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ABSTRACT

Glutamic acid decarboxylase-65 (GAD-65) and the tyrosine phosphatase-like protein

IA-2 are major targets of autoimmunity in type I diabetes mellitus (type I DM), stiff-

man syndrome (SMS) and autoimmune polyendocrinc syndrome (I\PS). In this study,

the precise epitopes in GAD-65 of three different mouse monoclonal antibodies

(Mo Abs) (N-terminal MoAb within amino acid residues 4-17. C-h:nninal MoAb

within amino acid residues 572-585 and GAD-6). human monoclonal antibody

(b96.11 huAb) and polyclonal antibodies (SMS patients' sera) were investigated. The

precise cpitopes in IA-2 of two different MnAbs (7613 and7()F) were also

investigated. These precise epitope investigations were performed lIsing two different

phage-displayed random peptide libraries with diIlcrent characteristics (T7 phage

library gene X C9C and linear 9-mers, and M 13filamentous phage library gene III

C7C and linear 12-mers and gene VIII 5C4C4).

Sequencing of N-terminal and C-terminal MoAb reactive peptidcs. which were

obtained from the successful biopanning using M 13 geneIII linear 12-mers phage

library and were selected by high affinity binding in immnuo-blouing assay using

nitro-cellulose membranes and in capture ELISA. revealed that the 1110stsignificant

motif recognised was P-G-x-x-x-W-S-F and F-L-I-x-E-I/V/L-D-x-L. respectively.

which showed conservative substitutions and may correspond to the position 4-10

amino acids (aa) of GAD-65 (P-G-S-G-F-W-S-F) and to the position 573-581 aa of

CiAD-65 (F-L-I-E-E-I-E-R-L), respectively. To further detine the N-terminal MoAb

cpitope, sequencing of N-terminal MoAbs reactive peptides. which were obtained

trorn the successful biopanning using M 13 gene V III5C4(,4 phage Iihrary and were

II



selected by high affinity binding in imrnnuo-blotting assay using nitro-cellulose

membrane and in capture ELISA. revealed a motif of SoT-Po which does not

correspond to 4-17 aa of GAD-65 and does not overlap with the previous motif of the

N-terminal MoAb. i.c. P-G-S-G-F-W-S-F (4-10 aa) of GAD-65. Therefore, the M13

pYIlI 5C4C4 worked with N-terminal MoAb by expressing a relevant sequence for

the N-terminal Mo Ab but which is unlike its epitopc in GAD-65. To further define the

N-terminal MoAb cpitope. sequencing of N-terminal Mo Ab reactive peptides, which

were obtained from the successful biopanning using T7 gene X linear 9-mers phage

library and were selected by high affinity binding in immnuo-blotting assay using

nitro-cellulose membrane. revealed a motif of P-X-X-G which may correspond to 4-7

aa ofGAD-65 (P-G-S-G). which overlaps with the previous motifP-(i-S-G-F-W-S-F

(4-10aa).

Sequencing of GAD-6 MoAb reactive peptides. which were obtained from the

successful biopanning using T7 geneX C9C phage library and were selected by high

affinity binding in immnuo-blotting assay using nitro-cellulose membrane and in

ELISA, revealed two different motifs of RlK-L/ A/I-x-K andMvx-x-A. which showed

conservative substitutions and may correspond to the position 525-52X an of GAD-65

(R-L-S-K) and to the position 523-526 aa of GAD-65 (M-S-R-L). respectively, which

overlap with each other. To further define the GAD-6 epitope. sequencing of GAD-6

reactive peptides. which were obtained from the successful biopanning using T7 gene

X linear 9-mers phage library and were selected by high affinity binding in immnuo-

blottinu assay using nitro-cellulose membrane. revealed a motif of R-x-x-K, whicheo ~

may correspond to 525-528 aa of GAD-65 (R-L-S-K) and overlaps with the previous

motif of the GAD-Cl selected from T7 gene XC9C phage library. To further define the

III



(ii\IJ-() epitope. sequencing or GAD-6 reactive peptides. which were obtained from

the successful biopanniug using M 13 gene VIII 5('4('4 phage library and were

selected by high affinity binding in immnuo-blotting assay lIsing nitro-cellulose

membrane and in capture ELISA. revealed a motifor M-x-x-A which may correspond

to 523-526 aa of GAD-65 (M-S-R-L), and overlaps with the previous motif selected

from T7 gene X ('9(' phage library. Thus, the overall motif or GAD-6 may

correspond to 523-52X au of GAD-65 (M-S-R-L-S-K). To furtherdefine the GAD-6

cpitope, sequencing or (iAD-6 reactive peptides. which were obtained from the

successful biopanning using MI3 gene III C7C and linear l2-l11ers plwgc libraries, did

not show a clear motif and did not show reactivity with GAD-6hy capture ELISA. A

possible explanation for this is that the peptides. which arespecific to (;/\1)-6. are not

present in these M 13 pill phage libraries.

Sequencing of b96.11 huAb reactive peptides, which were obtained from the

successful biopanning US1l1gM 13 gene III linear l z-mers phage library and were

selected by moderate affinity binding in immnuo-blotting assay using nitro-cellulose

membrane. revealed two different motifs of IIV-T/S-A/G/L-T/S-i\!L andS-T/S-

CliAIL/I. which showed conservative substitutions and may correspond to the position

332-336 aa of GAD-()) (V -S-A-T-A) and to the position 338-340 aa or (IAD-65 (T-T-

V). respectively. Thus. the overall motif of b96.ll might correspond to .~32-340 aa of

( 'AD-65.

In a capture ELISA system for the detection of GAD-65specific antibodies, b78

huAb bound slightly better with GAD-6 (rather than N-terminal Mo Ab ) as the capture

MoAb. but b96.1 I bound much better with GAD-6 as the capture Mo Ab. This might

IV



suggest that GAD-() docs interfere with b78 huAb binding to(iA[)-()) more than it

does with b96.11 hu Ah. However. it must also suggest that the(iAI )-() and b78 huAb

cpitopes are not directly overlapping.

Sequencing of SMS sera reactive peptides. which were obtained from the successful

biopanning using M I ~ geneIII linear 12-mers phage library and were selected by

moderate affinity binding in immnuo-blotting assay using nitro-cellulose membrane.

revealed two different motifs of L/A-A-x-T/S-R/H/K and of T/S-T-V/IIL-F-E-

UGlilY IA-H/K-L/Ci-x-K/R. which showed conservative substitutions and may

correspond to the position 371-375 aa ofGAD-65 (L-L-M-S-Rl and to the position

463-472 aa of GAO-65 (T-T-G-F-E-A-H-V-D-K). respectively. as public epitopes of

SMS patients' sera.

Sequencing of 76B and 76F MoAbs reactive peptides, which were obtained from the

successful biopanning using T7 gene XC9C and M 13 gene 111linear 12-mers phage

libraries and were selected by high affinity binding in immnuo-blotting assay using

nitro-cellulose membrane and in ELISA, revealed that the most significant motif

recognised was D-x-K-P-L-S and F-x-Y-Q, respectively. which may correspond to the

position 477-482 aa of IA-2 (D-Q-K-P-L-S) and to the position 626-()29 aa of IA-2

(F-E-Y-Q). respectively.

The studies described in this thesis have shown that the epitope mapping of different

antibodies on GAD-65 and IA-2 may help to understand the relationship between

antigenicity and structure in these autoantigens which are targets inivpe I DM and

related disorders (c.g. SMS and APS).
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GENERAL INTRODUCTION



Introduction

1. Introduction

1.1 Autoimmunity

1.1.1 The Spectrum of Autoimmune Diseases

Autoimmune disease occurs when a specific adaptive immune response is directed

against self. Human autoimmune diseases are divided into two major groups, organ-

or tissue-specific, and systemic. In organ- or tissue-specific autoimmune diseases,

autoimmune responses are directed against autoantigens present in a single organ or

tissue [e.g., type I diabetes mellitus (type 1DM)l. On the other hand, in systemic

autoimmune diseases. autoantigens that are widespread throughout the body are the

target of autoimmune responses [e.g., nuclear antigens in systemic lupus

erythematosus (SLE)] (Table 1.1). Some autoimmune diseases are characterised by

autoimmune responses against both systemic and organ- or tissue-specific

autoantigens (e.g., Sjogren' s syndrome).

Autoantibodies or T cells can cause tissue damage in autoimmune diseases.

Autoantibodies to autoantigens on cell surfaces (e.g., autoimmune haemolytic

anaemia) or extracellular matrix (e.g., Goodpasture's disease) lead to tissue damage.

I' cells specfic to autoantigens can damage tissue cells directly or by activating

macro phages (e.g., in type 1DM). Also, autoantibodies to receptors cause disease by

stimulating (e.g., thyroid-stimulating hormone receptor i11 Graves disease) or

blocking (e.g., acetylcholine receptor in myasthenia gravis) receptor function. On the
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other hand. chronic generation of immune complexes causes tissue damageIII

systemic autoimmune diseases (e.g .. SLE).

Table 1.1 Classification of Autoimmune Diseases. Target Autoantigen Associations.

Autoimmune Diseases
Organ- or Tissue-Specific Diseases
Type I Diabetes Mellitus
Autoimmune Thyroiditis
Graves' Disease
Myasthenia Gravis
Pernicious Anaemia
Primary Biliary Cirrhosis
Goodpasture's Disease
Pemphigus Vulgaris
Bullous Pemphigoid
Addison's Disease

Systemic Diseases
Systemic Lupus Erythematosus
Systemic Sclerosis
Autoimmune Haemolytic Anaemia
Dermatomyositis
Rheumatoid Arthritis
Idiopathic Thrombocytopenic Purpura

Autoantigcns

Islet 13 cells
Thyroglobulin. Thyroid Peroxidase
Thyroid Stimulating Hormone Receptor
Acetylcholine Receptor
Intrinsic Factor
Bile Ducts of Liver
Glomerular Basement Membrane
Epidermal Cadherin
Epidermal Basement Membrane
Secretory Cellsof Adrenal Cortex

DNA. Histories. Ribosomes
Nucleoli
Red Blood Cells. Rhesus Antigen
Soluble Nuclear Proteins
[gG
Platelet lntegrin

1.1.2 Mechanisms of Self-Tolerance Induction

There are two mechanisms involved in the induction of self-tolerance: primary and

secondary (regulatory).

1. 1.2. 1 Primary Mechanisms

Primary mechanisms include clonal deletion, clonal anergy and clonal indifference

(ignorance) which influence lymphocyte development and shapingor Ihi.' repertoire.
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1.1.2.1.1 Clonal Deletion

I and Bvccll lineages can be eliminated during their development and maturation in

central and peripheral lymphoid tissues. Also. clonal deletion includes receptor

editing (escaped deletion). resulting in synthesisor receptors lacking specificity for

the original self antigen; and propriocidal killing: deletionby apoptosis when the

lymphocytes are exposed to self antigen either early in development or when the self

antigen is present in multivalent form or at high concentrationsor self antigens,

deleting particularly those lymphocytes with high affinity for the antigen.

I. 1.:1.1.1.1 B cells

B cells. like T cells. are susceptible to deletion at an early stage in their development.

13 cells obtained from tolerant double transgenic mice expressing multivalent self

antigens [e.g. major histocompatibility (MHC) class I or membrane hound hen egg

lysozyme (HEL)] are eliminated from peripheral lymphoid tissuesill the absence of

signal 2 for cell-cell interactions (Hartley et al.,19(1). Also. inducing tolerance in B

cells with specificity for natural self antigens by deletion has been confirmed by using

transgenic models expressing the genes for autoantibodies to double stranded DNA

(Chen et al., 1995). erythrocytes (Murakami et al.,19(2) and COX (Brombacher et al.,

1(91). In the case of the erythrocyte model, the Ig transgenic B cells correlated to the

B-1 rather than the8-2 lineage, suggesting that the8-1. like 8-2. cells arc susceptible

to deletion. and the deletion can occur in the periphery as well as the hone marrow.

Furthermore. in the case of the CD8 model, mature peripheral 13 cells may also be

eliminated.
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Self-reactive B cells may also be eliminated by receptor editing ( l'iL'gs et al.,1993;

Gay et al.. 19(3). Following engagement of Ig receptors on immature B cell,

recombinase activating genes are reinduced leading to receptors lacking specificity for

the original self antigen.

Administration of large amounts of soluble antigen to normal or transgenic mice leads

to apoptotic death in germinal centre B cells, particularly those with high affinity for

the inducing antigen. by interfering with the interaction of B cells with the follicular

dendritic cell network (Han et al.,1995; Pulendran et al., 19(5): this resembles

propriocidal killing of acutely activated T cells. This process is I cell and Fas

independent and inhibited by bcl-2.

1.1.2.1.1.2 TeeJls

Thymic stromal cells which include endogenous thymic epithelial cells mainly control

positive selection whereas bone marrow-derived stromal cells like macrophages and

dendritic cells mainly control negative selection (deletion) (Pardoll and Carrera.1992:

Hugo et al., 1993l.Early precursor thymocytes. which lack eitherI' cell receptor

(TCR) or accessory molecules, mature into TCR+ C04+ C08+ (double positive) cells

with the ability to interact with antigen-presenting stromal cells. The double positive

cells with higher avidity for self-peptide-MHC complexes are eliminated. while those

with lower avidity survive and differentiate into single positive ('04+CD8- or C04-

(,D8+ T cells with anti-foreign specificity (Scollay and Godfrey.19(5).

lntrathymic deletion of TCRa~+ single positive T cells recognising self peptide on

thymic APC is very efficient (Sprent,19(5). There is evidence thatf() I cells are also
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partially intrathymicallv deleted (Allison. 1993). Some(J.r~ lCR+ double negative T

cells are positively selected in the thymus and migrate to peripheral lvmphoid tissues

and the bone marrow(Dejbakhsh-Joneset al., 19(5). Within the thymus. apoptosis

can occur in double positive thymocytes via aFas dependent pathwny (Arase et al..

19(4). while within the periphery those expressing theNK 1.1 marker appear to play

an immunoregulatory role through release of large amounts orTh2 cvtokines (lL-4

and IL-lO) (Bendalac. 19(5).

T-cc!l deletion is complete when massive doses of antigen arc used. For example.

inoculation of a peptide from lymphocytic choriomeningitis virus (I.CMY) inTCR

transgenic mice causes complete deletion of LCMY-specific l cells (Moskophidis et

al.. 1(93). In addition. Fas may playa role in maintaining self-tolerance in humans as

evident from the development of autoimmunelyrnphoprolifcrativc syndromes in

patients with Fas gene mutations (Fisher et al., 19(5). l-as-related molecules. such as

tumour necrosis factor receptor(TNFR). control the deletion or CDX+ T cells whereas

the Fas pathway also controls the deletion ofCD4+ T cells (Zhcngcl ;11.. 1(95).

1.1.2.1.2. Clonal Anergy

Clonal Anergy is characterised in both T- andBvcell lineages hv a failure to

proliferate in response to antigen. down regulation of the antigen receptor complex

and/or cytokine receptors and costimulatory molecules and reversibility on exposure

to appropriate second signals.
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1I.:!.I.l.1 Bee/I.,·

Hoth mature and immature B cells can be rendered anergic. Thus. this mode of

tolerance occurs in peripheral lymphoid tissue as well as the bone marrow (Goodnow

et al., 1989). Although anergic B cells, which arc removed[rom the tolerant

environment, fail to respond to T-cell help orTvindcpcudent stimuli such as

lipopolysaccharide (LPS), removal of the anergic B cells to an environment that lacks

tolcrogenic concentrations of antigen leads to uprcgulation01" Igrvi and antibody

production (Adams et al., 1990). Thus, the anergic stall: is reversible: it does not

commit the B cell to death and may allow the developmentor autoimmunity to

soluble (oligovalent) self antigens. Anergic8 cells from soluble I-lEL double

transgenic mice can retain the capacity to process antigen and to proliferate and

differentiate into antibody producing cells following exposure to C()40 ligand and the

cytokines IL-4 and IL-5. On the other hand. this state is ussociated with

downregulation of the [g receptor function and a reduction in tyrosine kinase activity

and calcium nux (Eris et al., 1994).

1.1.:!.1.2.2 T cells

l-cell anergy occurs when IL-2 is lacking, as for example. when the interaction

between pairs of costimulatory molecules like87/(,D28 is blocked. I-cell anergy is

associated with inhibition of proliferation and secretionor 11.-2 and with

downregulation of T cell receptors for antigen and IL-2 orcoreceprors. Also, it is

associated with a block in the transcription of the IL-2 geneby AI'-1. the activity of

which depends on signaling through the TCR-C03 and C028 pathways (Kang et al.,

19(2). A failure in activation of the Ras protein may block the production of IL-2,
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smcc the Ras protein transmits signals along the TCR-CD:; patlmay to AP-I and

influences early events in the CI)28 pathway (Li et al.,199(1).

Less antigen results in anergy whereas more antigen leads to deletiont lazekas de St.

Groth et al., 19(2). Murine and human C04+ T-cell clones can be rendered anergic in

vitro on encounter with peptide in the absence ofCD2SIB7 signals (I >CSilva et al..

1()91). whereas naive T cells (e.g., from TCR transgenic mice) remain indifferent.

Blockade of the interaction between C028 and B7 in vivo does not necessarily lead to

anergy: so the T cells either remain indifferent (naive) or if blockade is incomplete.

partial activation may occur which may shift the cytokine profile lrom Th I to Th2

(Kearney et al., 19(5).

Exposure of C04+ T cells to intravenous peptide or superantigcn is accompanied by

an anergic state. because the avidity of binding to the TCR receptor docs not reach

that required for deletion.

1.1.2.1.3 Clonal Indifference (Ignorance)

T and B cells expressing anti-self receptors may persist in the host hut rail to interact

with antigen. There arc three reasons why these cells remain indi [Icrent to self

antigens. The first reason includes antigen related factors such as10\\ concentration

and valency or inaccessibility (sequestration). The second reason is cellular factors

including low precursor frequency of naive T cells. low receptor avidity of

preswitched B cells or low functional activity of neonatal (early in lite) dendritic cells

and naive unprimed T cells which lack adhesion molecules requiredlor penetration of

nonlymphoid tissues. The third reason includes host or tissue relatedlactors such as

7
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low or absent expression ofMile. lack of costimulatory molecules Ill' lack of cytokine

secretion.

1.1.2.2 Secondary Mechanisms

1.1.2.2.1 Interclonal Competition and Follicular Exclusion

In the case ofB cells. intcrclonal competition may occur betweenexisting and newly

formed clones of cells for a range of rate-limiting processes. such as ~rowth factors.

On the other hand. tollicular exclusion is a way or relining the .uui-Iorcign B-cell

repertoire which can occur fortwo reasons: first. inHEL double trans~el1ic mice. the

presence of immune complexes within peripheral lymphoid tissue may block antigen

binding Ig receptors leading to interference by these immune complexes with normal

B-cell signalling (Fulcher and Basten. 1997). Second. a lack ofTvccll help leads to the

lack of the second signals and the failure of self-reactiveB cells to enter the follicles

(Fulcher et al., 1996).

1.1.2.2.2 Suppression

Suppression can be mediated under different conditions by CD4+. ('1)8+ and double

negative (,D4- CDX- T-cell subpopulations (Adelstein et al.. It)l)()) ('()4+ T cells

suppression is not entirely clear although it can be associated with induction of a Th2

cytokine profile, Also. double negative T cells. including those expressing NK 1.1.

secrete large amounts of lL-4 and IL-IO and very little amounts of IL-2 or IFNy

(Bendalac, 1995). Suppression by this subset may be due to preferential induction of a

Th? response and immune deviation. In addition. CD8+ T cells exert their suppressive

8
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effect on development of experimental allergic encephalomyelitis(1'.\1':) via release

olthc inhibitory cytokinc, transforming growth factor-]) (T(iF-r~) (Miller et 1.11.. 1992).

1.1.2.2.3 Immune Deviation

Immune deviation describes the reciprocal relationship bctwccn Tvccll reactivity

[delayed type hypersensitivity (OTH)] and antibody productionwhich can occur

following immunization with antigen in different physical forms or concentrations.

For example. administration of a small dose of antigen leads toa strong OTH

response with little or no antibody, whereas large doses lead tosignificant antibody

production and lessDTH. Also. strong OTH responses occur whenlh I cells secreting

1L-2 and IFNy are activated under the influenceof macrophage derivedI L-12. On the

other hand. production of most classes of antibodies is stimulatedh\ Th2 derived IL-

4. Moreover. Th2 andTh 1 cells are inhibited by1FNy and 1L-4/11.-1 O. respectively

(Mosmann et al., 1991 ) .

1.1.2.2.4 Vetoing

Iluman and mouse CDX+ T cells can recognise self peptide-Ml-lC class I complexes

present on other CDX-expressing T cells which then kill the original cell by apoptosis

(Miller, 1986). Vetoing depends on an interaction between the C[)X molecule on the

veto cell and theUJ domain of the MHC class I molecule on the recognising cell

(Fink et al., 1983). Human. not mouse, C04+ T cells can act as veto cells by

expressing HLA class II (Schwartz. 1993).

l)
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1.1.2.2.5 ldiotypc Network

Perinatal administration 01' certain anti-idiotype antibodies call lead to prolonged

inhibition of the corresponding idiotypes later in lifeby cross-link inu (II' Ig receptors

on immature B cells. which are then deleted in the absence01' second siunals (Keanev~ .

and Vakil. (986). The efficacy of pooledIg in the treatment or certain autoimmune

diseases. such as immune thrombocytopenic purpura. may he related to its content of

anti-idiotype antibodies (Berkman et al., 1990).

1.1.3 Mechanisms of Induction of Autoimmunity

1. 1.3. 1 Release of Anatomically Sequestered Antigens

Antigens associated with peripheral tissues, especially those sequestered behind

anatomical barriers. may not be exposed to the developing T cell repertoire and,

therefore. tolerance may normally be unnecessary. However. evidence indicates that

exposure of previously sequestered antigens as a cause or organ-specific

autoimmunity can occur. For example, in sympathetic ophthalmia. damage to one eye

leads to a response to released sequestered antigen causing autoimmune damage to the

other eye.

1. 1.3.2 Cryptic Epitopes

Some tissue proteins are normally processed and presented to lymphocytes by

antigen presenting cells (APes), with tolerance being established to the dominant

epitopes. If. however. circumstances arise which cause the same components to be

degraded in an unusual or excessive manner, peptide fragments ll1a~ he generated

10
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which would normally be cryptic. and to which the immune system is not tolerant.

l.yrnphocytes can react against these cryptic epitopes. generating<Ill autoimmune

response. Epitope crypticity may result from various factors. including ineffective

processing or dominance of a flanking epitope that competes torhindiru, to the same

human leukocyte antigen(I-ILA) molecule.

1.1.3.3 Peripheral Tolerance and Immunological Ignorance

Mature resting T cells specific for extrathymic antigens. which arc presented by non-

professional APes (other than dendritic cells and macrophages). may be induced to

undergo anergy due to the absence of appropriate second signals or costimulatory

Iactors (Schwartz. 19(0). An alternative possibility is that there is110 induction of

anergy. but that the mature T cells are unable to recei ve appropriate signals and/or

help possibly due to the low amount of antigen presented.Therefore. the T cell will

ignore such antigens. Thus. if adequate antigen presentation and costimulation occurs

through professional APes. then these T cells may be activated and cause tissue

damage.

1. 1.3.4 Molecular Mimicry

Many peptide fragments of infectious agents are homologous with host proteins [e.g ..

coxsackie virus P2-C protein and glutamic acid decarboxylase ( i;\l)) (Kaufman et

al., 1992)]. Thus. the immune responses against these fragmentsor infectious agents

may cross-react with self antigens. Autoreactive T cells may be stimulated initially by

cross-reactive foreign antigens. not by the autoantigens themselves. due to the way in

which the foreign antigens are presented. i.e. their immunogcnicitv. The foreign

II
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antigens are normally presented by professional antigenpresenting ccllx (APes) (i.e.

dendritic cells and macrophages) which express l ll.A class II;lI1d costimulatory

adhesion molecules. OnceT cells are activated by foreign antigens. Ihcsc effector T

cells may react against cross-reactive autoantigens.

1. 1.3.5 Molecular Modification

Some antigenic determinants are created on somatically mutated antibodies during the

maturation of the immune response. For example. in rheumatoid arthritis. rheumatoid

tactors (RFs) (anti-Igt i Fe autoantibodies) may be induced because modified

antigenic determinants are exposed onantigen-cornplcxed [g(i. Although these low

affinity autoantibodies (RFs) react better withmultimeric Ig(j. they can bind to

monomeric [gG. However. glycosylation defects may also playa role inRF induction

( lsuchiya et al., 199]).

In addition, the carrier effect enables autoreactive B cells to receive T cell help when

a foreign determinant. e.g. drug or virus, becomes covalently linked to a self-

determinant which is recognised by the receptor (Ig) ofautoreacrivc 13cell. TeR of

the helper T cells recognise the foreign determinant which is processed and presented

by MHC of self-reactive B cells. Then, these helper T cells cooperate with self-

reactive B cells to induce proliferation of these I~ cells and production of

autoantibodies (Reeves and Todd 1996).

12
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1.1.3.6 Failure of Natural Immune Tolerance to Autoantigens

l.rrors in central or peripheral tolerance at the"1"- or B-cell len:I have also been

suggested as causes of autoimmunity. which might be due10 interference with

apoptosis during negative selection of reactive clones. Interactions between Fas and

las ligand (Fasl.) an: required for the initiationor apoptosis. and Sl.L-prone mice.

including Ipr (lyrnphoproliferation) and gld (generalised iyrnphoprnlitcrative disease)

mice, arc defective in the apoptosis-promoting Fas and Fasl.. respectively. The SLE-

prone MRL-lpr mice. rendered transgenic for TCR-recognising antigens in the context

or MHC class I or class II, show defects in peripheral T-cell tolerance with no defects

in thymic negative selection (Singer and Abbas19(4). Fas-dcficicnt autoimmune

lyrnphoproliferative syndrome (FD-ALPS), also Known as the Canale-Smith

syndrome. is the human equivalent of thelymphoproliferative autoimmune disease of

t-vlRL-Ipr mice which is associated with inherited uenes encodinudetective versions~ ~

or the Fas protein.

1.1.3.7 Po/yclonal Activation

Polyclonal T - and/or B-cell activation has also been suggested as an initiating

mechanism of autoimmunity. particularly in systemic diseases. I'olyclonal 8-cell

activators may induce autoantibodies because of the existenceor non-deleted self-

reactive B cells and/or stimulating arrested anergised 13 cells which may become

active. Polyclonal Tvcell activators may also induce autoantibodies indirectly. The T

cells. which react with HLA class II-bound antigenic self-peptide» on B cells, may

stimulate self-antigen specific B cells. thereby leading to production or autoantibodies

(Theofilopoulos, 199~).

13
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1.1.3.8 Immunoregulatory Disturbances

Changes in Tvccll subsets and their cytokincs may be involved in initiating

autoimmune diseases. lor example, in type I DM, CD4+ T helperI cell (TH 1)-

derived IFN-y activates macrophages and CD8+ cytotoxic T cells (It·) and inhibits

lH 2 cells, which might otherwise have suppressed the autoimmune response.

14
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1.2 Type 1 Diabetes Mellitus

lypc I diabetes mellitus (type 10M) is an autoimmune diseuse which is

characterised by destruction of insulin-producing pancreatic islet1\ cells. This

autoimmune response to the isletp cells can damage these cellsfollowing cellular

infiltration of the islets by Th I cells. macrophages and COX+ cytotoxic T cells (TC).

Also, autoantibodies. e.g. to glutamate decarboxylase (GAD). lire produced to the

autoantigens of the isletI~cells. and these can be used as markersor the pathogenesis

of type 10M. These autoantibodies can also be produced in other diseases. such as

autoimmune polyendocrine syndrome (APS) and stiff-man syndrome (SMS).

There are two types ofAPS. type I (APS I) and type II (AI'S II). /\PS I is a rare

disorder with an autosomal recessive inheritance. The main commontcatures of APS

I are mucocutaneous candidiasis. hypoparathyroidism. adrenalfailure and 5% of

patients develop type OM.APS II is a rare disorder with an autosomal dominant

inheritance. The main common features ofAPS II are thyroid disease. gastric

autoimmunity. adrenal failure and up to 50% of patients develop typeI DM (Neufeld

et al., 1980).

SMS is a rare neurological disorder characterized by progressive rigidity and spasms

of skeletal muscles and a deficiency of gamma-ami no-butyric acid (JABA). This is

associated with the binding of autoantibodies to CiAO. which is responsible for the

synthesis ofGABA from glutamic acid in the brain and peripheral neurons and isletp

cells (Solimena et al.. 19(0). About 30% of SMS patients develop type I OM. but

most patients with type I DM do not have SMS (Solimcna et al..199(l)

15
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lnvironmcntal factors. such as specific viruses. and genetic factors. primarily HLA.

arc associated with the development of type 10M.

1.2.1 Immunopathogenesis of Type 1 Diabetes Mellitus

Islet [~ cells may express many autoantigens (for example. insulin and GAD). The

autoimmune reponsc against these autoantigcns involves humoral mediators

(autoantibodies} and cellular mediators. i.e. Te. TIL macrophagcs and other APCs.

such as dendritic cells (Benoist and Mathis 1997).

Islet 0 cell autoantigens are processed and presented by macrophagcs and/or other

APCs (particularly dendritic cells) in association with HLA class II molecules. which

are present on the surface of APCs. Ag-HLA classII complexes and co-stimulatory

adhesion molecules (87). which are present on the surface ofmacrophages, may

activate TH1. Also. macrophages secrete interleukin-12(IL-12) to lurther activate

1'1-11. Then. TH 1 produce lL-2 and interferon-y (IFN-y). IFN-y activates macrophages

and Te. while lL-2 activates TC only (Rabinovitch. 19(4). Also. IFN-y inhibits TH2

(Lord et al., 19(6) and may have direct cytotoxic effects on the islet [~cdls (Awata et

al .. 19(4). Furthermore. IFN-y upregulates the adhesion molecules011 the islet p cells

(Awata et al., 1(94) and enhances their HLA class I expression to promote the

interaction ofTC with islet 0 cells (Awata et al. 1994: Hussain et ul ..11)l)6). IFN-y in

combination with either tumour necrosis factor (TN F)-« or-0 or lyrnphotoxin induces

II LA class II expression on the isletJ3 cells (Pujol-Borrell et al.. 1(87). The

macrophages, which are activated by IFN-y. secrete IL-lu.IL-I[1. I"NF-(J, (Hussain et
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al.. 19(6).11.-6 (Benoist and Mathis 1997), oxygen free radicals «)_:, ami H~(2) and

nitric oxide (NO) which are cytotoxic to isletp cells (Rabinovitch. I ()1)4), In contrast.

('(' can be elicited through bystander activation, but can home to and destroy the islet

1\ cells. by recognition of antigens (Benoist and Mathis.199X), There is evidence that

perforin plays its role in islet 13 cell destruction (Benoist and Mathis1(97), Also. the

interaction between I:as on isletB cells and Fas ligand on infiltrating cells might

trigger selective apoptotic f3-cell death in inflamed islets (Moriwaki et al., 1999).

Macrophage-derived IL-IB enhances expression of Fas(Cf)<)5) nil islet B cells

(Yamada et al., I 99() which facilitates Fas-Fax ligand interactions: Fas ligand

(C[)95L) is already expressed on isletp cells of normal individuals: interaction

between Fas and Fas ligand both expressed on islet13 cells may induce apoptosis of

islet B cells (Loweth cl al.. 1998). In another study in NOD mice.laxl. was detected

on TH and TC and Fas expression was detected on13 cells or syngeneic islet grafts

leading to autoimmune destruction of isletp cells. Fas expression correlates with

expression of IL-Iu, TNFa and IFNy in islet grafts (Suarez-Pinzon, etul., 1999). Islet

I~cell destruction and infiltration by leukocytes in autoimmune diabetes in NOD mice

involves Fast-mediated mechanisms (Suarez etal., 2(00), Also. TNF/TNFRI

interaction may play a role in the destruction of islet f3cells(Pakula et al.. 1(97).

Vascular endothelial cells may also respond to lL-1. TNF and IFN-y by expressing

II LA class II molecules to present isletp cell autoantigens to '1'111 (Rabinovitch,

19(4). and adhesion molecules to enhance the accumulation ofmononuclear cells in

the islets (Hanninen et al.,19(2).

17
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lC secrete IFN-y and TNF-I~. which arc cytotoxic to isletI~cells. and the re interact

with Ag-HLA class I complexes. which are present on thesurface lll' islet p cells

(Rabinovitch. 19(4) (Fig. I. I ).

Further damage to the isletr~cells may enhance the exposure of some proteins. which

arc normally kept sequestered within the islet [3 cells. such as heat-shock proteins.

proinsulin and cytoplasmic gaugliosides. The appearance of these proteins stimulates

the inflammatory T cells. particularly TC, and the secretion01' inflammatory

mediators (TC-derived IFN-y). which promotes the attraction of macrophages. The

macrophages will present them to THl. The remaining healthyI~cells must overwork

to supply the needed insulin. This hyperactivity exhausts the isletII cells and may

increase the release of the autoantigens and the killing of these isletII cells. Very few

islet p cells remain to supply insulin to the body. and the symptoms ot typc I DM will

appear (Atkinson and Maclaren1990).

IX
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Figure 1.1 The role of TH I and TH2 subsets in autoimmune response111 type I
diuhctes mellitus (Rabinovitch 19(4).

IThe autoimmune ('CSp~nsc inrn@
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ItrIO

19



Introduction

1.:2.1Environmental Factors

1.2.2. 1 Geographical Distribution and Incidence

The incidence of type 1 ()M has been shown to be increasing. llowcvcr. the incidence

of type 1 DM differs between populations, with a 60-folddifference between the

hiuhest and the lowest rates (Rewers et al., 1988: Green et al.. 1991: Karvonen et al.,

19(7). The highest incidence is found in Caucasoid populations. particularly in

northern Europe, and the lowest rates are found in Asia and South America (Karvonen

et al.. 1993: Karvonen et al.. 19(7).

The incidence of type 1 DM has increased by about 1% per year during the last 10

years (Bingley and Gale 1989: Dahlquist et al., 1(91). During Il)93-1995. the

incidence of type I DM was 8.1 per 100,000 a year. ranging in-between lower rates in

southern European countries and higher rates in northern Europe (Rosen bauer et al.,

19(9). In the Oxford region. the annual increase of the incidence or type 1 OM in

children aged 0-4.5-9 and 10-14 was 11%,4% and lolll. respectively. between the

year 1985-1996 (Gardner et al., 1997). In addition, in children aged under 5 years, the

incidence of type I DM was increased from 4.2 to 9.9 per 100.000 per year between

1973-4 and 1988. in England (Metcalfe and Baum 19(1). In Finnish children aged

under 15 years. the annual increase in the incidence of type I DM "as 2.4% between

the year 1965-1984 (Tuornilehto et al., 1992). By the year 20 10. it is estimated that

the incidence of type I DM will be 50 per 100,000 per year in Finland and it will

exceed 30 per 100.000 per year in many other populations (Onkamo et al., 1999). The

incidence of type I DM in Sardinia is almost as high as in Finland.3().) per 100.000

per year in children aged ::;14 years between the year 199()-1l)l)4 (Karvonen et al..

20
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2()O()}. whereas most southern European countries have a lower incidence (Dorman et

ul.. 199(): Muntoni et al.. 19(2). Generally. a vcrv high incidenceor type 1 DM

amongst children aged S 14 years between the year 19l)()-19<J4 (:2:2() per 100.000 per

year) was found in Sardinia. Finland. Sweden. Norway. Portugal. the lJ.K .. Canada

and New Zealand (Karvonen et al., 2000).

lhe differences in geographical incidence, as seen in type I DM. arc rare amongst

severe chronic diseases of childhood (Diabetes Epidemiology Research International

Group 1(88).

1.2.2.2 Viruses as Important Environmental Factors

!\ range of viruses has been implicated in type I DM. Enterovirus infections.

particularly with coxsackie virus B4 (CYB4). may playa role in activating the

immune response against islet 13 cells. Increased islet 13 cell autoantibody

(ICA)/insulin autoantibody (lAA) levels are associated with enterovi rus infections.

The levels of virus-specific IgM. IgG and IgA are increased in enterovirus infections

and the level of Cvfs-specific IgM is increased in newly diagnosed type 1 OM

patients (Hyoty et al., 1995: Kaufman et al., 19(2). Proliferative lymphocyte

responses to antigens from other viruses, such as eVB I. 86 and adenovirus with

homologies to GAD-65 are observed in newly diagnosed type 1 1)Ivl (Jones and

Crosby 1(96). The prevalence of coxsackie B serum antibodies is increased in recent-

onset type 1 DM (Helfand et al., 1(95) and in mothers of infants \\110 developed

early-onset type 1 DM (Dahlquist et al.,1995). Furthermore. the elevated levels of

eVB-specific IgM persist for a few months after infection. This has led to the

suggestion that ('VB infection may precipitate the onset of type 1 I)M in a pre-
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diabetic individual within a kw months. In contrast. diabetes may develop many

years after exposure to the virus. For example. initiation infections. such as congenital

rubella infection. occurs in utero but diabetes develops 5-20 years later. In culture. the

('VB4 and mumps viruses can infect human islet1\ cells. leading to ovcrcxpression of

II LA class I (Parkkoncn et al.. 1992).

