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Abstract

Correct assignment of airport resources can greatly affect the quality of service which

airlines and airports provide to their customers. Good assignments can help airlines

and airports to keep to published schedules, by minimising changes in these schedules

and reducing delays. Given the expected increases in civil air traffic, the complexities

of resource scheduling and assignment continue to increase. For this reason, as well

as the dynamic nature of the problems, scheduling and assignment are becoming

increasingly more difficult.

The assignment of baggage sorting stations to flights is one of the resource assign-

ment problems at an airport, and like many other real world optimisation problems,

it naturally has several objectives, which conflict with each other. A model of the

problem is presented, different approaches to obtaining good solutions are looked at

and studied to gain an insight into their qualities. Furthermore, algorithms are stud-

ied to improve the already good solutions obtained by the approaches considered and

their performance is studied where some characteristics of the problem change, such

as the number of baggage sorting stations or the topology of the airport.

Changes to the flight schedule on the day of operation may invalidate previous

assignments of flights to resources. These perturbations may not only affect the

disrupted flights but also other flights already assigned. Some existing approaches are

looked at, and others are suggested to take account of these potential perturbations at

the time the assignments are generated with the aim of mitigating their detrimental

effect on the day of operation.

The constructive search algorithms and robustness methods are potentially impor-

tant in a wider variety of problems other than the Airport Baggage Sorting Station

Assignment Problem (ABSSAP). By way of illustration, the same techniques are

applied to the widely studied Airport Gate Assignment Problem (AGAP).
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Chapter 1

Introduction

1.1 Background and motivation

The Federal Aviation Administration (FAA) predicted that, in spite of all of the chal-

lenges suffered during the last few years and from which we are still recuperating, the

number of passengers travelling continues to grow over the long term, showing the im-

portance of air transportation (Federal Aviation Administration (2010) and Federal

Aviation Administration (2012)). The predicted growth in airport traffic will further

increase the already high density of operations in some airports, especially large hub

airports. These increases urge to consider the problem from different points of view,

from the optimisation of the different individual areas to the analysis and study of

the overall air traffic problem. Different initiatives currently exist directed at tackling

some of the problems identified in a global view, for example the Single European

Sky ATM Research (SESAR) (Commission (2010)) project which includes the Airport

Collaborative Decision-Making (A-CDM) initiative. iFly (Keinrath et al (2008)) for

en-route traffic aims to develop an advanced airborne self-separation design for Eu-

ropean airspace. Similarly in the USA the NextGen-Airspace project (Swenson et al

(2006)) intends to integrate the currently increasing optimal assignment of ground

and air automation technologies.

A series of assignment problems must be solved before aircraft can arrive at or

depart from an airport such as baggage sorting stations (BSSs) and gates, in addition

to the performance of the multiple intermediate activities linked to these operations.

Many parties are involved, each planning their own schedule. This leads to uncer-

tainty and unreliability which may result in suboptimal solutions for the operations

required to run an airport successfully. Airport partners set up schedules without

knowing exactly where and when such resources as gates, baggage systems or aircraft,
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are going to be available. Some may later have technical difficulties or meteorolog-

ical changes could occur, which are aggravated by the interdependency between the

different airports in which the disturbed services operate. Creating a revised sched-

ule using input from all stakeholders could potentially reduce the time required to

recuperate from disruptions and provide more accurate departure times and a better

view of available ground resources. This in turn emphasises the need to share data

in order to improve decisions based on more accurate information.

According to Mueller and Chatterji (2002), only 16% of the air traffic delays are

attributed to the point at which an aircraft is airborne, with 26% from taxi-out and 8%

from taxi-in, the remaining delays derive from delays when the aircraft are at a gate

(50%), which shows a greater potential for improvement in those operations assigned

around an aircraft when it is at the gate (stand). This indicates that 84% of the

delay relates to ground operations, which are defined as those operations performed

on and around the ground in an airport.

Even where many different resources are involved in the daily operation of an

airport, most of the research to date has been concentrated on a few types of re-

source, with the assignment of gates to flights being one type. Whereas the Airport

Gate Assignment Problem (AGAP) has been widely studied the same cannot be said

of the Airport Baggage Sorting Station Assignment Problem (ABSSAP) which also

contributes to the successful operation of an airport, having a particularly significant

influence on the satisfaction and opinion of passengers.

The mishandling of airport baggage in airports has been one of the more important

issues for passengers for several years, both in Europe and the USA. It was ranked

third in complaints after cancellations and delays in the report of the Air Transport

Users Council (2009) and its importance was further emphasized in the April 2010

report of the Office of Aviation Enforcement and Proceedings (U.S. Department of

Transportation (2010)), where over a hundred thousand baggage reports were logged,

ranking baggage complaints as the second most common complaint. The expected

increases in civil air traffic which are predicted by ICAO (2010) and the Federal

Aviation Administration (2010) will continue to increase the complexity and difficulty

of these problems.

I have studied both the ABSSAP and the AGAP, where planning and scheduling

may contribute significantly to a reduction in airport delays. The aims are not merely

to provide optimal or near optimal plans and schedules, but to ensure that these can

cope with disruptions at the time of their implementation, removing or reducing the

impact of such disruptions upon the daily operations at an airport.
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1.2 Aims

The Aviation Network Management is expected to be an important element in im-

proving the En-Route Air Traffic Services for which NERL (NATS En-route plc) is

responsible in the UK, and Air Traffic Management (ATM) ‘Network Management’ is

also strongly relevant to airport operations, since the airport operations occur prior

to take-off, where more options for Network Planning exist. Related work in Europe,

such as in the Eurocontrol Airport-CDM Initiative (A-CDM, Noël et al (2009)), sug-

gests that airport operations should be considered as a whole, and that improvements

in Air Traffic Control (ATC) will be limited if they merely cover the period following

the pilot’s calls for push and start.

This thesis considers the development of methods for co-ordinating land-side (pas-

sengers, baggage and gates) and airside (aircraft and tugs) planning in a collaborative

decision-making airport system, i.e. the Eurocontrol Airport-CDM Initiative. Key

goals are to develop techniques for building and maintaining plans, and investigating

potential improvements to departure time predictions. The effect of sharing informa-

tion, specifically during the arrival and departure processes, has already been studied

by Andersson et al (2000), Böhme et al (2007) and Burgain et al (2009) which followed

the same philosophy as in the A-CDM.

Given the above, it is advisable that the assignment of both resources, namely

BSSs and gates (stands), be incorporated in the solution. The expectations are;

minimising the deviation from identified ideal values such as Companies Aims (eco-

nomic, statutory, image, etc.), Customers Expectations (satisfaction, price, etc.) and

Employees Objectives (Satisfaction, fairness, pride, etc.).

1.3 Summary of the contributions of this thesis

The contributions of this thesis are summarised below.

Firstly, this thesis presents new models for both the ABSSAP and AGAP, which

are used throughout the thesis. Whereas the AGAP and models have already been

presented in the literature, my models represent a new approach which considers

towing operations with extra constraints.

Secondly, the thesis provides insight into the differing behaviour of some construc-

tive algorithms for these resource assignment problems, particularly where service

time reduction is permitted. This allows for the generation of improved initial solu-

tions when used with perturbative algorithms, enhancing the solution quality they

can reach within a very limited search time.
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Thirdly, a Steady State Evolutionary Algorithm has been designed to search the

space of solutions in order to find solutions of high quality, which may be used in single

objective or multi-objective resource assignment problems. New operators have been

designed which generate feasible solutions at a high speed, providing improvement

over those solutions obtained when using tools such as CPLEX, Gurobi and meta-

heuristics such as Tabu Search (TS) and the Canonical Genetic Algorithm (CGA) for

the problems considered. Additionally, the solutions reached have been shown to be

of a higher quality than the initial solutions and good quality when compared with

the Upper Bound provided by CPLEX. New replacement strategies were designed to

improve on the solutions obtained, and these are shown to assist the search signifi-

cantly in reaching statistically significantly fitter solutions when compared with other

standard selectors. There is potential for combining all of these components in order

to further improve the solutions reached from the point of view of both fitness and

search speed. Insights into the effects of the different components of this algorithm

are presented, and the way in which they affect the search is shown.

Fourthly, the thesis presents new approaches to taking account of the detrimental

effects of delays within the solutions obtained on the day of operation. The grade in

which the reduction of such detrimental effects is achieved on the day of operation

is an indication of the robustness of the assignments. These approaches are then

compared with other methods typically used in resource assignment problems, thus

providing an insight into a wider range of approaches and their characteristics.

1.4 Overview of this thesis

Chapter 2 introduces some of the ground operation problems and the approaches

which has been used in the literature, providing an overview of recent contributions

in the various fields. Special attention is paid to the assignment of flights to gates

which, together with the assignment of baggage sorting stations to airport flights, is

presented in more detail in the following chapters.

Chapter 3 provides a detailed description of the ABSSAP studied and introduces

the mathematical model which underpins the approaches presented in this thesis.

The assignment of flights to baggage sorting stations within an airport is presented

and the similarities and differences between this and the AGAP are also likewise

presented.

Chapter 4 presents some constructive algorithms belonging to the group of exact

methods which consider the topology of the airport in different situations. This

is followed by an investigation of the results obtained when using the constructive
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algorithms to generate solutions for the airport baggage sorting station problem and

their contribution to the different objectives of the problem.

Chapter 5 develops an evolutionary algorithm for solving resource assignment

problems. New operators and selectors are presented to search the space of solutions

and others are modified for use with the model already presented in Chapter 3. The

algorithm is compared with other heuristic algorithms and the results from applying

CPLEX and Gurobi solvers to an Integer Linear Programming (ILP) model of the

problem, the results of which are summarised in the final section of the chapter.

Chapter 6 presents some approaches to building robust assignments for the prob-

lems studied. These approaches are compared amongst themselves and also with

some initially disrupted schedules.

Chapter 7 provides a detailed description of the AGAP studied and introduces

the mathematical model which is used in the following chapter. A variant of the

constructive algorithms which were initially presented in Chapter 4 is presented and

their applicability to the related problem of flight assignment to airport gates is

considered. This is followed by an investigation of the results obtained when using the

constructive algorithms to generate solutions for the airport baggage sorting station

problem and their contribution to the different objectives of the problem.

Chapter 8 extends the proposed evolutionary algorithm presented in Chapter 5

and the robustness approaches presented in Chapter 6 to the AGAP, and considers

their applicability to the related problem of flight assignment to airport gates. The

modified evolutionary algorithm is studied and compared with other heuristic algo-

rithms. Similarly, the robustness approaches are compared amongst themselves and

also with some initially disrupted schedules. Finally all of the results are summarised

in the final section of the chapter.

Chapter 9 presents the conclusions, lists the contributions and summarises the

problem-specific results. Suggestions and recommendations for future research then

follow.

1.5 Publications

The work in this thesis has previously been presented in the following full papers,

abstracts and posters.

Full papers

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. The airport baggage sorting

station allocation problem. In: Proceedings of the 5th Multidisciplinary In-
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ternational Scheduling Conference (MISTA), Phoenix, Arizona, USA. MISTA,

August 2011.

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. An evolutionary algorithm for the

over-constrained airport baggage sorting station assignment problem. In: 9th

Intl. Conf. on Simulated Evolution And Learning, SEAL2012, Lecture Notes

in Computer Science, vol. 7673, pp. 3241. Springer Berlin Heidelberg. Hanoi,

Vietnam, December 2012.

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. An analysis of constructive

algorithms for airport baggage sorting station assignment. Submitted to the

Journal of Scheduling, resubmit prior to VIVA 2013.

Abstracts, posters and presentations

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. Resource Allocation at Airports

and Dispatching Rules. 2nd Student Conference on Operational Research. Not-

tingham, UK, April 2010.

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. A comparison of constructive

algorithms for baggage sorting station allocation. In: Proceedings of the 24th

European Conference on Operational Research. Lisbon, Portugal, July 2010.

• Amadeo Ascó. Poster for the LANCS Initiative Advisory Board Meeting.

Cumberland Lodge, Windsor Great Park, November 2011.

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. Airport resource allocation

using constructive algorithms. In: Proceedings of the Operational Research 53

Annual Conference, Nottingham, UK, September 2011.

• Amadeo Ascó, J. A. D. Atkin, E. K. Burke. Over-constrained Airport Bag-

gage Sorting Station Assignment Problem. 3rd Student Conference on Opera-

tional Research. Nottingham, UK, April 2012.



Chapter 2

Literature Review

This chapter starts with a non-technical introduction to the different operations which

are considered at an airport. The non-technical introduction is followed by a review

of the literature on the different identified areas in an airport operations, from when

an aircraft arrives at the airport to when it departs. The content covered in this

chapter provides the reader with the necessary background to put into context the

problems considered and to better understand the work presented in this thesis.

2.1 Overview

The overall civil aviation problem is composed of the en-route, airport ground oper-

ations and airline problems. The en-route problem covers the time during which the

aircraft is airborne and away from the airport vicinity. The airline problem consists

of scheduling the flights and fleets. On the other hand, Airport Ground operations

are those operations which are performed on and around the airport grounds, usually

at the stand/gate, on the taxi ways, or at the runways. A stand is an area on the

ground where aircraft are parked, with stands next to the airport gates, normally also

called gates. The Airport Ground Operations Problem has been approached in many

different ways to date, and has been subdivided into different subproblems in order

to simplify the complexity and assist in achieving a solution, especially as different

companies solve different parts of it.

The overall airport problem begins when an aircraft leaves the en-route phase, in

the vicinity of an airport, where the Standard Terminal Arrival Route (STAR) starts

(a STAR normally covers the phase of a flight that connect the cruise or en-route

of a flight and the final approach to a runway for landing). The Air Traffic Control

(ATC) guides the aircraft through both this and the approach phase until it lands

7
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safely. Once the aircraft has landed, it is guided through the taxi ways by the Ground

Controllers until the aircraft reaches its assigned gate where the passengers disembark.

Ground Controllers are responsible of the movement on the airport ground, such

as taxiways, runways, holding areas and intersections. The passengers’ baggage is

then unloaded and transported to the assigned baggage sorting stations ready to

be collected by their owners or transferred to their owners next flight. During the

time the aircraft is at the gate, it is cleaned, re-supplied with fuel and food, and the

appropriate safety checks are also successfully carried out. Near the time when the

aircraft is due to depart, the baggage belonging to the next passengers is transported

from the baggage sorting stations to the aircraft, where it is loaded. The passengers

embark before the aircraft is permitted to leave the gate and join the departure

sequencing, through which the aircraft will progress until it reaches the entrance to

the runway ready to depart. Finally, the aircraft leaves the airport and it is guided

by the Air Traffic Management (ATM) until it leaves the airport airspace.

Some approaches consider the overall airport in a more general way, for example

in Janic (2007) where the allocation of airport runway capacity to expected demand

is studied using a heuristic based upon a greedy algorithm, which was designed to

minimise the cost of arrival and departure flight delays. Janic (2007) simple approach

seems to have potential, as it provided sufficiently close empirical results to those

obtained when using already established optimisation methods based on integer linear

programming, although there are some concerns given the limited number of scenarios

considered.

An overview of some of the ground operations and approaches used for each of

these problems is presented in the following sections.

2.2 Scheduling flight arrivals

At an airport the arrivals of aircraft within the STAR have to ensure safe separation

by controlling the speed, height and length of routing prior to the aircraft turning for

its final approach, which is directed by the ATC onto the Instrument Landing System

(ILS) when landing commences (Arrivals fact sheet Heathrow (2010)). It is required

to take account of safety constraints maintaining standards by considering aircraft

separation and controller workload. An aircraft generates wake vortices (turbulence)

which may affect the aerodynamic stability of the following aircraft depending on the

distance between them. This distance depends on the aircraft weight class and its

speed, which have recently been extended to take account of the wing configuration

(Tittsworth et al (2012), Administration (2012)). When the airport is busy and



2.2. SCHEDULING FLIGHT ARRIVALS 9

approach delays are expected, aircraft arriving may be held by ATC in ‘holding

stacks’ before being instructed to make their final approach, Figure 2.1. Aircraft

in the ‘holding stack’ circle at different heights until the way is clear for them to

commence their final approach, or to move to a lower cycle ready to land. Nevertheless

a Continuous Descent Approach (CDA) is preferred, given its advantages in that it

provides a reduction in noise and fuel consumption, thereby reducing costs, cutting

emissions, and providing overall environmental benefits, Clarke et al (2004) and Alam

et al (2010). Thus the traffic movements have to be carefully planned to limit peaks

of activity and assure smooth operations, but even so a CDA does not always happen

(Arrivals fact sheet Heathrow (2010)).

Figure 2.1: Overview of an airport departures and arrivals with stacks approach.

Hansen (2004) extended the study conducted in Cheng et al (1999) which used

Genetic Algorithms (GAs) with two ways of representing the problem of scheduling

arriving aircraft to available runways: one genome and the multiple genomes to define

a complete runway assignment, sequencing and scheduling, to minimise delays satis-

fying safety constraints. The problem was simplified by sub-dividing it into arriving

groups or banks of flights within which the problem is solved, so the solution may be

optimal within a bank of flights but may not be so on the overall day of operation.

Coverage of the arriving flight by the bank of flights may be increased by enlarging

it which will in turn increase the time consumed in finding solutions, but means that

results approximate more closely to those for the overall arrival problem. The results

in Hansen (2004) corroborated the original suggestions in Cheng et al (1999), high-

lighting the potential of GAs in solving this problem. Hu and Chen (2005) introduced

the concept of a receding horizon control (RHC) to the problem of scheduling and

sequencing arrivals, and investigated the effects on airborne delays and computational
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burdens. Similarly as with the bank of flights, the RHC solves the problem for all

flights entering the STARs, in this case, within a time window which is shifted for-

ward and the process repeated until the overall problem time period is covered, i.e.

all of the flights have been sequenced and scheduled. For simplicity, aircraft waiting

to land are classified in a relatively small number of distinct categories, according to

speed, capacity, weight, and other technical characteristics which are then used to

perform position shifting (PS) with the main objective of minimising total airborne

delays, Figure 2.2. One of the important parameters in establishing this approach

is the size of the horizon considered, which has a direct effect on the speed of the

approach, and is very important for online systems. Furthermore, the online updat-

ing of information, which is then fed back into the following horizon calculations,

improves the decision-making and increases the robustness of the solutions obtained.

This approach is equally applicable to both problems studied in this thesis: the Air-

port Baggage Sorting Station Assignment Problem (ABSSAP) and the Airport Gate

Assignment Problem (AGAP), in order to reduce the computational time required to

reach potentially good solutions.

Figure 2.2: Position shifting (PS) base on aircraft separation.

Xiangwei et al (2010) suggested a GA where chromosomes are constructed as a

permutation of the categories of aircraft arriving, reducing the encoding space such

that the search speed is improved when compared with an aircraft order based GAs,

but this only considers the static problem and one runway.

Relying on the stack delaying mechanisms described previously, a set of time

windows in which landing is possible can be associated with each aircraft entering the

airport airspace. These windows were used by Artiouchine et al (2008) in their Mixed

Integer Linear Programming (MILP) representation of the runway sequencing using a

fixed window size for the whole problem, which gave good results, and it was extended

to consider different window sizes using a hybrid algorithm with a Branch and Cut

(B&C) mechanism. A MILP corresponds to the minimisation or maximisation of a

problem with linear objectives and subject to linear constraints where some variables
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in the model are real and some of the variables are integer. B&C involves running

a Branch and Bound (B&B) algorithm and using cutting planes. B&B is an exact

approach to find the optimal solution to a problem, where the entire set of feasible

solutions is divided by partitioning it into smaller and smaller subsets, and the best

possible solution of a subset of solutions is computed. When the provably best possible

solution in a sub–tree is found then there is no need to further branch that sub-tree,

which speeds the search, and a further description may be found in Wolsey (1998)

and Burke and Kendall (2005). This thesis uses the B&B algorithm for the ABSSAP,

which uses my Integer Linear Programming (ILP) representation of the problem.

Capr̀ı and Ignaccolo (2004) considered both arrival and departure scheduling in

both the static and dynamic problems when using a GA, and Böhme et al (2007)

looked at the co-ordination of airport arrival and departure management when apply-

ing mixed mode operations, where a runway is used for both arrivals and departures,

using an algorithm based on fuzzy rules, and moving from a minimum separation

sequencing for arrivals to a time-based scheduling. Böhme et al (2007) experimen-

tal results for Frankfurt Airport indicated that the total throughput of aircraft was

enhanced and, in the case of departures, increased in punctuality with only a minor

extension of flight arrival times.

It is widely agreed that given the cost involved in flying an aircraft, which greatly

depends on the time expended in the air, it would be preferable to keep it at the

original airport gate rather than keep it in the air (stacks) waiting to land, which

would in turn facilitate the implementation of the CDA. In order to achieve this, good

communications are required and data shared between airports, which would improve

decisions, improve the airports efficiency and reduce airspace congestion which are

some of the main objectives of the overall problem.

The increase in the time flights stay at their assigned gate or are delayed in

reaching that gate may have detrimental effects for the remaining flights assigned

to the same gates, and may also have a potential effect on other resources, such as

baggage sorting stations (BSSs). Flights which require a considerable extension of

their stay on the ground awaiting permission to depart may be moved to remote

stands or holding areas where they can await clearance to depart without affecting

other flights and resources. Nevertheless, those flights which extend their stay at the

gate originally assigned to them or which arrive late may have detrimental effects

on other flights and resources. Any uncertainty as to arrival time may also have a

potential effect on the other assignments, such as those of flights to gates and BSSs.

Thus, it would be advantageous if these instances could in some way be taken into



2.3. GROUND MOVEMENT 12

account in their assignment so that where they occur these such detrimental effects

are reduced or completely removed. Such assignments are in this thesis said to be

robust. Robustness is studied in Chapter 6 for the ABSSAP, and also Section 8.4 for

the AGAP.

2.3 Ground movement

Ground movement concerns the movement of vehicles, particularly aircraft, on the

ground around the airport, Figure 2.3. This generally includes all holding areas, taxi-

ways, inactive runways, and some intersections and transitional aprons where aircraft

arrive, having vacated the runway or stands. Any bottleneck in the aircraft flow

on the taxiways could therefore increase the ground delays and decrease the airport

capacity. The Ground Movement Control (GMC), also called Surface Movement Con-

trol (SMC), is responsible for the strategic assignment of aircraft to a runway, with

the main aim being a reduction in delays, whilst operating within regulations and

constraints based on traffic volume and weather conditions. Some of the regulations

and constraints refer to the aircraft ground movements in taxiways, such as aircraft

separation, cross points occupancy and procedural constraints, as used in Capozzi

(2003). Different areas of potential economic and environmental interest have been

identified in ground movement by Gelinas and Fan (1979) and Miller and Clarke

(2004). An overview, categorisation and critical examination of previous research in

ground movement is presented in Atkin et al (2010).

An overview of some of the ground movement operations and approaches used

are presented in the following subsections, starting with Taxiing, followed by the

scheduling and routing of trucks, de-icing/anti-icing machines and finishing with a

short view of other ground movement operations.

2.3.1 Taxiing

Taxiing relates to the routing of flights from their entrance point via the airport

ground infrastructure to their assigned stand (either local stands at a gate or remote

stands on an apron) and back to the departure area. As such it links together the

main airport operations.

Some research has taken place on understanding and solving the ground prob-

lem, examples of which are throughput, congestion and terminal volume (amount of

traffic), an example of this being the CSD (1999). Objectives evaluated were how to

reach the destination as swiftly as possible, meet safety requirements and maximise
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Figure 2.3: London Heathrow airport grounds and taxi ways.

utilization of the taxi ways while avoiding conflicts. Similarly more recently, Roussos

and Kyriakopoulos (2009) presented an approach using a 3D aircraft collision avoid-

ance system implementation, which uses repulsion fields, which could be adjusted for

airport taxiing. I nevertheless anticipate some concerns regarding the time taken in

solving the taxiing problem, since the potential fields have to be calculated per air-

craft, and where the potential movements of an aircraft take account of other aircraft.

An opportunity to use concurrency arises when obtaining the fields, and some speed

is expected to be gained when passing from the original 3D problem to a 2D problem.

Clare and Richards (2009) showed that in average taxi times can be reduced when

using RHC approach compared to a First Come First Serve (FCFS) approach. Got-

teland and Durand (2003) used GA for the minimisation of taxiing time, and Marn

(2006) used B&B and Fix and Relax (F&R) methodologies for the aircraft routing

and scheduling on the airport ground.

The importance of robustness when assigning flights to gates is emphasised by

the fact that ground movement links together arrivals/departures runway sequencing

with gate assignment, such that uncertainty and disruptions at these stages are likely

to propagate to the gate assignments with potential undesirable consequences such

as reassignment of flights to other gates or even cancelation of flights.
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2.3.2 Scheduling and Routing of towing trucks

A stand is an area in the airport grounds where aircraft are parked, with a remote

stand being one which is not located immediately beside the airport buildings, whereas

gates correspond to those stands which are located at the airport terminal buildings.

Aircraft need to travel from their assigned stand to the departure holding areas ready

for departure. This operation may be executed by using the aircraft’s engines or by

towing trucks. Whereas many aircraft are now able to move backwards on the ground

using reverse thrust, the jet blast from the engines may cause damage to the terminal

building and equipment, with the added hassle provided by engines close to the ground

which may blow sand and debris forward and then suck it back, causing damage to

the engine, Figure 2.4b. This does not happen when using normal thrust given that

the air flow enters the front of the engine and leaves from the rear, whereas in reverse

thrust the air also enters from the front but leaves from the lateral parts of the engine,

Figure 2.4. This makes the towing trucks a preferable alternative to pushback when

moving from gates to the departure holding areas. Additionally, the high price of fuel

and an increase in environmental concerns has revitalised interest in using different

means of reducing these factors, rendering previous research especially relevant such

as Gelinas and Fan (1979); Fan (1990); Miller and Clarke (2004). This trend has been

confirmed by the UK Airport Operators.

On 30th June 2010 the Airport Operators Association (AOA) launched new guide-

lines to reduce aircraft ground emissions, which amongst other initiatives, outlined

aims to increase taxiing with no engine, which may increase the use of towing trucks

during taxiing. Merlin (1983) and UNIQUE (2005) both considered the use of towing

for taxiing aircraft as a means of reducing contamination. However the following

disadvantages, which were mentioned by controllers, were not considered:

a Forward thrust. b Reverse thrust.

Figure 2.4: Engine thrust.

• The speed of loaded towing trucks is lower than the speed of aircraft using their
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own propulsion systems, thus increasing congestion on the ground.

• The propulsion system of an aircraft requires reaching a specified temperature

before take-off, which means that when it reaches the departure sequencing

point the aircraft has to start its engines and wait until the engine take-off

temperature is reached. This may entail some extra work for the GMC in the

instruction to start engines, and introduce uncertainty as to when the aircraft

is ready for take-off. Any uncertainty may affect current flight assignments to

BSSs and gates.

The assignment of towing trucks (also called tugs) to aircraft is pre-calculated,

based upon the planned stand allocations and arrival/departure times. Perturbation

in the flight arrival sequences may affect their stand allocations which may therefore

have to be re-allocated. It is believed that towing truck assignment may not always

be re-allocated in these circumstances, i.e. the stand allocation moves but the tow

plan does not. One area of investigation is the effect of this lack of re–planning.

Importantly, how often does stand re-planning mean that the departure times for

these towed aircraft are no longer achievable?

Other points for consideration at London Heathrow airport are presented below.

• Towing truck teams are qualified in specific aircraft types, so there are issues if

they are re-allocated.

• Towing trucks which are not towing aircraft control themselves (driver), with

the responsibility of keeping out of the way of other aircraft.

• Towing trucks which are towing respond to instructions from the tower, GMC.

• There are eleven handling agents and over ninety airlines involved at London

Heathrow airport.

• Aircraft from remote stands normally do not require towing.

No previous work directly related to scheduling and routing of towing trucks

was found, although various scheduling papers could be relevant, such as Du et al

(2008) which considered the assignment of flights to oil tank trucks that may have

different fuel capacities and Kolischa and Hartmann (2006) investigated heuristics

for the resource constrained project scheduling. The scheduling presents similarities

to and has interdependencies with the AGAP and ABSSAP, while the routing has

similarities to the routing of taxiing aircraft. The model for the AGAP presented in

Chapter 7 considers the use of towing trucks. Also the minimisation of the number of
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towing operations is one of the objectives in the AGAP model presented in Chapter

7.

2.3.3 Scheduling and Routing of de-icing/anti-icing machines

The predictions of cooler winters in the UK, Lockwood et al (2010); Seidenkrantz

et al (2009), have prompted some airport operators to order more de-icing machines

revealing an increasing influence of these resources on the ground operations of air-

ports in the UK. Norin et al (2007) describe a decision tool for the de-icing process

which uses a Greedy Randomised Adaptive Search Procedure (GRASP) whereas in

Norin et al (2009) an optimisation algorithm to schedule de–icing trucks is developed

which is integrated within a simulation model in which the results show a reduction

in flight delays and waiting times.

Flights needing de–icing/anti–icing require this operation to be scheduled, which

is normally conducted at the gate, but may also be executed in a remote location. In

both cases, these operations need to be considered when assigning flights to gates as

they may affect the assignment and length of time the flight needs to spend at the

gate.

2.3.4 Other ground operations

Several operations need to be completed at the gate before a flight is ready to start its

departure process. Aircraft may be fuelled by oil tankers or underground pipelines.

Aircraft located at gates without pipelines have to be fuelled by oil tankers which may

have different fuel capacities. Du et al (2008) presented an Ant Colony Optimisation

(ACO) algorithm with Max-Min and Rank-based Ant System with an heuristic called

Earliest Due Date First (EDD) to solve the multi-objective assignment problem of oil

tankers to flights with a minimisation of the number of oil tankers required, the total

start time for servicing flights, and the total flow time of oil tankers. Similarly, flight

catering requires vehicles to transport and place the required supplies next to the

aircraft in readiness for its next flight. These operations increase the airport ground

traffic, and if they were to be considered in conjunction with the other operations

presented in this thesis, will in turn further increase the complexity of the overall

problem.
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2.4 Scheduling and assignment of flights to stands

Many parking positions are located beside the airport buildings, next to the gate

from which passengers will board the aircraft. There are often other parking posi-

tions off the terminal (on the apron) which are also called stands, where aircraft may

be parked for longer periods, but when used to embark passengers then they must be

transported by mobile lounge or bus, thus increasing the congestion on the ground.

Gates, however, correspond to those stands which are located in the airport terminal

buildings, as shown in Figure 2.5 numbered in blue. Those stands not located im-

mediately by the airport buildings are called remote stands. The gates provide extra

services to those that are provided at a remote stand. A description of the AGAP

and a model is presented in Chapter 7.

Figure 2.5: London Heathrow airport Terminal 1 with gate location.

According to Mueller and Chatterji (2002) whereas only 16% of the air traffic

delays are attributable to the point at which the aircraft is airborne with 26% from

taxi-out and 8% from taxi-in, the remaining delays may be derived from delays where

the aircraft are at a gate (50%), which reveals the gates to be of considerable impor-

tance in reducing overall airport delays.

The assignment of gates is planned in advance for seasonal flight schedules, which

equates to the static problem, whereas the stand planners prepare and modify plans on

the day of operation, which plans are frequently updated to accommodate disruptions

and delays on the day, when the time available to achieve good changes is greatly

limited. This is sometimes called “dynamic scheduling” and frequently results in
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suboptimal schedules. Exact methods are more appropriate for the off-line static

problems, given the greater solution time available. Babic et al (1984) and Bolat

(1999) attempted to reduce the required algorithm execution time by using a one-

pass constructive heuristic requiring times of up to 209.6 sec, considerably lower than

B&B but not sufficiently fast to solve the dynamic problem. In the real-time problem

the time available to execute the algorithms is greatly reduced, Ding et al (2005); Lim

et al (2005); Dorndorf et al (2008); Drexla and Nikulina (2008); Wei and Liu (2009).

The gate assignment problem is normally presented as a multi-constraint and

multi-objective problem where different objectives have been used in different papers

but not always together, and in some cases not all of the objectives were used, to

reduce the complexity of the problem, a model is presented in Chapter 7. In the

Airport Gate Assignment Problem (AGAP) different approaches have been followed.

Babic et al (1984) used B&B with the object of minimising passenger walking distance,

with some enhancements to accelerate the computation. Mangoubi and Mathaisel

(1985) took account of the transfer of passengers using linear programming relaxation

and greedy algorithms, and Bihr (1990) used Binary Integer Linear Programming

(BILP) to solve the minimum walking distance, whereas a GA was used by Lim

et al (2005). Where traditional ACO used pheromone trail information to construct

complete solutions to the AGAP, Pintea et al (2008) used a hybrid ant-local search

system where pheromone trail information is used to perform modifications on AGAP

solutions.

The objective most used in the current AGAP literature corresponds to the im-

provement in service satisfaction, assured to be achieved by reducing passenger walk-

ing distance inside the terminal building. When considering the passengers walking

distance the AGAP can be modelled by analogy with the NP-hard quadratic assign-

ment problem, Obata (1979), Pardalos et al (1994) and Cela (1998), which is a facility

location problem where the cost of assigning a flight to a gate depends on the assign-

ment of other resources and the transport volume between two resources (see also

Lawler (1963)).

Various techniques have been applied to solve this problem, for instance, Baron

(1969) uses simulation to analyse the effects of passengers’ walking distance resulting

from different gate usage strategies where both local and transfer passengers are con-

sidered, Babic et al (1984) and Bihr (1990) use linear binary programming, whereas

Xu and Bailey (2001) use mixed 0 - 1 quadratic integer programming and Tabu

Search (TS). Gu and Chung (1999) make use of a genetic algorithm, multi-objective

programming is used by Yan and Huo (2001), Ding et al (2004) uses Simulated An-
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nealing, Ding et al (2003) presents a Simulated Annealing approach and a hybrid of

Simulated Annealing and Tabu Search, and Lim et al (2005) use both a TS and a

Memetic Algorithm (MA) which their results appear to improve on those obtained

from CPLEX and a GA. A survey on AGAP is presented in Dorndorf et al (2007a).

Usually the improvement in service satisfaction created by reducing passenger walk-

ing distance inside the terminal building is considered by airlines owning part of the

terminal, and are in charge of producing the scheduling (e.g. British Airways (BA)

at London Heathrow airport Terminal 5), whereas at some international airports the

stand planning is performed by the airport authorities (e.g. London Heathrow airport

terminals 1, 3 and 4). As a consequence the stand planners often do not have complete

passenger data, and importantly they do not have all transfer patterns. Although in

some airports the planners consider passenger walking distances by other means, such

as locating flights with numerous passengers close to the terminal building, they are

not in a position to perform a full minimisation of passenger walking distance. This

is not the case for London Heathrow airport where the flight assignment first identify

the stands that physically can hold the aircraft, following by the type of flight Inter-

national, Domestic or CTA (Irish), and finally it is considered the airlines or handler

preference usually based on lounges or equipment locations etc.

Gosling (1990) considers that it may be more important to the assignment that the

distance the passengers have to travel is reduced rather than minimising the walking

distance. Other approaches to the problem which do not consider the walking distance

are presented in Gu and Chung (1999) and more recently in Diepen (2012).

From the point of view of robustness, by the nature of the objective function, the

proposed procedures (mostly heuristics) usually assign most of the flights to a few

attractive stands. The assignments to heavily utilised stands will easily be disrupted

even by minor changes in flight schedules, as discussed in Mangoubi and Mathaisel

(1985). Bertsimas and Sim (2004) investigated ways to decrease what they called the

price of robustness; the trade–off between the optimality of the solution for some given

objectives and its robustness. A survey in theoretical and applied robust optimisation

is presented in Bertsimas et al (2011).

Terms commonly used in robust assignments are ‘Idle time’, which refers to the

time between two consecutive assignments to the same resource (e.g. BSS or gate)

where no activity is assigned to the resource, and buffer time, which refers to a pre-

determined amount of time introduced at the beginning and/or end of an activity.

Whereas the buffer time implies a preference for a particular gap size between con-

secutive assignments to the same resource, an ‘idle time’ does not.
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Since the total time available to stands and the total ground time of flights are

constant, the total ‘idle time’ is constant and independent of the way in which the

flights are assigned. Bolat (1999) has proposed models to utilize the gates as uniformly

as possible so that the assignments are robust enough to absorb minor changes in

flight schedules, by introducing a model to minimise the range of the idle times, being

the difference between the maximum and the minimum idle times. The variance of

idle times at the gates using B&B and dynamic priority functions are developed to

guide the assignment process in Bolat (2000). Dorndorf et al (2007b) propose an

approach for obtaining robust gate assignments based on recovery strategies, and

discuss several robustness related concepts based on resource-switching. A review of

how disturbances at a given airport could be handled and a survey on recovery from

airline schedule perturbations is presented in Filar et al (2001).

Another technique used to improve robustness of the scheduling is the application

of buffer times to the assignments at the expense of reducing aircraft productivity in

order to minimise system costs caused by operational uncertainties. The objective is

to absorb small perturbations on the day of the schedule implementation. A novel

encoding which uses fixed buffer times (without any dependence on the type of flight

or airline) where conflicts in the objective functions are allowed, and does not consider

the passengers’ walking distance, is presented in Li (2009). Simplex with improved

variables, linear relaxation, B&B and buffer times is also presented in Yan and Huo

(2001) which may be too time consuming in the case of very large problems using

B&B. A simulation framework is proposed in Yan et al (2002) which is able to analyze

the effects of stochastic flight delays on static gate assignments, and evaluate flexible

buffer times with just one objective, the passenger walking distance.

Stochastic Optimisation Models are another means of considering the uncertainty

inherently present in the AGAP. An extension of deterministic robust approaches

based on the buffer and idle times is presented in Seker and Noyan (2012) which

is used to develop stochastic optimisation models and a TS which uses swap and

insertion neighbourhood strategies to find solutions.

A different approach with three components, a stochastic gate assignment model,

a real-time assignment rule, and two penalty adjustment methods which consider

both the planning and the real-time stages, is presented in Yan and Tang (2007).

Wei and Liu (2009) model the AGAP using fuzzy where the idle times of flight to

gate are regarded as fuzzy variables using a modified genetic algorithm, the results of

which are compared with those obtained when using buffer times. Similar techniques

for robustness are utilised in this thesis in Chapter 6 and Section 8.4.
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Whereas in many instances the problem, which corresponds to a multi-objective

problem with conflicting objectives, has been restricted to optimising the most im-

portant objective (mainly the passengers’ walking distance as in Bihr (1990); Haghani

and Chen (1998) or by aggregating the individual objectives into a single scalar (the

weighted sum of the individual objectives as in Cheng (1997); Ding et al (2004); Lim

et al (2005); Wei and Liu (2009)), there are more recent studies which maintain the

multi-objective essence of the problem by generating diverse and equally distributed

sets of high quality trade-off solutions in a single run of the algorithm as in Hu and

Di Paolo (2007); Wei and Liu (2013). A survey which concentrates on continuous

Multi-Objective Evolutionary Genetic Algorithms (MOEGAs) is presented in Zhou

et al (2011).

Other studies considering stands have brought to light the advantages of absorbing

some of the inevitable aircraft delay at the stands, as presented in Atkin et al (2011)

which shows a significant reduction in take–off delays.

2.5 Scheduling of baggage sorting stations to flights

A BSS is the part of the baggage system where the passengers’ baggage is collected

and temporarily stored ready to be sorted and transported to the side of the aircraft

where it is loaded onto, Figure 2.6. The scheduling of baggage sorting station is

presented in more details in Chapter 3.

Figure 2.6: Overview of airport baggage system with storage.

This area seems to have been neglected until recently, and the earliest study found

in the literature is Abdelghany et al (2006) which uses the activity selection algorithm,

modified to satisfy different operational requirements, to study the trade-off between

different operational constraints and requirements to reach a satisfactory near optimal

solution. Frey et al (2010) consider the storage, BSSs and other required resources



2.6. SCHEDULING FLIGHT DEPARTURES 22

such as carts and parking, and use decomposition, where the problem is split in

different sub-problems which can be modelled as different Mixed Integer Programming

(MIP), to solve the problem. They also provide a model and a proof of its NP-hardness

(where the sub-problems are also NP-hard). Barth and Pisinger (2011) also consider

a baggage system with internal storage capacity and this considers the problem to be

not merely one of assigning BSSs but also the BSSs starting time to be used, with the

application of two methods GRASP and a decomposition approach based on different

MIP for the static problem. It was concluded that as the GRASP is faster it could

potentially be used in the dynamic problem. A model for the ABSSAP is presented

in Section 3.3.

Another study not directly related to ABSSAP but which gives an insight into the

problem was presented in Robinson (1969) which used simulation models to evaluate

alternative designs of hypothetical baggage handling systems for large-capacity air-

craft under different baggage-per-passenger conditions. Pitt et al (2002) concentrate

on airport configurations and available types of some resources, providing general

conclusions based on the configuration, size and expected expansion of airports. Ri-

jsenbrij and Ottjes (2007) present new concepts for baggage transportation to and

from narrow-body aircraft and estimate the time required to service a flight from

the point of view of baggage handling, also depending on the resources used to up-

load/download the baggage. It gives an idea of the current methods of baggage

handling and implies that automatic scheduling improves the process. Finally John-

stone et al (2010) specifically refers to dynamic baggage routing, baggage handling

system (BHS) control, with the use of a status-based routing algorithm which applies

learning methods to select criteria based on routing decisions.

2.6 Scheduling flight departures

Once the passengers are onboard the aircraft and all of the required operations have

been successfully completed, the aircraft is ready to proceed with its departure. The

ground control gives clearance to the aircraft to proceed to the holding areas at the end

of the take-off runway, Figure 2.7, where they wait in queues for permission to take-off.

A runway controller guides the aircraft through the holding areas whilst attempts are

made to find the best order for aircraft take-off simultaneously, taking the necessary

safety requirements into account, such as sequence-dependent separation rules which

depend upon aircraft size, departure route and speed group.
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Figure 2.7: London Heathrow airport holding areas for RWY 27R.

Bolender (2000) considers the construction of optimal departure sequences for the

aircraft being queued, using several greedy search algorithms which were compared

with a GA for the static problem. This concluded the need for a queue assignment

algorithm. Anagnostakis and Clarke (2003) presented a system structure and a for-

mulation of runway operations, planning problems, and more specifically, departures,

for the static problem where the airport layout makes runway crossing necessary.

This shows how the geometry of an airport, particularly the runways, creates inter-

dependencies between the scheduling of arrivals and departures. However, the real

systems are dynamic and there is usually significant uncertainty associated with any

prediction, partly because the information required is not always available at the time

it is required, but this uncertainty is reduced as the time between the prediction and

the implementation shortens.

Atkin et al (2007, 2008) presented a decision support system which considers the

taxiing aircraft in addition to those already at the holding area, increasing the avail-

able information, which could help to improve significantly the departure sequence
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at busy times of the day. The advisory system is based on Hybrid Metaheuristics

to help obtain take-off orders that would improve the throughput and reduce delays

at London Heathrow airport. Empirical results for real data from London Heathrow

airport corroborated the potential of this approach and highlights the dependency on

the volume of traffic and the accuracy of the estimated taxing times. Böhme et al

(2007) looked at mixed mode operations and took into account both the situation of

the departure traffic on the ground and the arrival situation in the Terminal Manoeu-

vring Area (TMA) using Fuzzy Reasoning. Bianco et al (2006) presented heuristics

with a job-shop model to solve the problem of arrival and departure sequencing and

scheduling allowing for different runway configurations, and Xiujuan et al (2008)

implemented a hybrid algorithm composed of Particle Swarm Intelligence (PSI) opti-

misation combined with Simulated Annealing (SA). Similar to GAs, PSI is also based

on a fitness function that is optimised through population mutation and crossover,

but the focus lies not only with the optimisation of a global fitness function but

also the maximisation of local neighbourhood fitness where individual particles also

communicate their fitness locally to other particles Kennedy and Eberhart (1995);

Eberhart et al (2001).

A study of the effects of the constraints, using a simulation of the London Heathrow

airport departure system, is presented in Atkin et al (2009) where some physical and

operational changes in the way the departure system currently operates are suggested.

The interested reader is directed to Atkin et al (2007, 2008); Atkin (2008) for a more

extended study of London Heathrow airport departures.

Delays in the departure of aircraft may extend the stay of the aircraft at the

gates with potential detrimental repercussions to those flights already assigned to

the same gates and those resources also assigned to those flights such as BSSs. It

would be desirable if the assignment of flights to both BSSs and gates could cope

with some of the uncertainty inherently present in the departure such that delayed

departing flights may be able to stay at the gates for longer without any or minimum

detrimental effects to the rest of the schedule and assignments.

2.7 Evolutionary Algorithms

An Evolutionary Algorithm (EA) is a population-based mechanism inspired by biolog-

ical evolution, such as reproduction, mutation, recombination (population selection),

and parent selection (member selection), which are based on the Darwin and Wallace

(1858) theory of natural selection as developed in the former’s classic foundational

work Origin of Species (On the Origin of Species by Means of Natural Selection,
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or the Preservation of Favoured Races in the Struggle for Life, Darwin (1859)) and

Mendelian genetics (Experiments in Plant Hybridisation, Mendel (1865)), which are

recognised as the foundation of evolutionary biology.

GAs have been used in the solution of a wide range of problems and are one of the

methodologies belonging to the population-based model of EAs. GAs are population

based approaches which encode the problem solutions on a chromosome-like data

structure, the population being composed of solutions. Solutions are then selected,

based on the reproductive allocated opportunities, following which recombination op-

erators are applied in order to produce new solutions in the solution search space.

The genetics principles were taken from biology and then applied to artificial sys-

tems, based on the work of Holland (1975) and DeJong (1975) which constituted the

origin of GAs. The early theoretical studies of GAs included such works as Vose and

Liepins (1991) which aimed at achieving a better understanding of the Simple Genetic

Algorithm (which is alternatively titled the Canonical Genetic Algorithm (CGA)) us-

ing the support of matrices (Walsh matrix), and Prugel-Bennett and Shapiro (1994),

which applied a statistical mechanics-style approach in order to explain behaviour.

Hinton and Nowlan (1987) investigated the way in which learning can mould the

fitness landscape, since an individual’s fitness will consist of a genetic contribution,

referred to as crossover, and a learned contribution known as mutation. Goldberg

(1990), Whitley (1991) and Holland (1975) explored the problems of exploiting link-

age and the recombination of tagged representations. Eiben et al (1995), Tsutsui

and Jain (1998), and Eiben (2003) studied both the effect of using multiple parents

and multiple crossover points. These studies emphasises the importance of operators.

Blickle and Thiele (1996) presented an analysis of some different selection schemes,

with the objective of overcoming the premature convergence problem, wherein off-

spring are never superior to their parents. Some typical selection operators are shown

in Section 2.7.1.

Theoretical studies of the GAs however were and still are based on a binary

problem representation which arguably restricts its applicability, but undoubtedly

assist an overall understanding of GA workings.

The terms phenotype and genotype are typically used in genetics to assist in

the explanation and comparison of individuals. The phenotype is the observable

realisation of an individual (in this thesis an individual is the equivalent of a solution),

where the genotype refers to the makeup of the same individual. For example, when

considering the two genes determining the organism’s gender (X and Y), two of these

genes are necessary to represent the gender (genotype), so that XX represents a female
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and YX represents a male. The genotype is the combination of these genes, that is

to say YX and XX, and being male or female is the phenotype, as shown in Figure

2.8.

Figure 2.8: Examples of phenotype and genotype.

GAs differ from other methods in that they search among a population of solutions

(often called a population based algorithm), and work with the encoded parameter set,

which constitutes the genotype, rather than using the parameter values themselves.

The CGA was introduced by Holland (1975), using a binary model, and the

Schema theorem was then developed to explain it. The next population of solutions

of a predetermined size is then generated by applying a replacement strategy to the

current population, here referred to as population selector. A replacement strategy

selects solutions from a given population to take part in creating the next population.

The members from the next population will be used as parents in producing a new

population of solutions. The selection of the parents in generating a new solution is

called parent selection or member selector. A crossover operator with a certain high

probability is then applied to all solutions taken from the next population (which

constitute the parent solutions) to produce the new solutions, which may be modified

once more by application of a mutation operator with a low probability, finally con-

stituting the current population. The process described represents one generation.

These operations are repeated until one of the stopping conditions is reached, where-

upon the new solutions are assessed for use in the final solutions, as demonstrated in

Figure 2.9.
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Figure 2.9: Flowchart of the Canonical Genetic Algorithm (CGA).

Evolutionary Strategies (ESs) are a sub-class of nature-inspired search methods

belonging to the class of EAs and are based on the work of Rechenberg (1971). The

canonical versions of the ESs are denoted by (µ, λ)-ES and (µ + λ)-ES. Where µ is

the number of parents and λ is the number of offspring. The (µ, λ)-ES is closer to the

generational model used in CGA where offspring replace the parents and take part in

the next generation, λ ≥ µ. In the (µ+λ)-ES, µ parents produce λ offspring and the

new population of µ parents are selected from the combined population of offspring

and the parents.
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2.7.1 Selection Approaches

The fitness function defines a scalar value for each individual used by the selection

method to compare individuals. The loss of different fitness values in the population

leads to a reduction in the selection pressure on individuals having the same fitness.

Some common selection approaches (selectors) are presented here and are used in

the study conducted in this thesis.

Elitist Selection

The Elitist Selection (ES) selects the fittest µ population members from the current

population.

Roulette Wheel Parent Selection

The Roulette Wheel Member Selection (RWMS) was originally used by Holland

(1975), where the probability of a solution being selected is assigned to each solu-

tion in the population of λ solutions (1 ≤ i ≤ λ), which is proportional to their

fitness (fi), Equation 2.1. A section of a roulette wheel is assigned to each of the

solutions based on their corresponding probability, where s0 = 0, si =
∑i

j=1 pj and

[si−1, si) ∀i ∈ [1 . . . λ].

pi =
fi

∑λ
i=1 fi

for i ∈ [1 . . . λ] (2.1)

A random number between zero (included) to one (excluded) is obtained, which

is represented here as rnd[0, 1), so the section within which the random number falls,

identifies the solution to select, e.g. for si−1 ≤ rnd[0, 1) < si solution i is selected.

One spin of the roulette (rnd[0, 1)) is required per solution to be selected, whereas

in the Stochastic Universal Sampling (SUS) with only one spin all of the required

solutions are obtained. Given that the selections are independent of each other, in

both the Tournament Member Selection (TMS) and the RWMS, Blickle and Thiele

(1996) showed that there is a relatively high mean variation in the outcome of selecting

the solutions in a population, which can be almost eliminated completely by using

SUS (Baker (1987)).

Blickle and Thiele (1996) looked at different selection methods for discrete and

continuous problems, and their selection variance (fitness before and after selec-

tion) concluding, based on the assumption that higher variance is advantageous, that

Roulette Wheel Selection method is not appropriate as a selection scheme and the Ex-

ponential Ranking Selection is the best selection schema. They also pointed out that
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for a better understanding of the behaviour it is necessary to consider the operators

used.

Tournament Selection

In the TMS, commonly called Tournament Selection, a few individuals from the

population are chosen at random, where all members of the population have the

same probability of being selected, Goldberg (1990); Goldberg and Deb (1991). The

fittest is finally selected from among the chosen individuals.

Stochastic Universal Sampling

The SUS was introduced by Baker (1987) to reduce bias and inefficiency in the selec-

tion of individuals. The SUS exhibits less bias and spread (range of possible values

for the number of an individual’s offspring) than the Roulette Tournament Selection.

The λ members of the population are mapped by sections, as in the Roulette Tourna-

ment Selection, in the range [pi−1, pi) ∀i ∈ [1 . . . λ], with p0 = 0, based on their fitness

fi (pi =
∑i

j=1 fj
∑λ

j=1 fj
). µ individuals are selected by obtaining an initial random number

within [0, 1
µ
), i.e. r0 = rnd[0, 1

µ
), and subsequent ones spread 1

µ
from the previous

one. The solution i is selected once for each pi−1 ≤
j−1
µ

+ r0 < pi ∀j ∈ [1 . . . µ].

Remainder Stochastic Sampling

Remainder Stochastic Sampling (RSS) is based upon the ratio between the fitness

of a solution and the average population fitness. In Remainder Stochastic Sampling

with Replacement (RSSR), the fractional relative fitness values are used to calculate

weights in a roulette wheel selection which is then used to produce the remaining

population.

In Remainder Stochastic Sampling Without Replacement (RSSWR), the frac-

tional part of an individual is set to zero where it has been selected during the

fractional phase of the selection. According to Goldberg (1989), RSSR has a greater

probability of population diversity than the roulette wheel technique and provides

zero bias (similarly to Stochastic Universal Modified Sampling (SUMS) and SUS).

Linear Ranking Selection

The Linear Ranking Selection (LRS) was first suggested by Baker (1989), Whitley

(1989) and Bäck and Hoffmeister (1991). For a population ordered in ascending

fitness, the probability assigned to an individual i for a population of size λ is provided
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by Equation 2.2 where p1 is the probability of the worst individual being selected and

pλ is the probability of the best individual being selected.

pi =

(

p1 + (pλ − p1) ∗
i− 1

λ− 1

)

∀ i ∈ [1 . . . λ], pλ = (
2

λ
− p1) and 0 ≤ p1 ≤ 1 (2.2)

All individuals have a different rank so all receive a different probability, even if

they are of the same fitness.

Exponential Ranking Selection

The Exponential Ranking Selection (ERS) differs from LRS only in that the assigned

probabilities are exponentially weighted, Equation 2.3. Blickle and Thiele (1996)

discussed the meaning and the influence of the parameter c in detail.

pi =
cλ−i

∑λ
j=1 c

λ−j
∀ i ∈ [1 . . . λ] and 0 < c < 1 (2.3)

Given that
∑λ

i=1 pi = 1 the Equation 2.3 can be written as

pi =
c− 1

cλ − 1
cλ−i for i ∈ [1 . . . λ] and 0 < c < 1 (2.4)

2.7.2 Multi-objective Optimisation

Multi-objective optimisation has been applied in many areas where decisions need to

be taken in the presence of trade-offs between two or more conflicting objectives. The

difficulty appears because in the case of a non-trivial Multi-Objective Optimisation

Problem (MOOP), a single solution which simultaneously optimises each objective

does not exist. Given this trade-off between two or more conflicting objectives, a

solution is known as non-dominated, Pareto optimal (Pareto (1909), Tarascio (1968)),

where there are objective(s) which cannot be improved without degrading one or

many of the other objectives. The non-dominated solutions constitute what is known

as the Pareto front. So it is necessary to find as many Pareto-optimal solutions

(non-dominated solutions) as possible, Michalewicz and Fogel (2002) and Burke and

Kendall (2005).

The MOOP has been solved as a single-objective optimisation problem where a

single fitness function is used, i.e. a weighted sum of all the objectives (Prem Kumar

and Bierlaire (2013), Dorndorf et al (2010), Hu and Di Paolo (2009), Pesch et al

(2008), Dorndorf et al (2007a), Lim et al (2005) in the AGAP, and Ascó et al (2013),

Ascó et al (2012), Ascó et al (2011) and Abdelghany et al (2006) in the ABSSAP). In a
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single-objective optimisation problem, the aim is to find one solution which optimises

the combined fitness function. The aim is more than merely finding optimal solutions

for each objective in MOOPs. The objective function in multi-objective problems con-

stitutes a multi-dimensional space (the objective space), in addition to the decision

variables space common to all optimisation problems. Although the search process of

an algorithm takes place in the decision variable space, multi-objectives EAs use the

objective space information in their search operators. In a multi-objective approach

the aims are commonly convergence to the Pareto front and maintenance of a set of

maximally-spread Pareto-optimal solutions. Most multi-objective optimisation algo-

rithms use the idea of dominance in their search for solutions to reach and build the

Pareto front.

The weighted sum approach is a commonly used classical multi-objective opti-

misation approach, which consists of converting the multi-objective problem into a

single objective as the combined weighted sum of each objective. Its conceptual sim-

plicity is complicated by the need to determine appropriate weights, the answer to

which is not unique, as it depends on the importance given to each objective. This

approach of combining multiple objectives into a single one is used in this study.

Another classic approach is the ǫ-Constraint introduced in Haimes et al (1971) which

keeps one objective whilst restricting the remaining objectives.

EAs combine methodologies which allow an efficient means of finding multiple

Pareto-optimal solutions in a single run. Srinivas and Deb (1994) introduced the Non-

dominated Sorting Genetic Algorithm (NSGA) which was later modified in Kalyan-

moy Deb and Meyarivan (2002) which introduced the Elitist Nondominated Sort-

ing Genetic Algorithm II (NSGA-II), with the intention of overcoming some of the

problems of the original NSGA. More recently Hanne (2009) in their GA, known as

Primal-Dual Multiobjective Optimisation Algorithm (PDMOEA), considered the in-

feasible solutions and uses populations of variable size. Their results show that by

extending the search to infeasible regions, the population may more easily reach new

parts of the Pareto front.

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced in Zitzler

and Thiele (1999) and further improved in Zitzler et al (2001) (SPEA2) which incor-

porates a fine-grained fitness assignment strategy, a density estimation technique, and

an enhanced archive truncation method. The Improved Strength Pareto Evolutionary

Algorithm 2 (ISPEA2) presented in Sheng et al (2012) is a more recent extension of

the SPEA. Other multi-objective optimisation approaches are Vector Evaluated Ge-

netic Algorithm (VEGA) (Schaffer (1984) and Schaffer (1985)), and Pareto Archived
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Evolution Strategy (PAES) (Knowles and Corne (2003), Knowles and Corne (2000),

Knowles and Corne (1999b) and Knowles and Corne (1999a)) which uses a simple

(1+1) local search evolution strategy.

Coello et al (2007) provided a comprehensive survey of EA for multi-objective

optimisation, and the survey in Castillo Tapia and Coello Coello (2007) concentrated

on multi-objective optimisation in the areas of economics and finance.

2.7.3 Diversity

The population diversity of an EA is an important factor in avoiding premature

convergence Michalewicz (1996). For many EAs a key obstacle to finding the global

optimal solution is insufficient solution diversity, causing the algorithm to become

trapped in a local optimum. The solution diversity can be influenced by the algorithm

parameters such as population size, operators and diversity preservation approaches.

One of the diversity preservation approaches corresponds to the selection methods,

some of which are presented in Section 2.7.1. A survey of measures used to capture

diversity in genetic programming was provided in Burke et al (2004).

Other approaches used to promote diversity are as follows:

Ageing: Syswerda (1990) uses ageing to help maintain diversity in the population.

Arabas et al (1994) and Kubota and Fukuda (1997) used ageing approaches to resolve

the premature convergence problem. Ghosh et al (1998) incorporated an ageing

approach where new individuals begin with a zero age and at every iteration their

age increases, which age is then used to calculate their effective fitness value, which

changes dynamically.

Island model: this model considers the geographical distribution of individuals,

Martin et al (1997). This model is used in parallel distributed GA, surveyed in Knysh

and Kureichik (2010) and Cant-Paz (1998).

Crowding technique: this was introduced by DeJong (1975) as a technique for

preserving population diversity and preventing premature convergence. Crowding is

applied to generate the next generation in GAs. The next generation is composed

of the individuals selected using the crowding technique among those in the current

population and their offspring. Crowding is composed of two main stages: pairing and

replacement. In the pairing stage, offspring individuals are paired with individuals in

the current population according to a similarity metric. In the replacement stage, it

is decided for each pair of individuals which of them will remain in the population.

A review of crowding approaches for GAs can be found in Mengshoel and Goldberg

(2008).
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Genotype sharing: this considers behaviour and structural similarities and mea-

sures the inter-chromosomal Hamming distance, Deb and Goldberg (1989). NSGA

uses genotype sharing whilst MOEGA usually prefers a phenotypic sharing since it

seeks a global trade-off surface in the objective function space.

2.8 Conclusions

This chapter has introduced some of the different scheduling problems and research

fields in airport resource scheduling and routing, provided a detailed overview of the

different approaches currently used, and gives a brief introduction to a number of

related fields. The area covered in this chapter helps the reader to understand the

context of the work presented in this thesis, the motivation, scope, and value of its

contribution.



Chapter 3

Problem Description

This chapter introduces the Airport Baggage Sorting Station Assignment Problem

(ABSSAP), defines its scope, and introduces a mathematical model to represent it

which is used in subsequent chapters. References to the relevant literature are in-

cluded for completeness. The final section of this chapter provides some conclusions.

3.1 Overview

The transportation of passengers in an airport begins with the arrival of passengers

at the terminal from which their flight will depart. They then proceed to the check-in

desks to which their flights have been assigned, where they leave their baggage for

processing. The baggage at this point enters the baggage system which delivers it to

the ground side for processing at the corresponding baggage sorting stations (BSSs),

where the baggage handling workforce sorts and places the baggage onto trailers,

in readiness for transportation by cart to the airside next to the aircraft. Here the

ground workforce places it in the cargo hold of the aircraft, in readiness for travel to

their destination.

The passengers then proceed to passport control prior to entering the international

area of the airport, and make their way to the gate assigned to their flight departure,

where the aircraft is being made ready for take-off. Some operations need to be

completed before the flight commences its departure process, such as boarding of the

passengers, cleaning the aircraft, refuelling and loading baggage and catering supplies.

The passengers then board the flight and the aircraft captain requests permission to

start the departure process which commences when the aircraft leaves the gate and

makes its way to the departure queue system in readiness for take-off. The flight next

enters the national air control space where it is guided by the en-route services until

34
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Figure 3.1: General view of the overall process in an airport.

the flight reaches the airspace of the destination airport, where the airport tower takes

control and guides the flight to land, Air Traffic Control (ATC). Once the flight has

landed, control is passed to the ground management team, which will guide the flight

through the taxi ways to the arrival gate assigned to that flight, where passengers

disembark, those leaving the airport make their way to the baggage collection point,

the others continuing their journey by means of the gate assigned to their next flight,

Figure 3.1. The aircraft may then be moved to a parking stand, awaiting the time to

be moved to the assigned departure gate at which the process commenced.

The process is reversed on arrival at the destination, with passengers disembark-

ing. The passengers’ baggage is removed from the cargo area by the ground workforce

and placed onto baggage trolleys ready for transportation by carts to a place next to

the baggage sorting stations, where the handling force transfers it from the trolleys

or containers onto the baggage sorting stations assigned. At this point the baggage

enters the baggage system which delivers it to the carousel assigned to their flight,

ready for collection by the corresponding owners, who will either leave the airport, or

transfer to another flight and continue their journey. The baggage of these passengers

is delivered to the BSSs assigned to their next flight, Figure 3.2. The sorting station
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assigned to a flight arrival normally corresponds to a carousel sorting station, which

is the same as that used to process the baggage belonging to passengers leaving the

airport, and only transfer baggage re-enters the baggage system for delivery to the

sorting stations assigned to their departure next on the itinerary of their owners.

Figure 3.2: Arrival/departure baggage system.

3.2 Airport Layout

Airport geometry plays an important role in the assignment of resources and the

safety of airport operations. An overview of the airport configurations and technology

relevant to the transportation of passengers and baggage was presented by Pitt et al

(2002) who concentrated on airport configurations and the availability of different

types of resources. Rijsenbrij and Ottjes (2007) provided an overview of different

elements of the baggage handling system and gave a description of the way in which

baggage is currently handled, identifying potential areas of improvement.

An airport pier is that section of an airport terminal where the gates and as-

sociated stands are distributed along the sides of the building; outside in the case

of stands and inside the building in the case of the gates through which passengers

board the flights. Whereas the stands are allocated at the side of a pier, the baggage

sorting station may be placed in different positions in respect to the piers.

Some examples of topologies based on the position of the BSSs are represented

in Figure 3.3 for a terminal with three piers, where the sorting stations are shown in

the diagrams as a small set of rectangles with Ti representing the terminal i and Pij

representing the pier j in terminal i.
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a Perpendicular BSSs to piers b Parallel BSSs to piers

Figure 3.3: Example of airport topologies with one terminal.

Rather than being specific to the example layouts described above, the models

utilised in this thesis are appropriate for any airport where there are groupings of

aircraft/gates which enforce a baggage sorting station group preference (as when

aircraft are at piers) and where there is a distance or cost metric for the assignment

of a baggage sorting station to a flight. For example, at some airports, the sorting

stations may be between the gates, in which case the distance/cost preference when

assigning flight-sorting station pairs may be much stronger, whereas the group/pier

preference may not be so strong.

The topologies considered in this thesis correspond to those shown in Figures 3.4.

3.3 Airport Baggage Sorting Station Assignment Model

The checked-in baggage at a passenger airport first enters the baggage system where

it is processed and delivered to the ground side, an overview of the process being

provided in Figure 3.5. The baggage is then transported by conveyor belt to the

baggage system’s security hall where it is individually scanned. Most baggage will

continue straight on, but if at the scanning stage suspicions were aroused concerning

the baggage then it is diverted to the security checking area where it will be further

checked by one of the security personal and, if clear, will rejoin the normal journey

with the rest of the baggage. The baggage will then continue (on conveyor belts) to

the baggage hall and be transported to the baggage sorting station assigned to it,

where the baggage accumulates ready for the workforce to sort and place on trolleys or

into special containers which go directly into the aircraft, ready for transportation by
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a London Heathrow airport Terminal 1 with
3-pier

b 3-pier topology.

c London Heathrow airport Terminal 1 with
4-pier

d 4-pier topology

e London Heathrow airport Terminal 4 with
3-pier

f 3-pier topology

Figure 3.4: Representations of the terminal topology used.

cart and placed next to the aircraft on the airside where the baggage is loaded into the

aircraft hold by the ground workforce, ready to travel to its destination. Containers

are used to transport the baggage on wide fuselage aircraft, for long distance flights,

which are directly placed into the hold of the aircraft. Trolleys are used in the narrow

fuselage aircraft and the baggage is individually loaded into the hold of the aircraft by
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the handling workforce, who use conveyor belts to lift the baggage from the trolleys

to the level of the aircraft’s hold. Johnstone et al (2010) looked at the routing of

the baggage within the baggage system with the aim to provide additional insight

into how agents can learn to route in a baggage handling system, which experiments

showed that the learning method performs better than the search method.

Figure 3.5: Baggage System.

On reaching the destination airport the process is reversed, so that the ground

workforce removes the baggage from the cargo area of the aircraft and place it di-

rectly on baggage carts (open trolleys, onto which baggage is separately loaded and

protected with a canvas cover) or load in baggage containers onto dollies (trailers, on

which baggage containers are loaded) ready to be transported by cart to the baggage

sorting stations assigned. Here the handling force transfers it from the trolleys or

containers onto the baggage sorting stations for transportation to the ground side

of the arrival hall. The baggage then enters the baggage system which delivers the

baggage to the carousel to which the flight is assigned, in readiness for collection
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by the corresponding owner, and will then leave the airport. In the case of transfer

passengers, their baggage is delivered to the baggage sorting station assigned to their

next flight, Figure 3.6. The sorting station used by a flight arrival is normally di-

rectly linked to the carousel assigned to the passenger flight for the given destination,

and only the transfer baggage re-enter the baggage system for delivery to the sorting

station assigned to its next departure, as shown in the ‘Arrival hall’ in Figure 3.5.

The transfer baggage does not usually need to be directed through the security hall,

given that it should already have been checked at the original airport.

Figure 3.6: General view of the baggage process in an airport.

The different parts of the overall configuration tend to be distributed on several

levels, whereas the check-in (departures) is normally located on the upper level of the

airport. Passengers on flights arriving at the airport (arrivals) collect their baggage

from the carousels normally placed on the lower level. The baggage system is placed

at a lower level than that of the arrivals, and may also be underground in some

airports.

Where airports have several terminals it would be unrealistic to assume that

baggage from a flight at a terminal stand is serviced by a baggage sorting station

in another terminal (e.g. passengers usually go through security and board flights

from the terminal at which they checked their baggage in). This may not be the case

for transfers where passengers and their baggage arrive at an airport terminal and

perhaps leave the airport by another flight departing from a different terminal.
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The ABSSAP involves the assignment of BSSs to flights already scheduled. These

previously scheduled flights have already been assigned to stands, which are the areas

allocated for parking aircraft, and the stand is required from the time of arrival to the

time of departure, whereas gates are the areas in a terminal where passengers access

the aircraft. In the Airport Gate Assignment Problem (AGAP) practitioners refer

to the assignment of flights to gates, which is equivalent to the stands associated

with these gates, normally located at a pier next to the gate. Examples of flight

assignments to gates are presented in Figure 3.7 which uses a type of GANTT chart,

where the vertical axis represents the stands and the horizontal axis shows when

the stands are in use. For example, for 219 flights the top row shows five flights

assigned to stand 1101. Here the first digit of the full stand number refers to the

terminal number (1), the second digit is the pier number (1), and the last two digits

are the stand identification. A pier is the area around which stands are grouped. This

problem was originally studied by Abdelghany et al (2006), which used an activity

selection algorithm and considered a sufficient number of BSSs for assignation to all

flights, whereas Ascó et al (2011) studied the same problem and assessed different

scenarios with different topologies, preferences and numbers of BSSs, examining the

trade-off between objectives when using different constructive algorithms.

There are also terminals at which the baggage system has some general storage

capacity, as shown in Figure 2.6, which reduces the time BSSs are required by flights,

which in turn depends on the system capacity and overall load of this general storage

at the time of use, which Frey et al (2010) took into account in their model.

Rijsenbrij and Ottjes (2007) provided an analysis of different elements of baggage

handling, whereas Pitt et al (2002) presented a broader view of baggage systems and

technologies.

In summary, airport baggage processing mainly concerns the baggage taken from

both arrival and departure flights. The baggage arrival is processed based on type,

while the baggage relating to transfers is assigned and processed by specialised bag-

gage sorting stations (such as laterals) which usually take the baggage into the bag-

gage system at a point beyond the security area, since their clearance should have

taken place in the airport of origin. These BSSs may be assigned to several flights si-

multaneously if the sorting station capacity limit is maintained. The baggage of those

passenger arrivals leaving the airport is assigned to a carousel BSS, but the same BSS

may be assigned to baggage from different overlapping flights. Baggage associated

with departing flights presents multiple and conflicting requirements which increase

the difficulty and interest of the problem, as described in the following sections and
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Figure 3.7: A random assignment of flights to stands for the data sets taken from the
British Airports Authority (BAA)’s website.
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studied in subsequent chapters.

3.3.1 Model

The problem under consideration is a multi-constraint and multi-objective one, which

may be summarised as the assignment of available Baggage Sorting Stations (BSSs)

to previously scheduled flights. As mentioned before, an airport pier is the protruding

section of a terminal building at which aircraft park, so that passengers may embark

and disembark. Baggage sorting stations are normally associated with piers according

to the airport topology.

A Base Service Period is associated with each flight departure, during which the

baggage for that flight is accumulated at the assigned baggage sorting station and

normally loaded onto baggage carts for transfer to the flight. This service period

may (optionally) be extended by applying an extra time (the buffer time), since it

is preferable to have a gap between the servicing of consecutive flights by the same

baggage sorting station.

The problem is presented as an Integer Linear Programming (ILP), where a flight

j is composed of Pj activities each of which must be serviced by a different BSS. The

objective here is to find appropriate values for the yijp Boolean variables, which take

a value of 1 if activity p of flight j is assigned to baggage sorting station i or zero

otherwise. The target service time represents the time in which a BSS is expected to

be assigned to a flight. The reduction in service time has a detrimental effects on the

capability of a solution to absorb real-life delays. Therefore the amount of reduction

in the target service time for the assignment of an activity p for flight j is represented

by rjp, which is calculated in seconds (as an integer). The constants and variables

of the model are shown in Tables 3.1 and 3.2. The full model is presented in the

following sections.

3.3.2 Input Data, Constants and Decision Variables

The various constants used in the model are summarised in Table 3.1. A flight

may require more than one BSS, since baggage on large aircraft may be split between

several BSSs, e.g. one BSS is responsible for the baggage-claim, the second for baggage

arrivals to be transferred and also one BSS may be assigned to the baggage belonging

to each class of passenger on a departing flight, where Pj (0 < Pj ≤ N) denotes the

total number of sorting stations required by flight j.

Additionally, buffer time is applied between two consecutive flights on the same
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Name Description

N The total number of BSSs under consideration.
M The total number of flights to which sorting stations should be allocated.
Pj The total number of activities to be serviced by baggage service stations

for a given flight j, which also equates to the total number of sorting
stations required to fully service flight j, Pj > 0.

Tj The base service duration for flight j.
Bjp The desired buffer time for flight j and activity p (p ∈ [1 . . . Pj ]), intro-

duced in Section 2.4.
ej The end service time for flight j.
τj The base starting service time for flight j, τj = ej − Tj .
tjp The target starting service time for flight j and activity p, tjp = τj −Bjp,

assuming the full buffer time is available. Target service duration is the
difference between the end service time and the target starting service
time, ejp − tjp.

Cjp A flight specific constant representing the amount of baggage to be pro-
cessed for flight j and its activity p. This determines the difficulty involved
in allocating the flight to a more distant sorting station. For example, this
may represent the number of delivery trips required to move the baggage
from the sorting station to the aircraft. In the absence of baggage load
figures, it is used Cjp = 1 for all activities and flights.

dij The distance between baggage sorting station i and flight j.

d
′

ik The distance between the baggage sorting stations i and k.

Table 3.1: List of the constants and input values for the ABSSAPs model.

baggage sorting station in order to absorb small disturbances in the real system be-

haviour. Buffer times are a common means of increasing robustness in order to absorb

small delays, as studied by Nikulin (2006) and Mulvey et al (1995). Buffer times were

used in the scheduling of baggage sorting stations by Abdelghany et al (2006), and Wu

and Caves (2004) used them in the optimisation of the aircraft turnaround process.

The AGAP has some characteristics similar to the baggage sorting station assign-

ment problem, and buffer times have been commonly considered for the AGAP by

Hassounah and Steuart (1993), Yan and Chang (1997), Bolat (2000), Yan et al (2002)

and Wu and Caves (2004). Yan and Huo (2001) provided a sensitivity analysis for

the AGAP buffer time, noting that the length of buffer time significantly influences

the gate assignment process, so a reasonable minimum value should be used. Yan

et al (2002) looked at the suitability of Flexible Buffer Times (FBT) where, given low

delays, short FBTs usually improve real-time objectives, such as the reassigning of an

incoming aircraft at a minimum distance. Wei and Liu (2009) showed the feasibility

and effectiveness of using a fuzzy model in conjunction with fixed buffer times for

the AGAPs. Ascó et al (2011) used buffer times to cope with small perturbations in
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the ABSSAP, and several constructive algorithms were also studied. Wu and Caves

(2000) and Wu and Caves (2004) showed the significance of a correct use of sched-

uled buffer time in maintaining schedule punctuality and performance by balancing

the trade-offs between schedule punctuality and aircraft utilisation. The position of

buffer time for a given flight service time may have an impact on the problem, as is

the case when buffer time is not the same for all flights, a point covered in Chapter

6.

The flight activity service time is the duration from activity starting time (sjp)

to end service time (ej), and the target service time is the duration from activity

target starting service time (tjp) to ej . The relationship between the timing values is

illustrated in Figures 3.8.

a Representation of the different times. b Flights times.

Figure 3.8: View of the time taken to service a flight.

