blood to the heart. The use of

nitrates in the treatment of anginais well established, and although the precise mode of actionis not known

it is believed that their basic pharmacological actionis to relax smooth muscle. Sub1ingual nitroglycerinhas
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TABLE 2.3 Weekly Anginal Attack Rates During 3rd week of Treatment.

ISequence Patient I
Period

ISequence

Period

1 2 Patient 1 2

PL~TN 19 3 10 TN-+PL 20 12 16

22 8 6 21 4 11

24 6 4 23 6 5

35 1 0 36 7 14

38 12 6 37 13 25

39 4 2 40 9 11

42 6 3 41 1 1

59 11 3 43 4 0
64 3 4 56 4 10

73 11 3 57 2 5

76 8 8 60 0 8

78 8 9 61 17 13

80 18 4 65 1 1

81 12 5 67 6 8

84 12 2 75 8 8

85 3 1 77 7 4

115 1 3 79 3 19

122 12 4 82 4 19

124 8 6 83 3 12

126 7 12 86 2 4

128 1 1 87 2 1

140 2 0 121 4 7

142 3 0 123 3 1

146 21 10 125 3 3

147 17 7 127 1 0

150 12 5 130 41 36

201 4 5 145 10 24

209 0 1 148 9 18

211 7 0 149 4 13

233 11 0 210 8 1

236 18 7 234 5 7

235 0 9

been used for a long time to good effect, typically producmg reliefwithin 1 to 3 nunutcs, although It has the

disadvantage that its effect lasts for only 10 to 20 minutes. Other methods of drug delivery have been considered

and in particular nitroglycerin ointment has been available for a number of years. Such ointments, whilst

effective, have the disadvantage that they need to be covered by a dressing and that application of accurate

dosages is difficult. New delivery systems have recently been developed, in particular self-adhesive patches

which contain a reservoir of nitroglycerin which diffuses through a semipermeable membrane into the skin

so as to give a sustained, and constant, release of nitroglycerin over 24 hours.

lWO TREATMENT CROSSOVER DESIGNS· A REVIEW. 2·8



The aim of this study was to investigate the use of Transiderm-Nitro (TN) patches in the prophylaxis of angina

in general practice. Patients were randomly allocated to three weeks treatment with placebo (PL) followed

by TN or vice versa. At the end of the first week of treatment,if the angina attack rate had not fallen by more

than 20% compared to a one-week PL run-in period, the dosewas increased from the original two patches

to three. After three weeks treatment, the patients crossed to the alternative treatmentstarting again on two

patches.

The datashown in Table 2.3 are the weekly attack rates during the third week of each treatment period. The

data are presented in graphical form in Figure 2.3using the method describedin §2.6. This figure brings out

two features of the data.First, there is one extreme patientin the TN-+PL group (patient 130) who suffered

considerably more attacksin both treatment periodsthan other patients. Second, the centroids of the two

groups, asrepresented by the innermost convexhulls, are clearly separated about theline Y 2 - Y 1 suggesting

a difference between treatments. For the moment wewill ignore the extremeness of patient130 and analyse

the data as it stands, returning to the problem of outliers in§9.

TABLE 2.4 Model II ANOVA for Data in Table 2.3.

Sums of Mean

Source df Squares Squares F-Ratios P-Values

Patients 62 4356.968 70.274

Periods 1 1.078 1.078 0.068 0.795

Treatments 1 420.411 420.411 F .. = 26.545 < 10-5

Error 61 966.081 15.837

Cell means: Y 1.1 = 8.065 Y1.2= 4.226

Y2.1= 6.344 Y2.2= 9.813

Table 2.4 displays the Model II ANOVA forthis data together with the cell means. These cell means imply

the following estimated period and treatment effects:

n- (8.065-4.226+6.344-9.813)/4 - 0.093

i: - (8.065-4.226-6.344+9.813)/4 - 1.827

both of which have standard error 0.355. Thereis therefore strong evidence of a large difference between

treatments, the estimatei: suggesting thatTN causes a reduction of on average approximately3-4 attacks per

week compared with PLo

Under Model I the unbiased estimate of the carryoveris,

~ - (8.065+4.226-6.344-9.813)/2 - -1.933
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50

40

~ 30
o
:>
"'0
o
·c

<1>
o;

"'0
c
o
~ 20

(/')

Convex Hulls

o

\
PL-TN

e

\
TN-PL

10 3020

First Period Value

FIGURE2.3 Dio noetic Plot of Data in Table 2.3

40 50

TWO 'DlliATMENr CROSSOVER DESIGNS· A REVIEW. 2 ·10



which has standard error 1.486. There is therefore little evidence to suggest the existence of a carryover effect,

since the estimate ofA is only 30% larger in absolute value than its standard error (the classical p-value is

0.198).

2.8 Baselines in the Two-Period Crossover.

Various models have been suggested for the incorporation of baseline measurements in the two-period

crossover. In this section suggestions by Willan and Pater(1986a), Varma and Chilton(1974), Kenward and

Jones(1987b) and Patel(1983) are reviewed.

Suppose that, as in §2.2, the post-treatment response of thejth patient in the ith sequence in the kth period

is denoted byY iik' and that correspondingly x u« is the pre-treatment response. Suppose further thatY i j]:

follows Model Iand that x lik follows Model Iexcluding the treatment effect, so that the expected cell means

for the x li/5 are as shown in Table 2.5. Willan and Pater(1986a) propose such a model except that they

introduce an additional random effect, which they characterise as a patient by period interaction, whose

purpose is to model larger correlations between observations within the same period than between obser-

vations from different periods.

TABLE 2.5 Pre-Treatment Cell Means for Willan and Pater's(1986a) Model.

Sequence

I
Periods

IGroup 1 II 2

A~

I

~+n

II

~-n+x.

I
B~A ~+n ~-n-X.

Defme,

where d Ilk ~ Y iik - X Ilk, having expectation "(and variance qa ~14. The null hypothesis of no treatment effect

can be tested by using the statistic,

4(N- 2)i~F = ---=-_ _.:_..;.
t8 qSSB

where SS B1(N - 2) is an estimate ofCJ~. Under Ho:"( = 0 . F d has an F-distribution with 1 and N-2 df.

Varma and Chilton(1974) consider an extended form of Will an and Pater's model including in addition to a

carryover effect, an effect which they term the residual effect. This residual effect appears in cell means for

both pre- and post-treatment measurements in the second period, while the carryover effect appears only in

the cell means of the post-treatment measurements. Under this model, inferences about treatment effect can

only be made using data from both. periodsif the carryover effect is non-significant - in the same way as for

Model I - and is essentially identical to the Willan and Pater analysis above.If the carryover is significant, an

analysis identical to Chassan's(1970)analysis of a parallel design with baseline measurements is used. Define

d II - Y II/ - X II/ which have means't and -"( in groups 1 and 2 respectively and common variance2a; From

the independence of.Cl 1. and Cl 2. it follows that,
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so that,

(N - 2)(d I. - d2J2

2q [[(d,/-d,_)2, /

has an F-distribution with 1 and N-2df under the null hypothesis of no treatment effect.

Both the approach ofWillan and Pater(l986a) and that of Varma and Chilton(1974) use a "gains-score" (GS)

method, thatis they analyse differences between post- and pre-treatment measurements.Inthe area of parallel

group designs with baselines much recent research considers whether a GS analysisis preferable to one in

which the pre-treatment measurementis used as a covariate to adjust post-treatment values (see for instance

Brogan and Kutncr,1980; Lee,1980; Schafer,1981; Laird,1983). Many of the arguments for preferring the

analysis of covariance (ANCOVA) to a GS analysis are irrelevant toclinical studies, since they have to do

with non-random allocation of subjects to groups - examples are given in Lord(l967) and Lee(1980).

Bock:(197S) investigates the use of both analyses from a "randomised perspective" and concludes, based on

the grounds of efficiency, that ANCOVA is the preferred approach. To illustrate the argument consider

againChassan's(1970) analysis. The structure of the modelis such that YIII and x III are bivariately, normally

distributed with covariance matrix,

where a2 - a: + a~and p -a:l(a: + a~). From standard properties of bivariate normal distributions the

expected values of YIII and Y21It given that x III takes the valuex, are Il + n + 1: + P(x -Il- n) and

Il + n - 1: + P(x - Il- n) respectively, with common variancea2
( 1- P2) from which it follows that,

E[cY 1.1 - Y2.1)/21 xl - 1:

and

Ifthe relative efficiency (RE) of ANCOVA to that of the GS analysisis measured by the ratio of the respective

variancesthen,

Only when p - 1arc the analyses equally efficient, and arc inthis case identical.

Patcl(l983) considers the ANCOVA approach to the analysisof Varma and Chilton's model, generalisingit
by assuming arbitrary covariance matrices in the two sequence groups. He considers a number of different

hypotheses of interest which may be testedusing his model, for instance both carryover effect and period by

treatment interaction are testable.
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Both types of analysis are considered by Kenward and Jones( 1987b).The cell mean model which they consider

is shown in Table 2.6 where y . e andA are the sequence group, first and second order carryover effects

respectively.As Kenward and Jones point out, the inclusion ofy is somewhat artificial since randomisation

should ensure that there is no group effect. Its inclusion is merely to ensure that all other estimators are based

on within-patient contrasts. The analyses which Kenward and Jones(1987b) consider are too numerous to

detail here, but theywill be referred to in subsequent sections.

TABLE 2.6 Cell Means for Kenward and Jones'(1987b) Model.

Sequence Periods

Group Measurement 1 2

A~ Pre-Treatment ll+y+Jt, ll+y+Jt3+9

Post-Treatment ll+y+1lz+-C 11+ Y - Jt. - Jt2 - 113 - -c + A

B-+A Pre-Treatment ll-y+Jt. ll-y+Jt3-9

Post-Treatment ll-y+Jt2--c 11- y - Jt1- Jt2 - Jt3 + "C - A

That the use of baselines in crossover designs is not without danger is highlighted by Fleisset at(1985). These

authors suppose that given that the length of a treatment period is one time unit and that the length of the

washout period between treatment periods iswunits, then the total length of time between the ends of the

first and second treatment periods,1 + w, is sufficiently long to ensure that there is no carryover effect, but

that w itself is insufficiently long to eliminate the effect of the first period treatment on the second period's

baseline measurements. Explicitly they assume that the Ylit'S have Model II cell means, while thex li& have

the cell means shown in Table 2.7, wherea is a not necessarily linear function ofw.

TABLE 2.7 Pre-Treatment Cell Means for Fleisset afs(1985) Model

Sequence Periods

Group 1 2

A~ 110 I1I+a,;

B-+A 110 Ill-a';

Under this set-up consider a GS analysis using dli& - Y li& - X 1/&' Clearly the d's have expected values,

in sequence 1 and,

insequence2, so that the estimated "carryover effect" has expectation -cr , which is opposite insign to the

treatment effect1: •Fleissetat conclude from the above analysis that there are potentially two serious problems.

First, the use of baseline measurements may artificially induce an apparent carryover effect, whichwill cause
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the analysis of treatment effect to be carried out using period 1 data only, with a consequent loss in efficiency.

Second, it may have consequences for the conduct of future trials in that clinicians may be wrongly dissuaded

from using a crossover designin testing similar drugsin the same condition. They note that ANCOVA does

not obviate the bias induced by using baseline measurements with an insufficiently long washout period.

2.9 An Example of the Two-Period Crossoverwith Baselines.

The data displayed in Table 2.8 are taken from a study carried out by ClBA-GEIGY to investigate claims

that TN was not effective in the treatment of angina. Results from the study are reported by Nichollset at

(1986). Patients were randomly allocated to four weeks treatment with TN followed by four weeks treatment

with oral isosorbide dinitrate (ISDN) or vice versa. In the two weeks prior to each treatment period, placebo

patches and tablets were given to obtain baseline measurements. The data shown in Table 2.8 are the weekly

rates of sublingual glyceryl trinitrate (GTN) consumption, the allowed rescue therapy. Other data from this

study will be introduced in a later section.

TABLE 2.8 Weekly GTN Consumption.

1st Period 2nd Period

Sequence Patient Baseline Treated Baseline Treated

TN'-'{SDN 1 1.00 2.00 2.00 0.25

4 24.50 29.00 31.50 27.00

10 22.00 25.25 30.00 36.50

12 0.00 0.00 0.00 0.00

14 14.50 19.75 13.00 9.25

15 2.00 4.25 6.00 2.75

17 10.00 10.75 14.50 10.75

20 10.50 8.50 6.00 4.25

22 19.50 15.00 14.50 8.00

24 7.50 4.25 0.00 3.50

ISDN ....TN 3 21.00 21.50 22.00 38.00

5 10.50 5.25 3.50 2.50

7 3.50 2.00 1.50 4.50

9 10.00 16.75 9.50 18.25

13 1.50 1.50 0.50 0.75

16 6.00 3.25 2.00 2.50

18 1.50 0.00 0.00 0.00

21 3.50 1.00 3.50 8.00

23 9.50 1.00 0.50 1.50

25 11.00 14.50 11.00 17.25

1.10 Extra-Period Crossover Designs.

The basic disadvantage of the simple two-treatment two-period crossover designis that the estimate of the

carryover effect, or the test of the null hypothesis of no carryover effect, are based on between-subject variability

so that the estimate of carryover effect is associated with a wide confidence interval, while the test for zero
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carryover lacks power.If extra period designs are used, the carryover effect can be estimated within patients,

increasing sensitivity and power. Additionally it ispossible usingextra-period designs to contemplate estimating

other effects apart from simply treatment and carryover.

This latter advantage is potentially important. In §2.1we noted that in certain circumstances the two-treatment

two-period crossover is inappropriate, and in §2.2 that the carryover effect is sometimes termed the residual

effect, or period by treatment interaction. These are different sides of the same coin, meaning that what has

been called, in this chapter, carryover effect can have more than a single cause. Hills and Armitage(1979)

suggest three possible causes of what we have termed carryover effect. First, the washout period may be

inadequate, allowing the treatment in the first period to persist into the second period. Second the treatment

received in the first period may induce changes in the patients' psychological and/or physiological states.

Finally, the treatment effect may be proportional to the patients' overall disease states. Additionally there may

be a difference between the sequence groupswith respect to their average levels, which, because of ran-

domisation, is essentially a typeI error. Hecker(1986) investigates "carryover" and has shown that there are

no two-treatment two-period designs which can fullyutilise data from both periods without assuming that one,

or more, of the above causes are nonexistent. Some extra-period designs allow more than one of these possible

causes to be estimated - with the additional advantage that they are estimated within-patient.

Whilst a number of authors have investigated properties of general, multi-period, two treatment designs,

practical and economic constraints would suggest tbat it is not realistic to consider designs of more than three

periods and we therefore restrict ourselves to three-period designs. General optimality criteria for crossover

designs, considered for example by Hedayat and Afsinejad(1975,1978), all reduce in the case of two treatment

designs to the search for designs which giveminimum variance treatment estimators. In the case of two

treatment designs a number of authors (Kershner and Federer,1981;Laskaeta1,1983; Laska and Meisner,1985;

Ebbutt,1984 and Matthews, 1987) have shown that the designABB,BAA is universally optimal.Inthe following

subsection we considerthis optimal design. We subsequently consider the 4-sequence designABB,BAA,A-

BA,BAB which whilst sub-optimalhas certain advantageous features.

2.10.1 Three-Period Designswith Two Sequences.

Suppose thatY'It ( i-I • 2;j - 1.2. 3)is the response of thej '" patient in thei III sequence in thek'II period.

Jones and Kenward(1989) suppose the cell means model shown in Table 2.10is appropriate inwhich V I and

V2 define sequence effects,n I and n2 periods effects and't and x, are the treatments and carryover effects

respectively.

TABLE 2.10 Jones and Kenwards's(1989) Cell Means Model for a Three-Period Two Sequence Design .

Sequence Periods

Group 1 2 3

ABB VI + nl + 't' VI+n2-'t+).. YI-nl-nz-'t-x'

BAA V2+nl-'t' V2+nZ+'t-x' Vz-nl-nz+'t'+x'

Define,
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and

which have expectations ~ and"C and variances qa 2 / 8and 3q a 2/32 respectively. In contrast, therefore, to

the standard two-period crossover the estimator1: is unbiased evenif ~ " O. In fact the estimator ofr given

A. - 0 remains 1: .

2.10.2 Three-Period Designswith Four Sequences.

We noted previously that the design consideredin §2.1D.l was universally optimal amongst all three-period

two treatment designs. There are however some disadvantages to its use. First the carryover effect and the

treatment by period interaction are aliased, and secondly the design may lead to unintentional bias since the

clinician will know that the treatments in the final two periods are always the same.

We postpone consideration ofthis design to §7 when a Bayesian analysis is dealt with.

2.11 An Example of an Extra-Period Crossover Design.

The data shown in Table 2.11 are taken from a study undertaken by CmA-GEIGY to compare the anti-hy-

pertensive effects of Lopressor (L), and Lopresoretic (LC) which is a combination of Lopressor and the

diuretic Chlorthalidone. A subsidiary aim of the study was to investigate carryover effects in a within-patient

design. Patients were randomly allocated to one of the four treatment sequences L-LC-LC, LC-L-L, L-LC-L

or LC-L-LC. Each treatment period lasted six weeks treatment.

The data in Table 2.11 are the diastolic blood pressures (mm Hg) recorded at the end of each six week

treatment period. A preliminary report of this study was given by Ebbutt(1984), while Jones and Kenward use

the corresponding systolic blood pressure data to illustrate various analyses of extra period designs.As

mentioned above analysis ofthis data is postponed until §7 when considering Bayesian analyses of extra-period

designs.
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TABLE 2.11 Diastolic Blood Pressure (mm Hg)

Period Period

Sequence Patient 1 2 3 Sequence Patient 1 2 3
L-LC-LC 2 103 96 84 LC-L-L 3 100 105 106

5 95 90 96 16 100 100 9517 100 96 86 18 82 80 9029 100 100 94 28 95 90 9033 100 95 100 30 102 100 110
60 110 98 80 34 110 110 11071 100 90 85 46 90 100 9083 100 78 90 54 80 98 9094 100 106 100 59 76 80 98
97 100 90 110 72 70 80 80102 75 75 80 93 8 84 74125 100 102 100 99 90 100 80153 100 100 95 104 90 95 80167 85 90 85 111 105 100 100177 95 80 75 119 90 80 90182 90 98 95 128 94 102 96

204 100 90 82 136 100 105 110
205 90 86 98 149 80 85 80
210 90 90 100 '156 80 75 80
216 95 85 90 168 90 90 80217 112 104 107 179 105 102 100
224 90 90 90 183 95 80 105

L-LC-L 1 100 96 96 189 80 88 80
19 100 90 84 197 90 80 75
25 100 110 95 202 75 90 90
31 70 68 80 209 90 90 80
35 90 90 95 218 94 90 88
56 90 98 90 LC-L-LC 4 99 92 81
70 90 80 95 7 118 89 92
82 100 94 102 13 90 90 90
95 100 84 118 55 90 80 84

100 100 90 90 57 90 82 90
103 80 80 85 69 85 75 85
110 110 100 100 96 88 98 94
113 76 72 80 98 95 100 90120 90 85 90 101 85 80 85
127 98 106 102 109 60 75 60
155 100 100 100 126 102 102 92166 90 90 80 178 102 100 102
185 110 100 109 181 90 90 85
190 94 84 92 203 90 90 80
201 92 75 80 207 92 100 96
214 80 80 85 211 80 80 80
219 106 112 90 221 90 80 80
222 80 80 80
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3 BAYESIAN ANALYSIS OF MULTIVARIATE NORMAL SAMPLES WITH A COMMON UNIFORM

COVARIANCE MATRIX.

Supposein a clinical trial that patients are randomised to9 independent groups, and that measurements are

taken on k occasions. Suppose further that the data are multivariate normal with expected values

Il, (i - 1• ...•g) and common covariance matrixA. where

p p p

pIp P

p pip

p p p 1

In this chapter a Bayesiananalysis of this set-up is considered.

Suppose at the end of the study thatn,patients in groupi complete the study and letY j andB I be the mean

vectors and matrices of sums of squares and cross products respectively. With these definitions the likelihood

has the form,

(3.1 )

1+(k-2)p -p

- p 1+(k-2)p

-p

-p

-p -p 1+(k-2)p

so that (3.1) may be written as,

a -N~[ 1+ (k - 1)p rN/2(l - prN
(H)/2 x exp( - ~ ~ [nicY, -Il,) •A-I cY, -Il,) - tr(A. -I B,)]) (3.2)

where N - L n,.
I

Following Geisser(l964) suppose that a realistic "ignorance" prior for the parametersIII • 1.12 • • • • • 1.1II • a2 and

p bas the form,

(3.3)

where p> 0 . We will return to consider the reasonableness or otherwise ofthis prior specification at a later

stage. Combining(32) and (33) gives the posterior distribution of the parametersin the form,
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( Z IX) ex: a-Nk-z[l+(k_l)p]-N,z-l(l_p)-N(k-l)/Z-1P !ll·!J-Z·· .. ·!lg·a .p

(3.4)

whereX denotes the data. The marginal distribution of the second-order parametersa 2and pmay be obtained

by integrating III •Il 2 • • • • •Il g out of (3.4) to give,

p( oz. P I X) QC (OZf(N-g)t/z-1 [1 + (k - l)p r(N-g)/Z-l (1 _ p)-(N-g)(t-I)/2-1

X exp( -~ ~ tr(A -I B,)). (3.5)

Combining (3.4) and (3.5) gives,

implying that ,

(3.6)

where,

r- aDA

1

ng

and aDdenotes the right Kronecker product. The exponentin (3.5) may be expanded to give,

(
LSI[1+(k-2)P]-PRI)x exp ~I __

2a2(l-p)[l +(k-l)p]
(3.7)

where,

t

S,:z L {B,} II and R," L {B,} I"
1·1 1-'

Make the transformation,

(3.8)
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with Jacobian [a ~+ Ck - 1 ) a ~r 1 to give,

-(N-g)(k-I)-2 (fCk-1)S,-Ro)
x a 2 ex P _,_"_1 __ --;:- __

2ka~

-(N-gl-2 (SSI) -(N-g)(t-ll-2 (SS2).. a exp --- a exp ---
1 2a~ 2 2(J~ C3.9)

where SS 1 - [,(S, + R ,)1 k and SS2 - L[(k - 1)S,- R,]I k .. The constraintp > 0 given in the prior

specification is equivalent to(J~> a~so that use of standard results - see for instance Box and Tiao(l973)U.S
- shows that,

pca~. a~,X. a~> a~)
pCa~. (J~'X)

PC(J~>a~, X)
(3.10)

- 0 otherwise.

The transformation,

(J~N-g SS2+- and 1j.I-a~
a~ SSI CN-g)(k-l)

with Jacobian

SSI CN-g)Ck-l)
1j.IN-g SS2

applied to (3.9) gives,

pC'".''' 'X) -(N-lIlkl2-1 ...-(N-lIl/2-1 (SSI[ N-g J)
" " cc 111 ,. exp - 21j.1 I+ +(N-g)(k-I) .

Integrate out 111to give,

[
N ]-(N-lIlt/2pC" X) cc ,-(N-IIl/2-1 I+ -g •

+CN-g)(k-I)

so that <l>hasan F-distributionwith N-g and (N-g)(k-1) df, from which we may derive,

(3.11)

This probability may be used together with (3.10) to give the posterior distribution of the variance

componentsa ~anda ~.In later sections wewill see that in the casesinwhich we are interested the constraint

is of little importance if the correct models are used.
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4 THE 1WO-PERIOD 1WO-TREATMENT CROSSOVER.

4.1 Basic Distributions.

The resultsin §3 may be used to derive a Bayesian analysis of the two-period crossover under a standard

mixed-model with an "uninformative" prior. These results have been reported in Grieve(1985) - see also

Grieve(1986) and Racine eta/(1986). The development in those papers was more direct than here, in that the

standardANOVA decomposition was used. The approach taken hereis preferable as itis easier to generalise

to more complex crossover designs, aswill be seen in subsequent sections.

The cell means model shown in Table 2.1 may be put into the general structure of the previous section by

settingk - 9 - 2and by noting that,

("'') C j)(D1112 1 -1 - 1-
Ilzi 1 1 - 1

IlZ2 1 - 1

The inverse transformation has the form,

C) Cf4
114 114 1/4)("'')n 1/4 -114 1/4 -114 Illz

(4.1 )-"C 1/2 0 -1/2 o Ilzi
A. 1/2 1/2 -1/2 - 112 Ilzz

Consider the transformation (4.1) applied to (3.6) withk: - 9 - 2. From standard properties of the normal

distribution the conditional posterior distribution of the location parametersIl • n . "C andA. given the second

order parametersa2 and p has the form,

(4.2)

where,

(

q(1 + p)

aZ 0
II - '8 r(1 + p)

2r( 1+ p)

o
q( 1 - p)

r( 1 - p)

o

r(l + p)

r( 1- p)
2q

2q(1 +p)

2r(~ +p))

2q(l +p)
4q(1 +p)

andr-lInl-l/nz.

From (4.2) the following are derived,

_ N[(;:).(q(a~+a~)/8 qa~/4)]
'k qa~/4 qa~/2

(4.3)

- N['k.qa~/2] (4.4)
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pC.; I a~, a;, X) N[i, qCa~ + a~)/8]

N[i + 'A/2, qa~/8]

(4.5)

( 4.6)

where A, i and -t: are defined in (2.1), (2.2) and (2.3) respectively, and where from (3.8)a ~ - a2 ( 1 + p ) and

a ~- a2 ( 1 - p ), which in the notation of §2.2 equala ~and a ~respectively. Settingk - g - 2 in (3.9) gives,

(4.7)

where SSP - SS I and SSE - SS 2 • The joint posterior distribution of1:and 'A may be derived as follows,

p(1:,'AIX) cc f f p(1:'Ala~,a~,X)p(a~,a~IX)da~da:

a~ a:

In §3 the posterior distribution ofa ~and a~given the constraint a~ > a= was derived using results from Box

and Tiao (1973) §l.S. Box and Tiao's general result has the form,

(SIC X) = p(SIX)P(CIS,X)
p. P(CIX) (4.9)

where e is a vector of parameters of interest andC is the constraint.

From (4.2) and (4.7) the conditional distribution ofa ~ and a= given 1:and 'A has the form ,

2 c 2 8 • 2
whereQI-SSP+-('A-I\.) andQ2-SSE+-(1:-'A/2-1:)

q q

which has the same form as (3.9), so that the derivation of (3.11) maybe followed to give,

(4.10)

Combining (4.8), (4.10) and (3.11) gives the posterior distribution of1:and 'A in the form,

(Q Q )-(H-I)/2 P(F <~)
2 2 I 2 H-I.N-I O2

p(1:,'AlaA>a • • X) at ( SS')
P F H-2.N-2 < ill

(4.11)

Similar calculations lead to the following posteriors :
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-(N-I)/2 p( (N-2)Q, )

QI FN-l.N-2«N_I)SSE

p( F N-2.N-2 < ===)
(4.12)

Q-(N-I)/2 p( F < ~)
2 N-I,N-I Qz

p( (N-2)Q I )

F N-I,N-2 < (N-l)SSG

(4.13)

J pC't. AI <1~ > <1~, X)dA
)"

(4.14)

The marginal distribution of-r is not available analytically, apart from unrealistic special cases, so that it may

only be obtained by numerically integratingA out of (4.11) using for instance the method described by Naylor

and Smith(1982).

4.2 TheVariance Component Constraint.

It is possible, using the methods given by Box and Tiao(1973) §6.3.1, to develop approximations to the dis-

tributions (4.11),(4.12) and (4.13) howeverthis presupposes that it is important to take into account the

constraint on the variance components inherentin the model. J ones(l986) reports results obtained by Denham

in an unpublished University of Kent M.Sc. dissertationin which the posterior distributions with and without

the constraint were comparedusing two measures based on the absolute difference between the distributions.

For example Denham computed the maximum absolute difference,D - max I pCn I X)- pen I <1~ > <1:. X) I
, where rt - 't. A. 't I A - 0 , for the data in Grizzle(l965), Hills and Armitage(1979) and Brown(1980). The

results of Denham's calculations are shown in Table 4.1 together with the probability of the constraint defined

by (3.11).

TABLE 4.1 Comparison of Constrained and Unconstrained Posterior Distributions.

Posterior Distribution

Data 't A 'tIA-O

Grizzle 0.001 0.212 0.158

Hills & Armitage 0.000 0.000 0.000

Brown 0.002 0.875 0.659

These results raise two issues.Firstly, as Grieve(1985) and Jones(1986) note, the differences between the

constrained and unconstrained posterior distributions evidenced in the case of Grizzle's and Brown's data are

a direct consequence of analysing differences from baseline which automatically induces zero correlation

between the derived observationsin each period. (This issuewill be further considered when the two-period

crossover with baselines is treated). It is not necessary to calculate the measures considered by Denham, as

it is sufficient to calculate P(C1~ > (J~ I X). For the above examples these probabilities are 0.355 (Grizzle),

0.9996 (Hills and Armitage) and 0.024 (Brown) respectively. Alternatively the posterior distribution ofa ~and
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a~may be inspected. To illustrate, Figure 4.1 displays (4.7) for the data shown in Table 2.3. and it is clear that

in this case the constraintis irrelevant as the bivariate posterior for the variance components lies almost wholly

in the region defining the constraint. On the other hand for the data given in Brown(1980) involving, as we

have already seen, differences from baseline the constraintis important asis shown by the posterior distribution

of the variance components displayed in Figure 4.2. and by the posterior distributions ofA. and'( I A. - 0shown

in Figure 4.3.

Secondly, the effect of the constraintis least in the case of the treatment effect,"C. This observationis intuitively

reasonable since the unconstrained posterior distribution of"C given the variance components depends on

a~ + a~ so that it is irrelevant whetherof is greater thana~. Such a view was expressed by Cochran(1963)

who suggested that the small discrepancies in such cases might be due to rounding errors in the numerical

integration , although he was unable to provethis analytically. In fact itis not the case that the constrained

and unconstrained distributions of"C are identical although the differences are small.

4.3 Approximation to the Marginal Posterior Distribution of"C•

Even when the variance component constraintis ignored the integral in (4.14)is not analytically solvable and

one possibilityis again to use numerical methods. Alternatively, an analytical approximation may be derived.

In (4.8) make the transformation",I = A. / 2 . '" 2 = -c- A. / 2 giving,

Clearly 1lJ I and 1lJ 2 have independent shifted and scaled t-distributions with unequal variances and since

-c- 1lJ 1+ "'2 it has a Behrens-Fisher distribution. Therefore, using the results of Patil(1965), the marginal

posterior distribution ofc may be approximated by

[
8 ]-ev'.1)/2

p(-cIX) cc v's'2+q(-c-i:-~/2)2 (4.15)

where,

'2 (v' - 2)(SSE + SSP)
s - v'(N - 4)

(see A1.S). (Appendix A1 gives consideration to various approximations toBehrens-Fisherdensities and

distribution functions).

4.4 Approximating (4.14).

We noted, following (4.14), that the marginal distribution oft; is not available analytically; however an

approximation based on a t-distribution may be developed. The posterior distribution of-c may be written in

the form,
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pCL I X)

From (4.5) the unconstrained conditional distribution of"C,givenC1 ~ and C1: , is N C 1; , q C C1~ + C1~) / 8) .Since

once the pair of variance components is given the constraintC1~ > C1~ has no effect on the distributionof r

then the first term in the integral is preciselyNCi;, q(C1~ + C1~)/8) • Prom (3.10) and (3.11) the posterior

distribution ofC1 ~ and C1~ is,

p(C1~, C1~I X) cc
(
SS, )

P FN-2.N-2<SSi

From the results in§5.2.6 and §5.2.12of Box and Tiao(1973) the posterior distributions ofC1~ and C1~ may be

approximated by,

where,

NI (~ ~)
1C 2' 2

(
N-2 N)

2/" 2'2

(N-2)/"(T,i)
(N-2 N-2)

2/" -2-'2

NI (~ ~)
" 2' 2

(
N N -2)

2/" 2'-2-

(N-2)/,,(i'T)
(
N-2 N-2)

2/" -2-'2

(N-2)I,,(T,i)
(

N-2 N-2)
all" -2-'-2-

CN-2)I,,(i,~)
(

N-2 N-2)
a2/" -2-' -2-

and

SSP
x - SSP+SSE'

The construction above shows thatC1 ~ and C1: are independently, approximately X-2 distributed so that,

E(C1~+a=)
SSE SSP

E... + -al(bl-2) a2(b2-2)

Var(C1~ + a=)
2SSE2 2SSP2

V.. + -a~(b I - 2)2(b 1- 4) a~(b2- 2)2(b2 - 4)
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Supposea 2 + a 2 is approximately distributed asboo X - 2 implying that E (a 2 + a 2) ... b / Cb - 2) and
,1 c b II " E 00 II

Va rCa ~+ a ~) ...2b~o/ [ ( b II - 2) 2 ( b I I - 4) ] . Equating these to E andV above gives,

2£2
b II os V + 4 . b 00 ~ (b II - 2) E

Combining this approximate distribution with (4.14) and integrating outa~+ a: gives

4.5 A Preliminary BayesianAnalysis of Wheatley's (1987)Anginal Attack. Rate Data.

The use of the posterior distributions derived aboveis illustrated using the data from Wbeatley(1987) given

in Table 2.3.Figure 4.4displays (4.11), (4.12), (4.13) withx - Oand (4.14). Comparison of the classical ANOVA

with the posterior summaries is enlightening.As has been seen in other cases (Grieve,1985; Racineet al,1986)

the distributionsp (L I~ - 0 . X) andp (L I X) differ radically and the use of one in preference to the other

would lead to very different conclusions vis-a-vis the treatment effect. For example

PCL> 0 I ~ - O. X) > 0.999 whilstP(L >0 I X) - 0.85. These resuitsshowthat itis crucial when comparing

treatments to be sure that the correct modelis being used. The classical approach to differentiating between

Models Iand II is to useF)" (see §2.4) .In the present case, as noted in §2.7, the p-value associated withF)"

is 0.198which, according to Grizzle's procedure, would allow one to accept the veracity of Model II. However

the posterior densityp (~ I X) suggests the presence of a carryover effect,giving credence to the view that

the implicit either/or decision associated with the test for carryover effect does not provide an adequate

representation of the uncertainties involved.

4.6 Using a Bayes Factor to Decide Between ModelsIand II.

The Bayesian approach to the problem of differentiating between ModelsIand II is to seek a form of prior

specification which allows the direct incorporation of an assessment of the likelihood of each model. One

method of doingthis is to model the set up as a mixture of the two individual models corresponding to the

"absence of carryover" (Model II) and "carryover" (Model I).Ifwe denote these two models by M0 and MI

respectively, let the prior have the form,

pe!!. n. L. ~,a~, a~ I MI) (i-O,I) (4.16)

and define prior odds, x -P (M 0) / P ( M I ) , on the "absence of carryover" then the posterior probabilities of

the two models are,

P(MoIX) =
1

I+xBol

where B 01 is the Bayes factor given by,

P(MoIX) P(MI)

P(Mo) P(MIIX)
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The Bayes factor is the ratio of posterior to prior odds onMo, i.e. against a carryover effect. Inference

concerning the treatment effect-c can then be made using the mixture posterior distribution,

'KBol 1
p(,IX) = 1 B p(-cIMo'X) + 1 B p('IMI.X)

+ 'K 01 + 'K 01
(4.17)

where p(-c I Mo. X) is given by (4.13) withA ~ 0, andp(T I M I' X) is given by (4.14).

The Bayes factor,B 01, may be expressed as a ratio of integrated likelihoods and therefore involves the ratio

of unspecified proportionality constants implicit in the priors defined by (4.16). Spiegelhalter and Smith (1982)

show how to obtain a definitive form forB 01 in such models byusing the so-called "device of imaginary

observations". Grieve(1985) points out that sinceF)" is merely the square of an unpaired Hest, equation (12)

of Spiegelhalter and Smith(1982) gives the Bayes factor against a carryover effect as,

(
3 )"2( F)" )-NI2

B - - 1+--
01 2q N-2

(4.18)

To choose a value of1<. is to specify one's personal belief in the likelihood or otherwise of a carryover effect,

thus providing a means of introducing a sliding-scale of plausibility between the extremes of assuming either

the absence of a carryover effect or of assuming that a carryover effect is absolutely certain. Such a choice is

forced upon oneif the classical significance testing procedure is used. Clearly posterior beliefs depend on

prior beliefs so that a "fair" representation of conclusions should show this dependence. Figure 4.5 provides

summaries ofp (, I X) as a function ofP (M I) - ( 1+ 'K) - I. In this figure the posterior expected treatment

effect and its associated 95% highest posterior density (H.P D.) interval are plotted on the left-hand vertical

axisand the posterior probability of a positive effect on the right-hand verticalaxis.

To appreciate how Figure 4.5 may be used, suppose that interest centres in a positive treatment effect, which

in the context of our example implies that we are interested in lower incidence of attacks when TNis used

compared to Placebo.If apriori we are indifferent to the choice of model, that is,le - 1 ,then the posterior

probability of a positive treatment effectis 0.95, the corresponding posterior probabilities for1C - i.i.2. and 3

are 0.91, 0.93, 0.97 and 0.98 respectively. Thus, forthis experiment, we need only be 50% surea priori that

there is no carryover effectin order to achieve a posterior probability greaterthan 95% that the treatment

effect is positive.

Figure 4.5 shows that inferences concerning the effect of TN are highly dependent on our prior belief in the

likelihood of a carryover effect.As Grieve(1985) points outthis dependence may be due to the relatively small

value ofBOI which is indeed the case for Wheatley's data(Bol - 2.052) . From (4.18) it is clear thatBOI

depends both onF" and on the numbers of patients in each sequence groupn I and n 2 in such a way that i)

it has no minimum value,ii) the maximum value, given byF" .. 0,is a simple function ofn I and n2' Analogous

to the results given in Grieve(1985), Table 4.2 presentsP (M 0 I X) for selected values ofP ( Mo) for both the

observed B 01 and for its theoretical maximum value. Table 4.2 demonstrates a characteristic of"small"

experiments in that even when, in the classical sense, thereis little, or no evidence to suggest a carryover effect,
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the inferences which we are able to make depend fundamentally onP( M I) . This is related to Jef-

frey's(1983,p.434) observation that small experiments cannot provide strong evidence in support of a null

hypothesis, although they can provide strong evidence against it.

TABLE 4.2 Posterior Beliefs in "Absence of Carryover" for Various Prior Beliefs.

D P(Mo I X)

P(Mo) BOI - 2.052 BOI - 4.860

1/9 0.1 0.186 0.351

1/4 0.2 0.339 0.526
1 0.5 0.672 0.829
4 0.8 0.891 0.951
9 0.9 0.949 0.978

A second point concerning Figure 45 relates to the apparently idiosyncratic relationship between the 95%

HPD interval andP (M I). In fact this shapeis characteristic of crossover trials (cf. Grieve,1985; Racine et

aI,1986; Grieve,1989) arising from the mixture of distributionsin (4.11). To illustrate, Figure 4.6 presents

p ('t I X) for different values ofP(M 1 ) • Although in this instanceP ('t I X) is not bimodal such forms can

arise if i and i:+ A. / 2 are widely separated.

Spiegelhalter(1986a) questions whether the use of the Bayes factoris only marginally better than the classical

"either-or" mentality because it effectivelymodels prior beliefs asa mixture ofasharp peak at the null hypothesis,

the remainder being distributed over the real line as a representation of ignorance. Before examining this view

we considerin the next section the use of informative prior distributions.

4.7 Bayesian Analyseswith Informative Priors.

Selwyn et al (1981) develop a Bayesian analysis for a balanced two-period crossover design, n1 - n2, for a

problem in bioequivalence testing.In their work they consider a number of different models one of which

corresponds to Model I. They take as the joint prior density of the parameters,

(4.19)

so thata priori A. is normally distributed with mean 0 and variancea~. By considering a range of values fora~

a variety of prior beliefs concerning the likelihood or otherwise of a carryover effect may be obtained. For

example,a ~ - 0 corresponds to absolute certainty that thereis no carryover effect, whilea ~ - 00 is equivalent

to the conventional uninformative prior which we have already considered. Now suppose that our prior belief

concerningA., generalizing (4.19), may be represented by a normal distribution with mean Aoand variance

a ~so that our prior for the parameters of the model has the form,
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(4.20)

Using this prior standard Bayesian manipulations with normal kernels shows that the posterior distribution

of -c given the variance componentsa ~and a ~ is,

ui«, u) (4.21)

where,

u =

and

u =

As a ~-+ cothis reduces to (4.6), while asa ~-+ O. u -+ i: + A.0I2 and u -+ q a: IaThis latter result implies that

if we have, apriori, a strong belief that the carryover effect is in asmall region centred onA. 0we may remove

the carryover effect from the biased estimate oft; that is from i.

Suppose that oura priori information is obtained from the results of a pilot study whose results are denoted

bylio. no. -to. Aa. SSPo• SSE o. N aand qo- Now since the joint posterior distribution ofu, n.'t. A.. a:and

a ~is conjugate to the likelihood, standard manipulations may be used to show that the marginal posterior

distribution ofrgiven the variance components has a normal distributionhaving mean,

q(i:o + Ao/2) + qo(i: + A/2)

««: q

and variance,

qoq(C1~+a2)

8(qo + q)

Since therewill generally be far fewer patients in the pilot study than in themain study, q0»q, and therefore

the pilot study will not provide sufficient information to remove the bias from -t .

Ifwe use Selwynetafs(1981) prior (4.19) then the mode of the posterior distribution ohgivena~ anda:has

the form i: + ( a ~A. I2 )I(a ~+ q a ~/ 2 ) which tends to -t as a ~-+ O. Inother words if we are fairly sure that the
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carryover effect lies in a narrow interval around zero, the posterior distribution of-c will be similar to the

distribution we would have obtained had we assumed that the carryover effect was zero. On the other hand

as a ~ ~co the analysis reduces to that given in§4.1.

4.8 Spiegelhalter's View.

From (4.17) it may be seen that the posterior mean for-c has the form,

1(.Bo• • 1 ."
---1:+ (1:+11./2)
1+1(.B01 1+1(.B01

while, for givenC1~, the corresponding posterior mean using Selwynet afs(1981) prior has the form,

This pair of means are very similar and it is therefore not surprising that Spiegelhalter(1986a) was able to

provide an analysis using an informative prior forA. which almost exactly mirrored the analysis based on the

Bayes factor.

The decision thenhas to be taken as to whether prior beliefs concerning potential carryover effects are more

easily determined, and incorporated, via the Bayes factor or proper prior approaches. It was argued in

Grieve(1985) that the Bayes factor approachis preferable since for example indifference to modelM0 or M 1

is simply defined by1(. - 1,while if a ~is used it is not atall clear how indifference should be defined. Further

support for the Bayes factor approachwill be given in later sections.

4.9 Discussion.

A number of analyses have been consideredin this chapter and before discussing other approaches in the

light of our preferred Bayesian approach itis helpful to summarise our approach by distinguishing three

particular cases.In the notation of §4.6 there are in terms ofP (M .) ,which is our prior belief in the presence

of a carryover effect, the following three distinct scenarios to be looked at :

(i) P(M.)-O

(ii) P(M1)-1

(iii) O<P(M.)<1

A strategy needs to be decided upon for each scenario, and the questionis What strategy ?

In the case of (i) we areapriori absolutely certain that thereis no carryover effect. The two-treatment two-period

crossover then presents no difficulties and we may use the conditional distribution of-c givenA. - 0, either

by settingA. - 0 in (4.13)if we wish to take account of the variance component constraint or by settingA. - 0

in the second component of (4.8)if we are prepared to ignore it.This is essentially the approach taken by the

majority of statisticians when analysing bioequivalence studiesin which it is believed to be unnecessary to

consider the incorporation of a drug carryover effect since blood samples drawn immediately prior to

TIlE TWO-PERIOD TWO-TREATMENf CROSSOVER. 4 -15



application of the drug in the second period will reveal whether during the washout period elimination of the

drug has occurred. This assumes that the particular drug does not have an effect directly and/or indirectly on

the absorption and elimination mechanisms of the body.

In case(ii) there are two distinct subcases to be considered. In the first subcase we suppose that we have no

apriori information concerning the likely magnitude of a carryover effect other than that it exists.If this is the

case then whilst perfectly valid inferences concerning the treatment effectL can be made - using, for example,

the results in §4.3 and §4.4- the standard arguments concerning the sensitivityof the crossover design compared

to the parallel group design (see for example Brown,1980) would predicate against the use of the former design

as opposed to the latter. It is, however, contradictory to suppose thatP(M 1) - 1 and at the same time to say

we know nothing of its magnitude. In the second subcase we suppose that there is considerable information

concerning the likely magnitude of a carryover effect and that it is possible to specify it through a Normal

density with meanA 0 and variance a ~. Such information,if available, can be incorporated in the analysis and

the results in §4.7 show thatif a ~ is small, corresponding to large amounts of information, then to a good

approximation the posterior distribution ofL will be given by the conditional posterior distribution ofL given

the prior expectation of the carryover effect, Le.A= A0 in place of A - 0above.

In case(iii) inferences aboutL may be made either using the approach of Selwyn et al(1981), as championed

by Spiegelbalter(1986a) - see §4.8 - or by using the Bayes factor approach given in §4.6. In the light of Spie-

gelhalter's demonstration of the near equivalence of the two approaches the difference between them isperhaps

more apparent than real. Nonetheless the consideration of how to specify indifference between the models

M 0 and M I leads to the Bayes factor approach in preference to Spiegelbalter's.

In 1979 the British pharmaceutical industry body "Statisticians in the Pharmaceutical Industry" (PSI) consti-

tuted a working-party with the remit to investigate, in the light of the FDA position, the two-treatment two-

period crossover (Poloniecki and Danie~1981; Huitsonet aI,1982; Barker et aI,1982; Poloniecki and

Pearce,1983). One proposal which they made was to investigate the relative magnitude of the treatment and

carryover effects. In the notation of Poloniecki and Daniel(1983) their suggestion was to determine the posterior

probability that11: I> I V I whereL andy denote the treatment and carryover effects respectively. The major

deficiency ofthis idea is that the Poloniecki and Daniel definition ofL would, in our notation, correspond to

1: - A/ 2 . Translating their suggestion into our notation implies that one should calculate either

P ( 1: - A > 0 A 1: > 0 I X) or P ( 1:- A < 0 /\ 1:< 0 I X) depending on whetherL is "significantly"positive or

negative. Effectively, their proposal for1: > 0 is to calculate the posterior probability thatL and A lie to the

right of the lineL - 0 and below the liner - A . InFigure 4.7 the red contour lines are taken from Figure 4.4

- corresponding to the posterior density ofL and A for Wheatley's(1987) data; the green contour lines have

been obtained by shifting the red contours. Fromthis figure it is clear thatin the case of the green contours

p ('t > 0 I X).. 1 whilst P( 't - A > 0 /\ 't > 0 I X) .. 0 . It seems difficult, therefore, to justify such the region

suggested by Poloniecki and Pearce since the resultP (1: > 0 I X) .. 1implies that conditional on any reasonable

value of A suggested by the data, the posterior probability thatL is positive is high.