There are six amino acids. PEYKEK (260-265 amino acid residues of (iAO), identical

in P2-C protein of CYB4 and GAD65 (the 65 kDa isomeror GAD). while they differ

in only one amino acid. PEYKTK (Glu-e Thr), between P2-C protein of CYB4 and

(iA067 (the 67 kDa isomer of GAD) (Hou et al.. 19(4). The high similarity of the

amino acid sequences ofGAD65/67 to the P2-C protein of CVB4. is consistent with

the possibility that molecular mimicry plays a role in the pathogenesis of type 10M.

Thus. it suggests that the immune response against P2-C protein of CVB4 may cross-

react with GAD of islet 1\ cells. leading to more destruction of islet1\ cells and further

release of GAD from islet p cells (Kaufman et al., 1992: lIou er al., 1994).

Interestingly, MICA-I,O. human monoclonal antibody derived from a diabetic patient.

recognises an amino acid residue (E264) within this amino acid sequence of GAD.

PEVKEK. However. MICA-IO does not recognise the P2-C protein itself. indicating

that the linear homology region in P2-C does not acquire a conformation similar to

that ofGAD-65 (Schwartz et al., 1999).

In contrast to the above. Horwitz and colleagues showed that infection with CYB4,

which shows similarity with GAD, rapidly provoked diabetes in TeR transgenic mice

specific for a different islet autoantigen. This suggests that CYI34 induces diabetes as

an indirect result of local infection leading to inflammation. tissue damage and the
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release or sequestered islet antigens causing the stimulation or resting uutoreactive T

CL'IIs.Thus. eVB4 may induce type 1 OM through bystander damage and activation

(Horwitz et al., 19(8).

Congenital rubella infection may induce autoimmune isletI~cell destruction and

subsequently the development of type I OM (Packet al.. 1(88). 201Y;) or individuals

with congenital rubella syndrome (CRS) develop type I OM while110 case has been

reported of type 1 DM following postnatal rubella infection (Eisenbarth et al., 1994).

Pancreatic islet cell surface autoantibodies (ICSA) are found in201Y() Ill' the total CRS

population. Also, the presence of HLA-OR3 and the absence of IILA-OR2 are

associated with the CRS patients who develop diabetes (Feellner et al., 1984).

lurthermore, there are signiticant correlations between'I-ce!l clone responses to

rubella virus peptide V:; (RV El) (157 -176 amino acid residues) and a determinant of

(iA067 (274-286 amino acid residues) in patients with recent onset type 1 OM and

the response of another T cell clone cross-reactive with RVE 1 and a determinant of

(JAD67 (212-226 amino acid residues) in patients with late onset type I DM. Also,

there is significant correlation between T-cell clone responses to RVE2 (87-107

amino acid residues) and GA065 (274-286) (Ou et al., 2(00).

('VB infection and type I DM are more strongly associated with IILA-DR4 than.

IILA-DR3. while congenital rubella infection and type I DM are more strongly

associated with HLA-DR3 than HLA-OR4 (Eberhardt et al.. 1(85). In addition, a

tandem repeat of ORB 1*0404-A 11(3) andlor a tandem repeator DRB 1*0404-

B35( 15) might predispose CRS patients to development or type I1)[V1 (Ou et al.,

2000 ).

'p
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Cvtomcgalovirus (CivIY) may playa role in the pathogenesis or type I OM by

inducing islet r~cell destruction (Hiltunen et al.,19(5). High titres 0" ("MY-specific

Ig(i are associated with ICAs in healthy siblings or diabetic childrent lliltunen et al.,

1995: Nicoletti et al.. 19(0). Also. anti-CMY antibodies can cross-relict with a 38

k ilodalton autoantigcn (38 kDa). which is expressed on the surface or isletI~cells. and

subsequently may be implicated in the autoimmune response to isletII cell destruction

(Hiltunen et al., 1995: Pack et al., 19(0). The molecular mimicry or amino acid

sequences of CMY proteins with isletP cell autoantigens may induce the isletp cell

destruction by molecular mimicry (Buesa-Gomez et al.,19(4).

It has recently been shown that monoclonal and polyclonal CiAD65(24X-257 or 88-99

amino acid residues i-speci tic T cells from patients with type 1 I)M could be

stimulated by viral (human herpes virus) and bacterial peptidcs with Iittle apparent

sequence homology with autoantigenic epitopes (Bach et al..199X).

1,2.2.3 Dietary Factors

It has been proposed that breast milk may be important either to diminish exposure of

breast-fed infants to an unidentified diabetogenic agent. which mayor may not be a

virus (Elliott and Martin 1984: Stuart et al.. 19X4). or may be important for the

transmission of agents that prevent isletP cell destruction. Maternal IgA may prevent

viral infections which contribute to isletP cell destruction (Kassim et ul., 1987; Hjelt

et al., 1(85). Also. in breast-fed infants. there is evidence of increased IgA production

(Prentice 1987). increased IFN response to respiratory syncytial virus (Chiba et al.,

1(87). and increased B cell proliferation (Juto19X5), On the other hand. the
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transmission of such viruses via breast milk may prevent the development of type I

I )i'vl by Tvlyrnphocvrc subset «('04+ TH cells) depletion. i.c. the tropism of the virus

ma\ alter the function of ('04+ TH cells which cause the autoimmune response

« ildstone 1(88). In addition. many anti-inflammatory agents. such as tree radical

scavengers. are present in human breast milk (Mayer et~tI.. II)XX I: this may be

relevant since oxygen free radicals are cytotoxic to isletI~cells (Rahinovitch 1(94),

Altcmatively, early cessation of breast milk and replacement with cows milk

introduces foreign protein antigens into the immature infant. lntcrcstingly, bovine

serum albumin (BSA) is recognised by IgG and IgA anti-USA antibodies. which are

detected in all diabetic children. The ABBOS peptide. which is a region of the

albumin protein. shares a sequence homology with the ICA69 autoantigen (Dotta et

al.. 1(94).

1,2.2.4 Other Environmental Factors and Hygiene

l'hc increasing incidence of diabetes in many countries may be attributed to improved

standards of hygiene (Kolb and Eliot 1994). Children in Northern Iroland aged under

I:; years in areas with a high population density and household crowding were

observed to have the lowest incidence rates of type I DM. during the period 1989-

1994 (Patterson et al..1(96). Early contact with microbial antigens prevents diabetes

in animal models (Patterson et al., 1994). Social mixing in early infancy appears to

confer protection against the development of childhood diabetes. This may be

mediated through exposure to infectious agent(s). This indicates that early infectious

exposure may play a role in the developmentor imrnunorcgulutorv mechanisms

which protect against diabetes (McKinney et al..20()()). such ~IS modi lication of the
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lymphocytic response to late immunological challenges (Schwimmbcck et al.,1988)

and/or stimulation of the production of immunorcgulatory cytokincs that prevent

diabetes (Bach 19(4). The 'hygiene hypothesis' postulates that reduced exposure to

common microbial infections in early life may increase the riskor type I OM in

childhood.

Chemical toxins. such as alloxan. Chlorotocin, certain pesticides (Assail and Larger

19(3) and nitrosamines. such as streptozotocin . (Dulin andSorer 1(17X) can poison

pancreatic r~cells directly or trigger an immune response whichfurther damages these

cells. The incidence of childhood type I OM in northern England is associated with

higher nitrate levels ill domestic drinking water (Parslow et al.. 1(ilI7). Nitrate is

reduced to nitrite. the chemical precursor of nitrosamines (Choi I<iX5l. Furthermore,

the water does not contain nitrosation inhibitors. such as vitamin Cr Virtanen et al.,

1994 ).

1.2.3 Genetic factors

1.2.3. 1 Human Leukocyte Antigens (HLA)

I t has been estimated that about 50-60% of the risk for type 1 () Mis genetic. the rest

being environmental. Family studies indicate that 60% of attributable genetic risk is

due to HLA (Van dcr Auwera et al.,1995), The HLA complex is a region of 3,500

kilo bases (kb) on the short arm of chromosome 6 (6p11.3).

26



Introduction

In l Il.A class I. 111./\-137. -8S. -8 IS and -818 are also positively associated with type

I [)M. There is a significant increase in the frequency of the I-ILI\-I37 allele in the

early-onset type I DM patients rather than in the intermediate and late-onset type

I)M patients (Dcmainc et al., 1995).

lhe presence of an aspartate residue (Asp) at position-57 of theD()(', chain (DQP57)

confers resistance to type I OM (Badenhoop et al.. 1989: Routsias and Papadopoulos

19(5). while the presence of serine (Ser), alanine (Ala) or valine (Val) at OQP57

confers susceptibility to type I OM (8adenhoop et al.. 19lN). Also. the presence of

arginine at OQ(152 confers susceptibility to type I DM. while the absence of arginine

at DQaS2 confers resistance to type I OM (Ilonen et al.. 19(6) (Table 1..2).

In HLA class II. I-lLA-DR3-DQ2 and HLA-OR4-DQ8. which have DQP57 Ala+

(Owerbach and Gabbay et al., 1996) and OQa52 Arg+ (Ilonencl al.. 1996), are

strongly associated with type I OM (Oemaine et al., 1995: Erlich et al.. 1(96). The

presence of HLA-OR3 and HLA-OR4 in individuals with autoautobodics to GA065

((;AA65+) and complement-fixing islet cell autoantibodies (CF-IC/\+) will increase

the relative risk of type I DM (Aanstoot et al., 1994).

IlLA-DRI-DQ5. which has DQP57 Ser+ (Demaine et al.. 1(95). and IILA-DR9 are

positively associated with type I DM (Liparota et al., 19(5). In contrast. the HLA-

DR2-0Q6. which has DQP57 Asp+ and OQa52 Arg- (Toxi et al.. I ()l)4): HLA-DR7.

which has DQa52 Arg-: and HLA-OR5 are negatively associated with type 1 OM

(Toxi et al., 19(4). The protective allele (HLA-DR2-0Q6) is associated with high

litres of GAAs. It has been suggested that the high titres of (j!\!\s111:1\· correlate with
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a CD4+TI-12 cell response. This indicates that the activation of aC[)4+ TH2 cell

response may he associated with the presence of IILA-DR2-!)()(). Also. there is no

association between I('A and I!LA-DR2-DQ6 (Pugliese et al..Il)l)5). III addition. the

DPB 1*0301 allele is positively associated with type IDM and tlW~ interact with

I-ILA-DR4 to increase the overall risk of type 1 DM (Erlich et ul.. Il)l)()).

Some protective alleles. such as HLA-DRB I *040} or 407. haw DRI174 Glu+, while

the susceptible alleles. such as I-1LA-DR4. have DRrn4 Ala+ or Arg+ (Auwera et al..

19(5).

Table 1.2 Susceptible and Protective Amino Acid Residues in l ll.A Class II Loci

II LA class II locus Susceptible amino acid residue Protective amino acid residue
D<)I~57 Serine: e.g. HLA-DR I-DQ5 Aspartate: e.g. III.A-DR2-DQ6

Alanine: e.g. HLA-DR3-DQ2
HLA-DR4-DQ8

Valine
1)()a52 Arginine: e.g. HLA-DR3-DQ2 Absence of arguune: e.g. HLA-

HLA-DR4-DQ8 DR2-DQ6
DRln4 Arginine: e.g, HLA-DR4-DQ8 Glutamine: e.g. III.A- DRBI*0403

Alanine; e.g. HLA-DR4-DQ8 or 407

The HLA-DQB I *020 I allele is associated with high risk of diabetes among stiff-man

syndrome (SMS) patients. while the HLA-OQI3I *0602 allele(I-ILA-OR2-0Q6)

might be associated with a reduced prevalence of diabetes in SMS patients (Pugliese

cl al., 1993: Pugliese et al., 1994).

DR3 and OR4 have been shown to confer susceptibility to type 1 Dlvl. while OR2 has

been shown to confer protection from type 10M. As indicated above. this is due to

linkage disequilibrium of these alleles (OR2. OR3. and OR4) to various OQ alleles.

including OQ6. DQ2 and DQS (Owerbach et al., 19X3). An attractive hypothesis
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states that the diabetogenic peptideis) binds tighter to the resistant than to the

susccpti hie DQ molecules, leading to eliminationor strongly autorcactjve T-cell

clones in the thymus. In the periphery, the protective DQ molecules compete with the

suscepti ble DQ molecules for binding to the peptidet s) (Ncpom I<)<)()). Other DO

molecules are not capable of binding such diabetogenic pcptidct s ). It has been

postulated that DQ molecules are the mediators of immunosuppression(Salgamme et

;11.. 19(1). The susceptible DQ molecules bind to diabetogenic pcptides and can

initiate the immune response by the presenceor a hydrophilic lirst pocket in the

antigen-binding groove. a hydrophobic or amphiphilic [~49-56 dimerisation patch that

allows for spontaneous or T-ccll receptor-induced dimerisation. and theArg-Gly-Asp

cell adhesion loop (Routsias and Papadopoulos19(5).

The inheritance of liLA haplotypes influences which peptides arc selected for

presentation to TeR. The susceptiblity model depends on the binding of diabetogenic

pcptidcs to particular HLA molecules. If an individual inherits u disease associated

liLA gene, susceptibility occurs when the product of this gene is the 1110Stefficient

hinder of diabetogenic [\ cell peptides amongst the other class II molecules in that

individual. Conversely. an individual with disease associatedHl.A genes is resistant

10 type I DM when the products of other HLA class II genes art' more efficient

hinders of the diabetogenic p cell peptides (Nepom 1(90).

An alternative theory is the protective model which depends on the binding of

tolerogenic peptides to particular HLA molecules. Alleles which arc negatively

associated with type I DM. such as DR2, have a high affinity for iolcrogenicp cell

peptides which are necessary to induce tolerance. whereas those alleks which are
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positively associated with typeI OM have a low affinity lor thcxc pcptides, or bind

them in the wrong orientation (Sheehy 1992).

lhe TAP2A (transporters associated with antigen processing) al le le is positively

associated with I-ILA-DR3+ and HLA-OR4+ typeI I)M patients. III contrast. the

I'AP2B allele is negatively associated with type I DMpatients (Lsposito et al.,

I9(5).The TAP 1. T;\P2 and LMP2 (low molecular-weight proteins: loci show little

effect on age at onset or type I DM (Liparota etal., 19(5).

In Hl.A class Ill. C-J. allotypes are associated with type I j)~1. such as C4A

(Badenhoop et al., 19X9: Demaine et al., 1995). The I-IL/\ /\ l-BX-DIU and HLA 862-

[)R4 are associated with the 5.5 and 10.5 kb TNF-u genealleles. respectively

(Badenhoop et al.. 19X9). Also. TNF-P polymorphism is associatedwirh type 1 OM

(Awata et al., 19(4). HSP70 locus shows little effect on age at onsetor type 1 DM

(l.iparota et al., 1(95).

lhe key genetic factor in the development of autoimmune diabetes ill the non-obese

diabetic (NOD) mouse is the presence of major histocompatibility complex (MHC)

class II molecule. I-A (Todd etal., 1991). In a transgenic NOD mouse. the expression

of I-A0 transgenes (mouse HLA-DQ8 equivalent). which has i\sp57 or 1'1'056 instead

of the normal Ser57 or His56. respectively, prevents diabetes (Demuinc et al., 1995).

T cells from NOD mice proliferate to the I-A (X6-101 amino acid residues) and

GAD65 (509-524 amino acid residues) peptides, since this peptide of I-A is similar to

that peptide of GAD65 (Xu et al., 1999).

.10



1.2.3.2Insulin gene

Introduction

The insulin gene is present on chromosome IlpIS.S. VNTR (variable numbers of

tandem repeats) polymorphism at the 5' end of the insulin gene has been shown to be

associated with type I OM (Lucassen et al., 1993; Davies et al.. (994). A 4.1 kb

region, including the insulin (INS) gene, which contains ten candidate

polymorphisms, are associated with HLA-OR4+ individuals (Uudlien et al., 1995;

Uudlien et al., 1994). Insulin is the isletp cell-specific autoantigen expressed early in

the development of diabetes. A small population of cells in the thymus express insulin

in mice (Smith et al., 1997) and in humans (Pugliese et al., 19(7). ) In Caucasian

populations, INS VNTR class I alleles predispose to diabetes. In contrast. individuals

who have INS VNTR class III alleles and have higher levels of INS mRNA in the

thymus and lower levels in the pancreas are protected. The higher levels of INS

mRNA may indicate greater levels of expression and enhance tolerance to

preproinsulin in the thymus (Pugliese et al., 1997).

It has been suggested that the INS VNTR class I alleles are not equally associated

with type 10M. The AHI-l allele is associated with type I DM while the 698-VNTR

class I allele, which is identical in size to the AHI-I. is not associated with type 10M.

It is not known whether the class II VNTR alleles. such as 81 repeat elements, are

associated with type I OM or not. Furthermore, some of the class III VNTR alleles,

such as HUMTHO I allele Z-8, are strongly protective against type 10M, while the

other HUMTHOI allele is weakly protective against type I OM (Owerbach et al.,

1996).
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1.2.3.3 Association of other Polymorphisms

The IfN-y3 and 6 alleles and IL-P polymorphisms are associated "ith type I OM

(Awata et al., 1994). Also. mitochondial gene mutations are associated with type I

OM (Awata et al., 199J). Furthermore, CTLA-4 is present on chromosome 2q31-33

lind has also been linked to type 1 OM (Nistico et411.. 1996). The CTLi\-4. which is

expressed on activated T cells, is thought to be a negative regulator ofl cell function.

The CTLA-4 exon I polymorphism (49A/G) confers genetic susceptibility to type

DM (Hayashi et al., 19(9).

lhe CDJ E locus may be associated with type I OM in female subjects. Also, the

CD4* A4/ A4 genotype is significantly increased in type I OM patients. On the other

hand. the C03*91 allele of the 8 subunit may protect against type I OM

(Ghabanbasani et al., 1994).

1.2.4 Autoantibody Associations

Although the autoimmune destruction of islet P cells is T cell mediated. circulating

autoantibodies can often be detected years before the diagnosis of type I OM and can

he used in the prediction of type 10M.

1.2.4.1 Islet Cell Autoantibody (lCA)

Islet cell autoantibodies (leA) were first demonstrated In- the indirect

immunot1uorescence test on frozen pancreatic sections (Bottazzo et al., 1974). The

ICAs have been divided into two types, non-restricted ICAs (NR-ICAs), which

recognize all islet cells(a. p. () and pp cells), and restricted ICAs (R-ICAs), which

'")-'_
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recognize only isletI~cells. The NR-ICAs do not react with brain(i/\i). whereas the

R-ICAs react with brain GAD (Palmer et al., 1994:Dorta et al., 1<)l)4)1. lhc R-ICAs

arc not predictive (Dorta et al., 1994; Christie et al.. 19(4). or lcsx predictive. of

diabetes development than NR-[CAs (Palmer ct al., 1(94).

The availability of standard ICA+ sera has allowed the reporting of results as JDFU

(juvenile diabetes foundation unit) based on an end point titration. In R-[CA+ sera.

the GAAs are present in 89% of type I OM patients (petersen et al.. 1994). In

addition, the ICAs arc associated with anti-37 kD autoantibodies (Bonifacio et al..

19(5). insulin autoantibodies ([AA) (Verge et al.. 1(94) and <lnti-40kl)

autoantibodies (anti-ICA512bdc/IA-2 autoantibodies) (Fig.1.2) described below. The

risk of diabetes in family members with ICA 2::40.IDFU and IAAs is 77U/u within five

years while in those with ICA 2::40 JOFU only is 42% (Eisenbarth et al.. 1994). This

indicates that the IAAs are associated with other autoantibodies and/or genetic

susceptibility. The risk of diabetes in relatives with [AAs. GAAs and anti-IA-2

autoantibodies can be as high as 100% within five years (Verge et al., 1996), Higher

predictive value for type I OM among first degree relatives may he obtained if only

individuals with high titre [CAs or double or triple ICA/IAA. (iAA or IA-2

(insulinoma-associated antigen-2 autoantibodies) are considered (Hagopian et al..

1995; Verge et al., 1996). Furthermore, the [CAs are present in some SMS and

autoimmune polyendocrine syndrome (APS) patients (Bosi et al.. 19(1) (see below).

The [CAs are detected in 90% of newly diagnosed diabetic patients (Genovese et al.,

1(92). The ICA titres in first-degree relatives and co-twins are higher than in diabetic

children without a family history of type I DM (Bingley et al.. 1994: Marchal et al.,
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1995). This indicates that the leAs are tightly associated with genetic susceptibility

(Fig. 1.2). The risk or type I DM is 33% in ICA+ relatives with 111..\-f)Q~57 Asp-

and is <5% in ICA+ individuals without a family history or type I I)i\·1 (l:isenbarth et

al..1994).

lhe abrupt-onset type I DM patients have high titres of ICAs which decrease after the

first year of type I DM. In contrast. the slow-onset type I DM patients have low titres

or ICAs which continue fix a long period after diagnosis (Urukumi et al .. 1995). This

suggests that the autoimmune islet ~-cell damage in abrupt-onset type I DM patients

is much higher than in slow-onset type I OM patients. This strong islet p-cell damage,

in abrupt-onset type I DM. may cause more production of ICAs against the islet ~-

cells. and loss of all islet ~-cells will decrease ICA titres. In contrast. in slow-onset

type I DM patients. the slow rate of islet ~-cell damage may cause production of

ICAs in lower amounts than abrupt-onset type I DM patients. In addition, the

remaining islet p-cells. in slow-onset type 1 OM patients. will continue to stimulate

ICA production for a long period after diagnosis. Furthermore. some ICAs have the

ability to fix complement (CF-ICA). which may kill the cellsby tormation of the

membrane attack complex. or may simply represent high titre or autoantibodies

( Yamada et al., 1997: Bosi et al., 1994).

M(Yo of type I OM sera can stain mouse islets (which contain little or no GAD) and

therefore recognise other islet cell components in addition to(iAD. while 32% can

not stain mouse islets but can react with human islets following absorption of sera

with GAD. Thus. mouse islet are able to differentiate between two groups of non-

(lAD reactive ICA (Richter et al., 1993c). Some islet cell autoantigcns do not seem to
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he affected by proteolysis and may represent a monosialogangliosidc (lipid) migrating

between the GM2 and GM 1 standards (Dotta etal., 19(3)(discussed below),

35



lntroduct ion

Figllre 1.2 Decision tree for predicting type 1 diabetes mellitus
ill individuals with a family history (FH) of disease
(Bingley et al., 1994; Genovese et al., 1(92);

(rPIR=First Phase Insulin Realease).

835cllnc
r-isk .-

(CA ;;:4
JDFU22%

fH-,"..,.,

I C/" ~20
JDFU ;)7% ,

ICA»iJ 1----1

JDFI'i ~]'?.. IC,\ <19

JfJFIiS\,

ICA ~O
JDFU

I ICA. <O.l'ir

IAA etc,

Ie,\;,,1JDFLr--

Susccptibtc OQ I l
c(\mhin~!:t)n 2.2?

FH.
0.08 I

~i 1-
Dlh er OQ 3lklt' 1'1.(115'"

Hl~h litre (CA >,8»
!Dr-U 63% .

Low tilre leA <80
JDFU 40%

I CA 51~inlnr.
inhibited bv r:t: b roiu
homogcJl:~t~ IJ'le I Cn alone (,'to

ICA sLainm& not
inhibited 100~ t- ICA with 1

other nntlbod v
30"'0 .

Ie" ~O JDFU

____rA"
84'70 I

. GAD UCA wllh)2ollaer

; 61% J antibodies 8S%

! '7KDa
?6%

IC" wllh?1
other antibodies
R4C? ..

36



lntroduction

1.2.4.2Proinsulin and Insulin Autoantibodies (fAA)

Proinsulin is a major autoantigen in type 10M.i\ proliferative T-cc!l response to

proinsulin is observed in 7.7% of recent-onset type 1 OM patients. 16.7% long-

standing type I OM patients and 38.5% of ICA+ first-degree relatives of typeI OM

patients. In contrast. a proliferative T-cell responseto insulin is observed in 23% of of

ICA+ first-degree relatives of type1 OM patients (Dubios-Laf'orgue et al., 1999). The

IAAs can cross-react with proinsulin (Ootta et al.,1994; Verge 19(4). This is not

surprising since proinsulin and insulin have strong amino acid residue similarity to

each other. Although the presence of the IAAs can result from insulin therapy, IAAs

can also be detected years before the onset of treatment(Dernaine et al.. 1995; Awata

et al.. 19(4).

Although there is a small population of cells in the thymus that express insulin in

mice (Smith etal., 1997)and in humans (Pugliese etal., 19(7). insulin is the only islet

[\ cell-specific autoantigen found in diabetes, and it is expressed early in development.

The IAA fluid phase radioimmunoassay has been standardised (Palmer etal., 19(0).

Standardisation could not be achieved in solid phase assays [such as. enzyme-linked

immunosorbent assay (ELISA)], indicating that the IAA epitope is conformational

(Kuglin et al., 1990).

At onset of diabetes, 65% of subjects aged> 10 years have lAAs whereas 93% of

subjects aged::;10 years have IAAs. This indicates that the occurrence of IAAs is

inversely related to age. Furthermore, the frequency of the IAAs is higher in males

than females (Zimmet et al..19(4).
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l ligh levels of IAAs arc associated with HLA-OR4 and someI)()J\ I alleles, such as

I>QA 1*0102. DQA I *()201 and DQAI *0301. In contrast. the IAAs titres are very low

in HLA-DR3+ subjects (Dorta et al., 1994).

In the non-obese diabetic (NOD) mouse, the peptide region of the insulin B chain (15-

23 amino acid residues). which is recognised by previously isolated pathogenic CD4+

Th I cells, is also recognised by highly pathogenic CD8+ TC cells (Wong et al.,

19(9). In addition, there is evidence that the insulin B chain peptide (9-23 amino acid

residues) and GAO-65 are not primary diabetogenic autoantigcns in the type 1 OM of

the Bio-Breeding (BB) rat (Bieg et al., 1999).

1.2.4.3 Autoantibodies to Tryptic Fragments of 64 kD and to IA-21IA-2{J

Autoantibodies to 64kDa autoantigens are detected as early as ICA hut persist in the

circulation longer after diagnosis (Christie et al., 1990a). TheM kD is a combination

of autoantigens expressed by islet ~ cells that are cleavedby trypsin to 50 kD, 40 kO

and 37 kD proteolytic fragments. Ninety three percent of diabetic patients have

autoantibodies to the 50 kO fragment (81%) and to protein tyrosine phosphatase

(PTP)-like proteins (37kD/40 kO fragment) (77%) (Christie et al.. I()90b). The anti-

50 kO correlate with the level of GAA, indicating that the 50 kD fragment is derived

from GA065 (Christie et al., 1993). Also, the 40 kD fragment is deri ved from lA-2 or

its fragment lCA-512bdc. The 37 kO fragment (ICA-related PTP) is derived from IA-

lp. which is an insulin granule component named phogrin. lA-2 and IA-2P both being

transmembrane proteins within the secretory granule membrane of neuroendocrine

cells (Solimena et al.. 1996: Wasmeier and Hutton 19(6). The PTP-I ike domain oflA-

2 has no phophatasc activity detected, while IA-21~ has weak phophutase activity
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detected (Cui et al.. I99(): Lu et al., 1994). In addition. IA-2 and11\-2[\ have structural

similarities to tyrosine phosphatases, Autoantibodies to IA-2 and 1.'\-2P are detected

by irnmunoprecipitation and autoradiography (Christie et al., 1992. I()()~).

The anti-50 kD autoantibodies. which react with a50 kD fragment 01 UAD. can be

detected in most type I DM patients. in SMS and inall ICI\+ :\PS patients with or

without diabetes (Hchmkc et al., 1995).

The anti-37 kD (anti-IA-2p/anti-phogrin) autoantibodies arc detected in acute-onset

diabetic patients. in 66.7% of SMS patients with diabetes and in()()o/" or ICA+ APS

patients who have acute-onset diabetes. Also, the anti-37 kDautoantibodies are more

strongly associated with concordance for diabetes in identical twins than are GAAs

(Christie et al., 1994: Notkins et al., 1996). Furthermore. the anti-37 kO

autoantibodies are strongly associated with ICAs but not associated with GAAs

(Bonifacio et al.. 19(5). The anti-37 kO autoantibodies are better predictive markers

of type I OM onset than ICA or GAA in the general population(Ongagna and Levy-

Marchal. 19(5) and in pre-diabetic twins (Christie et al.. 19(2). The major antigenic

determinant of phogrin is localized within 640-922 amino acidresidues (Kawasaki et

al.. 19(8).

The anti-40 kO autoantibodies (specific for ICA-512bdc/IA-2) arc associated with

ICA + patients (Notkins et al.. 1996; Bingley et al.. 19(3). The prevalence of anti-IA-2

AAs is higher in acute onset type 1 OM than in slowly progressive type I OM

(Yamada et al., 1(97). The anti-IA-2 AAs are present in 56% typeI DM patients.

47°/i, APS II patients with type 10M. 14% SMS patients.4(Y., ;\ PS II patients without
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type I DM (Morgenthaler et al.. 19(7). Also, the 11\-2 autoantibodiesan: associated

with HLA-DR4 (Genovese et al., 19(6).

Figul'c 1.3 Epitopes ofType I DM Autoantibodies on IA-2.

minor 'YPl' I 111\1E majur I'Pl' t 1)\1 r

NX7 "n")

IA-2 consists of an intracellular cytoplasmic domain (604-979 aa). which is

recognized by autoantibodies, and a luminal ecto-domain (31-577 an). which is not

recognized by autoantibodies. The anti-La-Z AAs and anti-phogrin :\!\s recognize

di fferent epitopes in a cytoplasmic domain of [A-2 [56% of sera to juxtamembrane

(.1M) region (601-691 aa), 83% to PTP-like domain (692-979 aa) anti3l)'X) of sera to

both these regions (.1M region and PTP-likedomainj] (Lampasona et ;11.. 19(6). In

contrast, the anti-[A-2 AAs and anti-phogrin AAs recognize only the PTP-like

domain of phogrin (640-10 IS aa) (Kawasaki et al.. 19(8). The major antigenic

determinant of [A-2 IS localized within 762-887 aa. while the nunor antigenic

determinant of IA-2 IS localized within 601-762 aa (Fig. 1.3). which is highly

homologous between 11\-2 and phogrin. In addition. it has been suggL'sted that some

of the anti-IA-2 AAs recognize a conformational epitope(s) associated with the C-

terminal region of native IA-2 (949-979 aa) (Kawasaki et al., 1991{). Furthermore, the

PTP-like domain of phogrin shares 80% amino acid sequence identity to IA-2

(Lampasona et al., 1996: Kawasaki et al., 199R·). The .1M domain shows 50%
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homology between lA-2 and IA-2~. Whereas, the luminal ecto-doruains of both IA-2

and IA-2~ share less than 10% homology (Larnpasona et al., 19(5). IA-2 and IA-2~

probably share common epitopes but also show distinct epitopes:5()-XO% of type 1

DM sera that react with IA-2 also recognize IA-2p. Alternatively. even 95% of type

I OM sera reacting with IA-2~ also recognize IA-2 (Notkins et al., 199X). In all anti-

IA-2 AAs/anti-phogrin AAs positive sera, the binding to phogrin is completely

blocked by preincubation with recombinant IA-2. while the binding to IA-2 is

partially blocked by preincubation with recombinant phogrin (Lampasona et al.,

1996; Kawasaki et al., 1(98). This suggests that the type 1 OM AAs may develop

predominantly to IA-2 rather than phogrin.

Human monoclonal antibodies (huAbs) have been produced from newly diagnosed

type 1 OM patients against IA-2. For example. huAb 76112 recoginzes 794-845 aa of

IA-2 and 741-1033 aa of IA-2~, huAb96/3 recognizes 780-979 aa of IA-2 and 741-

1033 aa of IA-2~, huAb 96/4 recognizes 687-776 aa of IA-2, huAb96/5 recognizes

X90-979 aa and huAb 103/5 recognizes 603-686 aa of IA-2. Interestingly, the huAb

96/3 inhibits the binding of 10 out of 14 of newly diagnosed type I DM sera to IA-2

(Kolm-Litty et al., 2000). Sera of type 1 OM patients respond to three peptides 831-

850 aa, 841-860 aa and 751-770 aa of IA-2 (Hawkes et al., 2000).

Proliferation of peripheral blood mononuclear cells (PBMCs) in response to IA-2 has

been observed (Ellis et al., 1998; Durinovic-Bello et al.. 19(6). T-cell lines have also

been generated to epitopes on IA-2 (Hawkes et al., 2000: Honeyman et al., 1998).
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1.2.4.4 Glutamic acid decarboxylase autoantibodies (GAA)

(iAD is present in the cytoplasm and microsecrctory vesicleslli' iskt f~ cells and

neurons secretingy-aminobutyric acid (GABA) (Daw et al.. 19%). (j/\I) catalyzes the

conversion of glutamate to GABA. GABA is a major inhibitoryneurotransmitter of

the central nervous system. but its function in isletf\ cells remains tu he clarified.

There are two non-allelic isomers of GAD, GAD65 and (;/\1 )(17. (j;\D65 is the

smaller amphiphilic form and consists of 585 amino acid residues.which is encoded

on human chromosome 10. In contrast. GAD67 is the largersoluble hydrophilic form

and consists of 594 amino acid residues, which is encoded on human chromosome2.

(iA065 and 67 are present in GAB A-secreting neurons and ill the cytosol of rat

pancreatic islet f~ cells. whereas only GAD65 is present in humanislet f~ cells and

little GAD65 is present in mouse isletp cells (Ujihara et al .. 1()l)4). Furthermore,

(iAD65 and 67 are highly conserved. 97% identity exists between rat and human

(iAD67, while 9(-'(Yc, identity exists between rat and human (jAD()). In human,

(,AD65 and (-,7 share 76% identity and 87% similarity throughout 174-)X5 amino acid

residues. but they differ within the N-terminus. In thefirst 95 au. they share 22%

identity and -61 % similarity (Hahmke et al., 1995). Whereas ill the <>6-173 amino

acid residues. they share 49% identity.

(iAD autoantigen can be detected by different assays. such asradiul igand binding

assay for recombinant (jA065 (Falorni etal., 19(5). solid phase assays (ELISA or

immunoblotting) for GAA65 in SMS sera which are specific to linear cpitopes (Kim

et al.. 1994) and immunoprecipitation assay which is specificto conformational

cpitopes (Baekkeskox et al., 1(82).
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However. APS (diabetic or not diabetic). SMS and about I()(Yc) or diabetes sera

recognise both isoforrns of GAD (GAD65 and GAD(7) (Tuomi et al.. I ')t)6).

1.2.4.4.1 Type I Diabetes Mellitus Associations with GAD

(,AD autoantibodies (GAAs) are present in 70-80% of newly diagnosed diabetic and

prediabetic patients (Christie et al., 1994).20% of nondiabetic idcnticul twins who are

at low risk of diabetes (Christie et al., 1994),80% ofrelatives ofdiabcuc patients who

themselves developed type I OM (Bingley et al.. 19(3) andS()(~;;) ICA + diabetic

patients (Morgenthaler et al., 1997).

(iAAs can also be associated with other autoantibodies such as <Inti-ONA/RNP

autoantibodies. rheumatoid factor (Petersen et al.. 19(4). anti-smooth muse le cells

autoantibodies and anti-parietal cell autoantibodies.

As discussed earlier. genetic and environmental factors and other autoantibodies may

contribute to GAAs associations. GAAs are significantly associated with HLA-DR3

phenotypes (Verge et al., 1996; Genovese et al., 1996; Hagopain et al.. 19(5) and not

associated with HLA-OR4 (Daw et al., 1(96). The PEVKEK sequence is identical

between P2-C protein of CVB4 and GAD65. The high similarityor the amino acid

sequences of GAD65/67 to the P2-C protein of CVB4, suggests that the immune

response against P2-(, protein of CVB4 may cross-react with GAl)Ilr islet p cells.

leading to more destruction of isletp cells and further release of GAD from isletp

cells. The frequency of GAAs is higher in females than males (Verge et al., 1994;

Verge et al., 1996: Yuet al., 1(94). Also, the frequency of (,Al\s is not associated
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vvith the age differences among children (Verge etal., 1(94). I ligh levels ofGAAs are

negatively associated with [;\:\s(Yu et al., 1994).

High levels of GAAs are detected in newly diagnosed type I[)rv[ patients. but the

(iAA levels decrease by 50(Ynwithin two years after diagnosis.By six years after

diagnosis. the GAA levels in type I DM and healthy individuals arc the same

(Kaufman et al., 19(2). While in SMS patients with long-standing tvpc [ DM, the

(iJ\J\s do not disappear (V clloso et al., [993).

rh: OAAs of type I DM sera, which are present at high titre.recognize

predominantly conformational epitopes on OAD65f middle( M )-rcgiol1 cpitope (240-

435 amino acid residues: aa, type I DM El) and carboxylCj-terminal cpitope (451-

570 aa, type I DM El). as the major antigenic determinants (Fig.1.4). and amino(N)-

terminal epitope, as a minor antigenic determinant] and rarely on(jJ\!)() 7 (Lampasona

et al., 1997; Daw et al.. 1995). The GAD-67 reactivity is thought to be mainly against

epitopes shared withliAD-65 (Hagopian et al., 1993).It has been suggested that the

humoral autoimmune response to OAD-65 in OAA+offspring of diabetic parents is

initially against epitopes within the middle portion of GAD-65 (%-444 amino acid

residues). as a primary target. and spreads to epitopes in other regions01· GAD-65 (1-

9). 96-444 and 445-585 amino acid residues) and GAD-67(Bonifacio et al., 2000).