The decision variables which are used in this model are presented in Table 3.2. The

solution algorithms will attempt to find values of yijp and rjp such that the constraints

in Section 3.3.3 are met, and the relevant objectives (e.g. maximising assignments

and minimising reduction in service times) in Section 3.3.4 are improved. An example

Name Description

yijp Specifies the assignment of flights to sorting stations. yijp = 1 if baggage
sorting station i ∈ [1 . . . N ] is allocated to flight j ∈ [1 . . .M ] for p ∈
[1 . . . Pj ], and 0 otherwise.

rjp Specifies the necessary reduction in service time for activity p ∈ [1 . . . Pj ]
of flight j ∈ [1 . . .M ], given the service starting time allocated, sjp.

sjp The service starting time allocated to activity p ∈ [1 . . . Pj ] of flight j ∈
[1 . . .M ] and given that a sorting station can only service one flight at a
time. sjp can be determined from rjp since sjp = tj − rjp.

Table 3.2: List of the decision variables used in this ABSSAPs model.

of assignments for the baggage sorting station 3 and the reduction in service time for
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Figure 3.9: Example of assignments of flights with Pj = 1∀j ∈ [1 . . .M ] to baggage
sorting station 3.

those assigned flights is shown in Figure 3.9.

Flights which cannot be assigned to any BSS are assigned to the dummy BSS, an

approach widely used in the Airport Gate Assignment Problem (AGAP), as shown

in Yan and Huo (2001), Drexla and Nikulina (2008) and Tang et al (2009), as well as

other areas of optimisation such as vehicle dispatching, Ichoua et al (2006). Further-

more the dummy BSS may be assigned to overlapping flight activities, where i = 0 is

used to represent the dummy BSS.

The following two points were defined and will be observed to be useful later when

interpreting the results for both the ABSSAP and the AGAP.

The Lower Maximum Assignment Point (LMAP) is the number of resources

required to service a certain number of activities when the service starting time (sjp)

coincides with the target starting service time (tjp).

The Upper Maximum Assignment Point (UMAP) is the number of re-

sources required to service those activities when the service starting time (sjp) coin-

cides with the base starting service time (τj).

Two examples of both points are shown in Figure 3.10.

a Representation without reduction in service
time, UMAP.

b Representation with maximum reduction in ser-
vice time, LMAP.

Figure 3.10: Flights service distribution for the data sets obtained from the BAA’s
website.
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3.3.3 Constraints

Various constraints apply to the assignment of BSSs and may be summarised as

follows.

Assignment Limits

Each flight must be assigned to at most Pj BSSs, as expressed by Inequality (3.1).

In normal operations, each flight should be assigned to exactly Pj sorting stations, in

which case Inequality 3.1 would become an equality. However, in extreme situations,

where there are insufficient sorting stations (as discussed in this thesis) there may

be no feasible assignment of flights to sorting stations such that all flights can be

allocated, hence the inequality. However, when assignments to the dummy BSS are

also included the inequality become an equality:
∑N

i=0 yijp = Pj .

N∑

i=1

yijp ≤ Pj ∀j ∈ [1 . . .M ] and ∀p ∈ [1 . . . Pj ] (3.1)

Complete Assignment

When Pj > 1 the activities corresponding to the same flight must either all be assigned

or none should be assigned, as expressed by Formula 3.2.

N∑

i=1

yijp =

N∑

i=1

yij(p+1) ∀j ∈ [1 . . .M ] and ∀p ∈ [1 . . . Pj − 1] (3.2)

Reduction in Service

BSSs can only be used by one flight at a time, so it may be necessary to reduce

the flight service time (usually by reducing the buffer times between flights, shown

in Figures 3.8b and 3.9) in order to assign flights to the same sorting station. The

principal objective is usually to maximise assignment of BSSs to flights, as expressed

by Formula 3.7.

For any pair of different flights where service times overlap, if the overlap in service

times is greater than the maximum reduction allowed (Blq for activity q of flight l),

then both flight activities cannot be assigned to the same BSS. Thus, Inequality

3.3 applies to any such pair of flights, j and l (j 6= l), where tlq < ej ≤ el and

(ej − tlq) > Blq.

yijp + yilq ≤ 1 (3.3)

They may otherwise be assigned to the same BSS as long as the service duration
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of flight l is sufficiently reduced to remove the overlap. Inequality 3.4 applies to any

such pair of flights, j and l (j 6= l), and their activities p and q respectively, where

tlq < ej ≤ el and (ej − tlq) ≤ Blq. One objective is to minimise these service time

reductions, as discussed later.

rlq ≥ (yijp + yilq − 1) ∗ (ej − tlq) (3.4)

Limit of Service Reduction

The reduction in service duration may not exceed a limit, as expressed by Inequality

3.5.

0 ≤ rjp ≤ Bjp ∀j ∈ [1 . . .M ] and ∀p ∈ [1 . . . Pj ] (3.5)

3.3.4 Objectives

A number of objectives concerning this problem need consideration, and there is a

trade-off to be made amongst them. The various objectives considered in this section

are:

Maximise Assignment of Baggage Sorting Stations

The first and most important objective is to maximise the number of flights assigned

to BSSs, as expressed by any of the Formulas 3.6, 3.7 and 3.8. In airport practice,

this objective would probably be a hard constraint at most times, since all flights

would normally have to be serviced, but we wish to observe the performance of the

algorithms when there are too few sorting stations, as well as when there are sufficient

or plentiful.

max

N∑

i=1

M∑

j=1

(∑Pj

p=1 yijp

Pj

)

(3.6)

The objective representation in Formula 3.6 refers to maximisation of the quantity

of assigned flights, which gives preference to flights having a lower number of BSSs

required, i.e. those with a lower Pj value. To increase the importance of obtaining

fully serviced flights, the objective may be represented as shown in Formula 3.7. In

this case preference to assign activities to BSSs is given to flights with a higher Pj .

Finally, assignment to a flight could be spread wider between different values of Pj as

expressed by Formula 3.8, where more weight is given to flights with greater Pj but
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not so great as in Formula 3.7.

max
N∑

i=1

M∑

j=1

Pj∑

p=1

yijp (3.7)

max
N∑

i=1

M∑

j=1

((

1 + α ∗

(

0.5−
1

Pj + 1

))

∗

∑Pj

p=1 yijp

Pj

)

(3.8)

When Pj = 1 ∀j ∈ [1 . . .M ] both Formulas 3.7 and 3.8 are the same and Formula

3.8 should also be the same, irrespective of the value of α, giving a value for the

constant within the brackets multiplied by α of 0.5. Furthermore, an α = 0 changes

the formula to the same as Formula 3.6, whereas for Pj = P ∀j ∈ [1 . . .M ] and a

value of α = 2 ∗ (P + 1) makes it the same as Formula 3.7.

Robustness

Delays on the day of operation may render some assignments unfeasible which need to

be re-assigned. It is therefore desirable to account for potential delays on the day of

operation when generating the flight assignments to BSSs in the planning stage, such

that the final flight assignments differ little or not at all from the original assignments

on the day of operation. The degree to which this is achieved is an indication of the

solution robustness, so a solution which requires less re-assignments is said to be

more robust than those solutions requiring more re-assignments. Robustness is the

ability of assignments to resist changes consequence of perturbations by reducing or

removing the need to re-assign current assignments.

There are different ways of increasing robustness depending on the intended effect.

One of the most simple and widely used methods is the introduction of a buffer time

between assignments which allows absorption of small disturbances. Wu and Caves

(2000) showed the significance of a proper use of schedule buffer times in maintaining

schedule punctuality. Yan and Huo (2001) applied buffer times to the AGAPs and

concluded that the length of buffer time significantly influences the gate assignment

process. Thus a reasonable value should be used. The ‘idle time’ refers to the time

between two consecutive assignments to the same BSS, from the end time of one

activity to the base starting time of the following assignment, also called gap. Other

approaches for improving the robustness make use of the distribution of ‘idle time’,

and the reduction of the number of reassignments of the disrupted schedules. A

selection of these is presented below and introduced in more detail in Chapter 6,

along with a review of where these methods have been used in the past.
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1. Minimise Reduction in Service: Given the detrimental effect that the reduction

in service time has for the robustness of the assignment as against real-life

delays, it is advisable to minimise the total reduction in service time, thus

maximising total buffer time. This objective can be expressed by Formula (3.9)

and it is further described in Section 6.3.1.

min

M∑

j=1

Pj∑

p=1

rjp (3.9)

2. Distribute Idle Time: Bolat (1999) proposed to distribute the ‘idle time’ uni-

formly between the gates. In the case of the Airport Baggage Sorting Stations

Problem, this corresponds to the uniform distribution of ‘idle time’ between

BSSs. This is described in greater detail in Section 6.3.2.

3. Reduce Reassignment on Disruption: The ability to reassign all flights directly

affected by a disruption is desirable, without the need to reassign other flights

also. The intention here is to generate schedules which take this objective into

account, e.g. count the number of assignments between which a reassignment

could be placed. This is also described in detail in Section 6.3.3.

4. Area of Reduction in Service: The flight density is defined as the number of

flights requiring to be serviced each time. In order to account for the importance

of the time wherein the reduction in service is performed, a greater penalisation

of the reduction of the service time of those assignments with higher flight

density is used. This may be achieved by a new approach which uses the area

of flight density for the period of reduced service time. This is described further

in Section 6.3.4.

5. Sub-Area of Reduction in Service: A new approach is proposed to also account

for the service load at different times of the day in the robustness and uses the

area between both flight densities, where no reduction in service is applied, and

when base service duration is considered. This is described further in Section

6.3.5.

6. Unsupervised Estimated Stochastic Reduction in Service: Lim andWang (2005)

proposed that a new robustness strategy be used for the AGAP, whereby an un-

supervised estimation function is applied. This estimates the mean probability

of conflict between flights, thus taking account of the potential impact of future

disruptions in the flight schedule. It assumes that the larger BSS gaps result in
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a lesser probability of BSS conflicts. This is discussed further in Section 6.3.6.

7. Reduction in the Number of Conflicts: Yan and Tang (2007) used randomly

generated delay scenarios in the ‘Planning Stage’ which represent potential dis-

ruptions in the schedule, and are used to obtain the anticipated semi-deviation

risk measure (Ruszczynski and Shapiro (2003)) used to account for the robust-

ness. Similarly, delay scenarios could be used to calculate the average number

of conflicts a solution has when considering all those delay scenarios, which

could be regarded as an indication of the performance of such a solution on

the day of operation. The delay scenarios may be obtained in different ways,

such as randomly as in Yan and Tang (2007), based on historic data, or gen-

erated by known distribution(s) drawn from information available at the time

of producing the schedule. Collisions are defined as those flights which cannot

be serviced by the BSS assigned, because the service time of a flight previously

assigned to the same BSS has an overlapping base service duration. This is

further discussed in Section 6.3.7.

8. Probability of Conflicts Based on the Gap: Previous approaches normally re-

quired a large number of perturbed data sets, which made their application

very slow. Given that we are still interested in reducing the number of con-

flicts, though without the heavy cost in speed, it is deemed advisable to use the

probability of a conflict in a given gap, which is applied to each flight. This can

easily be obtained if the delay distribution is known. This is described further

in Section 6.3.8.

Minimise Distance

The distance between the baggage sorting stations which are assigned to the flights

and the flights to which they are assigned should be as short as possible. This

objective aims to minimise the inconvenience, work and time involved in getting

baggage to the aircraft, and could reflect preferences rather than distances. One

way to handle this objective would be by expressing it as in Formula (3.10) where
∑N

i=1 (yijp ∗ dij) represents the distance between flight j and its allocated BSS for

activity p.

min
M∑

j=1

Pj∑

p=1

(

Cjp ∗
N∑

i=1

(yijp ∗ dij)

)

(3.10)

For any stand in the perpendicular topology model, shown in Figure 3.3a, it would

be preferable to assign luggage to the baggage sorting stations on the same side of
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the same pier. Alternatively, more distant sorting stations could be used, but these

are less preferable. Whereas, in Figure 3.3b the baggage sorting stations are placed

next to the stands within the pier. A ‘cost’ can be associated with a stand-sorting

station pairing, and one aim is to reduce this cost by assigning as many flights as

possible to their preferred sorting stations.

Consecutive Assignments

When a flight j requires servicing by more than one BSS, Pj > 1, then the BSSs

assigned should be adjacent to one another. This helps the workforce assigned to a

flight to perform their duties by reducing the need for them to move between BSSs.

Formula 3.11 aims to reduce this distance.

min

M∑

j=1





Pj∑

p=1

Pj∑

q=p+1

(
N∑

i=1

N∑

k=1

(
yijp · ykjq · d

′
ik

)

)

 (3.11)

Where:

dij is the distance between sorting station i and flight j.

d′ik is the distance between BSSs i and k, see Figure 3.11.

Figure 3.11: Flight distance to sorting stations.

The distance between a sorting station and itself is always zero, d′ii = 0, whereas

the distance between BSSs i and k is the same as the distance between BSSs k and

i, symmetry; d′ik = d′ki.
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Fair Workload

The quantity of baggage assigned to different BSSs should be comparable. This could

be interpreted as minimisation of the total deviation in the actual usage of each BSS

from the mean usage of all BSSs. This is expressed by Formula (3.12), where ej − sjp

represents the actual service duration for the flight j, which is the usage duration of

the BSS. This objective aims to find a fairer assignment across BSSs, as discussed in

Abdelghany et al (2006).

min
N∑

i=1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M∑

j=1

Pj∑

p=1

(yijp ∗ (ej − sjp))

︸ ︷︷ ︸

workload for station i

−

∑N
i=1

∑M
j=1

∑Pj

p=1(yijp ∗ (ej − sjp))

N
︸ ︷︷ ︸

mean workload over all stations

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.12)

If the quantity of baggage per flight activity which requires processing is different,

then the quantity of baggage to be processed needs to be taken into account. bj is the

total number of passengers/baggage for flight j, and bjp represents the quantity of bag-

gage required in servicing activity p, p ∈ [1 . . . Pj ], where
∑Pj

p=1 bjp = bj . The average

baggage per sorting station, average sorting station usage, is
∑N

i=1

∑M
j=1

∑Pj
p=1(yijp∗bjp)

N

which may be simplified as
∑M

j=1 bj

N
when all of the activities are assigned to sorting

stations.

Taking into account the different baggage requirements corresponding to each

flight, the fairness objective corresponds to the minimisation of the usage deviation

of all the sorting stations from the sorting station average usage, as represented by

Equation 3.13.

min
N∑

i=1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M∑

j=1

Pj∑

p=1

(yijp ∗ bjp)

︸ ︷︷ ︸

sorting station i usage

−

∑N
j=1

∑M
j=1

∑Pj

p=1 (yijp ∗ bjp)

N
︸ ︷︷ ︸

sorting station average usage

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.13)

The fairness objective encourages opening all of the available sorting stations,

which may not be ideal as it may also relate to an increase in operational costs when

only some of the sorting stations are required to fully service all flights.

Preferred Piers

Flights may have preferred piers, and this should be taken into account when assigning

BSSs. It may be considered preferable to allocate sorting stations to each flight on
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the same pier. This preference should have already been taken into account when

assigning a flight to a gate, so to reflect this preference, BSSs closer to the gate

assigned, i.e. the pier, are preferable, Formula (3.10), and it is therefore unnecessary

to consider this separately.

Flights to the Same Destination

It is preferable that flights from the same carrier to the same destination be assigned

to the same BSS so that, for example, any delayed baggage could be transported on

the next flight. However, flights would normally also be allocated to stands according

to carrier, and potentially according to destination (or at least long-haul vs. short-

haul). It is necessary to consider the time differential between assignments to the same

destination, given that early departures to the same destination may be preferable,

e.g. baggage unable to reach its flight on time is left at the BSS ready to be taken

to the next flight to the same destination. Similarly flights to the same destination

assigned to sorting stations closer to the current sorting station assigned are preferable

to those further away, as the baggage should take less time and inconvenience to

transport to the flight. There may also be restrictions as to which carriers may be

considered appropriate for these selections, as own flights to the same destination

would be regarded as preferable to those of other carriers.

The following constants are defined:

1. Djk = 1 if the destination of flight j and k are the same, or Djk = Γd otherwise,

j, k ∈ [1 . . .M ]. Γd is a constant which is sufficiently large to discourage the

assignment of sorting stations close to flights with different destinations.

2. Ajk = 1 if flights j and k belong to the same airline or Ajk = Γa otherwise,

j, k ∈ [1 . . .M ]. Γa corresponds to a number sufficiently large to discourage the

assignment of sorting stations close to flights from different airlines.

3. Ψ(i, l, j, k) is the cost of assigning flight k to BSS l when flight j is assigned to

sorting station i. If the flights are ordered by ascending departure time then

ej <= ek ∀j < k for j, k ∈ [1 . . .M ].

ej ≤ (ek − Tk) ∀ i, l ∈ [1 . . . N ] and j, k ∈ [1 . . .M ] (3.14)

Ψjk =
N−1∑

i=1

N∑

l=1

(Ψ(i, l, j, k) ∗ yij ∗ ylk ∗Djk ∗Ajk) for j 6= k (3.15)

Ψ(i, i, j, k) ∼= 0 for Djk = 1 and Ajk = 1 (3.16)
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Equation 3.15 states that for two flights assigned from the same carrier to the same

destination, when they comply with Inequality 3.14 (meaning that times do not over-

lap), there is a cost associated with assigning the flights to different sorting stations.

Formula 3.16 means that if there is a flight k from the same airline to the same

destination as flight j, which is also assigned to the same sorting station, then there

will still be a small cost, part of the time effect, as another flight may exist with

the same attributes as flight j but which departs earlier than k, and which would be

preferable. Furthermore, when this does not occur then Ψ(i, i, j, k) = 0 irrespective

of the flight k. The objective is represented by Formula 3.17.

min
M−1∑

j=1

M∑

k=j+1

Ψjk (3.17)

In certain cases it may also be appropriate for any delayed baggage which did

not reach its flight in time to be transported on the next flight, even when this does

not belong to the same carrier. To consider these cases, an extension of the above

formulation requires the re-definition of Ajk in order to take account of cases where

it is acceptable that baggage left from flight j is taken by flight k, even when flight k

does not belong to the same airline (Ajk ≥ 1). Where the value of 1 is given to a pair

of flights j and k which belong to the same airline and Γa > Ajk > 1 when neither

flight belongs to the same airline but there is a certain agreement between these

airlines to cover such occurrences, otherwise Ajk = Γa. Similarly, Ψ(i, l, j, k) ≥ d′il

where flights assigned to closer sorting stations are preferred to those further apart,

d′il = 0 for i = l and d′il > 0 for i 6= l, Figure 3.11. The reason for the ≥ in the

value of Ψ(i, l, j, k) ≥ d′il corresponds to the time effect previously mentioned which

may be taken into account by using the departure times of both flights j and k, e.g.

Ψ(i, l, j, k) = d′il ∗
ek
ej

with ej ≤ ek.

Other Objectives

Other objectives may also be considered, such as a reduction in the number of sort-

ing stations open (to reduce the number of baggage handlers required). These are,

however, in direct conflict with considerations of equity and reduction in service.

3.4 Conclusions

This chapter provided an extensive view of the ABSSAP and presents the model

as an ILP which is used in the subsequent chapters for the ABSSAP. The time an
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aircraft expends parked at a gate has a considerable affect on the operations which

take place up-stream in the overall operation of an airport. Delays in starting the

departure sequencing may have important effects on the departure itself, which in

turn may also require other aircraft to extend their holding time at the gates. This

could well affect other flights arriving which also have those gates assigned to them.

Any operation which may effect on the holding time at a gate does have the potential

to disrupt the full airport operation. One of these operations correspond to the

ABSSAP presented in this chapter.

Regarding the ABSSAP, the effect also extends to those cases where the baggage

is lost, misplaced or does not reach the departing flight in time, but which may affect

passengers satisfaction. These effects may be reduced by bearing these in mind when

planning and assigning the resources involved in the baggage processing.

The ABSSAP is extensively examined in the following chapters which uses the

mathematical representation presented in this chapter, commencing with a review

of some constructive algorithms in Chapter 4. In Chapter 5 an new Evolutionary

Algorithm (EA) is designed and compared with other algorithms and in Chapter

6 various different methods of accounting for robustness are presented and studied,

where some of them are new approaches.



Chapter 4

Constructive Algorithms for the

Airport Baggage Sorting Station

Assignment Problem

This chapter introduces constructive algorithms for the Airport Baggage Sorting Sta-

tion Assignment Problem (ABSSAP) presented in Chapter 3, introduces a new frame-

work which facilitates the adaptation of these constructive algorithms to other prob-

lems, carries out a rigorous analysis of their parameter settings and compares their

results with those provided by other approaches. References to the relevant litera-

ture are included for completeness. The final section of this chapter provides some

conclusions.

4.1 Overview

The ABSSAP may be seen as a multi-objective resource constrained assignment prob-

lem, where the aim is to assign the limited baggage handling resources to the various

flights which have to be serviced. Research into a similar problem was set out in

Abdelghany et al (2006), but various questions were left unanswered. This chapter

aims to answer these questions and to perform a rigorous analysis of the effects and

benefits of the various different constructive algorithms applied to the problem, with

a view to utilising these to provide initial solutions to other search methods. The

intention is not to develop the ‘perfect’ algorithm for constructing a baggage sort-

ing station assignment, but to understand the effects and trade-offs resulting from

different choices.

The problem is represented as an Activity Selection Problem (ASP), which cor-

57



4.1. OVERVIEW 58

responds to the scheduling of resources amongst several competing activities within

a given time frame. It is similar to the Airport Gate Assignment Problem (AGAP),

but with some characteristics differing from the AGAP, some of which are:

1. The root of the problem in baggage sorting station assignment is that baggage

sorting stations are required for a longer period than flights, so there can be no

one-to-one correspondence between baggage sorting stations and stands, and

ideal locations cannot be guaranteed. The service time is the period of time an

activity is assigned to a resource, which was introduced in Section 3.3.2. Flights

typically require the services provided at a gate from 25 to 45 minutes whereas

for Baggage Sorting Stations (BSSs) this is usually between 1 to 3 hours.

2. A flight may require more than one BSS in order to be serviced, which is repre-

sented by the ‘Assignment Limits’ (Section 3.3.3) and ‘Complete Assignment’

(Section 3.3.3) constraints.

3. The objectives to be considered for a BSS also differ from those normally con-

sidered in the AGAP problem, as presented in Section 3.3.4.

As presented in Section 3.3.2, ideally there should also be a buffer time between

sorting station usages, to reduce the risk of small perturbations affecting assignment

and mixing of baggage between flights, but the contention for baggage sorting stations

(BSSs) means that this sometimes has to be reduced or eliminated. One purpose of

this chapter is to better understand the way in which the potential reduction in buffer

times affects the various constructive algorithms.

There are a number of objectives to consider in the ABSSAP (for example, max-

imising the assignments, maximising available buffer times and assigning flights to the

closest sorting stations, as discussed in Section 3.3.4) and these are in obvious conflict

with each other. Any solution method needs to take this into account. In particular,

different constructive algorithms will be observed to perform better for differing ob-

jectives. Hybridisation of the algorithms themselves or the appropriate utilisation or

recombination of solutions from different algorithms may potentially lead to assign-

ments which better reflect the overall objectives and this will be considered later, in

Chapter 5.

This chapter is structured as follows: Firstly, the algorithms considered are de-

scribed in Section 4.2, followed by a description of the problem data in Section 4.3.

The results from the application of the algorithms herein to the problem are then

provided and various observations are made and explanations given, in Section 4.4.

Finally some conclusions are presented in Section 4.5.
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4.2 Algorithms

The constructive algorithms considered here assign baggage sorting stations to flights

one at a time until no further assignments are possible, as shown in Algorithm 1.

Flights are first ordered according to one of the flight ordering methods under con-

sideration, then a sorting station is selected for each in turn. The flight ordering and

baggage sorting station assignments are considered below.

Algorithm 1: Constructive Algorithms Overview

Order flights for assignment (Section 4.2.1);
Determine the sets of BSSs to be considered (Section 4.2.2);
foreach flight do

Select a set of feasible BSSs;
repeat

if the set of feasible BSSs is not empty then
Select a BSS from the current set based on certain criteria (Baggage
Sorting Station Selections);
Assign flight to the BSS;

end

until flight was assigned OR there are no more sets to choose from;

if flight was not assigned then
Assign to the dummy;

end

end

4.2.1 Flight Ordering Methods

The flight ordering method determines the order in which flights are selected for

assignment. The different sorting approaches are considered below:

1. Order by Starting Time (OST). This orders flights into ascending order by

their target starting time, tj values. When two flights have the same service

target starting times, they are then sorted by their service end time, ej . From

the algorithm pseudo code presented therein, this appears to be that previously

used in Abdelghany et al (2006).

2. Order by Departure Time (ODT). This was previously used by Ding et al

(2005) for the Airport Gate Assignment Problem (AGAP). This orders flights

into ascending order according to their departure time, ej . When two flights

have the same service end times, they are sorted by their target starting time,

tj . Where service time reductions are not permitted, sorting by service end

times provides maximum assignments when using the Last In First Out (LIFO)
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baggage sorting station selection, and not constraining the set of sorting stations

from which to select (see Section 4.2.2).

The ODT flight ordering method could potentially perform badly on the objec-

tives other than the maximisation of assignments. In particular, the re-use of

sorting stations can lead to an extremely inequitable assignment across BSSs.

A new flight ordering method called Order by Departure Time Lookahead and

Improvement (ODTLI) looks ahead when allocating sorting stations, to improve

one of the other objectives while maintaining the maximal assignment of flights

to BSSs. The lookahead and improvement is further described in Section 4.2.3.

3. Order Between Times (OBT). OBT orders the flights based on a point

positioned between the target starting time and the end time of each flight. The

point is identified by the parameter α ∈ [0, 1], which is considered a constant,

Equation 4.1.

tBj = tj + α ∗ (ej − tj) (4.1)

The ordering corresponds to OST when α = 0 and ODT when α = 1. The other

values of α provide intermediate orderings to these two. These orderings are

only useful where there are flights with two or more different service periods,

otherwise they all correspond to the same single ordering, which also applies to

ODT, ODTLI and OST.

4.2.2 Baggage Sorting Station Assignment

Once the flight to be assigned has been identified, the next stage is to determine to

which sorting station it is to be assigned. The Baggage Sorting Station Assignment

involves two stages. The first decision is upon which sets of BSSs to consider for

assignment and in what order. In particular, whether only those stations for the

same pier should be considered first, and whether service time reductions should be

considered. The second decision involves the ranking of BSSs within each set, to

enable selection of an individual BSS for assignment.

Baggage Sorting Station Assignment Algorithms

The Baggage Sorting Station Assignment Algorithm determines which sets of baggage

sorting stations (for example only those on the same pier, or on all piers) are to

be considered, in which order, and at what point reductions in service times are

considered within each set. The baggage sorting stations within each set are then
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considered according to the selection priority given, namely the ‘Baggage Sorting

Station Selections’.

Three baggage sorting station assignment algorithms are presented here, which

are named Algorithms ‘A’, ‘C’ and ‘E’ (two more are described in Appendix B.1),

and represent a variation in the level of restrictions where Algorithm ‘A’ corresponds

to the most restrictive and the others are less restrictive with ‘E’ being without any

restriction.

Algorithms ‘A’ to ‘E’ express different priorities. Algorithm ‘A’ will attempt to

assign all aircraft to their own piers before considering assigning any aircraft to other

piers. Algorithm ‘C’ is similar to ‘A’ but considers alternative piers or reductions in

service time for the current aircraft prior to considering the next aircraft, giving a

much weaker pier preference overall. Algorithm ‘E’ does not impose any restriction

on which piers to use.

Algorithm ‘A’: Baggage Sorting Station Assignment Algorithm ‘A’ (strong pier

preference)

begin
Order all flights based on the current flight choice algorithm (Section 4.2.1);
forall the flights do

if feasible BSS exists on flight’s own pier then
Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Reduce the flight service time by the maximum reduction allowed;
if feasible BSS exists on flight’s own pier then

Select a BSS using the selection algorithm;
Assign the flight to the BSS;

end

end

end
forall the unassigned flights do

if feasible BSS exists in the airport then
Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Reduce the flight service time by the maximum reduction allowed;
if feasible BSS exists in the airport then

Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Assign the flight to the dummy BSS;

end

end

end

end
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Algorithm ‘C’: Baggage Sorting Station Assignment Algorithm ‘C’ (partial

pier preference)

begin
Order all flights based on the current flight choice algorithm (Section 4.2.1);
forall the flights do

if feasible BSS exists on flight’s own pier then
Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Reduce the flight service time by the maximum reduction allowed;
if feasible BSS exists on flight’s own pier then

Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Reset the service time without reduction;
if feasible BSS exists in the airport then

Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Reduce the flight service time by the max. reduction allowed;
if feasible BSS exists in the airport then

Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Assign the flight to the dummy BSS;

end

end

end

end

end

end

In each case, once the algorithm has determined the set of sorting stations for

consideration, the appropriate sorting station to be assigned from amongst those

available at the time is determined by the baggage sorting station selection method

currently being used, which is presented next.

Baggage Sorting Station Selections

The Baggage Sorting Station Selection method determines which of the baggage sort-

ing stations in the current set should be assigned to the current flight. The following

methods are considered:

1. First In First Out (FIFO): The baggage sorting station with the earliest free

service time is selected from all of the baggage sorting stations in the set under

consideration. Initially this will keep opening new service stations, while they
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Algorithm ‘E’: Baggage Sorting Station Assignment Algorithm ‘E’ (no pier

preference)

begin
Order all flights based on the current flight choice algorithm (Section 4.2.1);
forall the flights do

if feasible BSS exists in the airport then
Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Reduce the flight service time by the maximum reduction allowed;
if feasible BSS exists in the airport then

Select a BSS using the selection algorithm;
Assign the flight to the BSS;

else
Assign the flight to the dummy BSS;

end

end

end

end

exist, since a new one would always be that with least recent use. This is useful

in meeting the fairness objective expressed by Formula 3.12 and the reduction

in service time objective expressed by Formula 3.9.

2. Last In First Out (LIFO): The baggage sorting station most recently used

amongst those in the set is selected. This selection reduces the number of

baggage sorting stations in use at any one time, since a new baggage sorting

station is only opened when the previous ones cannot be assigned to the flight.

When flights are ordered by their departure times, service time reductions are

not permitted and assignment Algorithm ‘E’ is used (so that all sorting stations

are considered, rather than only those on the preferred pier). This selection

method guarantees the maximum assignments (maximising the objective ex-

pressed by Formula 3.7), by minimising the wasted/idle time between flights,

Ding et al (2004) and Cormen et al (2001).

3. Closest: The BSS with the least distance to the current flight is selected from

those in the set. This consists of both new sorting stations and those used

previously. This method is useful for meeting the distance reduction objective

expressed by Formula 3.10. With the measure of distance used in here, this

objective will ensure that flights are assigned to sorting stations on their own

pier by preference. Where sorting stations are at the same distance, a LIFO or

FIFO method is used to break the ties. When LIFO is used it corresponds to
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minimising the number of open BSSs, whereas FIFO corresponds to maximising

the number of open BSSs which equates to increasing the fairness.

4. Random: A random BSS is selected from the BSSs in the aforesaid list. This

sorting station selection approach does not take account of any particular ob-

jective.

4.2.3 Lookahead and Improvement

Haralick and Elliott (1980) considered the concept of “Lookahead and anticipate the

future in order to succeed in the present” and “Lookahead to the future in order not

to worry about the past”. A type of lookahead was also used in Voß et al (2005). The

ODT flight ordering method could potentially perform badly on the maximisation

of assignments. The aim of the ODTLI is to retain the ODT flight ordering, but to

look ahead when assigning sorting stations, thus potentially improving the assignment

objective. The developed ODTLI method maintains a list of available sorting stations

for this flight. It looks ahead to find out whether the selection of any of the available

sorting stations may render a future flight infeasible. If this is the case, and there

are other available sorting stations from which to select, this sorting station will be

removed from the list. At the improvement stage of the process, sorting stations

which have been removed will be reconsidered and may be exchanged for a station in

the list if this improves the current selection method used.

4.3 Problem Data

Since it would be unrealistic to assume that the baggage from a flight at a terminal

stand is serviced by a baggage sorting station in another terminal (e.g. passengers

usually go through security and board flights from the same terminal at which they

checked their baggage in), the following analysis is centred on a single terminal.

Two data sets obtained from the British Airports Authority (BAA) website were

originally considered, being for December 2009 and March 2010 and composed of 219

and 270 flights respectively. No stand allocation information was available at the time.

These data sets were studied for a terminal with three piers as shown in Figure 4.1

and presented in Ascó et al (2011). Subsequently NATS provided more detailed data

for London Heathrow airport, which also contains details of the flight assignments to

stands and of cancelations for both days. The two new data sets consist of 194 flights

for the 16th December 2009 and 163 flights for the 1st March 2010, all departing from

London Heathrow airport Terminal 1. More detailed information on Terminal 1 at
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London Heathrow airport was also provided, which prompted the study of a 4-pier

topology as a closer representation of London Heathrow airport Terminal 1, Figure

4.2. These two topologies gave an opportunity to look at some of the effects the

topologies had upon the solutions obtained.

a Terminal 1 overall view. b 3-pier topology.

Figure 4.1: London Heathrow airport Terminal 1.

a Terminal 1 overall view. b 4-pier topology with 46 stands.

Figure 4.2: London Heathrow airport Terminal 1.

4.3.1 Baggage Sorting Stations Required

Figures 4.3a, 4.3b, 4.4a and 4.4b show the total number of flights which require service

at different times of the day, with and without the buffer times. Figures 4.3a and

4.4a show the number of sorting stations which are required when full buffer times

are used (i.e. where there is no service time reduction allowed) and Figures 4.3b and
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a Total number of flights requiring service over
the day when full buffer times are required,
UMAP.

b Total number of flights requiring service over
the day when no buffer times are required, LAMP.

Figure 4.3: BAA’s website data sets for London Heathrow airport.

a Total number of flights requiring service over
the day when full buffer times are required,
UMAP.

b Total number of flights requiring service over
the day when no buffer times are required, LMAP.

Figure 4.4: NATS data sets for London Heathrow airport.

4.4b represent the number of flights actually requiring service at that time (i.e. no

buffer times are included). It is possible to draw the following conclusions:

1. With a limited number of baggage sorting stations, the maximum height of the

lines in Figures 4.3 and 4.4 could potentially be an indication of the assignment

problem difficulty.

2. Fewer sorting stations are required at the peaks when buffer times are not

included, although the absence of the buffer times would result in less robust

solutions.

The Lower Maximum Assignment Point (LMAP) here is defined as the minimum

number of sorting stations required for the maximum number of assignments to be

achieved once maximum reductions in service time have been applied. Similarly, the

Upper Maximum Assignment Point (UMAP) is defined to be the minimum number

of sorting stations at which the maximum number of assignments can be achieved

without the need to reduce service time. The LMAP and UMAP points will be

observed to be useful later when interpreting the results.
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When no buffer times are considered the maximum assignment (LMAP) is 83, 22,

46 and 19 BSSs for the four data sets (Figures 4.3b and 4.4b), and when no reduction

in service is allowed the maximum assignment (UMAP) is 101, 27, 50 and 25 BSSs

(Figures 4.3a and 4.4a) for the 219, 194, 270 and 163 flight problems respectively, as

shown in Figures 4.3 to 4.4.

4.3.2 Generating Missing Stand Assignments

When assignment information for flights to stands was unavailable, different prob-

lems were generated by allocating the flights randomly to the stands avoiding any

overlap on a single stand. In order to minimise any bias introduced by these random

allocations, a hundred different random allocations were generated. We realise, of

course, that real schedules will have some bias, given airline preferences, which is also

shown by the data provided by NATS. When assigning flights to BSSs the assign-

ment of flights to stands is only required for those objectives which take account of

the position of the BSSs with respect to the stands, Section 3.3.4.

Two examples of flight assignments to 48 stands are illustrated in Figure 3.7 for

the data sets from the BAA website. The results of the sorting station assignment

algorithms (which are themselves deterministic) across the 100 different stand allo-

cations are presented in the following section using the box-and-whisker diagram. In

each diagram, results are shown next to each other for each number of BSSs and

are in the same order as listed in the key. In assigning flights to stands, it has been

assumed that all of the stands were suitable for any aircraft. The available stands

were assumed to be equally distributed over three piers, with 16 stands per pier.

4.4 Results

This section details the experiments which were performed to evaluate the differences

between the algorithms described in Section 4.2, and to understand the ways in which

these results depend upon the number of BSSs available for assignment to flights. The

behaviour is studied in the case where there are too few BSSs as well as when the BSSs

are plentiful. Two cases were considered: without allowing reductions in service time

(i.e. requiring full buffer time), and allowing reductions in service time (i.e. allowing

buffer times to be reduced).

The various experiments were executed for the data which was captured from

the BAA website for London Heathrow airport, considering cases where they were

assumed to be 14, 16, 18, 20, 22, 24, 26, 28, 34 or 36 BSSs per pier (changing the
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total number of BSSs by increments of 6). The results were presented in Ascó et al

(2011). The data from NATS was also studied, with ranges from 12 to 36 BSSs in

increments of 1 BSS. For the purpose of the distance reduction objective, a distance

of one unit is assumed between different sides of a pier and a distance of two units

was assumed between different piers (as shown in Figure 3.3a), so that it is preferable

to use the other side of the same pier before considering BSSs for other piers. It

is assumed that reductions in service time can only reduce the buffer time rather

than the base service duration (i.e. the base service duration is the minimum which

will be available). Service times were set so that Tj = 1 hour and Bj = 15 minutes

for European flights, and Tj = 13
4 hours and Bj = 30 minutes for non-European

(long-haul) flights, since these are usually larger flights with more baggage and a

requirement to check-in earlier.

The larger number of BSSs required to fully assign all of the flights for the data sets

from the BAA website compared to those provided by NATS corresponds to a higher

flight density for the data sets from the website, as it is shown in Figures 4.4 and 4.3.

The reason for this is mainly that flights presented in the website with different flight

numbers were considered to be different flights. This is not the case in reality however,

as different airlines have mutual agreements whereby they share the aircraft travelling

to the same destinations at the same time, so that customers see the expected airline

flight reference number. This information was not available to this study at the time.

Furthermore, information available on the website was susceptible to change as the

day progressed, as some flights were later cancelled but were still considered in the

initial study. Additionally, airports only publish information about the gate assigned

to a flight near the time the flight is due to arrive or depart, so such information

was not available early in the day when the data was collected. This information

was randomly generated in the experiments, by applying the random constructive

algorithm presented in this chapter multiple times, with different random seeds to

reduce any bias.

The absence of information about the number and location of the BSSs directed

the study to consider a range of BSSs for each data set which allows investigating

the effect and performance of the different algorithms where there are plentiful or

few number of BSSs. Within each range both the LMAP, which corresponds to the

number of BSSs necessary to be able to assign all of the flights for when no buffer

time is considered, and UMAP which refers to the number of BSSs necessary to be

able to assign all of the flights without reducing the buffer time (both introduced in

Section 3.3.2), were considered, where LMAP ≤ UMAP.
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Figure 4.5: Number of sorting stations assigned, OST ordering and LIFO selection
method for a 3-pier topology and 163 flights.

Later normality tests were run to identify whether the data could be said to

follow a normal distribution, which is a requirement for use of the t-test, otherwise

the Mann-Whitney U test is preferable. Razali and Wah (2011) compared some

normality tests and concluded that Shapiro-Wilk is the most powerful normality test.

Thus the Shapiro-Wilk normality test was run for some of the data to ascertain if the

data could be said to be normal, but the data could not be said to follow a normal

distribution, the results of which are shown in Appendix B.1. So Mann-Whitney U

tests were carried out to ascertain the statistical significance.

The various experiments in this chapter were executed using a single threaded

Java application, running on a 3GHz Intel(R) Core(TM)2 Duo CPU, desktop with

2GB RAM under Windows XP (SP3) and in a 2.5Hz 64bit Intel Core i3, laptop with

4GB RAM under Windows 7. Each execution of the constructive algorithms took no

more than 9 milliseconds.

A view of the behaviour of the algorithms as the number of BSSs changes is

presented in Figure 4.5. This shows the number of sorting stations which could be

assigned to flights using the OST flight ordering method using the LIFO sorting

station selection method, for various numbers of available sorting stations. This is

then compared with the situation when reduction in service is and is not allowed. It

was originally planned to use ODT, but it was shown in Ascó et al (2011) that the

OST ordering method provided better assignments than ODTLI when reductions in

service were allowed and the number of sorting stations was close to, or above, the

LMAP. This persuaded me to use OST in my initial observations. A comparison of

the results for the different BSS assignment algorithms shows the following:
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1. As expected, allowing reduction in service times allows more flights to be ser-

viced, since shorter service times may allow a flight to sit between two other

flights where this would otherwise be impossible.

2. Regardless of whether reductions in service time are permitted, sorting station

assignment Algorithm ‘A’ achieves fewer assignments than the other algorithms.

This is a consequence of Algorithm ‘A’ assigning aircraft to their own pier by

preference whereas assignment to a different pier may have allowed more flights

to be assigned.

3. Where reductions in service are not permitted, the performance of Algorithm

‘E’ was exactly the same as Algorithm ‘C’. The results in Ascó et al (2011) show

that in general Algorithm ‘E’ always performed at least as well as Algorithm

‘C’, and sometimes better, as we would expect since the pier preference can

sometimes conflict with maximising the assignments. Interestingly, this was

not always the case when reductions in service time were permitted, and there

are instances when the preference for the same pier actually means that more

flights can be assigned, as shown in Figure 4.5 for 14 to 18 sorting stations

where Algorithm ‘C’, which takes account of the pier grouping, assigns more

flights than Algorithm ‘E’. These results were even more pronounced in Ascó

et al (2011) which used different data sets with random allocation of stands to

flights, and indicate that there are sometimes advantages in assigning flights

to sorting stations on their own piers, perhaps requiring a reduction in service

time to do so, and thus allowing more flights to be assigned.

Algorithm ‘C’ also achieved full assignment at the UMAP, shown in Figure 4.5,

when there are 25 BSSs. It is noted however, that this is only guaranteed for

no restriction, Algorithm ‘E’, when ordering flights by departure times using

the LIFO selection method and no buffer time.

4. When reduction in service time is permitted, Algorithm ‘E’ no longer guarantees

the maximum assignment of BSSs, as can be seen in Figure 4.5 for between 14

and 18 BSSs for the 163 flights data set, as similarly shown in Figure 4.6 for

between 72 and 96 BSSs for 219 flights, and for 48 BSSs shown in Figure 4.7 for

270 flights. Algorithms ‘A’ and ‘C’, which consider reduction in service times

first and different piers (thus more often reducing service times), sometimes

achieve better assignments (e.g. 72 and 78 BSSs Figures 4.6 and 4.7).
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Figure 4.6: Number of assignments for 219 flights (BAA’s website), ODTLI and LIFO,
with and without permitting reductions in service.

Figure 4.7: Number of assignments for 270 flights (BAA’s website), ODTLI and LIFO,
with and without permitting reductions in service.

These results corroborate those from Ascó et al (2011), where different data sets

were used with a higher number of flights and also higher flight densities, as shown in

Figures 4.3 and 4.4. Both sets of results indicate that as to which is the better assign-

ment method will depend upon the ratio of flights to sorting stations. Furthermore,

it is noted that counts of the minimum number of sorting stations which are required

with and without reductions in service time, shown in Figures 4.4b and 4.4a, provide

a simple method of determining whether the available sorting stations are sufficient

or not to avoid reductions in service time.

In order to determine the maximum sorting station assignments when reduction in
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Figure 4.8: Number of assignments, OST ordering method, Algorithm ‘E’ and LIFO
selection method, for a 3-pier topology and 163 flights.

service times is permitted, experiments were executed with the buffer times removed

(equivalent to maximal service time reduction), using the OST ordering method,

Algorithm ‘E’ and LIFO selection method. The results are shown in Figure 4.8, for

the 163 flights problem. More flights can be assigned when reductions are permitted,

as expected, until sufficient sorting stations are available to assign all of the flights

(full assignment) even without needing reductions. In most cases, allowing reductions

was almost as good as using maximum reductions.

With maximum reductions (i.e. no buffer times), the full assignment occurs when

there are 19 BSSs for the 163 flight problem. This value is the same as the theoretical

minimum (the lowest maximum assignment point, LMAP) shown in Figure 4.4b.

Here, OST (Order by Starting Times) achieves full assignments at the theoretical

minimum points (LMAP for maximal reductions and UMAP for no reductions in

service times), even though it gives no guarantee of doing so, unlike ODT (Order by

Departure Times), as shown in Figure 4.9.

Figure 4.5 can also be used to compare the performance of Algorithms ‘A’, ‘C’

and ‘E’ in terms of the number of assignments which are achieved when reduction

in service time is permitted, using the OST ordering method and LIFO selection

method. This shows that Algorithm ‘A’ provides the lowest number of assignments.

This was also seen in Ascó et al (2011) for the alternative data sets. Algorithms ‘C’

and ‘E’ both provide a similar number of assignments to each other, with Algorithm

‘C’ providing slightly more than ‘E’ in some cases.
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Figure 4.9: Example of assignments achieved by OST and ODT.

Figure 4.10: Number of assignments for LIFO selection method with different ordering
methods and selection methods, for 3-pier topology and 163 flights.

Since reductions in service time have obvious benefits, the remaining experiments

consider the cases where these are permitted and evaluate the differences between

Algorithms ‘A’, ‘C’ and ‘E’ and between the different flight ordering and BSS selection

methods.

4.4.1 Comparison of Assignments with Service Reduction

Figure 4.10 compares the ODTLI and OST flight ordering methods, showing the num-

ber of sorting station assignments which were made with the LIFO selection method.

This shows that the ODTLI flight ordering method provided a better assignment

when there were fewer sorting stations (between 12 and 15 sorting stations), but at

some point, as the number of sorting stations increases, the difference decreases. As

the number of sorting stations approaches the number necessary for full assignment

(the LMAP), the OST flight ordering actually improves upon ODTLI.
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Comparison of some resulting assignments showed that, perhaps counter intu-

itively, not only was ODTLI failing to assign more flights at these times, but the

flights which were not assigned had longer service times than those which OST failed

to assign. Indeed, there were cases where every aircraft which OST failed to assign

was a short-haul flight and every aircraft which ODTLI failed to assign was a long-

haul flight. The order of consideration of flights appears to be important in this

case.

The key to understanding this behaviour lies in considering the size of the remain-

ing gaps. Since the ODT and ODTLI methods order the flights by their departure

times, where flights have similar service starting times, preference will be given to

flights with shorter service times (i.e. earlier departure times). On the other hand,

the OST choice of flights could be regarded as preferring flights with longer service

times (for similar departure/end of service times). By assigning long-haul flights first,

the OST algorithm was able to fit short-haul flights into the remaining gaps (with

appropriate service time reductions). However, by assigning short-haul flights first,

the ODTLI was then unable to schedule the remaining long-haul flights, resulting in

fewer assignments. When there are few sorting stations, the ability of the ODTLI

choice to minimise the gaps is a useful one and results in more sorting station assign-

ments than the OST ordering method. However, as the number of sorting stations

increases, the remaining gaps begin to be large enough to accommodate short-haul

aircraft, and OST performs better.

Further experiments showed that this behaviour was not restricted to the LIFO

selection method, but also occurred for the FIFO and ‘Closest’ selection methods,

and did so for the same number of sorting stations, Appendix B.1.2.

4.4.2 Reduction in Service

Figure 4.11 shows the total reduction in service time (expressed by Formula 3.9) for all

assigned flights, with differing numbers of BSSs, using Algorithm ‘E’, and comparing

the performance of ODTLI and OST flight ordering methods and ‘Closest’, LIFO and

FIFO sorting station selection methods. Where Figure 4.12 shows the mean reduction

in service time for the flights which have had a reduction in service time.

Comparing Figures 4.11 and 4.12 it was observed that, using the ODTLI ordering

method, as the number of sorting stations is increased the reduction in service time

initially increases as more assignments are achieved, although the mean reduction in

each case increases more slowly, or not at all, and we know from Figure 4.10 that the

number of assignments is increasing at this point. This indicates that the increased
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Figure 4.11: Total reduction in service time in seconds for NATS data set 1st March
2010, 3-pier topology and Algorithm ‘E’.

Figure 4.12: Mean reduction in service time in seconds for NATS data set 1st March
2010, 3-pier topology and Algorithm ‘E’.

number of available sorting stations and the ability to reduce the service time are

both contributing towards the increase in the number of assigned flights at that time.

As the number of sorting stations is increased further, a point is soon reached

where the total reduction decreases, but the mean reduction per sorting station goes

up. This indicates that more and more of the flights are being assigned with no

reduction in service. This continues until the number of sorting stations is sufficient

to allow all of the assignments to be made, at which point the total reduction in

service decreases, until eventually all flights can be assigned without any reduction
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in service time. This was also observed for the BAA’s website data set in Ascó et al

(2011).

For the OST ordering method, the mean reduction is relatively stable, but the

total reduction decreases as the number of sorting stations increases, indicating that

the number of sorting stations with reduced service decreases over this time. Soon

after the LMAP, when there are 20 baggage sorting stations, a point is reached where

the number of sorting stations is sufficient to allow all of the assignments to be made

(see Figure 4.10), with ever decreasing reductions in the service time. As the number

of sorting stations is further increased, the total reduction in service and the mean

reduction in service time both decrease, until eventually all flights can be assigned

without any reduction in service time.

4.4.3 Comparison of Distances with Service Reduction

Figures 4.13 and 4.14 show the results as far as the distance reduction objective

(expressed by Formula (3.10)) is concerned. These show the total distance between

the assigned baggage sorting stations and the stands at which the flights are located.

Results are shown for the three sorting station selection Algorithms ‘A’, ‘C’ and

‘E’, with the ‘Closest’ selection methods and the ODTLI and OST flight ordering

methods.

Figure 4.13: Total distance with ‘Closest’ selection method.

The distance basically measures the number of flights which could not be assigned
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Figure 4.14: Mean distance with ‘Closest’ selection method.

to sorting stations on their preferred pier. It may be observed that the total distance

decreases as the number of sorting stations is increased, since more sorting stations

become available on the preferred piers. Even after all flights have been assigned

to sorting stations, the distances can be positive, since the availability of a sorting

station at the terminal does not imply that it is on the correct pier for the flight.

As expected, since Algorithm ‘A’ attempts to assign to the same pier first and

considers applying a service time reduction before considering other piers, Algorithm

‘A’ performs better than Algorithms ‘C’ and ‘E’ in terms of distance when there is a

shortage of piers. For similar reasons, Algorithm ‘C’ performs better than Algorithm

‘E’. However, Algorithm ‘E’ assigned more flights to sorting stations, and unassigned

flights are here assumed to have no distance, this also needs to be taken into account.

Figure 4.14 shows the mean distance per assigned flight necessary to avoid the problem

of unassigned flights, and it can clearly be seen that Algorithm ‘A’ attained the lower

mean distance.

It is possible to conclude from this that for the cases where Algorithm ‘C’ achieves

at least the same number of assignments as Algorithm ‘E’, Algorithm ‘C’ would be the

preferable choice since the distances would be lower. On the other hand, by the time

that Algorithm ‘A’ had achieved maximal assignment (which is usually considered to

be the primary objective), there would be no distance benefit in using Algorithm ‘A’

rather than Algorithm ‘C’.
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4.4.4 Fair Workload with Reduction in Service

As a measure of fairness we considered the deviation of the total usage times of the

sorting stations from the mean usage time. This corresponds to the fairness objective

which was expressed by Formula (3.12).

Figure 4.15 compares the results for the ‘Closest’, FIFO and LIFO sorting station

selection methods and the ODTLI and OST flight ordering methods, showing the

total seconds deviation from the mean usage across all baggage sorting stations, using

sorting station assignment Algorithm ‘E’.

Figure 4.15: Fair workload and Algorithm ‘E’ (no restriction).

The FIFO selection method may be considered to take fairness into account, only

re-using a sorting station once all of the others have been used, and indeed it con-

sistently performs better than LIFO and ‘Closest’ for both flight ordering methods.

However, although the FIFO selection method will cycle through the sorting sta-

tions, giving a more equitable number of flights to each sorting station, long-haul and

short-haul flights are treated identically. This can result in differences in the total

service times. These differences will depend upon how many of the long-haul flight

assignments coincide so that they are assigned to the same service stations. As the

number of sorting stations is increased a cyclic-type behaviour may be observed.

Conversely, the LIFO selection method will continue to re-use the same sorting

stations where possible, thus increasing the number of sorting stations will further
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increase the inequity, as can be observed in Figure 4.15.

The ‘Closest’ method takes no explicit account of equity or sorting station re-use

frequency, and instead will tend to follow the flight assignment. It was observed that

this results in an inequity almost as great as for the LIFO method.

4.4.5 Order Between Times

Previous experiments show that depending on the number of BSSs it is OST or

ODTLI which provide better solutions. Some questions arise such as ‘Is it possi-

ble to quickly generate more solutions which present some differences with respect

to each others?’ and ‘Does an ordering exist which would produce a better solution

throughout the range of BSSs under consideration?’. For this propose a general repre-

sentation of the ‘Flight Ordering Methods’ was presented in Section 4.2.1 and named

OBT, which uses a parameter α to control the behaviour, 0 ≤ α ≤ 1, as discussed in

Section 4.2.1. As the number of BSSs changes the constructive algorithms’ behaviour

can be seen in Figure 4.16 for different values of α within the range of BSSs. The

empirical results show that higher values of α perform better for a very lower number

of BSSs (not shown in figure). This corroborates the results for ODT which performs

better than or equal to OST for up to 15 BSSs, as OBT with α = 1 is equivalent to

ODT. It has been observed that OBT with α = 0.5 performs better than OST for up

to 15 BSSs and it is overall better than ODT for the region of low number of BSSs,

shown in Figure 4.17.

OBT for α = 0.5 performs better than ODT (and OST) for very low number of

BSSs, Figures 4.17, 4.18 and 4.19, which also applies overall to the range of BSSs

considered in respect of ODT.

The Baggage Sorting Station Assignment Algorithm ‘A’ (highly restrictive) con-

sistently provides the lowest assignments, as has been previously shown and can also

be seen in Figures 4.17.

OBT provides many more ways of obtaining different solutions by means of chang-

ing the α parameter in comparison to using only OST, ODT and ODTLI. OBT can

also be extended to Order Between Times Lookahead and Improvement (OBTLI) in

the same way as ODT was extended to create ODTLI. This may increase further the

number of solutions which may be useful when many initial solutions are required for

a population base optimisation algorithm instead of using random solutions. The so-

lutions generated by OBT and OBTLI may not differ greatly when compared against
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a Baggage Sorting Station Assignment Algorithms ‘E’.

b Baggage Sorting Station Assignment Algorithms ‘C’.

Figure 4.16: Assignments for 194 flights with reduction of service, a 3-pier topology,
LIFO and OBT.

Figure 4.17: Assignments for 194 flights with reduction of service, a 3-pier topology,
LIFO, OBT and algorithms ‘A’, ‘C’ and ‘E’.
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Figure 4.18: OBT assignments for NATS data sets of 194 flights with service reduc-
tion, a 3-pier topology and LIFO for a reduced range of number of BSSs.

Figure 4.19: OBT and ODTLI assignments for NATS data sets of 194 flights with
service reduction of service, a 3-pier topology and LIFO for a reduced range of number
of BSSs.

each other so if one of OBT and OBTLI is to be used to generate multiple solutions,

either should be used but not both. The fact that the time required to generate a

single solution is also very small adds to the advantages already presented.
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4.4.6 Combined Objectives

The Branch and Bound (B&B) algorithm belongs to the group of exact algorithms

used to find an optimal solution in discrete and combinatorial optimisation, and is

composed of two parts. The first splits the domain of solutions into smaller domains,

so called branching. The second calculates the upper and lower bounds of the problem,

so called bound, which is used to discard large subsets of uninteresting solutions which

in turn helps to speed the search for the optimal solution. This is one of the algorithms

used in commercial optimisation software packages, such as CPLEX and Gurobi.

Although this is inherently a multi-objective problem, the importance of ensuring

maximal assignment of flights to sorting stations (top priority) and the relative impor-

tance of keeping reasonable buffer times (second priority) allow these objectives to be

combined into a single compound objective (Equation 4.2) with weights W1, W2 and

W3 chosen to implement these priorities. So that for a solution quality assessment,

the solutions obtained when applying the constructive algorithms can be compared

with the Upper Bound and the best solutions obtained from applying CPLEX to the

Integer Linear Programming (ILP) representation of the Airport Baggage Sorting

Station Problem (ABSSAP) presented in Chapter 3.

f = W1∗
N∑

i=1

M∑

j=1

Pj∑

p=1

yijp+W2∗
M∑

j=1

Pj∑

p=1

rjp+W3∗
M∑

j=1

Pj∑

p=1

(

Cjp ∗
N∑

i=1

(yijp ∗ dij)

)

(4.2)

Considering that the first objective corresponds to the most important objective,

its improvement should be greater than any detrimental effect it may have on the

other objectives, which indicates that increasing the assignments at least by 1 should

be better than the combined effect of both the maximum reduction in service (Bmax =

1800 sec for long-haul flights) and being assigned to the most distant sorting station

(Dmax = 9 for the 3-pier topology); |W1|∗1 > |W2|∗Bmax+|W3|∗Dmax, similarly with

the second objective and third which gives |W2| ∗Bmax > |W3| ∗Dmax. An objective

which increment decreases the quality of a solution needs to have a negative weight

(minimisation of the objective) as it happens with the weights for the second and third

objectives here. Giving a W3 = −1 then |W2| ∗ 1800 > 1 ∗ 9 so |W2| > 1∗9
1800 = 0.005,

and a value of W2 = −0.008 was used which gives a W1 > 0.008 ∗ 1800+ 1 ∗ 9 = 23.4.

However, an extra assignment may also have a detrimental effect on the rest of the

assignments, i.e. reduce the service time of the next flight assigned to the same BSS,

which means that the value of W1 may have to be further increased. The value of

W1 was determined by running initial experiments using different values, from 15 to

100, for the data set of 16th December 2009, 3-pier topology, a fixed W2 of -0.008
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and W3 of -1. A value of W1 = 90 appeared to give an appropriate balance between

the objectives and was adopted. Summarising the weights used are the same as those

presented in Ascó et al (2012) with the values of W1 = 90, W2 = −0.008 and W3 = −1

respectively.

Figure 4.20 shows the percentage improvement in fitness of the results for different

constructive algorithms and the solution obtained from CPLEX for a one hour run,

applied to different numbers of BSSs with respect to the worst constructive solution

(fw) and the Upper Bound obtained by CPLEX (fUB), Equation 4.3. The percentage

of the gap to the Upper Bound which is achieved is shown, so 100% improvement

corresponds to solutions which reach the upper bound for their specific case, whereas

0% corresponds to no improvement over the worst (constructed) solution. The appli-

cation of the constructive algorithms to the solutions obtained required no more than

9 milliseconds per solution whereas CPLEX was run for 1 hour and the best solution

it found was utilised.

%Fitness =
f − fw

fUB − fw
∗ 100 (4.3)

Figure 4.20: Constructive Algorithms and CPLEX percentage improvement in fitness
for 219 flights and a 3-pier topology.

Where the situation to the problem is more difficult, which corresponds to the

219 flights obtained from the BAA’s website, three areas can be clearly identified

with different comparative fitness between the constructive algorithms and CPLEX.

For a very low number of BSSs (N ≪ LMAP ) the solutions obtained by CPLEX

are better than all of the solutions obtained by applying the different constructive
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Figure 4.21: CPLEX percentage improvement in fitness for 219 flights and a 3-pier
topology.

algorithms which are under consideration, whereas for higher numbers of BSSs up

to a point between the LMAP and the UMAP the constructive algorithms provide

fitter solutions (for a mere 9 milliseconds run as against 1 hour for CPLEX solutions).

Finally for numbers of BSSs near to the UMAP both methods provide solutions with

similar or equal fitness. Some factors contributing to the results are firstly that both

approaches depend on previous selections, e.g. the selection of a BSS for assignment to

a flight may affect possible assignments to the same BSS later, so affecting the solution

finally built (an example of this is the improvement of ODT by use of ODTLI), and

similarly in CPLEX the solution currently reached will have some bearing on the

new solutions, as will be seen next. Secondly, the problem studied has symmetries in

regard to the BSSs, for example swapping all assignments between two BSS on the

same pier on the same side does not change the fitness. Thirdly, a very low number

of BSSs implies that many flights cannot be serviced by a BSS and the number of

symmetries are significantly reduced, so the selection of flights for servicing is very

important, since this will make a significance contribution to the objective function,

so preference to assign flights with smaller service period will imply achieving more

assignments than when flights with higher service period are assigned. As the number

of BSSs increases the gaps between assignments will also increase, so allowing more

assignments, but this will only assign flights with small service periods, since the

required gap is smaller, so permitting their assignment. However, a flight with larger

service period will require larger gaps, so the number of BSSs will need to increase
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sufficiently to allow these assignments. Fourthly, once the number of BSSs is sufficient

to assign all the flights without the need for a reduction in service time (N ≥ UMAP)

the effect of the last objective (distance) is not as important as the other two, but

there are more opportunities for reduction since more BSSs would be available. In

the case of CPLEX the increase of the number of BSSs also implies an increase in

the search space, so number of potential solution to investigate for the same time,

such that if the initial solution is not sufficiently good much of the search will be

spent around that solution before managing to escape to solution of higher quality.

In summation, therefore, CPLEX manages to find a good initial solution for a very

low number of BSSs, which assigns flights with smaller service times preferentially.

As the number of BSSs increases the gaps increase, but are not large enough to

permit assignment of flights with large service times (long-haul flights). Thus losing

the potential to increase further the assignments but the gaps will eventually become

large enough, so long-haul flights can be assigned within those gaps, thus increasing

the assignments.

Figure 4.21 shows the effect on the fitness of the final solution obtained by CPLEX

when using different constructive solutions as initial solution. The solutions with

higher fitness between all of the constructive algorithms considered at each number

of BSSs is labelled as ‘Best’, whereas the less fit constructive solutions are labelled

‘Worst’ (0%). In Figures 4.21, 4.23 and 4.24 the naming of the results uses the word

‘Ini’ preceded by a word which specifies the type of constructive solution fed as initial

solution to CPLEX. The word ‘Best’ is used when the best feasible solution is used

from all the constructive algorithms run, ‘Good’ is used when a feasible solution

from within the bests but not the best, ‘Worse’ is used when the worse feasible

solution is used from all the constructive algorithms run and ‘No’ is used when no

initial solution was provided to CPLEX. These results show that seeding CPLEX

with good solutions obtained from applying the constructive algorithms improves the

final solution obtained by CPLEX for when no initial solution is provided (‘No Ini

CPLEX’), with the exception of when the worst generated solution is fed, which may

not always help CPLEX to find better solutions, as can be seen for 102 BSSs in

Figure 4.21. For the two areas where CPLEX performs well when compared to the

constructive algorithms considered, the use of these constructive solutions does not

seem to help CPLEX to find better solutions, indeed the solutions are slightly worse

in some cases.

The difference between the solutions provided by the constructive algorithms and

CPLEX are not so considerable when the constructive algorithms are used in simpler
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Figure 4.22: Percentage improvement in fitness for 194 flights and a 3-pier topology
for Constructive Algorithms and CPLEX solutions.

Figure 4.23: Percentage improvement in fitness for 194 flights and a 3-pier topology
for CPLEX solutions for different initial solutions.

problems, as may be seen from the BAA’s website data for 1st March 2010 and NATS

data sets, Figures 4.22 and 4.23. However, it may be seen that the best solution

obtained from applying the constructive algorithms has a fitness very close to that of

the solution found by CPLEX.

It is also interesting to look at the effect of using the different solutions obtained

from the constructive algorithms when reaching the final solution as CPLEX pro-
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gresses in the search, as can be seen in Figure 4.24. From the empirical results the

Figure 4.24: Progress fitness for 83 BSSs (LMAP) and 219 flights by CPLEX.

initial solution fed to CPLEX appears to make a difference by allowing CPLEX to

reach better solutions earlier. For some numbers of BSSs, the fitness achieved by

the final solution is also improved. It can also be seen that some of the constructive

solutions are very good, and that CPLEX does not manage to improve on them,

as shown in Figures 4.21 and 4.24 when CPLEX is fed with the ‘Best’ and a good

solution obtained by applying the constructive algorithms to the problem.

Evolutionary Algorithms (EAs) are population based algorithms, part of the group

of metaheuristics which use the solutions within a population to guide the search to

the optimal solution(s). More details about some of these are presented in Chapter

5. For the propose of assessing the quality of the constructive solutions obtained here

new experiments were designed and executed for an implementation of the Canonical

Genetic Algorithm (CGA) which uses the Evolutionary Computation Java library

(ECJ) (Java-based Evolutionary Computation research system, reviewed in Wilson

et al (2004)). The operators used are 1-point random crossover and random mutation.

An integer encoding of the ABSSAP was also used with randomly generated initial

solutions and a population size of 1,000. The average fitness from the solutions

obtained by the Genetic Algorithm (GA) implemented together with the constructive

algorithm solution fitness is shown in Figures 4.25 and 4.26. The fitness for the GA

in such figures corresponds to the average fitness for all of the best solutions found

amongst the thirty instances run. These results show that the constructive algorithms

used generally provided better solutions than the CGA throughout all of the ranges
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of numbers of BSSs.

Figure 4.25: Fitness for 194 flights, a 3-pier topology and 48 stands for CGA and
some constructive algorithms.

Figure 4.26: Fitness for 163 flights, a 3-pier topology and 48 stands for CGA and
some constructive algorithms.

Furthermore, other experiments were run to identify whether the use of these

constructive solutions as part of the initial population for the CGA may help the

algorithm to reach fitter solutions. The CGA was run thirty times for each quantity

of BSSs for a population size of 1,000, using both an initial population of random

solutions and the best solutions obtained from applying the constructive algorithm
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2,000 times. The ‘Best’ refers to the best solution amongst all of those generated

using the constructive algorithms described in this chapter. The results show that

this approach is not detrimental to the algorithm, and in some cases it is even seen

to help the CGA to reach fitter solutions, as shown for number of BSSs lower than

17 BSSs in Figures 4.27 and 4.28.

Figure 4.27: Fitness for 194 flights, a 3-pier topology and 48 stands for some con-
structive algorithms and CGA for different initial population.

Figure 4.28: Fitness for 163 flights, a 3-pier topology and 48 stands for some con-
structive algorithms and CGA for different initial populations.

The solutions provided by these constructive algorithms are also used in Chapter

5 to feed initially some metaheuristics which are shown to help finding fitter solutions.
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4.5 Conclusions

A framework for constructive algorithms has been presented and has been used to

generate some specific constructive algorithms tailored to take account of the airport

topology and the position of the assignments. The framework can easily be applied

to generate more algorithms where other considerations may be taken into account

such as other grouping strategies. For example, the grouping could be based on the

type of aircraft (large, medium and small), or the preference of the airline and ground

handling contractors, an example of which is presented in Chapter 7 for the AGAP.

When looking at the constructive algorithms, where the grouping considered is

by pier, it may be observed that the behaviour of the assignment methods (flight

ordering, sorting station assignment algorithm and selection method) depends upon

the relationship between the number of flights and the number of sorting stations.

The different methods have different effects and can prefer different objectives.

It was observed that a data set with a higher flight density (the number of flights

requiring service at any time of day) but fewer flights, was more problematic than

one with more flights but a lower density. As expected, the flight density was more

important than the total number of flights when determining the number of BSSs

required throughout the day. The number of BSSs at which the performance of the

algorithms changes was identified in this chapter and it has been noted that these

depend upon the distribution of the flights over time.

It has also been noted that the choice of whether or not to allow reductions

in service time can affect the relative efficacy of the algorithms. In particular, if

reductions in service time are to be permitted, then it may be better to select an

algorithm which will not minimise the gap sizes, since these are then less likely to be

available to other flights after service time reductions have been applied.

When the above observations are considered together, these effects show that the

appropriate algorithm for use depends not merely upon the objective under consid-

eration but also upon the problem characteristics and the relative flight density in

relation to the number of sorting stations available.

It has also been seen that the solutions generated are by themselves good when

compared to other approaches such as B&B (CPLEX) and the CGA with an overall

objective, which does represent a good and realistic preference order between the

different objectives. The algorithms have been seen to generate solutions very quickly

which, when used as initial solutions in other algorithms, have been seen in many cases

to help the search by starting the search from a promising region of the search space.

The aim of this research was not to identify a perfect constructive algorithm which
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would meet all objectives, but to gain insights into the differing behaviour of the

algorithms, particularly when service time reductions are permitted. This research

uses these insights in the following chapters to generate better initial solutions for

use with perturbative algorithms (particularly Evolutionary Algorithms and Tabu

Search, as used in Chapters 5 and 7), improving the quality of the solutions which

can be generated within very limited search times. The ability to quickly generate

a variety of solutions which have different trade-offs between the objectives has also

been particularly useful.



Chapter 5

Evolutionary Algorithms for the

Airport Baggage Sorting Station

This chapter investigates metaheuristic approaches to the Airport Baggage Sorting

Station Assignment Problem (ABSSAP) (introduced in Chapter 3), defines some of

the components of these approaches, and carries out a rigorous analysis of their design

and parameters. References to the relevant literature are included for completeness.

This chapter begins with an overview of the Genetic Algorithms (GAs), followed

by the description of a new metaheuristic, and a description of several selectors and

operators follows there after. Other metaheuristics are then introduced, which will

be used in the subsequent section where the proposed approach is rigorously analysed

and comparisons made. The final section of this chapter draws some conclusions.

5.1 Overview

A problem is composed of some constraints which must be strictly complied with

(known as hard constraints) and other constraints where compliance is desirable

(called soft constraints or objectives), see Chapter 3. In order to solve a problem

it is necessary to find solutions which comply with both the hard constraints and

most or all of the soft constraints. An indication of the compliance with the soft

constraints is provided by an evaluation function, sometimes referred to as the fitness

function, the results of which give an indication as to the quality or fitness of the

solutions.

GAs are one of the methodologies belonging to the population-based model of

Evolutionary Algorithms (EAs) presented in Section 2.7.1, based on the Darwin and

Wallace (1858) theory of natural selection and Mendelian genetics (Mendel (1865)),

92
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which are recognised as the foundation of evolutionary biology. GAs have been used

to solve a wide range of airport problems, such as the Airport Gate Assignment

Problem (AGAP) in Lim et al (2005), the scheduling of arriving aircraft in Cheng

et al (1999), Xiangwei et al (2010) and Hansen (2004), the scheduling of departing

aircraft in Bolender (2000) and Capr̀ı and Ignaccolo (2004), the aircraft taxiing in

Gotteland and Durand (2003), and the ABSSAP in Ascó et al (2012).

Various different ABSSAP objectives have to be considered, such as maximising

assignments, ensuring full service time and allocating preferential positions (Section

3.3.4). Some of these objectives are in obvious conflict (reducing service times in order

to service an additional flight for example), thus preventing simultaneous optimisation

of each objective.

An encoding of the parameter set for the ABSSAP, presented in Chapter 3, for

the Canonical Genetic Algorithm (CGA) was implemented using the Evolutionary

Computation Java library (ECJ), used in Section 4.4.6, where a chromosome is com-

posed of the indexes of the baggage sorting station (BSS) assigned to each flight, the

flights being ordered by their base service starting time, as shown in Figure 5.1.

Figure 5.1: An example of encoding for a 3 BSSs and 8 flights.

A different implementation of the CGA, which uses the representation presented

in Chapter 3, was also used together with the operators presented in Section 5.4.

Initial studies showed that good initial solutions greatly improve the speed, conver-

gence and quality of the final solutions to the limited time ranges under consideration,

as shown in Section 5.7.

The following sections begin by describing the proposed EA with its operators

and selectors, followed by a study of the problem, using a fitness function as a single

compound objective which represents realistic priorities.



5.2. STEADY STATE EVOLUTIONARY ALGORITHM 94

5.2 Steady State Evolutionary Algorithm

A Steady State GA maintains the majority of the population between iterations, only

replacing a few individuals at each iteration, a term initially introduced in Syswerda

(1989). In the Steady State Evolutionary Algorithm (SSEA) presented here, Algo-

rithm 2, the next population is obtained by applying the population selection opera-

tor, some of which are introduced in Section 5.3-1, to the current population. One of

the operators is applied to an individual selected from the population by the member

selector (Section 5.3-2), this last step being called an iteration and being repeated ℓ

times, known as a generation. The newly obtained individuals are added to the pop-

ulation so constituting the current population. This is repeated until the termination

condition is reached. In contrast to the CGA, parents and offspring typically coexist

such that the parents are also considered for the next generation, which theoretically

increases the algorithm’s ability to retain information for exploitation in subsequent

generations. This creates additional selective pressure towards information already

contained in the population. However, keeping the parents does not provide the

search with new information since it does not sample new genotypes. The approach

may incorporate an aging strategy to ensure that the parents eventually leave the

population, thus increasing the chance of offspring contributing to building the next

population. Schwefel and Rudolph (1995) incorporated an age by defining a maxi-

mum duration of life, so any individual surviving longer than this will be worse than

any other which has not reached such limit or has less fitness.

The SSEA is an instance of the Evolutionary Strategies (ESs) which can be de-

scribed as (µ+λ)-ES, 1 ≤ λ, where λ may be greater than µ. In the case of the SSEA

where the operators used provide only one offspring, when applied, then λ = ℓ. A

Steady State GA considering parents in the next generation was presented in Whit-

ley and Kauth (1988); Whitley (1989), which differs from a CGA in that it uses a

serial recombination wherein an offspring replaces the lowest ranking individual in

the population rather than the parent. Whereas the SSEA may use some or all of

the parents in the next generation since the next population in a generation is built

by applying the replacement strategy to the current population, which is composed

of both the offspring and the parents, so the chance of a parent taking part in the

next generation is determined by the replacement strategy used. The SSEA makes

use of two selectors, Sp which selects the population which is to take part in the next

generation, and Sm which selects the member(s) from within an iteration to which

the chosen operator is applied. Likewise, Sokolov and Whitley (2005) follows similar
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Algorithm 2: SSEA

Input: Initial population P0

Input: Number of iterations in a generation ℓ ∈ Z
+, ℓ > 0

Input: Operators; Oj∀j ∈ [1 . . . R]
Input: Replacement strategies, Sp

Input: Parent(s) selector, Sm

1 begin
// Initialise

2 P ← P0; // set initialise population

3 repeat
4 P ← Sp(P ); // apply replacement strategy to get the new population

5 Pt ← ∅; // empty population of children

6 i = 0; // initialise the iterations

// Run generation

7 repeat
8 Select an operator, Ok;
9 Q← Sm(P,Ok); // select parents

10 Q← Ok(Q); // generate children solutions by applying operator

11 Pt ← Pt ∪Q; // add children solutions

12 i = i+ 1; // increment iteration

13 until i = ℓ or Termination Condition;
14 P ← P ∪ Pt; // merge parents with children solutions

15 until Termination Condition;

16 return P ;

17 end

steps when generating their GA, the main difference to the SSEA is the use of ℓ, two

selection processes and the operators being any combination of operators, Figure 5.2.

