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ABSTRACT.

This thesis is concerned primarily with the practical implementation of Bayesian methodology within the
context of the pharmaceutical industry. The implementation includes the development, where appropriate,
of analytic approximations to the posterior distributions of interest and graphical methods for mapping prior
assumptions to posterior inference. Two critical areas within pharmaceutical research, critical in the sense of
the controversy which they have aroused, have been investigated.

First, Bayesian methods for the analysis of two-treatment crossover designs which fell in to disfavour in the
late 1970’s and early 1980°s because of the US Food and Drug Administration’s published view that the
two-treatment two-period design was not the design of first choice if unequivocal evidence of a treatment
effect was required were developed. Each type of design considered and for which methods are developed
are illustrated with examples from clinical trials which have already been reported in the medical literature.

Second, a Bayesian method is developed whose purpose is to classify test compounds into one of several
toxicity classes on the basis of an LD5( estimate. The method is generalised to deal with a non-standard LD
problem related to the prediction of results from a future LD5q experiment. Both of these applications arose
out of a practical consultancy session within the context of a statistics group in the chemical/pharmaceutical
industry.

As part of the methods required for carrying out these analyses the zeros and weights associated with some
non-standard orthogonal polynomial are developed as a result of which a new asymptotic expansion of the
Behrens-Fisher density is developed. Further applications of the polynomials orthogonal to t-kernels are
developed including problems associated with prediction in clinical trials.

AFORTRAN program which has been implemented at a laboratory level within the pharmaceutical toxicology
department at CIBA-GEIGY in Switzerland is provided. SAS programs for a variety of the analyses developed
for the two-treatment crossover designs are provided as are SAS programs for determining the zeros and
weights of a number of different classes of orthogonal polynomials.
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1 INTRODUCTION.

There have been at least two major hindrances to the use of Bayesian methods in practice. Firstly, there have
been the philosophical objections to the use of prior distributions and secondly there have been the purely
numerical and practical problems associated with multidimensional integration. As Racine et a/(1986) point
out, much of the philosophical debate has been conducted in an arid, theoretical atmosphere in which the
practical benefits of Bayesian methods have been largely ignored. The last ten years have seen a number of
attempts to bring to the attention of applied statisticians and scientists Bayesian ideas and their implementation
in practical contexts. This has been particularly true in the medical and biological sciences, the reason perhaps
being that,

"Since the biostatisticians evidently refuse to go to Bayes, the Bayesians will have
to come to biostatistics if they wish to demonstrate the value of their viewpoint for
statistical applications in biology and medicine" (Breslow,1989).

It is precisely in this spirit that Spiegelhalter and Freedman(1988) proposed a staged introduction of Bayesian
ideas into clinical trials, Racine et a/(1986) compiled four applications of Bayesian methods in the pharma-
ceutical industry and Grieve(1988) showed how some predictive problems in pharmaceutical research could
be relatively easily tackled in a Bayesian framework. America has also not been without its innovators and as
Breslow(1989) points out important applications of Bayesian ideas to biomedical problems have been reported
by Dempster, Rubin, their students and pharmaceutical industry collaborators.

It is not unduly surprising that so many recent applications of Bayesian methods to biomedical problems have
been developed either wholly, or partially, within the pharmaceutical industry. New drugs are not developed
by serendipity, but arise out of a long, complex, development process at each stage of which information is
gleaned about a new chemical entity and used either to plan the next stage of experimentation or to cease
investigation of this particular chemical entity and to perhaps begin investigation of a different one, discovered
_in an earlier screening phase. Such a development process mirrors closely the cyclic portrait of the scientific
method given by Box(1976,1980,1983) in which knowledge at a particular stage of the cyclic process drives the
experimental design of the next stage leading to increased knowledge which in turn drives subsequent cycles.
Box argues that this view of the scientific method fits precisely into the framework of Bayesian statistics since
today’s posterior is tomorrow’s prior.
In many biomedical applications, and in particular pharmaceutical industry clinical trials, there is considerable
prior knowledge concerning the chemical entity under test to ignore which is undesirable, as Newman(1983)
forcibly argues:

"Each clinical trial should start with fairly strong prior information about efficacy
and safety yet this is ignored as the data are subjected to techniques related to
non-informative priors. The process of approval must in some way balance the
benefits against the risk of serious and rare side-effects. Without consideration of
the prior probabilities and the losses involved the statistics end up as numbers
floating in a whirlwind of prejudice and intuition".
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Such a view is supported by Healy(1983),

".... is it fair to regard the results of a phase III trial in total isolation? The cost of
such a trial will not be small, but it can only be one stage in a long period of
development whose overall cost will usually be very large indeed. Certainly the
company’s prior belief in the efficacy of the new product will be fairly high, and it
will back this up with animal results and those from phases I and II".

These views have not received unanimous support. To illustrate, Spiegelhalter and Freedman (1988) provide
the following quote from Feinstein(1977),

" A statistical consultant who proposes a Bayesian analysis should therefore be
expected to obtain a suitably informed consent from the clinical client whose data
are to be subjected to the experiment."

and even more extreme reactions can be found,

"... I have yet to find a scientist who would be convinced by a posterior distribution
on the methotrexate and colon cancer question if the prior has been supplied by
a pharmaceutical company.” (Le Cam,1985)

Spiegethalter and Freeedman(1988) identify three groups of individuals, who each have their own motivations,
and who interact with each other during the lengthy, complex developmental process which culminates in the
implementation of a new medical treatment, be it chemical or surgical. These groups they term the experi-
menters, the reviewers and the consumers. The aim of the experimenters, amongst whom are individual
pharmaceutical companies, research organisations and clinicians, is to influence the consumers, who are the
clinicians who treat patients. They do this by providing them with information which has, in a sense, been
"sanitised" to ensure objectivity by the reviewers, who are the editors of journals and regulatory authorities
whom Sir David Cox has called the "last holders of absolute power.” A statistician’s job is not completed when
. the last analysis, Bayesian or not, is performed since thought needs to be given to the transmission of information
to these diverse groups of remote clients. v

The problem is to determine what is the appropriate approach to transmission of information to these remote
clients. This issue is by no means new, in fact the term "remote clients” has been taken from Hildreth(1963)
in which he examines the difficuity of transmitting information to vaguely known clients, whose use of the
information may extend long after the statistician’s contribution has been completed. Hildreth considers what
parcels of information can be efficiently transmitted to remote clients and lists a number, among which are
the data, the likelihood and the posterior distributions derived from a series of representative prior dis-
tributions. Spiegelhalter and Freedman(1988) regard this latter parcel as being the ideal solution but it may
be necessary to provide more than one parcel of information. There has been a growing degree of unanimity
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between Bayesian and frequentist statisticians that in journal articles which report the results of clinical trials
the Results section should contain the data, or the likelihood, and that the Discussion is the proper place for
Bayesian approaches , including posterior distributions.

In this thesis we investigate two particular areas of pharmaceutical research which have during the last 10-15
years generated considerable controversy, and research interest. First we consider two treatment crossover
studies and second LDy studies. Since 1977 when the FDA expressed concern about certain aspects of the
analysis of the two-period two-treatment crossover design there has been continuing debate about the
appropriateness of the design in general, and the traditional analysis proposed by Grizzle(1965). The recent
past has also seen considerable controversy concerning the ethics of conducting LD5q studies. In particular
Zbinden and Fluri-Roversi(1981) have expressed doubts as to the value of the information to be extracted
from such studies. Our aim is to investigate the applicability of Bayesian methodology in these two areas, in
particular to derive methods for the transmission of information to remote clients which will allow them to
input their own beliefs and subsequently derive their own posterior distributions. We do not restrict attention
to the simplest type of each of these studies but generalise to more complex two-treatment crossover designs
and also look at prediction in LD5 studies.
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2 TWO TREATMENT CROSSOVER DESIGNS - A REVIEW.
2.1 Introduction.

The central feature of a crossover clinical trial is that each patient receives more than one of the treatments
in the study. In the simplest two treatment, two period design with treatments A and B, patients are randomly
allocated to one of the treatment sequences A-B or B—A. Patients allocated to sequence A-B receive
treatment A during the first treatment period and treatment B during the second, while patients allocated to
sequence B—A receive treatment B followed by treatment A. Such designs, or similar, more complicated
designs with more than two treatments and/or periods, are attractive to clinical investigators due mainly to
an intuitive belief that the comparison of different treatments on the same patients is likely to be more efficient
than comparing treatments on different patients. Such intuition has two elements. First, each patient is his,
or her, own control; this increases the precision of treatment comparisons because they are made within
patients rather between patients. Second, patients can express preferences for one or more of the trial
treatments. The former element is perhaps the more important since it has important ethical and economic
consequences. Ethical, in that the investigator will wish to minimise the number of patients receiving less
efficacious treatments; economic, in that the use of fewer patients will reduce the cost of experimentation.
The basic argument in favour of crossover designs is that to obtain a given treatment-comparison precision,
a within-patient comparison requires fewer patients than does a between-patient comparison; crossover
designs are therefore more ethical and less costly. The second element is potentially important for diseases
in which objective measurement of the disease is difficult or impossible.

These, or similar arguments, in favour of crossover designs would make them the designs of choice in a large
number of clinical trials were it not for three disadvantages. First, crossover designs are clearly not applicable
in diseases in which either the treatments are expected to effect a cure, or in which the natural history of the
disease, or condition, is such that it would vanish within a short period, for example the common cold. Second,
crossover designs with a large number of treatments and/or periods are potentially disadvantageous because
the number of patients dropping out may become large. Finally, if the effect of a treatment is not confined
to the period in which it is applied, or if the effect of a treatment differs from period to period, then estimates
of treatment differences may be biased.

It was this last possibility which lead the Biometric and Epidemiology Methodology Advisory Committee
(BEMAC) of the American Food and Drug Administration (FDA) to conclude with respect to the two-period
crossover design that it "is not the design of choice in clinical trials when unequivocal evidence of treatment
effect is required". Instead they recommended "in most cases, the completely randomized (or randomized
block) design with baseline measurements will be the design of choice because it furnishes unbiased estimates
of treatment effects without appeal to any modelling assumptions save those associated with the randomization
procedure itself.” (FDA,1977, see also O’Neill,1978).

Fuelled by the FDA's publicised concern over the use of the two-period crossover design, the late 1970°s and
early 1980°s witnessed the re-emergence of research interest in crossovers (historically, research interest began
in agriculture; see, for instance, Cochran et al, 1941). This increase in research effort, together with the FDA
view that "estimation of treatment effects from the crossover depends on an assumption that will require
convincing support, from prior information or from the experimental data themsclves..." (FDA,1977 )
motivated my examination of the use of Bayesian methods in the analysis of crossover designs. In this section
the standard analyses of two treatment crossover designs are reviewed. Included are the standard two period
design (Grizzle,1965), two period designs with baseline measurements, and the extra-period designs (Eb-
butt,1984).
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2.2 Grizzle’s Models for the Two-Period Two-Treatment Crossover.

The standard, classical approach, to the analysis of the two-period crossover design for clinical trials was
proposed by Grizzle(1965) - see also Grizzle(1974) and Grieve(1982). Suppose patients have been randomised
to one of the treatment sequences A~B or B~A, where A and B are the treatments, and that a single
observation is made on each patient during each of the two treatment periods, which are separated by a
washout period. Assume that the trial produces n, patients in the first sequence group and n, patients in the
second and let v, denote the response of the jth patient in the ith sequence in the kth period. Under these
assumptions Grizzle(1965) considers the following two statistical models :

Dyp=pR+0,+T +A.+E, +€, (i=1,2;j=1,...,n5k=1,2;1=1,2;1"% 1)

Iy, ,=p+1,+7t,+§, ,+€, (i=1,2:j=1,..,n;:k=1,2;1=1,2)

wherep. 1, , T,, \,-are the overall mean, period, direct treatment and carryover effects (also termed residual
effect or period by treatment interaction) respectively, and &, and €,, are the random patient and error
effects, which are assumed to be independently, normally distributed with zero means and variances oZ and
oZrespectively. For convenience of exposition we reparametrise models I and II by defining,

M, =~T,=H;T,=—T,=T:A;=-A,=A\,
that is we consider a cell mean model with means defined as in Table 2.1.
TABLE 2.1 Cell Means for Model 1.

Sequence Periods
Group 1 2
A-B p+m+T B-R-T+A
B-A p+u-t p-n+t-A

Wealsodefine N =n,+n,,g=N/(n,n;),0?=02+0?,ando% = 02+ 20% . Model Il may be derived from
Model I by settingA = 0. (It should be noted that treatment effect refers to the difference between the effects
of treatments A and B, and that a test for treatment effect is a test of the null hypothesis H4:t = O. These
remarks apply equally to period and carryover effects.) These parametrisations follow Selwyn et a/(1981),
Grieve(1985) and Racine et a/(1986). The cell means model described above is convenient for exposition;
however in Model I there are problems of estimability - see Grizzle(1965) for details.

23 Analysis of Variance (ANOVA) for Model 11.

Under Model II the standard ANOVA is as shown in Table 2.2 (see Grizzle,1965; Grizzle,1974; Grieve,1982).
Corresponding to the sums of squares for periods and treatments the least-squares estimates of the parameters
are,

n= (5’-1.1 “Yi2* Y21~ yz.z)/‘*

and
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'Es(yu_;1.2_92,1*52.2)/4 (2.1

It is clear from Table 2.2 that a valid test for treatment effect under Model II may be made by forming the
ratio of the treatment and error mean squares, which we will denote by F ., and that this will have an
F-distribution with 1 and N-2 degrees of freedom (df) under the null hypothesis of no treatment effect.

TABLE 2.2 ANOVA for Model I1.

Sums of Expected
Source df Squares Mean Squares
Patients N-1 2% 552 -2Ny? ¥
T
Periods 1 (51.1’;l.z*’;z.n";z.z)z/zq 63+8n2/q
Treatments 1 (:;1.1';1.2—92.1+§2.2)2/2q 03+812/q

Q

Error N-2 ggE=) 5 ) y3,-2) ) ¥l :
i i k 1 ]
'Z"igyfg*zz":;:.

2.4 Analysis of Model 1.

The incorporation of A in Model I results in a less simple analysis than under Model I. Under Model I the

expected value of T given above is T~ A /2and it is therefore no longer an unbiased estimate of the direct
treatment effect. On the other hand, an unbiased estimate of A does exist, being given by,

R=(Y1a*Y12-Ya1~Y22)/2 (2.2)
and therefore under this model an unbiased estimate of < is,

T=T+A/2=(y,,-¥21)/2. (2.3)
The significance of the carryover effect may be tested by noting that,

var(R)=qo%/2

and that the expected value of the sum of squares,

ssp= 2(Z 2 Yi Zn&f.)
is(N -2)0?, so that since A and SSP are independent,

. 2(N-2)A?

Fa qSSP

follows an F-distribution with 1 and (N-2) df. It may also be shown that,
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var(t)=qo’/4
and although E(SSE +SSP)=2(N - 2)02 it does not have ax *distribution (see Grizzle,1965). Because
of this Grizzle suggests that the sum of squares,
SS,= Z‘: Z(y‘jl -yl.l)z

be used for testing the significance of t under Model I since its expected value is (N -2)0? and it is
x 2distributed, independently of < so that,

F o= 4(N-2)7?
' qSSs,
follows an F-distribution with 1 and (N-2) df.

Grieve(1987b) also considers the problem of making inferences about ¢ under Model I. He shows that
under this model,

var(t)=qo?/8 , E(TIR)=0.
Further since SSE/62~x%_, and SSP/0%~x2._, it follows that,

[B(N-2)1'"2[T-(T-N/2)] _
(qSSE)”z

tn-2

and

[B(N-2)]"3[A/2-A/2]
(qssp)llz

~

N-2

Thus the problem of testing the significance of treatment effects under Modellis equivalentto a Behrens-Fisher
problem since T may be written as a weighted sum of independent t-statistics with different variances. From
a Bayesian perspective this result was first pointed out by Grieve(1985). Since no universally acceptable
solution to the Behrens-Fisher problem exists, the choice of procedure to be used will depend on one’s belief
in the "correctness” of the competing schools of statistical inference - frequency, fiducial or Bayesian.
Grieve(1987b) compares various approximate solutions to the Behrens-Fisher problem as it relates to the
two-period crossover. For the moment we will consider only Grizzle’s original analysis based on first period
data alone, but will return to Behrens-Fisher aspects later when dealing with a Bayesian approach.

Based on work by Larson and Bancroft(1963), Grizzle(1965) proposes that because the test for carryover is
a preliminary test, in that the main interest focuses on the treatment effect, it should be carried out at a higher
level of significance than usual, namely 10%. If the hypothesis of no carryover is rejected, Model I should be
used to test for a treatment effect, using F , ; if accepted Model II should be used and F . is used to test for
treatment effect. Figure 2.1 summarises Grizzle's approach to the analysis of the two-period crossover design.
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Test the null hypothesis
A= Ousing F,

Is it significant at the

YES 10 % level ? NO
Only data from the first Data from both periods
period are used to test arcusedtotestt =0 -
T = Q - statistic F , statistic F .

FIGURE 2.1 Grizzle’s approach to the analysis of the two-period crossover.
2.5 Hills-Armitage Approach.

Grizzle’s approach above is based on standard linear model theory with slight modifications for Model 1.
Hills and Armitage(1979) provide a slightly different view leading to the same results.

Under Model II consider the differences,
dyi=Yiu~—Yi » dy=Yon=Y2;2
which have expectations,

2n+21t and -2n+2tT

respectively, and common variance o2 Then clearly sinced , ,andd , ,are independent,d, + d, andd, - d,,
have expectations 4t and - 45 with common variance 2qoZ It is therefore possible under Model I to test
for both period and treatment effects using t-statistics which are the square-roots of the corresponding
F-statistics derivable from Table 2.2.

Under Model I consider the sums,
S1i"YautYie ) S Y2tV
with expectations

2n+2T+A and 2n+2t-A

respectively. Therefore s, - s, has expectation 2\ and variance 2go32, so that again a standard t-statistic,
the square root of F ., may be used to test for a carryover effect.
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2.6 Other Assumptions and Approaches.

Grizzle’s and Hills and Armitage’s approaches to the analysis of the two-period crossover are based on the
assumption that the data follow a normal-theory linear model. Clearly this is a strong assumption and needs
to be investigated for each individual case. One possibility would be to consider the use of transformations
- see the discussion and reply in Racine et a/(1986). Alternative assumptions have been considered by many
authors.

Many authors consider two-period crossover designs in which the response variable is binary - Gart(1969),
Zimmermann and Rahlfs(1978), Hills and Armitage(1979), Prescott(1981), Armitage and Hills(1982), Fid-
ler(1984), Farewell(1985), Nagelkerke et ¢/(1986), Kenward and Jones(1987a) and Jones and Kenward(1987).
Layard and Arvesen(1978) consider the analysis of Poisson-distributed data basing their test procedures on
a conditional analysis following work by Gart(1975) and Hamilton and Bissonette(1975). Koch(1972) proposes
a non-parametric alternative to Grizzle’s analysis. In essence Koch’s approach is equivalent to replacing the
t-statistics outlined in section §2.5 by Wilcoxon statistics (see also Taulbee, 1982 and Brunner and Neu-
mann,1987). Gomez-Marin and McHugh(1984) derive randomisation analogues of Grizzle’s tests based on
a finite permutation model (see also McHugh and Gomez-Marin,1987). Zimmermann and Rahlfs(1980)
consider a multivariate normal analysis of the two-period crossover.

One final approach, more an aid to interpretation than an inferential procedure, is a graphical method
proposed by Huitson(1980) and Hews(1980) - see also Barker et a/(1982). The graphical method is as follows:

1) plot the period 2 observation 'y , for each patient against the period 1 observation y ,, with the sequence
groups being separately identified.

2) add the lines y, = y,and y, + y, = cwhere cis a constant equal to the mean total of period 1 and 2.

3) period, treatment and carryover effects will be noticeable by separation of the centroids of the two groups
in different directions.

The types of separation which can occur are shown in Figure 2.2. For example, separation about the line
y, =y, indicates a treatment effect, while separation abouty, + y, = ¢ indicates a carryover effect. Clearly
with real data the separation of the centroids will not be perfect and the convex hulls of each sequence group
may be used as an aid to identifying the group centroids.

2.7 An Example of the Basic Two-Period Two-Treatment Crossover.

The data displayed in Table 2.3 are taken from a study carried out by CIBA-GEIGY to assess the effectiveness
of transdermal nitroglycerin in controlling the symptoms of angina pectoris in patients seen in general practice.
Results from this study are reported by Wheatley(1987).

Angina pectoris is a symptom and not a disease. The most common cause of the symptom is coronary artery
atheroma, which is a thickening of the inner lining of the arteries. The symptom is predominantly a discomfort
located in the chest or adjacent areas, brought on by an inadequate supply of blood to the heart. The use of
nitrates in the treatment of angina is well established, and although the precise mode of action is not known
it is believed that their basic pharmacological action is to relax smooth muscle. Sublingual nitroglycerin has
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TABLE 2.3 Weekly Anginal Attack Rates During 3rd week of Treatment.

Period Period
Sequence Patient 1 2 Sequence Patient 1 2
PL-TN 19 3 10 TN-PL 20 12 16
22 8 6 21 4 11
24 6 4 23 6 5
35 1 0 36 7 14
38 12 6 37 13 25
39 2 40 9 11
42 6 3 41 1 1
59 11 3 43 4 0
64 3 4 56 4 10
73 11 3 57 2 5
76 8 8 60 0 8
78 8 9 61 17 13
80 18 4 65 1 1
81 12 5 67 6 8
84 12 2 75 8 8
85 3 1 i 7 4
115 1 3 79 3 19
122 12 4 82 4 19
124 8 6 83 3 12
126 7 12 86 2 4
128 1 1 87 2 1
140 2 121 4 7
142 3 123 3 1
146 21 10 125 3 3
147 17 7 127 1 0
150 12 5 130 41 36
201 4 5 145 10 24
209 0 1 148 9 18
211 7 0 149 4 13
233 11 0 210 8 1
236 18 7 234 5 7
235 0 9

disadvantage that its effect lasts for only 10 to 20 minutes. Other methods of drug delivery have been considered
and in particular nitroglycerin ointment has been available for a number of years. Such ointments, whilst
effective, have the disadvantage that they need to be covered by a dressing and that application of accurate
dosages is difficult, New delivery systems have recently been developed, in particular scif-adhesive patches
which contain a reservoir of nitroglycerin which diffuses through a semipermeable membrane into the skin
SO as to give a sustained, and constant, release of nitroglycerin over 24 hours.
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The aim of this study was to investigate the use of Transiderm-Nitro (TN) patches in the prophylaxis of angina
in general practice. Patients were randomly allocated to three weeks treatment with placebo (PL) followed
by TN or vice versa. At the end of the first week of treatment, if the angina attack rate had not fallen by more
than 20% compared to a one-week PL run-in period, the dose was increased from the original two patches
to three. After three weeks treatment, the patients crossed to the alternative treatment starting again on two
patches.

The data shown in Table 2.3 are the weekly attack rates during the third week of each treatment period. The
data are presented in graphical form in Figure 2.3 using the method described in §2.6. This figure brings out
two features of the data. First, there is one extreme patient in the TN-PL group (patient 130) who suffered
considerably more attacks in both treatment periods than other patients. Second, the centroids of the two
groups, as represented by the innermost convex hulls, are clearly separated about the line y , = v, suggesting
a difference between treatments. For the moment we will ignore the extremeness of patient 130 and analyse
the data as it stands, returning to the problem of outliers in §9.

TABLE 2.4 Model I ANOVA for Data in Table 2.3.

Sums of Mean
Source df Squares Squares F-Ratios P-Values
Patients 62 4356.968 70.274
Periods 1 1.078 1.078 0.068 0.795
Treatments 1 420411 420411 F.= 26545 < 10-5
Error 61 966.081 15.837
Cell means : ;|_|=8.065 ;|_2=4.226
Y2, = 6344 Y22=9813

Table 2.4 displays the Model I ANOVA for this data together with the ccll means. These cell means imply
the following estimated period and treatment effects :

n=(8.065-4.226+6.344-9.813)/4 = 0.093
T=(8.065-4.226-6.344+9.813)/4 = 1.827

both of which have standard error 0.355. There is therefore strong evidence of a large difference between
treatments, the estimate  suggesting that TN causes a reduction of on average approximately 3-4 attacks per
week compared with PL.

Under Model I the unbiased estimate of the carryover is,
A = (8.065+4.226-6.344-9.813)/2 = -1.933
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which has standard error 1.486. There is therefore little evidence to suggest the existence of a carryover effect,
since the estimate of A is only 30% larger in absolute value than its standard error (the classical p-value is
0.198).

2.8 Baselines in the Two-Period Crossover.

Various models have been suggested for the incorporation of baseline measurements in the two-period
crossover. In this section suggestions by Willan and Pater(1986a), Varma and Chilton(1974), Kenward and
Jones(1987b) and Patel(1983) are reviewed.

Suppose that , as in §2.2, the post-treatment response of the jth patient in the ith sequence in the kth period
is denoted by v, and that correspondingly x,, is the pre-treatment response. Suppose further that v,
follows Model I and that x;, follows Model I excluding the treatment effect, so that the expected cell means
for the x,;’s are as shown in Table 2.5. Willan and Pater(1986a) propose such a model except that they
introduce an additional random effect, which they characterise as a patient by period interaction, whose
purpose is to model larger correlations between observations within the same period than between obser-
vations from different periods.

TABLE 2.5 Pre-Treatment Cell Means for Willan and Pater’s(1986a) Model.

Sequence " Periods

Group %
=

| 1 lI
A-B p+ H-T+ A
B-A TR | H=R-A

%B-(al,l—EI‘Z—EZ.I'*&Z.Z)/‘I"

Define,

whered ;= ¥, = X, having expectation Tand variance goZ/ 4. The null hypothesis of no treatment effect
can be tested by using the statistic,

4(N-2)13
e qSSB

where SSB/(N - 2)is an estimate of 62 Under H,:t =0, F ., has an F-distribution with 1 and N-2 df.

Varma and Chilton(1974) consider an extended form of Willan and Pater’s model including in addition to a
carryover effect, an effect which they term the residual effect. This residual effect appears in cell means for
both pre- and post-treatment measurements in the second period, while the carryover effect appears onlyin
the cell means of the post-treatment measurements. Under this model, inferences about treatment effect can
only be made using data from both periods if the carryover effect is non-significant - in the same way as for
Model I - and is essentially identical to the Willan and Pater analysis above. If the carryover is significant, an
analysis identical to Chassan’s(1970) analysis of a parallel design with baseline measurements is used. Define
d; =y - x, which have means tand -t in groups 1 and 2 respectively and common variance 202 From
the independence of d, and d , it follows that,
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(d.-d;)/2 ~ N(t.q0?)
so that,

(N-2)(d, -d,)*
2q) ) (d,-d.)*
! I

has an F-distribution with 1 and N-2 df under the null hypothesis of no treatment effect.

Both the approach of Willan and Pater(1986a) and that of Varma and Chilton(1974) use a "gains-score" (GS)
method, that is they analyse differences between post- and pre-treatment measurements. In the area of parallel
group designs with baselines much recent research considers whether a GS analysis is preferable to one in
which the pre-treatment measurement is used as a covariate to adjust post-treatment values (see for instance
Brogan and Kutner,1980; Lee,1980; Schafer,1981; Laird,1983). Many of the arguments for preferring the
analysis of covariance (ANCOVA) to a GS analysis are irrelevant to clinical studies, since they have to do
with non-random allocation of subjects to groups - examples are given in Lord(1967) and Lee(1980).
Bock(1975) investigates the use of both analyses from a "randomised perspective” and concludes, based on
the grounds of efficiency, that ANCOVA is the preferred approach. To illustrate the argument consider
again Chassan’s(1970) analysis. The structure of the model is such that y,;, and x;, are bivariately, normally
distributed with covariance matrix,
My
po? o?

where 0% = g%+ o2and p = 02/(02+ 02). From standard properties of bivariate normal distributions the
expected values of y,;, and y;;,, given that x,, takes the walue x, are p+n+t+p(x-p-n) and
B+ =T+ p(x -~ n)respectively, with common variance ¢2(1 - p?) from which it follows that,

E[(¥Y11~Y21)/2]1x])=T

var{(y,,-¥2.)/21x1=qo*(1 -p*)/4
If the relative efficiency (RE) of ANCOVA to that of the GS analysis is measured by the ratio of the respective
variances then, ‘
_qo®(l-p)/2 2
qo?(1-p3)/4 1l+p

Only when p = 1 are the analyses equally efficient, and are in this case identical.

Patel(1983) considers the ANCOVA approach to the analysis of Varma and Chilton’s model, generalising it
by assuming arbitrary covariance matrices in the two sequence groups. He considers a number of different
hypotheses of interest which may be tested using his model, for instance both carryover effect and period by
treatment interaction are testable.
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Both types of analysis are considered by Kenward and Jones(1987b). The cell mean model which they consider
is shown in Table 2.6 where vy, 6 and A are the sequence group, first and second order carryover effects
respectively. As Kenward and Jones point out, the inclusion of v is somewhat artificial since randomisation
should ensure that there is no group effect. Its inclusion is merely to ensure that all other estimators are based
on within-patient contrasts. The analyses which Kenward and Jones(1987b) consider are too numerous to
detail here, but they will be referred to in subsequent sections.

TABLE 2.6 Cell Means for Kenward and Jones’(1987b) Model.

Sequence " Periods

Group Measurement I 1 2
Pre-Treatment H+y+T, H+y+T,+6
Post-Treatment H+y+T,+T H+yY=T, T, ~M,—T+A
= ]
Pre-Treatment H-Y+T, B-y+n,-0
Post-Treatment p=y+m,-T R—Y—T, ~R,~Na+T—XA

That the use of baselines in crossover designs is not without danger is highlighted by Fleiss et a/(1985). These
authors suppose that given that the length of a treatment period is one time unit and that the length of the
washout period between treatment periods is w units, then the total length of time between the ends of the
first and second treatment periods, 1 + w, is sufficiently long to ensure that there is no carryover effect, but
that w itself is insufficiently long to eliminate the effect of the first period treatment on the second period’s
baseline measurements. Explicitly they assume that the y,,,’s have Model II cell means, while the x,;, have
the cell means shown in Table 2.7, where a is a not necessarily linear function of w.

TABLE 2.7 Pre-Treatment Cell Means for Fleiss et al’s(1985) Model

Sequence

Group

Ko
Ho

Under this set-up consider a GS analysis using d,;, = v, = x,;. Clearly the d’s have expected values,
H=Ho+N+T , U=, -N-T-QT

in sequence 1 and,

HoHo+ =T , p—p,-N+T+at

in sequence 2, so that the estimated "carryover effect" has expectation -a t, which is opposite in sign to the
treatment effect ©. Fleiss et al conclude from the above analysis that there are potentially two serious problems.
First, the use of baseline measurements may artificially induce an apparent carryover effect, which will cause
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the analysis of treatment effect to be carried out using period 1 data only, with a consequent loss in efficiency.
Second, it may have consequences for the conduct of future trials in that clinicians may be wrongly dissuaded
from using a crossover design in testing similar drugs in the same condition. They note that ANCOVA does
not obviate the bias induced by using baseline measurements with an insufficiently long washout period.

2.9 An Example of the Two-Period Crossover with Baselines.

The data displayed in Table 2.8 are taken from a study carried out by CIBA-GEIGY to investigate claims
that TN was not effective in the treatment of angina. Results from the study are reported by Nicholls et a
(1986). Patients were randomly allocated to four weeks treatment with TN followed by four weeks treatment
with oral isosorbide dinitrate (ISDN) or vice versa. In the two weeks prior to each treatment period, placebo
patches and tablets were given to obtain baseline measurements. The data shown in Table 2.8 are the weekly
rates of sublingual glyceryl trinitrate (GTN) consumption, the allowed rescue therapy. Other data from this
study will be introduced in a later section.

TABLE 2.8 Weekly GTN Consumption.

== e
1st Period 2nd Period
Sequence Patient Baseline Treated Baseline Treated
TN-ISDN 1 1.00 2.00 2.00 0.25
4 24.50 29.00 - 31.50 27.00
10 2200 25.25 30.00 36.50
12 0.00 0.00 0.00 0.00
14 14.50 19.75 13.00 9.25
15 2.00 425 6.00 275
17 10.00 10.75 14.50 10.75
20 10.50 8.50 6.00 425
22 19.50 15.00 14.50 8.00
24 7.50 4.25 0.00 3.50
ISDN-TN 3 21.00 21.50 22.00 38.00
5 10.50 5.25 3.50 2.50
7 3.50 2.00 1.50 4.50
9 10.00 16.75 9.50 18.25
13 1.50 : 1.50 0.50 0.75
16 6.00 3.25 2.00 2.50
18 1.50 0.00 0.00 0.00
21 3.50 1.00 3.50 8.00
23 9.50 1.00 0.50 1.50
25

The basic disadvantage of the simple two-treatment two-period crossover design is that the estimate of the
carryover effect, or the test of the null hypothesis of no carryover effect, are based on between-subject variability
so that the estimate of carryover effect is associated with a wide confidence interval, while the test for zero
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carryover lacks power. If extra period designs are used, the carryover effect can be estimated within patients,
increasing sensitivity and power. Additionally it is possible using extra-period designs to contemplate estimating
other effects apart from simply treatment and carryover.

This latter advantage is potentially important. In §2.1 we noted that in certain circumstances the two-treatment
two-period crossover is inappropriate, and in §2.2 that the carryover effect is sometimes termed the residual
effect, or period by treatment interaction. These are different sides of the same coin, meaning that what has
been called, in this chapter, carryover effect can have more than a single cause. Hills and Armitage(1979)
suggest three possible causes of what we have termed carryover effect. First, the washout period may be
inadequate, allowing the treatment in the first period to persist into the second period. Second the treatment
received in the first period may induce changes in the patients’ psychological and/or physiological states.
Finally, the treatment effect may be proportional to the patients’ overall disease states. Additionally there may
be a difference between the sequence groups with respect to their average levels, which, because of ran-
domisation, is essentially a type I error. Hecker(1986) investigates "carryover" and has shown that there are
no two-treatment two-period designs which can fully utilise data from both periods without assuming that one,
or more, of the above causes are nonexistent. Some extra-period designs allow more than one of these possible
causes to be estimated - with the additional advantage that they are estimated within-patient.

Whilst a number of authors have investigated properties of general, multi-period, two treatment designs,
practical and economic constraints would suggest that it is not realistic to consider designs of more than three
periods and we therefore restrict ourselves to three-period designs. General optimality criteria for crossover
designs, considered for example by Hedayat and Afsinejad(1975,1978), all reduce in the case of two treatment
designs to the search for designs which give minimum variance treatment estimators. In the case of two
treatment designs a number of authors (Kershner and Federer,1981; Laskaet 4/,1983; Laska and Meisner,1985;
Ebbutt,1984 and Matthews, 1987) have shown that the design ABB,BAA is universally optimal. In the following
subsection we consider this optimal design. We subsequently consider the 4-sequence design ABB,BAA,A-
BA,BAB which whilst sub-optimal has certain advantageous features.

2.10.1 Three-Period Designs with Two Sequences.

Suppose thaty,, (i=1,2; j= 1,2, 3)is the response of the j‘* patient in the i** sequence in the k** period.
Jones and Kenward(1989) suppose the cell means model shown in Table 2.10 is appropriate in which v, and
v2 define sequence effects, n, and 5, periods effects and t and A are the treatments and carryover effects
respectively.

TABLE 2.10 Jones and Kenwards’s(1989) Cell Means Model for a Three-Period Two Sequence Design .

Sequence

A= (—;l.2+ ;l.a"' ;z.z';z.a)/4
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and

T = (“251.1'“;1 251 3*’2;2.1—;2‘2_;2.3)/8

which have expectations A and t and variances go?/8 and 3ga?/32 respectively. In contrast, therefore, to
the standard two-period crossover the estimator T is unbiased even if A # O. In fact the estimator of T given
A = O remains T.

2.10.2 Three-Period Designs with Four Sequences.

We noted previously that the design considered in §2.10.1 was universally optimal amongst all three-period
two treatment designs. There are however some disadvantages to its use. First the carryover effect and the
treatment by period interaction are aliased, and secondly the design may lead to unintentional bias since the
clinician will know that the treatments in the final two periods are always the same.

We postpone consideration of this design to §7 when a Bayesian analysis is dealt with.
2.11 An Example of an Extra-Period Crossover Design.

The data shown in Table 2.11 are taken from a study undertaken by CIBA-GEIGY to compare the anti-hy-
pertensive effects of Lopressor (L), and Lopresoretic (LC) which is a combination of Lopressor and the
diuretic Chlorthalidone. A subsidiary aim of the study was to investigate carryover effects in a within-patient
design. Patients were randomly allocated to one of the four treatment sequences L-LC-LC, LC-L-L, L-LC-L
or LC-L-LC. Each treatment period lasted six weeks treatment.

The data in Table 2.11 are the diastolic blood pressures (mm Hg) recorded at the end of each six week
treatment period. A preliminary report of this study was given by Ebbutt(1984), while Jones and Kenward use
the corresponding systolic blood pressure data to illustrate various analyses of extra period designs. As
mentioned above analysis of this data is postponed until §7 when considering Bayesian analyses of extra-period

designs.
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TABLE 2.11 Diastolic Blood Pressure (mm Hg)

Period Period

Sequence Patient 1 2 3 Sequence Patient 1 2 3
L-LC-LC 2 103 96 84 LC-L-L 3 100 105 106
5 95 90 96 16 100 100 95
17 100 96 86 18 82 80 90
29 100 100 94 28 95 90 90
33 100 95 100 30 102 100 110
60 110 98 80 34 110 110 110
it 100 90 85 46 %0 100 90
83 100 78 90 54 80 98 90
94 100 106 100 59 - 76 80 98
97 100 90 110 72 70 80 80
102 75 75 80 93 8 84 74
125 100 102 100 99 9% 100 80
153 100 100 95 104 90 95 80
167 85 90 85 111 105 100 100
177 95 80 75 119 90 80 90
182 90 98 95 128 94 102 96
204 100 90 82 136 100 105 110
205 90 86 98 149 80 85 80
210 90 90 100 156 80 75 80
216 95 85 90 168 90 90 80
217 112 104 107 179 105 102 100
224 90 90 90 183 95 80 105
L-LC-L 1 100 96 9% 189 80 88 80
100 90 84 197 90 80 75
100 110 95 202 75 90 90
70 68 80 209 90 90 80
90 90 95 218 94 90 88
] 98 90 LC-L-LC 4 99 92 81
90 80 95 7 118 89 92
100 94 102 13 90 90 90
100 84 118 55 90 80 84
100 90 90 57 90 82 90
80 80 85 69 85 75 85
110 100 100 96 88 98 94
76 72 80 98 95 100 9%
90 85 2] 101 85 80 85
98 106 102 109 60 75 60
100 100 100 126 102 102 7]
90 90 80 178 102 100 102
110 100 109 181 90 90 85
94 84 92 203 90 90 80
92 75 80 207 92 100 9%
80 80 85 211 80 80 80
106 112 9 221 90 80 80

80 80 80

e R —
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3 BAYESIAN ANALYSIS OF MULTIVARIATE NORMAL SAMPLES WITH A COMMON UNIFORM
COVYARIANCE MATRIX.

Suppose in a clinical trial that patients are randomised to g independent groups, and that measurements are
taken on k occasions. Suppose further that the data are multivariate normal with expected values

w,(i=1,...,g)and common covariance matrix A where
1 p p p
p 1 p P
p p 1 p
A = o . .
ppp ... 1

In this chapter a Bayesian analysis of this set-up is considered.

Suppose at the end of the study that n, patients in group i complete the study and let y, and B, be the mean
vectors and matrices of sums of squares and cross products respectively. With these definitions the likelihood
has the form,

-(r-1)2

L - - 1 "
ﬁl/\l ’exp(-%(y,-u.)'/\ '(y,-u,))xl/\l exp(-étr(/\ B,)) (3.1)

i=]
Clearly | A |= 02*[1+(k-1)p1(1-p)* 'and

1+(k~2)p -p ~-p

1 -p 1+(k-2)p ... -p
-1 . . .

T a2(1-p)[1+(k-1)p]

-p -p v 1+(k=2)p

so that (3.1) may be written as,
o™ 1+ (k- 1)p] (1 -p) ™M x exp(—é 2 [n.-(i,—u,)'A"(i.-u,)-tr(A"B,)]) (3.2)

where N = Z‘ n,.

Following Geisser(1964) suppose that a realistic "ignorance" prior for the parametersp,.p;,..., 1y, 0%and
e has the form,

1
2
PR Har-v sy O p) = 02(1—9)[1+(k—1)p]

(3.3)

where p > 0. We will return to consider the reasonableness or otherwise of this prior specification at a later
stage. Combining (3.2) and (3.3) gives the posterior distribution of the parameters in the form,
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POy g By 0%, | X) @ oM P14 (k= 1)p) (L - p) MR
1 — - .
X exp(‘éZ[".(y‘—u‘)/\ (yi—n)—tr(A B,)])

(3.4)

where X denotes the data. The marginal distribution of the second-order parameters 0?and pmaybe obtained
by integratingpt, , uz,..., i1, out of (3.4) to give,

=(N-g)k/2-1

p(e*plX) = (0%) [1+(k-1)p] O3 (1 -p) Wiy bres]

X exp(—%Ztr(A'lB,)). (3.5)
i
Combining (3.4) and (3.5) gives,
2 1 byt s AT
P(H Uyl 1070, X) exp(-ézn‘(y.-u.)/\ (y‘-u,))
implying that ,

Py Hae B 1070 X) = N b [(¥1 Y20+ ¥) " E] (3.6)

where,

1

Ny
and ® denotes the right Kronecker product. The exponent in (3.5) may be expanded to give,

p(oz' p l X) < o'(N‘v)k-Z[l + (k"‘ 1 )p]-(N'q)IZ-l(l _p)-(N-g)(k-l)IZ-l

( Zs,[1+(k—2)p]—pk,)
X expl| _t (3.7)
20%(1-p)(1+(k-1)p]

where,
k
S,=ZI(B,)” and R,-IZ‘{B,}“.
i= »
Make the transformation,
ol=o®[1+(k-1)p] . 03 = o®(1-p) (3.8)
BAYESIAN ANALYSIS OF MULTIVARIATE NORMAL SAMPLES WITH A COMMON 3-2

UNIFORM COVARIANCE MATRIX.



with Jacobian [6%+ (k- 1)02]"" to give,

S+R
P(OT.USIX) « OI(N-q)—Zexp -‘Z ‘ ‘
2ka?
x MOtz —,Z(k‘l)s.‘k.
2ka?
SS Ss
~(N-g)-2 oY) -(N-g)k-1)-2 - 2
= g, " exp( 20?)02 g exp( 20%) (3.9)

where SS, =3 ,(S,+R,)/kand SS,=} ,[(k-1)S,-R,]/k.. The constraint p > O given in the prior
specification is equivalent to of > o so that use of standard results - see for instance Box and Tiao(1973) §1.5
- shows that,

p(0%,02| X .0%> 62) If_((g;;i% , 0%>q2 (3.10)
- 0 , otherwise.
The transformation,
02N -
"';é'];s?(N—jf(zk—l) and ¥ =03
with Jacobian
SSI(N-g)(k-1)
N~g SS,
applied to (3.9) gives,
P(V.$1X) « w“”“”*’“f‘""’"“°""('Szi'[‘*o(N—Ng;?k-l)D'
Integrate out y to give,

N-g -(N-g)k/2
¢(N-g)(k~1)] '

so that ¢has an F-distribution with N-g and (N-g)(k-1) df, from which we may derive,

polX) «= ¢“"'°”"‘[1+

ss.(N-g)(k-l))_ (3.11)

P(o?>03|X) = P(FN-o.(N-v)(t—l)<N_g Ss,

This probability may be used together with (3.10) to give the posterior distribution of the variance
components 0 and ¢2. In later sections we will see that in the cases in which we are interested the constraint
is of little importance if the correct models are used.

BAYESIAN ANALYSIS OF MULTIVARIATE NORMAL SAMPLES WITH A COMMON 3.3
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4 THE TWO-PERIOD TWO-TREATMENT CROSSOVER..
4.1 Basic Distributions.

The results in §3 may be used to derive a Bayesian analysis of the two-period crossover under a standard
mixed-model with an "uninformative" prior. These results have been reported in Grieve(1985) - see also
Grieve(1986) and Racine et a/(1986). The development in those papers was more direct than here, in that the
standard ANOVA decomposition was used. The approach taken here is preferable as it is easier to generalise
to more complex crossover designs, as will be seen in subsequent sections.

The cell means model shown in Table 2.1 may be put into the general structure of the previous section by
setting k = g = 2 and by noting that,

Ky 1 1 1 0 W
s 1 -1 -1 1| =
iy, 1 1 -1 0 T
Moy 1 -1 1 -1/\a

The inverse transformation has the form,

7} 174 174 174 174 Ky
n 174 -1/4 174 -1/4
- K2 (4.1)
T 1/2 0 -1/2 o ]| u,
A

1/2 1/2 -172 -1/2 T

Consider the transformation (4.1) applied to (3.6) with k = g = 2. From standard properties of the normal
distribution the conditional posterior distribution of the location parameters i, 1, T and A given the second
order parameters 0% and p has the form,

(Yia*Y12* Yo+ ¥22)/ 4
(Yii=Yi2* Va1~ Y22)/4
(¥11-¥21)/2
(Yii*Yi2=Ya1~ Y22)/2

p(p.n.t. Ao p,X) = N T, (4.2)

where,

q(1l+p) 0 r(l+p) 2r(l+p)
o? 0 q(l-p) r(l-p) 0
8| r(l+p) r(l-p) 2q 2q(1+p)
2r(l+p) 0 2q(1+p) 4q(l+p)

z,

andr=1/n,~1/n,.

From (4.2) the following are derived,

. 2 ] %\ [q(e%+02)/8 qo?/4
p(t.A|07],05,X) N[(X)( qof/4 qof/2 (4.3)

p(\)o} 0l X) = N[R,qo}/2] (4.4)
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p(tlo}, 05, X) N[T,q(0%+03)/8] (4.5)

p(tiN, 02,062, X) N[T+\/2,q0%/8] (4.6)

where &, T and T are defined in (2.1), (2.2) and (2.3) respectively, and where from (3.8) 02 = 0%(1 +p )and
02=0%(1 -p), which in the notation of §2.2 equal 0 and o Zrespectively. Setting k = g = 2 in (3.9) gives,

- 1| SSP SSE
P(0%.071X) « (o%0d) ”’zexp(-é[ P ]) (4.7)

where SSP = SS,and SSE = SS,. The joint posterior distribution of -t and A may be derived as follows,

pea1x) « [ [ p(rniod.02 x)p(od, 02 X)dodda?
G

~(N=-1)/2

2 -(N-1)2 8
o [ssma(x—f\)z] [ssma(r—x/z—%)z] (4.8)

In §3 the posterior distribution of 0% and oZgiven the constraint 6% > 02 was derived using results from Box
and Tiao (1973) §1.5. Box and Tiao’s general result has the form,

DO X)P(CI6,X)

p(8|C,X) PCCIX) (4.9)
where O is a vector of parameters of interest and C is the constraint.
From (4.2) and (4.7) the conditional distribution of 0% and o given T and A has the form
-(N+2)/2 Ql QZ
p(od.a2iT. A X) = (d502) exp['zﬁ‘z—o?]
2 2 8 -~ z
whereQ,-ssma(x-X) ansz-sss+a(r-x/2—r)
which has the same form as (3.9), so that the derivation of (3.11) may be followed to give,
2y .2 Q
P(62>0%|T. A X) = P(F,,_,.N-,<Q—). (4.10)
2
Combining (4.8), (4.10) and (3.11) gives the posterior distribution of T and A in the form,
-(N- Q,
(Q:Q2)"" nlzP(FN—l.N-l <Q-2‘)
p(t.Ao5>6l.X) « (4.11)

P(F~-2.~-2< %)

Similar calculations lead to the following posteriors :
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-(N-1)/2 (N-2)Q,
Q, P(F~-|.~-2<(_“~_,)ss£)
(4.12)
P(Fu-2n-2<33F)

SSE

p(Moi>0? X) «

(N~ Q
Q* %P Fyyuar <)

2 2
p(tir.02>0%, X) « . TETT (4.13)
(Fa-tv-2 < gremsse)
p(tlai>d3,Xx) = fp(-c.x|oi>of,X)dx (4.14)
1N

The marginal distribution of T is not available analytically, apart from unrealistic special cases, so that it may
only be obtained by numerically integrating A out of (4.11) using for instance the method described by Naylor
and Smith(1982).

4.2 The Variance Component Constraint.

It is possible, using the methods given by Box and Tiao(1973) §6.3.1, to develop approximations to the dis-
tributions (4.11),(4.12) and (4.13) however this presupposes that it is important to take into account the
constraint on the variance components inherent in the model. Jones(1986) reports results obtained by Denham
in an unpublished University of Kent M.Sc. dissertation in which the posterior distributions with and without
the constraint were compared using two measures based on the absolute difference between the distributions.
For example Denham computed the maximum absolute difference, D = max | p(n | X)- p(n|0%> 0%, X) |
,wheren=t,A,t|A =0, for the data in Grizzle(1965), Hills and Armitage(1979) and Brown(1980). The
results of Denham’s calculations are shown in Table 4.1 together with the probability of the constraint defined
by (3.11).

TABLE 4.1 Comparison of Constrained and Unconstrained Posterior Distributions.

Posterior Distribution

These results raise two issues. Firstly, as Grieve(1985) and Jones(1986) note, the differences between the
constrained and unconstrained posterior distributions evidenced in the case of Grizzle’s and Brown’s data are
a direct consequence of analysing differences from baseline which automatically induces zero correlation
between the derived observations in each period. (This issue will be further considered when the two-period
crossover with baselines is treated). It is not necessary to calculate the measures considered by Denham, as
it is sufficient to calculate P(02> 02| X). For the above examples these probabilitics are 0.355 (Grizzle),
0.9996 (Hills and Armitage) and 0.024 (Brown) respectively. Alternatively the posterior distribution of % and
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o 2may be inspected. To illustrate, Figure 4.1 displays (4.7) for the data shown in Table 2.3. and it is clear that
in this case the constraint is irrelevant as the bivariate posterior for the variance components lies almost wholly
in the region defining the constraint. On the other hand for the data given in Brown(1980) involving, as we
have already seen, differences from baseline the constraint is important as is shown by the posterior distribution
of the variance components displayed in Figure 4.2. and by the posterior distributions of A and T | A = O shown
in Figure 4.3.

Secondly, the effect of the constraint is least in the case of the treatment effect, <. This observation is intuitively
reasonable since the unconstrained posterior distribution of < given the variance components depends on
0%+ 02 so that it is irrelevant whether 0% is greater than o3. Such a view was expressed by Cochran(1963)
who suggested that the small discrepancies in such cases might be due to rounding errors in the numerical
integration , although he was unable to prove this analytically. In fact it is not the case that the constrained
and unconstrained distributions of < are identical although the differences are small.