Also. the GAAs of a rare group of type I DM patients who have high titre of GAAs65

and protective allele IILA-DR2 can recognize a linear epitope in 421-442 aa (Kim et

al.. 1994). Furthermore. some ICAs can react with the middle (M) Ulll'-442 amino

acids) and carboxy (Cj-terminal region (443-585 amino acids) of(iAD()) or with the
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<Imino (N )-terminal region ( 1-195 amino acids)of both CiAD65 and ()7(l Jj ihara et al.,

1994 ).

Conformational epitopcs of GAO-65. 245-450 and 450-585 amino acid residues. are

common targets of (iAAs in type I OM (50%), APS without diabetes (71 %). APS

with diabetes (90%) and SMS (100%). There are two dominant linear cpitopes: first,

7-124 amino acid residues which arc recognised by GAAsfrom pat kilts of type I

DM. SMS, APS without diabetes and APS with diabetes. Second. amino acid residues

5J5-SR5 which are recognised by GAAs from patients of APS without diabetes. APS

with diabetes and SMS (Sohnlein et al., 2000).

Complete suppression of pancreatic isletp cell GAD expression can block the

generation of diabetogenic T cells and protects islet grafts hom autoimmune injury in

NOD mice. Thus. islet p cell-specific GAD expression is required tor the

development of autoimmune diabetes in NOD mice (Yoon et al.. 19(9).

Some studies have detected lymphocyte-mediated immunity in type 1 DM patients

directed to the region of GA065 (247-279 amino acid residues) (Karlsson and

l.udvigsson 19(8) or (250-273 amino acid residues) (Ellis et al.. 1()l)(): Atkinson, et

al., 1(94). This indicates that these regions of GAD-65 (247-279 or ~5()-273 amino

acid residues). which includes the similar amino acid sequence of the 1'2-C protein of

('YB4 (PEYKEK), are involved in the development of type 10M.

More than 50% of recent-onset type 1 DM patients have T cell responses to GAD

(Atkinson et al.. 1992: Harrison et al., 1993). In addition. T cells of patients with type
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1 DM respond to other (;AD65 fragments. including 161-24:1 and 47.'-555 amino acid

residues (Lohmann etal.. 20(0). Also. other studies in humans andN()[) mice have

detected T cell reactivity to the C-terminus ofGAD65 (amino acids 5~4-541 and521-

535) (Schloot, et al.. 1997; Patel et al., 1997). Furthermore. the T cells of type 1 DM

patients have been reported to recognise a peptide 379-390 amino acids out of a range

of different GAD65 peptidcs spanning the region of 379-450 amino acid residues

(Rharbaoui. et al.. 19(9).

Figure 1.4 Epitopes of Type 1 OM and SMS Autoantibodies on (i/\()()5.

, Iy.p.t: !...~M..~.I , ......I~J)l·11'\1 L~

240 451 475 571! 585

'S\IS''EZ ..
"'ISTI

1.2.4.4.2SMS Associations with GAD

SMS results from an impairment of GABA-ergic inhibitory input to «-motor neurons

(Yu et al., 1994). This may be inducedby reaction of GAAs with (;I\!) in GABA-

secreting neurons (Baekkeskov et al., 1990). GAAs are detectable in X9% of SMS

diabetic patients (Morgenthaler et al., 1(97).
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In 11100 dilution of SMS sera. the GAAs can react with full k'n~th (iAD. GAD

fragments, denatured (lAD and GAD peptides; but in III O.OO() dilution of SMS sera.

the GAAs react with full length GAD only. In contrast. in type I DM sera. the GAAs

cannot bind with GAD fragments, denatured GAD or (jA[) peptide» but they bind

with full length GAD (l Ijihara et al., 1994; Daw et al.. 1996: Duw et nl .. 19(5). This

suggests that the GAAs in lDDM sera recognize conformational cpitopcs on GAD65

since these conformational cpitopes are lost in GADfragments.

In SMS sera. the GAAs recognize GAD65 and GAD67 by immuuoprccipitation assay

and recognize only GAD65 on western blots. In contrast. in type I I)M sera, the

(iAAs can recognize only GAD65 by immunoprecipitation assay but not on western

blots, and only 1O-20!YtI of type I OM sera recognize GAD67 (Kim et ul.. 1(94). This

suggests that the GAAs in SMS sera can recognize linear and conformational epitope

on GAD65 and only conformational epitope on GAD67. However. in both type 1 OM

and SMS sera. GAAs recognize GAD65 lacking the first 2~~ aa by the

immunoprecipitation assay. This suggests that the GAAs in type I Dr"1 and SMS sera

recognize conformational epitopes in the carboxy-terminal regionor (iAD65 (Kim et

al., 1(94).

In SMS and APS I sera. the GAAs are present at high titre. In contrast. in type I OM

sera. the GAAs are present at lower titre(Bjork et al.. 19(4). The titre of GAAs in

SMS sera is 100-500 fold higher than GAAs in type I DM sera. The (iAAs in SMS

sera bind to GAD65 and 67 at titres 2:10,000, whereas the GAAs in type I OM sera

hind to GAD65 only at titres 1/100 (Daw et al., 19(6). This indicates that the affinity
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(If (JAAs of SMS sera is higher than those in type I DM sera and/or arc present at

higher concentrations in SMS sera. Also. as mentioned above. the(i;\As of SMS.

\\hich are present at high titre. are less dependent on the conformation of the GAD

and commonly target (i!\D67 as well as GAD65 (Larnpasona et al.. I ()<)7).

Preincubation of SMS sera with 188-442 aa/GAD65 can block the binding of

CiAAs67 with GAD67. whereas preincubation with CiAD67 cannot block the binding

or CiAAs65 with (i!\()65 (Daw et al., 1996). This indicates that the (i!\As in SMS

sera recognize a specific epitope in GAD67, which is highly homologous to 188-442

aa/GAD65. whereas other GAAs65 recognize epitopes which arc not present in GAD-

67. Furthermore. preincubation of SMS sera with 354-368 aa/( iA[)65 inhibits the

hinding of SMS sera with GAD65. In the 354-365 aa/(iAD65. there arc four amino

acid residues K-Kl-M which differ from E-NL-L of GAD67 (Li etal., 1994). This

suggests that these four amino acid residues (K-KI-M) may contribute the binding of

SMS sera with GAD65.

In SMS sera.GAAs recognize in GAD65 either an N-tcrminal epitope 1-8 aa (Kim et

ul., 19(4) and/or 1-95 aa (SMS E2) (Hagopain et al.. 1995; Bjork et al., 1994) as a

major antigenic determinant. a middle region epitope 39()-403 aa (Daw et al., 1996; Li

et al., 1(94). and a ("-terminal epitope 475-585 aa (SMS El) (Butlercl al.. 1993; Kim

et al.. 1(94) as a minor antigenic determinant (Fig. 1A). The SMS (iAAs recognize

SMS El (475-585 aa) (Hagopain et ai., 1995) and SMS E2 (1-95 aa) on western blots

(Kim et al., 19(4). This indicates that the GAAs in SMS sera recognize linear

cpitopcs in both N- and C-terminal regions of GAD. In human and rat (iAD. SMS El
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shares 97% identity and100°,";) similarity (Butler et al., 199:1). Thus. till' human and rat

(iAD react equally with SMS sera.

lhe SMS sera may block the active site of GAD. which contains the pyridoxal 5-

phosphate (PLP) binding site. GAD67 is fully saturated with PLP hut GAD65 is

partially saturated with PLP. The middle region of GAD65 (390--W:I aa), which is

recognized by SMS sera. includes the PLP binding site. The intcrch.mgc. Leu-s-Pro

-HII. in 390-403 aa peptide inhibits the binding of SMS sera with this peptide. Also.

the preincubation of SMS sera with the PLP binding site of(JAD() 7 (399-413 aa

peptide) inhibits the binding of SMS sera with GAD65 PLP binding site (Li et al.,

19(4).

T cells derived from a non-diabetic SMS patient. recognise twopcpridcs of GAD65

(amino acids 331-350 and 341-360), as immunodominant epiiopcs. This region

(amino acids 331-3(0) is 100% identical in human, mouse and rat GA()65. Also, this

region of GAD65 (amino acids 339-352), which is recognised by the T cells of a non-

diabetic SMS patient. has no reactivity with T cells of newly diagnosed type 1 OM

patients. In addition. these T cells of a non-diabetic SMS patient rccouuised peptides

close to the N-terminal part of GAD65 (amino acids 61-90 and191-22() and close to

the (,-terminus (amino acids 491-520) of GAD-65 (Schloot et al.. 1l)l)() l. In addition.

the T cells of SMS patients recognise two regions of GAD-65 (X1-171 and 313-403

amino acid residues). including regions previously reported to heinununodirninant

(Lohmann et al., 20(0).
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1.2.-1.4.3 APS Associations with GAD

(,/\;\s are present in X9% of APS II patients with type I DM and 21(1/" Ilr APS patients

without type I DM (Morgenthaler et al., 1997). Also. in AI'S I sera. the GAAs

recognize UAD65 on western blots (Bjork etal., I ()94). This suggests that the GAAs

in APS I recognize linear epitopes on GAD65. The (jAAs of AI'S. which are present

at high titre. are less dependent on the conformation of the (,AD and commonly target

(ii\[)67 as well as GAD65 (Lampasona etal., 19(7).

Using GAD65/67 chimeras. to maintain conformation-dependent epitopcs of GA065.

that the APS II human monoclonal antibodies (b35. b78 and b(6) target amino acids

270-359 (type I OM-E I) and 443-585 (type I DM-(2) and do not target the N-

terminal third of OAD65. Interestingly, b78 and b96 require both amino acid regions

:' 14-528 and 529-570. not only 514-528 alone (Powers etal., 1(99).

Furthermore. the GAAs of diabetic APS patients' serarecognise a linear epitope

within 7-124 aa ofGAD65. This region ofGAD65 (7-124 aa) is also recognised by

other patients' sera (type 10M. non-diabetic APS and SMS). but at a lower frequency

than diabetic APS as a dominant linear epitope (Sohnlein et al.. 20(0).

1.2.-1.4.4 Monoclonal Antibodies to GAD

Human monoclonal anti-islet cell antibodies (MICA) have been produced that react

with GAD. The MICA 4/6 and MICA 10 recognize epitopes in the middle region of

(,AD (245-450 aa). The MICA 2 epitope (506-531 aa) is very similar to MICA 1/3

epitope (450-570 aa). but the MICA 2 recognizes a linear epitope (on western blots)

in the Cvterrninal reuion of GAD whereas the M ICA I!J recounizc a conformational~ ~
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cpitope in Cvterruinal region of GAD (Richter et al., 1993: Syren et al., 1(96). MICA

7 recognizes a similar epitope to MICA1/3 and 2. In addition. Ml CA 8 and 9

recognize theNstcnuinal region of GAD (Syren et al.. 19(6).

The mouse monoclonal antibody (GAD-6) recognizes an epitope on (iAD65. 475-585

aa (SMS El) (Hagopian et al., 1(95). The GAAs ol·IDDM. SMS and APSn (diabetic

and non-diabetic) sera recognize the region0 f the (; A D-Cl cpi tope on GAD-65

(Davenport et al.. I()(J7). In addition, the extreme C-Ierminal sixteen amino acid

residues of GAD65 arc not involved in epitopes of GAAs ofsrvls and APS II sera and

the epitope of GAD-() (Davenport et al., 1997). Furthermore. (jA[)-() binds only to

(;AD65. not to GAD() 7 (Daw et al., 1995).

1.2.4.4.5 The Three-dimensional modeling ofGAD-65

GAD65-specific residues have been mapped for one linear and 13 conformational

epitopes recognised hy 16 human monoclonal antibodies (M I-I O.hn. b96, DPA.

DPB. OPC and OPO) derived from four type 1 OM patients and one ICA+ individual

with APS. The three-dimensional modeling of GAD65 predicts that all the epitopes

are within charged hydrophilic patches on the surface of the native molecule, and

together cover most of the surface of the middle and ('-terminal regions of GAD65

(Schwartz et al.. 19(9),

The sequence of the PLP-binding region (middle region) (M yers et al.,2000;

Schwartz. et al., 19(9) and C-terminal domain (Schwartz.cl al .. I()99) of human

(iAD65 was threaded onto the PLP-binding domain of ornithine decarboxylase

( lORD) (ORO residues 161-425/GA065 residues 211-4()O) and the C-terminal
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domain of dialkylglycine decarboxylase (2DKB) (DKB residues 3~()-432/GAD65

residues 461-585). respectively. as templates for the model. In the ubscncc of proteins

of known structure with significant homology to the N-terminal domain of GAD65.

the secondary structure of this region was predicted using the algorithmby Chandonia

.md Karpulus 1999 (Fig. 1.5). The first 46 amino acid residues or the N-terminal

region of GAD65 may be buried in the folded molecule (Schwartz.Cl al.. 19(9).

lhe three-dimensional model of the middle region of a (iAD65 dim. .-r (~11-460 amino

acid residues) was built by using lORD template (Myers et al..lOO(): Schwartz. et al..

19(9). The PLP-binding middle region consists of a seven-stranded p sheet

surrounded by seven a-helices. Two monomers and one monomer or GAD65 are

shown in the model of Schwartz et al. (1999) (Fig 1.6a) and in the model of Myers et

al. (2000) (Fig. 1.6b). respectively.

lhc three-dimensional model of the C-terminal region of a GAD65dirner (461-585

ua) was built by using 2DKB template. It predicts an cd~~ fold composed of a four-

stranded p sheet and three amphipathic a-helices (Fig. 1.7). \vith localization of

hydrophobic residues toward the p-strands and residues involved in epitope

recognition on the charged face of these helices (Schwartz. et ul., 1991»).
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Figure 1.S Space-filling model of GAD65. The C-terminal domain (gray) and the
middle domain (white) are shown. Approximate locations of the amino acids required
for human monoclonal antibody recognition are coloured as follows: MICA8 and
MICA9 (green), DPC (pink), the C-terminal epitopes (blue, red, orange) and the
middle region epitopes (purple). Within the C-terminal epitopes, MICA 7 (blue) binds
across the face of two helices (helices Rand T) forming a blocking group with
MICA8 and MICA9 (green), as well as, MICA2, MICAS and b78 (orange, red) which
bind to an exposed helix (helix S). Within the middle domain, MICA!, MICA3 and
DPA bind the backside of helix R, as well as, MICA4, MICA6 and MICAIO which
bind to helix M. Two murine monoclonal antibodies (65-! and 65-2), which block
MICA 7, bind the bottom region of the dimer and span both the C-terminal and middle
domains. The N-terminal domain of GAD-65 is predicted to be located at the top of
this model (Schwartz et aI., 1999).
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Figure 1.6 Three-dimensional model of the middle region (PLP-binding region) of a
GAD-65 dimer. a, Two monomers of GAD65 are shown. PLP molecules are modeled
in red colour. Helix J contains E264 (purple) which is essential for MICAIO binding
and involved in MICA6 binding. K358 (purple) at the C-terminal end of helix M is
essential for the MICA4 epitope. R317 (purple) in helix L is essential for MICA4, b96
and MlO. P231 and S234 (Pink) are involved in the DPC epitope. W375 and E411
(white) differ between GAD65 and GAD67 (Schwartz et al., 1999).b, The PLP-
binding region of GAD-65 is shown highlighting the regions to which MICA3
binding peptides [residues 262-270, which constitutes the PEVKEK loop, is coloured
yellow, a-helixes (residues 285-296 and 215-334) are coloured red, and residues 373-
395 are coloured blue] (Myers et al., 2000).
a)
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Figure 1.6-b)

263-270
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Figure 1.7 Helix wheel projections and a three-dimentional model of the Csterminal
domain of a GAD-65 monomer. Helix wheel projection are viewed from the N-
terminal end of the 3 a-helices in the C-terminal region of GAD-65. Hydrophobic

amino acid residues are shown in black (Schwartz et aI., 1999).
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1.2.4.5 Other Autoantibodies

Carboxypeptidase-H (('PH) is a 52 kO glycoprotein. which is expressed by islet [)

cells and other neuroendocrine cells. In islet ~ cells. ('PH is present in secretory

granules to enhance the conversion of proinsulin to insulin. Anti-C 'PH autoantibodies

are present in 25% of ICA+ first-degree relatives (Dotta et a ..19(4) and 30% of

prediabetic individuals (Eisenbarth et al., 1994).

JX kD autoantigen is present in insulin secretory granules of isletI~cells and other

neuroendocrine cells. It is recognised by newly diagnosed type I DM patients' sera

(Datta et a .. 1994). Anti-ICA69 are detected in 70% of newly diagnosed type I OM

patients. 25% of recent-onset type 1 OM (Roep et al., 1996),q°lt) of first-degree

relatives (Datta et a .. 1(94) and GAAs+ or anti-S? kD+ patients (Bonifacio et al..

19(5).

Anti-GM2-1 islet ganglioside autoantibodies are detected in 65% of ICA+ first-degree

relatives. Also. some leA can react with the GM2-1 ganglioside (Datta et a., 1994).

Islet cell surface autoantibodies (lCSAs) are weakly cytotoxic for islet [) cells. ICSA

have been detected using cultured rodent or human fetal islet cells and it is possible

that these specificities are distinct from K'A specificities. Also. the IgM insulin

receptor autoantibodies ({RAs) react with insulin receptor in newly diagnosed type

DM patients (Eisenbarth et al., 1994).

IgG and IgA anti-B-lacroglobulin autoantibodies (anti-B-l.G) are increased in type I

DM patients <3 years of age and in siblings. Among siblings. the levels of anti-p-
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lactoglobulin are the same either before or after the clinical onset of tYI1L'1 DM (Iorini

cl al., 1994).

Anti-DNA Topoisornerase type II (anti-TopII) autoantibodies are detected in type I

DM patients. The anti-Topll autoantibody epitopes are 1-47 aa. 2X(l-·P2 aa and ('-

terminal third of ONA Topll. There is evidence that the anti-Topl l autoantibodies

may crossreact with other isletp cells autoantigens, such as CiAD. insulin. CPH and

IISP65 (Chang et al.. 19(6).

Anti-steroid 21 hydroxylase (P450c21) autoantibodies are present ill type I OM

patients. 86% of those patients have HLADQB 1*0201 (Peterson er al.. 19(7). Anti-

pancreatic disialo-ganglioside G03 autoantibodies are present in nc\\ly diagnosed

type 1 OM patients but not in IAA and/or ICA+ relatives of type I [)M patients

(Tiberti et al., 1995).

To determine the extent of gluten associated autoimmunitv in type 10M.

autoantibodies to tissue transglutaminase C (tTGA). a major autoantigen in coeliac

disease. were measured in patients with new-onset type 10M. Interestingly. an

increased prevalence of coeliac disease in patients with type I DM is \\ ell established.

The prevalence of IgA to tTGA is about 8% and IgG to tTGA is about 32% in newly

diagnosed type 10M. This suggests that the high prevalenceor autoimmunity to

ITGA may be due to an involvement of the gut in the pathogenesisor type I OM or to

release of tTGA from destroyed pancreatic beta cells (Lampasoua et al.. 1999; Lorini

cl al., 2000).

58



Introduction

Gastric parietal cell antibodies (PCA). which are a marker fix iron deficiency and

pernicious anaemia and atrophic gastritis (Baekkeskov et al., 1990: Riley et al., 1982).

are highly prevalent in type I DM. especially in patients with ICAt~3 years after

diagnosis. The PCA arc associated with GAD autoantibodies and/or HLA DR5

haplotype (De Block et al., 2000).
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1.3 Phage-displayed Random Peptide Library

1\ random peptide library reveals a large repertoire of peptides expressed as fusions

with a coat protein of bacteriophage, resulting in display of the fused proteins on the

surface of the virions. while the DNA encoding the fusions resides within the virions.

Some of the expressed peptides may bind to the selector molecule (such as antibody,

enzyme. cell surface receptor. etc.) and often display a common consensus amino acid

sequence. In some eases. this sequence (motif) shows similarity with a region of the

natural protein binding to the selector molecule (Parmley and Smith I!)XX).

Phage-displayed random peptide libraries (PPL) have been used in a number of

applications (Cortese et al., 1993), including epitope mapping (Scott and Smith 1990),

mapping protein-protein contacts (Hong and Boulanger 19(5). and identification of

peptide mimics of non-peptide ligands (Devlin et al., 19(0). Hioactivc peptides have

been identified either by panning against immobilised purified receptors (O'Neil et

al., 1(92) or against intact cells (Doorbar and Winter19(4). Larger proteins [antibody

fragments (Barbas. S .. and Barbas, C., 1994) , hormones (Lowman et al., 1991),

protease inhibitors (Roberts et al., 1992), enzymes (Soumillion et al.. 19(4) and DNA

hinding proteins (Choo and Klug 1995)] have been displayed on phage. and variants

with altered affinity or specificity have been isolated from libraries of random

mutants.

The uses of combinatorial libraries include the definition of high affinity ligands both

for T cell and antibodies, the application of relevant peptides for lise as potential

preventative and therapeutic vaccines, the requirements for [,CR interactions with

peptide-Ml+C complexes in immunogenicity, and the establishment of new principles
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regarding the level of cross-reactivity in immunological recognition(Pinilla et al.,

19(9). The B cell cpitopes are classified as either discontinuous. which recognise only

native. folded structures. or continuous (Pinilla et al., 19(9).

Regarding T cell epitopes, MHC-peptide complex formation has been achieved by the

presence of anchor amino acids which mediate contact to the spccificity pockets of

MHC class [or class II molecules (Rammensee et al., 1(97). The recognition of this

ligand by the TCR requires contacts with polymorphic and nonpolymorphic residues

of the a-helical domains of the MHC molecule which flank the peptide-binding

groove (Madden et al., 1(95) and also requires specific amino acids or the peptide that

interact with the TCR (Kersh and Allen 1996). Class-l-restricted T cell clones show

higher antigen affinities and the class I binding groove accommodates shorter

peptides (8-10 amino acid residues) than class II (Rotzschke et ul.. 1990). Thus,

relatively less complex peptide libraries can be used to determine class-l-restricted

specificities. By contrast. Class-II-restricted T cell clones show lower antigen

affinities (Davis et al., 1998) and the class II binding groove accommodates longer

peptides (10-25 amino acid residues) (Pinilla et al., 19(9). Thus. more complex

peptide libraries can be used to determine class-Il-resricted specificities, resulting in

lower concentrations of individual peptides (complexity increaseshy 20-fold with

each additional position) and T cell specific peptides with lower affinities.

Furthermore, the combinatorial library can be used to identify the number of different

peptide ligands that can associate with the appropriate MHC molecule and stimulate a

single CD4+ T cell clone (T cell degeneracy) (Pinilla et al.. 19(9).
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lhc range of applications of phage technology has been extended to include the

search for peptides binding to cell receptors (Cortese et al., 1(95). For example.

SrcSH3 domain is an intracellular receptor that has been used to select binding

peptides (Sparks et al.. 1994). Interleukins can also be displayed on phage and

preserve their capacity to interact with their receptors (Gram et al.. 19(3). Random

phage display peptide libraries and affinity selection methods were used to isolate

small peptides that bind to and activate the receptor for the cytok inc erythropoietin

(EPO) (Wrighton et al., 1996). This discovery may form the basis for the design of

small molecule mimetics ofEPO.

Phagotopes are phage peptides selected for their ability to bind to antibody. as do anti-

idiotypes. Also. ph ago topes can induce antibodies (anti-anti-antibodies) that are

specific for the antigen recognised by the tirst antibody. which can he used as a

vaccine. For example. mimotopes (selected peptides) selected with an anti- human

immunodeficiency virus (anti-Hl V) gp120 monoclonal antibody can induce a specific

humoral immune response to gp 120 (Keller et al., 1993). This ind icates that it is

possible to develop vaccines based on mimotopes identified by their capacity to bind

to patients' antibodies. An example is provided by mimotopes selected with the serum

of HbsAg immunised individuals: these mimotopes were able to induce an antibody

response against HbsAg in experimental animals (Folgori et al., 19(4).

Fab antibody fragments have also been displayed on the surface of filamentous phage

MD (Barbas and Lerner 1991) by linking the heavy or light chain to a coat protein

and secreting the other chain into the bacterial periplasm where the two chains are
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associated (Better etul., 19X8). With filamentous phage. it is also possible to mimic

the expression of soluble antibody from the plasma cell (Hoogcnboom et a!.. 1991).

1.3.1 T7 Phage Peptide Library

A constrained T7 phage peptide library C9C, (constrained 9-mers with cystine-cystine

loop) (rig. 1.8). was constructed by Dr Paddy Tighe (Divisionor Immunology,

University of Nottingham). T7 is a double stranded DNA phage with the capability of

lysing E.coli (strain BL 21). It expresses the inserted peptides as-+ I:' copies on the

surface coat protein encoded by geneX. The displayed peptide 9-lllers are expressed

at the C-terminus of geneX. between the EcoRI and Hindlll restriction sites.

Furthermore, it is easy to grow and its replication is very rapid in comparison to the

filamentous phage. Also. it is very robust and stable to harsh conditions that inactivate

other phage. It can display peptides and proteins do not need to he capable of export

through the periplasm and the cell membrane, as is necessary with filamentous phage

(Rosenberg et al.,19(7).
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Figure 1.8 Structure of the T7 Phage Paticle (Rosenberg et al., 1997).
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1.3.2 M13 Filamentous Phage Peptide Library

M13 is a single stranded DNA phage that infects specific strains of E.coli. There are

two types ofM13 filamentous phage peptide library in which the peptides are fused to

either the gene III or VIII proteins (Fig. 1.9). Both of them express their displayed

peptides at the amino terminus of the gene.

Figure 1.9 Structure of the M13 Filamentous Phage. Different Genes(ill, VI, Vll,
VIII and IX) are shown.

pG_ VIII (approx 2800 copies)

j \
pGeneVII and
pG_IX
(5 copiescl each)

I6.snm

viral ssDNA (1 copy, about

930nm
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1.3.2.1M13 Filamentous Phage Peptide Library Gene III

Two types of M 13 Ii lamentous phage peptide library gene III (pili) "here used in the

present study: a library of unconstrained 12-mers (without cystine-cystine loops) anda

constrained library C7C (7-mers with cystine-cystine loopsj.Thcsc can infect E.coli

strain called ER 2537. They express the inserted peptides as 3-5 copies on the surface

coat protein encoded by geneIII. The displayed peptide 12-mersan: expressed at the

N-terminus of pll l, between the KpnI and EagI restriction sites. The pili is responsible

for attachment of the phage to the bacterial F-pilus and infection (Marks et al., 1992).

1.3.2.2 M13 Filamentous Phage Peptide Library Gene VIII

Constrained M 13 filamentous phage peptide library gene VIII 5('4('4 ( l S-rners with

cystine-cystine loops) was used in the present study.It can infects E.Coli strain K91

Kan. It expresses the inserted peptides on a proportion of the 300 copies of the surface

coat protein encoded by gene VIII, vectorf88-4. The displayed peptide 15-mers are

expressed at the N-terminus of gene VIII, between the HindIlIand Pstl restriction

sites. The pVIII is responsible for coating the douhle stranded DNA (Marks etal.,

1(92).
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1.4 Rationale and Aims of the Project

lhe aim of these studies was to determine the epitopes In(iAD()) of three

different mouse monoclonal antibodies: N-terminal monoclonal <Intibody within

4-17 amino acids (au).Cvterminal monoclonal antibody within .5 n-)X5 aa and

GAD-6 (Fig. 1.10): to determine the epitopes in IA-2 of twodifferent mouse

monoclonal antibodies 7613 and 76F (Fig. 1.11): and to determine the cpitopes of

two different human monoclonal antibodies. b78 and b96.11. on (i!\D-65 (Fig.

1.10). Two different types of random peptide phage libraries were used: T7 and

M 13 libraries. The different libraries may yield complementary information which

helps in locating epitopes with more confidence. Previous studies showed that the

(iAD-6 epitope is present in the C-terminal region of GAD. but did 110t reveal

definitively the specific amino acid residues of the GAD-6 epitope. Also. previous

studies showed that the 7613 and 76F epitopes are present in the extracellular

domain of IA-2 and in the N-terminal region of cytoplasmic domain of IA-2.

respectively. but also did not reveal definitively the specific amino acid residues

of the 76B and 76F epitopes. In addition, previous studies showed that the b78

and b96.11 epitopes are present in 532-540 aa and 308-365aa. respectively. on

(iAD-65 (Schwartz et al.. 1999). but did not reveal definitively the specific amino

acid residues of the b78 and b96.11 epitopes. The determinationor epitopes

recognized by these monoclonal antibodies might helpLIS to understand the

antigenic nature of the GAD65 and IA-2 autoantigens.

Since epitope mapping is generally simpler with monoclonal antibodies than with

polyclonal antibodies. these studies should indicate how best to use the random

phage peptide libraries to determine the epitope specificities of patients' serum
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autoantibodies. Thus. a further aim of these studies was to determine the

immunodominant epitopes (public epitopes) in GAD65 or SMS patients' serum

autoanti bodies.

Figure l.tO Epitopes of Mouse (N- and Cvterminus and GA[)-6) and Human (b96.ll
and b78) Monoclonal Antibodies on GAD65.
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An aim of these studies was also to investigate the influence oj" particular features

of the random peptide libraries on their usefulness for epitopc mapping. The

variable features included the importance of using peptides with a cysteine-

cysteine loop (constrained library) or linear peptides, and the importance of using

different libraries with different features [peptide copies. expression. infection.

peptide numbers of amino acids per peptide(7, 9. 12 or IS-mel'S) and coat protein

on which peptide expressed (gene pl ll, pVIII or pX)] in cpitope recognition.
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2 General Materials and Methods

2.1 T7 (e9C or linear 9-mers) Phage Peptide Libraries

2.1.1 General Preparations

In this section. standard procedures are described which were employed111 the

protocols described in detail in the following sections.

2.1.1.1 Ecoli BL 21 in LB Agar Plate

LB agar Petri dishes were inoculated with E.coliBL 21 strain (Novagen. US) using a

sterile wire loop. and incubated at 37°C overnight.

2.1.1.2 Ecoli BL 21 Overnight Culture

A single colony of E.coliBL 21 was removed from anLB agar plate using a sterile

wire loop. added to IOmls ofLB broth in a conical Bask and incubated on a shaker at

37°C overnight.

2.1.1.3 Mid-log Phase Ecoli BL 21 Culture

0.5ml of E.coli BL 21 overnight culture was added to 20-30111lsof LB broth and then

incubated on a shaker at 37°C for 2-3 hours until the optical density at 600 nm

(OD600)=0.6-0.8 as determined by spectrophotometry.
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2. 1. 1.4 Serial Dilution of Non-amplified Eluate

Ten microlitres of the non-amplified eluate (described in section 2.1.2) were serially

diluted by adding 990~t1 LB broth and then mixed. giving aJO-~dilution. Then. 100~t1

of 10-2 diluted eluate were added to 900J-li LB broth and then mixed giving a 10-3

dilution. Then. 100~t1 of 10-3 diluted eluate were added to 900~t1 LB broth and then

mixed. giving a 10-4 dilution; and so on.

2. 1. 1.5 Plating the Diluted Non-amplified Eluate

One hundred microlitres of a dilution of non-amplified eluate were added to I00~t1 of

mid-log phase E.coli BL 21 culture and then mixed with 3mls of top ugarose (0.7%

agarose and 0.1 % MgCh·6H20 in LB broth), which were pre-warmed to 45°C, in a

Pijuo tube. The mixture was poured on to an LB agar Petri dish and incubated at 37°C

for 3 hours.

2.1.1.6 Lysate-treated Membrane

One hundred microlitres of T7 wild-type phage were added to 20mls of mid-log phase

E.coli BL 21 culture in a conical flask and incubated on a shaker at ~7°C for 45

minutes to induce lysis of the E.coli by the phage (termed the lysate). then centrifuged

at 4°C and 1,500 g for 20 minutes. Then, the pellet was collected and resuspended in

2mls of TBS. The lysate was poured on a nitro-cellulose membrane and incubated for

~ominutes at room temperature. Then, the lysate-treated membrane was washed with

0.1 % TBS-T for 15 minutes then with TBS for 5 minutes and then blocked with 5%

BSA/TBS and incubated on a rotator for one hour at room temperature.
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2. 1. 1. 7 Loading of peR Product and Gel Electrophoresis

Five microlitres of peR product or 0.5~d of 100 base pair (bp) standard DNA ladder

were added to 2~Llof loading buffer [0.25% bromophenol blue. 0.2.51% xylene cyanol

FF. 15% Ficol (type 400. Pharmacia) in water]. The agarose ge1121Yc. agurose in Tris-

borate/EDTA (TBE) butter (90mM Tris, 90mM borate and 2mM UHA pH 8.3)

with cthidium bromide O.2~Ll/IllI] was placed in the gel electrophoresis tank,

immersed with TBE and loaded with the samples. The gel was run at X()volts for 45

minutes, observed under an (ultra-violet) UV transilluminator and photographed.

2.1.1.8 5x Buffers Band C

Buffer B was prepared by mixing 300mM Tris HCl pH 8.5. 75mM (NlbhS04 and

IOmM MgCh. While buffer C was prepared by mixing 300mM Tris HCI pH 8.5,

75mM (NH4)2S04 and 12.5mM MgCh.

2.1.2 Bio-panning of Antibody with T7 (C9C or Linear g-mers) Phage Peptide

Libraries

One millilitre (1111) of diluted mouse monoclonal antibody (ntAb), [10

micrograms/millilitre, (1Oug/mll] in 0.05M sodium carbonate/sodium bicarbonate

buffer pH 9.6 (coating buffer). was coated onto a Nunc immune-tube at.foe overnight

on a rotator. The tube was washed 5 times with 25 millimolar (25mM) Tris-buffered

saline (l50mM NaCl) pH 7.4 (TSS) containing 0.1% Tween-20 (0.1'Yr. TBS-T); each

time the tube was incubated at room temperature for 3 minutes with the TBS- T. The

tube was then blocked with 5% bovine serum albumin (BSA) in TRS (5% RSA/TBS)

(blocking solution) at room temperature for one hour on a rotator. Ten microlitres of
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the T7 phage library IlxlO lo plaque forming units (pfu)1I0pll ill 11111 of blocking

solution. was added to the ntAb-coated tube and incubated at 4°(' lor .20 minutes on a

rotator.

The tube was then washed ten times in 0.1% TBS-T to remove unbound phage and

11111of a mid-log phase E.coli BL 21 culture00600=0.6-0.8 was added and incubated

on a rotator at room temperature for 5 minutes. This suspension or Lcoli infected

with the phage which had bound to the mAb was termed the non-amplified eluate.

Ten microlitres of the non-amplified eluate were takenfor dilution and plating (as

described in sections 2.1.1.4 and 2.1.1.5, respectively) to be confident that the specific

phage had been eluted. Thus, the phage formed lysis plaques on the plate and the

number of plaques of each round were compared with the number or plaques of the

previous rounds as an indication of the specificity of the biopanning. The remainder

of the eluate was added to 20-30mls of the mid-log phase E.coli HI. 21 culture in a

conical flask and incubated on a shaker at 37°C for 1-3 hour(s) for amplification, thus

1()("J11ingthe amplified eluate.

Following amplification. the T7 phage lysed the E.coli BL 21 causing dotted strands

of DNA to become visible. 250111 of chloroform were then added and mixed to

complete lysis of the E.coli BL 21 and release of the phage. lhc enriched phage

(amplified eluate) were centrifuged at 4°C and 9.500 g(}I' I () minutes. The

supernatant containing the phage was transferred to a fresh tube and subjected to a

second cycle of affinity selection following the procedure described above. Thus, the
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enriched phage of the preceding round of biopanning were usedII.H· the next round.

Four rounds were carried out in this way for the biopanning of the '1"7phage library.

2.1.3 Detection of Antibody-specific T7 (C9C or Linear 9-mers) Phage Peptide

Clones by Immuno-blotting Assay

The phage of the final round (fourth round) of biopanning were plated out (as

described in section 2.1.1.5) to obtain 100-200 plaques per Petri dish. A millipore

nitro-cellulose membrane (0.45~LM pore size and 82mm area) (Millipore, UK) was

placed onto the plate and incubated for 30 minutes atroOI11 temperature. The

membrane was then blocked with 5% BSA/TBS and incubated on a rotator for one

hour at room temperature. Ten millilitres of diluted mouse monoclonal antibody,

(IOug/ml, diluted in 2.5% BSAITBS-T) was added to the membrane and incubated

on a rotator for 2 hours at room temperature. The membrane was washed with 0.1 %

TBS- T for 15 minutes and then with TBS for 5 minutes.

Sheep anti-mouse IgG (whole molecule) antibody was depleted of reactivity against

T7 phage and E.coli prior to addition to the membrane in order to reduce the non-

specific background staining. This was achieved as follows: 10misor diluted sheep

anti-mouse IgO (whole molecule) alkaline phosphatase conjugate (Sigma) (diluted

I: I000 in 2.5% BSA/TBS- T) was adsorbed with lysate-treated membrane (prepared

as described in section 2.1.1.6) for 30 minutes at room temperature on a rotator.It was

then added to the membrane that had the selected phage clones and antibody bound,

and incubated at room temperature for one hour. The membrane was washed as above

and BCIPINBT (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium)

substrate (Sigma) in de-ionised water with 5mM lcvamisolc \\as added to the
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membrane and incubated for 30 minutes at room temperature. Following the

appearance of the blue spots, the membrane was washed with TBS, then with water

and dried.

Antibody-specific phage clones, which developed as blue spots on the membrane,

were selected from the original plate using a wire-loop and each of them mixed with

Iml of mid-log phase E.coli BL 2t culture and iucubated on a shaker at 37°e for 3

hours for amplification (amplified eluate). Following amplification and lysis of E.coli

by the T7 phage, 25~tI of chloroform were added to each clone to complete lysis. The

amplified eluates were centrifuged at 4°C and 9.500 g for I() minutes. The

supernatants containing the phage were transferred to fresh tubes and used for

polymerase chain reaction (peR), sequencing and enzyme-linked immunosorbent

assay (ELISA).