The initial population may also be composed of fewer solutions than the preferred

population size. The size should eventually be reached as the new generated solutions

are merged with the parent solutions and then the replacement strategy is applied.

For ℓ = µ (the population size) the SSEA algorithm is closer to a CGA but still

differs from the CGA in that:

1. The new population to which the replacement strategy is applied is of size µ+λ

whereas for the CGA it is λ. Thus not only do parents and offspring coexist in

the new population, but also those previous solutions which may not have been

selected for the generation of offspring in the current generation.

2. A generation is composed of ℓ iterations in which parents are selected and

operators applied to generate the offspring, which together with the previous

population, will compose the current population. ℓ does not need to be fixed,

and it can be changed as the search progresses, thus providing an additional
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Figure 5.2: SSEA flow chart.

mechanism to control the sampling.

3. Whereas in the CGA reproduction produces two offspring, in the SSEA the

reproduction may produce either one or two offspring.

4. In the CGA up to two operators may be applied, namely crossover and mutation.

The SSEA does not put any restriction on the operator, so operators may be

applied one per iteration or a set of operators in an iteration, as described in

the following sections. An operator may be defined which applies a set of sub-

operators sequentially to the offspring of the previous operator based on some

criterion, such as the probability of a sub-operator being selected. An example

of this is where two operators are used one with a probability of 1, so it is

always used, and a second operator a probability of being used of 0.1. The
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first offspring is always obtained by applying the first operator to the parents

from the population, given its probability of 1. This offspring may be further

modified by the second operator in order to obtain the final offspring, otherwise

where the second operator is not applied the first offspring becomes the final

one. If both probabilities are lower than 1 there is a chance of the parent also

becomes the final offspring.

5. Each operator has a probability associated with it which represents the chance

to be selected, where the overall probability of selecting any of the operators

totals 1. In this SSEA any of the operators may be selected at each iteration

based on their probabilities.

The implementation of the SSEA algorithm makes use of the problem represen-

tation presented in Chapter 3.

5.3 Selectors

The selector methods are responsible for selecting solutions within a population of

solutions. Two types of selector are used throughout this thesis which are:

1. Replacement Strategies: The replacement strategies generate the new pop-

ulation from the parents and offspring which is used in the following generation.

The replacement strategies are used in both CGA and SSEA. They distribute

the chance of individuals taking part in the next generation. Normally, the

fitter the solution, the more chance it has of being selected for participation in

the following generation. A comprehensive analysis of selection schemes used

in EAs can be found in Blickle and Thiele (1996).

2. Parent Selectors: The member selectors distribute the chance of a given

solution within the population taking part in generating new offspring within a

generation. Normally, the fitter the solution, the more chance there is of being

selected to produce new offspring.

Increase in diversity certainly corresponds to broadening the exploration of the

search space, and finding an adjustable balance between exploration and exploitation

is the key, March (1991); Levinthal and March (1993). Exploration and exploitation

should not be constrained to specific parts of the process, such as only in the early

stages of the search, but also be taken into account throughout all the evolutionary

process based on the characteristics at each stage.
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The selection of solutions for participation in a population is one of the mech-

anisms for managing diversity, which together with the operators, helps to improve

the direction of the search within the domain of solutions into the regions containing

solutions with a higher potential.

Some of the terms used are defined below which are based in Baker (1987) and

Blickle and Thiele (1996).

• Selective pressure is the probability of selecting the best individual compared

to the average probability of selection of all the individuals.

• Bias is the absolute difference between an individual’s normalised fitness and

its expected probability of reproduction.

• Spread is the range of possible values for the number of offspring of an indi-

vidual.

Some common selection approaches are presented in Section 2.7.1. There follows

an overview of the new approaches proposed.

5.3.1 Stochastic Universal Modified Sampling

The Stochastic Universal Sampling (SUS) may not be appropriate when the order

of magnitude of the fitness under study is greater than the difference in the fitness

values among individuals, such are the cases studied in this thesis. So Stochastic

Universal Modified Sampling (SUMS) is defined in such a way as to provide a greater

selection pressure, as shown in Algorithm 3. SUMS provides more selection pressure

than SUS and some bias.

A characteristic of the SUMS is that the offsetting of all of the fitness by a constant

does not affect those sections of the roulette wheel occupied by each solution as this

is not the case for the SUS. For example in the SUS if there are three solutions

and their fitness are offset by a very large amount the section occupied by each of

the solutions will be close to 1
3 of the whole roulette wheel. In the case of three

solutions (Algorithm 3) with fitness f1 = 1003, f2 = 1002 and f3 = 1001 then the

offset F = f3 − (f2 − f3) = 1001 − (1002 − 1001) = 1000 and
∑λ

j=1(fj − F ) = 6 so

the roulette wheel sections for each solution are p1 = 3
6 = 1

2 , p2 = p1 +
2
6 = 5

6 and

p3 = p1 + p2 +
1
6 = 1.

In both versions a single spin of the roulette wheel is made which provides both a

starting point and the first individual. The following selections are made by advancing

the point in equal step sizes and selecting the individual occupying the section upon
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Algorithm 3: Stochastic Universal Modified Sampling

Input: Population P of size λ

Input: Desired population size of µ, 0 < µ < λ

begin
// Calculate the two lowest fitness

Fmin =∞;
Fmin−1 =∞;
for i = 1→ λ do

if Fmin > fi then
Fmin−1 = Fmin;
Fmin = fi;

end
else if Fmin > fi then

Fmin−1 = fi;
end

end
F = Fmin − (Fmin−1 − Fmin);

// Assign a section to each solution

p0 = 0;
for i = 1→ λ do

pi =
∑i

j=1
(fj−F )

∑
λ
j=1

(fj−F )
;

end

// Initialise

P ′ ← ∅; // empty next population

r0 = rnd
[

0, 1
µ

)

; // identify first point

i = 1; // set to first solution in P

// Select members from the population based on their roulette wheel

section

for j = 1→ µ do

r = (j−1)
µ

+ r0;

for i→ λ do
if pi > r then

P ′ ← i; // add selected solution to next population

break;

end

end

end

return P ′;

end

which the point fell: the process is repeated until all the required individuals have

been selected. Some individuals may not be selected where their occupied section is

sufficiently small, depending on the starting point.

Both versions of sampling ensure that the observed selection frequencies of each

individual are in line with the expected frequencies. So if there is an individual
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occupying 6.5% of the wheel and it is necessary to select 100 individuals, it is expected,

on average, that that individual will be selected between six and seven times. Whereas

both SUS and SUMS guarantees this, Roulette Wheel Selection does not make such

a guarantee.

5.3.2 Index Selector (ISxy)

This new selector makes sure that no more than a fixed maximum number of fitness

duplicates are selected for the next population. This selector requires an integer which

corresponds to the maximum number of solutions with the same fitness to keep (x,

number of solutions) and a base selector (y, the base selector), one of the selectors

presented above, e.g. the Index Selector with the Elitist Selector and a group size of

1 would be represented as IS1ES.

The Index Selector is only useful as a replacement strategy, given that as a parent

selector it merely selects a very reduced number of solutions.

5.3.3 Range Index Selector (RISxyz)

Empirical results show that when the previous selector ISxy was applied to the AB-

SSAP different groups with small differences were generated, which also represented

a reduction in diversity, and which diversity may be increased further by changing

the ISxy from a unique fitness in each group to a range of fitness per group. This

requires a knowledge of group size (x, the maximum number of solutions to be kept

within a range), a base selector (y, the base selector), and an indication of the fitness

range (z), e.g. the Range Index Selector with Elitist Selector (y = ES), a group size

of 1 (x = 1) and fitness range of 50 (z = 50) which may be represented as RIS1ES50.

For RIS1ES50 and a maximisation problem, if the group having a fitness range from

1000 to 1050 already contains a solution with a fitness of 1000, and a new solution

is to be added to the population with a fitness of 1010 then the solution of a 1000 is

removed and the new solution is introduced into the group in its place, given that x

= 1. The selection within a group uses a greedy approach.

Many of the selection approaches presented are not suitable for when only one

individual (solution) is required, as is the case for the Index Selection (ISxy) and

Range Index Selector (RISxyz), given that in those cases they are equivalent to the

underlying selection approach, e.g. the Index Selection with Elitist Selection (ISxES)

is the same as the Elitist Selection (ES). Such is the case for the mutation operators

(Section 5.4.1) where the Parent Selectors have to select only one parent solution.

Similarly, some of the classic selection methods such as SUS, Roulette Wheel Member
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Selection (RWMS) and Tournament Member Selection (TMS) are equivalent when

just one parent solution has to be selected.

5.4 Operators

Two main groups of operators are reviewed in the following sections: Mutation and

Crossover. Both of these are described below.

5.4.1 Mutation

The operators introduced here are local search (guided mutation) operators which

generate feasible solutions.

All flights which have not been assigned to a sorting station are assigned to the

‘dummy’ sorting station. Some operators can switch flights between the real and

dummy sorting stations.

When a sorting station is to be selected, the roulette wheel selection method is

used where every sorting station has the same probability of being selected.

When a time has to be determined (for instance for the start or end of a time

range) a uniform random variable is used so that any time within the time range of

the flights under consideration has an equal probability of being chosen.

Dummy Single Exchange Mutation Operator

The Dummy Single Exchange Mutation Operator (DSEMO) is equivalent to the

‘Apron Exchange Move’ used by Ding et al (2004) and Ding et al (2005). A solution

is selected from the population by the member selector (Sm) then a new solution is

built by moving a flight from the ‘dummy’ sorting station from this solution to a

randomly selected sorting station, potentially moving another flight back onto the

‘dummy’ sorting station when it can no longer be fitted in.

This operator may increase the number of assignments where the operation does

not move a flight back onto the ‘dummy’ sorting station.

It is necessary that some flights be unassigned in the parent solution. So when

full assignment has been attained for the given number of BSSs this operator clearly

will not provide a new solution.

Dummy Single Move Mutation Operator

In the Dummy Single Move Mutation Operator (DSMMO) a random unallocated

flight and initial target sorting station are chosen and an attempt is made to assign
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the flight to the selected sorting station. If the assignment cannot be achieved then

the next sorting station is selected and the process is repeated until the flight is

assigned or no more sorting stations are available, in which case the flight is returned

to the ‘dummy’ sorting station. When maximum assignments have been attained for

the given number of sorting stations, then this operator obviously will not provide a

new solution.

Multi Exchange Mutation Operators

A set of sorting stations is randomly selected within a random time period, trs to tre.

All assignments where the base service durations are entirely within the time period

are then moved to the next sorting station in the set, as shown in Figure 5.3, provided

they fit. This operation is repeated from one sorting station in the set to the next,

until they have all been covered. Flights which cannot be moved are added to the set

of flights which will be considered for assignment at the end, potentially reducing the

number of flights which otherwise would not be assigned. These operators generalise

the ‘Interval Exchange Move’ which was presented by Ding et al (2005), and cannot

increase the number of assignments.

Figure 5.3: Example of multi exchange between 3 BSSs.

Three variants have been developed:

1. Multi Exchange between a Fixed Number of Resources (MEFNRn): The num-

ber of sorting stations between which flights are exchanged is fixed at n, where

2 ≤ n ≤ N .

2. Multi Exchange between a Random Number of Resources (MERNRn): The

number of sorting stations between which flights are exchanged is randomly

chosen each time, between 2 and n, where 2 < n ≤ N .

3. Multi Exchange between a Range Random Number of Resources (MERRNRxy):
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The number of sorting stations between which flights are exchanged is randomly

chosen each time, between x and y, where 2 ≤ x < y ≤ N .

Multi Exchange By Pier Mutation Operators

These operators are a specialised case of the Multi Exchange Mutation Operators,

where the sorting station selection element ensures that no two consecutive sorting

stations in the set are on the same pier. The idea is to improve the distance objective

by encouraging the movement of assignments between piers.

Once again, this operator cannot increase the number of assignments. As for the

Multi Exchange Mutation Operators, three variants have been created:

1. Multi Exchange By Pier between a Fixed Number of Resources (MEBPFNRn):

The number of sorting stations to exchange flights between is fixed at n, where

2 ≤ n ≤ N .

2. Multi Exchange By Pier between a Random Number of Resources (MEBPRNRn):

The number of sorting stations between which the flights are exchanged is ran-

domly chosen each time, between 2 and n, where 2 < n ≤ N .

3. Multi Exchange By Pier between a Range Random Number of Resources (MEBPRRNRxy):

The number of sorting stations between which the flights are exchanged is ran-

domly chosen each time, between x and y, where 2 ≤ x < y ≤ N .

Range Multi Exchange Mutation Operators

These are the same as the Multi Exchange Mutation Operators, however they add

an additional feasibility recovery step when flights cannot be moved. Flights which

cannot be moved are added to the set of flights which will be considered for assignment

to the next sorting station, potentially reducing the number of flights which will not

be assigned in the end. Finally, flights which have still not been moved are again

considered for assignment to the other sorting stations in the set, except the last one,

once again potentially reducing the number of flights which otherwise would not be

assigned, in the same way as the Multi Exchange Mutation Operators, Figure 5.4.

Once again, this operator cannot increase the number of assignments. Three

variants have been developed:

1. Range Multi Exchange between Fixed Number of Resources (RMEFNRn): The

number of sorting stations between which to exchange flights is fixed at n, where

2 ≤ n ≤ N .
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Figure 5.4: Example of range multi exchange between 3 BSSs.

2. Range Multi Exchange between Random Number of Resources (RMERNRn):

The number of sorting stations between which to exchange flights is randomly

chosen each time, between 2 and n, where 2 < n ≤ N .

3. Range Multi Exchange between Range Random Number of Resources (RMERRNRxy):

The number of sorting stations between which to exchange flights is randomly

chosen each time, between x and y, where 2 ≤ x < y ≤ N .

Range Multi Exchange By Pier Mutation Operators

These are a specialised version of the Range Multi Exchange Mutation Operators,

which ensure that consecutive sorting stations in the set are not on the same pier,

to encourage the movement of flights between piers, so potentially improving the

distance objective. These operators cannot increase the number of assignments. As

for the Multi Exchange Mutation Operators, three variants have been created: Range

Multi Exchange By Pier between Fixed Number of Resources (RMEBPFNRn) and

with Random Number of Resources Range Multi Exchange By Pier between Random

Number of Resources (RMEBPRNRn) and Range Multi Exchange By Pier between

Range Random Number of Resources (RMEBPRNRxy).

The Multi Exchange Mutation Operators may also be extended by using multiple

points in time instead of two points in time (a time range). However, this will also

increase the complexity and time required to execute the operations, and equates to

several executions of the current implementation and was not therefore investigated.

5.4.2 Crossover

The crossover operators involve the generation of new solutions from multiple par-

ents. Each parent will be chosen using the Parent Selectors (Sm) and multiple child

solutions may be generated in each case.
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2-point Crossover

In the 2-point crossover (C2P), two points in time are randomly selected within

the time range of the flights, to generate a time window. All flight assignments

which lie within this time period, for all of the sorting stations in each solution, are

exchanged between the parent solutions, as shown in Figure 5.5. The flight timings

are identical across all solutions, except that the flights in the exchanged region may

overlap flights which are not exchanged in the case of some sorting stations. Such

overlapping flights in the exchange region are reassigned to other sorting stations

where possible, otherwise they are assigned to the dummy sorting station (i.e. are

unassigned).

Figure 5.5: 2-point crossover.

Whereas in the classic crossover a chromosome is divided into 3 sections, here the

chromosome is divided into 3 ∗N sections which correspond to 3 sections per sorting

station.

1-point Crossover

The 1-point crossover (C1P) is a specific case of the above 2-point crossover, where

the window extends to the end time of the solution, Figure 5.6.

In my representation, 1-point crossover is a special case of 2-point crossover (n = 2,

number of points), where the second point corresponds to the end of the chromosome.

This can be better understood if the chromosome is represented as a loop, Figure 5.7.
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Figure 5.6: 1-point crossover.

a 2-point cross over b 1-point cross over

Figure 5.7: Crossover representations where ‘s’ refers to the start and ‘e’ to the end.

n-point Crossover

The n-point crossover (CnP) may use n + 1 solutions from the population, where n

refers to the number of cuts. The full time range is divided into n + 1 sections and

multiple new solutions are obtained by merging the consecutive sections between the

different parents, as shown in Figure 5.8. This recombination may leave some flights

unassigned, which may be assigned directly to the dummy sorting station (fictitious

sorting station) or it could be attempted to repair the solution by assigning them

to any available sorting station. An extension to 2-point crossover is the n-point

crossover which divides the chromosome into (n + 1) ∗ N which equates to n + 1

sections per sorting station.

Using n-point crossover with n + 1 parents can provide up to (n + 1)! different

children. Eiben et al (1994), Eiben et al (1995), Tsutsui and Jain (1998), and Eiben
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Figure 5.8: All children for 2-point crossover and 3 parents.

(2003) studied the effect of using multiple parents and multiple crossover points and

observed that the increase in the success rate is not merely a consequence of using

multiple crossover points, leading to the conclusion that using more parents does

increase GA performance.

1-point Serial Crossover

The 1-point serial crossover (SC1P) is a different implementation of a crossover oper-

ator and may be simpler to understand by representing the problem as a continuous

list of BSSs where the crossover cut(s) is in this continuous list, instead of within

each BSS as seen in the previously presented crossover operators. The 1-point serial

crossover operator is illustrated in Figure 5.9 for the ABSSAP. When the cut(s) has

to be determined, a comparison of both parents is made to find the first and last dif-

ferences in their assignments within the representation, which may be used to restrict

the selection of the cut(s). This implementation of a crossover operator is closer to

that which is commonly presented in the literature as a 1-point crossover operator,

and it is different to that previously introduced in this section.
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Figure 5.9: 1-point serial crossover.

Figure 5.10 shows a simple example where the same parent solutions are used

in a 1-point crossover and a 1-point serial crossover side by side. When considering

two parents with full assignment, the cut in time (trs) in the 1-point crossover (C1P)

breaks the assigned flights into two groups, each of which contains the same flights

for both parents, whereas this is not the case for 1-point serial crossover (SC1P), as

shown in Figure 5.10, where flight ‘3’ is on a different side of the cut in the parents.

This means that in the case of SC1P it is required to check the assignments after

the cut (trs) from the second parent to make sure that they have not been already

assigned to the first side (from the first parent). Flight ‘3’ was already assigned to

the offspring from the first parent and therefore cannot again be assigned from the

second parent, as shown in Figure 5.10. So 1-point crossover is simpler to implement

than 1-point serial crossover.

Furthermore, this implementation could be easily extended to n points.

Holland (1975) argued that, based on the schema theorem to minimise schema

disruption, 2-point serial crossover is better than 1-point serial crossover. Although

our results show that in some instances 1-point serial crossover provides better solu-

tions than 2-point serial crossover, in general 2-point serial crossover performs best

overall. Nevertheless, the schemata theorem is based on a binary representation of the

chromosome and binary operators, which differ from the representation and operators

presented here, so its application is of limited interest.
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Figure 5.10: Example of 1-point crossover and 1-point serial crossover.

5.4.3 Combination of Operators

Based on how the operator is selected, the types which are of interest are described

in the following subsections. It is noted that the operators could be used in complex

ways by combining these different types with different parameters.

Probability Single Multi Operator

The Probability Single Multi Operator (PSMO) is composed of several sub-operators

(which are described in Section 5.4), each one of which has a specified probability of

being used for the creation of new population members, Algorithm 4. The combined

probabilities across all operators must add up to 1.

As an example, consider a PSMO operator which uses the operators C1P (with

a 0.1 probability of being selected) and Multi Exchange between a Fixed Number of

3 Resources (MEFNR3) (with a 0.90 probability of being selected), which may be

represented as PSMO(C1P:10+MEFRN3:90). Given that the total probability must

amount to 1, it is not necessary to specify the probability for the last sub-operator,

so the representation may also be PSMO(C1P:10+MEFRN3).
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Algorithm 4: Probability Single Multi Operator.

Input: Member Selector Sm

Input: Population of solutions P
Input: Operators; Ok ∀ k ∈ [1 . . . R]
Input: Probability for operators pk, 0 < pk ≤ 1∀k ∈ [1 . . . R] and

∑R
k=1 pk = 1

begin
// Initialise

P0 ← ∅; // empty list of children

r = rnd[0 . . . 1);
k = 1; // initialise sub-operator index to first operation

p = p1;

// Select operator

while k < R and r > p do
k = k + 1; // next operator

p = p+ pk;

end
Q← Sm(P,Ok); // get parent solutions for operator Ok

P0 ← Ok(Q); // build children by applying operator to parents

return P0; // return the obtained children

end

Sequential Operator

Considering the way the CGA operates, where a crossover operator may be applied

to the parents with a high probability and its children may be further modified by

applying a mutation operator, the operators may be extended by defining a new

operator composed of multiple sub-operators, which are applied sequentially with a

given probability (0 < p ≤ 1), Algorithm 5. This new operator is called the Sequential

Operator (SO) herein.

As an example, consider the operators C1P with a selection probability of 1 and

the MEFNR3 with a probability of selection of 0.01, which may be represented as

SO(C1P:100,MEFNR3:1), where a 1-point crossover is always applied to generate the

intermediate children for which there is a small probability of 0.01 for application of

the MEFNR3 operator in order to generate the final children solutions.

5.5 Tabu Search

In this section the Tabu Search (TS) heuristic is introduced which is later used with

the previously introduced operators and the results are compared with those from

the SSEA and the CGA in Section 5.7. It uses the problem representation presented
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Algorithm 5: Sequential Operator.

Input: Member Selector Sm

Input: Population of solutions P
Input: Operators; Ok ∀ k ∈ [1 . . . R]
Input: Probability for each operator pk, 0 < pk ≤ 1 ∀ k ∈ [1 . . . R]
begin

// Initialise

P0 ← Sm(P,O); // select parents based on operators

// Build children

for k = 1→ R do
r = rnd[0 . . . 1);
if r < pk then

Q← P0; // previous children as parent solutions

P0 ← Ok(Q); // applying operator to the parent solutions

end
i← k + 1; // next sub-operator

end

return P0; // return the obtained children

end

in Chapter 3.

A TS is a metaheuristic which employs a local search which uses a solution to

generate a neighbourhood of solutions. The solutions from the neighbourhood are

checked in the hope of finding an improved solution. A local search may get stuck

within areas of the search space where the neighbourhood is equally fit, so memory

structures which describe the neighbourhood visited are incorporated to avoid us-

ing that previously-visited solutions/regions again, Glover (1989), Glover (1990) and

Burke and Kendall (2005).

The implementation of the TS used in this chapter generated the neighbourhood

(also called local walk) using the mutation operators described in Section 5.4.1, which

constitute the list of candidate solutions. The fittest non-tabu solution in the can-

didate list is adopted as new current solution and is also added to the tabu list, as

shown in Algorithm 6. Once the tabu list is full, one solution is removed from the

tabu list to leave space for the new tabu solution.

5.6 General Experiments Information

A summary of some of the typical values for the different parameters used in the

following experiments is shown in Table 5.1.
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Algorithm 6: Tabu Search

Input: Initial solution Qini

Input: Maximum size of the tabu list ℓt ∈ Z
+, ℓt > 0

Input: Maximum local walk ℓl ∈ Z
+, ℓl > 0

Input: Operators; O1 : p1, O2 : p2, · · · , OR : pR with 0 < pj ≤ 1∀j ∈ [1 . . . R] and
∑R

j=1 pj = 1
Input: Fitness function f(Q)

1 begin
// Overall initialisation

2 Qc ← Qini; // set current solution to initial solution

3 Qb ← Qini; // set best solution to initial solution

4 Pt ← ∅; // empty tabu list

// Search space of solutions

5 repeat
// Local search initialise

6 Qnext ← φ; // set to no next solution

7 walk iteration← 0; // initialise iteration counter

// Local search - ℓl times

8 while walk iteration < ℓl and no Termination Condition do
9 walk iteration← walk iteration+ 1;

10 Select randomly an operator, Ok; // use roulette wheel

11 Q← Ok(Qc); // apply operator

// Update if not tabu

12 if Q 6∈ Pt and Qnext = φ or f(Q) > f(Qnext) then
13 Qnext ← Q;
14 end

15 end

16 if Qnext 6= φ then
17 Qc ← Qnext; // set next solution as the current solution

// Update the best

18 if f(Qc) > f(Qb) then
19 Qb ← Qc; // update best solution

20 end

// Add to tabu list

21 if |Pt| = ℓt then
22 Pt ← Pt\Q0; // remove earliest

23 end
24 Pt ← Pt ∪Qc; // add current to tabu list

25 end

26 until Termination Condition;

27 return Qb;

28 end

Parameter Value Comments

Tournament size 2 Tournament selection

Trails / Runs 30 Number of runs per experiment

Significance level 0.05 Mann-Whitney U tests were carried out to ascertain the sta-
tistical significance.

Fitness weights W1 = 90
W2 = −0.008
W3 = −1

For the calculation of the weights see Section 4.4.6

Table 5.1: Default parameter values.



5.7. RESULTS 113

Initial solutions were obtained by running the constructive algorithms presented

in Chapter 4.

Unless it is mentioned the parameters presented here refer to all the following

experiments for the ABSSAP.

5.7 Results

The described algorithms are applied to the ABSSAP and their results are compared

and analysed in this section for both the data sets obtained from British Airports

Authority (BAA)’s website and those provided by NATS which are also used in

Chapter 4. A fitness function composed of the weighted sum of the different objectives

was used to guide the search within the algorithms.

Initial results from experiments executed for BAA’s website data sets show that

the SSEA presented in this chapter provides better solutions than those obtained

by CPLEX and Gurobi for the running times considered. These experiments also

highlighted the need to have access to a large quantity of Random Access Memory

(RAM) given how memory hungry both commercial solvers CPLEX and Gurobi are,

making it necessary to run them on a 64bit machine to be able to use more RAM.

Whereas the SSEA was run on both 32bit and 64bit Operating Systems (OSs), as

the original results were obtained using a 32bit Windows XP with 1.93GB RAM and

2.99GHz Inter 2 Duo CPU. An initial run of duration 1 hour was executed followed

by another one of 24 hours to identify if the exact method could find the optimum

and compare the fittest solution obtained with those obtained by the SSEA. Also the

best upper bound obtained from each run were used to help to get an idea of the

quality of the solutions obtained from the different algorithms used in the following

sections. All the Gurobi parameters used were the default ones with the exception

of the time, which was limited to 1 hour and 24 hours in the two initial runs, and

the parameters values used for CPLEX are presented in Table 5.2. Multiple runs

were executed to enable the SSEA to take account of the random characteristics of

the algorithm with a PSMO composed of 0.2 MEFNR3, 0.2 Range Multi Exchange

between Fixed Number of 2 Resources (RMEFNR2), 0.15 C1P and 0.45 DSEMO

(only one of the sub-operators will be used at each iteration) with ES replacement

strategy, and the results are shown in Figures 5.11.

The SSEA improves quickly upon the initial solutions used, reaching solutions

fitter than those obtained by Gurobi. Further initial experiments were conducted
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Parameter Value Comments

NodeFileInd 3 Node file on disk and compressed

WorkMem 128 Memory in MB

NodeSel 1 Best-bound search

VarSel 3 Strong branching

TiLim 3600 and 86400 Time in seconds to end the run

Table 5.2: CPLEX none default parameter values used.

Figure 5.11: Progress for a 3-pier topology, 48 stands, 78 BSSs and 219 flights
(H1T091216).

between the SSEA, CGA and TS with the parameters values in Table 5.3. The

results for these experiments, which are presented in Figure 5.12, show also that

SSEA performs better than the other metaheuristics considered.

Parameters
Algorithm Name Value Name Value Name Value

SSEA
Population size 10 and 30 Replacement

Strategy
ES Operator MEFNR3

Tournament size 5

CGA Population size 10 and 30 Replacement
Strategy

ES Operator 0.99 C1P
and 0.1
MEFNR3

TS Walk size 10 Tabu list size 30 Operator MEFNR3

Table 5.3: Parameter values used with 30 runs per experiment.

Figure 5.12: Progress for a 3-pier topology, 48 stands, 78 BSSs for 219 flights
(H1T091216) and different heuristics.
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In general the results obtained show improvements in fitness, as shown in Figure

5.13. Better results were obtained when other Replacement Strategies were used,

which are presented in the following sections.

Figure 5.13: Average fitness for a 4-pier topology, 46 stands for 194 flights
(H1T091216) and different heuristics.

These results show the potential of the SSEA for obtaining good solutions even

on short runs.

In the next sections the experiments and their results are presented which were

obtained when studying the different parameters part of the SSEA.

5.7.1 Initial Solutions

Experiments were initially conducted to evaluate the influence of the initial popu-

lation of solutions in reaching better solutions when using good solutions as initial

population. The latter have been obtained by applying the constructive algorithms

presented in Chapter 4, to a data set of 219 flights. The operator used is a PSMO

composed of the following sub-operators, each with its own probability of being used;

0.2 for RMEFNRn, 0.2 for Dual Exchange Mutation Operator (DEMO), 0.15 for

1-point crossover and 0.45 for DSEMO, for a population size of 10 solutions for pop-

ulation based algorithms and 78 BSSs (lower than the Lower Maximum Assignment

Point (LMAP)). Given that for 78 BSSs full assignment is not possible then use of

the DSEMO should help reaching other areas of the search space, thereby improving

the solutions obtained. The solutions which do not have maximum assignment may

further increase the number of assignments by applying the DSEMO.

Maximum assignment is achieved where no buffer time is considered, and no
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restriction is applied as to where the flights may be assigned when ordering the flights

by departure time: this is used to generate some of the constructive solutions. The

progress of the search is used here for the different initial solutions being considered,

in order to illustrate their contribution in reaching better solutions, as shown in

Figure 5.14. This provides a view of the Steady State Evolutionary Algorithm with

Figure 5.14: Progress in fitness of solutions when run with and without a initial
random population for SSEA1, a 3-pier topology, 78 BSSs, 48 stands and 219 flights
(H1T091216).

ℓ = 1 (SSEA1) behaviour, and shows that the algorithm managed to improve on

the already good solutions provided as initial solutions, but not as much as when the

initial solutions are of lower fitness. This is as expected given that there is more leeway

to improve on the solutions, but the final fitness of the best solutions is still less than

those obtained when good solutions are used. Furthermore the solver Gurobi was run

for one hour, Figure 5.15, when no initial solution was provided and when an initial

constructive solution (the best of those used for the SSEA1) was used, which showed

Gurobi took over 2 minutes to find a feasible initial solution, when no initial solution

is provided. Then quickly improved on this, but still does not manage to reach a

fitness such as those reached when a good constructive initial solution is provided,

as is the case with the SSEA1 but at a lower rate. The final solution fitness in both

Figures shows that SSEA1 provides fitter (better) solutions than those provided by

Gurobi, with SSEA1 also improving on Gurobi when no good initial solutions were

used.

In summation, the benefits of using good initial solutions in the SSEA are more

apparent at short running times, as the differences between fitness decrease as the

running time increases, but fitter overall solutions are found when the algorithm uses
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Figure 5.15: Progress in fitness of solutions when run with and without initial random
population for Gurobi, a 3-pier topology, 78 BSSs, 48 stands and 219 flights for 1 hour.

fit good initial solutions. This was also noted when using commercial optimisation

applications such as Gurobi and CPLEX.

The mutation operators, with the exception of DSEMO, cannot increase the num-

ber of assignments, therefore solutions which do not have maximum assignment re-

strict the search space, and waste iterations which could otherwise be used to widen

the search of the space of solutions potentially improving on those already found

solutions. This can be particularly detrimental if none of the solutions provided are

sufficiently fit, i.e. solutions with at least one unassigned flight which is assigned in

the optimal solution, as such flights cannot be assigned by these operators. There-

fore, when the initial solutions do not have maximum flight assignment for the given

number of BSSs, the search is restricted to flights already assigned which means low

fitness. In these cases, the use of another operator which can increase the number of

assignments, such as the DSEMO should be used, at least until one or many of the

solutions in the population reach maximum flight assignment.

Table 5.4 shows the statistical fitness significance of the best solution obtained by

the SSEA1 with a population size of 30 and single operator MEFNR3, when using an

initial population composed of good solutions obtained from applying the constructive

algorithms studied in Chapter 4. It is compared with those solutions obtained when

the initial population is composed of the 30 fittest solutions of 200 randomly generated

solutions (random constructive algorithm) for the data set. The empirical results show

that the SSEA with good initial solutions provides in most of the instances considered

here a superior final best solution (statistical fitness significance < 0.005) than when
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Data set 3-pier

13 14 15 16 17 18 19 20 21
194 flights 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

H1T091216 22 23 24 25 26 27 28 29
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 14 15 16 17 18 19 20 21
163 flights 0.0000 0.0686 0.7746 0.0000 0.0000 0.0000 0.1127 0.0000 0.8741

H1T100301 22 23 24 25 26 27 28 29
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Data set 4-pier

13 14 15 16 17 18 19 20 21
194 flights 0.0000 0.0000 0.0000 0.0000 0.0000 0.1275 0.0000 0.0000 0.0000

H1T091216 22 23 24 25 26 27 28 29
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 14 15 16 17 18 19 20 21
163 flights 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000

H1T100301 22 23 24 25 26 27 28 29
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.4: Statistical fitness significance for a significance level of 0.05, SSEA1 with
fit initial solutions and initial random solutions for the data sets provided by NATS.

the initial population is composed of random solutions.

The algorithms in the study in the following sections use the initial solutions

obtained by applying the constructive algorithms which were used in this section and

introduced in Chapter 4.

5.7.2 Population Size

The effect of the population size (µ) on the results of several of the operators presented

in 5.4 was explored. The parameters used in the experiments are:

1. The data sets used relates to those provided by NATS both for 16th December

2009 (H1T091216) and 1st March 2010 (H1T100301), with both a 3-pier and a

4-pier topologies.

2. Number of BSSs of N ∈ [13 . . . 29].

3. The operators used are: C1P, C2P, DSEMO, Multi Exchange By Pier between a

Fixed Number of 3 Resources (MEBPFNR3), MEFNR3 and RMEFNR2. The

number of resources (BSSs) considered for the mutation operators used were

determined by a comparison of the initial results obtained from runs with a

population size of 30 for each of the mutation operators.

4. The number of iterations per generation ℓ was initially set to 1.
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5. The replacement strategies used are: ES, SUMS, Index Selection with Elitist

Selection and a group size of 1 (IS1ES), and Index Selection with Stochastic

Universal Modified Sampling and group size of 1 (IS1SUMS).

6. Population sizes of µ ∈ {1, 5, 10, 15, 30, 50, 100, 200, 500, 800, 1000, 2000} were

considered. The algorithm was initially run for population sizes of 15, 30, 50,

100, 200, 500 and 1000. In some instances the best values appeared at the end

of the ranges, which encouraged to extend the range of population sizes studied

accordingly to the best population size for each of the operators types and a

summary of the results is shown in Table 5.5 (the results are shown in Appendix

B.2.1 and B.2.2).

Regarding the Multi Exchange Operators, only extra population sizes of 1, 5, 10

were studied, given that these operators are guided mutation operators based

on chance, and provided better results for the lowest population sizes initially

considered. Nevertheless, given the poor results obtained when using the TS, as

shown in Figure 5.12, it was anticipated that the size of the population should

be higher than 1.

In the case of the DSEMO, the results indicated that a high population size

was preference, such that other appropriate population sizes were then consid-

ered. The population sizes of 500 and 1000 gave the best results, which was an

indication that population sizes between those sizes may potentially be statis-

tically even better. The population sizes studied were therefore extended to a

population size of 800, since a population size of 1000 solutions was statistically

significantly fitter in more cases than when using 500 as the population size.

It was observed that the crossover operators performed better for high popula-

tion sizes as expected, being consistently better for the largest population sizes

evaluated. Given that a higher population size means a higher running time, a

further population size of only 2000 was considered for the crossover operators.

If there are too few solutions in a population and given that crossover used the

information in the parent solutions, then the operator explores only a small part

of the search space. On the other hand, if there are too many chromosomes, the

algorithm may slow down, as some operations are applied to the full population.

The summary of overall results, when compared using the Mann-Whitney test,

are shown in Table 5.5, where light grey is used for the values close to those that

provided the overall statistically significantly fitter solutions which are presented in

black. For a full list of the summary tables for each result see Appendix B.2.1.



5.7. RESULTS 120

Operator
194 flights (16th December 2009)

3-pier topology 4-pier topology
Population Size Selector Population Size Selector

C1P 2000 IS1SUMS, IS1ES 2000 IS1SUMS, IS1ES

C2P 2000 IS1ES, IS1SUMS 2000 IS1SUMS, IS1ES

DSEMO 800, 1000 IS1ES 500, 800, 1000 IS1ES

MEBPFNR3 10, 5 IS1ES 5, 15 IS1ES

MEFNR3 1, 5 IS1ES 10 IS1ES

RMEFNR2 15 IS1ES 10, 15 IS1ES

Operator
163 flights (1st March 2010)

3-pier topology 4-pier topology
Population Size Selector Population Size Selector

C1P 2000 IS1SUMS, IS1ES 2000 IS1ES, IS1SUMS

C2P 2000 IS1ES, IS1SUMS 2000 IS1ES, IS1SUMS

DSEMO 1000, 800 IS1ES 500 IS1ES

MEBPFNR3 5, 10 IS1ES 5, 10 IS1ES

MEFNR3 10 IS1ES 10, 5 IS1ES

RMEFNR2 15 IS1ES 15, 10 IS1ES

Table 5.5: Summary of the results of the Mann-Whitney test for significance level of
0.05, different population sizes and replacement strategies.

With respect to the mutation operators, which are based on a local search, the

solutions reached are highly dependent on the individual parent solution, which gen-

erally represent small populations. Given that mutation operators require only a

parent solution, the population size could range from one solution to many. As the

smaller population size would consist of one solution, it may be considered that a

population size of one should be the best approach from a mutation operator point

of view. This relies strongly on the quality of the solution in reaching either a better

or optimal solution, as the fitness does not normally give a clear indication of the

solution quality with respect to better solutions in its neighbourhood, which the em-

pirical results corroborate. A solution with lower fitness may be closer to a better or

optimal solution for the moves performed by the operators used, thus improving the

chances that these latter are reached.

In general crossover operators are expected to benefit from large population sizes,

which is corroborated by my results. Given that the crossover operators take advan-

tage of good differences between the parent solutions, then the minimum population

size required is two solutions. This is the main factor benefitting crossover oper-

ators since a large population size normally results in greater diversity within the

population of solutions. Nevertheless, a higher population size also means a slower

algorithm execution time, given that some operations are executed for all members

of the population, the processing time of which depends on the number of solutions

in the population. Additionally, too much diversity may result in a loss of solutions



5.7. RESULTS 121

with good building blocks, and have a corresponding detrimental effect on the overall

search, the loss of better solutions, or the opportunity to reach these better or optimal

solutions.

As observed, the population size and operator have an important impact on the

algorithm’s performance, but it is not the only factor to consider, as the diversity

may also be increased or decreased by changing the selection approaches used, i.e.

Replacement Strategies (Section 1) and the Parent Selector (Section 2). Elitist Sam-

pling (ES, Section 2.7.1) reduces the diversity, as it keeps the solutions with higher

fitness, which tends in turn to concentrate the solutions around those with fewer dif-

ferences but increases the pressure, whereas Stochastic Universal Modified Sampling

(SUMS, Section 5.3.1) increases the chance of solutions with lower fitness taking part

in the population of solutions so increasing the diversity. To reduce the ES potential

detrimental effect the Index Selector (ISxy, Section 5.3.2) was designed, implemented

and run, the empirical results of which show a better performance than the underling

Replacement Strategies used, such as ES and SUMS.

Population Size for when Combined Operators are used

Where different operators have a preference for different population sizes, these re-

sults may be taken into account when combining operators in order to improve the

performance. So when the operator is selected from a pool of operators, randomly for

example, its population size preference should be borne in mind so that the parent(s)

may be selected within the solutions in the population, and within that given pre-

ferred size. This assumes that the solutions are ordered in some way. This approach

allows better solutions obtained by the other operators with larger preferred popula-

tion sizes to enter the population of the current operator, potentially increasing the

diversity, which it could be considered as a type of migration. In this approach only

the preferred population size is used to select the parent(s) for a given operator.

Run time Results for the Different Population Sizes

In this section the y-axis of the graphics is the average execution time for each set

of 30 experiments with a different number of BSSs (the number of BSSs is shown

in the x-axis). Each graph shows the average results for a given operator and data

set, taken from those data sets provided by NATS, different replacement strategies

(ES and IS1ES) and population sizes. The lines within a graphic identify the set

of experiments which were run with the same parameters, i.e. replacement strategy,

population size, operator and data set.
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The average results for the operator DSEMO and the different data sets are pre-

sented in Figure 5.16, which shows that DSEMO requires a more constant running

time up to the vicinity of the Upper Maximum Assignment Point (UMAP), where

the running time drops to zero. On inspection of the initial population of solutions,

it is apparent that the average running time of near zero refers to all the instances

where the initial solutions have full assignment of flights to BSSs. So the DSEMO is

unable to exchange or increase the flight assignments. As the number of BSSs is re-

duced up to LMAP more flights are unassigned in the initial solutions, which in turn

gives the operator more chance to improve the solutions by increasing the number of

assignments, potentially generating solutions with full assignments, so improving on

the fitness. Finally, for numbers of BSSs lower than LMAP, not all the flights can

be assigned to BSSs, so the operator initially has a chance of increasing the number

of assignments for those initial solutions which do not have maximum assignment.

This may also improve on the other objectives by exchanging unassigned flights with

assigned ones, as will be seen in the following sections. This explains the relatively

constant average running time, as the majority of operations are exchanges between

assigned and unassigned flights, whereas the small variations in running time are a

consequence of the number of solutions without maximum assignments in the initial

solution and the speed with which the replacement strategy removes them. The differ-

ences between the various lines in Figure 5.16 correspond to different population sizes,

so a higher population size results in higher running times as may be expected: this

is mainly because other operations are performed on all of the population members,

such as applying the Replacement Strategies and the Member Selector. The differ-

ence between lines for the same population size and different replacement strategies

are an indication of how quickly the replacement strategy manages to remove solu-

tions with low fitness, i.e. those solutions which do not have maximum assignment,

such as those introduced as initial solutions. This is corroborated by the fact that

ES has smaller average running times than IS1ES as expected, since ES provides a

higher search pressure giving less chance for solutions of a lower fitness to generate

new solutions. As expected, data sets with a higher number of flights required longer

running times. These results also corroborate the findings presented in Ascó et al

(2012).

Figure 5.17 shows that the Multi Exchange Mutation Operators have a tendency

to increase the running time as N (number of BSSs) increases, which corresponds to

an increase in the maximum number of flights assignable and the number of initial

solutions which have full assignment. Conversely, RMEFNR2 running time is near
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Figure 5.16: Average run-time for a 4-pier topology, 194 flights (H1T091216), DSEMO
and different population sizes.

constant in most of the instances. RMEFNR2 running time for IS1ES does not appear

to be affected by the number of BSSs, whereas for MEBPFNR3 and MEFNR3 the

running time increases as the number of BSSs increases. Similar results were obtained

for the data set provided by NATS for 1th March 2010 and both 3-pier and 4-pier

topologies.

Figure 5.18 shows a considerable difference in behaviour between C1P and C2P

as the number of BSSs increases, whereas with C1P the speed fluctuates around an

average, and for C2P the speed reduces with minor fluctuations overall according to

the number of BSSs.

The mutation operators considered are much faster than the crossover operators

as is to be expected. C2P and DSEMO present variations depending on the number

of BSSs, whereas C2P expends more time running with very low numbers of BSSs.

This is reduced as the number of BSSs increases up to a point just before the LMAP,

where the required running time is kept at its lowest and most constant, irrespective

of the number of BSSs.

In all of the cases, as the population size increases so the running time also

increases as shown in Figures 5.16, 5.17 and 5.18. Similar results were obtained

for the data set from London Heathrow airport Terminal 1 for 1st March 2010 as can

be seen in Appendix B.2.3.
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a MEBPFNR3.

b MEFNR3.

c RMEFNR2.

Figure 5.17: Average run-time for a 4-pier topology, 194 flights (H1T091216) for some
mutation operators and different population sizes.
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a 1-point crossover (C1P).

b 2-point crossover (C2P).

Figure 5.18: Average run-time for a 4-pier topology, 194 flights (H1T091216),
crossover and different population sizes.

5.7.3 Number of Iterations in a Generation

The SSEA is composed of ℓ iterations per generation which contributes to the overall

performance of the algorithm. Having an idea of the effects and contributions of this

parameter will help in tuning the algorithm. To this end multiple experiments were

conducted using different values of ℓ for the different parameters presented below.

1. The operators used: C1P, C2P, DSEMO, MEBPFNR3, MEFNR3 and RMEFNR2.

2. Population sizes used: 1000 for C1P, C2P and DSEMO and 15 for the Multi
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Exchange Mutation Operators.

3. Replacement strategies used: ES and IS1ES.

4. Initial solutions were obtained by running the constructive algorithms presented

in Chapter 4.

5. Iterations in a generation: ℓ ∈ {1, 5, 10, 15, 20, 30, 100}.

6. The data sets used correspond to those provided by NATS both for H1T091216

and H1T100301, with both a 3-pier and a 4-pier topologies.

The increase of ℓ equates to a reduction in the search pressure given that the

current solutions have more chance of being selected as ℓ increases. Also as the

same population exists for longer (ℓ times) then the diversity is kept for longer as ℓ

increases, e.g. if SSEA is run with a population size of 1000 solutions, for 1000 overall

iterations and ℓ = 1000 then the initial population will be maintained throughout the

whole execution.

These results are similar for the different data sets and topologies considered, an

overall summary of which is presented in Table 5.6 and all of the summary results per

operator can be seen in Appendix B.3. Table 5.6 summarises the values of ℓ, which

provide statistically significantly fitter solutions for the widest range of numbers of

BSSs. The values for ℓ between brackets are the next best values of ℓ.

Operator Selector
194 flights (H1T091216) 163 flights (H1T100301)

Topologies
3-pier 4-pier 3-pier 4-pier

C1P IS1ES 1 1 1 1

C2P IS1ES 1 1 1 1

DSEMO IS1ES 1 1 1 1

MEBPFNR3 IS1ES 1, 15 (20, 30) 5, 15, 30 10, 15 (30) 5, 30 (1, 20)

MEFNR3 IS1ES 15 (5, 20) 10 (30) 20, 100 10, 100 (20)

RMEFNR2 IS1ES 10 (20, 5, 15) 5 (1) 10 (1, 5, 15) 5 (1)

Table 5.6: Overall summary of the best ℓ of each operator, data set and topology
considered and significance level of 0.05.

Table 5.6 shows that C1P, C2P and DSEMO provide statistically significantly

fitter solutions for all data sets considered, topologies and number of BSSs for ℓ = 1,

whereas the remaining operators considered provide statistically significantly fitter

solutions in the range of ℓ from 5 to 30.

Increasing ℓ gives more chance for other solutions to be selected to generate new

solutions, which equates to a reduction in pressure (but not an increase in diversity).
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Given that C1P, C2P and DSEMO have a large population size of 800, 1000 and 2000

solutions respectively, which provides diversity, the same cannot be said about search

pressure, which may be said to explain the preference for low values of ℓ. This also

seems to be corroborated by the results for MEBPFNR3, MEFNR3 and RMEFNR2,

which prefer higher values of ℓ.

5.7.4 Index for ISxES

The initial results obtained from the Index Selector were for a group size of x = 1 for

the Elitist Selector (ISxES, Section 5.3.2) and provided solutions with good fitness.

Other experiments were conducted to see what other values of x could achieve. The

characteristics of the selector indicate that any index must be greater than zero as

a maximum group size of zero does not have any meaning. Moreover there is no

significance in having an index higher than the population size, since the maximum

size of a group cannot be larger than the population size. Taking these factors into

account together with the previous results in which the Multi Exchange operators,

provides statistically significantly fitter solutions for population sizes of 5, 10 and 15.

Some experiments were then designed to examine the effect of changing the index

x ∈ {1, 2, 3, 5, 10, 15} for a population size of 15 for the Multi Exchange Operators.

Given that the preferred population sizes for the crossover operators and DSEMO are

high (around 1000 solutions), a population size of 1000 was used for these operators.

The figures used in this section show the experiment results for different group

maximum sizes when using some of the operators previously presented. The results

are presented as an average percentage improvement on fitness (y-axis), with 0%

referring to the best initial solutions used and 100% referring to the upper bound

obtained when running CPLEX solver with the Integer Linear Programming (ILP)

presented in Chapter 3, for different number of BSSs (x-axis), Equation 5.1. Negative

percentages refer to the best final solutions which have a worse fitness than the best

initial solution.

%Improvement F itness =
f − f Ini

Best

fCPLEX
UB − f Ini

Best

∗ 100 (5.1)

Figures 5.19 and 5.20 show the results for the data set H1T091216, different

operators and a 4-pier topology. Similar results were obtained for a 3-pier topology

and the data set H1T100301, the results of which can be seen in Appendix B.4.

Initial inspection of the way the operator works suggests that an increase in the
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a 1-point crossover (C1P) with a 1000 population size.

b 2-point crossover (C2P) with a 1000 population size.

c DSEMO with 1000 population size.

Figure 5.19: ISxES x ∈ {1, 2, 3, 5, 10, 15} for H1T091216 and a 4-pier topology.
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a MEBPFNR3 with a 15 population size.

b MEFNR3 with a 15 population size.

c RMEFNR2 with a 15 population size.

Figure 5.20: ISxES x ∈ {1, 2, 3, 5, 10, 15}, mutation operators for H1T091216 and a
4-pier topology.
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index should correspond to a reduction in the diversity as the overall number of

different solutions will be reduced since many solutions with the same fitness are

included in each group. As an illustration of this, the case of an operator with a

population size of 10 and index of 10 is explored. As the execution progresses it could

at some time finish with 10 solutions having the same fitness, which corresponds to

a behaviour similar to ES.

The normality test showed that it was not possible to assume that the distributions

are normal, thus it was appropriate to use the Mann-Whitney statistical significance

test for each of the number of BSSs considered and between the different operators and

indexes. A summary of the results for these experiments is shown in Table 5.7, which

shows the maximum group sizes (x) only, which provided statistically significantly

fitter solutions.

Operator
194 flights (H1T091216) 163 flights (H1T100301)

Topologies
3-pier 4-pier 3-pier 4-pier

C1P IS1ES IS1ES IS1ES IS1ES

C2P IS1ES IS1ES IS1ES IS1ES

DSEMO IS1ES IS1ES IS1ES IS1ES

MEBPFNR3 IS1ES and IS2ES IS1ES IS1ES IS1ES and IS2ES

MEFNR3 IS1ES IS2ES IS2ES IS2ES

RMEFNR2 IS1ES IS1ES IS1ES IS1ES

Table 5.7: Overall summary of the Mann-Whitney statistical significance tests for
index in ISxES and significance level of 0.05.

In general IS1ES provided more instances with statistically significantly fitter

solutions than IS2ES, IS3ES, IS5ES, IS10ES and IS15ES. In cases where both IS2ES

and IS1ES perform well, IS2ES was considered better because in the cases where it

provided statistical significantly fitter solutions these corresponded to a high number

of BSSs, which incidentally also corresponds to the range of numbers of BSSs normally

operating at an airport.

5.7.5 Single Operators

Several experiments were run to establish the performance of each of the operators

considered individually when used with the proposed SSEA. Following the previous

results, new experiments were designed to establish an appropriate combination for

use of an operator and replacement strategy. The parameters used in the experiments

are:

1. The data sets used correspond to those provided by NATS both for H1T091216
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and H1T100301, with both a 3-pier and a 4-pier topologies.

2. Number of BSSs of N ∈ [13 . . . 29].

3. Initial solutions were obtained by running the constructive algorithms presented

in Chapter 4, as in previous sections.

4. Operators used: MEBPFNRn, MEFNRn and RMEFNRn with n ∈ [2 . . . 10].

Also MEBPRNRn, MERNRn and RMERNRn with n = 10 were studied.

5. Population sizes used: 30.

6. Iterations in a generation used: ℓ = 1.

7. Replacement strategies used: ES, IS1ES, SUMS and IS1SUMS.

Once again given that the data cannot be said to follow a normal distribution the

Mann-Whitney test was used to establish the statistical significance of the solutions’

fitness. Tables 5.8, 5.9, 5.10, 5.11 and 5.12 show a summary of the replacement strate-

gies for different operators which cannot be said to provide statistically significant

solutions with a lower fitness than the others for a significance level of 0.05. Those

operators providing statistically significantly less fit solutions than any other are not

shown for simplicity and clarity. The selection operators with the highest number

of statistically significantly fitter solutions than other selection operators have been

underlined.

Looking at the results obtained by the operator MEBPFNRn, a pattern can be

seen where the best solution obtained throughout the studied range of BSSs is ob-

tained for a parameter n ∈ [3 . . . 6]. This behaviour, together with the results ob-

tained for the operator Multi Exchange By Pier between a Random Number of 10

Resources (MEBPRNR10), which provides similar results on average to MEBPFNRn,

prompted me to consider an extension of the MEBPRNRn for a range of numbers of

BSSs, instead of a maximum value only as in MEBPRNRn, known as MEBPRRNRxy

presented in Section 5.4.1.

On examining the results for the DSEMO it is apparent that for a number of BSSs

greater or equal to the LMAP (N ≥ LMAP), in some instances the DSEMO still

manages to improve the initial solutions, even where the fittest initial solutions have

assigned all the flights, as can be observed for the 25 BSSs in Figure 5.19c. Simply
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Operator
Number of BSSs

13 14 15 16

MEBPFNR3 IS1ES and IS1SUMS IS1ES and IS1SUMS
MEBPFNR10 IS1ES
MEBPRNR10 IS1ES IS1SUMS IS1SUMS IS1ES and IS1SUMS
MEFNR4 IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR5 IS1ES IS1ES IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR6 IS1ES IS1ES and IS1SUMS IS1ES IS1ES and IS1SUMS
MEFNR7 IS1ES IS1ES IS1ES and IS1SUMS IS1EA and IS1SUMS
MEFNR8 IS1ES and

IS1SUMS
IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES

MEFNR9 IS1SUMS IS1ES and IS1SUMS IS1ES IS1ES
MEFNR10 IS1SUMS IS1SUMS IS1ES and IS1SUMS

Operator
Number of BSSs

17 18 19 20

MEBPFNR3 IS1ES IS1ES and IS1SUMS IS1ES
MEBPFNR4 SUMS
MEBPFNR10 IS1ES
MEBPRNR10 IS1SUMS IS1ES
MEFNR2 IS1ES and IS1SUMS
MEFNR3 IS1ES and

IS1SUMS
IS1ES, IS1SUMS and
SUMS

MEFNR4 IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR5 IS1ES IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR6 IS1ES IS1ES IS1ES IS1ES and IS1SUMS
MEFNR7 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR8 IS1ES and

IS1SUMS
IS1ES and IS1SUMS IS1SUMS

MERNR10 IS1ES
RMEFNR2 IS1ES

Operator
Number of BSSs

21 22 (LMAP) 23 24

MEBPFNR3 IS1ES and
IS1SUMS

SUMS IS1ES

MEBPRNR10 IS1ES SUMS SUMS
MEFNR3 IS1ES and

IS1SUMS
SUMS SUMS

MEFNR4 IS1ES and
IS1SUMS

SUMS

MEFNR5 IS1ES and
IS1SUMS
and SUMS

SUMS

MEFNR6 IS1ES and
IS1SUMS

MEFNR7 IS1ES
MEFNR8 IS1ES
RMEFNR2 IS1ES IS1ES, IS1SUMS and

SUMS
IS1ES and SUMS IS1ES and IS1SUMS

Operator
Number of BSSs

25 26 27 (UMAP) 28

RMEFNR2 IS1ES IS1ES and IS1SUMS IS1ES IS1ES and SUMS

Operator
Number of BSSs

29

RMEFNR2 IS1ES and IS1SUMS

Table 5.8: Summary for SSEA1 with a single operator, 30 population size, 800000
iterations, a 4-pier topology for 194 flights (H1T091216) and a significance level of
0.05.
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Operator
Number of BSSs

13 14 15 16

DSEMO IS1ES and IS1SUMS IS1SUMS
MEBPFNR10 IS1ES IS1ES
MEBPRNR10 IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR4 IS1ES and IS1SUMS
MEFNR5 IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR6 IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR7 IS1ES and IS1SUMS IS1SUMS
MEFNR8 IS1ES IS1ES and IS1SUMS
MEFNR9 IS1SUMS
MEFNR10 IS1ES IS1ES and IS1SUMS

Operator
Number of BSSs

17 18 19 (LMAP) 20

DSEMO IS1SUMS
MEBPFNR3 IS1SUMS IS1SUMS
MEBPFNR6 SUMS
MEBPFNR8 SUMS
MEBPRNR10 IS1ES IS1SUMS and SUMS
MEFNR3 IS1SUMS IS1ES and IS1SUMS
MEFNR4 IS1ES and IS1SUMS IS1ES, IS1SUMS and

SUMS
MEFNR5 IS1SUMS IS1ES, IS1SUMS

and SUMS
IS1ES, IS1SUMS and
SUMS

MEFNR6 IS1ES, IS1SUMS
and SUMS

IS1SUMS

MEFNR7 IS1SUMS IS1ES and IS1SUMS
MEFNR8 IS1SUMS IS1ES
MEFNR9 IS1SUMS
MERNR10 IS1ES

Operator
Number of BSSs

21 22 23 24

MEBPFNR2 IS1ES
MEBPFNR3 IS1ES IS1ES IS1ES IS1ES and SUMS
MEBPFNR4 SUMS
MEBPFNR5 SUMS SUMS
MEBPRNR10 IS1ES
MEFNR2 SUMS
MEFNR3 IS1ES and

IS1SUNS
IS1ES IS1ES and SUMS

MEFNR4 IS1ES, IS1SUMS and
SUMS

IS1ES and
IS1SUMS

IS1SUMS IS1ES, IS1SUMS and
SUMS

MEFNR5 IS1ES and IS1SUMS IS1ES and
IS1SUMS

IS1ES IS1ES, IS1SUMS and
SUMS

MEFNR6 IS1ES and IS1SUMS
MEFNR7 IS1SUMS
RMEFNR2 IS1ES and IS1SUMS
RMEFNR3 IS1ES, IS1SUMS and

SUMS

Table 5.9: Summary for SSEA1 with a single operator 30 population size, 800000
iterations, a 4-pier topology for 163 flights (H1T100301) and a significance level of
0.05.

applying the DSEMO alone provides an improvements up to 25% for a 4-pier topology.

Examining the initial solution provided, some of these solutions do not contain full

assignments, so when the DSEMO operator is applied improvement can be achieved

by means of an increase in assignments, which may in future guide the search in a

different direction, in order to reach better solutions than those initially provided as
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Operator
Number of BSSs

25
(UMAP)

26 27 28

MEBPFNR2 SUMS SUMS
MEBPFNR3 IS1ES IS1ES and SUMS IS1ES, IS1SUMS and

SUMS
IS1ES, and SUMS

MEBPFNR4 SUMS SUMS SUMS
MEBPFNR5 SUMS
MEFNR2 IS1SUMS and SUMS SUMS
MEFNR3 IS1ES IS1ES SUMS
MEFNR4 IS1ES IS1SUMS SUMS
MEFNR5 SUMS
RMEFNR2 IS1ES IS1ES IS1ES and IS1SUMS IS1ES, IS1SUMS

and SUMS
RMEFNR3 IS1ES IS1ES and IS1SUMS IS1ES SUMS

Operator
Number of BSSs

29

MEFNR4 SUMS
RMEFNR2 IS1ES, IS1SUMS and SUMS

Table 5.10: Summary for SSEA1 with a single operator 30 population size, 800000
iterations, a 4-pier topology for 163 flights (H1T100301) and a significance level of
0.05.

initial solutions. This behaviour could be advantageous where this operator is used

in conjunction with others, since it could move the search into other areas of the

solution space which might otherwise not be investigated if this operator were not

used. To evaluate whether this is the case it is necessary to design some experiments

where the capabilities of the DSEMO operator can be seen working together with

other operators which do not depend on the full assignment of flights to BSSs for a

solution, which is explored in Section 5.7.6.

The search is said to be stagnated when the search is confined to a part of the

solution space where there are no fitter solutions than those which have already

been found. Figure 5.21 may also give an indication of this situation, as it presents

the average time at which the last fitter solution was found for both the C1P and

C2P operators and the different replacement strategies considered in the experiments

conducted. The time between the last fitter solution found and that taken to complete

all of the generations gives an idea as to whether the algorithm for a given operator

and replacement strategy has become stagnated. In the case of 1-point and 2-point

crossovers IS1ES preserves the search pressure and diversity better than the other

replacement strategies, as shown in Figure 5.21. It does not merely continue to find

solutions for a longer time, but these solutions are better, as shown previously.

RMEFNR2 on its own also provides fitter solutions than any of the other operators

considered on their own for the normal operational range of BSSs at an airport, i.e.
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Operator
Number of BSSs

13 14 15 16

MEBPFNR3 IS1ES
MEBPFNR10 IS1ES IS1ES IS1ES and IS1SUMS
MEFNR4 IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR5 IS1ES and IS1SUMS IS1SUMS IS1ES
MEFNR6 IS1ES and Is1SUMS IS1ES and IS1SUMS IS1ES
MEFNR7 IS1ES and Is1SUMS IS1ES and IS1SUMS
MEFNR8 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS
MEFNR9 IS1ES and IS1SUMS IS1ES
MEFNR10 IS1ES IS1ES and IS1SUMS IS1ES
RMEFNR2 ES, IS1ES

and
IS1SUMS

RMEFNR3 ES and IS1ES
RMERNR10 ES

Operator
Number of BSSs

17 18 19 20

MEBPFNR3 IS1ES
MEBPFNR5 ES SUMS
MEBPFNR6 ES SUMS
MEBPFNR8 ES
MEBPFNR9 ES
MEBPFNR10 ES and IS1ES
MEBPFNR10 IS1ES
MEFNR4 IS1ES and IS1SUMS
MEFNR5 IS1SUMS
MEFNR6 IS1ES and IS1SUMS
MEFNR7 ES IS1ES and IS1SUMS
MEFNR8 IS1ES and IS1SUMS
MERNR10 SUMS
MEFNR9 ES
RMEFNR2 ES and IS1ES IS1ES IS1ES IS1ES
RMEFNR3 ES and IS1ES
RMEFNR4 ES
RMEFNR5 ES
RMERNR10 ES and IS1ES

Operator
Number of BSSs

21 22 (LMAP) 23 24

RMEFNR2 IS1ES and SUMS IS1ES IS1ES IS1ES and SUMS

Operator
Number of BSSs

25 26 27 (UMAP) 28

MEBPFNR2 IS1ES and IS1SUMS
MEBPFNR3 IS1ES, IS1SUMS and

SUMS
MEBPFNR4 SUMS
MEFNR2 IS1ES, IS1SUMS and

SUMS
MEFNR3 IS1ES, IS1SUMS and

SUMS
MEFNR4 IS1ES, IS1SUMS and

SUMS
MEFNR5 IS1ES, IS1SUMS and

SUMS
RMEFNR2 IS1ES, IS1SUMS

and SUMS
IS1ES and SUMS IS1ES and

SUMS
IS1ES, IS1SUMS and
SUMS

RMEFNR3 IS1ES IS1ES and SUMS

Table 5.11: Summary for SSEA1 with a single operator 30 population size, 800000
iterations, a 3-pier topology for 194 flights (H1T091216) and a significance level of
0.05.
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Operator
Number of BSSs

29

MEBPFNR2 IS1ES, IS1SUMS and SUMS
MEBPFNR3 IS1ES, IS1SUMS and SUMS
MEBPFNR4 SUMS
MEBPFNR5 SUMS
MEBPRNR10 IS1ES and SUMS
MEFNR2 IS1ES, IS1SUMS and SUMS
MEFNR3 IS1SUMS and SUMS
MEFNR4 IS1ES, IS1SUMS and SUMS
MEFNR5 IS1SUMS and SUMS
MEFNR6 SUMS
MERNR10 SUMS
RMEFNR2 IS1ES, IS1SUMS and SUMS
RMEFNR3 IS1ES and SUMS
RMERNR10 SUMS

Table 5.12: Summary for SSEA1 with a single operator 30 population size, 800000
iterations, a 3-pier topology for 194 flights (H1T091216) and a significance level of
0.05.

Figure 5.21: Last solution found for SSEA1, 1-point and 2-point crossovers for 194
flights (H1T091216) and a 3-pier topology for 800,000 total iterations.

N ≥ LMAP , and the data set of H1T091216, as shown in Table 5.8. On the other

hand, for a less dense schedule represented by the data set of H1T100301 this range

is reduced to N ≥ UMAP , as shown in Tables 5.9 and 5.10.

5.7.6 Multiple Operators

In this section, the combination of multiple operators (C1P, C2P, DSEMO, MEBPFNR3,

MEFNR3 and RMEFNR2) with different percentages is studied. A full summary of

the Mann-Whitney statistical significance tests can be seen in Appendix B.5.

The tables used in the following sections are a summary of the statistical signif-

icance tests which show the number of instances between parenthesis and separated

by a comma, where the combined operator cannot be said to be statistically signifi-
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cantly less fit than any of the other operators studied for each of the number of BSSs

grouped into ranges of N < LMAP, LMAP ≤ N < UMAP and UMAP ≤ N , ranges

which are separated by a comma e.g. 7 (1, 3, 3) means that there is 1 instance for

N < LMAP, 3 for LMAP ≤ N < UMAP and 3 for UMAP ≤ N where the operators

cannot be said to be worse than any of the other operators and 7 being the sum of the

values between parenthesis. Furthermore, in the table headers starting with ‘Max.’

between parenthesis the count of numbers of BSSs part of the group is specified.

These groups only depend on the data set, e.g. for the data set of H1T091216 there

are 9 instances of numbers of BSSs (13, 14, 15, 16, 17, 18, 19, 20 and 21 BSSs) where

N < 22 (LMAP), 5 with 22 ≤ N < 27 (UMAP), and 3 with 27 ≥ N . These values

help to give an idea of how often an operator performs well in each group of numbers

of BSSs, where full coverage occurs when the number in the ‘Max.’ for the group is

the same as for the operator the number is shown in bold and underlined, which in

the example currently considered only happens in the last group, where 27 ≤ N .

The following parameters apply to all the experiments conducted in the sections

and its subsections:

1. Data sets used: those provided by NATS both for H1T091216 (194 flights) and

H1T100301 (163 flights), with both a 3-pier and a 4-pier topologies.

2. Initial solutions were obtained by running the constructive algorithms presented

in Chapter 4 as in previous sections.

3. Population sizes used: 30.

4. Iterations in a generation: ℓ = 1 with 800,000 iterations overall.

5. Replacement strategies used: ES, IS1ES, SUMS and IS1SUMS.

Probability Single Multi Operator Composed of Two Operators

The ‘Probability Single Multi Operator’ described in Section 5.4.3 is used. This uses

two of the following operators: MEBPFNR3, MEFNR3, RMEFNR2, DSEMO, C1P

and C2P, with probabilities of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, eg. (0.9,

0.1) and (0.7, 0.3). A summary of the statistical significance is shown in Table 5.13,

for the full statistical results see Appendix B.5.1.

It is apparent that a higher use of multiple exchange mutation operators with a

preference for a crossover or the DSEMO perform better for combined operators as

shown in Table 5.13. The results are better in a combination of two operators than
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H1T091216
Operators Max. (9, 5, 3)

3-pier 4-pier
Selector Significance Selector Significance

RMEFNR2 0.8 + DSEMO 0.2 IS1ES 11 (6, 3, 2)

RMEFNR2 0.9 + C2P 0.1 IS1ES 9 (1, 5, 3)

H1T100301
Operators Max. (6, 6, 5)

3-pier 4-pier
Selector Significance Selector Significance

MEFNR3 0.7 + DSEMO 0.3 IS1ES 7 (6, 0, 1)

MEFNR3 0.9 + MEBPFNR3 0.1 IS1ES 7 (0, 5, 2)

MEBPFNR3 0.9 + C1P 0.1 IS1ES 9 (0, 6, 3)

Table 5.13: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the other for the single multi operator with two base operators
and a significance level of 0.05.

with a single operator for N < LMAP with preference for DSEMO for a very low N ,

which could be regarded as expected since this range of numbers of BSSs is where

the DSEMO performs better. A higher N in both DSEMO and crossover operators

combined with other operators performs better up to LMAP. As N (number of BSSs)

increases, N ≥ LMAP, some single operators perform as well as two combined op-

erators and as N > UMAP and the number of combinations of operators doing well

also increases. This has been seen in the different data sets and topologies studied.

Probability Single Multi Operator Composed of Three Operators

The ‘Probability Single Multi Operator’ described in Section 5.4.3 is used, which is

composed of the base operators MEBPFNR3, MEFNR3, RMEFNR2, DSEMO, C1P

and C2P in the following combinations:

1. MEBPFNR3 0.8 + DSEMO 0.1 + C1P 0.1

2. MEBPFNR3 0.8 + DSEMO 0.1 + C2P 0.1

3. MEFNR3 0.7 + DSEMO 0.2 + C1P 0.1

4. MEFNR3 0.7 + DSEMO 0.2 + C2P 0.1

5. MEFNR3 0.8 + DSEMO 0.1 + C1P 0.1

6. MEFNR3 0.8 + DSEMO 0.1 + C2P 0.1

7. RMEFNR2 0.8 + DSEMO 0.1 + C1P 0.1

8. RMEFNR2 0.8 + DSEMO 0.1 + C2P 0.1

The main reason for using these combinations is based on their individual perfor-

mance which has been noted in previous sections. The mutation operators have been
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seen to perform very well, mainly MEBPFNR3, MEFNR3 and RMEFNR2, where

DSEMO does not perform so well for a high number of BSSs but exhibited some

potential for extending the search further, which may help to find fitter solutions. As

the Multi Exchange Operators are the operators most similar to each other they were

not considered as a third operator, so the crossover operators were used. As previ-

ously noted it may be possible to improve on the performance of combined operators

if the selection of an operator is also based on the search point at the time and it may

be further improved if the solutions considered by the member selector are based on

the operator to be applied, i.e. its preferred population size.

A summary of the statistical significance of the experiments is shown in Table

5.14, and for the full statistical results see Appendix B.5.2.

H1T091216
Operators Max. (9, 5, 3)

3-pier 4-pier
Selector Significance Selector Significance

RMEFNR2 0.8 + DSEMO 0.1 + C1P 0.1 IS1ES 14 (6, 5, 3)

RMEFNR2 0.8 + DSEMO 0.1 + C2P 0.1 IS1ES 11 (3, 5, 3)

H1T100301
Operators Max. (6, 6, 5)

3-pier 4-pier
Selector Significance Selector Significance

MEFNR3 0.7 + DSEMO 0.2 + C2P 0.1 IS1ES 13 (5, 4, 4)

MEBPFNR3 0.8 + DSEMO 0.1 + C1P 0.1 IS1ES 14 (4, 6, 4)

MEBPFNR3 0.8 + DSEMO 0.1 + C2P 0.1 IS1ES 14 (6, 6, 2)

MEFNR3 0.7 + DSEMO 0.2 + C2P 0.1 IS1ES 14 (6, 5, 3)

Table 5.14: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the other probability single multi operator with three operators
for a significance level of 0.05.

For the 3-pier topology: With reference to the Replacement Strategy, the IS1ES

consistently provides better overall results. On the other hand for N ≥ UMAP both

MEFNR3 0.8 + DSEMO 0.1 + C1P 0.1 and RMEFNR2 0.8 + DSEMO 0.1 + C2P 0.1

provide statistically significantly fitter solutions, whereas for lower N (N < UMAP)

then MEFNR3 0.8 + DSEMO 0.1 + C1P 0.1 provides statistically significantly fitter

solutions but not in so many cases as MEFNR3 0.7 + DSEMO 0.2 + C2P 0.1.

For LMAP ≤ N < UMAP MEBPFNR3 0.8 + DSEMO 0.1 + C1P 0.1 provides

statistically significantly fitter solutions, covering the middle range of the numbers of

BSSs better.

For the 4-pier topology: It can be seen that for the real range of BSSs, N ≥

LMAP, MEBPFNR3 0.8 + DSEMO 0.1 + C1P 0.1 provides more cases where it

cannot be said that it is worse than the others, and it covers the whole range from
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LMAP up to UMAP. This will be the preferred combination for the normal running

of a terminal. However, if only N ≥ UMAP is considered then RMEFNR2 would be

the preferred operator as it covers all that range, which no other one does. So for

the static problem where the number of BSSs would normally be within the range of

N ≥ UMAP the RMEFNR2 would be the preferred operator.

A summary of the results for those single operators, and for the 3 and 2 combined

operators which perform well for all of the instances with N ≥ UMAP, and the

combinations which cover a wider range of number of BSSs, are shown in Tables 5.15.

The full summary tables for both data sets and topologies can be seen in Appendix

B.5.3. These combinations perform better overall for the IS1ES. The results show

that the ‘Probability Single Multi Operator’ (Section 5.4.3) performs better than a

single operator in general with the appropriate combination of operators depending

upon the data set and the number of Baggage Sorting Station Selections (BSSSs).

H1T091216
Operators Max. (9, 5, 3)

3-pier 4-pier
IS1ES IS1ES

RMEFNR2 8 (0, 5, 3)
RMEFNR2 0.8 + DSEMO 0.1 + C2P 0.1 7 (1, 3, 3) 8 (3, 2, 3)
RMEFNR2 0.8 + DSEMO 0.2 11 (6, 3, 2)
RMEFNR2 0.9 + C1P 0.1 8 (1, 4, 3) 9 (1, 5, 3)
RMEFNR2 0.9 + C2P 0.1 9 (2, 4, 3)
RMEFNR2 0.9 + DSEMO 0.1 9 (5, 1, 3)

H1T100301
Operators Max. (6, 6, 5)

3-pier 4-pier
IS1ES IS1ES

MEBPFNR3 0.8 + C2P 0.2 5 (0, 0, 5)
MEFNR3 0.8 + C1P 0.2 6 (0, 1, 5)
MEFNR3 0.8 + DSEMO 0.1 + C1P 0.1 9 (2, 3, 4)
MEBPFNR3 0.8 + DSEMO 0.1 + C2P 0.1 10 (4, 5, 1)
MEFNR3 0.9 + C1P 0.1 6 (0, 1, 5) 9 (0, 6, 3)

Table 5.15: Summary of the number of occurrences which cannot be said to be
statistically significantly less fit than the others for a significance level of 0.05.

5.7.7 Trade-off Between Objectives

Figure 5.22 shows the non-dominated solutions obtained by different runs with single

operators for 27 BSSs (UMAP) for the data set H1T091216, which illustrates the

trade-off between distance and reduction in service. It shows that the improvement

in one objective corresponds to a deterioration in the other. Given that the number

of BSSs is the UMAP, then full assignment of all of the flights is achievable without

needing to reduce the service time, which removes the need to plot the first and most
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important objective, the maximisation of the assignment. It should be noted that

the first solution plotted corresponds to the situation where there is no reduction in

service, which is possible given that 27 BSSs correspond to the UMAP.