43 Approximation to the Marginal Posterior Distribution of ©.

Even when the variance component constraint is ignored the integral in (4.14) is not analytically solvable and
one possibility is again to use numerical methods. Alternatively, an analytical approximation may be derived.
In (4.8) make the transformation y, =A/2, v, =t - A\/2giving,

8 8 ) -(N-1)2
P(v;, v, X) = ([SSP*E(‘P;'X/2)2][335+6(‘Pz'1)2])

Clearly v, and v, have independent shifted and scaled t-distributions with unequal variances and since
T=1y, + VY, it has a Behrens-Fisher distribution. Therefore, using the results of Patil(1965), the marginal
posterior distribution of t may be approximated by

—(v e 1)72
p(t|X) « [v's'2+§(t—i-X/2)z] (4.15)

where,

(v'-2)(SSE+SSP)

. (SSE+SSP)*(N-6)
v = + 3
v (N-4)

2
SSEZ?+ SSP? 4.8

(see AL.5). (Appendix Al gives consideration to various approximations to Behrens-Fisher densities and
distribution functions).
4.4 Approximating (4.14).

We noted, following (4.14), that the marginal distribution of T is not available analytically; however an
approximation based on a t-distribution may be developed. The posterior distribution of T may be written in
the form,
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p(tlX) = /:[;NTloiJf,X)p(aiole)daidoi
02 a2

4

From (4.5) the unconstrained conditional distribution of T , givenc? and 0?,is N(T, (0% +02)/8) . Since
once the pair of variance components is given the constraint 2 > 62 has no effect on the distribution of t
then the first term in the integral is precisely N(T,q(0% +6Z)/8) . From (3.10) and (3.11) the posterior
distribution of ¢4 and o?Zis,

2 2\-N/2 1| 35r SSE
(030¢) exp(-;_[ o2 " a?

P(F~-2.~-2<§§)

p(o%,021X) «= g,>0

From the results in §5.2.6 and §5.2.12 of Box and Tiao(1973) the posterior distributions of 04 and 02 may be

approximated by,
ot - ThaE L ok - T
where,
ML) e
a, le(!;,g) 21‘(N2—2'N2-2)
NP ) w-n(35)
PR () BTN (R =
(N-2)1,(F.5)
bl = N-2 N-2
a 1.5
, . -3
and
SSP
X T SSP+SSE’

The construction above shows that 02 and o2 are independently, approximately x ~# distributed so that,

SSE SSP

+ E
a,(b;-2) ax(b,-2)

E(0%+d?)

2SSE? . 2SSP?
aj(b,-2)%(b,-4) af(b,-2)*(b,-4)

Var(e?+o?) =
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Suppose ¢2 + g2 is approximately distributed as 5,2 implying that £(g2+¢2)=by/(b, -2) and
Var(e?+a2)=2b%,/[(b,; - 2)%(b,, - 4)]. Equating these to E and V above gives,

22 ]
by, = 7*4 v by = (b, -2)E

Combining this approximate distribution with (4.14) and integrating out 0% + 6? gives

. mb
p(tlo%>02,X) = tr.u.b”
8b,

4.5 A Preliminary Bayesian Analysis of Wheatley’s(1987) Anginal Attack Rate Data.

The use of the posterior distributions derived above is illustrated using the data from Wheatley(1987) given
in Table 2.3. Figure 4.4 displays (4.11), (4.12), (4.13) with\ = Oand (4.14). Comparison of the classical ANOVA
with the posterior summaries is enlightening. As has been seen in other cases (Grieve,1985; Racine et a/,1986)
the distributions p(t |A =0, X) and p(t | X) differ radically and the use of one in preference to the other
would lead to very different conclusions vis-a-vis the treatment effect. For example
P(t>0|A=0,X)>0.999 whilst P(t > 0 | X) = 0.85. These results showthat it is crucial when comparing
treatments to be sure that the correct model is being used. The classical approach to differentiating between
Models I and II is to use F, (see §2.4) . In the present case, as noted in §2.7, the p-value associated with F,
is 0.198 which, according to Grizzle’s procedure, would allow one to accept the veracity of Model I1. However
the posterior density p(\ | X) suggests the presence of a carryover effect, giving credence to the view that
the implicit either/or decision associated with the test for carryover effect does not provide an adequate
representation of the uncertainties involved.

4.6 Using a Bayes Factor to Decide Between Models I and II.

The Bayesian approach to the problem of differentiating between Models I and II is to seek a form of prior
specification which allows the direct incorporation of an assessment of the likelihood of each model. One
method of doing this is to model the set up as a mixture of the two individual models corresponding to the
"absence of carryover’ (Model IT) and "carryover" (Model I). If we denote these two models by M, and M
respectively, let the prior have the form,

p(e.n. T, A 02,62 IM,) = o207 (i=0.1) (4.16)

and define prior odds ,x = P(M,)/ P(M ), on the "absence of carryover" then the posterior probabilities of
the two models are,

xBg, P(M.|X) = 1
l""KBo] ! ! 1+KBQ|

P(M,1X) =

where B,, is the Bayes factor given by,

P(MolX) P(M,) _ P(X|Mo)
P(Mo) P(M,|X) P(X M)

BO!
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The Bayes factor is the ratio of posterior to prior odds on M, , i.e. against a carryover effect. Inference

concerning the treatment effect T can then be made using the mixture posterior distribution,

® By,
1+xBy

p(tlXx) = p(T | My X)

1
—mP(TIMn-X) (4.17)

1+

where p(t | M,, X) is given by (4.13) with A = 0, and p(t | M, X) is given by (4.14).

The Bayes factor, B, , may be expressed as a ratio of integrated likelihoods and therefore involves the ratio
of unspecified proportionality constants implicit in the priors defined by (4.16). Spiegelhalter and Smith (1982)
show how to obtain a definitive form for B,, in such models by using the so-called "device of imaginary
observations". Grieve(1985) points out that since 7, is merely the square of an unpaired t-test, equation (12)
of Spiegelhalter and Smith(1982) gives the Bayes factor against a carryover effect as,

3 1/2 F)‘ -N/2
By, = | = it .
o (5) (i) a1

To choose a value of x is to specify one’s personal belief in the likelihood or otherwise of a carryover effect,
thus providing a means of introducing a sliding-scale of plausibility between the extremes of assuming either
the absence of a carryover effect or of assuming that a carryover effect is absolutely certain. Such a choice is
forced upon one if the classical significance testing procedure is used. Clearly posterior beliefs depend on
prior beliefs so that a "fair" representation of conclusions should show this dependence. Figure 4.5 provides
summaries of p(T | X ) as a function of P(M,) = (1 + x)"'. In this figure the posterior expected treatment
effect and its associated 95% highest posterior density (H.P.D.) interval are plotted on the left-hand vertical
axis and the posterior probability of a positive effect on the right-hand vertical axis.

To appreciate how Figure 4.5 may be used, suppose that interest centres in a positive treatment effect, which
in the context of our example implies that we are interested in lower incidence of attacks when TN is used
compared to Placebo. If a priori we are indifferent to the choice of model, that is, x = 1 , then the posterior
probability of a positive treatment effect is 0.95, the corresponding posterior probabilities forx = 3, 3,2, and 3
are 0.91, 0.93, 0.97 and 0.98 respectively. Thus, for this experiment, we need only be 50% sure a priori that
there is no carryover effect in order to achieve a posterior probability greater than 95% that the treatment
effect is positive.

Figure 4.5 shows that inferences concerning the effect of TN are highly dependent on our prior belief in the
likelihood of a carryover effect. As Grieve(1985) points out this dependence may be due to the relatively small
value of B,, which is indeed the case for Wheatley’s data ( B, = 2.052) . From (4.18) it is clear that B,
depends both on F, and on the numbers of patients in cach sequence group n, and n, in such a way that i)
it has no minimum value, ii) the maximum value, given by F , = 0, is a simple function of n, and n,. Analogous
to the results given in Grieve(1985), Table 4.2 presents P(M, | X ) for selected values of P( M ,) for both the
observed B,, and for its theoretical maximum value. Table 4.2 demonstrates a characteristic of "small"
experiments in that even when, in the classical sense, there is little, or no evidence to suggest a carryover effect,
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the inferences which we are able to make depend fundamentally on p(M,) . This is related to Jef-
frey’s(1983,p.434) observation that small experiments cannot provide strong evidence in support of a null
hypothesis, although they can provide strong evidence against it.

TABLE 4.2 Posterior Beliefs in "Absence of Carryover" for Various Prior Beliefs.

P(Mo| X)
X P(M,) By =2.052 By, = 4.860
1/9 0.1 0.186 0.351
14 0.2 0.339 0.526
1 0.5 0.672 0.829
4 0.8 0.891 0.951
9 0.9 0.949 0.978

A second point concerning Figure 4.5 relates to the apparently idiosyncratic relationship between the 95%
HPD interval and P(M ). In fact this shape is characteristic of crossover trials (cf. Grieve,1985; Racine et
al,1986; Grieve,1989) arising from the mixture of distributions in (4.17). To illustrate, Figure 4.6 presents
p(t | X)for different values of P(M,) . Although in this instance p(<t | X )is not bimodal such forms can
arise if Tand T + X /2are widely separated.

Spiegelhalter(1986a) questions whether the use of the Bayes factor is only marginally better than the classical
"either-or" mentality because it effectively models prior beliefs as a mixture of a sharp peak at the null hypothesis,
the remainder being distributed over the real line as a representation of ignorance. Before examining this view
we consider in the next section the use of informative prior distributions.

4.7 Bayesian Analyses with Informative Priors.

Selwyn et al (1981) develop a Bayesian analysis for a balanced two-period crossover design, n, = n,, for a
problem in bioequivalence testing. In their work they consider a number of different models one of which
corresponds to Model 1. They take as the joint prior density of the parameters,

2 2 -2 -2 _)‘_2
p(p.m,t. N, 0;,0%) < 0d,°0,exp 5a? (4.19)
A

so that a priori A is normally distributed with mean 0 and variance o2 . By considering a range of values for g2
a variety of prior beliefs concerning the likelihood or otherwise of a carryover effect may be obtained. For
example, 02 = O corresponds to absolute certainty that there is no carryover effect, while 02 = c is equivalent
to the conventional uninformative prior which we have already considered. Now suppose that our prior belief
concerning A , generalizing (4.19), may be represented by a normal distribution with mean A ,and variance
02 so that our prior for the parameters of the model has the form,
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A=-Ag)?
(—-'i) (4.20)

p(p.n, T, N, 0%,0%) « o.%0,%exp| - >
20;

Using this prior standard Bayesian manipulations with normal kernels shows that the posterior distribution
of T given the variance components 0Zand o3 is,

p(tlol, o5, X) = N(u,v) (4.21)
where,
. 302K +3qoin,/2
u = T+ 1
0%+1q0}
and

! 5242 ' a2Y a2 ! vn2g2
§q040x+(§qos)(§q04)+§q0:°x

403 +3q0%)

Asc? - othis reduces to (4.6), whileasa? - 0, u - T+ A,/2andv -+ qo2/8 This latter result implies that
if we have, a priori, a strong belief that the carryover effect is in a small region centred on A o we may remove
the carryover effect from the biased estimate of <, that is from T.

Suppose that our g priori information is obtained from the results of a pilot study whose results are denoted
byio. o, To. Ko, SSPy, SSE,, Noand g,. Now since the joint posterior distribution of u, %, t, A, 02and
o2is conjugate to the likelihood, standard manipulations may be used to show that the marginal posterior
distribution of T given the variance components has a normal distribution having mean,

q(To+Ky/2)+qo(T+A/2)
ot q

and variance,

qoq(o?+d?)
8(go+q)

Since there will generally be far fewer patients in the pilot study than in the main study, q, » q, and therefore
the pilot study will not provide sufficient information to remove the bias from <.

If we use Selwyn et al’s(1981) prior (4.19) then the mode of the posterior distribution of tgiven 6% and 0Zhas
the form T+ (02K /2)/(02 + go2/2)which tends to Tas 02 - 0. In other words if we are fairly sure that the
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carryover effect lies in a narrow interval around zero, the posterior distribution of t will be similar to the

distribution we would have obtained had we assumed that the carryover effect was zero. On the other hand
as 02 = « the analysis reduces to that given in §4.1.

4.8 Spiegelhalter’s View.

From (4.17) it may be seen that the posterior mean for T has the form,

'K.Bo] =, 1
1+xBg, 1+x By,

(T+R/2)

while, for given 02, the corresponding posterior mean using Selwyn et al’s(1981) prior has the form,

202/qe3 1 .
et ———(T+1/2)
1+205/q05 1+205/q05

This pair of means are very similar and it is therefore not surprising that Spiegelhalter(1986a) was able to
provide an analysis using an informative prior for A which almost exactly mirrored the analysis based on the
Bayes factor.

The decision then has to be taken as to whether prior beliefs concerning potential carryover effects are more
easily determined, and incorporated, via the Bayes factor or proper prior approaches. It was argued in
Grieve(1985) that the Bayes factor approach is preferable since for example indifference to model M, or M,
is simply defined by x = 1, while if 0Z is used it is not at all clear how indifference should be defined. Further
support for the Bayes factor approach will be given in later sections.

4.9 Discussion.

A number of analyses have been considered in this chapter and before discussing other approaches in the
light of our preferred Bayesian approach it is helpful to summarise our approach by distinguishing three
particular cases. In the notation of §4.6 there are in terms of P(M ,) , which is our prior belief in the presence
of a carryover effect, the following three distinct scenarios to be looked at :

(i) P(M)=0
(it) P(M))=1
(iit) O<P(M))<1
A strategy needs to be decided upon for each scenario, and the question is What strategy ?

Inthe case of (i) we are a prioni absolutely certain that there is no carryover effect. The two-treatment two-period
crossover then presents no difficulties and we may use the conditional distribution of © given A = 0, either
by setting A = O in (4.13) if we wish to take account of the variance component constraint or by setting A = O
in the second component of (4.8) if we are prepared to ignore it. This is essentially the approach taken by the
majority of statisticians when analysing bioequivalence studies in which it is believed to be unnecessary to
consider the incorporation of a drug carryover effect since blood samples drawn immediately prior to
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application of the drug in the second period will reveal whether during the washout period elimination of the
drug has occurred. This assumes that the particular drug does not have an effect directly and/or indirectly on
the absorption and elimination mechanisms of the body.

In case (ii) there are two distinct subcases to be considered. In the first subcase we suppose that we have no
a priori information concerning the likely magnitude of a carryover effect other than that it exists. If this is the
case then whilst perfectly valid inferences concerning the treatment effect t can be made - using, for example,
the results in §4.3 and §4.4 - the standard arguments concerning the sensitivity of the crossover design compared
to the parallel group design (see for example Brown,1980) would predicate against the use of the former design
as opposed to the latter. It is , however, contradictory to suppose that P(M ;)= 1 and at the same time to say
we know nothing of its magnitude. In the second subcase we suppose that there is considerable information
concerning the likely magnitude of a carryover effect and that it is possible to specify it through a Normal
density with mean A , and variance o3 . Such information, if available, can be incorporated in the analysis and
the results in §4.7 show that if 2 is small, corresponding to large amounts of information, then to a good
approximation the posterior distribution of T will be given by the conditional posterior distribution of T given
the prior expectation of the carryover effect, i.e. A = A, in place of A = O above.

In case (iii) inferences about T may be made cither using the approach of Selwyn et al(1981), as championed
by Spiegelhalter(1986a) - see §4.8 - or by using the Bayes factor approach given in §4.6. In the light of Spie-
gelhalter’s demonstration of the near equivalence of the two approaches the difference between them is perhaps
more apparent than real. Nonetheless the consideration of how to specify indifference between the models
M, and M, leads to the Bayes factor approach in preference to Spiegelhalter’s.

In 1979 the British pharmaceutical industry body "Statisticians in the Pharmaceutical Industry” (PSI) consti-
tuted a working-party with the remit to investigate, in the light of the FDA position, the two-treatment two-
period crossover (Poloniecki and Daniel, 1981; Huitson et @/,1982; Barker et 4/,1982; Poloniecki and
Pearce,1983). One proposal which they made was to investigate the relative magnitude of the treatment and
carryover effects. In the notation of Poloniecki and Daniel(1983) their suggestion was to determine the posterior
probability that | T |>| y | where T and v denote the treatment and carryover effects respectively. The major
deficiency of this idea is that the Poloniecki and Daniel definition of Tt would, in our notation, correspond to
T-A/2 . Translating their suggestion into our notation implies that one should calculate either
P(tT-A>0AT>0|X) or P(t-A<0AT<0]|X) depending on whether t is "significantly” positive or
negative. Effectively, their proposal for T > O is to calculate the posterior probability that T and A lie to the
right of the line T = O and below the line T = A . In Figure 4.7 the red contour lines are taken from Figure 4.4
- corresponding to the posterior density of T and A for Wheatley’s(1987) data; the green contour lines have
been obtained by shifting the red contours. From this figure it is clear that in the case of the green contours
P(t>0|X)~1 whilst P(T-A>0AT>0| X)~0 It seems difficult, therefore, to justify such the region
suggested by Poloniecki and Pearce since the result P(t > O | X ) ~ limplies that conditional on any reasonable
value of A suggested by the data, the posterior probability that ¢ is positive is high.

Willan and Pater(1986) and Willan(1988) have also suggested that in certain circumstances the fact that there
is a significant carryover does not preclude an analysis based on data from both periods. They argue that if,

’T-‘ < 2-y2(1-p) (4.22)
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then an analysis based on data from both periods is preferable since even when there is considerable carryover
such an analysis provides a more powerful test of treatment effect than one based on the first period data
alone.

Whilst it is laudable to search for circumstances under which conditions such as (4.22) are satisfied it raises
a number of issues. First, whilst it is a more complex region than the one considered by Poloniecki and
Pearce(1983), involving as it does the correlation p , (4.22) is nonetheless a region based on population values
and it is therefore not possible to use it pre-study to determine which analysis is to be performed. Second, it
is possible, as we did above, to provide examples in which, although the condition (4.22) does not hold,
nonetheless there is a very high probability that a highly "significant" carryover effect exists.
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S THE TWO-PERIOD CROSSOVER WITH A SINGLE BASELINE.

The standard two-period design, whose Bayesian analysis was outlined in §4, has no baseline data. As
Freeman(1986) comments the majority of crossover studies feature baseline data which are often ignored. In
this section the incorporation of a single baseline measurement is considered.

5.1 Cell Means Model.

In Section §2.8 we saw that for a two-treatment crossover with baselines prior to each treatment period there
were a number of potential models. The same is true in the case of a single baseline measurement. In essence
the observations on patients, pre-treatment, provide the possibility of estimating two additional parameters
corresponding to the pre-treatment cell means in each sequence group. There are a number of pairs of model
parameters which could be considered. For example one might wish to include both carryover and
period-treatment interaction, so that one of the additional parameters would correspond to the latter. Such
a parametrization is not appropriate because the period-treatment parameter is a linear combination of the
treatment and carryover effects.

In the two-treatment, two-period crossover, the carryover effect is completely confounded with both the
period-treatment interaction and with the sequence effect. In the present design the sequence effect is no
longer confounded with the carryover effect so that in analogy to the model considered by Kenward and
Jones(1987b) additional parameters for the sequence effect (y) and for the pre-treatment period are
incorporated. The cell means model which we consider is shown in Table 5.1 where n;, and n, denote
independent period effects.

TABLE 5.1 Cell Means for a Two-Period Crossover with a Single Baseline.

Sequence Periods "

Group Pre-Treatment 1

p+y+m, Rty +mp+ T

p-y+m, H=y+Nz=-T

We will in the main when considering more complicated designs than the straightforward two-period
two-treatment crossover adopt the Kenward and Jones(1987b) approach of incorporating a parameter y for
asequence effect. These authors argue for such an approach on the grounds that then all parameters of interest
can be estimated within patients. It can of course be argued that it is not appropriate to introduce a sequence
effect parameter since if patients are randomised to the sequence groups no such effect should exist - classically
it would be argued that a significant test for a sequence effect would be a type I error. From another standpoint
Gough(1989) has argued that by dropping the sequence effect from the model between patient information
about treatment and carryover effects can be obtained with a consequent increase in precision. We will return
to consider this point later.
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5.2 Basic Distributions.

The cell means model shown in Table 5.1 may be fitted into the general structure of §3 by setting g = 2and
k = 3 and by noting that,

1 1 1 0O 0 O M

2 1 1 0 1 1 0 Y

His 1 1 -1 -1 -1 1 n,

o, 1 -1 1 0 0 O n,

by 1 -1 o 1 -1 0 T

Moo 1 -1 -1 -1 1 -1 A

The inverse transformation has the form,

T 1/6 1/6 1/6 1/6 176 1/6 Ry
Y 1/2 0 0 -1/2 0 0 Hip
n, 173 -1/6 -1/6 1/3 -1/6 =-1/6 [T (5.1
1, -1/6 1/3 -1/6 =-1/6 1/3 =-1/6 Hay '
T -1/2  1/2 0 1/2 -1/2 0 Hap
A -1 172 1/2 1 -1/2 -1/2 o

Consider the transformation (5.1) applied to (3.6) with g = 2and k = 3 . From standard properties of the
normal distribution the conditional posterior distribution of the location parameters u,vy, 5, n,, vand A
given o2 and p has the form,

(;l.l * ;L2+§l.3+§2.l + 3_/242'* ;2,3)/6
(Yii=Ya1)/2
(Y 1= Y127 Y13%2Y21~ Y22~ ¥23)/6

2 -
Pl Y- 2y, Tze T M [ 0% 0. X) N (—;I.l+2—y_l.2_;1.3—;2.l+2;2.2-;2.3)/6 zz (5:2)
(";14*;1.2*'3—/2.1‘;2.2)/2
("2;1.1+3—/1.2"‘§|.3+2)—/z.1“;2.2_;2.3)/2
where,
q(1+2p) r(l+2p) 0 0 0 0
r(l+2p) 3¢  2r(1-p) -r(l-p) -3q(l-p) -6q(l-p)
T - a? 0 2r(l-p) 2q(1-p) -gq(l-p) =3r(l-p) =6r(l-p)
2 12 0 ~-r(l-p) -q(l-p) 2q(1-p) 3r(l-p) 3r(l-p)
0 -3q(l-p) -3r(1-p) 3r(l-p) 6q(l-p) 9q(l-p)
0 -6q(1-p) -6r(l-p) 3r(l-p) 9q(1-p) 18q(l-p)

Using properties of multivariate normal distributions the following posterior distributions may be derived

from (5.2),
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v ) (062+202)/3 -0i -262
p(y.t.A 02,03, X) = N|| % 'Zf - o2 202 3¢2 (5.3)
N

-202 302 602
p(ylo}. 05, X) ~ N(V.q(65+203)/12) (5.4)
p(tlod 62, X) ~ N(t.qo2/2) (5.5)
p(Ajo? 62, X) ~ N(X,3q0%/2) (5.6)
. A
p(TlN, 03,05, X) ~ N(r—§+§.qo§/8) (5.7)

where,
9'(3—/1.1 —;2.1)/2
1~3"(‘3_/1.1"'yl.z"i_/z.n'l—fz.z)/z

K= ("2§1.1 + ;1.2"' ;1.3"' 2;2.1 - ;z.z' ;z.a)/z
and where 02 = 0?(1 + 2p)and o2 ,q and r are as previously defined.

Setting g = 2and k = 3 in (3.9) gives,

-N/2 SSI <N+ 332
p(a.o21X) « (03 "“exp| == (02" exp| - == (5.8)
207 203

Combining (5.8) with in turn (5.5) and (5.6) and integrating out o2 gives,

]-(2N-3)/2

p(tlX) = [SSZ+§(T-i)2 (5.9)

-(2N-3)/2
] (5.10)

2
PINIX) « [ssw@(x-mz

In analogy to the two-period crossover without baseline measurements analysed in §4 we denote the model
containing a carryover effect by M, and that in which it is assumed that there is no carryover by M, . This
latter model may be obtained from model M ; by setting A = O , in which case,

p(tlA=0,0%,03,X) ~ N(T-K/2.q0%/8) (5.11)

and
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_SSZ+2X2/(3q)) (5.12)

p(o5IA=0,X) « (og)"\"‘/zexp< >
203

The second term in the exponential function in (5.12) arises from setting A = O in (5.6). Combining (5.11) and
(5.12) and integrating 02 gives,

k2 g 271-(2N-2)72
P(tiA=0,X) « [SSZ'*E*'G('C-’E*'E)] (5.13)

When we considered the posterior distribution of the treatment effect under M, in §4.1 an additional term
equivalent to 2R2/(3q) did not arise. This is because in the present case both T and A are estimated within
patients so that knowing that A = Oimplies increased knowledge about within patient variability whilst in the
former case A is estimated between patients so that knowing it is zero increases knowledge about between
patient variability which cannot be used for making inferences about t which under these conditions is based
on within patient variability.

We saw in the previous section that whilst it is possible to allow for the constraint 6% > 02 it is not necessary
if the correct model is used, the same is true in this case. Analogously to the two-period two-treatment case
the probability P(0? > 2 | X ) which, from (3.11), is given by,

S5, 2(N-2))

P(oi>0ilX) = P(F~-2.2(~-2)<N_2 SS,

may be used to confirm the appropriateness or otherwise of ignoring the constraint.
5.3 An Example of the Two-Period Crossover with a Single Baseline.

The data displayed in Table 5.2 are taken from a study carried out by CIBA-GEIGY to compare the efficacy
and tolerability of Voltarol (V) and Indomethacin (I) in patients with rheumatoid arthritis and osteoarthritis.
Results from the study are reported by Barnes et a/(1978).

Patients were randomly assigned to receive two weeks treatment with 25 mg of Voltarol four times daily (gds)
followed by two weeks treatment with 25 mg of Indomethacin gds or vice versa. Patients were seen on entry
to the study, and at the end of each two-week treatment period at which times a number of efficacy parameters
were assessed. In particular the data shown in Table 5.2 are the recorded values of the Ritchie index, which
is an assessment of joint tenderness in patients with rheumatoid arthritis (see Ritchie et a/,1968).

5.4 Preliminary Bayesian Analysis of Barnes et al’s Data

For the Ritchie-Index data from Barnes et a/(1978) the sample mean vectors and associated matrices of sums
of squares and cross-products given in Table 5.2 may be used to derive the following statistics:
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TABLE 5.2 Value of the Ritchie Index at Baseline and After Each Two-Week Treatment Period.

Period Period
Sequence Patient Baseline 1 2 Sequence Patient Baseline 1 2
— — —
V-1 106 14 25 25 -V 102 12 9 10
111 9 9 4 104 12 8 10
206 8 4 8 105 19 21 16
207 9 8 7 107 10 11 12
210 1 1 7 112 33 34 36
211 20 25 16 202 2 3 0
301 3 7 8 203 19 8 11
304 3 4 ) 205 40 39 39
306 2 1 2 208 1 0 0
308 4 4 2 209 20 21 35
309 2 0 4 212 1 0 1
311 3 0 0 302 2 6 6
331 6 6 6 307 4 2 3
334 1 1 1 312 7 4 1
335 2 0 0 315 9 0 0
401 1 5 3 332 4 2 4
408 16 0 0 333 9 6 6
410 24 16 10 402 6 5 5
411 16 3 12 406 14 17 16
414 pAl 18 18 407 8 3 0
415 19 6 1 409 27 23 25
432 22 10 7 412 10 6 7
434 33 22 19 413 27 8 8
501 12 15 11 433 7 2 0
435 24 8 27
15

¥..=10.875
Y12=7.917
Y1.3=7.750

¥2, = 13.385
¥,,=10.538
;2'3 - 1 l -269

1804.625
B,=| 1162.750
2714.154
B,=| 2378.615

878.250
2679.308

1162.750
1485.833
1060.500

2378.615
2710.462
2782.231

878.250
1060.500

996.500

2782.231

2679.308)
3533.115
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§ =-1.255

T = -0.056

A =-0.561
SS, = 11709.332
SS, = 1535.357

Using these statistics the posterior distributions derived above are as shown in Figure 5.1. In this figure
(5.9),(5.10) and (5.13) are displayed.

In contrast to the analysis of Wheatley’s(1987) datain §4.4 there is not a great difference between the inferences
we may make about the treatment effect under the two models M, and M, ; indeed in this case
P(t>0|X)=0.472 whilst P(t>0|A =0, X)=0.713 That this should be so is not so surprising since
P(A>0] X)=0.343 . For this particular data then it makes little difference whether one makes inferences
about the treament effect, © , under model M, or M, .

5.5 Bayes Factors - General Issues.

Whilst in this case we could again argue that because the posterior distribution of A is a shifted and scaled
t-distribution the Bayes factor against carryover will have the same form as that given by Spiegelhalter and
Smith(1982) it is instructive to derive the Bayes factor directly, firstly because in subsequent sections this
simple analogy will not always be available, and secondly because an issue concerning improper prior
distributions has been obscured in the treatment of Bayes factors in §4.6.

We noted in §4.6 that Spiegelhalter and Smith(1982) had circumvented some problems in the use of Bayes
factors in situations in which improper prior densities were used by appealing to invariance arguments. In
essence they argued as follows.

Suppose that interest centres on the comparison of two nested linear models with Gaussian error structure,
M,c M, and that the models are defined by,

y ~ N(A8,06%1,) I=0,1,

where y is an n-vector of observations, A, is a known matrix of rank p,, 6, is a p -vector of unknown parameters
and 02 is unknown. Then if p(8,,0%| A,) are the prior distributions for the unknown parameters under the
two models, the Bayes factor for M, against M| is,

ffp(}’ | Ag.80,0%1,)p(8,.0%| Ag)dOedo?

[ [ptri4..0,.6%1)p(0,.0%1 4,)d0,d0?

BOI

Under the assumption that the prior distributions, P(8,, 02| A,), have the improper limiting version of the
normal-inverse-x ? conjugate density written in the form,
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-(p2e )

(¢%) (5.14)

PO, 0?1 A,) = c(2m) "

where ¢, (1 = 0, 1) are undefined constants, the Bayes tactor may be written as,

2 -n
B - 2 |A/1A|| ”[1+(P1'P0)F 2 (5.15)
e\ AbA, n-p, '

where F is the usual F-statistic for comparing M, and M, . The form for the Bayes factor in (5.15) is
indeterminate because of the ratio of undefined constants ¢, /¢, . Spiegelhalter and Smith(1982) circumvent
the problem of unknown constants by utilising Good’s(1947) imaginary training sample.

Imagine a data set which

(1) has the minimum possible sample size allowing estimation of the parameters and thus comparison of M ,
and M.

(ii) provides the maximum amount of support for M .

The implication of (ii) is that B,, > 1, since the data indicate that M, is more likely than M , . This needs to
be tempered by (i) since any evidence provided by the data must needs be weak because of the small sample
size, so that approximately B,, ~ 1 + € where € is small. Maximum support for M, leads to an F-statistic of
0 and therefore if £, and £, correspond to the design matrices in our "imaginary experiment", (5.15) gives,

Co IE{EII)UZ
l+e = — -
¢ lEoEo|

-1/2
) (5.16)

implying that

Clearly the form of (5.15) is dependent upon the appropriateness or otherwise of (5.14). Spiegelhalter and
Smith(1982) argue for (5.15) in preference to other forms which have been proposed because (5.15) is invariant
to both linear transformations of the design matrices as well as to scale changes in the dependent variable,
whereas its competitors are only invariant in the former case.

Two general issues are raised by this analysis. Firstly our model for crossover designs involves two sources of
random variation, between patient and within patient, and both of these need to be taken into account when
using Spiegelhalter and Smith’s results. This raises no particular problems, the solution which drops out of a
general analysis being a sensible partition of the total degrees of freedom into a within and a between patient
component. The second issue concerns the improper prior distributions. The analysis in §4, and in this chapter
too, is based on standard improper priors for the two variance components. This may be seen from (3.3) from
which the prior densities for a2 =g¢?[1 + (k- 1)p] - between patients - and 0% = g2( 1 - p)- within patients
- can be derived in the form, p(0?,02)x(0%0632)". The essential problem, therefore, is that the Bayes factor
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approach requires a different a priori specification than would standardly be used. Whilst this difference is of
theoretical interest/importance, in practice it is likely to be of only minor significance since it will effectively
only change the degrees of freedom in the posterior t-densities of the parameters of interest marginally - an
additional few degrees of freedom. For this reason we have taken a pragmatic approach and have not used
the Bayes factor prior densities for determining the component posterior distributions of the parameters of
interest, but have used the standard one above.

5.6 Bayes Factors - General Result.

In each particular case which we consider it would be possible to calculate the Bayes factor from scratch.
However, the following general result is simply derivable:

For the likelihood given in (3.1) defining the saturated model M ; and for the prior given by,

(1) ($+1)

{252)

o B}
P, Hpee iy 0%.p) = bow,(2n) *(0?) [1+(k-1)p] (1-p) " °
then
-y _NG-1)
} NY(SS.)? N(k-l))(ssz) 2
p(X|M,) b,w,r(z)( > ) r( 5 5 (5.17)
For the reduced model M, defined by,
Ky
Ha
Cllka =0,
Hg

and prior given by,

, U -(L'.l)
P(B, Haseee g, 06%,p) = b w, (21) (6

’"’”401)

2t -
(1 (k=197 01— py (%5

then
NY/SS,)? N(k—l)) J1-12
pP(XIM,) b,w,r(g)( 2) r( >— Jlcpc’|
ICETH
— - _ - R - ?
(Ssz*“(YIYZ---ya)C,(CDC/) lC(ylyzmyq)/) (5.18)
2
where,
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D= . ®1,.,

1

g
5.7 Using a Bayes Factor in the Two-Period Crossover with a Single Baseline.

In the present case we may set g = 2 and k = 3 in (5.17) to give, for the saturated model, M, ,

-N/2 -N
P(X|M,) = b,w,r(g)(ﬁ) r(N)(SSZ) (5.19)

2 2

The model M, is defined by the contrast,

Ky
Hiz

(-1 172 1/2 1 -1/2 -1/2) i

Ha

Haz

so that since

(5.18) gives,

-N/2 172 252\ "N
P(XIMo) = b.wor(%’)(%‘s') ron(Z) (S_S_E) (5.20)

From (5.19) and (5.20) we have,
wel 2 1/2 22 -N
Bo = w—.(ﬁ) (1 "3¢Ss,

The minimum sample sizes allowing comparisonof M, and M ,aren, = 2, n, = 1 , or vice versa, and therefore
Spiegelhalter and Smith’s(1982) proposal leads to,

Wo 4 172
- 2:3)
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which implies that

wo _ 3
w, 2
and
3\ 28z ™V
Bo = (5) (“3qssz)
For the data in Table 5.2,

gq=0.08013 , N=50 , SS,=-1535.357 , A=-0.561

so that B,, = 3.975. As we previously noted there is little evidence to suggest that carryover has a significant
influence in this data set - P(A > 0| X) = 0.343 - and this is confirmed by the Bayes factor analysis which
implies that, a priori, one would need to believe it more than four times likelier that there was a carryover than
that there was not in order that the data and prior beliefs combined indicate that it is more likely than not
that there is a carryover. In other words if x is the prior odds against a carryover effect then,

x < 174 =3 P(M,|X) >%
Table 5.3 preseats transformations of prior to posterior beliefs about the likelihood of a carryover effect in
the light of the data in Table 5.2. These results confirm that the data give little evidence in favour of a carryover
cffect.

TABLE 5.3 Posterior Beliefs in "Carryover" for Various Prior Beliefs.

P(M)) X P(M,|X)
0.1 9 0.027
0.2 4 0.059
0.5 1 0.201
08 1/4 0.502
0.9 1/9 0.694

Following the analysis in §4.6 we may present inferences about the treatment effect, consequent upon
assumptions concerning carryover, graphically. Figure 5.2 presents the posterior expectation of treatment
effect (solid green line) and the associated 95% H.P.D. interval ( dashed green line), together with the posterior
probability that there is a positive treatment effect (red line) as a function of our prior belief in a carryover
effect. It is clear from this figure that there is little evidence to suggest a real treatment effect irrespective of
our prior beliefs in the model.
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6 THE TWO-PERIOD CROSSOVER WITH TWQ BASELINES.
6.1 Cell Means Model.

In Section §2.8 the cell means model proposed by Kenward and Jones(1987b) was introduced - see Table 2.6.
This model is a natural generalization of the model displayed in Table 5.1 for a crossover design with a single
baseline.The Kenward and Jones model will be used in this section.

6.2 Basic Distributions.

The cell means model put forward by Kenward and Jones(1987b) may be put into the general framework of
§3 by setting g = 2and k = 4 and by noting that,

Ky 1 1 1 0 0 0 0 0o K
Bz 1 1 0 1 0 1 0O o Y
K3 1 1 0 0 1 0 1 0 n,
TO 1 1 -1 -1 -1 -1 o0 1 n,
pa | 1 -1 1 0 o o o ol x,
W 1 -1 0o 1 o0 -1 o0 O .
ag 1 -1 0o o 1 o0 -1 o 6
- 1 -1 -1 -1 -1 1 0 -1 A
The inverse transformation has the form,
M 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8\ ["»
Y 1/2 0 0 0 -1/2 0 0 0 Hiz
n, 3/8 -1/8 -1/8 -1/8 3/8 -1/8 -1/8 -1/8 Hia
n | -1/8 3/8 -1/8 -1/8 -1/8 3/8 -1/8 -1/8 Mg (6.1)
1, -1/8 -1/8 3/8 -1/8 -1/8 -1/8 3/8 -1/8 Kzt '
- -1/2 172 0 0 1/2 -1/2 0 0 .
0 -1/2 0 1/2 0 1/2 0 -1/2 0 M
A -1 172 0o 172 1 -1/2 0 -1/2 oy

Consider the transformation (6.1) applied to (3.6) with g = 2and k = 4 . Standard properties of multivariate
normal distributions allow the following conditional posterior distributions to be derived,

(62+302)/4 -02 -62 -242

\
- 2 2 2 2
T ]q -d; 20; 0 30
,T,8,A]0%,62,X) = N 3 6.2
p(Y I 1 2 ) é 4 _og U; 20: 202 ( )
N
-2d? 302 202 642
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p(yioi.o5. X) ~ N(v.q(a}+3a3)/16) (6.3)

p(tla® e, X) ~ N(t.qoir2) (6.4)
p(oici.0;.5) ~ N(8.q03/2) (6.5)
p(Aio%.62.X) ~ N(XR.3q0%/2) (6.6)

where,
V= (Y11= Y21)/2
%'(‘§u+ ;1.2"’;2.!—;2.2)/2
0= (~Y11*Y1a* Y21~ Y23)/2

)-\'("23_/1.1 +§l.z+)—’|.4"'2?2.1"3_/2.2';2.4)/2
and where o2 = 02( 1 + 3p ) and, as before, a2 = g2(1 -p).

Putting g = 2and k = 4 in (3.9) gives,

) ss aNs2e ss
p(o3, 621 X) « (a%) leexp(-—2 2‘)(a§) sz 2exp(— :) (6.7)
o 205

Combining the marginal posterior distribution of 62 from (6.7) with in turn (6.4),(6.5) and (6.6) and integrating

out o gives,

B 2 . ~-(IN-8)/2

p(tlX) « ssz+5(r—r)2] (6.8)
r 2 -(3N-3)72

PO X) « ssz+5(e-é>2] (6.9)
r 2 -(3N-3)/2

P(AX) « 532*%()\";\)2] (6.10)

For this crossover design the probability of the variance component constraint is given by,

SS, 3(N-2))

P(o>0}1X) = ”(F“‘“‘"'“N-z Ss,

In the previous chapters there were two models M, and M, within which it was possible to estimate the
treatment effect, ©. In the current context there are four potential models within which we can estimate the
treatment effect. The four models, which we denote by M, , M, , M |, and M, , are defined as follows :
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M, :  saturated model

M, : 6=0
1\4,2 . A=0
My : 6=0 , A=0

From (6.2) conditional properties of multivariate normal distributions lead to,

s 2 _ T+(0-8)/2 qo§(3 4)}
p(t,A10.0%,02.X) N[( %+ (0-8) ),? 4 8 (6.11)

2 2 . %+(x-X)/2) cﬂ%(s o)]
p(T,8|A.02,02.X) N[(é*_()\_x)/s oalo 8 (6.12)
p(tIN,8.0%,02.X) ~ N(T+(A-RK)/2,q02/8) (6.13)

From (6.11),(6.12) and (6.13) the posterior densities of the treatment effect, conditional on the variance
components, are

. 8 3qo3
p(t16=0,0% 0%, X) ~ N(T—E, ‘;2) (6.14)
. K qo}
p(tIA=0,0%02,X) ~ N(T-z,—e—g) (6.15)
2
p(t|8=0.A=0,0%20% X) ~ N(%-%.C%’) (6.16)

‘under models M ,,, M, and M, respectively.

In Table 6.1 we summarise the conditional posterior distributions of the parameters of interest in the four
models M,, M ,,, M, and M. In order to derive the marginal distributions of the parameters in the various
models, we need the marginal distribution of 0 5 under these models. Simple manipulation of (6.7),(6.11),(6.12)
and (6.13) gives,

$8,+208%/¢q )

-3N/72+3/2
pe2ix. M) = (a9 exp( 5e3
o2

_832+2X2/(3q))

-3N/2+3/72
p(ollX. M) « (o)) exp( Sa7
UF

S$S,+38%/q-28R/q+ xz/q)

-3IN/2+2/2
p(oZ|X.My) < (03) exp -
203

combining these posteriors with (6.14),(6.15) and (6.16) respectively, and in each case integrating out o 2 gives,
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TABLE 6.1 Conditional Posterior Distributions in Nested Models : N (a,Bma?)

M, : T,0,A
T ~ T . 1/2
6 ~ 086 , 1/2
A ~ K, 3/2
My, T.A(0=0) M,, T,.0(A=0)
T ~ t-8/2 3/8 T ~ t-Rk/2 1/8
A o~ A-8 1 8 ~ 8-A/3 , 1/3
M, : ©(6=0,A=0)
T ~ T-Kk/2 1/8
- 2 27-(3N-4)/2
p(Tt| X, M) ssz+gg—+38—q(1:—%+g) ] (6.17)
r 2 CR\? -(3N-4)/2
P(TIX. M) S$2+%%+g('c—1:+§) ] (6.18)
B 2 2 271-(3N-3)/2
p(T|X. M) SSZ+§6——2—65+X—+§(1-—%+9) :I (6.19)
L Q9 49 49 ¢q 2
We may similarly derive,
282 | -(3N-4)/2
pP(MIX. M,) « [ssz+—q—+a(x-X+e)2] (6.20)
2X2 271-(3N-4)/2
POl X. M) « [332*——‘*3(9'9*&)] (6.21)

3q¢; 3

The distributions above allow inferences about any, or all, of the parameters of a particular model to be made,
conditional of course on the assumption that the particular model is the correct one.

6.3 Preliminary Analysis of GTN Consumption DATA Taken from Nicholls et al(1986).

The GTN consumption data taken from Nicholls et a/(1986) and displayed in Table 2.8 give the following
summary statistics :
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Yia=11.150 703.025 759.938 814.875 798.663

¥y..=11.875 B - 759.938 911.406 986.313 971.844
Y.3=11.750 '"| 814.875 986.313 1177.125 1178.688
7..=10.225 798.663 971.844 1178.688 1318.806
Y21=7.800 319.100 354.72S 328.550 543.27S
Ys2=6.675 .| 354725 553.881 463.800 791.244
Y23 =5.400 2| 328.550 463.800 434.900 745.200
2= 9.325 S43.275 791.244 745.200 1304.631

from which the following may be derived:

1.675

<
]

= 0.925
1.500

> o> A
"

- -0.300
SS, = 6049.275

SS, = 673.600

Using these statistics the posterior distributions derived above, namely (6.8), (6.9), (6.10), (6.17), (6.18), (6.19),
(6.20) and (6.21) are as displayed in Figure 6.1.

In this instance we again face the problems associated with choosing the "correct” model for making inferences.
To illustrate under models M, M ,, M, and M, the posterior probabilities of a positive treatment effect
are :

P(t>0|M,) = 0.794
P(t>0|M,) = 0.571
P(t>0{M,,) = 0.971

P(T>0|M,) = 0.969

respectively. Thus the inferences which we are able to make about the treatment effect are highly dependent
onthe choice of the model to be used to make the inferences. Kenward and Jones(1987b) propose the following
scheme :

i) Test the significance of © - compare models M, and M |, .

it) If © is not significant, then test the significance of X - i.e. compare models M,, and M,.IfO is
significant, inferences concerning the treatment effect, T , may be made using model M ,.
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FIGURE 6.1 Posterior Distributions for GTN Consumption Data
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iif) If A is not significant, inferences concerning the treatment effect, T , may be made using model M,
, otherwise M |, should be used.

Applying this scheme to the Nicholls ef al data would lead to the use of model M , for making inferences about
the treatment effect. The ultimate classical inference, therefore, would estimate the treatment effect as 1.075
with associated 95% confidence interval (-0.055, 2.205) and perhaps one would conclude that there is marginal
evidence supporting a significant difference between treatments.

6.4 Using Bayes Factors in the Two-Period Crossover with a Two Baselines.

If we set g = 2 and k = 4 in (5.17) then for the saturated model M, we have,

-N712 -3N72
P(X|M,) = bzwzr(%’)(%) r(%)(%—’) (6.22)

The model M ,, is defined by the contrast,
137

B3

(-1/2 0 1/2 0 1/2 0 -1/2 0) i

K2
H22

K2,

so that since

—
o O O ~
o O~ 0O
o - 0O O
- O O O

(5.18) gives,

-N/2 172 202\ "3N/2
P(X My = bzwnr(%{)(STSl) rcazv/z)(?) (332__*_') (6.23)
q 2

From (6.22) and (6.23) we have,

w,, (22 282 \N2
By, = —|= 1+
wz\q qSS.

The minimum sample sizes allowing comparison of M,, and M,aren, =2,n,=1 , or vice versa, so that
Spiegelhalter and Smith’s(1982) proposal leads to,
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w(:ﬂ”z

w,\ 3

implying that

3 172 262 -3N/2
B = | o= .
1.2 (Zq) (l+q332) (6.24)

Similarly for the model M ,, defined by the contrast,

K
Hiz
i3
(-1 172 0 172 1 -172 0 -1/2y] "™ | = o
K2y
K22
Ha3
K24
we have,
3 172 2X2 -3N/2
= — 1 6.25
Blz.z (2q) +3q332 ( )
and for the model M, defined by the contrast,
K
K2
i3
(—1/2 0 1/2 0 172 0 -1/2 0 ) (1 N (O)
-1 172 0 172 1 -1/2 0 -1/2 K2 0
Ha22
K23
Ha4

we have,

3 (1 362284 + Xz)'a"’z

B = 39 455,

(6.26)

Suppose there are three models M,, M ; and M, in which we have interest then from the definition of Bayes

factors,

_ P(M.IX) P(M)) . = LM,1X) P(M))
Y P(M) P(M;IX) " " P(M,) P(M\]X)

)

so that clearly,
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g p. o DMAX) PIM)) PIM,IX) P(My) P(M X)) P(My) B
v P(M,) P(M;|X) P(M;) P(M\iX) P(M) P(MilX) "

In other words Bayes factors are transitive. Using this result, and the clear fact that B,, = 1/ B, ,we may derive
using (6.24),(6.25) and (6.26) the following Bayes factors :

S$S8,+2R%/(3q)\ ""?
Bz 5S,+28%/
2 q
3 \'/2( 55,+382/q-28KR/q+K2/q\*""?
Bo.n oy 2
2q $S,+20%q
3 \2(5S,+308%/q-20R/q+K2/7q\*""?
Bo.lz 2_ 2
q $8,+2K%/(3q)
By definition,
P(M,l X) P(M,|X) P(My2]) X)
Byrxos B2 = 5% » Biua%e: = 3%

P(M2] X) P(M,| X) P(Mz| X)

where x,, = P(M,)/ P(M)so that,
1

P(M,1X) = 1+ BoaXoo+ Byy.2% 1.2+ B12.2X12.2
P(M,1X) = I+Bozxoz*“2:::2::1:Z+312.2K12.2
P(M ;1 X) = 1+Bozxoz+§::z::::"’sz.z*nz.z
P(MylX) = ot

1+ BoaXga+ Biy2% 1.2+ Biz.2%)2,2

The application of the above results requires specification of either the prior odds ratios, x, , or alternatively
the prior probabilities of the individual models M, . In §4.6 we suggested that indifference to the choice of
model could be represented byx = L In the present context indifference translatestox;; ;= %3 2= %g.2= 1
or alternatively P(M,) = P(M ;) = P(M ;) = P(M,) = 0.25 and application of this idea to the present data

gives the following :

B, , = 1.022
B,, = 2702
B,, = 1.404

B, = 2.644
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B,, = 1.373

By, = 0.519

suggesting that there is no strong evidence in [avour of one particular model and this is confirmed by the
posterior probabilities of the individual models :

P(M,) = 0.163
P(M,) = 0.167
P(M,;) = 0.441
P(M,) = 0.229

What is interesting is that if a priori we are indifferent to the choice of model, the data suggest that M ,, is the
most likely. This clearly conflicts with the Kenward and Jones(1987b) approach which effectively assumes that
M is the "correct” model with probability 1. We can progress the analysis by calculating the unconditional
posterior probability of a positive treatment effect from :

P(T>0|X) = P(T>O0|X,M,)P(M,|X)+P(t>0|X,M,)P(M, |X)

+ P(T>0[X.M,)P(M,, | X)+P(t>0|X,My)P(M4y]X) (6.27)

which for the present data gives P(t > O | X ) = 0.875, suggesting no strong evidence that there is a difference

between treatments.

It is tempting to suppose that with the calculation of the above unconditional posterior probability the analysis
is complete with the exception of providing the unconditional posterior density of the treatment effect, p(t | X)
, which is shown in Figure 6.2 together with the conditional posterior treatment densities. However, as we
pointed out in §4.6, posterior beliefs about treatment effects depend on prior beliefs about the "correct"” model
and in order to present conclusions in a way that allows different individuals to input their own subjective
beliefs we need a way of representing this dependence. In the next section we present one method of graphical
representation.