2.1.4 PCR and Sequencing of Antibody-specific T7 (C9C or Linear s-rners)

Phage Inserts

O.S~t1of each clone of specific phage was added to 2S~t1of peR mixture [Sul of 5x

buffer B or e (described in section 2.L1.8), 0.2S~t1of I% tween, ().5~t1of t OmM

dNTPs (deoxynucleoside triphosphates), 0.5~1 of20~lM T7 A primer (5' -AeA ACG

TTA TCG occ TGT Te-3'_), 0.5~Llof20~M T7 B primer (S'-TACCCrG AGG TTe

ACC GAT AG-3'), I~LiofO.SU/~1 ofampliTaq or Hotstar Taq DNA polymerase and

17.S~d of sterile de-ionised water], The samples were transferred to a Hybaid

Omnigene peR machine, which was preheated to 75°(', and run on apeR reaction

program [(94°(', t 5 minutes)x t; (94°e, 50 seconds: 50°(" I minute;rrc. 1
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rninutcjx j S: (72°e. 5 minutes)x I]. One aliquot was left with no phage to be used as

a negative control.

Five microlitres of peR product were used for loading and gel electrophoresis (as

desribed in section 2.1.1.7) to confirm the appearance of the band of the PCR product

at 150 base pair (bp) length after the PCR reaction.

To prepare the sample (or the sequencing reaction. O.5~d of Exonuclease I (I Ol.l/pl)

and lul of shrimp alkaline phosphatase (SAP) (IlJ1~d) were added to 5~t1 of PCR

product. which showed a bright band at l50bp length. and run on the enzyme

treatment program (37°C, 15 minutes; 80°C 15 minutes) in the Omnigene PCR

machine. One microlitre of enzyme treated PCR product was then added to 4~t1

BigDye Terminator. which is labelled with the following dRhodaminc acceptor dyes:

dR6G to give green colour for terminatorA, dROX to give red colour for terminator

C. dR II Q to give blue colour for terminator G and dTAMRA to give black colour for

terminator T (Perkin-Elmer Applied Biosystems). O.15~d of IO~lM '1'7 sequencing

primer (5' -TTA AGe TGC GTG ACT TGG C-3 ') and 5~t1of sterile de-ionised water

and run on a sequencing reaction program [(96°C_ 30 seconds: 50°('. 15 seconds:

60°('.4 minutes)x25: (28°C. I minute)x 1].

Ten microlitres of sequencing reaction product was purified by adding I24111

sequence cleaning mixture (ethanol: water: 3M sodium acetatepll 4.6-5.2. in a

dilution 25:5: I). The samples were centrifuged at 4°e and 2':21.000 g for 15 minutes.

The supernatant was removed and the pellet cleaned by adding 3()O~t1or 7Q% ethanol
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sheep anti-mouse IgG (whole molecule) alkaline phosphatase conjugate (diluted

I :1000 in 1% BSA/TBS-T) (Sigma) was added to all wells (IOOpl/well) and shaken

at room temperature tor one hour. Wells were washed 3 times in TBS-T and

substrate [1ug/rnl p-nitrophenyl-phosphate (pNPP) substrate (Sigma)III

diethanolamine buffer. 25mM MgCh. 15mM NaN;. pll 9.8] was added to all wells

( IOO~lllwell) and incubated at room temperature. Plates were read at optical density

(OD) 405 nm after 60 minutes at room temperature and overnight at 37°C on a

microtitre plate reader (Molecular Devices). The mean OD of the antigen-coated

wells was corrected by subtracting the mean OD of the equivalent blank wells.

2.1.5.2 ELISA with Maleic Anhydride Activated Polystyrene Plates

Ihe detection of specific T7 phage peptides was confirmed by using maleic anhydride

activated polystyrene (MAAP) 96-well plates (Pierce and Warriner. UK). The

selected phage. T7 wild-type (negative control) (diluted 1:20111 0.2N

carbonate/bicarbonate buffer pH 9.7) was coated onto wells (I OOpl/well) of the

MAAP plate and incubated for one hour at room temperature on a shaker. Wells were

washed 3 times with washing buffer (0.1 % BSA and 0.05% TBS- T). and blocked with

blocking buffer (3°1t) BSA and 0.05% TBS- T) at room temperature for one hour.

Blank wells, which were not coated with phage. were also blocked with blocking

buffer. as above. Following 3 washes. mouse monoclonal antibody (I ug/ml in

washing buffer) or a negative control antibody (I ~lg/ml in washing buffer) was

applied (lOOpl/well) in duplicate to antigen-coated and blank wells and shaken at

room temperature for two hours. Following 3 washes. sheep anti-mouse IgO (whole

molecule) alkaline phosphatase conjugate (diluted I: 1000 in washing buffer) was

78



General Materials and Methods

added to all wells (IOOpl/\vell) and shaken at room temperature1'01' one hour. Wells

were washed .1 times ill TBS-T and pNPP substrate was added to all wells

(IOO~t1/well) and incubated at room temperature for one hour. Plates were read alter

(lO minutes at OD 405 nm on a microtitre plate reader (Molecular Devices). The mean

OD of the antigen-coated wells was corrected by subtracting the mean OD of the

equivalent blank wells.

2.1.6 Construction of T7 Linear 9-mers Phage Peptide Library

2.1.6. 1 Preparation of Double-stranded DNA from Degenerate

Oligonucleotides

The random peptides of the T7 library were encoded by a double stranded DNA insert

assembled from synthetic degenerate oligonucleotides and cloned into gene X of the

vector (T7select415-1) (Bioscience, Cambridge, UK). Oligonucleotide sequences

were as follows: (9Iin3'), 5' -GAT CAC CGA AGC TTC AAU AGC-J' (15 nmol)

(2Ibp) and (9Iin). 5' -GeT GCT TAT eTA GGA ATT CC (NNK).,lei" GGC TCT

TGA AGC TTC GGT GAT C-3' (10.3 nmol) (72bp) (Cruachem. Paisley. Scotland).

The oligonucleotides were annealed to produce double-stranded DNA and extended

by combining the following components: 40J,l1 of buffer C. S~t1of51llM dNTPs, 2pl

of 1% tween, 4~L1of upper primer (9Iin3'), 4J,l1of lower primer (9Iin), 2~d of O.5U/~d

Taq DNA polymerase and 140J,l1 sterile de-ionized water; followed by running the

following program: 94°(', 10 minutes; 57°C, 2 minutes: 72°C. 20 minutes; into the

Omnigene PCR machine.
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The DNA was extracted by adding an equal volume(2()()~tI) of 50:50

phenol:chloroform to the peR product, mixed and centrifuged at 4°(, and 21.000 g for

30 seconds. The supernatant (DNA) was transferred to a fresh microccntrifuge tube

and precipitated by adding 2.5 volume of 100% ethanol and 0.1 volume of 3M Na-

acetate pH 5, incubated at -20°C for 10 minutes, centrifuged at 4°(, and 21.000 g for

20 minutes and cleaned by adding 0.5ml of 70% ethanol and centrifugcd at 4°C and

21.000 g for 5 minutes. The supernatant was discarded, while the pellet (DNA) was

suspended in 20~t1or lOx OPA (One Phor All) (Pharrnacia, UK) and mixed with

160pl of sterile de-ionized water. Then, the suspended DNA wastransferred to 4 fresh

microcentrifuge tubes as follows: 20~tl without digestion. 20~t1 digested by adding 2pl

of EcoRl, 20pl digested by adding 2pl of HindIII or 120~t1 digestedby adding both

6.5~t1 of EcoRI and 6.5~t1 of HindIII and incubated at 37°(' overnight.

The whole amount of undigested and digested DNA (EcoRI. HindIII and

EcoRI+HindIII) or 0.5~tI of 10bp standard DNA ladder were added to loading buffer

and loaded into a 20'X) polyacrylamide gel in TBE. The gel was run at lOW and 10mA

for 3 hours. The DNA was visualized by ethidium bromide staining under UV and

photographed. The band of the DNA insert, which was digested with EcoRI+HindIIL

was visualized at 45bp; and excised and crushed into a tine paste. The gel was

suspended in 3ml of 0.5M ammonium acetate. incubated on a shaker at 37°C

overnight and centrifuged at 4°C and 1,500 g for I minute. The supernatant was

filtered using mobitec syntered plastic disc to remove residual polyacrylamide

fragments of the gel. The supernatant was treated with l-butanol extractions [by

adding an equal volume of I-butanol, mixing and centrifugating at 40(' and 21,000 g
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for 30 seconds, then the upper phase was removed while the aqueous (lower) phase

was retained for the next extraction]. The I-butanol extractions were repeated to

reduce the volume to 0.5ml containing the DNA insert.

The DNA insert was extractedby adding an equal volume (0.5ml) of 50:50

phenol.chloroform, mixed and centrifuged at 4°C and 21,000 g for JO seconds. The

supernatant (DNA) was transferred to a fresh microcentrifuge tube and precipitated by

adding 2.5 volume of 100% ethanol and 0.1 volume of 3M Nu-acetate pH 5.2,

incubated at -20°C for 10 minutes, centrifuged at 4°C and 21.000 g for 20 minutes

and cleanedby adding 0.5ml of 70% ethanol and centrifuged at 4°(, and 21,000 g for

5 minutes. The supernatant was discarded, while the pellet (DNA) was air dried and

re-suspended in 20-30~d of de-ionized water. The insert was aliquoted and stored at

-70°C.

2. 1.6.2 Preparation of Linearized Vector DNA

The vector (T7 wild type phage) (50ml) had been amplified in E.Coli BL21 strain.

The vector was treated with DNAase! (Iug/rnl) and RNAaseA (I OO~lg/ml) and

incubated for 15 minutes at room temperature. Then. 2M ZnCI (20~t1/ml) was added

to the treated vector and incubated for 5 minutes at 37°C. Alter centrifugation at 4°C

and 9,500 g for 1 minute, the pellet was suspended in TES buffer (0.1 M Tris-HCI, pH

8; 0.1M EDT A and 0.3% SDS) (500~I/ml) and incubated for 15 minutes at 60°C.

Then, 3M potassium acetate pH 5.2 (60~I/ml) was added, mixed and incubated on ice

for 10-15 minutes. After centrifugation at 4°C and 13.000 g for I minute, the

supernatant was collected. An equal volume of isopropanol was added, mixed and
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incubated on ice for 5 minutes. After centrifugation at 4°C and 13.000 g for 1 minute,

the pellet was cleanedby adding 70% ethanol and centrifuged at 4°(, and 13,000 g for

5 minutes. The supernatant was discarded, while the pellet (DNA) was air dried and

re-suspended in TE (I OmM Tris-HCI, pH:8; ImM EDTA)buffer (20-1 ()O~Ll/ml).

The suspended DNA vector was extracted by adding an equal volume (600~Ll) of

50:50 phenol.chloroform, mixed and centrifuged at 4°(, and 21.000 g for 30 seconds.

The supernatant (DNA) was transferred to a fresh centrifuge tube and precipitated by

adding 2.5 volume of 100% ethanol and 0.1 volume of 3M Nu-acetate pH 5,

incubated at -20°C for 10 minutes, centrifuged at 4°C and 21.000 g I()("20 minutes

and cleaned by adding 0.5ml of 70% ethanol and centrifuged at 4°(, and 21.000 g for

5 minutes. The supernatant was discarded, while the pellet (DNA) was suspended in

II O~Llof lOx OPA and mixed with 890).11of sterile de-ionized water. The suspended

DNA (lml) was transferred to a fresh microcentrifuge tube and digested by adding

both 50).11of EcoRI and 50~Liof HindIII and incubated at 37°C overnight. The DNA

vector was then de-phosphory lated by adding 1O~Llof shrimp alkal ine phosphatase (1-

3U/~lg of DNA) and incubated at 37°C for 30 minutes.

The DNA vector was extracted by adding an equal volume (1.11 O~tl) of 50:50

phenol:chloroform, mixed and centrifuged at 4°e and 21,000 g for:;0 seconds. The

supernatant (DNA) was transferred to a fresh centrifuge tube and precipitated by

adding 2.5 volume of 100% ethanol and 0.1 volume of 3M Nu-acetate pH 5.2,

incubated at -200e for 10 minutes, centrifuged at 4°C and 2l.000 g!()J" 20 minutes

and cleaned by adding 0.5ml of 70% ethanol and centrifuged at 4°(, and 21,000 g for
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5 minutes. The supernatant was discarded, while the pellet (DNA) was air dried and

re-suspended in IOO~tIof de-ionized water.

2. 1.6.3 Ligation of the vector and insert DNA

The ligation reactions were set up by assembling the following components:

O.04pmol vector, O.12pmol insert, O.51l1of lOx ligase buffer, O.Splor IOmM ATP,

O.5~tlof 100mM OTT and l ul of0.4-0.6 Weiss units o1'T4 DNA ligase. Then, 5~tl of

ligation reaction were mixed gently by pipetting up and down and then incubated 3-

16 hours at 16°C. The 5~Llof ligation reaction was then added to 25pl of T7Select

packaging extract (Bioscience, Cambridge, UK) and incubated at room temperature

for 2 hours. The reaction was stopped by adding 270~L1LB medium.

One microlitre of the non-amplified eluate was taken for dilution and plating (as

described in sections 2.1.1.4 and 2.1.1.5, respectively). giving Ix I()III pfu/rnl. The

bulk of the phage were added to 200-400mls of the mid-log phase E.coli BL 21

culture and incubated on a shaker at 37°C for 1-3 hour(s). Following the lysis, l ml of

chloroform was added and mixed to complete lysis the E.coli BL 21 and release of

the phage. Theamplified phage were centrifuged at 4°(, and 9,500 g 1<)("10 minutes.

The supernatant containing the phage was transferred to a fresh tube. which was

termed the T7 (linear 9-mers) phage peptide library.
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2.2. M13 pili (C7C or Linear 12-mers) Filamentous Phage Peptide

Libraries

2.2.1 General Preparations

In this section, standard procedures are described which were employedIn the

protocols described in detail in the following sections.

2.2. 1. 1 Minimal Plate

Five hundred millilitres of 2X M9 salts, 500ml of 3% agar. 20ml of 20fYc, glucose, 2ml

of 1M MgS04• O.lml of 1M CaCh, Iml of lOmg/ml thiamine were sterilized

separately, combined together at temperature <70°C and poured onto Petri dishes.

2.2.1.2 E.eoli ER 2537 in Minimal Plate

A minimal Petri dish was inoculated with E.coli ER 2537 strain (New England

Biolabs, UK) using a sterile wire loop, and incubated at 37°C overnight.

2.2.1.3 E.eoli ER 2537 Overnight Culture

A single colony of E.coli ER 2537 was removed from a minimal plate using a sterile

wire loop. added toIOmls of LB broth in a conical flask and incubated on a shaker at

] 7°C overnight.
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2.2.1.4 Mid-log Phase E.coli ER 2537 Culture

0.2ml of E.coli ER 2537 overnight culture was added to 20mls of LB broth and then

incubated on a shaker at 37°C for 3 hours until theOO('oo=O.S as determined by

spectrophotometry.

2.2.1.5 Early-log Phase E.coli ER 2537 Culture

0.2ml of E.coli ER 2537 overnight culture was added to 20mls of LB broth and then

incubated on a shaker at 37°C for 15 minutes until the 00(,00=0.05 as determined by

spectrophotometry.

2.2.1.6 Serial Dilution of Non-amplified Eluate

One microlitre of the non-amplified eluate (described in section 2.2.2) was serially

diluted by adding 99~ll LB broth and then mixed. giving a 10-2 dilution. Then, 10~1 of

10-2 diluted eluate were added to 90~1 LB broth and then mixed. giving a 10-3

dilution. Then, 1OO~tl of 10-3 diluted eluate were added to 90~ll LB broth and then

mixed, giving a 10-4 dilution; and so on.

2.2. 1. 7Plating the Diluted Non-amplified Eluate

Ten microlitres of a dilution of non-amplified eluate were added to 200~Llof a mid-

log phase E.coli ER 2537 culture and then mixed and incubated at room temperature

for 1-5 minute(s) (to allow the M13 pIlI phage to infect the E.coli ER 2537) and then

mixed with 3mls of top agarose (0.7% agarose and 0.1% MgCh·61-bO in LB broth),

which were pre-warmed to 45°C. in a Pijuo tube. The mixture was poured onto a LB

agar Petri dish and incubated at 37°C overnight.
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2.2.1.8 Concentration and Purification of Amplified Eluate from Bio-panning

The amplified phage were centrifuged at 4°C and 9,500 g for 1() minutes. The

supernatant containing the phage was transferred to a fresh tube and re-centrifuged.

One sixth volume of PEGfNaCI [20% (w/v) polyethylene glycol in 2.5M NaCl] was

added to the supernatant to precipitate the phage, and incubated at 4°(, overnight. The

precipitated phage were centrifuged at 4°C and 9.500 g tor 15 minutes. The

supernatant was removed and the pellet suspended in 1ml TBS. The suspension was

transferred to a microcentrifuge tube and centrifuged at 4°C and 9,50() g lor 5 minutes

to pellet residual cells. The supernatant was transferred to a fresh microcentrifue tube,

and re-precipitated with 1/6 volume of PEGfNaCI and incubated on ice for 15-60

minutes. The precipitated phage were centrifuged at 4°C and 9,500 g for 10 minutes.

The supernatant was removed and the pellet was re-suspended in 200~L1of TBS.

0.02% NaN3. The suspension was centrifuged at 4°C and 9,500 g for one minute to

pellet any remaining insoluble matter. The supernatant (the amplified eluate) was

transferred to a fresh microcentrifuge tube.

2.2.1.9 Lysate-treated Membrane

One hundred microlitres ofM 13 pIlI wild-type (M 13K07) phage were added to 20mls

of early-log phase E.coli ER 2537 culture(00600=0.05) in a conical flask and

incubated on a shaker at 37°C for 4.5 hours to infect the E.coli by the phage (termed

the lysate), then centrifuged at 4°C and 1,500 gfor 20 minutes. Then. the pellet was

collected and resuspended in 2mls ofTBS. The lysate was poured on a nitro-cellulose

membrane and incubated for 30 minutes at room temperature. Then, the lysate-treated

membrane was washed with 0.1% TBS- T for 15 minutes then withTnS tor 5 minutes

86



General Materials and Methods

and then blocked with 5% BSA/TBS and incubated on a rotatorfor one hour at room

temperature.

2.2.1.10 Lysis of E.coli ER 2537 Overnight Culture by Sonication

Forty millilitres of E.coli ER 2537 overnight culture (described in section 2.2.1.3)

were centrifuged at 4°C and 1,500 g for 20 minutes. The pellet was collected and

suspended in 4mls of TBS, in ice to avoid secretion of E.coli enzymes which may

cause proteolysis of human serum antibodies. Then. the suspension was sonicated for

5 minutes at level lOin ice to lyse the bacteria. The lysate wasfi Itcrcd using a filter

(pore size=G.Zp.M) and stored at -20°e.

2.2.2 Bio-panning of Antibody with M13 pili (C7C or Linear 12-mers) Phage

Peptide Library

Mouse monoclonal antibody (lO~g/ml), in O.OSM sodium carbonate/sodium

bicarbonate buffer pH 9.6 (coating buffer), was coated onto a Nunc immune-tube at

4°C overnight on a rotator. The tube was washed 5 times with 50mM Tris-buffered

saline (l50mM NaCl) pH 7.5 (TBS) containing 0.1(Yo Tween-20 (0.1 (~, TBS-T); each

time the tube was incubated at room temperature for 3 minutes with TBS-T. The tube

was then blocked with 0.5% BSA in TBS containing 0.02% NaN, (blocking

solution) at room temperature for one hour on a rotator. Following6 washes, IOul of

the MI3 pIll phage library rz-to'' pfu/IOul) (New England Biolabs, UK) in l ml of

0.1 % TBS·T were added and incubated at 4°C for 30 minutes on a rotator. The tube

was washed IQ times and 1ml of elution buffer (0.1 % BSA in 0.2M glvcine-HCl pH

2.2) was added and incubated ar room temperature for 10 minutes on a rotator. This
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non-amplified eluate was removed and neutralized with ISOpl of neutralizing buffer

( IM Tris-Hel buffer pH 9.1 ).

One microlitre of the non-amplified eluate was taken for dilution and plating (as

described in sections 2.2.1.6 and 2.2.1.7, respectively). While the rest of the eluate

was added to 20mls of the early-log phase E.coli ER 2537 culture (01)()00=0.05) and

incubated on a shaker at37°e for 4.5 hours for amplification.

The amplified eluate. which was concentrated and purified (as described in section

2.2.1.8), was subjected to a second cycle of affinity selection following the same

procedure described above. Thus, the enriched phage of the preceding round of

biopanning were used for the next round. Three rounds were carried out in this way

for the biopanning of the M 13 pIlI phage library.

2.2.3 Detection of Antibody-specific M13 pili (C7C or Linear 12-mers) Phage

Peptide Clones by Immuno-blotting Assay

This was performed as described in section 2.1.2 for the T7 phage library. The phage

of the final round (third round) of biopanning were plated (as described in section

2.2.1. 7) to obtain 100-200 plaques per Petri dish. A millipore nitro-cellulose

membrane (O.2IlM pore size) was placed onto the plate and incubated for 30 minutes

at room temperature. The membrane was then blocked withSCY!) BSA/TBS. Ten

millilitres of diluted mouse or human monoclonal antibody. (1Oug/ml. diluted in 2.5%

BSA ITBS- T) was added to the membrane and incubated on a rotator for 2 hours at

room temperature. The membrane was washed with 0.1% TBS- T. Ten millilitres of

88



General Materials and Methods

diluted sheep anti-mouse IgG (whole molecule) alkaline phosphatase conjugate

(diluted I: I000 in 2.51% BSA/TBS-T) was blocked with lysate-treated membrane then

added to the membrane that had the selected phage clones and antibody bound, and

incubated for one hour at room temperature. The membrane was washed. as above,

and BCIPINBT substrate in de-ionised water with 5mM levamisolc was added to the

membrane. Following the appearance of the blue spots, the membrane was washed

and dried.

Antibody-specific phage clones, which developed as blue spots on the membrane,

were selected and each of them mixed with Iml of early-log phase Lcoli ER 2537

culture and incubated on a shaker at 37°C for 4.5-5 hours for amplification (amplified

eluate). The amplified eluates were centrifuged at 4°C and 9.500 g lor 30 seconds.

The supernatants containing the phage were transferred to fresh tubes and used for

purification, sequencing and ELISA.

2.2.4 Purification and Sequencing of Antibody-specific M13 pIlI (C7C or

Linear 12-mers) Phage Inserts

Five hundred microlitres of phage clones were precipitatedhy adding 200JlI of

PEGlNaCI. mixed and incubated at room temperature for 1() minutes. The

precipitated phage were centrifuged at 4°C and 9,500 gfix 10 minutes. The

supernatant was removed and the pellet suspended in IOOJlIof Iodide buffer (I OmM

Tris-HCl pH 7.5, ImM EDTA and 4M Nal) and 250~d of 1001Yt. ethanol, and

incubated at room temperature forto minutes to precipitate single-stranded phage

DNA. The precipitated phage DNA was centrifuged at 4°C and 9.500 g for 10
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minutes. The supernatant was removed and the pellet washedby adding 350f.!1of

70% ethanol and dried briefly under vacuum. Then. the pellet were re-suspended in

30~d ofTE buffer (Tris-HCI pH 8 and ImM EDT A). as purified phage.

To perform the sequencing, 4.4f.!1of the purified product was added to 4pl BigOye

Terminator and 1.6~t1of 1pM/~d of -96 gIll sequencing primer (5' -('CC TCA TAG

TTA GCG TAA CG-J·. 1pmol/ul) and run on the sequencing reaction program. Ten

microlitres of sequencing reaction product was purified. dried and prepared for cycle

sequencing, as described in section 2.1.4 for T7 phage library.

2.2.5 Detection of Antibody-specific M13 pili (C7C or Linear 12-mers) Phage

Peptide Clones by Capture ELISA

Rabbit anti-fd IgG (Sigma) (diluted 1:100 in coating buffer) was coated onto wells

( 100~tl/we211)of maxisorp ELISA plates on a shaker. The plates were incubated at

4°C overnight. Wells were washed 3 times(200lll/well) in 0.1% TBS-T. and blocked

with 3% BSA/TBS (120~tl/well) at room temperature for one hour. The selected

phage, unselected phage or helper M13 phage as a negative control (diluted 1:20 in

1% BSA/TBS- T) were applied (I OOllllwell) to test wells. while 1% BS/\/TBS- Twas

applied to blank wells. and shaken at room temperature for 2 hours. following 3

washes. the mouse or human monoclonal antibody or a negative control antibody,

(Iug/rnl in 1% BSA/TBS- T) was applied (1OOf.!l/well)in duplicate to antigen-coated

and blank wells and shaken at room temperature for 2 hours. Following 3 washes.

sheep anti-mouse lg'G (whole molecule) or goat anti-human IgG (Fe specific)

alkaline phosphatase conjugate (diluted 1:1000 in 1% BSA/TBS-T) "vas added to all
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2.3 M13 pVIII (5C4C4) Phage Peptide Library

2.3.1 General Preparations

In this section, standard procedures are described which were employed111 the

protocols described in detail in the following sections.

2.3.1.1 Minimal/Kanamycin Plate

Five hundred millilitres of2X M9 salts, 500ml of 3(% agar, 20ml of 2()(YcIglucose, 2ml

of 1M MgS04, 0.1 ml of IM CaCh, 1ml of l Omg/ml thiamine were sterilized

separately, combined together with 100J..lg/ml of kanamycin at temperature <70°C and

poured onto Petri dishes.

2.3.1.2 E.coli K91BluKan in Minimal/Kanamycin Plate

A minimal/kanamycin Petri dish was inoculated with E.coli K91 B1uKan strain

(Kanamycin-resistant work-horse strain) (New England Biolabs. UK) using a sterile

wire loop and incubated at 37°C overnight.

2.3.1.3 E.coli K91 BluKan Overnight Culture

A single colony of E.coli K91BluKan was removed from a minmal/kanamycin plate

using a sterile wire loop, added to 10mls of LB broth with 1Ouug/rnl of kanamycin in

a conical flask and incubated on a shaker at 37°C overnight.
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2.3.1.4 Late-log Phase E.coli K91BluKan Culture

Forty micolitres of E.coli K91BluKan overnight culture was added to -lmls of terrific

broth and then incubated on a shaker at 37°e for 3-4 hours until the OD('()o=2as

determined by spectrophotometry, followed by re-incubation011 a gentle (slow)

shaker at 37°e for 5 minutes to allow sheared F pili to regenerate.

2.3. 1.5 Amplified E. coli K91 BluKan culture

Two millilitres of the late-log phase E.coli K91 BluKan culture was added to 20mls of

LB broth/0.2~Lg/ml of tetracycline. followed by addition of 40~tI of 10mg/ml

tetracycline

2.3.1.6 Serial Dilution of Non-amplified Eluate

One microlitre of the non-amplified eluate (described in section 2.3.2) was serially

diluted by adding 99~LlLB broth/n.zug/ml of tetracycline and then mixed, giving a

10-2 dilution. Then, IO~Llof 10-2 diluted eluate were added to 90~LlLB broth/0.2~Lg/ml

of tetracycline and then mixed. giving a 10-3 dilution. Then. I0()~t1of 10-3 diluted

eluate were added to 90~d LB brothlO.2~g/ml of tetracycline and then mixed, giving a

10-4dilution; and so on.

2.3.1.7 Plating the Diluted Non-amplified Eluate

Ten microlitres of a dilution of non-amplified eluate were added to 90~tl of a late-log

phase E.coli K91 BluKan culture, mixed and incubated at room temperature for 5

minutes (to allow the M 13 pVIII phage to infect the E.coli ER 2537). and then mixed
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with 500~d of LB broth/G.Zug/ml of tetracycline and incubated on a shaker vigorously

at 37°C for 35 minutes. Two hundred microlitres hom that mixture were poured onto

LB agar Petri dishes containing 40~g/ml of tetracycline and IOOpg/ml of kanamycin

and incubated at 37°C overnight. The number of phage was corrected by

multiplication by 3, because 1/3 volume (200~1) of the mixture (I O+l)()+500=600~ll)

were poured onto the Petri dishes.

2.3.1.8 Lysate-treated Membrane

One hundred microlitres of M 13 pIlI wild-type (M 13K07) phage were added to 2mls

of the late-log phase E.coli K91 BluKan culture (OD(100=2) in a conicaltlask and then

incubated on a slow shaker at 37°C for 15 minutes. Then. 20mls of LB

hroth/0.2~lg/ml of tetracycline were added and incubated on a shaker vigorously at

J 7°C for 35 minutes. This was followed by addition of 40~tIor l Omg/rnl of

tetracycline and incubation on a shaker vigorously at 37°(, overnight to allow

infection of the E.coli by the phage (termed the lysate). The lysate was centrifuged at

4°(, and 1,500 g for 20 minutes. The pellet was collected and resuspended in 2mls of

TBS. The lysate was poured on a nitro-cellulose membrane and incubated for 30

minutes at room temperature. Then, the lysate-treated membrane was washed with

0.1 % TBS- T for 15 minutes then with TBS for 5 minutes andfinally blocked with 5%

I3SA/TBS and incubated on a rotator for one hour at room temperature.
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2.3.2 Bio-panning of Antibody with M13 pV1I1Phage Peptide Library

Mouse monoclonal antibody (I Oug/rnl), in O.05M sodium carbonate/sodium

bicarbonate buffer pl-l 9.6 (coating buffer), was coated onto a Nunc immune-tube at

4°C overnight on a rotator. The tube was washed 5 times with 50mM Tris-buffered

saline (150mM NaCI) pH 7.5 (TBS) containing 0.1% Tween-20 (O.I(Yr,TBS-T); each

lime the tube was incubated at room temperature for 3 minutes with the TBS- T. The

tube was then blocked with 0.5% BSA in TBS containing 0.02% NaNJ (blocking

solution) at room temperature for one hour on a rotator. Followi ng 6 washes, IO~l of

the MI3 pVIII (5C4C4) phage library (lxl013 pfu/IOul), which was kindly provided

by Dr George Smith (Missouri, USA), in lrnl of 0.1% TBS-T were added and

incubated at 4°C for 30 minutes on a rotator. The tube was washed 10 limes and 1ml

of elution buffer (0.1% BSA in 0.2M glycine-HCl pH 2.2) was added and incubated at

room temperature for 10 minutes on a rotator. The non-amplified eluate was removed

and neutralised with l50~1l of neutral ising buffer (1M Tris-HClbuffer pH 9.1).

One microlitre of the non-amplified eluate was serially diluted and plated (as

described in sections 2.3.1.6 and 2.3.1.7). While the rest of the phage were added to

2m Is of the late-log phase E.coli K91 BluKan culture (OD()oo=2) in a conical tlask and

then incubated on a slow shaker at 37°C for 15 minutes. Then. 20m Is of LB

brothlO.2~g/ml of tetracycline were added and incubated on a shaker vigorously at

}7°C for 35 minutes, followed by addition of 40~Ll of l Omg/mlor tetracycline and

then incubated on a shaker vigorously at 37°C overnight.

The amplified phage were concentrated and purified (as described in section 2.2.1.8).

The amplified eluate was subjected to a second cycle of affinity selection following
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the same procedure. Thus. the enriched phage of the preceding round of biopanning

were used for the next round. Four or five rounds were carried out in this way for the

hiopanning of the M 13 pVIII (5C4C4) phage peptide library.

2.3.3 Detection of Antibody-specific M13 pVlll (5C4C4) Phage Peptide Clones

by lmmuno-blotting Assay

The phage of the last round (fourth or fifth round) of biopanning were plated out (as

described in section 2.3.1.7) to obtain 50-100 plaques per Petri dish. Some phage

clones were selected by using a wire-loop and each of them was mixed with 0.5ml of

amplified E.coli K91BluKan culture and incubated on a shaker at 370
(, overnight for

amplification. The amplified phage of each clone were centrifuged at 40
(, and 9.500 g

for 30 seconds. The supernatant was transferred to a fresh tube and subjected to

imuno-blotting, PCR. sequencing and ELISA.

The immuno-blotting was performed as described in section 2.1.2for the T7 phage

library. The amplified clones were placed onto a millipore nitro-cellulose membrane

using sterile tips on a multi-channel pipette and incubated for 5 minutes at room

temperature to dry. The membrane was then blocked withSCYt) BSA/TBS. Ten

millilitres of diluted mouse monoclonal antibody. (IOug/rnl, diluted in 2.5% BSA

ITBS- T) were added to the membrane and incubated on a rotator for.2 hours at room

temperature. The membrane was washed with 0.1% TBS-T. Ten millilitres of diluted

sheep anti-mouse IgG (whole molecule) alkaline phosphatase conjugate (diluted

1:1000 in 2.5% BSA/TBS- T) were adsorbed with lysate-treated membrane then added

to the membrane that had the selected phage clones and antibody bound, and

incubated for one hour at room temperature. The membrane was washed. as above,
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and BCIPINBT substrate in de-ionised water with 5mM levamisole was added to the

membrane. Following the appearance of the blue spots, the membrane was washed

and dried.

2.3.4 PCR and Sequencing of Antibody-specific M13 pV1I1 (5C4C4) Phage

Inserts

The PCR and sequencing of Ml3 pVIII (5C4C4) phage inserts were performed as

described in section 2.1.4 for T7 phage library. 0.5~d of each clone of specific phage

was added to 25J..lI of PCR mixture [5J..lIof 5x buffer B orC. ().2S~L1of I% tween,

O.5~L1of lOmM ofdNTPs, O.5~Liof20J..lM M13 geneVIII primer (forward) (5'-GTA

AAA CGA CGG CCA GT-3'), O.5J..lIof20J..lM of Ml3 geneVIII primer (reverse)

(S'-GGA AAC AGe TAT GAe CAT G-3'), l~Ll ofO.5U/~L1 ofampliTaq or Hotstar

Taq DNA polymerase and 17.5J..lI of sterile de-ionisedwater]. The samples were

transferred to a Hybaid Omnigene PCR machine, which was preheated to 75°C, and

run on a Pf'R reaction program [(94°C, 15 minutes)xl;(94°C, 45 seconds; 55°C, 45

seconds; 72°C, 1 minute)x25; (72°C, 10 minutes)x 1]. One aliquot was left with no

phage to be used as a negative control.

Five microlitres of PCR product were used for loading and gel electrophoresis to

confirm the appearance of the band of the PCR product at 150 bp length after the

peR reaction.

Finally, 0.5J..ll of Exonuclease I (lOU/J..ll) and l ul of SAP(IU/~t1) were added to 5J..lI

of peR product and run on the enzyme treatment program. One microlitre of enzyme
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treated PCR product was then added to 4~t1 BigDye Terminator.O. 15~L1of 1O~lM

MI3 gene VIII sequencing primer (S'-TTC TTA ATG GAA ACT TCe TC-3') and

5~t1of sterile de-ionised water and run on a sequencing reaction program. Ten

microlitres of sequencing reaction product was purified, dried and prepared for cycle

sequencing, as described in section 2.1.4 for the T7 phage library.

2.3.5 Detection of Antibody-specific M13 pV1I1(5C4C4) Phage Peptide Clones

by Capture ELISA

This was performed as described in section 2.2.5 forMI3 pIlI phage library. Rabbit

anti-to IgO (diluted I: I00 in coating buffer) was coated onto wells of maxisorp

ELISA plates and then incubated at 4°C overnight. Wells were washed 3 times in

0.1% TBS- T, and blocked with 3%BSA/TBS. The selected phage, unselected phage

or helper M13 phage as a negative control (diluted 1:20 in 1% BSA/TBS-T) was

applied (lOO,..il/well) to test wells, while 1% BSA/TBS- T was applied to blank wells,

and shaken at room temperature for 2 hours. Following 3 washes, the mouse

monoclonal antibody or a negative control antibody, (I ug/ml in 1'X, BSA/TBS-T) was

applied to antigen-coated and blank wells and shaken at room temperature for 2 hours.

Following 3 washes, sheep anti-mouse IgG (whole molecule) IgO alkaline

phosphatase conjugate (diluted1:1000 in 1% BSA/TBS- T) was added to all wells and

shaken at room temperature for one hour. Wells were washed 3 times and pNPP

substrate was added to all wells and incubated at room temperature for one hour.

Plates were read after 60 minutes at OD 405 nm on a microtitre plate reader. The

mean OD of the antigen-coated wells was corrected by subtracting the mean OD of

the equivalent blank wells.
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3 Mouse Monoclonal Antibodies

3.1 N-terminal and C-terminal Specific Mouse Monoclonal Antibodies

3.1.1 Introduction

Amino-terminal specific mouse monoclonal antibody (N-terminal Mu/vb), GC 3208

(clone I I), is a mouse IgG I monoclonal antibody. This N-term inaI MoAb reacts

weakly with GAD65 on blots, and also reacts with native GAD65.

A non-obese diabetic mouse was immunized with complete Freund's adjuvant at day

6 and a single dose of pancreatic islet p-cell toxin streptozotocin at day 3 before the

fusion was performed. to trigger an immune response against the animals own GAD

released from the damaged islet p cells. Lymphoctes from the spleen of the

immunized mouse were fused with mouse myeloma cells. The fusion mixture was

seeded in 96-well culture plate containing mouse peritoneal cells prepared from a

BALB/c mouse one day before the fusion (Ziegler et al..19(4).