Willan and Pater(1986) and Willan(1988) have also suggested that in certain circumstances the fact that there

is a significant carryover does not preclude an analysis based on data from both periods. They argue thatif,

~ < 2-J2(1-p)
't

(4.22)
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then an analysis based on data from both periodsis preferable since even when thereis considerable carryover

such an analysis provides a more powerful test of treatment effect than one based on the first period data

alone.

Whilst it is laudable to search for circumstances under which conditions such as (4.22) are satisfied it raises

a number of issues. First, whilst itis a more complex regionthan the one considered by Poloniecki and

Pearce(1983), involving as it does the correlation p , (4.22)is nonetheless a region based on population values

and it is therefore not possible to use it pre-study to determine which analysis is to be performed. Second, it

is possible, as we did above, to provide examples in which, although the condition (4.22) does not hold,

nonetheless thereis a very high probability that a highly "significant"carryover effect exists.
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5 THE 1WO-PERIOD CROSSOVER WITH A SINGLE BASELINE.

The standard two-period design, whose Bayesian analysis was outlined in §4, has no baseline data. As

Freeman(1986) comments the majority of crossover studies feature baseline data which are often ignored. In

this section the incorporation of a single baseline measurement is considered.

5.1 Cell Means Model.

In Section §2.8 we saw that for a two-treatment crossover with baselines prior to each treatment period there

were a number of potential models. The same is true in the case of a single baseline measurement. In essence

the observations on patients, pre-treatment, provide the possibility of estimating two additional parameters

corresponding to the pre-treatment cell means in each sequence group. There are a number of pairs of model

parameters which could be considered. For example one mightwish to include both carryover and

period-treatment interaction, so that one of the additional parameters would correspond to the latter. Such

a parametrization is not appropriate because the period-treatment parameteris a linear combination of the

treatment and carryover effects.

In the two-treatment, two-period crossover, the carryover effectis completely confounded with both the

period-treatment interaction and with the sequence effect. In the present design the sequence effectis no

longer confounded with the carryover effect so that in analogy to the model considered by Kenward and

Jones(1987b) additional parameters for the sequence effect (y) and for the pre-treatment period are

incorporated. The cell means model which we consideris shown in Table 5.1 where nI and nz denote

independent period effects.

TABLE 5.1Cell Means for a Two-Period Crossover with a Single Baseline.

Sequence Periods

Group Pre-Treatment 1 2

A~ IJ.+ y+ n , lJ.+y+nz+1: IJ.+ y - n 1- n2 - 1:+ A

B-+A IJ.-y+ nl l!-y+nz-1: lJ.-y-nl-n2+'t-A

We will in the main when considering more complicated designsthan the straightforward two-period

two-treatment crossover adopt the Kenward and Jones(1987b) approach of incorporating a parametery for

a sequence effect. These authors argue for such an approach on the grounds that thenall parameters of interest

can be estimatedwithin patients. It can of course be argued that itis not appropriate to introduce a sequence

effect parameter sinceifpatients are randomised to the sequence groups no such effect should exist - classically

it would be argued that a significant test for a sequence effect would be a type I error. From another standpoint

Gough(1989) has argued that by dropping the sequence effect from the model between patient information

about treatment and carryover effects can be obtainedwith a consequent increase in precision. Wewill return

to consider this point later.
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5.2 Basic Distributions.

The cell means model shown in Table 5.1 may be fitted into the general structure of §3 by setting9 - 2 and

k: - 3 and by noting that,

1111 0 0 0 11
1112 0 1 0 Y
1113 - 1 - 1 - 1 1 fll

1121 - 1 1 0 0 0 flz

1122
- 1 0 1 - 1 0 "[

1123
- 1 - 1 - 1 - 1 A

The inverse transformation has the form,

11 1/6 1/6 116 1/6 1/6 1/6 1111

Y 1/2 0 0 - 1/2 0 0 Illz

fll 113 - 1/6 - 116 1/3 -1/6 -1/6 1113

fi2 -116 113 - 116 -116 113 -1/6 1121
(5.1 )

L -1/2 112 0 112 -112 0
1122

A - 1 112 112 1 -112 -112
1123

Consider the transformation (5.1) applied to (3.6) with9 - 2 and k - 3 . From standard properties of the

normal distribution the conditional posterior distribution of the location parameters11• V•n I • n 2 • L and A

givena 2 and p has the form,

where,

q(1+2p)

r(l+2p)

o
o
o
o

r(1+2p)

3q

2r(l-p)

-r(l-p)

-3q(1-p)

-6q(1-p)

cY II + Y 1.2+ Y 1.3+ Y2.1+ Y22 + Y23)/ 6

cY 1.1 - Y 2.1)12

( 2 Y I. I - Y 12 - Y I.3+ 2 Y2. 1- Y2 2 - Y2.3) 16

(-Y 1.1+ 2y 1.2- Y 1.3- Y2.1+ 2Y2.2 - Y2.3)/6

( - Y II + Y 12+ Y2.I - Y2.2) / 2

( - 2 Y I. I + Y I.2 + Y 13+ 2 Y2.1- Y22 - Y2.3) / 2

(5.2)

o
2r(l-p)

2q( 1- p)

-q(l-p)

-3r(1-p)

-6r(1-p)

o
-r(l-p)

-q(l-p)

2q(l- p)

3r(1-p)

3r(1-p)

o
- 3q( 1- p)

-3r(l-p)

3r(1-p)

6q(1-p)

9q(1-p)

o
-6q(1-p)

-6r(1-p)

3r(1-p)

9q(l-p)

18q(1-p)

Using properties of multivariate normal distributions the following posterior distributions may be derived

from (5.2),
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p(y,-c,AI<1~,<1~,X)
- 2<1~)J3<1~
6<1~

(5.3)

p(YI<1~,<1;,X) - N(y,q(<1~+2<1~)/l2)

p('rl<1~,<1~,X) - N(i:,q<1~/2)

p(A-la~,a~,X) - N(~.3qa~/2)

(5.4)

(5.5)

(5.6)

p(-CIA,o~,a~,X) (- x A z )- N -c--+- qo 182 2' 2
(5.7)

where,

and where0 ~ - <12( 1+ 2 P) anda ~,q andr are as previously defined.

Setting 9 - 2and k - 3 in (3.9) gives,

2 2 2 -N/2 (ss.) -N+. (SS2)
pCa.,<12IX) cc Ca.) exp - 2a~ (a~) exp - 2a~ (5.8)

Combining (5.8) with in turn (5.5) and (5.6) and integrating outa~ gives,

(5.9)

[
2 ] -(2N -3)/2

p(A-IX) cc ss +-(A--A)2
2 3q (5.10)

In analogy to the two-period crossover without baseline measurements analysed in§4we denote the model

containing a carryover effect by M. and thatin which it is assumed that thereis no carryover byMo. This

latter model may be obtained from modelM. by settingA - 0 , inwhich case,

(5.11 )

and
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(5.l2)

The second term in the exponential function in (5.12) arises from setting"A - 0 in (5.6). Combining (5.11) and

(5.12) and integrating a~gives,

p('rl"A=O.X) [
2x.2 8( . X.)2]-(2N-2)/2

cc SS +-+- .-.+-
2 3q q 2

(5.13)

When we considered the posterior distribution of the treatment effect under M0 in §4.1 an additional term

equivalent to 2'i.. 2 / (3 q) did not arise.This is because in the present case both1: and A are estimated within

patients so that knowing thatA - 0 implies increased knowledge about within patient variability whilst in the

former caseA is estimated between patients so that knowing itis zero increases knowledge about between

patient variability which cannot be used for making inferences about1: which under these conditionsis based

on within patient variability.

We saw in the previous section that whilst itis possible to allow for the constraintC1~ > C1~ it is not necessary

if the correct model is used, the sameis true in this case. Analogously to the two-period two-treatment case

the probability P( C1~ > C1~ I X) which, from (3.11), is given by,

may be used to confirm the appropriateness or otherwise of ignoring the constraint.

5.3 An Example of the Two-Period Crossoverwith a Single Baseline.

The data displayedin Table 5.2 are taken from a study carried out by CmA-GEIGY to compare the efficacy

and tolerability of Voltarol (V) and Indomethacin (I)in patients with rheumatoid arthritis and osteoarthritis.

Results from the study are reported by Barnes etal(1978).

Patients were randomly assigned to receive two weeks treatment with 25mg of Voltarol four times daily (qds)

followed by two weeks treatment with 25mg of Indomethacin qds or vice versa. Patients were seen on entry

to the study, and at the end of each two-week treatment period at which times a number of efficacy parameters

were assessed. In particular the data shown in Table 5.2 are the recorded values of the Ritchie index, which

is an assessment of joint tenderness in patients with rheumatoid arthritis (see Ritchie et aI,l968).

5.4 Preliminary Bayesian Analysis or Barnes etal's Data

For the Ritchie-Index data from Barnes etal(1978) the sample mean vectors and associated matrices of sums

of squares and cross-products given in Table 5.2 may be used to derive the following statistics:
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TABLE 5.2 Value of the Ritchie Index at Baseline and After Each Two-Week Treatment Period.

Period Period II
Sequence Patient Baseline 1 2 Sequence Patient Baseline 1 2

V~ 106 14 25 25 I-N 102 12 9 10

111 9 9 4 104 12 8 10

206 8 4 8 105 19 21 16

207 9 8 7 107 10 11 12

210 1 1 7 112 33 34 36

211 20 25 16 202 2 3 0

301 3 7 8 203 19 8 11

304 3 4 5 205 40 39 39

306 2 1 2 208 1 0 0

308 4 4 2 209 20 21 35

309 2 0 4 212 1 0 1

311 3 0 0 302 2 6 6

331 6 6 6 307 4 2 3

334 1 1 1 312 7 4 1

335 2 0 0 315 9 0 0

401 11 5 3 332 4 2 4

408 16 0 0 333 9 6 6

410 24 16 10 402 6 5 5

411 16 3 12 406 14 17 16

414 21 18 18 407 8 3 0

415 19 6 11 409 27 23 25

432 22 10 7 412 10 6 7

434 33 22 19 413 27 8 8

501 12 15 11 433 7 2 0

435 24 8 27

502 21 18 15

Y1.1 - 10.875 (,8040625 1162.750 8780250)
YI.Z- 7.917 BI - 1162.750 1485.833 1060.500

YI.3-7.750 878.250 1060.500 996.500

YZ.I- 13.385 (27140154 2378.615 26790308)
Yz.z-l0.538 B2 - 2378.615 2710.462 2782.231

YZ.3- 11.269 2679.308 2782.231 3533.115
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· = -1.255y

r - -0.056

s. = -0.561

SS, - 11709.332

SS2 = 1535.357

Using these statistics the posterior distributions derived above are as shownin Figure 5.1. Inthis figure

(5.9),(5.10) and (5.13) are displayed.

In contrast to the analysis of Wheadey's(1987) datain §4.4 there is not a great difference between the inferences

we may make about the treatment effect under the two modelsM 0 and M, j indeed in this case

P ('t > 0 I X) - 0.472 whilst P ('[ > 0 I A- 0 . X) - 0.7 13.That this should be so is not so surprising since

P (A. > 0 I X) - 0.343 .For this particular data then it makes little difference whether one makes inferences

about the treament effect,-c , under modelM 0 or M I

5.5 Bayes Factors - General Issues.

Whilst in this case we could again argue that because the posterior distribution of Ais a shifted and scaled

t-distribution the Bayes factor against carryoverwill have the same form as that given by Spiegelhalter and

Smith(1982) it is instructive to derive the Bayes factor directly, firstly becausein subsequent sectionsthis

simple analogywill not always be available, and secondly because an issue concerning improper prior

distributions has been obscured in the treatment of Bayes factors in §4.6.

We noted in §4.6 that Spiegelhalter and Smith(1982) had circumvented some problems in the use of Bayes

factors in situations in which improper prior densities were used by appealing to invariance arguments. In

essence they argued as follows.

Suppose that interest centres on the comparison of two nested linear models with Gaussian error structure,

Moe M " and that the models are defined by,

y - N(A;a/.o2In) 1-0.1.

wherey is an n-vector of observations,A j is a known matrix of rankPi' eI is aP -vector of unknown parameters

and a 2 is unknown. Thenif P (a j • a2 I A I) are the prior distributions for the unknown parameters under the

two models, the Bayes factor forM 0 againstM, is,

f f p(YIAo.90.a2/,,)p(90.a2IAo)daoda2

f J p(yIA,.a,.a2/,,)p(9,.o2IA,)da,da2

Under the assumption that the prior distributions,P (9;.0
2 I A;), have the improperlimiting version of the

normal-inverse-x 2 conjugate density writtenin the form,
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(5.14)

where C i(I - O. 1 ) are undefined constants, the Bayes factor may be written as,

C (I AI A 1)1/2[ ( - )F]-B/ZB _ ~ 1 I 1 + P I Po
01 I

Cl IAoAol n-c p ,
(5.15)

where F is the usual F-statistic for comparing Mo and MI • The form for the Bayes factor in (5.15) is

indeterminate because of the ratio of undefined constantsCo / Cl' Spiegelhalter and Smith(1982) circumvent

the problem of unknown constants by utilising Good's(1947)imaginary training sample.

Imagine a data set which

(i) has the minimum possible sample size allowing estimation of the parameters and thus comparison ofM 0

andM1•

(ii) provides the maximum amount of support for Mo-

The implication of (ii) is thatB 01 > 1 , since the data indicate that M0 is more likely than MI • This needs to

be tempered by (i) since any evidence provided by the data must needs be weak because of the small sample

size,so that approximatelyB 0 I ... 1 + E whereE is small. Maximum support for M0 leads to an F-statistic of

o and thereforeif E 0 and E 1 correspond to the design matrices in our "imaginary experiment", (5.15) gives,

co(' E~El,)1/2
1 +E - -

Cl' E~E 0'
implying that

(5.16 )

Clearly the form of (5.15) is dependent upon the appropriateness or otherwise of (5.14). Spiegelhalter and

Smith(1982) argue for (5.15) in preference to other forms which have been proposed because (5.15) is invariant

to both linear transformations of the design matrices as well as to scale changes in the dependent variable,

whereas its competitors are only invariant in the former case.

Two general issues are raised bythis analysis. Firstly our model for crossover designs involves two sources of

random variation, between patient and within patient, and both of these need to be taken into account when

using Spiegelhalter and Smith's results. This raises no particular problems, the solution which drops out of a

general analysis being a sensible partition of the total degrees of freedom into a within and a between patient

component. The second issue concerns the improper prior distributions. The analysis in §4, and in this chapter

too, is based on standard improper priors for the two variance components. This maybe seen from (3.3) from

which the prior densities for a ~-a 2 [ 1 + (k - 1 ) p] - between patients - anda ~ - a2 ( 1 - P)- within patients

- can be derived in the form,p (a f . a ~)cc ( a f a ~) -I •The essential problem, therefore, is that the Bayes factor
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approach requires a differentapriori specification than would standardly be used. Whilst this difference is of

theoretical interest/importance, in practice it is likely to be of only minor significance since it will effectively

only change the degrees of freedomin the posterior t-densities of the parameters of interest marginally - an

additional few degrees of freedom. Forthis reason we have taken a pragmatic approach and have not used

the Bayes factor prior densities for determining the component posterior distributions of the parameters of

interest, but have used the standard one above.

5.6 Bayes Factora- General Result.

In each particular case which we consider it would be possible to calculate the Bayes factor from scratch.

However, the following general result is simply derivable:

For the likelihood given in(3.1) defining the saturated modelM • and for the prior given by ,

then

(5.17)

For the reduced modelM r defined by,

III

112

C ,xtg - °"1

Ilg

and prior given by,

P(IlI.1l2 • .... ll
g

•az.p) at brWr(2n)-(~~-I)(aZ)-(~'I)[1 +(k-l)pf(f-''')(1-P)-(~(·2-1)-",)

then

II

p(XIMr) - brW,r(~)(S:lr2r(N(k2-l»)ICDC/I-IIZ

NU-I)

X (SSZ+(Ylyz ... y,,)CI(~DC/fICcY1Y2 ...yg)/r-2- (5.18)

where,
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5.7 Using a Bayes Factor in the Two-Period Crossover with a Single Baseline.

In the present case we may setg - 2 andk - 3 in (5.17) to give, for the saturated model, MI ,

(5.19)

The modelM 0 is defined by the contrast,

(-1 1/2 112 1 -1/2 -112) - 0

so that since

(5.18) gives,

(5.20)

From (5.19) and (5.20) we have,

WO( 2 )"2( 2A_2 )-N
B --- 1+---

01 WI 3q 3qSS2

The minimum sample sizes allowing comparison of M0 andM I are nI - 2 . n2 - 1 , or vice versa, and therefore

Spiegelhalter and Smith's(1982) proposal leads to,

1 = wo(~)1/2
WI 9
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which implies that

Wo 3-
WI 2

and

_ (~)1/2( + 2~2 )-N
BOI 2q 1 3qSS2

For the datainTable 5.2,

q-0.08013 • N-50 . SS2-1535.357 .~--0.561

sothat B O. - 3.975.As we previously noted there is little evidence to suggest that carryoverhas a significant

influence in this data set -PCA > 0 IX) - 0.343 - and this is confirmed by the Bayes factor analysis which

implies that,apriori, one would need to believe it more than four times likelier that there was a carryover than

that therewas not in order that the data and prior beliefs combined indicate that it is more likely than not

that there is a carryover. In other wordsif 1(. is the prior odds against a carryover effect then,

Table 53presents transformations of prior to posterior beliefs about the likelihood of a carryover effect in

the light of the data in Table 5.2. These results confirm that the data give little evidence in favour of a carryover

effect.

TABLE 53Posterior Beliefs in "Carryover" for Various Prior Beliefs.

PCM.) 1(. PCM.IX)

0.1 9 0.027

0.2 4 0.059

0.5 1 0.201

0.8 1/4 0.502

0.9 119 0.694

Following the analysis in 14.6 we may present inferences about the treatment effect, consequent upon

assumptions concerning carryover, graphically. Figure 5.2 presents the posterior expectation of treatment

effect (solid green line) and the associated 95% H.P.D. interval ( dashed green line), together with the posterior

probability that there is a positive treatment effect(red line) as a function of our prior belief in a carryover

effect. It is clear from this figure that there is little evidence to suggest a real treatment effect irrespective of

our prior beliefs in the model
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6 THE TWO-PERIOD CROSSOVER WITH TWO BASELINES.

6.1 Cell Means Model.

In Section§2.8 the cell means model proposed by Kenward and Jones(1987b) was introduced - see Table2.6.

This model is a natural generalization of the model displayedin Table 5.1 for a crossover design with a single

baseline.The Kenward and Jones modelwill be used inthis section.

6.2 Basic Distributions.

The cell means model put forward by Kenward and Jones(1987b) may be put into the general framework of

§3by setting9 - 2andk - 4 and by noting that,

o o o o
o
o 0

- 1 - 1

o

o
1 0

- 1 - 1

o 0

o - 1

o

o 0

o
o 1
o 0

o 0

-1 0

o -1

1

1
- 1
- 1

- 1

- 1

o
o 0

- 1 - 1 - 1

The inverse transformation has the form,

=

1/8
112
3/8

-l/8

-l/8

-l/2

-l/2

-1

118
o

1/8
o

o

1/8
o

-118
-118

-118

o
o

112

112

o
o

1/2

1/2 0 - 112 0

- 1/2 0 - 1/2

(6.1 )

1/8
o

1/8 1/8

o -1/2
1/8

o

Consider the transformation (6.1) applied to (3.6) with9 - 2and k - 4. Standard properties of multivariate

normal distributions allow the following conditional posterior distributions to be derived,

- 1/8 - 1/8 - 118

3/8 - l/8 - 1/8

- 1/8 3/8 - 118

1/2 0 0

3/8 - l/8 - 118

- 1/8 3/8 - 1/8

- 1/8 - l/8 3/8

1/2 - 1/2 0

p(y.'t.9.A.la~.a~.X)
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p(y:a~.a~,X) - N(y,q(a;+3a~)1l6)

p(T!a7.a~.X) - N(i,qa~/2)

(6.3)

p(ela~,a~.X) - N(e.qa~l2)

peA ,a7.a~.X) - N(~.3qa~/2)

(6.4)

(6.S)

(6.6)

where,

i: - C -y 1.1 + Y 1.2 + Y2.1 - Y2.2)/2

a - ( - y 1.I + Y 1.3 + Y 2. I - Y 2. 3) I2

and where a ~= a 2 (1 + 3 P ) and, as before,a ~ - a2 ( 1 - P ) .

Putting g - 2and k: - 4 in (3.9) gives,

-N/2 (SS I) -3N/2+2 (SS 2)
p(O~.O~IX) CCCO~) exp ---2 (O~) exp ---2

20 1 20 2

(6.7)

Combining the marginal posterior distribution of0~from (6.7)with in turn (6.4),(6.5) and (6.6) and integrating

out a~ gives,

pC-c I X)
[ 2 • 2 T(3N-Sl/2

(6.8)cc SS + -(-c--c)
2 q

[ 2 r(3N-Sl/2
pee IX) ex SS +_(e_~)2 (6.9)

2 q

[ 2 T(3N-Sl/2
pP,·IX) cc SS + -(A. _~)2 (6.10)

2 3q

For this crossover design the probability of the variance component constraintis given by,

(
SSI 3(N-2))

P FN-2.3(N-2l<N_2 SS2

In the previous chapters there were two modelsM 0 and M I within which it was possible to estimate the

treatment effect,-c • In the current context there are four potential models within which we can estimate the

treatment effect. The four models, which we denote byM 2 • M II • M 12 and Mo, are defined as follows :
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.\;1 2 saturated model

M II 9- 0

MI2 'f....-0

.1,10 a-o. 'f....-O

From (6.2) conditional properties of multivariate normal distributions lead to,

p(L.'f....19.a7.a~.X) - N[( i + (9 - G)/2). qa~(3 :)] (6.11)
~+(a-a) 8 4

p(L.alr...a~.a~.X) - N[(i+(r..-~)/2) qa~(3 ~)J (6.12)
G+('f....-~)/3 . 24 0

peL I x. a. 07. a~.X) - NCi: + CA- ~)/2. qa~/8) (6.13)

From (6.11),(6.12) and (6.13) the posterior densities of the treatment effect, conditional on the variance

components, are

pC'(la-O.a~.a~.X) - N(i:_~.3~a~)
p('(IA-O.a~.a~.X) - N(i:-~.q;~)

(6.14)

(6.15)

p('(19-0.A-0.a~.a~.X) - N(i: _ ~ qa~)
2' 8

(6.16)

under modelsM II • M IZ and M 0 respectively.

In Table 6.1 we summarise the conditional posterior distributions of the parameters of interest in the four

modelsM a- M II • M IZ and Mo. In order to derive the marginal distributions of the parameters in the various

models, we need the marginal distribution ofa ~under these models. Simple manipulation of (6.7),(6.11),(6.12)

and (6.13) gives,

combining these posteriors with (6.14),(6.15) and (6.16) respectively, and in each case integrating outa ~gives,
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TABLE 6.1 Conditional Posterior Distributions in Nested Models:N ( a. [3 m a ~)

't - i - 9/2 3/8 't - i - A/2

a - ()-A/3

1/8

1/3

't - -c 1/2

a - e 112

x. - A 3/2

x. - A-9 .

-c - i:-~/2 . 1/8

[
2iP 8 ( _ 0 )2]-(3N-4)/2

SS +-+- -C-"(+-
2 q 3q 2

(6.17)

[ 2A 2 8( _ A)2]-(3N-4)/2
SS +-+- -c--c+-

2 3q q 2
(6.18)

[

3()2 29~ A2 8( _ 9)2]-(3N-J)/2
cc SS +---+-+- -c-'t+-

2 q q q q 2
(6.19)

We may similarly derive,

(6.20)

p(a I X. M 12) cc [ 2A 2 3( A)2]-<JN-4)/2
SS +-+- 0-0+-

2 3q q 3
(6.21 )

The distributions above allow inferences aboutany,or all, of the parameters of a particular model to be made,

conditional of course on the assumption that the particular model is the correct one.

6.3 PreUmlnaryAnalysis or GTN Consumption DATATaken from NichollsI!I tIl(1986).

The GTN consumption data taken fromNicholls et aI(1986) and displayedin Table 2.8 give the following

summary statistics :
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Y 1.1 = 11.150 (703.025 759.938 814.875 798.663)
Y 1.2 ~ 11.875 B = 759.938 911.406 986.313 971.844

Y 1.3 = 11.750 1 814.875 986.313 1177.125 1178.688

YI.4 - 10.225 798.663 971.844 1178.688 1318.806

YZ.I = 7.800 (319.100 354.725 328.550 543.275)
Yz.z - 6.675 B _ 354.725 553.881 463.800 791.244

Y2.3 - 5.400 z 328.550 463.800 434.900 745.200

Y2.1 - 9.325 543.275 791.244 745.200 1304.631

from which the following may be derived:

y - 1.675

-c - 0.925

a - 1.500

X. - -0.300

SSI - 6049.275

SS2 - 673.600

Using these statistics the posterior distributions derived above, namely (6.8), (6.9), (6.10), (6.17), (6.18), (6.19),

(6.20) and (6.21) are as displayedin Figure 6.1.

Inthis instance weagainface the problems associated with choosing the 'correct" model for making inferences.

To illustrate under modelsM 2' M II . M 12 and M 0 the posterior probabilities of a positive treatment effect

are:

P(-c>0IM2) - 0.794

P(-c>0IM1I) - 0.571

P(-c>0IMI2) - 0.971

P(-c>OIMo) - 0.969

respectively. Thus the inferences which we are able to make about the treatment effect are highly dependent

on the choice of the model to be used to make the inferences. Kenward and Jones(1987b) propose the following

scheme:

i) Test the significance ofe· compare modelsM 2 andM II .

ii) If e is not significant, then test the significance ofh. • i.e. compare modelsM II and Mo. Ife is

significant, inferences concerning the treatment effect, "[ , may be made using modelM 2 •
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iii) If A. is not significant, inferences concerning the treatment effect,1: , may be made using model M0

, otherwise MII should be used.

Applying this scheme to the Nichollsetal data would lead to the use of modelM0 for making inferences about

the treatment effect. The ultimate classical inference, therefore, would estimate the treatment effect as 1.075

with associated 95% confidence interval (-0.055,2.205) and perhaps one would conclude that thereis marginal

evidence supporting a significant difference between treatments.

6.4 Using Bayes Factors 10 the Two-Period Crossover with a Two Baselines.

Ifwe set g - 2 and k - 4 in (5.17) then for the saturated model MZ we have,

(N)(SSI)-NIZ (3N)(SSZ)-3NIZ
P(XIM2) ... b2w2r '2"2 r 2 "2 (6.22)

The model MII is defined by the contrast,

(-1/2 0 112 0 1/2 0 -112 0) - 0

so that since

(5.18) gives,

(6.23)

From (6.22) and (6.23) we have,

Wll(2)/Z( 2()Z )-3NIZ
B - - - 1+--

II.Z Wz q qSSz

The minimum samplesizesallowing comparison of MII and Mz arc nI - 2 • n z -1 ,or vice versa, so that

Spiegelhalter and Smith's(l982) proposal leads to,
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implying that

W II (4 \ 1/2
~ 3)

(
3 ) 1/2( 292 )-3NI2

B - - 1 +--
11.2 2q qSSz

Similarly for the modelM 12 defined by the contrast,

we have,

(-1 112 0 112 1 -1/2 0 -1/2)

(
3 ) I/Z( 2h. 2 )-3N/2

B - - 1+---12.2 2q 3qSS2

and for the modelMo defined by the contrast,

(
-112

- 1

we have,

o
112

o

= (~)

(6.24)

(6.25)

(6.26)

Suppose there are three modelsM I ' M J and M t in which we have interest then from the definition of Bayes

factors,

so that clearly,

112 0

o 112

112 0
1 - 112

-1/2

o

BII =
P(M d X) P(M I)

P(MI) P(M/IX)
, Bit =

P(M/IX) P(Mt)

P(M/) P(Mt I X)
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P(M,IX) P(M,) P(M,IX) P(M~)

P(M,) P(Mj I X) P(Mj) P(M. I X)

P(M,IX) P(Md

P(M,) P(M.IX)
= 8,t

In other words Bayes factors are transitive. Usingthis result, and the clear fact thatB 1/ - 118/1 ,we may derive

using (6.24),(6.25) and (6.26) the following Bayes factors:

_ (55z+2X.Z/(3q»)-3N/2
552+ 292/q

80.11
_ (2_) 1/2( SS Z + 392/q - 29~/q + ~ 2/q)-3NI2

2q sSz+29Z/q

_ (2_) 1/2( SS 2 + 39Z/q - 29~/q + ~ Z/q)-3NIZ

2q SSz+2~2/(3q)
80.12

By definition,

802x02 '"'
P(Mo I X)

P(M21 X)

P(MIIIX)

P(M2IX)

P(MI2IX)

P(M2IX)

P(MI1IX)

P(MI2IX)
812.2le12.2

=
1+ 802X02+ 8 II. 2le11.2+ 812.2le12.2

P(Mo IX)
1+ 802X02+ 8 II. 2leII. 2+ 812.2X12.2

The application of the above results requires specification of either the prior odds ratios, 1(.,/ , or alternatively

the prior probabilities of the individual models MI • In §4.6 we suggested that indifference to the choice of

model could be representedbyx - L In the present context indifference translates t01(.II.2 - 1(.12.2- 1(.0.2- 1

or alternatively P (M 2) - P (M 11) - P (M 12) - P (M 0) - O.2S and application ofthis idea to the present data

gives the following:

B 11. 2 - 1.022

B 12.2 - 2.702

B02 - 1.404

BIZ.11 - 2.644
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BO.II 1.373

BO.12 0.519

suggesting that there is no strong evidencein favour of one particular model and this is confirmed by the

posterior probabilities of the individual models :

PCM2) - 0.163

PCMII ) - 0.167

P(M 12) - 0.441

P(M 0) - 0.229

What is interesting is thatif apriori we are indifferent to the choice of model, the data suggest thatM IZ is the

most likely.This clearly conflicts with the Kenward and Jones( 1987b) approach which effectively assumes that

M 0 is the "correct" model with probability1. We can progress the analysis by calculating the unconditional

posterior probability of a positive treatment effect from :

P(,;>OIX) - P(';>0IX,Mz)P(M2IX)+PC';>0IX,MII)P(MIIIX)

+ PC,; > 0 I X, M 12)P(M 121 X) + PC,; > 0 I X, M o)P(M 0 I X) (6.27)

which for the present data givesP (,; > 0 I X) - 0.875, suggesting no strong evidence that thereis a difference

between treatments.

It is tempting to suppose that with the calculation of the above unconditional posterior probability theanalysis

is complete with the exception of providing the unconditional posterior density of the treatment effect, p (,;I X)

, which is shown in Figure6.2 together with the conditional posterior treatment densities. However, as we

pointed out in §4.6, posterior beliefs about treatment effects depend on prior beliefs about the "correct" model

and in order to present conclusions in a way that allows different individuals to input their own subjective

beliefs we need a way of representingthis dependence.Inthe next section we present one method of graphical

representation.

6.5 Graphical Representation of the Dependence of Posterior Inference on Prior Beliefs.

Suppose that interest centres on the calculation ofP (,; > 0 I X) and that wewish , in analogy to the analysis

in §4.6, to provide a graphical display of the dependence ofPC,; > 0 I X) on P (M 2) , P (M II) , P (M 12) and

P ( Mo) . In order to simplify the notation somewhat letP U IX denote the unconditional posterior probability

PC,; > 0 I X); P 21X , P IIIX, P 121X andP olxthe conditional probabilitiesP(,;> 0 I X, M 2) ,PC,; > 0 I X, M II)

, P (,; > 0 I X , M 12) andP (,; > 0 I X , Mo) andP 2 , P II ,P IZ and Po the prior probabilitiesP ( M 2) , P ( Mo)

, P (M 0) and P ( Mo). We may manipulate(6.27) to write it in the form,

PUIX -
P2P21X + B II. zP II P IIIX + B 12.2P 12P 121X+ B02POPOIX

P2+ BII.ZPII + B1Z•ZP12+ BozPo
(6.28)
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Suppose wefix P 2, the (6.28) can be thought of as providing a means of displaying straight line contours of

PI/I X over the simplexP II + P 12+ Po - 1 - P 2 • The intersection of the contours with the edges of the simplex

may be derived as follows:

i) set Po - o. P 12 - 1 - P 2 - P II and solve (6.28) forP II to give,

PZ(PZIX - PI/IX) + Cl - Pz)B IZ.Z(P IZIX - PI/IX)

B IZ.2(P IZIX - PI/IX) - B II.Z(P IIIX - PI/IX)

ii) set P 11 - o. Po - 1 - P Z - P 12 and solve (6.28) forP 12 to give,

PI2 -

PZ(PZIX - PI/IX) + (1 - P2)Boz(POIX - PI/IX)

B02(POIX - PI/IX)- BI2.2(PIZIX - PI/IX)

iii) setP IZ - O. P II - 1 - P Z - Po and solve (6.28) forPo to give,

PZ(PZIX - PI/IX) + e1- Pz)B II. zep lllX - PI/IX)

B II.z(P IIIX - PI/IX) - Boz(P OIX - PI/IX)

If, for a given value ofPI/I X ,there exist values ofP z ,P 1I ,P 12 and Po giving rise tothis value then only

two of the three above cases give the endpoints of the particular contour. Which two of the three are the

correct ones may be easily found from the condition,

A graphical display of the dependence of posterior inference on prior beliefs may therefore be created by

displaying contours ofP ('t > 0 IX) on a triangular plot of the simplexP 1 1 + P IZ + Po - 1 - P Z for a number

of values ofP 2.To illustrate we haveused the method for the GTN consumption data taken from Nichollset

at (1986).

The choice of values forP 2 is essentially arbitrary although some values are clearly of interest. We have chosen

for this application the following values :

Pz - 0.0 . 0.25 . 0.50 . 0.75

Use ofP 2 - 0 allows us to look at the case when we assumeapriori that the saturated model is impossible

whilst P Z - 0.25 allows us to consider the case of indifferenceP Z - P II - P 12 - PO. We have purposely

ignored the valueP 2 - 1 since inthis case the posterior inference which we makeis simply based onP ZIX ;
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effectively [his corresponds to the assumption that M2 is the correct model with probability 1. As we said

before, the choice of valuesis essentially arbitrary and the values 1/2 and 3/4 were merely chosen to span the

range between indifference and certainty. Applying these ideas to the Nichollset.al data gives rise to the

graphical display shown in Figure 6.3.

There are a couple of features of Figure 6.3 which are worthy of comment:

i) Whilst the contours are linear functions of the individual model probabilities, the separation of the

contours is non-linear. This feature corresponds to the non-linear relationship betweenP(,; > 0 I X)

and P( M .) shown in both Figures4.5 and5.1.

ii) If we are interested in posterior probabilities of a positive treatment effect greater than 0.95, then

our initial prior belief in the likelihood of the saturated modelM 2 must be less than 0.25, at the same

time our initial prior belief in modelM.. must be less than approximately 0.10. This requirement

effectively says that we would need to bea priori fairly certain that thereis unlikely to be a second-order

carryover effect (treatment x period interaction) in order that posterior probability of positive treatment

effect is high.

6.6 Analysis or Weekly Anginal Attack Data from Nicholls et al(1986).

Table 6.2 displays a second set of data from the study reported by Nichollset al(1986). In this instance the

data relate to weekly angina attack rates. The table also contains the mean vectors and matrices of corrected

sums of squares and cross-products derived from the data.

From the summary statistics the following may be derived:

y - 2.800

,; - -0.650

G - -0.475

A. - -3.125

SS. - 4927.372

SS2 - 392.216

The scheme proposed by Kenward and Jones(1987b) allows the following conclusions to may be made:

i) G- -0.475 , s.e .(9) - 0.852 . with associated two-sided p-value 0.5796, from which we

conclude that we may reject the saturated modelM2 •
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TABLE 6.2 Weekly Angina Attack Rate.

1st Period 2nd Period

Sequence Patient Baseline Treated Baseline Treated

TN~SDN 1 1.00 2.00 2.00 1.25
4 41.50 30.00 31.50 27.00

10 20.50 20.50 21.00 25.50
12 15.50 14.50 14.50 13.25
14 16.00 18.00 12.50 9.00
15 2.00 3.50 3.00 2.25
17 10.00 9.00 7.50 5.50
20 10.00 8.50 6.00 4.25
22 14.00 2.00 2.00 1.25
24 5.50 2.50 1.50 2.50

ISDN~TN 3 17.50 19.25 19.00 21.25
5 11.00 6.50 7.50 6.50
7 4.00 2.00 1.50 3.00
9 11.00 16.50 10.00 18.25

13 6.50 4.25 0.50 1.25
16 6.00 3.25 2.00 4.00
18 1.00 0.00 0.00 0.00
21 3.00 0.75 3.00 5.25
23 9.50 1.00 0.50 8.50
25 10.50 14.00 11.00 17.25

11.1- 13.600 (1220.400 900.950 961.350 879.325)
11.2- 11.050 B _ 900.950 813.225 829.925 777.788
11.3-10.150 1 961.350 829.925 881.025 841.613

11.4- 9.175 879.325 777.788 841.613 856.756

12.1- 8.000 (213.000 263.750 235.500 283.875)
12.2- 6.750 B _ 263.750 459.625 376.625 455.250
12.3- 5.500 2 235.500 376.625 351.500 389.000

12.4- 8.525 283.875 455.250 389.000 524.056
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ii) In model M II ,'f.... .. - 2.650 . S • e. ('f....) .. 1.198 , with associated two-sided p-value 0.0311, so

that we cannot reject modelM II'

iii) In model M II ,i: - - 0.413 • S •e.Ci:) - 0.733 ,with associated two-sided p-value0.5761, so

that the ultimate classical conclusionis that thereis no evidence of a significant treatment effect.

The Bayesiananalysis is based on the posterior distributions(6.8)-(6.9) and (6.17)-(6.21)which are displayed

in Figure 6.4.Inspection ofthis figure shows, firstly, that in both modelsM 2 and M 11 there is evidence to

suggest that the second order carryover,A. ,is important - underM 2 the 95% H.P.D. interval forA. is

(-6.085,-0.165) whilst the corresponding interval underM 11 is (-5.050,-0.250). Secondly, treatment inferences

are again highly dependent upon the model. As illustration the following posterior probabilitiesmay be

calculated:

PC,; > 0 1M2) - 0.225

PC,;>OIMII) - 0.288

PC,; > 0 IM 12) - 0.979

P(,;>OIMo) - 0.979

and by implication the second order carryover,A. ,determines whether oneis able to conclude that there is

a real treatment effect, or not.

The datagive rise to the following Bayes factors:

B11.2 = 2.306

B 12. 2 .. 0.250

B02 0.489

which, if we are indifferent to the choice of model, give

P(M 2) - 0.247

PCM II) - 0.570

PCM 12) - 0.062

PCMo) - 0.121

Thus under an indifference model thereis much more evidence to support models includingA. rather than

excluding it and thereforewe are led to conclude that there is no great evidence for a treatment effect, indeed

the marginal probability of a positive treatment effect is 0399.
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Figure 6.5 provides a graphical display of the posterior distributions of the treatment effect under the models

M2' M II • M 12' M0 together with the marginal posterior distribution of the treatment effect under the

indifference model.This latter distribution is of particular interest evidencing, as it does, the sort of shoulder

described in §4.6 even though the more peaked densities are less than 1/5 as likelythan the less peaked

densities.

We canagain provide a graphical display of the relationship between the prior model beliefs and posterior

inference.This we give in F'IgUI'e6.6. It is clear from the top left-hand triangle, thatis whenP( M 2) - 0 , that

only when we are practically sure thatA. is not in the modelcan we conclude that thereis a real treatment

effect.
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7 EXTRA PERIOD CROSSOVER DESIGNS.

7.1 Introduction.

In this chapter we investigate Bayesian analyses of extra-period crossover designs. These designs have been

recommended by numerous authors as preferable to the simple two-period two-treatment crossover design

mainly because the contaminating factor - carryover or periodx treatment interaction -can be estimated

within patients.

7.2'IbreePeriod Designwith Two Sequences.

We noted previously that the three-period two-treatment crossover designADB,BAA is universally optimal

amongstall three-period two-treatment designs and wewill therefore restrict our attention tothis design. In

the discussion, however,we will return to other designs in theclass of three-period two-treatment designs to

sec how, for a Bayesian, they are inferior to the above design.

7.2.1 Cell Means Model.

In 12.10.1 the cell means model considered by Kenward and Jones(1989)was introduced - see Table 2.10.In

line with our parametrizations of previous models we use the cell means model shown in Table7.1 where, as

previously,y represents the sequence effect,n I andn2 independent period effects, ~ the overall mean,"C

the treatment effect andk the carryover effect.

TABLE 7.1 Cell Means Model for the DesignADB,BAA.

Sequence Periods

Group 1 2 3

ADB !l+y+nl+'C !l+y+n2-'C+k !l + Y - n 1- n2 - 'C- k

BAA !l-y+nl-'C !l-y+n2+'C-k !l- y - n 1- n2 + 'C+ k

7.2.2 Basle Distributions.

By settingg - 2 andk - 3 and by noting that,

IlII 1 1 0 0 !l
1112 1 0 1 -1 1 V

1113 1 - 1 -1 - 1 - 1 nl

!l21 1 - 1 1 0 -1 0 n2

1122 1 - 1 0 1 1 - 1 'C

1123
1 -1 - 1 - 1 1 1 x

the cell means above maybe put into the general framework of §3. The inverse transformation takes the form,
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iJ. 116 116 116 116 1/6 1/6 iJ.1I

y 114 1/8 1/8 -1/4 -1/8 -1/8 iJ.12

nl 1/3 -1/6 -1/6 1/3 -1/6 -1/6 iJ.13

"2 -1/6 1/3 -116 -116 1/3 -1/6 iJ.21
(7.1 )

,; 1/4 - 1/8 -1/8 -1/4 118 1/8 iJ.22
A 0 1/4 -1/4 0 -1/4 1/4

iJ.23

By applying the transformation (7.1) to (3.6) with g - 2 andk - 3 . From standard properties of the normal

distribution the conditional posterior distribution of the location parametersiJ.• Y • n I • n 2 • ,; and A givena2

and p takes the form.,

cY 1.1+ Y 1.2+ Y 1.3+ Y2.1 + Y202+ Y2.3)/6

(2y 1.1+ YI.2 + Y 1.3- 2Y2.1 - Y202- Y2.3)/8

(2y- -s -s +2y- -y- -y- )/61.1 1.2 1.3 2.1 2.2 2.3

(-Y 1.1+ 2y 1.2- YI.3 - Y2.1 + 2Y202 - Y2.3)/6

(2y 1.1- YI.2 - Y 1.3- 2Y2.1 + Y2.2 + Y2.3)/8

(y 1.2- Y 1.3+ -Yz.z + Y2.3)/4

where,

8r( 1+ 2p)

3q(3+Sp)

4r(1-p)

o -2r(1-p)

3q(1-p)

o
4r(l-p)

16q(1-p)

-8q(1-p)

12r(1-p)

o

o
-2r( 1- p)
-8q(1-p)

16( 1- p)

-6r(I-p)

12r( 1-p)

o
3q(1-p)

12r(I-p)

- 6r( 1-p)

9q( 1 - p)

o

8q(1 +2p)

8r(I +2p)

o

o
o o

(7.2)

o
o
o

12r(I-p)

o
12q(l-p)

From standard properties of multivariate normal distributions the following posterior distributions may be

derived from (7.2).

p(,;.Ala~.a~.X) - N[(~)'3~(3~~ 4~~)]
p(';la~.a~.X) - N(i:.3qa~/32)

p(AI a~. a~. X) - N(~. 4qa~/32)

where

,; - (2y 1.1- Y 1.2- Y 1.3- 2Y2.1 + Y202+ Y2.3)/8

~ - cYI.2-YI.3-Y2.2+Y2.3)/4

anda2 • q and r are as previously defined.

Setting g - 2 andk - 3 in (3.9) gives,
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(7.6)

Combining (7.6) with intum (7.4) and (7.5) and integrating outa~ gives,

[
32 _ ]-<2N-3l/2

pC'; IX) cc SS2 + -C,; - ,;)2
3q

(7.7)

[
32 ]-<2N-3l/2

peA. IX) cc SS + -CA. - A,)2
2 4q (7.8)

We could at this stage proceed precisely as we did in§4 and §S defining M J to be the model containing

carryover and M0 the model without carryover. However examination of (7.3) shows that n andA. are

independent, and therefore the onlything to be gained from such an analysisis an extra single degree of

freedom in the posterior distribution ofa ~.

7.23 An Example or the 'Ihree·Period, Two-Treatment Crossoverwith TwoSequence Groups.

InTable 2.11we presented data from a study involving anti-hypertensive treatment. The firsttwo sequences

of that design, namely L-LC·LC and LC-L-L, form precisely the design considered above and we may therefore

analyse those sequences alone following the method given in§7.2.2. These data give rise to the following

summary statistics,

YI.I - 96.818 C355.273 831.909 359.636)
Y 1.2 - 92.227 BI - 831.909 1421.864 732.455

YI.3 - 91.909 359.636 732.455 1765.818

YZ.I - 90.333 (2674.000 1815.667 1887.333)
Yz.z - 91.815 Bz - 1815.667 2528.074 1637.148

YZ.3 - 90.630 1887.333 1637.148 3280.296

from which the following statistics may be calculated,

,; :II 1.410

A, '"' -0.217

SSI ... 9184.540

SSz - 3840.785

Using these statisticsthe posterior distributions derived above namely (7.4) and (7.5) are as shown in F"JgUJ'e

7.1. The posterior distribution ofthe treatment effect,"t ,shows that thereis evidence to suggestthat there is

a difference between Lopressor(L) and Lopresoretic(LC) withrespect to their effect on diastolic blood

pressure. The posterior probability tharc is positive is 0.9931 and the posterior expected valueis 1.410
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corresponding, to Lopresoretic reducing diastolic blood pressure by approximately 3 mm Hg more than

Lopressor. In contrast, the posterior distribution of the carryover effect,A. , shows little evidence of a carryover

effect, although the 95% H.P.D. interval forA. is (-1.506,1.072).