6.5 Graphical Representation of the Dependence of Posterior Inference on Prior Beliefs.

Suppose that interest centres on the calculation of P(t > 0 | X') and that we wish , in analogy to the analysis
in §4.6, to provide a graphical display of the dependence of P(t>0 | X)on P(M,) ,P(M,,) ,P(M;)and
P(M,). In order to simplify the notation somewhat let P,,x denote the unconditional posterior probability
P(t>0]X);Paix,Pi1ix,P121x and P, xthe conditional probabilities P(t >0} X, M,) ,P(t>0 | X. M ;)
,P(T>0|X,M;;)andP(Tt>0{X,M,)andP,,P, ,P ,and P, the prior probabilities P(M,) , P(M,)
,P(M,) and P(M,). We may manipulate (6.27) to write it in the form,

P - PaPax+ By 2P Pryx* B2 2P 2P 3x+ Bz PoPoix
vIx Py+ By 2P+ B2 2P 2+ By Py

(6.28)
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Suppose we fix P ,, the (6.28) can be thought of as providing a means of displaying straight line contours of

Py x over the simplex P, + P, + P, = 1 - P, . The intersection of the contours with the edges of the simplex
may be derived as follows :
iyset Py =0,P,;=1-P,- P, and solve (6.28) for P, to give,

Py(Pax=Puyix)+(1 - P3)B 3, 2(P1zix— Pyix)
Blz.z(Plz|x'PU|x)'Bu.z(Plux'wa)

Pll

ii)setPll-o.Po-l—Pz-Plz andsolvc(6.28) fOl‘Plz tog.ve,

Po(Pyx=Pyx)+ (1= P3)Boa(Poix— Puix)
Bo2(Poyx = Pyix)= B2, 2(Pizix— Puix)

Py =

iii) set P,, = 0, P,; = 1 - P, P, and solve (6.28) for P, to give,

Pa(Pax—Pyx)+(1-P3)B 2(P11yx~ Puix)

P
° Bn.z(Plux'Puu)"Boz(Polx'Ple)

If, for a given value of Py x , there exist values of P, ,P,, , P,,and P, giving rise to this value then only

two of the three above cases give the endpoints of the particular contour. Which two of the three are the
correct ones may be easily found from the condition,

0< P, Py Pe<1-P,

A graphical display of the dependence of posterior inference on prior beliefs may therefore be created by
displaying contours of P(t >0 | X) on a triangular plot of the simplex P, + P 3+ Po =1 - P, for a number
of values of P ,. To illustrate we have used the method for the GTN consumption data taken from Nicholls et
al (1986).

The choice of values for P , is essentially arbitrary although some values are clearly of interest. We have chosen
for this application the following values :

P, = 00 , 025 , 0.50 , 0.75

Use of P, = 0 allows us to look at the case when we assume a priori that the saturated model is impossible
whilst P, = 0.25allows us to consider the case of indifference P, = P,; = P\, = P, . We have purposely
ignored the value P, = 1 since in this case the posterior inference which we make is simply based on P ;
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effectively this corresponds to the assumption that y1, is the correct model with probability 1. As we said
before, the choice of values is essentially arbitrary and the values 1/2 and 3/4 were merely chosen to span the
range between indifference and certainty. Applying these ideas to the Nicholls et a/ data gives rise to the
graphical display shown in Figure 6.3.

There are a couple of features of Figure 6.3 which are worthy of comment :

i) Whilst the contours are linear functions of the individual model probabilities, the separation of the
contours is non-linear, This feature corresponds to the non-linear relationship between P(t>0 | X)
and P(M ) shown in both Figures 4.5 and 5.1.

ii) If we are interested in posterior probabilities of a positive treatment effect greater than 0.95, then
our initial prior belief in the likelihood of the saturated model M, must be less than 0.25, at the same
time our initial prior belief in model M ,; must be less than approximately 0.10. This requirement
effectively says that we would need to be a prion fairly certain that there is unlikely to be a second-order
carryover effect (treatment X period interaction) in order that posterior probability of positive treatment
effect is high.

6.6 Analysis of Weekly Anginal Attack Data from Nicholls et a/(1986).

Table 6.2 displays a second set of data from the study reported by Nicholls ef 4/(1986). In this instance the
data relate to weekly angina attack rates. The table also contains the mean vectors and matrices of corrected
sums of squares and cross-products derived from the data.

From the summary statistics the following may be derived :

y = 2.800

i = -0.650
8 = -0.475
A = -3.125

SS, = 4927.372

SS, = 392.216

The scheme proposed by Kenward and Jones(1987b) allows the following conclusions to may be made :

i)0=-0.47S , s.e.(8)=0.852 , with associated two-sided p-value 0.5796, from which we

conclude that we may reject the saturated model M, .
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TABLE 6.2 Weekly Angina Attack Rate.

THE TWO-PERIOD CROSSOVER WITH TWO BASELINES.

1st Period 2nd Period
Sequence Patient Baseline Treated Baseline Treated
e e— |
TN-ISDN 1 1.00 2.00 2.00 125
4 41.50 30.00 31.50 27.00
10 20.50 20.50 21.00 25.50
12 15.50 14.50 14.50 13.25
14 16.00 18.00 12.50 9.00
15 2.00 3.50 3.00 225
17 10.00 9.00 7.50 5.50
20 10.00 8.50 6.00 425
22 14.00 2.00 2.00 125
24 5.50 2.50 1.50 2.50
ISDN-TN 3 17.50 19.25 19.00 21.25
5 11.00 6.50 7.50 6.50
7 4.00 2.00 1.50 3.00
9 11.00 16.50 10.00 18.25
13 6.50 425 0.50 1.25
16 6.00 3.25 2.00 400
18 1.00 0.00 0.00 0.00
21 3.00 0.75 3.00 525
3 9.50 1.00 0.50 8.50
25 10.50 14.00 11.00 1725
Y11= 13.600 1220.400 900.950 961.350 879.325
Yi12=11.050 g | 900.950 813.225 829.925 777.788 ‘
¥13=10.150 ! 961.350 829.925 881.025 841.613 ‘
714=9.175 879.325 777.788 841.613 856.756
Y2, =8.000 213.000 263.750 235.500 283.875
Y22 =6.750 B.-| 263.750 459.625 376.625 455.250
Y25 =5.500 2| 235.500 376.625 351.500 389.000
324=8.525 283.875 455.250 389.000 524.056
| — —




ii) In model M,, ,A =-2.650 ., s.e.(A)=1.198, with associated two-sided p-value 0.0311, so
that we cannot reject model M ,,.

ili) In model M ,, ,Tt=-0.413 , s.e.(T)=0.733, with associated two-sided p-value 0.5761, so
that the ultimate classical conclusion is that there is no evidence of a significant treatment effect.

The Bayesian analysis is based on the posterior distributions (6.8)-(6.9) and (6.17)-(6.21) which are displayed
in Figure 6.4. Inspection of this figure shows, firstly, that in both models M, and M,, there is evidence to
suggest that the second order carryover, A , is important - under M, the 95% H.P.D. interval for A is
(-6.085,-0.165) whilst the corresponding interval under M ,, is (-5.050,-0.250). Secondly, treatment inferences
are again highly dependent upon the model. As illustration the following posterior probabilities may be
calculated :

P(t>0|M,) = 0.225
P(t>0|M,) = 0.288
P(t>0[M,,) = 0.979

P(T>0|M,) = 0.979

and by implication the second order carryover, A , determines whether one is able to conclude that there is
a real treatment effect, or not.

The data give rise to the following Bayes factors:
B, = 2.306
B, = 0.250
0.489

)
8
]

which, if we are indifferent to the choice of model, give
P(M,) = 0.247
P(M,) = 0.570
P(M,,) = 0.062
P(M,) = 0.121

Thus under an indifference model there is much more evidence to support models including A rather than

excluding it and therefore we are led to conclude that there is no great evidence for a treatment effect, indeed
the marginal probability of a positive treatment effect is 0.399.
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Figure 6.5 provides a graphical display of the posterior distributions of the treatment effect under the models
My, My, M ,,, M, together with the marginal posterior distribution of the treatment effect under the
indifference model. This latter distribution is of particular interest evidencing, as it does, the sort of shoulder
described in §4.6 even though the more peaked densities are less than 1/5 as likely than the less peaked
densities.

We can again provide a graphical display of the relationship between the prior model beliefs and posterior
inference. This we give in Figure 6.6. It is clear from the top left-hand triangle, that is when P(M,) = O, that
only when we are practically sure that A is not in the model can we conclude that there is a real treatment
effect.
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7 EXTRA PERIOD CROSSOVER DESIGNS.
7.1 Introduction.

In this chapter we investigate Bayesian analyses of extra-period crossover designs. These designs have been
recommended by numerous authors as preferable to the simple two-period two-treatment crossover design
mainly because the contaminating factor - carryover or period X treatment interaction - can be estimated
within patients.

72 Three Period Design with Two Sequences.

We noted previously that the three-period two-treatment crossover design ABB,BAA is universally optimal
amongst all three-period two-treatment designs and we will therefore restrict our attention to this design. In
the discussion, however, we will return to other designs in the class of three-period two-treatment designs to
see how, for a Bayesian, they are inferior to the above design.

72.1 Cell Means Model.

In §2.10.1 the cell means model considered by Kenward and Jones(1989) was introduced - see Table 2.10. In
line with our parametrizations of previous models we use the cell means model shown in Table 7.1 where, as
previously, y represents the sequence effect, n, and %, independent period effects, ju the overall mean, ©
the treatment effect and A the carryover effect.

TABLE 7.1 Cell Means Model for the Design ABB,BAA.

Sequence Periods
Group 1 2 3
ABB H+y+I,+T H+y+T,~T+A H+Yy-T,-N,-T-A
BAA Hoy+T,-T Hoy+T,+T-A H=y=T, =T, +T+A
722 Basic Distributions.

By setting g = 2 and k = 3 and by noting that,

K
Hi2
K13
Kz
K22
K23

[V S S .
I
o
o
|
Pt
A
N

the cell means above may be put into the general framework of §3. The inverse transformation takes the form,
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B 176 1/6 176 1/6 1/6 1/6 Hi

Y 174 1/8 1/8 -1/4 -1/8 -1/8 \[ P

| 1/3 -1/6 -1/6 1/3 -1/6 =-1/6 || ny 71
n, -1/6 1/3 -1/6 -1/6 1/3 -1/6 || u, '
. 174 -1/8 -1/8 -1/4 1/8 1/8 [\ y,

A 0 1/4 -1/4 0 -1/4 w4\,

By applying the transformation (7.1) to (3.6) with g = 2 and k = 3. From standard properties of the normal
distribution the conditional posterior distribution of the location parameters pi,y, 5, ,1,, T and A given 02
and p takes the form,

(;l.l + ;l.2+ ;1.3"';2.1 "';z.z"' 3—/.2.3)/6
(2Y 11+ Y12¥ Y137 2Y21" Y22~ ¥223)/8
(2Y 11" Y127 Y13%2Y21"Y22"¥23)/6

p(u.y.n,,n,,t,A|0%,p,X) = N I i = 2 z (7.2)
e (-¥11*2Y12" Y137 Y21+ 2Y22"Y223)/6 3
(2Y 11" Y127 Y137 2Y21%Y22% Y23)/8
B (51.2'71.3*";2.2";2.3)/4 B
where,
8q(1+2p) 8r(l+2p) 0 0 0 0
8r(1+2p) 3q(3+5p) 4r(l-p) -2r(l1-p) 3q(l-p) 0
T .- o? 0 4r(l-p) 16q(l1-p) -8q(l-p) 12r(1-p) 0
3 " 96 0 -2r(l-p) -8q(l-p) 16(1-p) =-6r(l-p) 12r(l-p)
0 3q(l-p) 12r(1-p) =-6r(l-p) 9q(1-p) 0
0 0 0 12r(l-p) 0 12q(1-p)
From standard properties of multivariate normal distributions the following posterior distributions may be
derived from (7.2),
- 2
2 2 - T l 30’2 0
p(t,A0],05,X) N[(X)'Sz( o 4o§ (7.3)
p(tle.62, X) = N(T.3q03/32) (7.4)
p(Alo3,02,X) = N(KR,4q03/32) (7.5)
where

- (2;1.1 ";1.2'9.1.3"2;2.1 + §z.z+ ;z.s)/e

T
A - (;l.z';l.a';z.z"';z.a)/“
and 02, q and - are as previously defined.

Setting g = 2and k = 3 in (3.9) gives,
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i SS " SS
p(o%,621X) = (02) " ?exp| -== |(62)™"" 'exp| - === (7.6)
207 203

Combining (7.6) with in turn (7.4) and (7.5) and integrating out 0% gives,

-{2N-3)72
] (7.7)

32 .
p(tlX) = [ssz+§(1--¢)2

]-(2N-3)/2

P(A[X) « [ssz*%(h'ﬂ)z (7.8)

We could at this stage proceed precisely as we did in §4 and §5 defining M, to be the model containing
carryover and M, the model without carryover. However examination of (7.3) shows that v and A are
independent, and therefore the only thing to be gained from such an analysis is an extra single degree of
freedom in the posterior distribution of 02.

723 An Example of the Three-Period, Two-Treatment Crossover with Two Sequence Groups.

In Table 2.11 we presented data from a study involving anti-hypertensive treatment. The first two sequences
of that design, namely L-LC-LC and LC-L-L, form precisely the design considered above and we may therefore
analyse those sequences alone following the method given in §7.2.2. These data give rise to the following

summary statistics,

¥1.1=96.818 1355.273 831.909 359.636
Yi2=92.227 B,-( 831.909 1421.864 732.455)
¥13=91.909 359.636 732.455 1765.818
¥2.1=90.333 2674.000 1815.667 1887.333
¥22=91.815 Bz-(1815.667 2528.074 1637.148)
Y25~ 90.630 1887.333 1637.148 3280.296

from which the following statistics may be calculated,
T = 1.410
A = -0.217
SS, = 9184.540
SS, = 3840.785
Using these statistics the posterior distributions derived above namely (7.4) and (7.5) are as shown in Figure
7.1. The posterior distribution of the treatment cffect, T , shows that there is evidence to suggest that there is

a difference between Lopressor(L) and Lopresoretic(LC) with respect to their effect on diastolic blood
pressure. The posterior probability that ¢ is positive is 0.9931 and the posterior expected value is 1.410
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FIGURE 7.1 Posterior Distributions for Diastolic BP Data
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corresponding, to Lopresoretic reducing diastolic blood pressure by approximately 3 mm Hg more than
Lopressor. In contrast, the posterior distribution of the carryover effect, A , shows little evidence of a carryover
effect, although the 95% H.P.D. interval for A is (-1.506,1.072).

7.3 Three Period Design with Four Sequences.

Ebbutt(1984) whilst acknowledging the optimality of the two-sequence three-period design considered in §7.2
argues that the four-sequence three-period design in this section is preferable a) because the latter design
allows more complex models to be considered, b) the former design does not have the same treatment in
consecutive periods which should highlight carryover effects most clearly and c) the former design may cause
bias since investigators will know that the treatments in the last two periods are always identical.

73.1 Cell Means Model.

The cell means model which we consider in this chapter is shown in Table 7.2 where,

K - overall mean,

v, (i=1,.3) - independent sequence group effects,

n, (i=12) - independent period effects,

T - direct treatment effect,

A - first-order carryover effect,

(2] - second-order carryover effect,

(AT) - interaction of direct and first-order carryover effect,
(vyn), (i=12) - independent group x period interaction effects.

These last two effects are included to complete the partition of the total 12 degrees of freedom available in a
three-period design with four sequences. We will, when considering basic distributions for analysing this design,
condition on these effects being zero and they will thus contribute to our knowledge on the within patient
variance component alone.

7.3.2 Basic Distributions.

We may place the above cell means model into the general framework developed in §3.1 by setting g = 4 and
k = 3 and by noting that,

EXTRA PERIOD CROSSOVER DESIGNS. 7-5



(1) -0-Y+2-Zu-"uw-SA_ZA_'A v [ 2(uA) - (Y2) ¥ -2 +2U+CA—ZA 1A _1i
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avd
(N2)-@+x-2+%u-"u-tA 4 f(eA) = (Y1) =Y +2-%u+%h 41l T(rA)+2 4 w4 BA 4 vav
(Y2)+o-Y+2+%w-"u-2A4l (UA)+(YL) - Y -2 42U+ %A 41 Z(uA) -2 - +ZA 41l vve
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whose inverse transformation has the form,

— T~
= 8 2 3 8§ R s § 8B 3 ¢ 9
4 4 3 2 2 3 3 3 2 a3 3
/’ e
— N
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) 1 11— N
!
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| ) -
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(7.9)

Consider the transformation (7.9) applied to (3.6) with g = 4 and k = 3. Once again standard properties of

multivariate normal distributions allow the following conditional posterior distribution to be derived,

(7.10)

h

P L D

(TN)
(yn
(Yi)z

|

—

PCT. A0, (TA)(ym), . (YR),10%,p,X) = N

where,

7-7
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i A L R At I S R A AP I AL A

T o= (Y *Y1272Y 15" Y21~ Y22t 2Y20" Yau~ Va2 2Yaa* Yar* Yz - 2Y4,)/8
o= (V2= Yia~Yaz* Y20~ Yai* Yost Y1~ Yas)/2
8 = (YY1 410t Yo = 5Y 20 Y25 7Ya1 " Yoz * BY 55 7Y+ Yar = 8Y,2)/8
(t\) - ('3-/1.1';l.z'*zl_/l.s';z.l'52.2*2;2.3"'53.1"’;az'zii.a*§4.|+3_/4.z‘23_/4.3)/8
(Y), = (~¥11*Y12* Va1~ Ya2)/4
(Y1), = (=Ya1* Yoo+ Ya1~Yaz)/4
3m, 6m, 6m, 3m, 0] 0

6ém, 16m, 6m, 6m, 4mg; 4m,
o®(1-p)| 6m, 6m, 3m, 6m, 6mg; 6m,

Lom T3 3m, 6m, 6m, 3m, O 0
0 4mg; 6my 0 4m, 0
0O 4my, 6my 0 0 4m,
m o= L,1,1.1 m. = L,1,2.2
! R, N, n3 n, ’ 2 n, n; ny n,
m - ol,l 1,1 335 s
n, n; n3 n, n, np nzg n,
11 1
s R, n, ’ ¢ n, n,
m, = L.7,19.19 m. = -+,1.2.2
7 n, n, ny n, ' 8 n, n, n3 n,
m. = 1.1 S T
*  ny o I PR W

Settingg = 4 and k = 3 in (3.9) gives

_N/2e SS N SSs
p(o?, 021 X) = (02)""* " exp| -==3 |(62) " Cexp| - (7.11)
20% 20%

We noted previously that the effects (yn ), and (y1), were of no particular importance and that we would
condition on their being zero. From conditional properties of normal distributions the following distributions
may be derived where we have notationally ignored that the distributions are conditional on the above two
parameters being zero,
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YRR o TR dip L T

T 3m, 6m, 6m, 3m,
p(T.A.0,(TA) 02,02, X) = Nl: 2 ;é Z:; :2:; g::: Z:: (7.12)
(™) 3m,; 6m, 6mg 3m,
p(tle?,62.X) = N(%.s'gé"g) (7.13)
p(A|o%,02,X) = N(x‘,m-‘s—"’g) (7.14)
p(8lot, 02, x) = N(e'.sr';‘;’;) (7.15)
p((tA) o3, 02, x) = N((ﬂ\),s';;g) (7.16)

where

L - X_("a‘"1)(Yh)l_("z’"4)(Y}‘)z
n,+n, na+n,

_3(na=n) (Y1), 3(nz=ny)(Y),
2(n,+nj) 2(ny+n,)

Since we have set (yn), and (yn),to zero (7.11) no longer provides the posterior distribution of o ? which
now becomes,

S8,+8(y1n),2/my,+8(yn),%/m
2 (ymn), 9 (yn), lo) (7.17)

-N+2
p(oZ1X) = (o}) exp(- 2ol
Combining the marginal distribution ofo 2 from (7.17) with in turn (7.13),(7.14),(7.15) and (7.16) and integrating
out o2 gives,

8(yi),2 8(YW),2 32 .|~
p(t|X) « [SSZ+ o + P +3ml(1:—1:) (7.18)
8(yn),® 8(yn),> 8 . z]"”"”’
AlX) « | 8S,+ + +—(A-K 7.19
P(M|X) [ 2 . p— mll( ) ( )
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(7.20)

8(Y}l)lz+ 8(Y}[)22+ 32 (e-é-)z]'(ZN'S)IZ

0)|X) «= | 88
PCOTX) [ 2* Mmy My 3m

8(ym),* 8(ym).* 32
my m, 3m

~(2N-8)/2
PU(TA) [X) = {ssz+ l((m-(m)z] (7.21)

In the previous chapter there were four potential models within which the treatment effect could be estimated.
In the present case we consider the following models :

M, : full model

M, : (tA)=0

M,, : (TtA\)=0 , 8=0

M, : (tA)=0 ., A=0

My : (tTA)=0 , 0=0 , A=0

Clearly there are other models which could be investigated, however considerations of marginality suggest
that the above models are the only ones which need to be considered.

From (7.12) conditional properties of multivariate normal distributions lead to,

Model M,
30im
- 2 2 - -ss 2 14
p(t|(Tt\)=0,07.05.X) N('r ,———32ml) (7.22)
40im
- 2 2 ~ L] 2 13
DA (TAN)=0,07,05,X) N(X '32"11) (7.23)
30Zm
- 2 2 ~ v 27t 16
p(O|(TA)=0,07,05,X) N(é , 32m|) (7.24)
where
~ue - m:!
" o= 1:—’-7-1—!(1:"}\)
e 2m3
A" = K- P (T\)
T zma
] = B=- P €29
m,, = mf-mg
m, = mlmll-3m§
m;, = mlmla-4m:
Model M,
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30im
. Tx =0'9=0,02'02,X - N —.t.' 2 17 )
p(tl( ) 1092 ) ('U 32m, (7.25)
ws O5M
P(AI(TA)=0,8=0,0%,02,X) ~ N(x ,— “’) (7.26)
8m,
where
see . mlmz"mame e
T =1 2—
m1m|3-4mg
e . mym;,-2m;m .
A - Ao azo
m|m|3—4mg
2 2 4(’711"12""13"1:)2
My, = my—mgz- 2
mym3—4mj
2 3(m,m|z—2m3m,)z
mg = mm,;-3m;- 3
mym;3—-4msg
Model M ,,
(t1(EA)=0,A=0,0%,02, x) ~ N[, 30EMs (7.27)
p » ’ 10 2 ’ 32ml .
2 2 s 3Ugmzo
p(O|(TtA)=0,A=0,07,03,X) ~ N|d ‘o (7.28)
1
where
(12 1) . 3 m?—mg L1
- ——_——X
2m,m,, -3m}
euuo - !l_gmlmlz—zmama (1]
2 mym,,-3m}
e = miomz. 3(mi-m8)®
19 1 3 m,m,,-3m?
m - m.m _4m2_3(m1m|z'2m:ma)2
20 1My3 s mm,, - 3m?
Model M,
(TI(TA)=0,A=0,0=0,02,02,X) ~ N('E'"" Smai 0% (7.29)
p ' ' e '32m,(m,;m,, - 3m3%) )
where

EXTRA PERIOD CROSSOVER DESIGNS. 7-11



..... - t...._Z(m.mz—m,m,)(m,m,,-3m§)-3(m?-m§)(m,m,z-2m3m,)e....
(mym=4m3)(m,m, -3m$)-3(m ,m ;-2m,m,)?

3(2(m1mz‘mama)(m|mn'3"1:)"3(m?'m§)(m|m|2"2m3ma))2

m - (mi-m¥(m,m,, -3m3)-3(m*-m2)*-
! T ma)mam 2= 3(m, - m3) ((m,m,-4m3)(m,m,,~3m3)-3(m,m ;- 2m,m,)?)(m,m,,-3m?)

The posterior distribution of 63 depends upon the particular model considered. Under M, the posterior
distribution of 2 is given by (7.17) while the remaining cases are as follows :

8(ym)i, 8(YM)F 32(1&)1}

My My 3m,

N 1
M,:p(o21X) « (02)™" alzexp{——l:832+ (7.30)

2
205

8(ym)i, 8(ym)i 32(xh)? _ 32m,(8™)° ]}

N+ 1
M, :p(21X) « (o) ™" ‘exp{-—[ss +
. 2 2 H 2 my mo 3m, 3(m m;3-4m3)

205

(7.31)

2
203

N 1 8(yn)? 8(yn): 32(th)?  32m,(A"")?
M:p(o21X) « (a2) " 'ex {-—— SS,+ + + +
12 2 2 P 2 my My 3m, 4(m;m,, -3m3)

(7.32)

8(ymi 8(ymiF 32(vh)? 32m,(8")° ]}

N+ 1
My:p(o2|X) = (02) " '%ex {-—— SS,+
o:P(0z | X) (02) P 2 T, Mo 3m, 3(m,m;3;-4m3})

202

eee 2
{ . 32m,(x ) } (7.33)
4(m,my,-3m)~12(m m;z~ 2myme)2/(m m 3~ 4m3)

Under M , the posterior distributions of T, A and © may be obtained by combining respectively (7.22), (7.23)
and (7.24) with (7.30) and integrating out o3 cach giving a t-kernel. Likewise, under M, (7.25) and (7.26)
are combined with (7.31) to give the posterior distributions of T and A respectively; under M ,, (7.27) and
(7.28) are combined with (7.32) to give the posterior distributions of v and © respectively; under M, (7.29)
is combined with (7.33) to give the posterior distribution of ©.

Before applying these results to the complete data in Table 2.11 it is instructive to consider the case of equal
n,. Suppose, therefore, thatn, = n, = n3 = n, = n, then conditional on knowing the variance components the
marginal posterior distributions of the effects in each of the models M4, M,, M |, , M ,, and M s are, in a similar
notation to that of Table 6.11, as given in Table 7.3.

The fact that the posterior distributions of T,A and © under models M, and M, are identical reflects the
fact that the effects (yn), and (v n),are orthogonal to the other effects in the full model as pointed out by
Jones and Kenward(1989,84.8). The remaining results in Table 7.3 are also to be found in §4.8 of Jones and
Kenward(1989).
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TABLE 7.3 Conditional Posterior Distributions in Nested Models : N (a, Bo2/n)

Model Effect a B
M, T T 3/8
A N 2
2] <] 39/8
(tA) (T™\) 3/8
r
M, T T 3/8
A N 2
e (] 39/8
M, T t-36/13 3726
A A-88/13 2/13
M, T t-3L/8 3/32
2] 86-3%/2 3/8
M, T T-3A/8 3/32

733 Preliminary Analysis of the Data Displayed in Table 2.11.

The diastolic blood pressure data given in Table 2.11 give rise to the following summary statistics :

T T TS T TR R AT AR

SO Wk I

TR R AR ATEIRIE R e
e

¥.,=96.818
¥i2=92.227
¥,3=91.909

Y3, ~90.333
¥32=91.815
Ya.3=90.630

Y3, = 93.304
Y32~ 89.739
Yia=92.087
Y41~ 90.941
Y42=88.412
Y.3=86.235
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from which the following may be derived :

1355.273

B,=| 831.909
359.636
2674.000

1815.667
1887.333

B,

B,=| 2177.826
1595.391

2220.941
1008.412
1257.235

By~

{
(

831.909
1421.864
732.455

1815.667
2528.074
1637.148

2177.826
3084.435
1298.522

1008.412
1384.118
949.353

359.636
732.455
1765.818

1887.333
1637.148
3280.296

1298.522
2233.826

1257.235
949.353
1335.059

)
)
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FIGURE 7.2 Treatment Posterior Distributions for Heart Rate Data
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1.544

1.311

> P A
L}

= 2.425
(¥\) = -0.046
(yi), = -0.256
(yit), = 1.003
SS, = 18963.449

SS, = 6825.124

At this juncture we could, as in §6.3 and §6.6, display posterior distributions for all of the parameters in each
of the models M,, M,, M ;,, M, and M,, and that is clearly appropriate for the purpose of assessing the
likely importance of the nuisance parameters A, 6 and (tA). Accepting the importance of such a display,
here we will only display the posterior distributions of the treatment effect, T, under each model as the
treatment effect is generally of primary interest. The posterior distribution (7.18), and those derived from
(7.22) and (7.30), (7.25) and (7.31), (7.27) and (7.32) and (7.29) and (7.33) are shown in Figure 7.2. The
posterior distributions displayed in Figure 7.2 clearly demonstrate that inferences concerning t are dependent
upon whether (tA) and either A or © may be assumed to be negligible or not, although it should be noted
that under any of the models there is evidence of a positive treatment effect. In general this will not always
be the case.

73.4 Bayes Factors in the Three-Period Two-Treatment Crossover with Four Sequence Groups.

If we set g = 4 and k = 3 in (5.7) then since the model M ; is determined by the contrast,

l(-llO 0 001 -1 0O 00)

C=2t o000 -11 00 001 -1 0

and since
L 0O 0 O
n,
1
0O — 0 o 1 0 O
n,
oSG )
0 0O — © 0O 0 1
ns
0 0 0 L
n,
(5.18) gives
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N SS -N/2 3N
”‘X'M°""°‘”=r(5)(‘z") (%)

- 8(v1)2 8(vn)2 ~3N/2
X(mem/64) ”2(%[332" (Yn)‘+ (YH)Z])

7.34
My My ( )
Similariy M , is defined by
1-1 -1 2 -1 -1 2 1 1 -2 1 1 -2
C-§ -2 2 0 0 0 0 2 =2 00 0 0
0 0 0 -2 2 0 0 0 0 2 -2 0
so that from (5.18)
NY(SS,\"? (3N
P(X|M2)-b,w2r(§)(71) r(T)
- - - -3N72
ay-12( 1 8(ym)i 8(YM): 32(ThA)
X (48m,m,m,,/32°) (2[332+ T T am, (7.35)
M, is defined by
-1 S -4 1 -S 4 -7 -1 8 7 1 -8
cof-r -1 2-1-12 1 1 -21 1 -2
8| -2 2 0 0 00 2 -2 0 0 0o (0]
0] () o -2 2 0 (0] 0] 0 2 -2 0
so that from (5.18)
NY/(SSs,\"2 (3N
P(X|M,,)-b,w,,r(§)(7') r(?)
-z[38m, 1 (12mZ 9mZ om2\]'?
3.-1/2 r_ 1 8 3 6
X(48m,mym ,/327) [—-32 32( P + p— + mlo)]
3112 Y2 3 \2 e 2 -3IN/2
x 1 Ssz+8(Yn)|+8(Yﬂ)z+32(T)\) . 32m,(6) n (7.36)
2 me my, 3m, 3(mym3-4mg)
M |, is defined by
0 4 -4 0 -4 4 -4 0 4 4 0 -4
Cl -3 -3 6 -3 -3 6 3 3 -6 3 3 -6
24| -6 6 0 0O 00O 6 -6 00 0 O
0 0 0 -6 6 0 0o 0 0O 6 -6 (]

so that from (5.18)
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sl RIS TR,

N SS -N/2 3N
P(ng,a-baw,zr(g)(T‘) r(——z—)

w2l 16m, 1 (12m?2 4m?2 4m2?2\|'?
X (48m m,m,,/32%) ""? e — 3 s s
(48m mgm , ) 32 32\ m, + m,+m,°

X(l[ssz+8(Yh)%+8(Y}l)§+32(T‘X)2+ 32ml(K-.)2 ])'3NIZ

- 7.37
2 my my, 3m, 4(m,m,,-3mj}) ¢ )

M, is defined by

0 4 -4 0 -4 4 -4 0 4 4 0 -4
1 -3 15 -12 3 -15 12 -21 -3 24 21 3 -24
C-=2—4 -3 -3 6 -3 -3 6 3 3 -6 3 3 -6
-6 6 0 0 0 0 6 -6 0 0 0 0
0 0 0 -6 6 (o) 0 0 0 6 -6 0
so that from (5.18)
NY(SS,\ " (SN)
P(XIMO) bawor(a)(T) r ?
12mi 4m? 4m? 12mamy 6m2 6m2\ | '?
1 om - e ™ T m, m
X 48m m.m /323 -1/2 =2 1 9 10 1 9 10
( 179 o ) 32 12mymgs 6m? 6m? 3m 12m? 4m? am?
M4 m, my My 7 m, My My

)2 N2 3.2 10,2
x(1[332+8(vﬂ)|+8(Yﬂ)z+32(rk) . 32m,(e™)

2 My Mo 3m| 3(mlm|3-4m§)
sse -IN/2
32m,(A""")? D (7.38)
4(mlmu'3m§)"‘Iz(mlmlz‘2m3me)2/(mlmla'4m§)
From (7.34) and (7.35) we have
2 -3N/2
-2 22) 7|1 2ON.____ 7.39)
23 Wy 3m| 3m|{SSZ+ (:‘:)l-o- (‘::)z} :
Similarly, (7.35) and (7.36) give,
B w,, 3m7+1 12m§+9m§+9m§ Tz
2 w,] 32 32\ m;, my my
1 32m,(0"")? TN
+ O
s(yn)?  8(yx)} 2 (7.40)
3(m|mn‘4m§){3$z* ::w ’:muaz;;‘»:)}

EXTRA PERIOD CROSSOVER DESIGNS. 7-17



R L

(7.35) and (7.37) give,

wp[16m, 1 (12m?2 4amZ am?\]'?
B3 53732 M
2 m, mye My
l . 32ml(K..)z -3N/2
X svi)?  B(ym?  3a(chy? (7.41)
— 2 t 2 (429}
a(mymy, - 3m) (55, + L, 200E, smcsh }
and finally (7.35) and (7.38) give
12m3 4m2 4m? 12mamg 6mZ 6m2\ | ‘2
16m,— - - 6m‘— - -
B Wo _l_ m, Mo My m, myg My
2 w,|32 12mams 6m2 6m? 12m2 4m? 4m?
ém,- - = 3m, - - -
m, My My m, My My
x[1+( 32m,(e")* | 32m,(A""*)? )
3(m,m,3-4m}) 4(’"1"‘11'3"‘%)“lz(mlmlz‘zmama)z/(mlmla'4”13)
8(ym)2 8(ym); 32(th)2\] ™2
p (ss,+ ()i, 8(vmi 32(th) 7.42)
my My 3m,

Our standard approach would now be to use Good’s method of imaginary observations and to set
n,=2,n,=n3=n,=1 oranyother permutation of the indices. However, whilst this approach is applicable
to (7.39), there is a problem when applying it to (7.40), (7.41) or (7.42). The essential problem is evident in
the definition of the m s on pages 7-8 and 7-9, namely that the coefficients of the terms are not symmetric in

the n;s. Thus, for example, m , has a different coefficient for ,.L' than it does for —; this is also the case for

.
ny?

m, and mg. In fact the conditionn, =2,n,=n;=n,=1 is not necessary in this design since all effects,
other than the group effects are estimated within patients, and since we have conditioned (yn), and (yn),
to be zero there are 2 degrees of freedom available for estimating 0% . Thus we propose setting
n,=n,=nz;=n,=1 for determining the ratios of the constantsw,/w,, w,,/w,, w,,/w, and w,/ w, giving

the following :
l wz( 32 )1/2 5 w2 (8)']/2
sw—:, 34 ws 3
(st (@)
32

w, Wy 8

1=t£g(l6'4)_”2 -> 'fﬁ_zllz
W, 32

I_E’_O(Q)—“z - 'ﬂ’_(f‘_)m
Wa 4 wa 3
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These ratios may be substituted into (7.39), (7.40), (7.41) and (7.42) to give By3, B1,.2.B 2.2 and B,
respectively from which the following may be derived using the transitivity property of Bayes factors developed
in §6.4:

By 3=B,, 2By + By 3=Bi3 ;B3 « Boy=BoByy

Generalising the approach taken in §6.4, then given that x, = P(M,)/ P(M,) and since by definition

Bk, = P(My| X) Bk = P(M,o| X) B x . PM., |1 X) B o . P(M | X)
o3 ™03 P(M,lX) ’ 02 ™02 P(lex) ’ 1m,2"™11,2 P(lex) ! 12,2 12,2 P(MZ'X)
then,
P(Ma1X) = L
3 1+ Bop3koa+ Byy 3% ),9% Biz,3%12,3+ Boakos
Boyxay
P X) =
(Mz1%) 1+ Byxos+ By 3% 1.3% Br2.a%12.3% BoaXos
By1,3% 1.3
P(My 1 X) 1+ Bagkas+ By, 3% 11,3+ B12.3%12,3* BosXoes
Biz.3% 12,3
X) = - -
P(My; 1 X) 1+ Bpykaa+ By 3% 11.3% B1z2.a% 12,3+ BoaXos
Bosxg;
P(MylX) =

1+ Bogkgy+ By 3% 11.3% B12.3% 12,3+ BoaXos

As before an assumption of model indifference translates to x 3= %}y, 3= X 3,3 o3 = 1 Or alternatively
P(My)=P(M;)=P(M, )= P(M,;)= P(M,)= ;. Applying these results to the data in §7.3.3 gives rise
directly to the following :
32334.642
B, ,=3.171
B, ,=3.634

Boy=18.619

and from the above relationships ,
B”'a- 14.717
By, 4= 16.870
By = 86.424
. .
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P(M,|X)=0.008
P(M,1X)=0.038
P(M, 1X)=0.119
P(M,,|X)=0.136

P(M,|X)=0.699

These results indicate that it is unlikely, even under an indifference model, that any of the carryover-type
nuisance parameters, namely (tA), 6 and A, are in any sense significant,

Continuing the generalisation we may calculate the unconditional posterior probability of a positive treatment
effect using :

P(T>0[x)=P(t>0| X, M,)P(M,|X)+P(t>0|M,)P(M,|X)
+P(T>0] X, M} )P(M,, | X)+P(t>0|M)P(M; | X)

+P(T>0] X, M)P(M,|X) (7.43)

The data under consideration gave the following :
P(t>0] X, My)=0.9670
P(T>0|X,M,)=0.9676
P(T>0|X,M,)=0.9909
P(t>0|X,M,)=0.9968
P(t>0] X, M,)=0.9966

50 that from (7.43) we may determine P(t > 0] X)=0.9946 indicating that there is considerable evidence
in favour of a positive treatment effect. Interestingly the analysis of the data from the sequences ABB and BAA
gave a posterior probability of a positive treatment effect 0.9931 with a posterior expectation of 1.410 mm Hg,
in contrast to a posterior expectation of 1.136 mm Hg in this section.

One further generalisation which we do not pursue in detail is to extend the graphical analysis developed in
$6.5. Using the same notation as in that section we may manipulate (7.43) to write it in the form,

P3Pgx+ BaaPoPyx+ By 3P Pryx+ Br2,3P12P12ix * BoaPoPox
P3+ BypPy+ By 3P+ Biz 3P 12+ By Py

Pyxy= (7.44)

Suppose now we fix both P, and P, then again (7.44) can be used for displaying straight line contours of P, x
over the simplex P,,+ P ,+ Po= 1 - P;- P,, precisely as in §6.5. In this case triangular plots for various
combinations of different P,and P, may be produced.

EXTRA PERIOD CROSSOVER DESIGNS. 7-20



it Aottt Al b A

LGS

8 ANALYSIS OF TWO-TREATMENT CROSSOVERS UNDER NON-UNIFORMITY.

We have thus far, in §4-§7, restricted attention to analysing crossover studies under a mixed ANOVA, or
uniform covariance, model. In this chapter we provide a framework for a second set of Bayesian analyses for
two-treatment crossover designs under the assumption of a general, non-uniform, covariance matrix. We first
develop general results covering a Bayesian analysis for comparing multivariate normal samples with a general
covariance matrix and then show how these results may be applied to the two-period two-treatment design.
We could derive similar analyses for the other designs which we have considered, but we will allow this simple
design to stand proxy for the others as it will be clear how to generalise the approach to the more complex

designs.
8.1 A Bayesian Analysis of Multivariate Normal Samples under Non-Uniformity.

In contrast to the analysis presented in §3 we suppose that the data in the g groups have a general covariance
=. As in §3 suppose at the end of the study that n, patients in groupi complete the study and let y, and B,
be the mean vectors and matrices of sums of squares and cross products respectively. With these definitions
the likelihood is proportional to,

-3 | — L= — ~(n,- 1 —
TTiz ‘exp(—%cy‘—u.)'s '(y.—u,))xrcl ‘ "”exp(-étr(: 'B.)) (8.1)
i=]

Suppose that a realistic "ignorance" prior for the parametersy,,p2,..., 4, and Z is of the form,

Py Hgeee i, B) « |ETEOD2 (8.2)

We will again consider the reasonableness of (8.2) later. Combining (8.1) and (8.2) gives the posterior dis-
tribution of the parameters in the form,

1 - —_—l,— _-
PCly B By BN X) o:|3|“"'*"”2exp(-5z[n.(y.-u,)’: "(yimu)-tr(E 'B.)]) (8.3)
[

The marginal distribution of =may be obtained by integratingp,,u2,..., i, out of (8.3) to give,

p(ElX) « |= I‘(N‘k-ool)lz exp(_%z tr(E-lB‘)). (8.4)

¢
Combining (8.3) and (8.4) gives,
- - -9/2 1 - P23t Wt
PR Hae e B [E.X) = |2 exp(-ézn,(y,-u.) z (yru,))
which implies that ,
P(Rybge e B 2 X) = N [(51Y5--.¥4) 0 E] (8.5)

where,
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u’l-(p'll'u'lZ' "“"llk)l ’ ;l-(;ll';IZ' "";lk)"

and let X ., be the commutation matrix defined by MacRae(1974) ( see also Magnus and Neudecker , 1979),

for example,
1 0 0 0 0O
0O 0 01 0 O
% - 01 0 0 0O
32 0O 0 0 01 O
0O 01 0 0 O
0O 00 0 01
Make the transformation ,
y
K2
IJ'. = Ky
Ho
to give,
P IZ.X) = NglKp(x,XpX0)" o Ky ZK,g] (8.6)

which using Theorem 3.1 (viii) of Magnus and Neudecker(1979) implies that ,

PRy By Beny) |2, X)) = Nak[(g(l);(Z)"'—x-(k))"zl] (8.7)

where,
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1
n;
“u)"(unuzt'“uqty v Xy =0 Xg.xy) L, =E®
1
ny
Equation (8.4) implies that ,
p(EIX)=V;'(iB,.N—g—k+l) (8.8)
i1
Combining (8.7) and (8.8) implies that ,
Hn KRz o B
B2y B2z -0 By
1) . . . ){ =
Hor Hg2 Kok
Xy X e Xy /";i
Xy Xap e Xp n,'
tﬂl ‘ ‘ * ’ . ] 53 B‘nhl—'g'-k:+ l (8.9)
i=1
Xg1 Xgz oo X \ n,'

using Theorem 8.5.1 of Box and Tiao(1973). The distribution defined in (8.9) is a matric-variate t-distribution

given by,

By Bz o By

W2y M2z o Ko
Dlu = . . . X -

u’ql p'gz se p’qk

n,
r(N/2) w2 i ( )" .. Rz )

r(1/2)"rk[(~-/c)/2](m"‘) (‘..B‘) le\ g8y o) o w-w)

where

r,(b) = [r(1/2)]P"’"”2ﬁr(m“;p) b>";1
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8.2 The Two-Period Two-Treatment Crossover.

Asin §4.1, the cell means model shown in Table 2.1 may be put into the general structure of §8.1 by setting
k = g = 2 and by noting that,

Ky 1 1 1 0 W
U2 1 -1 -1 1 n
TP 1 1 -1 0 T
T 1 -1 1 -1 A

From (8.9) the posterior distribution of i), #,2. H2 and p,, may be written as,

_ — . )
x x n
p[ (l»ln ulz) X] - t, (_n _12)' 1 . .ZB,.N-B
Ray M2z X1 X2 n, =1

We concentrate on the treatment and carryover effects, t and A and note that they may be written as,

i Bz l)
AN = (1/72 -1/72
=M ¢ )(l"lz l"zz)(o 1

Then from standard properties of matric-variate and multivariate t-distributions (see Box and Tiao,1973,
§8.4.3) the following posterior distributions may be derived,

T q Cn Clz _
p(T.XlX)-tz[(x).Z(clz sz).N 3] (8.10)
p(r|X)-t(%.%Nc—_“—3.N—3) (8.11)
p(KlX)-t(X.%Nsza.N—3) (8.12)

- C qC”—sz/sz
A=0, X)=tj t-A—,-————= N- 8.13
p(| ) (1 szz4 N-3 'N-3 (8.13)

where A and T are defined in (2.1) and (2.3) and

2 2 2
Cu=) (B}, . C.z=cz.-Zl[<B,>..+<B.}.21 : czz-};[(B.>,,+2<B,>.z+w.>n]
in] {= -
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8.3 Discussion.

There are great similarities between the analysis presented in the previous section and the analysis based upon
a uniform covariance matrix developed in §4; but there are important differences. To illustrate the similarities
and to highlight the differences we return to the anginal attack rate data from Wheatley(1987) displayed in
Table 2.3.

These data give rise to the following summary statistics :

¥1.1=8.065 8 _(945.871 235.548)
Yi2=4.226 17\235.548 327.419

Y21 =6.344 8 _(1727.219 1401.063)
¥22=9.813 2 \1401.063 2204.875

from which the following may be derived,

%=0.861
A=-1.933
C, =2673.090
C .12 = C,y =4309.701

C,, = 8478.606

Based upon these statistics the results in §8.2 give rise to posterior distributions each of which is a t-distribution
as follows,

p(T|X)=1(0.861,0.707,60)
P(A| X)=1(-1.933,2.244, 60)
p(T|A=0,X)=1(1.843,0.128,60)

the corresponding posterior distributions based upon a uniform covariance matrix are,

p(t|X)=1(0.861,0.684,85.7)
p(A| X)=1(-1.933,2.207,61)
p(t]A=0.X)=1(1.827,0.126,61)

There are a number of issues which arise by comparing these two sets of posterior distributions :
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The posterior distributions for A are identical in the two models, except that in the general covariance
matrix case there is one degree of freedom less than in the uniform covariance case. This should not
really be surprising since in the former case there is an extra unknown parameter and part of the
information in the data is used in estimating this parameter, with a consequent loss of a single degree
of freedom. In practical terms this makes little difference with a reasonably sized study, but there are
theoretical issues which are related to the marginalization paradoxes considered by Dawid et a/(1973).

In the general covariance, in contrast to the uniform case, the posterior marginal distribution for t is
based solely on data from the first period, as in Grizzle’s(1965) approach, although again a single degree
of freedom is lost. This arises because in this case the second period provides no useful information
concerning variability since the variances in the two periods are no longer assumed to be equal. A
marginal advantage is that one need no longer consider a Behrens-Fisher distribution, although there
is therefore a loss in sensitivity.

The near equality of the conditional posterior distributions for T given no carryover effect will not in
general be the case. In this particular instance it arises because the sample variances in the two periods
are nearly equal and of necessity are close to the estimated single variance in the uniform case, namely
43.82 and 41.51 for the first and second periods as opposed to 42.67 in the pooled case.

Since the posterior for A is again a t-distribution we may use a similar Bayes factor for model M , versus
M, as was used in the uniform case. In the more complex crossover designs the necessary Bayes factors
need to be determined from the more general multivariate results derived by Smith and Spiegelhal-
ter(1981).
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9 TREATMENT OF MISSING VALUES IN CROSSOVER DESIGNS.
9.1 Introduction.

The development thus far has, in a sense, taken place divorced from the realities of practical life. We have,
for example, assumed :

i) that the original measurement metric of each of the clinical parameters which we have considered
allows an analysis based on linear models and Gaussian random variation.

ii) that our data are free from outliers, or influential observations.

iii) that our data are complete; there are no missing data.

Potentially, at least, (i) is particularly important. Firstly, it is not clear in what metric one should choose to
measure beliefs. Conceivably, one particular metric may be preferable. Alternatively, if the metric is largely
irrelevant, then our inferences may be considered robust (c.f. Box and Tiao0,1973,§3.2). Secondly, experience
suggests that certain metrics are preferable in terms of approximating normality. For example, commenting
on Racine ef a/(1986), Cox(1986) suggested "there is prior evidence based on careful analysis of data that for
detailed analysis log blood pressure and perhaps reciprocal pulse rate are good variables to analyze ...".
Interestingly Jones(1986) arrived at the reciprocal transformation for the blood pressure data considered by
Racine et g/(1986) which was confirmed by these authors in the reply to the discussion; they also expressed a
preference for the logarithmic transformation for the pulse rate data. The analysis which they used was based
onPerrichi’s(1981) Bayesian approach to determining a transformation to normality. There is no great difficulty
in applying this approach to crossover designs and thercfore we do not pursue it further here.

As far as outliers are concerned they too are important, particularly in crossover designs where they can
influence the choice of model in which treatment effects are estimated. Berry(1990) has shown that an outlier
in the data given by Brown(1980) has a major impact on the perception, at least, of the relationship between
the measurements taken in the two periods. Indeed in this case the outlier has an even greater impact since
if it is not excluded one concludes that there is significant carryover effect - p < 0.10, and if it is excluded
one concludes, if one uses Grizzle’s procedure, that there is not a significant carryover effect - p > 0.10. Again
the work of Pettit and Smith(1984) is relatively easily applied to crossover designs and therefore we again do
not pursue it further here.

The work of Patel(1985) suggests that there is much to be gained from the use of all data from a crossover
design, and that the exclusion of data from patients for whom all data are not available is potentially wasteful.
However, care needs to be taken when considering whether data from a patient for whom some data are
misssing should be used, since if the reason that the data are missing is related to treatment then potentially
one may produce a biased estimate of the treatment effect.
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In the present chapter we consider how one can tackle missing value problems from a Bayesian perspective
for the simple two-treatment, two-period crossover design answering directly one of the questions posed by
Freeman(1986) - "what happens with real data sets that have missing values, outliers, early crossovers and so

on?"

9.2 Missing Values in the Two-Period Crossover,

Suppose in a two-treatment, two-period crossover that complete information is available for n, + n, patients,
n,, + n,y patients have only data in the first period and n,, + n,, only in the second, where in the light of the
comments above the incidence of missing data is unrelated to treatments. The pattern of the data is as shown
in Table 9.1.

TABLE 9.1 Pattern of Missing Data in a Two-Treatment, Two-Period Crossover.