Epitope mapping has shown that the N-terminal MoAb recognizes a linear epitope at

the N-terminus of rat GAD-65. Full abolition of N-terminalMo/vb activity, as

determined by Western blotting on whole rat brain lysate. has been achieved using the

N-terminal peptide [rat/human GAD-65 (4-17) amino acid (aa) residues]. The MoAb

was purchased from Affiniti Research Products (ARP). UK. Interestingly, non-

diabetic SMS serum (DH) can inhibit the binding of the N-terminal monoclonal
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antibody. in a competition ELISA (data not shown). This indicates that OAAs of

some SMS sera recognize epitopes within the extreme N-terminus ofCiAD-65.

Carboxy-terminal mouse monoclonal antibody (C-terminal MnAb), GC 3108 (clone

I II). is a mouse IgO 1 monoclonal antibody (Ziegler et al.. 19(6). This C-terminal

MoAb reacts strongly on blots, but may not react with native GAD65.

BALB/c mouse was immunized with full-length human recombinant OAD-65

(obtained from a baculovirus expression system), which was emulsified in incomplete

Freund's adjuvant, intraperitoneally (i.p) and subcutaneously (s.c) at day 0 and also

after 2 months. Three days before the fusion experiment, the mouse was immunized

with OAD-65, which was dissolved in saline only. as one s.c and i.p injection.

Lymphoctes from the spleen of the immunized mouse were fused with mouse

myeloma cell line SP2/0 (Ziegler et al., 1996).

Full abolition of C-terminal MoAb activity, as determined by Western blotting on

whole rat brain lysate, has been achieved using the C-terminal peptide [rat/human

GAD-65 (572-585) aa residues]. The MoAb was purchased from Aftiniti Research

Products (APR), UK.

The N-terminal and C-terminal MoAb, whose epitopic regions on GAD-65 were

already closely defined (4-17 and 572-585 aa on GAD65. respectively), were

screened with different phage peptide libraries to act as controls for the screening of

other monoclonal antibodies (GAD-6, 76B, 76F and b96.11) for which the specific

amino acid residues of their epitopes were less closely defined. Thus. it was hoped
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that screening these two mouse MoAbs (N-terminal andCvterminal MoAbs) with

different types of phage peptide libraries CMl3 plll, M 13 pVIII and/or '1'7 pX) might

help to indicate the usefulness of these different libraries for screening other mouse or

human MoAbs to determine their epitopes on GAD65 or on otherproteints).
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3.1.2 Results

3. 1.2. 1 M13 pili (linear 12-mers) Phage Peptide Library

3.1.2.1.1 Sequences of Phagotopes Isolatedby Bio-panning of M13 pili Phage Peptide

Library (linear 12-mers) and lmmuno-blotting Assay with N-tenninal or C-

terminal Specific Mouse Monoclonal Antibodies.

M13 pIlI phage library (linear 12-mers) was screened by 3 rounds orimrnunopanning

against N-terminal or C-terminal MoAb as described in section 2.2.2. The number of

plaques obtained in each round during plating increased consecutively. indicating that

the biopanning rounds were successful (Table 3.1).

The specific plaques of the third round were selected by blotting assay as described

in section 2.2.3. Sheep anti-mouse (whole molecule) alkaline phosphatase conjugate

was used to detect the binding of the N-terminal or C-terminal MoAb to the phage

clones. About 20% or 30% of these plaques (clones) showed high affinity, i.e.

showed blue spots on the nitrocellulose membranes, to the N-terminal or C-terminal

MoAb, respectively.

Thirteen and fifteen clones specific to the N-terminal or (,-terminal MoAb,

respectively, were sequenced successfully as describedIII section 2.2.4. All

sequences have been aligned with the relevant portions of GAD-())(Fig. 3.1 and

3.2).
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Eight out of these 13 clones (10,13,18,22,25,26,28 and 30). which were specific to the

N-terminal MoAb, showed a motif of proline followed by glycine followed by 3

amino acids followed by tryptophan followed by serine. Also.4/1J clones (1,24,27

and 29) showed a motif of proline followed by 4 amino acids followed by tryptophan

followed by serine followed by phenylalanine. Furthermore. 1113clones (21) showed

a motif of proline followed by glycine followed by serine. Thus. the main motif of N-

terminal mouse monoclonal antibody is P-G-X-X-X-W-S-F, corresponding to amino

acid residues 4-11 ofGAD-65 (P-G-S-G-F-W-S-F) (Fig. 3.1).

The 15 clones which were specific to the C-terminal MuAb. which were sequenced

successfully, showed a motif of Phenylalanine (11/ 15 clones) or tryptophan (1115

clones) followed by leucine (14115 clones) or valine (IllS clones) followed by

isoleucine (11/15 clones) followed by an amino acid followed by glutamate (14/15

clones) followed by valine (11115 clones), isoleucine (1/15 clones) or leucine(IllS

clones) followed by aspartate(14/15 clones) followed by an amino acid followed by

leucine (12115 clones). Thus, the main motif of C-terminal MoAb is F-L-I-X-E-

I1VIL-D-X-L, corresponding to amino acid residues 573-581 of GAD-65 (F-L-I-E-E-

I-E-R-L), which showed conservative substitutions. Isoleucine, valine and leucine

have aliphatic side chains and thus are similar residues. Aspartate and glutamate have

acidic side chains and thus are similar residues (Fig. 3.2).
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3.1.2.1.2 Testing of N-terminal or C-terminal Specitic Mouse Monoclonal Antibody-

specific Phagotopes of M 13 pIlI Phage Peptide Library (linear 12-mers) by

Capture ELI SA

Sequenced phagotopes of MI3 pIlI (linear 12-mers) phage library were selected for

investigation of their binding to N-terminal or C-terminal MoAbby capture ELISA as

described in section 2.2.5. Mouse IgO 1 kappa myeloma protein was used as a

negative control antibody (Sigma) (1 ug/ml in I(y<, BSA/TBS- T). Sheep anti-mouse

(whole molecule) alkaline phosphatase conjugate was used to detect the binding of the

N-terminal or C-terminal MoAb or negative control antibody (mouse IgU 1 kappa) to

the phage clones. Wild-type MI3K07 phage was used as a negative control phage.

Significant binding with the N-terminal or C-terminal MoAb, respectively. was shown

by 12 out of 13 clones (not clone number 1) selected with the N-terminal MnAb, and

16 out of 18 clones (not clone numbers 1 and 12) selected with the (,-terminal MnAb.

compared to the negative controls (mouse IgO 1 kappa and M 13K07 phage) (Fig. 3.3

and 3.4, respectively).
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Table 3.1 Number of Plaques Obtained in Each Round of Biopanning with Different
Phage Peptide Libraries

Phage Peptide ;\10. nf Plaques No. of Plaques ;\In. of l'laqucs I\u. uf 1'lallUl'S No. of Plaques
Antlbody Library per 1111ill the per rnl ill the per 1111in the per 1111ill the per 1111in the

Firsl Round Second Round Third Rnund Fnurlh I{uulld Fifth round
"N-terminal -T7 rX linear 2x1O' 3xI0" 7xlO -"---:j:lO'
MoA" 9-mcrs.

-MI3 rill 2x1O' 3xI0" 6x IO'
linear 12-lllers.
-M13 rV11I 6x1O' 2x10~ -tx 10" 7, I(I"
5('4('4.

t -tcrminal -MI3 rill _Ix 10' I xlO' 2x I()"
MoA" linear 12-mcrs.

(iAD-6 MoAh -T7 rX ('9(' 7x 10' hIO" 2x 10' (hiO

-T7 rX linear 4x 10' 5xIO" I xlO' 2.10'

9-l11ers.

-MI3 rill -tx 10' 3xIO" 3x 10')

linear 12-l11crs.

-MI3 rill _Ix t 0' !x10" ~x I()"
('7('

2x 10'
-M 13 pV1I1 lx 10' 4xlO' ~dO' :' 10"

5('4('4.

76B MoAb -T7 pX (''Ie. 3xlO" 3x10" -hIO" 2,1(1"

-MI3 rill I xlO' !x10" 6x 10'
linear 12-lllcrs.

76F MoAh -T7 pX (,'1C'. 2xIO" 2xlO" I x")" I x 10"

.MI3 rill 5x10' I xiO' 5< I0"
linear 12-mcrs.

h96.11 huA" .M 13 rill 1x10' 5xI0" -tx 10'
linear 12-lllcl's.

SMS patient -MI) pili _lxlO' (.10) 2xlO' (PT) 5< 10' (1)11) •
I x 10" (Ill)

KxIO' (PM)
sera. linear 12-lllcrs.

* Indicates that the eluate of only the third round ofbiopanning with SMS sera was amplified.
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Figure3.1 Sequences of Peptides Selected from the Filamentous MI:\ pilI (linear 12-
mers) Phage Peptide Library by Binding to N-terminal Specific Mouse Monoclonal
Antibody ..

GAD-65 (4-11 ) P G S G F W S F

10. 13, 18, 22, 25, 26. 28. 30 0

l~
R

J
N

lI~~l
D

21 L CSTVHC C S T

1.24.27,29 S F P L L

Figure 3.2 Sequences of Peptides Selected from the Filamentous M I~ pili (linear 12-
rners) Phage Peptide Library by Binding to C-terminal Specific Mouse Monoclonal
Antibody.

GAD-65 (572-585) D F L E E E I~ L G

4,5,7,10,13,14. IS, 16. 18 G F L W E V J) I L S P

8,9 IG .iuu I) l J, l~
2 S F L Q T
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Figure 3.3 Capture ELISA: Binding of N-tenninal Specific Mouse Monoclonal
Antibody to M13 pill (linear 12-mers) Phage Clones Bound to ELISA Maxisorp
Plates via Rabbit anti-Id IgG.
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Figure 3.4 Capture ELISA: Binding of C-tenninal Specific Mouse Monoclonal
Antibody to M13 pIlI (linear 12-mers) Phage Clones Bound to ELISA Maxisorp
Plates via Rabbit anti-fd IgG.
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3.1.2.2 T7 (linear 9-mers) Phage Peptide Library

J .1.2.2.1 Sequences of Phagotopes Isolated by Bio-panning01''1'7 Phage Peptide Library

(linear 9-lllers) 'and Immuno-blotting Assay withNucnninal Specific Mouse

Monoclonal Antibody

T7 phage library (linear 9-mers) was screened by 4 rounds of immunopunning against

N-terminal MoAb as described in section 2.1.2. The number of plaques obtained in

each round during plating increased consecutively. indicating that the biopanning

rounds were successful (Table 3.1).

The specific plaques from the fourth round of immunopanning the T7 phage library

(linear 9-mers) with the N-terminal MoAb were selected by blotting assay as

described in section 2.1.3. About 70% of these plaques (clones) showed high affinity

to the N-terminal MoAb. giving blue spots on the nitrocellulose membranes,

Twenty clones specific to the N-terminal MoAb were sequenced successfully (Fig.

3.5). Stop codons were found in all the clones at the end of the inserted portions. All

sequences have been aligned with the relevant portions of GAD-65. Fourteen out of

these 20 clones (1-14) showed a motif of proline followed by 2 amino acids followed

by either glycine (5/14) or alanine (9/14). Thus. the main motif of the N-terminal

MoAb is P-X-X-G. corresponding to amino acid residues 4-7 ofGAD-()) (P-G-S-G).

which overlaps with P-G-S-G-F-W-S-F motif(4-11 amino acid residues). However.

this motif showed conservative substitutions. Glycine and alaninehaw aliphatic side

chains and thus are similar residues. Also, three out of these 20 clones (15-17)

showed a motif of glycine followed by serine corresponding to amino acid residues

5-6 of GAD-65 (G-S). In addition, two out of these 20 clones (IX and 19) showed a
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motif of threonine followed by valine or isoleucine corresponding to amino acid

residues 6-7 of GAD-65 (S-G), which showed conservative substitutions. Glycine.

valine and isoleucine have aliphatic side chains and thus are similar residues. Also,

serine and threonine have aliphatic hydroxyl side chains and thus are similar residues

(Fig.3.5).
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Figure 3.5Sequences ofPeptidesSelected from theT7 (linear 9-mers) Phage Peptide
Library by Binding to N-terminal Specific Mouse Monoclonal Antibody.

GAD-65 (4-7) P G S G

1-8 G S R N P T F A *

9-11
I J t J h *T S S K

I I I I I I
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14 R K S S P T F A *

15-17 r R G S M K N A *

18 Q S R R S T V A *
I I I I

19 I K C f T I r f *I
20 I K S rTF M E *
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3.1.2.3 M13 pV11I(5C4C4) Phage Peptide Library

3.1.2.3.1 Sequences or Phagotopes Isolated by Bio-panning of MI3 pV111 Phage Peptide

Library (5(,4C4) and Immuno-blotting Assay with N-terminal Specific Mouse

Monoclonal Antibody

M13 pVIII phage library was screened by 4 rounds of immunopanning against N-

terminal MoAb as described in section 2.3.2. The number of plaques obtained in each

round during plating increased consecutively, indicating that the hiopanning rounds

were successful (Table 3.1).

The plaques specific for N-terminal MoAb from the fourth roundor M 13 pVIII

phage screening were selected by blotting assay as described in section 2.3.3. About

40% of these plaques (clones) showed high affinity to the N-terminal MnAb. giving

blue spots on the nitrocellulose membranes.

Fourteen clones of M 13 pVIII phage library were sequenced successfully (Fig. 3.6).

All the clones showed a motif of serine followed by threonine followedby either

proline (12/14) or valine (2114). Thus, the motif obtained was S-T-P. which does not

correspond to amino acid residues 4-17 of GAD-65 and does not overlap with the

previous motifofthe N-terminal MoAb, i.e. P-G-S-G-F-W-S-F(4-10 amino acids).

3.1.2.3.2 Testing of N-tenninal Specific Mouse Monoclonal Antibody-specific Phagotopes

of M 13 pVIII Phage Peptide Library (5C4C4) by Capture ELISA

Sequenced phagotopes of MI3 pVIII phage library were selected for investigation of

their binding to the N-terminal mouse monoclonal antibodyby capture ELISA as
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described in section 2.3.5. Mouse IgO 1 kappa myeloma protein was used as the

negative control antibody (Iug/rnl in ]% BSA/TBS-T). All the fourteen clones

showed strong binding with the N-terminal mouse monoclonal antibody, compared to

the negative controls (mouse IgO] kappa and WT phage) (Fig. 3.7).
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Figure 3.6 Sequences of Peptides Selected from the Filamentous M13 pV1I1 (5C4C4)
Phage Peptide Library by Binding to N-terminal Specific Mouse Monoclonal
Antibody.
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Figure 3.7 Capture ELISA: Binding of N-terminal Specific Mouse Monoclonal
Antibody to M13 pVIII (5C4C4) Phage Clones Bound to ELISA Maxisorp Plates via
Rabbit anti-fd IgG.
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3.1.3 Discussion

Thirteen clones, which were obtained from the third round of successful biopanning

of the M 13 pIlI (linear 12-mers) phage library and were positively immunostained in

the blotting assay (high affinity) with the N-terminal MoAb, showed a motif of P-G-

X-X-X-W-S-F (Fig. 3.1). This corresponds to amino acid residues 4-11 ofGAD-65

(P-G-S-G-F-W-S-F), as the epitopic determinant of the N-terminal MoAb.

All these 13 clones specific to the N-terminal MoAb obtained from the M 13 pIlI

(linear 12-mers) phage library were screened in ELISA. Twelve of these clones

showed significant binding with the N-terminal MoAb (Fig. 3.3).

Twenty clones, which were obtained from the fourth round of successful biopanning

of the T7 linear 9-mers phage library and were positively immunostained in the

blotting assay (high affinity) with the N-terminal MoAb, showed a motif of P-X-X-G,

corresponding to amino acid residues 4-7 of GAD-65 (P-G-S-G), which overlaps with

P-G-S-G-F-W-S-F motif (4-10 amino acid residues). However, this motif showed

conservative substitutions. Glycine and alanine have aliphatic side chains and thus are

similar residues. Also, three out of these 20 clones (15-17) showed a motif of glycine

followed by serine corresponding to amino acid residues 5-6 of GAD-65 (G-S). In

addition, two out of these 20 clones (18 and 19) showed a motif of threonine followed

by valine or isoleucine corresponding to amino acid residues 6-7 of GAD-65 (S-G),

which showed conservative substitutions. Glycine, valine and isoleucine have

aliphatic side chains and thus are similar residues. Also, serine and threonine have

aliphatic hydroxyl side chains and thus are similar residues. Only one clone did not

show a significant motif (Fig. 3.5)
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Stop codons were present in T7 phage peptide library (linear 9-mers). at the C-

terminal region of the insert.It is possible that the full length of the insert expressed in

some clones, but the MoAb only binds when the insert is present at the extreme C-

terminus of the surface coat protein. Another possibility is that the insert within the

surface coat protein is unstable and not expressed. except at the extreme C-terminus.

Fourteen clones, which were obtained from the fourth round of successful biopanning

of the M13 pVIII (5C4C4) phage library. and were positively immunostained in the

blotting assay (high affinity) with the N-terminal MoAb, showed a motif of S-T-P

(Fig. 3.6). This does not correspond to amino acid residues 4-17 of GAD-65 and does

not overlap with the motif of the N-terminal MoAb. i.e. P-O-S-Ci-F- W-S-F (4-10

amino acid residues).

Sequenced phagotopes of M13 pVIII phage library were selected for investigation of

their binding to the N-terminal MoAb by capture ELISA. All the 14 clones showed

strong binding with the N-terminal MaAb, compared to the negative controls (mouse

(gOI kappa and WT phage) (Fig. 3.7).

Thus. the overall motif of the N-terminal MoAb screened with these three

different phage peptide libraries (M13 pVIII. Ml3 pill and T7 pX) is P-G-S-G-X-

W-S-F. corresponding to amino acid residues 4-11 of GAO-65 (P-O-S-G-F-W-S-

F). This indicates that the epitope, which is recognized by the N-terminal MoAb,

is probably not a helix in GAO-65 due to the recognition of most of the amino

acid residues of the region. Also, this indicates that the phenylalanine. which is in
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the middle of that epitope and not present in the phage peptides recognized by the

N-terminal MoAb, may be buried in the GAO-65 structure.

The sequences of the peptides selected by using the T7 pX (linear 9-mcrs) and M 13

pIlI (linear 12-mers) phage peptide libraries showed some similarity possibly due to

similarity in expressing linear displayed peptides (non-constrained). although they

expressed their displayed peptides at the C-terminus of gene X and N-terminus of

gene III, respectively. The differences in the sequences of the peptides selected by

using the MI3 pVIII (5C4C4) and T7 pX (linear 9-mers) phage peptide libraries,

may be due to the differences in their capability to express their displayed peptides

either at the N-terminus of gene VIII and at the C-terminus of gene X. respectively,

and/or due to the exposed peptides being constrained (cystinc-4-cystine loop,

conformational epitope) and non-constrained (linear epitope), respectively. although

they express a similar number of copies of inserted peptides on the phage surface.

This highlights how different peptide libraries screened with the same antibody can

give very different results, which mayor may not correspond to the cpitope in the

protein to which the antibody is specific.

Interestingly, SMS serum (OH) can inhibit the binding of the N-tcrminal MnAb, in a

competition ELISA (data not shown). This indicates that GAAs of some SMS sera

recognize epitopes within the extreme N-terminus of GAD-65. This consistent with

other studies on the epitope specificities of anti-GAD antibodies in SMS patients at

the N-terminal region of GAD-65 (Bjork et al., 1994; Hagopain et al.. 1995; Kim et

al., 1994). Also, 3 out of 30 sera (i.e. 10%) from type 1 OM patients specifically

displaced the binding of the N-terminal MoAb from GAD-65 (Ziegler et al., 1994).
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In addition, anti-GAD antibodies of a type 1 OM patient's serum an: directed against

residues 5-9 aa of GAD-65 (Rharbaoui et al., 1998). which overlaps with the

predicted overall epitope of the N-terminal MoAb (4-11 aa).Therefore, the N-

terminal region carries a continuous antigenic determinant recognized by the sera

from type 1 OM patients as well as the sera from the SMS patients.

Fifteen clones, which were obtained from the third round of successful biopanning

of the M13 pIlI (linear 12-mers) phage library and were positively inuuunostained in

the blotting assay (high affinity) with the C-terminal MoAb, showed" motif of F-L-

I-X-E-IN/L-O-X-L (Fig. 3.2), corresponding to 573-581 aa of GAJ)-(J) (F-L-I-E-E-

l-E-R-L), as the epitopic determinant of the C-terminal MoAb.

All these 15 clones specific to the C-terminal MoAb obtained from the M 13 pIlI

(linear 12-mers) phage library were screened in ELISA. All of these 15 clones show

significant binding with the C-terminal MoAb, comparing to all negative controls

(mouse IgGl kappa and M13K07) (Fig. 3.4).

The motif of the C-terminal MoAb, 573-581 aa, spans most ofn-helix T (568-582 aa)

in the three-dimensional model of the C-terminal region of GAD-65 (Schwartz et al.,

1999) (Fig. 3.8). The C-terminal MoAb could clearly not interact simultaneously with

all these amino acid residues as an a-helical structure, suggesting that the helix must

he denatured for the MoAb to bind. Indeed, other studies in ourluhorutory indicate

that the C-terminal MoAb binds only to denatured. and not native. (iAD.It may be

relevant that the C-tenninal MoAb was derived from a mouse injected with GAD
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emulsified in incomplete Freund's adjuvant, which will have a denaturing effect on

the antigen.
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Figure 3.8 The Three-dimensional Model of the C-terminal Region of GAD-65
shows that the motif of the C-terminal Specific Monoclonal Antibody, 573-581, spans

most of a-helix T (Schwartz et aI., 1999).
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3.2 GAD-6

3.2.1 Introduction

GAD-6. a murine IgG2a monoclonal antibody, was purchased from Roche, UK.

GAD-6 reacts with GAO-65 on Western blots, as well as reacting with native GAD-

65. This indicates that GAD-6 can recognize a linear epitope on GAD-65.

BALB/c mice were immunized with purified rat brain GAD emulsified in complete

Frendss adjuvant and boosted one month later with the same protein emulsified in

incomplete Freund's adjuvant. Lymphocytes from the spleen of the immunized mice

were fused with NS-1 myeloma cells to create the GAD-6hybridorna clone. GAO-6

was produced in ascites and purified by ammonium sulfate precipitation and anion-

exchange chromatography (Chang and Gottlieb 1988).

GAD-6 recognizes a specific epitope on GAD65 but not on GAD67. within amino

acid residues (aa) 475-585 (SMS El) (Butler et al., 1993). The GAAs of type I OM,

SMS and APS II (diabetic and non-diabetic) sera recognize the region of the GAO-6

epitope on GAO-65. In addition, the extreme C-terminal sixteen amino acid residues

of GAD65 do not form the epitopes of GAD65-specific GAAs of SMS and APS II

sera. nor the epitope ofGAO-6 since these 16 aa are identical with GAD67.

Other work from this laboratory has indicated that lCA+ non-diabetic APS II patients'

sera vary in the proportion of GAAs that inhibit GAO-6 binding to CiAO. There are

no significant differences in levels of GAAs which inhibit GAD-6 binding to GAD

between diabetic APS II patients with abrupt onset and slow onset type 1 OM

120



Mouse Monoclonal antibodies

(Davenport et al., 19(8). In addition, site-directed mutagenesis01" the amino acid

residue at position 550 of GAD65 does not inhibit the binding of(iAD-6 to GAD65

(Davenport et al..1(98). indicating that this amino acid residue is not involved in the

GAD-6 epitope. Furthermore, GAD67 and GAD65 diner particularly in the 515-527

amino acid residue region (Daw and Powers, 1995), indicating that this region might

be recognized by GAD-6 which recognizes an epitope onGA[)65 only. Also, this

region might be recognized by GAAs of type I DM sera which recognize epitopes

mainly on GAD65.

The different phage peptide libraries (T7 pX linear 9-mers. M 13 pili linear l2-mers

and MI3 pVIII 5C4C4) which had been screened with the N-tcrminal and C-terminal

MoAb were also screened with GAD-6. In addition. two other librarieser? pX C9C

and M 13 pIlI C7C) were screened with GAD-6.
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3.2.2 Results

3.2.2. 1 T7 (GgG or linear s-mers) Phage Peptide Libraries

3.2.2.1.1 Sequences of Phagotopes Isolated by Bio-panning ofT7 Phage Peptide Libraries

(C9C or linear 9-lllcrs) and lrnmuno-blotting Assay with GAD-Cl

'1'7 phage library, either C9C or linear 9-mers. was screened by 4 rounds of

immunopanning against GAD-6 as described in section 2.1.2. The number of plaques

obtained in each round during plating increased consecutively. indicating that the

biopanning rounds were successful (Table 3.1).

The plaques specific to GAD-6 from the fourth round of screening the T7 phage

library, either C9C or linear 9-mers, were selected by immuno-blouing assay as

described in section 2.1.3. About 12% of these plaques (clones) showed high affinity

to GAD-6, giving blue spots on the nitrocellulose membranes.

Sixteen clones of T7 (C9C) phage library and 7 clones of T7 (linear 9-mers) phage

library were sequenced successfully. Stop codons were found in allclones. either in

the middle of the inserted portions (in 7 out of the 16 clones of the '1'7 C9C phage

library), or at the end of the inserted portions (in 9/16 clones of the '1'7 C9C phage

library and in all the 7 clones ofT7 linear 9-mers phage library) (Fig.~.(».

All sequences have been aligned with the relevant portions of GAD-()). indicating

sequence homologies in terms of identical residues and conservative substitutions

(i.e. amino acids with biochemically similar side chains)(rig. J.9). In T7 (C9C)
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phage library, 13116 clones (2,4,5,6,7,8,9,1 0, 11,16.18,20 and 21) showed a motif of

either arginine (81l3) or lysine (5/13) followed by either leucine(4/13), alanine

(3/13) or isoleucine(1113) followed by an amino acid followed by lysine. Thus, the

most significant motif for GAD-6 is R(or K)-L(A.l or X)-X-K. Thus. 4 out of these

13 clones (6,8,11 and 16) showed a motif of R-L-X-K. showing strong homology

with amino acid residues 525-528 of GAD-65. Arginine and lysine both have basic

side chains and thus are similar residues. Leucine, alanine and isoleucine have

aliphatic side chains and thus are similar residues. Also. 2 clones (I and 3) showed a

motif of methionine followed by two amino acids followed by alanine. Thus, the

second group of sequences showed another motif which is M-X-X-!\. This shows

homology to amino acid residues 523-526 (M-X-X-L) of GAD-65 which overlaps

with the R-L-X-K sequence (525-528 aa) (Fig. 3.9).

Amongst the clones selected from the T7 (linear 9-mers) phage library. 217 clones(l

and 2) showed a motif of arginine followed by 2 amino acids followed by lysine.

Thus, the most significant motif ofGAD-6 is R-X-X-K. showing homology to amino

acid residues 525-528 of GAD-65. Also, 417 clones (3.4.5 and 6) showed a motif of

leucine followed by an amino acid followed by lysine (L-X-K). This shows

homology to amino acid residues 526-528 of GAD-65 which overlaps with the R-L-

X-K motif(525-528 aa), Clone 7 did not show a significant motiftFig. 3.9).
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Figure 3.9 Sequences of Peptides Selected from the T7 Phage Peptide Libraries by
binding to GAD-6.
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~.2.2.1.2 Testing of liAD-6-specific Phagotopes ofT7 (C9(') Phage Peptide Library by

Direct and Capture ELISA

Sequenced phagotopes ofT7 (C9C) phage library were selectedfix investigation of

their binding to GAD-6 by direct ELISA. Sixout of the 22 clones were screened in

[LlSA by using maxisorp plates as described in section2.1.5.1. Five out of these 6

clones (1,2,3,4 and 6) showed binding with GAD-6. compared to the negative

controls [mouse anti-KLH IgG2a(l ug/ml in 1% BSA/TBS-T) (Sigma). wild-type

(WT) phage or unselected(US) phage] (Fig. 3.10).

All the 22 clones were screened in ELISAusing maleic anhydride activated

polystyrene plates as described section 2.1.5.2.All of these 22 clones showed

binding with the GAD-6, compared to the mouse IgG2a kappa (negative control).

However, only about eleven out of these 22clones (I. 3-10. 12and 15) showed

hinding with the GAD-6 that was higher than the binding ofGAD-() to WT phage

(Fig. 3.11).
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Figure 3.10 Direct binding of GAD-6 to T7 (C9(,) phage clones coated on ELISA
maxisorp plates.
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Figure 3.11 Direct binding of GAD-6 to T7 (C9C) phage clones coated on ELISA
maleic anhydride activated polystyrene plates.
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3.2.2.2 M13 pili (linear 12-mers or C7C) Phage Peptide Libraries

3.2.2.2.1 Sequencesor Phagotopes Isolated by Bio-panningor M I:; pili Phage Peptide

Library (linear 12-lllers or C7C) and Immuno-blotting Assay with (iAD-6

M 13 pIlI phage libraries, linear 12-mers andC7C. were screened by 3 rounds of

immunopanning against GAD-6 as described in section 2.2.2. The number of plaques

obtained in each round during plating increased consecutively. indicating that the

biopanning rounds are successful (Table 3.1).

The plaques from the third round of M13 pIlI phage library screenings were selected

by immune-blotting assay as described in section 2.2.3. Sheep anti-mouse (whole

molecule) alkaline phosphatase conjugate was used to detect the binding of the

GAO-6 to the specific clones. No plaques showed high affinity to the (iAO-6 (i.e.

only very weak blue spots were seen on the nitrocellulose membranes). The clones

which were sequenced and compared with one another did not show a clear motif

and it was impossihle to align them (data not shown).

3.2.2.2.2 Testing of GA D-6-specific Phagotopes of M 13 pili Phage Peptide l.ibrary (linear

12-mers or C7C)by Capture ELISA

Sequenced phagotopes of M 13 pIlI (either linear 12-mers or C7C) phage libraries

were selected for investigation of their binding to GAD-Clby capture ELISA as

described in section 2.2.5 using mouse IgG2a kappa myeloma protein(I ug/ml in 1%

BSA/TBS-T) as a negative control, and sheep anti-mouse (whole molecule) alkaline
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phosphatase conjugate. None of the clones showed binding withGAD-6. compared to

the negative controls (mouse IgG2a kappa or WT phage) (data not shown).

3.2.2.3 M13 pV11I (5C4C4) Phage Peptide Library

3.2.2.3.1 Sequences of Phagotopes Isolated by Bio-panning of M 13 pV111 Phage Peptide

Library (5C4C4) and Immune-blotting Assay with GAD-6

M13 pVII[ phage library was screened by 5 rounds of immunopanning against GAD-

6 as described in section 2.3.2. The number of plaques obtained in each round during

plating increased consecutively, indicating that the biopanning rounds were successful

(Table 3.1).

The specific plaques from the fifth round of M 13 pVIII phage library screening were

selected by immuno-blotting assay as described in section 2.3.3. About 90% of these

plaques (clones) showed high affinity for GAD-6, showing blue spots on the

nitrocellulose membranes.

Ninteen clones of M 13 pVIII phage library were sequencedsuccessfully (Fig. 3.12).

Interestingly, all sequences were identical to each other. This suggests that the M13

pVIII phage library has only one peptide specific to GAD-6.

All the clones showed a motif of methionine followed by two amino acids (cysteine

and tryptophan) followed by alanine. This is consistent with a motif for GAD-6 of M-
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X-X-A, corresponding to amino acid residues 523-526 (M-X-X-L) of( iAD-65 which

overlaps with the R-L-X-K motif (525-528 aa).

1.2.2.3.2 Testing of GAD-6-specific Phagotopes of Mtl pV1I1 Phage Peptide Library by

Capture ELISA

Sequenced phagotopes of M 13 PVIII phage library were selected for investigation of

their binding to GAD-6 by capture ELISA as described in section 2.3.5. All the

ninteen clones showed strong binding with GAD-6. compared to the negative controls

fmouse anti-KLH IgG2a (I ug/rnl in1% BSA/TBS-T). wild-type (WT) phage or

unselected (US) phage] (Fig. 3.(3).
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Figure 3.12 Sequences of peptides selected from the filamentous M I':; pVIII (5C4C4)
phage library by binding to GAD-6.
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Figure 3.13 Capture ELISA: binding ofGAD-6 to MI3 pVIII(5('4('4) phage clones
bound to ELISA maxisorp plates via rabbit anti-to IgG.
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3.2.3 Discussion

Sixteen and seven clones, which were obtained from thefourth round of successful

hiopanning of the T7 phage libraries (C9C and linear 9-mers. respectively) and

which positively immunostained in the immuno-blotting assay with GAD-6

(therefore showing high affinity), were successfully sequenced. The sequences were

aligned with the relevant portions of GAD-65, showing sequence homologies in

terms of identical residues and conservative substitutions (i.e. amino acids with

biochemically similar side chains). Thirteen out of the sixteen clones selected from

the T7 (C9C) phage library and217 clones selectedfrom the T7 (linear 9-mers)

phage library expressed the motif RlK-LlA/I-X-K or R-X-X-K (Fig. 3.9),

respectively, possibly corresponding to 525-528 aa of GAD-65 (R-L-S-K) as an

important epitopic determinant of GAD-6. Interestingly. 4 out of these 13 clones,

which were selected from the T7 (C9C) phage library. contained the motif R-L-X-K.

Arginine and lysine both have basic side chains and are thus similar residues.

Leucine, alanine and isoleucine have aliphatic side chains and arc similar residues.

The two amino acid residues on the ends of the motif (arginine and lysine) are highly

conserved. suggesting that they are important in the paratope-epitope interaction

between GAD-6 and GAD-65.

Another motif of GAD-6 obtained from 3 other clones. which were selected from the

T7 (C9C) phage library, was M-X-X-A, possibly corresponding to 523-526 aa (M-S-

R-L) of GAD-65. The presence of methionine and leucine thus appears to be

important in the paratope-epitope interaction between GAD-6 and GAD-6S.
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Five out of 6 clones. obtained from the T7 (C9C) phage library. showed binding with

GAD-6 in ELISA using maxisorp plates, compared to the 'negative controls (mouse

anti-KLH IgG2a, wild-type (WT) phage and unselected (LJS) phage) (Fig. 3.10).

Also, 22 clones were screened in ELISA by using maleic anhydride activated

polystyrene plates. All of 22 clones showed binding with GAD-6. compared to the

mouse IgG2a kappa (negative control). But only about 11 out of these 22 clones

showed binding with GAD-6, compared to both mouse 19G2a kappa lind WT phage

(negative controls) (Fig. 3.11).

Stop codons are present in T7 phage peptide libraries, both constrained (C9C) or

unconstrained (linear 9-mers), at the C-terrninal region of the insert. It is possible that

the full length of the insert can be expressed, but the MoAb only binds when the insert

is present at the extreme C-terminus of the surface coat protein. Another possibility is

that the insert within the surface coat protein is unstable and not expressed, except at

the extreme C-terminus, as mentioned previously with N-terminal and C-terminal

MoAb.

Other work from this laboratory has indicated that GAD-6 can recognize the motif

M-X-X-L (523-526 aa of GAD-65) by aligning7117 clones. which were selected

from a linear I5-mers M 13 filamentous phage library (Davenport.1995), Also, other

work from this laboratory includes mutation studies in which M-S (523-524 aa) was

changed to R-E. This did not significantly affect GAD-6 binding. but may not have

affected the conformational epitope R-X-X-K and the binding of GAD-6 to the

native GAD-65 (Trigwell et al., unpublished observations).
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GAD-6 does not bind to GAD-67: it is therefore significant that the equivalent

residues of M-S-R-L-S-K, the possible motif of GAD-6 corresponding to 523-528 aa

of GAD-65, are R-E-K-L-H-R in GAD-67, which shows 5 amino acid substitutions

that may disrupt the GAD-6 epitope. Also, the equivalent residues of R-X-X-K,

corresponding to 525-528 aa of GAD-65 indicated by clones selected from the T7

phage libraries, are K-X-X-R in GAD-67; i.e. the opposite orientation of the motif R-

X-X-K in GAD-65. This may prevent the binding of GAD-6 to GAD-67 or other

changes to neighbouring amino acids may affect the binding ofGAD-() (see below).

Sixteen clones, obtained from the third round of biopanning of the M 13 pIlI (linear

12-mers or C7C) phage libraries were weakly immunostained in the blotting assay

with GAD-6 and were successfully sequenced. None of the clones. which were

sequenced and compared with one another, showed a clear motif. Also, it was

impossible to align them (data not shown). None of these clones. which were

screened in ELISA, showed binding with GAD-6. compared to the negative controls

(mouse IgG2a kappa and WT phage) (data not shown). The reason for this may be

that peptides which specifically bind with GAD-6 are not present in this type of

library (M13 pIlI phage library, either linear or constrained). On the other hand, the

reason for this may be that the avidity is too low due to low copy number of peptides

(3-5 copies) expressed by the MI3 phage library on the surface coat protein encoded

by gene III.

Ninteen clones, obtained from the fifth round of successful biopanning of the M 13

pVIII (5C4C4) phage library, were immunostained in the immuno-blotting assay with

GAD-6, and were successfully sequenced (Fig. 3.12). Interestingly. all the sequences
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were identical to each other, i.e. they showed only one peptide. This indicates that the

MI3 pVlII phage library may contain only one peptide specific to CiJ\D-6 under the

conditions employed. All the clones showed a motif of methioninefollowed by two

amino acids followed by alanine. Thus, the other motif of OAD-6 is M-X-X-A,

possibly corresponding to amino acid residues 523-526 (M-S-R-L)or (iAO-65 which

overlaps with R-L-X-K motif (525-528 aa).It may be relevant that both the M 13

pVlII (5C4C4) and T7 (C9C) libraries gave the M-X-X-A motif in sequences

containing two cysteines and which could therefore form di-sulphide bridges.