7.3 Three Period Designwith Four Sequences.

Ebbutt(1984) whilst acknowledging the optimality of the two-sequence three-period design considered in §7.2

argues that the four-sequence three-period design in this section is preferable a) because the latter design

allows more complex models to be considered, b) the former design does not have the same treatment in

consecutive periods which should highlight carryover effects most clearly and c) the former design may cause

bias since investigatorswill know that the treatmentsin the last two periods are always identical.

7.3.1 Cell Means Model.

The cell means model which we considerin this chapter is shown in Table 7.2 where,

overall mean,

y j (i = 1,..,3) independent sequence group effects,

ne (i=I,2) independent period effects,

direct treatment effect,

first-order carryover effect,

a second-order carryover effect,

(~ -c)

(yn)j (i= 1,2)

interaction of direct and first -order carryover effect,

independent group x period interaction effects.

These last two effects are included to complete the partition of the total12 degrees of freedom available in a

three-period design with four sequences. Wewill, when considering basic distributions for analysing this design,

condition on these effects being zero and theywill thus contribute to our knowledge on the within patient

variance component alone.

7.3.2 Basic Distributions.

We may place the above cell means model into the general framework developed in §3.1 by settingg - 4 and

k: - 3 and by noting that,
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Illl
0 Il0 1 0 0 0 0 - 1 0

1112
1 0 0 0 1 - 1 0 - 1 1 0 VI

1113 1 0 0 - 1 - 1 - 1 - 1 1 1 0 0 Vz
1121 1 0 1 0 1 0 - 1 0 0 0 0 -1 V3
1122 1 0 1 0 0 1 - 1 0 - 1 0 1 ttl
IlZ3 1 0 0 - 1 - 1 1 1 -1 1 0 0 ttz
1l3) 1 0 0 1 1 0 1 0 0 0 1 0 L

1132 1 0 0 1 0 - 1 1 0 -1 - 1 0 A.

1133
1 0 0 1 -1 - 1 1 - 1 1 -1 0 0 9

1l4)
1 - 1 -1 - 1 1 0 - 1 0 0 0 0 1 ("tA.)
1 - 1 -1 - 1 0 -1 0 - 1 0 -1 (ytt))1142 1 -1 - 1 - 1 -1 - 1 - 1 1 - 1 - 1 0 0 (ynh1143

whose inverse transformationhas the form,

Il 1 1 4 1 1 4 3 3 0 3 3 0
IlII

VI 5 - 1 -4 5 - 1 -4 3 -3 0 3 -3 0 Illz

V2 -4 2 2 -4 2 2 0 6 -6 0 6 -6 1113

V3 9 3 6 -3 3 -6 3 -3 -6 -9 -3 6 1121

ttl -3 3 -6 9 3 6 -9 -3 6 3 -3 -6 1122

ttz 1 -3 -9 6 -3 3 -6 15 9 -6 -9 -3 6 1123-'C 24 3 3 -6 -3 -3 6 -3 -3 6 3 3 -6 1131
A. 0 12 -12 0 -12 12 -12 0 12 12 0 -12 1132
9 -3 IS -12 3 -IS 12 - 21 -3 24 21 3 24

1133
('CA.) -3 -3 6 -3 -3 6 3 3 -6 3 3 -6

1141
(vn) I -6 6 0 0 0 0 6 -6 0 0 0

1142
(ytth 0 0 0 -6 6 0 0 0 0 6 -6 0

1143

(7.9)

Consider the transformation (7.9) applied to (3.6) withg - 4 andk - 3 . Once again standard properties of
multivariate normal distributions allow the following conditional posterior distribution to be derived,

L

x
P(L. A. 8. ('CA)(vn)I' (vn>z Ioz. p. X)

e.. N (L).,) .1:4 (7.10)

(yil)1

(yil}z

where,
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L cY 1.1+ Y 1.2- 2y 1.3- Y2.1- Y2.2+ 2Y2.3 - Y3.1- Y3.2+2Y3.3 + Y4.1+ Y4.2 - 2Y4.3)/8

X. - (y I.Z- Y 1.3- Y2.2+ YZ.3- Y3.1+ Y3.3+ Y4.1- Y4.3)/2

G - (-Yl.l+SYI.2-4YI.3+Y2.I-SY2.2+4Yz.3-7Y3.I-Y3.Z+8Y3.3+7Y4.1+Y4.z-8Y4.3)/8

(-c"X.) - (-Y 1.1- Y I.Z+ 2y 1.3- Y2.1- Y2.Z+ 2Y2.3 + Y3.1+ Y3.2- 2Y3.3 + Y4.1+ Y4.2- 2y4.3)/8

- (- Y 1.1 + Y 1.2+ Y3.1- Y3.2)1 4

- (-Y2.1 + Y2.2+Y4.I-Y4.2)/4

3ml 6ml 6m2 3m3 0 0

6ml 16ml 6m4 6m3 4m:s 4m6

r4

a2(I-p) 6m2 6m4 3m7 6ma 6m:s 6m6

32 3m3 6m3 6me 3ml 0 0

0 4m:s 6m:s 0 4m9 0
0 4m6 6m6 0 0 4mlo

1 1 1 1
- -+-+-+-

n I n2 n3 n4

1 1 1 1
- --+---+-

nl n2 n3 "4

1

1 1 2 2
-+-+-+-
"I "2 "3 "4
335 5
-+-+-+-
"I "2 n3 "4

1 1
--+-

"2 "4ms -

7 7 19 19
- -+-+-+-

nl n2 n3 "4

1 1 2 2
- --+---+-

nl "2 "3 "4
mlO ..

Settingg - 4 and k - 3 in (3.9) gives

2 Z Z -NIZ'I (SSI) 2 -N.3 (SS2)
p(al'a2IX) CIC (al) exp -2a~ (<'2) exp -2a~ (7.11 )

We noted previously that the effects(y n) I and(y n)2 were of no particular importance and that we would

condition on their being zero. From conditional properties of normal distributions the following distributions
may be derived where we have notationally ignored that the distributions are conditional on the above two
parameters being zero,
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[( i) cm, 6m, 6m2 3m,)]
p(,;. A. e. ("0 ..) I O'~. O'~. X)

~' o~ 6ml 4mll 6ml2 6m3
N e' .326m2 6ml2 3ml3

6m
B

(7.12)

etA.) 3m3 6m3 6mB 3ml

p('tlo~.o~.X) _ N( i 3mla~) (7.13)• 32

p(Ala~.a~.X) _ N(~·.m~a~) (7.14 )

p(ela~.a~.X) _ N( e' 3mI3a~) (7.15). 32

p«'tA) I a~. a~. X) _ N( A. 3m la~) (7.16)('t ). 32

where

_ ~_ (n3-nl)(yn)l_ (n2-n4)(ynh

nl + n3 n2+ n4

_ a-3(n3-nl)(yn)l_ 3(nZ-n4)(ynh

2(n 1+ n3) 2(nz + n4)

m~ m:
- 4ml----m9 mlo

m~ m:
- m4----

m9 mlo

3m~ 3m~
- m7------

m9 mlO

Since we have set(y n) I and (y n) 2 to zero (7.11) no longer provides the posterior distribution ofa 2 which

now becomes,

(7.17)

CombiningthemarginaldistributiODofa~ from(7.17) within turn (7.13),(7.14),(7.15) and(7.16) and integrating

out a ~gives,

[
8(yn)lz 8(yn)/ 32 ~ ]'<ZN'5)/2

p('tIX) GC SS2+ + +-_('t-'t)2
m9 mlo 3ml

(7.18)

[

8( n) 2 8( n) Z 8 ]'<2N'5)/2
peAIX) GC SS2+ Y I + Y 2 +_(A_~')2

m9 mlO mil
(7.19)
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[

S( it) z S( it) 2 32 ]-(ZN-Sl/Z
p(9IX) cc SSz+ Y I + Y 2 + __ (9_0")2

m9 miD 3ml3
(7.20)

[

S( it) 2 SC -) 2 ]-(ZN-Sl/Z
p«'CA) I X) cc SSz + Y I + yn Z + 32 «'CA)- ('C).,»z

m9 mlo 3ml
(7.21)

In the previous chapter there were four potential modelswithin which the treatment effect could be estimated.

In the present case we consider the following models :

M3 full model

Mz ('CA) - 0

Mll ('CA)-O 9-0

Mlz ('CJ...)-O J...-O

Mo ('CJ...)-O a-o . J...-O

Clearly there are other models which could be investigated, however considerations of marginality suggest

that the above models are the only ones which need to be considered.

From (7.12) conditional properties of multivariate normal distributions lead to,

ModeIMz

(7.22)

(7.23)

(7.24)

where

- "" _ m3 ).,
'C 'C--('C )

ml

'i..""
2m3- 'i..*--('CA.)
m.

~""
2me- ~*--(,;A.)
ml

ml4 - m~-m~

mill - m.mll-3m~

ml6 mlmI3-4m=

ModeiM II
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where

ModelMlz

where

ModeIMo

where

p(l:I(l:A.)=o.a=O.a~.a~.X) _ N( .... 3a~mI7)
,; • 32ml

p(A.I(l:A.)=o.a-O.a~.o~.X) _ N(/...···.a~mI8)
8m.

...
l:

A.• • •

p(1: I (1:A)" O. A'" O. a~.a~.X)
_ N( ..... 3a~mI9)

1: • 32ml

p(OI (1:"-)" o.A ...O. a~.a~.X) _ N(O ... ,3a~mzo)
32ml

• • 3 m~-m~ • •
- 1: - A

2mlmll-3m~

0'"

p(1: 1(1:"-) - 0, "- - 0.0 .. 0,a~, a~, X)

BXTRA PERIOD CROSSOVER DBSIONS.
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(7.26)

(7.27)

(7.28)

(7.29)
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't • • • • •

The posterior distribution of o~ depends upon the particular model considered. Under M3 the posterior

distribution ofa~ is given by (7.17) while the remaining cases are as follows:

(
2)-N.3/2 { 1 [ss 8(yn)~ 8(yn)~ 32(';~)2J}M2:P(0~IX) cc O2 exp --2 2+ + +--,':'-""';_

202 m9 mlo 3ml
(7.30)

(7.31 )

(7.32)

(7.33)

Under M2 the posterior distributions ofr .A andemay be obtained by combining respectively (7.22), (7.23)

and (7.24) with (7.30) and integrating outa~ each giving a t-kemel. Likewise, under M11 (7.25) and (7.26)

are combined with (7.31) to give the posterior distributions of-r and A respectively; under M12 (7.27) and

(7.28) are combined with (7.32) to give the posterior distributions of-e ande respectively; under Mo (7.29)

is combined with (7.33) to give the posterior distribution of,; .

Before applying these results to the complete data in Table 2.11 itis instructive to consider the case of equal

n, .Suppose, therefore, thatn I - n2 - n3 - n4 - n, then conditional on knowing the variance components the

marginal posterior distributions of the effectsineach of the models M3' M 2. M II • M 12and Moare,ina similar

notation to that of Table 6.11, as given in Table 7.3.

The fact that the posterior distributions ofr,A andeunder models M3 and M2 are identical reflects the

fact that the effects (V n) I and (V n )2 are orthogonal to the other effectsin the full model as pointed outby
Jones and Kenward(1989,§4.8). The remaining resultsin Table 7.3 arealso to be foundin §4.8 of Jones and

Kcnward(1989).
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TABLE 7.3 Conditional Posterior Distributionsin Nested Models: N (a .l3a~/ n)

Model Effect a 13

Ma "C "C 3/8

A- A. 2

o a 39/8

(1:A-) ("CA.) 3/8

M2 - 3/81: 1:

A- A. 2

e a 39/8

Mil "C ;;-3(J/13 3/26

A- A.- 8A/13 2/13

Ml2 1: i:- 3A./8 3/32

e A- 3A./2 3/8

Mo 1: i:- 3A./8 3/32

733 PreUmiaaryADalyais of the Data DlsplayM in Table 1.11.

The diastolic blood pressure data givenin Table 2.11give rise to the following summary statistics :

YI.1 - 96.818 C355.273 831.909 359.636)

Y 1.2- 92.227 BI - 831.909 1421.864 732.455

Y i,a - 91.909
359.636 732.455 1765.818

Ya.1 - 90.333 (2674.000 1815.667 1887.333)

Yu - 91.815 B2 - 1815.667 2528.074 1637.148

Yu - 90.630
1887.333 1637.148 3280.296

Ya.1 - 93.304 (2484.870 2177.826 1595.391)

Yu - 89.739 Ba - 2177.826 3084.435 1298.522

Y3.3 - 92.087
1595.391 1298.522 2233.826

Y".1 - 90.941 C220.941 1008.412 1257.235)

Y".2- 88.412
B .. - 1008.412 1384.118 949.353

Y403-86.235
1257.235 949.353 1335.059

from which the followingmay be derived :
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1: 1.544

A = 1.311

G = 2.425

(1:~) = -0.046

(yn)1 .. -0.256

(ynh .. 1.003

SSI 18963.449

SS2 = 6825.124

At this juncture we could, as in §6.3 and §6.6, display posterior distributions forall of the parameters in each

of the models M3' M Z • M II • M IZ and Mo, and that is clearly appropriate for the purpose of assessing the

likely importance of the nuisance parametersA. ,e and (1:A.) • Accepting the importance of such a display,

here we will only display the posterior distributions of the treatment effect, -c , under each model as the

treatment effect is generally of primary interest. The posterior distribution (7.18), and those derived from

(7.'12) and (7.30), (7.25) and (7.31), (7.27) and (7.32) and (7.29) and (7.33) are shownin Figure 7.2. The

posterior distributions displayed in Figure 7.2 clearly demonstrate that inferences concerning-c are dependent

upon whether (1:A.) and either A. or emay be assumed tobe negligible or not, although it should be noted

that under any of the models thereis evidence of a positive treatment effect.In general this will not always

be the case.

7.3.4 Bayes Factors in the Three-Period Two-Treatment Crossover with Four Sequence Groups.

Ifwe setg - 4 and k - 3 in (5.7) then since the model M3 is determined by the contrast,

1(-1 1 0 0 0 0 1 - 1 0 0 0 0)
C=4 0 0 0 -1 1 0 0 0 0 1 -1 0

and since

0 0 0
nl

0
1

0 0

®G D
0

D -
nz

1

0 0
1

0 0
n3

0 0 0
1

n.

(5.18) gives
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(7.34)

Similarly M a is definedby

C -1 2 - 1 - 1 2 -2 1 -DC-! -2 2 0 0 0 0 2 -2 0 0 0
8 0 0 0 -2 2 0 0 0 0 2 -2

so that from(5.18)

P(X IMz) - b3Wzr( ~)( S:1 yNIZ r(3;')

(7.35)

M 11 is defined by

Cl 5 -4 1 -5 4 -7 - 1 8 7 1 -8)1 - 1 - 1 2 - 1 - 1 2 1 1 -2 1 1 -2c--
08 -2 2 0 0 0 2 -2 0 0 0 0

0 0 0 -2 2 0 0 0 0 2 -2 0

so that from(5.18)

(N)( SS yNIZ (3N)
P(XIMll)-b3wllr 2' T r"2

[3 (12 Z 9 2 9 2)J-1/23 -1/2 m» 1 me ms m6
X(48mlm9mlo/32) ---- ---+--+--

32 32 ml m9 mlO

(7.36)

M 12 is defined by

( 0

4 -4 0 -4 4 -4 0 4 4 0 -4)1 -3 -3 6 -3 -3 6 3 3 -6 3 3 -6
C- 24 _~ 6 0 0 0 0 6 -6 0 0 0 0

0 0 -6 6 0 0 0 0 6 -6 0

so that from(5.18)
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(48 /323)-1f2[ 16ml_..!...( 12m~ 4m§ 4m~)J-1/2x mlm9ml0 --+ __ +__
32 32 rn , m9 mlO

(7.37)

M 0 is defined by

0 4 -4 0 -4 4 -4 0 4 4 0 -4)-3 IS -12 3 -IS 12 -21 -3 24 21 3 -24
1c-- -3 -3 6 -3 -3 6 3 3 -6 3 3 -6

24
-6 6 0 0 0 0 6 -6 0 0 0 0

0 0 0 -6 6 0 0 0 0 6 -6 0

so that from (5.18)

(N)( SS yN/2 (3N)P(X I Mo)- b3Wof '2 T r 2:

-1/2

(7.38)

From (7.34) and (7.35) we have

[

~ Z ]-3NIZW 32 liZ + 32(,;1\.)

B23- ___! (3-) 1 3 { 8(ya)~ 8(Y;')~}
W3 ml ml SSz+--+--

ft. 1ft 10

(7.39)

Similarly, (7.35) and (7.36) give,

[3 ( Z 2 2)J-1/2WII m7 1 12ma 9m:s 9m6
811 z-- --+- --+--+--

• W2 32 32 m I m9 m10

[

32m 1(9")2 ]-3NI2
X 1+ 3( 4 2) (SS e(ya)f a(ya)~ 32(l~)~}

mlml3- me 2+-;;;-+~+~
(7.40)
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(7.35) and (7.37) give,

B W12[ 16m I 1 (12m~ 4m~ 4m~)J-1/2
IZ2-- --+- --+--+--

. W2 32 32 mI m9 mID

(7.41)

and finally (7.35) and (7.38) give

(

12m~ 4m~ 4m~
16ml---------

Wo 1 ml m9 mlO
Boz - - - 2 2

Wz 32
6m

• _ 12m3m8 _ 6ms _6m6

ml m9 mlO

I (7.42)

Our standard approach would now be to use Good's method ofjmaginary observations and to set

n I - 2. nz - n 3 - n. - 1 or any other permutation of the indices. However, whilstthis approach is appJicable
to (7.39), there is a problem when applyingit to (7.40), (7.41) or (7.42). The essential problem is evident in
the definition of themjs on pages 7-8 and 7-9, namely that the coefficients of the terms are not symmetric in

the n ts.Thus, for example,m ,hasa different coefficient for ~ than it does for ~; this is also the case for
I 3

m 1 and m 8' In fact the conditionn I - 2. n 2 - n 3 - n. - 1 is not necessary inthis design sinceall effects,
other than the group effects are estimatedwithin patients, and since we have conditioned(V n) I and (V n) 2

to be zero there are 2 degrees of freedom available for estimatinga~ . Thus we propose setting

n 1- nz - n3 - n. - 1 for determining the ratios of theconstantsw2/w3• WII Iw2• W12/wZ and wolwzgiving

the following :

wz( 32 ) 1/2
=> Wz_ c~r1/21-- --

W33'4 W3 3

WlI(3' 52f/z ->
WlI _ (39) 1/2

1-- --
W2 32 W2 8

WI2(16'4)-1/2
->

WI2_ 21/2
1-- --

W2 32 Wz

WO(3f1/2 -> wo_ (~r/Z1-- -
W2 4 Wz 3
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These ratios may be substituted into (7.39), (7.40), (7.41) and (7.42) to giveB23.BII.2.BI2.2 and Boz

respcctivelyfrom which the following may be derived using the transitivity property of Bayes factors developed

in 16.4:

Generalising the approach taken in §6.4, then given thatle I} - P (MI) / P (M}) and sinceby definition

P(Mo I X) P(Mo I X) P(MII I X) P(M121 X)

Boa
K

03 - P(M3IX) • B021<.02 - P(M2IX) • BII•21<.II.a - P(MaIX) • 812•21<.12.2 - P(M2IX)

P(M31 X)
1

P(M21 X)

P(M II I X)

B 12. 3'K 12. 3

P(Mo I X)

As before an assumption of model indifference translates tole 23 - 'K 11. 3 - 'K 12. 3 - 'K 03 - 1 or alternatively

P(M3) - P(M2) - P(M ll) - P(M 12) - P(Mo) -;. Applying these results to thedata in §7.3.3 gives rise

directly to the following :

B23", 4.642

Bll •2-3.171

B 12. 2 - 3.634

B02= 18.619

and from the above relationships ,

BlI •3-14.717

B12•3'" 16.870

B03 - 86.424
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PCM 31 X) - 0.008

PCM21 X) - 0.038

PCMII iX)-O.119

PCM Izi X) - 0.136

PCMo I X) - 0.699

These results indicate that itis unlikely, even under an indifference model, that any of the carryover-type

nuisance parameters, namelyC'CA) • 9 and A , are in any sense significant.

Continuing the generalisation we may calculate the unconditional posterior probability of a positive treatment
effect using :

PC'C > 0 1x) - PC'C > 01 x. M 3)PCM 31 X) + PC'C > 01 M2)PCM zl X)

+ PC. > 01 x. M lI)PCM II I X) + PC. > 01 M Iz)PCM Izi X)

+ PC. > 0 I X. Mo)PCM 0 I X) C7.43)

The data under consideration gave the following :

PC'C > 0 Ix. M3) - 0.9670

PC. > 0 IX. Mz) - 0.9676

PC'C> 0 I X. M II) - 0.9909

PC'C > 0 I X. M IZ) - 0.9968

PC. > 0 I X. Mo) - 0.9966

so that from (7.43) we may determinePC. > 0 I X) - 0.9946 indicating that thereis considerable evidence
in favour of a positive treatment effect. Interestingly theanalysisof the data from the sequences ABB and BAA
gave a posterior probability of a positive treatment effect 0.9931with a posterior expectation of 1.410mm Hg,

in contrast to a posterior expectation of 1.136mm Hg inthis section.

One further generalisation which we do not pursue in detailis to extend the graphicalanalysis developed in
16.5. Using the same notation asin that section we may manipulate (7.43) to write itin the form,

P3P 31X + BZ3P zPZIX + B 11. 3P 11P IIIX + B 12. 3P IZP IZIX + B03P oP OIX

PUIX - P3+ BZ3PZ+ BII•3PII + BIZ.3PIZ+ B03PO
C7.44)

Suppose now wefix both P 3 andP z then again (7.44) canbeused for displaying straight line contours ofP UIX

over the simplexP II + P IZ + Po - 1 - P 3 - P z I precisely asin §6.5. In this case triangular plots for various

combinations of differentP Z andP 3 maybe produced.
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8 ANALYSIS OF 1WO·TREATMENT CROSSOVERS UNDER NON·UNIFORMI1Y.

We have thus far, in §4-§7, restricted attention to analysing crossover studies under a mixed ANDVA, or

uniform covariance, model.In this chapter we provide a framework for a second set of Bayesian analyses for

two-treatment crossover designs under the assumption of a general,non-uniform, covariance matrix. We first

develop general results covering a Bayesian analysis for comparing multivariate normal samples withageneral

covariance matrix and then show how these results maybe applied to the two-period two-treatment design.

We could derivesimilar analyses for the other designs which we have considered, but wewill allow this simple

design to stand proxy for the others as itwill be clear how to generalise the approach to the more complex

designs.

8.1 A Baynian Analysis of Multivariate Normal Samples under Non·Uniformity.

Incontrast to the analysis presented in§3wesuppose that the datain the 9 groups have a general covariance

~. As in §3suppose at the end of the study thatn, patients in groupi complete the study and lety, and B,

be the mean vectors andmatricesof sums of squares and cross products respectively. With these definitions

the likelihood is proportional to,

(8.1 )

Suppose that a realistic "ignorance" prior for the parametersJ.L 1 • J.L Z • • • • • J.L r/ and ~ is of the form,

(8.2)

We will again consider the reasonableness of (8.2) later. Combining (8.1) and (8.2) gives the posteriordis-

tribution of the parameters in the form,

- - -(N./C.I)/Z (1 \[ (- ),--1(- ) t (-;;-1B)])
P(J.LI d.Lz ... ·.J.Lr/ •.! I X) ccl.!1 exp -2~ n, y,-J.L, .! y,-J.L, - r - , (8.3)

The marginal distribution of ~maybe obtained by integrating J.L 1 • J.L Z • • • • • J.L r/ out of (83) to give,

p(~IX) cc l~r(N+r/.,)/Zexp(-~~tr(~-,B,»). (8.4)

Combining (83) and (8.4) gives,

which implies that ,

(8.5)

where,
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Let,

and letK tg be the commutation matrix defined by MacRae(1974) ( see also Magnus and Neudecker. 1979),

for example,

0 0 0 0 0

0 0 0 1 0 0

K32
0 1 0 0 0 0- 0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

Make the transformation.

III

112.
KtQIl -

Ilg

to give,

p(Il'I:=:,X) - N gt [ K tg ( X I X 2 • • •x g) , , Ktg'l:Ktg] (8.6)

which using Theorem 3.1(viii) of Magnus and Neudecker(1979) implies that.

(8.7)

where,
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Equation (8.4) implies that,

p(=. I X) = W ~I(f. B, , N - g - k + 1)
,- I

Combining (8.7) and (8.8) implies that,

1J.1l 1J.12

1J.21 1J.22

P

~1I1 ~1I2

Xll XI2

X21 X22

til"

XIII XII2

IJ.I"

1J.2,.

X

~II"

-I
XI" nl

-I

X2"
n2 .t B,.N-g-k+ 1

'-I

1

(8.8)

(8.9)

using Theorem 8.5.1 of Box and Tiao(1973). The distribution definedin (8.9)is a matrie-variatet-distribution
given by,

+. c
!l12 .")I!l21 !l22 !l2t

. X·

!l I I !l12 ... !lIt

where

rp(b) ,. [r(l/2)]p(P-1l/2Irr(b+a-p)
..-I 2

p-l
b>--

2
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8.2 The Two-Period Two-Treatment Crossover.

As in §4.1, the cell means model shown in Table 2.1 may be put into the general structure of §8.1 by setting

k: - 9 - 2 and by noting that,

(
1l11) (1Illz 1-Ilzi 1

Ilzz 1

1

-1
1

- 1

- 1

1- 1

From (8.9) the posterior distribution ofIII I , Illz ' Ilzi and Ilzz may be writtenas,

p[ (Illl Illz) I x] "" t22[(~11 ~IZ), (n~1
Ilzi 1122 XZI XZZ

We concentrateOD the treatment and carryover effects,'; and A and note that they may be written as,

('C A) = (112 _1I2)(1l1l Illz)(1 ~)
Illz Ilzz 0

Then from standard properties of matric-variate and multivariate t-distributions (see Box and Tiao,1973,

18.4.3) the following posterior distributions may be derived,

P('C'AIX)-t2[(~).~(~:: ~::)'N-3]

(
_ q CII )

p('CIX)-t 'C'4N_3,N-3

P(AIX)-t( k,~:~z3'N-3)

( IA-O X)_t(-_.('CIZ qCIl-C~2/C22 N-3)P ,; , 'C "'Czz'4 N-3 '

(8.10)

(8.11 )

(8.12)

(8.13)

where k andi: are defined in (2.1) and (2.3) and

Z Z Z

CII - L{B'}II ' CIZ2CZI- L[{B'}II+{B'}lz] , C2Z- L[{B'}11+2{B'}12+{B'}2Z]
,-I '-I '-I
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8.3 Discussion.

There are great similarities between the analysis presentedin the previous section and the analysis based upon

a uniform covariance matrix developedin §4; but there are important differences. To illustrate the similarities

and to highlight the differences we return to the anginal attack rate data from Wheatley(1987) displayedin

Table 2.3.

These data give rise to the following summary statistics :

Y1.l28.065

Y1.2'" 4.226

Y2.1'" 6.344

Y2.2'" 9.813

B _ (945.871 235.548)
I 235.548 327.419

B _(1727.219 1401.063)
2 1401.063 2204.875

from which the following may be derived,

i 0.861

~ -1.933

CII = 2673.090

C12" C2124309.701

C22 ... 8478.606

Based upon these statistics the resultsin §8.2give rise to posterior distributions each of which is at-distribution

as follows,

p('C I X) - t(O.861 .0.707.60)

p(A I X) - t( -1.933.2.244.60)

p('C I A- O.X) - l( 1.843. 0.128. 60)

the corresponding posterior distributions based upon a uniform covariance matrix are,

p('C I X) - t(0.861. 0.684. 85.7)

peA I X) - t(-1.933. 2.207.61)

p ('C IA- 0 . X) - t ( 1.827. O.126. 61 )

There are a number of issues which arise by comparing these two sets of posterior distributions :
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i) The posterior distributions forA. are identical in the two models, except that in the general covariance

matrix case thereis one degree of freedom less thanin the uniform covariance case. This should not

really be surprising since in the former case thereis an extra unknown parameter and part of the

information in the datais used in estimatingthis parameter, with a consequent loss of a single degree

of freedom. Inpractical termsthis makes little difference with a reasonably sized study, but there are

theoretical issues which are related to the marginalization paradoxes considered by DawidetaJ(l973).

ii) In the general covariance,in contrast to the uniform case, the posterior marginal distribution for1: is

based solely on data from the first period, asinGrizzle's(1965) approach, although again a single degree

of freedom is lost. This arises because in this case the second period provides no useful information

concerning variability since the variances in the two periods are no longer assumed to be equal. A

marginal advantageis that one need no longer consider a Behrens-Fisher distribution, although there

is therefore a loss in sensitivity.

iii) The near equality of the conditional posterior distributions for1: given no carryover effectwill not in

general be the case.Inthis particular instance it arises because the sample variancesin the two periods

are nearly equal and of necessity are close to the estimated single variance in the uniform case, namely

43.82 and 4151 for the first and second periods as opposed to 42.67 in the pooled case.

iv) Since the posterior forA is again a t-distribution we may use asimilar Bayes factor for model M0 versus

M I aswasusedin the uniform case.Inthe more complex crossover designs the necessary Bayes factors

need to be determined from the more general multivariate results derived by Smith and Spiegelhal-

ter(1981).
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9 TREATMENT OF MISSING VALUES IN CROSSOVER DESIGNS.

9.1 Introduction.

The development thus far has,in a sense, taken place divorced from the realities of practical life. We have,

for example, assumed :

i) that theoriginal measurement metric of each of the clinical parameters which we have considered

allows an analysis based on linear models and Gaussian random variation.

ii) that our data are free from outliers, or influential observations.

iii) that our data are complete; there are no missing data.

Potentially, at least,(i) is particularly important. Firstly, itis not clear in what metric one should choose to

measure beliefs. Conceivably, one particular metric maybe preferable. Alternatively, if the metric is largely

irrelevant, then our inferences maybe considered robust(cl. Box and T"Ulo,1973,§3.2). Secondly, experience

suggests that certain metrics are preferablein terms of approximating normality. For example, commenting

OD Racine tit al(1986),Cox(l986) suggested "thereis prior evidence based on carefulanalysis of data that for

detailed analysis log blood pressure and perhaps reciprocal pulse rate are good variables to analyze .• .".

Interestingly Jones(1986) arrivedat the reciprocal transformation for the blood pressuredata considered by

Racine tit al(1986)which was confirmed by these authorsin the reply to the discussion;they also expressed a

preference for the logarithmic transformation for the pulse ratedata. The analysis which they used was based

onPcrrichi's(1981) Bayesian approach to determining a transformation to normality. Thereisno great difficulty

in applyiDg this approach to crossover designs and thereforewc do not pursue it further here.

As far as outliers are concerned they too areimportant, particularly in crossover designs where they can

influence the choice of model inwhich treatment effects areestimated. Berry(199O) has shown that an outlier

in the data given by Brown(198O) has a major impact on the perception, at least, of the relationship between

themeasurements taken in the two periods. Indeed in this case the outlier has an even greaterimpact since

if it is not excluded one concludes that there is significant carryover effect - p < 0.10, and if it is excluded

one concludes,if one uses Grizzle's procedure, that thereis not a signjficant carryover effect - p> 0.10. Again

the work of Pettit and Smith(l984) is relatively easily applied to crossover designs and thereforewe again do

not pursue it further here.

The work of Patel(1985) suggests that thereis much to be gained from the usc of all data from a crossover

design, and that the exclusion of data from patients for whomaU data are not availableis potentially wasteful.

However, care needs tobe taken when considering whether data from a patient for whom some data are

misssing shouldbe used, sinceif the reason that the data are missingis related to treatment then potentially

one may produce abiasedestimate of the treatment effect.
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In the present chapterwe consider how one can tackle missing value problems from a Bayesian perspective

for the simple two-treatment, two-period crossover designansweringdirectly one of the questions posed by

Freeman(1986) -"what happens with realdata sets that have missing values, outliers, early crossovers and so

on?"

9.2 MIssing Values iD the Two-Period Crossover.

Suppose in a two-treatment, two-period crossover that complete information is available forn I + n z patients,

nIl + nZI patients have onlydata in the first period andn 12+ n 2Z only in the second, wherein the light of the

comments abovethe incidence of mitWngdata is unrelated to treatments.The pattern of thedata is as shown

in Table 9.1.

TABLE 9.1Pattern ofMissing Data in a Two-Treatment, Two-Period Crossover.

Sequence A -. B Sequence B -. A

Patients Period 1 Period2 Patients Period 1 Period 2

Ylll YI12 YZII Y212

YI21 YI22 YZ21 Y2Z2

nl . nz

YIn I YIn Z Y21121 Y21122

Xll XZI

nll . Missing nZI . Missing

XIII X2a2

%11 %21

nl2 Missing nzz Missing

%IIII~ %21122

The n I + nz patients with complete data make the following contribution to the likelihood,

(9.1 )

where ~ll-~+Jl+'; , ~12-~-Jl-';+A, ~21·~+Jl-';, ~22-~-Jl+';-A, aZ-(a~+a=)/2,

p - (CI~ - CI:)/(CI~ + Cl:) and SIlt are the relevant elements of thematrix of corrected sums of squares and

CZ'oss-products in sequencei • Suppose that the patients with missingdatavalues give meansX I • X 2' Z I • Z 2

and corrected sums of squaresSri, then their contribution to the likelihood takes the form,
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(9.2)

The first linesin (9.1) and (9.2) may be respectively rewritten as,

(9.3)

and

n2 [-1 - - _1(I-1I1-XI)]exp 2(1-111 - x , 1-1,2- ZI)rll _ -
'-I I-1,Z z ,

(9.4)

where

a
Z

( 1r --10 n, P

and

~ _ 2(n~1
'II a

o

Using (A7.1.1) from Box and Tiao(1973) (9.3) and (9.4) maybe combined togive,

where,

- YI.1 +

2 - - - -
nll(nl+nlz(l-p )(x'-Yl.l)+n,n'2P(z,-yu)

n~+ n,nll + n,n'2+nlln,z( 1-pZ)

r:1 -

and
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and therefore thefull likelihood may be writtenas,

In the current parametrization the prior densityhas the form P (1111 ' Illz ' Ilz1 , Ilzz ' 0 Z , P ) oc[0
2 Cl - P2)r I

and therefore the posterior distribution of the parameters may be writtenin the form,

P(Il11,lllz,llzl,llzz,a2,pIX) - P(Il11,1l12,llzloI.1zzIO
z,p,X)p(oz,pIX)

where

(9.6)

and

(02) -C211,+2"z+"II+",z·"z,+IIZ2-2)/Z( 1- p2) -CII,.IIZ)/2

x----------~~~----------------~~~~--------------~
[n~+ n In 11 + n In IZ+ n lin IZ( 1 - p2)][n~ + nznzi + nznzz + nzlnzz( 1 - p2)] 1/2

Xe~p(;:Z[S~I + S~2+ S~I+ S~])

(9.7)

Applying that part of the inverse transformation (4.1) relatingto-e and k to (9.6)gives the following posterior

distributions,

[( ) (

2
Z -c(p) o~

p(-c,kla ,p,X) - N k(p)' o~~ :~)] (9.8)
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where

-rep)
IlII + 1121

2

A(p)
. - - -
IlIJ + Illz + Ilzi + 1l2Z- 2

p(-r IaZ
• p. X)

peA IaZ .p. X)

- N('t(p).a~)

- N(A(p).a~)

(
a~). 2 (a~).)Z)

- N 't(p)-A(p)-.f1 ---
f1~ ~ a~

(9.9)

(9.10)

(9.11)

The standard way to proceed wouldbe to combine (9.7) with, inturn, (9.9),(9.10) and (9.11) and integrate

out both cs2 and p .The result of such a processis a hypergeometric function of 2 variables and therefore

cannot be considered a practical solution.Two alternatives methods suggest themselves.

Fust, Gelfand etal(199O)have proposed a method based on Gibbs sampling - sec Geman and Geman(1984).

We do not intend to pursue this approach here since whilstwe can agree with Gelfandet al that the main

advantage of the Gibbs sampler approach isits case of implementation to problems involving complex

likelihoods we do not agree that other potential methods are'likely to be"one-off" and, in any ease, not routinely

implemcntable by most applied statisticians', indeed applied statisticiansmay also have difficulty in applying

theGibbs sampler approach since the concept is likely tobe novel to most ofthem.

A second, pragmatic, way forward is to integrate a2 analytically out of theabove combinations and then to

use numerical methods to integrate out p. A program to carry outthis type of analysis is presented in §A6.2

in which the final numerical integral is performed using Gaussian quadrature.In the next sectionthis method

is illustrated using the example considered by Gelfandet al(1990).

9.3 An Example of a Two-Period Two-Treatment Crossoverwith MlsslDg Data.

Gelfand et al(199O) take data from Maas et al(1987) to illustrate their proposed method for treating milling

data in the two-period crossover based on the Gibbs sampler. We present the originaldata taken from Maas

et al(1987) in Table 9.1 since thedatapresented in Gelfand et al(199O)are incorrect. The context ofthis data

is a bioequivalcnce study in which it was desired to test whether a new, chewable(C), formulation of the
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anti-epileptic treatment Carbamazepine was bioequivalent to the standard (S) tablet formulation. The standard

approach in bioequivalence studiesis to assume that the logarithms of the response variables, routinely either

the area under the plasma concentration curves (AUC) and/or the maximum plasma concentration (CMAX),

follow the standard linear model for crossovers and interest centres on the making inferences about the ratio

of AUC's or CMAX's - see for example Racine-Poonet al(1987). In our parametrization, therefore, wewill

need to transform in the case of the treatment effect to ex p ( 2"t ) and a corresponding transformation exists

for the carryover effect.Inorder to illustrate their technique with missing data, Gelflandet aJ treated three

observations as missing. These observations are shown in bold printin Table 9.1.

TABLE 9.1 Bioequivalence Data (CMAX-11 g / m l )Taken from Maaset al(1987)

(C = Chewable Tablet, S= Standard Tablet).

Period Period

Sequence Subject 1 2 Sequence Subject 1 2

C~ 1 5.19 4.07 S-IC 3 4.21 4.86

2 4.83 5.16 4 3.89 539

6 3.72 2.94 5 5.23 5.41

7 4.19 2.98 9 3.50 4.01

8 4.20 3.48 10 3.68 4.55

The data in Table 9.1 give rise to the following summary statistics;

nl- 3 n2- 4

nil - 1 n 12- 1 n21 - 0

YI.I - 1.480877 Y1.2- 1.326631 Y2.1- 1.39212

XI - 1.31371 %1- 1.40364 X2-0

S"I- 0.0132482 S 112- 0.0444875 SI22 - 0.1602117

S211- 0.0973115 S212- 0.0573021 S222- 0.0629484

sf. -0 Sf2 -0 S~. -0

n22- 1

Y2.2-1.56918

%2- 1.58104

S~-O

Applying the method describedin the previous section to these data gives the posterior distribution forr ."-

aade I"-- 0 as sbown in Figure 9.1. Included in this Figure are the posterior distributions derived from all

the data and also those derived by ignoring tbose subjects for whom complete dataisnot available. The resulting

posterior distributions reveal a typical patternin such trials with missing data: firstly,if there is missing data

from a subject thenif we can assume that thereis no carryover we may as well ignore data from that subject

completely; secondly,if we cannot assume that thereis no carryover effect, orif we wish to make inferences
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about the carryover effect itself, then we should take into account the missing data; finally, the loss of such a
considerable amount of data results in substantially increased inferential uncertainty.As far asthis particular
example is concerned, the objective of bioequivalence studiesis to determine whether the ratio of CMAX's
lies within 0.8 to 1.2 and therefore, since none of the posterior distributions for the treatment effect assign
high probability to this interval the conclusionis that the two formulations are not bioequivalent.

9.4 Relative Emclencles and Bayes Factors.

We saw in the previous section that depending on which modelis appropriate formaking inferenceswe may

gain little from including data from subjects for whom complete data are not available. We may investigate

this phenomenon further by considering the posterior variances of the parameters under various conditions,

assuming that the variance components are known.

Suppose (i)n I - n2 - n ; (ii) n II - n21 - n 12 - n22 - k; (iii) k - an. Thenusing the above results the posterior

variances of"t • A and c IA - 0 are

02 l+a(l-pZ)

2 n( 1+2a) +a2n( 1_pZ)

Z (l+p)+a(l-pz)
- 0 n(l +2a)+aZn(1-p2)

02 (l-p)+a(l-p2)

4 n(l +2a)+a2n(l-p2)

Corresponding to thesewe may also calculate the conditional variances which would ariseifwe were to ignore

2
C1., I

2
O~.I

2
O.,A-O.I

those patients with missingdatawhich are,

Z
C1',2

2
o "A-O, 2

and finally we may calculate the conditional variances which would have arisenif complete data had been

available on a1l2 n+ 4k patients. These are,

2n(l +2a)

02(l+p)

n(1+2a)

02(1-p)

4n(1+2a)

Inf2.8 we measured relative efficiencybythe ratio ofvariances. Adopting that approachinthe present context,
using of coursein this instance conditional posterior variances,gives the following relative efficiencies :

2
0",,3
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RE1.2C1:)
a~.1 (1 +a(l-pZ»/(1 +2a)- a~.2 1+ a2( 1- pZ)/(l + 2a)

RE 1.2(A.)
a~.1 (I +a(l-p»/(1 +2a)- a~.2 1+ a2(l - pZ)/( 1+ 2a)

RE 1.2(1: I A.- 0)
a~I>"'o. 1 (1 +a(1 +p))/(1 +2a)

=

a~I>"'o. Z 1+a2(I-pZ)/(1 +2a)

RE1.3(1:)
O~.I 1+a(1-p2)- a~.3 1+ a2(l- p2)/( 1+ 2a)

RE 1.3(A)
of., 1+ a(l- p)- - -
af.3 1+ a2( 1- pZ)/( 1+ 2a)

a~I>"_O. 1

O~I>"-O.3

1+ aC 1+ p)

Since in most crossover studies the correlation between observations on the same patient, p,is likely to be
large, it is of interest to study the behaviour of the above relative efficiencies as p tends to 1.In the limit the

relative efficiencies become,

RE I.z(1:)
1- --

p"l 1+2a

RE 1.2(A)
1- --

p"l 1+2a

RE I.z(1: 1"- - 0) - 1
p ..,

RE 1.3(1:) - 1
p"l

RE 1.3(A) - I
p..,

RE 1.3(1:Ix - 0) - 1+2a
p ..,

Whilst these limiting relative efficiencies are of interest, in practicep "I ,and therefore itis of interest to
investigate further these efficiencies by considering other values ofp.InTable 9.2we present values ofRE , .2 (1:)

,RE 1.2("-) ,RE 1.2(1:I A) ,RE 1.3(1:) ,RE 1.3("-) and RE 1.3(1:I "-) for different values of
a - 0.1.0.2.0.3.0.4.0.5 andp - 0.3.0.5.0.7.0.9.

The Hrniting relative efficiencies, and those in Table 9.2, mirror precisely the behaviour of the posteriordis-
tributions in Figure 9.1 and therefore we are forced to conclude:

(i) if we may assumethat there is no carryover effect then thereis nothing to be gainedby taking account

of patients for whom complete datais not available.
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TABLE 9.2 Relative Efficiencies in Two Period Crossovers with Missing Data

Relative Efficiencies

a p RE 1.3("1:) RE 1.3(;\) RE 1.3('; 1;\) RE 1.2(';) RE 1.2(;\) REI.2(,;I;\)

0.1 03 1.083 1.062 1.122 0.902 0.885 0.935
0.5 U168 1.043 1.143 0.890 0.870 0.952
0.7 1.047 1.026 1.165 0.872 0.855 0.971
0.9 1.017 1.008 1.188 0.847 0.840 0.990

0.2 03 1.152 1.111 1.228 0.873 0.794 0.877
0.5 1.126 urn 1.273 0.804 0.769 0.909
0.7 1.086 1.045 1.321 0.176 0.746 0.943
0.9 1.032 1.014 1.373 0.737 0.725 0.980

03 03 1.211 1.151 1.322 0.757 0.719 0.826
0.5 1.175 1.103 1.391 0.734 0.690 0.870
0.7 1.121 1.060 1.468 0.701 0.662 0.917
0.9 1.046 1.019 1.553 0.654 0.637 0.971

0.4 03 1.262 1.184 1.406 0.701 0.658 0.781

0.5 1.219 1.125 1.500 0.677 0.625 0.833

0.7 1.152 1.071 1.607 0.640 0.595 0.893

0.9 1.058 1.023 1.731 0.588 0.568 0.962

0.5 03 1.306 1.212 1.481 0.653 0.606 0.741

0.5 1.257 1.143 1.600 0.629 0.571 0.800

0.7 1.180 1.081 1.739 0.590 0.541 0.870

0.9 1.070 1.026 1.905 0.535 0.513 0.952

(li) if we need to make inferences about the carryover effect, orif the assumption of no carryover effectis

not tenable and therefore themarginalposterior of the treatmcnt effect needs tobe used rather than

the conditional posterior, considerable gains maybe made by taking into account missingdata.

The above results suggest, potentiallyat least, that if we are to perform the Bayes factoranalysis derived in
14.4 then we need to use patients for whom notall data arc available. In this instance the calculation of the

Bayes factor needs tobe carried out wholly numerically. The program giveninAppendix A63 was written to

carry out the required numeric integrations. No further workis required to determine the ratio of undefined

constants in this approach, since Good's device of imaginary results provides exactly the samevalue, namely

~ , for both the missing and completedata cases. The Bayes factors for the Maaset til example arc :
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Complete : 1.050

Including patients with missing data : 1.035

Excluding patients with missing data : 1.243

and as might be expected, taking into account missing data gives a closer reflection of the complete data case

than does excluding patients with missing data.
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10 ACUTE TOXICITY TESTING AND LDSO ESTIMATION - A REVIEW.