Sequence A->B Sequence B A
Patients Period 1 Period 2 Patients Period 1 Period 2
Y Yz Yan Y212
Yz Y22 Y221 Y 222
n, . . n, . .
Yin,1 Yia,2 Y 2n,1 aniz
Xy X 21
ny . Missing ny, . Missing
X1n, X 24,
P
z, Z21
n,, Missing . Ny, Missing .
_— zlnu Zz"i

The n, + n, patients with complete data make the following contribution to the likelihood,

z - - e — ———
ﬂ exP(zT'z('Tn—lﬁ[(y“ -un)z-Zp(y‘.l ) (Y2~ HRp)* (%.z'l’qz)z])

(R, *n “(Ry*my)/ -1
x (a®) "P-pn "]jexp(m[sm—zos,.nsm]) (9-1)

where p =p+R+T , Pz =B=T-T+A , U "R+A-T , Pp=u-N+T-A , 0®=(05+02)/2,
p=(0%-02)/(0%+0?) and S,;, are the relevant elements of the matrix of corrected sums of squares and
cross-products in sequence i . Suppose that the patients with missing data values give means x,, X2, z,. 2
and corrected sums of squares S, then their contribution to the likelihood takes the form,
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"1[ - 2 - 2 = 2 = 2
exp é?é N = H1y) (2 =) vy (X Uy ) R (2,- 1) ]

M CTTRLIPAL PYRS PP Ik-d

-1
x (d%) eXP(F[SfHsz*S%;*Sin) (9.2)

The first lines in (9.1) and (9.2) may be respectively rewritten as,

2 -1 - NN e
HGXD[?(M.'L.. l»*:z‘y‘.z)z:ol( " —”)} (9.3)

is1 Hiz2"Yi2
and
2 -1 - —afra-x
Hexp[?(u”—x‘. Pﬂz"zt)znl( " —‘):| 9.4
i=1 Hia™ 2y
where
o?(1 »p
Zio 717(9 1)
and
nL 0
zll = 2 " 1
o -—_—
R

Using (A7.1.1) from Box and Tiao(1973) (9.3) and (9.4) may be combined to give,

-1 . B T T N LR
ﬁe’(p[?(“n"l‘u (TYPRad TIP9 D I(u“ uu)?()’u"‘n Yz~ 2)E, 1(?_1.! ’_‘4)] (9.5)

iel TYP g TIN Yia— %,
where,
i, - v np(n+n,(1 'Pz))(;:‘;1.1)'*"1"129(-2-1";4.2)
‘" “ "f"‘"n"u*‘"lnaz"‘"unlz(l"l’z)
- - nlnup(;a’;u)"’"12("«"‘":1(1 'Pz))(zl";t.z)
Bz = Y2 * 2 2
R+ g+ MR+ NG Rp(l-p%)
5 o? ("l"'"na(l -9% np )
" nZ+nng+rng+ngng(l-p?) np n+n,(1 -p?)
and
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. o? (ntz(”x*’nn) Ny P )

T o=
2
nn,ng; n,n,p n,(n,+n;)

and therefore the full likelihood may be written as,

2 —l - - - u -‘1
HexP[?(uu_uu [TOPRl P9 DI l( " -”

iel Hiz 7 K2
-1 — = = e Yamx
xl—[e p( 20] - T —2dSm- 293112+31221 (3/41 X, Yiz—2J)L, l(—” —‘))
a®(1-p%) Yiza~™ %y
“(2R *28,08 R ;P R,y *R)/2 (8, *8,)/2 -1
X (02) 2°R SRRyt Ry)/ (1- 2) R *8y)/ exp(z;z'[sfﬁsf’*' Sgl +S§2])

In the current parametrization the prior density has the form p(it,,, 1120 B21 B2z, 62,p) * [02(1 - p?)]™
and therefore the posterior distribution of the parameters may be written in the form,

PRz B2 B2z 62,0 1 X) = p(Ryp Mize B2 Baz | 02,9, X)p(0%,p | X)

where
PRy Bz BB | op,X) = N[(llu’lllz-ﬁzpﬁzz)/-z] (9.6)
(D
0 I,
and

2 ._l — -— - y x
p(e®.plX) « Hexp(m[s,..—zpsm ,221 LT Yia-Z)EL '( b _))

i=1 Yia= %y

(2R, *2R,98 |, *R |+ Ry *R-2)/2 -(n,*n,)/2

(0®) (1-p%)

2
[A2+n,n, +n 0+ npyng(l =93 I[N+ nang + Nangy+ nyyngp(l -p?)]

X
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(-1
xexP(z_ai[s?l +8%,+ 8%, "322])
(9.7)

Applying that part of the inverse transformation (4.1) relating tot and A to (9.6) gives the following posterior

distributions,
o o,
p(t.A|e®p,X) = N[({E’;;)(o o:)] (9.8)
11% 1S
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where

ﬁll*ﬁzl

(p) —

l».‘n*llxz"'llzl"‘ﬁzz

A(p) =
o = o_‘( ny+ni(1-p%) . na+nz(l-p%) )
* 4\n}+nn+nng+nn(l-p?) "z"‘nz"zl"'nznzz"'nzlnzz(l p?)
0 = o_’_( m(1+p)+na(1-p%) ny(1+p)+ny(l-p?) )

©» 4\nf+nny+nin+nn(1-p2) ni+nyng +nang+ nang(l-p2)

o = a_( 20, (1+p)+ (A0 *n2)(1-p%)  2n5(1+p)+(na+ng)(1 -p?) )

» 4 "1"'"1"11"‘"1"12“‘"11"12(1'P) "'z""'lznzx"'"z"zz"’"zl"zz(1 p?)
p(tlo®p.X) = N(t(p).0?) (9.9)
P(Alo%,p,X) = N(A(p).o2) (9.10)

(6)?
p(T|A=0,0%,p,X) = N('c(p) x(p) 2. o?- ;: 9.11)
A

The standard way to proceed would be to combine (9.7) with, in turn, (9.9),(9.10) and (9.11) and integrate
out both 0? and p . The result of such a process is a hypergeometric function of 2 variables and therefore
cannot be considered a practical solution. Two alternatives methods suggest themselves.

First, Gelfand et 2/(1990) have proposed a method based on Gibbs sampling - sce Geman and Geman(1984).
We do not intend to pursue this approach here since whilst we can agree with Gelfand et a/ that the main
advantage of the Gibbs sampler approach is its casc of implementation to problems involving complex
likelihoods we do not agree that other potential methods are ’likely to be "one-off" and, in any case, not routinely
implementable by most applicd statisticians’, indeed applicd statisticians may also have difficulty in applying
the Gibbs sampler approach since the concept is likely to be novel to most of them.

A second, pragmatic, way forward is to integrate o analytically out of the above combinations and then to
use numerical methods to integrate out p. A program to carry out this type of analysis is presented in §A6.2
in which the final numerical integral is performed using Gaussian quadrature. In the next section this method
is illustrated using the example considered by Gelfand ef a/(1990).

9.3 An Example of a Two-Period Two-Treatment Crossover with Missing Data.

Gelfand et 4/(1990) take data from Maas et 2/(1987) to illustrate their proposed method for treating missing
data in the two-period crossover based on the Gibbs sampler. We present the original data taken from Maas
et al(1987) in Table 9.1 since the data presented in Gelfand et a/(1990) are incorrect. The context of this data
is a bioequivalence study in which it was desired to test whether a new, chewable (C), formulation of the
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anti-epileptictreatment Carbamazepine was bioequivalent to the standard (S) tablet formulation. The standard
approach in bioequivalence studies is to assume that the logarithms of the response variables, routinely either
the area under the plasma concentration curves (AUC) and/or the maximum plasma concentration (CMAX),
follow the standard linear model for crossovers and interest centres on the making inferences about the ratio
of AUC’s or CMAX’s - see for example Racine-Poon et ¢/(1987). In our parametrization, therefore, we will
need to transform in the case of the treatment effect toexp(2t)and a corresponding transformation exists
for the carryover effect. In order to illustrate their technique with missing data, Gelfland et a/ treated three
observations as missing. These observations are shown in bold print in Table 9.1.

TABLE 9.1 Bioequivalence Data (CMAX - ug/m!)Taken from Maas et a/(1987)
(C = Chewable Tablet , S = Standard Tablet).

Period Period
Sequence Subject 1 2 Sequence Subject 1 2
C-8 1 519 4.07 S-C 3 421 4.86
2 483 5.16 4 3.89 539
6 3.72 2.94 5 523 541
7 4.19 2.98 9 3.50 4,01
8 420 3.48 10 3.68 4.55

The data in Table 9.1 give rise to the following summary statistics ;

n,=3 n,=4

n,=1 n=1 n,=0 Nyp=1
¥.1~1.480877 y.2=1.326631 ¥, =1.39212 Y22~ 1.56918
x,=1.31371 z,=1.40364 X;=0 Z,=1.58104

S, =0.0132482

Sz, =0.0973115

S nma2 "™ 0.0444875

S212=0.0573021

S.122=0.1602117

S22~ 0.0629484

S% =0 S%2,=0 S%4, =0 S%,=0

Applying the method described in the previous section to these data gives the posterior distribution for v, A
and < | A = O as shown in Figure 9.1. Included in this Figure are the posterior distributions derived from all
the data and also those derived byignoring those subjects for whom complete datais not available. The resulting
posterior distributions reveal a typical pattern in such trials with missing data: firstly, if there is missing data
from a subject then if we can assume that there is no carryover we may as well ignore data from that subject
completely; secondly, if we cannot assume that there is no carryover effect, or if we wish to make inferences
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about the carryover effect itself, then we should take into account the missing data; finally, the loss of such a
considerable amount of data results in substantially increased inferential uncertainty. As far as this particular
example is concerned, the objective of bioequivalence studies is to determine whether the ratio of CMAX'’s
lies within 0.8 to 1.2 and therefore, since none of the posterior distributions for the treatment effect assign
high probability to this interval the conclusion is that the two formulations are not bioequivalent.

9.4 Relative Efficiencies and Bayes Factors.

We saw in the previous section that depending on which model is appropriate for making inferences we may
gain little from including data from subjects for whom complete data are not available. We may investigate
this phenomenon further by considering the posterior variances of the parameters under various conditions,
assuming that the variance components are known.

Suppose (i)n, = ny=n ;(ii)n,, = ny = n 3 = nyy = k; (iii) k = an. Then using the above results the posterior

variances of T.A andt|A =Oare

62 = a? 1+a(l-p%)

el 2n(1+2a)+an(l-p2)
- n2

02, = g2 (1+p)+a(l-p%)

n(l+2a)+a?n(l-p?)

42 _ 9 (1-p)+a(l-p?)
TIre0.1 4 n(1+2a)+a?n(1-p?)

Corresponding to these we may also calculate the conditional variances which would arise if we were to ignore
those patients with missing data which are,

2. = 9

.2 2n

o2 - a?(1+p)

N2 n
2 _ 9%(1-p)
Oyin-0.2 an

and finally we may calculate the conditional variances which would have arisen if complete data had been
available on all 2n + 4 k patients. These are,

2

02, = o
.3 2n(l +2a)
2 a?(1+p)
Ix.3 n(1+2a)
o? - o®(1-p)
TIA=0.3 4n(1 +2(!)

In §2.8 we measured relative efficiency by the ratio of variances. Adopting that approach in the present context,
using of course in this instance conditional posterior variances, gives the following relative efficiencies :
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p(exp(7)lexp(A)=1,X)
p(exp(7)IX)
p(exp(A)IX)

All Data
___________ Incl. Miss. Data

6] D v Excl. Miss. Data

Posterior Density
%

o

0.8 1.0

FIGURE 9.1 Posterior Distributions for Data from Maas et al (1987)
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o\ (+a(l-p?))/(1+2a)

RE T) = — =
T T TR eh (v 2a)
RE. (A = oi. _ (1+a(1-p))/(1+2a)
1.2 02, 1+a?(1-p2)/(1+2a)
0%ix-0.1 (1+a(l+p))/(1+2a)
RE, ,(T|A=0) = S
1207 ) 0%ine0.2 1+a?(1-p?)/(1+2a)
RE, (1) = B . 1+a(l-p%)
3 02, 1+a2(1-p2)/(1+2a)
oF 1+a(l-p)
RE, j(A\) = —=! =
13(2) 02, 1+a?(1-p2)/(1+2a)
9%n-0.1 - l+a(l+p)

RE, j(TIA=0) =
1.a(T| ) 0 r0.3 1+a?(1-p%)/(1+2a)

Since in most crossover studies the correlation between observations on the same patient, p , is likely to be
large, it is of interest to study the behaviour of the above relative efficiencies as p tends to 1. In the limit the
relative efficiencies become,

REv2(W) = o3
RE, ,(A) = —
' 1+2a

RE, ,(T|A=0) = 1

[

RE, 5(t) =1

el

RE, s(A) =1

p=1

RE, s(t|A=0) = 1+2a

Pl

Whilst these limiting relative efficiencies are of interest, in practice p » 1 , and therefore it is of interest to
investigate further these efficiencies by considering other values of p. In Table 9.2 we present values of R £ 2(T)
LRE, 2(N) ,RE,2(T|IN) RE, () ,RE,s(N\) and RE,; 3(v|A) for different values of
a=0.1,0.2,0.3,0.4,0.5 andp=-0.3,0.5,0.7,0.9.

The limiting relative efficiencies, and those in Table 9.2, mirror precisely the behaviour of the posterior dis-
tributions in Figure 9.1 and therefore we are forced to conclude :

(i)  if we may assume that there is no carryover effect then there is nothing to be gained by taking account
of patients for whom complete data is not available. '
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TABLE 9.2 Relative Efficiencies in Two Period Crossovers with Missing Data

Relative Efficiencies
a p RE, 5(T) RE, 3(N) RE,3(TIN) RE, () RE, 2(N) RE,(TiN)
0.1 03 1.083 1.062 1122 0.902 0.885 0.935
0.5 1.068 1.043 1.143 0.890 0.870 0.952
0.7 1.047 1.026 1.165 0.872 0.855 0.971
09 1.017 1.008 1.188 0.847 0.840 0.990
02 03 1.152 1111 1.228 0.823 0.794 0.877
0.5 1.126 1.077 1.273 0.804 0.769 0.909
0.7 1.086 1.045 1.321 0.776 0.746 0.943
09 1.032 1.014 1373 0.737 0.725 0.980
03 03 1211 1.151 1322 0.757 0.719 0.826
05 1.175 1.103 1.391 0.734 0.690 0.870
0.7 1121 1.060 1.468 0.701 0.662 0.917
0.9 1.046 1.019 1.553 0.654 0.637 0.971
0.4 03 1.262 1.184 1.406 0.701 0.658 0.781
0.5 1219 1125 1.500 0.677 0.625 0.833
0.7 1152 1.071 1.607 0.640 0.595 0.893
09 1.058 1.023 1731 0.588 0.568 0.962
05 03 1.306 1212 - 1481 0.653 0.606 0.741
0.5 1.257 1.143 1.600 0.629 0.571 0.800
0.7 1.180 1.081 1.739 0.590 0.541 0.870
0.9 1.070 1.026 1.905 0.535 0.513 0.952
(ii) if we need to make inferences about the carryover effect, or if the assumption of no carryover effect is

not tenable and therefore the marginal posterior of the treatment effect needs to be used rather than
the conditional posterior, considerable gains may be made by taking into account missing data.

The above results suggest, potentially at lcast, that if we are to perform the Bayes factor analysis derived in
§4.4 then we need to use patients for whom not all data are available. In this instance the calculation of the
Bayes factor needs to be carried out wholly numerically. The program given in Appendix A6.3 was written to
carry out the required numeric integrations. No further work is required to determine the ratio of undefined
constants in this approach, since Good’s device of imaginary results provides exactly the same value, namely
\/?;' , for both the missing and complete data cases. The Bayes factors for the Maas ef al example are :
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Complete : 1.050
Including patients with missing data : 1.035

Excluding patients with missing data 11243

and as might be expected, taking into account missing data gives a closer reflection of the complete data case
than does excluding patients with missing data.
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10 ACUTE TOXICITY TESTING AND LD50 ESTIMATION - A REVIEW.
10.1 Introduction.

The basis of all modern work on acute toxicity testing and LD5q estimation is an article by Trevan(1927),
although as Stigler(1986) points out the most familiar model associated with LD5( estimation, the probit
model, can be traced back to Fechner’s work on stimulus-response model during the last century (Fechner,
1860). Trevan’s objective was to investigate whether the then popular "minimum lethal dose" was a good
measure of the toxicity of a drug or whether other measures could be determined which were in some sense
better. Trevan concluded that,

’... toxicity should be stated primarily in terms of "median lethal dose”, that is the dose which kills
50 percent of a large group of animals. As a convenient abbreviation I would suggest for this the

symbol LD 50, ....." (Trevan, 1927, p. 490)

There were two major reasons for Trevan’s conclusion. First, he argued that the median lethal dose was a
simply-understood concept which scientists would readily recognize. Second, he pointed out that the median
lethal dose has the advantage that it is in a region of doses which can be estimated with the smallest variance.

Interestingly, Trevan was primarily interested in assaying biologically substances such as insulin and digitalis
which could not then be analysed chemically and we will see in §13 that such applications are still relevant
today. The method was in time adopted for toxicological purposes and was for a long time considered to be
a very valuable means of determining the likely consequences to man of, for example, accidental overdosage
with a drug or inadvertent ingestion of a chemical. In addition to its role in safeguarding human health, the
LDsp test also became a mandatory requirement for the registration of both pharmaceutical and industrial
chemicals.

For this latter purpose, the need for a precise determination of the LD5g value led to the routine use of large
numbers of animals in order to minimise statistical variability even though it has long be known, by toxicologists
and statisticians working in the area, that the LD5g value is susceptible to minor changes in experimental
conditions and that, however many animals are used, it is subject to wide variability. Hence, a ’classical’ or
formal’ LDsq test is one in which the primary aim is the determination of a "precise’ LD5 value, using a
defined set of experimental conditions. In general, this requires between 80 and 100 animals, although pre-1970
many more than 100 animals were used. The test was often required in two rodent specics and by a variety of
routes of administration, depending on the type of chemical being used.

In the present section we concentrate on the traditional methods of estimation in ’classical’ LDs tests,
concentrating on maximum likelihood estimation. At the end of the section we review the modern controversy
surrounding LD5q tests and the alternatives which have been put forward.
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10.2 Tolerance Distributions.

One of the primary concepts in biological assays in general and in LD5( tests in particular is that of the
tolerance distribution. Essentially the idea behind the tolerance distribution is that for each individual in a
population there is a specific stimulus, or dose, below which no reaction, or response, occurs and above which
it does. Clearly it is unlikely that each individual in the population has the same cut-off dose or tolerance and
therefore the idea of a distribution of tolerances across the population is a logical development.

Suppose that the tolerance dose is given by 6 which has a distribution in the population which may be denoted
by £(6).1f adose 6, were to be given to the whole population then all individuals within the population whose
tolerances are less than 6, will respond, in the present context die. Clearly the proportion of the population
who will die is given by,

60
P(8,)= [ £(8)as
o

The median of the tolerance distribution, 6, is by definition given by,

ol
ff(a)da =0.5
1]

and it is this quantity , that is the dose which will kill 50% of the population subjected to it which is the LD5p
and which we need to estimate.

Clearly, any estimate of the LD5q will depend upon the particular tolerance distribution which is assumed.
Traditionally it has been assumed that the tolerance distribution is lognormal although other distributions, for
example the log-logistic, have been used. Under a lognormal distribution with parameters p and o the
probability of a response given a dose 6 ,may be expressed as

P(8o) = ®[(log(6y)-n)/0]

and where 1 is the log(LD5q).

In the next section we outline how maximum likelihood may be used to estimate 1.
103 Maximum Likelihood Estimation.

Suppose in k& dose groups each of n, animals are exposed to a dose d, of a test substance, and further that a
log-normal tolerance distribution is appropriate. As we have seen above under this model the probability of
dying given a dose d, is
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P, = ¢[a+fBlog(d)] (10.1)

where & (x) is the standard normal cumulative distribution function, a and 3 are related to the parameters
u and o of the tolerance distribution by

a = -p/c . B = 1/0

Suppose that of the n, animals dosed withd, , r, die within the observational period, then the log-likelihood
function has the form

l = ‘_ilr,log(P,v)+(n,—r,)log(l-P.) (10.2)
The maximum of the log-likelihood function defined by (10.1) and (10.2) is not available analytically and
therefore numerical methods need to be resorted to.

From (10.1) and (10.2) the first and second partial derivatives of ¢ with respect toa and 3 may be shown to
have the form

1~y .
- _P‘)ﬂa Blog ()]

B-) C—:";':;:)ﬂa*Blog(d‘)]log(d.)

%",i.[(;:z g'ln'—__,:%z')d’zlwﬁlog(d.)l (-,;i-l_' )¢[a+alog(d.)1(a*slog(d ))]
a:;zalp",_i,[(r—:z“(ﬂ'%)—)" [a+Blog(a)l+ (P—" = )¢[a+Blog(d )](a*Blog(d,))]log(d)
%- -‘Z[(r—:z-o-(]n:P")z)¢2[a+Blog(dl)]*'(%1‘—’:'—:—;:)Ma-rBlog(d,)](q-o-p[og(d‘))]logz(d‘)

From these derivatives an iterative procedure may be derived as follows. Suppose that a, and B, are the
current estimates of a and B, then the next estimates are given by,

21 1\ 'zal

a.,\ (a, daZ dadp da
(B,..)-(Br)_ 21 2%l al
dadB B’ B
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where the second and third terms on the right-hand side are evaluated at «, and 8, . At convergence the

asymptotic variance of the estimates are given by,

2l 41\
o Gu)\__[ 207 dadp
G O 2L 2L

oaol 9p?

10.4 Fieller’s Theorem.

The analysis in the previous section provides an estimate of the log(LD5q), i1 = -a/f . A 'confidence interval’
for the log(LDsg) is available from Fieller’s theorem.

Under the assumption that the estimates a and 3 are asymptotically normally distributed with means a and
B with covariance matrix having elementsdZ, d,, ando 7 then from standard properties of a normal distribution
we have
a+fp
(0% +210,,+ %33

~ N(O,1)
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This asymptotic property may be used to derive a 95% confidence interval p by setting the left-hand side
equal to the 2.5% point of the normal distribution and solving for j1. This procedure gives rise to a quadratic
equation in pwhich does not necessarily have real roots. When this occurs the implied 95% confidence interval
covers the whole real line, a well-known defect of the approach.

10.5 The Modern Controversy.

Whilst the campaign against the use of large numbers of animals in LDs( experiments is a campaign based
firmly in the 1980’s, some of the basic arguments of the campaigners are not new. For example C.W.Hume,
the then secretary general of the Universities Federation for Animal Welfare, wrote over 30 years ago,

"One cannot help wondering how far the extensive use of the 50%-survival test is a hangover due
to habit and custom, and whether suitable continuous variates have been sought as diligently as
could be desired. Even for testing toxicity with an L.D.50, death might not be the only possible
end-point that could be chosen if the phenomena of the moribund state were to be adequately

analysed" (Hume,1957).

The sentiments expressed in this passage can be seen to be precursors of the views of the harsher environment
of the 1980’s :

"If I want to keep my job, I am better off doing toxicology their way and forgetting about creativity.
And if I hope to market my drug on a worldwide basis, I am going to use the guidelines that are
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the most demanding with regard to number of species, subjects and dose levels, and duration of
treatment. I can be sure that no regulatory agency will object to a toxicological dossier that is
more voluminous than the one it might consider desirable or necessary” (Zbinden,1988).

"Lethality as an endpoint, although definite and incontravertible [sic], is crude and causes much
suffering” (Anon,1989).

The fight against the LD has been on two fronts. Firstly the more radical animal rights groups refer to the
test as the ’death test’ and use photographs in their literature of animals killed by agrochemicals and cosmetics.
The less radical animal welfare groups argue that since the LD5g cannot be determined precisely, the
performance of such tests is unnecessary and morally unacceptable. The sccond front has been manned by
toxicologists who whilst they have recognized the need to measure the acute toxicity of chemicals are also
concerned to reduce both the suffering of animals and number of animals used in acute toxicity tests.

In the early 1980’s most regulatory authorities based their testing guidelines on those of the OECD whose
guideline required the use of, in general, no more than 30 animals per test and , where no mortality was
anticipated at a dose level of 5000 mg/kg bodyweight, as few as 10 animals - the so-called ’limit’ test. Whilst
most regulatory authorities supported the principle that acute toxicity tests should not be solely lethality tests,
the determination of a statistically-derived LDs( was required as were 95% confidence limits for the estimate,
it was also recognised that acute toxicity tests give other extremely important information, which is essential
for safeguarding human health. For example the 1984 EEC guidelines required documentation of the rela-
tionship between the animals’ exposure to the test substance and the incidence and severity of behavioural
and clinical abnormalities, effects on major organs and bodyweight changes.

The pressure, from animal welfare activists, toxicologists and regulators led to a number of suggestions for
altering the basic procedure for estimating acute toxicity and the LD5p, example of these are provided by
Miiller and Kleyt(1982), Schiitz and Fuchs(1982), Lorke(1983) and Bruce(1985,1987). In 1986 a meeting of
*experts’ in Paris considered three alternative procedures for acute toxicity testing, namely the Fixed Dose
Procedures of the British Toxicology Society (BTS) and German Bundesgesundheitsamt and the so-called
Up-and-Down Procedure. The BTS procedure alone amongst the three goes further in that it positively
discourages lethality as an endpoint and therefore the suffering of animals is dramaticaily reduced.

One potential argument against the use of a procedure, such as the BTS procedure, which is not based on the
formal determination of an LD 5q is that it will prove difficult to classify substances against existing classification
schemes which are based on the LDsj. In fact the validation work reported by van den Heuvel et a/(1987) has
shown that the BTS procedure gives extremely similar results when compared with the 1981 OECD procedure
both in terms of ranking compounds according to their acute toxicity and in providing information for human
risk assessment. The procedure also offers significant reductions in animal numbers and, from an animal
welfare perspective, is preferable as the severity of effects which are seen is considerably reduced.
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It is likely that in the future the BTS procedure will become the standard for acute toxicity testing. In the
meantime classical acute toxicity tests are still carried out and while that is the case there is still a need to
optimise the extraction of information from such tests and therefore it is the role of the statistician to develop
statistical methods with that objective. The Bayesian approach developed in the following chapter is aimed at
providing a classification of a substance on the basis of a classification scheme based on the LD5p, as such it
may be seen as belonging to those procedures developed during the 1980’s referred to above.
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11 A BAYESIAN APPROACH TO LD50 EXPERIMENTS.
11.1 Introduction.

As we have noted, the recent controversy surrounding the validity and usefulness of the acute toxicity test has
markedly increased. On the one hand animal protection groups question the biological relevance of such tests
citing examples in which limited, or insignificant, information is obtained. Toxicologists, on the other hand,
emphasize the need to quantify the toxic potential of a chemical while at the same time they encourage
procedures designed to limit the number of animals required to give an assessment of lethality (Bass et al,
1982; Dayan et al, 1984). This desire to limit the number of experimental animals has given rise to a number
of recent suggestions for modifying the standard practice in acute toxicity testing (see Miiller and Kley, 1982;
Schiitz and Fuchs, 1982; Lorke, 1983).

In such toxicity tests the response of an animal to the test substance is dichotomous; alive/dead or no
response/response. The design of such a test consists of k dose levels on an appropriate scale. The experiments
may be characterized by the tripletsd,, n,, r,(i=1,...k) where d, is the dosc administered ton, animals
of which r, respond in the i** dose group. A mathematical dose-response function relating the probability of
response to the dose, usually the probit or logit model, is specified. Based on the above triplets, the parameters
of either model are traditionally estimated by maximum likelihood, weighted least-squares or minimum
chi-square (Finney,1971). In this type of experiment the median lethal dose, or LDSO, is of main interest,
being defined as the dose, or quantity, of the substance which kills 50% of the animals exposed to it (in this
thesis we regard the median lethal dose and the LD SO as being synonymous in contrast to some authors who
view the LDSO as that dose in the current experiment which killed 50% of the test animals).

It is well known that under certain conditions the traditional methods of analysis give rise to inadequate resuits,
in that although they provide a point estimate of the LDSO0, the fiducial limits, at some specified level of
confidence, will consist of the whole real line (Fieller, 1954;Finney, 1971, Section 4.7). In this chapter the view
is taken that the object of estimating the L D SO is to determine an index of the toxicity of a substance by means
of some predefined toxicity classes. For instance, the European Economic Community has defined the following
toxicity classes for classifying the lethality of substances based on the LD SO values from oral studies in rats
(Annex VI of the Council Directive 67/S48/EEC - Sixth Amendment) :

TABLE 11.1 Toxicity Classes - Annex VI of the Council Directive 67/548/EEC - Sixth Amendment.

Toxicity Class Description Range of LDS0 (mg/kg.)
1 very toxic < 25
2 toxic 25- 200
3 harmful 200 - 2000
4 practically > 2000
non-toxic

A second example comes from the 1983 Swiss poison regulation again using oral LD SO values in rats:
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TABLE 11.2 Toxicity Clas ses - 1983 Swiss Poison Regulation.

Toxicity Class Range of LD50 (mg./kg.)
1 < 5
2 5- 50
3 50 - 500
4 500 - 2000
5 2000 - 5000

The motivation for the present work arose from the need to classify a substance which in an acute toxicity test
gave the data in Table 11.3.

TABLE 11.3 Results from an Acute Toxicity Experiment

Dose Number of Number of
(mg./kg.) Animals Exposed Animals Dying

500 5
1000 5
2500 5
5000 5

Using maximum likelihood to estimate the parameters of the probit model (using a log dose scale) gives 4049
mg./kg. as a point estimate for the LDSO . However this is one of the above examples for which the 95%
fiducial limits comprise the whole positive real axis, a result practically useless for classifying the substance.
We would argue that classical methods cannot answer the question of interest - Which toxicity class does the
substance belong to ? - whereas a Bayesian approach can. However even if the regulatory authorities require
a point estimate and a confidence interval, a Bayesian approach is preferable since a highest posterior density
(H.P.D.) interval will always exist, if a proper prior is used; and will exist in all but pathological cases if an
improper prior is used (Tsutakawa,1975). This is not the case for fiducial limits, based on Fieller’s Theorem.
In this chapter a Bayesian analysis is developed in which emphasis is placed on calculating the posterior
probabilities of a substance belonging to predetermined toxicity classes. Two cases are considered: (i) an
improper prior distribution for the parameters of the model; (ii) a normal prior distribution for the parameters
of the model. Methods of determining from toxicologists their prior beliefs in the parameters of the model
are considered. Approximations to the various posterior distributions are developed.

We have already seen that it has been argued (Zbinden and Flury-Roversi, 1981; Kimber,1986) that it isincorrect
to judge a substance’s toxicity solely on the basis of the LDS0 . We do not dispute this point of view but would
agree with the following sentiments :
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"..if the L Dy, is wanted it should be obtained as efficiently as possible in respect
of number of test animals used and in relation to optimal extraction of information
from the data".

"as long as the LDy, is used, there is no excuse (scientific or economic) for not
estimating according to some accepted criterion of optimality". (Finney,1985).

11.2 A Bayesian Analysis Using an Improper prior.

In this thesis we choose in the main to use the probit model, although the methods have also been successfully
implemented using the logit. Let & doses of a substanced,(i=1,...,k) be administered ton,(i=1,...,k)
animals of whichr,(i = 1, ..., k) respond, then the likelihood L(a, B | X ) , where a and 3 are the parameters
of the probit model and X denotes the data, is given by,

.3
L(a.B1X) = [[@Ca+Bx) [1-d(a+Bx)]" " (11.1)
i

where (. ) is the standard normal distribution function and x, = log(d,) . Assuming an improper prior for
a andd , that is

pc(a,B) = constant ~©» < a < ©» , 0 < B < = (11.2)

(C denotes the constraint B > 0) use of Bayes’ theorem gives,

L(a,B|X)pc(a,B)

, - 11.3
pe(a.B1X) =5 (11.3)
where,
pe(x) = [ [ 1(a.B1X)pe(a.B)aBAa (11.4)
- 0

Lettingw = -a/f be thelog(LDS0) we have,

pe(wiX) = [Bp(-uB.BIX)dB = < w <= (11.5)
0

and supposing a toxicity class, on the log-scale, to be defined by w, and w, , we may calculate,
Plw, < w< wyl|X] = f Pe(w| X)dw (11.6)
. w,

Equations (11.1) to (11.6) provide all the necessary information to make inferences concerning the LDSO0 .

However because of the non-linearity of the probit model the integrations in (11.4),(11.5) and (11.6) cannot
be performed analytically. Thus either numerical integration methods need to be resorted to, or approximations

sought.
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The numerical integration problems may be simplified by redefining the range of 8 in (11.2). Thus if 3 is not
constrained to be greater than zero, and writing p,(a,B) for this unconstrained prior distribution then,

L(a.B!X)py(a,B)

, X) = .
py(a.B1X) o (11.7)
where,
pu(x) = [ [1(a.B1X)p,(a.B)dBda (11.8)
Using the results in Box and Tiao(1973, Section 1.5) we have,
Pu(a.BIX)P(B>01a.B.X)  py(a.BAB>0|X)
pelaBIX) P(B>01X) R ICELIED (19
and
[ put-uB.BAB>01X)aB
pc(wlX) = =2 , @ < w < w (11.10)

P(B>0]X)

The methods described by Naylor and Smith(1982) could be used to perform the integrations in
(11.8),(11.9),(11.11) and (11.6). However this is not recommended since it would involve using indicator
functions for calculating P(B >0 | X) and for calculating (11.6), which practice has shown can seriously
underestimate or overestimate the required probabilities. Alternatively a modification of the quadrature rules
developed by Galant(1969) and Steen et a/(1969) may be used to integrate over B . These rules were developed
for integrals of the form,

b
[ exp-x"f(xrax
0

but may be simply modified for integrals of the form,

[ exp(-x*f(x)dx

[}

see Appendix A2.2.

If the doses have been chosen on a true log-scale, or if they are not far from it, instead of using numerical
integration an approximation can be developed which may be used even for small sample sizes. We illustrate
how this may be achieved using the hypothetical example shown in Table 11.4.

Using the Gauss-Hermite quadrature described by Naylor and Smith(1982) the double integration in (11.8)
is efficiently performed from which (11.7) is simply obtained. Figure 11.1 shows the bivariate 50% and 95%
H.P.D. regions for @ and 3 for the data in Table 11.4.
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TABLE 11.4 Results from a Hypothetical Experiment

Dose Number of Number of
(mg./kg.) Animals Exposed Animals Dying
- —
100 3 1
1000 3

The contours in Figure 11.1 are very nearly elliptical, suggesting that a bivariate normal (BN) approximation
to py(a, B | X) maybe reasonable. The parameters of the BN approximation may be obtained as a by-product
of the Naylor and Smith approach, or by a second approximation.

Denoting by a. 3, d%,63,0,, the maximum likelihood estimates of @ and B and their asymptotic variances
and covariance, and by a,f,02,0%,0,, the posterior means,variances and covariance, then from Lind-
ley(1980) the following results are obtained,

3
2

1

- - . L L X 1 . )
a = a+%lso°:+ [21°§°q9+ézlz(ai0§+2a:a)+-2-l°36:o“+0(N ’) (11.11)

1 - 3 a0 1 o . 1 i
B = B"'Eloa";*'éllz":oag*élzl(aioi-’-20§p)+-2-[3°020¢“+0(N H (11.12)

where, for example,

3 (log[L(a.Bl X k
I, = {log[ a(:JBI )]}|.-a and N"Zl":

The required differentials may be derived as follows :
3

! = log[L(a,B|X)] = ) rlog(P)+(n,~r)log(l-P,)
i)

where P, = &(A,) andA;, = a+fx, then,

b s o BETR e
cH L $(mc)
im j’[:’ ?( “ ”Sj: a) Z( )A¢(A)
0o T LUEG - A7
o T a%ala i ,( G )"“A’ " Z. ;*:"1“ T s
Ly - %’2 - i.( ;—‘z-(l )x (8 - ‘_i(%“-%'_——‘)x.’m.m.)
. .

3%l Efre_ m-re Ny 0 _rno ne-r
SR R (-P)2)4’ @) - af(-F g e
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Each of the above expressions is to be evaluated at the maximum likelihood estimates @ and f3 .

Additionally,

G2 = ‘loz - [u D G2 = "lzo
: ZZOZOZ_Z?I b Zzol'-oz‘lzx’l ' y [zoloz"lfl

As Lindley notes similar corrections to O( N ~!)are not available for the variances and covariance. However,
although it has not been possible to prove the following result, in a large number of cases over a wide range
of total sample sizes and different values of &, the number of groups, it has been found to be very accurate.
Defineé=(a-a)/a ~ (B-f)/p then take,

To illustrate the use of these corrections we have applied them to the data of Table 11.4, the results being
shown in Table 11.5,

TABLE 11.5 Approximations to Posterior Moments for Hypothetical Example

Parameter Maximum Posterior Approximate
Likelihood Moments Posterior
Estimates Moments
a -2.154 -2.443 -2.436
B 0.374 0.424 0423
ol 7.284 7.730 7.706
LH 0211 0.224 0.224
Oun -1217 -1.291 -1.287
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The results in Table 11.5 are satisfactory in that they correspond, in the case of approximate posterior means
to a relative error of less than 0.3%, while the corresponding relative errors for approximate second moments
are less than 0.4%. (An alternative approach would be to use the approximation developed by Tierney and
Kadane(1986) which has the advantage that it also provides corrections for second order moments).

Suppose now that p,(a, B | X ) may be approximated by a BN density with means a , {3 variances 62, 6% and
covariance 0,4 denoted by BN (1, X )where,

& a: aub
1} (B) and X (8“ 5:) (11.13)
then
BN(n.I)
Pe(a-BIX) = Ty * B> °

Using the results in the Appendix the posterior distribution of w = log(LD50) given the constraint > 0
may be calculated from (A4.2), while inferences of the form (11.6) may be derived from (A4.4).

Application of the double-fold approximation, the BN distribution for p,(a,f | X) and the approximate
means, variances and covariance is shown in Table 11.6 using the Swiss toxicity classes, from which it can be
scen that the approximations are satisfactory. The exact probabilities in this table were calculated using
subroutine DBLIN from the IMSL library of subroutines.

TABLE 11.6 Exact Posterior Probabilities of Toxicity Classes and Approximate Probabilities for the Data

in Table 11.4.
Toxicity Classes
> 5000
1 2 3 4 5 mg/kg
e —  — ———  ————— — — — — — — __ —___ _____ ___ |
Exact
Probabilities 0.041 0.062 0.570 0.224 0.038 0.065
Probabilities
based on Normal
Approx. (exact 0.042 0.061 0.576 0.219 0.037 0.065
Moments)
Probabilities
based on Normal
Approx. (approx. 0.042 0.061 | 0576 0.219 0.037 0.066
moments)
— - - __ -]
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Returning to the example in Table 11.3., which was the motivation behind this work, the probabilities that the
substance belongs to the various toxicity classes are shown in Table 11.7. From these results it may be seen
that, aithough we may not definitely decide into which class the substance should be placed, it is extremely
unlikely that it belongs to classes 1, 2, or 3, since their total probability is 0.03. Further experimentation would
be necessary to determine which of classes 3 or 4 it belongs to or whether the LDS0 is greater than 5000

mg./kg.

TABLE 11.7 Posterior Probabilities of Toxicity Classes for the Data in Table 11.3.

B |
Toxicity Classes
> 5000
1 2 3 4 S mg/kg
Probabilities 0.005 0.004 0.021 0.232 0.402 0.336

We need not be restricted to calculating the posterior probabilities of the toxicity classes. The results in the
Appendix allow us to simply calculate the posterior distribution of log(LD50) and its cumulative distribution
function, or to calculate H.P.D. limits for log (L D50). To illustrate, Figures 11.2 and 11.3 show the posterior
distribution and cumulative posterior distribution respectively, for the data of Table 11.3 whose 95% H.P.D.
limits for log(LD50) are 4.71 and 15.67 corresponding to 111 and 6.38 * 100 mg/kg.

11.3 Exact Analysis for a Logit Model and Two Dose Groups.

We noted in the previous section that numerical methods were needed to calculate the posterior distribution
of the LD50 and to make inferences because the necessary integrations could not be performed analytically.
This is certainly true for the probit model which we have been considering; however in the case of the logit
model there exists one special case for which some progress can be made analytically.

Suppose that an experiment has only two dose groups and that the probability of dying may be described by
a logit model so that the likelihood is proportional to,

2. exp(a+Bx,)"

i-1 (1 +exp(a+px, )™

If the prior for a and B has the form,

py(a,B) = constant ; —o<ag<® , —w<B<»

then

2. exp(a+Bx)”
=1

—/ Py (X) (11.14)
(1+exp(a+Bx,))"

p(a.BlX) =

where
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exp(a+px,)"
Xy = dad 11.15
py(X) /j; «-1(1+exp(a+[3x " adf ( )

In (11.14) make the transformation

~ _exp(a+Bx,) .
n, = (T+exp(a+px))) (i=1,2) (11.16)

to give,

X

1t
pu(X) - ff rl i "Ill)nl -l rz l(l_“)zr2 ldﬂld]'lz
o0

2

B(r,.n\)B(r,.ny;)
X2~ X

In the case of the constrained prior,

pc(a.B) = constant ; —o<a<o , 0<B<w»

the transformation (11.16) applied to

exp(a+Bx,)"
X dad
Pe(X) ff i1 (1+exp(a+Bx))" adp

gives

ay-ry-l

1 .- :
p(X) = f/ e ) R (- ) dn,dn,
on"X|

1 r("z)r(nz"rz)zr("n*"z“‘l)r(nl"'nz —ra+t)
xz=x, I'(ny+nz+1) 5 [(rg-0)f(na~ra+t+1)

In order to progress towards the marginal posterior distribution of the log(LDS0), and hence the LDS0
itself, consider the transformation,

Blx,-x,) a X\
yse , z= +
Blxa-x,) x2-x,

with jacobian log(y )/ (y(x2 - x,)) applied to (11.14) which gives,

z(rlorz)‘rz-llog(y)
p(y.z|X) = » — (11.17)
Py(X)(x2—x))(1+y*) "(1+y™"")
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Now since log(LDS50) = x, - z(x, - x, ), in other words it is a simple linear transformation of -, if we are
able to integrate y from (11.17), or its counterpart obtained by replacing p,(X) by p(X), then we may
easily obtain the marginal posterior distribution of log(LD50) . One possible method to carry out the inte-
gration might be found in the contour integration results given by Whittaker and Watson(1963). We do not
propose to take this analysis further since the case of two dose groups is not intrinsically of interest except
insofar as it highlights the integration difficulties involved in such problems, and insofar as it might provide a
bench-mark against which the analytic approximation derived in §11.2, or other analytic approximations, could
be tested.

11.4 A Bayesian Analysis Using an Informative Prior for aand 3.

Tobegin we suppose that prior to performing the current experiment a previous experiment has been performed
yielding data X, . Assuming further that prior to the previous experiment our joint prior distribution for a
and (3 was improper, it follows from standard Bayesian arguments that we may pool the data as if it came
from a single experiment. The analysis in §11.2 may then be carried out.

Suppose now, however, that we can approximate our unconstrained prior distribution for « and 3 by a BN
distribution; an assumption which will be justified in §11.5. Denoting this unconstrained prior by BN (4. Zo)
, then, since as we have seen in the previous Section for doses on a log-scale the likelihood may be approximated
by BN(, %) - see (11.13) , standard Bayesian calculations give,

py(a.BlX) = BN(p.Z") (11.18)
where,

£ o= (5 e ) and pt o= IRt

(see for instance Lindley and Smith,1972, §2). Since p,(a,B | X) in (11.18) is approximated by a BN dis-
tribution the results in the Appendix may be used to make posterior inferences concerning w = log(LD50)
exactly as in §11.2,

If the normal approximation (11.13) does not hold, which can be checked by calculating the third and fourth
moments of the posterior marginal distributions of aand 3, Lindley’s or Tierney and Kadane’s approximations
for marginal distributions may be directly applied to the product of the prior and likelihood in the parame-
trisation wand 3.

11.5 Determining a Prior Distribution fora and3.

In this section we consider ways in which one can determine an experimenter’s prior belief in the parameters
of the probit model. Each method which is considered leads to a normal prior distribution for a and 3, so
that the methods in the previous section may then be used.

For the logit model Tsutakawa(1975) suggests that a parametrisation of the model which is familiar to the
experimenter should be chosen. He considers two methods using an experimenter’s prior beliefs in the
probabilities of response P, and P, at two dose levels d | and d,. First we investigate the implications of
Tsutakawa’s methods for the probit model, and second consider a method based on cliciting the experimenter’s
prior beliefs in the toxicity class to which the test substance belongs.
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11.5.1 A Semi-Uninformative Prior Distribution for a and 3 Determined using Probabilities of Response.

Following Tsutakawa(1975) suppose that P, and P, are uniformly distributed over the regionO < P, < P, < 1
. Tsutakawa shows this to imply that the LD SO0 lies between d,and d, with probability 1/2,d, and d, are
respectively the lower and upper prior quartiles for the L DS0. Further he shows that the prior distribution
in terms of a and B belongs to the natural conjugate family of distributions. We now show that the above
construction leads, for the probit model, to a BN prior for a and 3.

Suppose that P, and P, are a priori uniformly distributed such that 0 < P, < P, <1, then,

p(P,,P,) = 2 , 0 < P, < P, <1

Make the transformation,
P, = ®(a+Bx,) ; x, = log(d,) , i =1,2 (11.19)
with Jacobian,
(xz-x)¢(a+Bx)d(a+Bx;) (11.20)
so that,
2 - -1
pi(a,B) = "'(%‘n—x-l‘zexp[—é-{(a*ﬁxx)z“(d*ﬂxz)z)]
- 2BN(u,.5,) -o <a <o, 0 <B <o (11.21)
where,
xi+xd  =(x,+x;)
- (0) d s = (x2-%)% (x2-x,)?
. 0 an ' =(x,*+x;) 2

(x2-x1)% (x2-x,)?
For practical applications (11.21) is replaced by BN (11,. Z,) and the analysis given in §11.4 is carried out.

It is clear from the form of Z, that this method should not be used for cases in which x, and x, are chosen
such that x, ~ x, is very small or very large. In the former case the variances of @ and3 tend to infinity and
p tends to -1, while in the latter cases the variance of 3 tends to 0. A second disadvantage is the zero prior
modal values fora andf3.

11.52 An Alternative Determination of p(a, f) using Probabilities of Response.

A second suggestion of Tsutakawa for the logit model, when moderate amounts of prior information are
available, is that the experimenter should specify the modal probabilities of response, 2 ,and £ ,, corresponding
to doses d , and d ,. Supposing that the prior distribution of P, and P, is a member of the family of natural
conjugate prior densities, that is

my-ty-1

p(P,. P = Py (1-P)™ R (1-Py) (11.22)
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then,

I, = 1+B(m,-2) (I, >1. m, >2) (11.23)

The values of m,, and hence from (11.23) {, , should be chosen to reflect the weight to be given to the two

dose levels.

Supposing that the m /s and {/s have been chosen, combining (11.19),(11.20) and (11.22) gives,
pa(a,B) = [(x;-x))¢(a+Bx)é(a+Bx,;)]

X [e(a+Bx )" (1-9Ca+Bx, ™ T e(arBrxy) T (1 - d(arBay)) ] (11.24)

The expression in the first square bracket in (11.24) is the same as (11.20) so that it may be writtenas BN (,. Z ;)
c.f. (11.21), while the expression in the second square bracket may be approximated by BN (1, X )as in §11.2.
Thus using (11.18) gives,

pPa(a.B) = BN(n'.Z') (11.25)
where,
o= (4T and pt o= E(Eu,+ITR)

In practice it is recommended that the experimenter is given information as to the consequences of his choice
of d,.d,, m, and m,. Thus (11.25) could be used to show the implied a priori probabilities of the test
substance being in the toxicity classes of interest. Using (11.25) the analysis in §11.4 may be carried out.

11.5.3 Determining p(a, B) using Prior Probabilities of the Toxicity Classes.

Suppose that the experimenter is prepared to supply the following information:

i) prior information concerning the LD50 in terms of a discrete probability distribution,

ii) the most likely value for the slope parameter 3 (modal value).

If an experimenter is prepared to choose the dose levels in an experiment it is necessary for him to have some
idea, albeit subconscious, of the likely values of the D50 and the slope since he will not choose dose levels
for which he is a priori sure he will get no response or 100% response.

To illustrate how the above information may be used, suppose that prior to the experiment in Table 11.3 the

experimenter specifies the probabilities of the substance being in each of the Swiss toxicity classes, as shown
in Table 11.8,
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TABLE 11.8 Prior Probabilities of Toxicity Classes.

Toxicity Classes

> 5000
1 2 3 4 5 mg/kg
0.04 0.10 035 0.40 0.10
Ty oo

Suppose further that the experimenter’s unconstrained prior distribution for a and Bis BN (u, ), where
and ¥ are defined in Appendix 4. By equating the cumulative distribution given in Table 11.8 to the theoretical
cumulative distribution defined by (A4.4) and (A4.5) it might be hoped that p and ¥ can be determined.
However, in the Appendix 4, h and v may be written as,

c.f. Hinkley(1970). This result implies that any four of the prior probabilities in Table 11.8 are sufficient to
determine ¢, , c,, cyand c,, but additional information is required to determine p and . We choose to do
this through the specification of x,, that is the slope parameter.

11.5.4 Numerical Examples of the Determination of p(a,B).

Each of the three methods given above for determining a prior distribution p(a, B) lead to a BN prior. Thus
the methods in §11.4 may be used to make inferences. In this section we compare the inferences which are
made when these methods are applied to the experiment in Table 11.3. In order to use these methods a number
of subjective assessments need to be made. These are as follows :

i) In order to use the method of §11.5.1, two doses, d ; and d ,, need to be chosen within which a priori the
LDSO lies with probability 1/2. These were chosen to be 1000 mg/kg. and 3000 mg./kg.

ii) For the method of §11.5.2, in addition to the doses d , and d ,, which were taken to be as above, the modal
responses £, and P ,at these doses and the weights m , and m,need to be chosen. £, and £, were chosen to
be 1/4 and 3/4 while the influence of the weights was investigated by choosing m, = 3,4 and 5.

ili) For the method based on the prior probabilities of the toxicity classes, in addition to the probabilities,
given in Table 11.8, the modal value of 3 needs to be chosen. In this case it was set to 0.5.

In Table 11.9 are shown the prior distributions which are given by (i), (ii) and (iii) together with their corre-
sponding inferences; for completeness the inferences for the improper prior is given again.
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TABLE 11.9 Prior Distributions and Posterior Inferences.

e — — — — — — — — _— e — ]
Prior Moments
Parameter Improper | Sec11.5.1 | Sec11.52 | Sec11.52 | Sec11.52 | Sec11.5.3
of Prior m,=3 m;=4 m,=5

- —— — |

ll a - 0.000 -4.227 0.224 -6.350 -3.786

R - 0.000 0.567 0.748 0.852 0.500

ol - 92.646 63.197 46.645 36.817 5.282

“ L H - 1.657 1.130 0.834 0.659 0.070

Oap - -0.997 -0.997 -0.997 -0.997 -0.987

e TR
Toxicity Class Probability

e |

1 0.005 0.000 0.005 0.005 0.004 0.002

2 0.004 0.000 0.004 0.003 0.003 0.002

3 0.021 0.000 0.020 0.019 0.018 0.017

4 0.232 0.008 0.271 0.289 0.306 0.323

5 0.402 0.206 0.428 0.441 0.453 0.561

> 5000 mg/kg 0.336 0.794 0272 0.243 0.216 0.094

The results in Table 11.9 are worthy of comment for a number of reasons:

i) The prior based on the results in §11.5.1 is not recommended. Although the choice of d , and d ,does not
lead to either a very small or a very large variance, the a priori modal value of B, i.e. 0, tends to have a relatively
extreme effect on the modal posterior value of B thus increasing the most likely value of the LDSO0.

ii) For fixed values of the modal responses P, and P ,, increasing the variable parameters m has a smooth
effect on the posterior probabilities of the toxicity classes; m, = 3 may be considered as semi-uninformative.

iii) The method of §11.5.3, based on prior probabilities of the toxicity classes allows a considerable amount
of prior information to be incorporated.

iv) For the present data set an analysis based on the improper prior, or on any of the informative priors, shows
that there is a very small probability that the LDS0 is less than 500 mg./kg. (toxicity classes 1, 2 and 3), the
maximum posterior probability being 0.03.
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11.6 H.P.D. Intervals for the LD50 - Choosing the Scale for Making Inferences.