Whereas the sequences of the T7 (linear 9-mers) gave the R-X-X-K motif.It is

noteworthy that theC-C bridge in the constrained libraries (M13 pVIl1 and T7) would

bring methionine and alanine close together, since these two amino acids are present

within the C-C bridge in MI3 pVIII (5C4C4) and in only the three constrained clones

(L 3 and 13) of the T7 (C9C) phage library. Interestingly, the M 13 pVIII (5C4C4)

phage peptide library gave a motif for the N-terminal MoAb that did not correspond

to its epitope in OAO-65, whereas this M13 pVIII (5C4C4) phage peptide library did

work with GAO-6 by giving both the specific motif and epitope consistent with the

sequences of OAO-65.

Sequenced phagotopes of the M13 pVIII phage library were selected for investigation

of their binding to OAO-6 by capture ELISA. All the ninteen clones showed strong

binding with the GAO-6, compared to the negative controls [mouse <1nti-KLH IgG2a,

wild-type (WT) phage or unselected (US) phage] (Fig. 3.13).

Differences in the sequences of the peptides selected using these two different

libraries (i.e. MI3 pVIII filamentous phage library and T7 phage library) may be
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partly due to the differences in their capability to express their displayed peptide

either at the N-terminus of gene VIII protein of MI ~ Iilamcntous plw~e or at the ('-

terminus of gene X protein of T7 phage. although they express similar numbersor

copies of inserted pcptides (300 or 415 copies. respectively) Oil the surface coat

protein employed by the gene. Two differentsequenceswere selected by these two

different libraries which are recognized by GAD-6. indicating that the GAD-6

cpitope may possess conformational. as well as linear. characteristics. The effects of

conformation on cpitopes of GAD-65 has been shown by the observation that

replacement of Asn247Ser and Leu574Pro can inhibit the binding of human

monoclonal antibodies (II hum MoAbs) to GAD-65. although the positions of these

2 amino acid residues (Asn247 and Leu574) are not involved in thecpitopes of some

of these human monoclonal antibodies. For example. the replacement of Leu574Pro

can inhibit the binding of some C-terminal-directed antibodies. such,IS MICA I and

MICA 3 (Tree et al.. 2000). In addition, the replacement of Val5~2l.ys can inhibit

the binding of MICA 5 to GAD-65, although this amino acid residue (VaI532) does

not form part of epitope of MICA 5 (Glu517, Glu520. Ser524 and Ser527) (Schwartz

et al., 1999).

Analysis of C-terminal deletion mutants showed that the removal of 41 aa at the C-

terminus of GAD65 (545-585 aa deletion mutant) abolished the binding of MICA-2

(human monoclonal antibody) and GAD-6 (Richter et al., 199~). Mapping of the

MICA-2 epitope within GAD-65 using an epitope cDNA library revealed that

MICA-2 recognizes an epitope between 506-531 aa of GAD65 (Richter et al.. 1996).

which includes the GAD-6 epitope proposed here. It has been suggested that the

removal of 41 aa at the C-terminus of GAD65 (545-585 aa deletion mutant l may lead
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to conformational changes of GAD-65 which abolishes the binding or MlCA-2. This

could also apply to the epitope of GAD-6.

There is other evidence for immunogenicity of this region of GAD-Cl5 which may

include the GAD-6 epitope (523-528 aa). In NOD mice, injection of GAD-65 peptide

524-543 aa activates diabetogenic T cells (Zekzer et al., 1998). Furthermore, T-cells

in type I OM patients can react with 379-585 aa ofGAD-65 (Rharbaoui et al., 1999).

A three-dimensional model of the C-terminal region of a GAD65 dimer (461-585

amino acid residues) was built by using the C-terminal domain or dialkylglycine

decarboxylase (2DKB) as a template.It predicts analp fold composed of a four-

strandedP sheet and three amphipathic a-helices [helix R (467-486 aa), helix S (521-

540 aa) and helix T (568-582 aa)] with localization of hydrophobic residues toward

the p-strands and residues involved in epitope recognition on the charged face of

these helices (Schwartz et al., 1999). The proposed motif of GAD-6 (523-528 aa) is

present at the N-terminal end of u-helix S (521-540 aa) in this three-dimensional

model of the C-terminal region of a GAD-65 (Fig. 3.14).

In a-helix S, M523 and L526 are on the hydrophobic side while R525 and K528 are

on the hydrophilic side. The M--L and R--K are facing each other and in similar

positions on successive turns of a-helix S (Fig. 3.14). GAD-6 may recognize M-RL-

K in linear (denatured GAD-65), but might only recognize R--K in native GAD-65

since these residues (R--K) are on the exposed hydrophilic face of the Cl-helix S.It is

possible that the immunization of the BALB/c mouse. to produce OAD-6, with

purified rat brain GAD emulsified in oil (Freund's adjuvant) as a hydrophobic
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solution may have partially denatured GAD and may have exposed its hydrophobic

amino acid residues.

Interestingly, others have mapped the epitope of b78 human monoclonal antibody to

532-540 aa of GAO-65 (Schwartz et al., 1999), which is very close to the proposed

GAO-6 epitope (523-528 aa). In addition, the footprint pattern of CiAD-6 protected

trypsinized fragments of GAO-65 is similar to that given by h7X (Tremble et al.,

1(97). Thus, I investigated the cross-inhibition of binding to UAD-65 between GAD-

6 and b78, as described in section 4.1.2.

There are other regions which could fit with our motifs, but each of these has its

problems. Thus, KARMM at 534-538 aa would be MMRAK in reverse, but then

presumably the 'chirality' of the side chains would be wrong. Also. R536L mutant

bound to GAD-6 in the Schwartz study (legend to figure 3.14). Further, there is

MWRAK at 458-462 aa. but this is outside the region 475-572 to which the Butler

study mapped GAO-6.

One way to determine whether the phage peptides which were selected by

immunopanning with GAO-6 were acting as true mimotopes of GAD-65 epitopes,

would be to immunize mice with the GAD-6 reactive clones. Immunizing with

mimotope peptides presented on filamentous phage has been shown to raise peptide-

specific antibodies which may also bind to the native antigen (Meolaet al., 1995).
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Figure 3.14 The Three-dimensional Model of the C-terminal Region of GAD-65
shows that the motifs of GAD-6, 523-528 or 458-461, which are present at the N-
terminal end of a-helix T or at the C-terminal end of a-helix Q (Schwartz et al.,
1999).
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3.3 768 and 76F Mouse Monoclonal Antibodies

3.3.1 Introduction

The prevalence of anti-IA-2 AAs is higher in acute onset type 1 DM than in slowly

progressive type I OM (Yamada et al., 1997). The anti-IA-2 AAs are present in 56%

type I OM patients, 47% APS II patients with type 10M, 4(X, APS II patients

without type 1 OM and 14% SMS patients (Morgenthaler et al.. 1()97). A major

antigenic determinant of IA-2 is localized to 762-887 aa, while a minor antigenic

determinant of IA-2 is localized to 601-762 aa (Kawasaki et al., I99R).

76B (lgG; isotype unknown) and 76F (IgG2b), are two mouse monoclonal antibodies

which recognize epitopes in the extracellular domain of IA-2 (37R-'577 aa) and N-

terminal region of the cytoplasmic domain of IA-2 (605-6R2 aa). respectively.

Hybridoma supernatants containing the MoAbs were kindly supplied by Dr Ezio

Bonifacio, Milan. Interestingly, huAb103/5 recognizes 603-686 aa of IA-2 (Kolm-

Litty et al., 2000) which is similar to the region recognized by 76F MoAb.

Since the different phage peptide libraries (T7, MI3 pIlI and M13 pVIII) were

working well with purified mouse MoAbs to GAD-65 (N-terminal and C-terminal

MoAbs and GAD-6), I screened the 768 and 76F hybridoma culture supernatants

containing mouse MoAb with some of these phage peptide libraries.
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3.3.2 Materials and Methods

3.3.2.1 Screening of 768 or 76F Mouse Monoclonal Antibody with T7

(GgG) Phage Peptide Library

3.3.2.1.1 Bio-panning of 768 or 76F Mouse Monoclonal Antibody with 1"7 (C9C) Phage

Peptide Library

Hybridoma culture supernatant was exposed to solid-phase anti-mouse IgG to

selectively capture the IgG mouse monoclonal antibodies. The input phage might be

recognized by anti-mouse IgG antibody as well as mouse MoAb. Thus. the input

phage were depleted from anti-mouse IgG Ab-specifc phage (negative selection) by

exposing the input phage to three tubes coated with anti-mouse IgG only. Then, the

depleted phage were exposed to mouse MoAb. which was capturedby anti-mouse

IgG Ab (Fig. 3.(5).

Figure 3.15 Schematic Representation of Negative Selection of Specific Phage
Peptides by using Goat anti-mouse IgO Antibodies.

Goat anti-mouse Supernatant of cloned cells ( 768 or 76F l\1oAbs)

~ I Elution or lnfection

I I ~ nSpecific p• • • •

rJtJ~~
phage

~ I
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Goat anti-mouse IgG (Fe specitic) (Sigma) (20~lg/ml) in coating butter. was coated

onto three Nunc immune-tubes. Ten ug/ml of the goat anti-mouse IgG in coating

buffer, was also coated onto another Nunc immuno-tube. Following overnight

incubation at 4°C on a rotator, all the Nunc immuno-tubes were washed 5 times in

0.1 % TBS-T and blocked with 5% BSAITBS for one hour at room temperature on a

rotator. Ten microlitres of the T7 phage library (1x 1010 pfull O~LI).as input phage, in

11111 of blocking solution, were added to one of the Nunc immune-tubes (first tube),

which had been coated with the goat anti-mouse IgG (20~lg/ml). and incubated at 4°C

for 30 minutes on a rotator. These pre-absorbed T7 phage weretransferred from the

tirst Nunc immuno-tube to another Nunc immuno-tube (second tube). which had also

been coated with the goat anti-mouse IgG (20J.lg/mi). and also incubated at 4°C for 30

minutes on a rotator. The pre-absorbed T7 phage were then transferred from the

second Nunc immuno-tube to another Nunc immuno-tubc (third tube), which had

been coated with the goat anti-mouse IgO (20Jlg/ml), and incubated at 4°C for 30

minutes on a rotator. Hybridoma culture supernatant containing 76B or 76F mouse

monoclonal antibody. was added to the fourth Nunc immune-tube. which had been

coated with the goat anti-mouse IgO (lOJ.lg/ml), and incubated011 a rotator for two

hours at 4°C. Following 5 washes of the fourth Nunc imrnuno-tube. the pre-absorbed

T7 phage were transferred from the third Nunc immuno-tube to the fourth Nunc

immune-tube (test Nunc-imrnuno tube) and incubated at 4°(, for ~() minutes on a

rotator. Following 5 washes of the test Nunc immuno-tube, 1ml of a log-phase BL 21

culture was added and incubated at room temperature for 5 minutes on a rotator. The

following steps including eluate amplification, plating and puri tication were

performed precisely as described in section 2.1.2.
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3.3.2.1.2 Detectionof 76B or 76F Mouse Monoclonal Antibody-specific 1'7 (C9C) Phage

Peptide Clones by Immune-blotting Assay

This was performed as described in section 2.1.3. Thespecificity of the assay

involving binding of the 76B or 76F MoAbs with plaques on the membrane, was

confirmed by investigating the binding of the goat anti-mouse (gei (IOug/ml in 2.5%

BSA/TBS- T), which had been pre-absorbed with lysate-treated membrane, with

plaques on duplicate membrane, followed by washing and adding mouse monoclonal

anti-goat (gO clone GT-34 alkaline phospatase conjugate (Sigma) (diluted 1:1000 in

2.5% BSA/TBS-T). After washing, the BCIPINBT substrate was added. Also, the

specificity of the assay was further confirmed by investigating the binding of the

sheep anti-mouse IgO alkaline phosphatase conjugate, which had been pre-absorbed

with lysate-treated membrane, with plaques on another duplicate membrane. This was

to exclude the false positive detection of plaques which showed binding with goat

anti-mouse IgO and/or sheep anti-mouse IgO (Fig. 3.16).

Figure 3.16 Schematic Representation of Immuno-blotting Assay to Exclude the
False Positive Binding of Ligands with non-specific Phage Peptides.

Nitro-cellulose membrane
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3.3.2.1.3 PCR and Sequencing of 76B or 76F Mouse Monoclonal Antibody-specific T7

(C9C) Phage Insert

This was performed as described in section 2.1.4.

3.3.2.1.4 Detection of 76B or 76F Mouse Monoclonal Antibody-specific T7 (C9C) Phage

Peptide Clones by Capture ELISA

This was performed as described in section 2.1.5.2. Mouse IgG2a kappa or IgG2b

kappa myeloma proteins (Sigma) were used as negative controls for 76B and 76F.

respectively (I ug/ml in washing buffer).

3.3.2.2 Screening of 768 or 76F Mouse Monoclonal Antibody with M13 pili

(linear 12-mers) Phage Peptide Library

3.3.2.2.1 Bio-panning of 76B or 76F Mouse Monoclonal Antibody with M 13 pili (linear

12-mers) Phage Peptide Library

Goat anti-mouse IgG (Fe specific) (Sigma) (20f,lg/ml) in coating buffer. was coated

onto three Nunc immuno-tubes. Ten ug/ml of the goat anti-mouse IgG in coating

buffer, was also coated onto another Nunc immuno-tube. Following overnight

incubation at 4°C on a rotator, all the Nunc immuno-tubes were washed 5 times in

0.1% TBS-T and blocked with 0.5% BSA containing 0.02% NaN1 in TBS (blocking

solution) for one hour at room temperature on a rotator. Following 6 washes, ten

microlitres of the M 13 (linear 12-mers) phage library (1xl 0II pfu/I Oul), as input

phage in Iml of blocking solution, were added to one of the Nunc immuno-tubes (first

tube). which had been coated with the goat anti-mouse IgG (20~Lg/ml).and incubated
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at 4°C for 30 minutes on a rotator. These pre-absorbed M 13 phage were transferred

from the first Nunc immune-tube to another Nunc immune-tube (second tube). which

had also been coated with the goat anti-mouse IgG (20~lg/ml). and also incubated at

4°C for 30 minutes on a rotator. The negative and positive selections lor the next

tubes were performed precisely as described in section 3.3.2.1.1. Following 10 washes

of the fourth (test) Nunc immuno-tube, 1rnl of elution buffer was added and incubated

on a rotator for 10 minutes. The non-amplified eluate was removed and neutralized

with ISO~1 of neutralizing buffer (Fig.3.15). The following steps including eluate

amplification. plating and purification were performed as described in section 2.2.2.

3.3.2.2.2 Detection of 76B or 76F Mouse Monoclonal Antibody-specificM 13 pili (linear

12-mers) Phage Peptide Clones by Immuno-blotting Assay

This was performed precisely as described in section 2.2.3 by using sheep anti-mouse

(whole molecule) alkaline phosphatase conjugate to detect the bindingor the 76B and

76F MoAb to the specific clones. The specificity of the assay was confirmed using the

controls described in section 3.3.2.1.2 (Fig. 3.16).

3.3.2.2.3 Purification and Sequencing of768 or 76F Mouse Monoclonal Antibody-specific

M 13 pilI (linear 12-mers) Phage Insert

This was performed as described in section 2.2.4.
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3.3.2.2.4 Detection of 76B or 76F Mouse MonoclonalAntibody-specific M13 pili (linear

12-mers) Phage Peptide Clonesby Capture ELISA

This was performed as described in section 2.2.5. The phage were bound to the plate

via rabbit anti-fa IgG. Mouse IgG2a kappa myeloma protein was used as a negative

control for 76B and IgG2b kappa myeloma protein (Sigma) was used as a negative

control for both 76B and 76F (I ug/ml in 1%BSA/TBS- T). Sheep anti-mouse (whole

molecule) alkaline phosphatase conjugate was used to detect the binding of the 768

and 76F MoAb or their negative control antibodies (mouse IgG2a or IgJi2b kappa) to

the specific clones.

The specificity of the assay involving binding of the 76B or 76F with the phage. was

confirmed by investigating the binding of the goat anti-mouse IgG(2~Lg/ml in 1%

BSA/TBS-T) with the phage, followed by adding mouse anti-goat IgG alkaline

phospatase conjugate (diluted I :1000 in 1%BSA/TBS-T) and thepNPP substrate was

added. This was to exclude the false positive detection of clones which showed

binding with goat anti-mouse IgG (Fig. 3.17). A similar control investigated whether

the sheep anti-mouse conjugate bound to any of the selected phage (Fig. 3.17). Also,

the specificity of the assay was further confirmed by examining the binding of the

76B MoAb with 76F-selected phage, and by binding of the 76F MoAb with 768-

selected phage. This was to exclude the non-specific binding of the 7M3 and 76F with

76F-selected and 76B-selected phage, respectively.
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Figure 3.17 Schematic Representation of Capture ELISA to Exclude the False
Positive Binding of Ligands with non-specific Phage Peptides.
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3.3.3 Results

3.3.3.1 T7 (e9C) Phage Peptide Library

3.3.3.1.1 Sequences of Phagotopes Isolated by Bio-panning of T7 Phage Peptide Library

(C9C) and lmmuno-blotting Assay with 7613 or 76f Mouse Monoclonal

Antibody

T7 phage library (C9C) was screened by 4 rounds of immunopanning against 768 or

76F mouse monoclonal antibodies (McAb) as described in section 3.3.2.1.1. The

number of plaques obtained in each round during plating increased consecutively,

indicating that the biopanning rounds were successful (Table 3.1 ).

The specific plaques from the fourth round of screening the T7 phage library (C9C)

with 768 or 76F MoAb were selected by immuno-blotting assay as described in

section 3.3.2.1.2. About 6% and 15% of these plaques (clones) showed high affinity,

giving blue spots on the nitrocellulose membranes, to the 76B or 76F MoAb

respectively. No plaques detected by the 768 MoAb showed highaffinity to goat

anti-mouse IgG. However, about 2% of 76F plaques showed high affinity to goat

anti-mouse IgG.

Seventeen clones and nine clones, which were specitic to the 76B or 76F MnAb.

respectively, were sequenced successfully. Stop codons were found in all clones

either in the middle of the inserted portions in 15117 or 7/9 clones or at the end of the

inserted portions in2/17 or 2/9 clones of the 768 or 76F mouse MnAb. respectively.
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All the sequences were aligned with one another and with the relevant portions of IA-

2. Nine out of the 17 clones-specific to the 768 MoAb (1.2.8.9.1 1.12.14.15 and 18)

showed a motif of lysine followed by proline followed by an amino acid followed by

serine. Thus, the main motif of the 768 MoAb is K-P-X-S. corresponding to amino

acid residues 479-482 of IA-2 (K-P-L-S); this precise sequence was given by 2 clones

(8 and 15). Furthermore. one clone (5) showed a motif of lysine followed by proline

which overlaps with the previous motif. In addition, two clones (12 and 7) showed a

motif of glutamine followed by lysine (not clone 7) followed by proline, giving a

motif (Q-K-P) (478-480 aa of IA-2), which overlaps with the previous motif. Thus.

the overall motif of the 768 MoAb from the sequences of these clones obtained from

the screening the T7 (C9C) phage library with 768 MoAb. is Q-K-P-L-S.

corresponding to 478-482 aa of IA-2. The other 6 clones(3. 4. 6. 10. IJ and 16) did

not show any significant motif (Fig. 3.18).

Three out of the 9 clones-specific to the 76F MoAb (3,5 and 7) showed a motif of

phenylalanine (3,7) or tryptophan (5) followed by an amino acid followed by histidine

followed by glutamine (7) or asparagine (3,5). Thus, the main motif of the 76F MoAb

is F/W-X-H-QIN, corresponding to amino acid residues 626-629 of 1/\-2 (F-E- Y-Q),

which showed conservative substitutions. Phenylalanine and tryptophan have

aromatic side chains and are thus similar residues. Tyrosine and histidine have amide

side chains and are thus similar residues. Also. glutamine and asparagine have

aromatic side chains and are thus similar residues. Furthermore.:2 clones (13.22)

showed a motif of tyrosine followed by glutamine which overlaps with the previous

motif. In addition. 3 clones (2. 8 and 12) showed a motif of histidine followed by
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asparagine (H-N). corresponding to 628-629 aaof IA-2 (Y -Q). which showed

conservative substitutions and also overlaps with previous motif. Clone 4 did not

show a significant motif (Fig. 3.19).

3.3.3.1.2 Testing of 768 or 76F Mouse Monoclonal Antibody-specific Phagotopes of T7

Phage Peptide Library (C9C)by ELISA

Sequenced phagotopcs of T7 (C9C) phage library were selectedfor investigation of

their binding to the 76B or 76F MoAb by ELISA as described in section 3.3.2.1.4.

Six clones specific to 76B and six specific to the 76F MoAb were screened in ELISA

by using MAAP plates. All of these 76B-specific clones showed a significant binding

with the 76B MoAb. compared to both negative controls [mouse IgG2a kappa (Fig ..

3.20a) and WT phage. as indicated by the ratio of OD for binding of 76B to its

specific clones divided by OD for binding of IgG2a to the 76B-spccilic clones (Fig.

3.20b)]. In contrast, all of the 76F-specific clones showed asignificant binding with

the 76F MnAb. compared to the negative control antibody (mouse IgG2b kappa)

only (Fig. 3.21a), whereas, only some of the clones (particularly clone 4) showed

binding with the 76F Mo Ab, compared to both negative controls (mouse IgG2b

kappa and WT phage, as indicated by the ratio of OD for binding of 76B to its

specific clones divided by OD for binding oflgG2a to the 76B-specitic clones) (Fig.

3.21b).
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Figure 3.18 Sequences of Peptides Selected from T7 (C9C) PhagePeptide Library by
Binding to 768 Mouse Monoclonal Antibody.
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Figure 3.19 Sequences of Peptides Selected from T7 (C9C) Phage Peptide Library by
Binding to 76F Mouse Monoclonal Antibody.
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Figure 3.20 a)Direct Binding of 76B Mouse Monoclonal Antibody to T7(C9C)
Phage Clones Coated ELISA Maleic Anhydride Activated Polystyrene Plates. b)
Ratio of OD for Binding of 76B to its Specific Clones dividedby OD for Binding of
IgG2a to the 76B-specific Clones.
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Figure 3.21 a) Direct Binding of 76F Mouse Monoclonal Antibody to T7(C9C)
Phage Clones Coated ELlSA Maleic Anhydride Activated Polystyrene Plates, b)
Ratio of OD for Binding of 76F to its Specific Clones dividedby ()I) for Binding of
IgG2b to the 76F-specitic Clones.
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3.3.3.2 M13 pili (linear 12-mers) Phage Peptide Library

3.3.3.2.1 Sequences of Phagotopes Isolated by Bio-panning of M 13 pili Phage Peptide

Library (linear 12-mers) andImmune-blotting Assay with 76B or 76F Mouse

Monoclonal Antibody.

M 13 pIlI phage library (linear l2-mers) was screened by 3 rounds of immunopanning

against 76B or 76F MoAb as described in section 3.3.2.2.1. The number of plaques

obtained in each round increased consecutively, indicating that the hiopanning rounds

were successful (Table 3.1).

The specific plaques from the third round ofM13 pIlI phage library (linear l2-mers)

immuno-panning with 76B or 76F MoAb were selected by immuno-blotting assay as

described in section 3.3.2.2.2. About 30% and 15% of these plaques (clones) showed

high affinity, giving blue spots on the nitrocellulose membranes. to the 76B or 76F

McAb, respectively. About 3% of the 76B plaques showed high affinity to goat anti-

mouse IgG. Also, about 3% of the 76F plaques showed high affinityto goat anti-

mouse IgG.

Eleven and sixteen clones specific to the 76B or 76F MoAb. respectively, were

sequenced successfully. All sequences were aligned with the relevant portions of IA-

2. The 11 clones specific to the 76B MoAb showed a motif of aspartic acid followed

by an amino acid followed by lysine followed by proline followed by leucine

followed by serine. Thus, the main motif of the 76B MoAb is D-X-K-P-L-S,

corresponding to amino acid residues 477-482 of lA-2 (D-Q-K-P-L-S). which was

exactly represented in one clone (11) (Fig. 3.22). Furthermore. this motif overlaps
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with the previous motif, which was obtained by using T7(C9C) phage library (see

above).

The 16 clones specific to the 76F MoAb showed a motif of phenylalanine 8/16

(3.4.10.11,12,13,16.20). tryptophan 7/16 (5,6,8.9.14.15.19) or tyrosine1/16 (7)

followed by an amino acid followed by tyrosine 15116 or tryptophan 1116 (7)

followed by glutamine 15/16 or an amino acid 1116 (II). Thus. the main motif of the

76F MoAb is F/W/Y-X-Y/W-Q, corresponding to amino acid residues {126-629 of IA-

2 (F-E- Y-Q) (Fig. 3.23), which showed conservative substitutions. Phenylalanine,

tyrosine and tryptophan have aromatic side chains and arc thus similar residues.

Furthermore. this motif is similar to the motif that was obtainedby using T7 (C9C)

phage library (see above).

3.3.3.2.2 Testing of 768 or 76F Mouse Monoclonal Antibody-specific Phagotopes of M 13

pIlI Phage Peptide Library (linear 12-mers)by ELISA

Sequenced phagotopes of Ml3 pIlI (linear 12-mers) phage library were selected for

investigation of their binding to 76B or 76F MoAb by capture ELlSA as described in

section 3.3.2.2.4. All the II or 20 clones, which were specific to 7(lB or 76F Mo Ab,

showed a significant binding with the 76B or 76F McAb. respectively. compared to

all negative controls [mouse IgG2a kappa (negative control for 76B MnAb). mouse

IgG2b kappa and helper MI3 (M13K07) phage] (Fig. 3.24 or 3.25. respectively).

Also, these II or 20 clones, which were specific to 76B or 76F mouse monoclonal

antibody, respectively. showed negligible cross-reactivity with goat anti-mouse IgG.
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In addition, five randomly selected clones specific to 768 MoAb showed negligible

cross-reactivity with 76F MoAb, compared to the negative control(WT phage), in

capture ELISA as described in section 3.3.2.2.4 (Table 3.2). Conversely, five

randomly selected clones specific to 76F MoAb showed negligible cross-reactivity

with 76B MnAb, compared to the negative control(WT phage) (Table 3.2).
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Figure 3.22 Sequences of Peptides Selected from M 13 plll (linear 12-mers) Phage
Peptide Library by Binding to 76B Mouse Monoclonal Antibody.
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Figure 3.23 Sequences of Peptides Selectedfrom M 13 pIll (linear 12-mers) Phage
Peptide Library by Binding to 76F Mouse Monoclonal Antibody.
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Figure 3.24 Capture ELISA: Binding of 76B Mouse Monoclonal Antibody to M 13
pilI (linear 12-mers) Phage Clones Bound to ELISA Maxisorp Plates via Rabbit anti-
l·cIIgG.
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Figure 3.25 Capture ELISA: Binding of 76F Mouse Monoclonal Antibody to M 13
plll (linear 12-mers) Phage Clones Bound to ELISA Maxisorp Plates via Rabbit anti-
fd IgG.
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Table 3.2 Capture ELISA: Binding of 76F Mouse Monoclonal Antibody to M 13 pIlI
(linear 12-mers) Phage Clones Specific to 76B Mouse Monoclonal Antibody Bound
to ELISA Maxisorp Plates via Rabbit anti-fd JgO, compared to Wild-type Phage
(WT) and Negative Control Antibodies (Mouse Ig02b and IgCi2a kappa). Also.
Binding of76B Mouse Monoclonal Antibody to Ml3 pili (linear 12-mcrs) Phage
Clones Specific to 76F Mouse Monoclonal Antibody Bound to ELISA Maxisorp
Plates via Rabbit anti-to IgO. compared to Wild-type Phage (WT) and Negative
Control Antibody (Mouse IgG2b kappa).

76B- 00176B 00176F 001 001 761"- 001761" O[}176B 001
Specific Binding Binding Ig2bk IgG2ak Specific Binding Binding IgG2bk
Clones Binding Binding Clones Binding

2.952 0.657 0.303 0.296 4 2.589 OT,<) 0.333
J 2.905 0.646 0.335 0.322 9 2.813 o 745 0.277
4 2.918 0.587 0.370 0.313 15 2.559 1.()90 0.580
8 2.930 0.629 0.365 0.316 17 2.560 O.<J71 0.418
9 2.925 0.614 0.359 0.318 18 2.716 O.X<)7 0.327
WT 0.941 0.918 0.871 0.824 WT 0.918 0.941 0.871
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3.3.4 Discussion

Seventeen clones. which were obtained from the fourth round of successful

biopanning rounds of T7 (C9C) phage library and were positively immunostained in

the blotting assay (high affinity) with the 768 MoAb. were successfully sequenced.

Nine out of these 17 clones showed a motif of K-P-X-S (Fig. 3.18). corresponding to

479-482 aa of IA-2 (K-P-L-S), as the epitopic determinant of the 768 MoAb.

Interestingly, 2 out of these 9 clones showed the precise motif of K-P-L-S. Six of the

clones were screened in ELISA by using maleic anhydride activated polystyrene

plates. All of these 6 clones showed binding with the 768 MoAb. compared to both

negative controls [mouse IgG2a kappa (Fig. 3.20a) and WT phage:by looking at the

ratio of OD for binding of 768 to its specific clones divided by ()[) for binding of

IgG2a to the 768-specific clones (Fig. 3.20b)].

Stop codons are present in T7 (C9C) phage peptide library at the ('-lerminal region of

the insert. It is possible that the full length of the insert is expressed. but the MoAb

only binds when the insert is present at the extreme C-terminus of the surface coat

protein. Another possibility is that the full insert within the surface coat protein is

unstable and not expressed, except at the extreme C-terminus. as mentioned

previously with N-terminal and C-terminal MoAb and GAD-6.

Eleven clones, which were obtained from the third round of successful biopanning

of the M 13 pIlI (linear 12-mers) phage library and were positively immunostained in

the blotting assay (high affinity) with the 768 MoAb, were successfully sequenced.

All of these II clones showed a motifofD-X-K-P-L-S (Fig. 3.22). corresponding to

477-482 aa of IA-2 (D-Q-K-P-L-S), as an important epitopic determinant of the 768
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MoAb. Interesingly. lout of these 9 clones (clone II) showed the precise motifofT-

D-Q-K-P-L-S, corresponding to 476-482 aa of IA-2.

All these 11 768-specitic clones obtained from the M 13 plIl (linear 12-mcrs) phage

library, which showed negligible cross-reactivity with 76F MoAb. negative control

antibodies (mouse IgG2b and Ig02a kappa) (Table 3.2) and goat anti-mouse IgO

(data not shown), were screened in ELISA. All of these 11 clones showed significant

binding with the 7613 MoAb, compared to all negative control antibodies (mouse

IgG2a and IgG2b kappa) and helper M13 (WT phage) (Fig. 3.24).

The sequences of 768-specific clones obtained from both libraries IT7 (C9C)and

M13 pIlI (linear 12-mers)] showed homologies amongst themselves and with the

originallA-2 sequence. Thus, the main motif of 768 is O-X-K-P-L-S. corresponding

to 477-482 aa of IA-2 (D-Q-K-P-L-S).

Nine clones, which were obtained from the fourth round of successful biopanning of

the T7 phage library and were positively immunostained in the blotting assay (high

affinity) with 76F MoAb, were successfully sequenced. Eight out of these 9 clones

showed a motif ofY/H-QIN (Fig. 3.19), corresponding to 628-629 aa of IA-2 (Y-Q).

as part of the epitopic determinant of the 76F MnAb. Tyrosine and histidine both

have aromatic side chains and are thus similar residues. Also. glutamine and

asparagine both have amide side chains and are thus similar residues. lnteresingly, 1

out of these 8 clones (clone 7) showed a motif of F-E-H-Q. corresponding to 626-629

aa of IA-2 (F-E- Y-Q). which shows a conservative substitution. One clone did not

show a clear motif of IA-2.
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Six clones obtained from the T7 (C9C) phage library. were screened in ELISA by

using maleic anhydride activated polystyrene plates. All of these () clones showed

hinding with 76F MoAb, compared to the negative control antibody (mouse IgG2b

kappa) only (Fig. 3.2la), whereas, only certain of the clones (particularly clone 4)

showed binding with the 76F MoAb, compared to hoth negative controls (mouse

IgG2b kappa and WT phage, as indicated by the ratio ofOl) for binding of 76B to its

specific clones dividedby OD for bindin,g of IgG2a to the 76B-specilie clones) (Fig.

3.21b). This may be due to a high level of non-specific reactivity with the wild-type

phage.

Sixteen clones, which were obtained from the third round of successful biopanning

of the M 13 pIlI (linear 12-mers) phage library and were positively inununostained in

the blotting assay (high affinity) with 76F MoAb. were successfully sequenced.

Fifteen out of these 16 clones showed a motif of F/W/Y-X-Y/W-O (Fig. 3.23),

corresponding to 626-629 aa of IA-2 (F-E- Y-Q). as an important epitopic

determinant of 76F MoAb. Phenylalanine, tryptophan and tyrosine have aromatic

side chains and are thus similar residues. Interestingly. one out of these 15 clones,

clone 9 showed a motif of W-E-Y-Q.

Twenty 76F-specitic clones obtained from M13 pIlI (linear 12-mers) phage library.

which showed negligible cross-reactivity with both 76B MoAb. negative control

antibody (mouse IgG2b kappa) (Table 3.2) and goat anti-mouse IgG (data not

shown), were screened in ELISA. All of these 20 clones showed significant binding
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with the 76F. compared to all negative control antibody (mouse[g(i2b kappa) and

helper M [3 phage (WT phage) (Fig. 3.25).

The sequences of 76F-specific clones obtained from both libraries11'7 (C9C) and

M13 pIlI (linear 12-mers)] show homologies amongst themselves and with the

original IA-2 sequence. Thus, the main motif of 76F is F-X- Y-Q. corresponding to

626-629 aa ofIA-2 (F-E- Y-Q).

Since 76F MoAb may recognize 626-629 aa of IA-2 and huAb 103/5 recognizes 603-

686 aa of IA-2 (Kolm-Litty et al., 2000) which is similar to the region recognized by

76F MoAb, both 76F MoAb and huAb 103/5 may recognize the same region on IA-

2. i.e. 626-629 aa. In addition, 621-630 aa oflA-2 (epitope .1M2) is one of the major

epitopes recognized by sera from over 50% of patients with type I[)M (Bearzatto et

al., 2001), which overlaps with the predicted epitope of 76F MoAb011 11\-2 (626-629

aa). This is also supported by a recent report identifying an epitope within IA-2 623-

631 aa recognized by type I OM patients' sera (Notkins et al., 19(7). which also

overlaps with the predicted epitope of 76F MoAb. HLA-DR4 containing haplotypes

are always found in relatives and type 1 DM patients with IA-2 .1M2 specific

antibodies. Also. HLA-DR3 and DR13 are associated with[1\-2 .1M2 specific

antibody positive relatives.It has been suggested that 13cell receptor binding to the

.1M2 autoantibody epitopes preferentially generates T cell epitopcs which can bind to

HLA class 1I molecules expressed in DR3/4,DR4/4. DR4/13 or DR I14 B cells and

results in T cell help for 1M2 specific B cells (Bearzatto et al., 200 I). Also. this

region of IA-2 (626-629 aa), which may be recognized by 76F MoAh, is present

within the minor antigenic determinant of IA-2 which is localized to 601-762 aa
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(Kawasaki et al., 1(98). Thus, it will be worthwhile to investigate competition

between 76F MoAb and anti-IA-2 sera of type I OM patients.

Since these different phage peptide libraries (T7 and M 13 pili) were working well

with hybridoma culture supernatant mouse monoclonal antibodies (76B and 76F), it

encouraged me to screen these phage peptide libraries with A-cell line culture

supernatant human monoclonal antibodies followedby screening these phage libraries

with human polyc1onal antibodies (patients' sera), as described in chapter 4.
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4 Human Antibodies

4.1 Human Monoclonal Antibodies

4.1.1 b96.11 Human Monoclonal Antibody

4.1.1.1 Introduction

Venous blood was obtained from a nondiabetic APS-II patient, who had been treated

with radioiodine for Graves' disease complicated by ophthalmopathy and pretibial

myxoedema. He was positive for multiple autoantibodies. including thyroid

stimulating hormone (TSH) receptor, thyroid peroxidase, gastric parietal cells and

lt.A, and he was strongly positive for GAD-65 and GAD-67 autoantibodies.

Peripheral blood lymphocytes (mononuclear cells) were isolated and immortalized

with Epstein-Barr virus (EBV). The mononuclear cells were infectedby overnight

culture with infectious EBV supernatant from the8-95 marmoset cell line, and the

IgG-secreting B cells were isolated by magnetic separation on beads coated with

anti-human IgG. These IgG-secreting B cells were plated in complete medium and

screened for antibodies to GAD-65, cloned and expanded (Trembleet al., 1997).

b96.11 is an IgG I human monoclonal antibody (huAb) derivedIrorn the above

patient (Tremble et al., 1997). Culture supernatant of the EBV-trunstormed B-cell

line producing the b96.11 human monoclonal antibody, which recognizes amino acid

residues between 308-365 on GAD-65 but not on GAD-67 (Schwartz et al., 1999),

was kindly supplied by DrJ Paul Banga (Department of Medicine, King's College
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School of Medicine. London, UK).It is noteworthy that thebl)() line huAb

recognizes amino acid residues between 514-570 on GAO-65 (Powers et al.. 1999)

and thus is different from the epitope of b96.11 clonehuAb described here. The

reason for this is not clear but may relate to the isolation ofa cell clone with a

different specificity to the original cell line.

