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ABSTRACT

Consideration of the relative place of content and process in the

mathematics curriculum leads to the following questions:

1. What is the nature of the mathematical process and how does

it relate to the content?

2. Does the process comprise learnable strategies; if so, what

are feasible learning objectives for different ages?

3. Can content and process be learned simultaneously or are there

incompatibilities between effective teaching methods?

A theoretical study shows that the content of mathematics - structures,

symbol-systems and models - arises directly from the application of

the basic processes of generalisation and abstraction, symbolisation

and modelling, to the objects of experience.

Experimental studies based on (a) the development of a process-enriched

curriculum for the early secondary years, and (b) age and ability cross-

sectional studies of pupils' proof activity show that:

i. the awareness that proof requires consideration of all cases is

generally weak among secondary pupils, but is relatively easily

taught,

ii. with a process-enriched curriculum, 11 year olds can acquire

strategies of experimenting, making generalisations and constructing

complete (finite) sets but still have little sense of deducing one

result from another,

iii. the main types of deficiency in proof-explanations are (a) frag-

mentary arguments, (b) non-explanatory re-statements of the data,

(c) unawareness of suitable starting assumptions.

Strategies for improving proof activity are inferred from pupils'

responses, ~~d are shown to be effective in a sixth form teaching

experiment.



An informal study shows that students entering university mathe-

matics departments possess generalisation skills and logical

awareness to a much higher degree than 15 year olds, but still

have only vague ideas of the nature of axiom systems.

On question 3 the evidence suggests that there need be no sub-

stantial loss of content learning in the process-enriched

curriculum, and both in this and in the teaching experiment an

improvement in general understanding and involvement was observed.
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CHAPTER 1

THE MATHEMATICS CURRICULUM

GENERAL OBJECTIVES

CONTENT AND PROCESS - AN INTERNATIONAL SURVEY
I

THE PRESENT INVESTIGATION - QUESTIONS ANDRESUl1TS



1.1

GENERAL OBJECTIVES

It is not so long since mathematical education in England consisted,

for the lower classes, of training to calculate accurately with large

and complicated numbers, weights, measures and money, and, for the

upper classes, of the rote learning of Euclid's books. No one would

defend these practices today, but tradition dies hard, and beneath

the superficially radical changes of the last fifteen years there is

a continuing lack of a tough philosophy which unites current aware-

ness of the nature of mathematics and of the process of learning into

a sufficiently coherent and understandable framework to act as a

guide for curriculum practice.

The first question to answer in constructing such a philosophy is

what kind of knowledge of mathematics is appropriate for a general

education. Some recent: discussions (IMA, 1975) have emphasised the

need for at least a certain segment of the secondary school leavers

to be equipped with the basic numerical skills required for engineering

and similar technical occupations. To get a correct perspective on

this question it is necessary to distinguish between the secure and

confident understanding of those number concepts and skills which are

of wide application, and those which are needed at a high level of

speed and accuracy only in certain occupations. The retentivity of

different kinds of know Ledqe also has to be taken into account. But,

in any case, a purely utilitarian approach to the curriculum would

be sterile. It would imply that for pupils of average ability,

destined for employment as clerks, secretaries, draughtsmen, tech-

nicians and the like, the curriculum would comprise the reading of

instructions, the interpretation of maps and diagrams, writing for

record-keeping, simple tabulation and tallying of quantities, and

some practical science or craft. History, geography, the st:udy of

literature, expressive writing, art, music and theoretical science

would have no place. An educational experience of this kind wou Ld

do little or nothing to help its prod.ucts to exercise judgements a.s

citizens or as parents, and a societ.y which provided no more than

this would be failing to pass on its most highly regarded values and

achievements.
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If one accepts the obligation to transmit the skills and culture

of civilisation as effectively as possible, the problem of selecting,

from the vastness of knowledge, material for the brief years of

schoollng, is acute. One must seek the most general, the most

pervasive, the most distinctive aspects of knowledge. Specifically,

one must attempt to establish a structure of ideas which will facil-

itate the assimilation of further knowledge, and teach the actual

skills, strategies and attitudes needed for the acquisition of

kncw Ledqe , (Even for the apprentice to a trade, a distilled

awareness of how to make effective use of the training experiences

provided could be a most valuable acquisition.) For the teaching

of these fundamental ideas and some of the component sub-skills

for acquiring knowledge, structured - even programmed - learning

experiences may be the most effective. But for appreciating the

nature of di.fferent subjects, and for developing strategies and

attitudes, participation in experiences which reflect without

distortion the actual knowledge-getting methods of the different

subjects is essential. This is essentially Bruner's assertion in

The Process of Education (1960, see also 1959).

To apply these principles to mathematics one must decide what kind

of subject it is. For most of those who are able to retain a

positive attitude to it, it is, first, the means of gaining insights

into some aspect of the environment. The form of the growth function

of populations, the ways of turning a mattress, the concept of

acceleration (and of the decrease in the rate of inflation) and the

correct understanding of the statistical "law of averages", are

everyday examples, and any given occupational or leisure situation

will furnish many more. Secondly, the general attraction to puzzles

and patterns, and tile existence of a sprinkling of enthusiastic

amateur number theorists, suggest that the capacity for appreciating

mathematics as an art to enjoy is also present in many people, but

is generally suppressed by distasteful ~choo1 experiences. These

two modes of interaction of people with mathematics represent the

applied and the pure mathematical approaches, and they have been

identifiable throughout history as the mainspring of mathematical

activity.
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The criterion of generality makes it desirable that valid general

strategies of enquiry, discovery and verification should be ident-

ified, and their development promoted, through as many subjects as

possible. The stages of question formulation, exploration, insight

and verification (compare Poincare, and Polanyi (1957» may be

experienced in mathematical work more easily than in most other

subjects; the problem-solving strategies discussed by Polya (1954)

in a mathematical context are seen by him as forming a general

training in inductive reasoning in what is a particularly suitable

field, since the performing of mathematical experiments requires

no more elaborate observational method than reflection, and no more

expensive equipment than pencil and paper.

Thus, in designing a curriculum to represent faithfully the nature

of pure and applied mathematics, in content and process, many of

the strategies to be learnt will contribute to general aims. Pupils

will be learning how to conduct any enquiry, individually, and

collectively, collecting data which bear on the problem, drawing

conclusions and identifying new questions, exposing individual

conclusions to discussion and argument and establishing public

agreements.

CONTENT AND PROCESS - AN INTERNATIONAL SURVEY

On the international curriculum development scene, one of the most

significant writings of the last two decades is Bruner's The Process

of Education (1960), in which he argues for the involvement of pupils

in activities as close as possible to those of researchers on the

frontiers of knowledge. Bruner's book is based on a meeting of some

thirty-five scientists, psychologists and curriculum developers at

Woods Hole on Cape Cod in 1959; out of these discussions emerged some

far-reaching principles for guiding curriculum reform. Starting from

the hypothesis that any subject can be ta~ght effectively in some

intellectually honest form to any child at any stage of development,

Bruner asserts that teaching should be designed, both globally and



locally, to exhibit the fundamental structure of the subject, that

is the basic ideas that lie at its heart. These basic ideas, and

this structure, need to be realised by the learning materials in

a form suitable to each age of pupil; so that they learn to use

them in progressively more complex forms. This is a statement

against 'teaching conclusions', and against the teaching of bits

of a subject out of relation to the whole. "Intellectual activity

is everywhere the same, whether at the frontier of knowledge or in

a third-grade classroom • .• • The school boy learning physics is a

physicist ..• • " (pp. 11-14)

Even more strongly, in Towards a Theory of Instruction (1959),

Bruner writes:

"Finally a theory of instruction seeks to take account of the

fact that a curriculum .reflectsnot only the nature of knowledge

itself (the specific capabilities) but also the nature of the

knower and of the knowledge-ge·tting process. It is the enter-

prise par excellence where the line between the subject matter

and the method grows necessarily indistinct. A body of know-

ledge, enshrined in a university faculty and embodied in a

series of authoritative volumes, is the result of much prior

intellectual activity. To instruct someone in these disciplines

is not a matter of getting him to commit results to mind.

Rather, it is to teach him to participate in the process that

makes possible the establishment of knowledge. We teach a

subject not to produce little living libraries on that subject,

but rather to get a student to think mathematically for himself,

to consider matters as a historian does, to take part in the

process of knowledge-getting. Knowing is a process, not a

product. "

Alongside these we place contrasting quotations from Gagne (1970)

and Ausubel (1968). These three pose sharply the question of the

relative place of content~d process, and represent viewpoints to

which we shall want to refer later.

Gagne says:
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"Obviously, strategies are important for problem-solving,

regardless of the content of the problem. The suggestion

from some writers is that they are of overriding importance

as a goal of education. After all, should not formal instruction

in the school have the aim of teaching the student "how to

think"? If strategies were deliberately taught, would not

this produce people who could then bring to bear superior

problem-solving capabilities to any new situation? Although

no one wou Ld disagree with the aims expressed, it is exceedingly

doubtful that they can be brought about solely by teaching

students "strategies" or "styles" of thinking. Even if these

can be taught (and it is likely that they can), they do not

provide the individual with the basic firmament of thought,

which is a set of externally-oriented intellectual skills.

Strategies, after all, are rules which govern the individual's

approach t.o listening, reading, storing information, retrieving

information, or solving problems. If it is a mwt~ematical

problem the individual is engaged in solving, he may have

acquired a strategy of applying relevant subordinate rules

in a certain order - but he must also have available the mathe-

matical rules themselves. If it is a problem in genetic inher-

itance, he may have learned a way of guessing at probabilities,

before actually working them out - but he must also bring to

bear ~1e substantive rules pertaining to the dominant and

recessive characteristics. Knowing strategies, then, is not

all that is required for thinking; it is not even a substantial

part of what is needed. To be an effective problem-solver, the

individual must somehow have acquired masses of organised intell-

ectual skills."

Ausubel says:

" ..... As far as the formal education of the individual is

concerned, the educational agency l'argely transmits re':ldy-made

concepts, classifications, and propositions. In any case,

discovery methods of teaching hardly constitute an efficient
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primary means of transmitting the content of an academic

discipline.

It may be argued with much justification, of course, that

the school is also concerned with developing the student's

ability to use acquired knowledge in solving particular

problems, that is, with his ability to think systematically,

independently, and critically in various fields of enquiry.

But this function of the school, although constituting a

legitimate objective of education in its own right, is less

central than its related transmission-of-knowledge function

in terms of the objectives of education in a democratic

society, and in terms of what can be reasonably expected

from mos t students • • • • • II

Of these, Ausubel's is unsupported assertion, except for the hint

in the last phrase that some students are incapable of learning

systematic, independent or critical thinking; and this in itself

is by no means self-evident. It is arguable that even pupils who

learn slowly will be best fitted to go on learning throughout their

lives by an education which gives them some encouragement and

orientation towards finding out and making their own judgements.

~runer's and Gagne's statements taken together form an acceptable

rationale for a combination of content and process objectives.

Among those contributing to developments of the mathematical

curriculum, Dienes, Papy and the Carbondale project may be seen

as essentially content-oriented, Christiansen and Freudenthal as

advocating mixed programmes, while Davis and Papert show a strong

bias towards process.

Christiansen (1969) says:

"The foremost goal c;>t" mathematics on scientific level is the

study of structures:



1.7

The most important means for the attainment of this goal is

the axiomatic method • • • • .but the relevant preparation of the
.,"

use of the axiomatic method - on any level of school teaching -

consists of an application of the inductive approach to a

degree that goes far beyond what is at present customary."

And later,

"In short, the inductive approach (in one of its forms) may

be characterised in the following four steps: (1) Experiment-

ation, (2) Observation, (3) Forming of a hypothesis, (4) Further

Experimentation in order to test the hypothesis. The inductive

approach forms a strong motivation for a subsequent use of

(5) Deduction with regard to verification (or falsification) of

the hypothesis (relative to some mathematical model)."

For Christiansen the reasons for the use of 'the inductive method'

are (a) to give "joy and insight into the aesthetic values of

mathematics" and (b) because it is :laspecial working method applic-

able by any human being trying to obtain cognition with regard to

any field of knowledge." Thus process aspects of mathematics are

to be developed both for the general experience of ways of gaining

knowledge, for their attractiveness, and for the deeper insight which

they give into the nature of the subject and the motives which lead

people to pursue it. Freudenthal (1968) stresses particularly this

last point, the need for active participation in order to appreciate

the mathematising, systematising process. At the same time he asserts

that this process began by dealing with everyday reality and only

subsequently became turned in on itself.

"Arithmetic and geometry have sprung from mathematising part

of reality. But soon, at least from the Greek antiquity

onwards, mathematics itself has becpme the object of mathe-

matising. Arranging and rearranging the subject matter,

turning definitions into theorems and theorems into defin-

itions, looking for more general approaches from which all
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can be derived by specialisation, unifying several theories

into one - this has been a most fruitful activity of the

mathematician. "

"Systematisation is a great virtue of mathematics, and if

possible, the student has to learn this virtue, top. But

then I mean the activity of systematising, not its

result. Its result is a system, a beautiful, closed

system, closed, with no entrance and no exit. What humans

have to learn is not mathematics as a closed system, but

rather as an activity, the process of mathematising reality

and if possible even that of mathematising mathematics."

Other speakers at the 1968 and 1969 international conferences at

Utrecht and Lyons echoed the same theme, the need for school

mathematics to relate strongly to real-life applications. Thus

Pollak (1969) argued for the use of real applications in the

classroom, and Engel (1969) devoted his lecture to the powerful

applications in Operational Research of simple mathematical ideas

such as those of graph theory and combinatorics, linear programming

and game theory, and simulation methods.

In examining actual programmes of curriculum development, we

begin with Dienes. For him, the goal of mathematical education

appears to be the understanding of structural ideas, and the

meLhod, the exploration of structured apparatus or the playing

of games designed to embody a par.ticular structure.

"By mathematics I understand actual structural relation-

ships between concepts connected with numbers (pure mathe-

matics), together \-liththeir applications to problems

arising in the real world (applied mathematics). The

learning of mathematics I sha1l take to mean the apprehen-

sion of such relationships together with their symbolisation,

and the acquisition of the ability to apply the resulting

concepts to real situations occurring in the world."
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Thus Dienes' methods emphasise activities which fit in with

children's natural modes of learning, as described by Piaget,

and his best known contribution has been the provision of

structured apparatus for the Primary School stage. However, in

his recent booklet "The Six Stages in the Process of Learning

Mathematics" (1973) Dienes appears to suggest that children

can proceed along the full path of the mathematical process

culminating in the construction of a fully formal axiom system,

with theorems deduced by strict rules of proof. His six stages

assume as a starting point that a desired structure is embodied

in a variety of sets of material. Then follow:

1. Free play with the material

2. Prescribed structured games with the material

3. Abstraction of the structure by recognition of the common

elements in the different gumes

4. Representation of the structure by some graphical method

5. Discovery of the properties of the structure ru1d use of a

(possibly symbolic) language for stating them

6. Choice of certain properties as axioms and others as rules of

proof, and deduction of remainder as theorems.

These stages are illustrated by sequences using concrete material

err~odying the structures of (i) elementary logic, (ii) symmetries

of the equilateral triangle and (iii) a total order relation.

Dienes does not state whether a child is expected to work through

all these stages in a continuous sequence, or whether he envisages

a return after some years to a situation, previously explored

informally, for the completion of stages (5) and (6). It is

difficult to imagine stage (6) being anything other than a meaning-

less symbol-game to a pupil who needed stages (1) to (4). Other

criticisms can be made of this scheme. ~eeler (1964) questions

whether multiple embodiments are actually needed (or helpful) for
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the abstractive process; and the critical examination of the nature

of proof offered in Chapter 6 of this work will suggest that most

mathematical proof is mainly concerned with judgements relating to

the substance of the concepts involved, and that strictly formal

proof is relatively unimportant.

The present writer would claim that it is possible for pupils to

have experiences much closer to those of the real mathematician

through the solving, extension and generalisation of problems

arising in the context of a normal syllabus. This is not to deny

the value of structured materials as the starting points of mathe-

matical investigation, but rather to assert that the motivation

for the inquiry should be the desire to gain further insight. An

inquiry which is forced along predetermined tracks is an imposed

exercise, not an experience of the getting of knowledge. From

the standpoint of the present discussion, Dienes is to be counted

as one whose goals of instruction appear now to include both content

and mathematical process, but whose recent proposals for process

learning are a highly artificial distortion of normal mathematical
. .

experience, and also lack credibility from an educational standpoint.

More brief comments on other writers now foLl.ow, Papy's (1963)

approach to content is the common one of "sets and structure";

regarding process, the exposition is strongly deductive throughout,

with axioms stated and many "if-then" diagrams. Most of the

exercises in Book 1 (for 12 year olds) simply practise the ideas

of the chapter which precedes them, but a few, particularly 'in

the section on number laws, require a deduction. In the later

books such exercises occur more frequently, but there are none

which invite the pupil to extend or generalise a problem for him-

self.

The CSMP at Carbondale, though describing itself as "a content-

oriented approach" to the curriculum, devotes a considerable amount

of time in its earlier stages (12-14 year olds) in developing the

pupils' ability to const.ruct formal math~matical proofs. This
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arises partly from its other emphasis on individualisation of

the curriculum and of the material. (CSMP, 1972) This is

discussed in Chapter 6. Davis (1967, 1970) explicitly affirms

the centrality of process to mathematics. His characteristic

mode of teaching is through "informal exploratory experiences"

based on "paradigmatic situations". For example, starting w.ith

an unknown number of pebbles in a bag, two children in turn add

to it or take from it a chosen number of pebbles and members of

the class suggest by ha,...many the total has changed. (Film, A

Lesson with Second Graders, Madison Project). Another filmed

lesson "Monotonic Sequences" shows a normal group of 13 year

olds led to a sophisticated awareness of real numbers. Davis's

curriculum is built up by a succession of such experiences with

situations embodying all the key mathematical structures.

Papert (1972) embraces process more fully than any previously

quoted curriculum developer, stating that the choice of content,

particularly in the early years, should be made primarily in terms

of the suitability for developing the awareness of the mathematical

way of thinking. He describes the development by the pupil of

simple computer programs to make a computer controlled toy turtle

describe.desired patterns. The concepts of sub-routines, iteration,

de-bugging, partial solutions and so on thus acquire concrete repres-

entations. Papert emphasises the value of a long-term project in

which the pupil develops from producing very simple patterns to

ones of a self-set level of complication, as against the short

classroom exercise suitable only for learning particular concepts

and skills.

Thus, the importance of process as well as content has been asserted

frequently on the international scene during the recent phase of

curriculum development, but only a few curricula have achieved a

satisfactory combination of these two aspects, and there has been

little or no theoretical discussion of their relationship to each

other.

Changes in the mathematics curriculum in England, as reflected in

the most widely used series of texts, have introduced various types
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of discovery learning which may give modestly improved awareness

of the process of making generalisations, but at the same time

the presentation of material in a deductive framework and the

demand to construct proofs have declined.

THE PRESENT INVESTIGATION - QUESTIONS AND RESULTS

The situation described above gives rise to the questions invest-

igated in this thesis:

1. What is the nature of the mathematical process, how does it

relate to thecontent of mathematics, and what is its importance

as compared with the content?

2. Does the process comprise learnable strategies; and if so, what

are the feasible learning objectives for different ages?

3. Can content and process be learned simultaneously, or are

there incompatibilities between effective methods for the

two aspects?

An initial theoretical study gives some answers to question 1.

The experimental studies bearing on questions 2 and 3 fall into

two parts. First, a process-enriched curriculum for the early

secondary years (The South Nottinghamshire Project) has been

developed in conjunction with two comprehensive schools and has

provided the setting for classroom observations and written tests.

Secondly, the process achievements of pupils in normal school

settings have been studied in a sequence of experiments. One

of these was an interactive study of small groups of pupils of

different ages; two used written group tests in age and ability

cross-sectional studies. There followed a sixth form experiment,

investigating the improvement of process attainments by teaching.

The theoretical study shows (i) that the content of mathematics -

structures, symbol-systems and models - arises directly from the

application of the basic mathematical processes of generalisation

and abstraction, symbolisation and modelling, to the objects of
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experience; there is thus a very close relationship between the

two aspects.

On question 2, the experimental studies show:

(i) at 11, pupils in normal school situations can recognise,

extend and describe patterns but do not attempt to explain,

justify or deduce them; with a process-enriched curriculum,

they can acquire strategies of experimenting, making general-

isations, and constructing complete (finite) sets; and can give

one-step explanations, but still have little sense of deducing

one result from another.

(ii) that proof requires the consideration of all cases is not

fully and spontaneously appreciated, even by sixth formers, but

this awazenes s Ls relatively easily taught at the sixth form

stage.

Other types of failure to give satisfactory proof-explanations

are (a) disconnected, fragmentary arguments, (b) lack of insight

into the situation leading to a non-explanatory restatement of

the data, (c) lack of awareness of what are suitable assumptions

or starting points for an argument.

(iii) Levels of proof-explanation reached in problems depend

strongly on contextual factors, such as familiarity, complexity

and whether or not the set is finite.

(iv) Improvement in sixth formers' proof activity, particularly

in their awareness of "all cases" can be achieved by teaching

based on methods derived from earlier studies reported here.

Specifically, these consist of study of a fairly simple axiomatic

system - Boolean algebra - Witll critical discussion of pupils'

own proof arguments, and attention to strategic concepts of all

cases, data and conclusion, agreed starting points, being system-

atic, classifying and exhausting cases.



1.14

(v) Students entering university mathematics departments possess

generalisation skills and logical awareness to a much higher

degree than 15 year olds, but still have only vague ideas of the

nature of axiom systems.

On question 3 the evidence is not strong, but there appears ~o be

no substantial loss of content learning in the process-enriched

curriculum, and both in this and in the teaching experiment an

improvement in general understanding and involvement.



CHAPTER 2

THE NATURE OF MATHEMATICS

THE FUSION OF CONTENT AND PROCESS

SYMBOLISATION



2.1

THE FUSION OF CONTENT AND PROCESS

To the Greeks, mathematics was the study of numbers, magnitude

and figures; but even as early as this, deductive proof was equally

well established as a characteristic of mathematical activity.

Plato, in the Republic, says "Those who study geometry and arithmetic • • •

assume the existence of odd and even numbers, and three kinds 'of

angles: these things they take as known and consider that there is

no need to justify them either to themselves or to others, because

they are self-evident to everyone; and starting from them, they

proceed consistently step to step to the propositions which they

set out to examine."

Since "magnitudes" or measures, consist mainly of the application

of numbers to geometrical figures - lines, surfaces and so on -

together with other situations dealt with by analogy with these

(weight, time), this vie,.,roots mathematics in the study of number

and space. The explicit recognition of a wider subject matter can

be attributed to Boole (1847, 1854) who, in his algebra of the Laws

of Thought, used the letters x, y for propositions,. and + for

"and" and "or" connectives, and 1 and 0 for truth and falsity. He

said, "It is not the essence of mathematics to be conversant with

the ideas of number and quantity" and "It is concerned with operations

considered in themselves, independently of the various ways in which

they may be applied." This was the culmination of a century or more

of pUZZlement about the nature of negative and imaginary numbers

(e.g. d'A1embert), of infinitesimals, of "imaginary double points

of infinity" (Stirling, 1717).

Thus, with Boole, the content of mathematics is being recognised as

consisting essentially of the relations between objects, and not

the objects themselves. At the same time it was becoming accepted

that the starting points of the deductive mathematical system are

not "self-evident truths" about given funoamental objects, but

postulated relationships between undefined terms. This position is,
expounded later by Russell:

"Pure mathematics consists entirely of such asseverations as

that, if such and such a proposition is true of anything, then
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such and such another proposition is true of that thing. It

is essential not to discuss whether the first proposition is

really true, and not to mention what the anything is of which

it is supposed to be true .• .• If our hypothesis is about any-

thing and not about some one or more particular things, then

our deductions constitute mathematics. Thus mathematics may be

defined as the subject in which we never know what we are talking

about, nor whether what we are saying is true."

Thus the recognition that mathemati?s is not essentially about any

particular kinds of object (numbers or space), but is characterised

by its method, developed alongside greater clarity in the definition

of that method. However, Russell's definition is too wide. Even he

did not choose totally arbitrary sets of hypotheses to work with.

The axiom systems which mathematicians actually study are thos~

which have some significance in relation to the existing body of

knowledge. -Following Russell, work on the foundation of mathematics

attempted to expose the assumptions of the deductive process itself,

by which the consequences of axioms are deduced, and thus to bring

logic inside the field defined as mathematics. One result of this

is the notion of the formalised text (Bourbaki, p.7); more valuable

is the Bourbakiste concept of classifying the whole of mathematics

as the structures which stem from the notions of set and element.

Thus relations are sets of ordered pairs, functions are kinds of

relation, algebraic structures are sets with laws of composition

(which are, themselves, functions), topologies are certain kinds

of identified sets of subsets, and so on (Choquet, 1962).

In practice the content of modern mathematics still shows strong

links with its origins, in number and space, though some accepted

elementary theories, such as Boolean algebra, permutacions of

finite sets and graph theory are in principle more primitive. They

have a natural place in the Bourbakiste scheme, and their inclusion

in school curricula helps to demonstrate to pupils that mathematics

has a wider context than simply numb'er and space.
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The mathematical process does not only consist of the exposition

and demonstration of mathematical truth. The process of discovering

the concepts and the generalisations has historically received less

attention - in the tradition of Archimedes' elusive Method, and

Fermat's undemonstrated Last Theorem, mathematicians have been

considerably less articulate about the discovery process than about

the exposition of their results. More recently, Poincare (1956)

Hadamard (1954), Weyl (1940), Polya (1945, 1954,1963), Lakatos (1963),

Kilmister (1972), among others, have explored both the psychological

aspects of the creative process and also the mathematical strategies

themselves. The Bourbakiste analysis itself has emerged with import-

ant inSights into the mathematical process. Choquet affirms that

"the axiomatic method is analogous to an automatic production line;

the mother-structures to the machine tools". These structures are

"those associated with the equivalence relation, the order structures,

the algebraic structures, the topological structures, etc. (Choquet,

1962).

Thus the way of generating new mathematics is to classify, to compare

and order, to cOmbine, to reverse, to transform, to recognise nearness,

in the material one is studying. This applies both within mathematics

.and to non-mathematical material. Fielker (1973) has shown how a

rich sequence of geometrical study for a primary school can be built

up in practice by the application of the "mother-structures" to simple

geometrical elements such as straight lines, circles and a set of

wooden shapes, and Gattegno (1973) shows how an extensive mathematics

curriculum can be developed by the use of the same basic structural

operations on a set of Cuisenaire rods.

Consider how mathematics might develop in this way. Number and space

provide the raw material. Each is a collection of concepts constructed

by the mind out of its interaction with the world, numbers out of the

experience of repetition, geometrical ideas from other perceptions of

sameness in physical objects. In each of these fields further acts
,

of classification take place in which sets are constructed of objects

which are agreed to be the same in some way. Next, pairs of objects

are compared with other pairs and sometimes the relationship is
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judged to be the same between the two pairs - it may be two pairs

of numbers with a common difference, or such that the first is

greater than the second, or pairs of objects of the same shape but

different size. Considering the transformations which take the

members of these pairs into each other leads to the identification,

collection and classification of functions, for example: linear,

square, reciprocal, enlargement, shear. Thus algebra arises as

the set of structures which emerge from the study of number and

space. At the same time, the set of functions becomes sufficiently

large and variegated to constitute a third field of raw material in

which the classifying, relating and transforming process can

operate.

Wittmann (1975) has pointed out the similarity between the mother-

structures, Piaget's groupings (1972) and the heuristic strategies

of Polya (1954, 1962, 1965). Wittmann (1973) has also reconstructed

the Piagetian groupings, giving formal mathematical definitions and

showing them in operation in basic sorting, comparing and combining

activities with objects. His list 0: the logical groupings is

(1) inclusion, including the addition of a further subset to an

initially separated one, or the removal of part of a set, as in the

most primitive actions with sets of objects, (2) substitution, as

when a set is separated into two or more subsets, the result being

seen as equivalent to the original situation, (3) complete and (4)

partial decomposition, as when a set of logic blocks is (3) fully

separated into subsets with respect to two or more attributes, or,

(4) decomposed with respect to one attribute, then one of the subsets

further decomposed, and so on, (5) a combination of (1) and (2)

involving enlarging or reducing one set or length to become equi-

valent to another, (6) generalising a relation, as when brother,

cousin, having the same grandfather are recognised as all examples

of having a common ancestor.

For each of these logical groupings, Wittmann describes a correspond-

ing infra-logical grouping, in which the same operations exist but

are tied more closely to physical operations with objects. If

Piaget's claim that the groupings are the foundation of logical
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thinking is accepted, the provision of sets of objects of the types

mentioned and the encouragement of activity with them plays a vital

part in the intellectual development of young children. Such

provision is, of course, normal practice, but there could be an

extension of it and also intervention by a teacher or parent could

promote the child's awareness of the operations.

Thus, to summarise, the content of mathematics is that body of

knowledge which is generated by the application to experience of

the fundamental classifying, relating and transforming processes.

Peel (197lb) puts it thus: "Mathematics is the study of the prop-

erties of the operations by which man orders, organises and controls

his environment. These operations constitute logico-mathematical

structure." These fundamental operations underlie the processes

both of abstraction and generalisation and of proof. But a further

aspect of mathematics needs consideration along with these.

SYMBOLISATION

The representation of a situation by a diagram or a syn~olic express-

ion, or by a "model" in the abstract sense, is so central to mathe-

matics that it is hard to realise that quite a high degree of algebraic

sophistication was achieved by the Babylonians and the Greeks without

any symbols apart from a crude number system. Dienes (1961) says

"The structures now being considered by mathematicians are so

complex that it would be quite impossible to dispense with

symbolism. The symbols remind the mathematician of what it

is that he is really supposed to be thinking about; but more

than this, the mechanisms of some of the well learnt mathematical

techniques make it possible for the mathematician to skip a

great number of steps, or in other words he allows the mechanism

to do a part of the thinking for him."

Weyl (1940) in a lecture entitled The Mathematical Way of Thinking

argues that, for an adequate characterisation of mathematics, along-

side the axiomatic method must be placed symbolic construction, as
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the method by which mathematics is distilled from the raw material

of reality. (He cites as examples the capturing of the infinite

set of integers by the positional notation, and of a point of a

continuum by an infinite binary decimal; and an extension of this

last process to topological schemes.) Incorporating symbolisation

we arrive at the following definition of mathematics.

Mathematics consists of structures, and their associated models

and symbol systems. By structure is meant an inter-related system

of relational concepts. Examples of structures are the group S3'

the group in general, the rational numbers, the plane quadrilaterals,

the functions Y = kx 2• A symbol system is some set of physical

objects, usually marks on paper, which has a set of transformation

rules determining how these marks may be moved about, derived from

the relationships among the denoted concepts. Thus the transform-

ation a = b/sin 15 0 ~ a sin 15 0 = b is a physical movement of the

marks (probably perceived as such when performed) which derives its

validity from knowledge of the denoted concepts and their relation-

ships. Symbols are visible and movable but concepts are invisible

and abstract; hence the tendency to teach symbol-transformations by

rote and thus to detach the symbols from their meanings.

TWo systems are models each of the other if they are isomorphic in

some respects, that is if there are correspondences between their

elements, relations or compositions. The concept is a wide one.

The isomorphism is generally analogical, not deductive. Thus a

set of Cuisenaire rods may model the positive integers, pairs of

them may (less fully) model the rationals, a group composition table

is a model of the group, and so is its set of generators and relations.

The role of models in helping mathematicians to grasp elusive concepts

may be seen at a nurr~er of points in history. The Greeks accepted

natural numbers and geometrical figures as concrete objects for study;

their existence was not in question. Nor was that of "magnitudes",

which had concrete embodiment in lines and plane req Lons , Ratios

they were not able to define explicitly, though they could define

equali,ty of ratios, and a ratio was no doubt thought of as embodied

in the pair of lines or regions. Negative numbers were used from the
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sixteenth to the eighteenth centuries with considerable uncertainty

as to their "existence"; eventually their representation in the

four-quadrant plane of analytical geometry gave increased confidence

in them. The plane representation of imaginary numbers had the

same effect. It was not possible at that time to define these

numbers satisfactorily, but the existence of a model in which the

numbers and their operations could be interpreted consistently

served instead. As well as geometrical models of elusive numbers,

algebraic models of hypothetical geometries helped to increase

confidence; 'for example, n-dimensional geometry could be regarded

as a representation of the algebra of n-variables, which was a

more familiar theory. (Bourbaki, 1968)

Peirce (1956) makes some comments, ostensibly about proof, but more

particularly about the use of symbolic and diagrammatic represent-

ations. He draws a distinction between "corollarial reasoning",

the kind by which a corollary is deduced from a general theorem -

direct deduction - and "mathematical reasoning proper (which) is

reasor:ing with specially constructed schemata". These schemata are

the figures drawn in geometry, and the literal expressions trans-

formed in algebra; and these have to be used not merely in the

discovery process, but also in the proof. A figure drawn to prove,

'say, that the altitudes of a triangle are concurrent, must not look

isosceles or it will mislead; a separate diagram must be drawn for

an obtuse angled triangle and care must be taken to use the diagram

as an illustration, checking that the assertions made are true for

all the triangles which this particular one represents. The process

is similar though generally less hazardous in algebra; a proof of a

general solution for all cubic equations of form az 3 + bz + c = 0

would need to consider various combinations of positive, negative

and zero values for a,b and c; if the learning of algebraic trans-

formations had not already absorbed the problem of dealing with all

possible values for the coefficients. Consider another illustration.