We noted in §11.2 that one need not be content with calculating the posterior probabilities of the toxicity
classes; indeed one great advantage of a Bayesian approach to inference is the richness offered by the posterior
distribution. One alternative approach which we suggested previously would be to calculate the 95% H.P.D.
limits for the log(LD50). A question which naturaily arises is Why use log(ZD50) and not LDS0 ? The
answer to this question highlights the potential dangers of an automatic, unthinking adoption of a single
inferential summary.

The data displayed in Table 11.10 arose in a rabies vaccine of the type described by Thraenhart(1986). In
contrast to standard L D50 experiments, the dose metameter in such studies is in the form of dilutions of the
vaccine. For the purposes of this section we will treat the results as if they arose from a standard L D50
experiment although L D50 is not an appropriate term since the vaccine is given to protect against the rabies
virus. Perhaps £ D50 ( 50% Effective Dose ) would be a more appropriate description.

TABLE 11.10 Results from a Rabies Vaccine Experiment

Dose Number of Animals Number of
(Dilution) Animals Dying
128.20 16 13
25.64 16 14
513 16 14
1.03 16 6

The maximum likelihood estimator of the LD50 for this data is a dilution of 0.775; the data did not lend
themselves to the calculation of asymptotic fiducial limits. The Bayesian approach which we have outlined
gives rise to a posterior median of 0.760 dilutions, a posterior mode of 1.252 dilutions and 95% H.P.D. limits
of 0.011 and 5.386 dilutions. The posterior probability that the LDS0 is less than the lower H.P.D. limit is
0.047; in other words this 95% interval is practically a one-sided interval ( the actual one-sided 95% interval
has the value 0.013 as its lower limit).

If we recall how this interval was determined we see that it was based not on the LD50 directly but on the
log (L D50)with a final transformation to the original scale. Suppose we were to work directly with the LDS0
, then by definition of an H.P.D. we would expect such an interval to be shorter. This is the case, the interval
ranging from 0 to 2.888 dilutions so that this latter interval, again a 95% interval, is approximately 50% of
the former interval. We see that again the 95% H.P.D. interval is one-sided, but interestingly in the other
direction. The difference in the two parameterizations is strikingly illustrated by their respective posterior
distributions displayed in Figures 11.4 and 11.5.

An argument can be made that the difference between the intervals 0.011-5.386 and 0-2.888 is not relevant
in the context of the 5-fold dilutions used in the experiment. We will however see in §13 that such a difference
can be of practical significance in the context of rabies vaccine experiments. For the purposes of argument
suppose that the data arose from an acute toxicity experiment and that the doses in mg/kg were 100 times
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larger than the dilutions. In such circumstances the two intervals would be 1.1-538.6 mk/kg and 0-288.8 mg/kg
and the difference might have profound implications with respect to the classification of the substance using
either the EEC or Swiss toxicity classes.

Two obvious questions need to be answered. Does the problem arise with classical confidence intervals?
Which is the appropriate scale for inference ?

To answer the first question we investigate a problem considered by Bartoszynski and Powers(1990). These
authors were interested in determining a shortest confidence interval for the half-life of a drug based on
estimating the elimination rate constant. In particular if B is the elimination half-life, 3 an estimate of it and
sits corresponding standard error then a (1 - a )% confidence interval for 3is,

B-tys < B < Briy,s (11.26)

where t,,, is the (1 - a/2 Y% quantile of the appropriate t-distribution. Such an interval is in general only
approximately a 95% interval since 3 and swould normally be estimated by non-linear least squares. The
half-life is given by h = log (2) /B so that (11.26) may be written as,

log(2)Ah < h < log(2)Ah

log(2)+ Asty,, log(2)- hAst.,. (11.27)

Although (11.26) is, approximately at least, the shortest confidence interval for 3 this is not true of the interval
(11.27) for h.

Suppose, therefore, that we may choose u and v such that,

]g(t)dt = l-a

where g(t) is the t-density with the appropriate degrees of freedom, say M. Then a (1 - a )% confidence
interval for B is,

B-vs < P < B-us

so that,

log(2) ) (log(2) (11.28)

is the corresponding (1 - @ )% confidence interval for h. The conditions under which (11.28) is of minimum
length may be derived either as Bartoszynski and Powers(1990) or as follows. The length of the interval is,

A BAYESIAN APPROACH TO LD50 EXPERIMENTS. 1-19



log(2) log(2)

o(u.v) = B-vs P-us (11.29)
which we need to minimise subject to the condition,
fg(t)cu = l-a (11.30)
From (11.29) and (11.30) we get,
de(u,v) _ log(2) log(2) du
dv (B-vs)® (B-us)*dv
and
d
g(v)-g()5- = O
which implies that,
de(u,v) _ log(2) log(2) g(v)
dv (B-vs)? (B-us)?g(u) (113D
From (11.31) the solution to d¢(u,v)/dv = O is given by,
g(v)(B-vs)* = g(u)(B-us)?
or equivalently by
(B-vs)' _ (B-us)! (11.32)

(M+uH" (M u)?!

c.f. Bartoszynski and Powers(1990) equation (24).

The analysis provided by Bartoszynski and Powers(1990) in which they assume that ~N(B,?) and
M s?/0%~x% may be thought of as providing sufficient statistics for @ and 02; 3 and s2 can be thought of as
summarizing almost all of the information about 3 and o *contained in the data. When the usual uninformative
priors are assumed for (3 and o ? the posterior distribution of the parameters may be approximated by,

2 1 -(B-R)2\Ms*/2)M? iz -Ms?
p(B,a" | X) = (ZMZ).,zexp( Py ) T(M/2) (e%) exp| 57

from which the marginal posterior distribution of 3 may be derived in the form,

(Msz)‘”z( +(B-B)’)""""’
p(RIX) - ST 1+
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It follows that the posterior distribution of A = Jlog(2)/Bis,

109(2)(1‘482)_”2(1 . (log(2)—h[§)2)‘(u'l)/z
B(5.%)n? Mh?s?

p(hiX)

An interval (a, b) is said to be a 100(1 - a)% H.P.D. interval for a parameter ¢ if

1) (a.b)is a 100(1 - a)% posterior interval,i.c. [; p(¢ | X)dp = 1-a

2)forallpe(a,b)andp’e(a.b),p(¢]X)2p($"|X)

Condition 2) requires that there be no values of ¢ within the interval (a, b) which have a posterior ordinate
lower in value than any value of p without the interval. A second implication of 2)isthat p(a | X) = p(b|X)
; a third implication is that for fixed a the H.P.D. interval is the shortest interval.

The requirement of equal ordinates reduces in the case of inference about A to,

L(l +w)'(ﬂ'n/z - L(l +w)-(uon/z

a? Ma?s? b2 Mb?3s?

Letv = (Bfa-log(2))/(as)andu = (fb-log(2))/(bs) thenthe above ordinate condition may be
shown to be equivalent to

(B-vs)' _ _(B-us)’

(M"'UZ)M‘l (M*uz)u'l

which is identical to (11.32). Since the transformation t = (B2 -1log(2))/(hs) applied to [ep(h| X)dh
gives [ % g 4 (t) where g, (2)is the standard t-density on M degrees of freedom. It is clear that the 100(1 - «)%
H.P.D. interval is identical to the shortest interval developed by Bartoszynski and Powers(1990).

Whilst we have considered a specific transformation, a similar result would have arisen had we taken instead
a general nonlinear transformation () . It is clear from the above analysis that the answer to the first
question which we posed is that classical intervals in general suffer from the same problems as do Bayesian
H.P.D. intervals.

Turning to the second question, two separate considerations suggest thatlog (LDS0) is the more appropriate
scale for making inferences. The first consideration is statistical. Box and Tiao(1973) argue for so-called
standardized H.P.D. intervals. Such intervals are calculated in the metric for which the uninformative prior is
locally uniform. In this metric different sets of data translate the likelihood in the parameter space but otherwise
leave it unchanged; for this region such likelihoods are termed data transiated. In the present context, our
constrained prior,

p.(a,B) = constant B>0 ,-o<a<w

becomes in the parametrization 3 andw ,
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p(w.B) < B

and in the parametrizatione? ,i.e. LDS0,and3 ,

B

P(LD50.B) = T7=5

Clearly log(LDS0) is the parametrization in which, with respect to the parameter of interest, the prior is
locally uniform.,

The second consideration concerns the dose scale itself. Since the scale on which a dose is measured is
essentially arbitrary, for example in risk assessment doses may be measured either in mg/kg or in parts per
million, it is advantageous to have a scale on which a proportionate increase in the dose has the same scale
value at all levels of dose.

11.7 Profile Likelihood.

In discussion of Racine ef a/(1986), Ross(1986), Bailey and Gower(1986) and Cox(1986) all suggest that the
failure of the traditional method of setting confidence intervals based on Fieller’s theorem to give an adequate
result is a direct result of the invalidity of the normal approximation to the binomial for small numbers of
animals. They conclude that the use of likelihood intervals solves the problem. In this section we show that in
exactly the same way as with the fiducial intervals based on Ficller’s theorem, there always exist a "confidence
level” for which this likelihood method fails to produce an interval. We establish this result for a logit model,
although the same result may be empirically demonstrated for the probit model.

Definition :
Suppose L(0, ¢ | X)is a two parameter likelihood then the profile likelihood of 8, PL(0), is defined as,

PL(8) = L(8,4(8))

where $(6)is the solution to 9L(8. ¢ | X)/3¢=0.

Theorem :

The profile likelihood for w = log (L D50 )for a logit response model has a minimum given by,
;\__:x‘(r,—n,/Z)

w - k_——_ ’ B(w')-o.
Y (ri-n/2)
i=1

Proof :
From the log-likelihood {(w, f(w)) which, for convenience, we denote by ¢ and regarding it as a function

of w alone, we have

dB(w)

2L S -n,p )[(x —w)—-rscw)]
& i t* 1 dw

w

WhenB(w) =0, P,= 1 /2 and substitution of w = w' gives d1/3w = 0., Differentiation of 31/3w gives,
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i=]

Z(rl nP)[(xl w)

Al the turning pointw', B(w') =0, P,=1/2 so that,

321 dB(w) w2 dpw?
rwc i ‘Z(, n/2)——Zn,(x, )Z[T‘j—— (11.33)
By definition (w) is defined as an implicit function of wby the equation,
™ Z(x, w)(r,-nP) = O.
inl
A second differentiation gives,
Z(r, nP(-1)- ZnP(l P, w)[(x, gy | - o
giving
X 3
apCw) a(w);n,P,(l-p,)(x.-w)-;(r,-n,p,)
dw

k
‘Zln«P:U - P)(x, - w)?

At the turning point w' , B(w') =0, P,=1/2s0 that,

r,-n/2
dﬁ(w)___Z(. /2)
d k

v %Zl"l(x'

Substituting this into (11.33) gives,

k 2 k 2 K 2
221 8[2("4"“/2)] 4[2(7‘,"7‘!,/2)] 4[2(7‘,-11,/2)}
=] i=] tw]
— = - .
w inl(xl-w.)z an(xd-w.)z Zn,(x -w )

i} {=] t=1]

which is clearly positive, so that the turning point is a minimum.

This result implies that the profile likelihood function for whas both a maximum and a minimum. Thus the
profile likelihood can be characterized , for convenience using the log of the profile likelihood, as in Figure
11.6. The behaviour of the profile likelihood function evidenced in this figure is mirrored in the plots of L( Qo)
» the likelihood ratio statistic, given by Williams(1986), and has also been described explicitly by Aitkin(1986).
The asymptote represents the log of the profile likelihood for zero slope and corresponds to,

i(w,f(=®)) = rlog(r/n)+(n-r)log(l-r/n)

where
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r = Y r, . n = zk: n,

1=l i=]

The implication of the form of the log of the profile likelihood, which was apparently not appreciated by either
Williams(1986) or Aitkin(1986), is that there will always be a level a for which the likelihood interval will
comprise the whole real line. The level at which this occurs will be less than that at which Fieller’s Theorem
applied to the asymptotic normal approximation breaks down, but it will always occur. This may clearly be
seen in Williams’(1986) Figure 1. in which the likelihood ratio statistic always lies above the asymptotic
approximation.

The proof of the theorem shows that it is negative values of the slope 3 which cause problems and it is precisely
those values of {3 which are excluded by the Bayesian analysis based on a prior for 3 which is uniform on the
positive half of the real line. There is clearly justification in conditioning on positive 3 in toxicity experiments
although the argument may be more difficult to sustain in other classes of experiments.

The profile likelihood, or relative likelihood approach, has a second major defect. As Kalbfleisch and
Sprott(1969) point out :

"... the maximum relative likelihood does not take account of the uncertainty due
to lack of knowledge of B and so can be misleading in terms of both precision and
location".

This comment relates to the effective assumption that for fixed w , B is known to be equal to its maximum
likelihood estimate without weighting for the uncertainty in that estimate. A Bayesian analysis effectively takes
account precisely of this uncertainty in the following way. Suppose again that we have two parameters © and
¢ and we wish to make inferences about © . For a uniform prior on both parameters an asymptotic approximation
to the posterior distribution of © is given by,

H'(¢') llze((._.')
POIX) = \Zmn H@.$)I) o@D

where ® and $ are the global maximum likelihood estimates, ¢ is the maximum likelihood estimate of ¢ for
fixed© , H (9. ) is minus the inverse of the Hessian of the log likelihood, and H* is minus the reciprocal of
the derivative of the log likelihood function with respect to ¢ for fixed ©. The profile likelihood function,
exp(i(0,¢")) is weighted in the above expression by H'(¢")''* which represents the uncertainty in ¢
measured by the curvature of the log likelihood at that point.
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12 PREDICTION IN LD50 EXPERIMENTS.
12.1 Introduction.

Ever since their very beginnings, Bayesian methods have been used for predictive purposes. Richard Price,
for example, in his appendix to the posthumously published original paper by Bayes provided applications of
Bayes’ results to six problems of which three had to do with the prediction of events, albeit that Dale(1982)
has pointed out that Price’s application of Bayes’ results to these prediction problems was incorrect. A recent
re-interpretation by Stigler(1982) of Bayes’ Scholium in which he defended the use of a uniform prior suggests
that Bayes proposed a uniform "uninformative" prior distribution for the parameter of his problem not because
he believed in the so-called "principle of the equal distribution of ignorance", but rather because it lead to a
uniform predictive distribution for the data. A second obvious example of an early use of predictive ideas is
to be found in Laplace’s "law of succession".

More recently predictive distributions have been used for a variety of practical applications. Aitchison(1964)
used the predictive distribution for setting tolerance limits to be used in normal range applications - an area
surveyed in detail by Guttman(1970); Guttman(1965) uses it in goodness-of-fit problems; Box(1980) uses it
for testing the compatibility of the prior distribution and the likelihood; Naylor and Smith(1983) use it again
for a normal range problem in which there is a mixture of "healthy” and "sick” subjects. Aitchison and
Dunsmore(1975), a text devoted solely to predictive distributions, provide a number of further applications
as does Grieve(1988) in a pharmaceutical context.

In a series of articles, over a number of years, Geisser has championed predictive inference for its own sake
- see for instance Geisser(1971), Geisser(1982) and Geisser(1985) - the latter article providing references to
other applications. In essence he argues that predictive inference, since it deals with observable quantities, is
of more relevance to practical problems than "estimative inference” which has to do with hypothetical models
whose parameters can only have meaning in the limit as the sample size goes to infinity. Such considerations
lay behind the procedure for the determination of a prior distribution for a and 8 in §11.5 in that toxicologists
are asked to express beliefs about observable events, namely the deaths of animals, rather than about the
parameters a and B themselves. Commenting on Stigler's(1982) re-interpretation of Bayes’ Scholium
Geisser(1985) concluded that *Bayes himself is the first Bayesian predictivist’.

In this chapter we develop a predictive approach to a non-standard problem in LDS0 estimation.

12.2 Background to the Applications.

The first application concerns a claim by a national regulatory authority that a new formulation of an
agrochemical product Basudin had an L D50 of the order of 200 mk/kg or less. When originally tested on rats
this substance gave rise to the data shown in Table 12.1. There is no evidence in this table to suggest that the
LD50 could be as lowas 200 mg/kg. Indeed, the maximum likelihood estimates of the L D50 and their respective
95% fiducial limits given in Table 12.2 show that it is highly unlikely that the LD50 could be this low and is
more likely to be of the order of 700 to 1100 mg/kg. This is confirmed by the Bayesian analysis of §11 which,
using uninformative priors, gives rise to the posterior distributions displayed in Figure 12.1 and by the fact
that the posterior probabilities that the LDSO is less than 200 mg/kg are each less than 0.0001.

PREDICTION IN LD50 EXPERIMENTS. 12-1



TABLE 12.1 Data from Previous Studies with Basudin.

Study Dose Number of Number of
(mg./kg.) Animals Exposed Animals Dying
600 10 0
1 1000 10 6
1470 10 8
1670 10 10
Lm: 1
600 10 0
2 775 10 5
850 10 6
1000 10 10
359 10 1
600 10
3 1000 10 7
2150 10 10
3590 10 10
L __

In the light of the pressures to reduce the numbers of experimental animals and under the strong conviction
that no substantial change in the toxicity of Basudin had taken place it was decided that it was not appropriate
to carry out a full LD50 experiment, particularly since there were 10 batches of the new formulation which
had been questioned. It was therefore decided to apply a dose of 200 mg/kg taken from each batch to 10 rats
to repudiate the claim of increased toxicity in the expectation that no animals would die at this dose. On the
basis of the data in Table 12.1 predictive distributions of the results of these tests may be calculated and the
observed results compared to these to give an assessment of changes in the toxicity of Basudin.

TABLE 12.2 Maximum Likelihood Estimates and Fiducial Limits for the Data from Table 12.1.

Upper Fiducial
Limit

The second application again concerns an agrochemical product, Miral, In this instance there was anecdotal
evidence to suggest that when stored for long periods in the humid conditions to be found in S.E. Asia, oxidation
of the compound could occur leading to increased toxicity. When originally tested the results given in Table
12.3 were obtained.
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TABLE 12.3 Data from a Previous Study with Miral.

Study Dose Number of Number of
(mg./kg.) Animals Exposed Animals Dying
359 5 0
60 5 0
Males 129 5 2
147 5 4
215 5 5
— e |

35.9 10 0
60 10 5
Males 129 10 7
and Females 147 10 9
215 10 10

These results gave rise to the traditional maximum likelihood results displayed in Table 12.4

TABLE 12.4 Maximum Likelihood Estimates and Fiducial Limits for the Data from Table 12.3.

Study M.L.E.
(mg/kg)
Males
Males and
Females

No Fiducial Limits Calculable

Upper Fiducial
Limit

The Bayesian analysis outlined in §11, again using uninformative priors, gave rise to the posterior distributions
shown in Figure 12.2. Both sets of data show that it is extremely unlikely that the LDS0 for Miral is less than
40 mg/kg. It was therefore decided to apply a dose of 35 mg/kg to each of S males and 5 females from each of
6 batches of Miral. The data in Table 12.3 may be used to provide predictive distributions, and a comparison
of these distributions with the actual results will again indicate whether a change in toxicity has occurred.

12.3 Predicting the Results of a Future LD50 Experiment.

Suppose we wish to predict the results of a future experiment consisting of a single dose, d , being administered
to a group of n animals. Given that we know the values of @ and B in our probit model, then the probability
distribution of the number, r , of deaths from the n animals is,
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where P = ¢(a +Bx) and x = log(d) . If our knowledge concerning a and 8 is described by a posterior

distribution determined as in §11, then the predictive distribution of r deaths from the n animals given our
current knowledge is,

Parixy = [ [Perina.pyp(a.pix)dadp
a B

[ [periniapyrca.pix)pa.prdads
a B

(12.1)
[ [ tea.B1x)p(a.BYdadp
a B

12.4 Approximating the Predictive Distributions.

We are again confronted with integrals which we cannot determine analytically. The Gaussian quadrature
method of Naylor and Smith(1982) is one possibility for calculating (12.1) or we may again use Lindley’s(1980)
asymptotic results. By noting that (12.1) is of the form,

fu(e)e“”"""de

f PRI T

where 6 = (a,B) ,u(8)=P(r|n.a,B) , {(8)=log(L(a,B| X)) and p(8)=log(p(a.B)) Lindley’s
equation (16) may be used to show that a good approximation to (12.1) is given by,

P(r IR, &.B)* 5(P 32+ 2 8 g+ Pad)
3 La(P 51+ Pr628.p) + 5L (3P 1520 0+ Po(5253+ 262,))

“'%le(Px(&i&:'*26503)*31’2&:5“)"'%[03(151-:an*Pz&;)

where
P dP(r|n,a.B) P - 3*P(rin.a,B)
! 2a aeipep dadf SEPIPEN

etc., and where £,;, 62, 62 and 4, are as previously defined ( see §11.2). The required differentials have the
following form :
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op el r- a-r-
p, - LGP (’r’)«A)P '(1-PY " (r - nP)
opP s &y r- a-r-
P, - ___(%'_E) - (:)q;(A)P "(1-P)* " (r-nP)x
2
P, = m—ra'a’lzf'_m (:)«pz(A)P"z(l—P)""'z(rz—r+2Pr+P2nz—nP2—2nPr)
-P,A
2
P, = "—P%i—'a’[’;’—'m - (:)¢2(A)P"2(1—P)""'Z(rz—r+2Pr+Pznz—an—ZnPr)x
-P,Ax
2
Py = iﬁ% - (:)¢2(A)Pr-2(l—P)“"'z(rz—r-r2Pr+P2n2—nP2—2nPr)xz
-P,Ax?

in which A = a + B x, and where again each differential is evaluated at the maximum likelihood estimates &
and 3.

12.5 Results,
12.5.1 Toxicity of Basudin.

Using the above results and the data in Table 12.1 we may calculate the predictive distributions for » deaths
among 10 rats receiving a dose Of 200 mg/kg. The predictive distributions for the three sets of data are displayed
in Table 12.5.

TABLE 12.5 Predictive Distributions of r Deaths from 10 Animals Receiving 200 mg/kg. of Basudin.!

In the actual experiments which were carried out there were no deaths. Thus the experimental results agree
well with the predictive distributions in that the highest predictive probability of a single death from 10 rats
is of the order of 1 in 20 (study 3). On the basis of these results it was concluded that the new formulation of

Basudin did not have an LDS0 of the order of 200 mg/kg. or less.

1 The probabilities for 7 > 3 are all essentially zero and are not shown.

PREDICTION IN LD50 EXPERIMENTS. 12-7



12.5.2 Toxicity of Miral.

In the case of Miral, Tables 12.6 and 12.7 provide predictive distributions of » deaths from 5 males receiving
35 mg/kg of Miral and r deaths from 10 male and female animals also receiving 35 mg/kg. These predictive
distributions were derived using the results in §12.4 on the basis of the data shown in Table 12.3.

TABLE 12.6 Predictive Distributions of 7 Deaths from 5 Male Animals Receiving 35 mg/kg. of Miral.2

r Probability
0 1.000
1 0.000

TABLE 12.7 Predictive Distributions of r Deaths from 10 Animals Receiving 35 mg/kg. of Miral.3

r Probability
0 0.536
1 0.246
2 0.141
3 0.060
4 0.016
5 0.002

In Table 12.8 the results of testing 35 mg/kg, taken from each of 6 batches, in 5 males and in 10 males and
females are tabulated. It is not so clear in this instance that there has not been a change in toxicity. In the case
of males we predict with almost certainty that there will be no deaths from 5 rats and yet one of 6 batches gave
rise to one death; for males and females together the predictive probability of less than 3 deaths from 10 rats
is 0.923 but one batch gave rise to 3 deaths. Whilst not conclusive, these results do tend to suggest that an
increase in toxicity has taken place.

12.6 Discussion.

Whilst the approach taken in this chapter is appealing in terms of saving on the use of animals, nonetheless
one needs to be sure that its application is appropriate. In particular applicability of the technique assumes :

that all experiments, that is those used for prediction, those on which the claims for increased toxicity
were based and the new experiments were conducted in a similar fashion and under similar conditions.

2 The probabilities for » > 1 are all essentially zero and are not shown.
3 The probabilities for 7 > 5 are all essentially zero and are not shown.
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TABLE 12.8 Observed Results from Testing 6 Batches of Miral.

“ Males " Males & Females
Buch | o | ] i
- _

1 5 0 10 0

2 5 0 10 0

3 5 1 10 3

4 5 0 10 0

5 5 0 10 0

6 5 0 10 2

This assumption is particularly important since, as we have seen, the LDS50 is not a biological constant but
can vary depending on environmental and other factors. Potentially, therefore, whilst in the case of Basudin
we concluded that there was no change in toxicity , we may only have concluded this because the conditions
under which the test was conducted changed thereby masking the changed toxicity; the converse may be true
in the case of Miral.

The importance of this assumption was underlined when it was subsequently revealed that the regulatory
authority who had claimed that the D50 of Basudin had changed had use mice instcad of rats !!
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13 DISCUSSION.

In this thesis we have considered two areas of controversy in pharmacentical research and have provided
operational tools for carrying out Bayesian analyses of varying complexity. In particular, where appropriate,
we have provided graphical methods for displaying the relationships between prior assumptions concerning
the parameters of the relevant models and the posterior inferences which may be derived from these prior
assumptions and the experimental data. At least two issues remain open.

Consider first the classical LD4j) test and the approach developed in §11. We noted in §10 that it is likely that
the BTS procedure which is not based upon the LD5p, indeed it is not even primarily concerned with lethality,
will, become the main procedure for determining the acute toxicity of a test compound and therefore it could
be argued that the development in §11 is unnecessary. There are a number of reasons for arguing against this
view :

i) In §11 we concurred with Finney’s(1985) opinion that while some regulatory authorities still require
the estimation of a formal LD5g value it is incumbent upon us as statisticians to utilise the most efficient
methods available for its determination. Such was the motivation behind Williams’(1986) development
of alikelihood-based method for constructing a confidence interval for the LD 5, an idea independently
developed by Aitkin(1986).

ii) Whilst from a regulatory perspective the need to determine a formal LD5g value is likely to disappear
there are still instances within pharmaceutical research in which an LDsg value is needed. One such
instance is the determination of the appropriate dose of cytotoxic drugs to be given to patients in the
first human study. Oncologists will in general require either an LD5g, or an LD1(, based on animal
studies before they are prepared to specify a dose in such early human studies and whilst they do not
require extreme precision for such estimates since the LD1¢, as well as the LD5g, is required efficient
methods are necessary as estimating the LD1( requires more resources for the same precision as does

estimating the LD5.

iii) There are other areas of toxicology, apart from those associated with pharmaccutical research, for
which LDsj estimates are needed. One example is in the area of ecotoxicology, that is environmental
toxicology, where it is necessary to determine the LD5g in fish of, for example, agrochemicals which
may enter rivers by being washed there cither through irrigation or through rainwater. Apart from
animal welfare considerations many of the species of fish which are used in such studies are expensive,
for example trout or salmon, and therefore there is again a requirement of efficiency. Interestingly there
is one area of ecotoxicology involving LD5( estimation for which there has been no effort to increase
efficiency and that is where the test system is a water-born insect, the main example being the species
Daphnia. Apparently insects are considered expendable.
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iv) There are a large number of instances within the process of the isolation of new chemical entities
for medical research for which the determination of an ED5( as opposed to an LDsy is required. In
some of these cases the model which is being used is an animal model and so once again considerations
of efficient resource utilisation suggest that one should optimise the statistical methodology.

v) Finally, returning to the very origins of the LD g, namely Trevan’s work on sera, there are still cases
in the area of vaccine testing for which a formal LD5q is needed. Thraenhardt(1986) has considered
the use of Bayesian methods for the evaluation of batches of anti-rabies vaccine based upon the WHO
method outlined by Seligmann(1973). The regulatory authorities require that before every new batch
of anti-rabies vaccine is released it should be tested against a standard and generally this comparison
is based upon the dilution which protects 50% of the animals against the rabies virus. Thraenhardt
proposed that the EDgg’s should be compared by calculating the posterior probability that the LD5g
of the test batch is greater than that of the standard vaccine. As illustration we have taken data from
Thraenhardt(1986) and in Figures 13.1,13.2 and 133 displayed the posterior distributions of the
Log2(ED50), the slope and the joint posterior distribution of Log2(ED50) and the slope respectively
in which the black posterior distributions, labelled *0’ in Figure 13.1, relate to the standard vaccine and
the remaining seven posteriors in each figure come from seven test batches. From the posteriors dis-
played in Figure 13.1 we may calculate that probability that the standard has a greater Log2(EDS0)
than does batch ’1’ is 0.057 and perhaps conclude that this batch is not as potent as the standard. It has
tobe doubted that this approach is a sensible one in the light of the posterior distributions for the slopes
displayed in Figure 13.2 from which it is fairly clear that there are large differences. The concept of
relative potency requires equality of slopes and this assumption has to be doubted in view of these
posteriors. Nonetheless, the log relative potency of two batches has a similar form to the log(ED50)
and therefore the techniques which we have developed can quite simply be modified to deal with this
case.

The second issue concerns both the LDsq problems and the analysis of the two-treatment crossover designs.
In both cases we have used vague prior distributions, and there will be arguments about the validity of their
use. For example Stone and Springer(1965) have questioned the validity of the vague prior which we have
used in §3, and similar concerns have been expressed concerning the vague prior in §8. Despite Box and
Tiao’s(1973) response to the theoretical arguments of Stone and Springer there are clearly problems with
vague priors if one tries to assign to them some semi-philosophical importance which they clearly do not have.
Rather they should be thought of merely as a device for expressing that we know little about the parameters
of the model under consideration relative to what we may learn from the data.

In the context of pharmaceutical research, particularly when we are dealing with regulatory authorities, it may
be very difficult to incorporate prior information into the analysis of the experimental results even if we have
a lot of it and believe it to be relevant, notwithstanding the comments of Healy and Newman in §1, and this
may be our preferred approach which would circumvent the problems associated with vague priors. However,
there seems to be considerable scope for the use of informative priors in in-house research work and this
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conflict between the public and private inference may be resolved by the suggestion given in §1, namely to
give the data, or likelihood, in a results section, leaving a Bayesian analysis with its posterior distribution to
the discussion. ’
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A APPENDICES.
Al Behrens-Fisher Densities and Orthogonal Polynomials.

Four different methods of calculating Behrens-Fisher densities and/or distribution functions are considered.
The first three methods depend on the use of orthogonal polynomials and Gaussian quadrature. As a
by-product of one of these methods an alternative to Fisher’s(1941) Hermite polynomial expansion of the
Behrens-Fisher density is derived.

Al.1 Background.

Suppose x,(i=1,2;j=1,..,n,)are two independent samples from N (p,, 0?) and further that the prior
distributions of ., pt,. log(o2)and log(02) are independently uniform over (-»,»). If x,, x ,, s2, s2are
the respective means and variances of the two samples, standard Bayesian calculations show that the posterior
distribution of the parameters has the form,

- .2 - .2
- (U —xy)" na(pp—x3)
A, A, (0202 I/zex - -
1Az(0703) p 20% 20%

Py, 1y 08, 051 X)

rR,v1)/2 2 ~(nyv1)/2

B,B,(0%) """ (a2)

(ni-1)s} (np-1)s3
- - Al.l.l
exp[ 202 202 ( )

x

x

where

- - n, \'"? (=121 -1
X=(x,.x,.8%,82) ., A, = (2——1‘1) . and B, = | r [ 5 :l

If we are interested in making inferences concerning n = p1, — i, , a natural way to proceed is to integrate a3
and o out of (A1.1.1) to obtain,

— -», /2 — -Ry/2
’ nl(ul-xl)z nz(uz"xz)z
PRy a1 X) = C\Cof 1L+ ———— I — (A1.1.2)

v,si Vv2s}

~i/2

where v,=n,-1,C,= B '(1/2.v,/2)(v,s?/n,) '* followed by the transformation n=p,-p,, p=p,

(with unit jacobian) and to integrate out y. Thus,

n,/2 _= .2 “Ry/2
p(nlX) = fcc[ mv- x')J [1+W—w2—xz-)-:| dy. (A1.1.3)

lS] VZSZ

Posterior probabilities concerning n may be obtained by integrating (A1.1.3) over the required range. For
example,
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v,sf stg

P(N>0|X) = ffcc{ nw - x‘)l {uw:l - dydn. (Al.1.4)

The problem considered in this appendix is the numerical evaluation of (A1.1.3) and (Al.1.4).
Al2 Quadrature Using Harper Polynomials.
From (A1.1.3) it is clear that,

-_ 2 -.2/2
p(nlw. X) = Cz[nmi—xi] (Al.2.1)
v,s3
and,
— 2 '"1/2
p(wIX) = C,[qu (A1.2.2)
v,s?
so that (A1.1.3) and (A1.1.4) may be written,
p(1x) = [puwixdy = [p(lv.X)p(wIX)dy (A1.2.3)
Pa>01x) = [ [peovinav = [ [ aiv.X)pwix)dndy
0 ‘e (R
= [ P(n>01v. X)p(v] X)dv (A1.2.4)

In (A12.3) and (A1.2.4) make the transformation u = n}’*(y - x,)/(v,s})"/*with jacobian (v,s}/n,)

then

172

p(1X) = [pniuw X)pulX)du

Uzsz

T +u(v,s2/n )”2 2\ ™" 72
-— “R
/Cz(l nz[ﬂ+x, xz u(v,si/n, ] ) C/‘(l+u2) V2 (Al.2.5)
and

P(n>01X) = fP(n>0|u.X)p(u|X)du

T ;2—;l_u(vlsf/nl)”2 / 2. m/2
= f 1-P|t(vy)> 2/m )1/2 Ci(l1+u®) du (Al.2.6)
2/,

where C{ = B™'(1/2,v,/2)and t(v,)is t-distributed with v, degrees of freedom.
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Equations (A1.2.5) and (A1.2.6) may both be written in the form,
y / 2, 8/2
fle(u)(1+u y du (A1.2.7)

and may therefore be approximated by,

2. Crwy, f(uy,) (A1.2.8)

i=l

where u,, are the zeros of the orthogonal polynomials ¢, ,( x )developed by Harper(1962) and w,, are the
associated weights [k =(v,-1)/2,n<k+1/2]. Explicit expressions for ¢, ,(x)and w,, are derived in
Appendix A2.1.

Al13 Quadrature Using Hermite Polynomials.

In (A1.1.1) make the transformation n=p,-u,, v =p,,p=0%/0?and 6 = o?with jacobian © and integrate
out in turn y and O to give,

- - - -1/72
D, {(ni'+pn")(v, 82+ v,s2p "))

- - 2 ~(ayrn,-1)/2
SRS .

- - 2 21
(ni'+pny')(v si+v,sip™)

p(n.pl X)

v.g2 ~(r,*ny-2)72
" Elp-(nnl)/z[l+ 222:] (A1.3.1)
Vi81p

where D, = B™'[1/2,(v,+Vv,)/2]and E, = B"'(v,/2,v,/2)[v,53/(v,5)]""2. Clearly (A1.3.1) may
be written in the form p(n|p. X)p(p | X)where,

v.sl “(v,*vy)/2
-(v,*2)/2 2
p(plX) = Ep ' [l+vzszp] (A1.3.2)
21
and
p(n.p1X) = D,[(ny'+pnz" ) (v s?+v,sip 1"
(n-%;+ %))’ e
x [ 14— ~ . o (A1.3.3)
(ny +pnz (v si+vyesip )
This structure is similar to (A1.3) and therefore,
p(ntx) = fp(nlp.X)p(plX)dp (Al1.3.4)
0

and
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p(n>016) = [ [ pnie.X0pCo 1 X)dndp [ Pta>010.X3p(p 1 X)etp (A1.3.5)
0 0O 0

where P(n>O0{p.X) = 1-Pli(v,+v,)>t,]and

112,72 _Z
(vi*va) “(xa=x)

by = 172"

[(ni'+pnz') (v si+v,s3p™h)]

Equations (A1.3.4) and (A1.3.5) may both be written in the form,

[ #ypto153ap (A1.3.6)

and therefore we may use the following argument due to Barnard(1984). Since p(p | X )is a continuous density
there will exist a monotonic function g( . ) with inverse A (. ) such that g (p ) has a standard normal distribution.
Therefore we may write (A1.3.6) as,

0 [ flr1e %z, z=g(e).

which may be approximated by,

S wh FLR(u3)]
i=l

where wy, = w,,n "%, uy =u,27'"%, and u,, and w,, are the zeros and associated weights of the Hermite

polynomials H ,( x ) (see for example Abramowitz and Stegun, 1972). Barnard(1984) proposes usingn = 3,
so that calculations could be carried out on a calculator. Clearly this approach could also be applied to
functions of the type (A1.2.7).

Al.4 Quadrature using Jacobi Polynomials.

In (A13.4) and (A13.5) make the transformation u = v,s3/(vZ+ v, s%p) with jacobian v,s3/(u?v,s?)
givi

1
p(nlX) = fp(nlu.X)p(uIX)du (Al.4.1)
[+

1
P(n>01X) = fP(n>0|u.X)p(uIX)du (A1.4.2)
V]

where,

v, /2-1

pulX) = B (v,/2.v,/2)u"* (1 -u)
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“(vycv,t )2

—

v, 88 v,s2 |12 (n-x,+x,)°
p(nju,x) = D](__l__l__,_ 252 1+ — —
n(li-u) nsu ! Eall
- L R (l-u)
and
P(M>0]X) = 1-P[t(v,+Vv,)>t,]
where

(Ez‘zl)(vﬁvz)”z

2 27172
v, 8y v,82
—— e —
A, (i-u) LTy

Both (A1.4.1) and (A1.4.2) may be written in the form,

t,

v, /2-1

i
[ ™ a-uwy" " au
0

which may be approximated by,

Zw:s,f(uac)

=}

where w,, and u,; are the zeros and associated weights of the Jacobi polynomials
Ga(P.q,x).p=v,/2+Vv,/2-1,q=v,/2(see for example Abramowitz and Stegun, 1972).

A similar approach is considered by Barnard(1986) except that he takes the transformationy = n,/(n,+n,p)
with jacobian n,/(n, v?)giving,

1
p(nlX) = fp(nlv.X)p(YlX)dY (Al.4.3)
0
and
1
P(n>01X) = fP(n>0|Y.X)p(YIX)dY (Al.4.4)
]
where
v /2 v,/2
B (visi/ny) " (vysi/ng)? v 12-1 v,l2-1
P(YlX) -~ B I(\’1/2'\’2/2) v, s2(1-y) v,82 -(v,*v,)/2 (I-Y)‘ ’
13 + 22 EAd
[ ny LH ]
—  — atvyrvei2
v s v,s3 |2 1+(ﬂ‘x2+xl)
p(nly. X) = D, + v, s? v, 82
1- MR bt B
ny n(l-vy) —t
and
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P(N>01y. X) = L=P[t(v,+V,)>1,]
where

(;2";1)(‘/1*"2)”2

v,s? v,s3 12
—_—
ayy  a(l-y)

ts

This latter approach has two disadvantages. First, the form of p(y | X ) is such that no orthogonal polynomials
are available. Second, in the form in which Barnard(1986) implements the method it is not assumed that the
constant D, is known so that two numerical integrations need to be calculated each time, thus making it largely

impractical.
Al.5 Expansion in Terms of Harper Polynomials.
The expected value of a Behrens-Fisher variate may be obtained from (A1.1.2),

[}

Ea-u 10 = [ [ (am0)pGam 1 Xduan,

fuzp(uzlx)duz-fulp(u,lX)du. = X=X,

where p(u,1 X) =t(x,,s?/n,,v,). The central moments may be similarly calculated,

Qe = %or %160 = [ [ 10T == X0Y Plag by | X)din,

me=0

) (-1)“”(;)f(uz—§z)"‘p<uz|X)duzf(u.-§l)""‘p<u.|X>du,

r

- Z(—l)m'r(;)ﬂm'vzﬁpm.“ = y, (r<min[v,/2,v,/2])

m=0
using (A3.2.1) where,
By, = (s2/n)"%q,,
. . e BlUr 12, (v, - 1)/2)
v, ‘ B(1/2,v,/2)
-0
From (A1.5.1) we have,

v,s¥/n, v;s5/n,
+
v, -2 vy—2

- - 2
E(u—p - x,+x,) = v, =

APPENDICES.
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{ even

! odd.

(A1.5.2)
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B(visi/n)”  6(v,si/n)(vysi/ng)  3(v,si/n,)
(Vi=2)(v,=4)  (vi=2)(v2-2)  (v,-2)(Vv,-4)

- = .4
E(ua-1,-x,+x,) = y, =

(A1.5.3)
Suppose that n is approximately distributed ast(x, - x,,s'?, v") then from (A3.2.2),
. .2
E(n-%,+%)° ~ = (A1.5.4)
v -2
and
E(n-%,+%,) = —3Cv's™) (A1.5.5)
n 2 1 (v'—Z)(v'-4) e N
Equate (A1.5.2) and (A1.5.3) to (A1.5.4) and (A1.5.5) to give,
6vy32 6x?
viom asY2 L 4,0 (A1.5.6)
Y+~ 3v2 X4
2 V'-2
s o=y, (A1.5.7)
v

so that,

- = 27D
P(MIX) = po(n) = C-[“(_“_;"_z_sfj;)]

where C* = [(v's'2)""2B(1/2,v'/2)] 'andk = (v' - 1)/2. This approximation was given by Patil(1965).

Suppose,
4 nN-x,+x
p(niX) = po(n){l'fl_Zasz,,.[(v—,—sfz),—,;]} (A1.5.8)

(it is not necessary to consider odd terms). Multiply (A1.5.8) by
n-x,+x !

and integrate over the range of n. The right hand side may be written,

7 2 n_;2+;|
Cz/fPo(ﬂN’z/.k m} dn. (A1.5.9)
Let
n-Xx;*x,
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with jacobian (v's'?)'? then (A1.5.9) becomes,

Cz/(2j)!r(k—2j+3/2)222k-4/'2
B(1/2,k+1/2)(2k-4j+1)[(2k=-2j+2)

Cyyv'2s7C f(l + wz)—(p”‘i’:/.k(w)dw -

(Al1.5.10)

using (A2.1.7). The left hand side may be written,
Y N=-X,+X
fp(nlxm,,k[(—vz.’zT;]dn

] ) 1 (_l)mz-ZM(v‘s'Z)‘(/‘m)
= Tlk-2j+372)20 ,:L_Lom!(zj-2m)!r(k—2j+3/2+m)

[ P x) (=%, + %) " an

- r(k_2j+3/2)(2j)!mi_:om!(Z(;-l;";712)-!2:((::32'j');(3l-/”‘2)+m)Yz"z”‘ (A1.5.11)
using (A2.1.5) and (A1.5.1). Equating (A1.5.10) and (A1.5.11) gives,
cs, B(1/2,k+1/2)(2k=-4j+1)T(2k-2j+2) (-.-l)"'2'2"'(v's'z‘)'(""') vo.
T(k-2j+3/2)2% 42 Loem!(2j-2m)IT(k-2j+3/2+m) '2/2m
(AI1.5.12)
Suppose we wish to calculate,

) ] , o
P(n>01%) = [p(nixydn fpo(n)[HZQz,fRz,.m(n—x2+x,)"" )]dn
0 0 /=3 m=0
(A1.5.13)

where

Q, = CpT(k-2j+3/2)(2j))!

and

(—1)”‘2'2"‘(v's'2)_“'m)
Ryym = mi(2j-2m)!T(k-2j+3/2+m)

In (A1.5.13) make the transformation,

v s
with jacobian,
v'”zs'(l _w)-l/z
2uw? w
so that,

APPENDICES. A-8



E i § - . . -
a8 . k+1 . s . -m . l—w mm v IIZS l_w Ve
P(n>01X) C ‘{[w +,.Z:;QZI,..ZOR2"'"(V s "wt l( ” ) ow? ” dw

[}
m’; k-/’m-l

WL L ! j- f~m-s
[UulIZS-wk z(l_w) 2+ZQZIiR2l.m(v-s-2)/ w z(l_w)l m Z}dw
/=3 m=0

[}
O,
oS

°1/2 1 1) ¢ v 2. /m ( . 1 \ 1)
v sB(k+—,— + Ry n(v's Bgk-j+m+_,j-m+ -
|: ¢ 5'5 IZSQHX 2;.m( ) v J 54 5

m=0

"
AR

(Al1.5.14)

where,

This expansion was motivated, in part, by Durbin and Watson’s(1951,1971) approximation to their 4 statistic
for testing serial correlation based on Jacobi polynomials which in turn led to the development by Grieve(1984)
of an approximation to the distribution of the locally best invariant statistic for testing sphericity of multivariate
normal distributions again based on Jacobi polynomials. Whilst this expansion is of some theoretical interest
it should be clear from the form of (A1.5.14) that it is not a practical expansion.

An alternative expansion of the Behrens-Fisher distribution with respect to a t-kernel was proposed by Fin-

ney(1963). Finney's expansion uses polynomials defined by,
_ ot d"

Yo T FGdax

[f(x)] (A1.5.15)

where f( x) is the t-kernel and o is the standard deviation of the relevant Behrens-Fisher distribution. These
polynomials should be contrasted with the Harper polynomials defined by (see A2.1.1)

_ J(2k-2n+2) 2,601 A" 2. A-k-1
bar = OO TopThen T gl X

Whilst there is some similarity between the expressions defining y,(x) and ¢, ,(x) they are not the same.
In the same way that (A1.5.14) is impractical so too is Finney’s approach based on (A1.5.15).

Al.6 Application of the Approximations.

The approximations in §A1.2-A1.5 were developed for calculating Behrens-Fisher densities and probabilities
in the context of the two-treatment, two-period crossover design (see §2.4 and §4.3). To illustrate these
approximations, therefore, three well-known crossover examples - Grizzle,1965; Hills and Armitage,1979;
Brown,1980 - are used. The results from these studies are shown in Table Al.1.

We noted in §A1.4 and in §A1.S that Barnard’s(1986) alternative method, closely related to the Jacobi

polynomial method was largely impractical as was the expansion in terms of Harper polynomials. For this
reason these methods are not applied to the data in Table Al.1.,, however we have applicd two other methods
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TABLE Al.1 Sufficient Statistics for Data trom Grizzle(1965), Hills and Armitage(1979) and Brown(1980).

Group sizes Degrees of
Data Set n, n, Freedom T R SSP SSE
Grizzle 8 6 12 0.360 -0.409 14.944 12.007 |
Hills & 17 12 27 1.019 0.793 565.517 145.360
Armitage
Brown 32 31 62 -0.387 -0.083 17.658 29.487

of approximation to these data. The first set of approximations was developed by Fisher(1941) using a general

Cornish-Fisher expansion; the second method was originally proposed by Weir(1960) and was independently
investigated by Scott and Smith(1971). The Fisher method is based on expanding the Behrens-Fisher density
about a Normal kernel using Hermite polynomials in a similar way to that considered in A1.5. The Weir method
approximates the density by a normal distribution with the correct mean and variance.

In Table A2.2 the results of applying the approximations to the data in Table A2.1 are presented, in which we

have concentrated on the probability of a positive treatment effect. There are a number of points to be made

concerning the results in this table:

@ Of the simpler methods, i.e. Barnard’s, Patil’s and Weir’s, Weir’s is the least, Patil’s the most
accurate. Barnard’s method could be made more accurate by increasing the degree of the
Hermite polynomial used at the cost of simplicity. The accuracy of Patil’s approximation is
somewhat surprising in the light of the Chaubey and Mudholkar’s(1982) results. These authors
conclude that "Patil’s approximation is very poor" this conclusion is not however supported by
our results, indeed recalculation of the cases considered by them throws doubt on their original
calculations.

(ii) The Gaussian quadrature method based on Harper polynomials is uniformly more accurate
than when based on Jacobi polynomials. On initial consideration this is somewhat surprising
since the Harper method is restricted with respect to the maximum degree of the orthogonal

polynomial which can be used whereas the Jacobi method is

not. However if we consider the form of,
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TABLE Al1.2 Application of the Approximations to the Data Sets in Table Al.1

Data Sets
Method Grizzle Hills & Armitage Brown
Exact 0.9912 0.6268 0.00008
PB 0.9588 0.5905 0.00007
PFO 0.9964 0.6292 0.00004
PF1 0.9930 0.6268 0.00007
PF2 0.9912 0.6268 0.00008
PF3 0.9911 0.6268 0.00008
PP 0.9912 0.6269 0.00008
PE 0.9929 0.6245 0.00005
Key PB = Barnard’s Hermite Method PF = Fisher’s Method
L PP = Patil’s Approximation _ PE = Weir and Scott and Smith’s Method
I‘==Quadrature Polynomial Polynomial Polynomial
Degree Harper Jacobi Harper Jacobi Harper Jacobi
L======.== e
3 0.9912 0.9875 0.6272 0.6262 0.00001 0.00012
0.9500 0.9874 0.6267 0.6262 0.00004 0.00012
0.9924 0.9874 0.6268 0.6262 0.00007 0.00012
0.9901 0.9874 0.6268 0.6262 0.00009 0.00012
0.9874 0.6268 0.6262 0.00008 0.00012
0.9874 0.6268 0.6262 0.00008 0.00012
0.9874 0.6268 0.6262 0.00008 0.00012
0.9874 0.6268 0.6262 0.00008 0.00012
L L C ] e e ——————————————— |
0.9935 0.6283 0.00007
0.9790 0.6317 0.00054
1—P(t(vz)>xa_x‘(;;(:zl)sjz/n')m) (A1.6.1)
in the case of the Harper method and of
- P(‘(VI +v,)> (x[z -vﬁ;)(vv'z;j’f,)z”? (Al1.6.2)
A (1-u) e
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(iif)

in the case of the Jacobi method which are shown for the three examples in Figures Al.1 and
Al.2 in which the t- and beta-variates correspond to u in (A1.6.1) and (A1.6.2) respectively
then the reason for the superiority of the Harper method is easier to understand. Gaussian

quadrature formulae work well if in the following formula,
[aGoe0adx ~ 3 wglx)
v i

g( x) may be approximated by a polynomial of degree less than (2n-1). The form of g(x)is
such that it is more difficult to approximate it by a polynomial than is the case for the Harper

method.