Figure 5.22: Trade-offs between objectives for 4-pier topology, 194 flights, 27 BSSs
and SUMS for the operators MEBPFNRn, MEBPRNR10, MEFNRn, MERNR10,
RMEFNRn, RMERNR10, C1P, C2P and DSEMO with n ∈ [2 . . . 10].

5.8 Conclusions

The aim of this chapter was to see how well the SSEA performs and to gain more gen-

eral insights into the appropriate operator choices for the SSEA, especially since some

operators (such as crossover) are slower to apply than others, and the appropriate

operator percentages may differ depending upon the situation.

The SSEA, operators and selectors were presented. The empirical results for the

SSEA show that this algorithm performs better than the other algorithms considered,

which suggests a potential application to the problem under consideration as well as

other resource assignment problems, such as the AGAP which is studied in Chapters

7 and 8.

The DSEMO extends the search to other areas of the search space which may

help to improve the solutions, but it is only useful when there are unassigned flights,

e.g. for N < LMAP . In the case of N ≥ LMAP , the DSEMO should only be

used when the solution selected from the population has unassigned flights, most

commonly closer to the start of the search.
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The different Multi Exchange Mutation Operators presented here do not have

the ability to increase the number of assignments so for solutions which do not have

maximum assignment and when maximum assignment is one of the most important

objectives then these operators should not be used on their own. Given that each

of the operators presented has particularities then these could be used to guide the

search by deciding which operators should be considered, based on the stage the

search has reached at each time, e.g. if the population at a specific point in the

search contains only solutions with full assignment then the DSEMO operator should

not be used.

The results presented in this chapter corroborate the importance of choosing a

population size which is not only determined by the problem under consideration

but also by the operator used. The best population sizes for different operators have

been shown to be very different so there is potential for improving the performance

of the algorithm when multiple operators are used by considering, for each particular

operator, a sub-population of the size best suited to the operator.

Given the diverse ways in which the operators work, it is expected that their

combination will further improve the solutions even when a significant difference was

not shown as against use of only a single operator. Furthermore, the combination of

different operators together with an adaptive method of selecting operators seems to

be the most promising approach for future work. This approach could be extended

further to consider the number of iterations in a generation (ℓ), the value of which

could be adjusted as the search progresses, to take account of the particular situation

at each time.

Future work should consider extending the model to examine the capacity of each

BSS, so that a more realistic number of BSSs required to service each flight can

be established. The number of BSSs for each flight may initially be obtained from

historical data giving the number of passengers and baggage. Furthermore, better

results and robustness may be obtained if the number of BSSs required for each flight

is not fixed, but depends on the capacity of the BSSs assigned to each flight and

the expected checked-in baggage load each time. This means that the model not

only evaluates the BSSs assigned to each flight but also when each assignment should

commence, since they may not start at the same time, thus increasing the availability

of the BSSs for use in servicing other flights or absorbing disruption on the day of

operation. It has been assumed that the end of the service time for all the BSS

assignments to the same flight will also be the same, as it is anticipated that the

volume of checked-in baggage increases as it nears the check-in desk closing time and
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the time for flight departures.



Chapter 6

Robustness in Assignment of

Airport Baggage Sorting

Stations

A conflict occurs when two flights originally assigned to the same baggage sorting

station (BSS) have overlapping service times. Conflicts depend on the original as-

signments for the real arrival and departure flight times on the day of operation. It

is therefore desirable to consider potential delays on the day of operation when gen-

erating the original flight assignments to BSSs, such that the final flight assignments

differ little or not at all from the original assignments on the day of operation. The

term robustness is here used to give an indication of the degree to which this has

been achieved.

This chapter investigates some existing approaches and suggests others for gen-

erating assignments which take account of potential perturbations on the day of

operation.

This chapter begins with an overview of the problem, followed by an examination

of one of the most common approaches considered in the literature. A number of

approaches are then introduced which take account of potential conflicts in the over-

all assignment of flights to BSSs (the Airport Baggage Sorting Station Assignment

Problem (ABSSAP)) in Section 6.3. The main objective is to reduce the number

of reassignments which may require to be performed once the schedule is put into

practice on the day of operation. Some experiments are then conducted to determine

the efficiency of these approaches to the ABSSAP in Section 6.4. The final section of

this chapter provides some conclusions.

144



6.1. OVERVIEW 145

6.1 Overview

Flight delays are caused by many factors such as airport security, weather conditions,

unavailability of required resources (mechanical breakdown), delayed propagation,

airport congestion, etc. Figure 6.1 shows the delays caused, reported by the Research

and Innovative Technology Administration (2012).

a Flight Delays by Cause. b Causes of National Aviation System Delays.

Figure 6.1: Flight delays for December 2011 to November 2012, Source: Research and

Innovative Technology Administration (RITA)

Congestion also plays an important part in flight delays, being of two main types,

firstly airspace congestion and secondly airport congestion. Both types of congestion

have a direct or indirect impact on ground delays.

It is currently believed to be more advantageous to move potential airspace con-

gestion back to the gate of the departure airport, given that this makes a significant

reduction in cost and a potentially favourable contribution to safety. The airlines

also incur an extra cost when extending a flight’s air time, such as in the extra fuel

consumed, increase in staff working hours, and potential penalties imposed by the

destination airport for arriving late. There are nevertheless indirect costs, such as

customer satisfaction and impact on other resources, gates and BSSs. Extending the

time in which a flight uses the gate facilities may have a repercussion on the follow-

ing flight assigned to the same gate, and that delay may spread to other gates and

resources such as BSSs. Once the baggage has been loaded into the aircraft hold, the

BSSs assigned to that flight are ready for use on the next flights scheduled, and any

delay on a flight at the gate will not necessarily have repercussions on these. However,

such delays may affect the BSSs assigned to the flight scheduled for that gate next

if such a flight is held waiting for the gate to become free. BSSs will then need to

hold the baggage longer, thus potentially affecting the following assignment in turn.

Holding flights on gates for longer than originally scheduled is a situation discussed

in Sections 7.5.5 and 8.4.
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A scheduled assignment is said to be in conflict if the completion of its service

time is greater than the commencement of the service time of the next assignment at

the same BSS. When a delayed flight affects the assignment of subsequent flights to

the BSS, then there are two ways it can be corrected: either to reassign the conflict-

ing flight or reassign the flight subsequent to the conflicting one. When reassigning a

conflicting flight or subsequent flights to another BSS, a situation may arise where the

reassigned flight is in conflict with the subsequent flight at the new BSS. Some reas-

signment may therefore have a downstream effect on the overall schedule, producing

further conflicting flights requiring further reassignments, thus potentially increasing

the problem difficulty later on.

In the ABSSAP, those flights which are late in arriving at their assigned stand

are considered to be a perturbation, since baggage cannot be loaded into the aircraft

at the scheduled time, and needs to be held longer at the BSS. Any extension of an

aircraft’s stay on its assigned gate should not have an effect on its assigned BSS, as

the baggage should have already been loaded into the aircraft already, such that the

BSS is free for use in its next assignment. This means that not all aircraft delays will

affect their assigned BSS.

The main objective of this is to reduce the number of BSSs which have to be

reassigned on the day the schedule is put into practice. In the ABSSAP, ej is the end

of the service time of flight j, τj is the base starting service time of flight j, and the

variable yij has a value of 1 if flight j is assigned to BSS i, or yij is zero otherwise, as

described in Section 3.3.2. A new decision variable xjk is introduced with a value of

1 if flights j and k are assigned to the same BSS (ie. if yij = yik = 1 for i ∈ [1 . . . N ]

and j, k ∈ [1 . . .M ]), or xjk is 0 otherwise. On the day the schedule is implemented

the real times for the flights j and k correspond to e
′

j , τ
′

j , e
′

k and τ
′

k for flights j and k

respectively, where e
′

j ≥ ej and τ
′

k ≥ τk, and the flights ordered by their base starting

times, for j < k and j, k ∈ [1 . . .M ] then τj ≤ τk. A conflict occurs when two flights

j and k with j < k and j, k ∈ [1 . . .M ] originally assigned to the same BSS (ie.

xjk = 1 with i ∈ [1 . . . N ]) have overlapping service times, i.e. e′j > τ
′

k and τ
′

j < e
′

k,

as shown in Figure 6.2. Conflicts depend on the original assignments for the real

arrival and departure flight times on the day of operation. It is therefore desirable

to consider potential delays on the day of operation when generating the original

flight assignments to BSSs, such that the final flight assignments differ little or not

at all from the original assignments on the day of operation. The term robustness is

normally used to give an indication of the degree to which this has been achieved.
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Figure 6.2: Example of conflict between two flights originally assigned to the same
BSS.

6.2 Buffer Time

There are different ways of increasing robustness depending on the intended effect.

One of the simplest and most frequently used methods involves the introduction of

a buffer time between assignments which permits absorption of small disturbances.

Mangoubi and Mathaisel (1985) proposed the use of ‘buffer times’ between two flights

which are assigned consecutively to the same gate in order to obtain robust assign-

ments. Wu and Caves (2000) showed the significance of an appropriate use of schedule

buffer time in maintaining schedule punctuality performance. Yan and Huo (2001)

applied buffer time to the Airport Gate Assignment Problem (AGAP), and concluded

that the length of the buffer time significantly influences the gate assignment process.

Thus an appropriate value should be used, which is discussed in Section 6.3.1. Other

approaches for improving the robustness relate to the distribution of idle time, which

is presented in Section 6.3.2, and the reduction of reassignment on disruption, which

is presented in Section 6.3.3.

The amount of buffer time may take different contributory factors into account,

which could perturb the schedules of handlers, airline, airport origin, destination and

flight. The size of the flight is normally related to the travel distance, longer distances

presenting a higher probability of disturbances, which may accumulate generating a

higher level of delays. Shorter distances present less chance of disturbances. The

location of the originating and destination airports has a direct effect on potential

disruptions, given that they place a constraint on the permitted routes possible and

certain circumstances applicable to them, such as weather patterns during summer

and winter, or on the equator.

The buffer time may be fully located at the beginning of the base service starting

time, at the end, or apportioned between either extremity. The position of the buffer

time in respect to the base service duration only matters when the buffer times do not

have the same duration, as in the case considered here. An example where the buffer

times are located at the beginning of the base service duration is shown in Figure



6.3. ROBUSTNESS APPROACHES 148

6.2. If a departing flight arrives at its assigned gate earlier than scheduled, and there

is no change in the departure time, this change does not affect the assigned BSS.

Similarly this would happen where the departure time changes, but the time during

which the flight is at the gate is sufficient for all of the baggage to be transported

from the BSS to the aircraft. It only affects the assigned BSS when the available BSS

service time is no longer sufficient to complete the service, which will normally occur

when there are delays due to the aircraft arriving late at its assigned stand. The

flight will consequently also leave late, given that there is a minimum time required

to complete all the necessary operations before the aircraft is ready to depart. This

means that placing the buffer time at the end of the service time would be preferable.

Conversely in the case of a flight arrival it would be preferable to begin processing

the passengers’ baggage as early as possible, which may well mean commencing use

of the assigned BSS earlier, consequently requiring a change in the BSS assignment

where this is not possible.

A non-linear cost for service time reduction may also help to reduce the number

of conflicts on the day of operation, so that fewer and larger reductions are more

heavily penalised than many smaller ones, since large reductions in the buffer time

are far less favourable than smaller reductions, as presented in Sections 6.3.4 and

6.3.5. Following this, some stochastic approaches are presented, Sections 6.3.6, 6.3.7

and 6.3.8.

6.3 Robustness Approaches

In this section some robustness approaches are presented and others are suggested.

These are then studied and compared in the following section.

6.3.1 Minimise Reduction in Service Time

It may be possible to gain robustness by re-ordering assignments between BSSs so

that ‘idle time’ between flights consecutively assigned to the same BSS is greater, as

shown in Figure 6.3.

Figure 6.3 shows two potential solutions with different robustness. While any

delay to flight ‘a’ in the ‘less robust’ solution will certainly affect flight ‘b’, which will

in turn have to be reassigned to another BSS, in the ‘more robust’ solution a delay in

flight ‘a’ may not affect flight ‘b’. So the ‘more robust’ solution is preferable to that

of the ‘less robust’ solution.
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Figure 6.3: Simple example of two schedules, with the same flights, where one is
obviously more robust in respect of perturbations than the other.

Mangoubi and Mathaisel (1985) proposed the use of ‘buffer times’ between two

flights which are consecutively assigned to the same gate in order to obtain robust

assignments, defining the reduction in service as that part of buffer time which over-

laps with the previous assignment to the same gate. Given the detrimental effects

that the reduction in service time has on the robustness of the assignment as against

real-life delays, it is advisable to minimise the total reduction in service time, thus

maximising buffer times. This objective can be expressed by Formula (6.1).

min

M∑

j=1

Pj∑

p=1

rjp (6.1)

The reduction in service could be extended to cover unassigned activities, by

giving each unassigned activity a cost equal to a factor times the maximum reduction

in service time, as the main purpose is to ensure that solutions with fewer assignments

are never better than those with a higher number of assignments, Equation 6.2.

Consideration of a factor of two (β = 2) represents inserting a new assignment exactly

between two flights so that the reduction in service will be the full buffer time for

both the new assignment and the flight assigned next. Therefore unassigned flights

with higher buffer times are not penalised more than those with lower buffer times,

i.e. those long-haul and short-haul flights considered here.

min










M∑

j=1

Pj∑

p=1

rjp + β ∗
M

max
k=1

(Bk) ∗
M∑

j=1

Pj∑

p=1

(

1−
N∑

i=1

yijp

)

︸ ︷︷ ︸

number of unassigned activities










(6.2)

If a fitness function is defined as a weighted sum of the different objectives as used
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both here and in Chapter 5, and the robustness uses the reduction in service time

only for assigned flights, then particular weights may compromise the importance

of the main objective (maximisation of the number of assignments), where solutions

with lower numbers of assignments are favoured over those with higher numbers of

assignments because of the robustness objective. When the robustness objective also

takes account of the unassigned flights, i.e. Equation 6.2, the selection of weights for

these two objectives will be decoupled, so it will be easier to assign a value to them.

The use of Formula 6.1 treats any reduction in service equally, so it does not

make a distinction between reducing all an assignment’s buffer time and allocating

it to another flight from another solution where both flights share the available ‘idle

time’, as shown in Figure 6.4. However, the flight 3 with maximum reduction in

service in solution ‘b’ (Figure 6.4) will be unable to absorb any delay on the day of

operation, although the same flight in the alternative solution ‘a’ (Figure 6.4) will be

able to do so, making it the preferable choice.

Figure 6.4: Simple example of a more robust schedule of four flights and two sorting
stations using the reduction in buffer time.

A non-linear penalty function is required to take account of this, such as Formula

6.4.

uijp =







arctan
(
τj−ek
Bj

)

− Π
2 if k < j, yijp = yikq = 1 and

∑j
l=k+1

∑Pl

p=1 yilp = 1

0 otherwise

(6.3)

max

N∑

i=1

M−1∑

j=1

Pj∑

p=1

uijp (6.4)

Formula 6.3 defines the penalty uijp for assigning activity p of flight j to sorting

station i, with the total penalty being represented by Formula 6.4. There is only a

penalty for consecutive assignments to the same sorting station, between the assign-
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ment and the previous assignment to the same sorting station. The reason for using

arctangent concerns the properties of this function which imposes stronger penalties

around the point at which the flights are assigned service time without any buffer

time, to the point at which all the buffer time is retained (by dividing the member

of arctangent by Bk). The effect is reduced as the time separation between the as-

signments increases, but the contribution of any time separation is always considered

negative. The constant π
2 is used so that there is always a cost associated with as-

signing two flights to the same sorting station, otherwise it would be a benefit, Figure

6.5. Considering the arctangent for each flight increases the individual effect in the

overall objective, in contrast to using the arctangent of the sum of all of the flight

contributions.

Figure 6.5: Representation of uijp, j < l, yijp = yilq = 1, j, l ∈ [1 . . .M ], p ∈ [1 . . . Pj ]
and q ∈ [1 . . . Pl].

The robustness objective represented by Formula 6.4 also takes account of the

objective of ‘Minimising the Service Reduction’, as being the sum of the reduction in

buffer time of each flight assigned.

The main issue with the arctangent function is the time it takes to obtain the

values. This could be speeded up while still maintaining the desirable characteristics.

It can be reduced by using a piecewise linear cost function as shown in Figure 6.6,

composed of penalisation segments.

The idea of extending the penalisation beyond a reduction in service is introduced

here to increase the robustness of assignments where possible, as a wider separation

between assignments to the same BSS reduces the chance of a delay or early arrival

affecting the assignments.
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Figure 6.6: Cost of the Reduction in Service.

6.3.2 Distribute Idle Time

Bolat (1999) proposed the distribution of ‘idle time’ uniformly amongst gates. In

the case of the ABSSAP the distribution of the ‘idle time’ uniformly amongst BSSs

can be considered, where ‘idle time’ is calculated as the time between the start of

service time on a flight’s assignment to a BSS and the end of service time of the

flight assigned immediately previous to the same baggage sorting station, Formula

6.5. Whereas the buffer time implies preference for a particular gap size between

consecutive assignments to the same sorting station, an ‘idle time’ does not. When

using the ‘idle time’ it is normally intended that the gap size should be as large as

possible. The reason for this is to increase the probability that even with a delay,

completion of service time for flight presently assigned will still be earlier than the

start of service time for the next flight assigned to the same BSS.

∆tj = (sj − ek) for
j < k, yijp = yikq = 1 where 6 ∃ l ∈ [k . . .M ] with τl < ek

j, k ∈ [1 . . .M ], p ∈ [1 . . . Pj ], q ∈ [1 . . . Pk] and i ∈ [1 . . . N ]

(6.5)

v+ = max{∆tj |j ∈ [1 . . .M ]) (6.6)

v− = min{∆tj |j ∈ [1 . . .M ]) (6.7)

min(v+ − v−) (6.8)

Formulas 6.6 and 6.7 refer to the maximum and minimum ‘idle time’ for a solution

respectively, while Formula 6.8 represents the objective as the difference between both

the maximum (v+) and minimum (v−) ‘idle times’ (∆tj , Equation 6.5) for the same
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solution. Figure 6.7 shows a simple example of the robustness of two solutions, where

solution ‘a’ is more robust than solution ‘b’. In solution ‘a’ the delay of flight 3 will

not affect flight 4 and needs to be considerably larger to affect flight 5, whereas in

solution ‘b’ small delays in flight 3 will affect flight 4.

Figure 6.7: Examples of a range of idle times for different solutions, where solution
‘a’ is clearly better than solution ‘b’ for Formula 6.8.

Formula 6.8 assumes that all flights within a solution have been assigned, which

may not be the case in certain circumstances, where the maximum possible assign-

ment is lower than a full assignment (simulation) or where the initial solution(s) has

some flights remaining unassigned, and an example of this is shown in Figure 6.8a.

It should also be observed that this objective may conflict with the maximum as-

signment objective (3.3.4), as shown in Figure 6.8b, where solution ‘f’ has a smaller

△v than solution ‘e’, which is based on Formula 6.8. This means that solution ‘f’ is

considered more robust, but solution ‘e’ would be preferable because it achieves more

assignments. Thus it will be necessary to select the objective weights appropriately,

where the fitness is a weighted sum of the different objectives, in order to ensure the

correct selection of the solution.

Bolat (2000) and Bolat (2001) extended the model by minimising the variance of

the idle times, Formula 6.9.

min

√
√
√
√
√
√
√

M∑

j=1






△tj −

∑M
j=1△tj

M
︸ ︷︷ ︸

mean ‘idle time′







2

(6.9)

6.3.3 Reduce Reassignment on Disruption

The ability to reassign all flights directly affected by a disruption is desirable, without

the need to reassign other flights. The intention here is to generate schedules which

take account of this objective, allowing such reassignment to be performed more

frequently.
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a Solutions without full assignment. b Solution ‘f’ is more robust than solution ‘e’.

Figure 6.8: Examples of a range of idle times for different solutions using Formula
6.8.

One way to achieve this objective would be to count the number of assignments be-

tween which a reassignment could be placed when necessary. Whether the reassigned

flights are on the same pier/side, and how many reassignments could be absorbed by

a pair of assigned flights, must all be taken into account. Figure 6.9 shows the ability

of the ‘idle time’ between the two flights 1 and 8 to accommodate flights 3, 4 and

5, should one of them be delayed. Its reassignment to BSS 1 may be sufficient, thus

avoiding transfer of any delay to other assignments.

Figure 6.9: An example of the capacity to absorb reassignments.
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The following model is proposed whereby the capacity to absorb reassignments

may be achieved by weighting each reassignment by the inverse of 1 plus the distance

between the BSSs (d
′

in, presented in Section 3.3.2), given that such distance (d
′

in)

may be zero, where all flights are ordered by their base start time (τj), Equations

6.10 and 6.11.

The intention is to use the number of flights which could be reassigned between two

flights already consecutively assigned to the same BSS, without the need to reassign

either of these flights in order to achieve this. Equation 6.10 states that ϕjkl is equal

to 1 if flight k’s base service duration does not overlap with the base service duration

of both flights j and l (j < l), both of which are assigned to BSS i, and there is no

other flight r between these (j < r < l) already assigned to the same BSS as flight j,

otherwise ϕjkl is zero, Equation 6.10.

ϕjkl =







1 if j < k < l, ej ≤ τk and ek ≤ τl ∀j, k, l ∈ [1 . . .M ]

6 ∃ r ∈ (j . . . l), with yijp = yirq = 1 for any p ∈ [1 . . . Pj ]

and q ∈ [1 . . . Pr], and yikz = 0∀z ∈ [1 . . . Pk]

0 otherwise

(6.10)

The objective is to maximise Formula 6.11, which weights the contribution of each

potential reassignment, based on to which BSS the reassigned flight was originally as-

signed. The underlying idea is that closer reassignments are preferred to more distant

ones, but the ability to reassign without affecting other assignments is preferable.

N∑

i=1

M∑

j=1

Pj∑

p=1

M∑

l=j+1

Pl∑

q=1

l−1∑

k=j+1

yijp ∗ yilq ∗ ϕikl ∗
N∑

n 6=i

Pk∑

z=1

ynkz

d
′

in + 1
︸ ︷︷ ︸

effect of the BSS assigned

(6.11)

The representation in Formula 6.11 also needs to include the border cases relating

to the first and last assignments in a BSS as shown in Figure 6.10.

Figure 6.10: An example of border assignments in baggage sorting stations.
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The previous formula could be extended to cover the border cases by assigning

two extra dummy flights to all available BSSs; first, j = 0, with the end time being

the start of the time period studied, and the second flight, j = M + 1, with the

start time being the completion of the time period studied, which for our time period

would be e0 = 0 and (eM+1 − TM+1) = 24hr, with yi0 = yi(M+1) = 1 ∀i ∈ [1 . . . N ],

Formula 6.12.

N∑

i=1

N∑

n 6=i

(∑M
j=0

∑Pj

p=1

∑M+1
l=j+1

∑Pl

q=1

∑l−1
k=j+1 yijp ∗ yilq ∗ ϕikl

dBSSs
in + 1

)

(6.12)

6.3.4 Area Reduction in Service

Bolat (1999) examined minimisation of the range of idle time, and the difference

between the maximum and minimum idle times for the AGAP, which was later ex-

tended by Bolat (2000) to consider both minimisation of the idle time range and

minimisation of the idle time variance (Section 6.3.2). However these do not take

account of the influence or effect which the disruptions have on the schedule due to

the time of their occurrence, as all reductions in service time are treated as being the

same, irrespective of the time period considered in the whole ‘planned schedule’ for

the given set of departures. It is anticipated that the more congested time periods in

the ‘planned schedule’ will also represent periods where disruptions are more likely

to occur and propagate, extending their effect and further increasing costs.

As discussed in Section 3.3.2 the Lower Maximum Assignment Point (LMAP) is

the minimum number of sorting stations needed for assignment of all flights without

using buffer times. Similarly, the Upper Maximum Assignment Point (UMAP) is the

minimum number of sorting stations needed to assign all flights without reducing the

target service time (base service duration plus buffer time) as presented in Section

3.3.2. Their values are an indication of the difficulty of the problem, and these may

be obtained from the distribution of the number of flights requiring service over time,

as shown in Figures 6.11 and 6.12.

The effect of service reduction is not the same throughout the day, but depends on

the time of day. It is more likely that disruptions will occur during periods when the

flight density is higher than when fewer flights require servicing, i.e. delay during high

flight density is more likely to propagate given that less resources will be available to

absorb any reassignment without repercussions on other flights. At the same time,

it is these cases where it is most difficult to keep a sufficiently large gap between



6.3. ROBUSTNESS APPROACHES 157

Figure 6.11: Flight distributions with LMAPs and UMAPs for 194 flights on 16th

December 2009 at Terminal 1 of London Heathrow airport.

Figure 6.12: Flight distributions with LMAPs and UMAPs for 163 flights on 1st

March 2010 at Terminal 1 London Heathrow airport.

assignments to the same BSS. In assessing the importance of the time of day when

service reduction is performed, it is suggested that it would be advisable to increase

penalisation of flight assignments with reduced service time when there is a higher

flight density. This can be accomplished by calculating the required number of BSSs

at different times of the day, as shown in Figures 6.11 and 6.12.

Average Assignments Point: The function fu(t) refers to the distribution of

flights over time with ts being the schedule starting time and te the schedule end

time, as shown in Figure 6.13. The Average Assignment Point (AAP) is here defined

as the number of BSSs for which the distribution of flights would be uniform, which

can be calculated by Equation 6.13.



6.3. ROBUSTNESS APPROACHES 158

Figure 6.13: Distribution of flights over time and Area Reduction in Service Objective.

AAP =

∫ te
ts

fu(t) dt

te − ts
(6.13)

Aj is the density distribution area for the time period from the target service time

of flight j (tj) to the end of service time for the previous flight assigned to the same

BSS, for example in Figure 6.13 A18 =
∫ e9
t18

fu(t) dt. AAPj is here defined as the mean

number of flights over the target start time for flight j and the end of service time for

the previous flight assigned to the same BSS as flight j, e.g. AAP18 =
A18

e9−t18
. So the

contribution to the objective for assignment j is
AAPj

AAP
times the reduction in service

previously considered in Section 6.3.1. This corresponds to values greater than one

for dense flight regions of the schedule, and less than one for under-used regions.

The approach proposed intends to increase penalties for those reductions in flight

service time during time periods where more flights require servicing than those pe-

riods with less service load by means of the AAP and the distribution of flights over

time, Equation 6.14. The idea is that flights which require servicing during congested

periods are more likely to have a knock-on effect than those in less congested periods.

It is therefore preferable not to reduce the service time of flights at more congested

times so much, in order to limit the effect of potential delays.

f2 = −
1

AAP
∗

N∑

i=1

M∑

j=1

Pj∑

p=1

yijp ∗Aj (6.14)

This approach is compared with some of the other approaches introduced in this

chapter in Section 6.4.1.
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6.3.5 Sub-Area Reduction in Service

In this case, the objective is based on the area between both flight densities ‘Without

Reduction in Service Time’ and ‘With Reduction in Service Time’ shown in Figure

6.14, and called a sub-area. The flight density sub-area corresponds to the area from

the flight target start time (described in Section 3.3.2) to the previously assigned

flight’s end service time, which lies between both flight density distributions (fu and

fl), where a reduction in service time is not permitted and when all the buffer time

has been reduced (considering only the base service duration, T ), Equation 6.15.

Figure 6.14: Sub-Area Reduction in Service Objective.

A
′

j =

∫ e

tj

(fu(t)− fl(t)) dt (6.15)

The approach now proposed has a fitness which covers the sub-area divided by the

difference between the UMAP and the LMAP for all the assigned flights, Equation

6.16

f2 = −
N∑

i=1

M∑

j=1

Pj∑

p=1

yijp ∗
A

′

j

UMAP − LMAP
(6.16)

Similarly to the Area Reduction in Service (Section 6.3.4), the main idea is to

penalise more heavily those reductions in flight service time which occur in regions

with high flight density, as these are more likely to further disrupt the schedule in

case of delays. Adding both approaches together with the Total Reduction in Service

Time (TRS) will be seen in Section 6.4 to increase the robustness as compared to

using each approach individually.
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Nevertheless, in cases where the LMAP is equal to the UMAP, the Sub-Area of

Reduction in Service (SARS) approach cannot be used, and an example is shown in

Figure 6.15. In these cases, the area between both flight densities could be used,

an approach that is here named Base Sub-Area Reduction in Service (BSARS). As

will be seen in Section 6.4.1, this approach significantly increases the robustness and

widens the range of the quantity of BSSs, in which it performs better when compared

to the Area of Reduction in Service (ARS), TRS and SARS.

Figure 6.15: Example of distributions with the same LMAP and UMAP.

These approaches are compared with some of the other approaches introduced in

this chapter in Section 6.4.1.

6.3.6 Unsupervised Estimated Stochastic Reduction in Service

Lim and Wang (2005) proposed a stochastic programming model for the AGAP with

a robustness cost of conflicts, which is estimated by a function, v(j, k). Flights are

ordered by their base starting service time, so the gap between two flights j and k,

l(j, j), assigned to the same BSS, where j < k and j, k ∈ [1 . . .M ], is the difference

between flight k’s target service time and the prior assigned flight j’s end service time,

Equation 6.17, where l(j, k) = −rj for l(j, k) < 0, as shown in Figure 6.16. v(j, k)

is used to estimate the mean conflict probability between flights j and k assigned

to the same BSS, which is a function of the gap l(j, l), where larger gaps between

assignments to the same BSSs result in lesser probability of real flight conflicts. v(j, k)

is normalised in Equation 6.18.

l(j, k) = tk − ej (tk = τk −Bk) (6.17)
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Figure 6.16: Overlap between two flights j and k assigned to the same BSS.

E(p(j, k)) =
N∑

i=1

(

yij ∗ yik ∗
v(j, k)− vmin(j, k)

vmax(j, k)− vmin(j, k)

)

(6.18)

f2 = −
M−1∑

j=1

M∑

k=j+1

E(p(j, k)) (6.19)

The definition of v(j, k) comes from the application domain, in the absence of

historical data; some unsupervised estimation functions were introduced in Lim and

Wang (2005). Figure 6.17 shows the penalty (y-axis) incurred for different unsuper-

vised estimation functions as a function of the gap (x-axis). Negative values refer

to reductions in service time between two assignments to the same BSS, which are

heavily penalised as they may require reassignment should delays occur, whereas pos-

itive gaps are penalised less. Wider gaps between two assignments reduce the need to

reassign delayed flights, given that the delay has to be larger than the gap in order to

affect the following assignment to the same BSS. Similarly, to start the service earlier

may not require the flight to be reassigned because the duration of earliness has to

be lower than the gap in order to affect the previous assignment. Both earliness and

delay probabilities decrease as the gap increases. Sufficiently large gaps may also be

used on the day of operation by disrupted flights which need to be reassigned, such

that the detrimental effect of disruptions on that day is reduced.

The unsupervised estimation functions introduced in Lim and Wang (2005) are

presented below and are shown in Figure 6.17:

1. Linear estimation:

v(j, k) = −l(j, k) (6.20)

2. Exponential estimation:

v(j, k) = e−β∗l(j,k) (6.21)



6.3. ROBUSTNESS APPROACHES 162

Figure 6.17: Penalty for different unsupervised estimation functions based on the gap
between assignments.

3. Inverse estimation:

v(j, k) =

{
b

l(j,k)+b
if l(j, k) > 0

1 otherwise
(6.22)

The value of the constant ‘b’ changes the penalisation as shown in Figure 6.17,

so a higher ‘b’ increases the penalisation and a lower ‘b’ decreases it. An appro-

priate value should be selected to properly weight the influence of the potential

conflicts. Lim and Wang (2005) used b = 15 minutes, which proved to provide

rather poor results when compared with the exponential estimation function,

which may partly be caused by the fixed cost when l(j, k) < 0 (dark red dash

line, Figure 6.17), whereas in the exponential estimation function (purple dash

line, Figure 6.17) this is not the case. The value used for ‘b’ may be too great,

and a lower value would make this estimation function provide values closer

to those provided by the exponential estimation function which provided fitter

solutions in the results presented by Lim and Wang (2005). Consequently, a

value b = 6 was seen in the experiments studied in Section 6.4.2 to provide

better results than when b = 15. In general an even lower value did appear to

perform better in some instances but not as well as b = 6, as shown in Section

6.4.2.

The inverse estimation function as considered by Lim and Wang (2005) treats

all gaps smaller than the buffer time equally, which does not represent a real
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case since smaller gaps between flights are more likely to result in conflicts

than larger ones on the day of operation. Given this, and that the exponential

estimation function performs best and treats all gaps differently, it is proposed

that all of the gaps be treated differently, as shown by the modified version

which is herein named ‘Offset inverse’, Equation 6.23, which is shown in Figure

6.17 for b = 15 (green line).

v(j, k) =
b

l(j, k)−min{l(j, k)}+ b
(6.23)

4. Sublinear estimation:

v(j, k) =







cos
(
π∗l(j,k)
lmax

)

if l(j, k) > 0

1 otherwise
(6.24)

This estimation also suffers from the same problem as the Inverse estimation,

and may be improved by offsetting its value so that the maximum penalisation

corresponds to lmax and the minimum to lmin, Equation 6.25, which is shown

in Figure 6.17 for γ = 0.

v(j, k) = cos

(
π ∗ (l(j, k)− lmin + γ)

lmax − lmin + γ

)

(6.25)

The gap definition used takes account of the buffer time, as the target service

duration is the base service duration (Tk) plus the buffer time (Bk) for the flight.

This makes the estimation functions dependent on the buffer time of each flight, as

shown in Figure 6.18 for two buffer times of 30 min and 15 min each. When the buffer

time is the same irrespective of the flights, Bk = B ∀ k ∈ [1 . . .M ], as considered in

Lim and Wang (2005), the cost is the same irrespective of the flight, depending only

on the separation between consecutive flight assignments, but this is not the situation

when the buffer time depends on the flight, namely long, medium or short distance

flights, which are the cases studied here.

6.3.7 Reduction in the Number of Conflicts

A stochastic approach for improving schedule performance is described here, when

disruptions occur on the day of operation. A similar approach was used in Yan and

Tang (2007) where random delay scenarios are generated in the ‘Planning Stage’

which are used to account for the potential disruptions in the schedule on the day
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Figure 6.18: Penalty for different unsupervised estimation functions based on the gap
between assignments for different buffer times.

of implementation by means of calculating the expected semi-deviation risk measure

(Ruszczynski and Shapiro (2003)) for all those delay scenarios.

This approach is based on reducing the number of conflicts on the day of oper-

ation. Given that the real perturbed conditions will not be available until the day

the schedule is implemented, these perturbed conditions are simulated by examining

a set of perturbed base cases, S, which may be obtained in different ways, such as

randomly, e.g. from historical data or calculated using known distribution(s) from

information available at the time of generating the assignments.

Considering a set of perturbed schedules S, which simulate the perturbations on

the day of operation. A new variable is introduced cjs, which for a given solution

of assignments has the value 1 if flight j is in conflict with another flight in the

perturbed schedule s ∈ S, or zero otherwise. The average number of conflicts in the

set of perturbed schedules S is calculated by Equation 6.26, which is a measure of

the solution robustness.

f2 =
−1

|S|
∗
∑

s∈S

m∑

j=1

cjs (6.26)

When reassigning conflicting flights or subsequent flights to other BSSs, a situ-

ation can arise where the reassigned flight interferes with the subsequent flight at

the new BSS, a so-called secondary conflict. Some reassignment may therefore have
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a downstream effect on the overall schedule, producing more conflicting flights, in

turn requiring further reassignments, thus potentially increasing the difficulty of the

problem later on.

The above version considers all the conflicts to be of the same importance, but

it is preferable to have conflicts which do not have repercussions later, that is, can

be reassigned to another BSS without affecting any of the assignments already in

existence. To account for this situation a new variable c
′

js is defined which takes the

value 1 if the reassignment of conflicting flight j in a perturbed schedule ‘s’ affects

other assignments already in existence, or zero otherwise. The objective is presented

as Equation 6.27 where the constant, α, 0 ≤ α ≤ 1, denotes the importance of

the conflicting flight repercussions on other assignments; α = 0 corresponds to the

case where no account is taken of any repercussion on other assignments, which

corresponds in turn to Equation 6.26, and α = 1 corresponds to the cases in which

both the conflicting flights and their repercussions on other assignments are considered

to be of the same importance. An α > 1 refers to the cases where more importance is

given to the repercussions of a conflict on assignments other than the conflict itself.

f2 =
−1

|S|
∗




∑

s∈S

m∑

j=1

(cjs + α ∗ c
′

js)



 (6.27)

Calculation of the conflicts is time consuming, and even more so if the effect

of the conflict repercussions is also calculated, which is further aggravated by the

need to use a large number of schedules in the perturbed set S in order to achieve

a good representation of all the potential situations. The execution time is one of

the disadvantages of using this approach as was experienced when executing the

experiments presented in Section 6.4.

6.3.8 Probability of Conflicts Based on the Gap

The previous approach would normally require a large number of perturbed data

sets, which makes its application very slow. Given that we are still interested in

reducing the number of conflicts, but without the heavy cost in speed imposed by the

Reduction in the Number of Conflicts (RNC) approach, then the probability of having

a conflict in a given ‘idle time’ is used for each flight. This can be easily obtained

if the delay distribution is known. In the ABSSAP the early arrival of a flight does

not normally affect the assignment to the Baggage Sorting Station Selection (BSSS)

as this does not extend the time in which the BSS is required for servicing the flight,

but transportation of the baggage already in the BSS to the flight may start earlier,
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so no earlier arrival is considered here. In the case of a normal folded distribution

(no negative numbers and with zero mean) and independent delays for flights, the

probability of a conflict for different standard deviations is shown in Figure 6.19. This

could also be extended to other distributions and to non-zero means.

Figure 6.19: The probability of a conflict for two consecutive flights assigned to the
same BSS based on the intervening gap modelled with Folded Normal distributions
of a zero mean and standard deviation σ.

Independent delays are considered initially, where a conflict between two consecu-

tive flights is independent of other flights assigned to the same BSS. The assignments

to different BSSs are independent from the point of view of conflicts. The probability

of two consecutive flights having overlapping service times (a conflict), corresponds

to the sum of the product between the probability of a sufficiently large delay on

the part of the previous flight assigned to that BSS, and the probability of the next

consecutive assignment to the same BSS not being sufficiently delayed, as shown in

Figure 6.20, where ηj(t) is the probability density function for flight j and t0 = τk−ej .

The probability of a conflict is equal to the probability of exceeding the gap

between both assignments, multiplied by the probability of the following assignment

not being sufficiently delayed to avoid conflicts, as expressed by Equation 6.28. p(j, k)

is the probability a conflict between two flights j and k assigned consecutively to the

same BSS with a gap between them of t0 = τk − ej given their respective probability

density distribution of delay ηj(t) and ηk(t).

p(j, k) =

∫ ∞

τk−ej

ηj(t) ∗

(

1−

∫ t−(τk−ej)

0
ηk(x) dx

)

dt (6.28)

A simplification of the conflict probability is represented in Equation 6.29, which
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Figure 6.20: Probability of a conflict between two consecutive flights based on the
intervening gap.

uses the ’Riemann integral’ approach for the range of delays between (τk−ej) and four

times the delay distribution standard deviation of flight j, σj , and a time increment

of ∆t.

p(j, k) =

4∗σj−(τk−ej)

∆t∑

i=0

ηj(τk − ej + (i+
1

2
) ∗∆t) ∗

(

1−
i∑

l=0

ηk((l +
1

2
) ∗∆t) ∗∆t

)

∗∆t

(6.29)

6.4 Results

This section and subsections look at the performance from the point of view of the

robustness by measuring the number of conflicts for a given set of perturbed schedules,

for all the approaches presented in Section 6.3; firstly when they are used alone and

secondly when combined with the TRS approach. The comparison made between the

results obtained, when applying the different approaches, uses the Mann-Whitney test

to establish the statistical significance of the different approaches, and were presented

in the results table summary as the number of instances in a range of the number

of BSSs which can be said to have no statistically significantly higher numbers of

conflicts than any of the other approaches compared. Regarding an airport, where
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N refers to the number of BSSs available, three ranges of the number of BSSs have

been defined, based on the LMAP and UMAP, the first being for N < LMAP, the

second for LMAP ≤ N < UMAP, and the third for UMAP ≤ N . These are shown

within brackets and separated by a comma in the following tables. Any approach

achieving full coverage of a range of the number of BSSs is presented in bold font and

the approaches with higher numbers for a range, covering the most number of BSSs

in the range compared, are presented in underlined font to assist in the interpretation

of the summary tables.

The robustness approaches described are applied to the ABSSAP using the Steady

State Evolutionary Algorithm (SSEA) from Chapter 5 and their results are compared

and analysed in this section using the data sets obtained from NATS for London

Heathrow airport Terminal 1, which were also used in Chapters 4 and 5.

To compare the performance of each of the robustness approaches introduced in

the previous sections, three sets of perturbed schedules were generated using a folded

normal distribution with a zero mean and 10, 20 and 30 minute standard deviations.

These sets are used to calculate the average number of conflicts for each robustness

approach, where a lower value represents a more robust solution than those with

higher values. Each experiment is repeated at least 30 times. To calculate the num-

ber of conflicts within a solution in the perturbed schedule, each flight in the original

solution is assigned to the same BSS as in the original solution where possible, other-

wise it is assigned to the dummy. This is repeated until all of the flights are assigned

to a BSS or the dummy. The number of flights assigned to the dummy represents

the number of conflicts. If a solution does not achieve the maximum assignment

possible, then the number of extra unassigned flights may be accounted for with a

higher contribution, given that they are less desirable solutions. Nevertheless, all of

the solutions having the highest fitness in the following experiments achieve maxi-

mum assignments, which simplifies comparison of the different robustness approaches,

based on the described measure. This is possible since the measure only depends on

assignments to the BSSs and not on any other objective, such as those upon which

the fitness depends.

The number of possible perturbed schedules depends on the number of flights,

and this accounts for an extremely large number of possible combinations, making it

impossible to consider them all. The number of combinations for 194 flights corre-

sponds to 194! ≈ 1.3291 ∗ 10361 which is far greater than the 1082 atoms estimated

to exist in the observable universe. The number of perturbed schedules necessary to

calculate the quality of a solution should therefore be as large as possible to account
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for as many potential combinations as possible. However, as the number of perturbed

schedules increases, so does the time required to perform the calculations, and the

memory requirements also increase likewise: moreover, this is further multiplied by

the number of solutions which will be used in the comparison. However, not all com-

binations are likely to represent a valid schedule. So, 10,000 perturbed schedules were

used based on the number of solutions to be processed, the time available and the

memory required.

The stochastic robustness approach RNC is time consuming when compared with

the other approaches reviewed. It would be desirable to use an approach which pro-

vides solutions closer to, or better than, those provided by the stochastic robustness

approach, without the heavy cost of the time required. With the aim of assessing

the difference in performance when the number of perturbed schedules is reduced,

two sets of 1,000 and 25 perturbed schedules used with the RNC were also con-

sidered. Initial experiments were conducted using SSEA with ℓ = 1, the RNC and

Multi Exchange between a Fixed Number of 3 Resources (MEFNR3) for 25 perturbed

schedules and 800,000 total iterations which required an average execution time of 52

min per instance. These, when extrapolated to 1,000 perturbed schedules, provide an

execution time of around 34 hours per instance, whereas the other approaches require

no more than two minutes to complete the full set of iterations. Both applications of

RNC required too long an execution time for the number of iterations specified, so

they were run with a time limit of 30 min, to execute the total number of 800,000

iterations, as the other approaches required less than 2 min.

The objective importance presented in Section 4.4.6 is used in the following ex-

periment where the most important objective is to achieve maximum assignment, the

second in importance being to maximise robustness and the third objective being

minimisation of the distance between flights and their assigned BSS being the last

objective considered. The fitness function used to guide the search in the SSEA is a

weighted sum of the different objectives evaluated, introduced previously in Section

4.4.6, and which weights were also calculated in the same section. Both approaches

Unsupervised Estimated Stochastic Reduction in Service (UESRS) and Probability of

Conflict Based on the Gap (PCBG) need their robustness weight (W2) to be recalcu-

lated based on those values obtained in Section 5.7. Thus given a maximum distance

between a flight and its assigned BSS, Dmax, which depends on the airport topology,

which for the topologies studied here is Dmax = 9 (a distance of one unit is assumed

between different sides of a pier and a distance of two units was assumed between

different piers, as shown in Sections 4.4 and 4.4.6). A new assignment between two
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previously assigned flights may incur a service reduction for the new assignment and

next flight, which is used to obtain the decrease in robustness (the second objective),

which for UESRS and PCBG cannot be greater than 1 for each flight, so totalling

2 in this case. Finally, using the objective priorities the following relations can be

established: W1 ∗ 1 > |W2| ∗ 2 + |W3| ∗ Dmax and |W2| ∗ 2 > |W3| ∗ Dmax. The

original conditions for the weights, when the ’Minimise Reduction in Service Time’

objective was used (Section 4.4.6), are W3 = −1 and W1 > 23.4, which together with

the objective priorities obtain a |W2| >
1∗9
2 = 4.5 and |W2| ∗2+ |W3| ∗9 < 23.4 giving

|W2| <
14.4
2 = 7.2. The value used for W2 is −7.2 as W1 = 90 > 23.4. The value used

for W1 is greater than the value originally used to calculate W2, so a value of -10 was

also used. The fitness function used for UESRS and PCBG are respectively:

Number of Assigned Flights * 90 - UESRS(unsupervised estimator) * |W2|
- Distance between Flights and their assigned BSS * 1

Number of Assigned Flights * 90 - PCBG(standard deviation) * |W2|
- Distance between Flights and their Assigned BSS * 1

The sets of 10,000 perturbed solutions generated from normal folded distributions

of standard deviations of 10, 20, 30, and zero means, are used to calculate the average

number of conflicts in each solution when using the different robustness approaches

presented in Section 6.3. The unsupervised estimation functions introduced in Section

6.3.6 were used for the same parameter values as those used in Lim and Wang (2005),

and with Offset Inverse b = 6, Offset Inverse b = 15, Offset Sublinear γ = 0 and Offset

Sublinear γ = 1000. A summary of the robustness approaches studied and their

parameter values is shown in Table 6.1. In Table 6.1 the first column contains the

name of the robustness approach considered, all of which were introduced in Section

6.3; the second column shows the weights for each approach, and the subsequent

columns show the name and value of the parameters for the corresponding robustness

approach. The SSEA with ℓ = 1, operator MEFNR3, a population size of 10, the

replacement strategy being Index Selection with Elitist Selection and a group size of

1 (IS1ES) and a maximum of 800,000 iterations were used to obtain the solutions for

comparison. The fitness is the sum of the total number of assignments with weight of

90, less the distance between assigned flights and their assigned BSS with a weight of

1, less the robustness approach with the appropriate weight, all of which are shown

in Table 6.1.

The results presented in the following sections were summarised for simplicity and
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Approach Weight Parameters
Name Values

TRS 0.008 Buffer Time 30 min long-haul and 15 min others

ATRS 0.008 Buffer Time 30 min long-haul and 15 min others

ARS 0.008 Buffer Time 30 min long-haul and 15 min others

PCBG 7.2 and 10 Std. deviation 10, 20 and 30 min

RNC
10 and 14

Std. deviation 10, 20 and 30 min
Num. schedules 25 and 1000
Max. execution
time

30 min

SARS 0.008 Buffer Time 30 min long-haul and 15 min others

UESRS 7.2 and 10
Estimation func-
tion

Exp 0.03, Exp 0.05, Inverse 6, Inverse
15, Linear, Offset Inverse 6, Offset In-
verse 15, Offset Sublinear 0, Offset
Sublinear 1000 and Sublinear

Buffer Time 30 min long-haul and 15 min others

Table 6.1: Robustness approaches used with their parameter values.

clarity by considering the average number of times an approach achieves statistical

significantly lower conflicts, or at least no worse, than the other approaches, in the

different regions of numbers of BSSs, based on the LMAP and UMAP, which divide

the range of BSSs studied into three areas corresponding to N < LMAP , LMAP ≤

N < UMAP and UMAP ≤ N . The values between brackets correspond to the

number of times the approach provides significantly statistically no worse solutions

than the other approaches used, for each of the BSS ranges. Table 6.2 shows that the

ARS approach for the data set of H1T091216 and a 4-pier topology has the values (2,

3, 3) showing that it achieves a statistically significant number of conflicts no higher

in two instances for the range of N < LMAP, three for the range LMAP ≤ N <

UMAP, and three for N ≥ UMAP. Thus, the larger the number between parenthesis

the better the performances in respect of robustness.

Bold font is used to identify those cases where the robustness approach achieves

good results for all numbers of BSSs in a range, e.g. in the previous example the

approach performs well for all numbers of BSSs in the range of N ≥ 27 (UMAP).

Underlining is used to identify those cases where the robustness approach performs

well for greater numbers of BSS in a range. The maximum quantity of instances

of number of BSSs in a range is presented between brackets at the top of the table

for each of the ranges discussed, preceded by the word ‘Max.’ e.g. in Table 6.2 the

cell in the second column and second row of the header shows that the first range

contains nine instances of numbers of BSSs for N < LMAP, five for LMAP ≤ N <
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UMAP, and three for N ≥ UMAP. For simplicity and clarity, those approaches which

do achieve statistically significantly higher conflicts on average than any of the other

approaches in all three BSSs regions are not shown in the tables which followed.

H1T091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

ARS (1, 2, 2) (2, 3, 3) (3, 3, 4) (1, 2, 1)

BSARS (9, 5, 3) (8, 2, 3) (4, 6, 5) (4, 5, 5)

SARS + TRS (3, 4, 2) (3, 5, 3) (3, 3, 4) (0, 2, 1)

TRS (0, 1, 1) (1, 0, 0) (2, 3, 4) (1, 2, 0)

Table 6.2: Number of instances with significantly statistically lower conflicts in each
range of numbers of BSSs for disruptions of standard deviation delays of σ = 10min.

The next section presents the results of the robust approaches which make use of

the reduction in service time, with the following section discussing and analysing the

UESRS results for different estimation functions and objective weights. Finally, all

of the results for the robust approaches considered are presented and analysed before

closing this chapter with some conclusions.

6.4.1 Results of the Approaches Using Buffer Time

In this section, only experiments and results relating to robustness approaches which

only use the buffer time are assessed, in order to establish how well they perform

when compared with each other. It is also suggested that a combination of these

approaches with the TRS approach might improve the robustness. Other approaches

introduced in Section 6.3 take account of the buffer time: however this is mainly based

on the ‘idle time’ between assignments to the same BSS, i.e. Act Tangent Reduction

in Service (ATRS) and UESRS, so they are studied in the following Sections 6.4.2

and 6.4.3.

The ARS, BSARS, SARS and TRS approaches are based on the reduction of the

buffer time. The BSARS approach performs much better in respect of the number of

conflicts than the other approaches for all the ranges of N (the number of BSSs), delay

standard deviations and data sets considered in this section, as shown in the statistical

significance summaries in Tables 6.2, 6.3 and 6.4. Furthermore, the quality of its

results is maintained at approximately the same steady rate as the delay standard

deviation increases, which cannot be said of the other approaches.

The BSARS and SARS differ in a constant factor equal to the UMAP less the

LMAP, which only depends on the data set under consideration, i.e. fBSARS
2 =

fSARS
2 ∗ (UMAP − LMAP ). Thus the performance of SARS should be the same
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as that of BSARS if the weight is appropriately increased, given that BSARS=

−
∑N

i=1

∑M
j=1

∑Pj

p=1 yijp ∗ Aj and SARS is expressed by Equation 6.16. Therefore

the weight should be WSARS
2 = WBSARS

2 ∗ (UMAP − LMAP ).

H1T091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

ARS (1, 5, 3) (2, 5, 3) (3, 2, 4) (1, 3, 1)

BSARS (9, 4, 3) (8, 5, 3) (3, 6, 5) (4, 6, 5)

SARS + TRS (5, 5, 2) (4, 5, 3) (3, 3, 5) (0, 4, 2)

TRS (0, 2, 3) (2, 0, 0) (1, 3, 5) (1, 2, 0)

Table 6.3: Number of instances with significantly statistically lower number of con-
flicts in each range of numbers of BSSs for disruptions with standard deviation delays
of σ = 20min.

H1T091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

ARS (3, 5, 3) (2, 5, 3) (3, 4, 4) (1, 4, 2)

BSARS (9, 5, 3) (8, 5, 3) (3, 6, 5) (4, 6, 5)

SARS + TRS (7, 5, 3) (4, 5, 3) (3, 3, 4) (0, 2, 1)

TRS (2, 3, 3) (2, 0, 0) (1, 4, 5) (1, 1, 0)

Table 6.4: Number of instances with significantly statistically lower number of con-
flicts in each range of numbers of BSSs for disruptions with standard deviation delays
of σ = 30min.

In the case of N ≥ UMAP it is possible to assign all flights without the need

to reduce the service time, which indicates that any approach depending only on the

reduction in service, such as ARS, BSARS, SARS and TRS, would not eventually

contribute to the fitness, as the final solution should have achieved maximum fitness

for this objective. Thus all these approaches may be expected to perform similarly

for this range of BSSs, but this is not the case, as is shown in Tables 6.2, 6.3 and 6.4.

The behaviour of these robustness approaches is affected by, amongst others things,

the stochastic nature of the SSEA, and also by the effect of the initial solutions,

not all of which may have full assignment without reduction in service. This is thus

achieved as the search progresses, reaching better and more promising areas of the

search space than the other approaches, and also by the last objective which will

direct the search to solutions with a lower distance between BSSs and flights, which

may not necessarily correspond to assignments with lower reduction in service.

The approaches ARS, BSARS and SARS take note of the amount of reduction

in buffer time and the time of the day, but both influences are heavily interlaced,
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such that greater emphasis on the influence of the reduction in service (reduction

in the buffer time) may further improve the robustness, given that it increases the

search pressure. Other experiments were therefore conducted to determine whether

an increase in the importance of reducing service time provides an improvement in

robustness. The results, which are summarised in Appendix B.6.1, show that ARS

improves when it is used in conjunction with TRS, and ARS with TRS performed

overwhelmingly better than ARS, SARS and SARS with TRS. However, the improve-

ment of BSARS with TRS was not so significant when compared with BSARS, where

there are ranges of numbers of BSSs for some data sets in which the BSARS performs

better than BSARS with TRS. BSARS with TRS performs better overall than the

other robustness approaches compared in this section, and was similarly seen with

BSARS, its performance is steadily maintained at the same level at which the delay

standard deviation increases.

Future study should try to establish whether the same results could be achieved

by means of changing the weight of the robustness objective.

6.4.2 Results of Unsupervised Estimated Stochastic Reduction in

Service

The UESRS with an exponential estimation function, β = 0.03 and a weight of 10

provides solutions with a statistically significantly lower number of conflicts through-

out all of the ranges of numbers of BSSs, as shown in Tables 6.5, 6.6 and 6.7. This

corroborates the results reported in Lim and Wang (2005) for the AGAP. Not only

does UESRS with β = 0.03 perform well over all of the ranges of numbers of BSSs,

but it fully covers many of the ranges of numbers of BSSs.

In some instances when the number of BSSs is very low, i.e. 13 or 14, the ro-

bustness weight (W2) may need to be reduced in order to improve the performance.

Unsupervised H1T091216 H1T100301
Estimation Weight Max. (9, 5, 3) Max. (6, 6, 5)
Function 3-pier 4-pier 3-pier 4-pier

Exp 0.03
10 (9, 5, 3) (7, 5, 3) (6, 6, 5) (5, 6, 5)
7.2 (0, 0, 0) (2, 0, 0) (0, 0, 0) (1, 0, 0)

Exp 0.05 7.2 (1, 0, 0) (2, 0, 0) (0, 0, 0) (3, 0, 0)

Inverse 6 7.2 (0, 0, 2) (0, 0, 0) (0, 0, 0) (2, 0, 0)

Inverse 15 7.2 (0, 0, 0) (2, 0, 0) (0, 0, 0) (2, 0, 0)

Table 6.5: Number of instances with significantly statistically lower number of con-
flicts in each range of number of BSSs for disruptions with standard deviation delays
of σ = 10min and UESRS approach for a significance level of 0.05.
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Unsupervised H1T091216 H1T100301
Estimation Weight Max. (9, 5, 3) Max. (6, 6, 5)
Function 3-pier 4-pier 3-pier 4-pier

Exp 0.03
10 (9, 5, 1) (8, 5, 3) (6, 6, 5) (5, 6, 5)
7.2 (0, 0, 0) (2, 0, 0) (1, 0, 0) (1, 0, 0)

Exp 0.05 7.2 (0, 0, 0) (2, 0, 0) (0, 0, 0) (2, 0, 0)

Inverse 6 7.2 (0, 3, 3) (0, 0, 0) (0, 0, 0) (0, 0, 0)

Offset Inverse 15 7.2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0)

Table 6.6: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with standard deviation
delays of σ = 20min and UESRS approach for a significance level of 0.05.

Unsupervised H1T091216 H1T100301
Estimation Weight Max. (9, 5, 3) Max. (6, 6, 5)
Function 3-pier 4-pier 3-pier 4-pier

Exp 0.03
10 (9, 4, 2) (7, 5, 3) (6, 6, 5) (5, 6, 5)
7.2 (0, 0, 0) (2, 0, 0) (0, 0, 0) (1, 0, 0)

Exp 0.05 7.2 (0, 0, 0) (2, 0, 0) (1, 0, 0) (2, 0, 0)

Inverse 6 7.2 (0, 4, 3) (0, 0, 0) (1, 1, 0) (0, 0, 0)

Inverse 15 7.2 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 1)

Offset Inverse 15 7.2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

Table 6.7: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with a standard deviation
delays σ = 30min and UESRS approach for a significance level of 0.05.

Clearly the introduction of some penalty, even where the service time has not

been reduced (the gap between two assignments to the same BSS is larger or equal to

the buffer time), seems to be advantageous. This will be seen in Section 6.4.3, where

the approaches which also penalised ‘ideal times’ greater than the buffer times are

contrasted with those which only penalise reduction in buffer times.

As seen from the empirical results presented in Section 6.4.1 for ARS, BSARS

and SARS, increasing the buffer time contribution to the fitness by combining them

with TRS may assist in reaching promising areas of the search space. Therefore a

combination of the UESRS approach with the TRS was also studied, and a summary

is shown in Tables 6.8, 6.9 and 6.10.

The results in Tables 6.8, 6.9 and 6.10 show that combining UESRS with TRS,

using the exponential estimation function, with β = 0.03 and a robustness objective

weight of 10 (|W2|) continues to provide solutions with statistically significantly lower

conflicts than all the other estimation functions, achieving a good performance with
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H1T091216 H1T100301
Approach Weight Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

UESRS Exp 0.03
7.2 (0, 0, 0) (1, 0, 0) (0, 0, 2) (0, 0, 0)
10 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (7, 1, 0) (4, 4, 0) (4, 4, 1) (4, 3, 0)
10 (9, 5, 1) (6, 5, 3) (6, 5, 3) (6, 4, 1)

Inverse 6
7.2 (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 0, 0)
10 (0, 1, 2) (0, 2, 2) (0, 1, 4) (0, 2, 4)

TRS 0.008 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

Table 6.8: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with standard deviation
delays of σ = 10min and TRS + UESRS approaches with a significance level of 0.05.

H1T091216 H1T100301
Approach Weight Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

UESRS
Exp 0.03 7.2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

10 (0, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 0)
Exp 0.05 7.2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (3, 1, 0) (3, 0, 0) (3, 1, 0) (2, 2, 0)
10 (9, 3, 0) (6, 3, 3) (6, 4, 4) (5, 3, 1)

Inverse 6
7.2 (0, 0, 0) (0, 0, 0) (0, 1, 0) (0, 0, 0)
10 (0, 2, 3) (3, 5, 2) (0, 1, 3) (2, 4, 5)

TRS 0.008 (0, 0, 0) (0, 0, 1) (0, 0, 0) (0, 0, 0)

Table 6.9: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with standard deviation
delays of σ = 20min and TRS + UESRS approaches with a significance level of 0.05.

H1T091216 H1T100301
Approach Weight Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

UESRS
Exp 0.03 7.2 (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0)

10 (0, 0, 0) (0, 0, 0) (1, 0, 1) (0, 0, 0)
Exp 0.05 7.2 (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (3, 0, 0) (2, 0, 0) (3, 0, 0) (1, 1, 0)
10 (9, 3, 1) (6, 3, 3) (6, 5, 4) (3, 2, 1)

Inverse 6
7.2 (1, 0, 0) (2, 0, 0) (2, 1, 0) (2, 0, 0)
10 (2, 3, 3) (5, 5, 1) (2, 5, 3) (3, 4, 5)

Table 6.10: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with standard deviation
delays of σ = 30min and TRS + UESRS approaches with a significance level of 0.05.

54, 47 and 46 instances of a total of 68 for 10, 20 and 30 delay standard deviations

respectively. However, the overall performance of the estimation function reduces as

the disruption increases in favour of the inverse estimation function, specifically for

b = 6, achieving a good performance in 16, 25 and 41 instances of a total of 68 for 10,

20 and 30 delay standard deviations respectively. Given that when N ≥ UMAP it is
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possible to assign all flights without reducing the service time, and as these approaches

perform better when combined with TRS, which only has an effect where there is

a reduction in the assignments service time, so the improvement will arise when

solutions have a reduction in service for some of their assignments. This corresponds

to the beginning of the search, thus allowing TRS to direct the search into more

promising areas of the search space, as is similarly found with ARS, BSARS and

SARS.

The experiments were extended to cover the inverse estimation function with

values of b = 2 and b = 4, but the robustness measure showed that the results were

not as good as the results achieved when using the same estimation function for b = 6.

Thus these values are omitted from the above tables for simplicity and clarity.

One characteristic of the TRS, ATRS, ARS, BSARS and SARS is that they only

require the buffer time as a parameter. The UESRS requires the buffer time and an

estimation function. A comparison of the results from the different approaches con-

sidered up to now shows that the exponential estimation function generally provides

solutions with fewer statistically significant conflicts than the other approaches con-

sidered up to this point, as shown in Tables 6.11, 6.12 and 6.13. These tables do not

show approaches which provide statistically significantly higher numbers of conflicts

throughout the range of numbers of BSSs. The UESRS performs overwhelmingly

better in respect of robustness than ARS, BSARS, SARS and TRS alone or when

combined with TRS. The approach performing best in this group was the BSARS

with TRS but only for very low numbers of BSSs (N < LMAP). In Table 6.11 for

a 4-pier topology and the data set from H1T091216, this approach achieved a good

performance in 4 instances for N < LMAP but in none for N ≥ LMAP.

All of the approaches which make use of the buffer time when combined with TRS

provide overall solutions with a statistically significantly lower number of conflicts

overall for the different standard deviation delays of 10, 20 and 30 minutes than

when used alone. The performance of UESRS with the Inverse estimation function

and b = 6 also improves as the delay increases (for delay distributions with higher

standard deviations) when compared with the exponential estimation function.

6.4.3 Results for All Approaches

This section looks at the performance from the point of view of robustness by measur-

ing the number of conflicts in a given set of perturbed schedules, for all the approaches
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H1T091216 H1T100301
Approach Weight Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

TRS + ARS 0.008 (4, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
BSARS 0.008 (5, 0, 0) (1, 0, 0) (0, 0, 0) (3, 0, 0)
TRS + BSARS 0.008 (5, 0, 0) (4, 0, 0) (0, 0, 0) (4, 0, 0)
TRS + SARS 0.008 (2, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

UESRS Exp 0.03 10 (0, 0, 0) (0, 0, 0) (0, 0, 2) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (4, 1, 0) (3, 1, 0) (4, 4, 1) (3, 4, 0)
10 (8, 4, 1) (4, 5, 3) (6, 5, 4) (3, 4, 1)

Inverse 6
7.2 (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 0, 0)
10 (0, 1, 2) (0, 2, 2) (0, 1, 3) (0, 2, 4)

Table 6.11: Number of instances significantly statistically lower number of conflicts
in each range of number of BSSs for disruptions of standard deviation delays of
σ = 10min and all approaches which make use of the buffer time for significance level
of 0.05.

H1T091216 H1T100301
Approach Weight Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

BSARS 0.008 (0, 0, 0) (1, 0, 0) (0, 0, 0) (2, 0, 0)
TRS + BSARS 0.008 (0, 0, 0) (4, 0, 0) (0, 0, 0) (3, 0, 0)

UESRS Exp 0.03 10 (0, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (3, 1, 0) (3, 0, 0) (3, 1, 0) (2, 2, 0)
10 (9, 3, 0) (6, 3, 3) (6, 5, 4) (5, 3, 1)

Inverse 6
7.2 (0, 0, 0) (0, 0, 0) (0, 1, 0) (0, 1, 0)
10 (0, 2, 3) (2, 5, 2) (0, 1, 3) (3, 4, 5)

Table 6.12: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with standard deviation
delays of σ = 20min and all approaches which make use of the buffer time with a
significance level of 0.05.

H1T091216 H1T100301
Approach weight Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

BSARS 0.008 (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0)
TRS + BSARS 0.008 (0, 0, 0) (2, 0, 0) (0, 0, 0) (2, 0, 0)

UESRS
Exp 0.03 7.2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)
Exp 0.03 10 (0, 0, 0) (0, 0, 0) (1, 0, 1) (0, 0, 0)
Exp 0.05 7.2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (3, 0, 0) (1, 0, 0) (3, 0, 0) (1, 1, 0)
10 (9, 3, 1) (6, 3, 3) (6, 5, 4) (3, 2, 1)

Inverse 6
7.2 (1, 0, 0) (2, 0, 0) (1, 1, 0) (2, 0, 0)
10 (3, 3, 3) (4, 5, 1) (2, 5, 3) (3, 4, 5)

Table 6.13: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with standard deviation
delays of σ = 30min and all approaches which make use of the buffer time with a
significance level of 0.05.
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presented in Section 6.3; first when they are used alone and then when combined with

the TRS approach. A comparison of the results obtained when applying the different

approaches uses the Mann-Whitney test to establish the statistical significance of the

different approaches. They are then presented as the number of instances in a range

of numbers of BSSs which can be said not to have a higher number of conflicts than

any of the other approaches in the comparison. The ranges of numbers of BSSs are

those for N < LMAP, LMAP ≤ N < UMAP, and UMAP ≤ N , which are presented

within brackets and separated by a comma in the following tables. N is the number

of BSSs in an instance, as previously introduced in Section 3.3.2.

The results which are summarised in Tables 6.14, 6.15 and 6.16 show that the

PCBG does not gain any advantage when combined with the TRS, but it appears to

be detrimental, as PCBG alone performs better throughout whole the ranges of the

numbers of BSSs than when used combined with TRS. Even with the RNC for 25 and

1,000 instances and taking account of the distribution of delays, the other approaches

provide a statistically significantly lower number of collisions, but with a much lower

running time. This could be due to the fact that the number of iterations which it

is possible to execute in the 30 minutes is too low to find promising solutions with

a lower number of collisions than those obtained by the other approaches. Around

33,000 to 70,000 iterations were executed for the experiments conducted here, the

numbers depending mainly on the data set and the number of BSSs). Additionally,

where the perturbed set of schedules used in RNC does not accurately represent the

real perturbation on the day of operation, then the search will be wrongly guided, so

achieving less robust solutions. Similar results are obtained when using a set of 1,000

disrupted schedules with RNC 1,000.

The PCBG provides statistically significantly lower number of conflicts through

a wider range of BSSs, and such a range also includes the range of BSSs used in

the real problems, i.e. N ≥ UMAP . Nevertheless, this result could be regarded

as biased, given that the PCBG considers a normal folded distribution of the same

standard deviation as that from which the perturbed schedules were generated. The

PCBG could consider different standard deviations and distributions depending on

the aircraft, season, route, destination and time of the day which should further

improve the results in real situations. The running time is also of the same magnitude

as that for the other approaches, with the exception of the RNC, which has a much

higher running time for the same number of iterations.

Future studies could look at the dependency of the robustness objective weight
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H1T091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

TRS + ARS (2, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

BSARS (2, 0, 0) (1, 0, 0) (0, 0, 0) (3, 0, 0)

TRS + BSARS (3, 0, 0) (3, 0, 0) (0, 0, 0) (4, 0, 0)

PCBG
7.2 (5, 2, 1) (3, 1, 0) (1, 1, 0) (5, 2, 0)
10 (7, 4, 0) (8, 1, 0) (2, 4, 0) (5, 4, 0)

TRS + SARS (1, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0)

TRS + UESRS
Exp 0.03

7.2 (2, 1, 0) (0, 1, 0) (2, 1, 1) (1, 2, 0)
10 (2, 1, 0) (1, 4, 3) (4, 2, 4) (2, 1, 1)

Inverse 6
7.2 (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 0, 0)
10 (0, 0, 2) (0, 1, 2) (0, 1, 4) (0, 2, 4)

Table 6.14: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with a delay standard
deviation of σ = 10min) and all the approaches presented in Section 6.3 with a
significance level of 0.05.

H1T091216 H1T103010
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

BSARS (0, 0, 0) (1, 0, 0) (0, 0, 0) (2, 0, 0)

TRS + BSARS (0, 0, 0) (4, 0, 0) (0, 0, 0) (3, 0, 0)

PCBG
7.2 (5, 1, 0) (2, 0, 0) (3, 2, 0) (3, 0, 0)
10 (7, 2, 1) (8, 5, 1) (1, 5, 1) (5, 6, 1)

TRS + UESRS
Exp 0.03

7.2 (2, 1, 0) (1, 0, 0) (2, 1, 0) (1, 0, 0)
10 (5, 3, 1) (2, 0, 3) (5, 1, 4) (4, 0, 1)

Inverse 6
7.2 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
10 (1, 1, 3) (0, 2, 2) (0, 1, 2) (2, 2, 5)

Table 6.15: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with a delay standard
deviation of σ = 20min) and all the approaches presented in Section 6.3 with a
significance level of 0.05.

H1T091216 H1T100301
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

BSARS (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 0, 0)

TRS + BSARS (0, 0, 0) (2, 0, 0) (0, 0, 0) (2, 0, 0)

PCBG
7.2 (4, 2, 0) (0, 0, 0) (1, 4, 0) (1, 0, 0)
10 (1, 4, 3) (5, 4, 3) (2, 6, 5) (3, 6, 5)

TRS + UESRS
Exp 0.03

7.2 (3, 0, 0) (1, 0, 0) (3, 0, 0) (1, 0, 0)
10 (9, 1, 0) (4, 1, 0) (5, 1, 0) (2, 0, 0)

Inverse 6
7.2 (1, 0, 0) (1, 0, 0) (1, 0, 0) (2, 0, 0)
10 (3, 3, 1) (2, 3, 0) (0, 0, 0) (3, 0, 0)

Table 6.16: Number of instances with a significantly statistically lower number of
conflicts in each range of numbers of BSSs for disruptions with a delay standard
deviation of σ = 30min) and all the approaches presented in Section 6.3 with a
significance level of 0.05.
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on performance. If other robustness weights are to be considered, all of the weights

taking part in the fitness function should be modified accordingly to maintain the

order of importance of each objective. When the unassigned flights are not taken

into account by the robustness measure used in the fitness function, then particular

care has to be taken when selecting the appropriate weights for maximisation of the

number of assignments (the first objective), since incorrect selection of this objective

weight may sometimes deem solutions with a lower number of assignments to be

fitter. This interdependency, mainly between the maximum number of assignments

objective and the robustness could also be decoupled by penalising the unassigned

flights in the robustness.

6.5 Conclusions

Several approaches to taking account of solution robustness by applying the SSEA,

presented in Chapter 5, are presented in this chapter. It has been shown that the

TRS approach provides solutions with a statistically significantly higher number of

conflicts than those obtained by some of the other approaches considered. TRS does

not consider the extra increase in conflict either, as the service time is reduced between

assignments, thus further penalising those assignments. Where the service reduction

is higher the ATRS was also used, but the results were not very encouraging as some

of the other approaches improved on it.

When looking at the overall schedule it is evident that the number of flights

requiring assignment at each time is not uniformly distributed, as shown in Figure

4.4, such that when the number of flights to be serviced at any one time increases, the

potential for conflict also increases, when perturbed. There is potential for further

improving the results when this is taken into account, so other approaches were

proposed and studied. The first approaches examined were the ARS, BSARS and

SARS. These approaches performed better for a very low number of BSSs, but in

general provided solutions inferior in respect of conflicts than the PCBG and the

UESRS with exponential and inverse estimation functions. The advantage of the

TRS approach in conjunction with some of the other approaches was anticipated, as

was corroborated by results from the experiments conducted for the combination of

TRS with the ARS, BSARS, SARS and UESRS.

Several stochastic approaches were also considered, namely: UESRS was evalu-

ated for different estimation functions and the exponential function with β = 0.03

provided the best results in respect of robustness for the measure considered. PCBG

provides the best overall performance regarding robustness but did not seem to im-
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prove when combined with TRS, rather showing a deterioration. RNC appeared to

provide solutions with a higher number of conflicts than the other approaches, but

this could be a consequence of the low number of iterations which it was possible to

execute given both the low speed which is a characteristic of this approach and the

higher memory requirement. The UESRS approach also improved when combined

with TRS, showing the Inverse function for b = 6 with TRS providing good results

for high numbers of BSSs (N ≥ LMAP )

The study in this chapter was based on results which used the MEFNR3 operator.

In the results shown in Chapter 5, this was seen to perform better for a number of

BSSs lower than the UMAP, so there is potential for improvement by using different

operators or a combination of these based on the number of BSSs.

It would be interesting to apply these approaches to some data sets where the

original flight schedules and final real schedules are known, to see if the solutions

obtained by these approaches did cope well with the changes, but unfortunately this

was impossible at the time, given the unavailability of such data. Furthermore, if the

data sets contain the real flight assignments to BSSs on the day of implementation,

then it would be possible to quantify the actual improvement which could have been

achieved by each of the approaches presented in this chapter if they were implemented.

There is a possibility of combining the different approaches, in particular either

ARS or BSARS with UESRS. There is also a question about the preference as to how

these approaches are combined, either as a sum of each individual with the TRS, as

studied in this chapter, or as a product of their individual contributions.

Future work should consider the use of multiple distributions, in general one

per flight, based on the particular characteristics of each flight, such as aircraft type,

airline, destination, route, season etc. This could be applied similarly to generation of

the buffer times. This approach was not used, since such information was unavailable

at the time this study was conducted. It is envisaged that the use of this information

in the PCBG and RNC will improve their performance, and may also be used to

generate the disrupted schedules used to measure the solution quality provided by all

of the approaches, so assisting in the identification of the best approach for use in the

specific problem.



Chapter 7

Airport Gate Assignment

Problem

The constructive and search algorithms in previous chapters are potentially impor-

tant for a wider variety of problems other than the Airport Baggage Sorting Station

Assignment Problem (ABSSAP). By way of illustration, this chapter looks at ap-

plying the same techniques to the widely studied Airport Gate Assignment Problem

(AGAP).

The chapter introduces the AGAP, defines its scope, and presents a mathemati-

cal model to represent it, which is used throughout this and the subsequent chapter.