"If a, b, c are elements of a group G, then ab = ac ~ b = c." It

is almost impossible to imagine this phrased as a general enunciation

"If, when an element of a group is combined (on the left) with each

of two elements of the group, the results are equal, then the latter
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elements are themselves equal." The psychological value of the

literal place-holder is apparent even here; the prospect of carrying

through the whole proof without it is daunting. But the success of

the proof-making depends on ensuring that the transformations made

with these place-holders are precisely those permitted to all

elements of a group, and special cases may need to be considered.

In a sense, these procedures, both in geometry and in algebra, are

using particular objects (symbols)to represent general concepts,

given by definitions, and the proof is a "display for ease of refut-

ation", the validity of which has to be judged intuitively.
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INTRODUCTION

A more detailed analysis of the mathematical process in action will

now be made, and general strategies identified. The best known set

of strategies for mathematical work is Polya's set of general problem-

solving strategies, expounded in How to Solve It (1945). These focus

attention on Data, Conclusion and Conditions - thus presupposing a

formulated, set problem; the methods include woz'kLnq forwards and

backwards; drawing a diagram; designing a plan; studying other

problems related to the given one, by logic or by analogy, and in

method or in result; changing the conditions, adopting new viewpoints.

Some research using these will be reviewed in Chapter 4, but these

are not specifically concerned with the mathematical process; Polya

himself affirms his concern with the improvement of problem-solving

in everyday affairs in his introduction to Mathematics and Plausible

Reasoning (1954). But in this and his subsequent two volumes,

Mathematical Di.scovery (1962), he outlines a number of strategies

specifically for mathematical investigation. Some of these are

fundamental to the mathematical process - Generalisation/Specialis-

ation and Iteration (or Mathematical Induction) - but the remainder,
have more limited applications. (They comprise superposition, methods

for maximum/minimum problems, the setting up of equations and the

intersection of two loci.) In the same way, the methods in Klamkin's

article on Transform Theory (1962) are rather specialised.

We shall discuss the mathematical process under the three headings

(1) Generalisation and Abstraction, (2) Symbolisation and Represent-

ation and (3) Proof. It will be helpful to have a context in which

to discuss these; the game of Frogs wrll be used.

Frogs

OOOxOOO

Some pegs of two colours are arranged in a row, separated by an

empty hole. Red pegs move to the right, blue to the left; they
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may either slide into the hole, if adjacent to it, or jump into

it over one peg of the opposite colour. The object is to inter-

change the colours in the least possible number of moves. Thus

the first problem is to find rules to follow in making the moves

so as to achieve the result. A little experiment soon shows that

it is possible to become blocked, and that, whenever this happens,

two pegs of the same colour are next to each other somewhere in

the middle of the set. It is not so easy to see how this may be

foreseen and avoided. A second problem is to relate the number of

moves required to the number of pegs. Experiment establishes a

table of values as follows: (the reader should experiment for him-

self using coins in a row of squares if pegs and pegboard are not

available.)

Pegs (p) Number of Moves (m)

3 of each

4 of each

2 of each

15

24

8

We might next try to predict the number of moves with 5 pegs of

each colour: it might be good to include a value for 1 peg; this

is 3 moves. Factorising the numbers gives

3 + 15 = 3 x 5

4 + 24 = 4 x 6

2 + 8 = 2 x 4

1 + 3 = 1 x 3

and a conjectured formula m = pep + 2); this may be verified with

5 pegs. The possibility of using different numbers of pegs of the

different colours may be investigated; one may then conjecture

perhaps that for p and q pegs, with p > q, m = p(q + 2) or

m = q(p + 2). If one of these were correct it would imply an

asymmetry between the smaller and larger of p and q, but this cannot

at present be excluded as a possibility.
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However, experiment shows that 3 red and 2 blue pegs require 11

moves, and that this is independent of which colour moves first.

At some point a more analytical approach may be considered. In

fact to have assurance regarding the numbers in the table above

some means of recording the moves is necessary. Many ways are

possible and several should be tried this step is a crucial one

in the application of mathematics to a situation. It will be found

that it is sufficient to state which colour is moved each time, so

that a whole game can be recorded as RBRRB, for example. (Slides

and jumps provide an alternative coding.) Other games are (for 2

red, 2 blue) RBBRRBBR, (for 3 red, 2 blue) RBBRRRBBRRB, for (3,3)

RBBRRRBBBRRRBBR/and a study of these could also lead to a conjectured

generalisation regarding the number of moves required in all cases.

However, the question of proof remains more difficult. Consider the

following: to interchange p red and q blue pegs, the red ones must

each move a total of q + 1 places, i.e. p(q + 1) places in all.

Similarly, the blue pegs must move a total of q(p + 1) places, making

altogether 2pq + p + q places. Some of these, however, are jumps.

Each red peg must jump over each blue peg once, at some stage: thus

pq of the ~ves will be jumps, and this will account for pq of the

places required above. The minimum number of moves is thus pq + p+ q

which is symmetrical with respect to p and q and reduces, if

p = q, to pep + 2). This, however, assumes that the interchange

can be effected always without blockages. A proof by induction can

be given that with p = q, the minimal move game is playable, for

all p, in pep + 2) moves and that the rules given are unambiguous;

the details of this are straightforward.

One possible proof of the general ca$e goes as follows: Let a

row of pegs of the same colour at either end of the row, terminated

by either a peg of the other colour or by the hole be called a

stack. Let a sequence of pegs of alternating colour, with a

possible inclusion of the hole which may count as either colour,

be called an alternating pattern.

Call any state in which there are two stacks separated by an alter-

nating pattern a successful state. Then from every successfui
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state it is possible to make a correct forward move into another

successful state. The correct move is as follows: (i) if the

hole is not adjacent to a stack, forward jumps can be made until

it is. (ii) suppose it is then adjacent to the right hand stack.

This end takes one of the four following forms, in each of which

a correct forward move is indicated. (The hole is indicated by X)

(i)• .• • • • •B R B X R R R R

(ii) .• • • • . B R B X B B B B

(iii) .....R B R X R R R R

(iv) .• • • • . R B R X B B BB

Hence a correct forward move is always possible, and the game is

playable in the minimum ntmilierof moves.

The st.ages observable in this investigation include (1) experiment.,

leading to the formulation of questions, (2) the generation and

systematic organisation of examples, leadi.ng to the making of a

conjectured generalisation, (3) representations by diagram (as in

the proof) and by sYITbols (when a sequence of moves is symbolised

as RBR or SJS), (5) abstraction and defini.tion of concepts (stack,

alternating pattern, etc.). This example shows most of the

important mathematical processes and will form the basis of the

following discussion.

Three pieces of mathematical work by pupils appear in the Appendix 3:

Dress Mix-Ups, The Remainder Problem and Filter Paper. Reference

will also be made to these.
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ABSTRACTION

The mathematical process has been described above as essentially

that of classifying, comparing, transforming, combining, and so

on, leading to the building up of structures. The way in which

such actions lead to the building up of the hierarchy of abstract-

ions which we recognise as mathematics will now be described in a

little more detail. The game of Frogs furnishes one example.

Abstraction is involved in identifying a relationship among the

numbers in the table, and, before this, in recognising a functional

relationship between the numbers of moves and pegs. Later, in

the proof, a number of minor concepts were identified and defined -

stack, alternating pattern, successful state. The recognition

that move sequences could be represented either by a diagrammatic

picture of the state of the pegs after each move, or simply by

stating what colour peg was moved at each stage, is another act

of abstraction. These are all made by observing the situation,

by reflecting on it, and by becoming aware of the regularities in

it. This ability and inclination to recognise similarities, is

clearly a ~niversal human urge. A small child given a set of

Logic Blocks will spontaneously sort them. Szeminska (1965)

reports how children aged 14 upwards, given a bag of miscellaneous

objects and told "See what is in the bag" sorted them hierarchically.

Peel (197Ia)also reports an accelerating tendency during adolescence

and through the years of higher education to move to higher levels

of abstraction in thinking.

Three kinds of abstraction can be distinguished in mathematics.

The first kind of abstraction, concept recognition, is that in

which one or more known concepts are identified in a new situation;

for example, given 23 x 64 = 46 x 32 one may recognise the reversal

of the order of the four digits on the two sides, the remaining

symbols being preserved. Wh"at has been recognised may be expressed

symbolically ab x cd = do x ba. This is often the first step in

a cycle of mathematical activity leading to a statement of general-

isation; in this case the obvious question is, "\'lhatis the class
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of numbers for which this is true?". (Dienes, (1961) calls this

whole activity "primitive generalisation"). A second kind of

abstraction, concept extension (Dienes calls it "mathematical

generalisation") occurs when a new meaning is adopted for a

concept which includes the old as a special case; examples are

the extension of the concept of rotation of a figure to allow

centres outside the figure as well as within it, or of the

trigonometric functions from right-angled triangle definitions

to those applying to angles of any magnitude. The third kind

of abstraction, concept creation, occurs when one moves from

consideration of a single object to tl1e creation of a new class

of which the object is a member. It is not possible to draw a

clear line of demarcation between this and concept recognition,

as often the "new" concept is a minor modification of existing

concepts. Major levels of the number and geometry hierarchy are

suggested in the following diagrams:

categories

group, field

natural numbers, addition
function + 5

transformations of the plane
(rotation, shear)

congruence, similarity, types of symme try

triangle, parallel, line-symmetric
figures

3,23

chair, table, desk physical objects

Progress in acquiring concepts at the higher levels here represents

major intellectual achievement and gives significantly greater power

of thought. A curriculum should therefo.reaim at helping pupils to

reach the highest levels they can. These are the steps to which

Skemp (1971) refers when he says that concepts of a higher order

than those already possessed cannot be communicated by definition

but require experience of a range of examples. (For example, to

learn what a group is, one must either be given examples of actual

sets of symmetries and number systems with, say, addition; or first

learn, also by example, what are laws of composition, inverses and

so on, and then be given the definition of the group in terms of

these. Law of composition and inverse are concepts at the same

level as group, and above that of natural number and addition.)
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C.S. Peirce (1956) claims that this hierarchical abstractive

process is of the essence of mathematics. He identifies it

as the conversion of an attribute into an object which itself

has attributes; examples he gives are the change from "honey

is sweet" to "honey possesses sweetness" and subsequently the

making of comparisons between different sweetnesses, that of

honey and that of a honeymoon, and, later, from "a point moves"

to "a point generates a line", line being thus defined as an

entity which may then have attributes of its own; and another

example is the transformation "magnetic attraction acts in

certain directions ~ lines of force ~ tension in lines of

force." In more mathematical terms, the movement is sometimes

from considering objects or states which are being transformed

to regarding the transformations as objects which themselves

may be transformed. If we put this together with the object/

class notion and say that concepts of higher order are those

which are constructed by rega.rding the classes or transformations

of the objects at one level as the objects to be classified or

transformed at the next higher level, this explains most of the

level allocations made in the table above.

STRATEGIES FOR ABSTRACTION

A variety of strategies may assist abstraction. Simply describing

the situation requires the recognition of concepts in it. Other

strategies are to classify - the question "Is this the whole set

of such objects?" is often the key one which leads to the emer-

gence of a quite important new concept. An obvious example is the

glide reflection, needed to complete the set reflection, trans-

ation, rotation, • ..• of isometries of the plane. One easier to

overlook is that of rotational symmetry, which arises similarly

when the obviously regular (in some way) parallelogram, swastika

or letter N fails to fit in the existing class of (line) symmetrical

objects. A third example appears in the Remainder Problem (Appendix 3)

where the types of pairs of nur-bers which arise include the easily

recognised pairs, in which one divides the other, and some which
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"have no connection". In this case the pupil fails to identify

the remaining case as that of numbers with a common divisor

greater than 1; the strategy "Is this the whole set?" might have

provoked the establishment of the concept. Sometimes the

representation of the situation itself exposes new concepts, as

in Dress Mix-Ups, where the concepts of transposition, 3-cycle

and so on, as types of permutation are visible as soon as the

arrow diagrams are drawn and compared. Often the making of

generalisations leads to the creation of minor (and sometimes

major) new concepts. This is shown in the Remainder Problem (App-

endix 3); and in Lakatos' (1963) classic account of the history

of Euler's theorem on the vertices, edges and faces of a poly-

hedron, in which the repeated efforts to refute the proof led

to a long chain of increasingly radical revisions of the concept

of a polyhedron. (See Chapter 2.) A similar but shorter example

of a similar process can be realised by asking whether the

theorem that the exterior angles sum to four ri.ght angles applies

to non-convex polygons.

Another potentially powerful strategy for abstraction is changing

the model, embodiment or representation. Dienes' multiple embod-

iment principle asserts that abstraction occurs when the common

elements are identified in two or more perceptually different

embodiments, but his experiments show that this method is not as

effective as he expected. (Dienes, 1963, pp. 68-70) However,

the manipulation of a single concrete embodiment such as number

blocks, rods or sets of shapes, by classifying, transforming,

combining and similar actions is undoubtedly a useful strategy

for learning a concept and its associated network of relationships.

GENERALISATION

The making of generalisations is the ordinary bread-and-butter

activity of mathematics. It is in the course of this activity

that abstractions are made, some very minor ones (concept

recognition) others more significant (concept creation). In
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Frogs the initial motivation was, after first succeeding in

playing one game, to form some general rules for playing that

game, and, if possible, the more general game with any number

of pegs. Later, the nillnberof moves for a given game being

found, again the urge was to generalise to find the number for

any nrnnber of pegs. Later still, the generalisation from equal

to different numbers of pegs was made. Abstractions were used

in this process but the thrust of the activity was towards more

general statements, thus enlarging the understanding of the

game. On the more professional level of research, the relation-

ship between the two activities is similar. Generalisations

are what one directly seeks; new abstractions may emerge, and

may well represent the more significant addition to knowledge

in the long term. But to be shown as significant they must be

used to establish some woz tihwhdLe generalisations.

STRATEGIES FOR GENERALISATION

The following strategies appear from the above considerations

to be relevant to generalisation.

Recognise relationship

Generate examples to test conjecture

Collect variety of examples: try big numbers

Organise examples systematically

Consider iteration: adding one

Make conjectures

These will be considered further in subsequent studies.
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SYMBOLISATION AND MODELLING

This is closely connected with abstraction, in that the act of

representation - the replacement of the situation by symbols or

diagrams - implies the recognition of a correspondence between

some aspects of the situation and the model. In Frogs we see

this in the symbolic representation of the move sequence by

strings of letters referring either to colours or to slides

and jumps; and in the final proof, where the more primitive

diagrarnrniatic representation of the game is required. Another

instance is shown in the following diagram, which displays the

entire set of possible states and moves in the Towers of Hanoi.

The pegs and coded A, B, C and the discs are coded by position:

the first letter denotes the peg on which the largest disc is

placed, thenext that holding the next largest disc, and so on.

(Jullien, 1972)

P,

", ====r
BOB

OD.A./·\. anc

7ij:7\"
DAA.-_. .--.BCC

!lAC DCA

The difference between symbol systems for number and geometry needs

clarification. It is clear that 1, 2, 3 are symbols and that the

objects being combined and related are the underlying numbers. But

is a drawing of an isosceles triangle, for example, Cl symbol? Or
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is it the actual object of consideration? It is, in fact, a

representation of a general isosceles triangle, but, if accurately

drawn, can be measured or folded to verify the equality of angles

or sides; so it is a closer representation than a symbol. It may

be called an ikon (following Bruner, 1959). The representation

of natural numbers by strokes I, II, I'll and so on is a comparable

ikon system. The geometric symbols most closely corresponding to

the numerals are, for example, tAB for the translation sending A

to a, and A(SOo) for the rotation through 500 about A. (The symbol

m for the reflection m is non-definitive without a specification of

m). A geometric symbol system which has its own set of transform-

ations is the representation of reflection by their mirrors, with

the transformation of "swinging pairs". (See diagram).

This difference between numbers and geometry reflects the fact

that geometry is an essentially more complex system, and that at

the school level we work mainly with an ikonic representation of

it, whereas in number, even young pupils work easily with

the symbol system, with only occasional recourse to the ikons.

MODELLING IN APPLIED MATHEMATICS

Modelling is identified by Hall (1972) as the essence of applied

mathematics.

"The basis of modelling is the scientific method except that

the emphasis is on finding a mathematical form for the scientific

theory. The process starts from some given empirical situation
I

which challenges us to explain its obvious regularities or dis-

cover its hidden laws. The first, and generally the most
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difficult step is to discover an appropriate mathematical

formalism to describe the essential features of the situation.

Once the situation has been formulated mathematically, the

model itself is set up. It will consist of postulated

relations between the entities to describe their inter-

dependence and their modifications as the situation changes.

In particular, certain features may be selected as most sig-

nificant and others as irrelevant. To be reliable a model

must reproduce the major known results so the first check

is to validate it in this way. A more searching test is

to use the model to predict new results, especially ones

in which the main effects are exhibited in some extreme form.

The more unexpected the prediction the more convincing the

test. In practical model building it may be necessary to

iterate round the validation and prediction cycles several

times before a model is obtained which is sufficiently accurate

and easy to use. An important by-product of this process is

the formulation of new mathematical problems and of new tech-

niques for their solution. The most significant result is

that the successful model involves the creation of new concepts.

These provide the categories through which similar situations

can be described and understood even when the details of the

model are no longer applicable."

Hall gives the following example of the process:

" The figure below shows the record of the movements of a fox.

The length of a straight segment ~s clearly one of the variables

in the description and its distribution can be estimated by

analysing this sample path in a histogram. Similarly, the

variable angle between successive segments has a second histo-

gram. The question arises whether these two variables describe

the situation fully. !'le can simulate the pat.h by selecting

lengths and angles at'random from those of the original paths

so that the histograms must be identi~al. It soon becomes
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apparent, however, that the simulated path wanders over a

much greater area than the original path so that some third

factor must be operating.

The missing factor can be isolated by repeating the simulation

with some additional constraints.' By adding a boundary and

selecting only those segments that lie inside the boundary, a

path comparable with the original one is obtained. Thus the

remaining factor is what a biologist would recognise as the

fox's use of his home territory."

An example from school work of an "applied ll problem, which

illustrates problem-formulation and final reinterpretation

in the practical situation, is Filter Paper (Appendix 3).
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STRATEGIES FOR SYMBOLISATION

In most mathematical work the task is, as in Frogs, to select a

suitable mode of representation from the established repertoire.

This is extensive - Venn diagrams, tree diagrams, Cayley tables,

arrow graphs, flow diagrams, Cartesian graphs, nomograms, scale

plans, plane projections of three-dimensional objects, as well as

letters, numerals in various positions (2 3
, a ) brackets, symbols

n
for compositions and so on. Many of these are capable of adapt-

ation to a variety of situations. It is possible that strategies

of choosing and using these for new situations could be developed

more consciously and more fully than they are in school mathematics,

and that the resulting acquisitions would be of considerable general

usefulness. One example of this may be seen in Dress Mix-Ups and

the Remainder Problem also contains several types of symbolic and

diagrammatic representation. (See Appendix 3)

PROOF

To the Greeks, the starting points of their mathematical system

(the essential properties of numbers and angles) were self-evident

truths. Nowadays, mathematics is seen to comprise closed axiomatic

systems. Recent writers have gone further, and have attempted to

describe the actual process of proof activity. That proof itself

must be regarded as an act of communication rather than as a static

statement is explained by Rene Thom (1973). Against the background

of the adoption of a rigorous Bourbakiste mathematics for the

curriculum for all pupils in the French secondary schools, he

writes:
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"The real problem which confronts mathematics teaching is not

that of rigour, but the problem of the development of "meaning"

of the "existence" of mathematical objects; ...."meaning" in

mathematics is the fruit of constructive activity, of an appren-

ticeship ..• • "

"At best mathematicians base their universe on a kind of common

stem made up of objects and theories which occur in standard

teaching (for example, real and complex numbers, analytic and

differentiable functions, manifolds, groups, vector spaces, ...)

and all proof, other than the more specialised, must proceed

from this mathematical vernacular common to all. A procf of a

theorem (T) is like a path which, setting out from propositions

derived from the common stem (and thus intelligible to all),

leads by successive steps to a psychological state of affairs

in which (T) appears obvious. The rigour of Lhe proof - in the

usual, not the formalised sense - depends on the fact that each

of the steps is perfectly clear to every reader, taking into

account the extensions of meaning already effected in the previous

stages. In mathematics, if one rejects a proof, it is more often

because it is incomprehensible than because it is false. Generally

this happens because the author, blinded in some 'flay by the vision

of his discovery, has made unduly optimistic assumptions about

shared backgrounds. A little later his colleagues will make

explicit that which the author hcd expressed implicitly, and by

filling in the gaps will make the proof complete. Rigour,

like the provision of supplies and support troops, always

follows a breakthrough."

This insight, from a 'florkingmathematician, will be a useful guide

when we consider in Chapter 6 what kind of proof activity to study

in the school curriculum, and we observe the need to connect new

conjectures by deductive steps with what is known already.
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Lakatos (1963) contributes a view of the nature of mathematical

proof as the display of a conjecture for ease of refutation as well

as reinforcing Thorn's view of it as the embedding of new results

into the fabric of existing knowledge. Lakatos regarded the success

of the formalists as having overshadowed the consideration of the

more informal processes by which mathematics is generated. .His

long paper is a detailed case-study of the history of Euler's

theorem on the vertices, edges and faces of polyhedra right up to

its embedding in geometrical topology in the form of the Euler

characteristic of a surface. He states his general aim thus:

"Its modest aim is to elaborate the point that informal, quasi-

empirical mathematics does not grow through a monotonous in-

crease of the number of indubitably established theorems but

through the incessant improvement of guesses by speculation

and criticism, by the logic of proofs and refutations."

Kilmister (1972) supports this view:

"A theorem can be described as a conjecture: and the proof of

the theorem is a search for counter-examples - which, because

of the complex nature of mathematical concepts, is usually

successful, requiring subsequent modifications either in the

enunciation of the theorem or in the definitions of the mathe-

matical objects entering it."

In the course of the dialogue which constitutes the paper, it is

shown that a proof is not something which establishes the truth of

a conjecture, but rather it is a decomposition of the original

assertion into sub-conjectures; thus the conjecture and proof

are both displayed for criticism.

Global counter examples, refuting the conjecture, and local

counter examples, refuting some or all of the Sub-conjectures,

are distinguished; so are the different kinds of definition,
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including some designed for "monster-barring". The polyhedron

comprising a small cube attached to the middle of a face of a

large cube is one such apparently non-conforming object.

In the last part of his article, Lakatos distinguishes between

naive guessing and deductive guessing. Th f e ormer begins with

a table of values of V, E, F for a number of solids and eventually

finds the relation V - E + F 2; the latter starts with a single

point, then a polygon (V = E) , and asks what would happen if add-

itional polygons were attached to the first. Such "deductive

guessing", the use of Choquet's th mo er-structures as generative

tools, increases the content of the conjecture, in this case reach-

ing a V, E, Fformula for all normal n-spheroid polyhedra with

multiply-connected faces and with cavities, this Euler character-

istic providing one criterion for class~fying ... such surfaces.

There are here many valuable pointers for the development of proof-

centred classroom activities.

Some teachers ·have said that proof, for a pupil, is what brings

him conviction. Although this is a valuable remark, in that it

directs attention to the need for classroom explanations to have

meaning for the pupil rather than be formal rituals, it is perhaps

dangerous in that it avoids consideration of the real nature of

proof. Conviction is normally reached by.quite other means than

that of following a logical proof. Lunzer (l973b) has suggested

that productive thinking is more analogical than logical; and I

would suggest that conviction arrives most frequently as the result

of the mental scanning of a range of items which bear on the point

in question, this resulting eventually in an integration of the

ideas into a judgement. Proof is an essentially public activity

which follows the reaching of conviction, though it may be conducted

internally, against an imaginary potential doubter.

The mathematical meaning of proof carries three senses. The first

is verification or justification, concerned with the truth of a

proposition; the second is illumination, in that a good proof is
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expected to convey an insight into why the proposition is true;

this does not affect the validity of a proof, but its presence in

a proof is aesthetically pleasing. The third sense of proof is the

most characteristically mathematical, that of systematisation, i.e.

the organisation of results into a deductive system of axioms, major

concepts and theorems, and minor results, derived from these.- The

classic example of this is the Bourbaki work; its objectives are

both the increased assurance of correctness, and the great simplicity

and flexibility obtained; thus it is regarded as a particularly good

way of achieving verification, and it also contributes to illumination.

(Psychologists such as Skemp (1971) and Ausubel (1968) would also

comment that a well-connected system makes for ease of learning and

retention) •

Although we have asserted that proof is an essentially public activity,

it grows out of the internal testing and acceptance or rejection which

accompanies the development of a generalisation. One might hypothesise

that this gradually becomes more externalised. First one tries one's

generalisation on other people; conflict with their ideas often leads

in younger children first to a reassertion, but eventually there is an

appeal to evidence. Later, there maybe the realisation of the need

for a written statement of the proposition, for more effective attack

by potential counter-examples and to avoid unconscious shifts of

ground. The final stages are the awareness of the need to set out

the argument in written form (as Lakatos shows), and the need for

explicit starting assumptions or axioms. These developments took

place in the early history of mathematics, and culminated in the

acceptance by the mathematical community of the Euclidean model of

proof as the best form for guaranteeing freedom from error.

It follows from the above analysis that pupils will not use formal

proof with appreciation of its purpose until they are aware of the

public status of knowledge and the value ?f public verification. The

most potent accelerator towards achievement of this is likely to be

cooperative, research-typ~ activity by the class. In this, investigation

of a situation would lead to different conjectures by different pupils

and the resolution of conflicts by arguments and evidence.
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The traditional classroom version of Euclidean proof brings out

these points well. Consider the following proof:

Theorem: The angle at the centre of a circle is twice the angle

at the circumference subtended by the same arc.

P

A

B

Given: Circle, Centre 0, points A, P, B, on circumference (D)

Construction: Join PO and produce to any point X.

'" "Let the angles a, b, aI' bl, x, y be as marked. To prove: AOB =2APB

Proof OA = OP (1)

a = al (3)

Also x = a + al (5 )

x = 2a (7)

Similarly y 2b (8)

x + y 2a + 2b (9)

= 2(a + b) (11)

'" "Le. AOB = 2 APB

(2) (radii of a circle)

(4) (base angles of an isosceles ~)

(6) (exterior angle of a ~)

(10)

(12)

This layout uses the left hand column for statements relating to

the current proposition, and the right hand column for references

to theorems being assumed as already known and established. The

logical structure is shown in the diagram. (p 3.2.0)
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€> 7

Similarly

+ compatible with = for angles

+ distributive over x for
angles
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The proof structure revealed here helps to clarify and illustrate

what we normally require of proof in the mathematical activity of

the classroom (and perhaps of the research seminar).

A proof is a directed tree of statements, connected by implications,

whose end point is the conclusion and whose starting points are

either in the data or are generally agreed facts or principles.

Examples will be given below of pupils I attempts at proof which

are intuitively recognisable as failures, and in whi.ch the failure

can be identified as lack of one or more of the requirements in

this definition. Difficulties arise mainly in two ways - in that

there is no absolute criterion for the degree of explicitness

required, nor for what theorems are "generally agreed". The

Euclidean example quoted also illustrates the problem of "complete-

ness", Le. of giving a proof which applies to all cases implicitly

included in the statement; quantifiers are often missing from

Euclidean statements and the different classes of Cdses dre often

forgotten.

The Euclidean example shows what is needed for verification; and

it contributes to systematisation in so far as the theorems used

in the right hand column ar2 chosen to be suitable for prior proof

in a correct and satisfying deductive system. (It will be the more

satisfying to the extent that they appear more fundamental than

the current proposition). The relevance of this to the classroom

is shown in the following example. In one test, pupils were asked

why multiplying by ten could be effected by "adding a nought".

Very few were able spontaneously to relate this to the movement

of figures between columns of different place value; the majority

appealed to the standard algorithm for long multiplication. This

is an example of how proof activity in regard to well-known relation-

ships requires agreements about which of them arc to be regarded as

the more fundamental ones from which others are to be derived.

Illumination is not particularly strong in this proof; the most

striking fact is not the double angle property but the invariance
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A-

of the APE as P moves, and this is better illuminated by other

proof, for example that which translates the line pair PA, PB

"keeping P on the circle and APE constant, and shows that the

arc AB remains of constant length.

The game of Frogs illustrates several of these points. The formula

m = pep + 2) induced from the table of values is probably totally

convincing; one's developed expectations of regularity in regard

to the problem make one feel that the correct formula is probably

of that order of complication. The RBR sequences give added con-

viction, though still no proof. The proof of the minimum number

of moves, from considering the total number of slides and jumps

needed, is illuminating as well as verificatory. The final proof

is, on the other hand, non-illuminating; being an exhaustive check

of possibilities; the induction proof for equal numbers of pegs

(not detailed), also carries insight. The transition from the

empirical approach of playing games and collecting examples to

the deductive considerations is clearly seen; so is the way in

wh Lch the empirical experiment bullds up awa reriess of the concepts

whlch must be used for the deduction.

The Remainder Problem shows how in some cases an explicit formula

cannot be found, but only an algorithm. And even the earlier

result, that the common difference in the nuwber sequence is the

product of the two given numbers, if coprime, is obtained only by

fairly systematic empirical work, and is not symbolised or proved.

STRATEGIES FOR PROOF

These considerations suggest that the following concepts and strat-

egies are relevant to proof activity.

Make exhaustive empirical check

Display conjecture for refutation - write it, discuss with others

Construct classes and deal with them separately

Identify data and conclusion

Connect data and conclusion logically
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Embed in agreed existing knowledge

Identify and state assumptions and definitions

Recognise potential arbitrariness of assumptions and

undefined terms

The occurrence of these in pupils' mathematical work and the .feas-

ibility of learning and using them at different stages will be

studied in later chapters.
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INTRODUCTION

The analysis of the nature of mathematics made in Chapters 2-3 has

implications for the secondary curriculum; these affect the

nature of what is to be taught, what are appropriate methods,

and the place of the learning of process. The South.Nottingham-

shire project is to a large extent an attempt to design and

establish a curriculum which takes account of these implications.

It does this by basing its learning on abstraction from concrete

situations, and by developing pupils' competence in the mathemat-

ical process - chiefly with regard to strategies of generalisation

and proof. The departures from normal practice will be seen more

clearly if we begin by reviewing some teaching material in current

general use from the point of view of the analysis of mathematics

made above.

THE CONTENT OF MATHEMATICS AND CURRENT TEACHING METHODS

The recognition that the content of mathematics is structures,

that is, interrelated systems of relational concepts, with their

associated symbol-systems and models, and that the mathematical

process consists of generalising and abstracting, symbolising

and modelling, and proof, has several implications for teaching.

The first is that the essential learning act is one of insight and

the teacher's task is to prepare a situation in which greatest

possible number and the highest possible quality of insights can

be achieved. This is not to ignore the importance of insights

in the learning of other subjects, but it follows because the

actual subject matter of mathematics consists not of information,

but of relationships. The most obviously effective means for

achieving this is by a process of guided discovery; empirical

research has indeed shown this to be the most effective method,

if retention and transfer are the criteria. (Worthen (1968),

Gagne and Brown (1961), Pigge (1965); and see Shulman (1970).

Different forms of guided discovery are observable in school

texts, which may be distinguished as "deductive" and "empirical".
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Guided deductive discovery is a method which instructs the pupil

to perform a sequence of actions with material, or operations

with numbers, which bring together the components of the required

relationship, and asks questions the answers to which involve the

recognition of the relationship. "Deductive" implies that the

recognition is of the relationship and of the reason for it, or

the necessity of it; empirical discovery is when only the fact

of the relationship is discovered. The treatment in SMP Book C(p.4.3)

of the relationships area of triangle = ~ area of parallelogram =

~ area of rectangle is of the first type. The pupil makes the

figures on a geoboard, changing one into another. This is done

four times with varying shapes of rectangle and with decreasing

detail in the instructions, and in each case the questions "What

is the area of the rectangle?/the parallelogram?/the triangle?"

are asked (the answers are in numbers of geoboard unit squares.)