It is illuminating to compare the results based on a Behrens-Fisher distribution to those which
would arise if Grizzle’s(1965) procedure were used for those cases in which the carryover effect
is significant. For Grizzle’s and Brown’s examples the Behrens-Fisher approach gives rise to
increased sensitivities in comparison with Grizzles procedure, whilst for the Hills and Armitage
example this is not the case. This difference arises because for the Hills and Armitage example
the sample variance in the first period is smaller than that in the second period, whilst the
reverse is true for the other two examples. In general one can expect an increased sensitivity
using the Behrens-Fisher approach since our knowledge about variability is based on data from
both periods. For completeness Welch’s(1938) approximate frequency approach to the

Behrens-Fisher problem has also been given in Table AL2.
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A2 ORTHOGONAL POLYNOMIALS.
A2.1 Harper Polynomials,

Harper(1962) develops n** degree polynomials ¢, , ( x ) which satisfy the orthogonality conditions,
f(l +x2) " (x)$, (x)dx =0 ; m#n.m+n>2k+1,

He shows that this orthogonal system of polynomials may be defined either by Rodrigues’ formula,

Ban(x) = (—1)"r————-———r(fzkk—_2,,n:22))(l+x2>*"f’%[<1+x2)"“"]. (42.1.1)
or by the differential equation,
(1+x2)0. (x) - 2kxéL , (x) + n(2k-n+1)$,, = O. (A2.1.2)
Writing (A2.1.2) in the form,
2kx y 1+x

bpe(x) = m%.k(x) - m%’.’,u) (A2.1.3)

= Qb i(X) + Py (x)
implies that,

b alx) + Py (A2.1.4)

(]

¢l/x.k(x) ¢;.k(x)/¢:{t(x)

Differentiation of (A2.1.3) r~times gives,
#0(x) = Qe 0(x) + P P(x) . r=0...n-1,
where,

2(k-r)x P e -(1+x?)
e = (n-r)[2(k-r)-(n-r)+1] ' ™! (n-r)[2(k-r)-(n-r)+1]

0 = 2(k-n)x¢"V(x) - (1+x2)e{P(x).

Successive substitution of the ratios,

¢(r)(x) . P,
200 T e8P ()
into (A2.1.4) gives,
¢n k(x) Pl
RS - Qg
¢ n k(x) ’ Ql+02”
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Calculation of the successive convergents of this continued fraction shows that,

I'(k-n+3/2)n! )L (-1)™(2x)*2m
2" aem!(n=2m)tI(k-n+3/2+m)

6, (x) = N =[n/2](A2.1.5)

Harper gives the associated weights,

22&-2nv2n!r(k_n+ 3/2)2
W, =
Y @ )I(2k-n+2)(1+a})

where a; are the zeros of ¢, (x). Using equation (7) of Harper(1962) a more convenient form for the
weights may be derived,

2272 21T (k-n+3/2)?(2k-2n+3)%(1 +a?)

- A2.1.6
W Rl (2k-n+2)(2k-n+2)242., (a,) ¢ )
Harper also derives the result,
1 . 2620201 (k= n+ 3/2)?
2"k 1) 2 - 2 n'T(k-n )
h, f(l+x ) $n (x)dx (2k=2n+ DI(2k-n+2)’ (A2.1.7)

For the special cases k = n ~ 1 and k£ = n the quadrature formulae have the simple representations,

LI 2(2:—1):1)]""[ ((2;’—1):1)}
;n[l cos( 2n fl eet 2n

and

respectively.

A2.1.1 Zeros and Weights of Harper Polynomials.

The SAS macro in Appendix 7.2 may be used to calculate the zeros and weights of Harper Polynomials. These
are tabulated in the following tables for n=3(1)19 and k = n-1(.5)20 in which the weights are given in the form

w' = T'(k+1) w
u F(%)T(k+%) 1

see (A1.2.8).
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A2.12 An Application of Harper Polynomials - Predictive Probability in Clinical Trials.

Whilst, potentially at least, Harper polynomials might find application to general Bayesian integration prob-
lems, for example replacing Hermite polynomials in Naylor and Smith(1982) approach, the fact that they would
need to be recalculated at each iteration mitigates against their use. Apart from using Harper polynomials to
calculate Behrens-Fisher densities and cumulative distribution functions we have also applied them to the
following problem involving predictive probabilities in clinical trials.

The idea of ’stochastic curtailment’ embodied in the work of Lan et a/(1982) and Lan et 6/(1984) which allows
for the early termination of clinical studies can be criticised on the grounds that the conditional probabilities
involved are calculated on the basis of parameter values which may have little support from current experimental
data. Spiegelhalter et a/(1986) take this view and provide a general argument in favour of a Bayesian predictive
approach, illustrating the argument with the comparison of two binomial samples - a problem tackled inde-
pendently by Choi et al(1985). The comparison of two normal means has been considered by Spiegelhal-
ter(1986b), Spiegelhalter and Freedman(1988) and Armitage(1988). In each of these three papers it is assumed
that the population variances are known. That such considerations are not only of theoretical interest is lent
credence by the published report of Frei et al(1987) of a study of Glycerol, Glycerol and Dextran and placebo
in the treatment of acute stroke. This study was terminated after the inclusion of only 1/3 of the proposed
number of patients because a Bayesian analysis based on predictive probabilities showed that there was a
probability of only 0.06 that the trial would reach a successful conclusion if allowed to run its course.

Choi and Pepple(1989) consider the case of two normal means and, under the assumption of known variances,
recreate the results of Spiegelhalter(1986b). When the variances are not known they propose two approxi-
mations, P, and P ,, to the predictive probability of success and compare them by simulation. A by-product
of this simulation is their conclusion that both P, and P, are conservative estimates of the "true" predictive
probability termed P, . Whilst our primary interest is in the calculation of P, , nonetheless it is of interest to
investigate Choi and Pepple’s claim of conservatism.

Without loss of generality, suppose that n patients are treated in each of the two treatment groups, and that
the posterior distribution of 6 , the difference between population means, is N(d,,¢%/n) whered, = X~y
is the difference in sample means and 02 = 02 + o2 . The posterior probability that 5 is positive is,

n "7 -n(6-d,)?
Py = P(6>0]d,) = |7 feXP T 242 dé
0

(n”zd,,)
- & (A2.1.8)

Oy

By analogy the posterior probability after n+ m = N patients in each group is,

NIIZdN
Py - q>( )
Gy

APPENDICES.



where d , = (nd .+md,)/N and g is the difference in means based on a further 2 m patients.

Suppose a trial is regarded as a success if P, > 1 - a implying,

Nl/20°z¢ - nd,,

m

d >

m

By definition,
m \'? -m(d,,-8)?
p(d,|6) = (21[05) exp 26z
so that
N'Y%g,z,-nd, N\'2 nd,+mb
P, = P dp>—————8| = 1-9/{ Z“—m_“zo,_ (A2.1.9)
Similarly,
172 2
nm -nm(d,—-d,)
pdnld,) = (Znch) EXP[ 2No? }
so that

N”zo,za-nd,, (n)uz (nN)”zd,.
P,-P[dm>—-—m—|dn] 1¢[m z,-| — . (42.1.10)

This result is given in a slightly different form in Spiegelhalter(1986b) and Spiegelhalter and Freedman(1988)
and is equivalent to Choi and Pepple’s equation (10).

Choi and Pepple’s simulation comparing P, and P , is equivalent to comparing their expectations with respect

to p(d, | 8) . By definition,
n \'? -n(d,-5)?
p(d,18) = 2no? exPp 2a?

so that

(2n)'”ze"z’2dz

(,)uz s _ali3,
n Aty wli2

B 4
eu/zdw

E(Pl) = <l>(z,-n_“25/05)

We may use properties of bivariate normal distributions to show that the above expression can be written as,

B[z.-n'"%6/0, . z.-N'670, : (5)"°]
$(z,-n'"%86/0,)

E(P,) = 1~ (A2.1.11)
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where

Rk
oy o - (x?-2pxy+y?)
BChkip) = zjfexp{ 2(1-p%) }dydx

Similar calculations give,

Nem

®(z,-n'"%6/a,)

B[zq—nuzﬁ/ub ‘ (_L‘_)”z(z,—N”zG/Ub) : (;vrj_m)l/z]

E(P)) = 1~ (A2.1.12)

The denominators in (A2.1.11) and (A2.1.12) arise since Choi and Pepple consider only those cases for which
P, isless than 1 - « . If this restriction is ignored these expressions reduce to,

E(P)) = 1-9[z,~-N'?8/0,] (A2.1.13)
and
n /72
E(P) = 1—4{(N+m) (z,—N"za/o,)] (A2.1.14)
respectively.

In Table A2.3 we evaluate (A2.1.11) and (A2.1.12) for those cases considered by Choi and Pepple in their
Table 1 using the Gaussian quadrature algorithm suggested by Bouver and Bargmann(1979) to calculate
B(h,k;p) . The near equality of all entries in these two tables suggests that we need only consider (A2.1.11)
and (A2.1.12) when looking at "conservatism" of P, and renders superfluous the simulation results, particularly
those associated with the test statistics Z, which Choi and Pepple calculate to test the equality of P, and P,
, since it is unnecessary to test the equality of quantities which are by definition different.

Since £( P, ) and E ( P, )are by definition different, the only question which remains to be answered is whether
they are sensible measures of performance. Now P ., defined in (A2.1.9), is the probability of success conditional
on the value of 6 ; denote this by n | 6 . The probability P ,, defined in (A2.1.10), is the probability of success
conditional on the difference d, ; denote this by n | d,. Using properties of bivariate normal distributions it
can be shown that,

njd, = fnlﬁp(bld,,)db (A2.1.15)

where p(6]d,) is the posterior distribution of 6 . Equation (A2.1.15) shows that the probability of success
given the results currently available is the result of averaging the probability of success given the value of 5,
n | 8, with respect to our current beliefs about 6 as represented by p(61d,).

Choi and Pepple’s simulations involve the calculation of the expected values of | 6 and | d,, with respect
to p(d, | 8). The notation x | 6 does not make it clear that this probability depends on d , but this is explicitly
shown in (A2.1.9). The expectation of it | d , has the form,
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TABLE A2.3 Evaluation of £ (P) and E(P,) (pi=nz=n,N=n+m,p,=0,0,=0,).

N =40 N =60

n, Hx ol E(P,) E(P)) E(P,) E(P))
20 -2 1 004 062 002 101
2 007 .080 006 126

0 1 032 134 037 196

2 032 134 037 196

2 1 146 229 225 310

2 099 200 146 276

5 1 536 373 amn 465

2 323 306 507 394

10 0 1 040 233 042 278
2 .040 233 042 278

5 1 646 442 824 496

2 404 384 564 437

Enid,) = [nid.p(d,l8)dd,
dl

a, 8
pd.16)pd
nié
f 5 fp(d,,ia)p(a)da p(d,|6)dd, (A2.1.16)
]

d

The illogicality of using £(P,)= £ (n | d,) as a measure of the performance of the predictive probability P,
is apparent from (A2.1.16). A Bayesian analysis proceeds by averaging the conditional distribution of the data
given a specific parameter value with respect to the prior distribution of the parameter to give the posterior
distribution of the parameter, from which the predictive distribution and hence P, can be determined. A
consequence of this procedure is a down-weighting of the contribution of specific values 5 as measured in
p(d,|8). To reintroduce the importance of specific values by averaging with respect to p(d, | 6) seems
strange; indeed p(d, | ) appears twice in the last line of (A2.1.16).

I would argue that if one wishes to compare £, and P, it should be done solely on the basis of (A2.1.9) and
(A2.1.10) and that the "conservatism" noted by Choi and Pepple is implicit in the down-weighting of extreme

probabilities given by the relationship (A2.1.15). The Bayesian argument against P, mirrors the argument
against the use of "stochastic curtailment” in that in reality 6 is unknown, so that when predictions are to be

made all that is known about 6 is contained in p(6|d,) which may give little support to any particular
hypothesized value for 6.
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In practice, in order to use P, some value has to be substituted for ¢, in (A2.3.3). Choi and Pepple suggest
using the sample variances. In the Appendix to their paper Choi and Pepple develop a second form for the
required predicted probability which they term P, . Formulae (12) and (13) in the Appendix to Choi and
Pepple’s paper are incorrect and should read :

(X 1x x ) = ‘/mlnlr(%) 1 man,(x = Xo)" " A2.1.17
f Lsseves n, = mr(’%—‘:)szo (n,-l)NS:zro ( S )

and

- = —_ “R,/2

l/ _ 2 o _T 2 2

P, = Kff[1+ml[(z+ )M~ Xo Ly-avz| | Malt/Ma” Yol dtdz (A2.1.18)
|/, (n,-1)Ns%,/n, (na-1)Ns2y/n,

respectively, where

fmimar(2)r(3)

) JmymaNar (22 )r (S (- D (ra- Dsy,s,,

K

The error has arisen because Jeffreys(1983, p.143) uses the mean square deviation s* =  £(x,~ x)%/nnot
the standard deviation\/ £(x,- x)2/(n- 1).

The necessity of carrying out the double integration in (A2.1.18) in order to determine P, may be obviated
in the following way. The transformation

- "‘l"l(ﬂ_;) u = _Malz (_‘__;)
YT A NsZAm ) NsZ (n,-1)\mp °°
applied to (A2.1.18) gives,

—_—.r(?z,.),-l ]P[z(nl-l)<n—c—\/(nz‘zl)NssomZ/nzu}(l+u’)-"’zdu
r(i)r( - )_. JNs2m./n,

so since this expression is of the form

P,

[ euy™ " au

P , may be approximated by

n—c-\/(nz- l)Nsiomz/nzu,]

ﬁ:r(;)r("i‘)‘”"{“""”‘“’ N min,

where 1z, are the zeros of the Harper polynomials¢, ,(x)(k = (n, - 2)/2) andw, are the associated weights.
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To illustrate we use Choi and Pepple’s data concerning the number of episodes of urinary incontinence. We
have the following,

¢

14.20

n 46.46

J(na=1Ns? my/n, = {17x90x1.242x72/18 = 97.01

JNsim/n,

k

J90x1.302x70/20 = 23.70

"

8

The results presented in A2.2 may be used to calculate the following :

u, t P(tg<t) w, w; X P(t,4<t,)

]

-5.671 25.242 1 3.8671 1013 3.8671 10-13
-1.732 8.681 1 8.6333 10-6 8.6333 106
-0.839 4.926 0.99995 7.9565 10-3 7.9561 10-3
0364 2.929 0.99569 2.0914 101 2.0823 10°1
0 1.398 0.91095 5.6579 10-1 5.154110°1
0.364 -0.132 0.44826 2,0914 10°1 9.3747 102
0.839 -2.219 0.02326 7.9565 10-3 1.8505 104
1732 -5.884 0.00001 8.6333 10-6 4.9655 10-11
5671 -22.446 0.00000 3.8671 10-13 0
0.8255

The value of P, calculated in this way is very close to the value of 0.84 given by Choi and Pepple for P, , in
marked contrast to their calculated value for P, . This difference cannot be attributed to their use of the
incorrect formulae, since using the above orthogonal polynomial method on their formula gives the value
0.8373. The difference is most probably caused by an ill-advised choice of the method of numerical integration
for a double integral which Choi and Pepple describe as having an "ill-behaved" integrand. The "ill behaviour"
is likely to be caused by the high correlation between z and ¢ which in our method is allowed for by the
transformation to w and u . The corresponding value for "volume loss" using this method is 0.6609 again close

to Choi and Pepple’s value for P, .

The investigations in this section are based either wholly, or partially, on the assumption of known variances.
In the partial case the assumption is only made in calculating £, or P . It could be argued that if P, is more
appropriate than P, then at least P, if not both P, and »,, should not be based on an assumption of the
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equality of the variances, in which case p, and p,, should be determined from Behrens-Fisher distributions.
This makes the calculation of the predictive probabilitics considerably more complicated although progress
might possibly be made using Patil’s(1964) approximation to Behrens-Fisher distribution. However for rea-
sonable sample sizes it is doubtful whether this added complexity would be worthwhile. In fact the results
above suggest that the approximate predictive probability P, will be accurate enough for practical purposes.

A2.1.3 Additional Applications of Harper Polynomials - Missing Data in Bivariate Normal Samples.

Little(1988) notes that one problem with frequentist methods is that exact inferences are rarely available for
problems involving missing data even in the most simple cases. Bayesian inference, on the other hand, provides
exact solutions to such problems although the computational difficulties involved, particularly in multipara-
meter problems, may force one to resort to approximation. As Little puts it, "Bayesians, appraximate an exact
solution; frequentists seek an appraximate answer where no exact solution exists."

To illustrate a Bayesian approach to missing values Little(1988) considered the following problem. A random
sample of n observationsy ;. yaii=1,..., n are taken from a bivariate normal distributionY , andY , with
means ., andp, ,variances ¢,, and 6, and covariance g, ; of these n observations m are complete and
n-m values of Y, are missing. This problem was also considered by Mehta and Swamy(1973,1974) who,
using Jeffreys’ prior, derived the posterior marginal distribution forp, in t-form and noted that given i, 1,
has a t-distribution. Since their primary objective was to make inferences about 6 =, -, they did not
consider in detail the marginal distribution of 1, . Little shows that the posterior distribution of u, may be
written in the form,

PG 1 X) = [ Plia iy X)p(, | X)d, (42.1.19)

where

- - _27)-(ar1)/2
p(r,1X) = C, 1+M]
$y
+(u2"bzo‘b2|“|)2 Tl
P(uz“"px) - G, ssZ.l(ml+(“|-;l)z)
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v and s} are the sample mean and variance of ¥, based on all n cases; y, and ss, are the sample mean
and variance of Y , based on the m complete cases; b,, andb ,, are the slope and intercept from the regression
of Y , onY | based on the m complete cases and ss, | is the associated residual sum of squares and the prior

distribution of all the parameters is proportional to o;.°** (0,05, - a3,)"°.

The cumulative posterior distribution function may be written as,

[ [ ptuatu xpeu 1 X0au, dn,

[ pGuz1 X3,

[ [ pthati 0duzpeu, 1 X)an,

- { < b”z(z‘bzo‘bzlul)

fP b (ss [1 [“’_;I)z])llz p(p, 1 X)du, (A2.1.20)
2.1 + —

In both (A2.1.19) and (A2.1.20) we may make the transformationu = n'/2(p, - y;)/s1'/?to give,

- *1/2 2 -172
s, —_ -
P(p,| X) = CI'CZII[332.1(1+(uﬂ_’2+yl :Yl) ):l

. m $$,

RUCI 270 1)/2
(llz‘bzo"bu(uj;‘{‘*YI))

x| 1+ Y (1+u?) 29 (42.1.21)
$s,,| 1 (":'_’7"’_")
At
and
PR
x - b”z(z'bzo‘bZI(uFﬁ*‘YI))
fp(“z'x)d“z = f” t"([ ( ( _._)1)}1/2 (1+u?) Vg, (42.1.22)
U=ty "Y,
- -- SSZ.I l+ “IIZ
where
a+l
c - r(%)
1 1 a
r(3)r(2)
and
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Both (A2.1.21) and (A2.1.22) have the form

ff(u)(l +u?)y ¥ gy

and therefore may again be approximated by

¢
Z;wuf(uu)
i=

where u,, are the zeros of the orthogonal polynomials ¢, ,(x)and w, are the associated weights.
A2.2 Polynomials for Normal Kernels Over a Truncated Range.

Contemporaneously Galant(1969) and Steen et a/(1969) considered Gaussian quadrature rules for integrals
of the form,

/e"‘zf(x)dx

4]

the latter authors also developed rules for integrals of the form,
)
fe" f(x)dx. (A2.2.1)
0

In §11 we noted that one method for evaluating some of the integrals involved in our Bayesian analysis of
L D50 experiments required quadrature rules for integrals of the form,

fe'*’f(x)dx . (A2.2.2)

b

To see how such integrals may arise suppose, following Naylor and Smith(1982), that the linear transformation,

B' =B

a =a+cf

achieves approximate independence of 3° and a”, then (11.4) is approximately,
pex) = [f@ixaa’ [g@"1x)ap".
-- [}

Suppose that,
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2a2

— '_ 2
g(B"1X) = h(B-)(gmz)-”zexp(M)

then

) ) L
[a"1x)ap" = fh(rs')(znaz)'"zexp(—(—@——g"—)—)dﬂ'.
1] Q

292

Letu=(B' -R,)/(V20) withjacobian\/—éo which implies that,

fg(B‘lX)drs' = n'”? f h(By+V20u)e ™ du
0 “Bo/(V20)

If the integral (A2.2.2) may be approximated by

-leAIf(ui)

then

gB'1xX) = n-llzzwuh(ﬁo"' 20u,)
Iy

R
= ) wig(By+V20u,| X)
=1

2
where wy, = 20w, e"" .

(A2.2.3)

Orthogonal polynomials for integrals of the form (A2.2.2) have not previously been studied. However the
undoubted similarity between (A2.2.1) and (A2.2.2) show that they may be simply generated following the
approach given by Steen et a/ (1969). If we denote the required polynomials by 8, then they may be generated

by the following recursion:

0,(x) =1

0 - e

2(x) x n'/2(1 —erf(b))
eko[(x) -

where
1r o2, =
ak = E[e ek(x)L

Y

Bx -

Yi-1
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(A2.2.4)

(A2.2.5)

(x+a,)8,(x)+B,0,. ,(x) k=1,.(42.2.6)

(A2.2.7)

(A2.2.8)



and

1 Ir e .
Ye T Ek"*-*‘i[e ex(x)ek-,(x)], (A2.2.9)

The SAS macro given in Appendix A7.3 uses the recursion defined by (A2.2.4)-(A2.2.9) to generate, for given
b and n, the zeros and associated weights of 8,,(x ) .

APPENDICES. A3



A4 DENSITY AND DISTRIBUTION FUNCTIONS OF THE RATIO OF NORMAL VARIABLES.
Suppose that the posterior distribution of two variables y and x is bivariate normal with means v ,and x,

variances o2 and 02, and correlation pso that,

p(y,x) = BN(u.2)

2
Yy 4] pao_ao
p o= ( o) and = Y yzx
Xo po,d, Lo o

where,

Then,

fxp(wx.x)dx

]]P(X,y)dydx

y A
= . > = - — s
p(w I x 0) : (44.1)

Following Hinkley (1969) it may be shown that,

b(w)d(w) Cb(\/ b(w) ) . Y(1-p?) p( -c ) (A4.2)

ex
(2n)o,0,a*(w) (1-pHa(w) 2no,0,a%(w) 2(1-p?)
b4
where,
z 2 1 w +wx,) X
a?(w) = liz_ Pw*_; . b(w) 320_9(3/0 o)+_:
oy 0,0, 0Oy ay 0,0, O%
2 2 2 a2
¢ - Y8_20¥oXo Xo s exp[b (w) 2cozz(w)]
62 0,0, o2 2(1-pHa(w)
It is simply shown that,
Xo
B = 4’(—) (A4.3)
ol

(A4.1),(A4.2) and (A4.3) define the posterior distribution of w.

The cumulative distribution, F (w), can be written as,

p(y.x)dydx
Y. B(h.k,v)

Fw) = =2 ¢(,,) ol Yo

(A4.4)

9,

where,
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S
[ -(u?-2yuueo?)
J [ exp| Azt gy,
2(1-v%)

B(h,k,y) = = - (A4.5)
2ny(1-p?)
WXo~ Yo k X wa,~pa,
o,0,a(w) ' g, ' Y 0,0,a(w)

Numerical evaluation of (A4.5) may be carried out using equation (2.1) of Owen(1956) together with a program
for evaluating the integral,

Ch21ex?
aexp[—-——" (; X )]
—_—d

1+x?

TCh.a) = (2n)"f

0

X

Two such programs are given by Cooper(1968) and Young and Minder (1974) - see also Boys(1989).
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A5 FORTRAN PROGRAM FOR LD50 ESTIMATION.

AS.1 Introduction.,

This program is designed to perform a Bayesian analysis of acute toxicity studies. As a by-product, a classical,
maximum-likelihood analysis is available - see Finney(1971). The program carries out the analyses developed
in §11.2,§11.4 and §11.5 although it is also able to deal with the more general problem of making inferences
about the ED"X", where "X" is between 0 and 100 %. This program has been implemented at the laboratory
level in the Toxicology Department of CIBA-GEIGY’s Pharmaceutical Division in Basel, Switzerland.

The program was developed on an IBM PC AT 02, but with slight modification will run on any machine with
a FORTRAN 77 compiler. These slight modifications relate solely to input and output.

In this appendix descriptions and listings of the main program, all subroutines and functions are given. Input
to, and output from the program are given for three examples, chosen to illustrate the various features of the
program.

AS.2 Program Descriptions.

This program is written in DOUBLE PRECISION FORTRAN 77 and consists of 1 main routine, 21 subroutines
and 9 functions. The program will handle up to 10 dose groups. The program is seif-contained, requiring no
additional functions. In what follows, the main program, all subroutines, and all functions are described.
A52.1 MAIN PROGRAM

Purpose : Reads the input parameters and data; calls the principal subroutines; outputs some
results.

Input FILE1 character string , data file
FILE2 character string , output file
iouT integer, controls whether plot data is output

IOUT =0 no plot data output to file
IOUT =1 plot data output to file

FILE3 character string , plot file

TITLE character string , title
the above are input fron the terminal, the remainder from the data
file (FILE1)

ILOOP integer, number of data sets to be analysed

IED integer, defines the effective dose sought for instance IED =50
defines the EDS50, [ED =90 defines the ED90

K integer, number of dose groups

CLASS logical, controls whether a Bayesian analysis is carried out.

CLASS = .FALSE. - only maximum likelihood
PRIOR logical, controls use of prior information

PI%IOR = TRUE. - use prior information

PRIOR = .FALSE. - no prior information
NR integer, number of class boundaries
TLIM(NR) real array, toxicity class boundaries,

NR and TLIM only read if CLASS = .TRUE.

CLASS = .TRUE. - B:chian analysis
Y

ALPHAO real, prior mean for alpha
BETHAQ real, prior mean for beta
V0(2,2) real array, prior covariance matrix for alpha and beta

ALPHAO,BETHAO and VO only read if PRIOR = .TRUE.

D(K) real array, doses )
IN(K integer array, number of animals
IR(K integer array, number of responses
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Routines
called :

ESTIM
SCORE
SHOW
CTEST
FIDUC
SHOW1
HPD
SHOW2
COMBIN
SHOW3

AS8.2.2 AXIS(VALMIN,STEP,NVALS,MAXPR,IR,IRPIN,OFFSET,IFACT,VALS,IV IFAULT)

Purpose :
Parameters:
Called by :

Optimization of axis for plotting
For definition of parameters see Stirling(1981a)
SCATPL :

AS5.2.3 COMBIN(ALPHAQ,BETA0,V0)

Purpose : To combine prior moments with moments from an analysis using an uninformative
prior
Parameters: ALPHAO real - input : prior mean for alpha
BETA(Q real - input : prior mean for beta
Vo real array - input : prior covariance matrix
Routines DINV
called : DMULT
Called by : MAIN
AS5.2.4 CON(W,A,B,D,H,RHO)
Purpose : To set up constants for bivariate normal integrals
Parameters: w real - input : value of log(ED"X")
A real - output : see Appendix A4
B real - output : see Appendix A4
D real - output : see Appendix A4
H real - output : see Appendix A4
RHO real - output : see Appendix A4
Called by : DMED
DMODE
oT
HPD
AS52.5 CTEST(Y,K,T,H,D,IR,IN)
Purpose : To perform goodness-of-fit test; output results from the test including the expected
number of responses in each dose group and the chi-squared test
Parameters: Y(2) real array - input : final estimates
K see main program
T real - output : 95 % point of normal distribution or t-distribution with
(K-2) degrees of freedom
H real - output : heterogeneity factor
D(K) see main program
IR(K scc main program
IN(K see main program
Routines FNORM
called :
Called by : MAIN
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A5.2.6 DERIV(Y,K,D,IR,IN,D1,D2,DA,DB,V3)

Purpose : To calculate first,second and third derivatives of the log-likelihood at the current
parameter estimates and to calculate the Lindley corrections and the estimated
posterior covariance matrix

Parameters: Y(2) real array - input : current estimates
K see main program
D(K) see main program
IR(K see main program
IN(K see main program
D1(2 real array - output : first partial derivatives
D2(2,2) real array - output : second partial derivatives
DA real - output : Lindley correction for alpha
DB real - output : Lindley correction for beta
V3(2,2) real - output : estimated posterior covariance matrix

Routines FNORM

called : DV1
DV2 .
DV3
Called by : SCORE
A52.7 DINV(D2,V)

Purpose : To calculate the inverse of a matrix

Parameters: D2(2,2) real array - input : matrix whose inverse is required
V(2,2) real array - output : inverse of D2

Called by : SCORE
COMBIN

A5.2.8 DMED(DLMED)

Purpose : To calculate posterior median ED"X"

Parameters: DLMED real - output : posterior median ED"X"

Routines CON

called : BIVL
Called by : HPD
A5.2.9 DMODE(DLMOD)

Purpose : To calculate posterior mode ED"X"

Parameters: DLMOD real - output : posterior mode ED"X"

Routines CON

called : DEN
Called by : HPD
AS52.10 DMULT(B1,B2,A,C1,C2)

Purpose : To multiply a vector by a matrix

Parameters: B1 real - input : 1st element of vector
B2 real - input : 2nd element of vector
A real - input : matrix
1 real - output : 1st element of vector
C2 real - output : 2nd element of vector

Called by : COMBIN

AS5.2.11 ESTIM(XMIN,K,D,IR,IN)

Purpose :
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Parameters:

Routines
called :

Called by :

A52.12 FIDUC(Y,V,T,H,D,DL,DU,IED)

Purpose :
Parameters: Y(2)
V(2,2)
T
H
D
DL
DU
IED
Routines PROBIT
called :
Called by : MAIN
AS5.2.13 HPD(TLIM,NR,IED)
Purpose :
log(ED"X")
Parameters: TLIM(NR)
NR
IED
Routines FNORM
called : TFN
oT
CON
BIVL
DMED
DMODE
SPLOT
PROBIT
Called by : MAIN
AS52.14 OT(W,F00,U2,F)
Purpose :
Parameters: W
F00
U2
F
Routines CON
called : DEN
Called by : HPD

APPENDICES.

XMIN(2)
K

D(K)
m§xg
IN(K
PROBIT

MAIN

real array - output : initial estimates
see main program
see main program
see main program
see main program

To estimate ED"X" and 95 % fiducial limits if possible

real array - input : final estimates of alpha and beta

real array - input : asymptotic covariance matrix

real - input : 95 % point of normal distribution or t-distribution with
(K-2) degrees of freedom

real - input : heterogeneity factor

real - output : estimated ED"X"

real - output : estimated lower 95 % limit

real - output : estimated upper 95 % limit

integer - input : see main program

To calculate 95 % HPD interval for log(ED"X") , posterior probabilities of toxicity
classes, posterior density of log(ED"X") and posterior distribution function of

real - input : toxicity class boundaries
integer - input : number of boundaries
integer - inout : see main program

Given a value for log(ED"X") to find another value with the same posterior density

real - input : value of log ED"X?

real - output : posterior density for W

rca‘lN- output : value of log(ED"X") with the same posterior density
as

real - output : posterior density for U2
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AS52.15 SCALE(FMN,FMX,N,MPV,VALMIN STEP,NVALS,IR,IFAULT)

Purpose : Optimization of scale for plotting
Parameters: For definition of parameters see Stirling(1981a)
Called by : SCATPL
AS5.2.16 SCATPL(A,N,M,ICY,NCY,ICX NY,NX,SCALEY,SCALEX,ISTAND,IFAULT)
Purpose : To produce line printer plots
Parameters; For definition of parameters see Stirling(1981b)
Routines SCALE
called : AXIS
Called by : SPLOT
AS5.2.17 SCORE(XMIN,K,D,IR,IN,V,DLOGLO,DA,DB,V3)
Purpose : To estimate maximum likelihood estimates of alpha and beta
Parameters: XMIN(2) real array - input : initial estimates
output : final estimates
K see main program
D(K) see main program
IR(K see main program
IN(K see main program
V(2,2 real array - output : estimated covariance matrix
DLOGLO real - output : maximised log-likelihood
DA real - output : Lindley correction for alpha
DB real - output : Lindley correction for beta
V3(2,2) real array - output : posterior covariance matrix using uninformative
prior
Routines DERIV
called : DINV
FN
Called by : MAIN
A52.18 SHOW(A,B,V)
Purpose : Displays maximum likelihood parameter estimates and asymptotic covariance matrix
Parameters: A real, estimate of alpha
B real, estimate of beta
V(2,2) real array, asymptotic covariance matrix
Called by : MAIN
A5.2.19 SHOW1(A,B,Y)
Purpose : Displays posterior moments using an uninformative prior
Parameters: A real, posterior mean of alpha
B real, posterior mean of beta
V(2,2) real array, posterior covariance matrix
Called by : MAIN
AS5.2.20 SHOW2(A,B,V)
Purpose : Displays prior moments
Parameters: A real, prior mean of alpha
B real, prior mean of beta
V(2,2) real array, prior covariance matrix
Called by : MAIN
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A52.21 SHOW3(A,B,V)

Purpose : Displays posterior moments using an informative prior asymptotic covariance matrix
Parameters: A real, posterior mean of alpha
B real, posterior mean of beta
V(2,2) real array, posterior covariance matrix
Called by : MAIN
A5222 SPLOT(PLOT,IED)
Purpose Controls plotting
Parameters: PLOT(161,3) real array - input : plot data
[ED integer - input : see main program
Routines SCATPL
called :
Called by : HPD
AS5.2.23 BIVL(H,RHO)
Purpose : Calculates bivariate normal probabilities
Parameters: See CON
Routines FNORM
called : TFN
Called by : DMED
HPD
AS5.2.24 DEN(A,B,D)
Purpose : Calculates posterior density for log(ED"X")
Parameters: See CON
Routines FNORM
called :
Called by : DMODE
HPD
OoT
AS5.2.25 DV1(D,X,IE)
Purpose : To calculate the first partial derivative of the response function
Parameters: D real - input : log(dose)
X real - input : alpha + beta*log(dose)
IE integer - input ; derivative indicator

IE = 0 denvative wrt alpha
I[E = 1 derivative wrt beta

Called by : DERIV
A8226 DV2(D,X,IE)
Purpose To calculate the second partial derivative of the response function
Parameters: D real - input : log(dose)
X real - input : alpha + beta*log(dose)
IE integer - input : derivative indicator
IE = 0 2nd derivative wrt alpha
IE = 1 2nd derivative wrt alpha and beta
IE = 2 2nd derivative wrt beta
Called by : DERIV
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A5.2.27 DV3(D,X,IE)

Purpose : To calculate the third partial derivative of the response function
Parameters: D real - input : log(dose)

X real - input : alpha + beta*log(dose)

IE integer - input ; derivative indicator

IE = 0 3rd derivative wrt alpha

IE = 1 3rd derivative wrt alpha**2 and beta
IE = 2 3rd derivative wrt alpha and beta**2
IE = 3 3rd derivative wrt beta

Called by : DERIV
A5228 FN(Y)
Purpose : To calculate the negative maximised log-likelihood
Parameters: Y(2) real array - input : maximimum likelihood estimates of alpha and beta
Routines FNORM
called :
Called by : SCORE
A52.29 FNORM(X,UPPER)
Purpose : To evaluate the distribution function of the standard normal distribution - Hill(1973)
Parameters: X real - input : point at which the function is to be evaluated
UPPER logical - input : indicator function
UPPER = .TRUE. upper tail probability
UPPER = .FALSE. lower tail probability
Called by : BIVL
CTEST
DEN
DERIV
FN
HPD
TFN
AS5.230 PROBIT(P)
Purpose : To evaluate the inverse normal distribution function -Odeh and Evans(1974)
Parameters: P real - input : probability for which inverse is required
Called by : ESTIM
AS5.2.31 TFN(HLAI)
Purpose : To calculate the integral of a special function
Parameters: For definition of function and parameters see Cooper(1968)
Called by : BIVL
HPD
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AS3 Program Listings.
A5.3.1 MAIN PROGRAM

PROGRAM ACUTE
IMPLICIT REAL*8 (A-H,0-7)
CHARACTER*80 TITLE
CHARACTER*12 FILEL
CHARACTER*12 FILE2
CHARACTER*12 FILE3
DIMENSION XMIN(2),D0(10),IR(10),IN(10),V(2,2),A(15),TLIM(10)
DIMENSION v0(2,2)
COMMON /COM1/ALPHA,BETHA,V3(2,2)
COMMON /COMFIL/IOUT
LOGICAL CLASS,PRIOR
WRITE(*,100)
READ(*,200) FILE1
OPEN(UNIT=]1,FILE=FILEl,STATUS='0LD",I0STAT=IERR)
WRITE(*,300)
READ(*,200) FILE2
OPEN(UNIT=3,FILE=FILE2,STATUS="NEW',IOSTAT=IERR)
10UT=0
WRITE(*,400)
READ(*,*) IOUT
IF(IOUT.EQ.0) GOTO 10
WRITE(*,500)
READ(*,200) FILE3
OPEN(UNIT=8,FILE=FILE3,STATUS="NEW' IOSTAT=1ERR)
10 READ(1,*) ILOOP
1L00=0
20 ILOO=IL0O0+1
IF(IL00.GT.ILOOP) STOP
READ(1,700) TITLE
READ(1,*) IED,K,CLASS,PRIOR
IF (CLASS) THEN
READ(1,*) NR
READ(1,*) (TLIM(I),I=1,NR)
END IF
IF (PRIOR) READ(1,*) ALPHAQ,BETHAQ,VO
ISUM=0
D0 30 I=1,K
READ(1,*) D(I),IN(I),IR(I)
30 IF (IN(I).NE.IR(I1).AND.IR(I).NE.O) ISUM=ISUM+1
WRITE(3,800) TITLE
WRITE(3,600) IED
WRITE(3,900)
WRITE(3,1000)
IF (ISUM.GE.2) GOTO 40
WRITE(3,1100)
WRITE(*,1100)
GOTO 50
40 CALL ESTIM(XMIN,K,D,IR,IN)
CALL SCORE(XMIN,K,D,IR,IN,V,DLOGLO,DA,DB,V3)
CALL SHOW(XMIN(1),XMIN(2),V)
WRITE(3,1200) DLOGLO
CALL CTEST(XMIN,K,T,H,D,IR,IN)
CALL FIDUC(XMIN,V,T H,ED,EDL,EDU,IED)
IF (EOL.EQ.-999.0D0) WRITE(3,1400) IED,ED
IF (EDL.NE.-999.0D0) WRITE(3,1300) IED,ED,EDL,IED,EDU
IF (.NOT.CLASS) GOTO 50
WRITE(3,800) TITLE
WRITE(3,1500)
ALPHA=XMIN(1)+DA
BETHA=XMIN(2)+DB
CALL SHOW1(ALPHA,BETHA,V3)
CALL HPD(TLIM,NR,IED)
IF (PRIOR) THEN
WRITE(3,800) TITLE
WRITE(3,1600)
CALL SHOW2(ALPHAQ,BETHAO,V0)
CALL COMBIN(ALPHAQ,BETHAO,V0)
CALL SHOW3(ALPHA,BETHA,V3)
CALL HPD(TLIM,NR,IED)
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END IF
50 GOTO 20
100 FORMAT(2x,'INPUT FILE : ')
200 FORMAT(A12)
300 FORMAT(2X, 'OUTPUT FILE{SHOULD NOT ALREADY EXIST) : ')
400 FORMAT(2X,'ENTER "1™ IF PLOT OUTPUT REQUIRED : ')
500 FORMAT(2X,'PLOT QUTPUT FILE(SHOULD NOT ALREADY EXIST) : ')
600 FORMAT(//,5X, 'MAXIMUM LIKELIHOOD ESTIMATION OF ED',I2/)
700 FORMAT(AS0)
800 FORMAT('~L',/5X,80A/)
900 FORMAT(/ ,5X%,'MODEL : PROBIT')
1000 FORMAT(/ ,5X,'INDEPENDENT VARIABLE : LOG(DOSE)'/)
1100 FORMAT(/ ,4X,'NO CALCULATIONS WITH LESS THAN TWO RESPONSES BETWEE
IN 0% AND 100% (0 < IN(I)/IR(I) < 1) ')
1200 FORMAT(/ ,5X, ‘MAXIMISED LOG-LIKELIHOOD'//14X,F10.4)
1300 FORMAT(/ ,5X/5X,'ESTIMATE OF ED',12//15X,F15.4//5X,
1 'FIDUCIAL LIMITS (95%)'//3X,F15.4,' < ED',12,' < ',F15.4)
1400 FORMAT(/ SSX/SX,'ESTIMATE OF ED',12//8X,F15.4//5X, 'NO FIDUCIAL',
1' LIMITS'
1500 FORMAT(/ ,5X,'BAYESIAN ANALYSIS'/)
1600 FORMAT(/ ,////6X,'PRIOR INFORMATION :')
END

A53.2 AXIS

SUBROUTINE AXIS(VALMIN,STEP,NVALS,MAXPR,IR, IRPRIN,OFFSET,IFACT,
1 VALS,IV,IFALLT)
REAL VALS(IV)
DATA IRMAX/20/,MPRMAX/20/
IFAULT=0
IF(NVALS.LT.2) IFAULT=IFAULT+1
FMAX=VALMIN+STEP*FLOAT(NVALS-1)
IF(NVALS.GE.2.AND.FMAX.LE .VALMIN) TFAULT=IFAULT+2
IF(MAXPR.LT.2.0R.MAXPR.GT .MPRMAX) IFAULT=IFAULT+4
IF(NVALS.GT.IV) IFAULT=IFAULT+8
IF(IR.GT.IRMAX) IFAULT=IFAULT+16
IF(IFAULT.GT.0) RETURN
TMAX=10.**MAXPR
FL=ABS(FMAX)
FS=ABS({VALMIN)
IL=0
10 IF(FL.LT.1..AND.FS.LT.1.) GOTO 20
FL=FL/10.
FS=FS/10.
IL=IL+1
GOTO 10
20 IF(FL.GE..1.0R.FS.GE..1) GOTO 30
FL=FL*10.
FS=FS*10.
IL«]L-1
GOTO 20
30 IS=IL+IR
IT=1S
IF(VALMIN.LE.O..AND.FMAX.GE.0.) GOTO 50
40 FL=AMOD(FL,1.)*10.
FS=AMOD(FS,1.)*10.
IF(IT.LE.0) GOTO 1016
IF(INT(FL).NE.INT(FS)) GOTO 50
IT=1T-1
GOTO 40
50 IFACT=0
OFFSET=0.
IRPRIN=MAXO(IR,0)
ILPRIN=MAXO(IL,0)
IF(IRPRIN+ILPRIN.LE.MAXPR) GOTO 70
IF(1S.LE.MAXPR) GOTO 60
IRPRIN=MAXPR-1
IFACT=MAXO(IT,MAXPR)-1-IR
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GOTO 70
60 IFACT=IL-1
IRPRIN=]S-1
70 FS=10.**(-1FACT)
VSTEP=STEP*FS
VMIN=VALMIN*FS
IF(1S.LE.MAXPR) GOTO 80
OFFSET=AINT(VMIN/10.)*10.
VMIN=VMIN-OFFSET
80 DO 90 I=1,NVALS
VALS(I)=VMIN
90 VMIN=VMIN+STEP
FS=.1**IRPRIN
IF(ABS(VALS(1))*FS+.5.LT.TMAX . AND.ABS(VALS(NVALS))
1 *FS+,5.LT.TMAX) RETURN
IL=IL+1
I1S=15+1
IT=IT+]1
GOTO 50
1016 IFAULT=16
RETURN
END

A533 COMBIN

SUBROUTINE COMBIN(ALPHAO,BETHAO,VO)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Vv0(2,2),v1(2,2),v2(2,2),v4(2,2)
COMMON /COM1/ALPHA,BETHA,V3(2,2)

CALL DINV(V3,V1)

CALL DINV(VO,V2)

Va(1,1)= V1(1,1) +v2(1,1)

va(2,1)= vi(2,1) +v2(2,1)

V4(1,2)= V1(1,2) +v2(1,2)

Va(2,2)= v1(2,2) +v2(2,2)

CALL DINV(V4,6v3)

CALL DMULT(ALPHA,BETHA,V1,ALPHAL,BETHAL)
CALL DMULT(ALPHAO,BETHAO,V2,ALPHAZ ,BETHAZ)
CALL DMULT(ALPHA1+ALPHA2,BETHA1+BETHA2,V3,ALPHA,BETHA)
RETURN
END

A53.4 CON

SUBROUTINE CON(W,A,B,D,H,RHO)
IMPLICIT REAL*8 (A-H,0-Z)

COMMON /COM1/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C

A=DSQRT (W*W/V3(1,1) -2.DO*R*W/SX/SY +1.D0/V3(2,2))
B=ALPHA*W/V3(1,1) -R*(ALPHA+BETHA*W)/SX/SY +BETHA/V3(2,2)
D=DEXP((B*B -(C*A*A))/2.00/(1.D0-R*R)/A/A)

H=(W*BETHA -ALPHA)/SX/SY/A

RHO=( SX*W-R*SY)/SX/SY/A

RETURN

END

AS53.5 CTEST

SUBROUTINE CTEST(Y,K,T,H,D,IR,IN)

IMPLICIT REAL*B (A-H,0-Z)

DIMENSION Y(2),D(10),IR(10),IN(10),EXP(10),PCHI(10),PT(10)
DATA PCHI/3.8410+00,5.991D+00,7.8150+00,9.4880+00,11.0700+00,
1 12.5920+00, 14, 067D+00,15.507D+00,16.9190+00,18. 3070+00/
DATA PT/12.7062D+00,4.3027D+00,3.1824D+00,2.77640+00,2.5706D+00,
1 2.44690+00,2 . 36460+00, 2.30600+00,2.26220+00, 2, 2281D+00/
WRITE(3,100)

WRITE(3,200)

10F=K-2

CHI=0.0D+00

D0 10 I=1,K
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X=Y(1)+Y(2)*DLOG(D(I))
P=FNORM(X, .FALSE.)
Q=FNORM(X, .TRUE, )
EXP(1)=FLOAT(IN(I))*P
CHI=CHI+( (FLOAT(IR(I))-EXP(1))**2)/(EXP(1)*Q)
10 WRITE(3,300) O(1),IN(1),IR(I),EXP(I)
WRITE(3,400) CHI,IDF
H=1.000+00
IF(CHI.GT.PCHI{IDF)) H=CHI/FLOAT(IDF)
T=1,96D+00
IF(H.GT.1,000+00) GOTO 20
WRITE(3,500) T

GOTO 30

20 7=PT(IDF)

WRITE(3,600) T

30 CONTINUE
100 FORMAT(/
200 FORMAT(/
300 FORMAT(/
400 FORMAT(/
500 FORMAT(/

1FIDUCIAL
600 FORMAT(/

,5X,'FIT OF THE MODEL')

,5X,' DOSE NO RESP EXP')
.2X,F9.2,1X,13,2X,13,2X,F6.1)

./5X, 'CHI-VALUE = ', F5.2/5X,'D.F. = ',15)

.5X, 'NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)'/13X,'
LIMITS CALCULATED USING A T-VALUE OF',F6.2)

.5X, "NOTE : SINCE CHI-SQUARE VALUE LARGE (P<0.05)'/13X,*

1FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF',F6.2)
RETURN
END

A53.6 DERIV

SUBROUTINE DERIV(Y,K,D,IR,IN,D1,02,DA,DB,V3)
IMPLICIT REAL*8 (A-H,0-7)

DIMENSION Y(2),D(10),IR(10),1IN(10),D1(2),D2(2,2),D3(4),V3(2,2)

SUM1=0.0D+00

SUM2=SUM1

SUM3=SUM1

SUM4=SUM1

SUM5=SUM1

D3(1)=SUM1

D3(2)=SUM1

D3(3)=SUM1

D3(4)=SUM1

HALF=~0.5D+0

ONE=1.0D+0

HALF 3=1.5D+0

THO=2.00+0

THREE=3.00+0

DO 40 I=1,K
DX=DLOG(D(I))
X=Y(1)+Y(2)*DX
DR-FLOAT(IR(I)g
DNR=FLOAT(IN(I)-IR(I))
P=FNORM(X, .FALSE. )
Q=FNORM(X, . TRUE.)
IF(IR(1).EQ.0) GOTO 10
IF(IR(1).EQ.IN(I)) GOTO 20
C1=DR/P-DNR/Q
C2=DR/(P*P)+DNR/(Q*Q)
C3=TWO*( DR/(P*P*P) - DNR/(Q*Q*Q) )
GOTO 30

10  C1--DNR/Q
C2=DNR/(Q*Q)
C3=TWO*(-DNR)/(Q*Q*Q)
GOTO 30

20  C1=DR/P
C2<DR/(P*P)
C3=TWO*DR/(P*P*P)

30 DV10=DV1(DX,X,0)
DV11=DVI(DX,X,1)
DV20=DV2(DX,X,0)
DV21=DV2(DX.X,1)
DV22=DV2(DX,X,2)
SUML=SUM1+C1*DV10
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1
1

1
40

SUM2=SUM2+C1*DV11
SUM3=SUM3+C1*DV20-C2*DV10*DV10
SUM4=SUM4+C1*DV22-C2*DV11*DV11
SUM5=SUMS5+C1*DV21-C2*DV10*DV11
D3(1)=D3(1)+C3*DV10*DV10*DV10-THREE*C2*DV10*DV20+
C1*DV3(DX,X,0)
03(2)=D3(2)+C3*DV10*DV10*DV11-THO*C2*DV10*0V21-C2*DV20*DV11 +
C1*DV3(DX,X,1)
D3(3)=D3(3)+C3*DVI10*DV11*DV11-TWO*C2*DV11*DV21-C2*DV22*DV10+
C1*DV3(DX,X,2)
D3(4)=D3(4)+C3*DV11*DVI1*DV11-THREE *C2*DV11*DV22+
C1*DV3(DX,X,3)
CONTINUE
D1(1)=-SUM1
01(2)=-SUM2
D2(1,1)=-SUM3
D2(1,2)=-SUMS
02(2,1)=-SUM5
D2(2,2)=-SUMa
DET=SUM3*SUM4 - ( SUM5*SUN5)
S20=-SUM4/DET
S11=SUMS5/DET
$02=-SUM3/DET
PR1=520*S20
PR2=520*S11
PR3=520*S02+TWO*S11*S11
PR4=511*S02
PR5=502*S02
DA=HALF*D3(1)*PR1+ HALF3*D3(2)*PR2+HALF*D3(3)*PR3+ HALF*03§4)*PR4
DB=HALF*D3(1)*PR2+ HALF*D3(2)*PR3+HALF3*D3(3)*PR4+ HALF*D3(4)*PR5
PR6= 1+ DABS( (DA/(Y(1)+DA) +DB/(Y(2)+DB)) /4)
V3(1,1)=S20*PR6
V3(2,2)=S02*PR6
V3(2,1)=S11*PR6
v3(1,2)=v3(2,1)
RETURN
END

AS3.7 DINV

AS53.8

10

SUBROUTINE DINV(D2,V)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION D2(2,2},V(2,2)
DET=D2(1,1)*0D2(2,2)-D2(1,2)*02(2,1)
V(1,1)=D2(2,2)/0ET
v(2,2)=D2(1,1)/0ET
V(1,2)=-D2(2,1)/0ET
v(2,1)=-D2(1,2)/0ET

RETURN

END

DMED

SUBROUTINE DMED(DLMED)

IMPLICIT REAL*8 (A-H,0-1)
COMMON /COM1/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
W=ALPHA/BETHA

CALL CON(W,A,B,D,H,RHO)
FW=BIVL(H,RHO)

DIF=FW-0.5D0

W1=W+0.001D0

CALL CON(W1,A,B,D,H,RHO)
FW1=BIVL(H,RHO)
DER=(FW1-FW}/.00100

W=W-DIF /DER

IF (DABS(DIF).GT.1.D-7) GOTO 10
DLMED=DEXP (W)

RETURN

END
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A53.9 DMODE

SUBROUTINE DMODE (DLMOD)
IMPLICIT REAL*8 (A-H,0-1)
COMMON /COM1/ALPHA,BETHA,V3(2,2)/COM2/R, SX, SY ,C
W=ALPHA/BETHA
CALL CON(W,A,B,D,H,RHO)
F=DLOG(DEN(A.B.D))
W1=W+0.001D0
CALL CON(W1,A,B,D,H,RHO)
F1=DLOG(DEN(A,B,D))
DER=(F1-F)/1.0D-3
IF (DABS(DER).LT.0.1D0) GOTO 20
STEP=0.001D0
ISIGNO=1
IF (DER.GT.0.0D0) GOTO 10
ISIGNO=-1
STEP=-0.001D0
W=W+STEP
CALL CON(W,A,B,D,
F=DLOG(DEN(A, B, D)
10 W1=H+STEP
CALL CON(W1,A,B,D,H,RHO)
F1=DLOG(DEN(A,B.D))
DER=(F1-F)/STEP
IF (DABS(DER).LT.0.1D0) GOTO 40
ISIGN=1
IF(DER.GT.0.0D0) GOTO 20
ISIGN=-1
20 IF (ISIGNO.EQ.ISIGN) GOTO 30
STEP=-STEP/2.0D0
30 ISIGNO=ISIGN
Weh1
F=F1
GOTO 10
40 CALL CON(W,A,B,D,H,RHO)
F=DLOG(DEN(A,B,D))
W1=W+0.001D0
CALL CON(W1,A,B,D
F1=DLOG(DEN(A,B,D
B,D
D

D,H,RHO)
)

.H,RHO)
)
W2=h+0,002D0
CALL CON(W2,A,B,D,
F2=DLOG(DEN(A,B,D)
DER1=(F1-F)/1.0D-3
DER2=(F+F2-2.0D0*F1)/1.0D-6
W=W-DER1/DER2
IF(DABS(DER1).GT.1.D-7) GOTO 40
DLMOD=DEXP(W)

RETURN

END

A53.10 DMULT

SUBROUTINE DMULT(B1,82,A,C1,C2)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(2,2)

Cl= A(1,1)*B1 +A(1,2)*B2

C2= A(2,1)*B1 +A(2,2)*B2
RETURN
END

A53.11 ESTIM

SUBROUTINE ESTIM(XMIN,K,D,IR,IN)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION D(10),IR(10),IN(10),X(10),PI(10),XMIN(2)

SUMD=0.0D+00

SUMP=SUMD

DIG=0.0D+00

DO 10 I=1,K
IF(IR(1).EQ.0.0R.IR(1).EQ.IN(I)) GOTO 10
X(1}=DLOG(D(I))

H
)
H,RHO)
)
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P1=DFLOAT(IR(I))/DFLOAT(IN(I))
PI(1)=PROBIT(P1)
SUMD=SUMD+X(1)
SUMP=SUMP+PI(I)
DIG=DIG+1.0D+00
10 CONTINUE
SUMX=0.0D+00
SUMXY=0.0D+00
D0 20 I=1,K
IF(IR(I).EQ.0.0R.IR(T).EQ.IN(I)) GOTO 20
SUMX=SUMX+(X(I)-SUMD/DIG)**2
SUMXY=SUMXY+(X(1)-SUMD/DIG)*(PI(1)-SUMP/DIG)
20 CONTINUE
XMIN(2)=SUMXY/SUMX
XMIN(1)=(SUMP/DIG)-XMIN(2)*SUMD/DIG
RETURN
END

A53.12 FIDUC

SUBROUTINE FIDUC(Y,V,T H,
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(2),v(2,2)

DO 10 1=~1,2

D0 10 J=1,2

10 V(1,J)=V(1,J)*H

DM=(PROBIT(FLOAT(IED)/100.0D0)-Y(1)}/Y(2)
G=T*T*V(2,2)/(Y(2)**2)
TERM1=V(1,1)+2.0+00*DM*V(1,2)+DM*DM*V(2,2)-
1 G*(v(1,1)-V(1,2)*v(1,2)/V(2,2))
DL=-999.0D0

D=DEXP (DM)

IF(TERM1.LT.0.000.0R.G.GT.1.000) RETURN
TERM1=DSQRT(TERM1)*T/(Y(2)*(1.D+00-G))
TERM2=G*(DM+V(1,2)/v(2,2))/(1.0+00-G)

DML =OM+TERMZ2-TERM1

DMU=DM+TERM2+TERM1

DL=DEXP(DML)

DU=DEXP(DMU)

RETURN

END

A53.13 HPD

SUBROUTINE HPD(TLIM,NR,IED)

IMPLICIT REAL*8 (A-H,0-Z)

CHARACTER*50 CH

DIMENSION TLIM(NR),PROB(10),CLASS(10),PLOT(161,3)

COMMON //PBO,STD/COM1/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
COMMON /COM3/X,TK

COMMON /COM4/WS,10T

COMMON /COMFIL/IOUT

ALPHAO=ALPHA

ALPHA=PROBIT{FLOAT(IED)/100.0D0)-ALPHA

TWO= 2.00

10T=0

SX= osoRT(vséz,z))

Sy= DSQRT(V3(1,1))

R«  -V3(1,2)/SX/SY
“X=  BETHA/SX

PBO= FNORM(X,.FALSE.)