10.1 Introduction.

The basis of all modem work on acute toxicity testing and LDSO estimationis an article by Trevan(1927),

although as Stigler(1986) points out the most familiar model associated with LDSO estimation, the probit

model, can be traced back to Fechner's work on stimulus-response model during the last century (Fechner,

1860). Trevan's objective was to investigate whether the then popular "minimum lethal dose" was a good

measure of the toxicity of adrug or whether other measures couldbe determined which were in some sense

better. Trevan concluded that,

' ... toxicity should be stated primarily in terms of "median lethal dose", thatis the dose whichkills

sopercent of a large group of animals.As a convenient abbreviation I would suggest forthis the

symbol LD SO, .....' (Trevan, 1927, p. 490)

There were two major reasons for Trevan's conclusion. First, he arguedthat the median lethal dose was a

simply-understood concept which scientists would readily recognize. Second, he pointed out that the median

lethal dosehasthe advantage that it is in a region of doses which canbe estimated with the smallest variance.

Interestingly, Trevan was primarily interestedin assaying biologically substances such as insulin and digitalis

which could not thenbe analysed chemically and wewill see in113that such applications are still relevant

today. The method was in time adopted for toxicological purposes and was for a long time considered to be

a very valuable means of determining the likely consequences to man of, for example, accidental overdosage

with a drug or inadvertent ingestion of a chemical.In addition to its role in safeguarding human health, the

LDSO test also became a mandatory requirement for the registration of both pharmaceutical and industrial

chemicals.

Por this latter purpose, the need for a precise determination of the LDSO value led to the routine use of large

numbers of animalsinorder to minimise statistical variability even though ithaslong be known, by toxicologists

and statisticians workingin the area, that the LDSO value is susceptible to minor changesin experimental

conditions and that, however many animals are used, it is subject towide variability. Hence, a 'classical' or

'formal' LDSO test is one in which the primary aim is the determination of a 'precise' LDSO value, using a

defined set of experimental conditions.In general, this requires between 80 and 100 animals, although pre-1970

many more than 100 animals wereused. The testwasoften required in two rodent species and by a variety of

routes of administration, depending on the type of chemical being used.

In the present section we concentrate on the traditional methods of estimationin 'classical' LDSO tests,

concentrating on maximum likelihood estimation. At the end of the section we review the modem controversy

surrounding LDSO tests and the alternatives which havebeen put forward.
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10.2 Tolerance Distributions.

One of the primary concepts in biological assays in general and inLDSO tests in particularis that of the
tolerance distribution. Essentially the idea behind the tolerance distributionis that for each individual in a
population thereis a specific stimulus, or dose, below which no reaction, or response, occurs and above which

it does. Clearly itis unlikely that each individual in the population has the same cut-off dose or tolerance and
therefore the idea of a distribution of tolerances across the populationis a logical development.

Suppose that the tolerance doseis given by6 which has a distribution in the population which may be denoted

byJ (6). Ifa dose60 were to be given to the whole population thenall individuals within the population whose
tolcrances are lessthan 60 will respond,in the present context die. Clearly the proportion of the population
who will die is given by,

6.

P(6o)" f f(6)d6
o

Themedian of the tolerance distribution, 611 is by definition given by,

0.

f f(6)d6 - 0.5
o

and it is this quantity, thatis the dose whichwill kill50% of the population subjected to it whichis the LDSO

and which we need to estimate.

Clearly, any estimate ofthe LDSO will depend upon the particular tolerance distribution whichis assumed.
Traditionally it has been assumed that the tolerance distributionis lognormal although other distributions, for
example the log-logistic, have been used. Under a lognormal distribution with parameters1.1. and a the

probability of a response given a dose 6omaybe expressed as

P(6o) - cII[(log(6o)-Il)la]

and whcre J.1 is the log(LDSO).

In the next sectionwe outline how maximum likelihood maybe used to estimateJ.L.

10.3 Maximum UkeUhood Estimation.

Supposein k: dose groups each ofn, animals are exposed to a dosed, of a test substance, and further that a

log-normal tolerance distributionis appropriate.As we have seen above underthis model the probability of

dying given a dosed, is
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(10.1)

where 41(x) is the standard normal cumulative distribution function,a and ~ are related to the parameters

~ anda of the tolerance distribution by

a - -ilia . 13 - 1la

Suppose that of the n, animals dosed withd, ,r, die within the observational period, then the log-likelihood

function has the form

t

l - Lr,log(p,)+(n,-r,)log(I-P,)
'-1

(10.2)

The maximum of the log-likelihood function defined by (10.1) and (10.2)is not availableanalytically and

therefore numerical methods need to be resorted to.

From (10.1) and (10.2) the first and second partial derivatives ofl with respect toa and ~ may be shown to

have the form

~l ~(r, n,-r,)
-- L ---- +[a+l3log(d,)]
~a '-I P, I- P,

~ l ~ ( r , n, - r ')~13 - f=i p,- I-P, +[a+l3log(d,)]log(d,)

t3Z
l t[(r n-r) (r n-r) ]-z--L ~+ I '2 +2[a+l3log(d,)]+ ~--' _' +[a+l3log(d,)](a+l3log(d,»t3a '-I P, (l-P,) P, I-P,

t32l ~[(r, n,-r,) 2 (r, n,-r,) ]----L 2+ 2 + [a+l3log(d,)]+ -P--I-P +[a+l3log(d,)](a+l3log(d,)) log(d,)
t3a~13 '-I P, (I-P,) "

t3zl ~[(rl n,-rl) 2 (r, n,-r,) ] 2-z--L 2+ 2 + [a+l3log(d,)]+ -P--I-P +[a+l3log(d,)](a+l3log(d,» log(d,)
t3f3 '-I P, (I - P .) "

From these derivatives an iterative proceduremay be derived as follows. Suppose that ar and 13r are the

current estimates of a and 13,then the next estimates are givenby,
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where the second and third terms on the right-hand side are evaluated at a, and~,. At convergence the

asymptotic variance of the estimates are given by,

lOA neller's Theorem.

The analysis in the previous section provides an estimate of the 10g(LD50),Ii- - a / ~ . A 'confidence interval'

for the log(LD50) is available from Fieller's theorem.

Under the assumption that the estimatesii and ~ are asymptotically normally distributed with means a and

[3 with covariance matrix having elementsa~. aCI~ and a : then from standard properties of a normal distribution

we have

This asymptotic property maybe used to derive a 95% confidence intervall..L by setting the left-handside

equal to the 2.5% point of the normal distribution and solving forI..L. This procedure gives rise to a quadratic

equation inl..Lwhich doesnot necessarily havereal roots. When this occurs the implied 95% confidence interval

covers the whole real line, a well-known defect of the approach.

10.5The Modem Controftl'S)'.

Whilst the campaign against the use oflarge numbers of animals in LD50 experiments is a campaign based

firmly in the 1980's, some of the basic arguments of the campaigners are not new. For example C.W.Hume,

the then secretary general of the Universities Federation for Animal Welfare, wrote over 30 years ago,

"One cannot help wondering how far the extensive use of the 5O%-survival testis a hangover due

to habit and custom, and whether suitable continuous variates h:ave been sought as diligently as

could be desired. Even for testing toxicity with an LD.50, death might notbe the only possible

end-point that couldbe chosen if the phenomena of the moribund state were to be adequately

analysed- (Hume,1957).

Thesentiments expressed inthis passage canbeseen tobeprecursors of the views of the harsher environment

of the 1980's:

"If I want to keep my job, I am better off doing toxicology theiTway and forgetting about creativity.

And if I hope to market mydrug on a worldwide basis, I am going to use the guidelines that are
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the most demanding with regard to number of species, subjects and dose levels, and duration of

treatment. I can be sure that no regulatory agencywill object to a toxicological dossier thatis

more voluminous than the one itmight consider desirable or necessary" (Zbinden,1988).

"Lethality as an endpoint, although definite and incontravertible [sic],is crude and causes much

suffering" (Anon,1989).

The fight against the LDSO has been on two fronts.Firstly the more radical animal rights groups refer to the

test asthe 'death test' and use photographs in their literature of animals killed by agrochemicals and cosmetics.

The less radical animal welfare groups argue that since the LD50 cannotbe determined precisely, the

performance of such testsis unnecessary and morally unacceptable. The second fronthas been manned by

toxicologists who whilst they have recognizedthe need to measure the acute toxicity of chemicals are also

concerned to reduce both the suffering of animals and number of animals used in acute toxicity tests.

In the early 1980's most regulatory authorities based their testing guidelines on those of the OECD whose

guideline required the use of, in general, no more than 30 animals per test and , where no mortality was

anticipated at a dose level of 5000mglkg bodyweight, as few as 10 animals - the so-called 'limit' test. Whilst

most regulatory authorities supported the principle that acute toxicity tests should not be solely lethality tests,

the determination of a statistically-derived LDSOwasrequired as were 95% confidencelimits for the estimate,

it was also recognized that acute toxicity testsgive other extremely important information, whichis essential

for safeguardinghuman health. For example the 1984 EEC guidelines required documentation of the rela-

tionship between the animals' exposure to the test substance andthe incidence and severity of behavioural

and clinical abnormalities, effects on major organs and bodyweight changes.

The pressure, from animal welfare activists, toxicologists and regulators led to a number of suggestions for

altering the basic procedure for estimating acute toxicity and theLDSo, example of these are provided by

Mii1ler and Kleyt(1982), SchUtz and Fuchs(1982), Lorke(1983) and Bruce(198S,1987).In 1986 a meeting of

'experts' in Paris considered three alternative procedures for acute toxicity testing, namely theFIXed Dose

Procedures of the British Toxicology Society (BTS) and German Bundesgesundheitsamt and the so-called

Up-and-Down Procedure. The BTS procedure alone amongst the threegoes further in that it positively

discourages lethality as an endpoint and thereforethe suffering of animals is dramatically reduced.

One potential argumentagainst the usc of a procedure, such as the BTS procedure, whichis not based on the

formal determination of an LDSOis that it will prove difficult toclassify substances againstexisting classification

schemes which are based on the LDSO.In fact the validation work reported by van den Heuveletal(1987)has

shown that the BTS procedure gives extremelysimilar results when compared with the 1981 OEeD procedure

both in terms of ranking compounds according to their acute toxicity andinproviding information for human

risk assessment. The procedure also offers significant reductionsin animal numbers and, from an animal

welfare perspective, is preferable as the severity of effects which arc seen is considerably reduced.
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It is likely that in the future the BTS procedurewill become the standard for acute toxicity testing. In the

meantime classical acute toxicity tests are still carried out and while thatis the case thereis still a need to

optimise the extraction of information from such tests and therefore itis the role of the statistician to develop

statistical methods with that objective. The Bayesian approach developedin the following chapteris aimed at

providing a classification of a substance on the basis of a classification scheme based on the LDSO,as such it

maybe seen as belonging to those procedures developed during the 1980's referred to above.
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11 A BAYESIAN APPROACH TO LDSO EXPERIMENTS.

11.1 Introduction.

As we have noted, the recent controversy surrounding the validity and usefulness of the acute toxicity test has

markedly increased. On the one hand animal protection groups question the biological relevance of such tests

citing examples in which limited, or insignificant, informationis obtained. Toxicologists, on the other hand,

emphasize the need to quantify the toxic potential of a chemical while at the same time they encourage

procedures designed to limit the number of animals required togive an assessment of lethality (Basset al,

1982; Dayanet al, 1984). This desire to limit the number of experimental animalshas given rise to a number

of recent suggestions for modifying the standard practice in acute toxicity testing (see Miiller and IOey, 1982;

SchOtz and Fuchs, 1982; Lorke, 1983).

In such toxicity tests the response of ananimal to the test substanceis dichotomous; alive/dead or no

response/response. The design of such a test consists ofk dose levels on an appropriate scale. The experiments

may be characterized by the triplets dj, n., r I(i - 1, ... le) where d I is the dose administered tonI animals

of which r I respond in thei III dose group. A mathematical dose-response function relating the probability of

response to the dose, usually the probit or logit model,isspecified. Based on the above triplets, the parameters

of either model are traditionally estimated by maximum likelihood, weighted least-squares or minimum

chi-square (F'mney,1971).In this type of experiment the median lethal dose, orLD50, is of main interest,

being defined as the dose, or quantity, of the substance whichkills 50% of the animals exposed to it (inthis

thesis we regard the median lethal dose and theLD50 as being synonymous in contrast to some authors who

view the LD50 as that dosein thecurrent experiment which killed 50% of the test animals).

It is well known that under certain conditions the traditional methods ofanalysis give rise to inadequate results,

in that although they provide a point estimate of theLD50, the fiducial limits, at some specified level of

confidence, will consist of the whole real line (Fieller, 1954;F'mney,1971, Section 4.7).In this chapter the view

is taken that the object of estimating theLD 50 is to determine an index ofthe toxicity of a substanceby means

of some predefined toxicityclasses.For instance, the European Economic Communityhas defined the following

toxicity classes forclassifying the lethality of substances basedOD the LD50 values from oral studies in rats

(Annex VI of the Council Directive 67/548/EEC - Sixth Amendment) :

TABLE 11.1 Toxicity Classes - Annex VI of the Council Directive 67/548IEEC - Sixth Amendment.

Toxicity Class Description Range ofLDSO (mgJkg.)

1 very toxic < 25

2 toxic 2S - 200

3 harmful 200 -2000

4 practically > 2000

non-toxic

A second example comes from the 1983 Swiss poison regulation againusing oral LD50 values in rats:
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TABLE 11.2 Toxicity Clas ses - 1983 Swiss Poison Regulation.

Toxicity Class Range ofLDSO (mg.lkg.)

1 < 5

2 5- 50

3 50 - 500

4 500 - 2000

5 2000 - 5000

The motivation for the present work arose from the need toclassify a substance which in an acute toxicity test

gave the data in Table 11.3.

TABLE 11.3 Results from an Acute Toxicity Experiment

Dose Number of Number of

(mg.lkg.) Animals Exposed Animals Dying

500 5 1

1000 5 2

2500 5 3

5000 5 2

Using maximum likelihood to estimate the parameters of the probit model (using a log dose scale) gives 4049

mg.Ikg. as a point estimate for theLDSO . However this is one of the above examples for which the 95%

fiducial limits comprise the whole positive realaxis, a result practically useless forclassifying the substance.

We would argue that classical methods cannot answer the question of interest - Which toxicity class does the

substance belong to? - whereas a Bayesian approach can. However evenif the regulatory authorities require

a point estimate and a confidence interval, a Bayesian approachis preferable since a highest posterior density

(H.P.D.) interval will always exist,if a proper prior is used; andwill exist in all but pathological casesif an

improper prior is used (Tsutakawa,1975). This is not the case for fiducial limits, based on Fieller's Theorem.

In this chapter a Bayesian analysis is developed in which emphasis is placed on calculating the posterior

probabilities of a substance belonging to predetermined toxicity classes. Two cases are considered: (i) an

improper prior distribution for the parameters of the model;(ii) a normal prior distribution for the parameters

of the model. Methods of determining from toxicologists their prior beliefs in the parameters of the model

are considered. Approximations to the various posterior distributions are developed.

We have already seen that ithas been argued (Zbinden and Flury-Roversi,1981; Kimber,1986) that itis incorrect

to judge a substance's toxicity solely on the basisoftheLDSO. We do not disputethis point of view but would

agree with the following sentiments :
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"...if the LDso is wanted it should be obtained as efficiently as possible in respect

of number of test anjmals used and in relation to optimal extraction of information

from the data".

"as long as theLDso is used, there is no excuse (scientific or economic) for not

estimating according to some accepted criterion of optimality". (Finney,1985).

11.2 A Bayesian Analysis Usingan Improper prior.

In this thesis we choose in themain to use the probit model, although the methods have also been successfully

implemented using the logit. Letk doses of a substanced j (i - 1 .... ,le) be administered to nj(i- I • .... Ie )

animals of whichr j (i - 1 • ...• le) respond, then the likelihoodL ( a .13 I X) , where a and 13 are the parameters

of the probit model andX denotes the data,is given by,

k

L(a.I3IX) = n 4>(a+l3xj)r'[l-4>(a+l3xj)]",-r,
;. I

(11.1)

where 4> ( • ) is the standard normal distribution function andx j - log (d j) • Assumingan improper prior for

a and 13 , that is

pc(a.l3) - constant -00 < a < 00 • 0 < 13 < 00 ( 11.2)

(C denotes the constraint13 > 0) use of Bayes' theorem gives,

L(a.131 X)pc(a.l3)
pc(a.I3IX) =

Pc(X)
(11.3)

where,

Pc(X) - f f L(a.131 X)pc(a,l3)dl3da

-- 0

(11.4 )

Lettingw - -a/13 be the 10g(LDSO) we have,

-
Pc(wIX) - f I3Pc(-wl3.13I X)dl3 -00 < w <00

o
( 11.5)

and supposing a toxicity class, on the log-scale, to be defined byW L and Wu ,we may calculate,

"u

P[WL < w< wulX] - f Pc(wIX)dw

"L

( 11.6)

Equations (11.1) to(11.6) provide all the necessary information to make inferences concerning theLDSO.

However because of the non-linearity of the probit model the integrationsin (11.4),(11.5) and (11.6) cannot

be performed analytically. Thus either numerical integration methods need to be resorted to, or approximations

sought.
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The numerical integration problems may be simplified by redefining the range off3 in (11.2). Thus if f3 is not

constrained to be greater than zero, and writing pu ( a ,(3) for this unconstrained prior distribution then,

L(a.131 X)pu(a,(3)
pu(a,I3IX) =

Pu(Y)
Cll.7)

where,

Pu(X) - f f L(a,(31 X)pu(a,(3)d(3da ( 11.8)

Using the results in Box and Tiao(1973, Section 1.5) we have,

pc(a, 131X)
pu(a, ~ 1X)P(13 > 01 a, 13,X) pu(a,(3"(3>OIX)

Cl1.9)=
P(I3>OIX) P(I3>OIX)

and

.
f Pu(-w(3,(3,,(3>OIX)d(3

Pc(w 1X)
0

(11.10)- , -00 < w < co
P«(3>OIX)

The methods described by Naylor and Smith(1982) could be used to perform the integrations in

(11.8),(11.9),(11.11) and (11.6). Howeverthis is not recommended since it would involve using indicator

functions for calculating p«(3 > 0 1 X) and for calculating (11.6), which practice has shown can seriously

underestimate or overestimate the required probabilities. Alternatively a modification of the quadrature rules

developed by Galant(1969) and Steenet aJ(1969)may be used to integrate overf3 . These rules were developed

for integrals of the form,

bf exp(-x2)/(x)dx

o

but may be simply modified for integrals of the form,

.
f exp(-x2)/(x)dx
b

see Appendix A2.2.

If the doses have been chosen on a true log-scale, orif they are not far fromit, instead of using numerical

integration an approximation can be developed which may be used even for small sample sizes. We illustrate

how this may be achieved using the hypothetical example shown in Table 11.4.

Using the Gauss-Hermite quadrature described by Naylor and Smith(1982) the double integration in (11.8)

is efficiently performed from which (11.7)is simply obtained. Figure 11.1 shows the bivariate 50% and 95%

H.P.D. regions fora and f3 for the data in Table 11.4.
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TABLE 11.4Results from a Hypothetical Experiment

Dose Number of Number of

(mg./kg.) Animals Exposed Animals Dying

100 3 1

1000 3 2

The contoursin Figure 11.1 are very nearly elliptical, suggesting that a bivariate normal(BN) approximation

to p u ( a , 13 I X) may be reasonable. The parameters of theEN approximation may be obtained as a by-product

of the Naylor and Smith approach, or by a second approximation.

Denoting byeX • ~, a ~. a ~.aal\ the maximum likelihood estimates ofa and 13 and their asymptotic variances

and covariance, and bya, ~.a ~. a ~. aaB the posterior means,variances and covariance, then from Lind-

ley(1980) the following results are obtained,

where, for example,

a - (11.11)

(11.12)

The required differentials may be derived as follows :

t

la log[L(a.I3IX)] = Lrllog(PI)+(nl-rl)log(l-P,)
I-I

,H
LID - ~a

LO)
H- -
c)l3

L20
c) 2l- ~a2

LII
~2l- c)ac)!3

L02
c)2l- 0132

L30
02l- oa3

~(r, n,-r,)
L -p- 1 _ P X,,(L\,)
'-I' I

~(rl n,-r,) 2
~ - P~- (I-P

j
)2 • (L\i)

~(rl n,-rj) 2
~ -N-(I-P,)2 Xi' (L\,)

~(r, n,-r,) 2 2
,~ - p( (1- p,)2 X,, (L\,)

~(r, n,-r,) 3. ~(r, n,-r,) 2

2,~ P~-(I-Pj)2 • (~,) - 3~ -P~-(1-PI)2 L\,' (L\,)

~(rl nj-ri) 2
+ L ---_- (~,-l)+C~,)

I-I r, 1 r,

~(rl n,-r,)
- L -P-I-P ~'.(~,)

'-I I I
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Each of the above expressionsis to be evaluated at the maximum likelihood estimatesci and !?> •

Additionally,

all~ -
-2
a~

As Lindley notes similar corrections to 0 (N - 1 ) are not available for the variances and covariance. However,

although it has not been possible to prove the following result,in a large number of cases over a wide range

of total sample sizes and different values ofk, the number of groups, ithas been found to be very accurate.

Define 0 - ( ci - ci) / ci .. (~ - ~) / ~ then take,

.. 6/2

To illustrate the use of these corrections we have applied them to the data of Table 11.4, the results being

shown in Table 11.5.

TABLE 11.5 Approximations to Posterior Moments for Hypothetical Example

Parameter Maximum Posterior Approximate

Likelihood Moments Posterior

Estimates Moments

a -2.154 -2.443 -2.436

f3 0.374 0.424 0.423

aZ 7.284 7.730 7.706II

aZ 0.211 0.224 0.224~
aliI! -1.217 -1.291 -1.287
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The results in Table 11.5 are satisfactory in that they correspond, in the case of approximate posterior means

to a relative error of less than 0.3%, while the corresponding relative errors for approximate second moments

are less than 0.4%. (An alternative approach would be to use the approximation developed by Tierney and

Kadane(1986) which has the advantage that it also provides corrections for second order moments).

Suppose now thatp u ( a .f3 I X) may be approximated by aBN density with meansa.avariances(j!.(j:and

covariancea "II denoted byB N (J.l. • L )where,

J.l. - (~) (

-2aca
and L - _

a,,"
(11.13)

then

Using the results in the Appendix the posterior distribution ofw - log(LDSO) given the constraintjs > 0

may be calculated from (A4.2), while inferences of the form (11.6) may be derived from (A4.4).

Application of the double-fold approximation, theEN distribution for pu ( a •f3 I X) and the approximate

means, variances and covariance is shownin Table 11.6 using the Swiss toxicity classes, from which it can be

seen that the approximations are satisfactory. The exact probabilitiesin this table were calculated using

subroutine DBLIN from the IMSL library of subroutines.

TABLE 11.6 Exact Posterior Probabilities of Toxicity Classes and Approximate Probabilities for the Data

in Table 11.4.

Toxicity Classes

>5000

1 2 3 4 5 mWk8

Exact

Probabilities 0.041 0.062 0.570 0.224 0.038 0.065

Probabilities

based on Normal

Approx. (exact 0.042 0.061 0.576 0.219 0.037 0.065

Moments)

Probabilities

based on Normal

Approx. (approx. 0.042 0.061 0.576 0.219 0.037 0.066

moments)
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Returning to the example in Table 11.3., which was the motivation behind this work, the probabilities that the

substance belongs to the various toxicity classes are shown in Table 11.7. From these results it may be seen

that, although we may not definitely decide into which class the substance should be placed, itis extremely

unlikely that it belongs to classes 1, 2, or 3, since their total probabilityis 0.03. Further experimentation would

be necessary to determine which of classes 3 or 4 it belongs to or whether theLDSO is greater than 5000

mg.lkg.

TABLE 11.7 Posterior Probabilities of Toxicity Classes for the Data in Table 11.3.

Toxicity Classes

>5000

1 2 3 4 5 mglkg

Probabilities 0.005 0.004 0.021 0.232 0.402 0.336

We need not be restricted to calculating the posterior probabilities of the toxicity classes. The resultsin the

Appendix allow us to simply calculate the posterior distribution ofl og (LDS 0) and its cumulative distribution

function, or to calculate H.P.D.limits for10g(LDSO). To illustrate, Figures 11.2 and 11.3 show the posterior

distribution and cumulative posterior distribution respectively, for the data of Table 11.3 whose 95% H.P.D.

limits for log(LDSO) are 4.71 and 15.67 corresponding to 111 and 6.38*106 mgIkg.

11.3 Exact Analysis for aLogit Model and Two Dose Groups.

We noted in the previous section that numerical methods were needed to calculate the posterior distribution

of the LD50 and to make inferences because the necessary integrations could not be performed analytically.

This is certainly true for the probit model which we have been considering; however in the case of the legit

model there exists one special case for which some progress can be made analytically.

Suppose that an experiment has only two dose groups and that the probability of dying may be described by

a legit model so that the likelihood is proportional to,

rtr exp(a+~x,)' la

i·1 (1 +exp(a+f3x,)) ,

If the prior for aand 13has the form,

pu(a.f3) - constant -oo<a<oo • -oo<~<oo

then

n2 exp(a+l3x,)r,
p(a.~IX) - ,,/Pu(X)

I-I (1 +exp(a+~x,» ,
(11.14)

where
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~ ~ r

f f 2 exp(a+f.l.x) I

PI/(X) ~ n 1-" dad~
____ ,-I Cl +exp(a+~x,»"1

(11.15)

In (11.14) make the transformation

n,
exp(a+~x,)

Ci"'1.2) (11.16)

to give,

PI/CX)

x2- XI

In the case of the constrained prior,

PeCa.~) - constant

the transformation (11.16) applied to

• • r

f f 2 expCa+f.l.x) ,
PeCX) - n 1'" II dad~

_. 0 i-I Cl +expCa+~x,)) ,

gives

PeCX)

r - I
1 r(r2)r(n2-r2) t r(rl+rz-t-l)rCnl+n2-rl-r2+t)

X2-XI f(nl+n2+1) '-0 f(rz-t)f(n2-r2+t+1)

In order to progress towards the marginal posterior distribution of the log(LDSO), and hence theLDSO

itself, consider the transformation,

a XI
2:" + _....;;.._

~(X2-XI) XZ-XI

with jacobian log(y)/ (y (x 2 - X I » applied to (11.14)which gives,

01.17)
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Now sincelog ( LDS 0) = X I - Z ( X 2 - Y I ), in other words it is a simple linear transformation ofz , if we are

able to integrate y from (11.17), or its counterpart obtained by replacingp u ( X) by Pc ( X ) , then we may

easily obtain the marginal posterior distribution oflog ( LDS 0) . One possible method to carry out the inte-

gration might be found in the contour integration results given by Whittaker and Watson(1963). We do not

propose to take this analysis further since the case of two dose groups is not intrinsically of interest except

insofar asit highlights the integration difficulties involved in such problems, and insofar as it might provide a

bench-mark against which the analytic approximation derived in §11.2,or other anaiyticapproximations, could

be tested.

11.4 A Bayesian Aoalysis Using an Informative Prior for a andf3.

To begin wesuppose that prior to performing the current experiment a previous experiment has been performed

yielding dataX 0 • Assuming further that prior to the previous experiment our joint prior distribution fora

and f3 was improper, it follows from standard Bayesian arguments that we may pool the dataas if it came

from a single experiment. The analysis in§11.2 may then be carried out.

Suppose now, however, that wecanapproximate our unconstrained prior distribution fora and f3 by aEN

distribution; an assumption whichwill be justified in§11.5. Denoting this unconstrained prior byB N (1.1. 0 ' r0)

, then, since as we have seen in the previous Section for doses on a log-scale the likelihood may be approximated

by B N (1.1., L) - see(11.13) ,standard Bayesian calculations give,

pu(a,f3IX) - BN(Il·,r.·) (11.18)

where,

(see for instance Lindley and Smith,1972,§2). SinceP u (a. f3 I X) in (11,18) is approximated by aEN dis-

tribution the results in the Appendix may be used to make posterior inferences concerningw - log (L DS 0)

exactly as in§11.2.

If the normal approximation(11.13) does not hold, whichcanbe checked by calculating the third and fourth

moments of the posterior marginal distributions ofaand(3, Lindley's or Tierney and Kadane's approximations

for marginal distributions may be directly applied to the product of the prior and likelihoodin the parame-

trisation wand (3 •

11.5 Determining a Prior Distribution fora and(3.

In this section we consider waysinwhich one can determine an experimenter's prior belief in the parameters

of the probit model. Each method which is considered leads to a normal prior distribution fora and (3 , so

that the methodsin the previous section may then be used.

For the legit model Tsutakawa(l975) suggests that a parametrisation of the model which isfamiliar to the

experimenter should be chosen. He considers two methods using an experimenter's prior beliefsin the

probabilities of responseP I and P 2 at two dose levelsd I andd 2' FIrst we investigate the implications of

Tsutakawa's methods for the probit model, and second consider a method based on eliciting the experimenter's

prior beliefs in the toxicity class to which the test substance belongs.

A BAYESIAN APPROACH TO LDSOEXPERIMENI'S. 11·12



11.5.1 A Semi-Uninformative Prior Distribution foraand ~ Determined using Probabillties of Response.

FollowingTsutakawa(l975) suppose thatP I andP 2 are uniformly distributed over the region 0< PI < P 2 < I

. Tsutakawa showsthis to imply that theLD 50 lies betweend Iandd z with probability 1/2,d I and d z are

respectively the lower and upper prior quartiles for theLD50. Further he shows that the prior distribution

in terms ofaand ~ belongs to the natural conjugate family of distributions. We now show that the above

construction leads, for the probit model, to aBN prior for a and ~.

Suppose thatP I andP z areapriori uniformly distributed such that 0< PI < P 2 < 1, then,

p(PI.Pz) - 2 • 0 < PI < Pz < 1

Make the transformation,

P, - ~(a+~x,) X, - log(d,) • i -1.2 ( 11.19)

with Jacobian,

( 11.20)

sothat,

(11.21)

For practical applications (11.21)is replaced byB N (I..L I •I I) and theanalysis given in 111.4is carried out.

It is clear from the form ofI I that this method should not be used for casesin which x I andx 2 are chosen

such that x z - X I is very small or very large.Inthe former case the variances ofa and ~ tend to infinity and

p tends to-1, while in the latter cases the variance of ~ tends to O.A second disadvantageis the zero prior

modal values fora and ~ .

11.5.2An AlterDati've Determination ofp ( a. ~ ) using ProbabWties ofRespoue.

A second suggestion of Tsutakawa for the logit model, when moderate amounts of prior information are

available, is thatthe experimenter should specify the modal probabilities of response,P I andP 2. corresponding

to dosesd Iand d a- Supposing that the prior distribution ofP I and P zis a member of thefamily of natural

conjugate prior densities, thatis

(11.22)
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then,

l, - 1+PI(m,-2) (t, >1. m, >2) ( 11.23)

The values ofrn" and hence from (11.23)l, , should be chosen to reflect the weight to be given to the two

dose levels.

Supposing that themls and It's have been chosen, combining (11.19),(11.20) and (11.22) gives,

P2(a.(3) ex [(X2-xl)4>(a+(3xl)4>(a+(3x2)]

( 11.24)

The expression in the first square bracket in (11.24)is the same as (11.20) so that it may be written asB N (IJ. 1 • L I )

c.f. (11.21), while the expression in the second square bracket may be approximated byB N (1.1.. r)as in §11.2.

Thus using (11.18) gives,

( 11.25)

where,

Inpractice it is recommended that the experimenter is given informationasto the consequences of his choice

of d I • d 2 • m I and m 2' Thus (11.25) could be used to show the implieda priori probabilities of the test

substance being in the toxicity classes of interest. Using (11.25) the analysis in §11.4 may be carried out.

11.5.3 Determining P (a. f3 ) using Prior ProbabiliUes of the ToxIdty Classes.

Suppose that the experimenteris prepared to supply the following information:

i) prior information concerning theLDSO in terms of a discrete probability distribution,

ii) the most likely value for the slope parameterf3 (modal value).

If an experimenter is prepared to choose the dose levels in an experimentit is necessary forhim to have some

idea, albeit subconscious, of the likely values of theLDS 0 and the slope since hewill not choose dose levels

for which he is a priori sure hewill get no response or 100% response.

To illustrate how the above information may be used, suppose that prior to the experiment in Table 113 the

experimenter specifiesthe probabilities of the substance beingin each of the Swiss toxicityclasses, as shown

in Table 11.8.
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TABLE 11.8 Prior Probabilities of Toxicity Classes.

Toxicity Classes

>5000

1 2 3 4 5 mglkg

Probabilities 0.01 0.04 0.10 0.35 0.40 0.10

Suppose further that the experimenter's unconstrained prior distribution fora and 13is BN (1.1. • L), where Il.

and Lare defined in Appendix 4. By equating the cumulative distribution givenin Table 11.8 to the theoretical

cumulative distribution defined by (A4.4) and(A4.5) it might be hoped thatIJ. and:r can be determined.

However, in the Appendix 4,hand y may be written as,

h . y

0.
w--l

0,

(
2 a! a.)

W --2pw-+ 1
a~ 0y

so that (A4.5) depends only on the four parameters,

c.f. Hinkley(1970). This result implies that any four of the prior probabilitiesin Table 11.8 are sufficient to

determine Cl' C 2 • C 3and c4, but additional information is required to determine IJ. and :r . We choose to do

this through the specification ofx 0, that is the slope parameter.

11.5.4 Numerical Examples of the DeterminaUon ofp ( a •f3) •

Each of the three methods given above for determining a prior distributionp( a . f3 ) lead to aBN prior. Thus

the methods in §11.4 may be used to make inferences.In this section we compare the inferences which are

made when these methods are applied to the experiment in Table 11.3.Inorder to use these methods a number

of subjective assessments need tobe made. These are as follows :

i) In order to use the method of§11.5.1, two doses,d I and d 2, need tobe chosen within whichapriori the

LDSO lies with probability 1/2. These were chosen to be 1000 mgJkg. and 3000 mgJkg.

ii) For the method of§11.5.2, in addition to the dosesd I and d 2, which were taken to be as above, the modal

responses PI and f> 2 at these doses and the weights mI and m 2 need tobe chosen. f> I and f> 2 were chosen to

be 1/4 and 3/4 while the influence of the weights was investigated by choosing m,= 3,4 and 5.

iii) For the method based on the prior probabilities of the toxicity classes,in addition to the probabilities,

given in Table 11.8, the modal value of 13needs to be chosen.In this case it was set to05.

InTable 11.9 are shown the prior distributions which are given by(i), (ii) and (iii) together with their corre-

sponding inferences; for completeness the inferences for the improper prioris given again.
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TABLE 11.9 Prior Distributions and Posterior Inferences.

Prior Moments

Parameter Improper Sec 11.5.1 Sec 11.5.2 Sec 11.5.2 Sec 11.5.2Sec 11.5.3

of Prior mj= 3 mj= 4 mj= 5

a - 0.000 -4.227 0.224 -6.350 -3.786

~ - 0.000 0.567 0.748 0.852 0.500

02 - 92.646 63.197 46.645 36.817 5.282Cl

02 - 1.657 1.130 0.834 0.659 0.070II

a"l! - -0.997 -0.997 -0.997 -0.997 -0.987

Toxicity Class Probability

1 0.005 0.000 0.005 0.005 0.004 0.002

2 0.004 0.000 0.004 0.003 0.003 0.002

3 0.021 0.000 0.020 0.019 0.018 0.017

4 0.232 0.008 0.271 0.289 0.306 0.323

5 0.402 0.206 0.428 0.441 0.453 0.561

> SOOOmglkg 0.336 0.794 0.272 0.243 0.216 0.094

The results in Table 11.9 are worthy of comment for a number of reasons:

i) The prior based on the resultsin §1l.5.1 is not recommended. Although the choice ofd Iand d zdoes not

lead to either a verysmall or a very large variance, theapriori modal value of ~, i.e. 0, tends to have a relatively

extreme effect on the modal posterior value of ~ thus increasing the most likely value of theLDS 0 .

ii) For fixed values of the modal responsesP I and P 2, increasing the variable parameters mI has a smooth

effect on the posterior probabilities of the toxicity classes;m, - 3 may be considered as semi-uninformative.

iii) The method of §1l.53, based on prior probabilities of the toxicity classes allows a considerable amount

of prior information tobe incorporated.

iv) For the present data set an analysis based on the improper prior, or on any of the informative priors, shows

that there is a very small probability that theLDSO is less thanSOD mgJkg. (toxicity classes1, 2 and 3), the

maximum posterior probability being 0.03.
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11.6 H.P.D. Intervals for the LD50 - Choosing the Scale for Making Inferences.

We noted in §11.2 that one need not be content with calculating the posterior probabilities of the toxicity

classes; indeed one great advantage of a Bayesian approach to inferenceis the richness offered by the posterior

distribution. One alternative approach which we suggested previously would be to calculate the 95% H.P.D.

limits for the log(LDSO). A question which naturally arises is Why uselog(LDSO) and notLDSO '! The

answer to this question highlights the potential dangers of an automatic, unthinking adoption of a single

inferential summary.

The data displayed in Table 11.10 arose in a rabies vaccine of the type described by Thraenhart(1986). In

contrast to standardLDS 0 experiments, the dose metameterin such studiesis in the form of dilutions of the

vaccine. For the purposes ofthis section we will treat the results asif they arose from a standardLDSO

experiment althoughLDS 0 is not an appropriate term since the vaccineis given to protect against the rabies

virus. PerhapsE DSO (50% Effective Dose) would be a more appropriate description.

TABLE 11.10 Results from a Rabies Vaccine Experiment

Dose Number of Animals Number of

(Dilution) Animals Dying

128.20 16 13

25.64 16 14

5.13 16 14

1.03 16 6

The maximum likelihood estimator of theLDSO for this data is a dilution of 0.775; the data did not lend

themselves to the calculation of asymptotic fiducial limits. The Bayesian approach which we have outlined

gives rise to a posterior median ofO.760 dilutions, a posterior mode of 1.252 dilutions and 95% H.P.D.limits

of 0.011 and 5.386 dilutions. The posterior probability that theLDSO is less than the lower H.P.D. limit is

0.047;in other wordsthis 95% intervalis practically a one-sided interval ( the actual one-sided95% interval

has the value 0.013 as its lower limit).

If we recall howthis interval was determined we see that it was based not on theLDSO directly but on the

log (L DS 0)with a final transformation to the original scale. Suppose we were to work directly with theLDSO

, then by definition of an H.P.D. we would expect such an interval to be shorter. This is the case, the interval

ranging from 0 to 2.888 dilutions so thatthis latter interval, again a 95% interval, is approximately 50% of

the former interval. We see that again the 95% H.P.D. interval is one-sided, but interestingly in the other

direction. The difference in the two parameterizations is strikingly illustrated by their respective posterior

distributions displayed in Figures 11.4 and11.5.

An argument can be made that the difference between the intervals 0.011-5.386 and 0-2.888 is not relevant

in the context of the S-fold dilutions used in the experiment. Wewill however sec in §13 that such a difference

can be of practical significance in the context of rabies vaccine experiments. For the purposes of argument

suppose that the data arose from an acute toxicity experiment and that the doses in mg/kg were 100 times
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larger than the dilutions. In such circumstances the two intervals would be 1.1-538.6mk/kg and 0-288.8 rag/kg

and the differencemight have profound implications with respect to the classification of the substance using

either the EEC or Swiss toxicity classes.

Two obvious questions need to be answered. Does the problem arise with classical confidence intervals?

Which is the appropriate scale for inference?

To answer the first question we investigate a problem considered by Bartoszynski and Powers(l990). These

authors were interested in determining a shortest confidence interval for the half-life of a drug based on

estimating the elimination rate constant. In particularif f3 is the elimination half-life, ~ an estimate of it and

sits corresponding standard error then a(1 - a)% confidence interval forf3 is ,

(11.26)

where t a 12 is the (1 - a / 2Po quantile of the appropriate t-distribution. Such an interval is in general only

approximately a 95% interval since ~ and swould normally be estimated by non-linear least squares. The

half-life is given byh - log(2)/~so that (11.26) may be written as,

10g(2)h h log(2)1i
< <

log(2) + nsta12 log(2) -list,,12
( 11.27)

Although (11.26) is, approximately at least, the shortest confidence interval forf3 this is not true of the interval

(11.27) forh .

Suppose, therefore, that we may chooseuandu such that,

•f g(t)dt = I-a
u

where 9 ( t) is the t-density with the appropriate degrees of freedom, say M. Then a (1- a)% confidence

interval for f3 is,

13 - us < ~ < ~ - us

so that,

log(2) < h
~-us

log(2)
<--

~-us
( 11.28)

is the corresponding(1 - a)% confidence interval forh. The conditions under which (11.28)is of minimum

length may be derived either as Bartoszynski and Powers(l990) or as follows. The length of the intervalis,
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4l(u,U) = l~g(2)_log(2)
13 - vs ~ - us

( 11.29)

which we need to minimise subject to the condition,

J g(t)dt I-a C 11.30)
u

From (11.29) and (11.30) we get,

d~Cu,v)

dv

log(2) _ 109(2) du

(~_VS)2 (~-us)zdv

and

du
g(v) - g(u) dv - 0

which implies that,

d+(u, v)

dv

109(2) _ log(2) g(u)

C~ - VS)2 C~ - US)2g(U)
(11.31)

From (11.31) the solution tod~( u ,u)1 du - 0 is given by,

g(v)(~_VS)2 - g(u)(~-US)2

or equivalently by

C~_VS)4

(M+V2)'41+1

C~ - US)4

CM+u2)AI.1
C 11.32)

c.f. Bartoszynski and Powers(1990) equation (24).

The analysis provided by Bartoszynski and Powers(1990)in which they assume that ~-N (I!,az) and

Ms 2 1a 2 - X ~ may be thought of as providing sufficient statistics for!3and a Z i~and s 2 can be thought of as

summarizing almostall of the information about 13and02 containedin the data. When the usual uninformative

priors are assumed for!3anda2 the posterior distribution of the parameters may be approximated by,

2 1 (_(f3_~)2)(MS2/2)Al/2 2 -(Al/Z.I) (-Ms2)
pC(3.0 I X) .. (2noz) I/ZexP 202 rCM 12) (a) exp ~

from which the marginal posterior distribution of 13may be derivedin the form,

CM SZf1/2( «(3 - ~)Z)-(AI.I)/2
pCf3IX) - (I AI) 1+ M 2B - - S

2' 2
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It follows that the posterior distribution ofh = log(2)/f3is,

log(2)(M sZf 1/2( (log(2) _h~)2 )-CAI+ 1)/2
p( hIX) - l+~~~~~

(
I AI) Z Mhz 2

B 2'"2 h s

An interval (a, b) is said to be a 100(1 - a)% H.P.D. interval for a parameter cpif

1) (a, b) is a 100(1 - a)% posterior interval, i.e.f ~p( + I X)d + - 1 - a

2) for all + E (a ,b ) and +' f! ( a ,b ) , p (+ I X) ~ P ( +' I X)

Condition 2) requires that there be no values of cpwithin the interval ( a ,b) which have a posterior ordinate

lowerinvaluethananyvalueofcpwithouttheinterval.Asecondimplicationof2}isthatp(a I X) - pCb I X)

; a third implication is that for fixed a the H.P.D. intervalis the shortest interval.

The requirement of equal ordinates reduces in the case of inference abouth to,

1 (109(2)_a~)2)-CAI+I)/2 1 ( (109(2)_b~)2)-(AI'I)/2
- 1+ - - 1+ ~.:::....:...--=-:--=-':.....;_
a2 Ma2s2 b2 Mb2s2

Letv - (~a -10g(2))/(as) andu - (~b -log(2))/(bs) then the above ordinate condition maybe

shown to be equivalent to

(~_VS)4

(M + V2)AI'1

(~-US)4

(M + U2)AI'1

which is identical to (11.32). Since the transformationt - (~h -log(2))/(hs) applied toJ: p(h I X)dh

givesf: gAl (t) where gAI(t)is the standard t-density onMdegrees of freedom. Itis clear that the 100(1 - a)%

H.P.D. interval is identical to the shortest interval developedby Bartoszynski and Powers(199O).

Whilst we have considered a specific transformation, asimilar result would have arisen had we taken instead

a general nonlinear transformation1jI( (3) . It is clear from the aboveanalysis that the answer to the first

question which we posed is that classical intervals in general suffer from the same problems as do Bayesian

H.PD. intervals.

Turning to the second question, two separate considerations suggest thatlog (LDS 0) is the more appropriate

scale for making inferences. The first consideration is statistical. Box and Tiao(l973} argue for so-called

stI:IIUIordized H.P.D. intervals. Such intervals are calculated in the metric for which the uninformative prioris

locally uniform. Inthis metric different sets of data translate the likelihood in the parameter space but otherwise

leave it unchanged; forthis region such likelihoods are termeddata translated.In the present context, our

constrained prior,

pc(a,l3) - constant 13> 0 ,-co < a < co

becomes in the parametrizationf3 andw ,
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and in the parametrization e111 ,i.e. LDS 0 , and [3 ,

Clearly 10g(LDSO) is the parametrization in which, with respect to the parameter of interest, the prioris
locally uniform.

The second consideration concerns the dose scale itself. Since the scale on which a doseis measured is
essentially arbitrary, for example in risk assessment doses may be measured either inmg/kg or in parts per

million, it is advantageous to have a scale on which a proportionate increase in the dose has the same scale

value at all levels of dose.

11.7 Proftle Likelihood.

In discussion of Racineet 01(1986), Ross(1986), Bailey and Gower(1986) and Cox(1986) all suggest that the

failure of the traditional method of setting confidence intervals based on F"xellers theorem to give an adequate

result is a direct result of the invalidity of the normal approximation to the binomial forsmall numbers of

anjmals. They conclude thatthe use of likelihood intervals solves the problem.In this section we show that in

exactly the same way as with the fiducial intervals based on Fieller's theorem, there always exist a "confidence

level" for which this likelihood method fails to produce an interval. We establish this result for a logit model,

although the same resultmay be empirically demonstrated for the probit model.

Deftnltion:

Suppose L (9 , • IX) is a two parameter likelihood then the profile likelihood of9 , P L (9), is defined as,

PLCO) - LCO, ~(O))

where ~(9)is the solution toaL(9. + I X)I 13+- o.

Theorem :

The profile likelihood forw - log (L DS 0 jfor a logit response model has a minimum given by ,

,
w

t2: x,(r,- n,12)
I-I

• ~(w') -o.