The following page extends the applicability of the relationship

to a new embodiment - the coordinate plane. The starting figures

are now specified by the coordinates of their vertices, but the

same transformations are to be drawn. The last questions require

the finding of the areas of four parallelograms and three triangles

given by coordinates, with the use of the relationship, now pre-

sumed to be learned. Further work discovers the same relationships

in a second new embodiment, cut-out paper shapes, and this leads to

the calculation of the areas of printed parallelograms and triangles

by measurement of the bases and heights and use of the relationship

area = length x breadth for the rectangle (this is assumed to be

already familiar; it is not discussed). Thus this relationship

is discovered deductively in three different embodiments, then

applied to a fourth.

A rather different kind of guided deductive discovery is seen in

MME Vol I (1967) in the treatment of the kite (a minor concept) (p.4.4).

Instructions are given to fold and cut paper in a certain way, and

various questions ask for. prediction of the results, these to

be checked by observation after cutting and unfolding. Whether

the answer is "He shall get an isosceles triangle because a cut

perpendicular to a fold will give a straight line", given before
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•

Rectanqles. parallelograms, triangles

Exercise A
, Sot up the rectangle in Figure 6 on a pin board. Change it to the

parallelogram and then to the triangle. What is the area of:

(a) therectanqle,

(b) the parallelogram,

(c) the triangle 7

•

Fig.6

2 SP.tup the triangle in Figure 7. Change it to the parallelogram and then

to the rectangle. What is the area of:

(a) the rectangle,

(b) the parallelogram,

(c) the triangle 1

~ :L 7. CJ
Fig.7

3 Using your pinboard, find the area of the triangle in Figure 8.

Fig,8
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4. (a) (See Fig. 4'05)

Fold a pi:ce of paper into halves along AB, and make a second fold, OQ such that the
angle AOE 1S acute. Cut along XPY. How many sides has this shape? What are its
symn;etries? What shape is symmetrical about one ?iagonal and has two pairs of equal
SIdes. Open out your shape and check your conclusions, What are the properties of the
kite?

(b) Fold another piece of paper in the same way as in(a). Cut along ZRY at right
angles to the fold OB. The upper part of the cut, RY, is perpendicular to the fold OB.
What does a cut perpendicular to a fold produce? What can you say about YPY'?

FIG. 4·01

What happens to the kite ifYPY' is a straight line? How many sides will the shape have?
What can you say about the sides of the triangle? What do we call a triangle with two
sides equal? Stick your isosceles triangle into your book and note its properties.

(c) Fold a piece of paper into halves as before, and make a second fold OQ, where
angle AOB is a right angle (Fig. 4·06) Cut along XV. How many sides has this shape?
What symmetries does it have? What can you say about the lines PY and PY'? What
is the shape of the unfolded polygon? Open out and check your findings.

8

A

FlO. 4·07FIG. 4·06

(d) On a postcard, draw an angle BAB' and bisectit. With a knife, cut along the
bisector starting about 3 em from A. Thread a piece of shirring elastic through pinholes
at Band B' and knot the ends at the back of the card (Fig. 4·07). Pass a loop of the elastic
through the cut, and holding this at the back of the card, move it backward and forward
along the cut. Notice how the kite changes through the isosceles triangle to the reflex
quadrilateral. How does symmetry determine the shape of a quadrilateral? How does
symmetry decide the angle properties of the quadrilateral?
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RE-ENTRANT OR REFLEX KITE

I
I
I

!,

J. Fold a piece of paper in half as before and label as the diagram.
where 0 is anywhere between X and Y.

2. Using your set square or prctracrcrdraw the dorred line from
o at 90 to the crease. •

3. Twist OY so that it lies along the dotted B'
line. and make a ~econd crease. 02 asin
Fig.4.08.

4. Draw an)' line AB aerossthe corner 0
and label the point C.

5. Cur along AB.
(I., Stick your Quadrilateral inro your nore-

book and make sureYOll have. labelled' It
as in the. diagram, and answer the
following quest-lor's.
(01 Are the triangles ABC and AB'C

congruent' Identical ('
Ibl Are the sides CB and CB' equal in length?
lei Are the sides AB and ASi equal 10 len~th?
Idl Does the crease AC bisecr the ar.glesBCB' end BAR'?
leI Is rhe line AC a perpendlc.uler bisecrer of rhe II:1e BB'?
As it has all the same propert'leJ as the kitethis 15 also a kite

called a

x o v

B

A

F,c. 4 09

Frc. 4 07

x o
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cutting, or "We have got • • • • because the cut • .• • has given a

straight line", given afterwards, the deductive element is

emphasised by this procedure. Movement from the convex to the

concave kite passing through the special case of the triangle

is also a feature; we are making generalisations. The corres-

ponding section in the revised version Maths Today Book 1 (1975)

(p. 4.5) is now an example of guided empirical discovery. The

pupil cuts out the figure but has only to observe the equalities

in the figure; no prediction, no explanation and no generalisation

is involved.

Of these, deductive discovery must be preferred, because the

underlying relationship which is learnt is itself more general -

it has more connections with other material; and also because

the general strategy of seeking relationships may also be acquired

from the activity.

The second implication of the relational/symbolic character of

mathematics concerns the .nature of the learning task. There is a

need to di~tinguish clearly between the structural concepts and

the symbols or models which represent them, and hence between the

relationshi~themselves and the corresponding transformations of

the sy~bol-system.

Several mistakes explainable in these terms have been made during

the assimilation of "modern mathematics" into the curriculum. The

ikonic representations of a set by braces or a Venn diagram have

often been taught as if they themselves constituted the concept of

set • . The chapter on The Quadratic F.unction and its Graph in the

Scottish series, Book 5 (1st edition) provides some illustrations

of the relationship between a concept and its various models, (in

the wide sense of p. 2.6). The relevillltsection of this begins

by showing the graph of a linear function, which makes it possible

to begin to make the discrimination, and to link a particular

form of curve to a particular class of function. The quadratic

function has several models - a table of pairs, an algebraic

formula, an arrow graph (not very illuminating), a parabola-shaped
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Cartesian graph. None of those is the quadratic function. A

normal approach to learning this concept would involve developing

the skills of transforming between these different models. To

be able to do this one has to understand at least some facets of

the concept itself. As genes become visible during mitosis, so

the concept has to come to life to effect a transformation. If

the transformations are taught by exposition, without the awareness

of their rationale being transmitted, then the concept itself will

not be acquired. This will become apparent if an application needs

to be made. EVen if the teaching does include the meaning, the same

problem can arise if there are too many practice examples of the

same type, since the residual learning may then consist of the

transformation skills without the insights on which they were

initially built. A suitable balance between repetition and variety

is necessary. These principles can be seen operating in the earlier

part of the chapter in question, where the above models for functions

in general are established through exercises involving transformlng

from one into another.

Another teaching method can be described as deductive exposition.

This has the superficial virtue that it suggests that mathematical

principles can be deduced one from another, but the exercise in

this case fails if the pupil cannot follow the deduction, and

an impression that the workings of the subject are impenetrable

may be given. The foregoing account of the nature of mathematics,

the need shown in history for the support of models to aid the

grasp of abstractions, the naturalness of the process of abstraction

and the movement from lower to higher levels all suggest that

structural relationships will be best learnt by abstraction from

suitable concrete embodiments, rather than by deduction from other

relationships. Other research also points in the same direction,

(Collis (1975a), Lunzer, Bell and Shiu (1976)), and so do some of

the results in this thesis. Examples of deductive exposition appear

widely in the Scottish texts, and less frequently in the SMP books.

The SMP sequence on the sUbtraction of negatives is an example. In

this case it is a definition which is being justified deductively.
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We shall now try to give a meaning to the 'subtraction' of shift numbers.
We know that if we take away something from itself we are always left

with nothing. It seems reasonable to expect that this is also true of shift
numbers, so

'3-'3 = O.

But we know from Exercise 0 that

~3+ -3 = 0,

so subtracting '3 gives the same answer as adding - 3.
This suggests ttwt - 13 means the same as + '-3.
We also have

and -3 + ~3= 0,

so perhaps3 means tho same as + ~3.
(a) What can you soe from the following pairs of statements 7 Tho

first one has been done for you.

(i) -15-'5 = 0,

~5+ -5 = 0;

so - '5 means the same as + -5.

(ii) '7- '7 = 0, (iii) -4--4 = 0,

-'7+-7=0; -4+'4 = 0;

(iv) -'2-'2 = 0, (v) -6 --6 = 0,

'2 t-2 ~..:0; -6+ ~6 = O.

We see that the idea that - ~3 means + -3. and - -3 means + '3,
works when we subtract a number from itself. Does it work when we
subtract from other numbers] Let us consider some number patterns.

(b) Use the number pattern to copy and complete the following
subtractions: ~2-~2 = 0

-13- -12== +1

~4-12 =

~5- +2 =
-16- +2 == +4

+7- +2 =
-18--12=

Since the shift number from which we subtract -t 2 is one unit larger each
time. it seems reasonable to expect that the answers will also be one unit

largor each time.
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The proposed defining relationship is x - Y = x + (inv y).

The argument is: (compare p. 4.8)

y - y = 0

y +(inv y) = 0

for all shift nwnbers y, verified by 6 examples

Hence

Hence, plausibly,

y - y = y + (inv y)

x - y x + (inv y) for all x and all y.

The logical weakness of this argument is in the last step, but

the psychological weakness lies in the lack of assimilation of

the meaning of the first statement, y - y = 0 for all shift

numbers y, before its employment in the comparison with the

second. In Piagetian language, this is formal reasoning: making

logical deductions frcm propositions whose content is unfamiliar,

and for the majority of children this is not achieved until later

in adolescence. This is the weakness of many worthy attempts at

deductive exposition - worthy, because they stem from the teacher's

attempt to display in his teaching the true nature of mathematics,

not asserting rules without justification but showing them as

necessary consequences of previous knowledge. ~~o mistakes are

often combined. One is that illustrated above, of reasoning from

insecure premises. The other is the assumption that a single

sound chain of reasoning is convincing, whereas acceptance actually

depends on the convergence of many implications, or rather the

growing awareness of an interlocking scheme of ideas of which this

particular idea forms a part. The initial mode of introduction of

a concept such as this is probably less important than the subsequent

provision of the varied experience needed to assimilate it.

The Scottish treatment of this topic also rests on the doubtfully

acceptable deduction: since x - y = z <=> y + Z = x for positive

numbers, so for negative numbers the result of subtracting y from

x must be that number which, when added to y, gives x.

The approach of the South Nottinghamshire'Project to this topic is

that of "problem-situation embodying the concept". This aims to
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work persistently in a situation in which the study of the properties

of plane figures - a pursuit of some interest in itself - is made

in a context in which the addition and subtraction of negatives has

to be incorporated into the system to enable the study to proceed,

and in which therefore these operations acquire a meaning in concrete

terms. Negative numbers arise first in the labelling of line~segments

in various directions (this was begun as (L2, US) etc. in a previous

topic) i this is then connected with the coordinates of points as
-+

PQ = Q - Pi this brings in, for example, 1 - 4 = 3 and 5 + 3 = 2.

Straying into other quadrants introduces the labelling of

points by signed numbers, and the full set of additive and sub-

tractive relations with them. Thus the consistency of the system

can be gradually appreciated while the interest is maintained by

the study of the properties of the geometrical figures.

This review of some current teaching material thus shows that the

characterisation of mathematics as structures and symbol-systems

explains the appropriateness of guided discovery and provides the

conceptual framework in which the relation between "manipulation"

and "understanding" can be more easily seen. At the same time, it

has been argued that, of the methods used in current texts, deductive

discovery is preferable to empirical, and deductive exposition has

weaknesses which, it is suggested, may possibly be avoided by a

more schematic form of learning.

PROCESS ASPECTS OF CURRENT SECONDARY COURSES

The O-Level Examination

The following question is taken from the SMP O-level Paper 2 for

1969. A study of this paper as a whole shows that the questions

require, for tile most part, the recognition of learnt concepts in

familiar situations, except for the last parts, some of which are

problems requiring the identifying and bringing together of two

items of information rather than one.
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1 A = (1 2)
. 0 3 ' B = (1 - i) C = (2 0)

o i' 4 1 '

D = (! ~).
(i) Eyaluute AB.

(ii) Find the value of k which makes CD tho unit
matrix.

(iii) Simplify CARD with the value ofk found above.
'Yhut does this show about the inverse of CA 1

(iv) "\'lw,t is the inverse of AC1

To see this, consider the following solution of Question 1.

(i) AB = (~~)

CD =(~+l.~) which = I if k = -2. (Requires manipulation
including k)

(H)

(iii) CABD C(AB)D
= CD
= I

-1
This shows (CA) BD

(iv)
-1 -1

«AC) is not necessarily the same as (CA) )

Since CD = I
ACD = A

So ACDB = AB
= I

Hence (AC)-l = DB

In this question part (iii) requires only the knowledge that the

middle AB can be treated as a simple element and substituted, and

of the meaning of the inverse. Part (iv) requires first the

cautionary recognition of non-commutativity. The idea that A

might be conveniently combined with CD, with a view to separating

off AC, probably arrives only after some exploration of possibilities,

and it is not confirmed as the desired route to a solution until the

B is chosen to combine on the right. This is a characteristic two-

step problem-solving process. Similar demands, possibly slightly
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less difficult, occur in the last parts of several other questions

in the paper. No generalisations or proofs are asked fori this

limited degree of problem-solving is the highest level strategy

tested. A geometrical question asks for the plotting of a set of

six given points (forming a rectangle) after each of two shears

(given by invariant line and the image of one pOint), and requires

the pupil to recognise the combined transformation as another shear;

but there is no question of generalisation. O-level papers requiring

open mathematical investigations have been set by special arrangement

with schools; the AEB paper for Abbey Wood School in 1967 included

such questions as "Investigate, algebraically rather than geometrically

matrices (~~)With a + b = c + d." (ATM, 1968) ,

Secondary Texts - Generalisation

Only the lower levels of generalisation appear to any extent in

the SMP or Scottish texts. Recognition of relationsh~ps, character-

ised as "Observe A and B: how are they related?" figures quite

strongly in the SMP course: the guided discovery of the relationship

"area of triangle = ~ parallelogram = ~ rectangle" is an activity

of this type (see p. 4.3); so is the discovery of the position of

the centre of rotation (Book C, p. 124-5). A somewhat similar example

from the Scottish texts (1st edition, Book 4, p. 110) asks for four

equiangular hexagons printed on a triangular tiling to be checked for

similarity, i.e. are their sides in proportion, and asks also whether

two equiangular triangles can be found on the tiling which are not

similar. These examples might not appear to demand (or to develop)

any very substantial strategy on the part of the pupil - he has only

to do as instructed, to look at specified aspects of the situation

and to say what he sees. However, comparison with any pre-l960 text

shows that this kind of activity was almost non-existent then, and

alerts one to the fact that the ability to perform such an act of

controlled observation may need a degree of training. (It is shown

in a later chapter that s~ccess at this activity is by no means

universal, and that train'ing in it does effect improvement). Nor

should one underestimate the potential message in this activity that

mathematical truth resides in objects, figures and their relationships

and not in the authority of the teacher.
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The next level of generalisation is represented by the question "Is

G always true?" where G is a proposed generalisation (possibly the

result of the previously discussed activity). To answer this,

examples must be generated and tested against G. Questions of this

type are comparatively rare in the texts, and almost always related

to "bookwork". The question about equiangular triangles quoted a few

lines above is of this type, and SMP Book Z asks of certain finite

arithmetics, "Does every element have a unique inverse?"~ and of course,

in the Book Z section on proof we find many such questions. Opport-

unities for turning questions on, for example, the combination of

transformations, from exercises on concepts to acts of generalisation

are extensively missed. (e.g. Book X, p. 44 and Book Z, p. 142).

Opportunities for developing the higher levels of generalisation,

for example, the making of conjectures, do not appear in these

texts.

Secondary Texts - Proof

The place of proof in the geometry of the SMP and Scottish courses

is the subject of an already published article (Bell, 1974). To

summarise, this shows that SMP Book 4 contains a chapter Conclusions

from Data, which requires the proofs of various properties from

assumptions stated in the questions; and that the Scottish texts

contain some explicit development of deduction in geometry, starting

from some concrete axioms about the rectangle. Pupils are given

properties to prove, sometimes with guidance about starting assumptions.

However, in both cases, this work has been omitted from later editions

of the texts. Book Z (SMP) has a short chapter on Proof, with a 7-

page discussion and a miscellaneous collection of examples to try.

It is suggested that these proof activities have been omitted because

they were found to appear artificial to the pupils, and that a more

suitable way for pupils to progress towa~ds proof is through the

giving of explanations in.the course of their own investigations,

and in defence of their conclusions when in conflict with those of

others. This argument will be pursued in the next chapters, when
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proof will be analysed more fully. For the present, it is

sufficient to note the continuing elimination of proof activites

from the best-known texts.
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UITRODUCTION

In earlier chapters, some of the most important general mathematical

strategies have been described and illustrated from individual

pupils' work. Reference to current texts has supported the co-

tention that the development of these strategies does not appear

as an objective, except at the level of "following Lns t.ruct.Lo.is

to generate an example; observe certain aspects of it and state

the relationship between them". The present chapter reports the

results of a curriculum development project which has as one of

its chief objectives the development of pupils' abilities to

employ general strategies in mathematics, during the fi.rst few

years of the secondary school course. Other chapters investil]ate

which general strategies are acquired during normal courses; this

one considers to what extent a special programme can achieve

departures from the norm.

QUESTIONS

The particular questions at issue are (1) in what aspects of the

mathematical process can pupils of this age participate, with

understanding and involvement, (2) do they thus acquire actual

transferable general strategies and skills, (3) are their attitudes

to mathematics and their appreciation of it improved, (4) what is

the effect on their learning of mathematical content, both immediately

and in subsequent years. A fifth question, of considerable practical

relevance, is (5) do process-oriented tasks provide suitable work

for mixed ability classes.

HYPO'I'HESES IN RELATION TO THE QUESTIONS

These are expectations based on experience and previous research.

Reynolds (1967), in his results relating to the performance of grammar

school first-formers on a test of various aspects of proof, found a

strong tendency to accept.-generalisations on the basis of a given

small number of results, without further check; less than half could

symbolise the function nth odd number = 2n - 1; about a third of them

were unaware of the relevance of the set to which a given generalisation

referred.
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King (1974) succeeded in teaching some above-average 11 year olds

to construct proofs by making minor modifications of proofs

already taught. Lawson and Wollmann (1975) successfully taught

12 year olds a transferable strategy for controlling variables

in simple scientific experiments. Thus the existing reported

research gives rather little indication on the subject of question

(1), that is, what process aspects of mathematics are accessible

at the first year secondary level. On question (2), Lawson's

and Hollmann's experiment gives grounds for expecting some success-

ful learning of strategies, at least if these are explicitly

taught. On question (3), relating to attitudes, gains in interest

and enjoyment are likely to be strongly dependent on the teacher,

and thus on whether the material provides him with a better means

for promoting these positive attitudes. Gains in appreciation of

the nature and purpose of mathematics, and of its being a meaning-

ful and satisfying activity, depend more on the material but are

very difficult to evaluate. This is a source of frustration to

the teachers involved, since they generally regard improvements

in their dimension as among the most important. On question (4),

interaction between content and process learning, there are two

studies of primary school mathematical attainment which are relevant.

Biggs (1967) showed that in attainment on mechanical, problem and

concept tests in arithmetic, the most successful primary schools

were those whose teaching was essentially traditional, but

included some use of structural apparatus or environmental

activities; the mainly "motivational", i.e. environmental schools

performed less well on the tests used; their more general objectives

were not evaluated. Richards and Bolton (1971) obtained similar

results, but also used tests of creativity, and on these the more

activity-oriented school out-performed the others. These researches

suggest that objectives which are consciously and skilfully

embodied in the teaching are likely to be attained, but those

which it is hoped to achieve incidentally are not. Question (5)

relates to the suitabilit~ of process-oriented tasks for mixed-

ability classes. Although previous research cannot be quoted, there
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are a priori grounds for adopting a positive hypothesis. Just

as the same title set for an English composition can call forth

responses at greatly different levels of abstraction and perception,

and it is even possible to choose works of literature to which

valid responses can be made at different depths, in the same way

mathematical situations can be chosen in which some pupils will

simply identify concepts, and observe and justify simple relation-

ships, while others can operate at a much more abstract level,

can find more general theorems and, quite naturally, use much

more rigorous modes of proof. The seven strip patterns and some

of the problems concerning divisibility of numbers provide examples

of this, and more appear in the discussion of the South Nottingham-

shire Project material below.

The South Nottinghamshire Project provides ele setting for three

studies which bear on these five questions. These are (I) a

descriptive and analytical study of the teaching material, together

with classroom anecdotes, which bears on questions (1) and (5),

(II) two interschool comparisons, (IIA) of number attainments,

bearing on q~estions (4) and (5), ~IIB) of the attainment of general

mathematical strategies, bearing on questions (1) and (2). These

are preceded by a general description of the Project.

DESCRIPTION OF THE PROJECT

Like most curriculum development, the South Nottinghamshire Project

has a number of interrelated aims. To quote from the Introduction:

"It is a piece of development work operating in two South

Nottinghamshire comprehensive schools, in association with the

Shell Centre for Mathematical Education. It arose out of

previous work on the preparation of suitable material for mixed

ability classes of first year pupils in these schools. Its

main focus was on exp10ring the use of practical materials, and
,

the making of mathematical investigations at this stage.



5.4

Thus as well as preparing material suitable for the mixed

ability situation, we wished also to explore the feasibility

of ideas we had about syllabus content and teaching methods.

In particular we wanted to see how far pupils of this age

could go in the investigation of mathematical situations by

themselves, leading to the drawing of conclusions, the making

of generalisations and the giving of explanations and proofs.

We wanted to see whether this could be done in the context of

the normal syllabus, and what effect it would have on all-round

mathematical attainment, both immediately and in subsequent

years. (Our hypothesis was that somewhat less material might

be covered initially, but that performance in later years would

be enhanced.) Regarding teaching method, we wished to explore

the value at the early secondary stage of a range of simple

concrete material -geoboards, pegboards, pattern shapes,

matchsticks, number rods and blocks, point lattices and grids

and so on - feeling that this would (a) enable well motivated

problems to be posed, and (b) provide concrete "props" to aid

the understanding of the mathematical ideas."

Thus the Project included both development and research activities;

it was intended to imp rove the pupils' learning of mathematics,

but there was also to be an evaluation to provide answers to some

general questions currently being asked by those concerned with the

teaching of mathematics.

The material so far published comprises fourteen units covering work

for the first secondary year. The ground covered is generally

similar to that of the SMP course, but the treatment is different

throughout. Each unit comprises a general introduction for the

teacher, a sequence of assignment cards, commentary for the teacher

on the individual tasks, and a few examples of pupils' work, with

commentary. The differences from the SMP course lie in the basing

of the work of each 2~ wee~ unit on a small number (from one to

five) of investigations, rather than on a large number of short

questions; and in the greater use of conc~ete materials as the
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larger scale tasks in which more of the direction of the

activity is the pupils' responsibility. The notes for each

unit begin with a statement of the content and process

objectives embodied in it. A few examples of these statements

of objectives are given beLow ,

EXTRACTS FROM TEACHERS' NOTES

COORDINATES

Content Objectives: (i) Given a point on a grid with axes and orlgln, state

the coordinates of the point; and, conversely, given

the coordinates, plot the point.

(ii) Relate the objective (i) to 6-figuremap references

(iii) State the relationship between the coordinates of
points on a line (either symbolically or verbally),

and give the coordinates of other points on it.

(iv) Given two points, state the coordinates of the mid-point

(v) Given a line segment, state its coordinate difference;

and conversely plot a line segment with a given coordinate
difference. .

(vi) Make use of signed numbers, or some equivalent form,to

specify the sense of a line segment.

Process Objectives: (i) Employ and write about simple strategies involved

in a game.

(ii) Seek relationships, and make generalisations, from sets

of numbers and number pairs.

(iii) Write up descriptions of experiments and conclusions.
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SHAPE

Content Objectives:

Recognise and name: triangle - isosceles and equilateral,

quadrilateral, trapezium, kite, parallelogram, rectangl.e,

square, rhombus.

Process Objectives:

(i) Modify part of a figure (keeping the rest fixed) to

generate a new figure

(ii) Add to an existing figure to build new figures

(iii) For some pupils, develop a strategy for solving

"How Many?" questions

(iv) Write an account of procedures and results

(v) Extend a problem and ask new questions.

SYMMETRY

Content Objectives: (i) Recognise line and rotational symmetry

(ii) Be aware that "m is the mediator of PP'"

(iii) Construct the remainder of a part-given
figure to have specified symmetry

Process Objectives: (i) Experimenting, generating examples and recording
results

(ii) Recognise the existence of a limited number of
solutions to a problem, and employ a systematic
procedure to find them.

(iii) Recognise the need for a definition of
"sameness" •

(iv) Write an account of procedure and results
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SEQUENCES AND FUNCTIONS

Content Objectives: (i) Interpolate and extrapolate terms in a sequence
by considering patterns of differences between
successive terms.

(ii) Recognise that in a linear sequence the differences
between successive terms are constant, and in a
quadratic sequence the differences are linear.

(iii) Induce an expression for the nth term of a linear
sequence

(iv) Develop the beginning of function notation

(v) Possibly introduction to the concept of an inverse
function.

Process Objectives: (i) Inventing situations from which a number sequence
can be derived.

(ii) Justifying, by reasoning from a given situation or
diagram, a formula which has already been obtained
by induction from a number pattern.

AREA

Content Objectives: (1) Know that area of triangle = half area of rectangle;
and area of rectangle = 1 x b.

(ii) Know how to find areas of straight-line figures by
dissection and by subtraction

Process Objectives: (i) Generating examples; predicting and verifying results

(ii) Tabulating results (for different numbers of pins)

(iii) Seeking relationships from tabulated results .

. .



5.8

WHOLE NUrmER RELATIONSHIPS

Content Objectives: (i) Understanding of the base 10 place value system

(ii) Recognition and use of the associative, commutative

and distributive laws in performing calculations.

(iii) Understanding of the relationship between addition

and subtraction, and between multiplication and division.

(iv) Knowledge of the algorithms for (a) subtracting numbers,

up to a 3-digit number from a 3-digit number, (b) mult-

iplying a 2- or 3-digit number by a I-digit number

(v) Knowledge of addition and multiplication facts, and the

number inter-relationships (up to 100) associated with

divisibility and multiples.

Process Objectives: (i) Extending an investigation for themselves (e.g. by

choosing the next number to investigate in Sums of

Divisors.)

(ii) Looking for relationships between numbers and predicting

results in further cases; seeking generalisations.

(iii) Formulating rules and modifying them in the light of

further evidence.
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I. DESCRIPTIVE STUDY OF PROCESS ATTAINMENTS

The following strategies are identified and their mode of

incorporation in the course discussed.

GENERALISATION

1. Generating examples - to satisfy given conditions or to

test a given conjecture.

2. Classify and order systematically to obtain a complete set.

3. Recognise and (4) extend a pattern or relationships, numerical

or spatial.

5. Express a relationship in general terms, algebraically or

verbally ("Make a generalisation").

PROOF

1. Check all cases.

2. Establish sub-classes. and check exhaustively.

3. Identify underlying general relationship ("key fact").

4. Connect data and conclusion.

5. Embed in agreed existing knowledge.

FORMULATING PROBLEMS

REPRESENTATION

1. Use of diagrammatic recording, graphs, tables

2. Use of algebraic symbolism.

ABSTRACTION

1. Actions with concrete embodiments

2. Abstractions resulting from generalisation.
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GENERALISATION

(1) Generating examples - to satisfy given conditions or test

a civen conjecture.

(2) Classify and order systematically to obtain a comolete set.

These are common features of the course. In the first unit,

Shape, the t.ascs all require (1) and (2); for example, finding

all the different triangles, or quadrilaterals, on a 9-pin geoboard,

or all the 5-square shapes. It would be expected that (2) would

be oore difficult that (1); the question about (1) is whether it

is a learnable general strategy, or whether it is simply a matter

of (a) understanding the concepts in terms of which the conditions

are being framed, and (b) having the necessary mental power to

cope with the degree of complexity of the conditions. (This question

is discussed further in Chapter 9; some evidence is also available

from the test results reported in the second part of this chapter.)

Direct evidence from the classroom makes it clear that for some

pupils the activity is not an easy one. One pupil had counted the

•

4v:
F IG.l.

two triangles in Fig. 1 as the same, and even when her attention

was drawn to them had considerable difficulty in recognising their

difference. The example on p. S.U also shows the difficulties

experienced by some pupils. ~fuat was it that was 'quite hard' for

him in finding Nos. 4 and S? Or that made him need his friend's

help to find No.6? But however the difficulty is categorised,

it seems a reasonable hypothesis that the ability to generate a

variety of examples to meet given conditions may be improved by

experience of such situations; and it is a modest but necessary

element of mathematical activity.
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The use of systematic classification and ordering to obtain a

complete set of figures was included as part of this activity

with two objectives. The first was to make the pupils aware

of the different possible types - right-angled, isosceles, right-

angled and isosceles, obtuse-angled, for triangles, parallelogram,

rectangle, trapezium and so on for quadrilaterals - and to provide

the opportunity for supplying names for these, where necessary.

Finding and classifying the complete set is a strategy which is

likely to bring to a pupil's notice types of which he was not

previously aware. The second objective was that of developing

this strategy itself, for further use. As a check of the

summaries given above will show, several such problems appear

in the early parts of the course - Dividing the Board, in which

all possible divisions of a 16-pin geoboard into congruent halves

by a single elastic band are to be found; Line Segments - "How

Many" different (in length and direction) segments on 9-pin boards,

(in Coordinates) and towards the end of the year, in Fractions

(Unit 13), claSSifying all the fractions which can be formed from

rods of lengths I to 10 inclusive, and others. Finding a complete

set was a difficult task for most of the first year pupils, partly,

it seemed, because they were unused to this kind of definiteness

and rather surprised that it could be obtained, partly because it

involved a rather precise use of written recording, and partly

because these problems required, for success, the keeping of one

variable fixed while changing another. Thus, in Dividing the Board,

it is necessary to identify the 2 different ways in which the band

may cross the middle square, then to count the number of ways in

which a halving of the middle square can be extended to the edge

of the board, and within this set to separate straight from two-

step extensions.

•
•

• • •

• •
•

•
• • • •
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Even after discussion of this strategy with the class, only the

ablest were capable of carrying it through for themselves. In the

case of Triangles on the Geoboard, two methods of systematic

counting were offered to the pupils (See Cards A3, A4). The second

of these was generally useable by the pupils, the first they could

follow as a demonstration, but found it hard to use themselves.

I 2 3
•

4 5 6

•
7 8 9

o • •

TRIANGLES - MAKING SURE Card A3

We have labelled the pins 1 to 9. To get a triangle
we have to pick a 'triplet' - that is 3 pins. Here are
some triplets: (1,2,3) (1,2,4), (1,2,5), (1,2,6), (1,2,7)
(1,2,8), (1,2,9). Now try to work out a system to help
you write down all the triplets possible.

Most of the triplets - like (1,2,4) i.n the diagram -
make triangles, but some make straight lines - like
(1,2,3). How many give straight lines?

Look at the 8 different triangles you found. Label each
one with a letter.

Label each triplet with the same letter as the triangle
it makes.

How many triplets are there for each triangle?

Are there any triplets without a letter?

TRIANGLES - CLASSIFYING Card A4·

Label each triangle you found on the 9-pin board with a letter.

How many triangles have a right-angle?

Which ones are they?

Anisosceles triangle has 2 sides the same.
How many isosceles triangles are there?

Which are they?

An equilateral triangle has all its sides the same?
Are there any equilateral triangles?

Which are the scalene triangles (ones with all their sides different)?

Compare results with your partner.

Write in your books what you have found, using the names of the

triangles.
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(3) Recognise and (4) extend a pattern or relationship, numerical

or spatial.

(5) Express relationship in general terms, algebraically or verbally

("Make a generalisation")

These activities involve both abstraction - the identification of

common elements - and generalisation - the statement of the nature

of the regularity, and of the extent of the class to which it applies.

Activities of this kind, with spatial relationships do occur in the

SNP first year, but they are not common. In the units on Tessellations,

the recognition and use of repetition by translation figures strongly,

and may be verbalised; and the angle-sums of the triangle and the

quadrilateral are to be recognised and stated from directed experiment

on the tessellations (Card E7).

COLOURING ANGLES 1 Card E7

You require the tessellation you made with an irregular triangle.
Choose one triangle in the pattern and colour its angles using
three different colours.

RedBlue

Now colour blue all the angles, in the other triangles, which are
the same as the blue one.

Do the same for the other colours (green and red) until all the

angles are coloured.

1. Look at one point of the tessellation. Is there any pattern
about how the colours go round the point?

2. If R = size of red angle, B = size of blue angle, C = size of
green angle, what does R + B + C equal?

Can you explain your answer?

3. What do the t.r Lanq'l,e I s angles add up to? Does this work for

other triangles?
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In the Symmetry unit, though most of the activity consists of

game-situations embodying the relevant concepts, the recognition

and verbalisation of the relationship between the mirror and each

pair of related points, ppl perpendicularly bisected by m, is the

subject of one task.