TK=TFN(X, (BETHA*R*SY -SX*ALPHA) /BETHA/SY/DSQRT(1-R*R))
C= ALPHA*A%PHA/V3(1,1) ~TWO*R*BETHA*ALPHA/SX/SY+BETHA*BETHA/
1 v3(2,2

STD= DSQRT(V3(1,1) +TWO*ALPHA*V3(1,2)/BETHA +V3(2,2)*ALPHA*ALPHA/
1 BETHA/BETHA) /BETHA

WO= ALPHA/BETHA -1.96D0*STD

CALL OT(WO,F00,W1,FO1)

WS=W1

10T=1

10 CALL OT(W0+1.D-3,DMY1,W11,DMY2)

D,0L,DU,IED)
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FX2=F00* ((W11-W1)/1.D-3 -1)
CALL CON(WQ,DUMMY1,DUMMY2,DUMMY3,H,RHO)
FX1=-BIVL(H,RHO)
CALL CON(W1,DUMMY1,DUMMY2,DUMMY3,H,RHO)
FX1=FX1+BIVL(H,RHO)-.95D0
DEL=FX1/FX2
IF (DABS{DEL).LT.1D-7) GOTO 30
DEL=DEL*TWO
20 DEL=DEL/TWO
W2=W0-DEL
IF (W2.GT,ALPHA/BETHA) GOTO 20
CALL OT(W2,F00,W3,DUMMY2)
WS=W3
CALL CON(W2,DUMMY1,DUMMY2,DUMMY3,H,RHO)
FX3=-BIVL(H,RHO)
CALL CON(W3,DUMMY1,DUMMY2,DUMMY3,H,RHO)
FX3=FX3+BIVL{H,RHO)~.95D0
IF (DABS(FX3).GE.DABS(FX1)) GOTO 20
WO=W2
W1=W3
GOTO 10
30 CALL DMED(DLMED)
CALL DMODE(DLMOD)
WRITE{3,100) IED,DLMED, IED,DLMOD
WO=DEXP(WO)
W1=DEXP{W1)
WRITE(3,200) IED,W0,W1
IF(IED.NE.50) GOTO 95
D0 40 I=1,NR
CALL CON(DLOG(TLIM(I)),DUMMY1,DUMMY2,DUMMY3,H,RHO)
40 PROB(I)=BIVL(H,RHO)
WRITE(3,300)
CLASS(1)=PROB(1)
WRITE(3,400) 1,TLIM(1),CLASS(1)
DO 50 I=2,NR
CLASS(1)=PROB(1)-PROB(I-1)
50 WRITE(3,500) I,TLIM(I-1),TLIM(I),CLASS(I)
CLASS(NR+1 )=1-PROB(NR)
TOTAL= 0
DO 60 I=1,NR+1
60 TOTAL=TOTAL+CLASS(I)
WRITE(3,600) TLIM(NR),CLASS(NR+1),TOTAL
WRITE(3,700)
DO 80 I=1,NR
CH. [] 1
DO 70 J=1,IDNINT(CLASS(I)*50.00)
70 CH(J:J)= '+
80 WRITE(3,800) I,CH
CH- 1 ]
DO 90 I=1,IDNINT(CLASS(NR+1)*50.D0)
80  CH(I:I)= '+
WRITE(3,900) CH
95 W=ALPHA/BETHA -4.D0*STD
WU=ALPHA/BETHA +4.D0*STD
IPLOT=0
105 CALL CON(W,A,B,D,H,RHO)
IPLOT=IPLOT+1
F=DEN(A,B,D)
FW=BIVL({H,RHO)
PLOT(IPLOT,1)=W
PLOT(IPLOT,Z%-F
PLOT{IPLOT,3)=FW-
IF(IOUT.EQ.1) WRITE(8,1000) W,F,FW
W=+ STD/20.00
IF (W.LE.WU) GOTO 105
CALL SPLOT(PLOT,IED)
ALPHA=ALPHAD
100 FORMAT(// ,5X, 'POSTERIOR MEDIAN FOR ED',[2//5X,F15.4//5X,
1 'POSTERIOR MODE FOR ED',12//5X,F15.4//)
200 FORMAT(/ ,5X,"95% H.P.D. LIMITS FOR ED',12//2(5X,F15.4)//)
300 FORMAT("L',/7X,47(‘-')/7X,'£ PROBABILITY OF TOXICITY CLASSES',
112X,'|*//7%, ' | ' ,5X, 'CLASS "', 22X, 'PROBABILITY |')

APPENDICES.



400 FORMAT(/ ,7X,'{',3x,I1,* : < ',F7.1,8%X,F10.8,3X,"|")
500 FORMAT(/ ,7X,'!',3X,11,' ¢ ',F7.1,' - ',F7.1,8X,F10.8,3X,'|")
600 FORMAT(/ ,7X,'|',15X,'> ' F7.1,8X,F10.8,3X,"|'/30X,

1 12('_*)/7x,"{',45X," | ' /33X, ' TOTAL: ',F10.8/7X,47('-')/)

7001F0§M§T(//—, 9X,'0.0--n---- 0.2--m—- 1 SR, 0.6-----=- 0.8-------
1.0'
800 FORMAT(/ , 7X,I1,' : ' A50)

900 FORMAT(/ , 7X,'> : ',A50)

1000 FORMAT(5X,F15.10,5X,F15.10,12X,F15.10)
RETURN
END

A53.14 OT

SUBROUTINE OT(W,F00,U2,F)
IMPLICIT REAL*8(A-H,0-2)

COMMON //PBO,STD/COM1/ALPHA,BETHA,V3(2,2)/COM2/R,SX,SY,C
COMMON /COM4/WS, 10T
STEP=STD/10.0D0

ST=1.0D0

CALL CON(W,A,B,D,DUMMY1,DUMMY2)
FOO=DEN(A,B,D)

UO=W+STEP

IF(I0T.GT.0) UO=WS

CALL CON(UO,A,B,D,DUMMY1,DUMMNY2)
F0=DEN(A,B,D)

IF(FO.LT.F00) ST=-1.000

10 U0=UQ+STEP*ST
CALL CON(U0,A,B,D,DUMMY1,DUMNY2)
FO=DEN(A,B,D)

IF (ST*(F0-F00).GT.0.0D0) GOTO 10
U1=U0

U0=UO-STEP*ST

Fl=FQ

CALL CON(UO,A,B,D,DUMMY1,DUMMY2)
FO=DEN(A,B,D)

20 U2=(UO*(F1-F00) -U1*(F0-F00))/(F1-FO)
CALL CON(U2,A,B,D,DUMMY1,DUMNY2)
F=DEN(A,B,D)

IF (DABS((F-F00)/F00).LT.1.D-8) RETURN
IF (F.LT.FOO) GOTO 30

U0=u2

FO=F

GOTO 20

30 U1=y2
Fl=F
GOTO 20

40 RETURN
END

A5.3.15 SCALE

SUBROUTINE SCALE{FMN,FMX,N,MPV,VALMIN,STEP,NVALS, IR, IFAULT)
REAL UNIT(12),TOL,BIAS

DATA NUNIT/12/

DATA UNIT(1),UNIT(2),UNIT(3),UNIT(4) ,UNIT(5),UNIT(6),

1 UNIT(7),UNIT(8),UNIT(9),UNIT(10),UNIT(11),UNIT(12)/

2 12.,15.,20.,25.,30.,40,,50.,60.,80.,100.,120.,150./
DATA TOL/5.E-6/,BIAS/1.E-5/,MINN/2/ ,MAXN/10000/,COVER/.7/
FMAX=FMX
FMIN=FMN
IFAULT=0
IF(FMAX.LT.FMIN) IFAULT=IFAULT+1
IF§N.LT.MINN.OR.N.GT.MAXN) IFAULT=IFAULT+2
IF(MPV.LE.0.OR.MPV.GE.N) IFAULT=IFAULT+4

IF(IFAULT.NE.O) RETURN
NVALS=(N-1)/MPV+1
IF(FMAX-FMIN.GT.TOL*AMAX1(ABS(FMAX ) ,ABS(FMIN))} GOTO 40
[FAULT=-1

APPENDICES.



IF(FMAX)10,20,30
10 FMAX=0.0
GOTO 40
20 FMAX=1.0
GOTO 40
30 FMIN=0.0
40 FINTER=FLOAT(N)/FLOAT(MPV)
S=(FMAX-FMIN)*(1.+2.*BIAS)/FINTER
IR=0
50 IF(S.GT.10.) GOTO 60
S=5*10,
IR=IR+1
GOTO 50
60 IF(S.LE.100.) GOTO 70
S=S/10.
IR=IR-1
GOTO 60
70 DO 80 I=1,NUNIT
IF(S.LE.UNIT(I)) GOTO 90
80 CONTINUE
90 STEP=10.**(-IR)*UNIT(I)
AJ=0.
100 AJ=AJ+1.
IF(UNIT(I)-.I.GT.AINT((UNIT(I)+.1)/AJ)*AJ) GOTO 100
TSTEP=STEP/AJ
TEMPsFMIN/TSTEP+AJ*(.5/FLOAT(MPV)-FINTER*BIAS)
VALMIN=AINT(TEMP)*TSTEP
IF(TEMP.LT.0. .AND.TEMP.NE.AINT(TEMP)) VALMIN=VALMIN-TSTEP
IF(FMAX.LT.VALMIN+STEP*(F[NTER*(1.-BIAS)-.S/FLOAT(MPV))) GOTO 110
IF(UNIT(I)/UNIT(I+1)*(1.-1./(AJ*FINTER)).LT.COVER) GOTO 100
I=]+1
GOTO 90
110 DO 120 J=1,2
AJ=AJ*10.
IF(UNIT(I)-.1.LT.AINT((UNIT(I)+.1)/AJ)*AJ) IR=IR-1
120 CONTINUE
RETURN
END

AS53.16 SCATPL

SUBROUTINE SCATPL(A,N,M,ICY,NCY, ICX,NY,NX,SCALEY,SCALEX, STAND,
1 IFAULT)

DIMENSION IOUT(161),VALS(20),A(N,M),ICY(NCY), SCALEX(2),

2 SCALEY(2),INTCH(11) ,MARKCH(5),IFORM1(19), IFORM2(20)

DATA IWRITE/3/,MAXWID/132/,MAXHT/62/ ,MAXY/5/ ,MPVX/10/ ,MPVY/5/

DATA INTCH(1),INTCH(2),INTCH(3),INTCH(4),INTCH(5), INTCH(6),

1 INTCH(7),INTCH(8),INTCH(9), INTCH(10), INTCH(11)

2 /1HO,1H1,1H2,1H3,1H4, IH5,1H6,1H7,1H8, 1H9, 1H9/

DATA MARKCH(1),MARKCH(2),MARKCH(3)},MARKCH(4),MARKCH(5)

1 /1H*,1HO,1H+,1HX, 1H=/

DATA I1BLANK/1H /,IDOT/1H./,ICOLON/1H:/, ICOMMA/1H,/, IAPOST/1H'/,
1 ISEMI/1H;/,1TWO/1H2/, IDASH/1H-/

DATA 1FORM1(1),IFORM1(2),IFORM1(3),IFORMI(4), IFORML(5),

1 IFORM1(6),IFORM1(7),IFORM1(8), IFORM1(9), IFORM1(10),

2 IFORM1(11),IFORM1(12), IFORM1(13), IFORM1(14), IFORMI(15),

3 IFORM1(16),IFORM1(17),IFORM1(18),IFORM1(19)

4 /IH(,1H1,1HH,1H ,1H,,1HF,1H8,1H.,1HO,1H, ,1H1,1HX,1H,, ,1H1,1H5, 1H2,
5 1HA,1H1,1H)/

DATA IFORM2(1),IFORM2(2),IFORM2(3),IFORM2(4), IFORM2(5),

1 IFORM2(6), IFORM2(7), IFORM2(8) , IFORM2(9), IFORM2(10),

2 IFORM2(11),1FORM2(12),IFORM2(13), [FORM2(14), IFORM2(15),

3 IFORM2(16),IFORM2(17),IFORM2(18), IFORM2(19), IFORM2(20)

4 /IH(,1H1,1HH,1H ,1H,,1HS,1HX,1H,,1H1,1H6,1H(, 1HF , 1H8,1H.,1HO,1H, ,
5 1H2,1HX,1H),1H)/
1 FORMAT(1H ,10X, 1H:, 151A1)
2 FORMAT(11H TIMES 10**, 13)
3 FORMAT(7H OFFSET,F10.0)
4 FORMAT(1H ,14X,10HTIMES 10%*, 13)
5 FORMAT(1H ,14X,6HOFFSET,F10.0)

APPENDICES.



6 FORMAT(1H ,2X,16(9X,A1))
IFAULT=0
IF(N.LT.1) IFAULT=IFAULT+]
IF(M.LT.2) IFAULT=IFAULT+2
IF(ICX.LT.1.0R.ICX.GT.M) IFAULT=IFAULT+4
IF(NCY.LE.0.OR.NCY.GT.MAXY) [FAULT=IFAULT+8
IF(IFAULT.GT.0) RETURN
DO 10 I=1,NCY
IF(ICY(I).LT.1.0R.ICY(I).GT.M) GOTO 1016
10 CONTINUE
NLY=MAXHT-5
IF(NLY.GT.NY) NLY=NY
IF(NLY.LE.MPVY) NLY=MPVY+1
NLX=MAXWID-11
IF(NLX.GT.NX) NLX=NX
TF(NLX.LE.MPVX) NLX=MPVX+1
XMIN=SCALEX(1)
XMAX=SCALEX(2)
IF (XMAX . GE . XMIN) GOTO 30
XMIN=A(1,1CX)
XMAX=XMIN
IF(N.EQ.1) GOTO 30
DO 20 I=2,N
AI=A(1,1CX)
IF(AL.LT.XMIN) XMIN=AI
20 IF(AI.GT.XMAX) XMAX=AI
30 CALL SCALE(XMIN,XMAX,NLX,MPVX,TEMP,XVSTEP,NXVALS, IRX, IFAIL)
IF(IFAIL.GT.0) GOTO 1032
XMIN=TEMP
XSTEP=XVSTEP/FLOAT (MPVX)
YMIN=SCALEY(1)
YMAX=SCALEY(2)
IF (YMAX.GE.YMIN) GOTO 50
K=ICY(1)
YMIN=A(1,K)
YMAX=YMIN
DO 40 J=1,NCY
K=ICY(J)
00 40 I=1,N
AI=A(1,K)
IF(AL.LT.YMIN) YMIN=AI
40 IF(AI.GT.YMAX) YMAX=AI
50 CALL SCALE(YMIN,YMAX,NLY,MPVY,TEMP,YVSTEP,NYVALS, IRY, IFAIL)
IF(IFAIL.GT.0) GOTO 1064
YMIN=TENP
YSTEP=YVSTEP/FLOAT (MPVY)
CALL AXIS(YMIN,YVSTEP,NYVALS,6,IRY, IRPR,OFFSET, IFACT VALS,
1 20, IFAIL)
IF(IFAIL.GT.0) GOTO 1064
IFORM1(9)=INTCH({ IRPR+1)
IF(IFACT.NE.O) WRITE(IWRITE,2) IFACT
IF(OFFSET.NE.O.) WRITE(IWRITE,3) OFFSET
IF(ISTAND.EQ.0) INTCH(3)=ISEMI
IPLTED=0
DO 140 I=1,NLY
IY-NLY-I
D0 60 IX=1,NLX
60 I0UT(IX)=IBLANK
D0 120 L=1,N
INDX=(A(L,ICX)-XMIN)/XSTEP+1.5
IF(INDX.LT.1.0R.INDX.GT.NLX) GOTO 120
DO 110 J=1,NCY
K=ICY(J)
Y=(A(L,K)-YMIN)/YSTEP
INDY=Y+0.5
IF(INDY.NE.IY) GOTO 110

APPENDICES.



IPLTED=IPLTED+1
IF(TOUT(INDX).NE.IBLANK) GOTO 80
IF(1STAND.EQ.0) GOTO 70
TOUT(INDX }=MARKCH(J)
GOTO 110
70 TOUT(INDX)=ICOMMA
IF(INT{Y).EQ.IY) IOUT(INDX)=IAPOST
GOTO 110
80 DO 90 IC=3,10
90 IF(IOUT(INDX).EQ.INTCH(IC)) GOTO 100
IC=2
100 IOUT(INDX)=INTCH(IC+1)
110 CONTINUE
120 CONTINUE
IF(MOD(1Y,MPVY).EQ.0) GOTO 130
WRITE(IWRITE,1) (IOUT{IX),IX=1,NLX)
GOTO 140
130 WRITE(IWRITE,IFORM1) VALS(NYVALS),IDASH, ICOLON,
1 (I0UT(IX),IX=1,NLX)
NYVALS=NYVALS-1
140 CONTINUE
WRITE(IWRITE,1) (IDOT,I=1,NLX)
CALL AXIS(XMIN,XVSTEP NXVALS,6,IRX,IRPR,OFFSET,IFACT,VALS,
1 20,IFAIL)
INTCH(3)=ITWO
IFORM2(15)=INTCH( IRPR+1)
IF(IFAIL.GT.0) GOTO 1032
WRITE(IWRITE,6) (ICOLON,I=1,NXVALS)
WRITE(IWRITE, IFORM2) (VALS(I),I=1,NXVALS)
IF(IFACT.NE.O) WRITE(IWRITE,4) IFACT
IF(OFFSET.NE.0.0) WRITE(IWRITE,5) OFFSET
IFAULT=IPLTED-N*NCY
RETURN
1064 IFAULT=IFAULT+32
1032 IFAULT=IFAULT+16
1016 IFAULT=IFAULT+16
RETURN
END

A5.3.17 SCORE

SUBROUTINE SCORE(XMIN,X,D,IR,IN,V,DLOGLO,DA,DB,V3)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION XMIN(Z; D(10) IR(10),1N(10),D1(2),D2(2,2),DEL(2),V(2,2)
DIMENSION V3(2,2

10 CALL DERIV(XMIN.K,D,IR,IN,D1,D2,DA,D8,V3)
CALL DINV(D2,V)
DDMAX-DHAXI(DABS(DI(I)) DABS(DI(Z)))
I1F(DDMAX.LT.1.D-10) GOT
DEL(1)=v(1, 1)*01(1)+V21 2)*01(2)
DEL(2)=v(2,1)*D1(1)+V(2,2)*D1(2)
00 20 I=1,2

20 XMIN(I)-XHIN(I) -DEL(I)
GOT0 10

30 DLOGLO=-FN(XMIN,K,D,IR,IN)
RETURN
END

AS53.18 SHOW

SUBROUTINE SHOW(A,B,V)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION V(2,2)

WRITE(3,100)

WRITE(3,200)

WRITE(3,300) A,B

WRITE(3,400

WRITE(3,200

WRITE(3,500) v(1,1),v(1,2),v(2,1),v(2,2)

APPENDICES



100 FORMAT(/
200 FORMAT(/
300 FORMAT(/
400 FORMAT(/

.5X, 'PARAMETER ESTIMATES')

.14X,"  ALPHA ',*' BETA ')

.13X,2F10.4)

.5X, 'COVARIANCE MATRIX OF PARAMETER ESTIMATES')

500 FORMAT(/ ,5X,'ALPHA ', 2F10.4/6X,'BETA ' ,2F10.4/)
RETURN
END

A53.19 SHOWI1

SUBROUTINE SHOW1(A,B,V)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION V(2,2)

WRITE(3,100)

WRITE(3,200)

WRITE(3,300) A,B

WRITE(3,400)

WRITE(3,200)

WRITE(3,500) v(1,1),v(1,2),v(2,1),V(2,2)

100 FORMAT(/ ,5X,'POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)')

200 FORMAT(/ ,14X,' ALPHA ',' BETA ')
300 FORMAT(/ ,13X,2F10.4)

400 FORMAT(/ ,5X,'POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)')

500 FORMAT(/ ,5X,'ALPHA  ',2F10.4/6X,'BETA ', 2F10.4/)
RETURN
END

A53.20 SHOW2

SUBROUTINE SHOW1(A,B,V)

IMPLICIT REAL*8 (A-H,0-7)

DIMENSION V(2,2)

WRITE(3,100)

WRITE(3,200)

WRITE(3,300) A,B

WRITE(3,400)

WRITE(3,200)

WRITE(3,500) v(1,1),v(1,2),v(2,1),V(2,2)

100 FORMAT(/ ,5X,'POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)')

200 FORMAT(/ ,14X,' ALPHA ',® BETA ')
300 FORMAT(/ ,13X,2F10.4)

400 FORMAT(/ ,5X,'POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)')

500 FORMAT(/ ,5X,'ALPHA ', 2F10.4/6X,'BETA ', 2F10.4/)
RETURN
END

AS53.21 SHOW3

SUBROUTINE SHOW3(A,B,V)
IMPLICIT REAL*8 (A-H,0-7)
DIMENSION V(2,2)
NRITE$3,100)
WRITE(3,200)
WRITE(3,300) A,8
WRITE(3,400)
WRITE(3,200)
WRITE(3,500) v(1,1),V(1,2).V(2,1),v(2,2)
100 FORMAT(/ ,5X,'POSTERIOR EXPECTAIONS (INFORMATIVE PRIOR)')
200 FORMAT(/ .14X,' ALPHA ',' BETA '
300 FoanAré/ ,13X,2F10.4)
400 FORMAT
500 FORMAT(/ ,5X,'ALPHA  ',2F10.4/6X,'BETA ', 2F10.4/)
RETURN
END

AS5322 SPLOT

SUBROUTINE SPLOT(PLOT, IED)

REAL*8 PLOT(161,3)

DIMENSION A(161,3),1CY(2),SCALEY(2),SCALEX(2)
N=161

M=3

DO 10 I=1,N

APPENDICES.

/ .5X,'POSTERIOR COVARIANCE MATRIX (INFORMATIVE PRIOR)')



D0 10 J=1,M
10 A(1,J)=PLOT(I,J)
ICY(1)=2
NCY=1
ICX=1
NY=35
NX=05
SCALEX(1)=2.
SCALEX(2)=1.
SCALEY(1)=2.
SCALEY(2)=1
ISTAND=0
WRITE(3,100) IED
CALL SCATPL{A,N,M,ICY,NCY,ICX,NY,NX,SCALEY,SCALEX,ISTAND, IFAULT)
WRITE(3,300) IED
ICY(1)=3
SCALEY(I}-O.
SCALEY(2)=1.
WRITE(3,200) IED
CALL SCATPL(A,N,M,ICY,NCY,ICX,NY,NX,SCALEY,SCALEX,ISTAND, IFAULT)
WRITE(3,300) IED
100 FORMAT('~L',5X,'POSTERIOR DENSITY OF LOG(ED',I2,')'/)
200 FORMAT('~L',5X,'CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED',I2,
1 ] ¥

300 FORMAT(// ,30X,'LOG(ED',I12,')")
RETURN
END

A53.23 BIVL

FUNCTION BIVL(H,RHO)

IMPLICIT REAL*8 (A-H,0-2)
COMMON //PBO,STD/COM3/X,TK
ROOT=DSQRT(1-RHO*RHO)
AH=X/H/ROOT -RHO/ROOT

IF (DABS(H).GE.1.D-10) THEN
BIVL=(FNORM(M, .FALSE.)+PB0)/2.D0 -TFN(H,AH)-TK
IF (H*X.LT.0.D0) BIVL=BIVL-.5D0
ELSE

BIVL= PB0/2.D0 -TK

END IF

BIVL=BIVL/PBO

RETURN

END

AS53.24 DEN

FUNCTION DEN(A,B,D)

IMPLICIT REAL*8(A-H,0-1)

COMMON //PBO, STD/COM2/R, SX,SY,C

P12=4,00*DAC0S(0.00)

PR=1.D0-R*R

F=B*D*FNORM(B/A/DSQRT(PR), .FALSE.) /DSQRT(PI2)/SX/SY/A/A/A
DEN=(F +DSQRT(PR)*DEXP(-C/2.D0/PR) /PI12/SX/SY/A/A) /PBO

AS5.3.25 DV1

FUNCTION DV1(D,X,IE)

IMPLICIT REAL*8(A-H,0-1)

DATA P12/.398942280444D+00/
DIE=1.0D+00

IF(IE.EQ.1) DIE=D
DV1=DIE*PI2*DEXP(-X*X/2.000+00)
RETURN

END

APPENDICES.



A53.26 DV2

FUNCTION Dv2(D,X,IE)

IMPLICIT REAL*8 (A-H,0-Z)

DATA PI2/.398942280444D+00/
DIE=1.0D+00

IF(IE.EQ.1) DIE=D

IF(IE.EQ.2) DIE=D*D
DV2=-DIE*PI2*X*DEXP(-X*X/2.00+00)
RETURN

END

A53.27DV3

FUNCTION DV3(D,X,IE)

IMPLICIT REAL*8 (A-H,0-Z)

DIE=1.DO

IF (IE.EQ.1) DIE=D

IF (IE.EQ.2) DIE=D*D

IF (IE.EQ.3) DIE=D*D*D
DV3=DIE*0.398942280444D0*DEXP( ~-X*X/2.D0)*(X*X-1.D0)
RETURN

END

AS328 FN

FUNCTION FN(Y,X.D,IR,IN)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION Y(2),IR(10),IN(10),D(10)

SUM=0.00+00

DO 10 I=1,K
X=Y(1)+Y(2)*0LOG(D(1))
X1=FLOAT(IR(I))*DLOG(FNORM(X, .FALSE.))
X2=FLOAT(IN(I)-IR(1))*DLOG(FNORM(X, .TRUE.))
SUM=SUM-X1-X2

10 CONTINUE

FN=SUM

RETURN

END

A5.3.29 FNORM

FUNCTION FNORM(X,UPPER)
INPLICIT REAL*8 (A-H,0-Z)
LOGICAL UPPER,UP
LTONE=7.0D+00
UTZERO=18.66D+00
UP=UPPER
=X
IF(Z.GE.0.0D+00) GOTO 10
UP=.NOT.UP
I=-1
10 IF(Z.LE.LTONE.OR.UP.AND.Z.LE.UTZERO) GOTO 20
FNORM=0.0D+00
GOTO 40
20 Y=0.5D+00*Z*
IF(Z.6T.1.280+00) GOTO 30
FNORM=0., 5D0+00-Z*(0.398942280444D+00-0.399903438504D+00*Y/
1 (Y+ 5.75885480458D+00-29.82135578080+00/
2 (Y+ 2.62433121679D+00+48.6959930692D+00/
3 (Y+ 5.928857244380+00)}))
GOTO 40
30 FNORM=0.398942280385D+00*DEXP(-Y)/
(2-3.8052D-08+1.00000615302D+00/
(2+3.98064794D-04+1,986153813640+00/
(2-0.1516791166350+00+5.29330324926D+00/
(Z+4.8385912808D+00-15.15089724510+00/
(2+0.742380924027D+00+30. 789933034D+00/
(2+3.990194170110+00))))))

O B LN -

APPENDICES.



40 IF(.NOT.UP} FNORM=1.0D+00-FNORM
RETURN
END

A53.30 PROBIT

FUNCTION PROBIT(P)

IMPLICIT REAL*8 ({A-H,0-2)

PO= -0.322232431088D+00

Pl= -1.0D+00

P2= -0.3422432088547D+00

P3= -0.204231210245D-01

P4= -0.453642210148D-04

Q0= 0.99348462606D-01

Q1= 0.588581570495D+00

Q2= 0.531103462366D+00

Q3= 0.10353775285D+00

Q4= 0.3856070063D-02

PROBIT= 0.00+00

PS= P

IF(PS.GT.0.5D+00) PS= 1.0D+00-PS
IF(PS.EQ.0.50+00) RETURN

YI= DSQRT(DLOG(1.0D+00/(PS*PS)))
PROBIT= YL+((((YI*P4+P3)*YI+P2)*YI+P1)*Y1+P0)

1 /(C((YI*Q4+Q3)*Y1+Q2)*Y1+Q1)*YI+Q0)
IF(P.LT.0.50+00) PROBIT= -PROBIT
RETURN
END
AS331 TFN

FUNCTION TFN(HI,AI)
IMPLICIT REAL*8 (A-H,0-2)
DATA G1/.1591549431D0/
H=DABS(HI)
A=DABS(AT)
EPS-1.D-6
TFN=0.D0
IF (A.EQ.0.DO) RETURN
ATA=DATAN(A)
IF (H*A,.LE.4.D0) GOTO 10
TFN=G1*(ATA+DATAN(1.D0/A)) -.5D0*(FNORM(H, .FALSE. )-.5D0)
GOTO 50

10 HSQ2=.5D0*H*H
EXPH2=DEXP(-HSQ2)
ASQ=A*A
A4=ASQ*ASQ ‘
H4=HSQ2*HSQ2
AdH4=A4*H4
BBJ=A*HSQ2
BJ=A*H4*,5D0
FJ=1.00
DJ=3.00
SUM=0.D0

20 EJ=DJ
SER=0.D0
TERM=BJ

30 SER=SER+TERM
IF (TERM.LE.SER*EPS) GOTO 40
TERM=TERM*HSQ2/EJ
EJ=EJ+1.D0
GOTO 30

40 CONTR1=(SER+BBJ)/FJ
CONTR2=SER*ASQ/ (FJ+2.D0)
CONTR=CONTR1-CONTR2
SUM=SUM+CONTR
TFN=ATA-SUM*EXPH2
EPSA=EPS*TFN
B8BJ=8BJ*A4H4/DJ/(DJ-1.D0)
BJ=BJ*A4H4/0J/(DJ+1.D0)
FJ=FJ+4.00
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DJ=0J+2.00
IF (CONTRZ*EXPH2.GE.EPSA) GOTO 20

TFN=TFN*G1

50 IF (AI.LT.0.D0) TFN=-TFN
RETURN
END
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AS5.4 Input.
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD

CARD

00 3 O n B W N

K+6

TITLE (upto 80 characters)

ILOOP

IED, K, CLASS , PRIOR

NR

TLIM(1), TLIM(2),..., TLIM(NR)

ALPHAO, BETA(, V0(1,1), V0(1,2) , VO(2,1) , V0(2,2)
D(1), IN(1), IR(1)

D(2), IN(2),IR(2)

D(K) , IN(K) , IR(K)

Cards 4-6 are optional. Cards 4 and 5 are only necessary if CLASS = TRUE,; Card 6 is only necessary if
PRIOR =.TRUE. Cards 2 - (K +6) should be repeated ILOOP times for each data set.
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AS.5 Examples.

AS5.5.1 Input for Examples.

3
EXAMPLE FROM GRIEVE(1988b) - UNINFORMATIVE PRIOR - ED50
50 4 .TRUE. .FALSE.

5

5 50 500 2000 5000
500 51

1000 5 2

2500 5 3

5000 5 2

EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - EDS0
50 4 .TRUE. .TRUE.

5

§ 50 500 2000 5000

-3.0 0.5 9.0 -.96 -.96 .16

50051

1000 5 2

2500 5 3

5000 5 2

CGP 35127 (ip) IN FEMALE MICE - SINGLE DOSE STUDY - ED90
90 8 .TRUE. .FALSE.

3

1416
0.62 6 0
0.9360
1.85 6 2
2.78 6 3
5.56 6 4
8.3366
16.67 6 6

25.00 6 6
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AS.5.2 Example 1,
EXAMPLE FROM GRIEVE(1988b) - UNINFORMATIVE PRIOR - ED50
MAXIMUM LIKELIHOOD ESTIMATION OF ED50

MODEL : PROBIT
INDEPENDENT VARIABLE : LOG(DOSE)

PARAMETER ESTIMATES
ALPHA BETA
-2.3187 0.2791
COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA BETA
ALPHA 6.1247 -0.8146
BETA -0.8146 0.1098

MAXIMISED LOG-LIKELIHOOD
-13.1007
FIT OF THE MODEL
DOSE NO RESP EXP

500.00 5 1 1.4
1000.00 5 2 1.7
2500.00 5 3 2.2
5000.00 5 2 2.6

CHI-VALUE = 1.00
D.F. = 2

NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)
FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF 1.96

ESTIMATE OF EDSO
4049.3035
NG FIDUCIAL LIMITS
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EXAMPLE FROM GRIEVE(1988b) - UNINFORMATIVE PRIOR - EDSO
BAYESIAN ANALYSIS

POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)
ALPHA BETA
-2.4390 0.2937

POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)

ALPHA BETA
ALPHA 6.2760 -0.8347
BETA -0.8347 0.1125

POSTERIOR MEDIAN FOR ED50
3199.3200

POSTERIOR MODE FOR ED50
2436.6822

95% H.P.D. LIMITS FOR ED50
110.7882 6378274.8083

PROBABILITY OF TOXICITY CLASSES

| |
| CLASS PROBABILITY |
|1 < 5.0 0.00534677 |
|2 50 -  50.0 0.00381713 |
| 3: 50.0 - 500.0 0.02061723 |
| 4: 500.0 - 2000.0 0.23352378 |
| 5: 2000.0 - 5000.0 0.40106765 |
| > 5000.0 0.33562744 |

TOTAL: 1.00000000

1 | (Y SR 0.6----=-- 0.8-cmmmmm 1.0
1:
2:
I+
4 2 Fetterbbbts
R e

v

R e SR e e T
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POSTERIOR DENSITY OF LOG(ED50)

0.48 -: o
0.40 -: i
0.32 - ;
0.24 -: ;
0-16 " . ;
0.08 -: E: 3
- : 4
: 43
4 144,
: 544 154445444
0.00 -:' 354445444
0 3 6. 9 12
LOG(ED50)
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED50)

;44
: 1 54445;
0.90 -: 444;

0.60 -; '
0.45 -; '
0.30 -E .
0.15 -S .

0.00 -:' 354445443

0. ¥ 6. 9. 12.
LOG(EDS0)
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AS5.5.3 Example 2.
EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - ED50
MAXIMUM LIKELIHOOD ESTIMATION OF ED50

MODEL : PROBIT
INDEPENDENT VARIABLE : LOG(DOSE)

PARAMETER ESTYIMATES
ALPHA BETA
-2.3187 0.2791
COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA BETA
ALPHA 6.1247 -0.8146
BETA -0.8146 0.1098

MAXIMISED LOG-LIKELIHOOD
-13.1007
FIT OF THE MODEL
DOSE NO RESP EXP

500.00 5 1 1.4
1000.00 5 2 1.7
2500.00 5 3 2.2
5000.00 5 2 2.6

CHI-VALUE = 1.00
D.F. = 2

NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)
FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF 1.96

ESTIMATE OF ED50
4049.3035
NO FIDUCIAL LIMITS
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EXAMPLE FROM GRIEVE(1988b) - INFORMATIVE PRIOR - ED50
BAYESIAN ANALYSIS

POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)
ALPHA BETA
-2.4390 0.2937
POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)

ALPHA BETA
ALPHA 6.2760 -0.8347
BETA -0.8347 0.1125

POSTERIOR MEDIAN FOR ED50
3199.3200

POSTERIOR MODE FOR ED50
2436.6822

95% H.P.D. LIMITS FOR ED50
110.7882 6378274.8083

PROBABILITY OF TOXICITY CLASSES

| I
| CLASS PROBABILITY |
| 1 < 5.0 0.00534677 |
|2 5.0 -  50.0 0.00381713 |
| 3: 50.0 - 500.0 0.02061723 |
| 4: 500.0 - 2000.0 0.23352378 |
| 5: 2000.0 - 5000.0 0.40106765 |
| > 5000.0 0.33562744 |

TOTAL: 1.00000000

0.0--~=v-- 0.2--==--- 0.4cwmum- 0.6------- 0.8--cmuem 1.0
l:
2:
I+
4 3 Frbtrrbteedt
LRSS 2 E R e

v

D otEE bbb
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POSTERIOR DENSITY OF LOG(ED50)

0.48 -: e

: )
0.40 -: pi
0.32 -3 5
0.24 -: :

: 1 g
0.16 -: 5 ;
0.08 -: # 3

: : 4

: 43
4 144,

: 544 : 54445444

0.00 -3 354445444
0 3 5 9. 12
LOG(ED50)
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED50)

144
$ 154445;
0.90 -: 444;

0.60 -: ;

0.45 -: :

. , 544
0.00 -:' 354445443

0. 3. 6. 9. 12
LOG(EDS0)
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EXAMPLE FROM GRIEVE(1988b) - IHFORMATIVE PRIOR - ED50

PRIOR INFORMATION :
PRIOR EXPECTAIONS
ALPHA BETA
-3.0000 0.5000
PRIOR COVARIANCE MATRIX

ALPHA BETA
ALPHA 9.0000 -0.9600
BETA -0.9600 0.1600

POSTERIOR EXPECTAIONS (INFORMATIVE PRIOR)
ALPHA BETA
-2.8912 0.3573

POSTERIOR COVARIANCE MATRIX (INFORMATIVE PRIOR)

ALPHA BETA
ALPHA 3.5438  -0.4690
BETA -0.4690 0.0635

POSTERIOR MEDIAN FOR ED50
3059.9890

POSTERIOR MODE FOR ED50
2450.6319

95% H.P.D. LIMITS FOR ED50
200.7817 602999.9368

PROBABILITY OF TOXICITY CLASSES

l I
| CLASS PROBABILITY |
| : < 5.0 0.00365551
| 2 5.0 - 50.0 0.00293979
| 3: 50.0 - 500.0 0.01979330
| 4: 500.0 - 2000.0 0.25631111
| 5 2000.0 - 5000.0 0.40916296 |
[ > 5000.0 0.30813733

TOTAL: 1.00000000

0.0------- 0.2------- 0.4--———-- 0.6---nv-- 0.8-------
1:
2 :
3.+
4 : ++rrrrbteeeet
5 1 44ttt bbb bbb

v

BT L S e
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POSTERIOR DENSITY OF LOG(EDS50)

.. W

0.48 -: gt

0.40 -: -

0.32 -: :

0.24 -: . -
0.16 -: : :
0.08 -: .

0.00 -:' :5564

0.0 2.5 5.0 7.5 10.0
LOG(ED50)
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED50)

: 356553
0.90 -: 56;
: 35
4;
o
0.75 - X
0.60 -: !
0.45 -: :
0.30 -: 2
0.15 - ;
é'
6I
: 6555
0.00 -:' 55654
0.0 2.5 5.0 7.5 10.0
LOG(ED50)
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AS.5.4 Example 3.
CGP 35127 (ip) IN FEMALE MICE - SINGLE DOSE STUDY - ED90
MAXIMUM LIKELIHOOD ESTIMATION OF ED90

MODEL : PROBIT
INDEPENDENT VARIABLE : LOG(DOSE)

PARAMETER ESTIMATES
ALPHA BETA
-1.7000 1.5469
COVARIANCE MATRIX OF PARAMETER ESTIMATES

ALPHA BETA
ALPHA 0.2832 -0.1852
BETA -0.1852 0.1667

MAXIMISED LOG-LIKELIHOOD

-13.1075

FIT OF THE MODEL
DOSE NO RESP  EXP
0.62 6 0 0.0
0.93 6 0 0.2
1.85 6 2 1.4
2.78 6 3 2.7
5.5 6 4 5.0
8.33 6 6 5.7
16.67 6 6 6.0
25.00 6 6 6.0

CHI-VALUE = 2.22
D.F. = 6

NOTE : SINCE CHI-SQUARE VALUE SMALL (P>0.05)
FIDUCIAL LIMITS CALCULATED USING A T-VALUE OF 1.96

ESTIMATE OF ED90
6.8724
FIDUCIAL LIMITS (95%)
4.5602 < ED90 < 18.8023
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CGP 35127 (ip) IN FEMALE MICE - SINGLE DOSE STUDY - ED90
BAYESIAN ANALYSIS

POSTERIOR EXPECTAIONS (UNINFORMATIVE PRIOR)
ALPHA BETA
-1.8937 1.7215

POSTERIOR COVARIANCE MATRIX (UNINFORMATIVE PRIOR)

ALPHA BETA
ALPHA 0.2976  -0.1947
BETA -0.1947 0.1752

POSTERIOR MEDIAN FOR ED90
6.3249

POSTERIOR MODE FOR EDS0
5.8814

95% H.P.D. LIMITS FOR ED90
4.0923 12.0673
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POSTERIOR DENSITY OF LOG(ED90)

1.8 -:
1.5
1.2 -2 : :

0.9 -: : :

- & = =

0.3 -: ; i
0.0 -+ 1444444544

LOG(ED90)
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CUMULATIVE POSTERIOR DISTRIBUTION OF LOG(ED90)

3444
4454
: : 144
0.90 -t 4;
3 4
3
3
0.75 - :
3
0.60 -: 2
0.45 -: ,'
0.30 -+ &
0.15 - :
é'
: 14
0.00 -: ' 44444454444 ;
0.5 1.0 1.5 2.0 2.5
LOG(ED90)

APPENDICES.



A6 SAS PROGRAMS FOR BAYESIAN ANALYSES ASSOCIATED WITH THE TWO-TREATMENT,
TWO-PERIOD CROSSOVER.

A6.1 A SAS Program for the Bayesian Analysis of §4.

A6.1.1 Introduction.
This program is designed to perform a Bayesian analysis of a two-treatment, two-period crossover design. The
program carries out the analyses developed in §4.

The program was written in SAS in order that the strengths of the SAS system in the realms of graphics could
be utilised. In this Appendix a listing of the program including an example of data taken from Patel(1983) is
given.

A6.1.2 Program Description.

This program has been written utilising the SAS data step language, without resorting to the use of the SAS
library of procedures. In what follows the most important variables in the most important DATA SETS are
described.

DATA SET A6 : N1 - Number of patients in sequence group A - B
N2 - Number of patients in sequence group B - A

Y11- Cellmeany, ,

Y12- Cellmeany, ,

Y21- Cellmeany,,

Y22- Cellmeany,,
SSP - Patient sum of squares
SSE - Error sum of squares
N - Total number of patients
M- /N1 + 1/N2
RH - Least squares estimate of A
TH - Least squares estimate of ¢

- Carryover effect
- Treatment effect
- Constrained Conditional Density

DATA SET B3 : R

R - Carryover effect
T - Treatment effect
N - Constrained Conditional Density

DATA SET C3

DATASET D T - Treatment effect
P_UNC - Unconstrained Conditional Density
P_CON - Constrained Conditional Density

DATASET E : T - Treatment effect
P_UNC - Unconstrained Density
P_CON - Constrained Density

DATASET F R - Carryover effect
P_UNC - Unconstrained Density
- Constrained Density

DATASET G : P _0- Prior belief in a carryover effect

- Posterior mean treatment effect

- Posterior grobability of a +ve Treatment effect
- Upper 95% H.P.D. limit

Lower 95% H.P.D. limit
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BO1 - Bayes factor
P_1- Posterior belief in a carryover effect

A6.1.3 Program Listing.

A e 2K ok ok K o 3 ok o oKk K 3k oK 3R e ok ok sk ok ok K e ok e ok K ok sk ok ok koK ok ok

INPUT DATA FROM PATEL (1983)

20020 200 200 0 e ok 3 oge N ook ol ok o ofe ok a0 ok o a3 o ok e e ok e o ol o ol ok ok ok ok ok ok,
’

DATA AQ:INPUT PAT SEQ Y1 Y2;CARDS:
1.28 1.33
.60 2.21
.46 2.43
.41 1.81
.40 0.85
.12 1.20
.90 0.90
.41 2.79
.68 2.10
.60 2.32
.48 1.30
.08 2.34
.72 2.48
.94 1.11
.35 3.23
.16 1.25
.06 1.38

ot
—

NOOMPWNNHOOONOYTBWN

NINI AN PRI NI NI NN 1= b ot ot oot et ot
W W RIMN PO TN O N —

o bt b et e e e b et

'
a0l o o o e ol e ol e ofe e s o e o o o e o ol e o o ofe ok ok ol o oo ol ol ol ok ol o ok ook kR R

CALCULATION OF SUFFICIENT STATISTICS

B 20 o0 a2 e ok e e ook o o ol o o o o o e ok ol o ofe o e e ok o o o o ok ol ok e e ok ok ok Ok,
’

DATA Al; SET A0; Y=(Y1+Y2)/2;

PROC MEANS NOPRINT: BY SEQ; VAR Y1 Y2; OQUTPUT OUT=A2 N=NO MEAN=Y1 Y2;
DATA A3; SET AZ; RETAIN N1 Y11 YI12;

IF N =1 THEN DO; N1=NO; Y11l=Yl; Y12=Y2; END;

ELSE DO; N2=NO; Y21=Y1; Y22=Y2: QUTPUT; END; KEEP N1 N2 Y11 Y12 Y21 Y22;
PROC MEANS NOPRINT DATA=AO; VAR Y Y1 Y2; QUTPUT OUT=A4 USS=SIJ SIJ1 S1J2;
DATA A5; MERGE A3 A4 ; KEEP N1 N2 Y11 Y12 Y21 Y22 SSP SSE;
SSP=2*(SIJ-(N1*{(Y11+Y12)/2)**2+N2*((Y21+Y22)/2)**2));:
SE=SIJ1+SIJ2-(SSP+N1*Y11%*2+N1*Y12%*2+N2*Y2]1**2+N2*Y224*2);

DATA A6;: SET AS5;

N=N1+N2; M=N/(N1*N2); DF=(N-1)/2;

CONST=EXP ( LGAMMA(DF )- (LGAMMA(DF - .5)+LGAMMA( .5))):

DF1=N-1; DF2=N-1;

RH= .5*(Y11+Y12-(Y21+Y22)) ; TH= 0.25%(Y11+Y22-(Y12+Y21)):

BEERNBERRRRRBER SN RN SRR CR AR R E R kRN R

BASIC DATA

AR RE AR R SRR RN Rk dk bRk R Rk Rk kN,
’

PROC PRINT;

WEBRERER R R ER R Rk E RSk kR kR

CALCULATION OF P(T,R | DATA)

P_UNC = UNCONSTRAINED DENSITY
P_CON = CONSTRAINED DENSITY

ATSSSER SR RS TR ARG EREEE RS RN RN RB RN,
’

DATA B0; SET A6;
SER=SQRT(M*SSP/(2*(N-2))); RL=RH-(3*SER); RU=RH+3*SER;
C=4/(M*(SSE*SSP)**0.5); LM=C*(CONST**2);
DO CASE=1 TO 19 BY 3;PROB=(100-5*CASE)/100;
LS=LOG(PROB*LM); KEEP CASE PROB R T IND LL L_L LN;
DO R=RL TO RU BY (SER/10);
IND=0; T=RL; DEL=SER/10; L_L=-10000;
LOOP1:T=T+DEL;
LINK LOGLIK:
IF IND=0 THEN DO;
IF LL > LS THEN DO;
T=T-DEL;
DEL=DEL/1000;
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IND=1; GOTO LOOP1;

END;

ELSE IF LL < L L THEN GOTO LOOP2;

ELSE L_L=LL;

END;
[F IND=1 THEN DO;

IF LL > LS THEN DO;LN=LL;
X-DE&*(LL LS)/(LL L L).