Proof:

From the log-likelihood I (w , ~ (w» which, for convenience, we denote byl and regarding it as a function

of w alone, we have

al t [ d~(w) ]
- • ,[(r,-n,P,) CXI-w)-d---~(w)
aw I_I w

When ~(w) - 0, P, - 112 and substitution ofw .. iu' gives0l 1aw - 0 . Differentiation ofall aw gives,
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At the turning point ui" , 13 (w' ) = 0 , P j = l/ 2 so that,

cZl dl3(w') k 1 " • Z[d13eW')JZ
-2 - -2 L(r,-n/2)--Ln,(x,-w)
CW dw '_I 4,_1 dui

( 11.33)

By definition 13 ( w) is defined as an implicit function ofw by the equation,

rH

oW
"LCx,-w)(r,-n,p,) = O.

i-I

A second differentiation gives,

- 0

giving

dj3(w)
-- -

k "
I3Cw) L n,P,( 1 - P,)(x,- w) - L Cr,- n,P,)

,- I ,- I

dw "Ln,p,(I-P,)(x,-w)Z
'-I

At the turning point iu' • f3(w') ~ 0, P, = 1/2so that,

"LCr,-n,/2)
dl3Cw) '-I
-d-w- - - --:",,-----

~Ln,(x,-w·)2
'-I

Substituting this into (11.33) gives,

a[t(r,-n,/2)]2 4[tcr,-n,/2)]2
'-I '-I-=-t:---------

L n,ex, - W')2

'-I

4[ t (r,- n,/2)]2
I-I-"~ • ZLn,(x,-w)

,·1

which is clearly positive, so that the turning point is a minimum.

This result implies that the profile likelihood function forw has both a maximum and a minimum. Thus the

profile likelihood can be characterized , for convenienceusing the log of the profile likelihood, asin F'JgUre

11.6. The behaviour of the profile likelihood function evidencedin this figure is mirrored in the plots ofL ( I.l0 )

, the likelihood ratio statistic, given by Williams(1986), and has also been described explicitly by Aitkin(1986).

The asymptote represents the log of the profile likelihood for zero slope and corresponds to,

l(oo,ll(oo» - rlog(r/n)+(n-r)log(l-rln)

where
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k

r = \rL,
,'1

The implication of the form of the log of the profile likelihood, which was apparently not appreciated by either

Williams(1986) or Aitkin(1986), is that there will always be a level a for which the likelihood intervalwill

comprise the whole real line. The level at whichthis occurs will be lessthan that at which Fieller's Theorem

applied to the asymptotic normal approximation breaks down, but itwill always occur. This may clearly be

seen in Williams'(1986) FIgW'e1. in which the likelihood ratio statistic always liesabove the asymptotic

approximation.

The proof of the theorem shows that it is negative values of the slope ~ which cause problems and it is precisely

those values of ~ which are excluded by the Bayesian analysis based on a prior for ~ which is uniform on the

positive half of the real line. There is clearly justification in conditioning on positive ~ in toxicity experiments

although the argument may be more difficult to sustain in other classes of experiments.

The profile likelihood, or relative likelihood approach, has a second major defect.As Kalbfleisch and

Sprott(1969) point out:

"... the maximum relative likelihood does not take account of the uncertainty due

to lack of knowledge of ~ and so can be misleading in terms of both precision and

location".

This comment relates to the effective assumption that for fixedw , ~ is known to be equal to its maximum

likelihood estimate without weighting for the uncertainty in that estimate. A Bayesiananalysis effectively takes

account precisely ofthis uncertainty in the following way. Supposeagain that we have two parameterseand

cpand we wish to make inferences aboute.For a uniform prior on both parameters an asymptotic approximation

to the posterior distribution ofe is given by,

(
H'C,') )1/2Q1(I .• ')

p(al X) - 2nn I H(A, ,) I ,,,("')

where G and eT> are the global maximum likelihood estimates, .' is the maximum likelihood estimate ofcp for
fixed e ,H ( A, .) is minus the inverse of the Hessian of the log likelihood, andH' is minus the reciprocal of

the derivative of the log likelihood function with respect tocp for fixed e.The profile likelihood function,

ex pCl (e , , • ))is weighted in the above expression byH' ( , • )1/2 which represents the uncertainty in • •

measured by the curvature of the log likelihood at that point.
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12 PREDICTION IN LD50 EXPERIMENTS.

12.1 Introduction.

Ever since their very beginnings, Bayesian methods have been used for predictive purposes. Richard Price,

for example,in his appendix to the posthumously published original paper by Bayes provided applications of

Bayes' results to six problems of which three had to do with the prediction of events, albeit that Dale(1982)

has pointed out that Price's application of Bayes' results to these prediction problems was incorrect. A recent

re-interpretation by Stigler(1982) of Bayes' Scholium in which he defended the use of a uniform prior suggests

that Bayes proposed a uniform "uninformative" prior distribution for the parameter of his problem not because

he believedin the so-called "principle of the equal distribution of ignorance", but rather because it lead to a

uniform predictive distribution for the data. A second obvious example of an early use of predictive ideas is

to be found in Laplace's "law of succession".

More recently predictive distributions have been used for a variety of practical applications. Aitchison(1964)

used the predictive distribution for setting tolerance limits to be used in normal range applications - an area

surveyed in detail by Guttman(1970); Guttman(1965) uses it in goodness-of-fit problems; Box(1980) uses it

for testing the compatibility of the prior distribution and the likelihood; Naylor and Smith(1983) use it again

for a normal range problemin which there is a mixture of "healthy" and "sick" subjects. Aitchison and

Dunsmore(1975), a text devoted solely to predictive distributions, provide a number of further applications

as does Grieve(1988) in a pharmaceutical context.

In a series of articles, over a number of years, Geisserhas championed predictive inference for its own sake

- see for instance Geisser(1971), Geisser(1982) and Geisser(1985) - the latter article providing references to

other applications.Inessence he argues that predictive inference, since it deals with observable quantities, is

of more relevance to practical problems than "estimative inference" which has to do with hypothetical models

wbose parameters can only have meaning in the limit as the sample size goes to infinity. Such considerations

lay behind the procedure for the determination of a prior distribution fora and ~ in§11.5in that toxicologists

are asked to express beliefs about observable events, namely the deaths ofanimals, rather than about the

parameters a and ~ themselves. Commenting on Stigler's(1982) re-interpretation of Bayes' Scholium

Geisser(1985) concluded that 'Bayes himself is the first Bayesian predictivist'.

In this chapter we develop a predictive approach to a non-standard problemin LDSO estimation.

12.2 Background to the Applications.

The first application concerns aclaim by a national regulatory authority that a new formulation of an

agrochemical product Basudin had anLDS 0 of the order of 200mk/kg or less. When originally tested on rats

this substance gave rise to the data shown in Table 12.1.There is no evidence inthis table to suggest that the

LDSO could be as low as 200 mg/kg. Indeed, the maximum likelihood estimates of theLDS 0 and their respective

95% fiducial limits given in Table 12.2 show that it is highly unlikely that theLDSO could bethis low and is

more likely to be of the order of700 to 1100 mg/kg. This is confirmed by the Bayesian analysis of §11 which,

using uninformative priors, gives rise to the posterior distributions displayedin Figure 12.1 and by the fact

that the posterior probabilities that theLDSO is less than 200 mg/kg are each less than 0.0001.
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TABLE 12.1 Data from Previous Studies with Basudin.

Study Dose Number of Number of

(mg'/kg.) Animals Exposed Animals Dying

600 10 0

1 1()()() 10 6

1470 10 8

1670 10 10

600 10 0

2 775 10 5

850 10 6

1()()() 10 10

359 10 1

600 10 2

3 1000 10 7

2150 10 10

3590 10 10

In the light of the pressures to reduce the numbers of experimental animals and under the strong conviction

that no substantial change in the toxicity of Basudin had taken place it was decided that it was not appropriate

to carry out a full LDSO experiment, particularly since there were 10 batches of the new formulation which

had been questioned. It was therefore decided to apply a dose of 200mg1kg taken from each batch to 10 rats

to repudiate the claim of increased toxicityin the expectation that no anjmals would die atthis dose. On the

basis of the data in Table 12.1 predictive distributions of the results of these tests may be calculated and the

observed results compared to these to give an assessment of changes in the toxicity of Basudin.

TABLE 12.2 Maximum Likelihood Estimates and Fiducial Limits for the Data from Table 12.1.

Study M.L.E. Lower Fiducial Upper Fiducial

(mgikg) Limit Limit

1 1015 808 1183

2 797 719 851

3 780 601 1061

The second application again concerns an agrochemical product, Miral.In this instance there was anecdotal

evidence to suggest that when stored for long periods in the humid conditions to be found in S.E. Asia, oxidation

of the compound could occur leading to increased toxicity. When originally tested the results given in Table

12.3 were obtained.
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TABLE 12.3 Data from a Previous Study with Miral.

Study Dose Number of Number of

(mg'/kg.) Animals Exposed Animals Dying

35.9 5 0

60 5 0

Males 129 5 2

147 5 4

215 5 5

35.9 10 0

60 10 5

Males 129 10 7

and Females 147 10 9

215 10 10

These results gave rise to the traditional maximum likelihood results displayed in Table12.4

TABLE 12.4 Maximum Likelihood Estimates and Fiducial Limits for the Data from Table12.3.

Study M.L.E. Lower Fiducial Upper Fiducial

(mgIkg) Limit Limit

Males 133 No Fiducial Limits Calculable

Males and

Females 76 54 100

The Bayesiananalysis outlined in§11, again using uninformative priors, gave rise to the posterior distributions

shown in Figure 12.2. Both sets of data show that itis extremely unlikely that theLD50 for Mira! is less than

40 mglkg. It was therefore decided to apply a dose of35 mgIkg to each of5 males and5 females from each of

6 batches of Miral. The data in Table 12.3 maybe used to provide predictive distributions, and a comparison

of these distributions with the actual resultswill again indicate whether a change in toxicity has occurred.

12.3 Predicting the Results or a Future LD50Experiment.

Suppose we wish to predict the results of a future experiment consisting of a single dose, d ,being administered

to a group of n animals. Given that we know the values ofa and 13 in our probit model, then the probability

distribution of the number,r ,of deaths from then animals is,

P(rln.a.j3) _ (~)pr(l_p)A-r
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where P - ell ( a + ~ x) and x ""1og (d) . If our knowledge concerning a and13 is described by a posterior

distribution determined as in §11, then the predictive distribution ofr deaths from then animals given our

current knowledgeis,

P(rIX) - f fp(rln.a.~)p(a.I3IX)dadl3
Cl II

f f P(rln.a.~)L(a.~IX)p(a.l3)dad~
Cl II

f f L(a.131 X)p(a.l3)dadl3
Cl !I

(12.1 )

12.4 Approximating the Predictive Distributions.

We are again confronted with integrals which we cannot determine analytically. The Gaussian quadrature

method of Naylor and Smith(1982)is one possibility for calculating (12.1) or we may again use Lindley's(1980)

asymptotic results.By noting that (12.1)is of the form,

f u(9)el(8)'p(e)d9

f II1(8)·P(·'d9

where9-(a.~) ,u(9)-P(rln.a.l3) ,l(9)-log(L(a.I3IX» andp(9)-log(p(a.l3» Lindley's

equation (16) may be used to show that a good approximation to (12.1)is given by,

where

1\ cP(r1n.a·f3)1 1\ _ c2p(r1n.a·13)1
r. - , r12ca CI' • • !I'. cacf3 Cl' • • a'_

etc., and wherel jJ • a! . a= and a ClII are as previously defined ( see§11.2). The required differentials have the

following form :
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PI - operln,a,(3)

oa

Pz - oper In,a,(3)

oa

PII - o2P(rln,a,!3)

~aZ

PI2 - ~ZP(rln,a,!3)

oao(3

PZ2 - ~ZP(rln,a,!3)
0(32

(~)4>(~)pr-I(l- p),,-r-I (r - nP)

(~)H~)pr-,( 1 - rr:' (r - nP)x

(~),2(~)pr-z( 1 _ p)"-r-z(rz _ r + 2Pr+ pZn2 _ nP2_ 2nPr)

-PI~

(~),Z(t.)pr-z(l _ p),,-r-z(rZ - r + 2Pr + p2n2 - nP2 _ 2nPr)x

-Plt.x

(~)q,2(6)pr-2( 1 - p)"-r-2(r2 - r + 2Pr + p2nZ - nP2_ 2nPr)xz

-Pl6xz

in which 6 - a + (3x , and where again each differential is evaluated at the maximum likelihood estimatesa
and~.

iasResults.

u.s.l Toxicity of Basudin.

Using the above results and the datain Table 12.1 we may calculate the predictive distributions forr deaths

among 10 rats receiving a dose Of2OOmg/kg. The predictive distributions for the three setsof data are displayed

in Table 12.5.

TABLE 12.5 Predictive Distributions ofr Deaths from 10 Animals Receiving200 mgIkg, of Basudin.1

Study

r 1 I 2 I 3

0 0.999 1.000 0.943

1 0.001 0.000 0.048

2 0.000 0.000 0.007

3 0.000 0.000 0.001

In the actual experiments which were carried out there were no deaths. Thus the experimental results agree

wen with the predictive distributions in that the highest predictive probability of a single death from 10 rats

is of the order of 1in 20 (study 3). On the basis of these results it was concluded that the new formulation of

Basudin did not have anLDSO of the order of2OOmg/kg. or less.

1 The probabilities forr > 3 are all essentially zero and are not shown.
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12.5.2 Toxicity of Miral.

In the case of Miral, Tables 12.6 and 12.7 provide predictive distributions of r deaths from 5 males receiving

35 mg/kg of Miral andr deaths from 10 male and female animals also receiving 35mg/kg, These predictive

distributions were derived using the results in §12.4 on the basis of the data shown in Table 12.3.

TABLE 12.6 Predictive Distributions ofr Deaths from 5 Male Animals Receiving 35 mglkg. of Miral.2

r Probability

0 1.000

1 0.000

TABLE 12.7 Predictive Distributions ofr Deaths from 10Animals Receiving 35 mglkg. of Miral.3

r Probability

0 0.536

1 0.246

2 0.141

3 0.060
4 0.016

5 0.002

In Table 12.8 the results of testing 35mg/kg, taken from each of 6 batches, in 5 males andin 10 males and

females are tabulated. It is not so clear inthis instance that therehas not been a change in toxicity.In the case

of males we predict with almost certainty that therewill be no deaths from 5 rats and yet one of 6 batches gave

rise to one death; for males and females together the predictive probability of lessthan 3 deaths from 10 rats

is 0.923 but one batch gave rise to 3 deaths. Whilst not conclusive, these results do tend to suggest that an

increase in toxicity has taken place.

12.6 Discussion.

Whilst the approach taken inthis chapter is appealing in terms of saving on the use ofanimals, nonetheless

one needs to be sure that its application is appropriate. In particular applicability of the technique assumes :

that all experiments, thatis those used for prediction, those on which the claims for increased toxicity

were based and the new experiments were conductedin a similar fashion and undersimilar conditions.

2 The probabilities forr > 1 are all essentially zero and are not shown.

3 The probabilities forr > 5 are all essentially zero and are not shown.
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TABLE U.8 Observed Results from Testing 6 Batches of Miral.

Males Males & Females

Batch n r n r

1 5 0 10 0

2 5 0 10 0

3 5 1 10 3

4 5 0 10 0

5 5 0 10 0

6 5 0 10 2

This assumption is particularly important since, as we have seen, theLDSO is not a biological constant but

can vary depending on environmental and other factors. Potentially, therefore, whilstin the case of Basudin

we concluded that there was no changein toxicity, we may only have concluded this because the conditions

under which the test was conducted changed thereby masking the changed toxicity; the converse may be true

in the case of Miral.

The importance of this assumption was underlined when it was subsequently revealed that the regulatory

authority who had claimed that theLDS 0 of Basudin had changed had use mice instead of rats!!
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13 DISCUSSION.

In this thesis we have consideredtwo areas of controversy in pharmaceutical research and have provided
operational tools forcarryiDg out Bayesian analyses ofvarying complexity. In particular, where appropriate,
we have provided graphical methods for displaying the relationships between prior assumptions concerning

the parameters of the relevant models and the posterior inferences which may be derived from these prior
assumptionsandthe cxpcrimcntall data. At least two issuesremain open.

Consider first the classical LDSOtest and the approach developedin ill. We noted in ilO that itis likely that
the BTS procedure whichis not based upon the LDso, indeedit is not even primarily concemed with lethality,
will, become themain procedure for determining the acute toxicity of a test compound and therefore it could
be argued thatthe development in ill is unnecessary. There are a number of reasons forarguingagainstthis

view:

i) In §11 we concurredwith Fmneys(l985) opinion that while some regulatory authorities still require

the estimation of a formal LOSOvalueit is incumbent upon us as statisticians to utilise the most efficient
methods available forits determination. Suchwas the motivation behind Williams'(l986) development
of a likelihood-based method for constructing a confidence interval for the LOso, an idea independently

developedby Aitkin(l986).

ii) Whilst from a regulatoryperspective theneedto determine a formal LOSOvalueis likely to disappear

there are still iDstanceswithin pharmaceutical research in which an LOSOvalueis needed.One such
instance is the determination of the appropriate doseof cytotoxic drugs to be given to patients in the
first human study. Oncologistswill in general require either an LDso, or an LDlQ, based on animal

studies before they are prepared to specify a dose in such early human studies and whilst theydo not

require extreme precision for such estimates since the LOla. as well as the LOso,is required efficient
methods are necessary as estimating the LOIO requires more resources for the same precision as does

e.ctimating the LD5().

iii) There arc other areas of toxicology. apart from those associated with pharmaceutical research, for
which LDSO estimates are needed.One example is in the area of ccotoxicology. that is environmental
toxicology, whereit is necessary to determine the LOSOinfish of. for example, agrochemicals which
may enter rivers by being washed there either throughirrigation or through rainwater. Apart from
animal welfare considerationsmany of the species offish which arc used in such studies arcexpensive,

for example trout or salmon,andtherefore thereis again a requirement of efficiency. Intcrestinglythere
is one arca of ccotoxicology involving LDSOestimation for which therehas been no effort to increase
efficiency and that is where the test system is a water-bominsect, the main example being the species

Daphnia. Apparently insects arc considered expendable.
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iv) There are a large number of instances within the process ofthe isolation of new chemical entities

for medical research for whichthe determination of an EDSO as opposed to an LDSO is required.In

some of these cases the model which is being used is ananimal model and so once again considerations

of efficient resource utilisation suggest that one should optimisethe statistical methodology.

v) F"maIly, returning to the very origins of the LDso. namely Trevan's work on sera, there are still cases

in the area of vaccine testing for which a formal LDSO is needed. Thraenhardt(1986) has considered

the use of Bayesian methods for the evaluation of batches of anti-rabies vaccine based upon theWHO

method outlined by Seligmann(1973). The regulatory authorities require that before every new batch

of anti-rabies vaccine is released it shouldbe tested against a standard and generallythis comparison

is based upon the dilution which protects 50% of the animals against the rabies virus. Thraenhardt

proposed that the ED5O's should be comparedby calculating the posterior probability that the LDSO

of the test batch is greater than that of the standard vaccine.As illustration we have takendata from

Thraenhardt(1986) andin Figures 13.1,13.2 and 13.3 displayed the posterior distnbutions of the

Los2(EDSO), the slope andthe joint posterior distribution of ~(EDSO) and the slope respectively

in which the black posterior distributions, labelled'Q' in Figure 13.1, relate to the standard vaccine and

the remaining seven posteriors in each figure come from seven test batches. From the posteriors dis-

played in F"tgure 13.1 we may calculate that probability that the standardhas a greater Lo~(EDSO)

than doesbatch '1' is 0.057and perhaps concludethat this batch is not as potent asthe standard. Ithas

to be doubted that this approach is a sensible one in the1ight of the posterior distributions for the slopes

displayed in F"JgW'e13.2 from whichit is fairly clear that there are large differences. The concept of

relative potency requiresequality of slopes andthis assumption has to be doubted in view of these

posteriors. Nonetheless, the log relative potency oftwo batches has a similar form to the log(EDSO)

and therefore the techniques which we have developed can quite simplybe modified to deal withthis

case.

The second issue concerns boththe LDSO problems and theanalysis of the two-treatment crossover designs.

In both caseswe have used vague prior distributions, and there will be arguments about the validity of their

use. For cxample Stone and Springer(196S) have questionedthe validity of the vague prior whichwe have

used in f3, and similar concerns have beenexpressed concerning the vague prior in f8. Despite Box and

1180'5(1973) response to the theoretical arguments of Stone and Springer there are clearly problems with

vaguepriors if one tries toassign to them some semi-philosophical importance which they clearly do not have.

Rather they should be thought of merely as a device forexpressing that we know little about the parameters

of the model under consideration relative towhat we may learn from thedata.

In the context of pharmaceutical research, particularly whenwe are dealing with regulatory authorities,it may

be very difficult to incorporate prior information into theanalysis of the experimental results evenif we have

a lot of it and believe it to be relevant, notwithstanding the comments of Healy and Newman infl, and this

may be our preferred approach which would circumvent the problems associated with vague priors. However,

there seems tobe considerable scope for the use of informative priors in in-house research work andthis
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conflict between the public and private inference may be resolved by the suggestion givenin §1, namely to
give the data, or likelihood,in a results section, leaving a Bayesiananalysis with its posterior distribution to
the discussion.
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A APPENDICES.

Al Behrens-Fisher Densities and Orthogonal Polynomials.

Four different methods of calculating Behrens-Fisher densities and/or distribution functions are considered.

The first three methods depend on the use of orthogonal polynomials and Gaussian quadrature. As a

by-product of one of these methods an alternative to Fisher's(1941) Hermite polynomial expansion of the

Behrens-Fisher density is derived.

Al.I Background.

SupposeXii (i - 1 .2; j - 1 .... n i) are two independent samples fromN (Il, • a f) and further that the prior

distributions of Ill' 1l2'loge a~) and loge a~) are independently uniform over (-CID. CID). Ifx I. X 2' s~. s~are

the respective means and variances of the two samples, standard Bayesian calculations show that the posterior

distribution of the parameters has the form,

(Al.1.l)

where

- - 2 2
X-eXI'X2'SI,s2) (

n ) 1/2

• Ai - 2~ . and B, -

If we are interested in making inferences concerning Tl.. 112- III , a natural way to proceed is to integratea ~

and a ~out of (Al.l.1) to obtain,

(A1.1.2)

where v , - ni-I , C i = B-1 Cl /2 .v ;12)(ViS ~/ n,f 1/2followed by the transformation n" 112- III . 'IJ- III

(with unit jacobian) and to integrate out 'IJ.Thus,

p(nIX) _ j CIC2[1+nl('IJ-~1)2J-RII2[I+n2(n:ljIs~X2)2J-R2/2d'IJ'
_. v I S I 2 2

(Al.1.3)

Posterior probabilities concerning n may be obtained by integrating (AI.13) over the required range. For

example,
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The problem consideredin this appendix is the numerical evaluation of (Al.l.3) and (Al.l.4).

AIol Quadrature Using Harper Polynomials.

From (Al.l.3) it is clear that,

and,

so that (A1.1.3) and (Al.l.4) may be written,

p(TlI X)

. -- f p(Tl.1jJ I X)d1jJ - f p(TlI1jJ. X)p(1jJ I X)d1jJ

. -f f p(Tl.1jJIX)d1jJ

o --

f f p(TlI1l1.X)P(1I1IX)dlld1l1

o --

-
.. f P(Tl>O I 1I1.X)P(1jJ I X)d1l1

(Al.l.4)

(AJ.2.1)

(Al.2.2)

(Al.2.3)

(Al.2.4)

In (Al.2.3) and (Al.2.4) make the transformation u= n :12(1jJ- x l)/(V I s~) 112withjacobian (v I s~ / n I) 112

then

-
p(lll X) - f p(TlI u , X)p(u I X)du

and

.
P(Tl>OIX) '"' fp(Tl>Olu.X)P(U,X)dU

where C ~ - B-1 ( 1/2 .V I /2) andt ( v 2 ) is t-distributed with v 2degrees of freedom.
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Equations (A1.2.5) and (A1.2.6) may both be written in the form,

a

f I 2 -n,/2
C lieu)( 1 + u) du eAI.2.7)

and may therefore be approximated by,

t C~w IJ(UI,)
I-I

(AI.2.8)

where U I I are the zeros of the orthogonal polynomials~n. t(x)developed by Harper(1962) andW II are the

associated weights[k = (v I - 1) 1 2 , n < k + 112] . Explicit expressions for ~n. A: ( x) and W I I are derivedin
Appendix A2.l.

Al.3 QuadratureUsing Hermite Polynomials.

In (Al.1.l) make the transformationT'l - 1-12 -1-11' "" - 1-11,P - a~/a~ and e - (J~withjacobianeand integrate

out in turn "" and eto give,

(AJ.3.1)

where D I - B-1 [112, (v 1+ v2)/2] andEl = B' I(v I12, v2/2)[V2S~/(v Is~)r 1/2. Clearly (Al.3.1) may

be written in the formp(T'l1 p, X)p(p I X) where,

(AJ.3.2)

and

p(n,pIX)

(AJ.3.3)

This structure is similar to(Al3) and therefore,

.
peT] I X) - f peT] l o , X)p(p I X)dp

o
(Al.3.4)

and
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PCll > 0 I X) - f f peT] I p , X)pep I X)dT]dp
o 0

~

f peT] > 0 [p , X)pCp IX)dp
o

(AJ.3.S)

where PCT]> 0 l p , X) I - P [ t e v I + V 2) > t r l and

Equations (A1.3.4) and (A1.3.5) may both be written in the form,

-f j(p)p(p I X)dp (Al.3.6)

and therefore we may use the following argument due to Barnard(1984). Since p(p I X)is a continuous density

there will exist a monotonic function9e . ) with inverseh ( .)such that9 (p ) has a standard normal distribution.

Therefore we may write (Al.3.6) as,

-
(2nr1/2 f j[h(z)]1! -%2/2dz z-g(p),

which maybe approximated by,

II

Iw;;![h(u;I)]
I- I

where W;I- wz1n -1/2, u;, - uzI2-112, and Uzj andWZ1 are the zeros and associated weights of the Hermite

polynomialsH II ( X ) (see for example Abramowitz and Stegun, 19n). Barnard(1984) proposesusing n - 3 ,

so that calculations could be carried out on a calculator. Clearlythis approach could alsobe applied to

functions of the type (Al.2.7).

Al.4 Quadrature using Jacobi Polynomials.

In (A13.4) and (Al.3.5) make the transformationU - v2s~/(v~ + v Is~p) with jacobian vzS~/(U2V 1s~)

giving,

I

peTJ I X) - f p(TJ I u , X)p(u I X)du
o

(AlA.I)

I

P(,,>OIX) = f P(,,>Olu,X)p(uIX)du
o

(Al.4.2)

where,

_I v 12-1 Y 12-1
p(uIX) - B (v/2,v2/2)u 2 (l-u) I
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p(TJlu.X)

and

where

Both (A1.4.1) and (A1.4.2) may be written in the form,

I

j v 12-1 v 12-1
f(u)u' (l-u)' du

o

which may be approximated by,

•IW3;.!(U3;)
,-I

where W 31 and u 31 are the zeros and associated weights of the Jacobi polynomials

G "CP. a, x). p = v 1/2 + v2/2 - 1.q = v2/2 (see for example Abramowitz and Stegun,1972).

A similar approachisconsidered by Barnard(1986) except that he takes the transformationy - n 2 1(n 2 + nIP)

with jacobian n2 1C n I Y 2 ) giving,

I

pClll X) = f pClll v , X)pCy I X)dy
o

CAl.4.3)

and

I

PCll>OIX) = jP(TJ>OIV.X)P(YIX)dY
o

CAl.4.4)

where

pCy I X) -

(v s21n )V,I2(V s21n )V2/2
B-Iev 12. v 12) I I I 2 2 2 (1- )V,/Z-I v2/2-1

I 2 [2 2 J-<v,.V2)/2 Y YV,, ,(I-v) V252V
...:....;--+--

III 1'1.2

and
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P(Il>Oly,X) l-P[I(v1+vz»tJ]

where

This latter approach has two disadvantages. First, the form ofP (V I X ) is such that no orthogonal polynomials

are available. Second,in the form in which Barnard(1986) implements the method it is not assumed that the

constant D 1 is known so that two numerical integrations need to be calculated each time, thus making it largely

impractical.

At.s Expansion in Terms of Harper Polynomials.

The expected value of a Behrens-Fisher variate may be obtained from (A1.1.2),

- -f 1-12P(1-I2IX)dI-l2- f I-IIP(I-IIIX)dl-ll '" XZ-Xl'

where P (u , I X) = t (x, . S ~In, •v.). The central moments may be similarly calculated,

- f'C_l)m.r(r)r:I. r:I. - v, (r<min[vI/2.vz/2]).f:o m l-'m,v21"'r-m,v,

using (A3.2.1) where,

(Al.5.1)

2 112
- CS; In,) a" v,

a"v,
1128[(1+ 1)/2.(v,-1)/2)

- v , B(1/2.v,/2)
even

- 0 1 odd.

From (A1.5.1) we have,

(Al.5.2)
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3(v,sTln,/ 6(v,sf/n,)(V2S~/n2) 3(V2S~/n2)2
-:---~~~~ + + -:--- ---
(v,-2)(v,-4) (vl-2)(v2-2) (vZ-2)(v2-4)

(AI.S.3)

Suppose that II is approximately distributed ast (x 2 - Xl' S •2, v') then from (A3.2.2),

(AI.S.4)

and

- - 4 3(v' 5'2)2
ECn-X2+Xl) '"

(v' - 2)(v' - 4)

Equate (Al.5.2) and (Al.5.3) to (A1.5.4) and (A1.5.5) to give,

(AI.S.S)

.
v (AI.S.6)

S'2
v'-2

- Y2--'-
v

(AI.S.7)

so that,

[
- - 2]-Ct+l)

• (n-X2+XI)
p(TJ I X) ... po(n) = C 1 + V'S'2

where C· - [(v' S'2) 1/2 B( 112. v' /2)] -'and k = (v' - 1)/2. This approximation was given by Patil(1965).

Suppose,

(AI.S.8)

(it is not necessary to consider odd terms). Multiply(A1.5.8)by

and integrate over the range of n , The right hand side may be written,

(AI.S,9)

Let

- -
TJ-X2+Xl

W,.,
(v' 5'2) 112
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with jacobian (v' S '2) 112then (A1.5.9) becomes,

C 'liZ 'C'f- 2 -(~") 2, C2/(2j)!f(k-2j+3/2)Z2
U

-
4

/+
Z

2/
V s __(1 +w ) 4>2/,k(W)dw- B(1I2.k+ 1I2)(2k-4j+ l)f(2k-2j+2)

(AI.S.IO)

using (A2.l.7). The left hand side may be written,

. [ - - ]ll-xz+x,jP(llI X)4l2/,t "2 lIZ dTJ
_. (v s )

, ,-!-- (-1 )tn2-2tn(v' s'2fU-In
)

- f(k-2)+ 3/2)(2))! hom!(21-2m)!f(k-21+3/2+m) Yz/-ztn
(Al.S.11)

using (A2.l.5) and (Al.5.l). Equating (A1.5.l0) and (A1.5.11) gives,

B( 112. k + 1I2)(2k - 4j + 1)f(2k - 2j + 2) -!-- (-1 )'"2-z",(v' s'Zr(/-III)

CZ/ - f(k _ 2j + 3/2)2U-4/+2 hom! (2j - 2m)! f(k - 2j + 3/2 + m) Y2/-Z",

(Al.S.12)

Suppose wewish to calculate,

(AI.S.13)

where

and

R 2/. In = m!(2j-2m)!f(k-2j+3/2+m)

In (Al.5.13) make the transformation,

with jacobian,

'112 '(1 )-"2v s -w
2W2 W

so that,
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c: [ '112. ( 1 1) ~ <!- • '2 J-m ( 1 1)].. 2" u S B~ k+2'2 + L.Q2J L R2J.m(v s) Be k-j+m+-,j-m+-
J-3 moO 2 2

(Al.5.14)

where,

This expansion was motivated, in part, by Durbin and Watson's(195l,1971) approximation to theird statistic

for testing serial correlation based on Jacobi polynomials which in turn led to the development by Grieve(1984)

of an approximation to the distribution of the locallybest invariant statistic for testing sphericity of multivariate

normal distributions again based on Jacobi polynomials. Whilstthis expansion is of some theoretical interest

it should be clear from the form of (A1.5.14) that itis not a practical expansion.

An alternative expansion of the Behrens-Fisher distribution with respect to a t-kernel was proposed by Fin-

ney(l963). Finney's expansion uses polynomials defined by,

(Al.S.l5)

wheref (x) is the t-kernel andCJ is the standard deviation of the relevantBehrens-Fisherdistribution. These

polynomials should be contrasted with the Harper polynomials defined by (see A2.l.l)

'".1: =

Whilst there is some similarity between the expressions definingw n( x) and ~t ." ( x) they are not the same.

In the same way that (Al.5.14)is impractical so toois Finney's approach based on (Al.5.15).

Al.6 Application or the Approximations.

The approximations in §Al.2-Al.S were developed for calculating Behrens-Fisher densities and probabilities

in the context of the two-treatment, two-period crossover design (see §2.4 and §4.3). To illustrate these

approximations, therefore, three well-known crossover examples - Grizzle,l965; Hills and Armitage,l979;

Brown,1980 - are used. The results from these studies are shown in Table ALL

We noted in §Al.4 andin §A1.5 that Barnard's(1986) alternative method, closely related to the Jacobi

polynomial method was largely impractical as was the expansionin terms of Harper polynomials. Forthis
reason these methods are not applied to the data in Table Al.l., however we have applied two other methods
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TABLE ALI Sufficient Statistics for Data from Gri7.zlc(1965),Hills and Armitage(1979) and Brown(1980).

Group sizes Degrees of

Data Set nl nz Freedom j R SSP SSE

Grizzle 8 6 12 0.360 -0.409 14.944 12.007

Hills & 17 12 27 1.019 0.793 565.517 145.360
Armitage

Brown 32 31 62 -0.387 -0.083 17.658 29.487

of approximation to these data. The first set of approximations was developedby Fisher(1941)using a general

Cornish-Fisher expansion; the second method was originally proposed by Weir(l960) andwas independently

investigated by Scott and Smith(1971). The Fisher method is based on expanding the Behrens-Fisher density

about a Normal kernel using Hermite polynomials in a similar way to that considered in A1.5. The Weir method

approximates the density by a normal distribution with the correct mean and variance.

In Table A2.2 the results of applying the approximations to the data in Table A2.1 are presented, in which we

have concentrated on the probability of a positive treatment effect. There are a number of points to be made

concerning the results inthis table:

(i) Of the simpler methods, i.e. Barnard's, Patil's and Weir's, Weir's is the least, Patil's the most

accurate. Barnard's method could be made more accurate by increasing the degree of the

Hermite polynomial used at the cost of simplicity. The accuracy of Patil's approximation is

somewhat surprising in the light of the Chaubey and Mudholkar's(1982) results. These authors

conclude that "Patil's approximationis very poor" this conclusion is not however supported by

our results, indeed recalculation of the cases considered by them throws doubt on their original

calculations.

(ii) The Gaussian quadrature method based on Harper polynomialsis uniformly more accurate

than when based on Jacobi polynomials. Oninitial consideration this is somewhat surprising

since the Harper methodis restricted with respect to the maximum degree of the orthogonal

polynomial which can be used whereas the Jacobi methodis
not. Howeverif we consider the form of,

APPENDICES. A-IO



TABLE A1.2 Application of the Approximations to the Data Setsin Table A1.1

Data Sets

Method Grizzle Hills & Armitage Brown

Exact 0.9912 0.6268 0.00008

PB 0.9588 0.5905 0.00007

PFO 0.9964 0.6292 0.00004

PP1 0.9930 0.6268 0.()()()()7

PF2 0.9912 0.6268 0.()()()()8

PF3 0.9911 0.6268 0.00008

PP 0.9912 0.6269 0.()()()()8

PE 0.9929 0.6245 o.()()()()5

Key : PB = Barnard's Hermite Method PP= Fisher's Method

PP = Patil's Approximation PE = Weir and Scott and Smith's Method

Quadrature Polynomial Polynomial Polynomial

Degree Harper Jacobi Harper Jacobi Harper Jacobi

3 0.9912 0.9875 0.6272 0.6262 0.()()()()1 0.00012

4 0.9900 0.9874 0.6267 0.6262 0.00004 0.00012

5 0.9924 0.9874 0.6268 0.6262 0.00007 0.00012

6 0.9901 0.9874 0.6268 0.6262 0.00009 0.00012

7 0.9874 0.6268 0.6262 0.00008 0.00012

8 0.9874 0.6268 0.6262 0.00008 0.00012

9 0.9874 0.6268 0.6262 0.00008 0.00012

10 0.9874 0.6268 0.6262 0.00008 0.00012

Welch 0.9935 0.6283 0.00007

Grizzle 0.9790 0.6317 0.00054

(AJ.6.1)

(AI.6.2)
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in the case of the Jacobi method which are shown for the three examples in Figures A1.1 and

Al.2 in which the r- and beta-variates correspond to u in (A1.6.1) and (Al.6.2) respectively

then the reason for the superiority of the Harper method is easier to understand. Gaussian

quadrature formulae work wellif in the following formula,

(g(X)<I>(X)dX .. t Wjg(x.)
oJ i-I

g( x) may be approximated by a polynomial of degree less than (2n-I). The form ofg( x) is

such that it is more difficult to approximate it by a polynomial than is the case for the Harper

method.

(iii) It is illuminating to compare the results based on a Behrens-Fisher distribution to those which

would ariseif Grizzle's (1965) procedure were used for those cases in which the carryover effect

is significant. For Grizzle's and Brown's examples the Behrens-Fisher approach gives rise to

increased sensitivities in comparison with Grizzles procedure, whilst for the Hills and Armitage

examplethis is not the case. This difference arises because for the Hills and Armitage example

the sample variance in the first period is smaller than that in the second period, whilst the

reverse is true for the other two examples.In general one can expect an increased sensitivity

using the Behrens-Fisher approach since our knowledge about variability is based on data from

both periods. For completeness Welch's(1938) approximate frequency approach to the

Behrens-Fisher problem has also been given in Table A1.2.
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Al ORTHOGONAL POLYNOMIALS.

Al.! Harper Polynomials.

Harper(1962) developsn": degree polynomialscp n. k ( x) which satisfy the orthogonality conditions,

-
f 2 -(k'l)

(l+x) Qm.k(x)4>u(x)dx =0 ; m'l'n.m+n>2k+1.

He shows that this orthogonal system of polynomials may be defined either by Rodrigues' formula,

(A2.1 .1)

or by the differential equation,

(1+x2H~~k(x) - 2kx41~.t(x) + n(2k-n+l)~n.k - o. (A2.1.2)

Writing (A2.1.2) in the form,

2kx I 1 + x2
/I

- n(2k-n+l)~n.k(x) - n(2k-n+l)~n.k(x)

- Q04>~.k(X) + Pl4l~~t(X)

(A2.1.3)

implies that,

(A2.1.4)

Differentiation of (A2.1.3) rtimes gives,

~(r)(x) _ Q ~(r:I)(X) + Pr'I,~r.~2)(x) • r-O ..... n-l.n. t r n .•

where,

Qr - (n-r)[2(k-r)-(n-r)+1]
2(k-r)x

(n-r)[2(k-r)-(n-r)+ 1J

Successive substitution of the ratios,

~n(x)

4l~~~I)(X)

P r'l

into (A2.1.4) gives,

1'2
Q 1 +Q':'"2--. ....;;."--

f II-I

.~
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Calculation of the successive convergents of this continued fraction shows that,

f(k-n+3/2)nl/!.... (_I)In(2x)"-21n
~ .(x) - ) ----~--~~~--------
·n.< 2" ~om'(n-2m)lr(k-n+3/2+m)

• N-[n/2](A2.1.5)

Harper gives the associated weights,

where a j are the zeros ofcPII.t ( x). Using equation (7) of Harper(1962) a more convenient form for the

weights may be derived,

2U
-
2n

+
2 n I r (k - n + 3/2)2(2k - 2n + 3)2( 1 + aD
n 2 r (2k - n + 2) (2k - n + 2)241~_ uC a I)

(A2.1.6)

Harper also derives the result,

.
f 22t-211

+
2n! rCk - n + 3/2)2

h - (1+X2)-(t+l)cp~.t(x)dx-II (2k-2n+l)r(2k-n+2)'
(A2.1.7)

For the special casesk: - n - 1 andk - n the quadrature formulae have the simple representations,

and

II It [ ( in )JII [ (in)J
I~n+ 1 1+cos " n+ 1 f cot n+ 1

respectively.

Al.!.l Zeros and Weightsof Harper Polynomials.

The SAS macro in Appendix7.2may be used to calculate the zeros and weights of Harper Polynomials. These

are tabulated in the following tables for n=3(1)19 andk =n-1(.5)20 in which the weights are givenin the form

• rCk+l)

W
I1

,. rO)r(k+Owli

see (A1.2.8).
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Zeros and Weights of Harper Polynomials

n=3(1)19; k=n-l(O.5)20
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A2.1.2An Application of Harper Polynomials. Predictive Probability in Clinical Trials.

Whilst, potentially at least, Harper polynomials might find application to general Bayesian integration prob-

lems, for example replacing Hermite polynomials inNaylor andSmitb(1982) approacb,thefact tbat tbeywould

need to be recalculated at each iteration mitigates against their use. Apart from using Harper polynomials to

calculate Behrens-Fisher densities and cumulative distribution functions we have also applied them to the

following problem involving predictive probabilities in clinical trials.

The idea of 'stochastic curtailment' embodied in the work of Lanet al(1982) and Lanet ai(1984) which allows

for the early termination of clinical studies can be criticised on the grounds that the conditional probabilities

involved are calculated on the basis ofparameter valueswhich mayhave little support from current experimental

data. Spiegelhalteret al(1986) take this view and provide a general argument in favour of a Bayesian predictive

approach, illustrating the argument with the comparison of two binomial samples - a problem tackled inde-

pendently by Choiet al(1985). The comparison of two normal means has been considered by Spiegelhal-

ter(1986b), Spiegelhalter and Freedman(1988) and Armitage(1988). In each of these three papers it is assumed

that the population variances are known. That such considerations are not only of theoretical interest is lent

credence by the published report of Freiet ai(1987) of a study of Glycerol, Glycerol and Dextran and placebo

in the treatment of acute stroke.This study was terminated after the inclusion of only1/3 of the proposed

number of patients because a Bayesian analysis based on predictive probabilities showed that there was a

probability of only 0.06 that the trial would reach a successful conclusionif allowed to run its course.

Choi and Pepple(1989) consider the case of two normal means and, under the assumption of known variances,

recreate the results of Spiegelhalter(1986b). When the variances are not known they propose two approxi-

mations,P I and P z, to the predictive probability of success and compare them by simulation. A by-product

of this simulation is their conclusion that bothP I andP 2 are conservative estimates of the "true" predictive

probability termedPs. Whilst our primary interest is in the calculation ofP 2 , nonetheless it is of interest to

investigate Choi and Pepple's claim of conservatism.

Without loss of generality, suppose thatti patients are treated in each of the two treatment groups, and that

the posterior distribution of 0 , the difference between population means,is N ( d It • a ~In) whered It - X - Y
is the difference in sample means and a ~-a ~+ a ~ .The posterior probability that 0is positive is,

(
n )1I2f- [-n(6-dn)2]

- --2 exp 2 2 d6
2n06 06o

(A2.1.8)

By analogy the posterior probability aftern + m - N patients in each groupis,

PH _ ~(Nl::dH)
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where cl N - (n d n + m din) I N andd m is the difference in means based on a further2m patients.

Suppose a trialis regardedasa successif? N > 1 - a implying,

By definition,

so that

(A2.1.9)

Similarly,

so that

This result is given in a slightly different formin Spiegelhalter(1986b) and Spiegelhalter and Freedman(1988)

and is equivalent to Choi and Pepple's equation (10).

Choi and Pepple's simulation comparingPsandP I is equivalent to comparing their expectations with respect

to p(d n I 6) . By definition,

(
n )1/2 [-ned -5)2J

p(dn 16) - 2J10~ exp 2:=

so that

F(?,) =

112 [. ]

%.-n ala, 1/2 2/2

-1/2 J J (2n)- e-z dz _,.2/2
(2n) e dui

(
!!.)1/2 _2.!__1I"2 ..

-. '" %. 1/2 112

'" ','"

We may use properties of bivariate normal distributions to show that the above expression can be written as,

[
1/2 1/2 (")1/2]B Z. - n 6/08 • z. - N 6/oa: N

F(P,) - 1 - ~(z .. _ n 1/26/0.) (A2.1 .11 )
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where

Similar calculations give,

The denominators in (A2.1.11) and (A2.1.12) arise since Choi and Pepple consider only those cases for which

P R is less than I - a . If this restriction is ignored these expressions reduce to,

(A2.1.13)

and

1 - 4> [ ( N ~ m ) 1/2 (z a - N 1/2610 6) ] (A2.1.14)

respectively.

In Table A2.3 we evaluate (AZ.I.H) and(AZ.1.12) for those cases considered by Choi and Pepplein their

Table 1 using the Gaussian quadrature algorithm suggested by Bouver and Bargmann(1979) to calculate

B(h. k ;p) . The near equality of all entriesin these two tables suggests that we need only consider (AZ.I.H)

and (A2.1.12) when looking at "conservatism" ofP 1 and renders superfluous the simulation results, particularly

those associated with the test statisticsZ t which Choi and Pepple calculate to test the equality ofP 1 and P s

, since it is unnecessary to test the equality of quantities which are by definition different.

Since E ( PI) and E ( P •)are by definition different, the only question which remains to be answeredis whether

they are sensible measures of performance. NowP ., defined in(A2.1.9), is the probability of success conditional

on the value of6; denote this by n Iii . The probability PI, defined in (A2.1.10), is the probability of success

conditional on the differenced 11 ; denote this byrt Id 11' Using properties of bivariate normal distributions it

can be shown that,

nld" f n 16p(61 d,,)dli
6

(A2.1.1S)

where p (6 I d n) is the posterior distribution of6 . Equation (A2.I.15) shows that the probability of success

given the results currently availableis the result of averaging the probability of success given the value of 6 ,

n I 6 , with respect to our current beliefs about 6 as represented byp (6 I d n) .