Work in pairs. Card B6

Stretch 2 elastic bands across the middle of the board. They
will be 2 lines of symmetry.

Now make a shape with another elastic band.

See if your partner can place another elastic band on the board
so that both of the first elastic bands are lines of symmetry
for the whole figure.

Now let your partner start and you complete the figure.

Record your interesting figures.

SYMMETRY FOLDING Card B2

Cut out a shape with line symmetry.

Fold it along its line of symmetry.

Choose a particular point on the shape and label it p •

.Prick through P with a shar~ point and open up the paper.
Label the other hole pl. P is called the image of P.

Join ppl and draw in the line of symmetry.

vfuatdo you notice?

Choose another point and repeat this ...• ..and another.

Write what you notice in your book.

Other activity involving these aspects of generalisation is concerned

with numbers as coordinates. The objectives for Coordinates in the

summary above mention the mid-point formula, and the use of coordinate-

differences to specify line segments. The former gives an opportunity

for generating examples of pairs of points, finding the mid-points

geometrically and making ~ table of the coordinates of these, from

which the relationships ~(xl + x2), ~(Yl + Y2) can be discovered.

(An empirical generalisation, rather than a deductive one, in practice).
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Other examples of recognising, extending and describing patterns,

verbally and symbolically, in Coordinates, are illustrated in

extracts J, K and L. The first of these (J) shows how a game

situation is used to establish and practise the use of coordinates.

Then the attempt to reconstruct the games from the records of the

points played motivates the detection of the relationships ampng

the coordinates which correspond to collinearity of the points.

The second extract (K) shows the verbalisation of these relation-

ships, and then their expression in symbolic form. The main

difficulty here is the concentration on the relation between the

pairs of coordinates of each point rather than on the way each

coordinate changes as one moves along the line. The symbolisation

of the relationship did not appear to present particular difficulty

when approached in thisway.The last of these examples (p. 5.19-20)

shows how one boy, having worked out and understood the patterns

which lead to the result 24 for the number of different line

segments on a 9-pin board, extends them to find the results for

boards of 16, 25 and 49 pins. He has made a verbal generalisation

the "numbe r down" times its own number and take one - but the

"number down" is not recognised as 2n - 1 for a board of n x n

pins; nor is any explanation given, though the reasoning can be

inferred from what he has written. This example shows how pattern-

recognition, extension and verbalisation can take place at different

levels; it is not possible to say that this strategy is possessed

or not possessed by first year pupils in general, except in relation

to a particular situation. However, it is still plausible that the

habit of seeking patterns, re-opening problems by changing a para-

meter, and trying to verbalise and to explain the result can be

developed by practice, particularly with discussion drawing attention

to these aspects of the process. The extent to which explanation is

possible for first year pupils is discussed under the next main

heading below, Proof. Examples of Generalisation activities appear

in almost all units of this course - see the Summary. Some of the

unit on Sequences and Functions will be discussed under Symbolisation.

To summarise: of the five aspects of generalisation considered, (1),

(3), (4) and (5) were attainable by most pupils, depending on the
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degree of sophistication of the patterns in question. (2) was

less generally attainable. (This carries some attributes of

Proof. )

PROOF AND EXPLANATION

(1) Check all cases

(2) Establish sub-classes and check exhaustively

Most of the situations which involve generalisation also contain

the possibility of going on to proof or explanation, that is, to

a statement of reasons why the relationship is true for all possible

cases, and not just for those checked. But the first examples in

the course of proof-type activity are those discussed in the previous

section in which a complete set of examples has to be generated,

where the proof involves constructing subclasses (possibly a hierarchy

of them) and showing that these include all possible cases. This

was described for Dividing the Board and illustrated for Line Segments.

In the latter case the implicit argument is "every segment must have

a first coordinate of 0, lR or IL, 2R or 2L - five possibilities; each

of these can be paired with five similar possibilities for the second

coordinate • • • • • " As well as providing fairly simple examples of

proof, this construction of subclasses is often a vital element in

more complicated proofs.

(3) Identify underlying general relationship ("key fact")

(4) Connect data and conclusion.

These types of proof appear first in the unit on Sequences and

Functions, where the functional relationship may be inferred

empirically from a constructed table of values, and proof depends

on deducing the relationships directly from the generating conditions

for the sequence; often something similar to mathematical induction

comes in at this point. See Process Objectives (ii) for this unit

(po 5.7) and Card L2.
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MATCHSTICK SHAPES 2 Card L2

/\

Make these patterns of triangles in a row.
Make 2 more in the sequence.

Copy the table and fill in the gaps.

1

Number of triangles 1 2 3 4 5 10 20 ! 43 100 n
Number of sticks 3 5 7 17 61 ~ m

When you have completed the table, answer the following questions:

(a) When you know the number of triangles, can you write down a
rule to find the number of matches needed?

(b) By studying the matchstick patterns, can you explain why your
rule works?

This card shows the teaching method adopted to direct attention

to th~ n + fen) relationship rather than the sequential one f(n)+

fen + 1). When the formula n + 2n + 1 has been obtained from the

table, it remains to refer back to the matchstick patterns and see

that each added triangle requires 2 further sticks, and the first

one has one extra stick as a start, so that 2n + 1 is indeed correct.

Alternatively this reasoning may have taken place when making the

jumps to 10 and 20 triangles in the table. We shall have occasion

to refer to this point below; like all the other types of proof, it

was not appreciated by most of the first year pupils. Once a pattern

had been recognised in the course of constructing the table, it was

difficult to make them entertain any serious doubt about it, and the

reference back to the matchstick patterns was regarded as superfluous.

For evidence of this, see extract M (p.5.23) where the only sequence

for which a justification in terms of the stick patterns is given is

n + 4n for squares of side n. Another type of proof is similar to

this last but without the sequence aspect. A relation is inferred

empirically from one or ~'few examples, and the question is whether

it is true in general, and what justification can be offered. The

Midpoint formula is an example; another is Arrow Diagrams 2. (Cards

D4, N3)
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MIDPOINTS
Card D4

Work either on spotty paper or on pegboard.

Put two red pegs in the board (or plot two points).
Now put a blue peg in the exact middle of the line joining the two
red pegs.
Record the coordinates of all three points.

Repeat this for other positions of the pegs, and make a table like
this:

1st red peg 2nd red peg middle blue peg

Study the results in your table.
Can you discover a rule for getting the coordinates of the midpoint
from the coordinates or the end-points?

Describe your experiment, and write down your results and any rules
discovered.

ARROW DIAGRAM 2 Card N3

Experiment with arrow diagrams to find out whether any of the
following functions is the same as a single function:

l. ~ ~ 2. -1 +3 3. -2 -1
~ ~ ___;;. ~

4.
~

+2 5. +3 X6 6. x2 X3
~ ~ ~ ~ ---;.

.7. +2 +3 8. X3 -2 9. +2 +3
~ ~ ---} ~ ~ ---+

10. x2 +0 ll. +2 Xl
--7 ~ ~ --t

Write down your comments about any rules you discover.
Are there any special exceptions to the rules?

The former has been discussed under Generalisation. The latter leads

to the empirical generalisation that pairs of functions which consist

of just + and - functions or just x and + functions, not mixing

the two types, combine to form single functions. In both these cases

the results are plausible, but proofs are beyond most pupils at this

stage. A geometrical exa~ple occurs in the Tessellations unit, where,

after tessellations of di'fferent triangles and quadrilaterals have

been constructed, the question arises "Do all quadrilaterals tess-

ellate?" The class being observed failed r.o respond to this,

apparently because the concept of all possible quadrilaterals was

too unfamiliar to them.
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In addition to these examples, where a generalisation has first

to be found, then tested empirically and proved if possible,

there are Some in which the generalisation is given; and others

in which it is already known,and testing and proof are the only

remaining tasks. One of the first type is Corner Numbers. Here

CORNERNUMBERS Card J18

You will need the 'train table' which you completed when doing
the Trains problem.

1 D 4 5 6

2 8 la 126

3 6 9 12 15 18

4 8 12 16 20 24

You can see that we have drawn a square round a block of four
numbers:

Notice that 2 x 6 = 12

and 4 x 3 = 12

so 2 x 6 = 4 x 3

Does this work for any other blocks of four nuniliers?Try some and
see. Write them down and show any working out you do.

Can you find out why it works?

an empirical check soon convinces the pupil of the truth of the

generalisation; but, again, the proof offered by the teacher failed

to evoke much responsefrom the pupils. This showed that

10 x 18 = (2 x 5) x (3 x 6) and IS x 12 = (3 x S) x (2 x 6)

and that any opposite corner numbers such as 10 and 18 are obtained

by multiplying the same four numbers as the other pair forming the

rectangle.
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(5) E~bed in agreed existing knowledge

An example where the generalisation is well knomoccurred during

the work on Decimals. A girl, asked why "adding a 0" multiplied

a number by ten, performed the standard algorithm

43

x la

430

This is a reminder that explanation and proof involve, in the first

place, the derivation of less fundamental results from more fund-

amental ones, but what is felt to be fundamental is a function of a

person's own experience. To this girl, the multiplication algorithm

was probably the most basic fact about multipl.ication - her working

definition. Pupils of this age do not normally work from stated

axioijlS.Generally they have not even begun to systematise knowledge,

since this implies a degree of second-order reflection on the actual

connections between different fragments of knowledge. They collect

new relationships with some enthusiasm, but are not much interested

in the economy of deducing minor results from major ones. They are

not particularly impressed by the definiteness of proof, perhaps

because they are used to adapting to an environment full of change.

Also, looking at the situation more closely, it is natural and

comparatively easy for these pupils to observe relationships among

concrete (i.e. familiar) objects like particular numbers and shapes.

The demand for an explanation then requires perception of another

relationship of a higher level of generality, which is difficult.

For example, in Matchstick Shapes it would be possible to try to

derive the functions directly from the construction rules, without

generating numerical values. This generally is too difficult, because

the pupil needs the numerical values to help him grasp the function.

Similarly, in Corner Numbers the underlying relationship is insuff-

iciently tangible; the carper numbers themselves are needed, and

then we are led inevitably to an empirical generalisation.

So, to summarise, none of these aspects of proof was generally

accessible to the first year classes with whom the material was used.
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The ones which came nearest to acceptance were the systematic

enumeration of complete sets of examples with some classification,

1.e . (1) and (2).

FORMULATING PROBLEMS

Some pupils were able to extend problems in response to the teacher's

suggestion (see Line Segments, p. 5.19), but they were not in general

able to do this spontaneously.

develops this strategy.)

(The second year SNP material

REPRESENTATION (INCLUDING SYMBOLISATION)

(1) Diagrammatic Recording, Graphs, Tables

Aspects of this wh Lch figure strongly in the SNP first year material

are Recording, Algebraic Symbolism, Tables and Graphs (Arrow and

Cartesian). The strategy involved is that of being able to use one

or mor2 of these forms of representation in appropriate situations • .

The geoboard and pegboard problems mentioned above all require the

recording on spotty paper of figures made on the board. In the

case of Triangles and Quadrilaterals this is necessary for eliminating

repetitions and counting the number of different examples; for Dividing

the Board it was for some pupils necessary to record on paper, turn

the board through 180 0
, and check against the drawing to ensure a

correct halving. The geometrical coordination required for this

made it a non-trivial task for several pupils.

Recording is also used in the game Four in a Line (Coordinates) (see

extract N) and recognition of winning lines from the record gives a

lead into the equations of lines. (This strategy of recording, then

reconstructing the game from the record can be a powerful way of

developing abstractions; it is used frequently by Dienes). Tables

of values for functions are used in Sequences and Functions, double

entry tables in Whole Numb,er Relationships and in Area (see Card F6)

and both types of graph (arrow and Cartesian) in Linear Functions.
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PATTERNS Card F6

Collect all your results together in a table like this:

Number of pins inside.

Number of
pins on the
boundary

1I I
0 2 i 3 4 5

3

4

5

6

·•
·•

(The 1 is in the table because a (4,1) shape has an area of I square)

If there are gaps in the table try to predict what numbers go in
them, and then check whether you were right or not.

Describe the patterns in the rows and in the columns of your table

In Cards NS, N6 t.herelation between position of graph and

form of function is explored.

CARTESIAN GRAPHS 1 Card N5

You will need a sheet of squared paper and coloured pens

1[\ "(

I%'- .J

Lt
.)
.1.
I -, xo I I ,

.2 34- 1'6'

o

1. On your squared paper draw a set of axes, making sure that
each scale will go from 0 up to about 18.

2. Graph the following functions on one set of axes, plotting
five points in each case:

- 3
)

3 On another set of axes graph the functions

x 2
~

x 3
--7

Write down comments about the positions of the graphs and the
kinds of functions which they represent.
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CARTESIAN GRAPHS 2 Card N6

On new sets of axes, graph the following combined functions.

x 2 + 3 ~_2,- ~
--) ~ ---"7-7

- 2 x 2
~~

.;-2 + 3
~~

x 3 + 2
~~

Write down your comments about the positions of the graphs
and the kinds of functions which they represent.

You will notice that each combined function is made up of a
+ or - function and a x or .;-function. Investigate the effect
of:
(a) keeping the x or function the same, and varying the

+ or -.

(b) keeping the + or 1 function the same, and varying the
x or .;-.

~'lrite down your comments on wha t happens.

In all these cases the strategy of suitable recording to preserve

the results of an essentially evanescent experiment is being

developed. The exercises were performed successfully, but these

pupils were not placed in the position of having spontaneously

to adopt a form of recording, so it is not possible to offer

observations regarding their acquisition of this as a usable

strategy.

(2) Algebraic Sy~bolism

Algebraic symbolism was developed in two units - Coordinates and

Sequences and Functions. Relevant extracts from these (K and

M) have already been referred to. In M (p.5.23) we see the

beginning of the use of algebra in
x2

and there isn+l , also a case

where the pupil has been feeling towards an explicit relationship

but cannot express it, so he displays the pattern 1
2

3, 2
3

5, 3
4

7.

These examples suggest that the use of a symbolic language doe~

not present great difficulty if just sufficient symbolism is given
,

to enable observed relatipnships to be expressed. Problems arise

when a symbo Li,ce xpressLon is presented to a person who has not

previously met that form, or has lost some part of its meaning.

Such problems arose for a few pupils during number work; for example,

60 was not recognised as comprising six tens. These questions will
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will be discussed below. The use of algebraic language in

appropriate situations, such as the statement and investigation

of number generalisations, is a relevant general strategy, but

at this stage, the pupils are only just beginning to learn the

language.

ABSTRACTION

(1) Actions with concrete e~bodiments

In the discussion of strategies for abstraction in Chapter 3, it is

shown that many of the other strategies, particularly those of

Generalisation and Representation, both involve acts of abstraction

and lead to further ones. The deliberate use of models, represent-

ations and concrete embodiments to provoke and facilitate abstraction

is also discussed. This last strategy is used extensively in the

South Nottinghamshire Project mainly as a teaching strategy, though

it is also intended that the use of materials embodying particular

schemas, such as base blocks, number rods and geometric shapes,

should become a deliberate strategy for those pupils for whom it

is helpful.' Some examples of this appear in the unit on Angle,

where the wooden shapes acted for some pupils as a concrete memory,

reminding them what 60 0 and 120 0 were like, and for others as meas-

uring instruments with which to find other angles. For example,

one girl picked up the equilateral triangle and decided its angle

was 450
• She was asked to check that two of these made 90

0
by

putting two triangles over the square. She could not see at first

what was wrong, but on questioning decided that she was more sure

about the square, and then by putting three triangles together arrived

correctly at 60 0
• Other pupils worked out the angle of the octagon

by fitting two of them and a square together to make 360
0

•

The following comments on the relative unsuitability of the abacus

and the value of base blocks for helping pupils with the concepts
,

of place value, are take~ from the Report. Th~indicate some of

the factors relevant to the use of structured material as an aid

to abstraction.
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"In general the use of the abacus did not seem helpful. The
representation of 16 as 1$ + in base five rather than Flu

3Tl
differs only in using three rings instead of the written digit 3;
the significance of the position as denoting fives is still a
matter of decision - it is not displayed by the material, as it
is if one uses three sticks each marked in 5 unit cubes, as in
the multibase blocks. But the representation of three units by
the numeral 3 is not a point of difficulty for these pupils,
whereas the place-value idea is. Similarly the operations of
addition and subtraction on the abacus involve rather special
actions, e.g. adding 23 to 141 involves setting up 23 on the
abacus; 141 standing beside it (unless a second abacus is avail-
able); and transferring all the rings onto the first abacus. Then
when four rings are filling a peg and another two are to be added
we take away five, put one of them on the next peg and leave the
sixth one on the present peg. The four discarded ones have to be
put right away; they have lost their value. This sequence of
actions is a fairly complex skill which the abler pupils learned
and used successfully; the weaker ones could not cope with it
without many mistakes, particularly concerning the four discarded
rings, which they felt ought to have a place somewhere. This
preoccupation with manipulating the abacus correctly meant that
the work gave no oppozt un i t.y for learning about place value to
those whos e understanding of it was weak - rather the reverse.

Some work with base ten blocks with a group of weaker pupils began
by asking them to do the following:

(1) 216 + 95 (2) 216 x 35 (3) 216 x 5

Three of them got (1) right; the fourth put 216
9S

1166
None of the four could do (2). All tried (3) but no-one got it
right. \'ledecided that for this group the right material was base
ten blocks; we felt that in attempting to improve their understanding
of place value we needed to use all their existing knowledge of
numbers, not abandon it, and in particular the words like six-ty,
six hundred and so on, themselves linked with the base ten system.
I worked with them and with this material for two subsequent sessions.

We started by one pair counting out 83 in the wood, 8 sticks and
3 units, and the other pair collected 203. I asked them to find
twice 83, 203 - 83 and S x 83. The multiplication was done by
additi~n so I asked whether they coulo do five 80s and five 3s and
whether this would be the same. Their problem with this was not
knowing what five 80s would be; they knew five 8s but could not
connect the two. (The next 20 minutes of this work has been
preserved on the audiotape.) We got on to three 80s which was
agreed to be 24 sticks, Le. 24 tens. "How many units?" 204, 208,
240, 304, 124 were all suggested by these four boys; mostly they
had tried to count the total number of units on the 24 sticks
which they each now had. ,"Could you find out which is right
wit.hout counting?" "No." We tried 13 tens which they checked
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and agreed. I asked them to record "13 tens are 130, 24 tens
are 240" (Jeremy: "How do we write it? .• • Is it add or times")
I'lecontinued through 15, 18, 21, 27, 34 tens and more correct
answers were coming more quickly, though there were still mistakes.
By the end there was a feeling around that 15 ~ 150, 34 ~ 340 etc.
but it was still an insecure feeling, and if there was a reason
felt it was empirical rather than structural; it was what happened
rather than what had to happen.

During the next lesson they did a number of written questions,
using the blocks if they wished. The questions included 6 x 20,
3 x 40, 40 x 5, 20 x 6, 2 x 60, 3 x 4, 30 x 4. The connection
between 6 x 20 (6 twenties) and 20 x 6 (twenty sixes) WuS recognised
sometimes by some of them; but mainly for 20 x 6 they worked out
twenty sixes.

In spite of the previous day's work, although they mainly got
3 x 40 and 30 x 4 right, they still appeared not to see the
connections between 3 x 4, 30 x 4, 3 x 40; these were all done
independently, not using the result of one for the other.

Later we tried to take the step to 4 x 23, 5 x 23, 7 x 23. They
got these right, generally, on the second attempt, and by counting
sticks and cubes rather than as 4 x 20 and 4 x 3."

(2) Abstraction resulting from generalisation

hbile considering strategies for abstraction that of investigation

should be included, even though it does not fit easily into the

category. An example from the Number unit - Sums of Divisors,

(Cards J20, J20a, J2l) - shows how many quite important concepts

and relationships can be learnt through such a piece of work,

which also provides opportunities for generalisation, proof and

representation, though with the disadvantage that the teacher cannot

be sure that a given pupil will meet a given relationship during his

investigation of the problem.
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SUMS OF DIVISORS 1 Card J20

The nuwbers which divide exactly into 12 (not counting 12 itself)

1, 2, 3, 4, 6

12~ _/15~?
16 ____.;;r

The sum of these divisors is 1 + 2 + 3 + 4 + 6 16
So an arrow is drawn from 12 to 16.

Check that an arrow should be drawn from 16 to 15.

To which number should an arrow be drawn from 15?
Continue the chain.

Investigate chains starting with other numbers.

SUMS OF DIVISORS la Card J20a

Try the following starting numbers:

18, 37, 28, 2420, 26,10,

Complete a chain for each number.

Try some more.

Write comments on anything you notice about any of your
chains.

SUMS OF DIVISORS 2 Card J21

Use a whole page of your book.

Start by putting the number 1 in the middle of the page.
Build up your chains to form a 'tree'. (A few have been
put in to show how it works.)

Continue to build up the tree.

Write comments on any discoveries you make.

Have any of the numbers got special nameg?
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Such an activity contributes also to the appreciation of mathematics

and the development of favourable attitudes. This particular

activity was enjoyed by both classes observed. In the course of

it, primes were characterised as numbers which "shot straight

to 1"; and the following generalisations were found and used,

(not all by all pupils) :

(1) if the chain 8 ~ 7 ~ 1 has been found, and a later chain

begins 14 ~ 10 ~ 8, it must continue 8 ~ 7 ~ 1 as in the

previous chain.

(2) in testing for divisors, work systematically through 2, 3,

4 .• • .but note that 4 need not be tried if 2 does not divide,

and so on.

(3) if 4 goes 5 times, then 5 is also a divisor.

(4) you need not go more than half way to the number in trying

divisors - in fact, taking account of (3) you can stop as

soon as the second factor becomes as big as the first.

(5) expressing the number in prime factors to begin with enables

all combinations to be found.

GE~lliRALSTRATEGIES OF ENQUIRY - WRITE-UPS

This is not strictly a mathematica1 strategy but it is intended to

contribute to the awareness by pupils of the questions they are

investigating, the experimental method and the generalisations

which form the results. Thus it is seen as a means of promoting

the development of the general strategies, and the appreciation

of the mathematical method. Some examples already quoted show

something of the development which took place during the trial

year, extract H (p. 5.11) being an early example and J a somewhat

later one. The earlier ones tended to be blow-by-blow accounts of

what had been done; the later ones became better at identifying

data and results. The activity appeared to be a significant and

valuable one, but it is not possible to make more precise claims

about results achieved.
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NIXED ABILITY

The extract on page 5.11 shows how a pupil of low ability was able

to make a meaningful activity out of Triangles on the Geoboard.

The cards throughout the preceding section show how by starting

from a concrete situation there are mathematically significant

activities at the many levels which have been considered, ranging

from generating examples up to explanations, proofs and extensions

of the problems, and proceeding to higher levels of abstraction.

In concept-forming activities it was easy to provide for different

ability levels - for example, in Dividing the Board, some pupils

remained at the stage of constructing valid halvings, while others

moved on to quarterings or to determining the total number. It

was generally easy to suggest extensions for able pupils (see page

5.16) Less easy were activities involving number skills in which

there was a wide spread of existing attainment among the pupils.

In these cases different groups of pupils had to be given different

assignments, as in Number Work, where a weak group worked with base

blocks while the majority studied base 5 calculations (see pp. 5.30-31).
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II. INTER-SCHOOL CO~WARISONS

A. NUMBER ATI'AINMENT

This study was designed to provide some evidence on questions (4)

and (5) - about the compatibility of content and process attainments

and the suitability of the material for mixed ability classes.

Neither question can be answered definitively from the data, but on

both questions so~e useful evidence was obtained. The

activity also made progress in the construction of tests and the

organisation of evaluations.

There are many hazards in the comparative evaluation of curricula;

some of these have been discussed above. (Biggs, 1967; Richards and

Bolton, 1971; see also Williams, 1971) The tests designed for these

studies were both multi-faceted, that is, they yielded not only total

scores but also scores on a number of subscales. This overcame some

of the problems of compatibility by allowing the comparison of

profiles of attainment between the different schools.

The number test used appears in Appendix 5. It was designed

to cover seven facets of number knowledge: place value, tables

(addition and subtraction), tables (multiplication and division),

computation, estimates (approximate calculations), number relation-

ships and applications (verbal problems). Only six of these were

used in the comparison; results for tables (addition and subtraction)

were too near the naximum to show any useful variance.

The test thus covers only the knowledge of concepts and skills

relating to the positive integers, and is restricted to basic

material; the "relationships" are those underlying calculation, such

as 3 x 40 = (3 x 4) x 10, 36Lx 24 = (360 x 24) + 24.

The test was given in June 1975 to first year classes in one of the

Project schools, and to f?ur classes comprising the whole first year

in a bilateral school. The Project classes contained the whole

ability range; in the non-Project school there was a degree of

streaming, as shown by the mean lQS of the classes. (Table 1, below)
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The general emphasis of the SNP first year work with regard to

number is on the understanding of place value and on informal,

small-number calculation. The objectives for Whole Number

Relationships (see p. 5.8) give an indication. The non-Project

school followed a fairly traditional first year course, with

rather more emphasis on calculation. The hypothesis was there-

for that the Project classes would do better on place value and

relationships than on computation, as compared with the non-Project

school. Regarding overall performance, as between the two schools,

it was hypothesised that any difference would be related to diff-

erences in mean IQ.

Sample

Seven classes are compared. Classes 1-3 are from a project school

(A), 4-7 are from the non-Project school (B). The mean non-

verbal reasoning scores for each of the classes 1-7 are shown in

Table 1.

SCHOOL A SCHOOL B

Class 1 2 3 4 5 6 7

n 25 22 26 27 16 16 14

Mean NVQ 102 100 97 97 88 80 81

SD 11 14 14 8 11 12 12

TABLE 1

Thus, though class 4 of School B is similar to the School A classes,

classes 5, 6 and 7 are of distinctly lower mean IQ. Class 4 is

somewhat more homogeneous than those of School A.

Results

(i) Comparison of class~s

The correlations between IQ and score for these seven classes as

a whole, on each facet of the test, are shown in Table 2.
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PV T md Camp Est Rei Appn

0.62 0.44 0.60 0.57 0.63 0.39

TABLE 2

Since we wish to compare the effects of different teaching situations

on these pupils we remove from the scores the differences due to

differences in IQ, which, as these correlations show, are substantial.

The linear regression program SMLR (Youngman, 1975) is used for this

purpose. A correlational analysis (program CATT, Youngman, 1975) is

applied to the residual scores to detect differences between classes.

This program first applies Bartlett's variance test to ensure homo-

geneity of the variances, an overall F-test, and then a Scheffe test

for significance of differences between each pair of means. The

results of the preliminary tests are shown in Table 3, and the means

and standard deviation for each group in Table 4.

PV T md Comp Est Rei App

Bartlett variance
(should be > .05) .009 .014 .94 .003 .90 .52

F-Test 5ig. level
(should be <.05) .004 .22 .0004 .77 ..0005 .25

Indications ?,sig ?,n.s. I,sig X,n.s. I,sig I,n.s.

TABLE 3

Thus computation and relationships and, less reliably, place value,

show significant differences between the classes. The classes

between which the Scheffe test indicates significant differences

are shown in the bottom row of Table 4. (p. 5.39)
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Class M PV SO M Tmd SO M Comp SO M Est SO M Rel SO M App SO

1 0.56 O' 71 0.17 o· 85 -0.07 1 • 09 0.21 0·1t1t 0.14 2' a 5 -0.09 l' It 3

2 0.12 o. 8 It -0.28 1.25 -0.14 1. 0It -0.03 o. 55 -0.61 3.05 -0.31 1. 16

3 0.00 1. 05 -0.08 1 • 1 1 -0.31 1. 00 -0.03 0.69 -0.10 2.70 0.05 1.1+2

4 0.18 1. 11 0.32 O. 80 0.85 O. 88 0.02 0.87 2.41 2. 82 0.53 1.27

5 -0.61 1. 18 -0.09 1. 1 1+ -0.57 1.07 0.05 0.75 -0.84 3.07 0.17 1.07

6 -0.31 0.90 0.35 1 • 3 3 0.32 1. 08 -0.11 1.07 -0.76 2. 17 -0.36 1. 19

7 -0.35 O. 50 -0.48 1.61+ -0.32 1. 1 0 -0.17 0.82 -1.43 2.81 -0.18 0.91

Sig diff

.05> 1 > 5 - 4 > 3,7 - 4 > 2 -

.OP> 4» 5 4 » 7

TABLE 4

The first hypothesis, that classes 1-3 would do better on place value

and relationships, and less well on computation and applications has

some limited support in that classes 1-3 are generally better on place

value than classes 4-7, and the non-significant results on applications

show classes 1-3 lower in relation to 4-7 than on the other facets.

But it is apparently refuted by the good performance of class 4 on

relationships. However, this may be due to the fact that a number

of the questions in the relationships section can be solved by com-

putation; scrutiny of the scripts supports this, showing that class 4

have indeed used computation in this section. Taking the results as

a whole, class 4 has performed above expectation and classes 5, 6, 7

below, with classes 1, 2 and 3 between. Thus the results show no

differential effect between the schools attributable to the Project's

emphases. The tendency for understanding of place value to be

relatively better than computation in the Project schools is in the

predicted direction.

There are several significant differences between class 4 and classes

5, 6, 7. Since the correlation between individual IQs and scores

on each facet has been removed, this indicates differences arising
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from different teaching or other experiences of the classes. It

is possible that these are related to streaming, class 4 being the

top stream of the year.

The residual scores are also subjected to a discriminant function

analysis (DSFN, Youngman, 1975). This confirms the previous .results.

The two significant functions account for 50% and 28% of the variance

respectively; the first loads on computation and relationships (0.84

and 0.78 respectively, with no other loadings >.35) and the second

on place value (0.87, no other >.25). The means of the seven classes

with respect to these functions are shown on Graph 1 (p, 5.41)

Thus the greatest differences between the seven classes are on

computation and on relationships, and on these class 4 (0 on the

graph) is clearly superior to the rest, the three Project classes,

(A, B and C) lying among the remaining non-Project classes. On

place value the differences are smaller and in this case the three

Project classes score above those from the non-Project school.

An evaluation somewhat comparable to this one, though a a larger

scale, was made by Edinburgh University for the Fife Mathematics

Project (Crawford, 1975). This involved some 20 schools which had

devoted various proportions of their first year time,from 0 to 50%,

to enrichment material of somewhat similiar character to the South

Nottinghamshire Project material. The test was on the standard

Scottish first year syllabus, to which the Project work contributed

only indirectly. The results (residuals after removing IQ components)

showed great variations between schools, but these were quite indep-

endent of their degree of involvement in the Project. The conclusion

was drawn there, as here, that any benefits of a different kind which

might be accruing from the project were not at the expense of

achievements on the standard syllabus.

(ii) Comparison by Ability Levels

In the previous analysis the correlation between IQ and score for

each variable was removed by the use of residuals, but classes
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were kept intact. These classes showed distinctive performances

which could be related to differences in their teaching and school

situations, the apparent inference being that the top stream over-

performed and lower streams under-performed, even after the IQ

correlation was eliminated. An alternative method of analysis

compares, not classes, but subsets within each school of pupils,

in six different IQ ranges, under 80, 80-90, and so on.

Hypotheses

A common assumption is that, in a mixed ability class, it is more

difficult to ensure that all pupils make satisfactory progress, and

that those at the extremes of the ability range are those more likely

to suffer. It would follow from this that the relationship between

IQ and test scores would be non-linear, with the middle range of

pupils scoring above the line and the extremes below. See Fig. 3.

Test

FIG 3

However, this makes the unwarranted assumption that there is a

"normal state of affairs", and that, in this, the relationship is

linear. All 'olecan do is to compare different schools, and look

for differences in this tendency. It is of course possible that

different forms of organisation might lead to different gradients

for the line. This also would show on the comparative graphs.

The hypothesis, then, is that in a "mixed ability" school the tendency

for the test score/IQ graph to bulge upwards will be more marked

than in a streamed school.
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Sample

The same test results as were analysed in the previous section

were used from School A, Project, mixed abilit~ and School B,

non-Project, partially streamed. (See Table, p.S.37)

Results and Discussion

Figure 4 shows the table of results by IQ subsets, and the corres-

ponding graph, for the total scores on all six facets of the

nurr.bertest. There are no significant differences in the scores

of the subsets between the two schools. Both curves shows some

evidence of the kind of bulge discussed above, the project school

slightly more so than the other, but the upper part of this is

clearly due to a ceiling effect in the test. The difference in

the lower subsets is more than half the standard deviation but is

not significant on account of the small size of the School A group.