References to the relevant literature are included and some constructive algorithms

are presented, which are extensions of those provided for the ABSSAP in Chapter

4. Their performance is studied in regard to the different objectives currently used

at London Heathrow airport. The final section of this chapter provides some conclu-

sions. Chapter 8 then considers the application of the evolutionary algorithms to the

problem.

7.1 Overview

Aircraft depart from an airport and arrive at their destination airport, from which

the aircraft may again depart to yet another airport, and this may be repeated many

times a day for each aircraft. During the time between arrival and departure, while

the aircraft is still at the airport, it needs to have a space allocated at a stand on the

airport air-side, where some operations may need to be performed before it is ready

to continue its cycle of departure and arrival. The stands next to the airport gates

are scarce and expensive resources which must be used efficiently and be assigned

183
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to aircraft effectively. The gate assigned to an aircraft arrival may not be the same

as that assigned to the same aircraft for departure, and the intermediate parking

operation if any is required, between arrival and departure assignments may also be

at a different stand. This may either be a remote stand (not a gate) or another gate

depending on the availability of these resources at the time. Aircraft only directly

compete for resources if their stay at the airport overlaps in time.

Given that a gate may be required for up to three different operations, namely

arrival, parking and departure, the number of assignments required may have in-

creased significantly in comparison with those for the ABSSAP. These also increase

the problem complexity and provide more reasons for investigating some metaheuris-

tic approaches, such as the Steady State Evolutionary Algorithm (SSEA) presented

in Chapter 5, which will be adapted to the AGAP in Section 8.2.

With the increase in passenger traffic volumes and number of flights, the complex-

ity of this task and the number of factors to be considered have increased significantly,

and efficient gate utilization has received considerable attention in past years, e.g. Hu

and Di Paolo (2007), Li (2009), Jaehn (2010), Seker and Noyan (2012) and Kim and

Feron (2012).

The AGAP relates to the assignment of stands to flights already scheduled. The

flights have a scheduled arrival and departure time, between which the aircraft is

located on either one or several stands sequentially. The movement of an aircraft

between stands normally requires the use of tugs (towing trucks) which add extra cost

to the aircraft’s operations, which airlines would prefer to avoid whenever possible.

When an aircraft is assigned to different stands in the same arrival/departure period,

to disembark passengers from one stand and embark them on another, then the

aircraft must be moved from its assigned stand to the stand assigned to it next until

it is located on the stand assigned for its departure. This operation may be executed

either by using the aircraft’s engines or by tugs. Given the disadvantages of using

the aircraft’s engines, which have already been discussed in Section 2.3.2, the use of

towing trucks is the preferred alternative to pushback when moving from stands to

the departure gate, or away from the gate ready to join the departure sequencing in

the departure holding areas.

Stands are one of the most important resources available to airlines at an airport.

The effective use of these stands is extremely important when considering operational

costs and passenger satisfaction. However given the different constraints, objectives

and the large number of flights involved in the problem, optimisation of this is excep-

tionally challenging. An introduction to this problem was given in Section 2.4. The
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model is introduced in Section 7.2.

Furthermore, the assignment of flights to gates must consider the interests of the

airport, airlines, handlers, and also take account of passenger satisfaction, at the

same time as the constraints, such as safety, are complied with. These interests are

taken into account by means of objectives which are introduced in Section 7.5. Five

objectives are considered in the study presented in this Chapter: ‘Maximise Number

of Assignments’ (Section 7.5.1), ‘Maximise Airline Preferences’ (Section 7.5.2), ‘Min-

imise Reduction in Service’ (Section 7.5.5), ‘Minimise Number of Towing Operations’

(Section 7.5.3) and ‘Maximise Handler Preferences’ (Section 7.5.4).

The process currently followed at London Heathrow airport incorporates the pref-

erences of airlines and handling agents when assigning flights to stands. The assign-

ment of all flights to available stands is the main objective, given that failure to assign

a flight results in a cancelation, which would mean lost revenue for many of the com-

panies which provide airport services, directly affecting the airport authority, airline

and handling agent. Such failure would also have an indirect effect on the companies

providing services within the terminal building, whose trade is based on passengers

visiting the terminal. The airlines have contracts with handling agents which usually

clearly state the level of service required, which reflect the specific circumstances of

the airline. Airlines normally have a preference for gates located in proximity to the

airline offices and/or resources, so that, for example, staff can attend to their duties

quickly at the stand allocated to their airline flight. Certain areas of the terminal

are frequently reserved for specific airlines, and international and national flights are

usually kept separate, due to differing customs and security regulations. The han-

dling agents would normally prefer all the flights which they have to service to be

physically close to each other, so reducing the time and cost which would otherwise

be incurred if they were far apart. Nevertheless, given the contractual obligations

between the handling agents and the airlines, the airline preferences often prevail,

whereas handling agent preferences may be used to break any tie in consequence of

the airline preference. Both the airline stand preferences and the towing objectives

represent the main airline preferences.

The AGAP model presented in Section 7.2 is different to the ABSSAP model

presented in Chapter 3.3. Some modifications are required in order to use constructive

algorithms similar to those presented in Chapter 4, and which are presented in Section

7.6. The problem data is described in Section 7.7. The results of the experiments

conducted for the constructive algorithms are presented next in Section 7.9, where a

study is also conducted to establish their contribution to each AGAP objective. The



7.2. MODEL 186

final section of this chapter draws some conclusions.

7.2 Model

The model used for the AGAP is based on that proposed in Dorndorf (2002), which

considers the problem as a resource constrained project scheduling problem, originally

presented in Dorndorf et al (2000). Flights serviced by the same aircraft may not

generally be assigned to the same stand, in which case they may need to be moved

to another assigned stand by using tugs, and known as towing, but the use of towing

should be kept to a minimum given the extra cost involved, such as hiring towing

trucks and the increase of ground traffic. If the time for servicing an aircraft between

its arrival and departure is sufficiently long then the aircraft may be assigned to

a parking stand in order to release the stand originally assigned to its arrival. It

is assumed that even if there are insufficient stands at the pier, there are always

sufficient remote stands where the aircraft awaiting departure can be parked. The

aircraft will then be towed to its assigned departure stand, which may not be the

same as that assigned to it on arrival, Figure 7.1. The movement of aircraft around

the airside of the airport terminal potentially poses difficulties, e.g. increasing traffic

on the airport ground side, and always incurs extra costs, such as hiring the towing

machine. To consider these, an objective is introduced into the model with the aim of

reducing the level of unnecessary remote parking, Section 7.5.3. This also penalises

the impact of towing an aircraft from the assigned arrival stand to the remote stand

and finally to the departure stand. The problem is an Activity Assignment Problem

Figure 7.1: Assignment of flights to stands when towing is required.

where the arrival, departure and parking periods of an aircraft at a stand are the

activities and the stands are the resources.

It is anticipated that there will always be sufficient remote parking stands, so there

is unlikely to be a problem in their use, nor as to which stand is used. Furthermore,

given that arrival and departure flights require the extra facilities provided by a gate,
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whereas the parking activity does not, it is preferable to assign the parking activity to

a remote stand if this increases the assignment of more arrival and departure flights

to gates. This may be modelled either by introducing a new objective which takes

this preference into account, or by building it into the model as a hard constraint. In

this thesis the latter approach is used, where parking assignments are restricted to

gates already assigned to arrival or departure flights of the same aircraft or a remote

stand. This prompted modelling the use of a remote stand in a similar fashion to the

dummy, which is equivalent to a stand with unlimited capacity, where assignments

can overlap, but is restricted to intermediate operations such as parking. The service

time must be of at least a specified minimal duration otherwise the remote stand will

not be required, when arrival and departure flights will be treated as one activity.

The current procedure in London Heathrow airport usually involves the assignment

of arrival, parking and departure of the same aircraft to the same gate when the time

between arrival and departure is less than 3 hours.

The model used in the ABSSAP is modified and extended to represent the remote

stand, where i = 0 equates to the dummy stand as used in the ABSSAP, and i = N+1

represents the remote stand, and where N represents the number of real stands at

gates. Where the term remote stand is used, it refers to the dummy remote stand. The

dummy remote stand may also be used solely for parking operations where arrivals

and departures are not permitted by this resource. This means that when a solution

is obtained and the dummy remote stand has been assigned to certain aircraft, then

these aircraft must be assigned to real physical stands whether remote or otherwise.

The main reason for this procedure is to speed up the generation of solutions,

as the algorithm should already be endeavouring to reduce the number of tows (ob-

jective ‘Minimise Number of Towing Operations’ presented in Section 7.5.3), which

includes the reduction of the number of remote assignments. In this representation,

those which are commonly regarded as two different flights, namely the arrival and

departure flights, are considered here to be only one group composed of three op-

erations: arrival, parking and departure, as shown in Figure 7.1. The relationship

between these operations relates to the same aircraft, but may differ in the use of

other resources such as the crew.

7.3 Problem Representation

The problem is presented as an Integer Linear Programming (ILP) with ykij being a

Boolean variable with a value of one if activity k (k ∈ {a, p, d} where ‘a’ corresponds

to the arrival flight, ‘p’ to the parking and ‘d’ to the departure flight activities) of
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group j is assigned to gate i or zero otherwise. The degree of reduction in service

time for the assignment of activity k of flight j is represented by rkj which is deemed

to be calculated in seconds (as an integer). These constants and variables are listed

in Tables 7.1 and 7.2, the full model being presented in the following sections.

In the following sections and Chapter 8 the only case under consideration is that

where the parking of an arriving and/or departing flight may be assigned to the same

stand as the arrival or departure activity, or to the remote dummy stand, Figure 7.2.

a Two towing operations; ya
ij = 1, yp

lj = 1, yd
qj =

1.
b One towing operation; ya

ij = y
p
ij = 1, yd

qj = 1.

c One towing operation; ya
ij = 1, yp

qj = yd
qj = 1. d No towing operations; ya

qj = y
p
qj = yd

qj = 1.

Figure 7.2: Different stand assignments for group j.

It is assumed that aircraft j may be used for three assignments, such that the

model may be expressed as follows: the assignment of aircraft j to stands i, l, and

q is expressed as yaij = 1, yplj = 1 and ydqj = 1 respectively. There are now two new

base service duration constants, one for the flight arriving, T a
j , and the other which

corresponds to the parking base service duration, T p
j , if the corresponding aircraft

were to be assigned to a remote stand. The commencement and completion times

of a parking operation are fixed, based on the values of the departure time edj and

arrival time τaj , given that eaj = τaj + T a
j and τdj = edj − T d

j then τ
p
j = eaj , e

p
j = τdj and

T
p
j = τdj − eaj . The list of constants for this model is shown in Table 7.1 and the list

of decision variables is shown in Table 7.2.

The representation of the AGAP is similar to the ABSSAP presented in Section

3.3. In the AGAP the activity k of group j may take the values a, p or d (Pj = 3)

whereas in the ABSSAP activity p was represented as an integer (1 ≤ p ≤ Pj).

However in the AGAP y refers to aircraft, and there are extra constraints which do not
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Name Description

N The total number of gates under consideration.
M The total number of aircraft to which gates should be allocated.

k The type of operation, arrival, parking or departure, k ∈ {a, p, d}.
Pj The total number of activities associated with aircraft j in a full cycle,

1 ≤ Pj ≤ 3.
T k
j The base service duration for aircraft j and activity k.

Bk
j The desired buffer time for aircraft j and activity k. The parking operation

does not have any buffer time associated with it, i.e. Bp
j = 0.

ekj The end service time for aircraft j and activity k.

τkj The base starting service time for aircraft j and activity k, τkj = ekj − T k
j .

tkj The target starting service time for aircraft j and activity k, tkj = ekj −

T k
j −Bk

j , assuming the full buffer time is available. Whereas T p
j = tdj − eaj

and e
p
j = tdj .

xij Expresses to which stand (i) aircraft j can be assigned, i ∈ (1 . . . N).
xij = 1 if aircraft j can be assigned to stand i, otherwise xij = 0.

Table 7.1: List of the constants and input values for the AGAP model.

Name Description

ykij Specifies the assignment of aircraft to stands. ykij = 1 if gate i ∈ [1 . . . N ] is
allocated to aircraft j ∈ [1 . . .M ] for activity k ∈ {a, p, b}, and 0 otherwise.

rkj Specifies the necessary reduction in service time for activity k of aircraft
j ∈ [1 . . .M ], given the allocated starting service time, skj .

skj The allocated starting service time for activity k{a, p, d} of aircraft j ∈
[1 . . .M ] and given that a gate can only service one aircraft at a time then
skj can be determined from rkj since skj = tkj − rkj and t

p
j = eaj .

Table 7.2: List of the decision variables which are used in this AGAP model.

allow parking activities to be assigned to stands other than the dummy parking stand

(also called the dummy remote stand), or their corresponding arrival and departure

stands. The operations represented by ‘a’, ‘p’ and ‘d’ refer to the arrival, parking and

departure operations respectively of the same aircraft.

7.4 Constraints

7.4.1 Assignment Limits

Each stand can only be used by one aircraft at a time, with the exception of the

dummy stand and the remote dummy stand, Equation 7.1.

N+1∑

i=1

∑

k∈{a,p,d}

ykij = Pj ∀ j ∈ [1 . . .M ] (7.1)
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7.4.2 Assignment Restrictions

Each activity may be only assigned to one stand, Equality 7.2.

N+1∑

i=1

ykij = 1 ∀ j ∈ [1 . . .M ] and k ∈ {a, p, d} (7.2)

The remote dummy stand (i = N +1) is only suitable for parking and not for any

other activity, i.e. arrivals or departures, Equation 7.3.

ya(N+1)j = yd(N+1)j = 0 ∀ j ∈ [1 . . .M ] (7.3)

The dummy stand (i = 0) cannot be assigned to parking activities. The remote

dummy (i = N + 1) allows overlapping activities and always has the capacity to be

assigned to a parking activity, Equation 7.4.

y
p
0j = 0 ∀ j ∈ (1 . . .M) (7.4)

The parking activity may be assigned to the same stand as its associated arrival

or departure activities, Inequality 7.5.

y
p
ij ≤ (yaij + ydij) ∀ i ∈ [1 . . . N ], j ∈ [1 . . .M ] (7.5)

7.4.3 Stand and Aircraft Size Restriction

Each stand has a size code assigned to it which identifies the range of aircraft

assignable to it. The aircraft sizes match those specified by the International Civil

Aviation Organization (ICAO). This constraint is modelled by the constant xij shown

in Table 7.1 (example in Figure 7.3), Inequality 7.6 .

ykij ≤ xij ∀ i ∈ [1 . . . N ], j ∈ [1 . . .M ] and k ∈ {a, p, d} (7.6)

7.4.4 Combining Stands

This section discusses the situation where certain gate assignments may cause block-

ing of neighbouring gates, sometimes described as ‘Shadowing Assignments’. For

example, in some cases two adjacent stands can jointly host a larger aircraft where

they would be unable to do it individually. To represent the combined stand a fic-
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Figure 7.3: Example of two stands (i ∈ {1, 2}) of different sizes and two aircraft
(j ∈ {1, 2}) where aircraft 1 is too large to fit in stand 2 (x21 = 0).

titious stand is postulated which can only be assigned to aircraft larger than the

largest capable of assignment to any of its component stands, Figure 7.4. It does

not make any sense for the combined stand to be assigned to an aircraft which could

also be assigned to any of its component stands. In this case the smaller stands can

accommodate an aircraft each, or the combined fictitious stand may host a larger

aircraft. So for a stand i composed of stands l and r, and an aircraft j if xlj = 1 or

xrj = 1 then xij = 0, whereas if xij = 1 then xlj = xrj = 0. If Oj contains all of the

flights overlapping this flight j then all assignments to stands r, l and i (r∪ l), which

overlap, must comply with Inequalities 7.6 and 7.7.

∑

q,u,v∈Oj∪j

∑

k∈{a,p,d}

(

ykrq + yklu + (2 ∗ ykiv)
)

≤ 2 (7.7)

Based on Inequality 7.6, example in Figure 7.4 provides the following restrictions.

This means that stand 3 occupies the combined space of stands 1 and 2, and aircraft

3 cannot be assigned to either stands 1 or 2 (x13 = x23 = 0), whereas aircraft 1 and

2 cannot be assigned to stand 3 (x31 = x32 = 0), as shown in Table 7.3.

yk11 ≤ x11 = 1 yk12 ≤ x12 = 1 yk13 ≤ x13 = 0
yk21 ≤ x21 = 1 yk22 ≤ x22 = 1 yk23 ≤ x23 = 0
yk31 ≤ x31 = 0 yk32 ≤ x3 2 = 0 yk33 ≤ x33 = 1
k ∈ {a, p, d}

Table 7.3: Valid values for xij and ykij for the example in Fugure 7.4.
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a Stand size restriction matrix. b View of potential stands assignment.

Figure 7.4: Example of two stands (i ∈ {1, 2}) and one combined fictitious stand
(i = 3) for three aircraft (j ∈ {1, 2, 3}) where aircraft 3 is too large to fit in either
stands 1 and 2 but both aircraft 1 and 2 fit any of the stands.

7.5 Objectives

7.5.1 Maximise Number of Assignments

This objective aims to maximise the number of assignments, Formula 7.8, and it is

equivalent to the same objective as defined in the ABSSAP. In airport practice, this

objective would probably be a hard constraint at most times, since all flights would

normally have to be serviced, but it is desirable to observe the performance of the

algorithms when the algorithms are only guided to achieve it and allow for a study

where there are too few gates, as well as when these are sufficient or plentiful.

max
N∑

i=1

M∑

j=1

∑

k∈{a,p,d}

ykij (7.8)

Given that parking is always assured since the parking activity can always be

assigned to the dummy remote stand, then Formula 7.8 is equivalent to Formula 7.9.

max
N∑

i=1

M∑

j=1

∑

k∈{a,d}

ykij (7.9)

The preference for assigning the parking activities to the same stand as one of the

associated arrival or departure flights, is taken account of in the objective ‘Minimise

Number of Towing Operations’ presented in Section 7.5.3.
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7.5.2 Maximise Airline Preferences

Airlines may have some preference as to the gates for assignment to their flight. These

could be based on their position in relation to some of the airline facilities such as

offices or other resources used, for example buses.

To take account of the different airline preferences a list of gates and a weight,

representing the level of preference for the gate, is used. This list could be compiled

based on past historical data of gates assigned to the airline, such that the constant

θαj is 1 when aircraft j belongs to airline α and zero otherwise, and there is a set of

historical flights represented by H. The preference of airline α for stand i may then

be expressed by Equation 7.10, and the objective by Formula 7.11.

δαi =

∑H
j

∑

k∈{a,d} θαj ∗ y
k
ij

∑N
i=1

∑H
j

∑

k∈{a,d} θαj ∗ y
k
ij

(7.10)

max
N∑

i=1

M∑

j=1

∑

k∈{a,d}

∑

α

δαi ∗ y
k
ij (7.11)

7.5.3 Minimise Number of Towing Operations

This objective aims to minimise the number of towing operations required, Formula

7.12. A towing operation is required every time an aircraft changes its location. The

number of towing operations is shown in Figure 7.2.

min
N∑

i=1

M∑

j=1

(

|yaij − y
p
ij |+ |y

d
ij − y

p
ij |
)

(7.12)

7.5.4 Maximise Handler Preferences

Handlers normally provide their services to multiple customers, so one of their pref-

erences may be to concentrate their operations within the minimum number of piers,

considering gates within the same pier to be closer to each other than those in other

piers.

To take account of the preferences of the different handling agents, it is assumed

that fitness increases as the number of assignments to a handler at the same pier

increases.

If ngj is the number of assignments to stands in pier j ∈ [1 . . . J ] for agent g ∈

[1 . . . G], and ng corresponds to the total number of flights serviced by agent g the
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fitness may be calculated by Formula 7.13.

max
G∑

g=1

J∑

j=1

ngj

ng
(7.13)

7.5.5 Robustness

Different methods for increasing robustness exist, similar to the ABSSAP (Section

3.3.4), where the existence of a gap is taken into account. Given that the model always

takes account of the possibility of assigning the parking operation of an aircraft to

a remote stand, which is discouraged, then no buffer time is ever associated with a

remote operation. Moreover, if the parking activity is assigned to the same stand as

the departure activity, then the departure activity will have no reduction in service

where the duration of the parking activity is at least as long as the buffer time

associated with the departure activity.

If an aircraft j does not have an arrival activity (T a
j = Ba

j = 0) then no parking is

considered in the model, which means the base and target service times for the parking

operation are both zero: T
p
j = 0, (note that B

p
j is already zero). The approach

already considers the case where a flight arriving does not have a departing flight

associated with it, i.e. after the aircraft has completed the arrival procedure the

aircraft is required to follow maintenance procedures for which it will be taken to the

appropriate installation to perform any of these necessary maintenance operations.

The robustness approaches used for the AGAP in this thesis are the same as

those introduced in Section 3.3.4 and further extended in Chapter 6 for the ABSSAP.

The robustness approaches are: ‘Distribute Idle Time’ (Section 6.3.2), ‘Reduce Reas-

signment on Disruption’ (Section 6.3.3), ‘Area Reduction in Service’ (Section 6.3.4),

‘Sub-area Reduction in Service’ (Section 6.3.5), ‘Unsupervised Estimated Stochastic

Reduction in Service’ (Section 6.3.6), ‘Reduction in the Number of Conflicts’ (Section

6.3.7) and ‘Probability of Conflicts Based on the Gap’ (Section 6.3.8). The ‘Minimise

Reduction in Service’ requires some changes in order to be applicable to the AGAP

which are described below.

Minimise Reduction in Service

This objective may be expressed by Formula 7.14.

min
M∑

j=1

∑

k∈{a,d}

rkj (7.14)
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The unassigned flights may also be penalised by a cost proportionally higher than

the buffer time. In order to treat all unassigned flights equally, and not discriminate

between them, this extra cost may involve a multiple of the maximum buffer time

for all flights, Formula 7.15 (similar to Section 6.3.1). In this case, given that the

number of assignments is the most important objective, the factor used to multiply

the maximum buffer time should be higher than two, given that this would represent

the buffer time taken by the reduced service incurred when a new assignment is

placed between two consecutive flights. In this case, the buffer times at each end are

removed, Figure 7.5.

min










M∑

j=1

∑

k∈{a,d}

rkj + β ∗
M

max
j=1,k∈{a,d}

(Bk
j ) ∗

M∑

j=1

∑

k∈{a,d}

(

1−
N∑

i=1

ykij

)

︸ ︷︷ ︸

number of unassigned flights










(7.15)

Figure 7.5: Example: two solutions for the same problem with different assignments.

7.6 Constructive Algorithms

The constructive algorithms described here are based on those initially presented in

Chapter 4 for the ABSSAP, and are modified here for application to the AGAP. The

constructive algorithm performances are then studied in Section 7.9 when applied to

some real data sets from London Heathrow airport summarised in Section 7.7.

Algorithm 7 assigns gates to service activities one at a time until no further

assignments are possible. Flights are first grouped, based on a cycle of consecutive

flight arrival, parking and flight departure activities which use the same aircraft. A

parking activity between two consecutive flight arrivals and departures which use

the same aircraft is introduced if the gap between the servicing time of the flight

arriving and the departure time of the departing flight is sufficiently large, London

Heathrow airport considers this should be more than 3 hours. These activities are

then ordered according to one of the activity ordering methods under assessment.
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These are variants of the ordering methods presented in Section 4.2.1 for the ABSSAP,

where the flights refer to the activities requiring service. A set of gates is then selected

according to certain restrictions, which are represented here as Algorithms ‘A’, ‘C’,

and ‘E’. Algorithm ‘A’ corresponds to the most restricted and Algorithm ‘E’ to

one having no restrictions at all, with the remaining approaches lying between these

two. These were all previously presented as ‘Baggage Sorting Station Assignment

Algorithms’ in Section 4.2.2 and the activity preference for a pier is replaced by the

airline preferences, if any exist. A gate is then selected for each activity in turn

from within the set of gates, based on a specific criterion, i.e. Last In First Out

(LIFO), First In First Out (FIFO), ‘Closest’ and random selection. Again these were

initially presented as the ‘Baggage Sorting Station Selections’ in Section 4.2.2 for the

ABSSAP.

Algorithm 7: Constructive Algorithms Overview for the AGAP

Order activities for assignment (Section 4.2.1 for the ABSSAP);
Determine the sets of feasible gates to consider (‘Baggage Sorting Station Assignment
Algorithms’ in Section 4.2.2 for the ABSSAP);
foreach activity do

Select a set;
repeat

if the set of feasible gates is not empty then
Select a gate from the current set based on certain criterion (‘Baggage
Sorting Station Selections’ in Section 4.2.2 for the ABSSAP);
Assign activity to gate;

end

until activity has been assigned OR there are no more sets to choose from;

if activity was not assigned then
if is a parking activity then

Assign to the remote dummy gate;
else

Assign to the dummy;
end

end

end

Thus the assignment process follows these two stages:

1. Generating assignments to gates, Algorithm 7.

2. Each aircraft assigned to the dummy remote stand (parking activity) is then

assigned to a real stand by

(a) First attempting to assign it to an existing gate, although not to a re-

mote one. Note that this may still be possible depending on the type of
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assignment method used.

(b) Otherwise assigning it to a real remote stand.

The procedure currently followed at London Heathrow airport takes no account

of the distance passengers have to walk in order to board their flight and leave the

airport, and only includes the type of flight, i.e. international or domestic, and the

preferences of airlines and handlers. To account for these preferences it is necessary

to implement a different ‘Baggage Sorting Station Selections’ method based on the

‘Closest’ method previously presented for the ABSSAP in Section 4.2.2 which is

described in Section 7.6.1.

Table 7.4 summarises the different elements in the constructive algorithms (Algo-

rithm 7) studied here for the AGAP.

Component Approaches

Activity Ordering Methods Order by Starting Time (OST),
(based on the ‘Flight Ordering Methods’ Order by Departure Time (ODT),
for the ABSSAP, Section 4.2.1) Order by Departure Time Lookahead and Im-

provement (ODTLI),
* departure time is the activity service Order Between Times (OBT) and

end time for the AGAP. Order Between Times Lookahead and Improve-
ment (OBTLI)

Activity Assignment Algorithms ‘E’ (no restriction),
(based on the Assignment Algorithms’ for ‘C’,
the ABSSAP, Section 4.2.2) ‘A’ (most restrictive)

Activity Selections FIFO,
(based on the ‘Baggage Sorting Station LIFO,
Selections’ for the ABSSAP, Section

4.2.2)

‘Airline Preference’ (Section 7.6.1) and
Random

Table 7.4: Summary of the components of the constructive algorithms.

7.6.1 Activity Selections

The Activity Selections is an extension of the ‘Baggage Sorting Station Selections’

presented in Section 4.2.2 for the ABSSAP, where the resources are gates instead

of baggage sorting stations (BSSs). The different selection approaches are FIFO,

LIFO and Random which need no modification for use in the AGAP, and ‘Closest’

which needs to be modified to account for the airline preferences used in this problem.

The modifications necessary to include the airline preferences are described in this

section, which has been named ‘Airline Preference’, and it could similarly be extended

to consider the handler agent preferences.
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In the ‘Airline Preference’ method the gates available for assignment are organised

in decreasing order of preference, which constitutes the set of gates from which to

select the gate for assignment. The gate most strongly preferred is selected from those

in the set. This preference method is useful for meeting the preference objectives

presented in Sections 7.5.2 and 7.5.4. When some gates are equally preferred, a LIFO

or FIFO method is used to break the ties. When LIFO is used it equates to minimising

the number of open gates, whereas FIFO corresponds to maximising the number of

open gates which equates to increasing the fairness, as has also been all seen in Section

4.2.2 for the ABSSAP. This approach may be used to implement selection methods

which account for different preferences, i.e. ‘Airline Preference’ and the ‘Handling

Agent Preference’.

7.7 Problem Data

Long-haul flights have a buffer time of 900 seconds (15 min) and a service time of

2400 seconds (40 min), whereas the other flights have 600 seconds (10 min) and a

service time of 1500 seconds (25 min). The buffer time may only be reduced for

pre-scheduled flights, i.e. no buffer time is considered for the parking activities.

Not every aircraft can be parked at all stands, and a stand code identifies the type

of aircraft which can be parked at a stand. Each code identifies the largest aircraft

which may be parked at the stand. The stand codes at London Heathrow airport are

shown in Table 7.5 and stand codes per gate are presented in Appendix A.1.

Code Comment

F

E3 744 & 773/A346

E2 744 but not 773/A346

E1 772

D (767-300)

D (757)

C (A321)

C (A319)

Table 7.5: Stand codes for London Heathrow airport (provided by BAA).

The representation presented here provides two values for each Lower Maximum

Assignment Point (LMAP) and Upper Maximum Assignment Point (UMAP) for

those occasions when the parking activity is not taken into account and when it is

taken into account respectively. They are named according to occasions when parking



7.7. PROBLEM DATA 199

is not taken into account LMAP, UMAP, and when parking is taken into account

Lower Maximum Assignment Point with Parking (LMAPp) and Upper Maximum

Assignment Point with Parking (UMAPp). These maximum assignment points com-

ply with the Inequalities LMAP ≤ LMAPp and UMAP ≤ UMAPp, given that the

LMAP and UMAP only consider flight arrivals and departures, whereas LMAPp and

UMAPp cover those activities already considered by the LMAP and UMAP together

with the parking activities, potentially requiring extra resources to service them all.

A week’s record of flight assignments to stands was provided by London Heathrow

airport for terminal four, composed of schedules from the 6th to the 12th September

2010 (H4T1009dd). Some details are shown in Table 7.6 which were generated from

the data supplied. Using this data summarised in Table 7.6, tables were generated

showing the preferences of each airline, and these were used in the ‘Maximise Airline

Preferences’ objective, which is described in Section 7.5.2, and shown in Appendix

A.2. Also a table was generated showing the preferences of each handler, which is

used in the ‘Maximise Handler Preferences’ objective described in Section 7.5.4, and

shown in Appendix A.3.

ID Date LMAP UMAP LMAPp UMAPp No.
Activ-
ities

No.
Parking
Activities

H4T100906 6 Sept 2010 8 10 17 19 118 15
H4T100907 7 Sept 2010 11 14 18 20 120 15
H4T100908 8 Sept 2010 7 10 16 18 119 16
H4T100909 9 Sept 2010 8 10 18 20 119 15
H4T100910 10 Sept 2010 9 12 15 18 120 15
H4T100911 11 Sept 2010 9 10 16 16 110 11
H4T100912 12 Sept 2010 11 11 18 19 117 15

Table 7.6: Data set information provided by British Airports Authority (BAA) for
London Heathrow airport Terminal 4.

The topology used for Terminal 4 at London Heathrow airport is shown in Figure

7.6, which is composed of 23 gates and three piers.

The consecutive arrival and departure flights which make use of the same aircraft

are considered a group, and if the times between the consecutive flight arrival and

flight departure for the same aircraft are less than 3 hours then they are considered

as one activity, stretching from the arrival to the departure times, otherwise the

service of each individual flight is considered to be an activity, and a parking activity

links them both (for the time between the completion of the arrival activity and the

commencement of the departure activity).
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Figure 7.6: General view of London Heathrow airport Terminal 4 composed of three
piers.

7.7.1 Generate New Base Schedules

Based on the London Heathrow airport Terminal 4 schedules for 6th to 12th September

2010 and Algorithm 8 new schedules were generated with 37 extra groups, a summary

of which is shown in Table 7.7.

Real schedules for London Heathrow airport Terminal 4 were used, which were

obtained from BAA. The number of flights are lower than for Terminal 1, however,

data for terminals 1, 3 and 5, was not available. Schedules were generated based

on the density of the schedules provided for Terminal 4, to investigate the effect on

busier terminals as described below.

The consecutive flights serviced by the same aircraft are herein called a group,

such that any flight always belongs to a group, although it may be the only flight in

its group. For an original schedule of Go groups, ordered in ascending base starting

time (τj), a set of group lists is generated, each containing all of the groups where the

base starting time is within the same time range (ni). Algorithm 8 was then used to

generate the new schedule.

Experiments were conducted with these new data sets which are studied in Section

8.3.5.
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Algorithm 8: Generation of new scheduled from distribution of groups.

Input: Go groups in the base schedule
Input: ni list of groups with a given base starting time for the original schedule
Input: N number of extra groups, N > 0
Input: rnd random number generator
begin

// Initialise

G← ∅; // empty new group

j = N
|Go|

; // number of full copies of original

n = 0;

// Copy all groups from original schedule

while j ≥ 0 do
// Copy groups from original schedule

forall the go ∈ Go do
g = clone(go); // build copy of original group

G← g ∪G; // add new group to new schedule

end
j = j − 1;
n = n+ 1;

end
N = N − (n− 1) ∗ |Go|; // subtract the number of full copies

// Partial copies

while N > 0 do
// Use roulette wheel to select new group

n = 0; // no copies yet

po = rnd; // probability of being selected

forall the ni do
n = n+ |ni|; // add number of groups in ni

p = n∑
|ni|

; // probability of selecting a group from ni

if po < p then
// Select randomly a group

j = rnd(|ni|); // select randomly a group from ni

go ← Go(ni, j); // get group in ni at j

// Build and add group to new schedule

g = new(go); // build a new group with different aircraft

G← g ∪G; // add new group to new solution

ni ← go\ni; // remove used group from ni

break;

end

end
N = N − 1; // decrease number of groups left to generate

end

return G; // returns the new schedule

end
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ID Date LMAP UMAP LMAPp UMAPp No.
Activ-
ities

No.
Parking
Activi-
ties

N4T100906 6 Sept 2010 17 20 23 26 164 21
N4T100907 7 Sept 2010 21 23 25 28 160 19
N4T100908 8 Sept 2010 18 20 23 25 169 24
N4T100909 9 Sept 2010 21 21 28 28 168 22
N4T100910 10 Sept 2010 19 20 20 21 164 21
N4T100911 11 Sept 2010 19 21 21 21 154 15
N4T100912 12 Sept 2010 19 21 23 24 167 22

Table 7.7: Generated data sets information with an extra 37 groups.

7.8 Fitness

The problem is one of maximisation, where the fitness function is represented as a

weighted sum of the objectives, Formula 7.16, similar to that which was considered for

the ABSSAP in Section 5.7. The Reduction in Service (3rd objective, f3) and Towing

(4th objective, f4) should be minimised (incorporated into the overall weighted fitness

function with negative weights), whereas the other objectives are to be maximised.

Higher values of Reduction in Service and Towing are undesirable.

4∑

i=1

fi ∗Wi (7.16)

The importance of the objectives considered here, based on London Heathrow

airport procedure, is as follows: The highest priority is the ‘Maximise Number of

Assignments’ (Section 7.5.1, first objective is f1), followed by the ‘Maximise Airline

Preferences’ (Section 7.5.2, the second objective arrival f2), the ‘Minimise Reduction

in Service’ (Section 7.5.5, the third f3), the ‘Minimise Number of Towing Operations’

(Section 7.5.3, forth objective f4) and then ‘Maximise Handling Agent Preferences’

(Section 7.5.4, fifth and the final objective f5). The fitness weights for each of the

objectives were deduced based on the maximum and minimum values for the different

objectives of an extra assignment (Table 7.8), which are summarised in Table 7.9.

The weights W1, W2, W3, W4 and W5 are normalised, Equation 7.17. The objec-

tive priorities provide the Inequalities 7.18 and 7.19, where Inequality 7.18 states the

order of importance of all the objectives, and Inequality 7.19 states that the first ob-

jective is more important than the combined contributions of the reduction in service
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Objective Increment
Limit values
Min. Max.

‘Maximise Number of Assignments’ ∆f1 0 1
‘Maximise Airline Preferences’ ∆f2 0 1
‘Minimise Reduction in Service’ ∆f3 −2 ∗maxNj=1 Bj 0

‘Minimise Number of Towing Operations’ ∆f4 -3 0
‘Maximise Handling Agent Preferences’ ∆f5 0 1

Table 7.8: Changes in objectives (‘fitness’) for an extra assignment.

and towing objectives for a change in the assignments.

√

W 2
1 +W 2

2 +W 2
3 +W 2

4 +W 2
5 = 1 (7.17)

f2 ∗W1 > f2 ∗W2 > −f3 ∗W3 > −f4 ∗W4 > f5 ∗W5 (7.18)

f1 ∗W1 > −f3 ∗W3 − f4 ∗W4 (7.19)

These inequalities are used to assist in finding appropriate weights. Thus in the

case of an extra assignment, the contribution to the first objective is equal to 1; for the

second objective the minimum contribution to the airline preference is zero and the

maximum is no greater than one; for the third objective the greater effect is equivalent

to twice the maximum buffer time as a consequence of adding the new assignment

tied between two previously assigned flights, as shown in Figure 7.5. Regarding the

next objective, the maximum effect would be to increase towing by a multiplier of

three, as a consequence of the flight being assigned to a stand to which a parking

activity is already assigned, and which parking activity will then be moved to the

remote dummy stand. Finally, the last objective makes a minimum contribution to

the handling agent preference of zero and a maximum contribution no greater than

one.

Thus when an extra assignment is achieved, the maximum change in the first

objective (∆f1) corresponds to one, and for the second objective (∆f2) is 1 with

0 as a minimum, and for the third objective (∆f3) is −2 ∗ maxNj=1(Bj) (maximum

reduction in service between two flights assigned to the same gate). The change in

the forth objective (∆f4) is −3 which corresponds to two when the new assignment is

between two flights using the same aircraft, and their intermediate assignment must

be assigned to the parking dummy stand. One unit more, making it three, is for the

flight’s own parking assignment to the remote dummy stand. Finally the variation

in maximisation of the handler agent preference, the fifth objective (∆f5), is 1 with

0 as a minimum.
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If it is assumed that the reduction in service should also be applied to unassigned

activities, Formula 7.15, then Inequality 7.19 converts to f1 ∗W1 > −f4 ∗W4. If it

is assumed all the contributions are the same as the maximum for one assignment

of the reduction in service, approximating all the weights to that for W3 and using

Inequality 7.18 then |w3| < 3.149 ∗ 10−4. So taking a W3 = −0.00025, provides a

|W4| <
2∗900

3 ∗2.5 10−4 = 0.15 =⇒W4 = −0.11, with W5 < 1800∗0.00025 = 0.45 and

W5 < −3 ∗W4 = 0.33 =⇒ W5 = 0.25 and W2 > 1800 ∗ 2.5e−4 = 0.4 =⇒ W2 = 0.6.

By using the normalisation Equation 7.17 then W1 = 0.75193. The choice of a high

value for W2 reflects the importance of airline preferences. The weight values are

summarised in Table 7.9.

Weight W1 W2 W3 W4 W5

Value 0.75193 0.6 -0.00025 -0.11 0.25

Table 7.9: List of weights.

7.9 Results of the Constructive Algorithms

Given that the number of gates, N = 23 from Table 7.6, is greater than the UMAPp,

it follows that there are sufficient gates to accommodate all of the arrivals, park-

ing and departures without the need to reduce their service time, which meets the

third objective. This may, however, be detrimental to the second objective ‘Airline

Preference’, mainly when the selection method used does not take account of this

objective.

The results when reduction in service is permitted for the different objectives

and Algorithms (‘A’, ‘C’ and ‘E’) with selection methods (FIFO, LIFO, ‘Airline

Preference’ and Random) for OST and the data sets in Table 7.6 are shown in Figures

7.7, 7.8 and C.1. In the figures a grey arrow with the word ‘Better’ shows the direction

of better values.

Figure 7.7 shows the ‘Maximise Number of Assignments’ objective (x-axis) for

the different data sets (y-axis, Table 7.6), where a dashed grey line represents both

the total number of flights which require a gate (lower line) and the total number

of activities (which includes the parking activities, upper line). It is shown that

only Algorithm ‘E’ achieved full assignment of all activities for the selection methods

LIFO and ‘Airline Preference’, where lines overlap with those for the total number of

activities. The ‘Airline Preference’ selection method, which was described in Section

7.6.1, will then try to concentrate the assignments within a group of gates, as the
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LIFO selection method does. The selection method LIFO only assigns an activity to

a gate which does not already have an assignment whereby it cannot be assigned to

the gates which do already have activities assigned to them. As was seen in Chapter

4, such a characteristic helps to achieve a greater number of assignments. However,

the restrictions provided by the other algorithms, ‘C’ and ‘A’, are shown to have a

detrimental effect, as they tend to spread the assignments. Given that maximising

the number of assignments is the most important objective, then when a fast solution

is required either of the selection methods ‘Airline Preferences’ or LIFO without

restriction should be used when there is a plentiful number of gates.

The first column in Figure 7.8 shows the results for the ‘Maximise Airline Pref-

erences’ objective (Section 7.5.2) for the different selection methods considered. As

expected, the selection method ‘Airline Preferences’ together with the Algorithm ‘E’

performs best, but deteriorates when extra restrictions are introduced, such as those

provided by the Algorithms ‘C’ and ‘A’. Neither selection method LIFO or FIFO

show any particular characteristic which makes one better than the other for Algo-

rithm ‘E’.

The second column in Figure 7.8 shows the ‘Minimise Reduction in Service Time’

objective (Section 7.5.5) which shows that all the selection methods, with the excep-

tion of random selection, perform well, especially ‘Airline Preferences’ and LIFO for

Algorithm ‘E’. Given that the number of gates is higher than the UMAPp, assignment

of all the activities without reducing the buffer time is achievable, such as is shown for

both the ‘Airline Preferences’ and LIFO selection methods for Algorithm ‘E’. Once

again the introduction of restrictions (Algorithms ‘A’ and ‘C’) is detrimental to the

‘Minimise Reduction in Service Time’ objective.

Regarding the ‘Minimise Number of Towing Operations’ objective (Section 7.5.3),

results which are shown in the first column in Figure C.1, the increase in the selection

restrictions, represented by the selection methods ‘C’ and ‘A’, reduce the number of

towing operation required. This is a consequence of reducing the number of gates

between which activities are assigned, which in turn is based on the airline preferences

implemented within the selection methods ‘C’ and ‘A’, so increasing the chance of

assigning a parking activity to the same gate as both its flight arrival or departure.

Nevertheless, the ‘Airline Preference’ selection method with no restrictions achieves

the lowest towing as expected.

FIFO does not manage to assign all the activities to gates and archives no towing

for all the data sets but H4T100906 (6th Sept 2010). This means that all the parking
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Figure 7.7: Comparison of results for the first objective for the OST ordering method,
the four selection methods and three assignment algorithms, for 3-pier and 23 stands.
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Figure 7.8: Comparison of results for the second and third objectives for the OST ordering method, the four selection methods and
three assignment algorithms, for 3-pier and 23 stands.
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activities are assigned to the same gate as their arrival and departure flights. So the

activities unassigned correspond to groups without parking activity (full service time

no longer than 3 hours). This means that the FIFO ordering method does not achieve

full flight assignment, the first and most important objective. This solution is not

desirable, since those unassigned flights will have to be cancelled.

The ODTLI does not perform as well as OST for those data sets considered where

there are sufficient gates to which all the activities may be assigned (including parking

activities, UMAPp ≤ N), as shown in Appendix C.1.

As has been shown previously in Section 4.4.1 in the ABSSAP, it appears that

OST’s preference for assigning first those activities having long service times allows

more assignments to be achieved. It therefore follows that activities requiring a

shorter service time, when assigned at a later stage, will be more likely to find gates

with gaps between assignments large enough to allow for another assignment. OST

would be preferable to ODT and ODTLI, where a better solution is required quickly,

but they may all be used to provide diverse initial solutions to a population based

algorithm in which diversity enhances the algorithm performance as happens in the

Evolutionary Algorithm (EA) originally introduced in Chapter 5 for the ABSSAP

and adapted to the AGAP in Chapter 8.

7.10 Conclusions

This chapter provided a view of the AGAP, and presents both the model used to-

gether with some constructive algorithms. Both model and constructive algorithms

are produced by modifying those presented in previous chapters for the ABSSAP, and

are based on the specific characteristics of the problem. It has been shown that the

potential of these constructive algorithms, presented in Chapter 4, may have their use

extended by modifying them so that they can be applied to another problem, such

as the AGAP.

The different constructive algorithms and their parameters were studied to find

characteristics which may be used to identify the algorithm and the parameters most

appropriate to the AGAP for real data. The ‘Airline Preference’ selection method

has been seen to perform better overall than the other selection methods when taking

account of the objective priorities. On the other hand, LIFO also performs well in

respect of the first and most important objective, but it is not as good as the ‘Airline

Preference’. The introduction of restrictions represented by the Activity Assignment

Algorithms ‘A’ and ‘C’ appears to affect the different selection methods in different

ways, with the three first main objectives deteriorating when the restrictions are
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increased, and improving for the minimisation of the towing and handling agent

preference.

These constructive algorithms are used to generate a population of solutions for

use as initial solutions in the population based algorithms studied in Chapter 8.



Chapter 8

Evolutionary Algorithms for the

Airport Gate Assignment

Problem

The Steady State Evolutionary Algorithm (SSEA) and robustness approaches in pre-

vious chapters are potentially important for a wider variety of problems other than

the Airport Baggage Sorting Station Assignment Problem (ABSSAP). By way of il-

lustration, this chapter looks at applying the SSEA and robustness approaches to the

more widely studied Airport Gate Assignment Problem (AGAP).

The chapter begins with an overall view of the AGAP, Section 8.1, followed by

a description of the modifications required for using some of the metaheuristics pre-

viously presented in Chapter 5, and which are now presented in Section 8.2. The

SSEA is studied next, and compared with the Canonical Genetic Algorithm (CGA)

and Tabu Search (TS) in Section 8.3. Given the importance of assignment perfor-

mance on the day of operation, some robustness approaches, previously presented in

Chapter 6 for the ABSSAP, are modified for use in the AGAP, and are presented

in Section 8.4. These robustness approaches are then studied in Section 8.5 and the

chapter concludes with a summary and some suggestions in Section 8.6.

8.1 Overview

The assignment of gates already scheduled to flights is known as the AGAP and is

one of the most important operations in an airport, having repercussions on many

other resources, such as baggage sorting stations (BSSs) (ABSSAP). A description

of the problem and some constructive algorithms are presented in Chapter 7. The

210
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similarities between the AGAP and the ABSSAP makes particularly interesting to

determine whether the SSEA, previously presented for the ABSSAP and studied in

Chapter 5, is also appropriate for the AGAP. However, the SSEA needs first to be

adapted to the AGAP, Section 8.2, and it is studied in Section 8.3.

When delays, cancellations or early arrivals may cause substantial changes in cur-

rent assignments, it may no longer be feasible to modify the relevant part of the

assignments, since aircraft may already be parked, or a gate assignment may have

been announced to passengers. Some of the changes may incur additional costs, for

example an increase in the towing required and in the inconvenience to passengers

and staff, which has to be balanced against maintaining smooth operations without

causing further flight delays. The different approaches, which take account of poten-

tial disruption on the day of operation, are presented in Section 7.5.5, and studied in

Sections 8.4 and 8.5.

8.2 Steady State Evolutionary Algorithm

In this section the AGAP model presented in Section 7.2 is used in the SSEA origi-

nally presented in Chapter 5 for the ABSSAP. The operators and selectors are those

introduced in Chapter 5 for the ABSSAP, but the resources are now gates instead of

BSSs and only the corresponding constraints and objectives presented in Section 7.2

are applicable. Some modifications are necessary before the SSEA can be applied to

the AGAP, and these are the only ones described in this section. The main intention

is to establish the suitability of the SSEA for the AGAP. Some experiments were

conducted using metaheuristics, the results of which are compared and studied in

Section 8.3, showing that the SSEA also provides good results for the AGAP.

New operators are required to allow the reassignment of parking activities from the

dummy remote stand to a gate. This is not required if the Multi Exchange Mutation

Operators described in Section 5.4 for the ABSSAP are modified, such that their

recovery stage also considers the parking activities assigned to the dummy remote

stand. This removes the need to use tailored mutation operators to assign parking

activities from the dummy remote stand to gates. Some of these tailored operators

are presented in Appendix C.2.

The Dummy Single Move Mutation Operator (DSMMO) originally presented in

Section 5.4.1 for the BSSs, which here moves assignments from the dummy stand to

a gate, is preferred to the Dummy Single Exchange Mutation Operator (DSEMO)

(presented in Section 5.4.1 for the BSSs), which exchanges assignments between the

dummy stand and a gate, where N is greater than or equal to the Lower Maximum
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Assignment Point (LMAP), given that full assignment is achievable, and this operator

helps to achieve it. The DSEMO may also need to execute an exchange, which will not

improve the number of assignments. Nevertheless, in the early iterations, where there

may be many solutions lacking full assignment, these may be forced into assignment

by the use of the DSMMO (N ≥ LMAP). When N < LMAP it is impossible to reach

full assignment, so the DSEMO is preferable to the DSMMO.

Another version of the Multi Exchange Mutation Operators presented in Section

5.4 was therefore generated, whereby the recovery step is extended to cover not only

the unassigned activities from one gate to another, but also all of the parking activities

assigned to the dummy remote stand. To dispense with the need to use any of the

Remote Mutation Operators presented above, the recovery step will always include

the parking activities assigned to the remote dummy, by trying to assign all of the

parking activities assigned to the remote dummy to gates.

The value of the LMAP and Upper Maximum Assignment Point (UMAP) were

calculated on the assumption that all the gates can accommodate any aircraft, but

this is not correct in reality. These values are therefore only used here as a reference

point, since in the model each flight has its own restrictions regarding the gates to

which they can be assigned.

8.3 Results for the Steady State Evolutionary Algorithm

Several experiments were conducted to evaluate the performance of the different op-

erators (Section 8.2) for the problem data presented in Section 7.7. Many results

obtained from the different experiments cannot be said to follow a normal distribu-

tion for a significance level of 0.05, so the t-test for statistical significance cannot be

used and the Mann-Whitney statistical significance test was used instead.

The data sets used in the experiments conducted are presented in Section 7.7,

and a summary is presented in Table 8.1 for convenience. Multiple combinations of

Name Values

Terminal 4

Topology 3-pier

Data sets London Heathrow airport schedules for Terminal 4 shown
in Table 7.6

Fitness weights W1 = 0.75193, W2 = 0.6, W3 = 0.00025, W4 = 0.11 and
W5 = 0.25 (Section 7.8)

Table 8.1: Summary of the general data used in the experiments conducted.
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the parameters used in both the SSEA and the CGA were used, the values for which

are summarised in Table 8.2.

Name Values

Total number of iterations 800,000

Population sizes 5, 10, 15, 30, 50, 100, 200, 500, 1000 and 2000

Iterations in a generation
(ℓ, only for SSEA)

1, 5, 10 and 20

Replacement Strategies ES, SUMS, IS1ES and IS1SUMS (later IS1fES and
IS1fSUMS are used too)

Member Selectors Tournament Selection (described in Section 2.7.1)

Operators

C1P, C2P,
MEFNR2, MEFNR3, MEFNR4, MEFNR5,
IMEFNR2, IMEFNR3, IMEFNR4, IMEFNR5,
RMEFNR2, RMEFNR3, RMEFNR4, RMEFNR5,
IRMEFNR2, IRMEFNR3, IRMEFNR4, IRMEFNR5

Table 8.2: Summary of the algorithm parameters used in the experiments conducted.

The following section looks at the performance of the SSEA for all combinations of

the parameters presented in Tables 8.1 and 8.2, when only one operator is used in each

execution. Experiments were next conducted with various combinations of the same

operators and parameters, which are compared and studied, and a single operator is

used to establish their performance, Section 8.3.2. The results from the experiments

conducted for the SSEA are compared to those obtained from the application of other

metaheuristics, which are then studied in Section 8.3.3. Some experiments were next

conducted to determine the effects of the parking restriction, where a parking activity

may only be assigned to a gate if such a gate is already assigned to either the flight

arrival or departure associated with it, the results of which are presented in Section

8.3.4. Finally in Section 8.3.5 experiments are conducted to study the effect on the

performance of the different operators when the number of flights increases.

8.3.1 Single Operators

In this section the results obtained from the experiments conducted when only one

operator is used per run are presented and studied. The parameters are those sum-

marised in Tables 8.1 and 8.2.

Given that the Multi Exchange Mutation Operators lack the ability to assign

activities from the dummies, thus keeping fitness low, removal of this disadvantage

improves the Multi Exchange Mutation Operator by introducing a recovery stage after

the child solution has been generated whereby unassigned activities (those assigned to
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one of either dummies) are randomly assigned to a gate where possible. This is very

important as it is a constraint on the static problem achieving full assignment, N ≥

LMAP, as presented in Section 7.5.1. As a solution reaches full assignment this extra

step may not be needed, therefore having no detrimental effect on the speed of the

operator. The word ‘Improved’ is added at the beginning of the name of the original

base operators to identify the new operators. This explains the poor fitness results

obtained when the Multi Exchange Mutation Operators were used when compared

with those obtained by their ‘Improved’ version, as shown in Table 8.3. The Improved

Multi Exchange Mutation Operators do not need to be combined with any of the

Dummy operators to allow them to increase the number of assignments to gates.

When studying all of the operators for the SSEA it was found that the population

sizes which provide the best overall performance correspond to small values of between

5 to 15 for the ‘Improved Multiple Exchange Operators’ (Table 8.3) similar as was seen

in the ABSSAP for the ‘Multiple Exchange Operators’, Section 5.7.2. Furthermore,

this also applies to all of the Multi Exchange Mutation Operators examined, as shown

in Tables 8.3 and 8.5. Tables 8.3 and 8.5 only show those replacement strategies and

population sizes that cannot be said to be statistically significantly less fit (Mann-

Whitney test) than any of the other replacement strategies and population sizes for

each of the operators and data sets studied. The population sizes in bold text are

those which can be said to provide significantly statistically fitter solutions in many

more cases than the other combinations considered.

A summary of all of the experiments conducted for the SSEA using different com-

binations of ℓ, operators, selectors and population sizes (Section 7.7) is presented in

Table 8.3, which only shows those combinations which best solution obtained cannot

be said to be significantly statistically less fit than the best solutions obtained for

any of the other combinations. Table 8.3 clearly shows that the Index Selection with

Elitist Selection and a group size of 1 (IS1ES) replacement strategy provides signifi-

cantly statistically better solutions overall, which is similar to the result obtained for

the ABSSAP shown in Section 5.7.4. The only operators covering all of the data sets

studied, where a fitness solution cannot be said to be significantly statistically worse

than the solutions obtained when using any of the other combinations, are:

1. ℓ = 1, IRMEFNR2 and IS1ES and population size of 5

2. ℓ = 5, IRMEFNR2 and IS1ES

Similarly, the good performance of the operator IRMEFRN2 was also seen for

the ABSSAP in Chapter 5 for operator RMEFRN2, particularly where the number
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ℓ Operator Selector
Population sizes

H4T0100906 H4T100907 H4T100908 H4T100909

1
IMEFNR2

IS1ES 5, 10, 15, 30 5 5 5, 10, 15, 30
IS1SUMS 5
SUMS 5, 10, 15, 50, 500 15, 50, 200, 1000

IRMEFNR2 IS1ES 5, 15 5 5 5, 10
RMEFNR2 IS1ES 10

5

IMEFNR2 IS1ES 10 5 5, 15 5, 10
IRMEFNR2 IS1ES 5, 10, 15 5 5, 15 5, 10

MEFNR2
IS1ES 5
SUMS 200

10
IMEFNR2 IS1ES 5, 10, 15 5 5 5, 10
IRMEFNR2 IS1ES 5, 10, 30 10 5, 10 5, 10
MEFNR2 IS1ES 5

20
IMEFNR2 IS1ES 5, 10, 15 10 5, 10
IRMEFNR2 IS1ES 5, 10 10 5, 10 5
MEFNR2 IS1ES 15 10

ℓ Operator Selector
Population sizes

H4T100910 H4T100911 H4T100912

1
IMEFNR2

IS1ES 5 5, 10
SUMS 15, 30, 100, 2000 10, 50, 100, 500, 2000

IRMEFNR2 IS1ES 5, 15 5, 15 5, 10

5
IMEFNR2 IS1ES 5 5
IRMEFNR2 IS1ES 15 5 10

10
IRMEFNR2 IS1ES 5 5, 10
MEFNR2 IS1ES 5

20
IMEFNR2 IS1ES 15
IRMEFNR2 IS1ES 5 5
MEFNR2 IS1ES 10

Table 8.3: SSEAℓ single operators which provide statistically significantly fitter solu-
tions for the data sets from 6th to 12th September 2010, where the ‘Index Selectors’
remove all duplicates.

of BSSs is greater than the UMAP, which also equates here to the data set cases

considered for Terminal 4 at London Heathrow airport.

The ‘Index Selector’ operators remove all solutions having the same fitness, but

which do not have interesting parts useful in future generations. Furthermore, this

also reduces the fitness pressure, since there are fewer solutions with duplicates. This

approach may be too strong so a new version of the Index Selection with Elitist

Selection (ISxES) and Index Selection with Stochastic Universal Modified Sampling

(ISxSUMS) is proposed, whereby duplicates are removed only if the population is

greater than expected. The results, which include the new ‘Index Selector’, are shown

in Table 8.4, where an ‘f’ is inserted in the selector’s name to represent the new ‘Index

Selector’. The performance of both versions of the ‘Index Selector’, with and without

full removal of duplicates, generally appears to be close. The overall approaches

achieving solutions where fitness is no worse than in the other operators in all the

data sets considered are:

1. ℓ = 1, IMEFNR2 and IS1fES
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ℓ Operator Selector
Population sizes

H4T100906 H4T100907 H4T100908 H4T100909

1
IMEFNR2

IS1ES 5 5, 10, 15 5 5, 10, 15
IS1fES 10 10 10 10
SUMS 15, 50 15, 50, 200, 1000

IRMEFNR2
IS1ES 5 5, 10 5 5, 15
IS1fES 10 10, 15

5

IMEFNR2
IS1ES 5 5, 15
IS1fES 5 5, 10 5 5

IRMEFNR2
IS1ES 5 5 5, 15 5
IS1fES 5 5 5

MEFNR2 SUMS 200

10
IMEFNR2

IS1ES 5 10 5
IS1fES 5 10 5, 10 5

IRMEFNR2
IS1ES 5, 10 5, 10
IS1fES 5 5, 10 5

20

IMEFNR2
IS1ES 10, 15 10 5, 10
IS1fES 5 5, 10 5, 10, 15

IRMEFNR2
IS1ES 10 5, 10 5
IS1fES 5

MEFNR2 IS1ES 15

ℓ Operator Selector
Population sizes

H4T100910 H4T100911 H4T100912

1

IMEFNR2
IS1ES 5 5, 10
IS1fES 5 5, 15, 30 5, 10
SUMS 15, 30, 100, 2000 10, 50, 100, 500, 2000

IRMEFNR2
IS1ES 5, 15 5, 10
IS1fES 5 5

IS1fSUMS 5

5
IMEFNR2

IS1ES 5, 10 5 5
IS1fES 5, 10, 15 5, 10, 15

IRMEFNR2
IS1ES 15 5 10
IS1fES 5, 10 5, 15 5

10
IMEFNR2

IS1ES
IS1fES 5 5, 10, 15

IRMEFNR2 IS1ES 5 5, 10
MEFNR2 IS1ES 5

20
IMEFNR2

IS1ES 15
IS1fES 5

IRMEFNR2 IS1ES 5 5
MEFNR2 IS1ES 10

Table 8.4: SSEAℓ single operators which provide statistically significantly fitter solu-
tions for data sets from 6th to 12th September 2010.

2. ℓ = 5, IRMEFNR2, IS1ES and population size of 5

When the new ‘Index Selector’ is used these empirical results show an improvement by

the IMEFNR2 over previous results using a lower number of iterations per generation

(ℓ), which also corresponds to a small increase in search pressure as less fit solutions in

the population have less chance of being selected (the diversity is retained for longer at

a higher ℓ). Whereas, the removal of duplicate solutions by the replacement strategy

equates to an increase in diversity. The new ‘Index Selectors’ were not applied to the

ABSSAP. These results show that the solutions obtained may potentially be improved

when using this selection enhancement in other resource assignment problems, such

as the ABSSAP, especially for data sets where a slight extra increase in the search
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pressure may be advantageous. Furthermore, the ability to activate or deactivate

this characteristic may be beneficial as the search advances, based on the particular

circumstances at each time, such as switching it off later in the search when diversity

has sufficiently decreased in order to slightly reduce the search pressure.

8.3.2 Multiple Operators

In order to establish which operator combinations provide solutions which are statis-

tically significantly fitter than the solutions obtained by single operators, or which

cannot at least be said to be worse, two operator approaches, composed of a crossover

and mutation, are analysed and compared with the single operators for the AGAP. It

emerges that multiple operators do not perform well when compared to single opera-

tors. This may be because the crossover operators cannot provide different solutions,

where the parent solutions selected are identical, which may occur more often at a

later time in the search when the population has lost diversity, such that many more

duplicates and solutions with less differences may exist. To alleviate or remove this

disadvantage, the solution selector should be modified to take account of the oper-

ator characteristics which will be used when selecting solutions to generate a new

solution. Alternatively the crossover operators may be used only early in the search,

where more diversity exists and there are therefore fewer duplicates. Furthermore,

cases may exist where even when the parent solutions are different, the new solutions

are the same as some of the solutions already present in the population. This may,

however, be reduced by increasing the population size and using a replacement strat-

egy which is able to maintain the population diversity for longer, namely Stochastic

Universal Modified Sampling (SUMS) and ISxSUMS.

Furthermore, given the good performance of the mutation operators when used in

the SSEA on their own, some experiments were executed using a ‘Probability Single

Multi Operator’ (Section 5.4.3) with both a crossover operator and a mutation oper-

ator with a probability from 0.1 to 0.9. The solutions obtained by the 0.1 crossover

+ 0.9 mutation were statistically significantly fitter than those obtained by the other

combinations of operators and either of the crossover operators on their own. The

1-point crossover did perform better than the 2-point crossover, which may be at-

tributed in part to the fact that some service periods are very long and the extra

hard constraints, i.e. parking, can only be assigned to a gate which has previously

been assigned to the arrival and/or departure flights of the same aircraft. This may

in turn reduce efficiency when using time regions, as it is more probable that the time

limits of the region fall within those long time services, so reducing the number of
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activities with which to exchange. It also appears that IS1ES and SUMS assist in

reaching fitter solutions.

8.3.3 Other Metaheuristics

Following the results for the SSEA, two other metaheuristics are studied and com-

pared with the proposed SSEA. Firstly, the TS, described in Section 5.5, is considered,

which adds the best solution in each local walk to the tabu list. Table 8.5 shows a

summary of the statistical significance with a significance level of 0.05 for the TS,

where operators provide solutions which cannot be said to be less fit than any of the

solutions obtained by the other operators, and which also cover all of the data sets for

different local walk sizes and tabu list sizes. These empirical results show that the TS

performs better for multi exchange mutation operators with a higher number of gates

between which to exchange assignments, i.e. n = 3, than those seen for the SSEA.

Higher n in the Multi Exchange Mutation operators corresponds to children with a

potentially greater number of differences than their parents, which should mean more

diversity over a longer period.

Algorithm Walk Size Operator
Tabu List Sizes
H4T1009dd

6 7 8 Thur 9

TS
10

IMEFNR3 5 5, 10 5, 15 15
IRMEFNR3 5, 30 15 30 15

30 IRMEFNR3 5, 15 10 5, 15 5, 10, 15, 30

Algorithm Walk Size Operator
Tabu List Sizes
H4T1009dd

10 11 12

TS
10

IMEFNR3 10, 30 10 5, 30
IRMEFNR3 5, 10, 15, 30 10, 15 5, 10, 15, 30

30 IRMEFNR3 5, 10, 15, 30 30 5, 10, 15

Table 8.5: TS summary of statistical significance of fitness with a significance level
of 0.005 and different ‘tabu list’ sizes for the data sets of September 2010.

Several experiments were designed and executed to examine the performance of

the CGA described in Section 2.7 when using the same operators as previously de-

scribed, so this implementation of the CGA does not correspond to the standard

definition of the CGA since it does not make use of a binary representation, and

does not use binary or random mutation operators as classically presented in Hol-

land (1975). Both 1-point and 2-point crossover operators together with one of the

previously described mutation operators were used, with a probability of 0.99 for the

crossover operators and 0.01 for the mutation operators with population sizes of 500,
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1000 and 2000. Also based on the good performance of the mutation operators, some

experiments with a probability of 0.9 crossover and 0.1 mutation were executed to

establish whether a higher percentage of mutation operators was desirable for the

data sets used. These were later extended to include a population size of 400, given

that a number of the experiments provided good results for a population size of 500.

Table 8.6 provides a summary of the results, only showing those operators which

provide solutions which cannot be said to be statistically significantly less fit than any

of the other operators studied for the CGA. A reduction in the preferred population

size can be seen for the combined operators when compared with the single operators

used, as was also previously seen when using SSEA. The solutions obtained by the

probability of 0.9 crossover + 0.1 mutation were significantly statistically fitter than

those obtained by the other combination of operators for the CGA, and cannot be

said to be less fit than those solutions obtained by the alternative operators evaluated.

These results show that a higher participation by mutation operators is advantageous

in this problem.

The 1-point crossover did perform better than the 2-point crossover, which may

partly be attributable to the fact that some service periods are very long and the extra

hard constraints, i.e. assignment of parking activities , may reduce the efficiency when

using time regions. In these cases, it is more probable that the time limits of the region

fall within those long services, thus reducing the number of assigned activities for use

in the children. Table 8.6 only shows combinations of operators with the replacement

Operator
Selector

Population Sizes
H4T1009xx

Crossover
0.9

Mutation
0.1

06 07 08 09 10 11 12

C1P

IMEFNR3 ES 400
and
500

400, 500
and 2000

400
and
500

400, 1000
and 2000

400 and
500

400,
500
and
1000

400,
500,
1000
and
2000

IRMEFNR2 ES 400
and
500

500 and
1000

400 400, 500
and 1000

400, 500
and 2000

400,
2000

2000

MEFNR2 ES 500 400, 500,
1000 and
2000

400,
500
and
2000

400, 500,
1000 and
2000

400,
1000 and
2000

500
and
1000

2000

RMEFNR2 ES 400 400 and
500

400 1000 and
2000

400,
1000 and
2000

1000 400
and
2000

Table 8.6: CGA summary of statistically significant fitness with a significance level of
0.005, 1-point (C1P) and 2-point (C2P) crossover, mutation operators and different
population sizes.



8.3. RESULTS FOR THE STEADY STATE EVOLUTIONARY ALGORITHM 220

strategy Elitist Selection (ES) which indicates that the tendency of the ES in reducing

the diversity, which is normally maintained for longer by the larger population sizes

typically used by crossover operators when used alone, is a beneficial one for the data

sets considered.

8.3.4 No Restrictions on Assigning Parking Activities

Some experiments were also executed when no hard constraint was applied to the

assignment of parking activities, such that they could be assigned to any gate. The

algorithms have been identified by appending an extra character, ’+’, to the name.

The summary Tables 8.7 and 8.8 only show those combinations providing solutions no

less fit than any other solution considered using all of the data sets. Given that both

models with and without the extra parking constraint appear in Table 8.7, then both

models cannot be said to provide statistically significantly worse solutions than the

other. Nevertheless the preferred population sizes for the SSEA and the IRMEFNR2

operator is slightly lower than when the parking hard constraint is in place, whereas

for the crossover the preferred population sizes are also slightly lower.

8.3.5 Generate New Base Schedules

In this section some experiments were designed and executed to evaluate the perfor-

mance of the operators when used in the SSEA for a lower number of available gates

for the number of flights. A set of new schedules was generated based on those already

available from London Heathrow airport Terminal 4 from 6th to 12th September 2010

as described in Section 7.7.1 and summarised in Table 7.7.

The new data sets all have a number of gates (N = 23) larger or equal to the

UMAP, so it should be possible to assign all the flights to gates. However on reviewing

the parking activities there was found to be an insufficient number of gates to which

to assign all of the activities (N < Lower Maximum Assignment Point with Parking

(LMAPp)), with the exception of the first and last data sets. The most difficult data

sets to solve were for H4T100907 with UMAP equal to 23 BSSs, which is also the

number of gates, followed by the H4T100909, which has the highest LMAPp and

Upper Maximum Assignment Point with Parking (UMAPp) as well. Thus all flights

from the sets generated can be assigned to a gate as N ≤ UMAP, which meets one

of the conditions for a real static airport problem.

Experiments using the SSEA were executed for the new base schedules, and a

summary of the results is shown in Table 8.9. The results show an improvement on
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Algorithm Operator Selector
Population Sizes

H4T1009xx
06 07 08 09 10 11 12

CGA
C1P
0.9

IRMEFNR2
0.1 ES

500,
1000

400,
500,
1000

400 400,
500

400,
500,
2000

400,
2000

400,
500,
1000,
2000

MEFNR2
0.1

400,
500,
1000,
2000

400,
500,
1000,
2000

400,
500,
2000

500 1000,
2000

500,
1000

1000,
2000

RMEFNR2
0.1

400,
500

400,
1000,
2000

400 400 400,
1000,
2000

1000 400,
500,
2000

CGA+
C1P
0.9

IMEFNR3
0.1 SUMS

400,
500

400 400 400,
500

400,
500

400 400,
500

IMEFNR3
0.1

400 400 400 400 400,
500

400 400,
500

SSEA 1
IMEFNR2 IS1fES 10 10 10 10 5 5, 15,

30
5, 10

5 IRMEFNR2 IS1ES 5 5 5, 15 5 15 5 10

SSEA+ 1
IMEFNR2

IS1ES

5, 10,
15

5, 10,
15, 30

5, 10,
15,
30

10,
15

10,
15

5, 10 5, 10,
15, 30

IRMEFNR2 5, 10,
15, 30

5, 10,
15, 30

5, 10,
15,
30

30 30 5, 10 5, 10,
15, 30

5
IMEFNR2 5, 10,

15
5, 10,
15, 30

5, 10,
15,
30

30 30 5, 10,
30

5, 10,
15, 30

IRMEFNR2 5, 10,
15, 30

5, 10,
15

5, 10,
15,
30

5,
10,
15,
30

10,
15,
30

30 5, 10,
15, 30

10
IMEFNR2 10, 15,

30
5, 10,
15, 30

5, 10,
15,
30

15,
30

15,
30

5, 10,
15,
30

5, 10,
15, 30

IRMEFNR2 5, 10,
15, 30

5, 10,
15

5, 10,
15

10,
15,
30

10,
15,
30

15 5, 10,
15, 30

20
IMEFNR2 5, 10,

15, 30
5, 10,
15, 30

5, 10,
15,
30

10,
15

10,
15

5, 15 5, 10,
15, 30

IRMEFNR2 5, 10,
15

5, 10,
15

5, 10,
15

30 30 5, 10 5, 10,
15, 30

Table 8.7: Summary of algorithms which provide statistically significantly fitness
solutions for the data sets from 6th to 12th September 2010 and both models.

the solution obtained by the IMEFRN2, IMEFRN3 and IRMEFRN3 as is similarly

seen in Chapter 5 for MEFRN2, MEFRN3 and RMEFRN3 when fewer resources

(BSSs and gates) are available.

Results of the experiments executed for the CGA, different operators and the data

sets generated, are summarised in Table 8.10, which shows a preference for lower pop-

ulation sizes than when used alone in the SSEA, which may be taken as an indication

of the mutation operator’s influence. This also reveals a preference for a lower use

of the crossover operators and a higher use of the mutation operators, indicating
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Algorithm Operator
Tabu List Size

Walk H4T1009xx
Size 06 07 08 09 10 11 12

TS 10
IMEFNR3 5, 10 15 5, 15 5 10, 30 10 15
IRMEFNR3 15 15 30 5, 30 5, 10,

15, 30
10, 15 5

30 IRMEFNR3 10 5, 10,
15, 30

5, 15 5, 15 5, 10,
15, 30

30 5, 15

50 IRMEFNR3 5, 30 5, 15,
30

10 5, 30 5, 10,
15, 30

10, 15 5, 10,
30

TS+ 10
IRMEFNR3 5, 10,

15, 30
5, 10 5, 30 5, 10,

15
10, 30 5, 10,

15, 30
5, 10,
15, 30

IRMEFNR4 5, 10,
15, 30

5, 30 10, 15 5, 15 5, 10,
15

10 5, 15,
30

30
IMEFNR3 5, 10,

15, 30
5, 10,
15, 30

10, 15 30 15, 30 5, 10,
15, 30

5, 10,
15, 30

IRMEFNR4 10, 15,
30

10, 15 5, 30 5, 10,
15, 30

5, 15,
30

10, 15 5, 15,
30

50
IMEFNR3 10, 15,

30
10,
15, 30

5, 10,
15, 30

10, 15 15 10, 15 5, 10,
15, 30

IRMEFNR4 5, 30 5, 10,
15, 30

10, 30 5, 15 5, 15 5, 15,
30

5, 10,
15, 30

Table 8.8: TS with a single operator which provides statistically significantly fitness
solutions for the data sets from 6th to 12th September 2010 and both models.

ℓ Operator
Population Sizes

N4T100906 N4T100907 N4T100908 N4T100909

1

IMEFNR2 5 10, 15, 30 5, 10
IRMEFNR2 3 5, 10
IMEFNR3 5, 10, 30
IRMEFNR3 10, 30

5

IMEFNR2 5, 10, 15 15, 30 5
IRMEFNR2 10, 15 5, 10, 30 5, 10
IMEFNR3 15
IRMEFNR3 5 5, 10

10

IMEFNR2 10, 15 5, 10, 30
IRMEFNR2 10, 15, 30
IMEFNR3 5, 15
IRMEFNR3 5

20

IMEFNR2 5, 10, 15 5, 10 5, 10
IRMEFNR2 5, 10 15
IMEFNR3 5, 15
IRMEFNR3 5

ℓ
Operator

Population Sizes
N4T100910 N4T100911 N4T100912

1
IMEFNR2 5 5, 10 5, 15
IRMEFNR2 5 5 5

5
IMEFNR2 10
IRMEFNR2 5 10 5

10
IMEFNR2 5, 10 10, 15
IRMEFNR2 5

20
IMEFNR2 5
IRMEFNR2 5, 10 5, 15

Table 8.9: SSEAℓ single operator with significantly statistically fitter solutions for
data sets generated from original date sets from 6th to 12th Sept 2010 and 23 gates.

a departure from the general view as to what extent mutation operators should be

used in a CGA, as may also be noted in the results of the real data sets for London
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Operator
Selector

N4T1009xx
Crossover

0.9
Mutation

0.1
06 07 08 09 10 11 12

C1P

IMEFNR2
IS1ES 400,

500,
1000

400, 500 400, 500 400,
500

400,
500

400, 500 400,
500

SUMS 400

IRMEFNR2
IS1ES 400,

500
400, 500,
1000

400 400,
500

400, 500 400,
500

SUMS 400, 500 400, 500 400

IMEFNR3
IS1ES 400 400 400, 500
SUMS 500

IRMEFNR3 IS1ES 400 500 400,
500

400, 500

C2P
IMEFNR2 IS1ES 400, 500 400
IMEFNR3 IS1ES 500
IRMEFNR3 IS1ES 400

Table 8.10: CGA significantly statistically fitter solutions for data sets generated from
original date sets for 6th to 12th September 2010 and 23 gates.