Since M 13 pili (linear 12-mers) was working well withhyhridoma culture

supernatant mouse monoclonal antibodies (76B and 76F: section.Ll). Ihis library was

screened with culture supernatant of the EBV-transformed[3 cell line producing

b96.ll.
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4.1.1.2 Results

4.1.1.2.1 Sequences of Phagotopes Isolated by Bio-panning of M1J pili Phage Peptide

Library (linear 12-mers) and Immune-blotting Assay with b96.11 Human

Monoclonal Antibody.

Negative selection was performed as described in section 3.3.1.1.1 (Fig. 4.1). Then,

M 13 plll phage library (linear 12-mers) was screened hv 3 rounds of

immunobiopanning against b96.11 huAb as described in section 1.~.1. Goat anti-

human IgG (Fe specific) (Sigma) was used to capture h96.11 hu/vb. The number of

plaques obtained in each round during plating increased consecutively. indicating

that the biopanning rounds were successful (Table 3.1).

Figure 4.1 Schematic Representation of Negative Selectionor Specific Phage
Peptides by using Goat anti-human IgG Antibodies.

Goat anti-human Supernatant of cloned cells (b96.11 huAhsl

phage

~ I

Elution or Infectionn Specific ph• • •

I .t- L
~

The specific plaques from the third round ofMl3 pill phage library (linear 12-mers)

screening with the b96.11 huAb were selected by immuno-blotting assay as

described in section 2'.2.3. About 12% of these showed high affinity. giving moderate

hlue spots on the nitrocellulose membrane, to b96.11 huAh. Goat anti-human (Fe

specific) alkaline phosphatase conjugate (Sigma) was used to detect h96.ll huAb.

Also, the specificity of the assay was confirmed by investigating the binding of the
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goat anti-human IgG with plaques on duplicate membrane. which\V,IS detected by

mouse monoclonal anti-goat [gG clone OT-34 alkaline phosphatase conjugate

(Sigma) as described in section 3.3.2.2.2. Also. thespecificity 01' the assay was

further confirmed by investigating the binding of the goat anti-human IgO alkaline

phophatase conjugate with plaques on another duplicate membrane. This was to

exclude the false positive detection of plaques which showed binding with either

conjugated and/or unconjugated goat anti-human IgCi (Fig. 4.2). About 10% of these

plaques (clones) showed high affinity to goat anti-human IgG. giving pale blue spots

on the nitrocellulose membranes.

Figure 4.2 Schematic Representation of Immune-blotting Assay to Exclude the False
Positive Binding of Ligands with non-specific Phage Pepticles.

Goat anti-lnunau
coujuaatc

Mouse anti-goal "'on,iugah'

Coal auri-luunan

Seven clones specific to b96.ll huAb were sequencedsuccessfully. These clones

showed a motif of isoleucine (317 clones) or valine (117 clones) followed by serine

(317 clones) or threonine (417 clones) followed by alanine (117 clones). glycine (117

clones) or leucine (117 clones) followed by threonine (317 clones) 01' serine (417

clones) followed by alanine(217 clones) or leucine (217 clones). Thus. the main motif

o lthe b96.ll huAb is V/I-S/T-A/G/L-T/S-A/L. This is similar to amino acid residues
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332-336 of GAD-65 (V -S-A- T-A). with conservative substitutions (Fig. 4.3a).

Threonine and serine have aliphatic hydroxyl side chains and thus are similar

residues. Also. alanine. glycine, leucine, valine and isoleucine haw aliphatic side

chains and thus are similar residues. However, these 7 clones can also he aligned to

show another motif of serine (417 clones) followed by threonine (217 clones) or

serine (517 clones) followed by glycine (117 clones). alanine(117 clones). leucine

(317 clones) or isoleucine (217 clones). Thus, the other motif of the h%.11 huAb is S-

T/S-G/A/LII. This is similar to amino acid residues 338-340 of(i/\I)-(l5 (T-T-V),

with conservative substitutions (Fig. 4.3b). Since the other motif of hl)().11 huAb is

very close to the previous motif: the overall motif of b96.11hu Ab may require amino

acid residues 332-340 of GAD-65.

4.1.1.2.2 Testing of b96.11 Human Monoclonal Antibody-spec: lie Phauotopes of M 13

pili Phage Peptide Library (linear 12-mers)by Capture ELI Si\

Sequenced phagotopes of MI3 pIlI (linear 12-mers) phage library were selected for

investigation of their binding to the b96.11 huAb by capture ELISA as described in

section 2.2.5. Goat anti-human IgO alkaline phosphatase conjugate was used to detect

b96.ll huAb. All the 7 clones. which were screened in ELISA. did not show binding

with the b96.11 hu/vb, compared with the negative controls (b 7X huAb and WT

phage) (data not shown). In particular, high optical density readings of binding of

b96.11 huAb and the negative control antibody (b78 huAb) were given with WT

phage as well as the selected phage clones. Thus. because of this high background

reactivity with WT phage. it was not possible to demonstrate specific binding to the

specific phage.
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Figure 4.3 Sequences of Peptides Selected from M 1J pili (linear 12-mers) Phage
Peptide Library by Binding to b96.11 Human Monoclonal Antibody.

a)

CAD-65 (332-336) V SAT A

7 K N Y I S H • SAT P T

6 u.u. PAPTI'P

I I I
I.J K L F S S

S • IF Ii W

J
.t. :; G L Y T S S L RFWPI'

2 T L P N Y L NM ~ G ~

h)

(;AD-65 (338-340) T T V

2 T L H P N Y L NM T G T

I I I I
7 K N Y I S H II ,i ITfT

J6 V T L T P L P A P r I' I'

1,3 F S S ~ I. Is F S A W

4,5 G !t ~IS ~ IL IR IF W P P
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4.1.1.3 Discussion

Seven clones, which were obtained from the third round of successful hiopanning of

the M 13 pIlI (linear l2-mers) phage library and were moderately immunostained in

the blotting assay with the b96.ll huAb, showed a motif of llV-T/S-/\/( i/L- TIS-AIL

(Fig. 4.3a), which might correspond to 332-336 aa of UAD-6S (V -S-!\- T-A), and

another motif of S-T/S-GI A/LII (Fig. 4.3b), which might correspond to 338-340 aa of

OAD-65 (T -T -V) as important epitopic determinants of the b96.1 Ihu/vb. Thus, the

overall motif of b96.11 might correspond to 332-340 aa of GAD-6S. which is within

the region of GA065 (308-365 aa) to which binding of b96.11hu.vb is abolished

when replaced by the UAO-67 sequence (Schwartz et al., 1999).

All these seven b96. Il-specific clones obtained from the M 13 pill(I iIleal' 12-mers)

phage library were screened in ELISA but b96.II huAb gave high optical density

readings with both selected phage and the negative control (WT phage). In addition,

negative control antibody (b78 huAb) also bound to the phage selected with b96.11

and bound to the WT phage in this assay. The reason for this non-speci lie reactivity is

unclear.

The three-dimensional model of the middle region of a GAD6S dimer (211-460

amino acid residues) was built by using ornithine decarboxylase (I ORO) as a

template. The PLP-binding middle region consists of a seven-stranded[3 sheet

surrounded by seven a-helices (Schwartz et al., 1999). In Schwartz' s model, amino

acid residues 332-340 aa. are present within aP strand between Cl-helix L (313-324

aa) and a-helix M (348-356 aa) (Fig. 4.4), which is also present in the same region of

Myers's model (Myers et al., 2000).
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Figure 4.4 The Three-dimensional Model of the Middle Region of GAD-65 shows
that the motif of b96.11 Human Monoclonal Antibody, 332-340, which is present
within a ~ strand between a-helix L and a-helix M(Schwartz et al., 1999).
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4.1.2 b78 Human Monoclonal Antibody

4.1.2.1 Introduction

The b7R huAb was derived from the same patient as b96.11 huAb (see above section

4.1.1.1) (Tremble et al., 1997). Supernatant of the cultured ElsV-transfonued B-cell

line producing b78 huAb, which has been reported to recognize amino acid residues

between 532-540 on GAD-65 but not on GAD-67 (Schwartz et al.,I <)<)9). was kindly

supplied by DrJ Paul Banga (Department of Medicine, King' s College School of

Medicine. London, UK).

The epitope of b78 huAb (532-540 aa) may be very close to the proposed GAD-6

epitope (523-528 aa: see section 3.2). In addition. thefootprint pattern of protected

trypsinized GAD-65 fragments with GAD-6 is similar to that with h7X (Tremble et

al.. 1997). Thus, cross-inhibition of binding to GAD-65 between GAD-() and b78 was

examined in terms of b78 huAb inhibition of GAD-6 binding to GAD-65 as well as

the converse ofGAD-6 inhibition ofb78 huAb binding to GAD-()).

In circular dichroism studies, the structure of GAD seems to change significantly

according to whether it has bound to pyridoxal phosphate or not (Chen. et al., 1998).

Furthermore. the rat brain preparation probably contains GAD in variousforms, i.e.

monomeric. dimeric and also multimers (Trigwell et al., in preparation). The different

monoclonal antibodies (b78 or b96.11 huAb and GAD-6) may react preferentially

with different GAD fractions of the preparation. If so. cross-inhibitions may not work

very well. Thus. the results of the cross-inhibition studies wereconfirmed by exposing
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b78 or b96.11 huAb to rat brain GAD which was captured by(;;\1)-6 in the solid

phase.

It is noteworthy that I did attempt to screen the b78 hu.Ab with M IJ pili (linear 12-

mers) phage library following similar procedure as with b96.11bUI 110 b78 hu/cb-

specific clones were selected, since the number of phage plaques increased from

round to another. The possible reason is no b78 hllAb-specific peptides in this library

as happened with GAD-6 screened withMl3 pili phage library. While the increasing

number of the plaques is possibly due to specificity of these plaquesIn anti-human

19G antibody, Fe portion ofb78 huAb or BSA (blocking reagent).

174



Human Antibody

4.1.2.2 Materials and Methods

-1.1.2.2.1 Direct Binding of b78 andb96.11 Human Monoclonal Autihodies and GAD-

6 to Rat BrainGAD by Direct and CaptureELISA

,/.1.2.2.1.1 Direct ELISA (Rat Brain GAD Coating)

Semi-purified rat brain GAD was prepared as previously described (I )avcnport et al.,

19(8). The GAD preparation was diluted to 40~lg total protein per ml in O.05M

sodium carbonate/sodium bicarbonate buffer pH 9.6 (coatingbutler). and coated onto

wells (50~LI/well) of maxisorp ELISA plates. Plates were incubated at 4°(, overnight.

Wells were washed 3 times (200lll/well) in phosphate buffer saline (PBS) containing

O.I(Yo Tween-20 (PBS-T) (each time the plates were incubated ~ minutes at room

temperature), and then blocked with 2% BSA in PBS (2% I3SA/PBS) (200~d/well) for

one hour at room temperature. Blank wells, which were not coated with GAD65, were

also blocked with 2% BSA/PBS, as above. Then. GAD-6 (20. 10. 5. 2.5 or 1.25

ug/ml) or a supernatant of cultured EBV-transformed B-cell line producing human

monoclonal antibody b78 or b96.11 (diluted I :2. 1:4. 1:8. I:16 or I :.\ 2). in 1% BSA in

PBS- T (I% BSA/PBS- T) was added to the wells. Each d ilut ion was applied

(50~lllwell) to antigen-coated and blank wells for 2 hours at 1"00m temperature on a

shaker. Following 3 washes in PBS-T, sheep anti-mouse Ig(j (whole molecule)

alkaline phosphatase conjugate or goat anti-human IgG (Fe specific) alkaline

phosphatase conjugate (diluted I: 1000 in 1% BSA/PBS- T) was added to all wells

(50~d/well) and incubated for one hour at room temperature on a shaker. Wells were

washed ~ times in PBS-T and pNPP substrate indiethanolarninc butler was added to
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temperature on a shaker. Wells were washed 3 times in PBS-To and pN pp substrate in

diethanolamine buffer was added to all wells (I OO~d/well) and incubated at room

temperature. Plates were read at 30 and 60 minutes at 405 nmOil a microtitre plate

reader (Molecular Devices). The mean OD of the test wells was corrected by

subtracting the mean OD of the equivalent blank wells.

4.1.2.2.2 Competition between GAD-6 and b78 or b96.11 Human Monoclonal

Antibody for Binding to GAD in ELISA

Inhibition of GAD-6 Binding by h78 or "%.11 Hutnau Monoclonal

Antibody

N-terminal MoAb (diluted 1:200) in coating butler, was coated onto wells

-1.1.2.2.2.1

(I OO~L1/well)of maxisorp ELISA plates. Plates were incubated at 4°(, overnight.

Wells were washed 3 times in PBS-T and then blocked with 2% BSA/PBS

(200~lllwell) for one hour at room temperature. Blank wells. which were also coated

with N-terminal MoAb. were also blocked with 2% BSA/PBS, as above. Then. semi-

purified rat brain GAD (40~g/ml) in 1% BSA/PBS- T was added to all wells and

incubated for 2 hours at room temperature on a shaker. Following 3 washes in PBS- T,

the supernatant of cultured EBV -transformed B-cell Iine producing human

monoclonal antibody b78 or b96.11 (diluted 1:2). in 1% BSA/PBS-T. was applied

(I OO~L1/well)to all wells for 2 hours at room temperature on a shaker. Then. without

washing the wells. GAD-6 (0.25 ug/ml) mixed with the supernatant of cultured EBV-

transformed B-cellline producing human monoclonal antibody b7R or b96.l1 (diluted

I :2). in 1% BSA/PBS- T. was applied(lOO~lIwell) in duplicate to test (not blank)
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wells for 2 hours at room temperature on a shaker. One percentor BSA/PBS-T was

applied (l Ouul/well) in duplicate to the blank wells (i.e. without(iAD-6) for 2 hours

at room temperature on a shaker. Following 3 washes in PBS-T, rat anti-mouse IgG2a

monoclonal antibody alkaline phosphatase conjugate (dilutedI:1000 in 1%

BSA/PBS- T) was added to all wells (IOOfll/well) and incubated for0111: hour at room

temperature on a shaker. Wells were washed 3 times in PBS-T, and pNPP substrate in

diethanolamine buffer was added to all wells (lOOllllwell) and incubated at room

temperature. Plates were read at 30 minutes at 405 nm on a microtitrc plate reader

(Molecular Devices). The mean OD of the test wells was corrected by subtracting the

mean OD of the equivalent blank wells. The results were compared with the ODs

given for binding of GAD-6 in the absence or b78 or b96.11 .

.J 1.2.2.2.2 lnhihition of h78 or b96.J J Human Monoclonal Antibocli Binding by

GAD-(j

N-terminal MoAb (diluted I :200) in coating buffer, was coated onto wells

( 1Otlul/well) of maxisorp ELISA plates. Plates were incubated at 4°(, overnight.

Wells were washed 3 times in PBS-T and then blocked with2'Yo BSA/PBS

(200~d/well) for one hour at room temperature. Blank wells, which were also coated

with N-terminal MnAb. were also blocked with 2% BSA/PBS. as above. Then, semi-

purified rat brain GAD (40~tg/ml) in 1% BSA/PBS-T was added10 all wells and

incubated for 2 hours at room temperature on a shaker. Following J washes in PBS- T,

GAD-6 (0.5 ug/rnl). in 1% BSA/PBS-T, was applied (IOO~tl/well) to all wells for 2

hours at room temperature on a shaker. Then, without washing the wells. GAD-6 (0.5

ug/rnl) mixed with the supernatant of cultured EBV -transformcd B-ccll line
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producing human monoclonal antibody b78 or b96.11 (diluted1:2). in I (Yo BSA/PBS-

T. was applied (IOOpl/well) in duplicate to test (not blank) wells lor 2 hours at room

temperature on a shaker. One percent of BSA/PBS- T was applied(I OO~L1/well) in

duplicate to the blank wells (i.e. without b78 or b96.11) for 2 hours at room

temperature on a shaker. Following 3 washes in PBS- T. goat anti-human IgO (Fe

specific) alkaline phosphatase conjugate (diluted 1:1000 inI(Yr) BS/\/PBS-T) was

added to all wells ( 1OO~L1/well)and incubated for one hour at room temperature on a

shaker. Wells were washed 3 times in PBS-T, and pNPP substrate indicthanolarnine

buffer was added to all wells (lOOJll/well) and incubated at room temperature. Plates

were read at 30 minutes at 405 nm on a microtitre plate reader (Molecular Devices).

The mean OD of the test wells was corrected by subtracting the mean OD of the

equivalent blank wells. The results were compared with the ODs given tor binding of

h7S or b96.11 in the absence ofOAD-6.

4.1.2.2.3 Direct Binding of b78 and b96.11 Human Monoclonal Antibodies to Rat

Brain GAD Capturedby GAD-6 in ELISA

CiAD-6 (I ug/rnl) or N-terminal MoAb as a control (dilutedJ::WO) in coating buffer.

was coated onto wells ( IOO~lllwell) of maxisorp ELISA plates. Plates were incubated

at 4°(, overnight. Wells were washed 3 times in PBS-T and then blocked with 2%

BSA/PBS (200~d/well) for one hour at room temperature. Blank wells. which were

also coated with GAD-6 or N-terminal MoAb, were also blocked with 2% BSA/PBS.

Then. semi-purified rat brain GAD(40~g/ml) in 1% BSA/PBS-T \\<lS added to all

wells and incubated for 2 hours at room temperature on a shaker. Following 3 washes

in PBS-T, a supernatant of cultured EBV-transformed B-ccl! line producing human
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4.1.2.3 Results

-l.1.2.3.1 Direct Binding of GAD-6 Mouse Monoclonal Antibody orh7R or b96.11

Human Monoclonal Antibody to Native or Denatured Rat Brain (i/\ D

Supernatants of cultured EBV -transforrned B-cell lines producing human monoclonal

antibodies, b78 and b96.11, did not bind to semi-purified rat brain GAD after

applying these human monoclonal antibodies (huAb) to the GAD-coatl:d wells even

in low dilution (I :2) (Table 4.1 ). Also, there was no significant di ffercnccs within the

serial dilutions of b78 or b96.11 huAb. In contrast, GAD-6 bound to the (iAD-coated

wells even in low concentration (1.25 ug/ml) with significant di ffercnces within the

serial dilutions of GAD-6 (Table 4.1). This is probably because direct binding of

GAD to the plastic wells partially denatures the GAD such that the cpitopes of b78

and b96.11 (but not GAD-6) are disrupted.

On the other hand, b78 and b96.11 huAb, bound to semi-purified rat brain CiAO after

applying these human monoclonal antibodies (huAb) to the GAD-Cl5 that was

captured by N-terminal MoAb-coated wells, even in high dilution ( I:()4). Also there

was significant differences within the serial dilutions of b78 (not h96.II) huAb.

Whereas, GAD-6 bound also to the native GAD even in very low concentration

(0.625 ug/ml) (Table 4.1), also with significant differences within the serial dilutions

of GAD-6. This indicates that b78 or b96.11 huAb recognize conform.uional epitopes

at the C-terminus on native GAD since capturing the GAD withNvterminal MoAb

should maintain its conformation, but not on denatured GAD. GAD-Cl recognizes an

epitope at the C-terminus on native GAD more etliciently than on denatured GAD.

Another difference between the two ELISAs is that the capture system will purify the

GAD in the rat brain preparation by binding to the N-terminal MnAb. whereas the
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(,AD will have to compete for binding to the wells with other brain proteins in the

direct-coating system.

.-L 1.2.3.2 Competition between GAD-6 Mouse Monoclonal Antibody and b78 or

b96.11 Human Monoclonal Antibody Directed to theCvtenuinus of Native Rat

Brain GAD

(iAD-6 did not greatly inhibit b78 and b96.11 huAb binding to native semi-purified

rat brain GAD, which was captured by N-terminal MoAb: inhibition was only 14%

and 13%, respectively, in a competition ELISA (Table4.2). Conversely, b78 and

h96.ll huAb did not greatly inhibit GAD-6 binding to native (JAD-65 by 18% and

~2%, respectively, in a competition ELISA (Table4.2). This indicates that b78 and

h96. I I may not recognize epitopes which are very close to that of(iA f)-(l.

The different monoclonal antibodies (b78 or b96.l1 huAb and(,AI)-6) may react

preferentially with different GAD fractions of the preparation (monomeric, dimeric

and also multimers). This could be an alternative explanation as to why the cross-

inhibitions did not work very well. Therefore, the results of the cross-inhibition

experiments were confirmed by exposing b78 or b96.11 huAb to rat brain CiAO which

was captured by GAD-6, to avoid false negative results. SMS serum bound equally to

(,AD captured either by GAD-6 or captured by N-terminal MoAb (Table4.3). b78

huAb bound slightly better with GAD-6 as the capture McAb. but b96.1 I bound

much better with GAD-6 as the capture MoAb (Table4.3). This suggests that the

UAD-6 and b78 or b96.11 epitopes are not directly overlapping.
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Table 4.1 Optical Densities for Direct Binding of b78 orb96.11 Human Monoclonal
Antibodies or GAD-6 to coated Rat Brain GAD and GAD Which Captured by N-
terminal Monoclonal Antibody in ELISA.

Concentr- GAD-6 GAD-6 Dilution b78 h78 h%.1 I h96.11

aion Direct Binding to Direct Binding to Direl'I Binding to

(pg/ml) Binding to Captured Binding to Captured Binding 10 Captured

GAD (;AD GAD GAl> (;.\ J) GAD

20 0.266 05:12 1:2 0.023 O ..IIK (I 111.\ 022K

10 O.IM 0.514 1:4 0.015 0.2X4 II (lllh 0.232

S 0.124 0.41) I 1:8 0.009 0.2.'(' (I (I(I~ 0.260

2.5 0.0')5 0.4(,3 1:16 0.006 OIIU 11.001 0.226

1.25 0.076 0.435 1:32 0.005 0.151 II II(lX o IXI)

0.(,25 0.412 1:64 O. I II) IUOX

Another

Plate

0.5 O.SOO 1:2 0.4.'4 (271)

0.25 0.413

0.125 0 ..143

00625 0.244

0.03125 0.141
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Table 4.2 Optical Densities for Direct Binding and Competition between GAD-6 and
Human Monoclonal Antibodies (b78 or b96.11) Directed to the (,-terminus of Native
GAD captured by N-terminal Monoclonal Antibody in ELISA.

Table 4.3 Optical Densities for Direct Binding of b78 orb96.11 Human Monoclonal
Antibodies or SMS Serum (DH) to Native GAD capturedby either N-terminal
Monoclonal Antibody or GAD-6 in ELISA.

Polyclonal Antibody Direct Binding to Native Direct Binding to Native (;.\ U-t./i\-h·rminal MoAb

GA D Captured by GAD Captured by (';Ipllln' 1(;ltio for Binding

N-terminal MoAb GAD-6 MoAb

It 15 min incubation

SMS Scrum (DH) O.l)) I 1.024 1.111

h7S (I :2) O.66S 0.826 I.~·I

11%.11 (1:1) o I 17 0.!96 ~.:'i.l

I, 30 min Incubation

SMS Serum (DII) 2.521 2.710 1.117

h7S (I :2) I.M,) 2.201 1.32

"96.11 (I: I) ()..10l) 0.849 2.7'
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4. 1.2.4 Discussion

GAD-6 recognizes the C-terminus of both native and denatured GAD-65. indicating

that the GAD-6 epitope may have both conformational and linear properties. b78 and

b96.11 huAb recognize the C-terminus of native (not denatured) (rAD-65, indicating

that these huAbs recognize conformational (not linear) epitopes on (jAD-65.

GAD-6 inhibited the binding of b78 and b96.l1 hu/vb to native GAD-65 by only 14%

and 13%, respectively. Conversely, b78 and b96.ll hliAb inhibited the binding GAD-

6 to native GAD-65 by 18% and 32%, respectively. in a competition ELISA (Table

4.2). This indicates that b78 and b96.11 may recognize an epitope, at the C-terminus

of native GAD-65, which is not very close to the GAD-6 epitope since the inhibition

is not high.

According to Schwartz et al., 1999, the huAb b78 recognizes amino acid residues

between 532-540 on GAD-65 which is very close to the GAD-6 epitope (523-528 aa)

proposed in this thesis. In addition, the footprint pattern of protected trypsinized

fragments of GAD-6 is similar to that of the b78 (Tremble et al.. 19(7).It is possible

that the three amino acids between the epitopes of GAD-6 and b78 may give different

orientations to the epitopes which do not give strong steric hindrance (only 14-18% of

binding inhibition).

The b78 huAb bound slightly better with GAD-6 as the capture MuAb. but b96.11

bound much better with GAD-6 as the capture MoAb (Table 4.3). This might suggest

that the GAD-6 does interfere with b78 huAb binding to GAD-65 more than it does

with b96.11 huAb binding. Alternatively, it could suggest that the N-terminal MoAb
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inhibits b96.11 huAb binding to some extent. However. it must also suggest that the

CiAD-6 and b78 huAb epitopes are not directly overlapping. or the ratio of OD for

binding to GAD-6 captured GAD divided by OD for binding to N-terminal MoAb

captured GAD should be well below 1.00.

The epitope of b78 huAb is present at the extreme C-terminus of «-hclix S in the

three dimensional model of the C-terminus of GAD-65 (Schwartz etal., 1999). It is

noteworthy that the mutation V532K disrupts the binding of b78 to(ii\D-65, while

other mutations in the same region of b78 epitope, R536L and Y540S. do not disrupt

the binding of b78 to GAD-65. This indicates that V532 is a critical amino acid

residue for the b78 epitope and there are neighbouring amino acid residues which are

not essential for b78 binding to GAD-65. Also, it has been suggested that V532 may

only be involved in a surface patch of the b78 epitope. which is lormed by other

amino acid residue(s)from different region(s).
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4.1 Human po/ye/ona/ antibodies

4.2.1 SMS Patients' Sera

4.2.1. 1 Introduction

GAAs are present in 89% of SMS sera. GAAs of SMS and APS sera. which are

present at high titre. are less dependent on the conformation ofthe (jAI) than in type

I OM and commonly target GAD-67 as well as GAO-65 (Tremblecl al., 1997).

Preincubation of GAAs of SMS sera with 188-442 aa/GAD65 can block the hinding

of GAAs67 with GA067. whereas preincubation with GAD67 cannot block the

binding of GAAs65 with GA065 (Oaw et al., 1996). This indicates that the GAAs in

SMS sera recognize a specific epitope in GAD67. which is highly homologous to

188-442 aa/GA065. whereas other GAAs65 recognize epitopes which arc not

present in GAO-67. Furthermore, preincubation of SMS sera with 354-368

aa/GAD65 inhibits the binding ofSMS sera with GA065. In the354-."j()5 aa/GAD65.

there are four amino acid residues K-KI-M which differ from E-NL-1.(ll" (JA067 (Li

et al., 1994). This suggests that these four amino acid residues (K-KI-M) may

contribute to the binding of SMS sera with GAD65. In SMS sera. (jAi\s recognize

some epitopes on GA065 not recognized by GAAs in 100M sera. c.g. an N-terminal

epitope within 1-16 aa and/or 1-95 aa (SMS E2) (Hagopiand al.. 1995: Bjork ct al.,

1994) as a major antigenic determinant, a middle region epitope390-40."j aa (Daw et

al., 1996; Li et al., 1994). and a C-terminal epitope 475-585 aa (SMS1:1) as a minor

antigenic determinant. The binding of GAAs of some SMS sera with SMS E2 is

much higher than with SMS El.
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An immunodominant epitope of T cell -reactivity with GAD-65 in non-diabetic SMS

patients is 341-351 aa residues. Also. in non-diabetic SMS patients. T cells can react

with N-terminal regions (61-90 and 191-220 aa) and C-terminal regions (491-520 aa)

of GAD-65 (Schloot et al., 1999).

The sequences obtained by screening M13 pIlI (linear 12-mers) phage peptide library

with supernatant of cultured EBV-transformed B-cell line producing h96.11 huAb,

suggested that this was a good library to screen with SMS patients' sera containing

human polyclonal antibodies to GAD. The protocol adopted for screening the library

with SMS patients' sera is shown schematically in Fig. 4.5.

Since SMS patients' sera contain polyclonal antibodies. these sera have

autoantibodies which recognize GAD but also many other antibodies which are also

present in normal human sera (NHS). Some of the input phage might be specifically

recognized by the GAD-65-specific autoantibodies binding to their peptide sequences.

but others might be bound via their inserted peptide sequences to polyclonal

antibodies which are also present in NHS. Thus.first of all. NHS pooled from

different donors was incubated overnight with M 13K07 killed phage (wild-type

phage) to block any phage-reactive antibodies. Then. the phage-blocked NHS was

exposed to the input phage library through three rounds of biopanning to deplete

phage bearing peptides reactive with normal polclonal antibodies. The depleted phage

were then exposed to SMS patients' sera, which had also been pre-incubated with

killed wild-type phage to block the binding of phage-reactive antibodies. which could

be present in patients' sera as well as NHS.
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The patients' sera or NHS were captured on the immunotubes by goal anti-human IgU

polyclonal antibody, which may itself recognize some phage peptides non-

specifically. However, since the input phage were depleted with NilS antibodies, as

described above, which were themselves captured by goat anti-human IgO, this may

also have depleted input phage reactive with the goat anti-human IgU (Fig. 4.5).

Several SMS patients' sera were used in consecutive biopannings of the phage library

to try to select publicepitopes. OH, PM, LB. .10 and PT sera wen: obtained from

CrAAs+ SMS patients. LB was the only diabetic SMS patient.

Rat brain GAD was used during biopanning to elute the bound phage (rather than acid

elution) to try to increase the specificity of the selection. Also. the(iAD elution was

performed to select for peptides mimicking conformational epitopes.
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Figure 4.5 Schematic Diagram Showing the Protocol for Immuno-panning of SMS
patients' Sera with M 13 pIlI (linear 12-mers) Phage Peptide Library. preceded by the
Negative Selection of these Sera.

I Input phage library

Absorbed
:; limes

PoolofNHS
Blocked with killed
wild-type phage _j Blocked

...
captured by goat l"l NHSanti-human IgG Ab J

Phage not reactive
with NHS-Abs or
goal anti-human
Ig( i Ah

SMS serauo: Blocked with killed
wild-type phage Blocked SMS """'-

captured by goat ...
...

sera (10)anti-human IgG Ab

l'hage eluted
with GAD

Blocked with killed
SMS sera (PT)

wild-type phage Blocked SMS ....
captured by goat .. ...

... sera (PT)
anti-human IgG Ab

l'hage eluted
with GAD

SMS sera (OH)
Blocked with killed

Blocked SMS
~

wild-type phage
captured by goat ~ sera (OH)
anti-human IgG Ab

Phage eluted
with GAD

SMS sera (LB)
Blocked with killed
wild-type phage Blocked SMScaptured by goat ~

anti-human IgG Ab
...

sera (LB)

Phage eluted
with GAD

SMS sera (PM)
Blocked with killed
wild-type phage Blocked SMS ...

captured by goat sera (PM)
~

anti-human IgG Ab
..

~
Phage eluted with GAD
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4.2.1.2 Materials and Methods

4.2.1.2.1 Screening of SMS Patients' Serawith MI3 pili (linear 12-mers) Phage

Peptide Library

,/,2.1.2.1.1 Preparation of Killed Wild-type Phage

One hundred microlitres of M13K07 wild-type phage were addedto 300mls of an

early-log phase E.coli ER 2537 culture (OD600=0.05) and incubated on a shaker at

37°C lor 4.5 hours for amplification of the M13K07 wild-type phage. The amplified

phage were precipitated and purified as described in section 2.2.I.X. The purified

MI3K07 phage were spotted onto a Petri-dish as drops (25~tI each drop) and then

exposed 3 times to lJV=120,OOO JlJ(microJolel/crn (Prezzi etal., I ()%). to kill the

phage which were then tested by plating them as described them in section 2.2.1. 7.

·./.2.1.2.1.2 Preparation of Semi-purified Rat Brain UAD

Rat brain homogenate was prepared as described previously (Davenport et al., 1998)

and enriched for GAD by using fast protein liquid chromatography (FPLC) system

(by Miss S Hyde of the Institute of Infections and Immunity. Queen s Medical

Centre. Nottingham). AQ Sepharose Fast Flow column was connected to a FPLC

system and washed with 20mM Tris HCI pH:7.5 at 4°C. Then.-lrnls of rat brain

GAD was applied to the column. A salt gradient was set up by eluting in 20mM Tris

HCI pH:7.S. 1M Nael to give 61 2mls fractions. The last 26 fractions. which show

high concentration of proteins. were tested for GAD by direct ELISA (direct binding

or GAD-6 to these 26 fractions, which were coated onto wells or a maxisorp ELISA

(9(
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plate). The fractions. which showed the highest concentration of(iAn. were pooled

and used to elute the SMS patients' antibodies specific for M 1:-'pili phage peptides.

-1.2.12.1.3 Bio-panning (?fSMS Patients' Sera with!vi13 pi J/ (linear 12-lIIer.\) Phag«

Peptide Library

Goat anti-human IgG (Fe specific) (Sigma) (0.5~lg/ml) in coating buffer. was coated

onto four Nunc immuno-tubes. Following overnight incubation at 4°(,Oil a rotator. all

the Nunc immuno-tubes were washed 5 times in 0.1(Yo TBS-T and blocked with 0.5%

BSA and 0.02% NaN3 in TBS (blocking solution) for one hour at room temperature

on a rotator. Following 6 washes, 25~1 of three different pools of NHS (nine different

NHS in each pool) (diluted I: 100 in 0.1% BSArrBS) were added to three of these

Nunc immuno-tubes (called first. second, or third tube), i.e one pool in each tube, and

incubated at 4°C overnight on a rotator. Twenty live microlitrcs of a SMS patient's

serum (diluted I: I00 in 0.1% BSA/TBS) were added to the fourth Nunc immuno-tube

(test tube) and incubated overnight at 4°C on a rotator.

After 6 washes of the four Nunc immuno-tubes. l ul of UV light killed phage

M 13K07 «(1 x 1012 pfu/I ~I) (prepared as described above in section 4.2.1.2.1.1)

diluted in 0.1% TBS-TIO.Ol% BSA was added to each of them and incubated at 4°C

for 4 hours on a rotator. Ten microlitres of the MI3 pIli (linear 12-mers) phage

library (lxIO" pfu/IOul), as an input phage, were added to the first tube. coated with

a pool of NHS. and incubated at 4°C overnight on a rotator. The pre-absorbed M 13

plll phage were transferred from the first Nunc irnmuno-tube to another Nunc

immuno-tube (second tube), which was coated with a different pool of NIlS and also



Human Antibody

incubated at 4°(, overnight on a rotator. The pre-absorbed M I:; pili phage were

transferred from the second Nunc immuno-tube to another Nunc immuno-tube (third

tube). which also was coated with a different pool of NHS. and incubated at 4°(,

overnight on a rotator. The pre-absorbed M13 pili phage weretransferred from the

third Nunc irnmuno-tube to the test Nunc immuno-tube (test tube). which had SMS

patient's serum coated on it. and incubated at 4°C overnight on u rotator (Fig. 4.5).

Following 10 washes of the test tube, l ml of rat brain GAD (prepared as described

previously in section 4.2.1.2.1.2) was added and incubated on a rotator at room

temperature for one hour. The non-amplified eluate was collected. One microlitre of

the non-amplified eluate was taken for dilution and plating (as described in sections

2.2.1.6 and 2.2.1.7. respectively). The rest of the eluate was subjected to the next

(second) round of affinity selection with a different patient's serumfollowing the

same procedure. without amplification. Following a third round of affinity selection.

the eluate was amplified by adding it to 20mls of early-log phase l..coli ER 2537

culture (OD6(}()=0.05) and incubated on a shaker at 37°(, for 4.5 hours for

amplification. The amplified eluate of the third round was concentrated and purified

(as described in section 2.2. I .8), and was subjected to the next round (fourth round)

of affinity selection with a different patient's serum following the same procedure

without amplification. Five rounds were carried out; each round employed a different

SMS serum.
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.J.2. 1.2. I. -I Detection of" SMS Patients' Sera-specific N/ /3 filii (Linear 12-l11er.\")

Phage Peptide Clones by Immuno-blottingA.\".\"ay

This was performed as described in section 2.2.3 to detect the specific phage peptide

clones of the third. fourth and fifth rounds of the biopanning. Fitty rnicrolitres of

patient's serum diluted I: 100 in 5% BSA ITBS- T. which were pre-incubated with

IOO~L1of sonicated E.coli ER 2537 lysate (see section 2.2.1.10) and I()~t1 of M I3K07

(I x IOU pfu/ul) at room temperature for two hours on a rotator. were added to the

membrane and detected by applying goat anti-human IgG (Fespecific) alkaline

phosphatase conjugate.

Also, the specificity of the assay was confirmed by using goat anti-human IgG and

NHS, which was detected by anti-goat IgG clone GT-34 alkaline phosphatase

conjugate and goat anti-human IgG (Fe specific), respectively, precisely as described

in section 3.3.2.2.2. This was to exclude the false positive binding of the SMS

patient's serum with plaques which showed binding with either NlIS, conjugated

goat anti-human IgG and/or unconjugated goat anti-human IgG (Fig.4.2).