Figures 5, 6 and 7 show the results on three separate facets of the

test. None of the differences are significant, but it is interesting

to note tha~ the superiority of S~hool A on place value and of

School B on computation, remarked upon above, show throughout the

ability range. It is also worth observing the strength of the

dependence of results on IQ in comparison with inter-school diff-

erences.
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I MEAN SCORES ON A NUMBER TEST OF PUPILS IN DIFFERENT IQ

RANeES AT TWO SCHOOLS
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MEAN SCORES ON SUB-TESTS OF A NUMBER TEST BY PUPILS OF

DIFFERENT IQ RANGES IN TWO SCHOOLS
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MEAN SCORES ON SUB-TESTS OFA NUMBER TEST BY PUPILS OF

DIFFERENT IQ RANGES IN TWO SCHOOLS
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B. ATIAINMENT OF GENERAL STRATEGIES

This study is aimed at question (2) of those posed at the beginning

of this chapter - regarding the attainment of transferable general

strategies. The test has been designed to evaluate the strategies

described in the first part of this chapter as being within the

capabilities of the first year pupils. It was given, early in

the second half term of the course, to two classes from Project

schools and two classes from a non-Project school.

The aims of this testing were (a) to check that the test was

capable of revealing the effects of the teaching of strategies,

and to develop a suitable marking scheme, (b) to note any differences

between schools at this stage after the first half term of the

course (c) to establish a base line from which changes over the

year could subsequently be measured. It was also intended that

the development and use of the test should contribute to the clar-

ification of the teaching objectives and the subsequent improvement

in effectiveness of the teaching material.

The general style of test questions was to set up a situation

involving the generation of examples to test a generalisation,

or leading to the making of a generalisation, and then to ask for

an explanation of the reason for the truth of the generalisation.

A mixture of number and geometrical questions was included; some

questions required the generation of a complete set, and some

involved proofs of impossibility. The content of particular

mathematical ideas was intended to be sufficiently elementary to

allow the general strategies to be the dominant factor. Parts

of questions 3 and 4 illustrate these points; a fuller analysis

is given below.

Question 3

This is like question 1 • .
This time choose a numbe~ bigger than ten. Write it here • .• • • • • • • • •
Add it to ten and write the answer • • • • • • • • • • • • .• •
Take ten away from it, and write down what is left • .• • • .• • • • • • • • •
Add the two last answers .• • • • • • • • • •

Try this with other numbers. Is there any pattern in the results?
If so, describe it. Explain why it happens.
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Question 4

Suppose you have a lot of stamps of value 6p and lSp but no
others.
You can make up various amounts of pastage from these.
If you want to, you can make 27p as 15 + 6 + 6.
Can you make 29p? Use the space below for your trials.

Test Development

Marks for the different items were initially allocated to three

scales - M, G and E, for "mathematical", generalisation and

explanation. The hypothesis was that on items requiring the

last two strategies the Project schools would eventually show

sorue superiority, but on items requiring only simple mathematical

operations and no learnt strategy there would be little difference

between Project and non-Project schools. One of the main aspects

of the testing and analysis procedures was to be the observation

of differential results between different facets of the tests, so

as to reduce the effects of other unknown differences between

classes, teachers and schools. An item analysis was performed,

and also factor analyses seeking 3, 5 and 7 factors from the results

of the 22 separate test-items, and tests of difference between the

~eans for each item between the two groups, Project and non-Project.

From these results, four modified scales were established, item-

analysed and used for tests of difference between groups. This

process will now be described.

The factor analyses are dominated by the high inter-correlations

between parts of the same question. This is inevitable with this

type of test. Independent items cannot be used without altering

the nature of the activity, since generalising from examples pro-

duced oneself is a different activity from doing so from a set

offered in the item; similarly, an explanation of a generalisation

found for onself is different from one of a generalisation proposed.

The factor analysis can offer guidance regarding how far the char-

acteristics which the t.est.er supposes he has built into the item

are reflected in differential performance characteristics of the

pupils. But it is clear that in many cases items which seem clearly
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different in nature correlate highly because, for example, it is

irr.possibleto score for an explanation if one has failed to make

the generalisation. The main points of interest in the factor

analysis are therefore those where items from different questions

are brought together in a factor, or items from the same question

are separated. In the final decision regarding scale allocation,

the prima facie nature of the item, its occurrence in factors and

its actual intercorrelations with the other items were all considered.

The four scales adopted are:

1. Generating examples: to meet given criteria, stating how or

why given examples fail to qualify, classifying examples,

finding complete sets. Items 1, 5, 6, 7, 8, 12, 14, 15 • .

2. Recognising relationships and patterns, extending patterns;

expressing relationships verbally. Items 10,17,19,20,21.

3. Giving explanations or proofs. Items 4, 11, 13, 16, 18, 22

4. FollmoJing verbal instructions to produce data. Items 2, 3, 9

The item analysis using these scales is shown in Table 5. A

copy of the test and detailed notes on the test development

are contained in Appendix 5 •

. '
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TABLE 5

HYPOTHESES FOR TEST

Reference to the description of the SNP course in the previous

chapter leads to the following hypotheses in relation to the

present test.

Generating examples to meet given conditions, and constructing

complete sets are strong~y encouraged during the early part of

the SNP course . During the first seven weeks, most classes will

have covered the Shape, Statistics and Symmetry units, this
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including several investigations in a geometrical setting. The

work on Number Patterns and the occasions for giving explanations

arise later in the year. Hence on Scale 1 (Generating Examples)

Project classes should be superior to non-Project classes at the

time of testing.

On Scales 2 and 3 little or no difference is to be expected at

this stage.

On Scale 4 there should be no differences.

SAMPLE

Two classes (54 pupils), one from each Project school, and two

classes (59 pupils) from a non-Project school in a similar area

took the test. The mean IQs of the classes on the NFER OH (Calvert)

test, were 99, 103 (Project) and 98, 102 (non-Project).

RESULTS

The results of tests for significance of the differences between

means are given below, with significance levels for the F-ratio.

,

1 2 3 4

Generating Recognition of Following

Examples to Relationships Explanations Instructions

Criterion

Max 15 10 12 6

Project Mean 9.50 5.98 2.87 3.57

n=54 S.D. 3.8 2.8 2.6 l.8

Non-Project Mean 6.59 4.49 l.71 3.95

n=59 S.D. 4.8 3.3 2.5 l.8

.
Sig. level .001 • 012 .018 N.S ..

TABLE 6 •
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The first hypothesis is confirmed, substantial differences being

recorded. (Significance 0.001) On Scale 4 there is no significant

difference, as predicted. However, there are unexpected differences

on Scales 2 and 3 significant at the .05 level.

DISCUSSION

The superiority of the Project classes on scales 2 and 3 seems to

indicate that even after only half a term, the orientation towards

recognising relationships and giving explanations is having a

measurable effect. That following instructions shows a non-signif-

icant difference in the other direction may perhaps be accounted for

by the fact that the non-Project classes had made extensive use of

S~W work-cards. These involved considerably more following of

written instructions than the mainly orally-introduced activities

of the Project. Although the two groups are well matched with

respect to non-verbal reasoning, the possible effects of different

earlier (primary school) experience should perhaps not be ruled

out. Future plans include the comparison of gains over the year

on this test; this will provide valuable confirmation or otherwise

of the present results. ,

Finally, it is worth noting also the relative levels of attainment

on the different scales. For the Project classes, the mean score

on scales 1, 2 and 4 are around 60%, on scale 3 about 25%. The

greater difficulty of explanation items is evident.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER INVESTIGATION

The results of the test of general mathematical strategies, and the class-

room observations, make it reasonable to assume that the curriculum

of the South Nottinghamshire Project does result in improved learning

of these strategies. They also show that the strategies of experi-

menting and generalising are the more easily improved, while those

of explanation and proof are more difficult at this stage. The

results of the inter-school comparison on the number test are less
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conclusive. Although they show no significant differences overall,

the two schools compared are sufficiently different in character to

make it impossible to make confident inferences about what differ-

ences would exist between the Project pupils' number attainments
,

under a more content-oriented curriculum, and their actual attain-

ments under SNP. It seems reasonable ,to deduce that there are not

substantial losses, but to say more than this is probably unjustified.

(In the revision of the first year material being made for the 1976/7

year, a "skills booklet", to be used individually by pupils during

part of the time devoted to number has been included. This is to

provide for the practice stage of the basic computational skills,

which follows the stage of understanding of principles.) On the

positive side, evidence from the SNP schools suggests that the

Project materials do succeed in involving the pupils in more gen-

uinely mathematical activity than the standard courses, and that

there are noticeable effects on the pupils' general understanding

of the nature of mathematics and in their confidence and know-how

in approaching it subsequently.

On the suitability for mixed ability classes, the provision of

extensions of problems for abler pupils was easy and natural. Less

able pupils in general did useful and satisfying work at the lower '

levels of abstraction, but the extension of the project into the

third year and beyond would present increasing problems in the

choice of common starting points; some differentiation would prob-

ably be necessary.

Some remarks on the styles of task which have evolved during the

classroom trials may be appropriate. The chief difference from

orthodox courses is in the extensive investigation of a few

situations, as opposed to the working of a larger number of short

exercises. Generally, the concrete materials - geoboards, pegboards,

tessellations, matchsticks and so on - provide the situations; these

errbody the concepts of shape, symmetry, pattern, angle relationships,

number relationships, seq1,lencesand functions. The "how many"

question leads to classification and hence to new concepts, and
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also to proof by exhaustion (see pages 5.10-5.13, 5.19-5.20). The

"find a rule" question leads to generalisation; and "does it always

work?", "why does it work?" lead to proof (see pages 5 .14-5 .16,

5.24-5.25). Inter-pupil discussion, arising from the reaching of

different conclusions, both removes some errors and sharpens the

construction of proofs and explanations. These types of activity

clearly do not feature in a major way in most standard courses;

equally clearly, they are essential to the achievement of the

improvement in process attainments in the SNP. For comparison,

the SMP chapter on line and rotational symmetry concludes with an

exercise in which the symmetry in nine different situations is to

be recognised. (Book A, pages 81-3); the SNP explores just three

situations, paper folding, geoboard and pegboard, but in greater

depth and including the construction of figures with a variety of

symmetry. Similarly, the SMP Ratio chapter (Book D) finishes with

an exercise of 13 questions such as:

"4. There is four times as much nitrogen as oxygen in air. How

much oxygen is there is 25 litres of air?"

The SNP unit on Fractions and Ratios represents ratios by pairs of

number rods, and generates all the pairs of numbers corresponding

to each ratio, and all the different ratios embodied in a given
1 4 1 5 4 5

pair of rods - '4' '1 ' 5" ' I' 5" ' '4' These interrelationships in the

rod situation are studied,and just one or two others drawn from

"

"real life".

These differences are based on the theory that what needs to be

learnt are not simply particular key techniques, such as the Unitary

Method, (though these have their place), but interrelated systems

of concepts. Thus a situation which can be investigated and mani-

pulated so as to expose many different relationships is of more

value than one in which the sole task is to identify the aspects

of a concept and apply an ~ppropriate method. To use Skemp's (1971)

phrase, such learning is more schematic. In a ratio question, if

two quantities x and yare given, the preierred method would auto-

matically consider x/y, y/x, x + y, x/ex + y), y/(x + y) and so on
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before deciding which of these needed to be used. The learning

of ratio would emphasise the interrelationships among these

quantities. That this style of task makes for more effective

learning is suggested by Skemp's theory, by the results of

reflection on Dienes' multiple embodiment principle (e.g. Wheeler,

1964, and see p. 3.8 above), and by the recent finding (Lunzer,

Bell and Shiu, 1976) that structural factors are the greatest

determinant of difficulty in mathematical problems, as well as

by the present work. In view of the persistence of conflicting

methods in standard texts, it is highly desirable that it should

be tested in a specifically designed experiment.

The other most significant feature of the SNP style of task relates

to algebra. The principle of using symbolism to express and trans-

form relationships which have acquired some meaning for the pupil

is discussed on pages 5.16 and 5.29. The aim is to use symbols

easily and naturally, accepting pupils' own choices or suggesting

agreed ones, as an extension of and improvement on ordinary language

or existing symbols (as R3, U2 for right and up displacements).

This principle is extended in the second year SNP material, where

letters are used to express number generalisations and to denote

unknown numbers which are then found, but still within the context

of a problem situation. Observations indicate that this is markedly

more successful than more formal approaches to algebra, and this,

too, seems worthy of experimental investigation. ,

,
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INT~ODUCTION

Viewed internationally, the proof aspect of mathematics is probably

the one which shows the widest variat~on in approaches. 'l'hepresent

French syllabus adopts an axiomatic treatment of geometry from the

third secondary school year (age 14), (though examination questions

de. not demand sucn knowledge (Bell, 1975» and early American devel-

opments based primary school nur.~er work on the laws of algebra. In

England, preofs of geometricaL theorems have been steadily disappear-

ing from O-level syllabuses for thirty years, and "it continues to

be the policy of the SHP to argue the likelihood of a general result

f rorn particular cases". (Preface to Book 5).

The 1967 ReFort by the MElthematical Association "Suggestions for 6th

Form Work in Pure Mathematics" discusses a number of criticisms by

uni.versity teachers of the sChool preparation of prospective mathe-

matics students, and suggests some remedies. 'The first section is

on l·!ethodsof Proof, and mentions students I lack of "clear ideas of

what constitutes proof", and that they "readily confuse a theorem

and its converse". Later, under "necessary and sufficient conditions",

students rarely use these t.errns correctly", and again, referring to

mathematical induct.ion "this popular method of proof Ls often app Li.ed

w i,th n.o re ent.husaasrn t.han understanding". The remedies suggested

include mainly a wide range of examples - of theorems whose converses

are unt rue , examples of induction where the first fe,,,values of n are

untypical, and so on.

The results in this thesis imply that much more serious and continuous

attention to the development of proof activity throughout the secondary

school is needed to bring students to a stage at which they can pro-

gress with reasonable ease to the deductive expositions normally

offered at universities. Another Mathematical Assocation Report on

The Usc of the Axiomatic r.1ethodin Secondary Teaching (1966) suggests

t~at dxiomatics, ~n the fo~~ of Groups and Boolean Algebra, might

come into the course after the age of 15 or 16, after some "much

earlier" preparatory work involving deductive method. This earlier
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work is described thus: "From a large nu~ber of stated intuitive

assumptions a coherent edifice of results can be built up deductively,

and checked stage by stage against the concrete situation that gave

rise to those assumptions. From time to time individual assumptions

can be taken up, to see how they are related to other assumptions."

In that this implies an interest in the deductive structure itself

on the part of 13-14 year olds, it is considerably more ambitious

than the traditional school treatments of Euclid, the deductive

aspects of which have gradually disappeared from the O-level exam-

inations because they we re found impossible to teach, with meaning,

to most pupils. The experimental work reported in this thesis will

show what, concepts of proof secondary pupils are currently able to

use, and also indicate ways in which their powers in this field of

activity might be developed.

The opening paragraph of this chapter indicated a vTide diverqence

in ~le views of proof held by different writers, and different

development projects. The Comprehensive School 1'-lathematicsProject

at Carbondale, Illinois represents one end of the spectrum. In the

course for ~upils of gra~nar school ability (CSMP, 1972, Braunfeld,

1973) pupils of 12-14 years follow two independent courses at the

sarr-etime, one less and one more formal. In the formal course they

learn to write proofs based explicitly on the axioms of propositional

logic. The first page shown (Appendix 6) is from a 12 year old; this

is purely an exercise in logic. The other, from a 13 year old, is a

proof that -(x + y) = -x -I- -y; this use;s the associative, commutative

and c~lcellation laws and the definition of the additive inverse for

integers.

The CSI·1P view is that by beginning thus, with detailed chains of

inferer.ce using the stated laws of logic, pupils can acquire a firm

foundational knowledge of what a proof is without having to induce

~~is knowledg8 from the ordinary proofs they see presented by the

teacher. In the course of the three years (12-14), the mathematical

content will increase and the detail of the logic diminish. Whole

sequences of such deductions will be referred to in single lines,

but the pupil will be aware of what logical consequences he is taking

for granted (CSMP, 1972).
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The question which arises here is whether pupils of this age would

recognise the need for the detailed logical proofs as a foundation

for mathematical proof, or whether they would see them as a some-

what foolish whim of the mathematics teacher. Since such methods

have in fact been reached historically as a result of an eventual

awareness of the unsatisfactory nature of less rigorous methods,

it would seem sensible, not necessarily to fallow the precise course

of history, but at least to ensure that the pupil can feel the need

for the axiomatic approach before he is required to follow it. More-

over, since most actual mathematics is done in a more informal way

and at a more concrete level, this could hardly be described as

bringing real mathematics into the classroom. However, the main

oOject of quoting this work is to illustrate the differing views

of proof in relation to the curriculum. Dienes (1973) appears to

suggest that the final level of proof in school mathematics is a

purely formal system 1n which strings of symbols are transformed

according to stated rules; after sketching a study of totally

ordered sets, the following proof that 2 comes after 4 is given:

Rule 1: Rxy :::> NRyx

Rule 2 : (Rxy and Ryz) => Rxz

Theorem: NR SSO SSSSO

Proof: 1. R.See (Axiom)

2. R SSSO SSo (e = SSO)

3. R SSSSO SSSo (e = SSSO)

4. R SSSSO SSO (3,2, Rule 2)

5. NR SSO SSSSO (4,Rule 1)

Lester (1975), following Suppes, uses a similar but simpler system,

as a step towards examining "the development of the ability to write

a correct mathematical proof" in pupils aged 9 to 17.

The chief fault of these views is that they assume that mathematical

proof is purely concerned with verification, whereas it has normally

been expected also to convey i I Iumiriatz iou , But the preceding comments

also apply.
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PROOF AND LOGIC

Logic underlies mathematical proof in two apparently different

ways. It comprises the basic relationships and transformations

involved at every step of an argument - such as [(all Pare Q) and

)£p] :::;:.xc:Q, [p => QJ <;::> [v Q :::;:''V p], 'V('ix ':F1j, y < x) «=> 3X vv . y ~ x -

and also the recognised methods of proof, such as reductio ad absurdum,

disproof by counter example, identification and exhaustion of all

possibilities; and mathematical induction. Most of the latter consist

of the same basic relationships used globally, as a logical structure

for a whole proof. A considerable amount of research exists on the

understanding and use of the simpler basic relationships (mainly

implication) in a variety of contexts. tVhat is most relevant to

mathematics will be quoted here. It is mostly above the level at

which mistakes are commonly made in school ma.thematics - whether a

rectangle can be a square, for example, and whe t.her one has as sume d

the equivalent of what one 1S trying to prove, and whether what is

being used is actually a case of ~~e ti180rem being quoted.

Thus Henle (1962) shows that a high proportion of apparent logical

errors consist of (a) confusing the truth of the cqnclusion with the

validity of the reasoning, (b) the omission of a premise or the inad-

vertent assunption of a non-existent premise, or (c) a misreading of

the meaning of a premise, rather than actual errors of logical

inference. This study used ordinary verbal material.

Wason (1968) shows how even intelligent subjects tend to adhere

tenaciously to their hypotheses, if confirming evidence has been

found, and fail to consider alternative hypotheses. Lunzer (l973b)

says "problems of logical inference constitute a special class and

should not be taken as a touchstone for the quality of tninking in

general" , and "productive thinking is more often analogical than

logical". The factors affecting performance in logical problems are

(a) structure, e.g. modus ponens, contrapos~tive, converse or inverse,

with or without quantifiers and (b) context. Ennis (1965), Hill (1961),

and Varga (1972) show that with the easier structures in familiar

concrete settings children aged 6-9 can make correct inferences.

Wason and Shapiro (1971) and Abbott (1974) also show the relevance



6.5

of context. O'Brien shows that at ages 14 to 17, structure remains

dominant, and context is unimportanti it would appear that his

contextual variations are less significant. (1971, 1972, 1974)

Nore details of these studies of implication i 0' Brien (1972)

used items of the type "if the car is shiny, it is fasti the car

is fast; is it shiny?", in four contexts - causal, class inclusion,

nonsense and random - and in four forms, modus ponens, contrapositive,

converse and inverse. (Thus the item quoted is of class inclusion

and in the converse form). The subjects were girls aged 14 to 17

(grades 9-12), of mean IQ about 110. As the graph (from O'Brien's

article) shows, the greatest differences were between the forms.

The overall percentage successes were, for modus ponens 95%, contra-

positive 63%. inverse 32% and converse 11%. The differences between

ages was relatively small, and consisted entirely of gains from age

14 to 15 on inverse from 22% to around 35%, and on converse from 6%

to 13%. Differences between contexts were minimal. (O'Brien, 1972)

The bulk of these errors were due to what O'Brien calls Child's

Logic, that is the assumption that a statement implies its converse

and inverse, vzh en the correct reponse would be to say "can't tell".

A previous study by 0'Brien et al (1971) covering ages from 7 to 17

showed that the percentage of pupils consistently using correct "Math

Logic" was below 4% up to the age of 13, reaching 10% at 15 and 18%

at 17, while those using "Child Logic" consistently declined slowly

from 70% at 7 years to 50% at 13, 30% at 15 and 24% at 17 years. An

even more striking result is that, in ~nother study, O'Brien (1973)

found that students who had followed a year's course in logic per-

formed very similarly to the subjects of the previous studies. Still

more recently (1974), O'Brien reject~ the concept of Child's Logic

in favour of a more detailed analysis of the relative difficulty of

the different logical forms. The work of Lunzer (1973a) and his

collaborators with English children confirms the high level of

difficulty of logical items right up to university student age.

The results of a short set of logical problems given by the present

writer to small groups of pupils aged 11-15 (Appendix 6) agreed with

these findings and showed the inabllity of the 11-13 year aIds to
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tolerate uncertain results. Where the implication was "cannot

tell", they substituted, often, the untrue converse.

All these questions involve selecting two or three statements from

a slightly larger number and combining them, usually by a logical

"and". Some aspects of them might be susceptible to improvement

by teaching; for example, the use of a family tree diagram or a

Venn diagram would be helpful in some questions; but in general

we seem to be observing phenomena closely related to general intell-

ectual development. Thus, to summarise, we note in these results

that 11 year olds make logical deductions involving combining 2 or

3 statements, as long as they have definite outcomes, and are in

situations concretely given or familiar to the pupils. By the age

of about 15 indefinite outcomes and more hypothetical situations

are handled, but confusion of statement and converse and similar

logical errors may persist much longer.

Evidence of similar difficulties at an advanced level is provided

by the results of part of an examination paper set to 101 university

honours mattematics students at the end of their first year by J.A.

Anderson in 1971 (unpublished). This extended a range of items

concerning necessary and sufficient conditions and converses used

by P.R. Buckland (1969) with a group of 17 postgraduate teacher

training students having degrees containing mathematics as a major

component. ':'hegeneral results of this were similar. Anderson's

examination items and results are reproduced in Appendix 6. Of

this sample, 11% and 15% respectively fail to interpret correctly

the meaning of "necessary"and "sufficient" conditions, taking the

converse of the correct statement; and, further, there are 20% who,

without making this error, still fail to recognise the truth of the

contrapositive. Some other items show the difficulty of statements

containing both necessary or sufficient and the negation of an "or".

Not relevant to our immediate point but very relevant to the question

of the concept of proof are the results of an item where a total of

24% of students regard a relation satisfied by infinitely many integers

as true for all integers. Again the question arises of whether these

difficulties could be eliminated by more persistent teaching. Although
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tih i s wight well be the case, and might produce better results on

items eh~licitly involving these points, the errors are likely to

remain when the points arise without warning in the course of

normal mathematical work.

If logic is so hazardous, can school pupils be expected to make any

worthwhile progress with proof? Everyday thinking has its o...m

safeguards - many supporting strands to the argument rather than

one, more frequent checks for correspondence between the results

of deduction and known facts, and a distrust of over-long or intricate

chains of reasoning, which signals caution. The more mathematical,

abstract, syrrbolic the material becomes, and the farther one builds

out along a single line of deduction from the known, the greater

self-protection against error is needed. This is no doubt why the

tradition has dev~loped a well defined form for proof which both

provides some protection by its form, and also is a public display,

for ease of checking by others. For pupils, there is no Jived for

proofs to comprise lengthy chains or to use sophisticated logical st.eps,

It may be that teachers have sometimes overestimated pupils' abd l.i ty

to recognis~ the validity of an argument. Later work in this chapter

will show that logical complexity is by no means the qre at.es t; obstacle

to pupils' development in proof; more severe limitations are the lack

of general concepts and skills of proof, such as the need to consider

all cases, to identify data and conclusion, to connect them logically

and to embed the result in existing know l.edqe.

EXISTING RESE.lillCHON PROOF

Reynolds' (1967) study covered parts ,of all the aspects of proof

distinguished above. He gave two 20-item tests to a large sample

of pupils in each of the forms first, third, fiftll, non-mathematical

sixtll and mathematical sixth in a number of grammar schools. The

results of 22 of the items were analysed, these items being class-

ified under the headings Generalisation, Symbols, Assumptions,

Converses, Reductio ad Absurdum and Deduction. 'rhe items are brief

and, in many cases, ask the pupil a question about some aspect of

proof rather than giving him a piece of mathematics to do. However,



6.9

some do involve continuation of a deduction and two of the 22

analysed require the solution of a mathematical problem.

In Reynolds' general conclusions he compares his results with the

expectations from Piagetian theory, which were that the responses

should fall "into two broad categories according to the degree of

completion of their cognitive structures", the first and third

forns exhibiting the "acquisition of formal thought" (Piaget's

stage IlIA), the fifths and sixth the "full use of formal thought"

(IIIB) . (Reynolds (1967, p. 188). He found that even the sixth

formers showed evidence of formal thought in this sense only

occasionally, and that the general picture was one of a steady

improvement with age, with a substantial amount of concrete thought

at all levels, including the mathematical sixths.

Reynolds' questions are designed to test the possession of an axiomatic

concept of proof i he shows that this is largely absent among school

pupils. But since he does not define intermediate stages, his

detailed results are difficult to interpret. Two questions invited

false qeneraLd.sat.Lons from examples i one suggested considering which
n

was the larger of 2 , 2n + 1 for n ~ 1, n = 2; and what deduction

could be made. The other gave sixteen examples of pairs of even

nurnbers expressed as the sum of two primes (Goldbach's conjecture),

and asked Vlhether these facts showed the truth of the conjecture for

all even numbers. Over 15+, a majority avoided the former trap, but

75% of fifth formers and 20% of mathematical sixths accepted the

latter.

In terms of the stages defined in the·next chapter, this shows a

minority of first year pupils still at Stage 1 - abstraction of

relationship without sense of explanation, deduction or verification -

and large nurJbers throughout the age range at Stage 2 - Generalisation,

Hith check. Stage 3 - Proof, all cases - cannot be identified from

Reynolds' questions. The greatest improvement over the ages 11-18

was shown in the use of Reductio ad Absurdum; about 60% of mathe-

matical sixth formers used it successfully, but only 17% of first
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years. (It will be seen later that the present research also

shaHs the relatively easier learnability of particular nameable

skills as compared with more general concepts of explanatoriness.)

Thus, although Reynolds' study serves to confirm the difficulty of

logical aspects of axiomatic proof, it does not provide much .infor-

mation about what kinds of proof activity are accessible to pupils.

King (1973) reports the development and testing of a unit of

instruction on proof for able 11 year aIds. The subject matter

consisted of six theorems of the kind suggested by the Cambridge

(l-!ass)Conference on School Mathematics (1963), for experiment

with pupils of this age:

Thm l. If NIA and NIB, then NI (A + B)

Thm 2. If NIA and NIB, then NI (A - B)

Thm 3. If NIA and NIB and NI C, then N I (A + B + C)

Thm 4. If NIA and NtB, then Nt(A + B)

Thm 5. If NIA and N{B, then N%(A - B)

Thm 6. There is no largest prime number.

It is necessary to distinguish immediately between the content

of a theorem and its formal statement. Many 11 year olds would

be aware of the truth of the theorems 1-5 but few would be able to

~~derstand them and still fewer to prove them, in this form. In

fact, we could describe four forms of statement for any theorem:

(a) implicit, unverbalised awareness

(b) informal statement

(c) formal statement

(d) symbolic statement.
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A formal statement of theorem 1 might be "If two numbers A and B

are both multiples of a third nunilier(N), then their sum (A + D)

is also a multiple of the third nunilier(N)". The bracketed l.etters

may be left out; either \vay we would call this form (c). An in-

formal statement might be any pupil's rendering which was essentially

equivalent to this. Much of_our work with pupils of the ages in

question is conducted with informal statements. (There is doubt

about whether it is best to leave pupils at level (a) or take them

to level (c». In King's study, it would appear that pupils were

required to reproduce and understand the proofs in symbolic form

e.g. for theorem 1, something of the form

NIA, NIB::;> A == KN, D = LN for some K,L.

A + B KN + LN

== (K + L)N

Hence NIA + B.

'rhe meaning of the "divides" symbol, practice in transforming

between NIA and A = KN (numerically and symbolically) and in the

distributive law similarly, were all included in the teaching

progra~~ei the general proof was derived from numerical examples,

but then done symbolically. The criterion for understanding WdS

to be able to (i) generate numerical examples of the theorem (ii)

apply it to given numerical data (iii) prove theorems 2, 3, 5 on

their own, having been taught the others (iv) explain and defend

each step. Of these, (i) and (ii) are concerned with the content

of the theorem, not its proof, but (iii) and (iv) could provide

indications of the pupils' understanding of the proofs.

The ten pupils (mean IQ 117) studied the material for 17 days, long

enough being allowed for 80% of them to achieve 80% Success on each

aspect of the work and tests. Thus it appears that 11 year old

pupils can be taught to understand and construct proofs, given

sufficient intensive teaching. However, the learning of the content

of these theorems and their application to numerical exarr.pleswould
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not be expected to cause any difficulty to bright 11 year olds;

and the theorem-proving criterion test required minimal transfer

from the learning situation - from A + B to A - B and to A + B + C.

One might conjecture that familiarisation with the symbolic notation

and the acquisition of some sense of the generality of the set of

numbers referred to formed major parts of the learning. That some

difficulties of this kind were experienced by the pupils is evident

from the account of the stages in the development of the instructional

unit for Theorem 6. At first it was shown that if P l , P 2 ..• ..Pn was

the entire set of primes, the integer Q = (P l .P 2.P 3..• .P n) + 1 was

not divisible by any of the assumed complete set of primes, and so

was a prime, contradicting the assumption. P l .P 2.P 3 .• ...P n was sub-

sequently replaced by 2 x 3 x 5 x • .• ..x P, P being the assumed largest

prime, and then the argument was taken inductively thus: if 2 is the

only prime, consider 2 + 1: this is not divisible by 2, so is another

prime - contradiction. Now if 2,3 are the only primes, consider

(2 x 3) + 1: and so on. A desk computer was used to compute products

such as 2 x 3 x 5 x 7 x 11 x 13. This provides an example of pupils'

inability to conceive first a hypothetical set of all primes, or a

hypothetical (in fact, non-existent) largest prime, and their need

to have the multiple products computed before they became sufficiently

concrete to be worked with. This is all predictable from Piaget's

theory in general, and from Collis's (1975a)results in particular.

The method of proof by contradiction also caused difficulty and was

made the subject of a cartoon story in the teaching programme, as well

as being illustrated by many concrete examples. Thus although King's

report of his study omits some important aspects of children's per-

formance, it does show that the "all cases" aspect of proof was not

readily appreciated.

Thus King's study essentially shows that 11 year olds can be taught

to express given short, simple arguments in a symbolic and systematic

form. It does not imply their ability to construct arguments of this

type for situations in which they have not been trained, whether

familiar or not.
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An experiment by Collis (1973) on pupils' ability to work in a

defined mathematical system, shows difficulties similar to those

experienced by a pupil who is attempting to work from stated

assumptions or axioms. Subjects were required to work in a novel

arithmetic system with an operation * such that a * b = a +(2 x b).

(Numerical examples were given) Three parallel tests were given,

one involving letters, one small numbers, and one big numbers.

Each test contained 5 items; we give the first and the third:

Test 1 Test 2 Test 3

l.

3.

a*b=b*a 4 * 6 6 * 4 4728 * 8976 = 8976 * 4728

4932 * 8742 = 4932a * x = a 4 * 5 = 4

In Test 1, subjects were asked when the statements would be true;

in the others, whether they were true or false. "Can't tell" was

an option in each case. The test was given to 30 pupils of each

age from 7 to 17. The 8-12 year olds almost universally ignored

the definition of * and replaced it by the familiar + or x Subjects

of about 13 years began in this way but typically stopped at item

3, where + or x did not make sens~, and went back to the beginning,

trying to interpret * properly, but lost control of the situation.

No subjects below the age of 16 succeeded in working correctly within

the defined system; only 26% at age 16 and 63% at 17 achieved this.

What seems to be happening here is that since combinations by * are

neither already memorised nor the subject of a known algorithm, the

pupils are forced to work from the rule each time. This implies

tolerating a lack of closure, in a similar way to that required when

asking, of a theorem needed at a point in a proof, "Is this theorem

a previous one in the deductive sequence? Am I allowed to assume it?"