Choi and Pepple's simulations involve the calculation of the expected values of nI 6 and n Id n with respect

to p ( d II I 6) . The notation nI Iidoes not make it clear that this probability depends ond n but this is explicitly

shown in (A2.1.9). The expectation of nI d n has the form,
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TABLE A2.3 Evaluation ofE ( Ps) and E ( PI) (n I = n 2 = n , N = n + rn , 1.1 v = O. 0" = 0 y) .

N-40 N-60

nl ~x 02 E(P .) EePI) eir .) EePI)

"

20 -.2 1 .004 .062 .002 .101

2 .007 .080 .006 .126

0 1 .032 .134 .037 .196

2 .032 .134 .037 .196

.2 1 .146 .229 .225 .310

2 .099 .200 .146 .276

.5 1 .536 .373 .771 .465

2 .323 .306 .507 .394

10 0 1 .040 .233 .042 .278

2 .040 .233 .042 .278

.5 1 .646 .442 .824 .496

2 .404 .384 .564 .437

Een Idll) = f n I d~p(d~ lo)dd"
d.

[(I n Iop(o I d,,)d6 )P(dll lo)dd"

(
f 10 pd"lo)po dO)f. 6 n I ped" lli)peli)dli p(d" lli)ddll

(A2.1 .16)

The illogicality of using E ( PI) - E (n 1 d,,) as a measure of the performance of the predictive probabilityP I

is apparent from (A2.1.16). A Bayesian analysis proceeds by averaging the conditional distribution of the data

given a specific parameter value with respect to the prior distribution of the parameter to give the posterior

distribution of the parameter, from which the predictive distribution and henceP I can be determined. A

consequence ofthis procedure is a down-weighting of the contribution of specific valuesI; as measured in

p(d" I 0). To reintroduce the importance of specific values by averaging with respect top(d" 16) seems

strange; indeedp(d" 1 0) appears twice in the last line of (A2.1.16).

I would argue that if one wishes to compareP I and p. it should be done solely on the basis of (A2.1.9) and

(A2.1.10) and that the "conservatism" noted by Choi and Pepple is implicit in the down-weighting of extreme

probabilities given by the relationship (A2.1.15). The Bayesian argument againstP', mirrors the argument

against the use of "stochastic curtailment" in thatin reality Ii is unknown, so that when predictions are to be

made all that is known about I) is contained inp (li 1 d,,) which may give little support to any particular

hypothesized value for 0.
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In practice, in order to use PI some value has to be substituted forC1 0 in (A2.3.3). Choi and Pepple suggest

using the sample variances. In the Appendix to their paper Choi and Pepple develop a second form for the

required predicted probability which they termP 2' Formulae (12) and (13) in the Appendix to Choi and

Pepple's paper are incorrect and should read:

(A2.1.17)

and

(A2.1.18)

respectively, where

K

The error has arisen because Ieffre .143) uses the mean square deviation s ' -~r(x ,- X)2 In not

the standard deviation r(x , - x) 2/( n - I ).

The necessity of carrying out the double integration in (A2.1.lS) in order to determineP z may be obviated

in the following way. The transformation

w = mlnl(z+t -)-- ---xo
Ns~o rn,

, u

applied to (A2.1.18) gives,

r(i) f- [ Tl-c-~(n2-1)NS~om2/n2u] 2 -"z/2
P 2 "" I (" _ I ) P t (n 1- 1) < ~ 2 ( 1+ u) dur( -)r _z_ N s" ml/n I

2 2 -- 0

so sincethis expressionis of the form

-f JCu)( 1 + u2) -",IZ du

P z may be approximated by

whereUI are the zeros of the Harper polynomials.t: t (x) ( k - (n I - 2) 12) andw I are the associated weights.
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To illustrate we use Choi and Pepple's data concerning the number of episodes of urinary incontinence. We

have the following,

C 14.20

TJ = 46.46

~(n2-1)Ns~om2/n2 .. h7x90x1.242x72/18 .. 97.01

~Ns~oml/nl J90X 1.302X70/20 = 23.70

k 8

The results presented in A2.2 may be used to calculate the following:

u, tj P(tI9<tj)
.

W;XP(tI9<ti)Wi

]

-5.671 25.242 1 3.867110-13 3.867110-13

-1.732 8.681 1 8.633310-6 8.633310-6

-0.839 4.926 0.99995 7.956510-3 7.956110-3

-0.364 2.929 0.99569 2.091410-1 2.082310-1

0 1.398 0.91095 5.657910-1 5.154110-1

0.364 -0.132 0.44826 2.091410-1 9.374710-2

0.839 -2.219 0.02326 7.956510-3 1.850510-4

1.732 -5.884 0.00001 8.633310-6 4.9655 10-11

5.671 -22.446 0.00000 3.867110-13 0

0.8255

The value ofP 2 calculated inthis way is very close to the value of 0.84 given by Choi and Pepple forPI, in
marked contrast to their calculated value forP 2 • This difference cannot be attributed to their use of the

incorrect formulae, since using the above orthogonal polynomial method on their formula gives the value

0.8373. The difference is most probably caused by an ill-advised choice of the method of numerical integration

for a double integral which Choi and Pepple describe as having an "ill-behaved" integrand. The "ill behaviour"

is likely to be caused by the high correlation between z andt which in our method is allowed for by the

transformation tow and u .The corresponding value for "volume loss" using this methodis 0.6609 again close

to Choi and Pepple's value forPl'

The investigations in this section are based either wholly, or partially, on the assumption of known variances.

In the partial case the assumptionis only made in calculating P n or P N • It could be argued thatif P 2 is more

appropriate thanP I then at leastP n if not both P n and P N , should not be based on an assumption of the
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equality of the variances,inwhich caseP n andP N should be determined from Behrens-Fisher distributions.

This makes the calculation of the predictive probabilities considerably more complicated although progress

might possibly be made using Patil's(1964) approximation to Behrens-Fisher distribution. However for rea-

sonable sample sizes it is doubtful whetherthis added complexity would be worthwhile. In fact the results

above suggest that the approximate predictive probabilityP I willbe accurate enough for practical purposes.

A2.1.3 Additional Applications or Harper Polynomials. Missing Data in Bivariate Normal Samples.

Little(1988) notes that one problem with frequentist methods is that exact inferences are rarely available for

problems involving missing data even in the most simple cases. Bayesian inference, on the other hand, provides

exact solutions to such problems although the computational difficulties involved, particularly in multipara-

meter problems, may force one to resort to approximation. As Little puts it, "Bayesians,approximate an exact

solution; frequentistsseek an approximate answer where no exact solutionexists.II

To illustrate a Bayesian approach to missing values Little(1988) considered the following problem. A random

sample ofn observationsY I j • Y 21 ; i-I • ...• n are taken from a bivariate normal distribution YI and Yz with

meansIl I and Il2 , variancesa II anda22 and covariancea 12 ; of thesen observationsm are complete and

n - m values ofY 2 are missing. This problem was also considered by Mehta and Swamy(1973,1974) who,

using Jeffreys' prior, derived the posterior marginal distribution forIII in t-form and noted that givenIll' Il2

has a t-distribution. Since their primary objective was to make inferences aboutI) "" 1-1I -1l2 they did not

consider in detail the marginal distribution of112 • Little shows that the posterior distribution of1-12 may be

written in the form,

-
p(1l2IX) - f p(1l211l1·X)p(I-LIIX)dl-Ll (A2.1.19)

where

[

-. 2J-(001)/2

C 1
n(IlI-YI)

- I + •
SI

r(T)nI/2
r(i)r(~)si 1/2

r( b~I)
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y ~ands; are the sample mean and variance ofY 1 based on alln cases;Y 1 and ss1 are the sample mean

and variance ofY 1 based on themcomplete cases;b 21 andb 20 are the slope and intercept from the regression

of Y 2 onY 1 based on them complete cases andss2.1 is the associated residual sum of squares and the prior

dis ibuti fall th . . al -(ao-~o)( 2 )-~Otn ution 0 e parametersIS proportion toa II a II a 22 - a 12 •

The cumulative posterior distribution function may be written as,

z •

= f f p(1l211lI'X)P(IlIIX)dl-Lldl-Lz

• z

= f f p(1l21IlpX)dI-L2P(I-LIIX)dl-Ll

(A2.1.20)

In both (A2.1.19) and (A2.1.20) we may make the transformationu - n 1/2(1-L I - y~)/ s ~1/2 to give,

(A2.1.21)

and

'"f p(l-Lzl X)dl-Lz (A2.1.22)

where

C'
r( a;I)

I rU)r( i)

and

C'
r(~; I)

2 rU)r(i)
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Both (A2.1.21) and (A2.1.22) have the form

.J j(u)(l +u2)-(t+l)du

and therefore may again be approximated by

where uII are the zeros of the orthogonal polynomialscP I. k (x) and W II are the associated weights.

Al.2 Polynomials for Normal Kernels Over a Truncated Range.

Contemporaneously Galant(1969) and Steenet aJ(1969) considered Gaussian quadrature rules for integrals

of the form,

the latter authors also developed rules for integrals of the form,

bJ e-x'j(x)dx.

o
(A2.2.1)

In §11 we noted that one method for evaluating some of the integrals involved in our Bayesian analysis of

LDSO experiments required quadrature rules for integrals of the form,

eA2.2.2)

To see how such integrals may arise suppose, followingNaylor and Smith(1982), that the linear transformation,

~. = ~

achieves approximate independence ofr3 • and a' , then (11.4) is approximately,

. .
Pc(X) - J jea', X)da' J g(~', X)d~'.

o

Suppose that,
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(A2.2.3)

then

Let u - (~ • - ~0) I (f2 a) with jacobianJ2a which implies that,

. .
f g(~'IX)d~' - It-lIZ f h(~o+f2au)e-U2du
o -110/(.[2.)

If the integral (A2.2.2) may be approximated by

then

n

g(~'IX) - It-1I2LW4jh(~o+f2aul)
j- I

n

- L W~jg(~o + .[2auj I X)
,-I

Orthogonal polynomials for integrals of the form (A2.2.2) have not previously been studied. However the

undoubted similarity between (A2.2.1) and (A2.2.2) show that they may be simply generated following the

approach given by Steenetat (1969).If we denote the required polynomials by 8, then they may be generated

by the following recursion:

al(x) - 1 (A2.2.4)

92(x)
e -b

2

- x- (A2.2.5)
n"2(1-arJ(b»

at.lex) - ex + at)at(x) + ~tat_1 (x) k - 1, .(.A2.2.6)

where

1 [2 rat - 2Yt a-X a~(x) b (A2.2.7)

~t
Yt- - (A2.2.8)

Yt-I
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and

(A2.2.9)

The SAS macro givenin Appendix A7.3 uses the recursion definedby (A2.2.4)-(A2.2.9) to generate, for given

b and n, the zeros and associated weights ofan ( x) .
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A4 DENSI1Y AND DISTRIBUTION FUNCTIONS OF THE RATIO OF NORMAL VARIABLES.

Suppose that the posterior distribution of two variablesy and x is bivariate normal with meansYo and x 0,

variances 0;and a ~ , and correlationp so that,

p(y,x) - BN(IJ.,r)

where,

Then,

.
f xp(wx,x)dx

p( w-;lx>O) __ 0 _

f f p(x,y)dydx
o -.

A- -B (A4.1)

Following Hinkley (1969) it may be shown that,

b(w)d(w) 4>( b(w) ) J(l_p2) exp( -c ) (A4.2)
A - J(2n)oyo"a3(w) J(l-p2)a(w) + 2noyo"a2(w) 2(1-p2)

where,

c

It is simply shown that,

B - 4>(::) (A4.3)

(A4.1),(A4.2) and (A4.3) define the posterior distribution ofw.

The cumulative distribution, F ( w), can be written as,

jj pCy.x)dydx

° -. B(h,lc.y)

4>CIc)
(A4.4)Few) =

where,
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h k

f f exp[ -(U
2
-2YUU+U

2l]dUdV
2( l-y2 l

B(h.lc.y) (A4.S)

WXo - Yo
h - . k ~

o,oxa(w)
Xo
- • y -
Ox

Numerical evaluation of (A4.5) may be carried out using equation (2.1) of Owen(1956) together with a program

for evaluating the integral,

Two such programs are given by Cooper(1968) and Young and Minder (1974) - see also Boys(1989).
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AS FORTRAN PROGRAM FORLDSO ESTIMATION.

AS.! Introduction.

This program is designed to perform a Bayesian analysis of acute toxicity studies. As a by-product, a classical,

maximum-likelihood analysis is available - see Finney(1971). The program carries out the analyses developed

in §11.2,§1l.4 and §1l.5 although it is also able to deal with the more-general problem of making inferences

about the ED"X", where "X" is between0 and 100%. This program has been implemented at the laboratory

level in the Toxicology Department of CIBA-GEIGY's Pharmaceutical Division in Basel, Switzerland.

The program was developed on an IBM PC AT 02, but with slight modificationwill run on any machine with

a FORTRAN 77 compiler. These slight modifications relate solely to input and output.

In this appendix descriptions andlistings of the main program, all subroutines and functions are given. Input

to, and output from the program are given for three examples, chosen to illustrate the various features of the

program.

AS.2 Program Descriptions.

This program is written in DOUBLE PRECISION FORTRAN 77 and consists of 1main routine, 21 subroutines

and 9 functions. The programwill handle up to 10 dose groups. The program is self-contained, requiring no

additional functions. In what follows, the main program,all subroutines, andall functions are described.

AS.2.! MAIN PROGRAM

Purpose : Reads the input parameters and data;calls the principal subroutines; outputs some
results.

Input FILEI
FILE2
lOUT

FlLE3
TITLE

ILOOP
lED

K
CLASS

PRIOR

NR
TLIM(NR)

ALPHAO
BETHAO
VO(2,2)

D(K)
IN(K)
IR(K)

APPENDICES.

character string , data file
character string, output file
integer, controls whether plot datais output
lOUT = 0 no plot data output to file
lOUT = 1plot data output to file
character string , plot file
character string, title

the above are input fron the terminal, the remainder from the data
file (FILE!)

integer, number of data sets to be analysed
integer, defines the effective dose sought for instance lED= 50
definesthe ED50, lED = 90 definesthe ED90
integer, number of dose groups
logical, controls whether a Bayesian analysis is carried out.
CLASS = .TRUE. -Bayesian analysis
CLASS = .FALSE. - only maximum likelihood
logical, controls use ofpnor information
PRIOR = .TRUE. -use prior information
PRIOR = .FALSE. - no prior information
integer, number ofclass boundaries
real array, toxicity class boundaries,

NR and TUM only read if CLASS = .TRUE.

real, prior mean for alpha
real, prior mean for beta
real array, prior covariance matrix for alpha and beta

ALPHAO,BETHAO and va only read if PRIOR = .TRUE.

real array, doses
integer array, number of animals
integer array, number of responses
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Routines
called :

ESTIM
SCORE
SHOW
crEST
FIDUC
SHOWl
HPD
SHOW2
COMBIN
SHOW3

AS.2.2 AXIS(V ALMIN,STEP,NV ALS,MAXPR,IR,IRPIN,OFFSET,IFACT,V ALS,IV,IFAULT)

Purpose :

Parameters:

Called by:

Optimization ofaxis for plotting

For definition of parameters see Stirling(1981a)

SCATPL

AS.2.3 COMBIN(ALPHAO,BETAO,YO)

Purpose :

Parameters:

Routines
called :

Called by:

To combine prior moments with moments from an analysis using an uninformative
prior

ALPHAO
BETAO
VO
DINV
DMULT

MAIN

AS.2.4 CON(w,A,B,D,H,RHO)

real - input : prior mean for alpha
real - input: prior mean for beta
real array - input : prior covariance matrix

To set up constants for bivariate normal integrals

W real - input: value of log(ED"X")
A real - output: sec Appendix A4
B real- output: see Appendix A4
D real - output: sec Appendix A4
H real- output: see Appendix A4
RHO real- output: see Appendix A4

DMED
DMODE
OT
HPD

AS.2.5 CTEST(y,K,T,H,D,IR,IN)

Purpose :

Parameters:

Called by:

Purpose :

Parameters:

Routines
called :

Called by:

APPENDICES.

To perform goodness-of-fit test; output results from the test including the expected
number of responsesin each dose group and the chi-squared test

Y(2)
K
T

H
D(K)

~~~~
FNORM

MAIN

real array - input :final estimates
seemain program
real- output: 95 % point of normal distribution or t-distributionwith
(K-2) degrees of freedom
real - output : heterogeneity factor
see main program
see main program
see main program
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Purpose :

AS.2.6 DERIV(Y,K,D,IR,IN,Dl,D2,DA,DB,V3)

02(2,2)
V(2,2)

SCORE
COMBIN

AS.2.8 DMED(DLMED)

Parameters:

Routines
called :

Called by:

AS.2.7 DINV(D2,V)

Purpose:

Parameters:

Called by:

Purpose :

Parameters:

Routines
called :

Called by:

To calculate first.second and third derivatives of the log-likelihood at the current
parameter estimates and to calculate the Lindley corrections and the estimated
posterior covariance matrix

Y(2) real array - input: current estimates
K see main program
O(K) see main program
IR(KI see main program
IN(K see main program
Dl(2 real array - output: first partial derivatives
02(2,2) real array - output: second partial derivatives
DA real - output: Lindley correction for alpha
DB real- output: Lindley correction for beta
V3(2,2) real - output: estimated posterior covariance matrix

FNORM
DVl
DV2
DV3

SCORE

To calculate the inverse of a matrix

real array - input : matrix whose inverseis required
real array - output : inverse of D2

To calculate posterior median ED"X"

OLMEO real- output: posterior median EO"X"

CON
BIVL

HPD

AS.2.9 DMODE(DLMOD)

Purpose :

Parameters:

Routines
called :

Called by:

To calculate posterior mode ED"X"

DLMOO real- output: posterior mode EO"X"

CON
DEN

HPO

AS.2.10 DMUL T(Bl,B2,A,Cl,C2)

Purpose :

Parameters:

Called by:

To multiply a vector by a matrix

Bl real- input: 1st element of vector
B2 real- input: 2nd element of vector
A real - input : matrix
Cl real - output : 1st element of vector
C2 real - output: 2nd element of vector

COMBIN

Purpose :

AS.2.l1 ESTIM(XMIN,K,D,IR,IN)

To calculate initial estimates of alpha and beta by linear least squares
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Parameters:

Routines
called:

Called by:

XMIN(2)
K
D(K)

~~~~
PROBIT

MAIN

real array - output : initial estimates
see main program
see main program
see main program
see main program

AS.2.U FIDUC(Y,V,T,H,D,DL,DU,IED)

Purpose :

Parameters:

Routines
called:

Called by:

To estimate ED"X" and 95% fiducial limits if possible

Y(2)
V(2,2)

T

H
D
DL
DU
lED

PROBIT

MAIN

AS.2.13 HPD(TLIM,NR,IED)

Purpose :

Parameters:

Routines
called:

Called by:

real array - input :final estimates of alpha and beta
real array - input: asymptotic covariance matrix
real- input: 95% point of normal distribution or t-distribution with
(K-2) degrees of freedom
real - input: heterogeneity factor
real - output: estimated ED"X"
real - output: estimated lower 95% limit
real -output : estimate~ upper 95% limit
integer - input :see mamprogram

To calculate 95% HPD interval for lOllJED lOX"), posterior probabilities of toxicity
classes, posterior density of log(ED"X") and posterior distribution function of
log(ED"X")

TUM(NR)
NR
lED

FNORM
TFN
OT
CON
BIVL
DMED
DMODE
SPLOT
PROBIT

MAIN

AS.2.14 OT(W ,FOO,U2,F)

Purpose :

Parameters:

Routines
called :

Called by:

APPENDICES.

real - input: toxicity class boundaries
integer - input: number of boundaries
integer - inout : seemain program

Given a value for log(ED"X") to find another value with the same posterior density

W real- input: value of log(ED"X")
FOO real - output : posterior density (or W
U2 real - output: value of log(ED"X") withthe same posterior density

asW
F real - output : posterior density for U2

CON
DEN

HPD
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AS.2.1S SCALE(FMN,FMX,N,MPV,V ALMIN,STEP,NV ALS,IR,IFAULT)

Purpose :

Parameters:

Called by:

Optimization of scale for plotting

For definition of parameters see Stirling(1981a)

SCATPL

AS.2.16 SCATPL(A,N,M,ICY,NCY,ICX,NY,NX,SCALEY,SCALEX,ISTAND,IFAULT)

Purpose :

Parameters:

Routines
called :

Called by:

To produce line printer plots

For definition of parameters see Stirling(1981b)

SCALE
AXIS

SPLOT

AS.2.17 SCORE(XMIN,K,D,IR,IN,V,DLOGLO,DA,DB,V3)

Purpose :

Parameters:

Routines
called :

Called by:

AS.2.18 SHOW(A,B,V)

Purpose :

Parameters:

Called by:

To estimate maximum likelihood estimates of alpha and beta

XMIN(2) real array - input: initial estimates
output :final estimates
see main program
see main program
see main program
see main program
real array - output : estimated covariance matrix
real - output: maximised log-likelihood
real - output : Lindley correction for alpha
real - output : Lindley correction for beta
real array - output: posterior covariance matrixusing uninformative
prior