-1.2.1.2.1.5 Purification and Sequencing of ,r;,'N/51 patients Sera-specific MI3pili

(linear 12-lIIer,< ;)PhageInsert

This was performed as described in section 2.2.4.
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Detection of" SMS Patients' Sera-specific M 13 pl ll (linear l Z-mers)

Phage Peptide Clones hy Direct ELISA

The clones of selected phage. and unselected phage clones. were ampl ilied by adding

-1.2.1.2.1.6

them to Smls of the early-log phase E.coli ER 2537 culture (01)(,00=0.05) and

incubated on a shaker at 37°C for 4.5 hours. The amplified phage wen: concentrated

and purified as described in section 2.2.1.8.

The purified phage clones or helper M13, in coatingbuffer (50~Llphage with SO~d

coating buffer), were coated onto wells (1OOf.lllwell)of maxisorp UJS;\ plates (Life

Technologies, UK). Plates were incubated at 4°C overnight. Wells were washed 3

times (200l-lllwell) in 0.1% TBS- T. each time the plates were incubated ~ minutes at

room temperature. The wells were then blocked with 1% BSA/TBS ( 120~t1/well) for

one hour at room temperature. Blank wells, which were not coated with phage. were

also blocked with 1% BSA/TBS. as above. The SMS patients' sera or normal sera

diluted 1:100 in 1% BSA/TBS and pre-incubated with I~L1of sonicated E.coli ER

2537 lysate, see above. andlul ofMI3K07 phage (IxlOIJ ptu/p.l) were applied

( IOO~tl/well) in duplicate to antigen-coated and blank wells for:2 hours at room

temperature on a shaker. Following 5 washes goat anti-human IgG alkaline

phosphatase conjugate (dilutedI:1000 in 1% BSA/PBS- T) was added to all wells

( IOOl-ll/well)and incubated for one hour at room temperature on a shaker. Wells were

washed 3 times and pNPP substrate was added to all wells (I()()~d/well) and

incubated at room temperature for one hour, Plates were read at 60 min at 405 nm on

a micromolecular plate reader (Molecular Devices).
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Rabbit anti-fd, sheep anti-M 13 or mouse anti-M 13 [gO were not used to capture the

phage due to strong cross-reaction of all human sera (either normal or patients' sera)

with these antibodies (either anti-fd or anti-M l3 antibodies), suggesting that there are

anti-idiotypes in human sera against anti-fd or anti-M 13 [gO (data not shown).
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4.2.1.3 Results

4.2.1.3.1 Sequences of Phagotopes Isolated by Bio-panning. of M 13 pili Phage Peptide

Library (linear 12-mers) and Immuno-blotting Assay with SMS Patients' Sera.

M13 plll phage library (linear 12-mers) was screened by 5 rounds ofimrnunopanning

with SMS patients' sera as described in section 4.2.1.2.1.3. The number of plaques

obtained in each round during plating decreased consecutively. This may he due to the

loss of non-amplified phage which are specific to one paticntsscrum, but not to

another patient's serum. leading to a decrease in the number of the selected phage.

The specific plaques of 3 different rounds (third, fourth and fifth rounds) of M 13 pilI

phage library (linear 12-mers) to the SMS patients' sera were selectedby immuno-

blotting assay as described in section 4.2.1.2.1.4. About80(Yt, or these plaques

(clones) showed moderate affinity, giving pale blue spots on the nitrocellulose

membranes, to the SMS patients' sera in the third, fourth or fifth round. The plaques

showed high affinity neither to goat anti-human IgO nor to normal human sera.

Twenty clones derived from rounds 3,4 or 5 of bio-panning with SMS patients' sera

were sequenced successfully. The 20 clones specific to SMS patients' sera showed

two possible motifs depending on how the sequences were aligned. The tirst motif

showed leucine(13/20 clones), valine(1120 clones). glycine(2/20 cloucs) or alanine

(2/12 clones) followed by alanine(4/20 clones) or isoleucine (1/20 clones) followed

by cystine (2/20 clones) or methionine(1120 clones) followed by threonine (10/20

clones) or serine(7/20 clones) followed by histidine (5/20 clones). arginine(6/20

clones) or lysine(2/20 clones). Thus, one motif of these 20 clones isI.!i\-A-X- T/S-
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R/H/K. corresponding to amino acid residues 371-375 of GAD-65 (I.-L-M-S-R).

which showed conservative substitutions (Fig. 4.6. group I). Alanine. valine, glycine.

isoleucine and leucine have aliphatic side chains and thus are similar residues. In

addition. cystine and methionine have sulphur-containing side chains and thus are

similar residues. Also. threonine and serine have aliphatic hydroxyl side chains and

thus are similar residues. Furthermore, arginine, histidine and lysine have basic side

chains and thus are similar residues.

The second motif given by different alignment of the same sequences showed a motif

of threonine (5/20 clones) or serine (1/20 clones) followed by threonine (12/20

clones) followed by valine (2/20 clones), isoleucine (1/20 clones) or leucine (7/20

clones) followed by phenylalanine (2/20 clones) followed by glutamate (2/20 clones)

It1110wed by leucine (10/20 clones), glycine (2/20 clones). isoleucine (1120 clones).

valine (3/20 clones) or alanine (1120 clones) followed by histidine ( I1120 clones) or

lysine (1/20 clones) followed by leucine (1120 clones) or glycine (1/20 clones)

followed by an amino acid residue followed by lysine(3/20 clones) or arginine (6/20

clones). Thus, the other motif of these20 clones is T/S-T-V/l/L-F-E-L/Ci/I/V/A-H/K-

L/G-X-K/R, corresponding to amino acid residues 463-472 aa of GAD-ClS (T-T-G-f'-

E-A-H- V-D-K). which showed conservative substitutions. see above. (Fig. 4.6. group

II).
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4.2.1.3.2 Testing of SMS Patients' Sera-specific Phagotopes of M 13 pili Phage

Peptide Library (linear 12-mers)by ELISA

Sequenced phagotopes of Ml3 pIlI (linear 12-mers) phage library were selected for

investigation of their binding to the SMS patients' sera by direct ELISA as described

in section 3.2.1.2.4. Randomly selected 5 out of these 20 clones. which were screened

in EUSA, showed high binding with SMS patients' sera(.10. PT. DII and PT). not

LB SMS patient's serum compared to the negative control (normal human serum)

(data not shown). In particular. high optical density readings were given with negative

control phage (N-tenninal MoAb specific clone) as well as the selected phage clones.

Thus. because of this high background reactivity with the negative control phage,it

was not possible to demonstrate specific binding to the specific phage.
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Figure 4.6 Sequences of Peptides Selected fromM 13 pili (linear 12-mers) Phage
Peptide Library by Binding to Antibodies of SMS Patients' Sera.
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4.2.1.4 Discussion

Twenty clones. which were obtained from the third. fourth andIi tth rounds of

successful biopanning of the M13 pIlI (linear 12-mers) phage library. were positively

imrnunostained in the blotting assay (moderate affinity) with the SMS patients' sera.

The 20 clones showed a motif ofLlA-A-X-T/S-R/H/K (Fig. 4.6. group I). which

could correspond to 371-375 aa of GAD-65 (L-L-M-S-R). as a public epitope of

SMS patients' sera. Also. the 20 clones showed another motif of TlS-T-V/I/L-F-E-

L/G/I/V/A-H/K-L/G-X-KlR (Fig. 4.6. group II), which could correspond to 463-472

aa ofGAD-65 (T-T-G-F-E-A-H-V-D-K), as another public epitope or SMS patients'

sera.

Since SMS patients' sera-bound phage were eluted with rat brain GAD (native GAD)

rather than with acid. the phage peptide sequences may represent a conformational.

rather than linear, epitope.

Thus, a motif of SMS patients' antibodies may be 371-375 aa, which is present at the

C-terminal end of a-helixN in the three-dimensional model of the middle region of a

GAD-65 (Schwartz et al., 1999) (Fig. 4.7a). Alternatively. a motif of SMS patients'

antibodies could be 463-472 aa, which is present at the extreme N-terminal end of a-

helix R (467-486) and the loop region preceding it. in the three-dimensional model of

the C-terminal region of a GAD-65 (Schwartz et al.. 1999) (Fig. 4.7h. group II).

The proposed group II motif of SMS patients' sera (463-472) has a critical amino acid

residue H470 which. when mutated to Q470. affects the binding of MICA-8 and
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MICA-9 to GAD-65 (Schwartz et al., 1999). In addition. MICA-I. MICi\-3 and DPA

(huAbs of type 1 OM patients) are predicted to bind the backsideor helix R (Schwartz

et al., 1999) which has the predicted public epitope of SMS patients' sera (463-472).

Thus. this predicted public epitope of SMS patients' sera may be a major antigenic

determinant of type I DM patients sera as well as SMS patients' sera.

It should also be noted that the two regions of GAD-65 identified here (371-375 aa

and 463-472 aa) are predicted to be very close together in the three-dimensional

model of GAD-65 due to the alignment of the middle and C-terminal regions of the

molecule.

Four out five sera of SMS patients(10, OH, PT and LB) showed higher binding than

negative control serum (NHS) to the selected phage in ELISA (data 110tshown).

However, these four SMS patients' sera gave high optical density readings with both

selected phage and the negative control phage (N-terminal MoAb specific clone). The

reason for this non-specific reactivity is unclear, but it is possible that the N-terminal

MoAb specific clone was not the proper negative control phage in this assay since

some SMS sera may recognize the N-terminus of GAD-65 as a major antigenic

determinant (Bjork et al., 1994; Kim et al., 1994). Another possibility is that the

selected phage may bind to GAD, since these phage were elutedby (iAD; this could

be tested by determining whether the selected phage bind to GAD itself. Also. it has

been suggested that one NHS was not sufficient to control for the specific binding of

SMS sera to the selected phage. Although, in immuno-blotting assay.XO% of clones

showed specific binding to SMS sera compared to NHS. we cannot be certain that the
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selected phage represent disease-specific sequences. Thus we cannot exclude that

other NHS might have shown high binding to the selected phage similar to SMS sera.

To investigate whether the selected phage represent disease-specific sequences, future

work could involve imruuno-precipitation assay by exposing the selected phage to the

antibodies of SMS sera in a fluid phase, rather than solid phase (which may denature

the exposed peptide or facilitate non-specific binding, followedby adding protein-A

sepharose to precipitate the antibodies of SMS sera, including the antibody-phage

immune complexes. The precipitated phage in the immune complexes could then be

detected by their ability to infect E.coli and generate the plaques.Also. other future

work could involve the mutation of the suggested regions of GAD to see if this affects

the binding of the SMS antibodies. Also, other future work could involve raising

mouse monoclonal antibodies (MoAbs) against the selected phage and see if these

MoAbs bind to GAD.
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Figure 4.7 The Three-dimensional Models of the Middle (a) and C-terminal (b)
Regions of GAD-65 (modified from Schwartz et al., 1999) showing the suggested
Public Epitopes of SMS Patients' Sera;a) 371-375, which is present in the C-
terminal end of a-helix N andb) 463-472, which is present in the Loop Region at the

extreme N-terminal end of a-helix R(Schwartz etal., 1999).

a)

b)

204



CHAPTER FIVE

GENERAL DISCUSSION



General Discussion

5 General Discussion

5.1 Introduction

Type I diabetes mellitus (type 10M) is believed to have an autoimmune

pathogenesis with a multifactorial etiology leading to destruction of insulin-producing

pancreatic islet J3 cells and insulin deficiency. Many genetic loci arc involved in

determining genetic susceptibility to the disease. the most important of which is found

in the HLA, mainly HLA-OR3/DQ2 and HLA-DR4/0Q8. Environmental factors arc

also important, especially viruses. such as coxsackie virus B4 (CV£34). Humoral and

cellular autoimmune responses to the pancreatic islet p cells can damage these isletJ3

cells and expose many autoantigens. Both subsets of T cells. ('04+ T helper I (Th I)

cells and CD8+ cytotoxic T cells (Tc), and macrophages are involved in the cellular

autoimmune response to the pancreatic isletp cells. Autoantibodies (lgG I). mainly

GAD autoantibodies (GAAs), anti-IA-2/ICA-512bdc autoantibodies (anti-IA-2 AAs).

anti-IA-2p/phogrin autoantibodies (anti-IA-2J3 AAs) and insulin autoantibodies

(IAAs), are produced to the autoantigens of the pancreatic islet1\ cells and can be

used as markers of the pathogenesis of type 10M.

GAAs are important markers for type 10M. Individuals with other autoimmune

diseases such as stiff man syndrome (SMS) and autoimmune polyendocrine syndrome

(APS) also have GAAs. Diabetes is often a component of SMS and APS type II with

an incidence of about 30% (Bosi et al., 1991; Solimena et al., 1990) whereas it is not a

usual feature of APS type I (Riley 1992).
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While there is an autoimmune response to GAD-65 in type I DM. SMS and APS II. a

difference in the clinical frequency of diabetes suggests that the humoral and cellular

autoimmune response to GAO-65 may differ in these diseases. (,Ai\s in SMS have

both similarities anddifferences with those found in type I OM (Dawet al., 1996;

Kim et al., 1(94) and APS II. GAAs from patients with SMS or type 1 OM both

recognize determinants in the middle and carboxy (C) terminal regions of GAD65

but. predominantly in SMS patients, antibodies also recognize determinants in the

amino (N) terminal region of GAD-65 (Daw et al., 1996; KiIII et al., 19(4).

Furthermore. GAAs in patients with SMS recognize GAD on Western blots. whereas

GAAs in type 1 OM fail to detect GAD on Western blots (Baekkeskov et al., 1990).

indicating that GAAs of type 1 OM recognize only conformation-dependent epitopes

while some GAAs of SMS recognize linear epitopes. Although the locations of

epitopes of GAAs in APS type II have not yet been precisely mapped. GAAs of

diabetic APS patients' sera recognise a dominant linear epitope within 7-124 amino

acid residues (aa) of GAD65 which is also recognised by other patients' sera (type 1

OM. non-diabetic APS and SMS), but at a lower frequency than diabetic APS

(Sohnlein et al., 2000). Thus. there is considerable heterogeneity between anti-GAD

responses of these disorders, which may be due to GAD being presented to the

immune system through separate pathogenic mechanisms. In addition. (iAAs in SMS

and APS are present at high titre while GAAs in type 1 OM arc present at lower titre

(Bjork et al., 1994). GAAs are present in 89% of APS II patientswi th type 10M.

21% of APS II patients without type 10M, 89% of SMS patients (Morgenthaler et

al., 1997), 80% of newly diagnosed type I OM patients. 20% of non-diabetic identical

twins who are at low risk of diabetes (Christie et al.. 1(94) andX01Yc. of relatives of

diabetic patients who themselves developed type 1 OM (Bingley et al., 19(3).
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T cells of SMS patients recognize different immunodominant epitopes of GAO-65

compared with T cell from patients with type 10M. The region of GA065 amino

acids 339-352. which is recognised by the T cells of a non-diabetic SMS patient. has

110 reactivity with T cells of newly diagnosed typeI OM patients (Schloot et al.,

1(99). In contrast. the GAD regions, 161-243 and 473-555aa, induce a dominant T

cell response in type 10M. not in SMS; while the GAD regions. 81-171 and 313-403

aa. induce a dominantT cell response in SMS. not in typeI DM (Lohmann et al.,

2000).

The prevalence of anti-1A-2 AAs is higher in acute onset 100M than in slowly

progressive lOOM (Yamada et al., 1997). The anti-IA-2 AAs are present in 56%

100M patients. 47% APS II patients with 100M. 14% SMS patients. 4% APS II

patients without IDOM (Morgenthaler et al., 1997). The maior antigenic determinant

of IA-2 in type I OM patients is localized within 762-887 aa. while the minor

antigenic determinant of IA-2 is localized within 601-762 aa. which is highly

homologous between IA-2 and phogrin. In addition. it has been suggested that some

of the anti-IA-2 AAs recognize a conformational epitope(s) associated with the C-

terminal region of native IA-2 (949-979 aa) (Kawasaki et al., 1(98).

A new approach to the identification of both linear and non-linear epitopes is antibody

probing of phage display peptide libraries which can revealconformational epitopes

and also linear mimotopes that mimic the shape of conformational cpitopes (Scott and

Smith 1990). Conformational epitopes have been identified using monoclonal

antibodies (Cook et al., 1998: Felici et al., 1993; Luzzago et al.. 19(3) and also using
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polyclonal antibodies in immune sera from both animals and humans(Folgori et al.,

1994~ Osman et al.. 1(98). However, there have been lew definitive studies on

polyclonal antibodies in human sera using phage display libraries.

The aim of my studies was to determine the epitopes in GAD65 of three different

mouse monoclonal antibodies: GAD-6, N-terminal mouse monoclonal antibody

binding within 4-17 amino acids (aa) and C-terminal monoclonal antibody binding

within 572-585 aa: to determine the epitopes in IA-2 of two different mouse

monoclonal antibodies 768 and 76F; and to determine the epitopes of two different

human monoclonal antibodies, b78 and b96.11, on GAD-65. The determination of

epitopes recognized by these monoclonal antibodies might help us to understand the

antigenic nature of the GAD-65 and IA-2 autoantigens.

Furthermore, since epitope mapping is generally simpler with monoclonal antibodies

than with polyclonal antibodies, it was intended that these studies should indicate how

best to use the random phage peptide libraries to determine the epitope specificities of

patients' serum autoantibodies. The very high levels ofGAAs in SMS patients' sera,

indicates that phage display technology should be applicable to the identification of

mimotopes of GAD-65 that are reactive with GAAs of SMSpatients' sera. Thus, a

further purpose of these studies was to determine the immunodominant epitopes

(public epitopes) in GAD65 ofSMS patients' serum autoantibodies.
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5.2 Antigenic Nature of GAD-65 defined by Binding of N-terminal and C-

terminal Specific Mouse Monoclonal Antibodies

N-terminal MoAb, GC 3208 (cloneII), is a mouse (gG I MoAb which recognizes the

4-17 aa residues of GAD-65. C-terminal monoclonal antibody, GC 31O~ (clone III).

is a mouse (gG I monoclonal antibody which recognizes the572-5X5 aa residues of

GAD-65.

In the present study the N-terminal MoAb was screened with two types of M 13

tilamentous phage-displayed library, gene III linear 12-mers and geneVIII 5C4C4. to

derive peptide mimotopes of N-terminal MoAb on GAD-65. All the clones of

phagotopes of MlJ, both gene III linear 12-mers and gene VIII 5C4C4 libraries. were

also tested for reactivity with N-terminal MoAb by using capture ELISA. thus

identifying a set of reactive phagotopes with sequences that represented mimotopes of

the epitope of the N-terminal MoAb on GAD-65. All the clones of the phagotopes

derived by biopanning of Ml3 geneVIII 5C4C4 library with N-terminal MoAb were

strongly reactive with the N-terminal MoAb by ELISA.

The clones, which were obtained from the successful biopanning of the M 13 pili

linear 12-mers phage library with the N-terminal MoAb, showed a motif of P-G-X-X-

X-W-S-F, corresponding to 4-10 aa ofGAD-65 (P-G-S-G-F-W-S-F). The presence of

proline in the motif of the N-terminal MoAb may influence the binding of the N-

terminal mouse monoclonal antibody with the middle region of till: motif because it

induces a turn in the sequence. By contrast, the clones. which were obtained from the

successful biopanning of the M13 pVIII SC4C4 phage library with the N-terminal

MoAb, showed a motif of SeT-po which does not correspond to amino acid residues 4-
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17 of GAD-65 and does not overlap with the previous motif of the N-tenninal MoAb.

i.e. P-G-S-G-F-W-S-F (4-10 amino acid residues). Therefore. The MI3 pVIII 5C4C4

worked with N-terminal MoAb by expressing a relevant sequence for the N-terminal

MoAb but which is unlike its epitope in GAD-65. This shows that a dearly defined,

antibody-reactive motif selected from a phage peptide library may not necessarily

show sequence similarities with the epitope of the original protein antigen.

To further define the N-terminal MoAb epitope, in the present study the N-terminal

MoAb was screened with the T7 linear 9-mers phage-displayed library to derive

peptide mimotopes of N-terminal MoAb on GAD-65. Twenty clones. which were

obtained from the successful biopanning of the T7 linear 9-mers phage library with

the N-terminal MoAb, showed a motif of P-X-X-G, corresponding to amino acid

residues 4-7 of GAD-65 (P-G-S-G), which overlaps with the previous motif P-G-S-G-

F-W-S-F (4-10 amino acid residues). The other 6 clones did not show any significant

motif. This may be the result of a heteroclytic monoclonal antibody character. which

recognizes the related clones more strongly than the specific clones.

In the present study the C-terminal mouse monoclonal antibody was screened with

M 13 filamentous phage-displayed library gene III linear 12-mers to derive peptide

mimotopes of C-terminal MoAb on GAD-65. The clones. which were obtained from

the successful biopanning of the M13 pIlI linear 12-mers phage library with the C-

terminal MnAb, showed a motif of F-L-I-X-E-IIVIL-D-X-L, corresponding to 573-

581 aa of GAD-65 (F-L-I-E-E-I-E-R-L), as an important epitopic determinant of the

C-terminal MoAb.
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The N'terminal MoAb reacts weakly with GA065 on blots. but does react with native

(jAD65. The Cstenninal MoAb reacts strongly on blots. but does 110tappear to react

with native GAD65 (data not shown). Therefore, the a-helix T. where theCvterminal

MoAb binds. must be denatured for C-terminal MoAb to bind.

5.3 Antigenic Nature of GAD-6S defined by Binding of GAD-6 Mouse

Monoclonal Antibody

The murine IgG2a monoclonal antibody GAO-6 recognizes a spcci lie epitope on

GAD65 within 475-585 aa(SMS El) (Butler et al., 1993). The GAAs oftype I OM.

SMS and APS II (diabetic and non-diabetic) sera recognize the region of the GAO-6

epitope on GAO-65. In addition, the extreme C-terminal sixteen amino acid residues

of GAD65 are not involved in the epitope ofGAD-6 (Davenportcl al., 19(7).

To further define the GAD-6 epitope, in the present study GAD-6 was screened with

two types of T7 phage-display library of random peptides, both constrained 9-mers

(C9C) and unconstrained 9-mers (linear 9-mers), expressed at the ("-terminus of gene

X coat protein of bacteriophage to derive peptide mimotopes of CiAD-()on GAO-6S.

Thirteen out of 16 clones of phago topes of the T7 C9C phage library or217 clones of

phagotopes of the T7 linear 9-mers phage library showed a motif of R/K-LlA/I-X-K

or R-X-X-K, respectively. possibly corresponding to 525-528 aa of (jAD-65 (R-L-S-

K). as an important epitopic determinant of the GAD-6. The two amino acid residues

on the ends of the motif (arginine and lysine) are highly conserved. suggesting that

they are important in the paratope-epitope interaction between the (jAJ)-6 and GAD-

65. Another motif of GAD-6 obtained from 3 other clones. which were screened by
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T7 (C9C) phage library, are M-X-X-A, possibly corresponding to 523-526 aa (M-S-

R-L) of GAD-65. The presence of methionine and leucine also appears to be

important in the paratope-epitope interaction between the GAD-6 and (iAD-65.

GAD-6 does not bind to GAD-67: it is therefore significant that the equivalent

residues of M-S-R-L-S-K, the motif of GAD-6 corresponding to 523-518 aa of GAD-

65, are R-E-K-L-H-R in GAD-67, which shows 5 amino acid substitutions that may

disrupt the GAD-6 epitope. Also, the equivalent residues of R-X-X-K. the motif of

GAD-6 corresponding to 525-528 aa ofGAD-65 obtained by T7 phage library. are K-

X-X-R in GAD-67: as an opposite direction of the motif (R-X-X-K) ill GAD-65. This

may prevent the binding of GAD-6 to GAD-67 or other changes to neighbouring

amino acids may affect the binding of GAD-6.

To further define the GAD-6 epitope, in the present study GAD-6 was screened with

three types of M 13 filamentous phage-displayed library of random peptides expressed

at the N-terminus of gene III protein, both constrained 7-mcrs (C7C) and

unconstrained 12-mers (linear 12-mers), or gene VIII protein constrained 13-mers

(5C4C4) to derive peptide mimotopes of GAD-6 on GAD-65. All the clones of the

two types of M 13 gene III library, which were sequenced and compared with one

another. did not show a clear motif.It was impossible to align them (data not shown)

and they did not show reactivity with GAD-6 by capture ELISA. A possible

explanation for this is that the peptides, which are specific to bind with GAD-6. are

not present in this type of library, M13 pIlI phage library, either linear l2-mers or

C7C. In contrast, all the clones of the phagotopes selected by biopanning of M 13 gene

VIII 5C4C4 library with GAD-6 were strongly reactive with GAD-Cl by capture
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ELISA. Interestingly. all these sequences were identical to each other, i.e. they

showed only one peptide. This indicates that the MI3 pVIII phage library may have

one dominant peptide specific to GAD-6. All the clones showed a motif of methionine

followed by two amino acids followed by alanine. Thus. the motif of GAD-6

suggested from this library is M-X-X-A, which is identical to the motif selected from

3 clones of T7(C9C) library. possibly corresponding to amino acid residues 523-526

(M-S-R-L) of GAD-65 which overlaps with the previous motif: R-L-X-K (525-528

aa). Other work from this laboratory has indicated that GAD-6 can recognize the

motif M-X-X-L (523-526 aa of GAD-65) by aligning7/17 clones. which was selected

from a linear IS-mel's M 13 filamentous phage library (Davenport.1(95).

Analysis of C-terminal deletion mutants shows that the removal of 41 aa at the C-

terminus of GAD65 (545-585 aa deletion mutant) abolishes the binding of MICA-2

(human monoclonal antibody) and GAD-6 on blots (Richter et al.. 1<)<)3).However,

the suggested GAD-6 epitope (523-528 aa) is present in cc-helix S of the model of

Schwartz et al. (1999). while the deletion of 545-585 aa removes the terminalo-helix

T and 2 lengths of ~-pleated sheet. Mapping of MICA-2 epitope within GAD-65 by

using an epitope cDNA library reveals that the MICA-2 can recognize an epitope

between 506-531 aa of GAD65 (Richter et al., 1996). which includes the GAD-6

epitope suggested from the libraries here.It is possible that the removal of 41 aa at the

C-terminus of GAD65 (545-585 aa deletion mutant) may lead to a conformational

change of GAD-6S which abolishes the binding of MICA-2 and GAD-6. Thus. 545-

585 aa deletion mutant would remove terminal a-helix (T) and 2 lengths of p-pleated

sheet. in the Schwartz model. which is likely to disrupt the conformation of u-hel ix S.
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In NOD mice. injection of GAD-65 peptide 524-543 aa. which also includes the

proposed GAD-6 epitope mapped here with phage libraries. activates diabetogenic T

cells (Zekzer et al., 19(8). Furthermore, T-cells in type I DM patients can react with

379-585 aa of GAD-65 (Rharbaoui et al., 1999). Binding of GAD-6 to this region of

GAD-65 may block antigen processing which generates the peptides required tor

stimulation of GAD specific TH I cells. Previous studies have shown that blocking the

T cell response to GAD by tolerisation with GAD antigen inhibits the response to

other islet antigens. in particular insulin and carboxypeptidase H (Kaufman et al.,

1993; Tisch et al., 19(3). Other studies have shown that injection of monoclonal

antibody against GAD into NOD mice leads to delay in the onset or diabetes and a

decrease in the severity of insulitis. The mechanism of diabetes prevention by

administration of anti-GAD antibody could be associated with an interference in

recognition of GAD by T cells (Menard et al., 1999). Indeed, autoreactive B cell may

act as APe for the T cell activation (Noorchashm et al., 1997). Also. incubation of a

T-cell hybridoma, which recognizes the GAD-65 274-286 epitope. with APe exposed

to recombinant human GAD-65 complexed with GAD-65+ autoantibodies led to the

stimulation of this T-cell hybridoma. This stimulation was most prominent using sera

from patients with GAD-65 autoantibodies. Uptake of antibody-complexed GAD-65

was Fe receptor-mediated. i.e. macrophages and/or dendritic cells. not antigen-

specific B-cells. These findings support the idea that GAD65 autoantibodies modulate

presentation of GAD-65 to T cells (Reijonen et al., 2000). In addition. the NOD

mouse fails to develop diabetes if the B cell compartment is inactivated. suggesting a

crucial role of B cells. probably as essential antigen presenting cells.It has been

suggested that the membrane bound IgG may playa crucial role in antigen uptake.

Thus, B cell presentation of GAD-65 may play an important role in
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immunopathogenesis of typeI OM by shaping the autoreactive 1 cell repertoire

(Ouhindan et al., 20(0).

To further determine whether the phage peptides which were selected by

immunopanning with UAD-6 were acting as true mimotopes of (;;\1)-65 epitopes,

mice should be immunized with OAO-6 reactive clones. Immunizing withrnimotope

peptides presented onfilamentous phage is an appropriate method to produce peptide-

specific antibodies which also bind to the native antigen (Meolaer al.. 19(5).

5.4 Antigenic Nature of IA-2: Binding of 768 and 76F Mouse Monoclonal

Antibodies

768 (unknown IgOisotype) and 76F(lg02b), supernatants oftwo mouse monoclonal

antibodies, recognize epitopes in the extracellular domain andNvtenninal region of

the cytoplasmic domain of lA-2, respectively.

In the present study the 768 or 76F MoAb were screened with 17 ('9C phage-

displayed library to derive peptide mimotopes of 768 or 76F MoAb epitopes on IA-2.

To further define the 768 or 76F MoAb epitopes, in the present study the 768 or 76F

mouse monoclonal antibodies were also screened with M 13 gene III Iinear 12-mers

phage-displayed library to derive peptide mimotopes of 7()B(Ir 76F mouse

monoclonal antibody on IA-2.

The sequences of 768-specific clones obtained from both libraries. T7('l)(' and M 13

pill linear l2-mers. showed homologies amongst themselves and with the original

IA-2 sequence. Thus. the main motif of 768 is D-X-K-P-L-S. corresponding to 477-
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482 aa of IA-2 (D-()-K-P-L-S). The sequences of 76F-specitic clones obtained from

hath libraries. T7<,'9(' and M 13 pIlI linear 12-mers. show homologies amongst

themselves and with the originaIIA-2 sequence. Thus. the main motifor 76F is F-X-

Y-Q. corresponding to 626-629 aa of IA-2 (F-E-Y-Q). Since the minor antigenic

determinant of IA-2 is localized to 601-762 aa (Kawasaki et al.. 1(98) and huAb

t 03/5 recognizes 603-686 aa of IA-2 (Kolm-Litty et al.. 20(0) which includes the

predicted region recognizedby 76F huAb (626-629aa), the 76F MuAb might be

used to block antigen processing which generates the peptidcs required for

stimulation of IA-2 specific TH I cells by binding of 76F to this region of IA-2.

5.5 Antigenic Nature of GAD-65 by Binding of b96.11 and b78 Human

Monoclonal Antibodies

b78 and b96.11. supernatant of cloned cells of two human monoclonal antibody

producing cell lines derived from a human APS patient. recognize epitopes on GAD-

65. 532-540 aa and 308-365 aa, respectively.

In the present study b96.11 huAb was screened with M 13 gene III linear 12-mers

library to derive peptide mimotopes of b96.l1 huAb on GAD-65. The clones, which

were obtained from the successful biopanning of the M 13 pili linear 12-mers phage

library with the b96.11. showed amotifoflN-T/S-A/G/L-T/S-A/L (Fiu. 4.1a), which

might correspond to 332-336 aa of GAD-65 (V-S-A-T-A). and another motif of S-

T/S-G/A/LII (Fig. 4.1 b). which also might correspond to 338-340 aaor GAD-65 (T-

T-V) as epitopic determinants of the b96.11 huAb. Thus. the overall motif of b96.t 1

might correspond to 332-340 aa of GAD-65, which is within the region of GAD65
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308-365 aa. Deletion of this region is known to abolish the binding of b96.11 to

GAD65 (Schwartz et al., 1999).

The b78 and b96.11 huAb recognize native (not denatured) UAO-65. indicating that

these hUAb. b78 and b96.11, can recognize conformational (not linear) epitopes on

GAD-65.

It is noteworthy that the b78 huAb bound slightly better with GAO-6 as the capture

MoAb (rather than the N-terminal MoAb), but b96.11 bound much better with GAD-6

as the capture MoAb (Table 4.3). This might suggest that the GAD-6 does interfere

with b78 huAb binding to GAD-65 more than it does with b96.1I huAb. However. it

must also suggest that the GAD-6 and b78 huAb epitopes are not directly overlapping.

The b78 huAb recognizes amino acid residues between 532-540 on GAD-65

(Schwartz et al.. 1999) which is very close to the proposed GAO-6 epitope (523-528

aa). In addition. thefootprint pattern of protected trypsinizedfragments of GAD-6 is

similar to that of b78 huAb (Tremble et aI., 1997).

The mutation V532K disrupts the binding of b78 huAb to GAO-65. while other

mutations in the same region of b78 epitope, R536L and Y540S. do not disrupt the

binding of b78 to UAO-65. This indicates that V532 may be involved in the surface

patch of the b78 epitope which then includes other amino acid rcsiduets) from

different region(s).
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S.6 Antigenic Nature of GAD-6S defined by Binding of GAD

Autoantibodies of SMS Patients' Sera

To further define the epitopes of GAAs of SMS sera. in the present study SMS sera

were screened with an M 13 linear 12-mers phage-displayed Iibrary of random

peptides to derive peptide mimotopes of SMS sera on GAD-Cl5. All the clones of

phagotopes of M 13 gene III linear 12-mers library were tested for reactivity with

SMS sera by capture ELISA, but they did not show reactivity.

The clones. which were obtained from the third. fourth and fifth rounds of successful

hiopanning of the Ml3 pIlI (linear 12-mers) phage library and were positively

irnmunostained in the blotting assay (moderate affinity) with the SMS patients' sera

showed a motif of L/A-A-X-T/S-RfH/K. This could correspond to 371-375 aa of

(iAD-65 (L-L-M-S-R), as a public epitope of SMS patients' sera.

The 20 clones showed another motif ofT/S- T-VIIIL-F -E-L/G/IIV! A-H/K-L/G-X-

K/R. This could correspond to 463-472 aa of GAD-65 (T-T-G-F-E-A-H-V-D-K), as

another public epitope of SMS patients' sera.

S.7 The Importance of Using Different Phage Libraries with Different

Features Screened with either Monoclonal or Po/yc/onal Antibodies

The differences in the sequences of the peptides selected using the M 13 PVIII

filamentous phage library and T7 phage library with N-terminal MoAb may be due

to the differences in their capacity to express their displayed peptide. either at the N-

terminus of gene VIII ofM13 filamentous phage library or at the C-tcrminus of gene

X of T7 phage library. Also, the conformation of the expressed peptides may be
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different between these two phage libraries due to differences in the number of

amino acid residues and due to the presence of the cysteine-cysteine bridge in the

M13 pVIII phage library. However, similar sequences were selected from these

libraries with OAD-6.

The number of copies of the displayed peptide expressed by M 13 pVTIl (300 copies

per phage) compared with the lower number of copies expressed by M 13 pIlI (3-5

copies per phage). may account for the reactivity of the N-tcrminal MoAb with

specific clones of phagotopes derived from the MI3 pVIIl library rather than MI3

plll. due to the higher avidity of binding with the M 13 pVIII library.

Polyclonal IgO includes a myriad of antibodies so that. even after extensive rounds of

negative selection. the phagotopes will include many that react with other antibodies

that are either specific or non-specific to the disease. The difficulty in discriminating

between sequences that are specific or non-specific for any disease has greatly

hampered the use of phage-displayed technology with polyclonal sera. In addition.

some of the non-disease specific phagotope sequences would include either nuisance

peptides intrinsic to the biopanning process itself. or mimotopes of bacterial or viral

antigens for which antibodies were absent from the particular poolor 19G used for

negative selection (data not shown).

S.B Conclusion

In conclusion. amalgamate findings for different mouse monoclonal antibodies

(GAD-6. 76B. 76F and N-terminal and C-terminal mouse monoclonal antibodies).

human monoclonal (b96.11) and polyclonal antibodies (SMS patients' sera) have
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been presented for the screening of different peptide libraries with different features

[T7 gene X (C9(' and linear 9-mers), M13 gene 1II (C7C and linear 12-mers) and

M13 gene VIII (5('4('4)]. These peptide sequences have been compared with the

known structure of immunodominant regions of the autoantigenic molecules. GAO-65

and IA-2, to locate precisely conformational epitopes on these major autoantigens in

type 10M, SMS and APS patients.
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Appendix I: Abbreviations for Amino Acids

Amino Acid Th ree- Letter One-Letter

Abbreviation Abbreviation-_...-.._-_....._ ...... _ .......

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic Acid Asp D

Cysteine Cys C

Glutamine Gin Q.

Glutamic Acid Glu E

Glycine Gly G

Histidine His H

Isoleucine lie

Leucine Leu L

Lysine Lys K

Methionine Met M

Pheny lalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr y

Valine Val V
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Appendix 2: Amino Acids grouped according to Chemical Properties

Chemical Nature of Side Chain Amino Acids
Aliphatic Side Chains Glycine

Alanine
Valine
Leucine
Isoleucine

Aliphatic Hydroxyle Side Chains Serine
Threonine

Basic Side Chains Lysine
Arginine
Histidine

Aromatic Side Chains Phenylalanine
Tyrosine
Tryptophan

Acidic Side Chains Aspartic Acid
Glutamic Acid

Amide Side Chains Asparagine
Glutamine

Sulfur-containing Side Chains Cysteine
Methionine
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