The main part of the axiomatic concept of proof: an awareness that

deduction must proceed from identified starting points, and an

ability to avoid making unrecognised assumptions in the course of
I

the argument. The implication of Collis's experiment is that this

concept of proof would not be possessed by these pupils in general
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below the age of 17; of course, the possibility of younger pupils

being taught this awareness is not excluded. This agrees with

Reynolds' results. King and Reynolds also confirm each other in

showing that the concept of "all cases" is not readily appreciated

by younger secondary pupils, nor even held securely by older ones.
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INTRODUCTION

The aim of this research as a whole is to probe more deeply the

levels of generalisation and proof activity at which pupils at

the secondary level are able to work with understanding. The

hypothesis which one would draw from existing English practic~ -

the disappearance of geometrical proof from O-level syllabuses,

and the SMP policy of "arguing the likelihood of a general result

from particular cases", on the assumption that recent trends in

English practice are based on experience of what pupils can

understand - is (1) that the normally attainable level is that

of recognition and description of a relationship, without any
,

sense of explanation or deduction; or any consciousness that a

generalisation is essentially an assertion about all members of

a class of cases, (so that unless some appropriate method of

verification is used, the assertion remains a conjecture rather

than an established result). A second part of this hypothesis

would be (2) that the axiomatic concept of proof, as requiring

explicit starting assumptions and stated definitions, is even

farther from attainability.

The informal pilot wo rk to be described here aimed at expl.oring

how far the concept; of proof as (1) covering all cases and (2)

needing starting axioms and definitions, was present in pupils of

secondary age. Observations of the possession of corresponding

skills, and of the teaching conditions favouring the development of

these concepts and skills, were also intended. The results of this

pilot work wez e used to formulate stage descriptions which are the

basis of the systematic age-crass-sectional study reported in the

next chapter. It is therefore unnecessary to report on age and

stage aspects of the pilot work here. However, a number of relevant

concepts emerged from these interactive discussions. These will

be described and illustrated.
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PROCEDURE

This pilot study is based on sessions conducted during the summer

term, 1974, with seven groups, of six pupils each, at local compre-

hensive schools. These were from one first form, one second form,

three fourths and two sixths; the pupils were of average abil~ty

relative to their year. The problems were first discussed informally

with the pupils and they were then left to continue on their own,

working in pairs, recording their work and writing results and

conclusions. This work was interrupted occasionally for discussions

designed to elicit the proof stages at which the pupils were working.

Five situations were used. The group investigation of Networks will

be described in detail; the discussion of Axiom Systems more briefly;

for the others, conclusions will be reported.

GROUP INVESTIGATION OF NETWORKS

A group of six 15 year olds (from the lowest GCE stream in a 7 or 8

stream comprehensive school) investigated the possibility of drawing

networks with given numbers of junctions of given order. The theorem

in the background was that it is impossible to draw a network having

an odd number of odd junctions, but this particular theorem was never

formulated. We started by trying to draw some given networks uni-

cursally and from this it appeared that the order of the junctions

was a relevant factor. Eventually, we restricted ourselves to

networks whose junctions were of orders 3, 4 and 5 only, and recorded

the number of junctions of each of these orders. The table of these

was as follows:

Order 3 4 5

1st figure 2 0 0

2nd figure 2 2 0

3rd figure 2 3 2

,
I then asked the group to draw (in any number of strokes) a network

having 2 junctions of order 3,1 of order 4, and 1 of order 5. (We

called such a network a (2,1,1) network subsequently.) "I don't
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think so" one boy responded immediately, "because the even junctions

have to add up to counter-balance the odd junctions." The pupils

carried on with work on this, in pairs. After a few minutes, in

which the experiments seemed to indicate that (2,1,1) was impossible,

it was suggested that they should broaden the investigation and try

to formulate rules for what networks were possible and what impossible;

starting by compiling a table which extended the one shown. One raw

conjecture which emerged soon was "(1) even junctions outnumbering

odd ones (2) with more complicated networks the bigger the proportion

of small junctions, i.e. three's (3) any number of 3s and 4s. This

boy's sheet of working is reproduced to give some impression of the

kind of network which he and his partner had been considering. (Appendix 7)

Another pair, determined to find a (2,1,1) networ~ had bent the rules

to allow a line to approach a point tangentially to another line as

in the diagram, making this a 5-junction. The third pair had a table

including (2,1,1) (3,1,1) (2,1,2) (2,3,1)

(1,2,1) (3,2,1),all of which they claimed

to have drawn. I asked them to check

their (2,1,1), which they found to be

a (1,1,1).

At this point I decided to help them all to formulate a precise

conjecture which they could hope to test and confirm or refute

definitely. The first-mentioned group's statement, even in the

form produced when I asked them to write it as a definite statement,

was still too vague to refute (App.7 JS 2' at the top). Eventually

they agreed to test the proposition (1) "It is impossible to have

one 6-junction and one lO-junction without at least four 3-junctions."

The third pair had still not found a (2,1,1) network and said "I

think it's impossible, but I don I t know why .• .• we can get a Cl, 1,1)

"...., so I suggested they should test (3) "It is impossible to

obtain a (2,1,1) network from a (1,1,1)".

The second pair had on their own formulated (2) "Even sets (2,2,2),

(4,4,4), etc.) are all p~ssible, odd sets are impossible." This

has arisen because they had invented standard ways of producing

3-junetions, 4-junctions and 5-junctions (see Appendix 7).
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These three conjectures were written up on the blackboard at this

paint and the pupils invited to try to prove their own conjecture

and to disprove the others. It was i~nediately painted out that

(2) was wrong because we had a (1,1,1) network; so that was amended

to read "odd sets, except (1,1,1), are impossible". At this stage,

all three groups were fully convinced of the truth of their own

conjectures, and that further efforts to prove them were superfluous;

and they were not much interested in other people's conjectures.

However, they agreed to try.

A few minutes later I had drawn a (3,3,3) network, and at the same

time the second pair had produced a network refuting conjecture (1)

- which they displayed with enthusiasm. Two of the conjectures had

now been destroyed. A little while later the third pair claimed to

have a proof of their conjecture and this was explained to the class.

There was some discussion about whether this was a proof. They

volunteered t......rat; "this is only one (1,1,1) netwo:ck; La prove it

you wou ld have to draw all the (1,1,1) ne two rks that you can."

This was readily agreed to.be the case by the rest of the group.

"How many can you?" I asked; "You could never draw all the (1,1,1)

networks there are .• .• could you state the argument in such a way

that it would clearly apply to all (1,1,1) networks which could

be drawn?" The session had to end without the chance to pursue

this point.

OTHER PROBLENS

Odd and Even was a collection of questions about whether the results

of adding or multiplying two even nuillgers,two odds, or an even and

an odd, are always even, always odd, or sometimes even, sometimes

odd; togetiler with some similar questions about consecutive numbers;

and about multiples of three. The pupils were asked whether they

we re sure their conclusions were always true, including for big

numbers.
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Coins A was the problem: Given three coins all showing heads, by a

succession of moves each turning over two coins, obtain three tails.

The ext.ension to four coins, turn three at a time was used with

some groups. Coins Bused 3 coins in a row, and the two permitted

moves were P: "turn over the left hand coin, interchange the

positions of the other two," and Q, similarly turning over the

right hand coin. The task was, Given TTT, obtain HTH.

Diagonals of a Polygon concerned the relation d :::: s - 3 between the

numbers of sides and diagonals of polygons. After the initial

investigation, a proof by considering the diagonals radiating from

a single point was shown, and questions of the validity of this,

and of applicability to non-convex polygons were raised. (A fuller

discussion of this problem and of Coins A may be found in Chapter

9 ).

JI_XIOMSYSTEMS

One group of six 18 year aIds also took part in a general discussion

on proof intended to probe for any evidence of awareness of the need

for explicit "axioms", and of their arbitrary nature. This was not

found. The first question raised was about the subtraction of

negative numbers - they could not formulate a general statement for

this rule, nor had they any idea how one might prove such a statement,

nor that definitions would need to be made.

Next they were asked to prove the exterior angle t.heorem for a

triangle. In the course of discussion they showed an appreciation

of the invalidity of a circular argument, and their response to a

question about starting points was, "You have to go back to where

everybody's knowledge is basic, to things that everyone knows or

assumes." But they could not suggest what were the most basic

things in geometry.

Thus although there was an awareness that a deductive sequence must

start somewhere, there was certainly no distinction made at that

point between self-evident truths and explicit axioms chosen with

hindsight.
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RESULTS

Dependence of level of proof on familiarity with the concepts

involved in the situation. In Odd and Even, proofs of the

results for dvisibility by three consisted of trials with one

or two small nwnbers, and sometimes (for the fourth formers, .

not the second formers) a trial with big numbers. The results

for odd and even nurrbers were proved by general arguments including

the step that only the last digit is relevant.

Acceptance of best level of proof attainable. 'l'hisis another

aspect of the above episode. Also, in DiagoIlals of a Polygon,

the sixth formers found, or accepted when shown, the proof for

radiating lines, and realised that it did not cover non-radiating

diagonalisations. They were, however, fully convinced that the

result applied to these cases, their conviction resting on the

check of a single example. They we re not pcepared to wi thhold

judgement, nor did they recognise that the proof of the more

general case might reveal new aspects of the situation.

Global approach to a situation. Most of the second formers who

tried the extension of Coins A to "four coins, turn three", decided

that either both versions were possible, or both impossible, because

of their similarity. A similar tendency to view a situation globally,

and not to separate out different aspects of it, was identified by

Lunzer (1973b) in the responses of pupils of similar age to the

problem of the variation of the area and perimeter of a rectangle.

Symbolisation; the adoption and use of a diagrammatic representation

for a problem may present difficulties comparable with those of

solv.ing the problem w.i thout it. After three pairs of fourth formers

had attempted Coins B, a representation of states and moves as in

the diagram was shown to them. Only the pair who had already solved

HT T :----T T T ~ T -r H the problem were able to extend this

~THH diagram and thus confirm their result.
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The possible difficulties in adopting a useful representation were

also shO'.vnin some first formers' attempts at Coins A. Invited to

record the game in their \'1ay,one girl wrote "Turn 10 and 2, turn

2 and 5 • • ..• " (They were using 10, 5 and 2 penny coins); others

wrote

TTT and TTT

H H HTH

T II THH

All these can be irlterpreted as a tendency for the actions, rather

than the states, to dominate the thinking.

The remaining sequence of observations centres on the degree of

detachment from the concrete wh i.ch pupils have achieved, as shown

hy expectation of rationality in ~~e situation, their recognition

that they are working with a rule governed si tzuatzion , their awa rerieas

of the need for written statements of generalisations and definitions

which must be treated literally.

The expectation of rationality is what appeared to be lacking when,

on Diagonals of a Polygon, pupils in various groups were prepared to

accept and leave unchecked, non-confirming entries in their list of

numbers of sides and diagonals. The non-awareness of its being a

rule governed situation was shown when, on Coins A, some first formers

asked whether it was absolutely impossible or just too difficult for

them, suggested that I might find a way of doing it, or perhaps a

computer would succeed; some of the fourth formers attempting Coins

B were similarly not clearly aware of the deterministic character of

the situation. Another possibly significant factor was the incidence

of cheat moves. In both coin problems, in first, second and fourth

year groups there were some pupils who tried, for example, standing

a coin on edge, or flicking one over surreptitiously, or other in-

fringements of the rules. They did this, knowing that it would be

rejected, but nevertheless could not resist it. Similarly, in
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Networks, there was the attempt by one pair to get 5 lines out of

an even junction by making two of them tangential at the point.

In Networks, we also saw the necessity for written statement of a

conjecture and the refinement of it into testable form. Finally,

in the non-convex cases of Diagonals of a Polygon, the sixth

formers showed a lack of ready awareness that the result would

depend on the definition of diagonal adopted; they felt that there

was a correct definition which they could argue about but which

the teacher would identify for them.

DISCUSSION

The above observations include some which help to give substance

to a hierarchy of levels of proof, and others which suggest caution

in the application of such a hierarchy. Relevant to levels of

proof are (1) the expectation of rationality, related to the

appreciation of the need for, and value of, checking apparently

non-conforming cases; (2) the recognition of the rule-governed

nature of a situation; of the need for written statement of a

conjecture if it is to be defended publicly; and of the value of

recording states, not just actions. These concepts seem to corr-

espond approximately to the level of recognising that all cases

need checking to establish a generalisation; some, but not all,

fourth formers showed awareness of them, but younger pupils gen-

erally did not.

The recognition of a situation as rule-governed, and the ident-

ification of the rules,are equivalent to Dienes' (1963) essential

step of mathematical abstraction, which, he considers, occurs when,

and only when, the common characteristics of two or more embodiments

of a structure are identified. (In fact, as his protocols show,

this abstraction from several embodiments is a very difficult

mental act, and does not seem to be necessary for the acquisition

of a concept, though it ~ay represent a powerful extension of it.)

Higher levels of proof activity, such as the recognition of the

need for definitions, and of identified ~tarting-points for
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arguments, were observed only in the sixth formers, and appeared

to be not very highly developed.

These all represent steps along the road from the conception of

knowledge as existing in a ready-made form in the outside world,

waiting to be hacked off bit by bit and absorbed by the learning

child, to the sense of mathematical knowledge as comprising closed

systems of propositions, logically related to each other, and having

contact with the outside world at a number of points, but not having

a deductive relationship to it. This development requires what

Piaget identifies as the chief new characteristic of adolescent, as

opposed to child, thought: "a reversal of the direction of thinking

between reality and possibility in the subjects' method of approach."

(Inhelder & Piaget, 1958)

Two indications for teaching may perhaps be inferred from these

observations. First, the value of tho public classroom situation

for promoting the development towards higher levels of activity; and

second, the probable value of identifying and naming the concepts

discussed in these paragraphs, as they arise from such activity.

The two cautionarj observations are the dependence of proof level

on familiarity, and the acceptance of the best level obtainable.

These suggest that the optimal development of proof strategies will

not be achieved in the context of only partly-assimilated ideas,

hence that there is an incompatibility between content and process

learning. They also provide a reminder that pupils will not

necessarily operate in every given situation at the highest level

of which they are capable; in attempting to establish stages this

will need to be borne in mind.

Little comment has been made about the observation regarding sym-

bolisation. The immediate inference is ,that more experience with a

w.i de r range of modes of symbolisation might be beneficial. This is

potentially a very important aspect of the mathematical process and

deserves a substantial study of its own.
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Finally, the broad stages of development towards proof which

emerge from this study are:

Stage 1 ABSTRACTION

Recognition, extension, description of pattern or
relationship.

Stage 2 CHECK

Empirical check or attempt at deduction.

Stage 3 PROOF

Awareness of need to consider all possible cases

and to state conditions for truth.

Stage 4 AXIOMS

Awareness of need for explicit statements of starting
points of arguments, and of definitions used.
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INTRODUCTION

In spite of the dangers of determinism which are inherent in stage

concepts, especially if related too closely to ages, the Piagetian

designation of stages of concrete and formal thought has provided

robust concepts which aid the understanding of child and adolescent

modes of thought and assist in the design of effective teaching

materials. Piaget and his collaborators have gone further, and

assigned the learning of number and its operations, and of measures

of length, area and other quantities to particular stages. More

helpfully for teachers, perhaps, these experiments have identified

stages within these concepts; the steps from the concept of area

to its measurement by area units, and subsequently by calculation

are an example (Piaget, Inhelder & Szeminska, 1960). Other workers

have established stages in other mathematical concepts, for example

that of function (Thomas, 1975; Orton, 1970). It is plausible that

in the understanding of proof, well-marked stages should exist; in

view of its close connection with formal reasoning. However, of

the relevant researches reviewed in the last chapter, Collis (197Sa)

shows an inability to work from definitions before age 17, and

Reynolds (1967) shows the non-attainment of the axiomatic stage by

school pupils, and considerable over-generalisation in the early

years. The pilot study reported above led to the tentative proposal(p.7.10)

of the four stages (1) Abstraction, (2) Check, (3) Proof, (all cases)

and (4) Axioms. Using the pilot work as a guide, the present study

seeks to establish such stages, if possible, and to describe them in

terms of a range of pupil behaviours. The method is to give the same

test problems to a class of pupils of each year group throughout the

secondary school age range.

HYPOTHESIS

The pilot work suggests that the second stage will predominate, but

that there will be a substantial amount of first stage performance

in the first year or two and a fair amount of work at the third stage

at age 15 and above.
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SAMPLE AND PROCEDURE

'rwo problems were used, one concerning numbers, one from geometry.

The first required the making of a generalisation and giving of

reasons for it, the second offered a generalisation and asked for

it to be tested.

The problems were given in written form to one class of 'Jirls of

each age from 11 to 17 inclusive at a girls' grammar school mainly

serving a large council housing estate. The 11-15 year classes

were chosen from the middle of the ability range for the school;

the lower sixth formers were a smaller than average group of girls

who were available at the required time - none of the latter were

studying mathematics for A-level. In each class, half the girls

did the number problem and half the geometrical one; they were

given as much of the 40 minute period as they needed to complete

the work. In all, about 80 pupils did each problem.

STAGES

A preliminary scrutiny of the scripts led to the adoption of the

following elaborated stage descriptions for the classification of

the responses. Stage 4 did not appear, and Stage 0 was required

for unsuccessful responses.

Stage 0: Non-recognition of relationship, regularity or pattern.

This includes non-expectation of regularity in the given situation

and also the inability to work in the situation with sufficient

accuracy or consistency to observe the regularity existing in it.

Stage 1: Abstraction: Recognises pattern or relationship in given

data; can extend verbally or symbolically. Does not seek to explain

it or deduce it. If reasons are requested, they may be given but

they are regarded as concomitant facts, not as justifications of the

statement of relationship.
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If a relationship is proposed, chec~ it in just one or two cases;

regards it as true or false as an indivisible entity, not as

comprising a class of cases each needing independent consideration.

Stage 2: Check. Recognises that a statement of relationship applies

to a class of cases, so that either a variety of cases must be

checked and a probable inference made that other cases conform,

or a deductive argument or global insight that covers implicitly

a class of cases must be supplied.

At Stage 2.1 the variety of cases checked is neither great nor

systematic; there is little awareness that the extrapolation is

only probable, and deductive arguments consist of fragments not

firmly linked to data or conclusion or to each other.

At Stage 2.2 there is greater variety, more systematic choice,

reore cautious extrapolation, connected though incomplete deductive

chains and the use of 1-1 correspondence and of iterative arguments.

Stage 3: Proof, all cases. In this stage, there is full awareness

of the need to deal with all cases (except possibly special or

extreme ones like 0 and 1), so if empirical methods are used it is

with explicit acknowledgement of their limitations; deductive

chains are complete (or recognised not to be) and apply to the

whole class of cases of which the subject is aware.
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PROBLEHS AND RESPONSES

Double and Add the Next

"Start wd t.h 6; double it; 12; add the next number.
12 + 13 = 25 Start 6, finish 25.

Starting with 12, double ito; 24; add the next number.
24 + 25 = 49 Start 12, finish 49.

Do two more like this and note the starting and finishing
numbers.

Now we shall decide what finishing number we want and try
to find what starting nurrber we need.

Can you finish on 13? v..'hatstarting number do you need?

Can you finish on 21?

Can you finish on 14?

Find some rules about what; numbers you can and can't get as
finishing numbers.

Find also a rule for .finding the starting number for a given
finishing number.

For each rille, say whether it is always true, or only sometimes,
and give reasons."

The most obvious rule regarding finishing numbers is that even

numbers are impossible and most subjects found this. The majority

were also able to give a reason for it, though the reasons varied

in explicitness. Only three subjects out of the 80 who did this

problem observed that the possible finishing numbers were not all

odd numbers, but only those of the form 4n + 1. (The even and odd

dichotomy seemed too strong to break out of; many subjects, asked

subsequently to see whether 15 was a possible finishing number,

said "Yes, start w i.t.h 3~" without recognising that the introduction

of fractions removed the basis for the rejection of 14.) The

obtaining or not of an explicit reversal rule - e.g. subtract land

divide by 4 - was the aspect of the problem which showed the

strongest relation to age through the range considered.



8.5

Stage 0 comprises pupils who fail to make a generalisation whether

about the finishing numbers or the reversal rule. There were two

subjects in the first year and three in the second in this category.

lAH is inconsistent, sometimes using the function x + (x + 1) = Y
and sometimes the correct one. Of rules for finishing numbers,
she says "There is not any"; for the reversal rule she repeats
the forward process 6~12, 12 + 13. This is a clear case of
low expectation of regularity and of insufficient skill to
extract the generalisation.

lLH* says "You cannot ha.ve 14 but you can have numbers like
53, 13, 21:" she fails to extract the even/odd distinction.

2RB says that you cannot get "numbers like 14 which you subtract
down to 7 ...• "

2NH gives no rule for finishing nurrbers and for a reversal rule
says "Do the sum again."

2JM2 has a wrong rule (4x + y) i.e. adding on any number for
the "next number". She also has mistakes in her workinCj, and
infers "You can I t finish on an odd numbe r " wh i ch is consistent
w i t.h the cases she has generated, but not with those given on
the sheet (25,49)

Stage 1 was ~he predominant stage for the 11 and 12 year old groups;

and persists in smaller nurr~ers through to the 16+ group. These

pupils obtain the even/odd relationship but offer no reasons (except

possibly restatements of the data or irrelevant comments.)

lKH
2

: "You cannot get even numbers as finishing numbers, only
odd ones". (No further comment or reason)

2HK says "From 13 it is always the odd one." No reason.

6TQ: "You can finish with numbers 13 and 21 because these are
numbers in which you can go in twice and have one number left
over • .• .. " with three further rules, one of wh Lch is wrong.
In spite of the word "because" this merely states that odd
numbers are possible, and gives no reason.

Stage 2 comprises pupils who supply relevant reasons. It is perhaps

surprising that empirical checks of the even/odd rule, going beyond

the cases obtained in response to the questions on the sheet, do

not appear in the scripts. The differences are between those whose

reasons form a connected argument linking data and conclusion, and

.,. SC1"ipts whos e nurrbers are starred appe ar in Appendix 8 .
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those whos e reasons, though relevant, leave gaps in the deductive

chain. In the case of the reversal rule, there are similar

differences between fully explicit rules and those which leave

a gap to be filled by trial and error.

A full proof of the even/odd relation involves stating

a) doubling the starting number gives an even number

b) the next number to this even number will be odd

c) the finishing nurrber is therefore even + odd, which is odd.

Stage 2 responses omitted one or two of these points. Some

extracts from Stage 2 responses are:

lJI: "You cannot finish on an even nurrber because if you
double an uneven number the answer \ViII come to an even
number. e.g. 7 -).14 -).29."

3CY: "You are able to finish only on an odd number because
an odd and even numbe.r also make an odd number."

A fully eh~ljcit reversal rule was~

4JC: "To find the starting number take one away and divide
by four."

A typical partial rule would give an explicit rule for part of

the process and leave the rest to trial and error.

lBM: "Find consecutive nurrbers which add to the finishing
number, then halve the lower one."

Stage 3 requires a full proof of the even/odd relation and an

explicit reversal rule. Another characteristic of some Stage

3 scripts was the full and explicit realisation of the relation

between the exclusion of fractions and the validity of the rule

for finishing numbers. 6AW is typical of several 16 and 17 year

old responses.
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1
6AW: "To finish on 14 you would need J:(: then "A final
number must not be an even number as t.lio nurrber you

start \d th will not be a who Le number." She has an

explicit reversal rule, and also points out that it will
not be true for numbers below 5.

This displays a very clear awareness of the link between the

data and the conclusion wh Lch is equivalent to a "complete

deductive chain."

One of the few pupils below tile sixth form Vlho found the 4n + 1

rule for finishing nuwbers was 3AT: she used a systematic

empirical approach:

3AT: Shows 3 x 4 + 1 = 13 and 5 x 4 + 1 = 21; finds finishing

nurrbers for 1, 2, 3, 4, 5 and says "You cannot get 1, 2, 3,

4, 6, 7, 8, 10 and so on as finishing numbers because they

do not come into the pattern of adding 4 each time." Checks

101, 105 and says "This rule is always true so far but you

would have to go through this procedure for every number to

certify this."

..



8.8

Diagonals ef a Polygon

A. Draw a polygon. Draw as many diagonals in it as you
can, without any of them crossing. How many are there?

4,1 7,4

5,2

B.

Some diagrams have been drawn here. It seems that "The
greatest nurnber of non-crossing diagonals wh Lch can be
dz awn in a polygon is three less than the number of sides."

Is this statement true for all polygons?

Investigate this fully; then state your conclusions and
your reasons.

The cost notable feature of the responses to this problem was the

interplay of empirical and deductive work. The youngest pupils

drew their conclusions almost entirely on empirical grounds made

firm assertions that the statement was "true for all polygons"

based on the inspection of only the cases presented on the sheet,

Middle school pupils generated a conscious variety of cases to

check, and tended to make more cautious assertions. Deductive

arguments became steadily more relevant, more coherent and more

cOffiplete;only a handful of pupils gave complete proofs of the

relationship, and these were all based on the radial lines figure,

and failed to recognise that this way of drawing diagonals was not

possible in all polygons.
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No pupil (except possibly one third year) appreciated that the

maximum number of diagonals might depend on where they were drawn.

A full deductive proof at this level would state that if diagonals

were drawn radiating from a single point, they go to all but three

of the vertices - these being the point itself and the two adjacent

vertices. Thus the number of diagonals is three less than the

number of vertices, which is the same as three less than the number

of sides.

Staae 0: Five pupils in the first two years failed to recognise

the potential regularity in the situation, or had insufficient

knowledge or skill to achieve a result. There was also one such

response in the 7th year. (5,2 refers to a polygon of 5 sides

and 2 diagonals, and similarly.)

lJG: 5,2 shown. "Not true because polygons can have any
number of sides and diagonals."

IDG*: 17,11 shown. "Not true because some polygons can be
bigger and some smaller."(Diagonals go to points other than
vertices. )

7JA: 4,1 shown. "All the polygons drawn in the diagrams
have different numbers of sides, from 4 to 7, therefore
the diagonals • • • • • .• must differ."

Stage 1: These assert "true for all" from a small number of con-

firming instances or else "not true" if one case fails. If

reasons are given they do not go beyond restatement of the data •
. .

3SW*: One figure (8,5) shown. "Yes, it is probably true
for all polygons."

* Scripts whose numbers are starred appear in Appendix 8.
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Stage 2: These responses are distinguished from those of Stage 1

either by generation of a number of figures to check, or by the

attempt to provide a deductive argument.

Stage 3 is marked by the achievement of a complete deductive

chain, or, if this is not attained, by the empirical check of.

a variety of cases and explicit recognition of the limitation

of the empirical method. Thus Stage 2 comprises a \'Iiderange

of responses, differing in the degree of conscious variety and

of systematic ordering in the cases checked empirically, and

in the relevance and coherence of the deductive arguments.

,Stage 2.1:

2AH: 1 figure. "Yes, this is true • ...you are dividing your
polygon into triangles and if you add up all the degrees
of the triangles it will come to the polygons degrees."

5S~'l*:shows 3 different ways of put·ting diagonals into a
pentagon. Says "true for all" and adds: square has 1,
triangle, O.

This gives no deductive reasons but does check carefully on diff-

erent possibilities.

Stage 2.2:

6LP: 7 figures, 3-9 sides, in order: "From this evidence it

seems that ..• .. "

2KJ: 4 figures, all radial. "True for all .• • • 2 nearest points
cannot be joined .• • • .• it forms a triangle in which no diagonals

can be drawn ....• so subtract 3 ~"

SJC: 8 figures, mixed, sizes 4-10. "For each of the above • ..•
true .• ..one side added • .• .• then another non-crossing diagonal

can be found .• • • • "

The first two of these are empirical responses with check of a

variety of cases; the others are incomplete deductive arguments.
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Stage 3:

SCB : 4 figures mixed. "True for all ..... cannot be joined
to next points or to itself ....• "

2KP: 1 figure. "Yes, ..... can't go back to where it started ....
or to the 2 on either side."

These are complete deductive argwnents (expressed informally).

RESULTS

These are shown in the table and the graph below.

NlJ~1BERPROBLEM POLYGON PROBLEM

~ STAGE

AGE 0 1 2.1 2.2 3 0 1 2.1 2.2 3

11+ 2 7 3 1 0 4 7 2 0 0

12+ 2 9 0 2 0 1 4 4 3 2

13+ 0 3 5 1 1 0 4 2 5 1

14+ 0 5 3 4 0 0 3 2 6 1

15+ 0 2 3 3 1 0 0 2 5 1

16+ 0 2 3 4 2 0 1 1 10 1

17+ 0 0 1 1 4 1 1 2 1 1

NUMBER OF PUPILS AT EACH STAGE IN EACH YEAR GROUP
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HE."'l~ STAGE OF GROUPS OF DIFFERENT AGSS ON T\\'O PROBLEr·1S OF
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DISCUSSION

Although the class means show a fairly steady improvement with

age (except for one exceptional result), there is a wide variation

within classes, with almost all stages appearing at almost all

ages.

The non-conforming result of the 17 year old group on the polygon

problem can probably be explained by the smallness and untypical

nature of this group; their lack of contact with mathematical

studies for 18 months has affected their approach to the unfamiliar

nature of the polygon problem, though not to the number problem.

The hypotheses are generally confirmed but shown to be optimistic.

Stage 1 is the mean at age 11, and there is a sharp rise between

11 and 13, but there is less evidence of Stage 3 dmong the upper

forms than predicted. l'lemust ask whether the stage reached depends on

the par t.Lcu La r problem, or whether there is a general capacity or

preference for deductive proof. Neither of these two problems

demands knowledge of concepts which would not be possessed by

virtually all 13 year olds (though some younger pupils failed to

understand "diagonal" and some had not the concept of even and

odd numbers). However, the degree of complexity of the problem

is relevant - the length of the deductive chain required, and

the extent to which the concepts to be linked are exposed or

hidden in the situation. It was thought that it might be possible

to minimise variation from this factor and so to observe more

clearly pupils' progress towards the concept of deductive proof,

as distinct from skill in constructing proof, by asking them to

select from a number of offered responses. The sheet containing

three proposed proofs (Polygons II, See Appendix 8,) was given

to a number of first and second year pupils when they had finished

the first sheeti none of them selected the deductive proof. Later

informal work suggested that though Stage 1 pupils select the

empirical proof, most Stage 2 pupils choose the deductive one.
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FOLLO~v-UP

Res;?onse to Connter-Examples

Pupils in the first, second and seventh forms who completed their

problem before the end of the period were given a follow-up sheet,

designed to see whe t.her they could modify their original general-

isation or proof when faced with a counter-example. (See Appendix 8)

In the case of the number problem, this asked them to consider

whether 15 was a possible finishing number; the question was

whether they would be able to extend the rule "even numbe rs are

impossible" into the full 4n + 1 rule. Of the six first formers,

six second formers and three seventh formers to wh i.ch this applied,

one in each of the first tHO groups (none in the third) was able so

to modify her rule. Most of the rest responded "Yes, you must

start with 3'l" w i.t.hou t; noticing that the introduction of fractions

removed the basis for excluding even numbers, like 14, as finishing

nurnbe r s .

The counter-example offered following the polygon problem was

designed for those who had adopted the radial lines proof; it

5hO',.;eda polygon in wh Lch there was no point from which radial

lines could be dr awn , This only applied to three seventh formers

and none of these recognised the significance of the counter-

example.

It would be of interest to explore this further, to see whether

the ability to respond to a counter-example by modifying a gener-

alisation or proof can be allocated d~finitely to one of the

stages.

IMPLICATIONS FOR TEACHING

1. The critical question for the curriculum is how higher levels

of deductive thinking may be encouraged. One prerequisite is

clearly that the concepts being dealt with should be familiar;
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learning new concepts is incompatible with rigorous establish-

ment of relationships involving them. Thus there is a conflict

for the teacher between teaching his pupils more advanced con-

cepts and developing their deductive skills. This choice would

be made easier if it were demonstrable that an emphasis on

deductive skills conveys the power to learn new material more

quickly and effectively. I think this is probably true, but

the demonstration of it is a complicated task.

2. One of the steps towards deduction may be the acquisition of

a taste for certainty;this may be acquired through problems

based on small finite sets of possibilities where exh<l.ustlon

is a feasible strategy. Some such problems have been used

with 10 year olds. Hhether certainty from exhaustive check

or global insight without check (which seem to be the alter-

natives at this age) is the more satisfying to pupils would

be interesting to study.

3. There are suggestions among the results that the strategies

of reversal, systematic classification and ordering are capable

of developmeut, possibly helped by some explicit teaching.

For example, on the polygon, what; was required was either

(a) the radial lines proof, consisting of the recognition of

the value of this systematic way of draHing diagonals from a

single point, and the making of a one-one correspondence between

vertices and diagonals, with a fixed number of vertices not

being involved; or (b) an analysis of how , if a polygon is

built up, side by side, starting ~ith a triangle, at each

step a new diagonal can be drawn. (In the latter case, the

difficulty is to be satisfied that the ways of adding a side

which have been considered comprise all the possible ones.