K
D(K)

~~~~
DLOGLO
DA
DB
V3(2,2)

DERIV
DINV
FN

MAIN

Displays maximum likelihood parameter estimates and asymptotic covariance matrix

A real, estimate of alpha
B real, estimate of beta
V(2,2) real array, asymptotic covariance matrix

MAIN

AS.2.19 SHOW1(A,B,V)

Purpose :

Parameters:

Called by:

Displays posterior moments using an uninformative prior

A real, posterior mean of alpha
B real, posterior mean of beta
V(2,2) real array, posterior covariance matrix

MAIN

AS.2.20 SHOW2(A,B,V)

Purpose :

Parameters:

Called by:

APPENDICES.

Displays prior moments

A real, prior mean of alpha
B real, prior mean of beta
V(2,2) real array, prior covariance matrix

MAIN
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AS.2.21 SHOW3(A,B,V)

Purpose :

Parameters:

Called by:

Displays posterior moments using an informative prior asymptotic covariance matrix

A real, posterior mean of alpha
B real, posterior mean of beta
V(2,2) real array, posterior covariance matrix

MAIN

AS.2.22 SPLOT(PLOT,IED)

Purpose :

Parameters:

Routines
called :

Called by:

Controls plotting

PLOT(161,3)
lED

SCATPL

real array - input: plot data
integer - input: see main program

AS.2.23 BIVL(H,RHO)

HPD

Purpose :

Parameters:

Routines
called :

Called by:

AS.2.24 DEN (A,B,D)

Purpose :

Parameters:

Routines
called:

Called by:

AS.2.25 DV1(D,X,IE)

Purpose :

Parameters:

Called by:

AS.2.26 DV2(D,X,IE)

Purpose :

Parameters:

Called by:

APPENDICES.

Calculates bivariate normal probabilities

See CON

FNORM
TFN

DMED
HPD

Calculates posterior density for log(ED"X")

See CON

FNORM

DMODE
HPD
OT

To calculate the first partial derivative of the response function

D real - input : logedose)
X real - input : alpha + beta *log(dose)
IE integer - input : derivative indicator

IE = 0 denvative wrt alpha
IE = 1 derivative wrt beta

DERIV

To calculate the second partial derivative of the response function

D real- input: log(dose)
X real- input: alpha+beta*log(dose)
IE integer - input: derivative inilicator

IE = 0 2nd derivative wrt alpha
IE = 1 2nd derivative wrt alpha and beta
IE = 2 2nd derivative wrt beta

DERIV

A-44



AS.2.27 DV3(D,X,IE)

Purpose :

Parameters:

Called by:

AS.2.28 FN(y)

Purpose :

Parameters:

Routines
called:

Called by:

To calculate the third partial derivative of the response function

D real - input: logedose)
X real - input: alpha+beta* log( dose)
IE integer - input: derivative indicator

IE = 0 3rd derivative wrt alpha
IE = 13rd derivative wrt alpha*"'2 and beta
IE = 2 3rd derivative wrt alpha and beta **2
IE = 3 3rd derivative wrt beta

DERIV

To calculate the negative maximised log-likelihood

Y(2) real array - input: maximimum likelihood estimates of alpha and beta

FNORM

AS.2.29 FNORM(X,UPPER)

SCORE

Purpose :

Parameters:

Called by:

AS.2.30 PROBIT(P)

Purpose :

Parameters:

Called by:

AS.2.31 TFN(HI,AI)

Purpose :

Parameters:

Called by:

APPENDICES.

To evaluate the distribution function of the standard normal distribution - Hill(1973)

X real - input : point at which the functionis to be evaluated
UPPER logical - input : indicator function

UPPER = .TRUE. upper tail probability
UPPER = .FALSE. lower tail probability

BIVL
crEST
DEN
DERIV
FN
HPD
TFN

To evaluate the inverse normal distribution function -Odeh and Evans(1974)

P real - input: probability for which inverseis required

ESTIM

To calculate the integral of a special function

For definition of function and parameters see Cooper(1968)

BIVL
HPD
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AS.3 Program Listings.

AS.3.1 MAIN PROGRAM

PROGRAM ACUTE
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*80 TITLE
CHARACTER*12 FILEI
CHARACTER*12 FILE2
CHARACTER*12 FILE3
DIMENSION XMIN(2),D(lO},IR(lO),IN(lO),V(2,2),A(15),TLIM(lO)
DIMENSION VO(2,2)
COMMON /COMl/ALPHA,BETHA,V3(2,2)
COMMON /COMFIL/IOUT
LOGICAL CLASS,PRIOR
WRITE( * ,lOO)
READ(*,200) FILEt
OPEN(UNIT-t,FILE-FILEl,STATUS-'OLD' ,IOSTAT-IERR)
WRITE( *,300)
READ(*,200) FILE2
OPEN(UNIT-3,FILE-FILE2,STATUS·'NEW' ,IOSTAT-IERR)
IOUT-O
WRITE(* ,400)
READ(* , *) lOUT
IF(IOUT.EQ.O) GOTO 10
WRITE(*,500)
READ(*,200) FILE3
OPEN(UNIT-8,FILE-FILE3,STATUS-'NEW' ,IOSTAT-IERR)

10 READ{l,*) ILOOP
ILOO-O

20 ILOO-ILOO+l
IF(ILOO.GT.ILOOP) STOP
READ(l,700) TITLE
READ(l,*) IED,K,CLASS,PRIOR
IF (CLASS) THEN
READ(l, *) NR
READ(I,*) (TLIM(I),I-l,NR)

END IF
IF (PRIOR) READ(l,*) ALPHAO,BETHAO,VO
ISUM-O
DO 30 I-l,K
READ(l,*) D(I),IN(I),IR(I)

30 IF (IN(I).NE.IR(I).AND.IR(I).NE.O) ISUM-ISUM+l
WRITE(3,800) TITLE
WRITE(3,600) lED
WRITE(3, gOO)
WRITE(3,lOOO)
IF (ISUM.GE.2) GOTO 40
WR ITE(3 .noo:
WRITE(* ,1100)
GOTO 50

40 CALL ESTIM(XMIN,K,D,IR,IN)
CALL SCORE(XMIN,K,D,IR,IN,V,DLOGLO,DA,DB,V3)
CALL SHOW(XMIN(1),XMIN(2),V)
WRITE(3,1200) DLOGLO
CALL CTEST(XMIN,K,T,H,D,IR,IN)
CALL FIDUC(XMIN,V,T,H,ED,EDL,EDU,IED)
IF (EDL.EQ.-999.0DO) WRITE(3,1400} IED,ED
IF (EDL.NE.-999.ODD) WRITE(3,1300) IED,ED,EDL,IED,EDU
IF (.NOT.CLASS) GOTO 50
WRITE(3,800) TITLE
WRITE(3,1500)
ALPHA-XMIN(I)+DA
BETHA-XMIN(2)+DB
CALL SHOWl(ALPHA,BETHA,V3)
CALL HPD(TLIM,NR,IED)
IF (PRIOR) THEN
WRITE(3,800) TITLE
WRITE(3,1600)
CALL SHOW2(ALPHAO,BETHAO,VO)
CALL COMBIN(ALPHAO,BETHAO,VO)
CALL SHOW3(ALPHA,BETHA,V3)

CALL HPD(TLIM,NR,IED)
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END IF
50 GOTO 20

100 FORMAT(2x,'INPUT FILE: ')
200 FORMAT(A12)
300 FORMAT(2X,'OUTPUT FILE(SHOULD NOT ALREADY EXIST) : ')
400 FORMAT(2X, 'ENTER "1" IF PLOT OUTPUT REQUIRED: ')
500 FORMAT(2X,'PLOT OUTPUT FILE(SHOULD NOT ALREADY EXIST) : ')
600 FORMAT(//,5X,'MAXIMUM LIKELIHOOD ESTIMATION OF ED',I2/)
700 FORMAT(A80)
BOO FORMAT('AL' ,/5X,BOA/)
900 FORMAT(/ ,5X,'MODEL : PROBIT')

1000 FORHAT(/ ,5X,'INDEPENDENT VARIABLE: LOG(DOSE)'/)
1100 FORMAT(/ ,4X,'NO CALCULATIONS WITH LESS THAN TWO RESPONSES BETWEE

IN 0% AND 100% (0 < IN(I)/IR(I) < 1) I')
1200 FORMAT(/ ,5X,'MAXIMISED LOG-LIKELIHOOD'//14X,FIO.4)
1300 FORMAT(/ ,5X/5X,'ESTIMATE OF ED' ,I2//15X,F15.4//5X,

1 'FIDUCIAL LIMITS (95%)'/13X,F15.4,' < ED' ,12,' < ',F15.4)
1400 FORMAT(/ ,5X/5X,'ESTIMATE OF ED' ,I2//BX,F15.4//5X,'NO FIDUCIAL',

I' LIMITS')
1500 FORMAT(/ ,5X,'BAYESIAN ANALYSIS'/)
1600 FORMAT(/ ,////6X,'PRIOR INFORMATION :')

END

AS.3.2 AXIS

SUBROUTINE AXIS(VALMIN,STEP,NVALS,MAXPR,IR,IRPRIN,OFFSET,IFACT,
1 VALS,IV,IFAULT)

REAL VALS(IV)
DATA IRMAX/20/,MPRMAX/20/
IFAULT-O
IF(NVALS.LT.2) IFAULT~IFAULT+l
FMAX-VALMIN+STEP*FLOAT(NVALS-1)
IF(NVALS.GE.2.AND.FMAX.LE.VALMIN) IFAULT-IFAULT+2
IF(HAXPR.LT.2.0R.MAXPR.GT.MPRMAX) IFAULT-IFAULT+4
IF(NVALS.GT.IV) IFAULT-IFAULT+8
IF(IR.GT.IRMAX) IFAULT-IFAULT+16
IF(IFAULT.GT.O} RETURN
TMAX-lO.**MAXPR
FL-ABS(FHAX)
FS-ABS(VALHIN)
IL-O

10 IF(FL.LT.l ..AND.FS.LT.1.) GOTO 20
FL·FL/10.
FS-FS/I0.
IL-IL+l
GOTO 10

20 IF(FL.GE • • l.0R.FS.GE • • l) GOTO 30
FL-FL*lO.
FS·FS*10.
IL·IL-l
GOTO 20

30 IS-IL+IR
IT-IS
IF(VALMIN.LE.O • • AND.FMAX.GE.O.) GOTO 50

40 FL-AHOD(FL,I.)*10.
FS-AHOO(FS,l.)*lO.
IF(IT.LE.O} GOTO 1016
IF(INT(FL}.NE.INT(FS}} GOTO 50
IT-IT -1
GOTO 40

50 IFACT-O
OFFSET-D.
IRPRIN-MAXO(IR,O)
ILPRIN.MAXO(IL,O)
IF(IRPRIN+ILPRIN.LE.HAXPR) GOlD 70
IF(IS.LE.HAXPR} GOTO 60
IRPRIN-MAXPR-l
IFACT-HAXO(IT,MAXPR)-l-IR
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GOTO 70
60 IFACT ..IL-l

IRPRIN-IS-l
70 FS.I0.**(-IFACT)

VSTEP=STEP*FS
VMIN=VALMIN*FS
IF(IS.LE.MAXPR) GOTO BO
OFFSET-AINT(VMIN/I0.)*10.
VMINaVMIN-OFFSET

BO DO 90 I-l,NVALS
VALS(I)-VMIN

90 VMIN-VMIN+STEP
FS ...I**IRPRIN
IF(ABS(VALS(1»*FS+.5.LT.TMAX.AND.ABS(VALS(NVALS»

1 *FS+.5.LT.TMAX) RETURN
IL-Il+l
IS-IS+l
IT-IT+l
GOTO 50

1016 IFAULT-I6
RETURN
END

AS.3.3 COMBIN

SUBROUTINE COMBIN(ALPHAO.BETHAO.VO)
IMPLICIT REAL*B (A-H,O-Z)
DIMENSION VO(2,2),VI(2,2),V2(2,2),V4(2.2)
COMMON /COMI/AlPHA.BETHA,V3(2.2)

CALL DINV(V3,VI)
CALL DINV(VO,V2)
V4(I.I)- VI(I,I) +V2(I,I)
V4(2.I)- VI(2.I) +V2(2.1)
V4(I,2)- Vl(l,2) +V2(l,2)
V4(2,2)- VI(2,2) +V2(2,2)
CALL OINV(V4,V3)
CAll DMUlT(ALPHA,BETHA,Vl,AlPHAl,BETHA1)
CAll OMUlT(AlPHAO.BETHAO,V2,AlPHA2,BETHA2)
CAll OMUlT(AlPHAI+AlPHA2,BETHA1+BETHA2.V3,AlPHA,BETHA)

RETURN .
END

AS.3.4 CON

SUBROUTINE CON(W.A.B.D.H,RHO)
IMPLICIT REAl*B (A-H.O-Z)
COMMON /COHI/AlPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
A-DSQRT(W*W/V3(1,1) -2.DO*R*W/SX/SY +1.DO/V3(2.2»
B-AlPHA*W/V3(I,I) -R*(AlPHA+BETHA*W)/SX/SY +BETHA/V3(2.2)
O-OEXP«B*B -(C*A*A»/2.00/(I.DO-R*R)/A/A)
H-(W*BETHA -AlPHA)/SX/SY/A
RHO-(SX*W-R*SY)/SX/SY/A
RETURN
END

AS.3.5 CTEST

SUBROUTINE CTEST(Y,K,T,H,D,IR,IN)
IMPLICIT REAl*8 (A-H,O-Z)
DIMENSION Y(2),O(10),IR(10),IN(10),EXP(10),PCHI(10),PT(IO)
DATA PCHI/3.8410+00,5.991D+00,7.8150+00.9.4880+00,Il.0700+00,

1 12.5920+00,14.0670+00,15.5070+00.16.9190+00,18.3070+00/
DATA PT/12.7062D+00,4.3027D+00,3.18240+00.2.77640+00,2.57060+00,

1 2.44690+00,2.36460+00.2.30600+00.2.26220+00.2.22810+00/
WRITE( 3,100)
WR ITE (3,200)
IDF-K-2
CHI-O.OO+OO
DO 10 I-I.K
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X=Y(1)+Y(2)*DLOG(D(I»
P-FNORM(X,.FALSE.)
Q-FNORM(X,.TRUE.)
EXP(I)-FLOAT(IN(I»*P
CHI~CHI+«FLOAT(IR(I»-EXP(I»**2)/(EXP(I)*Q)

10 WRITE(3,300) D(I),IN(I),IR(I),EXP(I)
WRITE(3,400) CHI,IDF
H-1.00D+00
IF(CHI.GT.PCHI(IDF» H-CHI/FLOAT(IDF)
T-1.96D+00
IF(H.GT.1.00D+00) GOTO 20
WRITE(3,500) T
GOTO 30

20 T-PT(IDF)
WRITE(3,600) T

30 CONTINUE
100 FORMAT(/ ,5X,'FIT OF THE MODEL')
200 FORMAT(/ ,5X,' DOSE NO RESP EXP')
300 FORMAT(/ ,2X,F9.2,lX,I3,2X,I3,2X,F6.1)
400 FORMAT(/ ,/5X.'CHI-VALUE • '.F5.2/5X.'D.F. • ',IS)
500 FORMAT(/ ,5X,'NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)'/13X,'

IFIDUCIAL LIMITS CALCULATED USING AT-VALUE OF',F6.2)
600 FORMAT(/ ,5X, 'NOTE : SINCE CHI-SQUARE VALUE LARGE (P<0.05)'/13X,'

IFIDUCIAL LIMITS CALCULATED USING A T-VALUE OF' ,F6.2)
RETURN
END

AS.3.6 DERIV

SUBROUTINE DERIV(Y,K,D,IR,IN,Dl,02,DA,DB,V3)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(2),D(10),IR(10),IN(10),D1(2),D2(2,2),D3(4),V3(2,2)
SUM1-0.0D+00
SUM2-SUMl
SUM3-SUMl
SUM4-SUMl
SUMS-SUMl
D3(l)~SUMl
D3(2)-SUM1
D3(3)-SUM1
D3(4)-SUM1
HALF-O.SO+O
ONE-1.0D+0
HALF3-l.SD+0
TWO-2.0D+0
THREE-3.00+0
DO 40 I-1,K

OX-OLOG(O(I»
X-Y(l)+Y(2)*DX
DR-FLOAT( IR( I»
DNR-FLOAT(IN(I)-IR(I»
P-FNORM(X,.FALSE.)
Q-FNORM(X,.TRUE.)
IF(IR(I).EQ.O) GOTO 10
IF(IR(I).EQ.IN(I» GOTO 20
Cl-DR/P-ONR/Q
C2-DR/(P*P)+ONR/(Q*Q)
C3-TWO*( OR/(P*P*P) - DNR/(Q*Q*Q) )
GOTD 30

10 Cl--ONR/Q
C2-DNR/(Q*Q)
C3-TWO*(-DNR)/(Q*Q*Q)
GOTO 30

20 Cl-DRIP
C2-DR/(P*P)
C3-TWO*OR/(P*P*P)

30 DVlO-DV1(DX,X,0)
DV1l-0Vl(DX,X,l)
DV20-0V2(DX,X,0)
DV2l-DV2(DX,X,l)
DV22-0V2(DX,X,2)
SUMl-SUMl+Cl*DVlO
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SUM2=SUM2+Cl*DVll
SUM3-SUM3+Cl*DV20-C2*DVlO*DVlO
SUM4=SUM4+Cl*DV22-C2*DVll*DVll
SUMS-SUMS+Cl*DV21-C2*DVlO*DVll
D3(1)=D3(1)+C3*DVIO*DVIO*DVIO-THREE*C2*DVIO*DV20+

Cl*DV3(DX,X,O)
D3(2)=D3(2)+C3*DVIO*DVIO*DVII-TWO*C2*DVIO*DV21-C2*OV20*OVll+

1 Cl*DV3(OX,X,l)
D3(3)-D3(3)+C3*DVIO*DVll*DVll-TWO*C2*DVll*DV21-C2*DV22*DVIO+

1 Cl*DV3(DX,X,2)
D3(4)-03(4)+C3*OVll*DVll*DVll-THREE*C2*DVll*DV22+

1 Cl*DV3(DX,X,3)
40 CONTINUE

Dl(l)--SUMI
D1(2)--SUM2
D2(l,l)--SUM3
D2(l,2)--SUMS
D2(2,l)s-SUMS
D2(2,2)--SUM4
DET-SUM3*SUM4-(SUMS*SUMS)
S20--SUM4/DET
Sll-SUMS/DET
S02--SUM3/DET
PRl·S20*S20
PR2 ..S20*Sll
PR3-S20*S02+TWO*Sll*Sll
PR4-S11 *S02
PRSsS02*S02
DA-HALF*D3(1)*PRl+ HALF3*D3(2)*PR2+HALF*D3(3)*PR3+ HALF*D3(4)*PR4
DB-HALF*D3(1)*PR2+ HALF*D3(2)*PR3+HALF3*D3(3)*PR4+ HALF*D3(4)*PR5
PR6- 1+ DABS( (DA/(Y(l)+DA) +DB/(Y(2)+DB) /4)
V3(l,I)-S20*PR6
V3(2,2)-S02*PR6
V3( 2,1) -S11 *PR6
V3(l,2)-V3(2,l)
RETURN
END

AS.3.7 DlNV
SUBROUTINE DINV(D2,V)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION D2(2,2),V(2,2)
DET-D2(1,1)*D2(2,2)-D2(1,2)*D2(2,l)
V(l,l)-D2(2,2)/DET
V(2,2)-D2(1,1)/DET
V(1,2)--D2(2,1)/DET
V(2,1)--D2(1,2)/DET
RETURN
END

AS.3.8 DMED

SUBROUTINE DMED(DLMED)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /COMl/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
W-ALPHA/BETHA

10 CALL CON(W,A,B,D,H,RHO)
FW-BIVL(H,RHO)
DIF-FW-O.SDO
WI-W+O.OOlDO
CALL CON(Wl,A,B,D,H,RHO)
FWI-BIVL(H,RHO)
DER-(FWI-FW)/.OOlDO
W-W-DIF/DER
IF (DABS(DIF).GT.l.D-7) GOTO 10
DLMED-DEXP(W)
RETURN
END
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AS.3.9 DMODE

SUBROUTINE DMODE(DLMOD)
IMPLICIT REAL*8 (A-H.O-Z)
COMMONICOIHI ALPHA,BETHA. V3(2 .2)/COM2/R. SX .SY.C
W-ALPHA/BETHA
CALL CON(W.A.B.D.H,RHO)
F-OLOG(OEN(A.B.D»
WI-W+O.OOlOO
CALL CON(Wl.A.B,D.H.RHO)
Fl=OLOG(DEN(A.B.D»
DER-(Fl-F)/1.OD-3
IF (DABS(DER).LT.O.IDO) GOTO 20
STEP-O.OOlOO
ISIGNO-l
IF (DER.GT.O.ODO) GOTO 10
ISIGNO..-l
STEP~-O.OOlOO
W-W+STEP
CALL CON(W.A.B.D.H.RHO)
F-OLOG(OEN(A.B.D»

10 Wl-W+STEP
CALL CON(Wl.A.B.D.H.RHO)
FlaDLOG(DEN(A.B.D»
DER~(Fl-F)/STEP
IF (DABS(DER).LT.O.lDO) GOTO 40
ISIGN-l
IF(DER.GT.O.OOO) GOTO 20
ISIGN--l

20 IF (ISIGNO.EQ.ISIGN) GOTO 30
STEP--STEP/2.000

30 ISIGNO-ISIGN
101-1011
F..F1
GOTO 10

40 CALL CON(W,A,B,D,H,RHO)
F-DLOG(DEN(A,B.D»
1011-101+0.00100
CALL CON(Wl,A,B,D,H,RHO)
FI-DLOG(OEN(A,B.D»
W2-W+0.002DO
CALL CON(W2.A.B.D.H.RHO)
F2-0LOG(OEN(A,B,D»
DERl-(Fl-F)/1.0D-3
DER2-(F+F2-2.0DO*Fl)/l.0D-6
W-W-DERI/DER2
IF(OABS(OERl).GT.l.D-7) GOTO 40
DLMOD-DEXP(W)
RETURN
END

AS.3.10 DMULT

SUBROUTINE OMULT(Bl,B2.A.Cl.C2)
IMPLICIT REAL*B (A-H,O-Z)
DIMENSION A(2,2)

Cl- A(I.1)*Bl +A(1.2)*B2
C2- A(2,1)*Bl +A(2.2)*B2

RETURN
END

AS3.11 ESTIM

SUBROUTINE ESTIM(XMIN.K.D,IR.IN)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION D(10).IR(lO),IN(lO).X(lO),PI(lO).XMIN(2)
SUMO-O.OO+OO
SUMP-SUMO
DIG-O.OO+OO
DO 10 I-l,K

IF(IR(I).EQ.O.OR.IR(I).EQ.IN(I» GOTO 10
X(I)-DLOG(D(I»
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Pl=DFLOAT(IR(I))/DFLOAT(IN(I))
PI(I)sPROBIT(P1)
SUMD-SUMD+X(I)

SUMPsSUMP+P I(I)
OIGaDIG+1.0D+00

10 CONTINUE
SUMX-O.OO+OO
SUHXY-O.OD+OO
DO 20 I-1,K

IF(IR(I).EQ.O.OR.IR(I).EQ.IN(I» GOTO 20
SUMX-SUMX+{X(I)-SUHD/DIG)**2

SUMXY-SUMXY+(X(I)-SUMD/DIG)*(PI(I)-SUMP/DIG)
20 CONTINUE

XMIN(2)-SUMXY/SUMX
XMIN(1)a(SUMP/DIG)-XMIN(2)*SUMD/DIG
RETURN
END

AS.3.12 FIDUC

SUBROUTINE FIDUC(Y,V,T,H,O,DL,DU,IED)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(2),V(2,2)
DO 10 1=1,2
DO 10 J-1,2

10 V(I,J)-V(I,J)*H
DM-(PROBIT(FLOAT(IED)/100.0DO)-Y(1»/Y(2)
G-T*T*V(2,2)/(Y(2)**2)
TERMl-V(I,I)+2.0+00*DM*V(1,2)+OM*DM*V(2,2)-

1 G*(V(1,1)-V(I,2)*V(I,2)/V(2,2»
OL--999.0DO
O-DEXP(DM)
IF(TERMI.LT.O.ODO.OR.G.GT.I.OOO) RETURN
TERMI-DSQRT(TERMl)*T/(Y{2)*(1.D+OO-G»
TERM2-G*(DM+V(1,2)/V(2,2»/(1.D+OO-G)
DML-DM+TERH2-TERMI
DMU-DM+TERM2+TERMI
DL-DEXP(DML)
DU-DEXP(DMU)
RETURN
END

AS.3.13 HPD
SUBROUTINE HPD(TLIM,NR,IED)
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*50 CH
DIMENSION TLIM(NR),PROB(10),CLASS(10),PLOT(16I,3)
COMMON //PBO,STO/COMl/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
COMMON /COM3/X,TK
COMMON /COM4/WS,IOT
COMMON /COMFIL/IOUT
ALPHAO-ALPHA
ALPHA-PROBIT(FLOAT(IEO)/lOO.ODO)-ALPHA
TWO- 2.00
IOT-O
SX- OSQRT{V3{2,2»
SY- DSQRT{V3{1,1»
R- -V3{l,2)/SX/SY

. x- BETHA/SX
PBO- FNORH(X,.FALSE.)
TK- TFN(X,(BETHA*R*SY -SX*ALPHA) /BETHA/SY/OSQRT(l-R*R»
C- ALPHA*ALPHA/V3(l,l) -TWO*R*BETHA*ALPHA/SX/SY+BETHA*BETHA/

1 V3{2,2)
STD- OSQRT(V3(l,l) +TWO*ALPHA*V3(1,2)/BETHA +V3(2,2)*ALPHA*ALPHA/

1 BETHA/BETHA) /BETHA
WO- ALPHA/BETHA -1.9600*STO
CALL OT(WO,FOO,WI,FOI)
WS-WI
IOT-I

10 CALL OT(WO+I.D-3,OMYl,Wll,OMY2)
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FX2=FOO* «WII-WI)/1.D-3 -1)
CALL CON(WO.DUMMYl.DUMMY2.DUMMYJ.H.RHO)
FXI=-BIVL(H.RHO)
CALL CON(WI.DUMMYI.DUMMY2.DUMMY3.H.RHO)
FXI=FXI+BIVL(H.RHO)-.95DO
DEL,.FXI/FX2
IF (DABS(DEL).LT.lD-7) GOTO 30
DEL-DEL*TWO

20 DEL-DEL/TWO
W2-WO-DEL
IF (W2.GT.ALPHA/BETHA) GOTO 20
CALL DT(W2.FOO.W3,DUMMY2)
WS-W3
CALL CON(W2,DUMMYI.DUMMY2.DUMMY3,H,RHO)
FX3--BIVL(H,RHO)
CALL CON(W3.DUMMYI.DUMMY2.DUMMY3.H.RHO)
FX3-FX3+BIVL(H,RHO)-.95DO
IF (DABS(FX3).GE.DABS(FXl» GOTO 20
WO-W2
WI-WJ
GOTO 10

30 CALL DMED(DLMED)
CALL DMODE(DLMOD)
WRITE(3,100) IED.DLMED,IED.DLMOD
WO-DEXP(WO)
Wl",DEXP(WI)
WRITE(3,200) IED.WO,WI
IF(IED.NE.50) GOTO 95
DO 40 I-I,NR

CALL CON(DLOG(TLIM(I».DUMMYI,DUMMY2,DUMMY3,H,RHO)
40 PROB(I)-BIVL(H,RHO)

WRITE( 3,300)
CLASS(I)-PROB(I)
WRITE(3,400) 1,TLIM(I),CLASS(1)
DO 50 la2.NR

CLASS(I)-PROB(I)-PROB(I-l)
50 WRITE(3,500) I,TLIM(I-l),TLIM(I),CLASS(I)

CLASS(NR+l).I-PROB(NR)
TOTAL- 0
DO 60 I-l,NR+l

60 TOTAL-TOTAL+CLASS(I)
WRITE(3,600) TLIM(NR),CLASS(NR+l),TOTAL
WRITE(3,700)
DO 80 I-l.NR

CH- ' ,
DO 70 J-I,IDNINT(CLASS(I)*50.DO)

70 CH(J:J)- '+'
aD WRITE(J.aOO) I.CH

CH- ' ,
DO 90 I-l.IDNINT(CLASS(NR+l)*50.DO)

90 CH(I:I)- '+'
WRITE(3,900) CH

95 W-ALPHA/BETHA -4.DO*STD
WU-ALPHA/BETHA +4.DO*STD
IPLOTaO

105 CALL CON(W,A,B,D.H,RHO)
IPLOT-IPLOT+l
F-DEN(A,B,D)
FW-BIVL(H.RHO)
PLOT(IPLOT,I)-W
PLOT(IPLOT.2)-F
PLOT(IPLOT,3)-FW'
IF(IOUT.EQ.l) WRITE(a.IOOO) W,F,FW
101-101+Sm/20.DO
IF (W.LE.WU) GOTO 105
CALL SPLOT(PLOT.IED)
ALPHA-ALPHAO

100 FORMAT(II ,5X.'POSTERIOR MEDIAN FOR EO' ,I2//5X,F15.4//5X,
1 'POSTERIOR MODE FOR ED',I2//5X.F15.4//)

200 FORMAT(I .5X,"95% H.P.D. LIMITS FOR ED' .I2//2(5X,F15.4)/1)
300 FORMAT('AL' ./7X.47('-')/7X,' I PROBABILITY OF TOXICITY CLASSES',

112X,' I' / /7X, 'I' ,5X,'CLASS',22X.'PROBABILITY I')
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400 FORMAT(/ ,7X,'!',3X,Il,' : < ',F7.1.8X,FIO.8,3X,'I')
500 FORMAT(/ ,7X,' ',3X,Il,' : ',F7.l,' - ',F7.l,8X,FIO.8,3X,'I')
600 FORMAT(/ ,7X,' " 15X, '> ',F7.1 ,8X,F10.B, 3X, , I'/39X,

1 12( .;' )/7X,' I' .45X.'I'/33X.'TOTAL: '.FlO.8/7X,47( '-')1)
700 FORMAT(// , 9X.'O.O-------0.2-------0.4-------0.6-------0.B----- __

11. 0' )
800 FORMAT(I , 7X,Il,' : ',A50)
900 FORMAT(/ , 7X,'> : ',A50)

1000 FORMAT(5X.F15.l0,5X,F15.10,12X,F15.l0)
RETURN
END

AS.3.140T

SUBROUTINE OT(W,FOO,U2,F)
IMPLICIT REAL*B(A-H,O-Z)
COMMON //PBO,STD/COMI/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
COMMON /COM4/WS,IOT
STEP-STOIIO.ODO
ST-l.ODO
CALL CON(W,A,B,D,DUMMYl,DUMMY2)
FOO-DEN{A,B,D)
UO-W+STEP
IF(IOT.GT.O) UO-WS
CALL CON(UO,A,B,D,DUMMY1,DUMMY2)
FO-DEN(A,B,D)
IF(FO.LT.FOO) ST--l.0DO

10 UO-UO+STEP*ST
CALL CON(UO,A,B,D,DUMMY1,DUMMY2)
FO-DEN(A,B,D)
IF (ST*(FO-FOO).GT.O.ODO) GOTO 10
U1-UO
UO·UO-STEP*ST
FI-FO
CALL CON{UO,A,B,D,DUMMYl,DUMHY2)
FO-DEN(A,B,D)

20 U2-(UO*(Fl-FOO) -Ul*(FO-FOO»/(Fl-FO)
CALL CON(U2,A,B,D,DUMMYI,DUMMY2)
F-DEN(A,B,D)
IF (DABS«F-FOO)/FOO).LLl.D-B) RETURN
IF (F.LT.FOO) GOTO 30
UO-U2
FO-F
GOTO 20

30 UI-U2
FI-F
GOTO 20

40 RETURN
END

AS.3.lS SCALE

SUBROUTINE SCALE(FMN,FMX,N,MPV,VALMIN,STEP,NVALS.IR,IFAULT)
REAL UNIT(12).TOL,BIAS
DATA NUNIT /12/
DATA UNIT(1),UNIT(2),UNIT(3),UNIT(4),UNIT(5),UNIT(6),

1 UNIT(7),UNIT(B),UNIT(9),UNIT(10),UNIT(11),UNIT(12)/
2 12.,15.,20.,25.,30.,40.,50.,60.,80.,100.,120.,150./

DATA TOL/5.E-6/,BIAS/l.E-5/,MINN/2/,MAXN/10000/,COVER/.7/
FMAX-FMX
FMIN-FMN
IFAULT-O
IF(FMAX.LT.FHIN) IFAULT-IFAULT+l
IF(N.LT.MINN.OR.N.GT.MAXN) IFAULT-IFAULT+2
IF(MPV.LE.O.OR.MPV.GE.N) IFAULT-IFAULT+4
IF(IFAULT.NE.O) RETURN
NVALS-(N-l)/HPV+I
IF(FMAX-FHIN.GT.TDL*AMAX1(ABS(FHAX),ABS(FHIN») GOTO 40
IFAULT--1
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IF(FMAX)10,20,30
10 FMAX-O.O

GOTO 40
20 FMAXal.O

GOTO 40
30 FMIN-Q.O
40 FINTER-FLOAT(N)/FLOAT(MPV)

S-(FMAX-FMIN)*{1.+2.*BIAS)/FINTER
IR-Q

50 IF(S.GT.10.) GOTO 60
S-S*10.
IR-IR+l
GOTO 50

60 IF(S.LE.100.) GOTO 70
S-S/10.
IR-IR-1
GOTO 60

70 DO SO I-1,NUNIT
IF(S.LE.UNIT(I» GOTO 90

80 CONTINUE
90 STEP-10.**(-IR)*UNIT(I)

AJ-O.
100 AJ-AJ+ 1.

IF(UNIT(I)-.I.GT.AINT«UNIT(I)+.l)/AJ)*AJ) GOTO 100
TSTEP-STEP/AJ
TEMP.FMIN/TSTEP+AJ*(.5/FLOAT(MPV)-FINTER*BIAS)
VALMIN-AINT(TEMP)*TSTEP
1F(TEMP.LT.O • • AND.TEMP.NE.AINT(TEMP» VALMINzVALMIN-TSTEP
1F(FMAX.LT.VALM1N+STEP*(F1NTER*(1.-B1AS)-.5/FLOAT(MPV») GOTO 110
IF(UNIT(I)/UNIT(I+l)*(l.-l./(AJ*FINTER».LT.COVER) GOTO 100
1"1+1
GOTO 90

110 DO 120 J-l,2
AJ·AJ*10.
1F{UNIT(I)-.l.LT.AINT«UN1T(I)+.l)/AJ)*AJ) IR=IR-l

120 CONTINUE
RETURN
END

AS.3.16 SCATPL

SUBROUTINE SCATPL(A,N,M,ICY,NCY,1CX,NY.NX,SCALEY,SCALEX,1STAND,
1 1FAULT)

DIMENSION IOUT(161),VALS(20),A{N,M),1CY(NCY),SCALEX(2),
2 SCALEY(2),INTCH{11),MARKCH{5),IFORM1{19),IFORM2{20)

DATA 1WRITE/3/,MAXWID/132/,MAXHT/62/,MAXY/5/,MPVX/10/,MPVY/5/
DATA 1NTCH(1),INTCH(2),INTCH(3),INTCH(4),INTCH(5),1NTCH(6),

1 INTCH(7),INTCH(8),INTCH{9),INTCH{10),INTCH(11)
2 /lHO,IH1,lH2,lH3,lH4,IH5,lH6,lH7,lH8,lH9,IH9/

DATA MARKCH(I),MARKCH{2),MARKCH(3),MARKCH(4),MARKCH(5)
1 /IH*,lHO,lH+,IHX,lH-/
DATA IBLANK/IH /,IDOT/IH./,ICOLON/IH:/,ICOHMA/1H,/,IAPOST/1H'/,

1 ISEMI/IH:/,ITWO/IH2/,IDASH/IH-/
DATA IFORM1(1),IFORHl{2),IFORM1{3),IFORM1(4),IFORM1(5),

1 IFORHl(6),IFORH1(7),IFORH1(8).IFORM1(9),IFORM1(10),
2 IFORMl( in, 1FORM1(l2), IFORMl( 13), IFORM1(l4), 1FORH1(l5),
3 IFORH1(16),1FORM1(17),IFORMl(18),IFORM1(19)
4 /IH(,IH1,IHH,IH ,IH"IHF,lH8,lH.,lHO,lH"lHl,lHX,lH"lHl,IH5,IH2,
5 IHA,IH1,lH)/

DATA IFORM2(1),IFORM2(2),IFORH2(3),IFORH2(4),IFORH2(5),
1 IFORM2(6),IFORH2(7),IFORM2{S),1FORM2(9),IFORM2(10),
2 IFORH2(11),IFORM2(12),IFORM2(13),IFORM2(14),IFORM2(15),
3 IFORM2(16),IFORM2(17),IFORM2(18),IFORH2(19),IFORM2(20)
4 /IH{,lH1,lHH,lH ,IH"lH5,lHX,IH"IH1,lH6,lH{,lHF,lH8,IH.,IHO,lH"
5 IH2,IHX,IH),IH)/

1 FORMAT{IH ,lOX, lH:, 151Al)
2 FORMAT{llH TIMES 10**, 13)
3 FORMAT{7H OFFSET,FI0.0)
4 FORMAT(IH ,14X,10HTIMES 10**,13)
5 FORMAT{lH ,14X,6HOFFSET,F10.0)

APPENDICES. A-SS



6 FORMAT(lH ,2X,16(9X,Al))
IFAULT*O
IF(N.LT.1) lFAULT=IFAULT+l
IF(M.LT.2) IFAULT=IFAULT+2
IF(ICX.LT.l.OR.ICX.GT.M) IFAULT-IFAULT+4
IF(NCY.LE.O.OR.NCY.GT.MAXY) IFAULT=IFAULT+8
IF(IFAULT.GT.O) RETURN
DO 10 Ial,NCY
IF(lCY(I).LT.l.OR.ICY(I).GT.M) GOTO 1015

10 CONTINUE
NLY-MAXHT-5
IF(NLY.GT.NY) NLY-NY
IF(NLY.LE.MPVY) NLY-MPVY+l
NLX-MAXWID-ll
IF(NLX.GT.NX) NLX-NX
IF(NLX.LE.MPVX) NLX-MPVX+l
XMIN-SCALEX(l)
XMAX-SCALEX(2)
IF(XMAX.GE.XMlN) GOTO 30
XMIN-A(1,ICX)
XMAX-XMIN
IF(N.EQ.l) GOTD 30
DO 20 1-2,N
AI=AO, lCX)
IF(Al.LT.XMIN) XMlN-AI

20 IF(AI.GT.XMAX) XMAX-AI
30 CALL SCALE(XMIN,XMAX,NLX,MPVX,TEMP,XVSTEP,NXVALS,lRX,IFAlL)

IF(IFAIL.GT.O) GOTO 1032
XMIN-TEMP
XSTEP-XVSTEP/FLOAT(MPVX)
YMIN-SCALEY(l )
YMAX-SCALEY(2)
IF(YMAX.GE.YMIN) GOTO 50
K-ICY(l )
YMIN-A(l,K)
YMAX-YMIN
DO 40 J-1,NCY
K-ICY(J)
DO 40 1-1,N
AI-A(I,K)
IF(AI.LT.YMI") YHIN-AI

40 IF(AI.GT.YMAX) YHAX-AI
50 CALL SCALE(YHIN,YHAX,NLY,MPVY,TEMP,YVSTEP,NYVALS,IRY,IFAIL)

IF(IFAIL.GT.O) GOTO 1064
YHIN-TEMP
YSTEP-YVSTEP/FLOAT(HPVY)
CALL AXIS(YHIN,YVSTEP,NYVALS,6,IRY,IRPR,OFFSET,IFACT,VALS,

1 20,IFAIL)
IF(IFAIL.GT.O) GOTO 1064
IFORM1(9)-INTCH(IRPR+1)
IF(IFACT.NE.O) WRITE(IWRITE,2) IFACT
IF(OFFSET.NE.O.) WRITE(IWRITE,3) OFFSET
IF(ISTANO.EQ.O) INTCH(3)-ISEHI
IPLTED-O
DO 140 I-1,NLY
IY-NLY-I
DO 60 IX-1,NLX

60 IOUT(IX)-IBLANK
DO 120 L-l,N
INDX-(A(L,ICX)-XMIN)/XSTEP+l.5
IF(INDX.LT.l.0R.INDX,GT.NLX) GOTO 120
DO 110 J-1,NCY
K-ICY(J)
Y-(A(L,K)-YHIN)/YSTEP
INDY-Y+0.5
IF(INDY.NE.IY) GOTO 110
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IPLTED=IPLTED+ 1
IF(IOUT(INDX).NE.IBLANK) GOTO 80
IF(ISTAND.EQ.O) GOTO 70
IOUT(INDX)~MARKCH(J)
GOTO 110

70 IOUT(INDX)-ICOMMA
IF(INT(Y).EQ.IY) 10UT(INDX).IAPOST
GOTO 110

80 DD 90 IC 33,10
90 IF(IOUT(INDX).EQ.INTCH(IC) GOTO 100

IC-2
100 IOUT(INDX)-INTCH(IC+l)
110 CONTINUE
120 CONTINUE

IF(MOD(IY,MPVY).EQ.O) GOTO 130
WRITE(IWRITE,I) (IOUT(IX),IX.l,NLX)
GOTO 140

130 WRITE(IWRITE,IFORM1) VALS(NYVALS),IDASH,ICOLON,
1 (IOUT(IX),IX-l,NLX)

NYVALS-NYVALS-l
140 CONTINUE

WRITE(IWRITE,l) (IDOT,I 31,NLX)
CALL AXIS(XMIN,XVSTEP,NXVALS,6,IRX,IRPR,OFFSET,IFACT,VALS,

1 20,IFAIL)
INTCH(3)-ITWO
IFORM2(15)-INTCH(IRPR+l)
IF(IFAIL.GT.O) GOTO 1032
WRITE(IWRITE,6) (ICOLON,I.1,NXVALS)
WRITE(IWRITE,IFORM2) (VALS(I),I-l,NXVALS)
IF(IFACT.NE.O) WRITE(IWRITE,4) IFACT
IF(OFFSET.NE.O.O) WRITE(IWRITE,5) OFFSET
IFAULT-IPLTED-N*NCY
RETURN

1064 IFAULT-IFAULT+32
1032 IFAULT-IFAULT+16
1016 IFAULT-IFAUlT+16

RETURN
END

AS.3.17 SCORE

SUBROUTINE SCORE(XMIN,K,D,IR,IN,V,DLOGLO,DA,DB,V3)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XMIN(2),D(10),IR(10),IN(10),Dl(2),D2(2,2),DEL(2),V(2,2)
DIMENSION V3(2,2)

10 CALL DERIV(XMIN,K,D,IR,IN,D1,D2,DA,DB,V3)
CALL DINV(D2,V)
DDMAX-DMAXl(DABS(Dl(l»,DABS(Dl(2»)
IF(DOMAX.lT.l.D-lO) GOTO 30
DEL(l)-V(1,1)*Ol(1)+V(I,2)*Dl(2)
DEL(2)-V(2,1)*DI(1)+V(2,2)*Dl(2)
DO 20 1-1,2

20 XMIN(I)-XMIN(I)-DEL(I)
GOTO 10

30 DLOGLO--FN(XMIN,K,O,IR,IN)
RETURN
END

AS.3.18 SHOW

SUBROUTINE SHOW(A,B,V)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION V(2,2)
WRITE(3,100)
WRITE(3,200)
WRITE(3,300) A,B
WRITE(3,400)
WRITE(3,200)
WRITE(3,500) V(l,l),V(1,2),V(2,l),V(2,2)
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100 FORMAT(! ,5X, 'PARAMETER ESTIMATES')
200 FORMAT(! .14X.' ALPHA ',' BETA ')
300 FORMAT(! ,13X,2FlO.4)
400 FORMAT(! ,5X,'COVARIANCE MATRIX OF PARAMETER ESTIMATES')
500 FORMAT(! ,5X,'ALPHA ',2FlO.4!6X.'BETA '.2FIO.4!)

RETURN
END

AS.3.19SHOWI

SUBROUTINE SHOWl(A,B,V)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION V(2,2)
WRITE(3,lOO)
WRITE(3,200)
WRITE(3,300) A,B
WRITE(3.400)
WRITE(3,200)
WRITE(3,SOO) V(l,l).V(l,2).V(2,l),V(2,2)

100 FORMAT(! ,5X,'POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)')
200 FORMAT(! ,14X,' ALPHA ',' BETA ')
300 FORMAT(! ,13X,2FIO.4)
400 FORMAT(! ,5X,'POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)')
500 FORMAT(! ,5X,'ALPHA ',2FIO.4/6X.'BETA ',2FIO.4!)

RETURN
END

AS.3.20 SHOW2
SUBROUTINE SHOWl(A,B,V)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION V(2,2)
WRITE(3,lOO)
WRITE(3,200)
WRITE(3,300) A,B
WRITE(3,400)
WRITE(3,200)
WRITE(3.500) V(l,l),V(l.2),V(2,l).V(2,2)

100 FORMAT(! .5X.'POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)')
200 FORMAT(! ,14X,' ALPHA ',' BETA ')
300 FORMAT(! ,13X,2F10.4)
400 FORMAT(! .5X,'POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)')
500 FORMAT(/ ,5X,'ALPHA ',2F10.4!6X,'BETA ',2F10.4!)

RETURN
END

AS.3.21 SHOM

SUBROUTINE SHOW3(A,B,V)
IMPLICIT REAL*B (A-H,O-Z)
DIMENSION V(2,2)
WRITE(3,lOO)
WRITE(3,200)
WRITE(3.300) A,B
WRITE(3,400)
WRITE(3,200)
WRITE(3,500) V(l,l),V(l,2),V(2,l),V(2,2)

100 FORMAT(! ,5X,'POSTERIOR EXPECTAIONS (INFORMATIVE PRIOR)')
200 FORMAT(! .14X.' ALPHA '.' BETA ')
300 FORMAT(! ,13X,2FIO.4)
400 FORMAT(! ,5X,'POSTERIOR COVARIANCE MATRIX (INFORMATIVE PRIOR)')
500 FORMAT(! ,5X,'ALPHA ',2F10.4!6X,'BETA ',2FIO.4/)

RETURN
END

AS.3.22 SPLOT

SUBROUTINE SPLOT(PLOT.IED)
REAL*8 PLOT(161,3)
DIMENSION A(161,3),ICY(2).SCALEY(2),SCALEX(2)
N-161
M-3
DO 10 1-1,N
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DO 10 JKl,M
10 A(I,J)-PLOT(I,J)

ICY(1 )-2
NCY-l
ICX-l
NY-35
NX-95
SCALEX(l) ..2.
SCALEX(2)-l.
SCALEY(1)-2.
SCALEY(2)-1
ISTAND-O
WRITE(3,lOO) lED
CALL SCATPL(A,N,M,ICY,NCY,ICX,NY,NX,SCALEY,SCALEX,ISTAND,IFAULT)
WRITE(3,300) lED
ICY(l)-3
SCALEY(l)-O.
SCALEY(2)-l.
WRITE(3,200) lED
CALL SCATPL(A,N,M,ICY,NCY,ICX,NY,NX,SCALEY,SCALEX,ISTAND,IFAULT)
WRITE(3,300) lED

100 FORMAT('AL' ,5X,'POSTERIOR DENSITY OF LOG(ED' ,12,')'/)
200 FORMAT('AL' ,5X,'CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED',12,

1 ')' /)
300 FORMAT(// ,30X,'LOG(ED' ,12,')')

RETURN
END

AS.3.23 BIVL

FUNCTION BIVL(H,RHO)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON //PBO,STD/COM3/X,TK
ROOT-DSQRT(l-RHO*RHO)
AH-X/H/ROOT -RHO/ROOT
IF (DABS(H).GE.l.D-lO) THEN
BIVL-(FNORM(H,.FALSE.)+PBO)/2.DO -TFN(H,AH)-TK
IF (H*X.LT.O.DO) BIVL-SIVL-.5DO
ELSE
BIVL- PBO/2.00 -TK
END IF
BIVL-SIVL/PBO
RETURN
END

AS.3.24 DEN
FUNCTION DEN(A,B,D)
IMPLICIT REAL*8(A-H,O-Z)
COMHON IIPBO,STD/COM2/R,SX,SY,C
PI2-4.DO*DACOS(0.DO)
PR-l.DO-R*R
F-B*D*FNORM(B/A/DSQRT(PR),.FALSE.) IDSQRT(PI2)/SX/SY/A/A/A
DEN-(F +DSQRT(PR)*DEXP(-C/2.DO/PR) /PI2/SX/SY/A/A) IPSO
RETURN
END

AS.3.2S DVl

FUNCTION DVl(D,X,IE)
IMPLICIT REAL*8(A-H,O-Z)
DATA PI2/.398942280444D+OO/
DIE-1.0D+00
IF(IE.EQ.l) DIEaD
DVI-DIE*PI2*DEXP(-X*X/2.00D+OO)
RETURN
END
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AS.3.26 DV2

FUNCTION OV2(O,X,IE}
IMPLICIT REAL*8 (A-H,O-Z)
DATA PI2/.3989422804440+00/
0IE-l.00+00
IF(IE.EQ.l} OIE-O
IF(IE.EQ.2} OIE-O*O
OV2--0IE*PI2*X*OEXP(-X*X/2.00+00}
RETURN
END

AS.3.27 DV3
FUNCTION OV3(O,X.IE)
IMPLICIT REAL*8 (A-H,O-Z)
OIE-l.OO
IF (IE.EQ.1) OIE-O
IF (IE.EQ.2) OIE-O*O
IF (IE.EQ.3) OIE-O*O*O
OV3"OIE*0.39894228044400*OEXP(-X*X/2.00)*(X*X-1.00)
RETURN
END

AS.3.28 FN

FUNCTION FN(Y,K,O,IR,IN}
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(2),IR(10},IN(10},O(10}
SUM·O.OD+OO
DO 10 I-1,K

X-Y(1)+Y(2)*DLOG(D(I»
X1-FLOAT(IR(I»*DLOG(FNORM(X,.FALSE.})
X2-FLOAT(IN(I)-IR(I»*OLOG(FNORM(X,.TRUE.»
SUM-SUM-XI-X2

10 CONTINUE
FN-SUM
RETURN
END

AS.3.29 FNORM

FUNCTION FNDRM(X,UPPER)
IMPLICIT REAL*8 (A-H,D-Z)
LOGICAL UPPER,UP
LTDNE-7.0D+00
UTZERO-18.66D+00
UP-UPPER
Z-X
IF(Z.GE.O.OD+OO} GOTO 10
UP-.NOT.UP
Z--Z

10 IF(Z.LE.LTDNE.OR.UP.AND.Z.LE.UTZERO} GOTO 20
FNORM-O.OO+OO
GOTO 40

20 Y-0.5D+OO*Z*Z
IF(Z.GT.l.28O+00} GOTO 30
FNORH-O. 50+00-Z*(0.398942280444D+00-0. 3999034385040+00*Y 1

1 (Y+ 5.758854804580+00-29.82135578080+00/
2 (Y+ 2.624331216790+00+48.69599306920+001
3 (Y+ 5.928857244380+00»»

GOTO 40
30 FNORH-O.3989422803850+00*DEXP(-Y}/

1 (Z-3.80520-08+1.000006153020+001
2 (Z+3.98064794D-04+1.98615381364D+00/
3 (Z-0.151679116635D+OO+5.29330324926D+OO/
4 (Z+4.8385912808D+00-15.1508972451D+OOI
5 (Z+O.742380924027D+00+30.789933034D+001
6 (Z+3.99019417011D+OO»»»
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40 IF(.NOT.UP) FNORM=1.0o+00-FNORM
RETURN
END

AS.3.30 PRO BIT

FUNCTION PROBIT(P)
IMPLICIT REAL*8 (A-H,O-Z)
PO- -0.3222324310880+00
PI- -1.00+00
P2- -0.34224320885470+00
P3- -0.2042312102450-01
P4- -0.4536422101480-04
QO- 0.99348462606D-Ol
Ql- 0.5885815704950+00
Q2- 0.5311034623660+00
Q3- 0.103537752850+00
Q4- 0.38560700630-02
PROBIT- 0.00+00
PS- P
IF(PS.GT.0.5D+00) PS- 1.00+00-PS
IF(PS.EQ.0.5D+00) RETURN
YI- oSQRT(DLOG(1.00+00/(PS*PS»)
PROBIT- YI+««YI*P4+P3)*YI+P2)*YI+P1)*YI+PO)

1 /««YI*Q4+Q3)*YI+Q2)*YI+QI)*YI+QO)
IF(P.LT.0.50+00) PROBIT- -PROBIT
RETURN
END

AS.3.31 TFN

FUNCTION TFN(HI,AI)
IMPLICIT REAL*8 (A-H,O-Z)
DATA Gl/.1591549431DO/
H.DABS(HI)
A-oABS(AI)
EPS-l.D-6
TFN-O.DO
IF (A.EQ.O.DO) RETURN
ATA-oATAN(A)
IF (H*A.LE.4.DO) GOTO 10
TFN-G1*(ATA+OATAN(1.DO/A» -.5DO*(FNORM(H,.fALSE.)-.500)
GOTO 50

10 HSQ2-.5DO*H*H
EXPH2-DEXP(-HSQ2)
ASQ-A*A
A4-ASQ*ASQ
H4-HSQ2*HSQ2
A4H4-A4*H4
BBJ-A*HSQ2
BJ-A*H4*.5DO
FJ-l.oO
DJ-3.00
SUM-O.DO

20 EJ-OJ
SER-O.DO
TERH-BJ

30 SER-SER+TERM
IF (TERM.LE.SER*EPS) GOTO 40
TERH-TERM*HSQ2/EJ
EJ·EJ+l.DO
GOTO 30

40 CONTRl-(SER+BBJ)/FJ
CONTR2-SER*ASQ/(FJ+2.DO)
CONTR-CONTRI-CONTR2
SUH-SUM+CONTR
TFN-ATA-SUM*EXPH2
EPSA-EPS*TFN
BBJ-BBJ*A4H4/0J/(DJ-l.DO)
BJ-BJ*A4H4/DJ/(DJ+1.DO)
FJ-FJ+4.DO
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OJ-DJ+2.DO
IF (CONTR2*EXPH2.GE.EPSA) GOTO 20
TFN-TFN*Gl

50 IF (AI.LT.O.DO) TFN--TFN
RETURN
END
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AS.4 Input.

CARD 1 TITLE (upto 80 characters)

CARD 2 ILOOP

CARD 3 lED, K, CLASS, PRIOR

CARD 4 NR

CARD 5 TLIM(l) , TLIM(2) , ... , TLIM(NR)

CARD 6 ALPHAO, BETAO, VO(l,l) , VO(l,2) , VO(2,1) , VO(2,2)

CARD 7 D(l) , IN(!) , IR(!)

CARD 8 D(2) , IN(2) ,IR(2)

CARD K+6 D(K) ,IN(K) ,IR(K)

Cards 4-6 are optional. Cards 4 and 5 are only necessary if CLASS= .TRUE.; Card 6is only necessary if

PRIOR = .TRUE. Cards 2 - (K+6) should be repeated ILOOP times for each data set.
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A5.5 Examples.

AS.S.l Input for Examples.

3
EXAMPLE FROM GRIEVE(1988b) - UNINFORMATIVE PRIOR - ED50
50 4 .TRUE • • FALSE.
5
5 50 500 2000 5000
500 5 1
1000 5 2
2500 5 3
5000 5 2
EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - ED50
50 4 .TRUE .• TRUE.
5
5 50 500 2000 5000
-3.0 0.5 9.0 -.96 -.96 .16
500 5 1
1000 5 2
2500 5 3
5000 5 2
CGP 35127 (Jp) IN FEMALE MICE - SINGLE DOSE STUDY - ED90
90 8 .TRUE • . FALSE.
3
1 4 16

0.62 6 0
0.93 6 0
1.85 6 2
2.78 6 3
5.56 6 4
8.33 6 6

16.67 6 6
25.00 6 6
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:\5.5.2 Example1.

EXAMPLE FROM GRIEVE{1988b) - UNINFORMATIVE PRIOR - ED50

MAXIMUM LIKELIHOOD ESTIMATION OF ED50

MODEL : PROBIT

INDEPENDENT VARIABLE LOG(DOSE)

PARAMETER ESTIMATES

ALPHA BETA

-2.3187 0.2791

COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA BETA

ALPHA 6.1247 -0.8146
BETA -0.8146 0.1098

MAXIMISED LOG-LIKELIHOOD

-13.1007
FIT OF THE MODEL

DOSE NO RESP EXP
500.00 5 1 1.4

1000.00 5 2 1.7

2500.00 5 3 2.2

5000.00 5 2 2.6

CHI-VALUE = 1.00
D.F. 2

NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)
FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF 1.96

ESTIMATE OF ED50

4049.3035

NO FIDUCIAL LIMITS
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EXAMPLE FROM GRIEVE(l988b) - UNINFORMATIVE PRIOR - ED50

BAYESIAN ANALYSIS

POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)

ALPHA

-2.4390

BETA

0.2937

POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)

ALPHA
BETA

ALPHA

6.2760
-0.8347

BETA

-0.8347
0.1125

POSTERIOR MEDIAN FOR ED50

3199.3200

POSTERIOR MODE FOR ED50

2436.6822

95% H.P.D. LIMITS FOR ED50

110.7882 6378274.8083

PROBABILITY OF TOXICITY CLASSES

CLASS PROBABILITY

1 < 5.0 0.00534677

2 5.0 - 50.0 0.00381713

3 50.0 - 500.0 0.02061723

4 500.0 - 2000.0 0.23352378

5 2000.0 - 5000.0 0.40106765

> 5000.0 0.33562744

TOTAL: 1.00000000
-----------------------------------------------

0.0 0.2 0.4 0.6 0.8 1.0

1

2
3 : +

4 : ++++++++++++

5 ++++++++++++++++++++

> : +++++++++++++++++
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POSTERIOR DENSITY OF lOG(ED50)

0.48 -:

0.40 -:

0.32 -:

0.24 -:

0.16 -:

0.08 -:

0.00 - I

APPENDICES.
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED50)

0.90 -;

0.75 -;

0.60 -;

0.45 -;

0.30 -;

0.15 -;

0.00 -:'

,
.',

3;
,5444;

354445443

;44
;54445;

444;
34'

4'
4
.'.

................. , .
9. 12.

APPENDICES.
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AS.5.3 Example 2.

EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - ED50

t1AXIMUM LIKELIHOOD ESTIMATION OF E050

MODEL : PROBIT

INDEPENDENT VARIABLE : LOG(DOSE)

PARAMETER ESTIMATES

ALPHA BETA

-2.3187 0.2791

COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA BETA

ALPHA 6.1247 -0.8146
BETA -0.8146 0.1098

MAXIMISED LOG-LIKELIHOOD

-13.1007

FIT OF THE MODEL

DOSE NO RESP EXP

500.00 5 1 1.4

1000.00 5 2 1.7

2500.00 5 3 2.2

5000.00 5 2 2.6

CHI-VALUE - 1.00
D.F. 2

NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)
FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF 1.96

ESTIMATE OF ED50

4049.3035

NO FIDUCIAL LIMITS
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EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - E050

BAYESIAN ANALYSIS

POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)

ALPHA BETA

-2.4390 0.2937

POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)

ALPHA
BETA

ALPHA

6.2760
-0.8347

BETA

-0.8347
0.1125

POSTERIOR MEDIAN FOR ED50
3199.3200

POSTERIOR MODE FOR ED50

2436.6822

95% H.P.D. LIMITS FOR ED50

110.7882 6378274.8083

PROBABILITY OF TOXICITY CLASSES

CLASS PROBABILITY

1 < 5.0 0.00534677

2 5.0 - 50.0 0.00381713

3 50.0 - 500.0 0.02061723