Heathrow airport Terminal 4. The deterioration in the performance of the 2-point

crossover operator may in part be a consequence of the need to identify two cutting

points in time which delimit the time region within which the assignments are copied

from each parent. This, plus the long service time postulated, may excessively reduce

the effective range of assignments from which to copy, thus reducing the operator’s

efficiency. The crossover operator does not consider assignments where the base ser-

vice duration lies between two different time sections from which to copy, and this

situation is more likely to occur in cases of longer base service duration.

8.4 Robustness

The provision of solutions which reduce the potential detrimental effect of perturba-

tions in the resources already assigned on the day of operation is desirable and was

previously studied for the ABSSAP in Chapter 6.

Some approaches attempt to consider potential disruptions at an early stage, so

as to reduce their effect on the day of operation, but at the expense of the optimality,

although this is far from easy, as the perturbations are not known in advance. It

would also be advantageous if the disrupted assignments have no knock-on effect or

if any, only a minor one.

A flight is said to be in conflict if the departure time of the flight is greater than

the arrival time of the next flight at a gate. A situation may arise when reassign-

ing conflicting flights or the subsequent flight to another gate, where the reassigned

flight is interfering with the subsequent flight at the new gate. Thus some reassign-

ments may therefore have a downstream effect on the overall schedule, producing
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more conflicting flights requiring further reassignments, and potentially increasing

the difficulty of the problem at a later stage.

The approaches considered here take account of the potential disruptions on the

day of operation, and are those presented in Chapter 6. The approaches are: To-

tal Reduction in Service Time (TRS) originally described in Section 6.3.1, Area of

Reduction in Service (ARS) described in Section 6.3.4, Sub-Area of Reduction in

Service (SARS) described in Section 6.3.5, Unsupervised Estimated Stochastic Re-

duction in Service (UESRS) described in Section 6.3.6, Reduction in the Number of

Conflicts (RNC) described in Section 6.3.7 and Probability of Conflict Based on the

Gap (PCBG) described in section 6.3.8. Only the TRS have some differences which

are described in Section 8.4.1.

8.4.1 Total Reduction in Service

The arrival and departure flights correspond to the arrival and departure activities

respectively. The time between the scheduled arrival time at the stand and the time at

which the flight is scheduled to leave is called the base service duration. A predefined

period of time, called buffer time, the value of which depends on the flight, is pre-

appended to the flight base starting service time, so that such buffer time may be

reduced to allow other assignments to be placed before this flight, but the base service

duration must not be affected. The use of buffer service time implies a preference

for a greater predetermined service time for each flight, and this buffer time may be

obtained from historical information. A reduction in the buffer time for the arrival

and departure of aircraft j has been named raj and rdj respectively, and the sum of

these constitutes the reduction in service cost, so this objective can be expressed as

−
∑M

j=1

∑a,d
x rxj ∗

∑N
i=1 y

x
ij , which is described in more detail in Section 6.3.1.

If the remote parking activity is assigned to the same stand as the departure

activity, then the reduction in service for the departure flight is zero. This is a

consequence of both activities referring to the same aircraft.

8.5 Robustness Results

In this section some experiments are conducted using the robustness approaches sum-

marised in Section 8.4 for the respective weights shown in Table 8.11.

These weights are smaller than the weights used in the ABSSAP because they

have been normalised, Equation 7.17. The results are summarised in tables which

only show the robustness approaches which, at least in one instance of the disruptions
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Approach Weight Parameters
Name Values

ARS 0.00025 Buffer Time 15 min long-haul and 10 min others

ATRS 0.00025 Buffer Time 15 min long-haul and 10 min others

BSARS 0.00025 Buffer Time 15 min long-haul and 10 min others

PCBG 0.225 and 0.3125 Std. deviation 10, 20 and 30 min

TRS 0.00025 Buffer Time 15 min long-haul and 10 min others

UESRS 0.225 and 0.3125
Estimator Exp 0.03, Exp 0.05, Inverse 6, Inverse 15, Lin-

ear, OffsetInverse 6, OffsetInverse 15, Offset-
Sublinear 0, OffsetSublinear 1000 and Sublinear

Buffer Time 15 min long-haul and 10 min others

Table 8.11: Weights for the different robustness approaches considered with SSEA1.

for a given standard deviation, provide statistically significantly less collisions than

other approaches evaluated, and cannot be said to be statistically worse than any of

the approaches considered. The tables show for each standard deviation the number

of times an approach cannot be said to be statistically significantly worse than any

of the other approaches. The last column provides the sum of each result for each of

the standard deviations. The case where all instances in a given standard deviation

cannot be said to be statistically worse than any other are shown in bold text, and in

underlined text for those cases which provide the highest number of all the approaches

considered.

The results for the different robustness approaches, when applied to the data sets

in Table 7.6 (data sets from British Airports Authority (BAA) for London Heathrow

airport Terminal 4) are summarised in Table 8.12. There is no apparent statistical

difference between them for short disruptions (10 min standard deviation). For longer

disruptions it is the UESRS with exponential unsupervised estimation function with

β = 0.03, weight of 0.3125, with and without TRS approach which performs best

for each of the similar disruptions considered. These results correspond to data sets

where there is a sufficient number of gates for assignment to all of the activities (N <

UMAPp). No general gain is shown by combining the base approach with TRS.

Nevertheless, there seems to be no detriment in combining with TRS either. The

approaches ARS and Base Sub-Area Reduction in Service (BSARS) do not perform

well in any instance when either used alone or combined with TRS, which has also

been observed when the rate of activities per gate increases (Table 8.13). These results

also corroborate those presented in Lim and Wang (2005), namely, when the number

of gates is greater than the UMAP, the exponential unsupervised estimation function

performs better, but only when compared with the other unsupervised estimation

functions.
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Approach
Standard Deviation (x) in min

Total
10 20 30

0.225PCBG(x)+0.00025TRS(2) 7 1 1 9

0.3125PCBG(x)+0.00025TRS(2) 7 1 4 12

0.225PCBG(x) 7 0 2 9

0.3125PCBG(x) 7 1 4 12

0.225UESRS(E0.03)+0.00025TRS(2) 7 4 5 16

0.225UESRS(E0.05)+0.00025TRS(2) 7 1 0 8

0.225UESRS(I4)+0.00025TRS(2) 7 1 0 8

0.225UESRS(I6)+0.00025TRS(2) 7 3 0 10

0.3125UESRS(E0.03)+0.00025TRS(2) 7 6 6 19

0.3125UESRS(E0.05)+0.00025TRS(2) 7 2 2 11

0.3125UESRS(I4)+0.00025TRS(2) 7 3 1 11

0.3125UESRS(I6)+0.00025TRS(2) 7 2 1 10

0.225UESRS(E0.03) 7 5 6 15

0.225UESRS(E0.05) 7 3 1 11

0.225UESRS(I4) 7 1 0 8

0.225UESRS(I6) 7 3 0 10

0.225UESRS(I15) 7 3 3 12

0.3125UESRS(E0.03) 7 6 6 19

0.3125UESRS(I4) 7 1 0 8

0.3125UESRS(I6) 7 3 2 12

0.3125UESRS(I15) 7 6 5 18

Table 8.12: Summary of statistical significance of AGAP robustness (significance level
0.05) using perturbed schedules generated from normal distributions of 10, 20 and 30
min standard deviations (x), data sets H4T1009dd and SSEA1 (Appendix C.2.3).

Table 8.13 shows the summary results for the new data sets with an extra 37

groups for the same number of gates (a summary of data sets is shown in Table 7.7).

These data sets are equivalent to a reduction in the number of gates available per

group, representing more activities for the same number of resources. The UESRS

approaches alone or in combination with TRS still perform well for low disruptions

(particularly with the exponential estimation function with β = 0.05), and is even

better than the PCBG(x), but PCBG(x) subsequently performed better for longer

disruptions. The ARS and BSARS also achieved solutions with statistically signif-

icantly less collisions when they were used together with the TRS (see Chapter 6)

than when used alone, but not when compared to UESRS and PCBG(x).

The empirical results show, when comparing the results of Tables 8.11 and 8.12,

that combining the approaches with TRS helps to reduce the number of collisions

where there is a lower number of gates per activity. These results suggest that when

fewer resources (gates) are available the increase in the influence of the buffer time is

advantageous, given that there is more chance of future disruptions as there is less ‘idle

time’ available for the overall problem. It is therefore anticipated that combining both

UESRS and PCBG(x) with other approaches using the buffer time, such as ARS and
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Approach
Standard Deviation (x) in min

Total
10 20 30

0.225PCBG(x)+0.00025TRS(2) 3 3 5 11

0.3125PCBG(x)+0.00025TRS(2) 2 6 6 14

0.225PCBG(x) 2 4 6 12

0.3125PCBG(x) 3 5 5 13

0.225UESRS(E0.03)+0.00025TRS(2) 5 0 0 5

0.225UESRS(E0.05)+0.00025TRS(2) 6 1 0 7

0.225UESRS(I4)+0.00025TRS(2) 3 0 0 3

0.225UESRS(I6)+0.00025TRS(2) 5 0 5 5

0.3125UESRS(E0.03)+0.00025TRS(2) 6 2 1 9

0.3125UESRS(E0.05)+0.00025TRS(2) 6 4 2 12

0.3125UESRS(I4)+0.00025TRS(2) 5 0 0 5

0.3125UESRS(I6)+0.00025TRS(2) 4 1 0 5

0.225UESRS(E0.03) 3 0 0 3

0.225UESRS(E0.05) 4 1 0 5

0.225UESRS(I4) 4 0 0 4

0.225UESRS(I6) 3 0 0 3

0.225UESRS(I15) 4 1 0 5

0.3125UESRS(E0.03) 5 2 0 7

0.3125UESRS(I4) 5 0 0 5

0.3125UESRS(I6) 4 1 0 5

0.3125UESRS(I15) 3 1 0 4

Table 8.13: Summary of statistical significance of AGAP robustness (significance level
= 0.05) using perturbed schedules generated from normal distributions of 10, 20 and
30 min standard deviations (x) and SSEA1 for new data sets N4T1009dd with 37
extra groups each (Appendix C.3).

BSARS, should also further improve the results. The ARS and BSARS are tailored

to take account of the influence of the flights distribution over time, so increasing the

penalty in periods where there is a higher demand for gates, which the experiments

indicate improves results.

8.6 Conclusions

Different algorithms and their parameters were studied to find characteristics which

could be used to identify the algorithm and parameters most appropriate to the

AGAP. Both the model and algorithms are derived by modifying those presented in

previous chapters, and are based on the specific characteristics of the problem.

These approaches were tested on real data from London Heathrow airport, using

a fitness function composed of the weighted sum of the different real world objectives

currently used in London Heathrow airport. When there were plentiful gates to which

the flights could be assigned, there was little difference between the algorithms studied

(SSEA, CGA and TS) when the same operators were used. Nevertheless, the mutation

operators used are potentially faster than the crossover operators and have been able
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to cover more search space. There is also potential for combining these algorithms

to generate new ones, which may improve the solutions still further. This potential

may also be better fulfilled by combining algorithms with significant differences in

their underlying approach, e.g. SSEA which is a population based approach, and TS

which is an individual approach (local search).

The SSEA has been shown to provide fitter solutions for the Improved Range

Multi Exchange with Fixed Number of Resources with two gates between which

to exchange assignments (IRMEFNR2), and a sufficient number of gates to which

all flights and parking activities can be assigned (N ≥ UMAPp, Upper Maximum

Assignment Point with Parking) with a preference for the IS1ES, and in some cases

also its modified version (IS1fES). As the number of gates in the problem decreases,

both the original and improved Multi Exchange between Fixed Number of Resources

(MEFNRn and IMEFNRn) with a higher ‘n’ (number of gates between which to

exchange assignments), are preferable, as was similarly seen in Chapter 5 for the

ABSSAP.

The TS with Multiple Exchange Mutation operators has been seen to perform

better for a higher number of gates between which to exchange assignments than

the same operators for the SSEA. This is believed to be a consequence of the higher

number of gates between which to exchange assignments extending the search to a

wider area of the search space. This would help to find a better solution, but only

where the extra search space covered is not too wide, since this may also reduce the

effectiveness of the iterations as there is more danger of straying into disinterested

areas of the search space. The SSEA achieves the same, however, partly as a result

of the differences within its population of solutions, so it does not necessarily need

to extend the search further as this may well increase the number of iterations used

to investigate uninteresting areas of the search space. This effect depends on both

the problem under study and the model used in the two algorithms, which have a

direct impact on the shape of the search space, as can be seen when comparing these

results with those obtained for the ABSSAP in Chapter 5. The good performance

of the Multiple Exchange Mutation operators was also seen to extend to the CGA,

where a higher probability of mutation was preferred, which I attribute to the good

results provided by these mutation operators. Nevertheless too high an intervention

by the mutation operators has been seen to be detrimental, perhaps in part due to

the potential disruptive effect of the mutation operators.

It is envisaged that use of the serial crossover presented in Chapter 5 might be

better suited to this problem than the 1-point and 2-point crossover operators studied
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here, given the longer service time required for the combined arrival/departure flights

and parking. In the case of the serial crossover, since cut(s) in the time delimiting

the areas of assignments for copying only affects gates, they are less likely to have

activities between the two intersection sites than in the case of the other crossover

operators used here, which clearly affects activities are copied from each parent.

The time an aircraft expends parked at a gate has a considerable effect on the

operations which take place up-stream in the overall airport operation, especially

when some of the resources required, such as gates, are limited. Delays in starting

the departure sequencing may have important effects on the departure itself, which in

turn may also require other aircraft to extend the time during which they are held at

the gates. This could well affect other flights arriving which have had the same gates

assigned to them. It would be therefore advisable to account for the effect of potential

disturbances in the assignment plan and so some approaches were considered. The

number of conflicts in perturbed schedules were used as a means of comparing the

performance of different approaches. It was concluded that the empirical results

indicate that the PCBG did not provide such good results as the UESRS regarding

those conflicts where there are plentiful gates to which to assign activities. PCBG

performance improved as the number of gates available to service the activities is

reduced. Furthermore, it was noted that the close relationship between the PCBG

approach and the perturbed base schedule used to calculate the conflicts, and which

provides some bias in favour of the PCBG, may be reduced or removed if the buffer

times, considered for the other robustness approaches, are modified accordingly. The

combination of UESRS and PCBG with TRS provides good solutions, and there is

still some potential for combining UESRS and PCBG with other approaches, such as

ARS and BSARS, which take account of other problem characteristics which both

UESRS and PCBG do not, so potentially further improving the robustness of the

solutions reached.

To establish the validity of the model (original model) a different model was also

considered (new model) where the extra constraint for the parking activity does not

exist. The empirical results for the new model when compared with the original

model show that both models find good solutions and it cannot be said that either

is better. Nevertheless the new model performs well in a wider range of parameter

values, making it preferable. However, as the number of parking activities increases,

so the search space also increases. This will increase the time required by the new

model to find good solutions, so the use of the extra constraint (original model) should

reduce the time taken to find good solutions, making it preferable.



Chapter 9

Conclusions and Future

Directions

The main focus of this thesis is on investigation of the Airport Baggage Sorting Sta-

tion Assignment Problem (ABSSAP) using real life examples from London Heathrow

airport. This research was then extended to the Airport Gate Assignment Problem

(AGAP) showing its more general applicability. This involved the analysis of other

approaches previously presented in the AGAP literature, the definition of new ap-

proaches, the investigation of exact approaches, large scale simulations to estimate

the operational performance of the assignments, and rigorous analysis of the results.

The research presented in this thesis was driven by the desire to understand

the ABSSAP, an area of the airport operation left unexamined until now, in order

to provide better solutions, robustness assignments, and to understand better the

influence of expectations, i.e. the interaction and trade-off between the multiple

objectives, the robustness and the characteristics influencing the assignments. The

research included in this thesis has contributed toward a better understanding of the

assignment of baggage sorting stations (BSSs) to flights at a passenger airport, and

the fresh approaches presented here have also been shown to be appropriate for the

AGAP.

The remainder of this chapter summarises the main contributions of this thesis

and draws conclusions from the work presented.
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9.1 Contributions

9.1.1 Constructive Algorithms

Constructive algorithms have been used previously in both the ABSSAP (Abdel-

ghany et al (2006)) and the AGAP (Ding et al (2004)) as feasible initial solutions to

algorithms for solving these problems. Order by Departure Time (ODT) and Order

by Departure Time Lookahead and Improvement (ODTLI) flight ordering methods,

no reduction in service time and assignment algorithm ‘E’ (so that all resources

are considered, rather than only those on the preferred pier) and Last In First Out

(LIFO) ordering, guarantees maximum assignments by minimising the wasted/idle

time between flights, Ding et al (2004) and Cormen et al (2001). However, this does

not consider a variable service time, restrictions, as represented by the assignment

algorithm.

There is an advantage in using longer service times, by adding a buffer time to

the base service duration. The buffer time may be reduced if it helps to increase

the number of assignments, since longer service duration helps to absorb potential

disruptions on the day of operation and ease the workload, so reducing the chance of

mistakes.

A framework for constructive algorithms was presented and used to generate some

specific constructive algorithms tailored to take account of the airport topology and

the position of the BSSs. This framework can easily be applied to generate more

algorithms where other considerations may need to be taken into account such as

alternative grouping strategies, in the same way as when extended for application

to the AGAP in Chapter 7. The constructive algorithms considered take account of

various different conflicting objectives normally present in the ABSSAP and AGAP,

allowing the generation of diverse solutions. They are able to provide high quality

solutions quickly, which may be used as initial solutions in further algorithms such

as exact methods (Branch and Bound (B&B)), and metaheuristics (Tabu Search

(TS), Canonical Genetic Algorithm (CGA) and Steady State Evolutionary Algorithm

(SSEA)). The ability to obtain solutions favouring the different objectives typically

present in some types of problem may be advantageous, particularly in population

based algorithms such as those belonging to the Genetic Algorithms (GAs) group, as

was seen when they were used as initial solutions to different Evolutionary Algorithms

(EAs). The baggage sorting station selection methods Order Between Times (OBT)

and Order Between Times Lookahead and Improvement (OBTLI) group into one the

different constructive algorithms controlled by an extra parameter, which simplifies
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and speeds up the generation of solutions, taking the different objectives into account.

They order the activities based on a point in the activities service time.

A useful contribution has been the identification of two useful points from the flight

density distribution, which measure the number of resources required to achieve a full

assignment of activities, when no buffer time is used and when buffer time cannot be

reduced. These points are the Lower Maximum Assignment Point (LMAP) and the

Upper Maximum Assignment Point (UMAP), respectively. They divide the range

of numbers of BSSs into three zones. The first zone is when there is an insufficient

number of resources to achieve full assignment of activities to resources (a number

of resources lower than the LMAP). The second zone is where there are sufficient

resources but only at the expense of reducing the buffer time (an equal or greater

number of resources than the LMAP but fewer than the UMAP). The third zone

is where there is a sufficient number of resources to achieve full assignment without

the need to reduce the buffer time (the number of resources is greater than or equal

to the UMAP). The reduction in the buffer time corresponds to a decrease in the

robustness of the assignments, which may easily be affected by disruptions on the

day of operation. These points were seen to assist in identifying characteristics of the

different algorithms and their parameters throughout this thesis.

In summation, the constructive algorithms presented provide high quality solu-

tions in a very short time, which have proved useful as initial solutions for some other

algorithms, particularly those which benefit from a population of diverse solutions.

The performance of the constructive algorithms has also been seen to vary depend-

ing on the number of resources available, but their fast generation and fitness make

them particularly interesting as initial solutions, especially in those cases where a

very quick generation of solutions is required in a very short time.

9.1.2 Steady State Evolutionary Algorithm

One of the aims of this thesis was to develop and study algorithms and search op-

erators for use in a decision support tool to assist airport resource managers in the

assignment of flights to BSSs and gates. The SSEA presented in this thesis is, to

the best of the author’s knowledge, a new EA. The SSEA combines a search strategy

with operators and a fitness function, which take account of the different objectives,

such as in the GAs.

However, EAs also use a population of solutions and in the case of GAs a search

strategy based on natural evolution. The new algorithm presented (SSEA) allows the

inclusion in its search strategy of some of the processes used in the classical GAs.
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Whereas in a GA a generation involves all the population of parent solutions and the

children constitute the next population of parents, in the SSEA a generation may

not involve all the population and the children from the previous generation will join

those from which the new population is obtained. Additionally, the operators used

do not necessarily include the crossover operator followed by a mutation, which is

characteristic in GAs. Furthermore, the operators introduced do not make use of

a binary or integer representation of the problem which it is typical of the classical

GAs.

Evolutionary Algorithms are population based search methods which rely on the

population to provide search direction. Genetic diversity is regarded as necessary to

spread the search to other areas of the search space having potential, but eventually

requiring convergence to the optimal or a good solution. The convergence is necessary

but insufficient, since the type and rate of convergence is more likely to be the cause of

failures. Some of the methods to control the diversity and rate of convergence available

within an EA are to vary the number of iterations in a generation, the selection

methods, or the operators which are responsible for finding promising solutions.

It was shown in Section 5 that the SSEA provides fitter solutions than those pro-

vided by other algorithms, such as the CGA and TS, for the ABSSAP and results were

similar when used for the AGAP. The AGAP model used is more restrictive since the

assignment of some activities has extra constraints to be complied with. Furthermore

the real data sets used are composed of fewer flights requiring assignment than those

data sets used for the ABSSAP, which increase the suitability of exact methods such

as B&B. The SSEA was shown in Section 5 to provide fitter solutions than the B&B

when using CPLEX for a wide range of BSSs. It was important to consider which

operators were being used when deciding on the appropriate population size. An

analysis of the performance of different operators when the number of BSSs changes

from few to when there are plentiful was conducted for the SSEA, CGA and TS. This

gives an idea of which operators were preferred, based on the number of BSSs. This

study was later extended to the AGAP to determine the validity of the SSEA and the

performance of these operators. The SSEA not only provides fitter solutions when

run for long time, but fitter solutions are also found in very short run times, which

suggest a potential for use in solving the dynamic problem.

9.1.3 Operators

Some new operators were proposed, which are based on those presented in the AGAP

literature. These operators were also used throughout this thesis in different meta-
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heuristics. They can be grouped into mutation and crossover operators. The prob-

lems considered could be generalised as Activity Assignment Problems, where there

are some resources, e.g. BSSs or gates, and some activities which require servicing by

a resource for a period of time, where some constraints need to be complied with and

compliance with some objectives is desirable. In this thesis the activities are flights

which have already been scheduled and the resources are BSSs for the ABSSAP or

gates for the AGAP.

New mutation operators

Multiple new mutation operators were introduced, which are all local search (guided

mutation) operators, and which generate feasible solutions. They exchange assign-

ments between different resources within a time range, but cannot increase the number

of assignments. These solutions were shown to help the algorithm improve on the

original solutions. Therefore, when used it may be advisable to combine them with

other operators which have the ability to increase the number of assignments, so fur-

ther enhancing the solution provided. An alternative version was that where following

application of the base mutation operator, a recovery stage attempted to assign the

remaining unassigned activities to any of the resources, potentially increasing the

number of activities assigned. This improved version was applied to the AGAP and

performed better than its base version.

It was seen that the solution method tends to benefit from these mutation op-

erators, with a higher number of resources between which to exchange assignments

when there are a low number of resources. These mutation operators are also very

fast and have been shown to provide quick improvements when applied to the prob-

lems studied using the SSEA. This ability is desirable if the algorithm has a limited

time in which to run, as is normally the case for the dynamic problem.

Different implementation of crossover operators

A new implementation of the crossover operators was presented in Section 5.4.2

wherein the cuts in time, from which the assignments are copied from the parent

to the child, are made on each resource. This could be seen as the execution of the

typical crossover on each resource followed by a final recovery stage. These operators

were seen to perform better for very low numbers of BSS in the ABSSAP.



9.1. CONTRIBUTIONS 235

9.1.4 Replacement Strategies

New replacement strategies were presented to improve the performance of some typi-

cal selection methods presented in the literature. It was seen that the Elitist Selection

performed well but showed a tendency to stagnate. Thus a new selection method was

presented to reduce the number of solutions with the same fitness. This was mainly

deduced from the hypothesis that solutions with the same fitness will generally be

very similar, so too many would significantly reduce the diversity and effectiveness

of the population size. This selection method was later extended to examine other

base selection methods as well as the elitist, and also to remove only those solutions

exceeding the population size. These new selection methods improved the solutions

by balancing the need for diversity to extend the search to other areas of the search

space, and the need to converge to optimal or good solutions provided by the search

pressure.

9.1.5 Robust Scheduling

The time during which an activity requires a gate has a considerable effect on the

operations which take place up-stream in the overall operation, especially when some

of the resources required are limited, such as BSSs and gates. Delays in completing

service of an activity may have important effects on the operations which follow. This

could well affect other activities, to which those resources are also assigned. This is

particularly true for the problems studied in this thesis.

Multiple disrupted schedules were used to obtain a measure of the robustness

of all of the robustness approaches considered, the measure itself being the average

number of conflicts a solution has when applied to those disrupted schedules.

Multiple approaches to account for robustness

Multiple approaches were presented and studied which take account of potential dis-

ruptions on the day of operation. It was noticed particularly that the Unsupervised

Estimated Stochastic Reduction in Service (UESRS) provided the best results but

given that these approaches make use of the buffer time it is necessary that the buffer

time reflects the real problem case in order to take full advantage of these approaches,

as discussed in Chapter 6. Further improvement was seen when the UESRS was com-

bined with the Total Reduction in Service Time (TRS) and it is envisaged that this

may be improved even further when combined with the new robustness approaches

introduced in Sections 6.3.4 and 6.3.5, which take account of the time of day by using

the flight density at that time.



9.2. EXTENSIONS AND FUTURE DIRECTIONS 236

Many of the approaches assessed use the idea of introducing buffer times between

two assignments to reduce the chance that disruptions in the system will not require

flights to be reassigned, or where this is necessary the reassignments are kept to

a minimum and ensure that such reassignments do not affect other assignments.

One of these approaches is the TRS, which is the total reduction in the buffer time

between assignments, and which has been seen to perform worse than the other

approaches. However, long gaps between assignments not only reduce the chance of

the assignments being affected by perturbations on the day of operation, but may

also reduce the chance of some reassignments affecting other existing assignments,

since they may be reassigned to these gaps once the gaps are sufficiently long. The

approaches in this thesis which consider the full gap, and in some cases take account of

a buffer time, are the ‘Minimise Reduction in Service Time’ using arctangent (Section

6.3.1), the UESRS (Section 6.3.6), and the Probability of Conflict Based on the Gap

(PCBG) (Section 6.3.8). Furthermore, some experiments using real data from London

Heathrow airport showed in general that the Area of Reduction in Service (ARS)

and the Base Sub-Area Reduction in Service (BSARS) in general when used alone

performed better than TRS, and improved when each was combined with TRS.

New robustness approaches

Many approaches consider the disruption to be independent of the number of assign-

ments required at each time on a given day, but this is not realistic since disruptions

in periods of high activity are more likely to propagate throughout the rest of the day,

with potentially expensive consequences, as shown in Section 6.4.1. This must there-

fore be taken into account when assigning the resources to the activities. Three new

approaches were introduced which take account of these potential future disruptions

in the assignments based on the time of the day, and make use of the flight density

to calculate the cost of disruptions. These approaches were seen to perform better

than the TRS when used alone and further improved the robustness when considered

together with the TRS.

9.2 Extensions and future directions

The empirical investigation in this thesis suggests many possible directions for future

research.
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9.2.1 Model

Dynamically calculate the number of BSSs required to service each flight

The BSSs may not all have the same capacity, so this should be borne in mind when

selecting them. Furthermore, better results and robustness may be obtained if the

number of BSSs required for each flight is not fixed, but depends on the capacity of

the BSSs assigned to each flight and the expected checked-in baggage load on each

occasion. This means that the model not only evaluates the BSSs assigned to each

flight, but decides when each assignment should commence, since they may not all

start at the same time, thus increasing the BSSs availability when servicing other

flights or absorbing disruption on the day of operation. An acceptable assumption

would be that the end of the service time for all BSSs assigned to the same flight will

be the same, since it is anticipated that the volume of checked-in baggage increases

as it nears the check-in desk closing time and the flight departure time.

9.2.2 Evolutionary Algorithm

The results in Chapter 5 demonstrate several areas for improving the solutions.

Approaches to considering the operator preferred population size when

using multiple operators

When using combined operators the different operators’ preferred population sizes

should be taken into account. It may be the case that one of many operators is se-

lected at each iteration, and that each operator may perform well for very different

population sizes. It may not therefore suffice to take a compromised population size

obtained from that of the preferred population size for each of the combined opera-

tors used. It is accordantly suggested that a population size equal to the maximum

preferred size be derived from all the operators considered, and that the member se-

lector takes account of the operator using the selected members to generate the new

solutions.

If the population of parent solutions is ordered using the Index Selection with

Elitist Selection (ISxES) (in descending fitness order), the number of parent solutions

required by the operator are selected from within the first solutions in the population

of parents equal to the population size for that operator. In such an approach, the

solutions within the population may change from one generation to another since new

fitter solutions will be closer to the beginning of the solutions list constituting the

population, irrespective of which operators generated them, so they will also have
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more chance of selection as parents for the next generation.

Study the performance of the Improved Multi Exchange Mutation Oper-

ators for the ABSSAP

The favourable results seen in the improved version of the Multi Exchange Mutation

Operators for the AGAP in Section 8.3 also suggest that this could potentially be used

in the ABSSAP. This would remove the need to combine the base Multi Exchange

Mutation Operators with other operators which allows the number of assignments to

be increased.

Steady State Evolutionary Algorithm with Ageing

The Steady State algorithm includes the population of parent solutions in a gener-

ation of the population derived from that generation, which may potentially reduce

the diversity too much. The population diversity of an EA is an important factor in

the avoidance of premature convergence Michalewicz (1996). An ageing factor may

be incorporated in the individuals which affects their fitness, reducing the effect of

retaining the parents between generations, such that with the same base fitness the

individual of a greater age will have a lower real fitness than a younger one. Alter-

natively, individuals on reaching a certain age could be removed from the population

straight away. This assists in maintaining diversity in the population.

9.2.3 Robustness

Improvement on the robustness by combining different approaches

The combination of the UESRS, specifically with the exponential estimation function,

and one of the new robustness approaches, ARS (Section 6.3.4), BSARS (Section

6.3.5) and Sub-Area of Reduction in Service (SARS) (Section 6.3.5), presented in this

thesis, has the potential to further improve the robustness of the solutions obtained,

as identified in Section 6.4.2.

Improvement of the robustness by using different information to obtain

better buffer times

Further work should consider improving the buffer time used for each flight, and which

may also be different for each of the assignments required by a flight. An analysis of

historical data may be very useful for better identification of good buffer time values.
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Improve the distributions of delays

Future work should consider the use of multiple distributions, in general one per

flight, based on the particular characteristics of each flight, such as aircraft, airline,

destination, route, season, time of the day, etc. This would be particularly interesting

for both the PCBG and Reduction in the Number of Conflicts (RNC) approaches,

which were presented in Chapter 6. This was not used since such information was

not available at the time this study was conducted.
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Appendix A

Data for Heathrow

A.1 Stands

The stand codes at London Heathrow airport are shown in Table 7.5. The stand
codes for Terminal 4 at London Heathrow airport are shown in Table A.1.

Stand Code Pier Full gate ID

01 D(767-300) 1 4101

02 E2 1 4102

03 E2 1 4103

05 F 1 4105

06 F 1 4106

07 E3 2 4207

08 E2 2 4208

09 E2 2 4209

10 E3 2 4210

11 E3 2 4211

12 E2 2 4212

14 E1 2 4214

15 C(A321) 2 4215

16 D(767-300) 2 4216

17 C(A319) 2 4217

19 C(A321) 2 4219

20 C(A321) 2 4220

21 D(767-300) 2 4221

22 E2 3 4322

23 E2 3 4323

24 E2 3 4324

25 E2 3 4325

29 E2 3 4029

Table A.1: Stand codes for London Heathrow airport (LHR) Terminal 4.

From data provided by London Heathrow airport and available maps the stands
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that can accommodate several aircraft are as follow:

1. Terminal 1 In Terminal 1 (T1) piers 4 and 4a seems to be small stands based

Terminal 1

Gate Left side Right side Whole

121 L R W

233 L R W

247 L R W

258 L R

Table A.2: T1 multiple usage stands.

on map from March 2011. Where pier 3 seems to have stand 121 which it
is big enough to accommodate a large aircraft. Finally Europier seems to be
composed just of large stands.

The position of the stands in Table A.2 are not side by side so ‘shadow’ restric-
tions do not apply.

2. Terminal 4: It seems that all Terminal 4 (T4) stands are of the same size,
large. From data provided by London Heathrow airport they are just used by
one flight at a time.

Some other stands that are used are BMA (by T1), BB (by T1, T3 and T5) and NO1
(T1, T3 and T5). It is noted that Terminal 2 was not in operation at the time of this
study.

The percentage of overall flights assigned to each stand, from 6th September 2010
to 12th September 2010 for London Heathrow airport Terminal 4, is show in Figure
A.1.

A.2 Airlines Gate Preferences

2.1 Terminal 4

The Figure A.2 shows the overall number of flights assigned to each gate, to each
airline for the period from 6th September 2010 to 12th September 2010 for London
Heathrow airport Terminal 4.
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Figure A.1: Percentage of assignments per stand at London Heathrow airport Terminal 4.
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Figure A.2: Airlines preference at London Heathrow airport Terminal 4.
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A.3 Handlers Gate Preferences

3.1 Terminal 4

The Figure A.3 shows the overall number of flights assigned to each gate, to each
handler for the period from 6th September 2009 to 12th September 2009 for London
Heathrow airport Terminal 4.

Figure A.3: Handlers preference at London Heathrow airport Terminal 4.



Appendix B

Statistics for the Airport
Baggage Sorting Stations
Assignment Problem

If the data follows a normal distribution the most appropriate statistical significance
corresponds to the t-test, otherwise the Mann-Whitney U test is used. Razali and
Wah (2011) compared some normality tests and concluded that Shapiro-Wilk is the
most powerful normality test. So Shapiro-Wilk normality test is used when it is
required to determine whether the data can be said to follow a normal distribution,
such that the appropriate statistical significance test is used.

The following contractions are used.

1. NE corresponds to not equal

2. LT corresponds to less than

3. GT corresponds to greater than

The value between brackets is the significance probability, e.g. ”NE (1)” indicates
that both cannot be said to be different. The significance probability is specified from
1 (100%) to 0 (0%) with the precision set to four decimals.

B.1 Constructive Algorithms

This section presents the statistical significance test conducted for the data sets ob-
tained from the British Airports Authority (BAA)’s website composed of 142 flights
for 16th December 2009 and 270 flights for 1st March 2010 for a 3-pier topology and 48
gates, given that they do not contain information regarding the assignment of gates
to flights. This was not required for the data sets provided by NATS as they contain
the assignment of each flight to a gate.

Two more Baggage Sorting Station Assignment Algorithms (BSSAAs) are con-
sidered: ‘B’ and ‘D’ which are presented below.

259
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Algorithm ‘B’: Baggage Sorting Station Assignment Algorithm ‘B’

begin
Order all flights based on the current flight choice algorithm (Section 4.2.1);
forall the flights do

if a feasible baggage sorting station exists on the flight’s own pier then
Select a baggage sorting station using the selection algorithm;

else if a feasible baggage sorting station exists in the airport then
Select a baggage sorting station using the selection algorithm;

end

end
forall the unassigned flights do

Reduce the flight service time by the maximum reduction allowed;
if a feasible baggage sorting station exists on the flight’s own pier then

Select a baggage sorting station using the selection algorithm;
else if a feasible baggage sorting station exists in the airport then

Select a baggage sorting station using the selection algorithm;
else

Assign the flight to the dummy baggage sorting station;
end

end

end

Algorithm ‘D’: Baggage Sorting Station Assignment Algorithm ‘D’

begin
Order all flights based on the current flight choice algorithm (Section 4.2.1);
forall the flights do

if a feasible baggage sorting station exists on the flight’s own pier then
Select a baggage sorting station using the selection algorithm;

else if a feasible baggage sorting station exists in the airport then
Select a baggage sorting station using the selection algorithm;

else
Reduce the flight service time by the maximum reduction allowed;
if a feasible baggage sorting station exists on the flight’s own pier then

Select a baggage sorting station using the selection algorithm;
else

Reduce the flight service time by the maximum reduction allowed;
if a feasible baggage sorting station exists in the airport then

Select a baggage sorting station using the selection algorithm;
else

Assign the flight to the dummy baggage sorting station;
end

end

end

end

end

The BSSAA considered are: ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. The Baggage Sorting Sta-
tion Selection Methods (BSSSM), which are presented in Section 4.1, and considered
here are: ODT, ODTLI and Order by Starting Time (OST).
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Algorithm
42

Max Min Mean Std p

ODT

A
Closest 115.00 108.00 112.93 1.27 0.0006
FIFO 115.00 108.00 112.04 1.24 0.0022
LIFO 115.00 115.00 115.00 0.00 NA

E
Closest 115.00 115.00 115.00 0.00 NA
FIFO 115.00 115.00 115.00 0.00 NA
LIFO 115.00 109.00 113.07 1.17 0.0001

Algorithm
48

Max Min Mean Std p

ODT

A
Closest 125.00 119.00 122.66 1.22 0.0164
FIFO 123.00 117.00 120.32 1.13 0.0093
LIFO 125.00 119.00 122.94 1.29 0.0343

E
Closest 125.00 124.00 124.92 0.27 NA
FIFO 121.00 121.00 121.00 0.00 NA
LIFO 125.00 125.00 125.00 0.00 NA

Algorithm
54

Max Min Mean Std p

ODT

A
Closest 133.00 127.00 130.41 1.48 0.0090
FIFO 130.00 124.00 126.99 1.16 0.0022
LIFO 134.00 127.00 131.08 1.56 0.0063

E
Closest 133.00 130.00 131.78 0.83 0.0102
FIFO 127.00 127.00 127.00 0.00 NA
LIFO 133.00 133.00 133.00 0.00 NA

Algorithm
60

Max Min Mean Std p

ODT

A
Closest 140.00 133.00 136.92 1.56 0.0094
FIFO 136.00 128.00 132.51 1.31 0.0148
LIFO 141.00 133.00 137.85 1.64 0.0009

E
Closest 141.00 136.0000 139.21 0.96 0.0022
FIFO 133.00 133.00 133.00 0.00 NA
LIFO 142.00 142.00 142.00 0.00 NA

Algorithm
84

Max Min Mean Std p

ODT

A
Closest 142.00 142.00 142.00 0.00 NA
FIFO 142.00 140.00 141.74 0.54 0.0119
LIFO 142.00 142.00 142.00 0.00 NA

E
Closest 142.00 142.00 142.00 0.00 NA
FIFO 142.00 142.00 142.00 0.00 NA
LIFO 142.00 142.00 142.00 0.00 NA

Table B.1: Results of the Shapiro-Wilk normality tests.

‘Closest Min Open’ is a version of the ‘Closest’ which uses LIFO to select between
different BSSs with the same distance.

The flights for each data set (from the BAA’s website) were assigned to gates, 100
times per data set, using a random constructive algorithm without any restriction
(‘A’ Baggage Sorting Station Assignment Algorithm). The Shapiro-Wilk normality
test was run using these new sets of data, the results of which are shown in Tables
B.1, indicating that the data cannot be said to follow a normal distribution. So the
Mann-Whitney U test was adopted with an alpha level of 5% to obtain the statistical
significant of the number of assignments obtained by the constructive algorithms
which are presented in the following sections. Many of the results for a higher number
of BSSs have a zero standard deviation, which is a clear indication that they cannot
be said to be normally distributed. The Shapiro-Wilk normality test cannot therefore
be applied (represented by ‘NA’).
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B.1.1 Without Reduction in Service Extra Results

Data Set for 142 flights

Constructive algorithms results for data set with 142 flights, Tables B.2, B.3 and B.4.

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.2146/0.7853 GT (0.0037) GT (0.0000) 0.541/0.459 GT (0.0477) GT (0.0226)
54 GT (0.0095) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
72 0.0765/0.9235 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0011) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0047) GT (0.002) GT (0.0000) 0.4988/0.4988 GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) 0.4992/0.4992 GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0222) GT (0.0000)
78 GT (0.0000) GT (0.0414) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0011)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0414) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.2: ODTLI and ODT for 142 flights.
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‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0006) 0.9463/0.0537 GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0023) LT (0.0000) LT (0.0000) GT (0.0000) 0.5339/0.4661 LT (0.0000)
60 GT (0.0000) LT (0.0000) LT (0.0000) 0.7253/0.2747 LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0057) LT (0.0000) LT (0.0000)
72 LT (0.0268) LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0000) LT (0.0000)
78 GT (0.0000) LT (0.0011) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0066) LT (0.0000) LT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0001) LT (0.0000) LT (0.0000)
72 GT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0222) LT (0.0000)
78 GT (0.0000) LT (0.0414) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0011)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0000) LT (0.0000)
72 GT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0000)
78 GT (0.0000) LT (0.0414) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0000)

Table B.3: ODT and OST for 142 flights.

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0008) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0255) LT (0.0002) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.005) LT (0.0000) LT (0.0000) 0.7253/0.2747 LT (0.006) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) 0.9943/

0.0057
LT (0.0000) LT (0.0000)

72 0.7211/0.2789 LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0037) LT (0.0000)
78 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0066)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0066) LT (0.0000) LT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0001) LT (0.0000) LT (0.0000)
72 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) 0.8389/0.1611 GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.4: ODTLI and OST for 142 flights.
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Data Set for 270 flights

Constructive algorithms results for data set with 270 flights, Figure B.1 and Tables
B.5, B.6 and B.7.

Figure B.1: Assignments to Terminal 1, BAA’s website of 270 flights with LIFO and
OST.

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0316) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
54 GT (0.0056) GT (0.0000) GT (0.0000) 0.6299/0.3701 GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) 0.1611/0.8389
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0121) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0012) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0032) GT (0.0000)
54 GT (0.0059) GT (0.0000) GT (0.0000) 0.4986/0.4986 GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) 0.0792/0.9208
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.5: ODTLI and ODT for 270 flights.
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‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) 0.9123/0.0877 LT (0.0000) LT (0.0000)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0000)
66 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) 0.8389/0.1611
72 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) LT (0.0120) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0222) LT (0.0000) LT (0.0000)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) 0.9208/0.0792
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0000) LT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0000)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.6: ODT and OST for 270 flights.

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 LT (0.0119) LT (0.0013) LT (0.0000) LT (0.0499) LT (0.0028) LT (0.0000)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) 0.4972/0.497
66 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 LT (0.0011) LT (0.0003) LT (0.0000) LT (0.0222) LT (0.0020) LT (0.0000)
60 GT (0.0000) GT (0.0000) 0.8389/0.1611 GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.7: ODTLI and OST for 270 flights.
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B.1.2 With Reduction in Service Extra Results

Data Sets provided by NATS

Some extra results for the data sets provided by NATS when using the constructive
algorithms with reduction in service and 3-pier topology (Section 4.4.1), Figures B.2,
B.3 and B.4.

Figure B.2: Assignments to Terminal 1, with reduction of 163 flights and Closest.

Figure B.3: Assignments to Terminal 1, with reduction of 163 flights and FIFO.
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Figure B.4: Assignments to Terminal 1, with reduction of 219 flights and LIFO.
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Data Sets for 142 flights

Constructive algorithms results for data set with 142 flights, Tables B.8, B.9 and
B.10.

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.1581/0.8419 GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0239) GT (0.0001)
54 0.0598/0.9402 GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0040) GT (0.0000)
60 GT (0.0462) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0016) GT (0.0000)
66 GT (0.0359) GT (0.0000) GT (0.0000) 0.4992/0.4992 GT (0.0093) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) 0.162/0.838 GT (0.0046)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘B’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0056) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
66 GT (0.0385) GT (0.0000) GT (0.0000) 0.4972/0.4972 GT (0.0016) GT (0.0000)
72 GT (0.0000) GT (0.0011) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0121)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.2418/0.7582 GT (0.0000) GT (0.0000) 0.4993/0.4993 GT (0.0165) GT (0.0000)
54 GT (0.0397) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0038) GT (0.0000)
60 GT (0.0283) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0001) GT (0.0000)
66 GT (0.0228) GT (0.0000) GT (0.0000) 0.4984/0.4984 0.0613/0.9387 GT (0.0000)
72 GT (0.0000) GT (0.0414) GT (0.0000) GT (0.0000) GT (0.0000) 0.1611/0.8389
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘D’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0263) GT (0.0000) GT (0.0000) 0.4972/0.4972 GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) 0.4994/0.4994 GT (0.0000) GT (0.0000)
60 GT (0.0016) GT (0.0000) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
66 0.0767/0.9233 GT (0.0000) GT (0.0000) 0.4972/0.4972 GT (0.0153) GT (0.0000)
72 GT (0.0000) GT (0.0121) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0414)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0020) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0011) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0121) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.8: ODTLI and ODT for 142 flights.
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‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) 0.5281/0.4719 LT (0.0000) GT (0.0000) GT (0.0000) 0.1510/0.8490
60 LT (0.0049) LT (0.0000) LT (0.0000) 0.6765/0.3235 LT (0.0000) LT (0.0000)
66 LT (0.0018) LT (0.0000) LT (0.0000) 0.9251/0.0748 LT (0.0000) LT (0.0000)
72 GT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) 0.8389/0.1611 LT (0.0001)
78 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘B’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) 0.8959/0.1041
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0001) LT (0.0000) LT (0.0000) 0.8389/0.1611 LT (0.0000) LT (0.0000)
72 GT (0.0000) LT (0.0011) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0121)
78 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0006) LT (0.0000) LT (0.0000) LT (0.0414) LT (0.0020) LT (0.0000)
72 GT (0.0000) LT (0.0414) LT (0.0000) GT (0.0000) GT (0.0000) 0.8389/0.1611
78 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘D’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0011) LT (0.0000) LT (0.0000) 0.8389/0.1611 LT (0.0011) LT (0.0000)
72 GT (0.0000) LT (0.0121) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0414)
78 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0011) LT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0121) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.9: ODT and OST for 142 flights.



B.1. CONSTRUCTIVE ALGORITHMS 270

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0025) GT (0.0000) GT (0.0000) GT (0.0000)
60 0.8593/0.1407 LT (0.0002) LT (0.0000) 0.6765/0.3235 0.8917/0.1083 LT (0.0454)
66 0.8856/0.1144 LT (0.0000) LT (0.0000) 0.9251/0.0749 LT (0.0027) LT (0.0144)
72 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0414)
78 GT (0.0000) GT (0.0000) LT (0.0020) GT (0.0000) GT (0.0000) GT (0.0000)

‘B’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0003) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0121) LT (0.0000) LT (0.0000) 0.8389/0.1611 0.9208/0.0792 LT (0.0000)
72 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0414) LT (0.0000) LT (0.0000) LT (0.0414) LT (0.0414) LT (0.0000)
72 GT (0.0000) GT (0.0000) LT (0.0006) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘D’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0222) LT (0.0000) LT (0.0000) 0.8389/0.1611 0.9208/0.0792 LT (0.0000)
72 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.10: ODTLI and OST for 142 flights.
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B.1.3 Data Sets for 270 flights

Constructive algorithms results for data set with 270 flights, Tables B.11, B.12 and
B.13.

‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.1495/0.8505 GT (0.0463) GT (0.0000) 0.4995/0.4995 GT (0.0000) GT (0.0000)
54 GT (0.0495) GT (0.0144) GT (0.0000) LT (0.0000) GT (0.0277) GT (0.0008)
60 LT (0.0000) LT (0.0000) GT (0.0002) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) 0.2053/0.7947 LT (0.0000) LT (0.0000) LT (0.0000)
72 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
78 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)

‘B’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.0654/0.9345 GT (0.0036) GT (0.0000) 0.4994/0.4994 GT (0.0000) GT (0.0000)
54 LT (0.0000) 0.3273/0.6727 GT (0.0000) LT (0.0000) LT (0.0000) GT (0.0018)
60 LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
72 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
78 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.1537/0.8463 0.1571/0.8429 GT (0.0000) 0.4995/0.4995 GT (0.0071) GT (0.0003)
54 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
72 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
78 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)

‘D’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 0.0937/0.9063 GT (0.0074) GT (0.0000) 0.4993/0.4993 GT (0.0000) GT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
72 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
78 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 GT (0.0000) GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000)
54 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
60 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
66 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
72 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
78 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)

Table B.11: ODTLI and ODT for 270 flights.
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‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 LT (0.0121) LT (0.0000) LT (0.0000) GT (0.0000) LT (0.0066) LT (0.0000)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) LT (0.0222) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘B’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) LT (0.0414) LT (0.0000) GT (0.0000) GT (0.0000) LT (0.0001)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘D’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.12: ODT and OST for 270 flights.
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‘A’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 0.8389/0.1611 LT (0.0121) LT (0.0000) GT (0.0000) 0.8389/0.1611 LT (0.0000)
60 GT (0.0000) GT (0.0000) LT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) 0.9208/0.0792 GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘B’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) 0.9208/0.0792 LT (0.0000) GT (0.0000) GT (0.0000) 0.9208/0.0792
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘C’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘D’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

‘E’ Baggage Sorting Station Assignment Algorithm
No. BSSs Closest Closest Min

Open
FIFO LIFO Middle Random 0

48 LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000) LT (0.0000)
54 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
60 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
66 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
72 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)
78 GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000) GT (0.0000)

Table B.13: ODTLI and OST for 270 flights.
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B.2 Steady State Evolutionary Algorithms

B.2.1 SSEA Population Sizes Fitness Statistical Results

Summary tables of the Mann-Whitney tests run against the considered operators
for the considered number of population sizes and Replacement Strategies 1. The
values presented in the tables corresponds to the number of cases for the numbers of
BSSs smaller than LMAP within [LMAP . . . UMAP[ and greater or equal to UMAP
respectively where it is not statistically significantly less fit than any of the other
cases for the same conditions.

3-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) 15 30 50 100
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 200 500 1000 2000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 1 (0, 1, 0) 2 (0, 1, 1) 3 (0, 2, 1) 16 (8, 5, 3)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 17 (9, 5, 3)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.14: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and C1P.

Max. (9, 5, 3) 15 30 50 100
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 200 500 1000 2000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 1 (0, 1, 0) 1 (0, 1, 0) 1 (0, 1, 0) 16 (9, 4, 3)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 15 (7, 5, 3)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.15: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and C2P.
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Max. (9, 5, 3) 15 30 50 100
ES 6 (2, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3)
IS1ES 6 (2, 1, 3) 6 (2, 1, 3) 7 (3, 1, 3) 9 (5, 1, 3)
IS1SUMS 0 (0, 0, 0) 8 (4, 1, 3) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 6 (2, 1, 3) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 200 500 800 1000
ES 6 (2, 1, 3) 7 (3, 1, 3) 7 (3, 1, 3) 7 (3, 1, 3)
IS1ES 12 (6, 3, 3) 14 (7, 4, 3) 16 (8, 5, 3) 15 (8, 4, 3)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 15 (8, 4, 3) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 5 (1, 1, 3) 0 (0, 0, 0)

Table B.16: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and DSEMO.

Max. (9, 5, 3) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 10 (5, 2, 3) 11 (5, 3, 3) 12 (7, 3, 2) 9 (6, 1, 2) 5 (3, 0, 2)
IS1SUMS 8 (2, 3, 3) 2 (0, 0, 2) 2 (0, 0, 2) 0 (0, 0, 0) 5 (3, 0, 2)
SUMS 3 (1, 0, 2) 3 (1, 0, 2) 3 (1, 0, 2) 0 (0, 0, 0) 3 (1, 0, 2)

Max. (9, 5, 3) 50 100 200 500 1000
ES 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 4 (2, 0, 2) 2 (2, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.17: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and MEBPFNR3.

Max. (9, 5, 3) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 13 (5, 5, 3) 13 (6, 4, 3) 11 (6, 3, 2) 12 (7, 3, 2) 4 (3, 0, 1)
IS1SUMS 9 (4, 2, 3) 5 (1, 2, 2) 3 (1, 0, 2) 0 (0, 0, 0) 3 (1, 0, 2)
SUMS 4 (2, 0, 2) 3 (1, 0, 2) 4 (1, 2, 1) 0 (0, 0, 0) 2 (0, 0, 2)
Max. (9, 5, 3) 50 100 200 500 1000
ES 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
IS1ES 3 (2, 0, 1) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.18: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and MEFNR3.

Max. (9, 5, 3) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 6 (2, 2, 2) 9 (3, 4, 2) 12 (4, 5, 3) 15 (7, 5, 3) 11 (5, 3, 3)
IS1SUMS 6 (2, 2, 2) 4 (1, 1, 2) 3 (1, 0, 2) 0 (0, 0, 0) 3 (2, 0, 1)
SUMS 6 (2, 2, 2) 5 (1, 2, 2) 5 (1, 2, 2) 0 (0, 0, 0) 2 (0, 0, 2)
Max. (9, 5, 3) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 6 (3, 1, 2) 2 (2, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.19: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for 3-piers topology, 194 flights and RMEFNR2.
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13
MEBPFNR3 IS1ES 10, 15, 50

MEFNR3
IS1ES 5, 10, 15,

50
IS1SUMS 30

14
MEBPFNR3 IS1ES 1, 10, 15,

30
MEFNR3 IS1ES 1, 5, 15

15
MEBPFNR3 ES 200
RMEFNR2 IS1ES 30, 50,

100

16

MEBPFNR3
IS1ES 1, 10, 15,

30, 50
IS1SUMS 30

MEFNR3
IS1ES 10, 15, 30
IS1SUMS 1, 5

RMEFNR2 IS1ES 5, 15

17
MEFNR3 ES 200
RMEFNR2 IS1ES 30, 100

18

MEBPFNR3
IS1ES 5, 15
IS1SUMS 1
SUMS 5

MEFNR3
IS1ES 1, 10, 15
IS1SUMS 1
SUMS 1

RMEFNR2
IS1ES 1, 5, 10,

15, 50
IS1SUMS 1, 5
SUMS 1, 4

19 RMEFNR2 IS1ES 10, 15, 30
20 RMEFNR2 IS1ES 10, 15

21 RMEFNR2
IS1ES 1, 5, 10,

15
IS1SUMS 1
SUMS 1, 10

22 RMEFNR2 IS1ES 5, 10, 15
23 RMEFNR2 IS1ES 5, 10, 15,

30, 50
24 RMEFNR2 IS1ES 10, 15

25

MEBPFNR3 IS1ES 1

MEFNR3
IS1ES 1
IS1SUMS 1

RMEFNR2
IS1ES 1, 5, 10,

15, 30
IS1SUMS 1, 5
SUMS 1, 5, 10

26

MEFNR3
IS1ES 1
IS1SUMS 1

RMEFNR2
IS1ES 1, 5, 10,

15, 30
IS1SUMS 1
SUMS 1, 5, 10

27 RMEFNR2 IS1ES 10, 15,
30, 50

28

MEBPFNR3
IS1ES 1, 5, 10,

15, 30, 50
IS1SUMS 1, 5, 10,

30
SUMS 1, 5, 10,

30

MEFNR3
IS1ES 1, 5, 10,

15, 30, 50
IS1SUMS 1, 5, 10,

30
SUMS 1, 5, 30

RMEFNR2
IS1ES 1, 5, 10,

15, 30, 50
IS1SUMS 1, 5, 10,

30
SUMS 1, 5, 10,

30

29

MEBPFNR3
IS1ES 1, 5, 10,

15, 30, 50
IS1SUMS 1, 5, 10,

30
SUMS 1, 5, 10,

30

MEFNR3
IS1ES 1, 5, 10,

15
IS1SUMS 1, 5, 10,

30
SUMS 1, 5, 10,

30

RMEFNR2
IS1ES 1, 5, 10,

15, 30
IS1SUMS 1, 5, 10
SUMS 1, 5, 10,

30

Table B.20: 3-pier topology, 194 flights with operators C1P, C2P, DSEMO,
MEBPFNR3, MEFNR3 and RMEFNR2.
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1st March 2010 with 163 flights

Max. (6, 6, 5) 15 30 50 100

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1SUMS 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

SUMS 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 200 500 1000 2000

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 1 (0, 0, 1) 1 (0, 0, 1) 5 (0, 3, 2) 16 (5, 6, 5)

IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 17 (6, 6, 5)

SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

Table B.21: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and C1P.

Max. (6, 6, 5) 15 30 50 100

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1SUMS 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

SUMS 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 200 500 1000 2000

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 1 (0, 0, 1) 2 (0, 1, 1) 4 (0, 1, 3) 17 (6, 6, 5)

IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 17 (6, 6, 5)

SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

Table B.22: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and C2P.

Max. (6, 6, 5) 1 5 10 15 30 50

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 8 (0, 3, 5) 8 (0, 3, 5) 8 (0, 3, 5)

IS1ES 0 (0, 0, 0) 1 (0, 1, 0) 1 (0, 1, 0) 9 (1, 3, 5) 9 (1, 3, 5) 9 (1, 3, 5)

IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 9 (1, 3, 5) 0 (0, 0, 0)

SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 8 (0, 3, 5) 0 (0, 0, 0)

Max. (6, 6, 5) 100 200 500 800 1000
ES 8 (0, 3, 5) 8 (0, 3, 5) 8 (0, 3, 5) 8 (0, 3, 5) 9 (1, 3, 5)
IS1ES 11 (3, 3, 5) 13 (5, 3, 5) 14 (4, 5, 5) 15 (4, 6, 5) 10 (2, 3, 5)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 13 (3, 5, 5) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 8 (0, 3, 5) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.23: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and DSEMO.
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Max. (6, 6, 5) 1 5 10 15 30

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 10 (1, 5, 4) 13 (3, 5, 5) 12 (4, 4, 4) 11 (4, 4, 3) 5 (2, 0, 3)

IS1SUMS 6 (1, 3, 2) 2 (0, 0, 2) 2 (0, 0, 2) 0 (0, 0, 0) 5 (3, 0, 2)

SUMS 4 (1, 1, 2) 5 (0, 1, 4) 3 (0, 0, 3) 0 (0, 0, 0) 5 (0, 1, 4)

Max. (6, 6, 5) 50 100 200 500 1000

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 3 (2, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.24: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and MEBPFNR3.

Max. (6, 6, 5) 1 5 10 15 30

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 13 (3, 6, 4) 12 (3, 5, 4) 14 (4, 5, 5) 10 (5, 2, 3) 4 (2, 0, 2)

IS1SUMS 10 (1, 4, 5) 2 (0, 0, 2) 5 (2, 1, 2) 0 (0, 0, 0) 6 (3, 0, 3)

SUMS 4 (2, 1, 1) 4 (0, 1, 3) 4 (0, 1, 3) 0 (0, 0, 0) 5 (0, 1, 4)

Max. (6, 6, 5) 50 100 200 500 1000

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 3 (2, 0, 1) 3 (2, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.25: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and MEFNR3.

Max. (6, 6, 5) 1 5 10 15 30

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 4 (0, 0, 4) 14 (5, 5, 4) 14 (5, 5, 4) 16 (5, 6, 5) 10 (3, 4, 3)

IS1SUMS 3 (0, 0, 3) 2 (0, 0, 2) 1 (0, 0, 1) 0 (0, 0, 0) 6 (1, 2, 3)

SUMS 4 (0, 0, 4) 4 (0, 0, 4) 3 (0, 0, 3) 0 (0, 0, 0) 4 (0, 0, 4)

Max. (6, 6, 5) 50 100 200 500 1000

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1ES 8 (3, 1, 4) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.26: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and RMEFNR2.
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13
MEBPFNR3

IS1ES 30
IS1SUMS 30

MEFNR3 IS1ES 15, 50

14

MEBPFNR3 IS1ES 10, 15, 50

MEFNR3
IS1ES 1, 5, 10,

15, 30, 100
IS1SUMS 30
SUMS 1

15
MEBPFNR3

IS1ES 50, 100
IS1SUMS 30

MEFNR3
IS1ES 50, 100
IS1SUMS 30

16
MEBPFNR3 IS1ES 5, 10, 15

MEFNR3
IS1ES 5, 10, 15
SUMS 1

17

DSEMO
ES 1000
IS1ES 200, 500,

800, 1000
IS1SUMS 800

18
DSEMO

IS1ES 500, 800,
1000

IS1SUMS 800

19

MEBPFNR3
IS1ES 1, 5, 10, 15
IS1SUMS 1

MEFNR3
IS1ES 1, 5, 10
IS1SUMS 1
SUMS 5

20

MEBPFNR3 IS1ES 5, 10, 15

MEFNR3
IS1ES 1, 5, 10, 15
IS1SUMS 1
SUMS 1

21
MEBPFNR3 IS1ES 1
MEFNR3 IS1ES 1, 5, 10, 15

22
MEBPFNR3

IS1ES 1
IS1SUMS 1
SUMS 1, 5

MEFNR3
IS1ES 1
SUMS 30

23

MEBPFNR3
IS1ES 1, 5, 10, 15
IS1SUMS 1

MEFNR3
IS1ES 1, 5, 10
IS1SUMS 1
SUMS 10

24
MEBPFNR3 IS1ES 1, 5, 10
MEFNR3 IS1ES 1, 5, 10

25
MEBPFNR3 IS1ES 1, 5

MEFNR3
IS1ES 1, 5
IS1SUMS 1

26

MEBPFNR3 IS1ES 10, 30

MEFNR3
IS1ES 1, 5
SUMS 5, 10

RMEFNR2
IS1ES 10, 50
IS1SUMS 1, 10, 30
SUMS 1, 30

27

MEBPFNR3
IS1ES 15
SUMS 30

MEFNR3
IS1SUMS 1
SUMS 30

RMEFNR2
IS1ES 1, 10, 15,

30, 50
IS1SUMS 1, 5, 10, 30
SUMS 1, 30

28

MEBPFNR3
IS1ES 1, 5, 10,

15, 30
IS1SUMS,
SUMS

1, 5, 10,
30

MEFNR3
IS1ES 1, 5, 10,

15, 30
IS1SUMS 1, 5, 10,

30
SUMS 5, 10, 30

RMEFNR2
IS1ES 1, 5, 10,

15
IS1SUMS 1, 5, 10
SUMS 1, 5, 10,

30

29

C1P
ES,
IS1ES

15, 30,
50, 100,
200, 500,
1000,
2000

IS1SUMS 2000
SUMS 2000

C2P
ES,
IS1ES

15, 30,
50, 100,
200, 500,
1000,
2000

IS1SUMS 2000
SUMS 2000

DSEMO

ES,
IS1ES

15, 30,
50, 100,
200, 500,
1000,
2000

IS1SUMS 800
SUMS 800

MEBPFNR3
ES,
IS1ES

1, 5, 10,
15, 30,
50, 100,
200, 500,
1000

IS1SUMS,
SUMS

1, 5, 10,
30

MEFNR3
ES,
IS1ES

1, 5, 10,
15, 30,
50, 100,
200, 500,
1000

IS1SUMS,
SUMS

1, 5, 10,
30

RMEFNR2

ES 1, 5, 10,
15, 30,
50, 100,
200, 500,
1000

IS1ES 1, 5, 10,
15, 30,
50, 100,
200, 500,
1000

IS1SUMS 1, 5, 10,
30

SUMS 1, 5, 10,
30

Table B.27: 3-pier topology and 163 flights with operators C1P, C2P, DSEMO,
MEBPFNR3, MEFNR3 and RMEFNR2.
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4-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) 15 30 50 100
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 200 500 1000 2000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 15 (8, 4, 3)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 16 (8, 5, 3)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.28: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and C1P.

Max. (9, 5, 3) 15 30 50 100
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 200 500 1000 2000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2) 16 (8, 5, 3)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 17 (9, 5, 3)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.29: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and C2P.

Max. (9, 5, 3) 15 30 50 100
ES 4 (0, 1, 3) 4 (0, 1, 3) 4 (0, 1, 3) 5 (1, 1, 3)
IS1ES 5 (1, 1, 3) 5 (1, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3)
IS1SUMS 0 (0, 0, 0) 6 (2, 1, 3) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 4 (0, 1, 3) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 200 500 800 1000
ES 5 (1, 1, 3) 5 (1, 1, 3) 5 (1, 1, 3) 5 (1, 1, 3)
IS1ES 8 (4, 1, 3) 15 (7, 5, 3) 14 (7, 4, 3) 14 (7, 4, 3)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 13 (7, 3, 3) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 4 (0, 1, 3) 0 (0, 0, 0)

Table B.30: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and DSEMO.
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Max. (9, 5, 3) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 5 (3, 2, 0) 11 (4, 5, 2) 9 (4, 3, 2) 11 (7, 3, 1) 8 (6, 1, 1)
IS1SUMS 1 (1, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 5 (5, 0, 0)
SUMS 1 (1, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 3 (3, 0, 0) 2 (2, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.31: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and MEBPFNR3.

Max. (9, 5, 3) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 9 (5, 3, 1) 13 (6, 5, 2) 15 (8, 5, 2) 12 (6, 4, 2) 6 (5, 0, 1)
IS1SUMS 5 (3, 2, 0) 3 (3, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0) 6 (5, 1, 0)
SUMS 3 (3, 0, 0) 2 (1, 1, 0) 1 (0, 1, 0) 0 (0, 0, 0) 3 (1, 2, 0)

Max. (9, 5, 3) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 5 (5, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.32: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and MEFNR3.

Max. (9, 5, 3) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 1 (0, 1, 0) 7 (3, 2, 2) 15 (7, 5, 3) 14 (8, 3, 3) 8 (8, 0, 0)
IS1SUMS 1 (0, 1, 0) 3 (3, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0) 4 (4, 0, 0)
SUMS 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 8 (5, 2, 1) 3 (3, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.33: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and RMEFNR2.
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13
MEBPFNR3

IS1ES 10, 30,
50, 100,
200

IS1SUMS 30
SUMS 1

MEFNR3
IS1ES 10, 15,

50, 100
IS1SUMS 10, 30

14
MEBPFNR3

IS1ES 5, 10,
30, 100

IS1SUMS 30

MEFNR3
IS1ES 1, 5, 10,

15, 30,
50, 100

IS1SUMS 10, 30

15

MEBPFNR3
IS1ES 30, 50
IS1SUMS 10, 30
SUMS 1

MEFNR3
IS1ES 1, 15,

30, 50
IS1SUMS 5
SUMS 1

16
MEBPFNR3

IS1ES 1, 5, 15,
30, 50

IS1SUMS 5, 30
SUMS 5

MEFNR3
IS1ES 5, 10,

15, 30,
50, 100

IS1SUMS 5, 10,
30

17
MEBPFNR3

IS1ES 15
IS1SUMS 1
SUMS 1

MEFNR3 IS1ES 10

18

MEBPFNR3
IS1ES 1, 5, 10,

15, 30
SUMS 5

MEFNR3
IS1ES 5, 10
IS1SUMS 1
SUMS 5

19
MEBPFNR3

IS1ES 5, 10,
15, 50

IS1SUMS 1
MEFNR3 IS1ES 1, 5,

10, 15

20

MEBPFNR3 IS1ES 5, 15

MEFNR3
IS1ES 1, 10
IS1SUMS 1

RMEFNR2 IS1ES 10, 15

21
MEBPFNR3

IS1ES 1, 5,
10, 15

IS1SUMS 30
MEFNR3 IS1ES 5, 10
RMEFNR2 IS1ES 30

22

MEBPFNR3 IS1SUMS 1

RMEFNR2

IS1ES 1, 10
IS1SUMS 1
SUMS 5

23
MEBPFNR3 IS1ES 1, 5,

15
RMEFNR2 IS1ES 5, 10,

50

24 RMEFNR2 IS1ES 10, 15

25
MEBPFNR3 IS1ES 5, 15
MEFNR3 IS1ES 5, 10
RMEFNR2 IS1ES 5, 10,

15, 50

26 RMEFNR2 IS1ES 10, 15

27
MEBPFNR3 IS1ES 5
MEFNR3 IS1ES 5
RMEFNR2 IS1ES 5, 10,

15

28 RMEFNR2 IS1ES 5, 10,
15

29 RMEFNR2 IS1ES 10, 15,
50

Table B.34: 4-pier topology, 194 flights with operators C1P, C2P, DSEMO,
MEBPFNR3, MEFNR3 and RMEFNR2.
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1st March 2010 with 163 flights

Max. (6, 6, 5) 15 30 50 100
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 200 500 1000 2000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2) 17 (6, 6, 5)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 17 (6, 6, 5)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.35: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and C1P.

Max. (6, 6, 5) 15 30 50 100
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 200 500 1000 2000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 1 (0, 0, 1) 0 (0, 0, 0) 2 (0, 0, 2) 17 (6, 6, 5)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 17 (6, 6, 5)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.36: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and C2P.

Max. (6, 6, 5) 15 30 50 100
ES 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5)
IS1ES 7 (0, 2, 5) 7 (0, 2, 5) 8 (1, 2, 5) 11 (3, 3, 5)
IS1SUMS 0 (0, 0, 0) 8 (1, 2, 5) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 7 (0, 2, 5) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 200 500 800 1000
ES 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5)
IS1ES 12 (4, 3, 5) 17 (6, 6, 5) 14 (4, 5, 5) 15 (4, 6, 5)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 14 (3, 6, 5) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 7 (0, 2, 5) 0 (0, 0, 0)

Table B.37: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and DSEMO.
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Max. (6, 6, 5) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 12 (3, 5, 4) 14 (5, 6, 3) 13 (5, 5, 3) 12 (6, 3, 3) 4 (3, 1, 0)
IS1SUMS 4 (1, 3, 0) 2 (0, 2, 0) 2 (1, 1, 0) 0 (0, 0, 0) 5 (2, 3, 0)
SUMS 2 (2, 0, 0) 2 (0, 2, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 4 (4, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.38: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and MEBPFNR3.

Max. (6, 6, 5) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 13 (3, 5, 5) 15 (5, 6, 4) 16 (6, 5, 5) 13 (6, 6, 1) 5 (4, 1, 0)
IS1SUMS 7 (2, 3, 2) 2 (0, 2, 0) 0 (0, 0, 0) 0 (0, 0, 0) 5 (3, 2, 0)
SUMS 4 (2, 1, 1) 2 (0, 1, 1) 4 (0, 2, 2) 0 (0, 0, 0) 3 (0, 2, 1)

Max. (6, 6, 5) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 3 (3, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.39: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and MEFNR3.

Max. (6, 6, 5) 1 5 10 15 30
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 4 (0, 3, 1) 8 (1, 4, 3) 10 (2, 6, 2) 11 (4, 4, 3) 7 (3, 2, 2)
IS1SUMS 2 (0, 1, 1) 3 (2, 1, 0) 4 (3, 1, 0) 0 (0, 0, 0) 7 (5, 2, 0)
SUMS 2 (0, 1, 1) 2 (0, 1, 1) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 50 100 200 500 1000
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
IS1ES 7 (3, 2, 2) 3 (3, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
IS1SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
SUMS 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.40: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and RMEFNR2.

The Figures B.5, B.6, B.7 and B.8 show the average percentage of improvement
in fitness for different population sizes, where 0% refers to the best initial solution
and 100% is the upper bound obtained when running CPLEX with the Mixed Integer
Linear Programming (MILP) introduced in Section 3.3.
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13 DSEMO IS1ES 100,
200,
500,
800

14 DSEMO IS1ES 200,
500

15
MEBPFNR3

IS1ES 5, 10,
15, 30,
50, 100

IS1SUMS 1, 10,
30

MEFNR3
IS1ES 1, 10,

15, 30,
50, 100

IS1SUMS 1, 30

16
MEBPFNR3

IS1ES 1, 5,
15, 30,
50

IS1SUMS 5, 10
SUMS 1

MEFNR3 IS1ES 1, 5,
10, 15,
30, 50

17 DSEMO IS1ES 50,
100,
200,
500,
1000

18
MEBPFNR3 IS1ES 5, 10,

15
MEFNR3 IS1ES 5, 10,

15

19 MEBPFNR3
IS1ES 1, 5,

10, 15
IS1SUMS 30

20

MEBPFNR3
IS1ES 1, 5,

10, 15
IS1SUMS 1, 10,

30
SUMS 5

MEFNR3

IS1ES 1, 5,
10, 15,
30

IS1SUMS 1, 30
SUMS 1, 5

RMEFNR2 IS1ES 1, 10,
15, 50

21

MEBPFNR3 IS1ES 10, 15

MEFNR3
IS1ES 1, 5,

10, 15
IS1SUMS 5

RMEFNR2
IS1ES 10,15,

30
IS1SUMS 30

22
MEBPFNR3

IS1ES 1, 5, 10
IS1SUMS 1

MEFNR3 IS1ES 1, 5, 10

23
MEBPFNR3 IS1ES 5, 10
MEFNR3 IS1ES 1, 5

24
MEBPFNR3

IS1ES 1, 5
IS1SUMS 1
SUMS 5

MEFNR3
IS1ES 1, 5,

10, 15
IS1SUMS 1

25

MEBPFNR3
IS1ES 1, 5,

10, 15
IS1SUMS 1

MEFNR3
IS1ES 1, 10
IS1SUMS 1

RMEFNR2 IS1ES 15, 30

26
MEBPFNR3 IS1ES 5, 10,

15
MEFNR3 IS1ES 1, 10

27 RMEFNR2 IS1ES 5, 10,
15

28
MEBPFNR3 IS1ES 1

RMEFNR2
IS1SUMS 1
SUMS 1

29

MEBPFNR3 IS1ES 1, 5
MEFNR3 IS1ES 1

RMEFNR2
IS1ES 1, 10
SUMS 10

Table B.41: 4-pier topology, 163 flight for operators C1P, C2P, DSEMO,
MEBPFNR3, MEFNR3 and RMEFNR2.
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Figure B.5: Average percent improvement on average fitness for 4-pier topology, 194
flights (16th December 2009) and 1-point crossover (C1P) and population sizes.

Figure B.6: Average percent improvement on average fitness for 4-pier topology, 194
flights (16th December 2009) and 2-point crossover (C2P) and population sizes.

Figure B.7: Average percent improvement on average fitness for 4-pier topology, 194
flights (16th December 2009) and Multi Exchange By Pier between a Fixed Number
of 3 Resources (MEBPFNR3) and population sizes.
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Figure B.8: Average percent improvement on average fitness for 4-pier topology, 194
flights (16th December 2009) and Range Multi Exchange between Fixed Number of
2 Resources (RMEFNR2) and population sizes.
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B.2.2 Crossover Operators Population Sizes

This section provides the summary results of the comparison between the different
versions of crossover operators considered in this thesis (Section 5.4.2) for the two
data sets of 16th December 2009 and 1stMarch2010, and 3-pier and 4-pier topologies.

The 1-point serial crossover generating two children (SC1P(2)) performs statisti-
cally significantly better in many more instances than 1-point crossover (C1P) and
2-point crossover (C2P) as shown in the following tables for both data sets of London
Heathrow airport Terminal 1 and for both topologies considered.