In fact, the most satisfactory way of making this proof apply

to all polygons is to reverse it, that is to show that every

polygon (with any given diagonalisation) can be reduced step

by step to a triangle, and that at each stage this can be
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done so as to reduce the nu~ber of diagonals by one. An

investigation of the awar ene ss of this w.L th older school

pupils and university mathematics students would be inter-

esting.

Thus, the methods of proof contain certain general strategies

(a) ordering (in the drawing of the diagonals from a single

point) (b) making a one-one correspondence, (c) iterating -

building up step by step and attending to what is the same

about each step. The question arises whether the development

of awareness of these strategies is a feasible way of improving

pupils' capacity for proof. Also necessary in this proof is

an awareness of the class of possible cases whd ch the actual

diagram represents. For example, does a particular non-convex

polygon represent all polygons better than a particular convex

or regular one? Does a particular way of drawing diagonals

adequately represent all possible ways? It might be said that

this is L~e essence of mathematics - the art of dealing with

the general by working with the particular. C.S. Peirce (1956)

makes this point in relation to the geometry of Euclid and to

algebraic proofs.
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INTRODUCTION

This experiment is designed (a) to provide a substantial body

of evidence concerning pupils' abilities and achievements in

relation to generalisation and proof, in the form of open responses

to a variety of problem-situations, and (b) to test a number of

hypotheses which emerge from the two-problem, age cross-sectional

study described in Chapter 8, and from previous work. It was

preceded by oral work with a number of individual pupils, and

some written trials of questions; some additional hypotheses for

testing came from this work.

HYPOTHESES

(1) In the age cross-sectional study, four stages were recognised

in the responses of the pupils, showing a fairly strong r.elatlon-

ship to age. The main points of interest were the development in

connectedness of the deductive arguments, and the developing aware-

ness of the meaning of generalisation over "all cases". However,

it is clear that the two problems used, though very different, were

a very small sample of the range of mathematical situations met by

the secondary school pupil, and that the next task was to experiment

with a wider range of problems. Another limitation of this exper-

iment was that each pupil attempted only one problem. It was

decided to design the present experiment so as to observe to what

extent a particular pupil would perform at the same stage on

different problems. For this purpose, it was necessary to modify

the st~ge descriptions so as to emphasise criteria referring to

observable aspects of the pupil's written response, rather than

criteria relating to his stage of thinking, such as "regards a

relationship as true or false as an independent entity, not as

comprising a class of cases". These make it easier to link with

Piagetian stages, but harder to achieve reliable stage-allocation.

It was clear that the more satisfactory and rigorous approach was

first to seek categories which would permit significant sorting and

description of performance on the wider range of problems; then to

consider aspects of performance which might be characteristic of
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particular stages. Thus in the present experiment ten diverse

problems are used, and each pupil attempts two. More problems

from each pupil would have been desirable, but this was judged

to be too great an incursion into teaching time. The hypothesis

is that puoils' performances on their two problems will fall into

the pame or adjacent categories.

(2) From the pre-testing of problems (as well as from earlier

work) a number of other hypotheses may be stated. These will not

be formal hypotheses to be tested statistically since each refers

to only a small number of problems which have other diverse char-

acteristics; but informal co~~ents relating to them will be made.

With regard to context, it appears that generalisation arising

from familiar non-mathematical activities can lead to high-level

proof-explanations, or at least to high motivati.on to explain.

The Coin-Turning problem and Noughts and Crosses are

such situations included among the ten problems chosen. The degree

of familiarity with the situation and of all the different relation-

ships within it seem to be. the operative factors; this is stronger

for Noughts and Crosses. On the other hand, the geometrical

situations pretested proved more difficult to explain than the

number ones, because whereas number generalisations can be checked

by trying the calculation with particular numbers, and this process

often leads directly to a general insight, in geometrical problems

the corresponding process is less well-defined - it involves not

just choosing some numbers, but trying to make figures according

to given conditions. Also, the basic properties and algorithms

for number are well known and felt to be fundamental, whereas it

is less clear what is fundamental in geometry, perhaps particularly

so since the Euclidean system has disappeared from the curriculum.

Hence we hypothesise that, in relation to context, proof levels

will be lowest in geometry and highest in familiar non-mathematical

contexts,with number situations coming between them.

. .
(3) The next hypothesis telates to the set over which generalisation

takes place. The strong tendency of pupils to generalise from a few

examples, which was evident in the age cross-sectional study with
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regard to the even/odd rule and the ready acceptance of the

generalisation about the diagonals of the polygon, is a quite

normal way of learning which we all use; we generalise first,

then look for confirmation or refutation. How thorough we are

in seeking evidence depends on what degree of certainty is desired

in the particular instance - and what is possible. It appeared

in pilot work that pupils were more interested in insight than

in certainty; it also appeared that they were interested in that

level of certainty which was easily attainable. Hence some

situations were introduced based on finite sets ('Choose any

number between 1 and la') to see whether the method of checking

all cases would be adopted,by those pupils who were aware of the

'all cases' aspect of generalisation, in preference to seeking

a general insight. The response to these in the pilot interviews

was that the checking could be done and would give the definite

answer but was of no interest; it was 'roundabout~ as one pupil

put it. In the main experiment two number situations are set up

in this way. The hypothesis is that the full check of the finite

set will not be adopted as a method of justifying the generalisation.

(4) Another factor observed as promoting high motivation was the

impossibility situation, but this was a motivation towards solving

the problem rather than towards presenting a rigorous proof. The

Coin-Turning problem and Stamps both produced this reaction in

pretests. Pupils became intrigued when solution began to seem

impossible and showed considerable pleasure and relief when they

reached conviction that it was indeed impossible. However, their

written explanations of their conclusions varied widely from their

oral report. It seemed that a mental. scanning of possibilities

had led to a decision, but the organisation of this process and

its presentation on paper was a boring task; so the giving of a

complete and cogent argument was neglected. The hypothesis is

therefore tnat the impossibility situations will show high levels

of solution but some incompleteness of explanation.
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(5) A further feature of the design of this experiment concerns

the use of an arrow diagram to record the moves, in Coin-Turning.

In previous work with similar problems using actual coins with

groups of 12 and 13 year old pupils, it became clear to the pupils

that it was necessary to record the moves of a game in order to

substantiate a claim to have solved the problem - and sometimes

even to be sure for oneself that one had not made a mistake. However,

it appeared to be easy to record a mistaken move, and difficult to

spot the mistake from a record (for example, 4 coins, turn 3, TTTT,

THHH, HTHT, THHT • • • ). It was decided to include in the present

experiment the recording of allowable moves in Coin-Turning, to

observe whether this enabled pupils to give a more cogent argument

of the impossibility of solving the problem as given. The hypothesis

for testing is that this will not be helpful, that is, that the

handling of the recording will be as difficult as solving the

problem without it.

(6) In two of the number problems, Add and Take and One and the

Next, it is appropriate to use some simple algebra. This amounts

in the first· case to expressing the process as (10 + x) + (10 - x)

and showing that this always equals 20, and in the second case to

expressing numbers in terms of multiples of 3 as, 3k, 3k + 1, 3k + 2,

or as M(3), M(3) + 1, M(3) + 2. It is expected that these repres-

entations of multiples of three will probably be used if and only if

they have been taught, but the expression (10 + x) + (10 - x) should

be capable of construction by any pupil who has learnt some algebra.

This should be a majority of the sample, since it covers 15 year olds

of all abilities. The hypothesis is that a majority of pupils will

use algebra for Add and Take, and a small number will do so for One

and the Next.

(7) a) Factors determining performance, b) strategies for teaching.

There are some further questions on which it is hoped that the

experiment will provide i~formation but on which it does not seem

appropriate to formulate hypotheses. These concern pupils' develop-

ment in attainment with regard to generalisation and proof, and are
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(a) what are the determining factors of performance? and (b)

what kinds of learning experiences bring about improvements?

The second question cannot be answered directly from the present

experiment, although the recognition of developmental sequences,

large or small, may be helpful. Evidence on the first question

may be forthcoming if the reasons for pupils' breakdowns on the

problems can be observed or inferred. The three types of factor

recognised and discussed below (p.9.57) are (i) knowledge of

relevant facts, principles and skills, (ii) general reasoning

ability, including ability to deal with logical complexity, and

(iii) possession of relevant general strategies. (Evans (1968)

obtained three such factors in a major longitudinal study of

pupils aged 14 to 17; his third was a Problem Solving factor.)

Each of these leads to its own conclusion regarding possibly

useful teaching.

THE PROBLEMS

The problems used in this study all require the provision of an

explanation and justification of a generalisation; in some cases

the generalisation has to be found first, in other cases one is

offered and has to be tested. The aim is to offer a represent-

ative piece of mathematical activity, subject to the limitations

of the test situation; and the task is left as open as possible in

order to obtain an accurate reflection of the pupil's thinking.

The mathematical concepts involved are intended to be very well

known, so that they do not present difficulties which interfere

with the generalisation and proof strategies which we wish to

observe. In all, ten problems were used. The ten problems are

chosen to display variety in a number of ways, as suggested in

the hypotheses. These ways are (1) Context - numerical, geometrical

or from outside mathematics (as in Coin T~rning and Noughts and

Crosses) (2) whether the set of cases over which the generalisation

is made is finite or infinite and (3) whether it is given or needs

to be constructed; for example, Add and Take ("Choose any number

between I and lO")concerns a given finite set, Stamps concerns a
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finite set, needing construction, of possible linear combinations

of 8 and 20 around 70 r Midpoints concerns a given, infinite set

of numbers on the line, and so oni (4) whether the generalisation

is stated, for test and explanation, or whether it has to be

found first (for example, One and the Next and Quads, respectively);

(5) whether it is a positive generalisation or statement of imposs-

ibility, (as in Stamps and Coin Turning) or the construction of a

complete set of examples under given conditions as in Triangles;

(6) whether the generalisation is a well known one, as in Adding

a Nought, or a new one.

These characteristics of the prcblems are shown in Table 1.

TABLE 1

SET

TEST CONTEXT fin/inf
given/

GENERALISATION
const

(1) (2) (3) ( 4) (5) (6)

and Take fin given
not stated

Add num
but imrned

pos new

Coin Turning outside fin const stated imp new

Adding a Nought num inf,N given stated pos well known

Diags of Polygon num/geom inf const stated pos new

Midpoints num/geom inf,NxN given stated pos
fairly
familiar

Noughts & Crosses outside fin const stated yes/no new

Stamps num fin const stated imp new

Quads geom inf const not stated pos new

One & the Next num fin given stated pos new

Triangles geom inf const not stated find set new
I
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S&~LE AND PROCEDURE

The problems were made up in pairs into five half-hour tests. Each

test was worked by about 40 pupils, 13-15 from each of three schools

(one grammar, two comprehensive) in different parts of the country.

The comprehensive schools were asked to choose their sample of pupils

to that together with the grammar school sample the whole ability .
range was covered as well as possible. All pupils were fourth

formers, thus aged between 14.8 and 15.8 at the time of the test.

Pupils sitting next to each other worked different tests, to minimise

the risk of copying. The instructions for all the tests were the same.

"These questions are about finding rules and giving reasons.

You will have plenty of time - two problems to do in half an

hour - so experiment fully, think about all the possibilities

and be sure as you can before giving your answers."

A selection of responses to each problem appears in Appendix 9.

CATEGORY SYSTEM

Preliminary sorting of the responses, using the previous stage

descriptions as a guide, led to the adopting of the following

general categories for describing the characteristics of general-

isation, explanation and proof activity in a way which would

apply to the whole range of problems.

Previous work suggested the importanc~ of the distinction between

the empirical and deductive types of response - that is, between

those in which the basis of the argument was empirical, and those

in which though examples were generated, their function in the

proof argument was as illustrations rather than as evidence. The

distinction was in most ca$es quite clear, though there were some

doubts at the borderline b'etween X and Rgr.
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The 0 category was eliminated as far as possible but there were

SOffiefailures which left too little material for satisfactory

categorisation.

The Category ~ has not appeared in earlier work. Some responses,

although they generated at least one correct example, did not

use it to test the generalisation. They acted on the instrMctions

given, but showed no awareness that the result obtained was

dependent on the detailed nature of the process, that the results

obtained from that process might have some feature which the

results of another process might not have. This is perhaps the

same phenoffienonas was observed in the pilot experiment and

described as a lack of expectation of rationality. It was not

particularly easy to distinguish in practice and was not in fact

very much used, but it seemed of sufficient psychological import-

ance to retain as a category with a view to its further invest-

igation.

In the Stages study, variety and systematic organisation of examples

was observed as significant. A V category - variety of example -

was considered for this study but rejected since although conscious

selection of examples with the right kind of variety is a significant

skill in empirical inference, it is often not possible to decide

from a script how carefully a given set has been chosen.

Quantity of examples may indicate either lack of insight or the

seeking of variety. On the other hand, an S category proved easier

to recognise and indispensable for sorting the responses to Triangles.

In this problem a well organised set of examples of more than one

type represented a solution as competent as the explanatory ones in

other problems.

The F category is self-explanatory. The various levels of deductive

response represent an attempt to describe by significant details
I

the observed gradation in quality. The three aspects of relevance,

connectedness and reference to agreed facts as starting points are

the dominant factors.
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o Misinterpretation, failure to generate correct examples or
to comply with given conditions. (As far as possible, mistakes
and misinterpretations are ignored and categories allotted
accepting the pupils' interpretations of the problem).

~ Non-deoendence: One or more examples correctly worked, but
not used to test the general statement; lack of awareness
of connection between conclusion and details of the data.

X Extraoolation from empirical check. Truth of general statement
inferred from an incomplete set of particular cases;- any apparent
'reasons' are assertions that the conditions have been complied
with, or descriptions of the working out of particular cases.
The basis of the inference is clearly empirical.

(If there is a general restatement of the process and its
conclusion, category Rgr is the right one; if there are
remarks added by way of explanation but which are actually
irrelevant, use category D)

S Systematic: Finds at least some complete subsets of cases,
is clearly attempting to find all.

F Check of full finite set of cases.

DEDUcrlVE

This subset of the categories includes all responses where a deductive

element contributes to the drawing of the conclusion.

D

Rgr

Rcd

Einc

E comp

Dependence: Attempts to make a deductive link between data
and conclusion, but fails to achieve any higher category.

Relevant, general restatement: Makes no analysis of the situation,
mentions no relevant aspects beyond what are actually in the
data, but re-presents the situation as a whole, in general terms,
as if aware that a deductive connection exists but unable to
expose it.

Relevant, collateral details: Makes some analysis of the situation,
mentions relevant aspects which could form part of a proof,
possibly identifies different subclasses but fails to build them
into a connected argument; is fragmentary.

Connected, incomplete: Has a connected argument with explanatory
quality, but is incomplete.

Complete Explanation: Derives the conclusion by a connected
argument from the dat.a and from generally agreed facts or'
principles.
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ANALYSIS OF RESPONSES AND CATEGORISATION FOR EACH PROBLEM

ADD AND TAKE

Choose any number between 1 and 10. Add it to 10 and write down
the answer. Take the first number away from 10 and write down
the answer. Add your two answers.

1. What result do you get?

2. Try starting with other numbers. Do you get the same result?

3. Will the result be the same for all starting numbers?

4. Explain why your answer is right.

DESCRIPTION OF RESPONSES AND NOTES ON ALLOCATION OF CATEGORIES

A typical response chooses 3, obtains 13, 7, 20; then tries 5,

obtaining 15, 5, 20; and answers "Yes" to question 3. The crux

of an explanation is the recognition that the same chosen number

is added and subtracted in obtaining the result, so that it cancels,

leaving the two tens. (This implies an awareness of commutativity and

associativity). The display of the process in algebraic language,

(10 + x) + (10 - x), contains the essence of this insight, again

depending on the implicit awareness of the two laws. A valid

justification of the result can also be given by checking allten

cases.

Allocation of the responses to the categories is straightforward.

Some scripts make mistakes in the given process; the most common is,

at the second step, to take the first number away from the previous

answer instead of from ten, giving as a final result 20 + x. Such

mistakes are ignored as far as possible in the allocation to categories;

a valid explanation of the pupil's own generalisation is accepted.

This is done since we are evaluating the explanatory qualities of the

response, not the correctne~s of the mathematical operations.

Category 0 contains two blank scripts, and one response which works

one example but makes no generalisation.
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Category X can be subdivided. In Xl the response shows no worked

examples, but simply answers "Yes" to the questions. Categoryx2

comprises two types; some give "exp Lanat.Lons" wh.i ch are simply

accounts of the calculation in a particular case, or assert that

they have followed the instructions.

No. 10: I choose a number be tween 1 and 10 and I choose 2. I
add to 10 it made 12 and then I took 2 away from 12 and it came
to 10 then I add both numbers 10 + 12 which made the answer 22.

No. 18: My answer is right because I have done what the paper
tells me.

The other X 2 type offers an "explanation" which has a degree of

generality but does not reach the level required for category Rgr:

"represents the situation as a whole, in general terms, as if aware

that a deductive connection exists but unable to expose it."

No. 14: I think my answers are right because I took a number,
added to 10 then took it away. And then the two answers I got I
added them together. The answer is always 20.

No. 2 is similar. These are in category X
2

. The category X3 response

shows a number of examples worked out, says that the answer is always

20, and gives an empirically-based explanation, for example:

No. 26: because which ever starting number I put in it adds up
to twenty.

No. 5 is similar. Two pupils test examples outside the prescribed

range: No. 11 includes fractions among the chosen numbers, and one

(No. 40) uses numbers outside the range 1-10 (12, 11, 19, 64 and 0)

This is category X4•

Examples of Rgr are:

No.4: ...whatever number you add to ten and then take the same
away when you add the two answers together they both add up to the

same.

Nos. 7, 23, 33 are similar. One with more feeling of inevitability

is:



No. 22: • ..If you choose a nuwber between 1 and 10 and add it to
ten, then if you take the first number a\'iayfrom ten then it will
be whatever is needed to make 20 • • • •

No. 36: ....Yes, the answer will be the same for all the starting
numbers, e.g. 10 10 both added together = 20, and will

4 + 4 - .
14 6

always add to if you start off with a number like 10, 20, 30, 40, etc.

These all carry some feeling that the result is an inevitable

consequence of the nature of the given process. It seems as if the

pupil has some insight into the process, which convinces him, but

he is unable to articulate the connections.

No category F responses are found.

The possible complete explanations are referred to above. Responses

which contain all the necessary points but not clearly expressed are

put into category E inc; those which make some analysis of the

situation but only have part of a correct explanation go into category

Rcd.

Two responses use algebra:

No. 20: If the starting number is called x, then the equation being
done is (10 + x) + (10 - x) added together, this always comes to
twenty.

No. 19: If you let x be 10 and y be the number you get x + y
x - y

and when you add the equation together you are left with 2x which
was 10 so you have 2 x 10 which will always be 20.

These are both E comp,

Other examples are:

E comp: No. 28: ...• be cause, ...one number is going to be a certain
nuwber above 10, when added. When subtracted, the number is going
to be the same amount of un1 ts BELOh' 10, and so when they are added
together, they are bound to add up to 20, as it is just the s~e as
adding 10 + 10.
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Einc: No. 8: • • • because if you take any nurrber from ten it will
leave you with the number that when added to the original number
will make 10, e.g. 8 from 10 = 2, 8 + 2 = 10 which is the number
it is all centred round so when two lots of 10 are used, the
answer is bound to be 20.

Rcd: No. 25: .• • because the number wh Lch is first added to 10 is
then taken away from the amount which is got from adding it on
in the first place.

RESULTS

o blank or no generalisation
Nos. 6, 31, 34

no additional examples; answer "Yes" and no more
Nos. 37, 38, 39

with "explanation" recounting the calculation in a part:i.c1l1ar
case or action-based general re-statement.
Nos. 1, 2, 10, 14, 17*, 18

with genuine empirical justification
Nos. 5*, 26

including examples outside the given range
Nos. 11, 40*·

Rgr general re-statement of data and conclusion, with a
sense of necessary connection
Nos. 3, 4, 7, 22, 23, 30, 33, 36, 42

Rcd some analysis, but only partial explanation
Nos. 9, 15, 43

Einc contain all necessary points for E camp but not clearly
put together.
Nos. 8*, 12*, 13, 21, 25,27

E camp explain cancelling of the chosen number, leaving two tens
Nos. 19, 20, 24, 28, 29*, 35, 41

* Scripts whose numbers are starred appear in the Appendix

.'
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COIN TURl'UNG

This is a coin turning game but played with pencil and paper.

1. The first is about 3 coins and a move consists of turning
over any two.

Using as many such moves as you wish, get from 3 tails to
3 heads.

Make your moves like this: T

H
T

T
H
H

T
T
H

and so on.

If you can do it, show your list of moves. If you think it
is impossible, explain why.

2. The diagrams below show all the possible ways of putting down
three coins. An arrow has been drawn from THT to HTT to show
that this is a possible single move. TTT to HHH is not a
possible single move so these will not be joined.

Complete one of these diagrams by drawing arrows to show all
the possible single moves. (The spares are for use if you
make mistakes on the first one.)

TTH

HHT

HHH TET

HTT

TTH

HET

HHH

TTT

TIfl'

HTTTTT

UTH THH HTH THH

TTH

HHT

HHH

TTT

THT

HTT

TTU

HET

HHH

TTT

THT

HTT

HTH THH HTH THH

3. Now explain again why your answer to No. 1 is right.

RESPONSES AND CATEGORIES

A typic.al good response would make a number of trials, become

convinced of the impossibility, then explain it by showing that

the various arrangements of 2 heads, 1 tail can change into each

other or into 3 tails, but not into any other combination; these

two form a closed system. The arrow diagrams are intended to help

pupils to see this if they have not done so already •
. '

A considerable number of pupils (about 40% of the sample) fail to

make any useful progress on their problem. Four do not attempt

it. Fourteen make mistakes and either obtain 3 heads, or reach no
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conclusion. Three make correct trials, not reaching 3 heads, but

draw no conclusion. All these are placed in category O. One tries

and says it is impossible, but adds nothing further. (Category X)

One other gives an 'explanation' not good enough for Rcd, so goes

into category D.

No.2: It's impossible because when you turn a tail you end up
with more heads and when you turn a head you don't have enough.

There are three 'general restatements':

No. 28: • ...impossible if two coins have to be turned over in one
move. There are not enough coins. 3 heads can easily be gained
by moving one coin at a time, but it is impossible by moving two.

We do not classify this as Rcd; it is closer to "mentions no relevant

aspects beyond what are actually in the data" (Rgr); than to "makes

some analysis of the situation, mentions relevant aspects which

could form part of a proof." (Rcd). No. 30 is similar, but adds

"If there were 4 coins, this could be carried out" which is closer

to Red but still not there. No. 21 is a classic restatement.

The criteria adopted for allocation to the remaining three categories

in this problem are these. For E camp we require an analysis of how

2 heads, I tail either reproduces 2 heads, 1 tailor goes to 3 tails.

For E inc we require the statement that it remains always 2 heads, I

tail, or 3 tails. Examples are

E camp No. 24: • .• .there will always be one tail. This is because the
first move was to turn two tails over, to make two heads but we are left
with one tail and this tail is turned over in the second move to make a
head but one more coin has to be turned over and this coin is a head which
will then become a tail and this goes on without getting rid of a tail.

Closer to the borderline is:

E camp No. ll: ...the only ppssible moves left would leave you with
two heads. The only way t9 get out of it would be to return to three
tails. Yet even then this would be impossible as you'd change from
three tails to two heads and a tail then would have to change two
more so again you would have two heads and a tail. This would carry
On for ever.
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Einc: No. 20: ...·because moving two coins at once, and starting
with 3 tails, causes there always to be either 2 or 0 heads showing.
One coin is always left out.

Four E comp and three E inc scripts are found. The remaining

scripts, classified Red, all make some analysis of the situation.

Many of the statements are inaccurate and in some cases even the sets

of trials are faulty. A common phrase is "there is always an odd

one". A few examples are given:

No. 40: ...because you are turning them over in 2s and no matter
how hard you try you will still end up with 2 of the same, and one
odd one which you haven't turned.

No. 25: ...because 2T should be showing on the table of moves to
enable the player to get the 3B in a row.

USE OF THE ARROW DIAGRAMS

Of the pupils in category 0, X and D who tried to use the diagrams

none had a correct set, nor any new explanation. For those in

categories E inc and E comp the possibility of improving their

explanation by using the diagram did not exist. Of those in Rgr

and Red, five had a correct arrow diagram but the only improvement

in explanation was given by No. 13 who repeated the previous explanation

"because there are two moves and 3 coins and two doesn't go into three"

with the addition "and HHB doesn't join with TTT".

One other pupil (No. 28, Rgr) regarded the arrow diagram as an

illustration and repeated the previous non-explanation.

Rgr: No. 28: ...as you can see, there is no arrow going from 3 tails
to 3 heads. This is because the move is impossible ..• • •

Thus these diagrams do not enable those who cannot solve the problem,

or explain it, to improve their performance. It seems that making up

a correct diagram and recog?ising the significance of the closed systems

of states which it shows are new problems, at least as difficult as the

original ones. (This result relates to the findings of Kilpatrick
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and Lucas that the use of diagrams in problem solving is apparently

uncorrelated with success.)

RESULTS

blank
Nos. 3, 18, 38, 39

mistakes, obtain 3H or no conclusion
Nos. 1, 4, 7, 14, 16, 17, 22, 23, 33, 34, 36, 37, 41, 42

correct trials, no conclusion
Nos. 5, 10, 31

x correct trials, statement of impossibility, no explanation
No. 12

D as X but with imprecise explanation
No. 2*

Rgr apparent "explanation" merely restates data
Nos. 21, 28*, 30

Rcd some analysis, possibly with inaccurate statements or
faulty trials
Nos. 8, 13, 19, 25, 26, 27, 35, 40*, 43

E inc analysis, including statement always 2H, IT (or 3T)
Nos. 9, 15, 20*

E camp includes analysis of how 2H, IT and 3T remain a closed set
Nos. 6, 11*, 24, 29

* Scripts whose numbers are starred appear in the Appendix
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ADDING A NOUGHT

If you want to multiply by ten, you can add a nought; for
example, 243 x la = 2430.

1. Is this true for all whole numbers?

2. Explain why your answer is right.

RESPONSES AND CATEGORIES

This is a well known number generalisation, which pupils use

frequently. The aim of the problem is to see whether they can

give an explanation of it. An adequate explanation needs to

appeal to the place value system, and to state that the effect

of adding a nought is to shift each digit of the given number into

a place whose value is ten times that of its original place; thus

each part of the number is multiplied by ten. One main point of

interest is to see what more fundamental principles the pupils

appeal to in their answers.

The majority of the responses to this problem fall into Category Rgr,

since the pupils are unable to give'a true explanation - they may

have been given one when they first learnt the principle but have

long since forgotten it - and they can only reassert the principle

and give other examples. This category is subdivided for description

purposes. However, there are first three category 0 responses, two

giving no explanation at all, and one garbled memory relating to the

multiplication algorithm.

No. 22...• .because I was taught in Junior School and because you are
adding one unit so you have to move all the units up.

17 responses add examples in support of their reassertions of the

principle. Seven of these appear to use the examples as justifications

of the principle, (implicitly ignoring the circularity of the argument),

while others are clearly offering them as illustrations. The first
I

seven are classed as categorJ X (inference.from a check of particular
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cas~, and the latter as Rgr. Three of the X responses give

contrasting examples of multiplying by numbers other than ten,

emphasising the fact that the principle applies to ten and not

to other multiples. These are classed as X
2

, the remainder as

Xl·

No. 28: ... 1 think it is right because:

20 x 10 = 200
554 x 10 = 5540

775816 x 10 = 7758160

but if you times it by 6, 7 or 8 this does not happen

2 x 6 = 12
2 x 7 14
2 x 8 16..• • .•

In the Rgr category, three responses give lengthy description of the

multiplication algorithm; short extracts are quoted. These are

labelled Rgrl.

No. 20: 208 First we do Ox8 ....but the second line we are
10 multiplying by ten. So the first column we have

000 to put in a nought. Because 10 x any number won't
2080 be less than 10.·• ..•
2080

No. 41: .... instead of starting directly underneath the 0, you start
the next answer one place to the left ..• •

Two are restatements of the generalisation, without examples (Rgr2)

No. 38: ...you've got to put a 0 on the end otherwise you will only
get the answer of your number multiplied by one. So the nought
makes it into the number you want ..• • .

Two of the responses give 10 x 10 = 100 as their first example; but

these look more like the one-example check than a step in an explanation;

no special category is made for these.

No. 12: ... the answer is correct because if 10 is multiplied by 10
(10 x 10) it equals 100, so in short it moves one place.
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Seven responses mention either multiplying by 100 as needing two

noughts, or multiplying decimals as requiring moving the point,

thus supporting their statements by mentioning its extensions.

These are labelled Rgr4.

No.4: If it was a fraction, you would have to move the decimal
point, e.g. 0.05 x 10 = 0.5. As there is no decimal point, i.e.
a whole number, you just add a nought.

No. 33: Because the number ten has one nought on it and when
multiplied with another number you put a nought on it ..... if
you multiply by 100 which has two noughts on it, you add the
noughts to the answer, for example 243 x 10 = 24300 .....

Seven responses attain the Rcd category; two 6f these draw

attention to the classification of numbers as between 1 and 10,

10 and 100 and so on, and to the fact that multiplication by ten

moves them up a category.

No. 21: Numbers fall into categories of 1000 s, laOs, las, units.
By adding a nought you increase it by one power of ten.
e.g. 2 x 20 = 40

2 x 200 = 400
2 x 2000 = 4000
2 x 20000 = 40000

All you have to do is multiply the two integers and then add the
number of noughts in the sum, e.g. 2 x 2000 = 2 x 2 = 4, add 3
"noughts = 2 x 2000 = 4000

This is actually statement of the associative law rather than the

principle in question, but it does "analyse the situation and mention

relevant aspects which could form part of a proof." The other six

Rcd responses refer generally to the movement of figures between

columns of different value, but do not explain this in terms of

what it does to each figure. The latter is the requirement for

E compo One response separates the effect of multiplying by 10 on

the 200, the 40, and the 3 but does not explain how 200 x 10 = 2000;

this is classed E inc.

Rcd: No. 27: shows 240, 2~OO, 24000 in columns labelled HTU etc.
but says only "this diagram shows how this works."
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Red: No. 11 shows a similar tabular arrangement but uses it as
an illustration, not an explanation. "All you do is move the
numbers up one 50 the nought can fit in."

E comp:
numbers
each of

RESULTS

o

o

Rgrl

Rgr2

Rgr3

Rgr4

Red

Einc

Ecomp

*

No. 35: ...putting a nought before the point moves all the
up the thousands, hundreds, tens and units scale, making
the numbers ten times bigger than they were previously.

no explanation
Nos. 26, 40

unintelligible
NO. 22

examples used as if to justify principle
Nos. 2, 18, 25*, 36

as Xl but with some contrasting examples, multiplying not
by 10.
Nos. 3, 23 , 28

action-description of the algorithm
Nos. I, 20*, 41

restatements of the principle, without examples
Nos. 5, 38

restatements,with examples as illustrations
Nos. 8, 12, 13,14,15*,16, 19,29

as Rgr3 but including extension to decimals or to multiplying
by 100.
Nos. 4, 6*, 9, 24, 32, 33, 37

refer to movement of figures between columns of different
value, or to the classification of numbers as between 1 and
10, 10 and 100 and so on.
Nos. 7, II, 17*, 21, 27, 31, 34, 39*

separates effect of x 10 on 200, 40 and 3 but does not explain
this.
No. 10.

separates digits and explains effect of x 10 on each as shifting
figures between columns of different place value.
Nos. 30, 35*

Scripts whose numbers are starred appear in the Appendix
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DIAGONALS OF A POLYGON

4,1

Some diagrams have been drawn here. It seems that "the greatest
number of non-crossing diagonals which can be drawn in a polygon is
three less than the number of sides."

Is this statement true for all polygons?

Investigate this fully; then state your conclusions and your reasons.

RESPONSES AND CATEGORIES

A good response to this problem might begin by checking the truth

of the statement for a wider class of polygons than that sho... m , and

for more different ways of drawing the diagonals within a given

polygon. The data shows that three diagonalisations of the five

sided polygon all have the same number of diagonals. The only

deductive proof observed at this stage relates the set of diagonals

radiating from a single vertex one to one with the vertices to which

they go - that is, one to each vertex of the polygon, except that

from which they radiate and its two adjacent ones; hence d = s -3.

Some sense of the incompleteness of this proof, in not applying to

non-radiating diagonalisations of a given polygon and not applying

at all to polygons in which radiating sets are impossible, is shown

by the two pupils in this sample who achieve this proof. There are

some signs of what could form the beginning of other proofs - of an

inductive type, starting with the triangle ... lith no diagonals and

seeing that each additiona~' side adds one diagonal, or by dealing

with the number of triangles formed rather tha~ with the diagonals.