4 500.0 - 2000.0 0.23352378

5 2000.0 - 5000.0 0.40106765

> 5000.0 0.33562744

TOTAL: 1.00000000

0.0-------0.2-------0.4-------0.6-------0.8-------1.0

1

2
3 : +

4 : ++++++++++++

5 : ++++++++++++++++++++

> : +++++++++++++++++
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POSTERIOR DENSITY OF LOG(ED50)

0.48 -:

0.40 -:

0.32 -:

0.24 -:

0.16 -:

0.08 -:

0.00 _: I
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED50)

0.90 -;

0.75 -:

0.60 -;

0.45 -;

0.30 -:

0.15 -;

0.00 -:'

APPENDICES.
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EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - ED50

PRIOR INFORMATION

PRIOR EXPECTAIONS

ALPHA

-3.0000

BETA

0.5000

PRIOR COVARIANCE MATRIX

ALPHA
BETA

ALPHA

9.0000
-0.9600

BETA

-0.9600
0.1600

POSTERIOR EXPECTAIONS (INFORMATIVE PRIOR)

ALPHA BETA
-2.8912 0.3573

POSTERIOR COVARIANCE MATRIX (INFORMATIVE PRIOR)

ALPHA BETA

ALPHA 3.5438 -0.4690
BETA -0.4690 0.0635

POSTERIOR MEDIAN FOR E050

3059.9890

POSTERIOR MODE FOR E050

2450.6319

95% H.P.D. LIMITS FOR ED50

200.7817 602999.9368

PROBABILITY OF TOXICITY CLASSES

CLASS PROBABILITY

1 < 5.0 0.00365551

2 : 5.0 - 50.0 0.00293979

3 : 50.0 - 500.0 0.01979330

4 : 500.0 - 2000.0 0.25631111

5 : 2000.0 - 5000.0 0.40916296

> 5000.0 0.30813733

TOTAL: 1.00000000

0.0-------0.2-------0.4-------0.6-------0.8-------1.0

2

3 : +

4 : +++++++++++++

5 : ++++++++++++++++++++

> : +++++++++++++++
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POSTERIOR DENSITY OF LOG(ED50)

0.48 -

0.40
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0.24

0.16 -:
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED50)

0.90 -:

.•
0.75 -:

0.60 -:

0.45 -:

0.30 -:

0.15 -:

0.00 -:'

,.
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3
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..................................................
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LOG(EDSO)
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AS.S.4 Example 3.

CGP 35127 (ip) IN FEMALE MICE - SINGLE DOSE STUDY - ED90

MAXIMUM LIKELIHOOD ESTIMATION OF ED90

MODEL : PROBIT

INDEPENDENT VARIABLE: LOG(DOSE)

PARAMETER ESTIMATES

ALPHA BETA

-1.7000 1.5469

COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA BETA

ALPHA 0.2832 -0.1852
BETA -0.1852 0.1667

MAXIMISED LOG-LIKELIHOOD

-13.1075

FIT OF THE MODEL

DOSE NO RESP EXP
0.62 6 0 0.0
0.93 6 0 0.2

l.85 6 2 1.4

2.78 6 3 2.7

5.56 6 4 5.0

8.33 6 6 5.7

16.67 6 6 6.0

25.00 6 6 6.0

CHI-VALUE ,. 2.22
D.F. 6

NOTE: SINCE CHI-SQUARE VALUE SMALL (P>0.05)
FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF 1.96

ESTIMATE OF E090

6.8724

FIDUCIAL LIMITS (95%)

4.5602 < ED90 < 18.8023
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CGP 35127 (ip) IN FEMALE MICE - SINGLE DOSE STUDY - ED9Q

BAYESIAN ANALYSIS

POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)

ALPHA BETA

-1.8937 1.7215

POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)

ALPHA BETA

ALPHA 0.2976 -0.1947
BETA -0.1947 0.1752

POSTERIOR MEDIAN FOR ED90

6.3249

POSTERIOR MODE FOR ED90

5.8814

95% H.P.D. LIMITS FOR ED90

4.0923 12.0673
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POSTERIOR DENSITY OF LOG(ED90)
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED90)

0.90 -:

0.75 -:

0.60 -:

0.45 -:

0.30 -:

0.15 -:

0.00 -:

APPENDICES.

"3
;4

'44444454444;

0.5 1.0 1.5 2.0

LOG(ED90)

3444
4454'

;44
4;

,4
,3
3
.',
,

3

2.5

A-79



A6 SAS PROGRAMS FOR BAYESIANANALYSESASSOCIATED WITH THE lWO·TREATMENT,
lWO·PERIOD CROSSOVER.

A6.1 A SAS Program for the Bayesian Analysis of §4.

A6.1.1 Introduction.

This program is designed to perform a Bayesian analysis of a two-treatment, two-period crossover design. The

program carries out the analyses developed in §4.

The program was writtenin SAS in order that the strengths of the SAS systemin the realms of graphics could

be utilised. Inthis Appendix a listing of the program including an example of data taken from Patel(1983) is

given.

A6.1.2 Program Description.

This program has been written utilising theSAS data step language, without resorting to the use of theSAS

library of procedures.In what follows the most important variablesin the most important DATA SETS are

described.

DATASET A6 NI - Number of patientsin sequence groupA -+ B

N2 - Number of patientsin sequence groupB -+ A

YU- Cell meanY 1.1

Y12 - Cell meanY I.Z

Y21 - Cell meanY Z.I

Y22 - Cell meanY Z.Z

SSP - Patient sum of squares
SSE - Error sum of squares

N - Total number of patients
M - l/Nl + lIN2

RH - Least squares estimate ofA
TH - Least squares estimate of ,;

DATASET B3 R - Carryover effect
T - Treatment effect

P_UNC - Constrained Conditional Density

DATASET C3 R - Carryover effect
T - Treatment effect

P_CON - Constrained Conditional Density

DATASET D T - Treatment effect
P UNC - Unconstrained Conditional Density
P=CON - Constrained Conditional Density

DATASET E T - Treatment effect
P UNC - Unconstrained Density
P=CON - Constrained Density

DATASET F R - Carryover effect
P UNC - Unconstrained Density
P-CON - Constrained Density

DATASET G Prior belief in a carryover effect
Posterior mean treatment effect
Posterior probability of a+ve Treatment effect
Upper 95% H.P.D. limit
Lower 95% H.P.D.limit
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B01 - Baves factor
P 1 - Posterior belief in a carryover effect

A6.1.3 Program Listing.
****************************************
INPUT DATA FROM PATEL (1983)
*************************.**************. ,
DATA AO;INPUT PAT SEQ VI V2:CARDS;

1 1 1.28 1.33
2 1 1.60 2.21
3 1 2.46 2.43
4 1 1.41 1.81
5 1 1.40 0.85
6 1 1.12 1.20
7 1 0.90 0.90
8 1 2.41 2.79
9 2 2.68 2.10

10 2 2.60 2.32
11 2 1.48 1.30
12 2 2.08 2.34
13 2 2.72 2.48
14 2 1.94 1.11
15 2 3.35 3.23
16 2 1.16 1.25
17 2 3.06 1.38

**.*.*.* • • *• • ***** • • **** • • ***.****.**.*******
CALCULATION OF SUFFICIENT STATISTICS
*************** • • • • *• • • • *.**.**** • • • *****.*.*. ,
DATA AI: SET AO: Y-(Yl+Y2)/2:
PROC MEANS NOPRINT: BY SEQ: VAR YI Y2; OUTPUT OUT-A2 N-NO MEAN-YI Y2:
DATA A3: SET A2: RETAIN NI Yll YI2:
IF N -I THEN 00: NI-NO: YII-Yl: YI2-Y2: END:
ELSE 00: N2-NO; Y2I-YI; Y22-Y2: OUTPUT: END; KEEP NI N2 YII YI2 Y2I Y22;
PROC MEANS NOPRINT DATA-AO; VAR Y YI Y2: OUTPUT OUT-A4 USS-SIJ SIJI SIJ2;
DATA A5; MERGE A3 A4 : KEEP NI N2 Yll YI2 Y2I Y22 SSP SSE:
SSP-2*(SIJ-(NI*«YIl+Y12)/2)**2+N2*«Y21+Y22)/2)**2»:
SE-SIJl+SIJ2-(SSP+Nl*YIl**2+Nl*YI2**2+N2*Y21**2+N2*Y22**2);
DATA A6: SET A5:
N-NI+N2; M-N/(NI*N2): DF-(N-l)/2:
CONST-EXP(LGAHHA(DF)-(LGAMMA(DF-.5)+lGAHMA(.5»):
DFI-N-I: DF2-N-I:
RH- .5*(Yll+Y12-(Y2I+Y22» : TH- O.25*(YII+Y22-(YI2+Y21»:
****** • • • • • • • • • • • • • • • • • • • • • • • *****.***
BASIC DATA
***************.*.*.**.***************. ,
PROC PRINT:
*.*.********.***.*.****.**.************
CALCULATION OF P(T,R IDATA)

P UNC = UNCONSTRAINED DENSITY
P-CON = CONSTRAINED DENSITY
*F********** • • *.***********************. ,
DATA BO; SET A6:
SER-SQRT(M*SSP/(2*(N-2»): Rl-RH-(3*SER): RU-RH+3*SER:
C-4/(M*(SSE*SSP)**0.5): LM-C*(CONST**2):
DO CASE-I TO 19 BY 3:PROB-(100-5*CASE)/100:

LS-LOG(PR08*LM): KEEP CASE PROB R T IND II L_L IN:
DO R-RL TO RU BY (SER/IO):
INO-O: T-RL: DEL-SER/IO: L L--IOOOO:
LOOPI:T-T+DEL; _

LINK LOGLIK:
IF IND-O THEN 00:

IF Ll > lS THEN DO:
T-T-DEL:
DEL-DEL/IOOO;
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IND-l; GOTO LOOPl;
END;
ELSE IF LL < L L THEN GOTO LOOP2:
ELSE L L-LL; _

END; -
IF IND-l THEN DO;

IF LL > LS THEN DO;LN-LL;
X-DEL*(LL-LS)/(LL-L L);
T-T-X; _
LINK LOGLIK;
OUTPUT;
DEL-SER/lO;
IND-2;

END;
ELSE L L-LL;

END; -
IF IND-2 THEN DO;

IF LL < LS THEN DO;
T-T-DEL;
DEL-DEL/lOOO;
IND-3;GOTO LOOPl;

END;
ELSE L L-LL;

END; -
IF IND-3 THEN DO;

IF LL < LS THEN DO;LN=LL;
X-DEL*(LS-LL)/(L L-LL);
T-T-X; -
OUTPUT;
GOTO LOOP2;

END;
ELSE L L-LL;

END; -
IF T GT RU THEN GOTO LOOP2;
GOTO LOOPl;

LOOP2:END;
END;
LOGLIK:
Yl-2*«R-RH)**2)/H;
Y2-8*«T-(R/2+TH»**2)/H;
W2-(Y2/SSE)**0.5; Wl-(Yl/SSP)**0.5;
LL-LOG(LH)-OF*LOG«I+WI*WI)*(I+W2*W2»;
RETURN;
RUN;
DATA Bl; SET BO; BY CASE; RETAIN NINO;
IF FIRST.CASE THEN NINO-I; ELSE NINO-NINO+l;
IF INO-3 THEN IO--NINO;
PROC SORT; BY CASE IHO [0;
DATA B2; SET BD; BY CASE; IF FIRST.CASE;
DATA B3; SET Bl B2; P UHC-PROB;
KEEP P UNC R T; -
PROC SORT; BY P UNC;
PROC PRINT; -
DATA CO; SET A6;
SER-SQRT(H*SSP/(2*(N-2»); RL-RH-(3*SER); RU-RH+3*SER;
C-4/(H*(SSE*SSP)**0.5);
PR2-PROBF«SSP/SSE),(OF2-l),(DFl-l»;
PRI-PROBF«SSP/SSE),(OF2),(OFl»;
LH-C*(CONST**2)*PRl/PR2:
DO CASE-I TO 19 BY 3;PROB-(100-5*CASE)/100;

LS-LOG(PROB*LH); KEEP CASE PROB R T INO LL L L LN;
DO R-RL TO RU BY (SER/lO); _
INO-O; T-RL; DEL-SER/lO; L L--IOOOO;
LOOPl:T-T+OEL: -

LINK LOGLlK;
IF IND-O THEN DO;

IF LL > LS THEN DO;
T-T-DEL;
DEL-DEL/IOOO:
INO-l; GOTO LOOPl;

END;
ELSE IF LL < L_L THEN GOTO LOOP2;
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ELSE L L=LL;
END; -
IF IND-l THEN DO:

IF LL > LS THEN DO;LN-LL;
X-DEL*(LL-LS)/(LL-L L);
T-T-X: -
LINK LOGLlK;
OUTPUT:
DEL-SER/lO:
IND-2:

END:
ELSE L L-LL:

END; -
IF IND-2 THEN DO:

IF LL < LS THEN DO:
T-T-DEL:
DEL-DEL /1000:
IND-3:GOTO LOOPl:

END:
ELSE L L-LL:

END; -
IF IND-3 THEN DO:

IF LL < LS THEN DO:LN-LL:
X-DEL*(LS-LL)/(L L-LL):
T-T-X: -
OUTPUT;
GOTO LOOP2:

END:
ELSE L L-LL;

END: -
IF T GT RU THEN GOTO LOOP2:
GOTO LOOPl:

LOOP2:END:
END:
LOGLIK:
Yl-2*«R-RH)**2)/M:
Y2-S*«T-(R/2+TH»**2)/M:
PR2-PROBF«SSP/SSE),(DF2-1),(DFl-l»:
SSl-DFl*(SSP+Yl):
SS2-DF2*(SSE+Y2):
PRl-PROBF«SSl/SS2),(DF2),{DFl»:
W2-(Y2/SSE)**0.5: Wl-(Yl/SSP)**0.5:
LL-lOG(LM)-DF*LOG«l+Wl*Wl)*(1+W2*W2» + lOG(PRl) - lOG(PR2)
RETURN:
RUN:
DATA Cl: SET CO: BY CASE; RETAIN NINO:
IF FIRST.CASE THEN NINO-I: ELSE NIND-NIND+l:
IF IND-3 THEN ID--NIND:
PROC SORT: BY CASE IND ID:
DATA C2: SET CO: BY CASE: IF FIRST.CASE:
DATA C3: SET Cl CZ: P CON-PROB:
PROC SORT: BY CASE: -
DATA C3: SET C3:
KEEP P CON R T:
PROC PRINT:
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
CALCULATION OFP(TIR = O,DATA)

P UNC = UNCONSTRAINED DENSITY
P-CON = CONSTRAINED DENSITY
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •,
DATA 0: SET A6: CONST-CONST*(S/(M*SSE»**0.5:
SER-SQRT(M*SSP/(Z*(N-Z»): SET-SQRT(M*SSE/{S*(N-2»);
RL-MIN(O,ROUND(RH-(Z*SER),l»: RU-MAX(O,ROUND(RH+2*SER»:
SSl- DFl *(SSP+2*{RH**2)/M):
SS3-(DFl-l)*(SSP+2*(RH**Z)/M);
DO T-{TH-{S*SET» TO (TH+8*SET) BY (SET/lO):

Y-8*{(T-TH)**2)/M:
SS2-DF2*(SSE+Y):
SS4-SSE*DF2:
PRl-PROBF«SSl/SS2).(DF2),(DFl»:
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PR2mPROBF«SS3/SS4).(DF2).(OFl-l»;
W-(Y/SSE)**O.5:
P_UNC-CONST*(l+W*W)**-OF;
P CON-P UNC*PRl/PR2;
OUTPUT;-

END:
KEEP T P_UNC P_CON PRI PR2;
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
APPROXIMATION OF P(T J DATA)

P UNC = UNCONSTRAINED DENSITY
P-CON = CONSTRAINED DENSITY
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •,
DATA E(KEEP-T P UNC P CON)

E1(KEEP-M1-M2 V1-V2 DF1 DF2 P T1 P T2 801);SET A6:
P-l/(2*ARCOS(0»**0.5: --
B1-(N-6)*«SSE+SSP)**2)/(SSE*SSE+SSP*SSP)+4; BO-(Bl-2)*(SSE+SSP)/(N-4);
A-M*BO/8;
SET-SQRT(A/B1);Tl-(TH+RH/2)-(4*SET);TU-(TH+RH/2)+4*SET:
X-SSP/(SSE+SSP);DFl-N-2;
IXI-PROBBETA(X,DF1/2,DFl/2+1):
IX2-PROBBETA(X,DF1/2,DF1/2+2):
IX3-PROBBETA(X,DF1/2,DF1/2):
IX4-PROBBETA(X,DFl/2+l,DFl/2):
IX5-PROBBETA(X,DF1/2+2,DF1/2):
E1-(DF1/2+1)*IX2/IX1-(DF1*IX1/(IX3*2»:
E2-(DFl/2+l)*IX5/IX4-(DF1*IX4/(IX3*2»:
F1-0Fl*IXl/(El*IX3):
F2-DFl*IX4/(E2*IX3):
SSEl-SSE/El: SSPl-SSP/E2: E-SSEl/(Fl-2)+SSPl/(F2-2):
V-2*SSEl*SSEI/«FI-2)**2*(Fl-4»+2*SSPl*SSP1/«F2-2)**2*(F2-4»:
BI1-2*E*E/V+4; B01-(811-2)*E: AI-M*BOI/8:
00 T-Tl TO TU BY (SET/10):

C-P*EXP(LGAMHA(BI/2+.5)-LGAHMA(B1/2»/A**O.5:
P UNC-C*(I+«T-(TH+RH/2»**2)/A)**-(BI/2+.5):
C;P*EXP(LGAMMA(Bll/2+.5)-LGAMMA(BI1/2»/A1**0.5:
P CON-C*(1+«T-(TH+RH/2»**2)/Al)**-(Bll/2+.5):
OlJTPUTE:

END;
MI-TH: M2-TH+RH/2: VI-H*SSE/(8*(N-2»: V2-A/B1: DFI-N-2:DF2-Bl:
P Tl-PROBT(Hl/SQRT(Vl),DFl); P T2-PROBT(H2/SQRT(V2),DF2):
BUl-SQRT(3/(2*H»/(1+(2*RH*RH)7(M*SSP»**(H/2):
OUTPUT El:
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
CALCULA nON OF P(R J DATA)

P UNC = UNCONSTRAINED DENSITY
P-CON = CONSTRAINED DENSITY
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••
DATA F:SET A6:C-(2/(H*SSP»**0.5:PR2-PROBF«SSP/SSE),(DFI-1),(DF2-1»:
SER-SQRT(H*SSP/(2*(N-2»):RL-RH-(4*SER):RU-RH+4*SER:
DO R-Rl TO RU BY (SER/IO):
Y-2*«R-RH)**2)/H;W.(Y/SSP)**0.5:
SSl-(OFl-l)*(SSP+Y):SS2-DF2*SSE:PRI-PROBF«SS1/SS2),DF2,(DF1-1»:
P UHC-C*CONST*«1+W*W)**-DF):P COH-P UNC*PR1/PR2:0UTPUT;END:
KEEP R P_UNC P_CON PR1 PR2: - -
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
POSTERIOR INFERENCE FOR TREATMENT EFFECT
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •,
DATA G:SETE1:KEEP P 0 H W P W Xl XU B01 P 1;
XUS-H2+1.96*SQRT(V2);XLS-R2-1:96*SQRT(V2); -
DO P 0-0 TO 1 BY O.Ol;IF P 0-1 THEN PI-10000000:ELSE PI-P 0/(1-P 0):

P;(PI*BOl)/(1+PI*801);P l;l-P: - -
H W- P*H1 +P 1*H2 .-
V-W- P*Vl+P 1*V2 +P*P'l*(H1-H2)**2 ;
p-w-p*p Tl+P-l*P T2 :
xlJ·XUS:XU1-XlJ; -

lO:XAl-(XU-Hl)/SQRT(V1);XA2-(XU-H2)/SQRT(V2);
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Pl=P*(l-PROBT(XAl.DFl))+P 1*(1-PROBT(XA2.DF2);
LINK XOTHER;XAl.(XL-Ml)/SQRT(Vl);XA2 a(XL-M2)/SQRT(V2);
XLl·XL:OENOM·OENO:XUlaXUl+O.OOl;LINK XOTHER;XUl=XUl-O.OOl;
P2-P*PROBT(XAl.OFl)+P 1*PROBT(XA2.0F2);
PLal-(Pl+P2): -
NUH·PL-O.95:
OENOM·OENOM*(l-«XL-XLl)/O.OOl));
XU.XU-(NUM/OENOM);OIFFI-ABS(XU-XUl);
IF ABS(XU-XUl) LT lE-6 THEN DO;XUS.XU;OUTPUT;END:ELSE DO:XUl.XU;GOTO LO:
END;END;

XOTHER:
A·Vl*OFl;OF-DFl;M-Ml:X·XUl:LINK TOIS:DENl·PX;
A·V2*OF2:0F-DF2:M-M2:X·XUl;LINK TDIS;DEN2·PX:
OEN·P*OENl+P 1*OEN2:
XL-XLS:XLO.X[:

Ll: A·Vl*OFl:OF-DFl:M-Ml:X·XL:LINK TOIS:DENI-PX;DERI-DER:
A·V2*DF2:DF-DF2:M·M2:X·XL:LINK TDIS:DEN2-PX:DER2-DER:
DENO·P*OENl+P 1*OEN2:NUHI-DENO-DEN:
DER·P*DERl+P I*DER2:
XL.XL-(NUHl/nER):DIFF2-ABS(XL-XLO):
IF ABS(XL-XLO) LT lE-6 THEN OO:XLS.XL:RETURN:END:ELSE DO:XLO·XL:GOTO Ll:

END:
TOIS: C·l/{2*ARCOS{O»**O.5;
C·C*EXP{LGAHHA{OF/2+.5)-LGAHHA(OF/2)/A**O.5:
PX·C*(1+{(X-M)*{X-H»/A)**-{OF/2+.5);
DER·-{DF/2+.5)*PX*2*{X-H)/{A*(1+«X-H)*(X-M»/A»:RETURN:

A6.2 A SAS Program for the Bayesian Analysis of §9.2

A6.2.1 Introduction.

This program is designed to perform a Bayesian analysis of a two-treatment, two-period crossover design with

missing data. The program carries out the analyses developedin §9.

A6.2.2 Program Description.

This program has been written utilising the SAS data step language, without resorting to the use of the SAS

library of procedures. In what follows the most important variables in the most important DATA SETS are

described.

DATASET INP NI - Number of patientsin sequence groupA -+ B with
complete data,

N2 - Number of patients in sequence groupA -+ B with
complete data,

NU - Number of patients in sequence groupA -+ B with missing
1st period data,

N12 - Number of patients in sequence groupB -+ A with missing
2nd period data,

N21 - Number of patients in sequence groupB -+ A with missing
1st period data,

N22 - Number of patientsin sequence groupB -+ A with missing
2nd period data,

YU - Cell meanY 1.1 ,

Y12 - Cell meanY I.Z ,

Y21 - Cell meanY Z.I ,

Y22 - Cell meany Z.Z ,

Xl - Cell meanX I ,

Zl - Cell meanZ I ,

X2 - Cell meanXz ,
Z2 - Cell meanZz ,

S111 - Corrected sum of squaresSIll ,

S112 - Corrected sum of cross productsSlIZ ,
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S122 - Corrected sum of squaresS 122 ,

S211 - Corrected sum of squaresS 211 ,

S221 - Corrected sum of cross productsS21Z ,

S222 - Corrected sum of squaresS222 ,

S11 - Corrected sum of squaresS II ,

S12 - Corrected sum of squaresS 12 ,

S21 - Corrected sum of squaresS21 ,

S22 - Corrected sum of squaresS22 •

DATASET T T - Treatment effect
DEN - Posterior Density

L - Carryover effect
DEN - Posterior Density

T - Treatment effect
DEN - Posterior Density

DATASET L

DATASET TL

A6.2.3 Program Listing •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
INPUT DATA TAKEN FROM GELFLAND ET AL(l990)
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• ,
DATA INP:
Nl- 3 : N2- 4 •
Nll- 1 : N12- 1 : N21- 0
Y11- 1.480877 : Y12- 1.326631 : Y21- 1.39212
X1- 1.31372 : ZI- 1.40364 : X2- 0
5111- 0.01324816 : 5112- 0.04448745 ; 5122- 0.1602117
S211- 0.0973115 : S212- 0.0573021 ; S222- 0.0629484
511- 0 : S12- 0 ; S21- 0

; N22- 1
; Y22- 1.56918

Z2- 1.58104

S22- 0

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
DATASET-T
CALCULATION OF rrr IDATA)

DATASET-L
CALCULATION OF peL I DATA)

DATASET-TL
CALCULATION OF peT IL=O,DATA)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• ,

DATA T (KEEP-T INDIC DEN DEN 0)
DATA L (KEEP-L INOIC DEN DEN-O)
DATA TL(KEEP-T INDIC DEN DEN-O):
SET INP: -
ARRAY GAUSS{20} GAUSS1-GAUSS20:ARRAY WT{20} WT1-WT20:
GAUSS{l}- -.9931285992:WT{1}- .0176140071:
GAUSS{2}- -.9639719273:WT{2}- .0406014298:
GAUSS{3}- -.9122344282:WT{3}- .0626720483:
GAUSS{4}- -.8391169718:WT{4}- .0832767415;
GAUSS{5}- -.7463319065:WT{5}- .1019301198:
GAUSS{6}- -.6360536807:WT{6}- .1181945320:
GAUSS{7}- -.5108670019:WT{7}- .1316886385:
GAUSS{8}- -.3737060887:WT{8}- .1420961093:
GAUSS{9}- -.2277858511:WT{9}- .1491729865:
GAUSS{10}--.07652652l1:WT{10}-.1527533871:
DO 1-11 TO 20:GAUSS{I}--GAUSS{21-I}:WT{I}-WT{21-I};ENO:
INOle-l;
P-(2*Nl+2*N2+Nll+N12+N21+N22-3)/2;
DEN 0-0:
STARTl - -.3 :
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FINISHI = .4;
DEll - .002;
DO T • STARTI TO FINISHI BY DELI;

DEN-O.O;
DO IGAUSS-l TO 20:

R-GAUSS{IGAUSS}:
RI2-1-R*R:
LINK CGEN;
LINK MEANS;
LINK COVS;
LINK MEVAI;
LINK CON:
LINK FACI;
DENTR--O.5*(NI+N2)*LOG(R12)-O.5*LOG(CI)-0.5*LOG(C2)-P*LOG(FACT)

-0.5*LOG(VAR):
DEN-OEN+WT{IGAUSS}*EXP(DENTR);

END:DEN O-DEN O+DEN*DEL:
OUTPUT T: - -
END:
DEN 0-0;
START2 • -.3 :
FINISH2 - .4:
DEL2 - .002:
DO L - START2 TO FINISH2 BY DEL2;

DEN-O.O:
DO IGAUSS-l TO 20:

R-GAUSS{IGAUSS}:
R12-l-R*R:
LINK CGEN:
LINK MEANS;
LINK COVS:
LINK MEVA2:
LINK CON:
LINK FAC2:
DENTR--O.5*(Nl+N2)*LOG(R12)-0.5*LOG(CI)-0.5*lOG(C2)-P*lOG(FACT)

-0.5*LOG(VAR) :
DEN-DEN+WT{IGAUSS}*EXP(DENTR);

END:DEN a-DEN O+DEN*oEL:
OUTPUT 1: - -
END:
DEN 0-0:
START3 • -.3 :
FINISH3 - .4:
DEL3 - .002:
DO T - START3 TO FINISH3 BV DEL3:

DEN-O.O:
DO lGAUSS-1 TO 20:

R-GAUSS{IGAUSS}:
R12-1-R*R:
LINK CGEN:
LINK MEANS:
LINK COVS:
LINK MEVA3:
LINK CON:
LINK FACI:
DENTR--0.5*(NI+N2)*LOG(RI2)-0.5*LOG(CI)-0.5*LOG(C2)-P*lOG(FACT)

-0.5*LOG(VAR):
DEN-DEN+WT{IGAUSS}*EXP(oENTR):

END:DEN O-OEN O+OEN*DEL:
OUTPUT TL;- -
END:
STOP:
CGEN : CI- Nl*Nl + Nl*Nll + Nl*N12 + Hll*NI2*R12:

C2- N2*N2 + N2*N2l + N2*N22 + N2l*N22*R12: RETURN:
MEANS: MUll-VII + ( Nll*(Nl+N12*R12)*(Xl-Yll) + Hl*NI2*R*(Zl-V12) ) ICl:

MU12-V12 + ( Nl*Nll*R*{Xl-Yll) + N12*(Nl+Nll*R12)*(Zl-YI2) ) /CI:
HU21-V21 + ( N21*{N2+N22*RI2)*(X2-Y2l) + N2*N22*R*(Z2-Y22) ) /C2:
MU22-V22 + ( N2*N21*R*(X2-Y21) + N22*(N2+N2l*R12)*(Z2-Y22) ) IC2:
TH-O.50*(MUll-MU2l): LH-0.50*(MUll+MU12-MU2l-MU22);
RETURN;

COVS : All - NI+NI2*R12: Al2 - Nl*R : A22 - Nl+Nll*R12:
Bll - N2+N22*R12: B12 - N2*R : B22 • N2+N2l*R12;
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SIGIl = All/Cl + 8ll/C2 ;
SIG12 = (All+AI2)/CI + (8ll+812)/C2 ;
SIG22 = (All+2*A12+A22)/Cl + (811+2*BI2+822)/C2;
RETURN:

MEVA1: MEAN-TH :
VAR -SIGll/4:
RETURN:

MEVA2: MEAN-lH :
VAR -SIG22/4:
RETURN:

MEVA3: MEAN-TH-SIG12*LH/SIG22;
VAR -(SIGll-SIG12*SIGI2/SIG22)/4:
RETURN;

FACI : FACT-(CON+(Slll+S2ll+Sl22+S222-2*R*(Sl12+S2l2»/R12
+ (T-MEAN)**2/VAR)/2:

RETURN:
FAC2 : FACT-(CON+(Slll+S2ll+Sl22+S222-2*R*(Sl12+S2l2»/R12

+ (L-MEAN)**2/VAR)/2:
RETURN;

CON : CON- Sll + S12 + S2l + S22 +
Nl*(Nll*(Nl+NI2)*(Yll-Xl)**2-2*Nll*N12*R*(Yll-Xl)*(Y12-Zl)

+ N12*(Nl+Nll)*(Y12-Z1)**2)/(Nl**2+Nl*Nll+Nl*N12+Nl1*N12*R12) +
N2*(N2l*(N2+N22)*(Y21-X2)**2-2*N21*N22*R*(Y21-X2)*(Y22-Z2)

+ N22*(N2+N2l)*(Y22-Z2)**2)/(N2**2+N2*N21+N2*N22+N21*N22*R12) :
RETURN:

PROC UNIVARIATE NOPRINT DATA-T:8Y INDIC:VAR DEN O:OUTPUT OUT-MAX MAX-MAX DEN:
DATA T:MERGE T MAX: BY INDIC:DEN-DEN/MAX_DEN:KEEP DEN T: _

PROC UNIVARIATE NOPRINT DATA-l;BY INDIC;VAR DEN O;OUTPUT OUT-MAX MAX-MAX DEN:
DATA L:MERGE l MAX: BY INDIC:DEN-DEN/MAX_DEN;KEtP DEN T; _

PROC UNIVARIATE NOPRINT DATA-Tl;BY INDIC;VAR DEN O;OUTPUT OUT-MAX MAX-MAX DEN:
DATA TL:MERGE TL MAX: BY INDIC:DEN-DEN/MAX_DEN:KtEP DEN T: _

A6.3 A SAS Program for Determining the Bayes Factor in a 1\vo Period Crossover with Missing Data.

A6.3.1 Introduction.

This program is designed to determine the Bayes factor against carryover in a two-treatment, two-period
crossover design withmissing data. The program carries out the necessary numerical integrations mentioned
in §9.

A6.3.2 Program Description.

This program has been written utilising the SAS data step language, without resorting to the use of the SAS
library of procedures. The input tothis program is identical to that inA6.2.2.

The important difference between these two programsis that the current one has the following additional
data set.

DATA SET BF BDl - Bayes factor.

A6.3.3 Program Listing •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
INPUT DATA TAKEN FROM GELFLAND ET AL(l990)
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• ,
DATA INP:
NI- 3 : N2- 4 ,
Nil- 1 : N12- 1 : N21- 0 : N22- 1
Y11- 1.480877 : Y12- 1.326631 : Y21- 1.39212 : Y22- 1.56918
Xl- 1.31372 : Zl- 1.40364 : X2- 0 : Z2- 1.58104
Sill- 0.01324816 : Sll2- 0.04448745 : S122- 0.1602117 :
5211- 0.0973115 : 5212- 0.0573021 ; 5222- 0.0629484 :
511- 0 : S12- 0 : S21- 0 : S22- 0
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DATA T (KEEP-T INDIC DEN DEN 0)
DATA TL(KEEP.T INDIC DEN DEN-O);
SET INP; -
ARRAY GAUSS{20} GAUSSl-GAUSS20;ARRAY WT{20} WTI-WT20;
GAUSS{l}a -.9931285992;WT{I}- .0176140071;
GAUSS{2}- -.9639719273;WT{2}- .0406014298;
GAUSS{3}- -.9122344282;WT{3}- .0626720483;
GAUSS{4}- -.8391169718;WT{4}- .0832767415;
GAUSS{5}- -.7463319065;WT{5}- .1019301198;
GAUSS{6}- -.6360536807;WT{6}- .1181945320;
GAUSS{7}- -.5108670019:WT{7}- .1316886385;
GAUSS{8}- -.3737060887:WT{8}- .1420961093;
GAUSS{9}- -.22778585ll;WT{9}- .1491729865;
GAUSS{10}--.076526521l;WT{10}-.152753387l;
DO I-II TO 20;GAUSS{I}--GAUSS{2l-I};WT{I}-WT{2l-I};END;
INDIC-I;
P-(2*Nl+2*N2+Nll+N12+N21+N22-3)/2 +2;
DEN_O-O;
STARTl - -.3 ;
FINISHl - .4;
DEll - .002;
DO T - STARTl TO FINISHl BY DELI;

DEN-O.O;
DO IGAUSS-l TO 20;

R-GAUSS{ IGAUSS};
RI2-I-R*R;
LINK CGEN;
LINK MEANS;
LINK COVS;
LINK MEVAl;
LINK CON;
LINK FACl;
DENTR--0.5*(Nl+N2)*LOG(RI2)-.5*LOG(Cl)-.5*LOG(C2)-P*LOG(FACT)

-0.5*LOG(VAR}-LOG(R12);
DEN-DEN+WT{IGAUSS}*EXP(DENTR);

END;DEN O-DEN O+DEN*DELl;
OUTPUT T; - -
END:
P-(2*Nl+2*N2+Nll+N12+N2l+N22-3)/2 +2
DEN 0-0'
START3 '- -.3 ;
FINISH3· .4;
DEL3 - .002;
DO T - START3 TO FINISH3 BY DEL3;

DEN-O.O;
DO IGAUSS-l TO 20;

R-GAUSS{IGAUSS}:
R12-l-R*R:
LINK CGEN:
LINK MEANS;
LINK COVS;
LINK MEVA2;
LINK CON;
LINK FAC2;
DENTR--0.5*(Nl+N2)*LOG(R12)-.5*LOG(Cl)-.5*LOG(C2)-P*LOG(FACT)

-0.5*LOG(VAR)-O.5*LOG(I+R) - LOG(I-R) -.5*LOG(SIG22/4):
DEN-DEN+WT{IGAUSS}*EXP(DENTR):

END;DEN O-DEN O+DEN*DEL3;
OUTPUT TL;- -
END;
STOP;
CGEN : Cl- Nl*Nl + Nl*Nll + Nl*N12 + Nll*N12*R12;

C2- N2*N2 + N2*N2l + N2*N22 + N2l*N22*R12; RETURN:
MEANS: MUll-Yll + ( Nll*(Nl+NI2*R12)*(Xl-Yll) + Nl*N12*R*(Zl-Y12) ) ICl:

MU12-Y12 + ( Nl*Nll*R*(Xl-Yll) + N12*(Nl+Nll*R12)*(Zl-Y12) ) ICl;
MU21-Y21 + ( N21*(N2+N22*RI2)*(X2-Y21) + N2*N22*R*(Z2-Y22) ) tC2;
MU22-Y22 + ( N2*N2l*R*(X2-Y2l) + N22*(N2+N2l*R12)*(Z2-Y22) ) tC2;
TH-0.50*(MUII-MU21); LH-O.50*(MUll+MU12-MU21-MU22);
RETURN;

COVS : All - Nl+N12*R12; A12 - Nl*R ; A22 - Nl+Nll*R12;
Bll - N2+N22*RI2; B12 - N2*R ; B22 - N2+N2l*R12;
SIGIl - All/Cl + Bll/C2 ;
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SIGI2 = {AII+AI2)/CI + (BII+BI2)/C2 ;
SIG22 = {AIl+2*AI2+A22)/CI + {Bll+2*B12+B22)/C2;
RETURN;

MEVAI: MEAN-TH ;
VAR -SIGll/4:
RETURN;

MEVA2: MEAN-TH-SIGl2*LH/SIG22;
VAR -{SIGll-SIG12*SIG12/SIG22)/4;
RETURN;

FACI : FACT-{CON+{SII1+S2ll+Sl22+S222-2*R*(Sl12+S212»/R12
+ (T-MEAN)**2/VAR)/2

RETURN:
FAC2 : FACT-(CON+(SIII+S211+S122+S222-2*R*(SI12+S212)/RI2

+ (T-MEAN)**2/VAR)/2 + 2*LH*LH/SIG22 :
RETURN;

CON : CON- Sll + S12 + S21 + S22 +
Nl*(Nll*(Nl+NI2)*{Yll-Xl)**2-2*Nl1*N12*R*(YII-Xl)*(Y12-ll)

+ NI2*(Nl+Nll)*{YI2-Zl)**2)/(Nl**2+Nl*Nll+Nl*N12+Nll*N12*RI2) +
N2*{N21*(N2+N22)*{Y2l-X2)**2-2*N2l*N22*R*{Y2l-X2)*{Y22 -l2)

+ N22*(N2+N2l)*(Y22-l2)**2)/(N2**2+N2*N2l+N2*N22+N21*N22*R12) :
RETURN;

PROC UNIVARIATE NOPRINT DATA-T; BY INDIC;VAR DEN O:OUTPUT OUT-MAXI MAX-MAX DENl;
DATA T: MERGE T MAXI; BY INDIC;DEN-DEN/MAX DENl; _
PROC UNIVARIATE NOPRINT DATA-TL;BY INDIC;VAR DEN O;OUTPUT OUT-MAX2 MAX-MAX DEN2:
DATA TL:MERGE TL MAX2: BY INDIC:DEN-DEN/MAX DEN2; _
DATA BF:MERGE MAXI MAX2:BOl-SQRT{3/4)*MAX_DEN2/MAX_DENl:KEEP BOl:
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A7 SAS MACROS FOR CALCULATING THE ZEROS AND WEIGHTS OF ORTHOGONAL
POLYNOMIALS.

A7.1 Introduction.

The SAS macrosin this Appendix were developed to calculate the zeros and associated weights of the

orthogonal polynomials definedby the following orthogonality conditions :

Harper Polynomials:

-
J 2 -(tol)

(1 + x ) 4>"..t(xHn,t(x)dx -0 m" n, m + n > 2k + 1.

Polynomials for a Truncated Normal:

-J e-"z9".(x)9n(x)dx

b

Jacobi Polynomials:

I

J ·z/2- I .,/2-1
x (I-x) G",(p,q,x)Gn(p,q,x)dx

o

A7.2 Harper Polynomials

%MACRO HARPER(K,DEGREE);
%LET RAHGE-%EVAL(&DEGREE+l);
DATA HARPER:
ARRAY A{&RANGE} Al-A&RANGE;
ARRAY XT{&DEGREE} XTl-XT&DEGREE: ARRAY XW{&DEGREE} XWI-XW&DEGREE:
ARRAY ROWl (W) RlWl-RlW&RANGE: ARRAY ROW2 (W) R2WI-R2W&RANGE:
ARRAY ROW3 (W) R3Wl-R3W&RANGE; ARRAY ROW4 (W) R4WI-R4W&RANGE:
ARRAY ROW5 (W) R5Wl-R5W&RANGE; ARRAY ROW6 (W) R6Wl-R6W&RANGE:
ARRAY ROW7 (W) R7Wl-R7W&RANGE; ARRAY ROW8 (W) R8Wl-R8W&RANGE:
ARRAY ROW9 (W) R9WI-R9W&RANGE: ARRAY ROWIO (W) RIOWI-RIOW&RANGE:
ARRAY ROWll (W) RllWl-RllW&RANGE: ARRAY ROW12 (W) R12WI-R12W&RANGE:
ARRAY ROW13 (W) Rl3Wl-R13W&RANGE; ARRAY ROWl4 (W) RI4WI-RI4W&RANGE;
ARRAY ROWl5 (W) R15WI-R15W&RANGE: ARRAY ROWl6 (W) R16WI-R16W&RANGE:
ARRAY ROWl7 (W) R17WI-RI7W&RANGE; ARRAY ROWl8 (W) RIBWI-RI8W&RANGE;
ARRAY ROW19 (W) R19WI-RI9W&RANGE; ARRAY ROW20 (W) R20WI-R20W&RANGE:
ARRAY 8 (Z) ROWl-ROW&RANGE:
N-&DEGREE;
K-&K:
KEEP K N XTI-XT&DEGREE XWl-XW&DEGREE;

DO L-l TO N ; XT{L}-O; END:
DO IX-l TO 2:

IF IX EQ 1 THEN N-N-I: ELSE N-N+l:
Z-l: W-l: 8-1:
W-2: 8-0;
DK-K-N+l.5: CI-LGAMMA(DK);
Z-N:
DO W·l TO (N+l):

A{W}-O: 8-0:
END:
NI-FLOOR(1+N/2); C--l:
00 I-I TO NI:

C--C: M-I-I: IN-N-2*M; W-N+I-IN;
IF M EQ 0 THEN CO-I:

ELSE CO-C*EXP(LGAHMA(N+l)-LGAMHA(M+l)-LGAMMA(IN+l)+Cl
-LGAHHA(DK+M)-(2*M)*LOG(2»:

A{W}·CO;
8-CO;

END:
IF IX EQ 1 THEN GOTO L50;
LINK ZPOLR:

APPENDICES. A·91



F-2*(K-N+l)*LOG(2)+LGAMMA(N+l)+2*Cl+2*LOG(2*DK):
F-F-( 2*LOG(N)+LGAMMA(2*K-N+2)+2*LOG(2*K-N+2»:
N l-N:
ocr J-I TO N:

TI-XT{J}: T I~TI:
LINK POLY: -
P-0.5:Q-K+0.5:
BETL-LGAMMA(P)+LGAMMA(Q)-LGAMMA(P+Q):
XW{J}-EXP(F-2*LOG(ABS(C»-BETL)*(I+TI*TI):

END:
L50: END:

OUTPUT HARPER;
POLY:C-O:

DO W-I TO N 1:
NL-N 1-11:
ZaN I-I:
IF NL EQ 0 THEN C-C+B:

ELSE C-C+B*T_I**NL:
END:
RETURN:

ZPOLR:IF N-3 THEN DO;
XT{1}-SQRT(3/(2*K-3»: XT{2}zO;XT{3}=-XT{I}; RETURN;

END:
ELSE DO;
NI-FLOOR(I+N/2);
X FINISH=SQRT(-A{3}); X START=SQRT(-A{2*NI-l}/A{2*NI-3}):
DEL-(X FINISH-X START)/500; Sl=SIGN(A{W});
N l-N+I: I L-FLUOR«N+.l)/2); Xl·O; Ula-lO;
DO TI-X START TO X FINISH BY DEL;
X2-TI; T I-TI; -
LINK POLY;
S2-SIGN(C); U2-C;
IF SI NE S2 THEN DO:
DEL 1-(X2-Xl)/100;Xl l-Xl:Ul l-Ul;Sl l-Sl;IT-O:
DO fI I-Xl TO X2 BY DEL I; - -

X2-1-TI I:T I-TIl: -
LINK POLY; - -
S2 l-SIGN(C);U2 laC:
IF-SI 1 NE S2 I-THEN DO:
SO I-~l l:UO I-UI l;XO I-Xl 1:51 l-S2 l;Ul l-U2 l;Xl l-X2 1;

LC: XN-l-(XD l+x1 1)/2; - - - - - - - -
IT=IT+l;TF IT-EQ 100 THEN STOP:
T I-XN l;LINK POLY;UN l-C;SN I-SIGN(C);
It ABSt(XO l-XN 1)/XO-l) LT 1E-14 AND

ABS«Xl-l-XN-l)/Xl-l) LT lE-14 THEN GOTO LD;
IF SN_l EQ-SO_I-THEN crO;SO_l-SN_l;UO_l-UN_l:XO_l-XN_l;GOTO LC;

END:
ELSE 00:51 l-SN I:UI I-UN I:XI I-XN 1:GOTO LC;
END: - - - - - -

LO: XT{I L}--XN I:XT{N+1-1 L}-XN 1:1 L-I L-1:
IF I-L-O THEN GOTO LF:ELSE GOTO-LE;END:

END: -
END:

LE: Sl-S2;Ul-U2;Xl-X2;
END;

LF: RETURN:
END;

RUN;
%MEND;

A7.3 Polynomials for a Normal Kernel Over a Truncated Range.

%MACRO TRUNC(LIMIT,DEGREE);
%LET RANGE-%EVAL(&DEGREE+l):
DATA TRUNCATE:
ARRAY XT{&DEGREE} XTl-XT&DEGREE; ARRAY XW{&DEGREE} XWI-XW&DEGREE:
ARRAY GAM{&DEGREE} GAHl-GAM&DEGREE; ARRAY BET{&DEGREE} BETI-BET&DEGREE;
ARRAY ALP {&DEGREE} AlPl-ALP&DEGREE:
ARRAY ROWI (W) RlWl-RlW&RANGE; ARRAY ROW2
ARRAY ROW3 (W) R3Wl-R3W&RANGE; ARRAY ROW4
ARRAY ROW5 (W) R5Wl-R5W&RANGE; ARRAY ROW6
ARRAY ROW7 (W) R7Wl-R7W&RANGE; ARRAY ROW8

(W) R2Wl-R2W&RANGE:
(W) R4Wl-R4W&RANGE:
(W) R6Wl-R6W&RANGE;
(W) R8W1-R8W&RANGE;
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ARRAY ROW9 (W) R9WI-R9W&RANGE; ARRAY ROWIO (W) RIOWI-RIOW&RANGE;
ARRAY ROWll (W) RIIWI-RlIW&RANGE; ARRAY ROW12 (W) R12WI-RI2W&RANGE;
ARRAY ROW13 (W) RI3WI-R13W&RANGE; ARRAY ROWl4(W) R14WI-RI4W&RANGE;
ARRAY ROWIS (W) RlSWl-RlSW&RANGE; ARRAY ROW16(W) R16Wl-R16W&RANGE;
ARRAY ROW17 (W) RI7Wl-R17W&RANGE; ARRAY ROWl8(W) RI8WI-RI8W&RANGE;
ARRAY ROWl9 (W) RI9WI-RI9W&RANGE; ARRAY ROW20(W) R20WI-R20W&RANGE;
ARRAY B (Z) ROWI-ROW&RANGE;
NO-&OEGREE;
BO-&L1MIT;
KEEP BO NO XTl-XT&OEGREE XWI-XW&DEGREE;
BO-l;
PI-2*ARCOS(0);
Z-l; W-l: B-1;
Z-2; W-l: B-1:
ARG-BO; LINK ERF:
W-2: B~-(l-EXP(-BO*BO»/(SQRT(PI)*ERFOUT);
GAM{I}-SQRT(PI)*ERFOUT/2;
00 N-2 TO NO:

K-N-l:
LINK PARNEXT:
00 L-I TO N ; XT{L}-O: END;
Z-N+l:
00 W-l TO (N+l):

B-O;
END;
00 L-O TO N:

IF L-O THEN 00;
C-O; ZaN : WaN ; C-C+ALP{K+I}*B:

Z-N-l; W-N-l: C-C+BET{K+I}*B:
Z-N+l: W-N+l; B-C;
END;

ELSE IF L-N THEN 00:
Z-N+l: W-I : B-1;
END:

ELSE IF L-(N-l) THEN DO;
C-O; ZaN : W-2 ; C=C+B;

W-l ; C-C+ALP{K+l}*B;
Z-N+l: W-2 : B-C;
END;

ELSE DO:
C-O: Z-N: W-Z-L+I: C-C+B;

W-Z-L ; C-C+ALP{K+I}*B:
Z-N-I; W-Z-L ; C-C+BET{K+I}*B:
Z-N+l; W-Z-L ; B-C:

END;
END;

END:
LINK ZPOLR;
DO I-I TO NO;

T I-XT{I};
POLY N-NO-I: LINK POLY:
POLY-N-NO ; LINK POLY DER;
XW{I}-GAM{NO}/(C*D); -

END:
OUTPUT TRUNCATE:
ERF :ERFOUT-2*PROBNORM(SQRT(2)*ARG)-1; RETURN:
PARNEXT: POLY N-K-l: T I-BO ; LINK POLY; C K ll-C;

POLY-N-K-l: T-I-O : LINK POLY; C-K-12-C;
POLY-N-K ; T-I-BO ; LINK POLY; C-K-I -C;
POLY-N-K ; T-I-O : LINK POLY; C-K-2 -C;
GAM{K+l}-K*GAH{K}/2-(EXP(-BO*BO)*C K l*C K ll-C K 2*C K_12)/2;
ALP{K+l}-(EXP(-BO*BO)*C K I*C K l-C K 2*C K 2)/{2*GAM{K+l});
BET{K+l}--GAM{K+l}/GAM{K}; - - - - --
RETURN;

POLY:C-O; Z-POLY N+l;
DO W-l TO zT

NL-Z-W;
IF NL EQ 0 THEN C-C+B:

ELSE DO:
PROD-I;
00 1NL-I TO NL:

PROD-PROD*T _ I;
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END;
C-C+B*PROD;

END;
END;
RETURN;

POLY DER:D-O; Z-POLY N+l;
- DO W-l TO Z:

NL-Z-W;
IF NL EQ 0 THEN GOTO LOOPEND;
IF NL EQ 1 THEN D-D+B;
IF NL NE 1 THEN DO;

PROD-I;
DO 1NL-I TO (NL-l);

PROD-PROD*T I;
END; -
D-D+B*NL*PROD;

END;
LOOPEND: END:

RETURN:
ZPOLR:POLY N-NO:

Z-NO+l; W-2:
X FINISH--B:
W;Z· 8 0-8' W-Z-l; 8 1-8:
X START--B'O/8 I; -
DEL-(X FINTsH-X START)/SOO; SI-SIGN(B 0);
I L-l;-XI-0; Ul;-10; -
DO TI-X START TO X FINISH BY DEL;

X2-TT; T I-TI; -
LINK POLY:
S2-SIGN(C); U2-C;
IF SI NE S2 THEN DO;
DEL I-(X2-Xl)/IOO; Xl I-Xl; Ul 1-U1; SI I-SI: IT-O;
DO TI I-Xl TO X2 BY DEL 1; - -

X2-1-TI I; T I-TI 1:-
LINK POLY; - -
S2 I-SIGN(e): U2 l-e:
IF-SI I NE S2 1 THEN DO;
SO 1-~1 I; UO-I-Ul I; XO I-XII; SI I-S2 I; Ul l-U2 I; Xl l-X2 I;

Le: XN-l-(XO I+XI-I)/2: - - - - - - - -
IT;IT+l;-IF IT EQ 100 THEN STOP;
T I-XN 1: LINK POLY: UN I-e; SN I-SIGN(C):
It ABST(xO l-XN 1)/XO II LT lE-12 AND
ABS«XI l-XN 1)7Xl I)-LT IE-12 THEN GOTO LD;
IF SN_I-EQ 5o_1 TH£N 00; SO_I-SN_I: UO_I-UN_I: XO_1-XN_1: GOTO Le:

END:
ELSE DO: 51 l-SN 1: U1 I-UN I: Xl 1-XN I: GOTO Le:
END: - - - - - -

LD: XT{I L}-XN 1: I L-I L+l:
IF I-L-(NO+I) THEN GoTO LF: ELSE GOTO LE:END;

END: -
END;

LE: SI-52: UI-U2: XI-X2:
END;

LF: RETURN:
RUN:
%MEND;

A7.4 Jacobi Polynomials

%MACRO JACOBI(Vl,V2,DEGREE);
%LET RAHGE-%EVAL(&DEGREE+l);
DATA JACOBI:
ARRAY A{&RANGE} AI-A&RANGE:
ARRAY XT{&DEGREE} XTl-XT&DEGREE; ARRAY XW{&DEGREE} XWI-XW&DEGREE:
ARRAY ROWI (W) RIWI-RIW&RANGE; ARRAY ROW2 (W) R2WI-R2W&RANGE;
ARRAY ROW3 (W) R3WI-R3W&RANGE: ARRAY ROW4 (W) R4W1-R4W&RANGE:
ARRAY ROWS (W) RSWI-R5W&RANGE; ARRAY ROW6 (W) R6WI-R6W&RANGE:
ARRAY ROW7 (W) R7WI-R7W&RANGE: ARRAY ROWB (W) RBWI-R8W&RANGE:
ARRAY ROW9 (W) R9WI-R9W&RANGE; ARRAY ROWIO (W) RIOWI-RIOWARANGE:
ARRAY ROWll (W) RIIWI-RlIW&RANGE; ARRAY ROW12 (W) Rl2WI-RI2W&RANGE;
ARRAY ROWI3 (W) RI3WI-RI3W&RANGE; ARRAY ROWI4 (W) R14W1-RI4W&RANGE;
ARRAY ROWlS (W) Rl5WI-Rl5W&RANGE; ARRAY ROW16 (W) RI6WI-RI6W&RAHGE;
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ARRAY ROWl7 (W) R17Wl-R17W&RANGE; ARRAY ROWI8 (W) R18WI-RI8W&RANGE;
ARRAY ROWI9 (W) R19Wl-R19W&RANGE; ARRAY ROW20(W) R20WI-R20W&RANGE;
ARRAY B (Z) ROWl-ROW&RANGE;
N-&DEGREE;
Vl-&Vl; V2-&V2;
Q-V2/2; P-(Vl+V2)/2 -1;
KEEP VI V2 N XTl-XT&DEGREE XWl-XW&DEGREE;

DO L~l TO N ; XT{L}-O; END;
DO IX~l TO 2;

IF IX EQ 1 THEN N-N-I; ELSE N~N+l;
Z-I; W-l; B-1;
W-2; B-O:
Cl·LGAMMA(Q+N)-LGAMMA(P+2*N);
ZaN;
DO W-l TO (N+l):

A{W}·O; B-O;
END:
NI-N; C--l:
DO I-I TO (N+l);

C--C: M-I-I: IN-N-H: W-N+l-IN:
IF H EQ 0 THEN CO-I;

ELSE CO-C*EXP(LGAMMA(N+l)-lGAMMA(H+l)-LGAMMA(IN+l)+Cl
+LGAHMA(P+2*N-H)-LGAHMA(Q+N-H»;

A{W}·CO:
B-CO:

END;
IF IX EQ 1 THEN GOTO L50;
LINK ZPOLR;
F-LGAMMA(N)+LGAMMA(Q+N-l)+LGAMMA(P+N-l)+LGAHMA(P-Q+N)+2*LOG(P+2*N-1);
F-F-2*lGAHMA(P+2*N-2)-lOG(N)-LOG(Q+N-l)-lOG(P+Q+N)-lOG(P+N-l);
N l-N;
D~ J-l TO N;

TI-XT{J}: T I-TI;
LINK POLY; -
BETPQ-lGAHMA(P)+LGAMHA(Q)-LGAMMA(P+Q);
XW{J}.EXP(F-2*LOG(ABS(C» )*TI*(l-TI):

END:
L50: END;

OUTPUT JACOBI;
POLY:C-O;

DO W-1 TO N I:
NL-N_l-W:
ZaN 1-1;
IF NL EQ 0 THEN C-C+B;

ELSE C-C+B*T_I**NL;
END;
RETURN:

ZPOLR:DEL-l/IOOO: Sl-SIGN(A{W});
N l-N+1; I L-l; Xl-O.OOOOOl; Ul- 10;
D~ TI-Xl To (I-DEL) BY DEL;

X2-n: T I-n:
LINK POLY:
S2-SIGN(C): U2-C:
IF SI NE S2 THEN 00;
DEL 1.(X2-Xl)/100;Xl l-Xl;Ul l-Ul:Sl l-Sl;IT-O:

-DO TI I-Xl TO X2-BY DEL I; -
X2-l-TI liT I-TIl; -
LINK PO[Y; - -
52 1-SIGN(C):U2 laC;
IF-SI 1 NE 52 I-THEN 00:
SO 1-~1 l:UO I-Ul l;XO I-Xl 1;51 1-S2 l:Ul l-U2 l:Xl l-X2 1;

LC: XN-1-(Xn l+xI l)/Z; - - - - - - - -
IT;IT+l;IF IT-EQ 100 THEN STOP;
T I-XN I;LINK POLY;UN l-C;SN I-SIGN(C);
IF ABST(XO 1-XN 1)/XO-1) LT IE-12 AND

ABS«Xl-1-XN-1)/X1-1) LT 1E-12 THEN GOTO LD:
IF SN 1 EQ-SO I-THEN DO;SO l-SN l;UO I-UN l;XO 1-XN l:GOTO LC;

- - END; - - - - - -
ELSE 00;51 l-SN l;Ul I-UN l:Xl 1-XN l:GOTO LC;
END; - - - - - -

LO: XT{I L}-XN 1; I L-I L+l;
IF I:L-N_l-THEN-GOT~ LF;ELSE GOTO LE;END;
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LE:

LF:
RUN;
%MENo:

END;
END;

Sl-S2;UI-U2;XI-X2;
END;
RETURN;
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