3-pier topology

13 C2P IS1ES 2000

14 SC1P(2)
IS1ES 2000
IS1SUMS 2000

15 SC1P(2)
IS1ES 2000
IS1SUMS 2000

16 C2P IS1ES 2000

17

C1P IS1ES 2000
C2P IS1ES 2000

SC1P(2)
IS1ES 2000
IS1SUMS 2000

18 SC1P(2)
IS1ES 2000
IS1SUMS 500, 2000

19 SC1P(2)
IS1ES 500, 2000
IS1SUMS 1000, 2000

20 SC1P(2)
IS1ES 1000, 2000
IS1SUMS 2000

21 SC1P(2)
IS1ES 2000
IS1SUMS 2000

22 SC1P(2)
IS1ES 1000, 2000
IS1SUMS 500, 1000, 2000

23 SC1P(2)
ES 2000
IS1ES 500, 1000, 2000
IS1SUMS 500, 1000

24 SC1P(2)
IS1ES 500, 1000, 2000
IS1SUMS 500

25 SC1P(2)
IS1ES 500, 2000
IS1SUMS 1000, 2000

26 SC1P(2)
IS1ES 500, 1000
IS1SUMS 500, 1000, 2000

27 SC1P(2)
IS1ES 1000
IS1SUMS 500

28 SC1P(2)
IS1ES 500, 1000
IS1SUMS 500, 2000

29 SC1P(2)
IS1ES 500, 1000, 2000
IS1SUMS 500, 1000, 2000

Table B.42: Instances statistically significantly not less fit than the others for a 3-pier
topology and data set of 16th December 2009.
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The SC1P(2) performs better than C1P and C2P for the data set of 16th December
2009, and population selectors Index Selection with Elitist Selection and a group size
of 1 (IS1ES) and Index Selection with Stochastic Universal Modified Sampling and
group size of 1 (IS1SUMS). A higher population size of 2000 solutions appears to
perform better for lower number of BSSs where the problem is more difficult to solve,
as shown in Tables B.42 and B.43. Furthermore, the C2P provides better results for
very low number of BSSs (N << LMAP).

Max. (9, 5, 3) Selector 500 1000 2000

C1P IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0)

C2P IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 3 (3, 0, 0)

SC1P(2)
ES 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)
IS1ES 8 (1, 5, 2) 8 (1, 4, 3) 12 (7, 4, 1)
IS1SUMS 7 (0, 4, 3) 6 (1, 4, 1) 12 (7, 3, 2)

Table B.43: Summary: Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and data set of 16th December
2009.

The SC1P(2) with selector IS1SUMS and data set of 1st March 2010 performs
overall better, as shown in Tables B.44 and B.45.

Max. (6, 6, 5) Selector 500 1000 2000

C1P

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
IS1ES 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 1, 1)
IS1SUMS 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
SUMS 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C2P

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
IS1ES 1 (0, 0, 1) 1 (0, 0, 1) 6 (3, 2, 1)
IS1SUMS 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
SUMS 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

SC1P(2)

ES 2 (0, 0, 2) 4 (0, 0, 4) 5 (0, 1, 4)
IS1ES 6 (0, 2, 4) 7 (0, 3, 4) 10 (3, 4, 3)
IS1SUMS 4 (0, 1, 3) 7 (1, 2, 4) 12 (4, 5, 3)
SUMS 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

Table B.44: Summary: Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and data set of 1st March
2010.
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13 C2P IS1ES 2000
14 C2P IS1ES 2000

15
C2P IS1ES 2000
SC1P(2) IS1SUMS 2000

16 SC1P(2)
IS1ES 2000
IS1SUMS 2000

17 SC1P(2)
IS1ES 2000
IS1SUMS 1000,

2000

18 SC1P(2)
IS1ES 2000
IS1SUMS 2000

19 SC1P(2)
IS1ES 2000
IS1SUMS 2000

20
C2P IS1ES 2000

SC1P(2)
ES 2000
IS1SUMS 2000

21 C2P IS1ES 2000

22
C1P IS1ES 2000

SC1P(2)
IS1ES 1000,

2000
IS1SUMS 500,

2000

23 SC1P(2)
IS1ES 500,

1000,
2000

IS1SUMS 1000,
2000

24 SC1P(2)
IS1ES 500,

1000,
2000

IS1SUMS 1000,
2000

25 SC1P(2)
ES 1000,

2000
IS1ES 500,

1000,
2000

IS1SUMS 1000,
2000

26 SC1P(2)
ES 2000
IS1ES 500,

1000,
2000

IS1SUMS 500,
1000,
2000

27 SC1P(2)
ES 1000
IS1ES 500,

1000
IS1SUMS 500,

1000
28 SC1P(2) ES 500,

1000,
2000

29

C1P

ES 500,
1000,
2000

IS1ES 500,
1000,
2000

IS1SUMS 500,
1000,
2000

SUMS 500,
1000,
2000

C2P

ES 500,
1000,
2000

IS1ES 500,
1000,
2000

IS1SUMS 500,
1000,
2000

SUMS 500,
1000,
2000

SC1P(2)

ES 500,
1000,
2000

IS1ES 500,
1000,
2000

IS1SUMS 500,
1000,
2000

SUMS 500,
1000,
2000

Table B.45: Instances statistically significantly not less fit than the others for a 3-pier
topology and data set of 1st March 2010.
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4-pier topology

Overall the SC1P(2) with selector IS1SUMS for a population size of 2000 and data
set of 16th December 2009 performs better, as shown in Tables B.46 and B.47.

Max. (9, 5, 3) Selector 500 1000 2000

C1P IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 3 (2, 0, 1)
C2P IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 4 (4, 0, 0)

SC1P(2)
IS1ES 1 (0, 1, 0) 4 (0, 3, 1) 13 (6, 4, 3)
IS1SUMS 2 (0, 1, 1) 6 (0, 3, 3) 14 (6, 5, 3)

Table B.46: Summary: Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 20091216.

13 SC1P(2)
IS1ES 2000
IS1SUMS 2000

14 SC1P(2)
IS1ES 2000
IS1SUMS 2000

15 SC1P(2)
IS1ES 2000
IS1SUMS 2000

16 SC1P(2)
IS1ES 2000
IS1SUMS 2000

17 C2P IS1ES 2000

18
C1P IS1ES 2000
C2P IS1ES 2000

19
C1P IS1ES 2000
C2P IS1ES 2000

20
C2P IS1ES 2000

SC1P(2)
IS1ES 2000
IS1SUMS 2000

21 SC1P(2)
IS1ES 2000
IS1SUMS 2000

22 SC1P(2)
IS1ES 2000
IS1SUMS 2000

23 SC1P(2)
IS1ES 2000
IS1SUMS 2000

24 SC1P(2)
IS1ES 1000
IS1SUMS 500, 1000, 2000

25 SC1P(2)
IS1ES 500, 1000, 2000
IS1SUMS 1000, 2000

26 SC1P(2)
IS1ES 1000, 2000
IS1SUMS 1000, 2000

27 SC1P(2)
IS1ES 2000
IS1SUMS 1000, 2000

28 SC1P(2)
IS1ES 1000, 2000
IS1SUMS 1000, 2000

29
C1P IS1ES 2000

SC1P(2)
IS1ES 2000
IS1SUMS 500, 1000, 2000

Table B.47: Instances statistically significantly not less fit than the others for a 4-pier
topology and data set of 16th December 2009.
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Overall the SC1P(2) with selector IS1ES for a population size of 2000 and data
set of 1st March 2010 performs better but for the range of number of BSSs for a real
problem, i.e. N ≥ LMAP, the SC1P(2) with selector IS1SUMS is preferable with a
lower population size of 500 or 1000 solutions, as shown in Tables B.48 and B.49.

Max. (6, 6, 5) Selector 500 1000 2000

C1P IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 3 (0, 3, 0)
C2P IS1ES 0 (0, 0, 0) 0 (0, 0, 0) 5 (2, 3, 0)

SC1P(2)
ES 1 (0, 0, 1) 5 (0, 1, 4) 4 (0, 0, 4)
IS1ES 5 (0, 1, 4) 7 (0, 3, 4) 10 (5, 2, 3)
IS1SUMS 7 (0, 2, 5) 7 (0, 2, 5) 9 (4, 2, 3)

Table B.48: Summary: Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and data set of 20100301.
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13 SC1P(2) IS1ES 2000

14 SC1P(2)
IS1ES 2000
IS1SUMS 2000

15 SC1P(2)
IS1ES 2000
IS1SUMS 2000

16 SC1P(2) IS1ES 2000

17
C2P IS1ES 2000

SC1P(2)
IS1ES 2000
IS1SUMS 2000

18
C2P IS1ES 2000
SC1P(2) IS1SUMS 2000

19 C2P IS1ES 2000

20
C1P IS1ES 2000
C2P IS1ES 2000

21 C2P IS1ES 2000

22 SC1P(2)
IS1ES 500, 1000, 2000
IS1SUMS 1000, 2000

23
C1P IS1ES 2000

SC1P(2)
IS1ES 1000
IS1SUMS 500, 1000, 2000

24

C1P IS1ES 2000

SC1P(2)
ES 1000
IS1ES 1000, 2000
IS1SUMS 500

25 SC1P(2)
ES 1000, 2000
IS1ES 500, 2000
IS1SUMS 500, 1000

26 SC1P(2)
ES 1000, 2000
IS1ES 500, 1000, 2000
IS1SUMS 500, 1000, 2000

27 SC1P(2)
ES 1000, 2000
IS1ES 1000
IS1SUMS 500, 1000, 2000

28 SC1P(2)
ES 500, 1000, 2000
IS1ES 500, 1000, 2000
IS1SUMS 500, 1000, 2000

29 SC1P(2)
IS1ES 500, 1000
IS1SUMS 500, 1000

Table B.49: Instances statistically significantly not less fit than the others for a 4-pier
topology and data set of 20100301.
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B.2.3 Run time Results for the Different Population Sizes

The results for the runtime for different population sizes and the ABSSAP are pre-
sented here for 3-pier topology and 4-pier topology results.

3-pier topology 4-pier topology
C1P

C2P

DSEMO

MEBPFNR3

Table B.50: (a). 16th December 2009 with 194 Flights.
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3-pier topology 4-pier topology
MEFNR3

RMEFNR2

Table B.51: (b). 16th December 2009 with 194 Flights.

3-pier topology 4-pier topology
C1P

C2P

Table B.52: (a). 1st March 2010 with 163 Flights.
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3-pier topology 4-pier topology
DSEMO

MEBPFNR3

MEFNR3

RMEFNR2

Table B.53: (b). 1st March 2010 with 163 Flights.
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B.3 Results for the Number of Iterations in a Generation

B.3.1 Graphical Representation of the Results

An image per considered operator and an image with all considered single operators
showing the results for the different population sizes studied, per topology and data
set. The replacement strategy I1ES is the same than IS1ES.

3-pier topology

16th December 2009 with 194 flights : Results in Figures B.9, B.10 B.11, B.12, B.13,
B.14 and B.15.

Figure B.9: 1-point crossover (C1P) with population size of 1000.

Figure B.10: 2-point crossover (C2P) with population size of 1000.
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Figure B.11: DSEMO with population size of 1000.

Figure B.12: MEBPFNR3 with population size of 15.

Figure B.13: MEFNR3 with population size of 15.
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Figure B.14: RMEFNR2 with population size of 15.

Figure B.15: IS1ES selector for operators with their best population size and ℓ.

1st March 2010 with 163 flights

Figure B.16: 1-point crossover (C1P) with population size of 1000.



B.3. RESULTS FOR THE NUMBER OF ITERATIONS IN A GENERATION 300

Figure B.17: 2-point crossover (C2P) with population size of 1000.

Figure B.18: DSEMO with population size of 1000.

Figure B.19: MEBPFNR3 with population size of 15.
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Figure B.20: MEFNR3 with population size of 15.

Figure B.21: RMEFNR2 with population size of 15.

Figure B.22: IS1ES selector for operators with their best population size and ℓ.
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4-pier topology

16th December 2009 with 194 flights

Figure B.23: 1-point crossover (C1P) with population size of 1000.

Figure B.24: 2-point crossover (C2P) with population size of 1000.

Figure B.25: DSEMO with population size of 1000.
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Figure B.26: MEBPFNR3 with population size of 15.

Figure B.27: MEBPFNR3 with population size of 15.

Figure B.28: RMEFNR2 with population size of 15.
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Figure B.29: IS1ES selector for operators with their best population size and ℓ.

1st March 2010 with 163 flights

Figure B.30: 1-point crossover (C1P) with population size of 1000.

Figure B.31: 2-point crossover (C2P) with population size of 1000.
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Figure B.32: DSEMO with population size of 1000.

Figure B.33: MEBPFNR3 with population size of 15.

Figure B.34: MEFNR3 with population size of 15.



B.3. RESULTS FOR THE NUMBER OF ITERATIONS IN A GENERATION 306

Figure B.35: RMEFNR2 with population size of 15.

Figure B.36: IS1ES selector for operators with their best population size and ℓ.
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B.3.2 Statistical Results

Summary tables of the Mann-Whitney tests run against the considered operators for
the considered number of iterations.

3-pier topology

16th December 2009 with 194 flights

Both C1P and C2P provide statistically significantly fitter solutions for all con-
sidered data sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.54,
B.55, B.56 and B.57.

13 C1P 1000 I1ES 1

14 C1P 1000 I1ES 1

15 C1P 1000 I1ES 1

16 C1P 1000 I1ES 1

17 C1P 1000 I1ES 1

18 C1P 1000
ES 1
I1ES 1

19 C1P 1000 I1ES 1

20 C1P 1000 I1ES 1

21 C1P 1000 I1ES 1

22 C1P 1000 I1ES 1

23 C1P 1000 I1ES 1

24 C1P 1000 I1ES 1

25 C1P 1000 I1ES 1

26 C1P 1000 I1ES 1

27 C1P 1000 I1ES 1

28 C1P 1000 I1ES 1

29 C1P 1000 I1ES 1

Table B.54: 3-pier, 194 flights, 48 stands and C1P 1000.

Max. (9, 5, 3) 1 5 10 15 20

ES 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 17 (9, 5, 3) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 0 (0, 0, 0) 0 (0, 0, 0)

Table B.55: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 3-pier topology, 194 flights and C1P 1000 for
significance level 0.05.
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13 C2P 1000 I1ES 1

14 C2P 1000 I1ES 1

15 C2P 1000 I1ES 1

16 C2P 1000 I1ES 1

17 C2P 1000 I1ES 1

18 C2P 1000 ES 1

19 C2P 1000 I1ES 1

20 C2P 1000 I1ES 1

21 C2P 1000 I1ES 1

22 C2P 1000 I1ES 1

23 C2P 1000 I1ES 1

24 C2P 1000 I1ES 1

25 C2P 1000 I1ES 1

26 C2P 1000 I1ES 1

27 C2P 1000 I1ES 1

28 C2P 1000 I1ES 1

29 C2P 1000 I1ES 1

Table B.56: 3-pier, 194 flights, 48 stands and C2P 1000.

Max. (9, 5, 3) 1 5 10 15 20

ES 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 16 (8, 5, 3) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 0 (0, 0, 0) 0 (0, 0, 0)

Table B.57: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 3-pier topology, 194 flights and C2P 1000 for
significance level 0.05.
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Dummy Single Exchange Mutation Operator (DSEMO) provides statistically sig-
nificantly fitter solutions for all considered data sets, topologies and number of BSSs
for ℓ = 1, as shown in Tables B.58 and B.59.

13 DSEMO 1000 I1ES 1

14 DSEMO 1000 I1ES 1

15 DSEMO 1000 I1ES 1

16 DSEMO 1000 I1ES 1

17 DSEMO 1000 I1ES 1

18 DSEMO 1000 I1ES 1

19 DSEMO 1000
ES 1
I1ES 1

20 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

21 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

22 DSEMO 1000 I1ES 1

23 DSEMO 1000 I1ES 1

24 DSEMO 1000 I1ES 1

25 DSEMO 1000 I1ES 1

26 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

27 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

28 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

29 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.58: 3-pier, 194 flights, 48 stands and DSEMO 1000.

Max. (9, 5, 3) 1 5 10 15 20

ES 7 (3, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3)

I1ES 17 (9, 5, 3) 6 (2, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3) 6 (2, 1, 3)

Max. (9, 5, 3) 30 100
ES 6 (2, 1, 3) 6 (2, 1, 3)
I1ES 6 (2, 1, 3) 6 (2, 1, 3)

Table B.59: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and DSEMO 1000 for
significance level 0.05.
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13 MEBPFNR3 15 I1ES 1, 5, 15, 20, 30

14 MEBPFNR3 15 I1ES 100

15 MEBPFNR3 15 I1ES 1, 5, 15, 20

16 MEBPFNR3 15 I1ES 1, 10, 30, 100

17 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

18 MEBPFNR3 15 I1ES 1, 5, 10, 20, 30

19 MEBPFNR3 15 I1ES 1, 10, 15, 20, 30, 100

20 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

21 MEBPFNR3 15 I1ES 15, 100

22 MEBPFNR3 15 I1ES 1, 15

23 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

24 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

25 MEBPFNR3 15 I1ES 1, 5, 15, 20, 30

26 MEBPFNR3 15 I1ES 5, 10, 15, 20, 30

27 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

28 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

29 MEBPFNR3 15 I1ES 1, 10, 15, 20, 30, 100

Table B.60: 3-pier, 194 flights, 48 stands and MEBPFNR3 15.

Max. (9, 5, 3) 1 5 10 15 20
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 14 (7, 4, 3) 11 (5, 4, 2) 11 (5, 3, 3) 14 (6, 5, 3) 13 (6, 4, 3)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 13 (6, 4, 3) 11 (6, 2, 3)

Table B.61: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and MEBPFNR3 15
for significance 0.05.
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13 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

14 MEFNR3 15 I1ES 1, 5, 15, 20

15 MEFNR3 15 I1ES 5, 10, 15, 30

16 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

17 MEFNR3 15 I1ES 1, 10, 15, 20, 30, 100

18 MEFNR3 15 I1ES 1, 5, 15, 20

19 MEFNR3 15 I1ES 1, 5, 10, 15, 20

20 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

21 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 100

22 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

23 MEFNR3 15 I1ES 1, 5, 15, 20, 30, 100

24 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

25 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

26 MEFNR3 15 I1ES 1, 5, 15, 20, 30, 100

27 MEFNR3 15 I1ES 5, 10, 15, 20, 30

28 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

29 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

Table B.62: 3-pier, 194 flights, 48 stands and MEFNR3 15.

Max. (9, 5, 3) 1 5 10 15 20
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 15 (8, 5, 2) 16 (8, 5, 3) 13 (7, 3, 3) 17 (9, 5, 3) 16 (8, 5, 3)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 13 (5, 5, 3) 12 (5, 5, 2)

Table B.63: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and MEFNR3 15 for
significance level 0.05.

13 RMEFNR2 15 I1ES 1, 5, 10, 20, 30, 100

14 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30, 100

15 RMEFNR2 15 I1ES 1, 5, 10, 20, 30, 100

16 RMEFNR2 15 I1ES 1, 10, 15, 30

17 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30, 100

18 RMEFNR2 15 I1ES 1, 5, 10, 15, 20

19 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30, 100

20 RMEFNR2 15 I1ES 1, 5, 15, 20, 30

21 RMEFNR2 15 I1ES 1, 5, 10, 15, 20

22 RMEFNR2 15 I1ES 1, 5, 10, 15, 20

23 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

24 RMEFNR2 15 I1ES 1, 10, 15, 20, 30

25 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

26 RMEFNR2 15 I1ES 1, 5, 15, 20

27 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

28 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

29 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

Table B.64: 3-pier, 194 flights, 48 stands and RMEFNR2 15.
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Max. (9, 5, 3) 1 5 10 15 20
ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 17 (9, 5, 3) 15 (8, 4, 3) 15 (8, 4, 3) 15 (7, 5, 3) 16 (8, 5, 3)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 13 (7, 3, 3) 4 (4, 0, 0)

Table B.65: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 194 flights and RMEFNR2 15 for
significance level of 0.05.

13
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

14
MEBPFNR3 15 15, 30
MEFNR3 15 15, 20

15 DSEMO 1000 1

16
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1

17 DSEMO 1000 1

18

MEBPFNR3 15 30
MEFNR3 15 15, 20
RMEFNR2 15 1, 5

19 RMEFNR2 15 1, 5

20 RMEFNR2 15 1, 5

21 RMEFNR2 15 1, 5

22
MEBPFNR3 15 15
RMEFNR2 15 1, 5

23 RMEFNR2 15 1, 5

24 RMEFNR2 15 1

25 RMEFNR2 15 1, 5

26 RMEFNR2 15 1, 5

27 RMEFNR2 15 1, 5

28
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1, 5

29
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1, 5

Table B.66: 194 flights, 3-pier and 48 stands.

Max. (9, 5, 3) 1 5 10 15 20 30
C1P 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C2P 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 1000 2 (2, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 6 (3, 1, 2) 0 (0, 0, 0) 6 (4, 0, 2)
MEFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 4 (2, 0, 2) 6 (4, 0, 2) 6 (4, 0, 2) 0 (0, 0, 0)
RMEFNR2 15 13 (5, 5, 3) 11 (4, 4, 3) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.67: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 3-pier topology and 194 flights for significance
level 0.05.
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1st March 2010 with 163 flights

Both C1P and C2P provide statistically significantly fitter solutions for all con-
sidered data sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.68,
B.69, B.70 and B.71.

13 C1P 1000 I1ES 1

14 C1P 1000 I1ES 1

15 C1P 1000 I1ES 1

16 C1P 1000 I1ES 1

17 C1P 1000 I1ES 1

18 C1P 1000 I1ES 1

19 C1P 1000 I1ES 1

20 C1P 1000 I1ES 1

21 C1P 1000 I1ES 1

22 C1P 1000 I1ES 1

23 C1P 1000 I1ES 1

24 C1P 1000 I1ES 1

25 C1P 1000 I1ES 1

26 C1P 1000 I1ES 1

27 C1P 1000 I1ES 1

28 C1P 1000 I1ES 1

29 C1P 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.68: 3-pier, 163 flights, 48 stands and C1P 1000.

Max. (6, 6, 5) 1 5 10 15 20

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

I1ES 17 (6, 6, 5) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

Max. (6, 6, 5) 30 100
ES 1 (0, 0, 1) 1 (0, 0, 1)
I1ES 1 (0, 0, 1) 1 (0, 0, 1)

Table B.69: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 3-pier topology, 163 flights and C1P 1000 for
significance level 0.05.
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13 C2P 1000 I1ES 1

14 C2P 1000 I1ES 1

15 C2P 1000 I1ES 1

16 C2P 1000 I1ES 1

17 C2P 1000 I1ES 1

18 C2P 1000 I1ES 1

19 C2P 1000 I1ES 1

20 C2P 1000 I1ES 1

21 C2P 1000 I1ES 1

22 C2P 1000 I1ES 1

23 C2P 1000 I1ES 1

24 C2P 1000 I1ES 1

25 C2P 1000 I1ES 1

26 C2P 1000 I1ES 1

27 C2P 1000 I1ES 1

28 C2P 1000 I1ES 1

29 C2P 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.70: 3-pier, 163 flights, 48 stands and C2P 1000.

Max. (6, 6, 5) 1 5 10 15 20

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

I1ES 17 (6, 6, 5) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

Max. (6, 6, 5) 30 100
ES 1 (0, 0, 1) 1 (0, 0, 1)
I1ES 1 (0, 0, 1) 1 (0, 0, 1)

Table B.71: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 3-pier topology, 163 flights and C2P 1000 for
significance level 0.05.
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DSEMO provides statistically significantly fitter solutions for all considered data
sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.72 and B.73.

13 DSEMO 1000
ES 1
I1ES 1, 5, 10, 15, 20, 30, 100

14 DSEMO 1000
ES 1
I1ES 1

15 DSEMO 1000 I1ES 1

16 DSEMO 1000 I1ES 1

17 DSEMO 1000
ES 1
I1ES 1

18 DSEMO 1000 I1ES 1

19 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

20 DSEMO 1000 I1ES 1

21 DSEMO 1000 I1ES 1

22 DSEMO 1000 I1ES 1

23 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

24 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

25 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

26 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

27 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

28 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

29 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.72: 3-pier, 163 flights, 48 stands and DSEMO 1000.

Max. (6, 6, 5) 1 5 10 15 20

ES 11 (3, 3, 5) 8 (0, 3, 5) 8 (0, 3, 5) 8 (0, 3, 5) 8 (0, 3, 5)

I1ES 17 (6, 6, 5) 9 (1, 3, 5) 9 (1, 3, 5) 9 (1, 3, 5) 9 (1, 3, 5)

Max. (6, 6, 5) 30 100
ES 8 (0, 3, 5) 8 (0, 3, 5)
I1ES 9 (1, 3, 5) 9 (1, 3, 5)

Table B.73: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and DSEMO 1000 for
significance level 0.05.
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13 MEBPFNR3 15 I1ES 5, 10, 30, 100

14 MEBPFNR3 15 I1ES 1, 5, 10, 15, 30, 100

15 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30

16 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

17 MEBPFNR3 15 I1ES 10, 15, 20

18 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

19 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

20 MEBPFNR3 15 I1ES 1, 5, 15, 20, 100

21 MEBPFNR3 15 I1ES 1, 5, 10, 15, 30, 100

22 MEBPFNR3 15 I1ES 10, 15, 20, 30, 100

23 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

24 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30

25 MEBPFNR3 15 I1ES 1, 5, 10, 15, 30, 100

26 MEBPFNR3 15 I1ES 1, 10, 15, 20, 30, 100

27 MEBPFNR3 15 I1ES 10, 15, 30

28 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

29 MEBPFNR3 15
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.74: 3-pier, 163 flights, 48 stands and MEBPFNR3 15.

Max. (6, 6, 5) 1 5 10 15 20

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

I1ES 13 (4, 5, 4) 13 (5, 5, 3) 16 (6, 5, 5) 16 (5, 6, 5) 12 (4, 5, 3)

Max. (6, 6, 5) 30 100
ES 1 (0, 0, 1) 1 (0, 0, 1)
I1ES 15 (5, 5, 5) 13 (4, 5, 4)

Table B.75: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and MEBPFNR3 15
for significance level 0.05.
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13 MEFNR3 15 I1ES 5, 15, 20, 30, 100

14 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

15 MEFNR3 15 I1ES 5, 10, 20, 30, 100

16 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

17 MEFNR3 15 I1ES 5, 10, 20, 100

18 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 100

19 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

20 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

21 MEFNR3 15 I1ES 1, 10, 20, 30, 100

22 MEFNR3 15 I1ES 5, 15, 20, 30, 100

23 MEFNR3 15 I1ES 1, 10, 15, 20, 30, 100

24 MEFNR3 15 I1ES 5, 10, 15, 30

25 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 100

26 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

27 MEFNR3 15 I1ES 1, 15, 20, 30, 100

28 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

29 MEFNR3 15
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.76: 3-pier, 163 flights, 48 stands and MEFNR3 15.

Max. (6, 6, 5) 1 5 10 15 20

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

I1ES 12 (3, 4, 5) 14 (6, 4, 4) 14 (5, 5, 4) 14 (4, 5, 5) 16 (6, 5, 5)

Max. (6, 6, 5) 30 100
ES 1 (0, 0, 1) 1 (0, 0, 1)
I1ES 14 (4, 6, 4) 16 (6, 5, 5)

Table B.77: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and MEFNR3 15 for
significance level 0.05.

13 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30, 100

14 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

15 RMEFNR2 15 I1ES 1, 10, 15, 20, 30, 100

16 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

17 RMEFNR2 15 I1ES 1, 5, 10, 15, 20

18 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

19 RMEFNR2 15 I1ES 1, 5, 10, 20, 30

20 RMEFNR2 15 I1ES 1, 5, 10, 15

21 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

22 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

23 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30, 100

24 RMEFNR2 15 I1ES 1, 5, 10, 15, 20

25 RMEFNR2 15 I1ES 1, 5, 10, 15, 30

26 RMEFNR2 15 I1ES 1, 5, 10, 15, 30

27 RMEFNR2 15 I1ES 5, 10, 15, 30, 100

28 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30, 100

29 RMEFNR2 15
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.78: 3-pier, 163 flights, 48 stands and RMEFNR2 15.
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Max. (6, 6, 5) 1 5 10 15 20

ES 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

I1ES 16 (6, 6, 4) 16 (5, 6, 5) 17 (6, 6, 5) 16 (6, 5, 5) 13 (6, 5, 2)

Max. (6, 6, 5) 30 100
ES 1 (0, 0, 1) 1 (0, 0, 1)
I1ES 14 (5, 4, 5) 6 (2, 1, 3)

Table B.79: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology, 163 flights and RMEFNR2 15 for
significance level 0.05.

13
MEBPFNR3 15 30
MEFNR3 15 10, 15, 20

14
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

15

C2P 1000 1
DSEMO 1000 1
MEBPFNR3 15 15, 30
MEFNR3 15 20
RMEFNR2 15 1

16
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

17 DSEMO 1000 1

18 DSEMO 1000 1

19
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

20
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

21 MEFNR3 15 10, 20

22
MEBPFNR3 15 15, 30
MEFNR3 15 15, 20

23
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1, 5

24
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15
RMEFNR2 15 1, 5

25
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1

26
MEBPFNR3 15 15
MEFNR3 15 15
RMEFNR2 15 1, 5

27
MEBPFNR3 15 15, 30
MEFNR3 15 15,
RMEFNR2 15 5

28
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1, 5

29

C1P 1000 1
C2P 1000 1
DSEMO 1000 1
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1, 5

Table B.80: 163 flights, 3-pier and 48 stands.
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Max. (6, 6, 5) 1 5 10 15 20
C1P 1000 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C2P 1000 2 (1, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 1000 4 (3, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 13 (3, 5, 5) 0 (0, 0, 0)
MEFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 11 (3, 5, 3) 13 (3, 5, 5) 13 (4, 5, 4)
RMEFNR2 15 7 (1, 2, 4) 6 (0, 2, 4) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 30
C1P 1000 0 (0, 0, 0)
C2P 1000 0 (0, 0, 0)
DSEMO 1000 0 (0, 0, 0)
MEBPFNR3 15 13 (4, 5, 4)
MEFNR3 15 0 (0, 0, 0)
RMEFNR2 15 0 (0, 0, 0)

Table B.81: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 3-pier topology and 163 flights for significance
level 0.05.
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4-pier topology

16th December 2009 with 194 flights

Both C1P and C2P provide statistically significantly fitter solutions for all con-
sidered data sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.82,
B.83, B.84 and B.85.

13 C1P 1000 I1ES 1

14 C1P 1000 I1ES 1

15 C1P 1000 I1ES 1

16 C1P 1000 I1ES 1

17 C1P 1000 I1ES 1

18 C1P 1000 I1ES 1

19 C1P 1000 I1ES 1

20 C1P 1000 I1ES 1

21 C1P 1000 I1ES 1

22 C1P 1000 I1ES 1

23 C1P 1000 I1ES 1

24 C1P 1000 I1ES 1

25 C1P 1000 I1ES 1

26 C1P 1000 I1ES 1

27 C1P 1000 I1ES 1

28 C1P 1000 I1ES 1

29 C1P 1000 I1ES 1

Table B.82: 4-pier, 194 flights, 46 stands and C1P 1000.

Max. (9, 5, 3) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 17 (9, 5, 3) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 0 (0, 0, 0) 0 (0, 0, 0)

Table B.83: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 4-pier topology, 194 flights and C1P 1000 for
significance level 0.05.
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13 C2P 1000 I1ES 1

14 C2P 1000 I1ES 1

15 C2P 1000 I1ES 1

16 C2P 1000 I1ES 1

17 C2P 1000 I1ES 1

18 C2P 1000 I1ES 1

19 C2P 1000 I1ES 1

20 C2P 1000 I1ES 1

21 C2P 1000 I1ES 1

22 C2P 1000 I1ES 1

23 C2P 1000 I1ES 1

24 C2P 1000 I1ES 1

25 C2P 1000 I1ES 1

26 C2P 1000 I1ES 1

27 C2P 1000 I1ES 1

28 C2P 1000 I1ES 1

29 C2P 1000 I1ES 1

Table B.84: 4-pier, 194 flights, 46 stands and C2P 1000.

Max. (9, 5, 3) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 17 (9, 5, 3) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 0 (0, 0, 0) 0 (0, 0, 0)

Table B.85: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 4-pier topology, 194 flights and C2P 1000 for
significance level 0.05.
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DSEMO provides statistically significantly fitter solutions for all considered data
sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.86 and B.87.

13 DSEMO 1000 I1ES 1

14 DSEMO 1000 I1ES 1

15 DSEMO 1000 I1ES 1

16 DSEMO 1000 I1ES 1

17 DSEMO 1000 I1ES 1

18 DSEMO 1000 I1ES 1

19 DSEMO 1000 I1ES 1, 100

20 DSEMO 1000
ES 1
I1ES 1, 10, 15, 20, 30, 100

21 DSEMO 1000 I1ES 1

22 DSEMO 1000 I1ES 1

23 DSEMO 1000 I1ES 1

24 DSEMO 1000 I1ES 1

25 DSEMO 1000 I1ES 1

26 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

27 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

28 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

29 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.86: 4-pier, 194 flights, 46 stands and DSEMO 1000.

Max. (9, 5, 3) 1 5 10 15 20

ES 5 (1, 1, 3) 4 (0, 1, 3) 4 (0, 1, 3) 4 (0, 1, 3) 4 (0, 1, 3)

I1ES 17 (9, 5, 3) 4 (0, 1, 3) 5 (1, 1, 3) 5 (1, 1, 3) 5 (1, 1, 3)

Max. (9, 5, 3) 30 100
ES 4 (0, 1, 3) 4 (0, 1, 3)
I1ES 5 (1, 1, 3) 6 (2, 1, 3)

Table B.87: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and DSEMO 1000 for
significance level 0.05.
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13 MEBPFNR3 15 I1ES 5, 10, 20, 30, 100

14 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

15 MEBPFNR3 15 I1ES 5, 10, 15, 20, 30, 100

16 MEBPFNR3 15 I1ES 1, 15, 100

17 MEBPFNR3 15 I1ES 1, 5, 15, 30

18 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

19 MEBPFNR3 15 I1ES 1, 5, 15, 20, 30, 100

20 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

21 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

22 MEBPFNR3 15 I1ES 15, 30

23 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

24 MEBPFNR3 15 I1ES 1, 5, 15, 30

25 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

26 MEBPFNR3 15 I1ES 5, 20, 30

27 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30

28 MEBPFNR3 15 I1ES 5, 10, 15, 100

29 MEBPFNR3 15 I1ES 1, 5, 10, 15, 30, 100

Table B.88: 4-pier, 194 flights, 46 stands and MEBPFNR3 15.

Max. (9, 5, 3) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 12 (7, 3, 2) 15 (8, 4, 3) 11 (6, 2, 3) 15 (8, 4, 3) 11 (7, 3, 1)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 15 (8, 5, 2) 12 (8, 2, 2)

Table B.89: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and MEBPFNR3 15
for significance level of 0.05.

13 MEFNR3 15 I1ES 1, 5, 10, 15, 30, 100

14 MEFNR3 15 I1ES 1, 10, 15, 20, 30, 100

15 MEFNR3 15 I1ES 1, 5, 10, 20, 30, 100

16 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

17 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

18 MEFNR3 15 I1ES 10, 20, 30, 100

19 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

20 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30

21 MEFNR3 15 I1ES 5, 10, 20, 30

22 MEFNR3 15 I1ES 1, 5, 10, 20, 30, 100

23 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

24 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

25 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

26 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30

27 MEFNR3 15 I1ES 5, 10, 20, 30

28 MEFNR3 15 I1ES 1, 5, 10, 15, 30, 100

29 MEFNR3 15 I1ES 1, 10, 15, 20, 100

Table B.90: 4-pier, 194 flights, 46 stands and MEFNR3 15.



B.3. RESULTS FOR THE NUMBER OF ITERATIONS IN A GENERATION 324

Max. (9, 5, 3) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 14 (7, 5, 2) 14 (7, 5, 2) 17 (9, 5, 3) 12 (6, 4, 2) 15 (8, 5, 2)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 16 (9, 5, 2) 13 (7, 4, 2)

Table B.91: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and MEFNR3 15 for
significance level 0.05.

13 RMEFNR2 15 I1ES 1, 5, 10, 15, 30, 100

14 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

15 RMEFNR2 15 I1ES 5, 10, 15, 20, 30, 100

16 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

17 RMEFNR2 15 I1ES 1, 5, 10, 20

18 RMEFNR2 15 I1ES 1, 5, 15, 20, 30

19 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

20 RMEFNR2 15 I1ES 1, 15

21 RMEFNR2 15 I1ES 1, 5, 10, 15, 100

22 RMEFNR2 15 I1ES 5, 10, 20, 30

23 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

24 RMEFNR2 15 I1ES 1, 5, 10, 15

25 RMEFNR2 15 I1ES 1, 5, 10, 15, 30

26 RMEFNR2 15 I1ES 1, 5, 10

27 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

28 RMEFNR2 15 I1ES 1, 5, 10, 20, 30

29 RMEFNR2 15 I1ES 1, 5, 15, 20, 30

Table B.92: 4-pier, 194 flights, 46 stands and RMEFNR2 15.

Max. (9, 5, 3) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 15 (8, 4, 3) 16 (8, 5, 3) 14 (7, 5, 2) 13 (8, 3, 2) 11 (6, 2, 3)

Max. (9, 5, 3) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 12 (6, 3, 3) 3 (3, 0, 0)

Table B.93: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 194 flights and RMEFNR2 15 for
significance of 0.05.
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13
MEBPFNR3 15 30
MEFNR3 15 10, 15

14
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

15
MEBPFNR3 15 15
MEFNR3 15 10, 15, 20

16 MEFNR3 15 10, 15, 20

17
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

18
MEBPFNR3 15 15, 30
MEFNR3 15 10, 20

19
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

20
MEFNR3 15 10, 20
RMEFNR2 15 1

21
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20
RMEFNR2 15 1, 5

22
MEBPFNR3 15 15, 30
RMEFNR2 15 5

23
MEBPFNR3 15 30
MEFNR3 15 15
RMEFNR2 15 1, 5

24
MEBPFNR3 15 15, 30
RMEFNR2 15 1, 5

25 RMEFNR2 15 1, 5

26 RMEFNR2 15 1, 5

27
MEBPFNR3 15 30
RMEFNR2 15 1, 5

28 RMEFNR2 15 1, 5

29 RMEFNR2 15 1, 5

Table B.94: 194 flights, 4-pier and 46 stands.

Max. (9, 5, 3) 1 5 10 15 20 30

C1P 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 8 (6, 2, 0) 0 (0, 0, 0) 10 (6, 3, 1)

MEFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 9 (9, 0, 0) 8 (7, 1, 0) 8 (8, 0, 0) 0 (0, 0, 0)

RMEFNR2 15 9 (2, 4, 3) 9 (1, 5, 3) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.95: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 4-pier topology and 194 flights for significance
level of 0.05.
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1st March 2010 with 163 flights

Both C1P and C2P provide statistically significantly fitter solutions for all con-
sidered data sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.96,
B.97, B.98 and B.99.

13 C1P 1000 I1ES 1

14 C1P 1000 I1ES 1

15 C1P 1000 I1ES 1

16 C1P 1000 I1ES 1

17 C1P 1000 I1ES 1

18 C1P 1000 I1ES 1

19 C1P 1000 I1ES 1

20 C1P 1000 I1ES 1

21 C1P 1000 I1ES 1

22 C1P 1000 I1ES 1

23 C1P 1000 I1ES 1

24 C1P 1000 I1ES 1

25 C1P 1000 I1ES 1

26 C1P 1000 I1ES 1

27 C1P 1000 I1ES 1

28 C1P 1000 I1ES 1

29 C1P 1000 I1ES 1

Table B.96: 4-pier, 163 flights, 46 stands and C1P 1000.

Max. (6, 6, 5) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 17 (6, 6, 5) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 0 (0, 0, 0) 0 (0, 0, 0)

Table B.97: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 4-pier topology, 163 flights and C1P 1000 for
significance level of 0.05.



B.3. RESULTS FOR THE NUMBER OF ITERATIONS IN A GENERATION 327

13 C2P 1000 I1ES 1

14 C2P 1000 I1ES 1

15 C2P 1000 I1ES 1

16 C2P 1000 I1ES 1

17 C2P 1000 I1ES 1

18 C2P 1000 I1ES 1

19 C2P 1000 I1ES 1

20 C2P 1000 I1ES 1

21 C2P 1000 I1ES 1

22 C2P 1000 I1ES 1

23 C2P 1000 I1ES 1

24 C2P 1000 I1ES 1

25 C2P 1000 I1ES 1

26 C2P 1000 I1ES 1

27 C2P 1000 I1ES 1

28 C2P 1000 I1ES 1

29 C2P 1000 I1ES 1

Table B.98: 4-pier, 163 flights, 46 stands and C2P 1000.

Max. (6, 6, 5) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 17 (6, 6, 5) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Max. (6, 6, 5) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 0 (0, 0, 0) 0 (0, 0, 0)

Table B.99: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 4-pier topology, 163 flights and C2P 1000 for
significance level of 0.05.
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DSEMO provides statistically significantly fitter solutions for all considered data
sets, topologies and number of BSSs for ℓ = 1, as shown in Tables B.72 and B.73.

13 DSEMO 1000 I1ES 1

14 DSEMO 1000 I1ES 1

15 DSEMO 1000 I1ES 1

16 DSEMO 1000 I1ES 1

17 DSEMO 1000 I1ES 1

18 DSEMO 1000 I1ES 1

19 DSEMO 1000 I1ES 1

20 DSEMO 1000 I1ES 1

21 DSEMO 1000 I1ES 1

22 DSEMO 1000 I1ES 1

23 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

24 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

25 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

26 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

27 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

28 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

29 DSEMO 1000
ES 1, 5, 10, 15, 20, 30, 100
I1ES 1, 5, 10, 15, 20, 30, 100

Table B.100: 4-pier, 163 flights, 46 stands and DSEMO 1000.

Max. (6, 6, 5) 1 5 10 15 20

ES 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5)

I1ES 17 (6, 6, 5) 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5) 7 (0, 2, 5)

Max. (6, 6, 5) 30 100
ES 7 (0, 2, 5) 7 (0, 2, 5)
I1ES 7 (0, 2, 5) 7 (0, 2, 5)

Table B.101: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and DSEMO 1000 for
significance level of 0.05.
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13 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

14 MEBPFNR3 15 I1ES 1, 5, 10, 20, 30, 100

15 MEBPFNR3 15 I1ES 1, 5, 15, 20, 30, 100

16 MEBPFNR3 15 I1ES 1, 5, 10, 30

17 MEBPFNR3 15 I1ES 1, 10, 20, 30, 100

18 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

19 MEBPFNR3 15 I1ES 5, 20

20 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

21 MEBPFNR3 15 I1ES 1, 10, 15, 100

22 MEBPFNR3 15 I1ES 1, 5, 15, 20, 30, 100

23 MEBPFNR3 15 I1ES 5, 10, 20

24 MEBPFNR3 15 I1ES 5, 15, 20, 30

25 MEBPFNR3 15 I1ES 1, 5, 10, 15, 30, 100

26 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

27 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

28 MEBPFNR3 15 I1ES 30

29 MEBPFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

Table B.102: 4-pier, 163 flights, 46 stands and MEBPFNR3 15.

Max. (6, 6, 5) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 13 (6, 3, 4) 14 (5, 5, 4) 12 (5, 3, 4) 11 (3, 4, 4) 13 (5, 5, 3)

Max. (6, 6, 5) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 14 (6, 3, 5) 12 (5, 3, 4)

Table B.103: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and MEBPFNR3 15
for significance level of 0.05.
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13 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

14 MEFNR3 15 I1ES 1, 5, 10, 20, 100

15 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

16 MEFNR3 15 I1ES 1, 10, 15, 20, 100

17 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

18 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

19 MEFNR3 15 I1ES 30

20 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

21 MEFNR3 15 I1ES 1, 10

22 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30

23 MEFNR3 15 I1ES 1, 5, 10, 15, 20, 30, 100

24 MEFNR3 15 I1ES 100

25 MEFNR3 15 I1ES 1, 5, 10, 20, 30, 100

26 MEFNR3 15 I1ES 5, 10, 20, 30, 100

27 MEFNR3 15 I1ES 5, 15, 20, 100

28 MEFNR3 15 I1ES 10, 20, 30, 100

29 MEFNR3 15 I1ES 5, 10, 15, 100

Table B.104: 4-pier, 163 flights, 46 stands and MEFNR3 15.

Max. (6, 6, 5) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 11 (6, 4, 1) 12 (5, 3, 4) 14 (6, 4, 4) 10 (5, 3, 2) 13 (6, 3, 4)

Max. (6, 6, 5) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 11 (4, 4, 3) 14 (6, 3, 5)

Table B.105: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and MEFNR3 15 for
significance level of 0.05.

13 RMEFNR2 15 I1ES 1, 5

14 RMEFNR2 15 I1ES 1, 5, 15, 20, 30

15 RMEFNR2 15 I1ES 1, 5, 15, 20, 30

16 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

17 RMEFNR2 15 I1ES 10, 15, 20

18 RMEFNR2 15 I1ES 1, 5, 10, 15, 20

19 RMEFNR2 15 I1ES 10, 15, 20

20 RMEFNR2 15 I1ES 1, 5, 10, 30

21 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

22 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

23 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

24 RMEFNR2 15 I1ES 1, 5, 20

25 RMEFNR2 15 I1ES 1, 5, 10, 20, 30

26 RMEFNR2 15 I1ES 1, 5, 10, 15

27 RMEFNR2 15 I1ES 1, 5, 10, 20

28 RMEFNR2 15 I1ES 1, 5, 10, 15, 20, 30

29 RMEFNR2 15 I1ES 5, 10, 15

Table B.106: 4-pier, 163 flights, 46 stands and RMEFNR2 15.
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Max. (6, 6, 5) 1 5 10 15 20

ES 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

I1ES 14 (5, 5, 4) 15 (5, 5, 5) 13 (3, 5, 5) 12 (5, 4, 3) 13 (5, 5, 3)

Max. (6, 6, 5) 30 100
ES 0 (0, 0, 0) 0 (0, 0, 0)
I1ES 9 (3, 4, 2) 0 (0, 0, 0)

Table B.107: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology, 163 flights and RMEFNR2 15 for
significance level of 0.05.

13 DSEMO 1000 1

14 DSEMO 1000 1

15
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

16
MEBPFNR3 15 30
MEFNR3 15 15

17 DSEMO 1000 1

18
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

19
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

20
MEBPFNR3 15 15, 30
MEFNR3 15 10, 20
RMEFNR2 15 1

21
MEFNR3 15 10
RMEFNR2 15 1, 5

22
MEBPFNR3 15 15, 30
MEFNR3 15 10, 20

23
MEBPFNR3 15 15, 30
MEFNR3 15 10, 15, 20

24 MEBPFNR3 15 15, 30

25
MEBPFNR3 15 30
MEFNR3 15 10, 20
RMEFNR2 15 1, 5

26
MEBPFNR3 15 15, 30
MEFNR3 15 10, 20
RMEFNR2 15 1, 5

27 RMEFNR2 15 1, 5

28 MEBPFNR3 15 30

29
MEBPFNR3 15 30
MEFNR3 15 15
RMEFNR2 15 1, 5

Table B.108: 163 flights, 4-pier and 46 stands.

Max. (6, 6, 5) 1 5 10 15 20 30

C1P 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 1000 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 1000 3 (3, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 8 (2, 5, 1) 0 (0, 0, 0) 12 (3, 5, 4)

MEFNR3 15 0 (0, 0, 0) 0 (0, 0, 0) 9 (2, 5, 2) 6 (3, 2, 1) 8 (2, 4, 2) 0 (0, 0, 0)

RMEFNR2 15 6 (0, 2, 4) 5 (0, 1, 4) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.109: Number of occurrences which cannot be said to be statistically signif-
icantly less fit than the others for a 4-pier topology and 163 flights for significance
level of 0.05.
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B.4 Results Index for ISxES

In this section are presented the results for the performance of the ISxES for x ∈
(1 . . . 15).

B.4.1 Graphical Representation of Results

3-pier topology

16th December 2009 with 194 flights

Figure B.37: ISxES, 3-pier, 194 flights and 1-point crossover with 1000 population
size (C1P 1000).

Figure B.38: ISxES, 3-pier, 194 flights and 2-point crossover with 1000 population
size (C2P 1000).
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Figure B.39: ISxES, 3-pier, 194 flights and DSEMO with 1000 population size.

Figure B.40: ISxES, 3-pier, 194 flights and MEBPFNR3 with 15 population size.

Figure B.41: ISxES, 3-pier, 194 flights and MEFNR3 with 15 population size.



B.4. RESULTS INDEX FOR ISXES 334

Figure B.42: ISxES, 3-pier, 194 flights and RMEFNR2 with 15 population size.

Figure B.43: ISxES, 3-pier, 194 flights for C1P 1000, C2P 1000, DSEMO 1000 and
MEFNR3 15

1st March 2010 with 163 flights

Figure B.44: ISxES, 3-pier, 163 flights and 1-point crossover with 1000 population
size (C1P 1000).
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Figure B.45: ISxES, 3-pier, 163 flights and 2-point crossover with 1000 population
size (C2P 1000).

Figure B.46: ISxES, 3-pier, 163 flights and DSEMO with 1000 population size.

Figure B.47: ISxES, 3-pier, 163 flights and MEBPFNR3 with 15 population size.
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Figure B.48: ISxES, 3-pier, 163 flights and MEFNR3 with 15 population size.

Figure B.49: ISxES, 3-pier, 163 flights and RMEFNR2 with 15 population size.

Figure B.50: ISxES, 3-pier, 163 flights for C1P 1000, C2P 1000, DSEMO 1000 and
MEFNR3 15.



B.4. RESULTS INDEX FOR ISXES 337

4-pier topology

16th December 2009 with 194 flights

Figure B.51: ISxES for 1-point crossover with 1000 population size (C1P 1000).

Figure B.52: ISxES for 2-point crossover with 1000 population size (C2P 1000).

Figure B.53: ISxES for DSEMO with 1000 population size.
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Figure B.54: ISxES, 4-pier, 194 flights for MEBPFNR3 with 15 population size.

Figure B.55: ISxES, 4-pier, 194 flights for MEFNR3 with 15 population size.

Figure B.56: ISxES, 4-pier, 194 flights for RMEFNR2 with 15 population size.
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Figure B.57: ISxES, 4-pier, 194 flights for C1P 1000, C2P 1000, DSEMO 1000 and
MEFNR3 15.

1st March 2010 with 163 flights

Figure B.58: ISxES for 1-point crossover with 1000 population size (C1P 1000).

Figure B.59: ISxES for 2-point crossover with 1000 population size (C2P 1000).
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Figure B.60: ISxES, 4-pier, 163 flights for DSEMO with 1000 population size.

Figure B.61: ISxES, 4-pier, 163 flights for MEBPFNR3 with 15 population size.

Figure B.62: ISxES, 4-pier, 163 flights for MEFNR3 with 15 population size.
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Figure B.63: ISxES, 4-pier, 163 flights for RMEFNR2 with 15 population size.

Figure B.64: ISxES, 4-pier, 163 flights for C1P 1000, C2P 1000, DSEMO 1000 and
MEFNR3 15.
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B.4.2 Statistical Results

Summary tables of the Mann-Whitney tests for the experiments conducted for the
considered operators, topologies and ISxES indexes, x ∈ (1, 2, 3, 5, 10, 15).

16th December 2009 with 194 flights

3-pier topology 4-pier topology

13 C1P 1000 IS1ES

14 C1P 1000 IS1ES

15 C1P 1000 IS1ES

16 C1P 1000 IS1ES

17 C1P 1000 IS1ES

18 C1P 1000 IS1ES

19 C1P 1000 IS1ES

20 C1P 1000 IS1ES

21 C1P 1000 IS1ES

22 C1P 1000 IS1ES

23 C1P 1000 IS1ES

24 C1P 1000 IS1ES

25 C1P 1000 IS1ES

26 C1P 1000 IS1ES

27 C1P 1000 IS1ES

28 C1P 1000 IS1ES

29 C1P 1000 IS1ES

13 C1P 1000 IS1ES

14 C1P 1000 IS1ES

15 C1P 1000 IS1ES

16 C1P 1000 IS1ES

17 C1P 1000 IS1ES

18 C1P 1000 IS1ES

19 C1P 1000 IS1ES

20 C1P 1000 IS1ES

21 C1P 1000 IS1ES

22 C1P 1000 IS1ES

23 C1P 1000 IS1ES

24 C1P 1000 IS1ES

25 C1P 1000 IS1ES

26 C1P 1000 IS1ES

27 C1P 1000 IS1ES

28 C1P 1000 IS1ES

29 C1P 1000 IS1ES

Table B.110: ISxES and 194 flights with operator C1P for 1000 population size.

3-pier topology 4-pier topology

13 C2P 1000 IS1ES

14 C2P 1000 IS1ES

15 C2P 1000 IS1ES

16 C2P 1000 IS1ES

17 C2P 1000 IS1ES

18 C2P 1000

IS2ES
IS3ES
IS10ES
IS15ES

19 C2P 1000 IS1ES

20 C2P 1000 IS1ES

21 C2P 1000 IS1ES

22 C2P 1000 IS1ES

23 C2P 1000 IS1ES

24 C2P 1000 IS1ES

25 C2P 1000 IS1ES

26 C2P 1000 IS1ES

27 C2P 1000 IS1ES

28 C2P 1000 IS1ES

29 C2P 1000 IS1ES

13 C2P 1000 IS1ES

14 C2P 1000 IS1ES

15 C2P 1000 IS1ES

16 C2P 1000 IS1ES

17 C2P 1000 IS1ES

18 C2P 1000 IS1ES

19 C2P 1000 IS1ES

20 C2P 1000 IS1ES

21 C2P 1000 IS1ES

22 C2P 1000 IS1ES

23 C2P 1000 IS1ES

24 C2P 1000 IS1ES

25 C2P 1000 IS1ES

26 C2P 1000 IS1ES

27 C2P 1000 IS1ES

28 C2P 1000 IS1ES

29 C2P 1000 IS1ES

Table B.111: ISxES and 194 flights with operator C2P for 1000 population size.
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3-pier topology 4-pier topology

13 DSEMO 1000 IS1ES

14 DSEMO 1000 IS1ES

15 DSEMO 1000 IS1ES

16 DSEMO 1000 IS1ES

17 DSEMO 1000 IS1ES

18 DSEMO 1000 IS1ES

19 DSEMO 1000 IS1ES

20 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

21 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

22 DSEMO 1000 IS1ES

23 DSEMO 1000 IS1ES

24 DSEMO 1000 IS1ES

25 DSEMO 1000 IS1ES

26 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

27 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

28 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

29 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

13 DSEMO 1000 IS1ES

14 DSEMO 1000 IS1ES

15 DSEMO 1000 IS1ES

16 DSEMO 1000 IS1ES

17 DSEMO 1000 IS1ES

18 DSEMO 1000 IS1ES

19 DSEMO 1000 IS1ES

20 DSEMO 1000 IS1ES

21 DSEMO 1000 IS1ES

22 DSEMO 1000 IS1ES

23 DSEMO 1000 IS1ES

24 DSEMO 1000 IS1ES

25 DSEMO 1000 IS1ES

26 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

27 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

28 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

29 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

Table B.112: ISxES and 194 flights with operator DSEMO for 1000 population size.
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3-pier topology 4-pier topology

13 MEBPFNR3 15
IS1ES
IS2ES

14 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

15 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

16 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

17 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

18 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

19 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

20 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

21 MEBPFNR3 15
IS3ES
IS5ES
IS10ES

22 MEBPFNR3 15
IS1ES
IS3ES
IS5ES

23 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

24 MEBPFNR3 15
IS2ES
IS3ES
IS5ES

25 MEBPFNR3 15
IS1ES
IS2ES

26 MEBPFNR3 15
IS2ES
IS3ES
IS5ES

27 MEBPFNR3 15
IS1ES
IS3ES
IS5ES

28 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

13 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

14 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

15 MEBPFNR3 15
IS1ES
IS2ES

16 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

17 MEBPFNR3 15
IS1ES
IS3ES

18 MEBPFNR3 15
IS1ES
IS3ES
IS5ES

19 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

20 MEBPFNR3 15
IS1ES
IS3ES
IS5ES

21 MEBPFNR3 15
IS1ES
IS3ES
IS5ES

22 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

23 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

24 MEBPFNR3 15
IS1ES
IS2ES

25 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

26 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

27 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

28 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

29 MEBPFNR3 15
IS1ES
IS2ES

Table B.113: ISxES and 194 flights with operator MEBPFNR3 for 15 population
size.
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3-pier topology 4-pier topology

13 MEFNR3 15
IS1ES
IS2ES
IS3ES

14 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

15 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

16 MEFNR3 15
IS1ES
IS2ES
IS3ES

17 MEFNR3 15 IS5ES

18 MEFNR3 15
IS1ES
IS3ES

19 MEFNR3 15
IS1ES
IS2ES
IS3ES

20 MEFNR3 15
IS1ES
IS2ES
IS3ES

21 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

22 MEFNR3 15
IS1ES
IS2ES
IS5ES

23 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

24 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

25 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

26 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

27 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

28 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

29 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

13 MEFNR3 15 IS1ES

14 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

15 MEFNR3 15
IS1ES
IS2ES
IS3ES

16 MEFNR3 15
IS1ES
IS2ES
IS3ES

17 MEFNR3 15
IS1ES
IS5ES

18 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

19 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

20 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

21 MEFNR3 15
IS2ES
IS3ES
IS5ES

22 MEFNR3 15
IS2ES
IS5ES

23 MEFNR3 15
IS2ES
IS3ES
IS5ES

24 MEFNR3 15
IS1ES
IS2ES
IS3ES

25 MEFNR3 15
IS1ES
IS2ES
IS3ES

26 MEFNR3 15 IS2ES

27 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

28 MEFNR3 15
IS1ES
IS2ES
IS3ES

29 MEFNR3 15
IS1ES
IS2ES
IS3ES

Table B.114: ISxES and 194 flights with operator MEFNR3 for 15 population size.
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3-pier topology 4-pier topology

13 RMEFNR2 15
IS1ES
IS2ES

14 RMEFNR2 15
IS1ES
IS3ES

15 RMEFNR2 15
IS1ES
IS2ES
IS3ES

16 RMEFNR2 15
IS1ES
IS2ES

17 RMEFNR2 15
IS1ES
IS2ES
IS3ES

18 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS10ES

19 RMEFNR2 15
IS1ES
IS2ES
IS3ES

20 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

21 RMEFNR2 15
IS1ES
IS2ES

22 RMEFNR2 15
IS1ES
IS2ES

23 RMEFNR2 15
IS1ES
IS2ES
IS3ES

24 RMEFNR2 15
IS1ES
IS2ES
IS3ES

25 RMEFNR2 15
IS1ES
IS2ES
IS3ES

26 RMEFNR2 15
IS1ES
IS2ES
IS3ES

27 RMEFNR2 15
IS1ES
IS2ES

28 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

13 RMEFNR2 15 IS1ES

14 RMEFNR2 15 IS1ES

15 RMEFNR2 15
IS1ES
IS2ES
IS5ES

16 RMEFNR2 15
IS1ES
IS2ES

17 RMEFNR2 15
IS1ES
IS2ES

18 RMEFNR2 15
IS1ES
IS2ES
IS3ES

19 RMEFNR2 15
IS1ES
IS2ES
IS5ES

20 RMEFNR2 15 IS1ES

21 RMEFNR2 15
IS1ES
IS2ES
IS3ES

22 RMEFNR2 15
IS2ES
IS3ES

23 RMEFNR2 15
IS2ES
IS3ES
IS10ES

24 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

25 RMEFNR2 15
IS1ES
IS2ES
IS3ES

26 RMEFNR2 15
IS1ES
IS2ES

27 RMEFNR2 15
IS1ES
IS2ES
IS3ES

28 RMEFNR2 15
IS1ES
IS3ES

29 RMEFNR2 15 IS1ES

Table B.115: ISxES and 194 flights with operator RMEFNR2 for 15 population size.
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3-pier topology 4-pier topology

13
MEBPFNR3 15 IS1ES
MEFNR3 15 IS1ES, IS2ES, IS3ES

14

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

15 DSEMO 1000 IS1ES

16

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

RMEFNR2 15 IS1ES
17 DSEMO 1000 IS1ES

18

MEBPFNR3 15 IS1ES
MEFNR3 15 IS1ES, IS3ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS10ES

19 RMEFNR2 15
IS1ES
IS2ES
IS3ES

20 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

21 RMEFNR2 15 IS1ES, IS2ES

22 RMEFNR2 15 IS1ES, IS2ES

23 RMEFNR2 15
IS1ES
IS2ES
IS3ES

24

MEFNR3 15 IS5ES

RMEFNR2 15
IS1ES
IS2ES
IS3ES

25 RMEFNR2 15
IS1ES
IS2ES
IS3ES

26 RMEFNR2 15
IS1ES
IS2ES
IS3ES

27 RMEFNR2 15 IS1ES, IS2ES

28

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

13 MEFNR3 15 IS1ES

14

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

15 MEFNR3 15
IS1ES
IS2ES
IS3ES

16

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

17
MEBPFNR3 15 IS1ES
MEFNR3 15 IS1ES

18
MEBPFNR3 15 IS1ES

MEFNR3 15
IS2ES
IS3ES

19
MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS3ES

20
MEBPFNR3 15 IS1ES
MEFNR3 15 IS3ES
RMEFNR2 15 IS1ES

21

MEBPFNR3 15 IS1ES

MEFNR3 15
IS2ES
IS3ES
IS5ES

RMEFNR2 15
IS1ES
IS3ES

22 RMEFNR2 15
IS2ES
IS3ES

23

MEBPFNR3 15 IS1ES

RMEFNR2 15
IS2ES
IS3ES
IS10ES

24

MEBPFNR3 15 IS1ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

25

MEBPFNR3 15 IS1ES

RMEFNR2 15
IS1ES
IS2ES
IS3ES

26 RMEFNR2 15
IS1ES
IS2ES

27

MEBPFNR3 15 IS1ES

RMEFNR2 15
IS1ES
IS2ES
IS3ES

28 RMEFNR2 15
IS1ES
IS3ES

29 RMEFNR2 15 IS1ES

Table B.116: ISxES and 194 flights with operators C1P 1000, C1P 1000, DSEMO
1000, MEBPFNR3 15, MEFNR3 15 and RMEFNR2 15.
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1st March 2010 with 163 flights

3-pier topology 4-pier topology

13 C1P 1000 IS1ES

14 C1P 1000 IS1ES

15 C1P 1000 IS1ES

16 C1P 1000 IS1ES

17 C1P 1000 IS1ES

18 C1P 1000 IS1ES

19 C1P 1000 IS1ES

20 C1P 1000 IS1ES

21 C1P 1000 IS1ES

22 C1P 1000 IS1ES

23 C1P 1000 IS1ES

24 C1P 1000 IS1ES

25 C1P 1000 IS1ES

26 C1P 1000 IS1ES

27 C1P 1000 IS1ES

28 C1P 1000 IS1ES

29 C1P 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

13 C1P 1000 IS1ES

14 C1P 1000 IS1ES

15 C1P 1000 IS1ES

16 C1P 1000 IS1ES

17 C1P 1000 IS1ES

18 C1P 1000 IS1ES

19 C1P 1000 IS1ES

20 C1P 1000 IS1ES

21 C1P 1000 IS1ES

22 C1P 1000 IS1ES

23 C1P 1000 IS1ES

24 C1P 1000 IS1ES

25 C1P 1000 IS1ES

26 C1P 1000 IS1ES

27 C1P 1000 IS1ES

28 C1P 1000 IS1ES

29 C1P 1000 IS1ES

Table B.117: ISxES and 163 flights with operator C1P for 1000 population size.

3-pier topology 4-pier topology

13 C2P 1000 IS1ES

14 C2P 1000 IS1ES

15 C2P 1000 IS1ES

16 C2P 1000 IS1ES

17 C2P 1000 IS1ES

18 C2P 1000 IS1ES

19 C2P 1000 IS1ES

20 C2P 1000 IS1ES

21 C2P 1000 IS1ES

22 C2P 1000 IS1ES

23 C2P 1000 IS1ES

24 C2P 1000 IS1ES

25 C2P 1000 IS1ES

26 C2P 1000 IS1ES

27 C2P 1000 IS1ES

28 C2P 1000 IS1ES

29 C2P 1000

IS1ES
IS2ES
IS10ES
IS15ES

13 C2P 1000 IS1ES

14 C2P 1000 IS1ES

15 C2P 1000 IS1ES

16 C2P 1000 IS1ES

17 C2P 1000 IS1ES

18 C2P 1000 IS1ES

19 C2P 1000 IS1ES

20 C2P 1000 IS1ES

21 C2P 1000 IS1ES

22 C2P 1000 IS1ES

23 C2P 1000 IS1ES

24 C2P 1000 IS1ES

25 C2P 1000 IS1ES

26 C2P 1000 IS1ES

27 C2P 1000 IS1ES

28 C2P 1000 IS1ES

29 C2P 1000 IS1ES

Table B.118: ISxES and 163 flights with operator C2P for 1000 population size.
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3-pier topology 4-pier topology
13 DSEMO 1000 IS1ES
14 DSEMO 1000 IS1ES
15 DSEMO 1000 IS1ES
16 DSEMO 1000 IS1ES
17 DSEMO 1000 IS1ES
18 DSEMO 1000 IS1ES

19 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

20 DSEMO 1000 IS1ES
21 DSEMO 1000 IS1ES
22 DSEMO 1000 IS1ES

23 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

24 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

25 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

26 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

27 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

28 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

29 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

13 DSEMO 1000 IS1ES
14 DSEMO 1000 IS1ES
15 DSEMO 1000 IS1ES
16 DSEMO 1000 IS1ES
17 DSEMO 1000 IS1ES
18 DSEMO 1000 IS1ES

19 DSEMO 1000 IS1ES
20 DSEMO 1000 IS1ES
21 DSEMO 1000 IS1ES
22 DSEMO 1000 IS1ES

23 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

24 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

25 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

26 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

27 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

28 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

29 DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

Table B.119: ISxES and 163 flights with operator DSEMO for 1000 population size.
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3-pier topology 4-pier topology

13 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

14 MEBPFNR3 15 IS1ES

15 MEBPFNR3 15
IS1ES
IS2ES

16 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

17 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

18 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

19 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

20 MEBPFNR3 15
IS1ES
IS2ES

21 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

22 MEBPFNR3 15
IS3ES
IS10ES

23 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

24 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

25 MEBPFNR3 15
IS2ES
IS3ES
IS5ES

26 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

27 MEBPFNR3 15

IS2ES
IS3ES
IS5ES
IS10ES

28 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

13 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

14 MEBPFNR3 15
IS1ES
IS2ES

15 MEBPFNR3 15
IS1ES
IS2ES

16 MEBPFNR3 15
IS1ES
IS2ES
IS5ES

17 MEBPFNR3 15
IS1ES
IS2ES

18 MEBPFNR3 15
IS1ES
IS2ES

19 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

20 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

21 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

22 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

23 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

24 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

25 MEBPFNR3 15
IS1ES
IS2ES
IS3ES

26 MEBPFNR3 15
IS1ES
IS2ES
IS5ES

27 MEBPFNR3 15
IS1ES
IS2ES

28 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29 MEBPFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

Table B.120: ISxES and 163 flights with operator MEBPFNR3 for 15 population
size.
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3-pier topology 4-pier topology

13 MEFNR3 15
IS1ES
IS2ES
IS3ES

14 MEFNR3 15
IS1ES
IS2ES

15 MEFNR3 15
IS1ES
IS2ES

16 MEFNR3 15
IS1ES
IS2ES
IS3ES

17 MEFNR3 15 IS2ES

18 MEFNR3 15
IS1ES
IS2ES
IS3ES

19 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

20 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

21 MEFNR3 15 IS1ES

22 MEFNR3 15
IS3ES
IS5ES
IS10ES

23 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

24 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

25 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

26 MEFNR3 15

IS2ES
IS3ES
IS5ES
IS10ES

27 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

28 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

13 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

14 MEFNR3 15
IS1ES
IS2ES
IS5ES

15 MEFNR3 15
IS1ES
IS2ES
IS3ES

16 MEFNR3 15
IS1ES
IS2ES
IS10ES

17 MEFNR3 15
IS1ES
IS2ES
IS3ES

18 MEFNR3 15
IS1ES
IS2ES
IS3ES

19 MEFNR3 15
IS1ES
IS2ES
IS5ES

20 MEFNR3 15
IS1ES
IS2ES
IS3ES

21 MEFNR3 15
IS1ES
IS5ES

22 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

23 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

24 MEFNR3 15
IS1ES
IS2ES
IS3ES

25 MEFNR3 15
IS1ES
IS2ES
IS3ES

26 MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

27 MEFNR3 15
IS2ES
IS5ES

28 MEFNR3 15

IS2ES
IS3ES
IS5ES
IS10ES

29 MEFNR3 15
IS3ES
IS5ES

Table B.121: ISxES and 163 flights with operator MEFNR3 for 15 population size.
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3-pier topology 4-pier topology

13 RMEFNR2 15
IS1ES
IS2ES

14 RMEFNR2 15
IS1ES
IS2ES
IS3ES

15 RMEFNR2 15 IS1ES

16 RMEFNR2 15
IS1ES
IS2ES

17 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

18 RMEFNR2 15
IS1ES
IS2ES

19 RMEFNR2 15
IS1ES
IS2ES

20 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

21 RMEFNR2 15
IS1ES
IS2ES

22 RMEFNR2 15
IS1ES
IS2ES
IS3ES

23 RMEFNR2 15
IS1ES
IS2ES

24 RMEFNR2 15
IS1ES
IS2ES

25 RMEFNR2 15
IS1ES
IS2ES
IS3ES

26 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

27 RMEFNR2 15
IS3ES
IS5ES
IS10ES

28 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

13 RMEFNR2 15 IS1ES

14 RMEFNR2 15 IS1ES

15 RMEFNR2 15
IS1ES
IS2ES

16 RMEFNR2 15
IS1ES
IS2ES

17 RMEFNR2 15 IS3ES

18 RMEFNR2 15
IS1ES
IS2ES

19 RMEFNR2 15
IS1ES
IS2ES
IS3ES

20 RMEFNR2 15
IS1ES
IS3ES
IS5ES

21 RMEFNR2 15
IS1ES
IS2ES
IS3ES

22 RMEFNR2 15
IS1ES
IS2ES
IS3ES

23 RMEFNR2 15
IS1ES
IS2ES
IS3ES

24 RMEFNR2 15
IS1ES
IS3ES

25 RMEFNR2 15 IS1ES

26 RMEFNR2 15 IS1ES

27 RMEFNR2 15 IS1ES

28 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

29 RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

Table B.122: ISxES and 163 flights with operator RMEFNR2 for 15 population size.
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13 MEFNR3 15
IS1ES
IS2ES
IS3ES

14
MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES

15

C2P 1000 IS1ES
DSEMO 1000 IS1ES
MEFNR3 15 IS2ES
RMEFNR2 15 IS1ES

16

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

17 DSEMO 1000 IS1ES
18 DSEMO 1000 IS1ES

19

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

20

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

21 MEFNR3 15 IS1ES

22 MEFNR3 15
IS3ES
IS5ES
IS10ES

23

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

RMEFNR2 15
IS1ES
IS2ES

24

MEBPFNR3 15 IS1ES

MEFNR3 15
IS3ES
IS5ES
IS10ES

RMEFNR2 15
IS1ES
IS2ES

25
MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

RMEFNR2 15
IS1ES
IS3ES

26

MEBPFNR3 15 IS1ES

MEFNR3 15

IS2ES
IS3ES
IS5ES
IS10ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

27

MEFNR3 15
IS1ES
IS5ES

RMEFNR2 15
IS3ES
IS5ES
IS10ES

28

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

29

C1P 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

C2P 1000

IS1ES
IS2ES
IS10ES
IS15ES

DSEMO 1000

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES
IS15ES

Table B.123: ISxES, 3-pier topology and 163 flights with operators C1P 1000, C2P
1000, DSEMO 1000, MEBPFNR3 15, MEFNR3 15 and RMEFNR2 15.
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13 DSEMO 1000 IS1ES
14 DSEMO 1000 IS1ES

15

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

16

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS10ES

17 DSEMO 1000 IS1ES

18

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

19
MEBPFNR3 15 IS1ES
MEFNR3 15 IS1ES

20

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS2ES
IS3ES

RMEFNR2 15
IS1ES
IS3ES
IS5ES

21

MEBPFNR3 15 IS1ES

MEFNR3 15
IS1ES
IS5ES

RMEFNR2 15
IS1ES
IS2ES

22

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

23

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

24 MEFNR3 15
IS1ES
IS2ES
IS3ES

25

MEBPFNR3 15 IS1ES

MEFNR3 15
IS2ES
IS3ES

RMEFNR2 15 IS1ES

26

MEBPFNR3 15 IS1ES

MEFNR3 15

IS1ES
IS2ES
IS3ES
IS5ES

RMEFNR2 15 IS1ES

27
MEBPFNR3 15 IS1ES
MEFNR3 15 IS2ES
RMEFNR2 15 IS1ES

28

MEBPFNR3 15 IS1ES

MEFNR3 15

IS2ES
IS3ES
IS5ES
IS10ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES

29

MEFNR3 15 IS3ES

RMEFNR2 15

IS1ES
IS2ES
IS3ES
IS5ES
IS10ES

Table B.124: ISxES, 4-pier topology and 163 flights with operators C1P 1000, C2P
1000, DSEMO 1000, MEBPFNR3 15, MEFNR3 15 and RMEFNR2 15.
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B.5 Probability Single Multi Operator

The following subsections provides the summaries of the statistical significance for
the experiments conducted for Probability Single Multi Operator (PSMO), operator
described in Section 5.4.3.

B.5.1 Statistical Results for Two Operators

Summary tables of the Mann-Whitney tests with significance level of 0.005 for the
results when using an operator composed of two sub-operators and one single opera-
tor.