T=T
LINK LOGLIK;
QUTPUT;
DEL=SER/10;
IND=2:
END;
ELSE L_L=LL;
END;
IF IND=2 THEN DO;

IF LL < LS THEN DO;

T=T-DEL;
DEL=DEL/1000;
IND=3;GOTO LOOP1;
END;
ELSE L_L=LL;
END;
IF IND=3 THEN DO;

IF LL < LS THEN DO;LN=LL:
X=DEL*{LS- LL)/(L L-LL);
T=T-X;

OUTPUT
GOTO LOOPZ:
END;
ELSE L_L=LL;
END;
IF T GT RU THEN GOTO LOOP2;
GOTO LOOP1;
LOOP2:END;
END;

LOGLIK:
Y1a2*((R-RH)**2) /M:
Y2=8*((T-(R/2+TH))**2) /M;

W2=(Y2/SSE)**0.5: Wls=(Y1/SSP)**0.5;
LL=LOG(LM)-DF *LOG( (1+W1*N1)*{1+W2*W2));
RETURN;

RUN;

DATA B1; SET BO; BY CASE: RETAIN NIND:

IF FIRST.CASE THEN NIND=1: ELSE NIND=NIND+1;
IF IND=3 THEN ID=-NIND;

PROC SORT; BY CASE IND ID;

DATA B2; SET BO; BY CASE: IF FIRST.CASE:
DATA B3; SET Bl B2; P_UNC-PROB;
KEEP P UNC R T:

PROC SORT; BY P_UNC;

PROC PRINT;

DATA CO; SET A6:
SER-SQRT(M*SSP/(Z*(N 2))), RL=RH-(3*SER); RU=RH+3*SER;
C=4/(M*(SSE*SSP)**0.5
PR2-PROBF§§SSP/SSE; }DFZ -1),(DF1-1));
PR1=PROBF ((SSP/SSE),(DF2), (DFl)),
LM-C*(CONST**2)*PR1/PR2
DO CASE=1 TO 19 BY 3;PROB=(100-5*CASE)/100;
LS=LOG(PROB*LM); KEEP CASE PROB R T IND LL L_L LN;
DO R=RL TO RU BY (SER/10);
IND=0; T=RL; DEL=SER/10: L _L=-10000;
LOOP1: T-T+DEL
LINK LOGLIK;
IF IND=0 THEN DO;
IF LL > LS THEN DO:
T=T-DEL;
DEL=DEL/1000;
IND=1; GOTO LOOP1:
END;
ELSE IF LL < L_L THEN GOTO LOOP2;
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ELSE L_L=LL;
END;
IF IND=1 THEN DO;
IF LL > LS THEN DO;LN=LL;
X-DEL*(LL-LS)/(LL-L_L);
T=T-X;
LINK LOGLIK;
OUTPUT;
DEL=SER/10;
IND=2;
END;
ELSE L_L=LL;
END;
IF IND=2 THEN DO:
IF LL < LS THEN DO;
T«T-DEL;
DEL=DEL /1000;
IND=3;GOTO LOOP1;
END;
ELSE L_L=LL;
END;
IF IND=3 THEN DO;
IF LL < LS THEN DO;LN=LL;
X=DEL*(LS-LL)/(L_L-LL);
T=T-X;
OUTPUT;
GOTO LOOP2;
END;
ELSE L_L=LL:
END;
IF T GT RU THEN GOTO LOOP2:
GOTO LOOP1;
LOOP2:END;
END:
LOGLIK:
Y1=2*({R-RH)**2)/M;
Y2=8*({T-(R/2+TH))**2)/M;
PR2=PROBF ( (SSP/SSE), (DF2-1),(DF1-1));
SS1=DF1*(SSP+Y1);
$S2=DF2*(SSE+Y2);
PR1=PROBF ((SS1/SS2),(DF2),(DF1));
W2=(Y2/SSE)**0.5; W1=(Y1/SSP)**0.5;
LL=LOG(LM)-DF *LOG({ {1+W1*W1)*(1+W2*W2)) + LOG(PR1) - LOG(PR2) ;
RETURN:
RUN;
DATA Cl; SET CO; BY CASE; RETAIN NIND;
IF FIRST.CASE THEN NIND=1; ELSE NIND=NIND+1:
IF IND=3 THEN ID=~-NIND;
PROC SORT; BY CASE IND ID;
DATA C2; SET CO; BY CASE; IF FIRST.CASE;
DATA C3; SET C1 C2; P_CON=PROB;
PROC SORT; BY CASE;
DATA C3; SET C3;
KEEP P_CON R T;
PROC PRINT;

o 0 o o o0 3 o o o e ok 2l ol ks ol ol o ol o o 0 00 o0 ok o ol ok o o o e oK R B R

CALCULATION OF P(T|R = 0,DATA)

P_UNC = UNCONSTRAINED DENSITY
P_CON = CONSTRAINED DENSITY

I I I R PR T L P T T TI I TP N
?

DATA D; SET A6; CONST=CONST*(8/(M*SSE))**0.5:
SER=SQRT(M*SSP/(2* N-Z));: SET=SQRT(M*SSE/(8*(N-2))):
RL=MIN(0,ROUND(RH-(2*SER),1)); RU=MAX(O,ROUND(RH+2*SER));
SS1= DF1  *(SSP+2*(RH**2)/M);
$S3=(DF1-1)*(SSP+2*(RH**2)/M);
DO T=(TH-(8*SET)) TO (TH+8*SET) BY (SET/10);

Y=8%((T-TH)**2)/M;

§S2=DF 2*(SSE+Y);

$S4=SSE*DF2;

PR1=PROBF ( (SS1/52), (DF2), (DF1));
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PR2=PROBF ((SS3/5S4),(DF2),(DF1-1));
W=(Y/SSE)**0.5; ,
P_UNC-CONST*( 1+W*W ) **.0F ;
PTCON=P_UNC*PR1/PR2;

QUTPUT;
END;
KEEP T P_UNC P_CON PR1 PR2;

ofe 200 o ok ok ok o o ik o ol ke e o ol e o o o ol ode ol ot o o ol ol e ol e e o ol ol ok ok R ok

APPROXIMATION OF P(T|DATA)

P_UNC = UNCONSTRAINED DENSITY
P_CON = CONSTRAINED DENSITY

R R Rk R R Rk Rk Rk Rk Rk Rk,
>

DATA E(KEEP=T P_UNC P_CON)

E1(KEEP=M1"M2 V17V2 DF1 DF2 P_T1 P_T2 BO1);SET A6;
P=1/(2*ARC0OS(0))**0.5;
ng(ga?g*((sss+SSP)**2)/(sss*sss+ssp*ssp)+4; BO=(B1-2)*(SSE+SSP)/(N-4);

-M* .

SET=SQRT(A/B1) ; TL=( TH+RH/2)-(4*SET ) ; TU=( TH+RH/2) +4*SET;

X=SSP/(SSE+SSP) ;DF1=N-2;

IX1=-PROBBETA(X,DF1/2,0F1/2+1);

1X2=PROBBETA(X,DF1/2,DF1/2+2);

IX3=PROBBETA(X,DF1/2,DF1/2);

IX4=PROBBETA(X,DF1/2+1,DF1/2);

1X5=PROBBETA(X,DF1/2+2,DF1/2);

E1=(DF1/2+1)*IX2/IX1-(DF1*IX1/(IX3*2));

E2=(DF1/2+1)*IX5/1X8-(DF1*IX4/(1X3*2));

F1=DF1*IX1/(E1*IX3);

F2=DF1*IX4/(E2*IX3);

SSE1=SSE/E1; SSP1=SSP/E2; E=SSE1/(F1-2)+SSP1/(F2-2);

V=2*SSE1*SSEL/((F1-2)**2*(F1-4))+2*SSP1*SSP1/((F2-2)**2*(F2-4));

B11=2*E*E/V+4; BO1=(B11-2)*E; Al=M*BO1/8;

DO T=TL 7O TU BY (SET/10);
C=P*EXP(LGAMMA(B1/2+.5)-LGAMMA(B1/2) ) /A**0.5;
P_UNC-C*(1+((T-(TH+RH/23)**2)/A)**-(Bl/2+.5);
C=P*EXP(LGAMMA(B11/2+.5)-LGAMMA(B11/2))/A1**0.5;

P CON=C*(1+( (T-(TH+RH/2))**2)/A1)**-(B11/2+.5);
obTPUT E;

END;

M1=TH; M2=TH+RH/2; V1=M*SSE/(8*(N-2));: V2=A/Bl; DF1=N-2;DF2-B1;

P T1=PROBT(M1/SQRT(V1),DF1); P_T2=PROBT(M2/SQRT(V2),DF2);

BO1=SQRT(3/(2*M) )/ (1+(2*RH*RH)7(M*SSP) )**(N/2);

OUTPUT E1;

SEEEREENEEP PGS ERNREAREEE R AR R R R R R AR RS ®

CALCULATION OF P(R|DATA)

P_UNC = UNCONSTRAINED DENSITY
P_CON = CONSTRAINED DENSITY

AREBERRREEREBRERRERBRE SRR EA AR R RN RN RE,
’

DATA F;SET AG:C=(2/(M*SSP))**0.5;PR2=PROBF ( (SSP/SSE), (DF1-1),(DF2-1));
SER=SQRT(M*SSP/(2*(N-2))) ;RL=RH-(4*SER ) ;RU=RH+4*SER;

DO R=RL TO RU BY (SER/10);

Y=2%((R-RH)**2) /M;W=(Y/SSP)**0.5;
SS1=(DF1-1)*(SSP+Y); SS2=DF2*SSE ; PR1=PROBF ( ( SS1/5S2),DF2, (DF1-1));
P_UNC=C*CONST*( (1+N*W)**-DF ) ;:P_CON=P_UNC*PR1/PR2;OUTPUT;END;

KEEP R P_UNC P_CON PR1 PR2;

PREPESERERNDIRNSEESSNEEE R SR RN SRS D E

POSTERIOR INFERENCE FOR TREATMENT EFFECT

AREEERRERERRENOEEEEBI R R RN KRR R R R kRS,
L]

DATA G;SET E1 ;KEEP P O M W P_W XL XU BO1 P_1;
XUS=M2+1,96*SQRT(V2) ; XLS=M2-1796*SQRT(V2);
DO P_0=0 TO 1  BY 0.01;IF P_O=1 THEN PI=10000000:ELSE PI=P_0/(1-P_0);
P=(PI*B01)/(1+PI*BO1);P_1=1-P;
M We P*ML +P_1*M2 ;
VW= P*WI1+P_1¥V2 +P*P_1%(M1-M2)**2 ;
P W=P*P_T1+P_1*P_T2
XU=XuS; XU1=xU;
LO:XAL=(XU-M1)/SQRT(V1):XA2=(XU-M2)/SQRT(V2);

APPENDICES. A-84



P1=P*(1-PROBT(XA1,DF1))+P 1*(1-PROBT(XA2,DF2));

LINK XOTHER;XAL=(XL-M1)/SQRT(V1);XA2=(XL-M2)/SQRT{V2);

XL1=XL; DENOM-DENO XU1=XU1+0.001; LINK XOTHER ; XU1=XU1-0.001;
PZ-P*PROBT(XAI DF1)+P 1*PROBT(XA2 DF2);

PL=1-(P1+P2);

NUM=PL-0.95;

DENOM-DENOM*(I-((XL-XLl)/0.00l));

XU=XU-(NUM/DENOM) ;DIFF1=ABS(XU-XU1);

IF ABS(XU-XU1) LT 1E-6 THEN DO;:XUS=XU;OUTPUT:END:ELSE DO:XU1=XU;GOTO LO;
END;END; .

XOTHER:

A=V1*DF1;DF=DF1;M=M]1;X=XU1;LINK TOIS;DEN1=PX;
A=V2*DF2;DF =DF2 ;M=M2 ; X=XU1;LINK TDIS;DEN2=PX;
DEN=P*DEN1+P_1*DEN2;

XL=XLS;XLO=XL;

Ll:  A=VI*DF1;DF=DF1;M=M1;X=XL;LINK TDIS;DEN1=PX;DER1~DER:
A=V2*DF2:DF =DF2:M=M2 ; X=XL ;LINK TDIS;DEN2=PX;:DER2=DER:
DENO=P*DEN1+P_1*DEN2 ;NUM1=DENO-DEN;

DER=P*DER1+P 1*DER2;
XL=XL-(NUM1/DER) ;DIFF2=ABS(XL-XLO);
END IF ABS(XL-XLO) LT 1E-6 THEN DO:XLS=XL;RETURN:END;ELSE DO:XLO=XL:GOTO L1;

TDIS: C=1/(2*ARC0S(0))**0.5;

C=C*EXP(LGAMMA(DF /2+.5)-LGAMMA(DF/2) }/A**0.5;
PX=C*(1+((X-M)*(X-M))/A)**-(DF/2+.5);
DER=-(DF/2+.5)*PX*2*(X-M)/ (A*(1+({X- M)*(X-M))/A)) :RETURN;

A6.2 A SAS Program for the Bayesian Analysis of §9.2

A62.1 Introduction.
This program is designed to perform a Bayesian analysis of a two-treatment, two-period crossover design with
missing data. The program carries out the analyses developed in §9.

A62.2 Program Description.

This program has been written utilising the SAS data step language, without resorting to the use of the SAS
library of procedures. In what follows the most important variables in the most important DATA SETS are
described.

DATA SET INP N1 - Number of patients in sequence group A - B with
complete data,
N2 - Number of patients in sequence group A - B with
complete data,
N11 - Number of patients in sequence group A - B with missing
1st period data,
N12 - Number of patients in sequence group B - A with missing
2nd period data,
N21 - Number of patients in sequence group B - A with missing
1st period data,
N22 - Number of patients in sequence group B - A with missing
2nd period data,
Y1l- Cellmeany,, ,

Y12- Cellmeany,,
Y21- Cellmeany,, ,
Y22- Cellmeany,, ,
X1- Cellmeanx, ,
Z1- Cellmeanz, ,
X2- Cellmeanx, ,
Z2- Cellmeanz, ,
S111 - Corrected sum of squares S ,,, ,
$112 - Corrected sum of cross products S, ,
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S$122 - Corrected sum of squares S |, ,
S211 - Corrected sum of squares S, ,
§221 - Corrected sum of cross products S ,,, ,
§222 - Corrected sum of squares S ,5; ,
S11 - Corrected sum of squares S|, ,
S12 - Corrected sum of squares S |, ,
S21 - Corrected sum of squares S, ,
S22 - Corrected sum of squares S ,, .

DATASET T T - Treatment effect
DEN - Posterior Density

DATASET L L - Carryover effect
DEN - Posterior Density

DATASET TL T - Treatment effect
DEN - Posterior Density

A6.2.3 Program Listing.

2020000 300 e e o o o e 2 ol afc ofe e o afe ko ol ol a3 e o Sl ol alk e a0 e e e o ol sl e o e e o o o o ol o ake s R e

INPUT DATA TAKEN FROM GELFLAND ET AL (1990)

Wk dokkkk kR kR Rk Rk Rk kR ok kR R,
’

DATA INP;

Nl= 3 ; N2= 4 :

Nll= 1 : N12= 1 ; N21= O i N22= 1 :
Yll= 1.480877 : Yl2= 1.326631 ; Y21= 1.39212 ; Y22= 1.56918 ;
X1= 1.31372 : 1= 1.40364 : X2= 0 : 12=  1.58104
S111= 0.01324816 ; S112= 0.04448745 ; S122= 0.1602117 ;

S211= 0.0973115 ; S212= 0.0573021 ; S222= 0.0629484 ;

Sll= 0 ; S12= 0 ; S21= 0 ; S22« 0 H
48 300 3 200 30 o0 o ok o o o s o s o0 a0 o ok 3k ok e ol e 206 o o ok ok o ok ol ok e ok ol ale ke o ok kA K ke ol o s kR ok
DATASET-T

CALCULATION OF P(T | DATA)

DATA SET-L

CALCULATION OF P(L | DATA)

DATA SET-TL

CALCULATION OF P(T |L=0,DATA)

Ak e ool ok o e ok o ok ok ok sk ok ko ok Rk kR R Rk ok ok kN,
?

DATA T (KEEP=T INDIC DEN DEN_0)

DATA L (KEEP=L INDIC DEN DEN_0)

DATA TL(KEEP=T INDIC DEN DEN_0);

SET INP;

ARRAY GAUSS{20} GAUSS1-GAUSS20;ARRAY WT{20} WT1-WT20;
GAUSS{1}= -.9931285992:WT{1}= .0176140071;

GAUSS{2}= -.9639719273;:WT{2}~ .0406014298;

GAUSS{3}= -.9122344282:T{3}= .0626720483;

GAUSS{4}= -.8391169718;WT{4}= .0832767415;

GAUSS{5}= -.7463319065;WT{5}= .1019301198;

GAUSS{6}= -.6360536807;:WT{6}= .1181945320;

GAUSS{7}= -.5108670019:WT{7}= .1316886385;

GAUSS{8}= -.3737060887;WT{8}= .1420961093;

GAUSS{9}= -.2277858511;WT{9}= .1491729865;
GAUSS{10}=-.0765265211;WT{10}=.1527533871;

DO I=11 TO 20;GAUSS{I}=-GAUSS{21-1};WT{I}=WT{21-1};END;

INDIC=1;
P=(2*N1+2*N2+N11+N12+N21+N22-3) /2;
DEN_0=0;

STARTL = -.3 ;
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FINISH1 = .4 ;
DEL1 = ,002;
DO T = START1 TO FINISH1 BY DELL;
DEN=0.0;
DO IGAUSS=1 TO 20;
R=GAUSS { IGAUSS};
R12=1-R*R;
LINK CGEN;
LINK MEANS;
LINK COVS;
LINK MEVAL;
LINK CON;
LINK FAC1;
DENTR=-0.5*(N1+N2)*LOG(R12)-0.5*L0G(C1)-0.5*L0G(C2)-P*LOG(FACT)
~-0.5*LOG(VAR) ;
DEN=DEN+WT { IGAUSS}*EXP(DENTR) ;
END;DEN_O=DEN_O+DEN*DEL ;
OUTPUT T;
END;
DEN_0=0;
START2 = -.3;
FINISH2 = .4 ;
DEL2 = ,002;
DO L = START2 TO FINISH2 BY DEL2?;
DEN=0.0;
DO IGAUSS=1 TO 20;
R=GAUSS{1GAUSS};
R12=1-R*R;
LINK CGEN;
LINK MEANS;
LINK COVS;
LINK MEVA2;
LINK CON;
LINK FAC2;
DENTR=-0.5*(N1+N2)*LOG(R12)-0.5*L0G(C1)-0.5*L0G(C2)-P*LOG(FACT)
-0.5*LOG(VAR);
DEN=DEN+WT {IGAUSS}*EXP(DENTR);
END;DEN_0=DEN_O+DEN*DEL;
QUTPUT 1;
END;
DEN 0=0:
START3 = -.3;
FINISH3 = .4 ;
DEL3 = .002;
DO T = START3 TO FINISH3 BY DEL3;
DEN=0.0;
DO IGAUSS=1 TO 20;
R=GAUSS{IGAUSS};
R12=1-R*R;
LINK CGEN;
LINK MEANS:
LINK COVS;
LINK MEVA3;
LINK CON;
LINK FACL;
DENTR=-0.5*(N1+N2)*LOG(R12)-0.5*L0G(C1)-0.5*L0G(C2)-P*LOG(FACT)
-0.5*LOG(VAR);
DEN=DEN+WT {IGAUSS}*EXP(DENTR);
END;DEN_O=DEN_O+DEN*DEL ;
OUTPUT TL;
END:
STOP;
CGEN : Cl= N1*N1 + NI*N11 + N1*N12 + N11*N12*R12:
C2= N2*N2 + N2*N21 + N2*N22 + N21*N22*R12; RETURN;
MEANS: MU11=Y1l + i NI1*(N1+N12*R12)*(X1-Y11) + N1*N12*R*(Z1-Y12) ) /C1;
MU12=Y12 + ( N1*NI11*R*(X1-Y11) + N12*(N1+N11*R12)*(21-Y12) ) /C1;
MU21=Y21 + § N21*(N2+N22*R12)*(X2-Y21) + N2*N22*R*(Z2-Y22 ; /C2:
MU22=Y22 + ( N2*N21*R*(X2-Y21) + N22*(N2+N21*R12)*(Z2-Y22 /C2;
TH=0,50*(MU11-MU21); LH=0.50*(MU11+MU12-MU21-MU22);
RETURN;
COVS : All = N1+N12*R12; Al2 = N1*R ; A22 = N1+N11*R12;
Bll = N2+N22*R12; B12 = N2*R ; B22 = N2+N21*R12;
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SIG11 = A11/C1 + B11/C2 ;
SIG12 = (A11+A12)/C1 + (B11+B12)/C2 ;
SIG22 = (A11+2*A12+A22)/C1 + (B11+2*B12+B22)/C2;
RETURN;
MEVAL: MEAN=TH ;
VAR =SIG11/4;
RETURN;
MEVA2: MEAN=LH ;
VAR =51622/4;
RETURN;
MEVA3: MEAN=TH-SIG12*LH/SIG22;
VAR =(SIG11-SIG12*S1G12/S1G22)/4;
RETURN;
FAC1 : FACT=(CON+(S111+5211+5122+5222-2*R*(S112+5212))/R12
+ (T-MEAN)**2/VAR)/2;
RETURN;
FAC2 : FACT=(CON+(S111+S211+S122+5222-2*R*(S112+5212))/R12
+ (L-MEAN)**2/VAR)/2;
RETURN;
CON : CON= S11 + S12 + S21 + S22 +
NI*(NIL*(N1+N12)*(Y11-X1)**2-2*N11*N12*R*(Y11-X1)*(Y12-21)
+ N12*(N1+N11)*(Y12-Z1)**2)/(N1**2+N1*N11+N1*N12+N11*N12*R12) +
N2*(N21*(N2+N22)*(Y21-X2)**2-2*N21 *N22*R*(Y21-X2)*(Y22-22)
+ N22*(N2+N21)*(Y22-72)%*2)/(N2**2+N2*N21+N2*N22+N21*N22*R12) ;
RETURN;

PROC UNIVARIATE NOPRINT DATA=T;BY INDIC;VAR DEN_0;0UTPUT OUT=MAX MAX=MAX DEN;
DATA T;MERGE T MAX; BY INDIC; DEN-DEN/MAX DEN:KEEP DEN T;

PROC UNIVARIATE NOPRINT DATA=L;BY INDIC;VAR DEN 0;0UTPUT QUT=MAX MAX=MAX_DEN:
DATA L;MERGE L MAX; BY INDIC; DEN-DEN/MAX DEN;KEEP DEN T;

PROC UNIVARIATE NOPRINT DATA=TL;8Y INDIC;VAR DEN O;OUTPUT OUT=MAX MAX=MAX DEN;
DATA TL;MERGE TL MAX; BY INDIC; DEN=DEN/MAX DEN; KEEP DEN T:

A6.3 A SAS Program for Determining the Bayes Factor in a Two Period Crossover with Missing Data.

A63.1 Introduction.

This program is designed to determine the Bayes factor against carryover in a two-treatment, two-period
crossover design with missing data. The program carries out the necessary numerical integrations mentioned
in §9.

A6.3.2 Program Description.
This program has been written utilising the SAS data step language, without resorting to the use of the SAS
library of procedures. The input to this program is identical to that in A6.2.2.
}l‘:c important difference between these two programs is that the current one has the following additional
ta set.
DATA SET BF . B01 - Bayes factor.

A6.3.3 Program Listing.
bbb e ko o o o ol ol ol sl e o oo R o e KR R R R o ek

INPUT DATA TAKEN FROM GELFLAND ET 4L (1990)

AEEEREERERERRDE R R RN Rk gk ok ok k g kokok Rk ok kKA,
’

DATA INP;
Nl= 3 s N2= 4
Nll= 1 ; N12= 1 N21= 0 ; N22= 1

Y11= 1.480877 : Y12= 1.326631 : Y21= 1.36212 ; Y22= 1.56918 ;
X1= 1.31372 : 71= 1.40364 X2= 0 {72« 1.58108
S111~ 0.01324816 : S112= 0.04248745 : S122= 0.1602117

S211= 0.0973115 ; S212= 0.0573021 ; S222= 0.0629484 ;

S11= © ; S12= 0 : S21= 0 ; S22= 0 :
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DATA T (KEEP=T INDIC DEN DEN_0)

DATA TL(KEEP=T INDIC DEN DEN_0);

SET INP;

ARRAY GAUSS{20} GAUSS1-GAUSS20;ARRAY WT{20} WT1-WT20;
GAUSS{1}= -.9931285992;WT{1}= .0176140071;

GAUSS{2}= -.9639719273;WT{2}= .0406014298;

GAUSS{3}= -.9122344282;WT{3}= .0626720483;

GAUSS{4}= -.8391169718:WT{4}= .0832767415;

GAUSS{5}= -.7463319065;WT{5}= ,1019301198;

GAUSS{6}= -.6360536807 ;WT{6}= .1181945320;
GAUSS{7}= -.5108670019;WT{7}= .1316886385;
GAUSS{8}= -.3737060887;WT{8}= .1420961093;

GAUSS{9}= -.2277858511;NT{9}= .1491729865;

GAUSS{10}=-.0765265211;4T{10}=.1527533871;

DO I=11 TO 20;GAUSS{I}=-GAUSS{21-I};WT{I}=WT{21-1};END;

INDIC=1;

P=(2*N1+2*N2+N11+N12+N21+N22-3)/2 +2;

DEN_0=0;

STARTI = -.3;

FINISH1 = .4 ;

DEL1 = ,002;

DO T = START1 TO FINISH1 BY DEL1;

DEN=0.0;
D0 IGAUSS=1 TO 20;
R=GAUSS {IGAUSS};
R12=1-R*R;
LINK CGEN;
LINK MEANS;
LINK COVS;
LINK MEVAL;
LINK CON;
LINK FAC1;
DENTR--O.5*(N1+N2)*LOG(R12)-.5*LOG(CI)-.S*LOG(CZ)-P*LOG(FACT)
-0.5*LOG(VAR)~LOG(R12);
DEN=DEN+WT { IGAUSS}*EXP(DENTR) ;
END;DEN_O=DEN_O+DEN*DEL1;

OUTPUT T;

END;

P=(2*N1+2*N2+N11+N12+N21+N22-3)/2 +2 ;

DEN_0=0;

START3 = -.3 ;

FINISH3 = .4 ;

DEL3 = ,002;

DO T = START3 TO FINISH3 BY DEL3;

DEN=0.0;
D0 1GAUSS=1 TO 20;
R=GAUSS{IGAUSS}:
R12=1-R*R;
LINK CGEN:
LINK MEANS;
LINK COVS;
LINK MEVAZ;
LINK CON;
LINK FAC2;
DENTR=-0.5*(N1+N2)*LOG(R12)-.5*L0G(C1)-.5*L0G(C2)-P*LOG(FACT)
-0.5*L0G(VAR)-0,5*LOG(1+R) - LOG(1-R) -.5*L0G(SIG22/4);
DEN=DEN+WT {IGAUSS}*EXP(DENTR) ;
END;DEN_0=DEN_O+DEN*DEL3;

OUTPUT TL;

END:

STOP;

CGEN : Cl= N1*N1 + NI*N1l + N1*N12 + N11*N12*R12;

C2= N2*N2 + N2*N21 + N2*N22 + N21*N22*R12; RETURN;

MEANS: MU11=Y11 + ( N11*(N1+N12*R12)*(X1-Y11) + N1*N12*R*(Z1-Y12) ) /C1;
MU12=Y12 + é NI*N11*R*(X1-Y11) + N12*(N1+N11*R12)*(Z1-Y12 ; /C1;
MU21=Y21 + ( N21*(N2+N22*R12)*(X2-Y21) + N2*N22*R*(Z2-Y22 /C2;
MU22=Y22 + ( N2*N21*R*(X2-Y21) + N22*(N2+N21*R12)*(Z22-Y22) ) /C2;
TH=0.50*(MU11-MU21); LH=0.50*(MU11+MU12-MU21-MU22);

RETURN;

COVS : All = N1+N12*R12; Al12 = N1*R ; A22 = N1+N11*R12;
Bll = N2+N22*R12; B12 = N2*R ; B22 = N2+N21*R12;
SIG11 = Al1/C1 + B11/C2 ;
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SIG12 = (A11+A12)/C1 + (B11+B12)/C2 ;
SI1G22 = (A11+2*A12+A22)/C1 + (B11+2*B12+B22)/C2;
RETURN;
MEVAl: MEAN=TH ;
VAR =SI1G11/4;
RETURN;
MEVA2: MEAN=TH-SIG12*LH/SIG22;
VAR =(SIG11-SIG12*SIG12/S1G22)/4;
RETURN:
FAC1 : FACT=(CON+(S111+S211+S122+5222-2*R*(S112+5212))/R12
+ (T-MEAN)**2/VAR}/2
RETURN;
FAC2 : FACT=(CON+(S111+5211+S122+5222-2*R*(S112+5212))/R12
+ (T-MEAN)**2/VAR)}/2 + 2*LH*LH/SIG22 ;
RETURN;
CON : CON= S11 + S12 + S21 + S22 +
N1*(N11*(N1+N12)*(Y11-X1)**2-2*N11*N12*R*(Y11-X1)*(Y12-Z1)
+ N12*(N1+N11)*(Y12-71)**2)/(N1**2+N1*N11+N1*N12+N11*N12*R12) +
N2*(N21*(N2+N22)*(Y21-X2)**2-2*N21*N22*R*(Y21-X2)*(Y22-22)
+ N22*(N2+N21)*(Y22-72)**2)/ (N2**2+N2*N21+N2*N22+N21*N22*R12) ;
RETURN;

PROC UNIVARIATE NOPRINT DATA=T; BY INDIC;VAR DEN_O;OUTPUT OUT=MAX1 MAX=MAX_DEN1;
DATA T; MERGE T MAX1; BY INDIC;DEN=DEN/MAX DENI1;

PROC UNIVARIATE NOPRINT DATA=TL:BY INDIC;VAR DEN_0;OUTPUT OUT=MAX2 MAX=MAX_DEN2:
DATA TL;MERGE TL MAX2; BY INDIC;DEN=DEN/MAX DEN2;

DATA BF ;MERGE MAX1 MAX2;BO1=SQRT(3/4)*MAX_DEN2/MAX_DEN1;KEEP BO1;
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A7 SAS MACROS FOR CALCULATING THE ZEROS AND WEIGHTS OF ORTHOGONAL

POLYNOMIALS.
A7.1 Introduction.
The SAS macros in this Appendix were developed to calculate the zeros and associated weights of the
orthogonal polynomials defined by the following orthogonality conditions :

Harper Polynomialis :
f(l+xz)‘("l)¢m'k(x)¢,,..(x)dx =0 ; m#n,m+n>2k+1.

Polynomials for a Truncated Normai :

fe"zem(x)en(x)dx
b

Jacobi Polynomials :

1

[x -0 6 n(p.a. ¥)6 (P g, x)dx

0

A72 Harper Polynomials

AMACRO HARPER(K,DEGREE);

SLET RANGE=%EVAL (&DEGREE+1);

DATA HARPER;

ARRAY A{BRANGE} Al-AZRANGE;

ARRAY XT{SDEGREE} XT1-XT&DEGREE; ARRAY XW{SDEGREE} XW1-XW&ADEGREE;

ARRAY ROW1
ARRAY ROW3
ARRAY ROW5
ARRAY ROW?
ARRAY ROW9

(W) RIW1-RINGRANGE;  ARRAY ROW2 (W) R2W1-R2WARANGE;
§H) R3W1-R3WGRANGE;  ARRAY ROW4 (W) RAW1-RAWARANGE;
W) R5W1-RSWERANGE;  ARRAY ROW6 (W) R6W1-RGWERANGE:
W) R7W1-R7WERANGE;  ARRAY ROW8 (W) RBW1-RBWERANGE;
W) ROW1-ROWERANGE;  ARRAY ROW10 (W) R10W1-R1OWARANGE;

ARRAY ROW11 (W) R11W1-R1IW&RANGE; ARRAY ROW12 5“) R12W1-R12WERANGE ;

ARRAY ROW13 (W) R13W1-R13WARANGE;
ARRAY ROW15 (W) R15W1-R15WARANGE;
ARRAY ROW17 (W) R17W1-R17WARANGE;
ARRAY ROW19 (W) R19W1-R19WARANGE;
ARRAY B (Z) ROW1-ROWERANGE;
N=&DEGREE ;

K=K

ARRAY ROW14 (W) R14W1-R14WSRANGE:
ARRAY ROW16 (W) R16W1-R1GWERANGE;
ARRAY ROW18 (W) R18W1-R18WARANGE;
ARRAY ROW20 (W) R20W1-R20WARANGE;

KEEP K N XT1-XT&DEGREE XW1-XW&DEGREE ;

DO L=1 TO N ; XT{L}=0; END;
DO IX=1 TO 2;

IF IX EQ 1 THEN N=N-1; ELSE N=N+1;

I=1; W=1; B=l;
W=2; B=0;
DK=K-N+1.5; Cl=LGAMMA(DK)
I=N;
D0 W=l TO (N+1);
A{W}=0; B=0;

END;
NI=FLOOR(1+N/2); C=-1;
00 I=1 TO NI;
C=-C; M=I-1; INsN-2*M;
IF M EQ O THEN CO=1;

ELSE CO=C*EXP(LGAMMA(N+1)-LGAMMA(M+1)-LGAMMA(IN+1)+C1

W=N+1-IN;

-LGAMMA(DK+M) -(2*M)*L0G(2));

A{W}=CO;

B=C0;
END;
IF IX EQ 1 THEN GOTO L50;
LINK ZPOLR;
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Fa2*(K-N+1)*LOG(2)+LGAMMA(N+1)+2*C1+2*LOG(2*DK);
F=F-( 2*LOG(N)+LGAMMA(2*K-N+2)+2*LOG(2*K-N+2));

TI=XT{J}; T_I=TI;
LINK POLY;
P=0.5;Q=K+0.5;
BETL=LGAMMA(P)+LGAMMA(Q) -LGAMMA(P+Q);
: XW{J}=EXP(F-2*LOG(ABS(C))-BETL)*(1+TI*TI);
ND:
L50: END;
OUTPUT HARPER;
POLY:C=0;
DO W=l TO N_1;
NL=N_1-W;
Z=N_1-1;
IF NL EQ O THEN C=C+B;
ELSE C=C+B*T_I**NL;
END;

RETURN;
ZPOLR:IF N=3 THEN DO;
E XT{I}-SQRT(S/(Z*K 3)); XT{2}=0;XT{3}=-XT{1}; RETURN;
ND:

ELSE DO;
NI=FLOOR(1+N/2):
X_FINISH=SQRT(- A{3)) X_START=SQRT(-A{2*NI-1}/A{2*NI-3});
DEL=(X_FINISH-X START)/SOO S1=SIGN(A{W}):
N_1=N+TI: I L=FLOOR((N+.1)/2); X1=0; Ul=-10;
DO TI=X START TO X_FINISH BY DEL;
X2=TI; T_I«TI;
LINK POLY
SZ-SIGN(C); U2=C;
IF S1 NE S2 THEN DO;
DEL_1=(X2-X1)/100;X1_1=X1;Ul_1=U1;S1_1=81;IT=0;
D0 TI_1=-X1 TO X2 BY DEL 1;
X2 1=T1 1;7_I«TI 1;
LINK POLY;
S2 1-SIGN(C) U2_1=C;
IF7SL 1 NE S2 1 THEN DO;
S0 1=31 1;U0 T-Ul 1;X0_1=X1_1;S1_1-S2_1;U1 _1=U2_1;X1_1=X2_1;
LC: XN_1=(XD 141 1)/2;
IT=1T+1;IF ITTEQ 100 THEN STOP;
T I=XN 1 LINK POLY:UN 1=C:SN l-SIGN(C)
IF ABS((XO 1-XN l)/XO 1) LT TE-14 AND
ABS((X171-XN_1)/X171) LT 1E-14 THEN GOTO LD;
IF SN_1 EQ SO_1 THEN B0;SO_1=SN_1;U0_1=UN_1;X0_1=XN_1;GOTO LC;
END;
ELSE DO;S1_1=SN_1;U1_1=UN_1;X1_1=XN_1;GO0TO LC;
END;
LD: XT{I_L}=-XN_1;XT{N+1-1_L}=XN 1;I L=l L-1;
IF I_L=0 THEN GOTO LF;ELSE COTO LE:END;
END;
END;
LE: Sl-SZ:Ul-UZ;Xl-XZ:
END:
LF: RETURN:
END;
RUN;

%MEND;

A73 Polynomials for a Normal Kernel Over a Truncated Range.

%MACRO TRUNC(LIMIT,DEGREE);

%LET RANGE=%EVAL(&DEGREE+1);

DATA TRUNCATE;

ARRAY XT{&DEGREE} XT1-XT&DEGREE; ARRAY XW{&DEGREE} XW1-XWADEGREE;

ARRAY GAM{&DEGREE} GAM1-GAMADEGREE; ARRAY BET{&DEGREE} BET1-BET&DEGREE;
ARRAY ALP{&DEGREE} ALPI-ALP&DEGREE;

ARRAY ROW1 (W) RIW1-RINBRANGE;  ARRAY ROW2 (W) R2W1-R2WRRANGE;
ARRAY ROW3 éH) RIW1-R3WEGRANGE;  ARRAY ROWA (W) RAW1-RAWARANGE;

ARRAY ROW5S (W) R5SW1-RSWERANGE;  ARRAY ROW6 (W) R6W1-RGWERANGE;

ARRAY ROW7 (W) R7W1-R7WBRANGE;  ARRAY ROW8 (W) RBW1-RBWERANGE;
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ARRAY ROW9 (W) ROW1-ROWBRANGE;  ARRAY ROW10 (W) R10W1-R1OW&RANGE:
ARRAY ROW11 (W) R1IWL-R1IWERANGE: ARRAY ROW12 (W) R12W1-R12W&RANGE;
ARRAY ROW13 (W) RI3W1-R13WERANGE: ARRAY ROW14 (W) R14W1-R14WARANGE:
ARRAY ROW15 (W) R15W1-RI5WS8RANGE; ARRAY ROW16 (W) R16W1-R16WERANGE:
ARRAY ROW17 (W) R17W1-R17WE&RANGE; ARRAY ROW18 (W) R18W1-R18WARANGE;
ARRAY ROW19 (W) R1OW1-R19WARANGE: ARRAY ROW20 (W) R20W1-R20W&RANGE;
ARRAY B (Z) ROW1-ROWARANGE ;
NO=&DEGREE;
BO=&L IMIT;
KEEP B0 NO XT1-XT&DEGREE XW1-XW&DEGREE;
BO=1;
P1=2*ARCOS(0);
I=1; W=1l; B=1;
I=2; W=1; B=1l;
ARG=80; LINK ERF;
W=2; B=-(1-EXP(-BO*B0))/(SQRT{PI)*ERFOUT);
GAM{1}=SQRT(PI)*ERFOUT/2;
DO N=2 TO NO:

K=N-1;

LINK PARNEXT;

DO L=1 TO N ; XT{L}=0; END;

I=N+1;

DO W=1 TO (N+1);

B=0;
END;
DO L=0 TO N;
IF L=0 THEN DO;
C=0; Z=N : W=N ; C=C+ALP{K+1}*B:
Z=N-1; W=N-1; C=C+BET{K+1}*B;
Z=N+1;: W=N+1; B=C;

END;
ELSE IF L=N THEN DO;
I=N+1; W=1 ; B=1;
END;
ELSE IF Le=(N-1) THEN DO;
C=0: Z=N : W=2 ; C=C+B;
W=1 ; C=C+ALP{K+1}*B;
I=N+1; W=2 ; B=C;

END;
ELSE DO;
C=0; Z=N ; W=Z-L+1; C=C+B;
WeZ-L : C=C+ALP{K+1}*B:
ZsN-1; W=Z-L ; C=C+BET{K+1}*B:
I=N+1; W=Z-L ; B=(C;
END;
END:
END;
LINK ZPOLR;
DO I=1 TO NO;
T I=XT{I};
POLY N=NO-1; LINK POLY;
POLY N=NO ; LINK POLY DER:;
XW{I}=GAM{NO}/(C*D);
END:
OUTPUT TRUNCATE;
ERF :ERFOUT=2*PROBNORM(SQRT{2)*ARG)-1; RETURN;
PARNEXT: POLY N=K-1; T_I=B0 ; LINK POLY; C_K_11=C;
POLY N=K-1; T _I=0 ; LINK POLY; C_K_12=C;
POLY N=K ; T I=BO ; LINK POLY; C K_1 =C;
POLY N=K ; T I«0 ; LINK POLY; C K_2 =C;
GAM{K+1}=K*GAM{K} /2-(EXP(-B0*B0)*C K 1*C K 11-C K_2*C K_12;I2;
ALP{K+1}-(EXP(-BO*BO)*C_K_I*C_K_l-C_K_Z*C_K_Z)/IZ’GAMTK+1}
BET{K+1}=-GAM{K+1}/GAM{K};
RETURN;
POLY:C=0; Z=POLY_N+1;
DO W=1 TO Z;
NL=Z-W;
IF NL EQ O THEN C=C+B;
ELSE DO;
PROD=1;
DO INL=1 TO NL;
PROD=PROD*T_1I;
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END;
C=C+B*PROD:
END:
ENO:
RETURN;
POLY_DER: D=0; Z=POLY N+1;
00 Wel TO Z7
NL=Z-W;
IF NL EQ O THEN GOTO LOOPEND;
IF NL EQ 1 THEN D=D+B:
IF NL NE 1 THEN DO;
PROD=1;
DO INL=1 TO (NL-1):
PROD=PROD*T_I;
END;
D=D+B*NL*PROD;
END;
LOOPEND: END;
RETURN;
ZPOLR:POLY_N=NO;
Z=NO+1; W=2;
X_FINISH=-B;
W=Z; B 0=B; W=Z-1; B_1=B;
X_START=-B  0/B_1;
DEL=(X_FINTSH-X START)/500 S1=SIGN(B 0);
[ L=1; X1=0; U1=-10;
D0 TI«X START TO X FINISH BY DEL;
X2=TT; T_I-TI;
LINK POLY;
$2=SIGN(C); U2=C;
IF S1 NE S2 THEN DO;
DEL 1=(X2-X1)/100; X1 _1=X1; U1_1=U1; S1_1=S1; IT=0;
DO TI_leX1 TO X2 BY DEL_1;
X2_1aTI_1; T_I=TI_1;
LINK POLY;
S2 l-SIGN(C) U2 1=C;
IF7S1 1 NE S2 1 THEN DO;
S0_1-31 1; U0_1=U1_1; xo l=X1_1; S1_1=52_1; U1_1=U2_1; X1 _1=X2 1;
LC: XN 1=(X0_ 1+X1 “1)/2;
IT=IT+1;7IF IT £Q 100 THEN STOP;
T I=XN 1; LINK POLY; UN 1=C; SN | 1=SIGN(C);
IF Aas((xo 1-XN 1)/xo 17 LT 1E-T2 AND
ABS((X1_1-XN 1)7X1 1)7LT 1E-12 THEN GOTO LD;

IF SN_17EQ SO_1 THEN DO; SO_1=SN_1; UO_1=UN_1; X0_1=XN_1; GOTO LC;

END;

ELSE DO; S1_1=SN_1; UI_1=UN_1; X1_1=XN_1; GOTO LC;

END;
LD: XT{I_L}=XN_1; I L=I L+1;
IF I_L=(NO+1) THEN GOTO LF; ELSE GOTO LE;END;
END;

END;
LE: S1=52: U1=U2; X1=X2;

END;
LF: RETURN;
RUN;
KMEND;

A7.4 Jacobi Polynomials

%MACRO JACOBI(V1,v2,DEGREE);

%LET RANGE=%EVAL(&DEGREE+1);

DATA JACOBI;

ARRAY A{ERANGE} Al-ASRANGE;

ARRAY XT{&DEGREE} XT1-XTEDEGREE; ARRAY XW{&DEGREE} XW1-XW&DEGREE;
ARRAY ROW1 (W) RIN1-RIWARANGE; ARRAY ROW2 (W) R2W1-R2WRRANGE:
ARRAY ROW3 éN; R3W1-R3WARANGE;  ARRAY ROWA (W) R4W1-RAWARANGE;
ARRAY ROWS (W) R5W1-RSWERANGE;  ARRAY ROW6 (W) RGW1-RGWARANGE;
ARRAY ROW7 5“3 R7W1-R7WERANGE;  ARRAY ROW8 (W) RBW1-RBWARANGE;
ARRAY ROW9 (W) ROW1-RSWBRANGE;  ARRAY ROW10 (W) R1OWI-R1OW&RANGE:;
ARRAY ROW11 (W) R11W1-R11WBRANGE; ARRAY ROW12 (W) R12W1-R12W&RANGE;
ARRAY ROW13 (W) R13W1-R13WABRANGE; ARRAY ROW14 (W) R14W1-R14WARANGE ;
ARRAY ROW15 (W) R15W1-R15WARANGE; ARRAY ROW16 (W) R16W1-R16WARANGE ;
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ARRAY ROW17 (W) R17W1-RI7WSRANGE; ARRAY ROW18 (W) R18W1-R1BWARANGE;
ARRAY ROW19 (W) R19W1-RIOWSRANGE: ARRAY ROW20 (W) R20W1-R20WARANGE :
ARRAY 8 (Z) ROW1-ROW&RANGE;

N=8DEGREE ;

VI=&V1; V2=8V2;

Q=V2/2; P=(V1+V2)/2 -1;

KEEP V1 V2 N XT1-XT&DEGREE XW1-XWADEGREE;

D0 L=1 TO N ; XT{L}=0; END;
D0 IX=1 TO 2;

IF IX EQ 1 THEN N=N-1; ELSE N=N+1;
I=1; W=1; B=1;
W=2: B=0;
gl-LGAMMA(Q+N)-LGAMMA(P+2*N):
-N;
DO W=1 TO (N+1);
A{W}=0; B=0;
END;
NI=N; C=-1;
DO I=1 TO (N+1);
C=-C; M=I-1; IN=N-M; W=N+1-IN;
IF M EQ O THEN CO=1;
ELSE CO=C*EXP(LGAMMA(N+1)-LGAMMA(M+1)-LGAMMA(IN+1)+C1
+LGAMMA(P+2*N-M) -LGAMMA(Q+N-M)):
A{W}=CO;
B=C0;
END;
IF IX EQ 1 THEN GOTO L50;
LINK ZPOLR;
Fal GAMMA(N) +LGAMMA(Q+N-1)+LGAMMA(P+N-1)+LGAMMA(P-Q+N)+2*LOG(P+2*N-1);
F=F-2*LGAMMA(P+2*N-2)-LOG(N)-LOG(Q+N-1)-LOG(P+Q+N)-LOG(P+N-1);
N 1=N;
D0 J=1 TO N;
TI=XT{J}; T_I=TI;
LINK POLY;
BETPQ-LGAMMA(P)+LGAMMA(Q) LGAMMA(P+Q);
XW{J}=EXP(F-2*LOG(ABS(C)) PTI*(1-TI);

END;
L50: END:
OUTPUT JACOBI;
POLY:C=0;
DO W=1 TO N_1;
NL=N_1-W3
I=N_1-1;
IF NL EQ O THEN C=C+B;
ELSE C=C+B*T_I**NL;
END;
RETURN;

ZPOLR: DEL-1/1000 S1=SIGN(A{¥});

LC:

LD:

N_1=N+1; I L=1; X1=0.000001; Ul= 10;
D0 TI=X1 T0 (1-DEL) BY DEL

X2=TI; T I=TI;
LINK POLY;
SZ-SIGN(C) U2=C;
IF S1 NE S2 THEN DO;
DEL_1=(X2-X1)/100;X1 1=X1;Ul 1=y1;S1_1=S1;IT=0;
DO TI_1=X1 TO X27BY DEL 1
X2 1=TI 1;T_I=TI 1;
LIFK POCY:
S2 l-SIGN(C) U2_1=C;
IF7S1 1 NE S2 1 THEN DO;
SO 151 1;U0 T=U1 1;X0_1=X1_1;S1 1=S2_1;U1_1=U2_1:X1_1=X2_1:
XN_1=(X0_ 14T 1)/2;
IT=IT+1;TF ITTEQ 100 THEN STOP;
T I=XN 1;LINK POLY;UN 1=C;SN l-SIGN(C),
IF Aassﬁxo 1-XN 1)/xo 1) LT 1E-12 AND
ABS((X1_1-XN_1)/X1"1) LT 1E-12 THEN GOTO LD;
IF SN_1 EQ SO_1 THEN DO;SO_1=SN_1;U0_1=UN_1;X0_1=XN_1;GOTO LC;
END;

ELSE 00;S1_1=SN_1;U1_1=UN_1;X1_1=XN_1;GOT0 LC;

END;
XT{I_L}=XN_1; I L=1 L+1;
IF I L=N_1 THEN ~GOTO LF;ELSE GOTO LE;END;
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END;
END;
LE: S1=52:U1=U2;X1=X2;
END;
LF:  RETURN;
RUN;
%MEND;

APPENDICES.