3-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 30% + C2P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 50% + C2P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 70% + C2P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 80% + C2P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 30% + C2P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 50% + C2P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 70% + C1P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 70% + C2P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 80% + C1P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 80% + C2P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.125: (a) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 194 flights.
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Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

MEBPFNR3 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEBPFNR3 20% + DSEMO 80% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEBPFNR3 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 30% + C2P 70% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

MEBPFNR3 30% + DSEMO 70% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEBPFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEBPFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

MEBPFNR3 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2)

MEBPFNR3 50% + C2P 50% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

MEBPFNR3 50% + DSEMO 50% 0 (0, 0, 0) 3 (3, 0, 0) 1 (1, 0, 0) 2 (0, 0, 2)

MEBPFNR3 60% + C1P 40% 0 (0, 0, 0) 2 (0, 0, 2) 0 (0, 0, 0) 2 (0, 0, 2)

MEBPFNR3 60% + C2P 40% 0 (0, 0, 0) 1 (0, 0, 1) 1 (1, 0, 0) 2 (0, 0, 2)

MEBPFNR3 60% + DSEMO 40% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

MEBPFNR3 70% + C1P 30% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 70% + C2P 30% 0 (0, 0, 0) 3 (1, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)

MEBPFNR3 70% + DSEMO 30% 0 (0, 0, 0) 5 (4, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)

MEBPFNR3 80% + C1P 20% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 80% + C2P 20% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 80% + DSEMO 20% 0 (0, 0, 0) 4 (3, 0, 1) 3 (3, 0, 0) 2 (0, 0, 2)

MEBPFNR3 90% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 90% + DSEMO 10% 0 (0, 0, 0) 4 (2, 0, 2) 4 (3, 0, 1) 2 (0, 0, 2)

MEFNR3 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 0 (0, 0, 0)

MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 4 (0, 2, 2) 1 (0, 0, 1) 6 (1, 3, 2)

MEFNR3 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEFNR3 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEFNR3 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEFNR3 20% + MEBPFNR3 80% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

MEFNR3 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEFNR3 30% + C2P 70% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEFNR3 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEFNR3 30% + MEBPFNR3 70% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)

MEFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEFNR3 40% + DSEMO 60% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 0 (0, 0, 0)

MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 2 (0, 1, 1) 1 (0, 0, 1) 3 (0, 1, 2)

MEFNR3 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEFNR3 50% + C2P 50% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

MEFNR3 50% + DSEMO 50% 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 1 (0, 0, 1)

MEFNR3 50% + MEBPFNR3 50% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)

MEFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

MEFNR3 60% + C2P 40% 0 (0, 0, 0) 2 (1, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)

MEFNR3 60% + DSEMO 40% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 0 (0, 0, 0)

MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 3 (0, 1, 2)

MEFNR3 70% + C1P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

Table B.126: (b) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 194 flights.
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Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

MEFNR3 70% + C2P 30% 0 (0, 0, 0) 1 (1, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1)

MEFNR3 70% + DSEMO 30% 0 (0, 0, 0) 3 (2, 0, 1) 4 (3, 0, 1) 1 (0, 0, 1)

MEFNR3 70% + MEBPFNR3 30% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)

MEFNR3 80% + C1P 20% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1)

MEFNR3 80% + C2P 20% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 80% + DSEMO 20% 0 (0, 0, 0) 5 (4, 0, 1) 4 (4, 0, 0) 1 (0, 0, 1)

MEFNR3 80% + MEBPFNR3 20% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 90% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 90% + DSEMO 10% 0 (0, 0, 0) 5 (3, 0, 2) 1 (1, 0, 0) 2 (0, 0, 2)

MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 3 (0, 1, 2) 2 (0, 0, 2) 0 (0, 0, 0)

MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 0 (0, 0, 0) 8 (0, 5, 3) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

RMEFNR2 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 20% + MEBPFNR3 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)

RMEFNR2 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 30% + C2P 70% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

RMEFNR2 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 30% + MEBPFNR3 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)

RMEFNR2 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)

RMEFNR2 40% + C2P 60% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 3 (0, 1, 2)

RMEFNR2 40% + DSEMO 60% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)

RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)

RMEFNR2 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)

RMEFNR2 50% + C2P 50% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 2 (0, 0, 2)

RMEFNR2 50% + DSEMO 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 3 (1, 0, 2)

RMEFNR2 50% + MEBPFNR3 50% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 3 (0, 1, 2)

RMEFNR2 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 4 (1, 1, 2)

RMEFNR2 60% + C2P 40% 0 (0, 0, 0) 3 (1, 1, 1) 1 (1, 0, 0) 4 (1, 1, 2)

RMEFNR2 60% + DSEMO 40% 0 (0, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0) 3 (1, 0, 2)

RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 2 (0, 2, 0) 1 (0, 0, 1) 3 (0, 1, 2)

RMEFNR2 70% + C1P 30% 0 (0, 0, 0) 3 (0, 2, 1) 2 (0, 0, 2) 3 (0, 1, 2)

RMEFNR2 70% + C2P 30% 0 (0, 0, 0) 3 (1, 1, 1) 3 (1, 0, 2) 4 (0, 2, 2)

RMEFNR2 70% + DSEMO 30% 0 (0, 0, 0) 4 (2, 0, 2) 1 (1, 0, 0) 4 (2, 0, 2)

RMEFNR2 70% + MEBPFNR3 30% 0 (0, 0, 0) 7 (1, 4, 2) 1 (0, 0, 1) 4 (1, 1, 2)

RMEFNR2 80% + C1P 20% 0 (0, 0, 0) 6 (0, 4, 2) 3 (0, 2, 1) 4 (1, 1, 2)

RMEFNR2 80% + C2P 20% 0 (0, 0, 0) 3 (0, 3, 0) 1 (1, 0, 0) 4 (1, 1, 2)

RMEFNR2 80% + DSEMO 20% 0 (0, 0, 0) 11 (6, 3, 2) 2 (1, 0, 1) 4 (1, 1, 2)

RMEFNR2 80% + MEBPFNR3 20% 0 (0, 0, 0) 5 (0, 3, 2) 1 (0, 0, 1) 5 (1, 2, 2)

RMEFNR2 90% + C1P 10% 0 (0, 0, 0) 8 (1, 4, 3) 3 (1, 1, 1) 4 (1, 1, 2)

RMEFNR2 90% + C2P 10% 0 (0, 0, 0) 9 (2, 4, 3) 2 (1, 1, 0) 4 (1, 1, 2)

RMEFNR2 90% + DSEMO 10% 0 (0, 0, 0) 9 (5, 1, 3) 4 (2, 0, 2) 4 (1, 1, 2)

RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 5 (1, 3, 1) 1 (0, 0, 1) 4 (0, 2, 2)

Table B.127: (c) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 194 flights.
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1st March 2010 with 163 flights

Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

C1P 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C1P 10% + C2P 90% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C1P 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C1P 40% + C2P 60% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C1P 60% + C2P 40% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 70% + C2P 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C1P 80% + C2P 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C1P 90% + C2P 10% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 10% + C1P 90% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C2P 90% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 40% + C1P 60% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C2P 60% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 50% + C1P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 60% + C1P 40% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C2P 40% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 70% + C1P 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 70% + C2P 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 80% + C1P 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 80% + C2P 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 90% + C1P 10% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C2P 10% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 1 (0, 0, 1) 3 (0, 1, 2) 1 (0, 0, 1) 4 (0, 1, 3)

MEBPFNR3 10% + C1P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 10% + C2P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 10% + DSEMO 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 20% + DSEMO 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

MEBPFNR3 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

MEBPFNR3 30% + DSEMO 70% 1 (0, 0, 1) 1 (0, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1)

MEBPFNR3 40% + C1P 60% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 40% + C2P 60% 1 (0, 0, 1) 3 (1, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)

MEBPFNR3 40% + DSEMO 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

MEBPFNR3 50% + C1P 50% 1 (0, 0, 1) 3 (0, 0, 3) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 50% + C2P 50% 1 (0, 0, 1) 3 (1, 0, 2) 5 (2, 0, 3) 3 (0, 1, 2)

MEBPFNR3 50% + DSEMO 50% 1 (0, 0, 1) 3 (2, 0, 1) 3 (2, 0, 1) 2 (0, 0, 2)

MEBPFNR3 60% + C1P 40% 1 (0, 0, 1) 3 (0, 0, 3) 2 (0, 0, 2) 3 (0, 1, 2)

MEBPFNR3 60% + C2P 40% 1 (0, 0, 1) 5 (2, 0, 3) 2 (1, 0, 1) 2 (0, 0, 2)

MEBPFNR3 60% + DSEMO 40% 1 (0, 0, 1) 3 (2, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)

Table B.128: (a) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 163 flights.
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Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

MEBPFNR3 70% + C1P 30% 1 (0, 0, 1) 5 (0, 1, 4) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 70% + C2P 30% 1 (0, 0, 1) 4 (1, 1, 2) 6 (2, 1, 3) 4 (0, 1, 3)

MEBPFNR3 70% + DSEMO 30% 1 (0, 0, 1) 3 (2, 0, 1) 6 (5, 0, 1) 2 (0, 0, 2)

MEBPFNR3 80% + C1P 20% 1 (0, 0, 1) 4 (0, 0, 4) 5 (0, 2, 3) 4 (0, 2, 2)

MEBPFNR3 80% + C2P 20% 1 (0, 0, 1) 6 (1, 0, 5) 5 (2, 1, 2) 3 (0, 1, 2)

MEBPFNR3 90% + DSEMO 10% 1 (0, 0, 1) 6 (5, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)

MEFNR3 1 (0, 0, 1) 3 (0, 1, 2) 4 (0, 2, 2) 5 (0, 2, 3)

MEFNR3 10% + C1P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 10% + C2P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 10% + DSEMO 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 5 (0, 3, 2) 5 (0, 3, 2) 0 (0, 0, 0)

MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1) 3 (0, 0, 3)

MEFNR3 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1)

MEFNR3 20% + DSEMO 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 20% + MEBPFNR3 80% 1 (0, 0, 1) 3 (0, 1, 2) 3 (0, 2, 1) 1 (0, 0, 1)

MEFNR3 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 30% + DSEMO 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEFNR3 30% + MEBPFNR3 70% 1 (0, 0, 1) 3 (0, 2, 1) 3 (0, 2, 1) 2 (0, 0, 2)

MEFNR3 40% + C1P 60% 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 40% + C2P 60% 1 (0, 0, 1) 2 (1, 0, 1) 3 (1, 0, 2) 3 (0, 1, 2)

MEFNR3 40% + DSEMO 60% 1 (0, 0, 1) 1 (0, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1)

MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 6 (0, 3, 3) 4 (0, 3, 1) 0 (0, 0, 0)

MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 3 (0, 1, 2)

MEFNR3 50% + C1P 50% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)

MEFNR3 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)

MEFNR3 50% + DSEMO 50% 1 (0, 0, 1) 4 (3, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1)

MEFNR3 50% + MEBPFNR3 50% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 60% + C1P 40% 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 0, 3) 2 (0, 0, 2)

MEFNR3 60% + C2P 40% 1 (0, 0, 1) 5 (0, 1, 4) 4 (1, 1, 2) 2 (0, 0, 2)

MEFNR3 60% + DSEMO 40% 1 (0, 0, 1) 4 (3, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)

MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 5 (0, 2, 3) 6 (0, 3, 3) 0 (0, 0, 0)

MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

MEFNR3 70% + C1P 30% 1 (0, 0, 1) 4 (0, 1, 3) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 70% + C2P 30% 1 (0, 0, 1) 6 (2, 1, 3) 6 (1, 1, 4) 3 (0, 1, 2)

MEFNR3 70% + DSEMO 30% 1 (0, 0, 1) 7 (6, 0, 1) 6 (5, 0, 1) 2 (0, 0, 2)

MEFNR3 70% + MEBPFNR3 30% 1 (0, 0, 1) 4 (0, 2, 2) 2 (0, 1, 1) 4 (0, 1, 3)

MEFNR3 80% + C1P 20% 1 (0, 0, 1) 6 (0, 1, 5) 4 (0, 1, 3) 6 (0, 4, 2)

MEFNR3 80% + C2P 20% 1 (0, 0, 1) 6 (0, 2, 4) 3 (1, 0, 2) 3 (0, 1, 2)

MEFNR3 80% + DSEMO 20% 1 (0, 0, 1) 4 (3, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)

MEFNR3 80% + MEBPFNR3 20% 1 (0, 0, 1) 4 (0, 2, 2) 1 (0, 0, 1) 4 (0, 1, 3)

MEFNR3 90% + C1P 10% 1 (0, 0, 1) 6 (0, 1, 5) 3 (0, 1, 2) 3 (0, 1, 2)

MEFNR3 90% + C2P 10% 1 (0, 0, 1) 5 (0, 2, 3) 4 (1, 1, 2) 5 (0, 3, 2)

MEFNR3 90% + DSEMO 10% 1 (0, 0, 1) 5 (3, 0, 2) 6 (5, 0, 1) 2 (0, 0, 2)

MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 7 (0, 5, 2) 5 (0, 4, 1) 0 (0, 0, 0)

MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 1 (0, 0, 1) 3 (0, 1, 2) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 10% + C1P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 10% + C2P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 10% + DSEMO 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

Table B.129: (b) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 163 flights.
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Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 20% + DSEMO 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 20% + MEBPFNR3 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 30% + DSEMO 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 30% + MEBPFNR3 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 1, 1)

RMEFNR2 40% + C1P 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 40% + C2P 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 40% + DSEMO 60% 1 (0, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 1, 1)

RMEFNR2 50% + C1P 50% 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 50% + DSEMO 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 50% + MEBPFNR3 50% 1 (0, 0, 1) 2 (0, 1, 1) 1 (0, 0, 1) 5 (0, 2, 3)

RMEFNR2 60% + C1P 40% 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 0, 3) 2 (0, 0, 2)

RMEFNR2 60% + C2P 40% 1 (0, 0, 1) 3 (0, 0, 3) 2 (0, 0, 2) 1 (0, 0, 1)

RMEFNR2 60% + DSEMO 40% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 2 (0, 1, 1) 1 (0, 0, 1) 5 (0, 2, 3)

RMEFNR2 70% + C1P 30% 1 (0, 0, 1) 3 (0, 1, 2) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 70% + C2P 30% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

RMEFNR2 70% + DSEMO 30% 1 (0, 0, 1) 2 (1, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)

RMEFNR2 70% + MEBPFNR3 30% 1 (0, 0, 1) 2 (0, 1, 1) 1 (0, 0, 1) 4 (0, 1, 3)

RMEFNR2 80% + C1P 20% 1 (0, 0, 1) 4 (0, 1, 3) 1 (0, 0, 1) 1 (0, 0, 1)

RMEFNR2 80% + C2P 20% 1 (0, 0, 1) 3 (0, 1, 2) 4 (0, 2, 2) 2 (0, 0, 2)

RMEFNR2 80% + DSEMO 20% 1 (0, 0, 1) 3 (1, 1, 1) 2 (1, 0, 1) 1 (0, 0, 1)

RMEFNR2 80% + MEBPFNR3 20% 1 (0, 0, 1) 3 (0, 1, 2) 1 (0, 0, 1) 3 (0, 0, 3)

RMEFNR2 90% + C1P 10% 1 (0, 0, 1) 3 (0, 0, 3) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 90% + C2P 10% 1 (0, 0, 1) 4 (0, 2, 2) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 90% + DSEMO 10% 1 (0, 0, 1) 2 (1, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)

RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 2 (0, 1, 1) 2 (0, 0, 2) 3 (0, 0, 3)

Table B.130: (c) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 163 flights.
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4-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + C1P 60% 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + DSEMO 60% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 50% + DSEMO 50% 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0)

MEBPFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEBPFNR3 60% + DSEMO 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0)

MEBPFNR3 70% + C1P 30% 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 70% + DSEMO 30% 0 (0, 0, 0) 4 (4, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0)

MEBPFNR3 80% + C1P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 80% + DSEMO 20% 0 (0, 0, 0) 8 (8, 0, 0) 5 (5, 0, 0) 1 (1, 0, 0)

MEBPFNR3 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (1, 0, 1) 1 (1, 0, 0) 0 (0, 0, 0)

MEBPFNR3 90% + DSEMO 10% 0 (0, 0, 0) 6 (6, 0, 0) 5 (5, 0, 0) 1 (1, 0, 0)

MEFNR3 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 4 (0, 3, 1) 1 (0, 0, 1) 2 (0, 2, 0)

MEFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 60% + C2P 40% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.131: (a) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 194 flights.
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Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 60% + DSEMO 40% 0 (0, 0, 0) 2 (2, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0)

MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 70% + DSEMO 30% 0 (0, 0, 0) 7 (7, 0, 0) 5 (5, 0, 0) 0 (0, 0, 0)

MEFNR3 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (2, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0)

MEFNR3 90% + DSEMO 10% 0 (0, 0, 0) 6 (6, 0, 0) 4 (4, 0, 0) 0 (0, 0, 0)

MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 0 (0, 0, 0) 3 (0, 1, 2) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)

RMEFNR2 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 60% + DSEMO 40% 0 (0, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 1 (0, 1, 0)

RMEFNR2 90% + C1P 10% 0 (0, 0, 0) 5 (0, 3, 2) 4 (0, 2, 2) 1 (0, 1, 0)

RMEFNR2 90% + C2P 10% 0 (0, 0, 0) 9 (1, 5, 3) 6 (2, 2, 2) 1 (0, 1, 0)

RMEFNR2 90% + DSEMO 10% 0 (0, 0, 0) 6 (3, 1, 2) 2 (2, 0, 0) 3 (2, 1, 0)

RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 4 (0, 2, 2) 2 (0, 0, 2) 1 (0, 1, 0)

Table B.132: (b) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 194 flights.
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1st March 2010 with 163 flights

Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C1P 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 0 (0, 0, 0) 5 (0, 3, 2) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 50% + DSEMO 50% 0 (0, 0, 0) 2 (2, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEBPFNR3 60% + C1P 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 60% + C2P 40% 0 (0, 0, 0) 2 (1, 0, 1) 2 (1, 0, 1) 1 (0, 1, 0)

MEBPFNR3 60% + DSEMO 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 70% + C1P 30% 0 (0, 0, 0) 4 (0, 2, 2) 1 (0, 0, 1) 1 (0, 1, 0)

MEBPFNR3 70% + DSEMO 30% 0 (0, 0, 0) 2 (1, 1, 0) 2 (2, 0, 0) 0 (0, 0, 0)

MEBPFNR3 80% + C1P 20% 0 (0, 0, 0) 4 (0, 1, 3) 3 (0, 1, 2) 1 (0, 1, 0)

MEBPFNR3 80% + DSEMO 20% 0 (0, 0, 0) 5 (4, 1, 0) 3 (3, 0, 0) 1 (0, 1, 0)

MEBPFNR3 90% + C1P 10% 0 (0, 0, 0) 9 (0, 6, 3) 3 (0, 2, 1) 2 (0, 1, 1)

MEBPFNR3 90% + C2P 10% 0 (0, 0, 0) 6 (1, 3, 2) 3 (0, 2, 1) 1 (0, 1, 0)

MEBPFNR3 90% + DSEMO 10% 0 (0, 0, 0) 4 (3, 1, 0) 3 (3, 0, 0) 0 (0, 0, 0)

MEFNR3 0 (0, 0, 0) 2 (0, 2, 0) 0 (0, 0, 0) 1 (0, 1, 0)

MEFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 5 (0, 5, 0) 1 (0, 1, 0) 0 (0, 0, 0)

MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 3 (0, 1, 2) 2 (0, 1, 1) 4 (0, 1, 3)

MEFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 5 (0, 5, 0) 3 (0, 3, 0) 0 (0, 0, 0)

MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 4 (0, 3, 1) 2 (0, 1, 1) 5 (0, 2, 3)

MEFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0)

MEFNR3 60% + C2P 40% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)

MEFNR3 60% + DSEMO 40% 0 (0, 0, 0) 2 (2, 0, 0) 4 (4, 0, 0) 0 (0, 0, 0)

Table B.133: (a) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 163 flights.
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Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 4 (0, 3, 1) 5 (0, 5, 0) 0 (0, 0, 0)

MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 3 (0, 1, 2)

MEFNR3 70% + DSEMO 30% 0 (0, 0, 0) 3 (3, 0, 0) 5 (4, 1, 0) 0 (0, 0, 0)

MEFNR3 90% + C1P 10% 0 (0, 0, 0) 3 (0, 1, 2) 0 (0, 0, 0) 1 (0, 1, 0)

MEFNR3 90% + C2P 10% 0 (0, 0, 0) 4 (2, 2, 0) 4 (2, 2, 0) 1 (0, 1, 0)

MEFNR3 90% + DSEMO 10% 0 (0, 0, 0) 1 (1, 0, 0) 3 (3, 0, 0) 1 (0, 1, 0)

MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 4 (0, 3, 1) 5 (0, 5, 0) 0 (0, 0, 0)

MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)

RMEFNR2 0 (0, 0, 0) 3 (0, 1, 2) 1 (0, 1, 0) 0 (0, 0, 0)

RMEFNR2 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 2, 0)

RMEFNR2 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 4 (0, 2, 2)

RMEFNR2 60% + C1P 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0)

RMEFNR2 60% + DSEMO 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 1 (0, 1, 0) 2 (0, 1, 1) 7 (0, 3, 4)

RMEFNR2 90% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)

RMEFNR2 90% + C2P 10% 0 (0, 0, 0) 3 (0, 1, 2) 2 (0, 1, 1) 1 (0, 0, 1)

RMEFNR2 90% + DSEMO 10% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 1, 0) 0 (0, 0, 0)

RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 2 (0, 2, 0) 2 (0, 1, 1) 2 (0, 0, 2)

Table B.134: (b) Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 163 flights.
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B.5.2 Statistical Results for Three Operators

3-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)

MEBPFNR3 80% + DSEMO 10% + C1P
10%

0 (0, 0, 0) 3 (1, 0, 2) 6 (4, 0, 2) 2 (1, 0, 1)

MEBPFNR3 80% + DSEMO 10% + C2P
10%

0 (0, 0, 0) 7 (5, 0, 2) 5 (3, 0, 2) 3 (1, 0, 2)

MEFNR3 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)

MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 6 (4, 0, 2) 6 (4, 0, 2) 0 (0, 0, 0)

MEFNR3 70% + DSEMO 20% + C2P 10% 0 (0, 0, 0) 7 (5, 0, 2) 4 (3, 0, 1) 0 (0, 0, 0)

MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 6 (4, 0, 2) 4 (2, 0, 2) 2 (0, 0, 2)

MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 6 (4, 0, 2) 3 (2, 0, 1) 2 (1, 0, 1)

RMEFNR2 0 (0, 0, 0) 11 (3, 5, 3) 2 (0, 1, 1) 3 (0, 1, 2)

RMEFNR2 80% + DSEMO 10% +
C1P 10%

0 (0, 0, 0) 14 (6, 5, 3) 7 (4, 2, 1) 8 (2, 4, 2)

RMEFNR2 80% + DSEMO 10% + C2P
10%

0 (0, 0, 0) 9 (3, 3, 3) 5 (3, 0, 2) 7 (2, 3, 2)

Table B.135: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology and 194 flights.

1st March 2010 with 163 flights

Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

C1P 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

C2P 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

DSEMO 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

MEBPFNR3 1 (0, 0, 1) 4 (0, 2, 2) 2 (0, 1, 1) 5 (0, 2, 3)

MEBPFNR3 80% + DSEMO 10% + C1P
10%

0 (0, 0, 0) 12 (3, 5, 4) 8 (3, 1, 4) 6 (1, 2, 3)

MEBPFNR3 80% + DSEMO 10% + C2P
10%

0 (0, 0, 0) 9 (3, 2, 4) 7 (4, 2, 1) 5 (1, 2, 2)

MEFNR3 1 (0, 0, 1) 5 (0, 3, 2) 5 (0, 3, 2) 7 (0, 4, 3)

MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 12 (4, 4, 4) 8 (4, 2, 2) 0 (0, 0, 0)

MEFNR3 70% + DSEMO 20% + C2P
10%

1 (0, 0, 1) 13 (5, 4, 4) 5 (2, 1, 2) 0 (0, 0, 0)

MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 10 (2, 3, 5) 5 (0, 3, 2) 5 (0, 2, 3)

MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 9 (4, 3, 2) 9 (4, 2, 3) 4 (2, 0, 2)

RMEFNR2 1 (0, 0, 1) 4 (0, 2, 2) 1 (0, 0, 1) 2 (0, 0, 2)

RMEFNR2 80% + DSEMO 10% + C1P
10%

0 (0, 0, 0) 6 (0, 2, 4) 1 (0, 0, 1) 3 (0, 0, 3)

RMEFNR2 80% + DSEMO 10% + C2P
10%

0 (0, 0, 0) 7 (0, 2, 5) 1 (0, 0, 1) 2 (0, 0, 2)

Table B.136: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 3-pier topology and 163 flights.
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4-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS

C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)

MEBPFNR3 80% + DSEMO 10% + C1P
10%

0 (0, 0, 0) 10 (7, 3, 0) 9 (7, 2, 0) 2 (1, 1, 0)

MEBPFNR3 80% + DSEMO 10% + C2P
10%

0 (0, 0, 0) 7 (4, 3, 0) 7 (6, 1, 0) 3 (2, 1, 0)

MEFNR3 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)

MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 7 (6, 1, 0) 5 (4, 1, 0) 0 (0, 0, 0)

MEFNR3 70% + DSEMO 20% + C2P 10% 0 (0, 0, 0) 6 (5, 1, 0) 4 (4, 0, 0) 0 (0, 0, 0)

MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 6 (5, 1, 0) 1 (1, 0, 0) 2 (1, 1, 0)

MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 7 (5, 2, 0) 4 (4, 0, 0) 1 (1, 0, 0)

RMEFNR2 0 (0, 0, 0) 7 (0, 5, 2) 0 (0, 0, 0) 1 (0, 1, 0)

RMEFNR2 80% + DSEMO 10% + C1P
10%

0 (0, 0, 0) 8 (2, 4, 2) 4 (1, 2, 1) 2 (0, 2, 0)

RMEFNR2 80% + DSEMO 10% +
C2P 10%

0 (0, 0, 0) 11 (3, 5, 3) 4 (1, 2, 1) 3 (2, 1, 0)

Table B.137: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology and 194 flights.

1st March 2010 with 163 flights

Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS

C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

MEBPFNR3 0 (0, 0, 0) 7 (0, 4, 3) 3 (0, 2, 1) 4 (0, 2, 2)

MEBPFNR3 80% + DSEMO 10% +
C1P 10%

0 (0, 0, 0) 14 (4, 6, 4) 10 (4, 3, 3) 3 (0, 2, 1)

MEBPFNR3 80% + DSEMO 10% +
C2P 10%

0 (0, 0, 0) 14 (6, 6, 2) 9 (5, 3, 1) 4 (1, 1, 2)

MEFNR3 0 (0, 0, 0) 5 (0, 5, 0) 2 (0, 2, 0) 3 (0, 3, 0)

MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 13 (5, 4, 4) 8 (4, 2, 2) 0 (0, 0, 0)

MEFNR3 70% + DSEMO 20% + C2P
10%

0 (0, 0, 0) 14 (6, 5, 3) 7 (5, 1, 1) 0 (0, 0, 0)

MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 12 (5, 3, 4) 6 (3, 3, 0) 1 (0, 1, 0)

MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 10 (4, 4, 2) 7 (3, 2, 2) 2 (1, 1, 0)

RMEFNR2 0 (0, 0, 0) 7 (0, 2, 5) 4 (0, 1, 3) 1 (0, 0, 1)

RMEFNR2 80% + DSEMO 10% + C1P
10%

0 (0, 0, 0) 4 (0, 1, 3) 2 (0, 0, 2) 2 (0, 0, 2)

RMEFNR2 80% + DSEMO 10% + C2P
10%

0 (0, 0, 0) 5 (0, 2, 3) 3 (0, 0, 3) 2 (0, 0, 2)

Table B.138: Number of occurrences which cannot be said to be statistically signifi-
cantly less fit than the others for a 4-pier topology and 163 flights.
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B.5.3 Statistical Results for One, Two and Three Operators

The tables in this section summarise all of the result for ‘Probability Single Multi
Operator’ (Section 5.4.3) composed of two and three operators together with the
single operator for SSEA with ℓ = 1.

The tables used in the following subsections are a summary of the statistical sig-
nificance tests conducted which show between parenthesis the number of instances
and separated by a comma, where the combined operator cannot be said to be sta-
tistically significantly worse than any of the other operators studied here for each of
the number of BSSs grouped into ranges of N < LMAP, LMAP ≤ N < UMAP and
UMAP ≤ N , ranges which are separated by a comma, e.g. (1, 3, 0) means that there
are 1, 3 and 3 within the ranges of N < LMAP, LMAP ≤ N < UMAP and UMAP
≤ N respectively where the operators cannot be said to be less fit than any of the
other operators. Furthermore, in the headers of the table starting with ‘Max.’ and
between parenthesis it is specified the number of set of BSSs part of the range which
only depend on the data set, e.g. for the data set of 16th December 2009 there are
9 instances where N < LMAP, 5 with LMAP ≤ N < UMAP, and 3 with UMAP
≥ N . These values give an idea of how much an operator covers a range of numbers
of BSSs, where full coverage happens when the number in the ‘Max.’ for the range is
the same than for the operator, which in the example considered up to now happens
only for the last range, where UMAP ≤ N .

3-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS
C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 30% + C2P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 50% + C2P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 70% + C2P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 80% + C2P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 30% + C2P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 50% + C2P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 70% + C1P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 70% + C2P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.139: (a). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 194 flights.
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Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS
DSEMO 80% + C1P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 80% + C2P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEBPFNR3 20% + DSEMO 80% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEBPFNR3 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 30% + C2P 70% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)
MEBPFNR3 30% + DSEMO 70% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEBPFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEBPFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEBPFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)
MEBPFNR3 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2)
MEBPFNR3 50% + C2P 50% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)
MEBPFNR3 50% + DSEMO 50% 0 (0, 0, 0) 3 (3, 0, 0) 1 (1, 0, 0) 2 (0, 0, 2)
MEBPFNR3 60% + C1P 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 2 (0, 0, 2)
MEBPFNR3 60% + C2P 40% 0 (0, 0, 0) 1 (0, 0, 1) 1 (1, 0, 0) 2 (0, 0, 2)
MEBPFNR3 60% + DSEMO 40% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)
MEBPFNR3 70% + C1P 30% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 70% + C2P 30% 0 (0, 0, 0) 3 (1, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)
MEBPFNR3 70% + DSEMO 30% 0 (0, 0, 0) 5 (4, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)
MEBPFNR3 80% + C1P 20% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 80% + C2P 20% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 3 (1, 0, 2) 2 (0, 0, 2) 2 (1, 0, 1)
MEBPFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 3 (1, 0, 2) 3 (1, 0, 2) 3 (1, 0, 2)
MEBPFNR3 80% + DSEMO 20% 0 (0, 0, 0) 4 (3, 0, 1) 3 (3, 0, 0) 2 (0, 0, 2)
MEBPFNR3 90% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 90% + DSEMO 10% 0 (0, 0, 0) 4 (2, 0, 2) 4 (3, 0, 1) 2 (0, 0, 2)
MEFNR3 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 0 (0, 0, 0)
MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 4 (0, 2, 2) 1 (0, 0, 1) 6 (1, 3, 2)
MEFNR3 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 20% + MEBPFNR3 80% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEFNR3 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 30% + C2P 70% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 30% + MEBPFNR3 70% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)
MEFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 40% + DSEMO 60% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 0 (0, 0, 0)
MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 2 (0, 1, 1) 1 (0, 0, 1) 3 (0, 1, 2)
MEFNR3 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 50% + C2P 50% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)
MEFNR3 50% + DSEMO 50% 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 1 (0, 0, 1)
MEFNR3 50% + MEBPFNR3 50% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)
MEFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 60% + C2P 40% 0 (0, 0, 0) 2 (1, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)
MEFNR3 60% + DSEMO 40% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)

Table B.140: (b). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 194 flights.
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Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS
MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 0 (0, 0, 0)
MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 3 (0, 1, 2)
MEFNR3 70% + C1P 30% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
MEFNR3 70% + C2P 30% 0 (0, 0, 0) 1 (1, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1)
MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 3 (2, 0, 1) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 20% + C2P 10% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 30% 0 (0, 0, 0) 3 (2, 0, 1) 4 (3, 0, 1) 1 (0, 0, 1)
MEFNR3 70% + MEBPFNR3 30% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)
MEFNR3 80% + C1P 20% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1)
MEFNR3 80% + C2P 20% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 3 (1, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1) 2 (1, 0, 1)
MEFNR3 80% + DSEMO 20% 0 (0, 0, 0) 5 (4, 0, 1) 4 (4, 0, 0) 1 (0, 0, 1)
MEFNR3 80% + MEBPFNR3 20% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 90% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 90% + DSEMO 10% 0 (0, 0, 0) 5 (3, 0, 2) 1 (1, 0, 0) 2 (0, 0, 2)
MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 3 (0, 1, 2) 2 (0, 0, 2) 0 (0, 0, 0)
MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 0 (0, 0, 0) 8 (0, 5, 3) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
RMEFNR2 20% + C1P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 20% + C2P 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 20% + MEBPFNR3 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1)
RMEFNR2 30% + C1P 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 30% + C2P 70% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 1 (0, 0, 1)
RMEFNR2 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 30% + MEBPFNR3 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)
RMEFNR2 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)
RMEFNR2 40% + C2P 60% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 3 (0, 1, 2)
RMEFNR2 40% + DSEMO 60% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)
RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)
RMEFNR2 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 0, 2)
RMEFNR2 50% + C2P 50% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 2 (0, 0, 2)
RMEFNR2 50% + DSEMO 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 3 (1, 0, 2)
RMEFNR2 50% + MEBPFNR3 50% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 3 (0, 1, 2)
RMEFNR2 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 4 (1, 1, 2)
RMEFNR2 60% + C2P 40% 0 (0, 0, 0) 3 (1, 1, 1) 1 (1, 0, 0) 4 (1, 1, 2)
RMEFNR2 60% + DSEMO 40% 0 (0, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0) 3 (1, 0, 2)
RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 2 (0, 2, 0) 1 (0, 0, 1) 3 (0, 1, 2)
RMEFNR2 70% + C1P 30% 0 (0, 0, 0) 2 (0, 1, 1) 2 (0, 0, 2) 3 (0, 1, 2)
RMEFNR2 70% + C2P 30% 0 (0, 0, 0) 2 (1, 0, 1) 3 (1, 0, 2) 3 (0, 1, 2)
RMEFNR2 70% + DSEMO 30% 0 (0, 0, 0) 4 (2, 0, 2) 1 (1, 0, 0) 4 (2, 0, 2)
RMEFNR2 70% + MEBPFNR3 30% 0 (0, 0, 0) 6 (1, 3, 2) 1 (0, 0, 1) 4 (1, 1, 2)
RMEFNR2 80% + C1P 20% 0 (0, 0, 0) 5 (0, 3, 2) 3 (0, 2, 1) 4 (1, 1, 2)
RMEFNR2 80% + C2P 20% 0 (0, 0, 0) 3 (0, 3, 0) 1 (1, 0, 0) 4 (1, 1, 2)
RMEFNR2 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 8 (2, 4, 2) 2 (1, 0, 1) 5 (2, 1, 2)
RMEFNR2 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 7 (1, 3, 3) 1 (0, 0, 1) 4 (2, 0, 2)
RMEFNR2 80% + DSEMO 20% 0 (0, 0, 0) 11 (6, 3, 2) 2 (1, 0, 1) 4 (1, 1, 2)
RMEFNR2 80% + MEBPFNR3 20% 0 (0, 0, 0) 5 (0, 3, 2) 1 (0, 0, 1) 5 (1, 2, 2)
RMEFNR2 90% + C1P 10% 0 (0, 0, 0) 8 (1, 4, 3) 3 (1, 1, 1) 4 (1, 1, 2)
RMEFNR2 90% + C2P 10% 0 (0, 0, 0) 9 (2, 4, 3) 2 (1, 1, 0) 4 (1, 1, 2)
RMEFNR2 90% + DSEMO 10% 0 (0, 0, 0) 9 (5, 1, 3) 4 (2, 0, 2) 4 (1, 1, 2)
RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 5 (1, 3, 1) 1 (0, 0, 1) 4 (0, 2, 2)

Table B.141: (c). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 194 flights.
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1st March 2010 with 163 flights

Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS
C1P 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
C1P 10% + C2P 90% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
C1P 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
C1P 40% + C2P 60% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
C1P 60% + C2P 40% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 70% + C2P 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
C1P 80% + C2P 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
C1P 90% + C2P 10% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C2P 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 10% + C1P 90% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C2P 90% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 40% + C1P 60% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C2P 60% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 50% + C1P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 60% + C1P 40% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C2P 40% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 70% + C1P 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 70% + C2P 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 80% + C1P 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 80% + C2P 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
DSEMO 90% + C1P 10% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C2P 10% 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 1 (0, 0, 1) 3 (0, 1, 2) 1 (0, 0, 1) 4 (0, 1, 3)
MEBPFNR3 10% + C1P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 10% + C2P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 10% + DSEMO 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 20% + DSEMO 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEBPFNR3 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEBPFNR3 30% + DSEMO 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEBPFNR3 40% + C1P 60% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 40% + C2P 60% 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)
MEBPFNR3 40% + DSEMO 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEBPFNR3 50% + C1P 50% 1 (0, 0, 1) 3 (0, 0, 3) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 50% + C2P 50% 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 0, 3) 3 (0, 1, 2)
MEBPFNR3 50% + DSEMO 50% 1 (0, 0, 1) 1 (0, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)
MEBPFNR3 60% + C1P 40% 1 (0, 0, 1) 3 (0, 0, 3) 2 (0, 0, 2) 3 (0, 1, 2)
MEBPFNR3 60% + C2P 40% 1 (0, 0, 1) 3 (0, 0, 3) 1 (0, 0, 1) 2 (0, 0, 2)
MEBPFNR3 60% + DSEMO 40% 1 (0, 0, 1) 1 (0, 0, 1) 2 (1, 0, 1) 2 (0, 0, 2)
MEBPFNR3 70% + C1P 30% 1 (0, 0, 1) 5 (0, 1, 4) 2 (0, 0, 2) 2 (0, 0, 2)
MEBPFNR3 70% + C2P 30% 1 (0, 0, 1) 3 (0, 1, 2) 4 (0, 1, 3) 4 (0, 1, 3)
MEBPFNR3 70% + DSEMO 30% 1 (0, 0, 1) 3 (2, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)
MEBPFNR3 80% + C1P 20% 1 (0, 0, 1) 4 (0, 0, 4) 5 (0, 2, 3) 3 (0, 1, 2)
MEBPFNR3 80% + C2P 20% 1 (0, 0, 1) 5 (0, 0, 5) 3 (0, 1, 2) 3 (0, 1, 2)
MEBPFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 8 (2, 3, 3) 3 (0, 0, 3) 3 (0, 1, 2)
MEBPFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 7 (2, 2, 3) 4 (2, 1, 1) 2 (0, 0, 2)
MEBPFNR3 80% + DSEMO 20% 1 (0, 0, 1) 4 (3, 0, 1) 5 (4, 0, 1) 2 (0, 0, 2)
MEBPFNR3 90% + C1P 10% 1 (0, 0, 1) 7 (0, 3, 4) 3 (0, 0, 3) 3 (0, 1, 2)

Table B.142: (a). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 163 flights.
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Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS
MEBPFNR3 90% + C2P 10% 1 (0, 0, 1) 5 (0, 3, 2) 2 (0, 0, 2) 6 (0, 4, 2)
MEBPFNR3 90% + DSEMO 10% 1 (0, 0, 1) 4 (3, 0, 1) 3 (2, 0, 1) 2 (0, 0, 2)
MEFNR3 1 (0, 0, 1) 3 (0, 1, 2) 4 (0, 2, 2) 5 (0, 2, 3)
MEFNR3 10% + C1P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 10% + C2P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 10% + DSEMO 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 5 (0, 3, 2) 5 (0, 3, 2) 0 (0, 0, 0)
MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 0, 1) 3 (0, 0, 3)
MEFNR3 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 20% + DSEMO 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 20% + MEBPFNR3 80% 1 (0, 0, 1) 3 (0, 1, 2) 3 (0, 2, 1) 1 (0, 0, 1)
MEFNR3 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 30% + DSEMO 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 30% + MEBPFNR3 70% 1 (0, 0, 1) 3 (0, 2, 1) 3 (0, 2, 1) 2 (0, 0, 2)
MEFNR3 40% + C1P 60% 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 40% + C2P 60% 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 1, 2)
MEFNR3 40% + DSEMO 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 6 (0, 3, 3) 4 (0, 3, 1) 0 (0, 0, 0)
MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 3 (0, 1, 2)
MEFNR3 50% + C1P 50% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)
MEFNR3 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEFNR3 50% + DSEMO 50% 1 (0, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
MEFNR3 50% + MEBPFNR3 50% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 60% + C1P 40% 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 0, 3) 2 (0, 0, 2)
MEFNR3 60% + C2P 40% 1 (0, 0, 1) 5 (0, 1, 4) 3 (0, 1, 2) 2 (0, 0, 2)
MEFNR3 60% + DSEMO 40% 1 (0, 0, 1) 2 (1, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 5 (0, 2, 3) 6 (0, 3, 3) 0 (0, 0, 0)
MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
MEFNR3 70% + C1P 30% 1 (0, 0, 1) 4 (0, 1, 3) 2 (0, 0, 2) 2 (0, 0, 2)
MEFNR3 70% + C2P 30% 1 (0, 0, 1) 4 (0, 1, 3) 5 (0, 1, 4) 3 (0, 1, 2)
MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 8 (2, 4, 2) 3 (1, 1, 1) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 20% + C2P 10% 1 (0, 0, 1) 8 (2, 3, 3) 2 (0, 0, 2) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 30% 1 (0, 0, 1) 5 (4, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)
MEFNR3 70% + MEBPFNR3 30% 1 (0, 0, 1) 4 (0, 2, 2) 2 (0, 1, 1) 4 (0, 1, 3)
MEFNR3 80% + C1P 20% 1 (0, 0, 1) 6 (0, 1, 5) 4 (0, 1, 3) 6 (0, 4, 2)
MEFNR3 80% + C2P 20% 1 (0, 0, 1) 6 (0, 2, 4) 2 (0, 0, 2) 3 (0, 1, 2)
MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 9 (2, 3, 4) 3 (0, 1, 2) 4 (0, 1, 3)
MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 4 (2, 1, 1) 6 (2, 2, 2) 2 (0, 0, 2)
MEFNR3 80% + DSEMO 20% 1 (0, 0, 1) 4 (3, 0, 1) 4 (3, 0, 1) 2 (0, 0, 2)
MEFNR3 80% + MEBPFNR3 20% 1 (0, 0, 1) 4 (0, 2, 2) 1 (0, 0, 1) 4 (0, 1, 3)
MEFNR3 90% + C1P 10% 1 (0, 0, 1) 6 (0, 1, 5) 3 (0, 1, 2) 3 (0, 1, 2)
MEFNR3 90% + C2P 10% 1 (0, 0, 1) 5 (0, 2, 3) 3 (0, 1, 2) 5 (0, 3, 2)
MEFNR3 90% + DSEMO 10% 1 (0, 0, 1) 5 (3, 0, 2) 5 (4, 0, 1) 2 (0, 0, 2)
MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 7 (0, 5, 2) 5 (0, 4, 1) 0 (0, 0, 0)
MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 10% + C1P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 10% + C2P 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 10% + DSEMO 90% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 20% + C1P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 20% + C2P 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 20% + DSEMO 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 20% + MEBPFNR3 80% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 30% + C1P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 30% + C2P 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)

Table B.143: (b). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 163 flights.
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Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS
RMEFNR2 30% + DSEMO 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 30% + MEBPFNR3 70% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 1, 1)
RMEFNR2 40% + C1P 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 40% + C2P 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 40% + DSEMO 60% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 50% + C1P 50% 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 50% + C2P 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 50% + DSEMO 50% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 50% + MEBPFNR3 50% 1 (0, 0, 1) 2 (0, 1, 1) 1 (0, 0, 1) 5 (0, 2, 3)
RMEFNR2 60% + C1P 40% 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 0, 3) 2 (0, 0, 2)
RMEFNR2 60% + C2P 40% 1 (0, 0, 1) 3 (0, 0, 3) 2 (0, 0, 2) 1 (0, 0, 1)
RMEFNR2 60% + DSEMO 40% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 2 (0, 1, 1) 1 (0, 0, 1) 5 (0, 2, 3)
RMEFNR2 70% + C1P 30% 1 (0, 0, 1) 2 (0, 0, 2) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 70% + C2P 30% 1 (0, 0, 1) 2 (0, 0, 2) 2 (0, 0, 2) 2 (0, 0, 2)
RMEFNR2 70% + DSEMO 30% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 70% + MEBPFNR3 30% 1 (0, 0, 1) 2 (0, 1, 1) 1 (0, 0, 1) 4 (0, 1, 3)
RMEFNR2 80% + C1P 20% 1 (0, 0, 1) 4 (0, 1, 3) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 80% + C2P 20% 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 1, 2) 2 (0, 0, 2)
RMEFNR2 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 3 (0, 1, 2) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 5 (0, 1, 4) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 80% + DSEMO 20% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1)
RMEFNR2 80% + MEBPFNR3 20% 1 (0, 0, 1) 3 (0, 1, 2) 1 (0, 0, 1) 3 (0, 0, 3)
RMEFNR2 90% + C1P 10% 1 (0, 0, 1) 3 (0, 0, 3) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 90% + C2P 10% 1 (0, 0, 1) 4 (0, 2, 2) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 90% + DSEMO 10% 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 1 (0, 0, 1) 2 (0, 0, 2) 3 (0, 0, 3)

Table B.144: (c). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 3-pier topology and 163 flights.

4-pier topology

16th December 2009 with 194 flights

Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS
C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)

Table B.145: (a). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 194 flights.
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Max. (9, 5, 3) ES IS1ES IS1SUMS SUMS
MEBPFNR3 40% + C1P 60% 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 40% + DSEMO 60% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 3 (2, 1, 0) 2 (2, 0, 0) 0 (0, 0, 0)
MEBPFNR3 50% + C1P 50% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 50% + DSEMO 50% 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0)
MEBPFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEBPFNR3 60% + DSEMO 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEBPFNR3 70% + C1P 30% 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 70% + DSEMO 30% 0 (0, 0, 0) 3 (3, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0)
MEBPFNR3 80% + C1P 20% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 1 (1, 0, 0) 3 (3, 0, 0) 2 (2, 0, 0)
MEBPFNR3 80% + DSEMO 20% 0 (0, 0, 0) 7 (7, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0)
MEBPFNR3 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 90% + C2P 10% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 90% + DSEMO 10% 0 (0, 0, 0) 4 (4, 0, 0) 5 (5, 0, 0) 0 (0, 0, 0)
MEFNR3 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 4 (0, 3, 1) 0 (0, 0, 0) 2 (0, 2, 0)
MEFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + DSEMO 40% 0 (0, 0, 0) 2 (2, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 2 (2, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 20% + C2P 10% 0 (0, 0, 0) 3 (3, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 30% 0 (0, 0, 0) 5 (5, 0, 0) 5 (5, 0, 0) 0 (0, 0, 0)
MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 3 (2, 1, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0) 1 (1, 0, 0)
MEFNR3 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 90% + C2P 10% 0 (0, 0, 0) 2 (2, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 90% + DSEMO 10% 0 (0, 0, 0) 4 (4, 0, 0) 4 (4, 0, 0) 0 (0, 0, 0)
MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 0 (0, 0, 0) 3 (0, 1, 2) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)
RMEFNR2 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 60% + DSEMO 40% 0 (0, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 1 (0, 1, 0)
RMEFNR2 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 6 (2, 2, 2) 3 (1, 1, 1) 1 (0, 1, 0)
RMEFNR2 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 8 (3, 2, 3) 2 (1, 0, 1) 3 (2, 1, 0)
RMEFNR2 90% + C1P 10% 0 (0, 0, 0) 5 (0, 3, 2) 4 (0, 2, 2) 1 (0, 1, 0)
RMEFNR2 90% + C2P 10% 0 (0, 0, 0) 9 (1, 5, 3) 6 (2, 2, 2) 1 (0, 1, 0)
RMEFNR2 90% + DSEMO 10% 0 (0, 0, 0) 4 (2, 1, 1) 1 (1, 0, 0) 1 (0, 1, 0)
RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 4 (0, 2, 2) 1 (0, 0, 1) 1 (0, 1, 0)

Table B.146: (b). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 194 flights.
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1st March 2010 with 163 flights

Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS
C1P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C1P 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
C2P 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C1P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
DSEMO 90% + C2P 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 0 (0, 0, 0) 5 (0, 3, 2) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 20% + DSEMO 80% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 30% + DSEMO 70% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 50% + DSEMO 50% 0 (0, 0, 0) 2 (2, 0, 0) 1 (1, 0, 0) 0 (0, 0, 0)
MEBPFNR3 60% + C1P 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 60% + C2P 40% 0 (0, 0, 0) 1 (0, 0, 1) 1 (0, 0, 1) 1 (0, 1, 0)
MEBPFNR3 60% + DSEMO 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEBPFNR3 70% + C1P 30% 0 (0, 0, 0) 4 (0, 2, 2) 1 (0, 0, 1) 1 (0, 1, 0)
MEBPFNR3 70% + DSEMO 30% 0 (0, 0, 0) 2 (1, 1, 0) 2 (2, 0, 0) 0 (0, 0, 0)
MEBPFNR3 80% + C1P 20% 0 (0, 0, 0) 4 (0, 1, 3) 3 (0, 1, 2) 1 (0, 1, 0)
MEBPFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 5 (1, 3, 1) 2 (1, 1, 0) 1 (0, 1, 0)
MEBPFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 10 (4, 5, 1) 4 (1, 2, 1) 1 (1, 0, 0)
MEBPFNR3 80% + DSEMO 20% 0 (0, 0, 0) 5 (4, 1, 0) 2 (2, 0, 0) 1 (0, 1, 0)
MEBPFNR3 90% + C1P 10% 0 (0, 0, 0) 9 (0, 6, 3) 3 (0, 2, 1) 2 (0, 1, 1)
MEBPFNR3 90% + C2P 10% 0 (0, 0, 0) 5 (0, 3, 2) 3 (0, 2, 1) 1 (0, 1, 0)
MEBPFNR3 90% + DSEMO 10% 0 (0, 0, 0) 3 (2, 1, 0) 3 (3, 0, 0) 0 (0, 0, 0)
MEFNR3 0 (0, 0, 0) 2 (0, 2, 0) 0 (0, 0, 0) 1 (0, 1, 0)
MEFNR3 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 10% + MEBPFNR3 90% 0 (0, 0, 0) 5 (0, 5, 0) 1 (0, 1, 0) 0 (0, 0, 0)
MEFNR3 10% + RMEFNR2 90% 0 (0, 0, 0) 3 (0, 1, 2) 2 (0, 1, 1) 4 (0, 1, 3)
MEFNR3 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 40% + MEBPFNR3 60% 0 (0, 0, 0) 5 (0, 5, 0) 3 (0, 3, 0) 0 (0, 0, 0)
MEFNR3 40% + RMEFNR2 60% 0 (0, 0, 0) 4 (0, 3, 1) 2 (0, 1, 1) 5 (0, 2, 3)
MEFNR3 60% + C1P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0)
MEFNR3 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + DSEMO 40% 0 (0, 0, 0) 2 (2, 0, 0) 3 (3, 0, 0) 0 (0, 0, 0)
MEFNR3 60% + MEBPFNR3 40% 0 (0, 0, 0) 4 (0, 3, 1) 5 (0, 5, 0) 0 (0, 0, 0)
MEFNR3 60% + RMEFNR2 40% 0 (0, 0, 0) 1 (0, 1, 0) 0 (0, 0, 0) 3 (0, 1, 2)
MEFNR3 70% + DSEMO 20% + C1P 10% 0 (0, 0, 0) 4 (2, 1, 1) 2 (0, 1, 1) 0 (0, 0, 0)
MEFNR3 70% + DSEMO 20% + C2P 10% 0 (0, 0, 0) 6 (4, 1, 1) 3 (2, 1, 0) 0 (0, 0, 0)

Table B.147: (a). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 163 flights.
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Max. (6, 6, 5) ES IS1ES IS1SUMS SUMS
MEFNR3 70% + DSEMO 30% 0 (0, 0, 0) 3 (3, 0, 0) 4 (3, 1, 0) 0 (0, 0, 0)
MEFNR3 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 6 (4, 0, 2) 1 (1, 0, 0) 0 (0, 0, 0)
MEFNR3 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 4 (3, 0, 1) 2 (1, 1, 0) 1 (0, 1, 0)
MEFNR3 90% + C1P 10% 0 (0, 0, 0) 3 (0, 1, 2) 0 (0, 0, 0) 1 (0, 1, 0)
MEFNR3 90% + C2P 10% 0 (0, 0, 0) 3 (1, 2, 0) 2 (0, 2, 0) 1 (0, 1, 0)
MEFNR3 90% + DSEMO 10% 0 (0, 0, 0) 1 (1, 0, 0) 2 (2, 0, 0) 1 (0, 1, 0)
MEFNR3 90% + MEBPFNR3 10% 0 (0, 0, 0) 4 (0, 3, 1) 5 (0, 5, 0) 0 (0, 0, 0)
MEFNR3 90% + RMEFNR2 10% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 1, 0)
RMEFNR2 0 (0, 0, 0) 3 (0, 1, 2) 1 (0, 1, 0) 0 (0, 0, 0)
RMEFNR2 10% + C1P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + C2P 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + DSEMO 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 10% + MEBPFNR3 90% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 2 (0, 2, 0)
RMEFNR2 40% + C1P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + C2P 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + DSEMO 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 40% + MEBPFNR3 60% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 4 (0, 2, 2)
RMEFNR2 60% + C1P 40% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 60% + C2P 40% 0 (0, 0, 0) 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0)
RMEFNR2 60% + DSEMO 40% 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
RMEFNR2 60% + MEBPFNR3 40% 0 (0, 0, 0) 1 (0, 1, 0) 2 (0, 1, 1) 7 (0, 3, 4)
RMEFNR2 80% + DSEMO 10% + C1P 10% 0 (0, 0, 0) 2 (0, 1, 1) 1 (0, 0, 1) 2 (0, 0, 2)
RMEFNR2 80% + DSEMO 10% + C2P 10% 0 (0, 0, 0) 1 (0, 0, 1) 0 (0, 0, 0) 1 (0, 0, 1)
RMEFNR2 90% + C1P 10% 0 (0, 0, 0) 2 (0, 0, 2) 2 (0, 0, 2) 1 (0, 0, 1)
RMEFNR2 90% + C2P 10% 0 (0, 0, 0) 3 (0, 1, 2) 2 (0, 1, 1) 1 (0, 0, 1)
RMEFNR2 90% + DSEMO 10% 0 (0, 0, 0) 2 (0, 0, 2) 1 (0, 1, 0) 0 (0, 0, 0)
RMEFNR2 90% + MEBPFNR3 10% 0 (0, 0, 0) 2 (0, 2, 0) 2 (0, 1, 1) 2 (0, 0, 2)

Table B.148: (b). Number of occurrences which cannot be said to be statistically
significantly less fit than the others for a 4-pier topology and 163 flights.

B.6 Results Robustness

This section contains the summary results of some of the experiments which results
have not been shown in the Chapter 6 for the ABSSAP.

B.6.1 Results Robust Approaches Using Buffer Times

Tables B.149, B.150 and B.151 show how each approach performed in respect to
collisions for the different ranges of number of BSSs when combined with the TRS,
where higher values correspond to wider covering and better performance within a
range, i.e. fewer conflicts than others for more number of BSSs.
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16th December 2009 1st March 2010
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

ARS (1, 2, 1) (1, 2, 3) (0, 1, 4) (1, 1, 0)

ARS + TRS (7, 4, 0) (2, 4, 3) (5, 5, 5) (0, 4, 2)

BSARS (7, 4, 2) (2, 0, 3) (1, 5, 5) (3, 5, 4)

BSARS +TRS (8, 3, 3) (8, 4, 3) (4, 6, 3) (4, 6, 5)

SARS + TRS (2, 4, 1) (0, 3, 2) (0, 1, 4) (0, 1, 0)

TRS (0, 1, 0) (0, 0, 1) (1, 3, 4) (1, 1, 0)

Table B.149: Conflicts (σ = 10min) statistical significance for MEFRN3 operator
combine robustness approaches with TRS.

16th December 2009 1st March 2010
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

ARS (1, 4, 3) (1, 1, 3) (1, 2, 4) (1, 1, 0)

ARS + TRS (7, 5, 2) (2, 5, 3) (5, 5, 5) (0, 5, 2)

BSARS (7, 3, 3) (5, 2, 3) (2, 6, 5) (3, 6, 4)

BSARS +TRS (8, 4, 3) (8, 5, 3) (4, 6, 3) (4, 6, 4)

SARS + TRS (2, 4, 2) (1, 2, 3) (1, 2, 5) (0, 3, 2)

TRS (0, 2, 2) (1, 0, 0) (1, 3, 5) (1, 0, 0)

Table B.150: Conflicts (σ = 20min) statistical significance for MEFRN3 operator
combine robustness approaches with TRS.

16th December 2009 1st March 2010
Approach Max. (9, 5, 3) Max. (6, 6, 5)

3-pier 4-pier 3-pier 4-pier

ARS (2, 4, 3) (1, 2, 3) (3, 2, 4) (1, 4, 0)

ARS + TRS (9, 5, 3) (3, 5, 3) (5, 5, 5) (0, 5, 2)

BSARS (8, 4, 3) (4, 3, 3) (2, 6, 5) (3, 6, 4)

BSARS +TRS (7, 5, 3) (7, 5, 3) (4, 6, 4) (4, 6, 5)

SARS + TRS (6, 5, 3) (1, 2, 3) (1, 1, 5) (0, 2, 1)

TRS (1, 3, 3) (1, 0, 0) (1, 3, 5) (1, 0, 0)

Table B.151: Conflicts (σ = 30min) statistical significance for MEFRN3 operator
combine robustness approaches with TRS.



Appendix C

More AGAP Results

C.1 Constructive Algorithms

Result for the first four objectives are presented in Section 7.9.
Following the ‘Minimise Number of Towing Operations’ objective studied in Sec-

tion 7.9 the First In First Out (FIFO) might be expected to perform well for this
objective, as one of its characteristics is achieving larger gaps between assignments
than the other selection methods, since assignments are distributed between all avail-
able gates. This should increase the chance of assigning parking activities to the
same gate as the corresponding arrival and departure flights, but on the contrary, it
performs worst. This may be attributed to the way in which this selection method
works, as the most recently assigned gate will be the last to be used in a new as-
signment, and the particular requirement for a parking activity to be assigned only
to the same gate as either its associated arrival or departure activities, so reducing
the chance in which that a departure will be assigned next to its associated parking
activity. It must be noted that this does not happen with the arrival activity even
though the gate to which the arrival activity is assigned is not the first gate to be
selected for assigning to the parking activity, because the parking activity can only
be assigned to the same gate as the arrival activity, and then eventually that gate
will be selected and assigned to the parking activity. The characteristic of the FIFO
selection method being to distribute assignments between all available gates, which
is detrimental to the parking assignment, since it reduces the chance of both the
parking and departure of an aircraft being assigned to the same gate. Therefore any
operation able to reduce the FIFO tendency to spread assignments among the gates
will obviously improve the towing objective since more restrictions are applied to the
available gates, as when Algorithms ‘C’ and ‘A’ are used, and given the way in which
the constraints (‘Airline Preference’) generate a favourable set of gates from which to
select, which is corroborated by the results shown in Appendix C.1 (Figure C.1).

The ‘Maximise Handling Agent Preferences’ objective is shown in the second
column in Figure C.1. This objective for Algorithm ‘E’ is best achieved by the
selection method FIFO, which is not as might be expected, given that spreading the
assignments should increase the chance of the aircraft being assigned to a gate away
from that preferred by the handling agent, whereas concentrating the assignments on
a few gates, characteristic of the Last In First Out (LIFO) selection method, might
be expected to be preferable. However, this LIFO characteristic would be detrimental

377
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if the group of gates, within which the assignment is concentrated, may also be those
least preferable to the handling agent, thereby decreasing this objective sufficiently
to render it even worse than FIFO, which would appear to be the case here. The
additional restrictions in this case show that the performance of the selection methods
‘Maximise Airline Preferences’ and LIFO are improved as expected, since the single
group is now spread to multiple selection groups based on the topology.

The Order by Departure Time Lookahead and Improvement (ODTLI) does not
achieve maximum assignments as is shown in Figures C.2 and C.3 for Algorithm ‘E’.
These figures show the number of assignments to gates achieved by each constructive
algorithm and data set, where the results are always lower than the total number
of activities shown by the upper dashed grey line. This also applies to the other
algorithms, i.e. Algorithms ‘C’ and ‘A’. Therefore ODTLI does not perform well
for all those data sets considered where there are sufficient gates to which all the
activities may be assigned (including parking activities, Upper Maximum Assignment
Point with Parking (UMAPp) ≤ N).

C.2 Steady State Evolutionary Algorithm

Some operators are described in this section which extends the number of operators
already provided in Section 5.4, followed by some statistical results in Section C.2.2.

C.2.1 Remote Mutation Operators

A new fictitious dummy stand, namely the remote dummy, was introduced in this
problem to explore the parking activities between arrival and departure flights by
the same aircraft, as was presented in Section 7.2. In order to allow these parking
activities to be unassigned from the remote dummy stand, it is necessary to add
another operator. The Remote Dummy Single Exchange Mutation Operator (RD-
SEMO) selects only one of the parking activities assigned to the remote dummy for
exchange, namely the RDSEMO, described in Algorithm 9. The parking activity
for reassignment may be randomly selected when there is more than one assignment
to the remote dummy stand. The RDSEMO will be seen in Section 8.3 to perform
poorly given that it is restricted to solutions with parking activities assigned to the
remote dummy, together with the extra constraint of assigning them to the gate al-
ready assigned to either the arrival or departure flight of the same aircraft as the
parking activity.

The Remote Dummy Exchange All Mutation Operator (RDEAMO) removes each
parking activity from the remote dummy and assigns it to an appropriate gate, per-
haps by removing one of the activities assigned to that gate, as described in Algorithm
10, so repeating the process followed by the RDSEMO for each of the parking activ-
ities assigned to the remote dummy stand.

An example of the RDSEMO operator is shown in Figure C.4a, where the problem
is composed of three gates and five groups. A parking activity is selected randomly
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Figure C.1: Comparison of results for the fourth and last objectives for the Order by Starting Time (OST) ordering method, the four
selection methods and three assignment algorithms, for 3-pier and 23 stands.
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Figure C.2: Total number of assignments for ordering method ODTLI, Algorithm ‘E’
and With Maximum Reduction in Service Time.

Figure C.3: Total number of assignments for ordering method ODTLI, Algorithm ‘E’
and With Reduction in Service Time.

from those assigned to the remote dummy, for example the parking activity of group
3. A gate is next randomly selected, e.g. gate 1, from which the search to assign the
parking activity commences. As a parking activity must be assigned to the same gate
as either its arrival or departure flight, then this remote activity cannot be assigned to
gate 1. So the search moves to the next gate, gate 3, but the same applies to this gate
so the parking activity cannot be assigned to this gate either. Finally, the next gate,
gate 2, which has not yet been looked at, is now checked and the parking activity
for group 3 can be assigned to it given that the flight arrival at this parking activity
is also assigned to this gate, but group 4 must first be unassigned. The process is
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Algorithm 9: Remote Dummy Single Exchange Mutation Operator

Randomly select a parking activity between all assigned to the remote dummy;
if arrival or departure activity associated with this parking activity is assigned

to a gate then
Select randomly one of the assigned gates to either the arrival or departure
activity;
if is possible to assigned the parking activity to this gate then

Assign the parking activity to the gate;
end
if is possible to assigned the parking activity to this gate once the

appropriate activity is unassigned from this gate then
Assign the parking activity to the gate;
Assign the unassigned activity to the appropriate dummy stand;

end

end

Algorithm 10: Remote Dummy Exchange All Mutation Operator

forall the parking activities in assigned to the remote dummy stand do
if arrival or departure activity associated with this parking activity is

assigned to a gate then
Select randomly one of the assigned gates to either the arrival or
departure activity;
if is possible to assigned the parking activity to this gate then

Assign the parking activity to the gate;
end
if is possible to assigned the parking activity to this gate once the

appropriate activity is unassigned from this gate then
Assign the parking activity to the gate;
Assign the unassigned activity to the appropriate dummy stand;

end

end

end

repeated in turn for each of the other parking activities assigned to the remote dummy
which has not yet been considered, e.g. parking activity 2. This parking activity can
only be assigned to gate 3, but it would overlap with group 5, so firstly group 5 is
unassigned and then parking activity 4 is assigned to gate 3.

Another operator moves one or multiple parking activity assignments from the
remote dummy stand to appropriate gates with a sufficient gap to accommodate them
all, namely Remote Dummy Move All Mutation Operator (RDMAMO). Therefore
only those parking activities will be assigned where there is a gate with adjacent
assignments which have a sufficient gap to accommodate the parking activity, and
where one of those activities is an arrival or departure for the parking activity.

An example of the RDMAMO operator is shown in Figure C.5, where the problem
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a Remote Dummy Single Exchange Mutation Op-
erator (RDSEMO).

b Remote Dummy Exchange All Mutation Oper-
ator (RDEAMO).

Figure C.4: Examples of the process for the Remote Dummy Exchange Mutation
Operators.

is composed of three gates and four groups. A parking activity is randomly selected
from those assigned to the remote dummy, e.g. a parking activity of group 3. A gate
is next randomly selected, e.g. gate 1, from which the search to assign the parking
activity begins. As the parking activity must be assigned to the same gate as either
its arrival or departure flight this remote activity cannot be assigned to gate 1. So
the search moves to the next gate, gate 3, but this assignment is not possible either,
as otherwise it would overlap with the activity for group 4. Finally, the next gate, 2,
which has not yet been looked at, is now checked and the parking activity for group
3 can be assigned to it, given that this parking activity does not overlap with any
of the activities already assigned to that gate, and the arrival flight for this parking
activity is also assigned to the gate. The process is repeated for each of the other
parking activities assigned to the remote dummy which have not yet been considered,
for example parking activity 2. However this parking activity cannot be assigned to
any of the gates as it would overlap other assigned activities.

When the remote dummy stand has no remote activity assigned to it then obvi-
ously none of the remote dummy mutation operators presented here provide a new
solution, as there are no remote activities available to be unassigned from the remote
dummy and assigned to a gate. These operators may therefore only be used when
there are parking activities assigned to the remote dummy, and once this is no longer
the case, they should not be used.

When only one or many of the mutation operators introduced in Section 5.4 are
used it may be advantageous to include at least one of the remote dummy mutation
operators, as the other mutation operators do not have the capability of reassigning
parking activities to gates. The crossover operators may be able to reassign parking
activities to gates, but only where at least one of both parents have not assigned
the same parking activity to the remote dummy gate. This applies similarly to
the dummy operators Dummy Single Exchange Mutation Operator (DSEMO) and
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Figure C.5: Example of the process for the Remote Dummy Move All Mutation
Operator (RDMAMO).

Dummy Single Move Mutation Operator (DSMMO) in respect of unassigned flight
arrivals and departures.

C.2.2 Single Operator Results

The results show that the RDSEMO does not perform well when used alone, being
even worse for N < Lower Maximum Assignment Point (LMAP), where N is the
number of gates available. This is due to the duration of the parking activity normally
being very long, in our case over two hours (Section 7.6), which may overlap with
multiple arrival and departure activities already assigned to the same gates where
the exchange of assignments is attempted. Furthermore if these activities already
assigned are unassigned in order to allow the parking activity to be assigned to that
gate, the number of assignments is reduced. Similarly as in Chapter 5 for N ≥ Lower
Maximum Assignment Point with Parking (LMAPp), this operator can only improve
the solutions if the population contains solutions without full assignment of activities,
since there are no unassigned activities for removal from the remote dummy stand.

Table C.1 shows a summary of the population sizes for the single operators whivh
cannot be said to provide statistically significantly less fit solutions than any of the
other single operators considered for the Steady State Evolutionary Algorithm with
ℓ = 1 (SSEA1). A summary of the parameters is shown in Table 8.2 where only
ℓ = 1 was considered. The results give an indication of the preferred population sizes
for each operator. The influence of the ℓ in the performance of each operator and
preferred population size is studied in Section 8.3.1.

C.2.3 Robustness

The summary of the statistical significance of the different robustness approaches is
shown in Tables C.2 and C.2, where the Probability of Conflict Based on the Gap
(PCBG) uses the same standard deviation as the normal distribution which was
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Operator Selector H4T100906 H4T100907 H4T100908 H4T100909 H4T100910 H4T100911 H4T100912

C1P
IS1ES 2000 2000 2000 2000 2000 2000 2000

IS1SUMS 2000 2000 2000 1000, 2000 2000 2000 1000, 2000

C2P
IS1ES 1000, 500 5, 10, 15, 30,

50, 500, 2000
500, 2000 1000, 2000 1000, 2000 500, 1000,

2000
500, 100, 200

IS1SUMS 500, 2000 5, 10, 15,
30, 100, 500,
1000, 2000

1000, 2000 2000 2000 5, 50, 500,
1000, 2000

500, 1000, 2000

IMEFNR3

IS1ES 5, 10 5, 10 5, 10 5 5, 10, 15 10, 15
IS1SUMS 5 30 5, 10
SUMS 5, 15, 30, 100,

200, 1000, 2000
5, 10, 15, 30,
50, 100, 200

15, 30, 50, 100.
2000

5, 15, 2000 5, 10, 15, 30,
100, 200, 500,
1000, 2000

10, 30, 1000

MEFNR3

ES 100, 500 100 50, 100 30, 200, 500,
1000

IS1ES 5 5, 15, 30, 50, 500 15 10 30
IS1SUMS 10, 15, 30, 100,

500
5, 30

SUMS 50, 200, 1000,
2000

200, 500 15, 50, 100, 200,
500, 2000

5, 15, 30, 200,
1000, 2000

5, 15, 30, 100,
200, 500, 1000,
2000

10, 15, 50,
200, 1000,
2000

15, 200, 500,
1000, 2000

IRMEFNR2
IS1ES 5, 10, 15, 30 5 5, 15 5, 10, 15, 500 5 10 5, 10, 30

IS1SUMS 5, 50 5 15, 30 500 30
SUMS 15, 500 10, 15, 30,

200
5, 10, 15, 30,
50, 100, 200,
500, 2000

5, 10, 15, 50,
100

5, 10, 15, 30,
50, 100, 200,
500, 2000

5, 10, 15, 50,
100, 200, 500

RMEFNR2

ES 500, 2000 30, 2000 500, 1000, 2000
IS1ES 5, 10, 15, 30, 50,

200, 500, 1000
50, 500, 1000 5, 10, 15, 30 5, 15, 500 5, 10, 15, 30 5, 15, 50

IS1SUMS 10, 30, 500 10, 30, 50,
200

10, 15, 30, 50 5, 10, 15, 30 500

SUMS 10, 30, 50, 100,
200, 500, 2000

5, 10, 15, 30,
50, 100, 200,
500, 1000

10, 100 5, 10, 15, 30, 50,
100, 200, 500,
1000, 2000

5, 10, 15, 30,
100, 200, 500,
1000, 2000

5, 10, 15, 50,
100, 200, 500,
1000, 2000

100, 200, 500,
1000

Table C.1: SSEA1 statistically significantly fitter solutions for the data sets from 6th to 12th September 2010 for each operator.
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used to generate the perturbed schedules. The LMAP, Upper Maximum Assignment
Point (UMAP), LMAPps and UMAPps from Table 7.6 are shown between brackets
in the table heading for convenience as (LMAP, UMAP, LMAPp, UMAPp). The
table only presents those approaches which either alone or combined with others
provide solutions with statistically significantly fewer collisions than other approaches
studied and cannot be said to have more collisions than any of the other operators
studied when used alone or in combination, which are shown with a tick. Only those
approaches having at least one tick are shown.

To speed up execution of the PCBG robustness approach instead of using the
density function for the distribution (folded normal distribution), a pre-generated
table of the accumulative probabilities was used for up to four times the standard
deviation.

It should be noted that given that the PCBG used considers standard deviations
equal to those used to build the perturbed data sets it may be considered biased and
be expected to perform better. However the results obtained for data sets with a
sufficient number of gates to assign all the activities shows that the Unsupervised
Estimated Stochastic Reduction in Service (UESRS) performs better for different
unsupervised functions than PCBG for all the disruption standard deviations consid-
ered.
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Approach

H4T100906 H4T100907 H4T100908 H4T100909 H4T100910 H4T100911 H4T100912
(8, 10, 17, 19) (11, 14, 18, 20) (7, 10, 16, 18) (8, 10, 18, 20) (9, 12, 15, 18) (9. 10, 16, 16) (11, 11, 18. 19)

Standard Deviation (x) in min
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

0.225PCBG(x)+0.00025TRS(2) X X X X X X X X X

0.3125PCBG(x)+0.00025TRS(2) X X X X X X X X X X X X

0.225PCBG(x) X X X X X X X X X

0.3125PCBG(x) X X X X X X X X X X X X

0.225UESRS(E0.03)+0.00025TRS(2) X X X X X X X X X X X X X X X X

0.225UESRS(E0.05)+0.00025TRS(2) X X X X X X X X

0.225UESRS(I4)+0.00025TRS(2) X X X X X X X X

0.225UESRS(I6)+0.00025TRS(2) X X X X X X X X X X

0.3125UESRS(E0.03)+0.00025TRS(2) X X X X X X X X X X X X X X X X X X X

0.3125UESRS(E0.05)+0.00025TRS(2) X X X X X X X X X X X

0.3125UESRS(I4)+0.00025TRS(2) X X X X X X X X X X X

0.3125UESRS(I6)+0.00025TRS(2) X X X X X X X X X X

0.225UESRS(E0.03) X X X X X X X X X X X X X X X

0.225UESRS(E0.05) X X X X X X X X X X X

0.225UESRS(I4) X X X X X X X X

0.225UESRS(I6) X X X X X X X X X X

0.225UESRS(I15) X X X X X X X X X X X X

0.3125UESRS(E0.03) X X X X X X X X X X X X X X X X X X X

0.3125UESRS(I4) X X X X X X X X

0.3125UESRS(I6) X X X X X X X X X X X X

0.3125UESRS(I15) X X X X X X X X X X X X X X X X X X

Table C.2: Summary Airport Gate Assignment Problem (AGAP) robustness statistical significance (significance level 0.05) using
perturbed schedules generated from normal distributions of 10, 20 and 30 min standard deviations and SSEA1.
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SSEA1 and population size 5 H4T100906 H4T100907 H4T100908 H4T100909 H4T100910 H4T100911 H4T100912

Approach
(17, 20, 23, 26) (21, 23, 25, 28) (18, 20, 23, 25) (21. 21, 28, 28) (19, 20, 20, 21) (19. 21, 21, 21) (19, 21, 23. 24)

Standard Deviation (x) in min
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

0.225PCBG(x)+0.00025TRS(2) X X X X X X X X X X X

0.3125PCBG(x)+0.00025TRS(2) X X X X X X X X X X X X X X

0.225PCBG(x) X X X X X X X X X X X X

0.3125PCBG(x) X X X X X X X X X X X X X

0.225UESRS(E0.03)+0.00025TRS(2) X X X X X

0.225UESRS(E0.05)+0.00025TRS(2) X X X X X X X

0.225UESRS(I4)+0.00025TRS(2) X X X

0.225UESRS(I6)+0.00025TRS(2) X X X X X

0.3125UESRS(E0.03)+0.00025TRS(2) X X X X X X X X X

0.3125UESRS(E0.05)+0.00025TRS(2) X X X X X X X X X X X X

0.3125UESRS(I4)+0.00025TRS(2) X X X X X

0.3125UESRS(I6)+0.00025TRS(2) X X X X X

0.225UESRS(E0.03) X X X

0.225UESRS(E0.05) X X X X X

0.225UESRS(I4) X X X X

0.225UESRS(I6) X X X

0.225UESRS(I15) X X X X X

0.3125UESRS(E0.03) X X X X X X X

0.3125UESRS(I4) X X X X X

0.3125UESRS(I6) X X X X X

0.3125UESRS(I15) X X X X

Table C.3: Summary AGAP robustness statistical significance (significance level = 0.05) using perturbed schedules generated from
normal distributions of 10, 20 and 30 min standard deviations and SSEA1 for new data sets with 37 extra groups each.