But many pupils remain entirely at the empirical level of checking

a variety of cases.
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Three scripts are in category 0 - no response or some diagrams but

no written conclusion. Fourteen make empirical trials and draw a

conclusion, but contain mistakes, some recognised but ignored, others

apparently not noticed. These are categorised as Xo.

No. 11: 8 polygons shown, various shapes and sizes. These polygons
show that there can be more or less than three diagonals on a polygon
because there may be 15 points that 16 diagonals can reach or 12
points that 9 diagonals can reach.

In this cases some diagonals had been missed. Two pupils did not

understand the term diagonal at all;

and

No. 28 shows:

Ten responses draw conclusions empirically from correct experiments

and this forms category X. (One of these misinterprets the statement.)

Six are classic examples of check generally of a good variety of

examples, and a positive assertion. Three make a more cautious

assertion, but in only one of these (No. 36) is there a full aware-

ness that it may be always true but that a proof of this would require

check of all the possibilities. In the other cases, there is no sign

of thinking of the generalisation beyond the range of examples tried.

No. 36: .• .1 can't see a way of proving this statement is true except
by drawing and working out all the possibilities but as it does work
for these numbers, it should for others.

No. 31: 5 diagrams: It is true for them that I've drawn.

There are two cases of D; one shows a quadrilateral and states that

when one diagonal has been drawn the othe~ cannot be drawn without

crossing; the other mentions that the polygons are divided into

triangles but does not consider .their number. One response is

categorised Rgr. This draws attention to the pattern 4,1; 5,2; 6,3

and so on, without adding any analysis.
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Ten responses are in category Rcdi they make some analysis of the

situation and mention relevant aspects which could form part of

a proof. Six of these mention the relationship bet\'Ieenthe number

of triangles and either the nuffiberof sides or the diagonals, or

both (Redl)

No. 41: The diagonals split the polygons up into triangles. These
are always two triangles less than the amount of sides • • •

Three analyse the drawing of the diagonals, and either try to explain

hO\V'the non-crossing condition limits the number, or to consider how

many vertices the diagonals can go to. (Rcd2)

No. 23: ...because say you have a shape with 4 sides, you start out
at point 1 and that only leaves you with 3 other points to go to
(or does it?) e.g. you start at one point which will go across the
middle so no more can be done without crossing.

Two responses were graded E inc. Both use radiating diagonals and

both show an awareness that this arrangement is not always possible,

but neither extends the proof.

No. 16:
If in an 8,5 polygon you go from one point,
you must have only 5 other points to go to,
as you can't go along any of the edges of
the shape, that leaves you with six points
to go to, as you must be at the joint of 2
lines, and you can't go to yourself. Therefore
there are only 5 points left. In the case of
7, 4 and 6,3 and 9,6 you have to go from 2
points.

RESULTS

o Nothing or no conclusion
Nos. 7, 15, 18

Xo mistakes or misunderstandings leading to conclusion "no" or

false "yes"
Nos. 2, 3, 6*,8, 11, 12, 13, 14, 25, 26, 28, 37, 38, 40

X correct trials leading to "yes"
Nos. 4, 15,10,19,20,22,27, 31, 36*;39

D attempts at explanation but not relevant

Nos. 24, 33*
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Rgr states pattern 4,1; 5,2; 6,3
No 1*

Rcdl relates nurrber of sides to number of triangles
Nos. 17, 21, 32, 34, 35*, 41

Rcd2 analyses drawing of diagonals
Nos. 9*, 23, 29

Einc uses radiating diagonals, relates 1-1 to vertices
Nos. 16*, 30

* Scripts whose numbers are starred appear in the Appendix
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MIDPOINTS

o 1 2 3 4 5 6 7 8 9 10 11 12

A and B can be any two whole number points on the number line.
M is the point half way between them.

1. If A is at 2 and B is at 8, at what number is M?

2. Add A's number to B's number and halve the result. Do
you get M's number?

3. Hill the rule in No.2 work for every possible position
of A and B on the line, including bigger numbers?

4. Explain why your answer is true.

RESPONSES fu~D CATEGORIES

The ~ain difficulty with this problem is in recognising that the

result is not obvious. To help this as much as possible the

question is set up so as to require the pupil first to find the

mid point geometrically, and then to calculate (A + B)/2 and

verify that the two results are the same. Many pupils feel that

such a calculation is bound to give the mid point, hence the Rgr

category is large. The best explanations from this sample only

reach the Einc category. One of these translates AB to bring A

to 0, the other type argues that if M is the mid point, A and B

are reached by going the same distance from M, to the left and to

the right respectively, so A + B will be the same as 2f.1. No algebra
b-a

is used by any pupil; nothing approaching a + 2 is seen. The

categories will now be discussed in order.

Cat~gory 0 contains two blank sheets, and three in which the given

examp le has been worked out , but no response is made to the question

about further positions. Thus no generalisation is made.
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The ~ categorj is needed for four responses which respond to

question 4 by commenting on the fact that the calculation can

always be done:

No.8: My answer is true because it is easy to find any half
of a whole n~er if A and B can be two whole number points.

No.9 is similar, and Nos. 5, 6 refer to using halfway points

if you have odd nUEbers. These fail to show awareness of the

need to connect data and conclusion; they do not use their

exah.ples to test the rule. Hence they are categorised ~.

The X category is divided; Xl comprises responses which show

nothing beyond the example given, and "Yes" to question 3.

X2 comprises those which either show further examples checked,

or state that they have checked others.

In three of these cases (Nos. 2, 21, 22) it is clear that the

check is genuine.

No.2: If A is at 4 and B is at 8, the number M is at 6.
4 + 8 = 12. Half of 12 is 6. (Four similar examples given)

Another is less clear (No. 40)

No. 40: .... this 1s true because 15 + 17 = 32, 32 • 2 = 16

The re~aining four 1n category X 2 simply state that they have

made further checks (Nos. 11, 24, 31, 35)

No. 24: Because I tried it out and it does.

In category D are placed two responses which are attempting a

global explanation and not an empirical check, but who do not

say sufficient to be categorised as Rgr or Rcd.

Uo. 39: Because M is the middle of two "lumbers and if you half
two nur.bers you half.
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category Rgr contains three types of response. There are nine

(Rgrl) which simply ~ake a general restatement of the rule

withcut showing or clai~ing any further examples. These are

the ones who apparently feel the result is obvious.

No. 30: Because when you add two nurbers together and half
thee, you get the same answer as when you find half way between
them.

No.1: This is true and works in every case because any two
nurrbers added together and then divided by 2 have an answer
that is halfway between the two nurrbers because all the process
of dividir.g by two is - is halving.

A further four responses (Rgr2) both make general restatements

and either support or illustrate them with examples. In three

of these cases the check appears to be genuine, i.e. M has been

found geometrically and numerically and the results compared

(Nos. 23, 32, 38) while in the other case this is not clear (No.3)

No. 38: Six examples, the last being: • • • .A = 30, B = 40. 30 + 40
= 70, ~ of 70 = 35, f.1 = 35 on the number line. If two numbers ar'e
added together, e.g. 2 and 8 and then halved giving 4 (sic) the
r:iddle point will be the same because you are finding the distance
be twe en these two numbezs ,

The next two responses are graded Rcd. These state or show a

relevant aspect of the situation which could form part of a proof

but are not connected enough for E inc.

No. 12: 15 examples) apparently genuine checks: If M is halfway
between L~e two nurrbers then we have to count up the nu~bers in
be twe en and divide them by 2 to find a point halfway between them.
Therefore the sum of the two numbers divided by 2 = M which is
exactly half'..;aybetween them.

The reference to finding and halving the distance between A and

B puts this in a category above all previously mentioned responses,

though it is clearly not explanatory.

There are three E inc responses of which we quote two as they

represent different types.
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No 10: ...because the number before M, (A) is always the same
distance away from M as B is, e.g.

35 36 37

Af--'1Mf--7B, ,

e.g. 2 14~ 17 ~20
3 ~

Therefore the two numbe rs when added together must be twice
the amount, of H. Al so see e.g. 2, 20 - 3 = 17 add this 3 to 14
and you are given 17. Therefore if you add these it equals
34 ..vhi ch when halved equals 17. This works for all cases.

No. 36: Because the n~ber in the middle has the same number
going to each side, e.g. A = 2, B = 8 so there is 6 numbers in
between. The rr:iddlen~ber ~ has 3 squares each side. So if we
coved the nurrbers to the beginning, so we start at 0, but still
have 6 numbers inbetween, e.g. A = 0, B = 6. We know that the
Diddle must be half of 6 and this is 3. So if this works, then
we could just add the two together. 6 + 0 = 6. Half this and
it .. zou ld be 3. So if this can work at the beginning it should
also work anywhere else on the line.

RESULTS

o blank or no comment on generalisation
Nos. 7, 14, 18, 17, 33

A+B
no awareness shown of dependence of -2- on M being midpoint;
comment on details of the calculation instead.

Nos. 5, 6*, 8*, 9

"Yes" to generalisation but no evidence, examples or statements.
Nos. 13,16,19,25,26-

Show or claim further examples checked.
Nos. 2* ,11, 22, 24, 31, 35, 40*

o attenpt explanation but irrelevant or very fragmentary

Nos. 21, 39

Rgrl: general restatement, but no examples beyond the one given
Nos. 1, 15,20,27,28,29,30,34,37

Rgr2: with further examples
Nos. 3, 23, 32, 38'"
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Rcd relevant aspect displayed or stated

Nos. 4, 12.

Einc show the essential step but not fully connected
Nos. 10 * ,36, 41

* Scripts whose numbers are starred appear in the Appendix
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NOUGHTS AND CROSSES

0
1 2 3

)<
5 6

7 a 9
0

You are X and it is your turn. You are thinking of going to
square 6.

1. Is this a good move?

2. Explain fully why you think so.

RESPONSES AND CATEGORIES

This problem is set in a non-mathematical context, but one familiar

to the pupils. It is of a somewhat different character from most

of the other problerrs of this set. The implicit generalisation

for test is whether the set of possible consequences of the proposed

move all lead to a win for X, or all to a win for 0, or neither of

these. The explanation consists of tracing the consequent moves

through to show how the game must end. A high proportion of the

sample succeeded in this. There are two other main categories of

response - apart from 0, which contained four blank scripts. The

higher of these two categories is for responses which follow the

game through partially, but not to the end, and the lower for'those

who do not pursue any definite follow through, but make imprecise

judgements about what will happen.

No. 33: It is a good moxe because they can not get a horizontal
line and they have two more goes before they can get a diagonal
line and by that time you may have won.
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No. 24: This is not a good move because if I did move to
square six the game wou Ld end in a draw.

This set contains eight responses (Nos. 7, 9, 13, 19, 24, 28,

33, 38); we put these in category D, since there is the attempt

to make a deductive link (granted that the players play predictably)

between the given situation and the outcome. These are also

similar responses to those categorised as D on other problems.

Category Rcd contains five responses where the follow through

is partial.

No. 27: I think that if I was to move into square 6 it would not
be a very good reave because my opponent would probably go in square
5 and then I would have wasted my turn, because I could not get 2
crosses joining on to it. If I was to move into square 8 I would
be able to stop my opponent from getting two possible lines and s~
I would not have wasted my move.

Here the pupil has not pursued the consequences of putting X into

6 beyond noting that the horizontal line 4 5 6 would probably not

materialise. As for the suggested alternative, though, as stated,

it stops one winning move on the opponent's part, it allows another

o into 3. Of the other scripts classed as Rcd, three are full

follow throughs but with mistakes (Nos. 2, 15, 39). One (No. 31)

compares the value of a move into 6 with a move into 7 in terms

of the number of possibilities of winning opened up by each, but

without precise following through.

The remaining responses all have full follow through and so are

categorised as E. However, this is divided into two sub-categories.

E camp is reserved for those responses which mention explicitly

in sorr~ way the winning character of the situation where a player

has two marks in each of two lines, so that the opponent can block

one or other of these but not both. The E inc responses are those

which give instructions which, though effective, mention only one

of the choices open in these situations. The distinction is not

great, but on the other Band, it does discriminate non-trivially

between responses. Two typical examples follow:
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Einc: No. 17: No, it isn't a good move because if I go in square
6 she will go in square 5 to stop me from getting the middle line
then I go to square 7 to stop her from getting the line going dmln
then she goes in square 1 to get the line going diagonal.

Eco:::p: t!o. 41: No, this is not a good move because 0 would go
in square 5 to prevent ~e getting a line and will also have two
alterr.atives for getting a line next go. I will only be able to
stop one of these lines and so 0 will win the game.

RESULTS

o blank
Nos. 14, 18, 26, 40

D icprecise extrapolation, no definite follow through
Nos. 7,9*,13,19,24,28, 33, 38*

Rcd definite follow through but not to end of game or with
mistakes
Nos. 2*,15, 27,31*,39

Einc follow through to end but alternatives not mentioned
Nes. 3, 4, 8, 11, 17, 22, 25, 34, 35

Ecomp: with mention of alternatives
Nos. 1,5,6,10*,12,16,20,21,23,29,30,32,36,37,41.

* Scripts whose numbers are starred appear in the Appendix
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STAHPS

1. Anne has plenty of 8p and 20p stamps, but no others.
She has a parcel to post costing 70p. Can she put on
the correct amount exactly?

2. Explain why your answer is right.

RESPONSES AND CATEGORIES

A full response to this problem following most pupils' approach,

requires the establishment of the set of possible combinations of

8 and 20 which must be checked to see whether 70 can be obtained.

Most economically this means recognising that only 0, 1, 2 or 3

twenties are possible, and trying different multiples of 8 with

each, showing that 70 is straddled and cannot be obtained exactly.

Alternatively those aware of the properties of the highest common

factor can see that only multiples of 4 are obtainable. This

approach was not used by any pupil in the sample. However, several

used similar arguments in part of ~heir solution, for example

recognising that any useful multiple of 8 would have to be an

integral number of tens, so that 40 is the only possibility. Others

regarded 70 as an odd number and so unobtainable from two evens.

Category 0 is needed for three scripts, one blank and two mis-

readings. Scripts of the next level of attainment are difficult

to cateqorise, both X and Rgr being prima facie correct. These

state that there is no combination of 8 and 20 which makes 70;

some add that the nearest is 72p. The basis of the inference is

clearly empirical, and the deductive aspects of this problem

reside in the establishment of the boundaries of the class of

possibilities. Hence we allocate these nine responses to category

X. We next have a group of responses which make some analysis of

the situation, though still none of them say definitely there

cannot be more than thre~ 20s, or anything similar. The nearest

to this is No. 23, which' states first that four 20s make BOp,

nine 8s make 72p and eight 85 64p, then shows 3 x 20 + 1 x 8,

3 x 20 + 2 x 8, 5 x 8 + 1 X 20. This is the most systematic of

this qroup. At the other end of the scale:
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No. 27: 4 x 8 = 32 + 2 x 20 = 40 = 32 + 4 = 36

5 x 8 = 40 + 10 x 20 = 20 = 40 + 20 = 60

Soree of these are given in the spirit of an argument, while

others sioply report the results of trials. These are classed

as Red since they make some analysis of the situation. They

also involve the selection of pertinent examples, whereas less

particular choice is required in the examples checked for a

category X response in other problems. The Explanatory category

has to include the three, referred to above, which regard 70 as

odd, so unobtainable from two evens. These are classed as EO.

The genuine explanations are easy to recognise. Six of them make

an exhaustive systematic check.

No. 13 first shows 8s or 20s alone are impossible. Using

mixture: 1 x Bp + 1 x 20p = 28p worth, 42p rereaining

4 x 8p + 1 x 20p = 52p worth, 18p remaining

1 x 8p + 2 x 20p = 48p worth, 22p remaining

1 x Bp + 3 x 20p = 68p worth , 2p remaining

Notice that the amounts remaining each time could not be

up correctly using either a) 8p stamps, or b) 20p stamps

a

made

only,

c) a mixture.

Five use the fact that any useful multiple of 8 must be a whole

number of tens.

No. 11: Because 8 does not go into an odd number so you can't

add 20 to it to form 70. The only multiple of 10 8 goes into

is 40 a~d so you would need 30p more and 20 does not go into 30.

Nate in the first line that "add nunber of tens" is presumably

what is in mind.

RESULTS

o nothing or misinterpretation

Nos. 16, 18, 19

.
X states conclusion, may give a few examples, but no analysis

Nos. 2, 6, 8, 9, 12, 25*,26, 29, 36
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cannot make an odd number (70) from two evens
Nos. 28*, 32, 33

Red some analysis, selected examples given as illustrations
Nos. 5, 7*, 10, 15, 20, 22*, 23, 27, 31, 35

E comp exhaustive check of all relevant eorrbinations
Nos. 1, 3, 4, 11, 13, 14, 17, 21*, 24*, 30, 34

* Scripts whose numbers are starred appear in the Appendix
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QUADS

Q

S

R

A, B, C, D, are the midpoints of the sides of the quad PQRS.
In some quads the midpoint figure ABCD is a rectangle.

1. Find out what has to be special about the quad PQRS for
ABCD to be a rectangle.

2. Give reasons to justify your answers. Use the plain or
spotty side of the paper provided for your trial drawings.

RESPONSES MiD CATEGORIES

Any quadrilateral with perpendicular diagonals has a rectangle

for its midpoint figure. On joining PR and QS, it follows either

fro~ the midpoint theorem or from the enlargement from centre Q

taking QAB to QPR that ABI !PR; similarly DC! !PR, and AD! !Bel IQS.

Hence ABCD is a rectangle if, and only if, PR1QS. When setting

this problem it was thought that traditionally taught 15 year olds

would use the midpoint theorem and ~ose who had followed a modern

syllabus would use enlargements. In the event, no pupils used

either of these approaches effectively, and only a few showed any

fragoents of either method. It was recognised that a proof would

be difficult, but it was expected that many pupils might check

effipirically various kno~ types of quadrilateral for PQRS and observe

which had rectangles as midpoint figures. This would probably lead

to narr~ng the kite as the required outer figure A fair amount of

such WOt-1< was done, but a surprisingly large number of pupils

confused the meanings of rectangle, parallelogram and quadrilateral.



9.38

The great oajority of pupils simply reached generalisations

(mainly wrong ones) or added some fragmentary explanations.

Only three responses were explanatory.

Category 0 contains two cases where the problem of relating

the shapes of the inner and outer figures was not accepted.

These both co~ent on the sizes of the figures.

No. 29: The figure ABCD is half the size of the figure PQRS
only if the points are in middle or thereabout.

A further five category 0 cases make trials but draw no conclusions

nor ~ake any corr~ent. Category X contains those which reach a

conclusion from empirical trials. Four of these deal in named

shapes - two decide PQRS must be a diamond, one a diamond or

kite, one a parallelogram.

No. 10: I think that the quad will have to be diamond for the
midpoints to be a rectangle.

..
A fifth (No. 21) says "PQRS must have a line of symmetry ..• down

the middle"and shows a kite. Another specifies "two sides the

same length, and the other two also the same length but not as

long." (No. 15) In all there are seven of these responses,

which successfully make trials (five with correct conclusions,

two with wrong ones), maintaining their hold on the testing process

by using different shapes which they know. We call these X 2•

No. 6: ..... 1ines QS and PR would have to cross to give four
seg~ents with 90 0 angles .... (correct diagram) .... to obtain
a rectangle from any quad it is necessary that QP and RS should
be parallel and also that QR and PS should be parallel.

A less successful group (Xl) are only able to extract less

definite conclusions.

No. 14: The quad has got to have sides with exactly 90 0 and
the sides of the quad have got to be straight • .• •
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No.4: The angles AQB and DSC have to be smaller than the
other two angles because AB and DC are shorter • • • • • • •

Two others specify four sides all different, and nothing

special about PQRS.

Three responses are categorised D. These are all based on

the one or other of the interpretations already described;

all ma~e trials and derive a conclusion, but add reasons

which are, however,irrelevant.

No. 34: ABCD is always a rectangle as when you join the
cidpoints of the quad you cut off triangles.

We next have a group which treats ABCD in the given diagram as

a rectangle. These pupils conclude that every quad gives a

rectarogle because 4 midpoints implies a four-sided inner

figure, perhaps adding that rr.Qresides in the outer figure

would root give a rectangle inside.

No. 22: With the quad having 4 sides, no matter how long .• • they
have a Midpoint and therefore • • .• 'a rectangle is produced. This
particular quad has 4 sides so therefore there are 4 midpoints,
by .....hLch a rectangle is produced.

No.s 3, 19, 31, 28 are similar. These all have analyses of the

situation so are categorised ROcd, the 0 indicating misinterpret-

ation.

The best responses to this problem only reach category Red. There

are six of these:

No. 35: The quad must have 2 long sides and 2 short sides, because
if the four sides were the same length, when joined up, the mid-

points make a square.

No.8: PQRS must have ab least two lines parallel or two sides
of the saDe length for ABCD to be a rectangle. If two sides of
PQRS are the same length they will both have the same centre.
There fore two of the four points ABeD \"ill be the same length
along their respective lines. For some reason they will then be
joined to the other two points by a parallel line • • • • •



9.40

This last is probably the best of the sa~le. Another of the

better ones makes a syste~atic but non-deductive analysis:

No. 18: ... for ABCD to be a rectangle the quad must have 2 pairs
of equal sides and one right angle. Because

a) no right angle - lines not parallel

b) only one pair equal lines - not parallel, nor of even length
no right angles

c) no equal lines - lines are not parallel.

RESULTS

misinterpretation
Nos. 1, 29

trials, no conclusion

Nos. 7, 13, 20, 33, 36

trials, indefinite conclusion

Nos. 2, 4, 14, 16, 25·,27, 32

trials of different known shapes, definite conclusion

Nos. 6, 10, 11*,12, 15, 21, 24

D trials and conclusion with added reason but irrelevant
Nos. 9, 23*,34

some analysis but of the 'simplified situation produced

by ccnfusing meanings of rectangle/quad/parallelogram

Nos. 3*,19, 22, 28, 31

Red reasonable and precise conclusions (not necessarily correct)

with some deductive analysis
Nos. 8, 17 I 18, 26*,30*, 35

* Scripts whcse numbers are starred appear in the Appendix
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ONE AND THE NEXT

Write down any number up to fifteen. Write down the next
number and add it to the first. ~vrite down your answer.
You have now written down three numbers.

Gail says that one, and only one of these numbers is in
this list.

3, 6, 9, 12, 15, 18, 21, 24, 27, 30

1. Is she right?

2. Will she always be right?

3. Explain why.

RESPONSES AND CATEGORIES

This is based on the result that, of two consecutive numbers and

their sum, just one is a multiple of three. Proving this requires

separation of the three cases in which (a) the first number, (b)

the second number, (c) neither of these is a multiple of three.

(In the first case, 3x + (3x + 1) F M(3); the second case is

similar; in the third case (3x + 1) + (3x + 2) = 6x + 3 = M(3».

The question is limited to x , 15, thus admitting a full check of

all cases as a valid proof. No.pupil used algebra.

A comparatively large number of pupils misinterpreted the data.

The most serious misinterpretation was a failure to observe the

"next number" condition, adding any two numbers whatever, or any

two from the list. These seven responses form Category O.

No. 33: 5,7 = l2 • .• .No ..• • because it depends on what number the
person picks e.g. 5 + 7 = 12, 12 is the only one there but if you
have 6 + 9 = 15 all three are there .• • • •

A further nine make misinterpretations which permit reclassification

of the response, accepting the pupil's interpretation. These read

the question as requiring that the third number, the sum of the two

consecutive numbers is in the list, not one and qnly one of the
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three numbe~s. This is easily refuted by a counter-example;

six responses which do t.h i s are categerised Xl' A further three

add that the sum of two consecutive numbers is al.ways odd, so that

only the cdd nucbezs in the list can be produced in this wa'i.

These are included in Category Einc, since they comprise the

fullest explanation possible of this case. Straightfor'dard X

type responses which assert the conclusion on the basis of a

nurrber of trials, are categorised X 2; there are three of these.

Six responses list the full set of cases - category F. Responses

which make a fe v, trials then attempt an e xp lan at.Lon go in cateogry

D if their attempts are largely irrelevant, or Rgr if t.hey have

the style of a general restatement of the data and concLus Lon ,

Examples of Dare:

No. 47: Ten examples checked and crossed out. Because it is like
a table and there is only 3 numbers between each other numbe~ and
so it is impossible to do. If you can only pick a numbe~ up to
14 or over because the table only goes up to 30.

No. 31: One example 'l + 8 =: 15: Yes, she will aLways be right.
Because 3 goes into all the numbe rs so many t.Lmes and if you pick
a number like 7 and one like 8, 3 does not go into them but they
add up to 15 which 3 does go into.

These appear here, rather than in category X, because they place

ze l.f.anceen the deduction and not simply on the empd rLce.L wo rk ,

No. 31. fails to reach category R because the factor 3 is part of

the data, and the rest is a description of the process with one

example, not a general restatement.

Examples of Rgr are:

No.7: (4 + 5 = 9) Because as there' are 3 nu~bers to be written
down and all the nu!1lbersin the list are multiples of 3 one number
out of 3 will be a multiple of 3.

No. ~(7 + 8 = 15) Yes, because the nUlPbers go up in 38. If you
use 2 numbers whichare not in the list, and under IS, they will
equal Cl number wh Lch is in the list. All the numbe rs in the list
cen l:!; divided !:y 3. To, use numbers not in the List;, they can net
be divided by 3 but added together they be come numb azs wh.l ch can
be di video by 3 ( therefore' they are in the list, so Gail will be

ri<]ht.
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ReSponses more successful at explanation but still very limited

are those which identify the three different subclasses of cases -

where the multiple of three is the first number, the second number

or the sum. These make "some analysis" of the problem and are

categorised as Red. An example is:

No.6: Yes she will be right all the time because the numbers
given above will either add or come into the sum, e.g. take any
of the numbers from 1-15 12+13 = 25. The nuwber 12 has appeared.
She is going up in threes and this is important because every sum
you make will have a number which will divide by 3, e.g. 6 + 7 = 13,
8 + 9 = 17, and these numbers of course appear in the list given,
thus-proving that Gail is right all the time. As long as you have
a number which can be divided by three it will always work.

She identifies the three cases and states the importance of "going

up in threes" and of multiples of three, but does not connect these

together or relate them to properties of multiples of three. The

best explanation found in this sample is still very incomplete.

It covers the three cases in its numerical examples, and manages

just to state how one of the cases is true.

No. l: If you choose a number wh Lch is in the 3 x timetable,
naturally the next number won't be as it is the next number up
and numbers in the 3 x timetable only occur every third number.
The sum of your two numbers added together minus your second
number always gives your first number.

RESULTS

° "next number" condition not observed
Nos. 15, 24, 25, 26, 28, 29, 33

several trials, conclusion "yes"
Nos. 20,43*,45

misinterpretations (mainly sum is M(3)) i counter-example

leads to "no".
Nos. 5, 13, 14, 21, 27, 46*

F full check of all cases
Nos. 2, 3, 8, 9, 10, 11

o few examples, attempts at explanation
Nos. 31, 32, 41, 47

Rgr restatement of generalisation
Nos. 4, 7*
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some analysis, identifies subclasses
Nos. 6, 12*,42

explains result for at least one subclass
Nos. 1, 22, 23 *,44

* Scripts whose numbers are starred appear in the Appendix
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TRIANGLES

~ X
• .. • • •

• • ..
• • • • • •

• • •
• • • • • •

• • •
'( z, y z,
• • • • • • • • • • • • • • • • • • • • •

• • • • • •
• • •

• • • • •
• • •

• • • • •

• • •

The points Q, P and R can be anywhere on the sides of the big
triangle.

In the first triangle above PQR is equilateral.

l. Can PQR be equilateral with P, Q and R in any other positions?
If so, what are all the other possibilities?

2. Explain why your answer is right.

RESPONSES AND CATEGORIES

Triangles requires the generation of sets of possibilities, with

arguments to justify the completeness of the results. The sets

are (a) the set of "tilts" with P,Q,R on YZ, ZX, XY respectively

and yP = ZQ = XR, (b) the set of "parallels" with, say, P at X

and Q, R on XY, XZ with XQ = XR, and similarly with P at Y or Z,

(c) the set of "re-namings" which generates six triangles from

each previous one by permuting the vertices P, Q, R. Proofs of

completeness in cases (b) land (c) are straightforward; in case

(a) the best approach is probably to consider the consequences of

rotating about the centre of the big triangle if that of the small

triangle does not coincide with it.
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A considerable number of pupils are unable to keep to the conditions

of this problem, and draw triangles PQR with vertices not on the sides

of XYZ. See, for example, Nos. 24, 47. These nine are placed in

category O. A further three misinterpreted 'equilateral' to mean

'congruent', but these are categorised elsewhere, accepting their

interpretation.

For most pupils the main task in this problem is finding as many new

triangles as possible. There is a range of responses of different

quality in this empirical phase. Those which simply find some new

triangles, ignoring the requirement to find all, are categorised X.

Those which show some degree of system, some awareness of the need

to find all triangles, are categorised SI' Those which are clearly

attempting to find all, and succeed in finding at least some complete

subsets, are categorised S2' Some examples follows:

X: No. 23 shows 4 correct parallel-type examples and 2 incorrect
'tilts' and says because all the triangles are equilateral and points
P,Q,R touch the sides.

S2: No.2: Set of 33 possibilities (parallel and renaming types;
no tilts). If the triangle found with its numbered points can be
used a further two times these seem to be 33 possibilities.t

SI: No. 13: 2 mirror-image tilts shown. Yes the others are 3
and 4 (the two shown) There are only 3 combinations because the
triangle has 3 equal sides.

t This has worked through two types of variation (missing some cases)

before closing the search.

Two cases of Rgr appear. These are a little different from the

standard type as for example Add and Take; they are assertions

that there are no more triangles, unsupported except by the empirical

work.

No. 12: (shows 6 trials, no successes) No. PQR cannot be equil-
ateral with P, Q and R in any other positions because the triangle
XYZ is an equilateral triangle and only if the points QPR are in
the middle of each of the 3 sides of the large triangle can the
smaller triangle be equilateral.
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The Rcd category scripts go beyond this by making some analysis

of how different possibilities are generated, but not connectedly.

No.7: (shows minimal tilts) PQR shown in the first diagram can be
placed in three different positions. As there are three sides to
this triangle then each side is able to be moved around three
different ways still making PQR equilateral.

This makes some analysis of the situation and relevantly mentions

rotating 3 different ways.

Category Einc is used for those three responses which analyse

connectedly the conditions for obtaining new triangles, either

by moving the vertices of the given one or ab initio.

No.1: In the first triangle where PQR is equilateral the points
P, Q and R are all exactly halfway between the lines YZ, ZX and XY
respectively. The triangle YXZ is split into 3 equilateral tri-
angles, all exactly the same size. When either R, Q or P are moved
so they are not in the centre of their particular line, the triangle
is not split into 3 triangles with the same dimensions etc. so the
triangle PQR will not be equilateral. By moving anyone of the
points up or down their line you are making it either longer or
shorter. If you make it longer another line will be made shorter,
so the resu~ting triangle will not be an equilateral as all equil-
ateral triangles have sides of the same length.

This fails because the analysis considers only one of P, Q, R

moving at a time, and so misses the possible tilts - as well as

missing the other possible types of variation. But it has the

approach needed for an explanation of this problem.

RESULTS

° blank, misinterpretation or vertices not on sides of XYZ
Nos. 21, 24'1',25,26, 28, 29, 43, 44, 45, 46, 47*

x finds some cases, ignores request for "all"
Nos. 5, 10, 11, 20, 22, 23, 31*,42

some awareness of requirement of all, some systematic subsets
Nos. 6, 13*,15, 33

some complete subsets; seeking all
Nos. 2*,27,32

Rgr restct:esdata
Nos. 12, 41
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Rcd some analysis of possibilities
Nos. 3, 4*, 7, 8

Einc connected analysis of how all of some subset of possibilities
obtained
Nos. 1, 9*, 14

* Scripts whose numbers are starred appear in the Appendix
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COMBINED RESULTS

The establishment of reliable allocation to general categories

of the responses to this varied set of problems requires the

formulation of local criteria for the different categories for

each problem, then the allocation of scripts, using the general

definitions of the categories supplemented by the particular

local criteria for each problem. The arguments for the validity

of the local criteria are contained in the sections discussing

each problem. The reliability of the judgements made in allocating

scripts was checked by having them re-allocated by a second marker.

The second marker was provided, for each problem, with a list of

the categories, in which a total of six scripts had been entered

by the experimenter, these being spread over the different categories.

If necessary, the basis of allocation of these six scripts to their

categories was discussed. The second marker then allocated the

remainder of the scripts according to his own judgement. The

proportion of these remaining scripts which were allocated to the

same category by the experimenter and the second marker is shown

as the agreement coefficient in Table Ii the range of this coeff-

icient is from 0.69 to 0.97. The disagreements were all between

adjacent categories or sub-categories (e.g. xo/X), except for the

following. In Add and Take, on one script there was disagreement

between Rgr and Einc, and on one script between Rcd and E campi

these were in the same direction as 8 of the 9 adjacent-category

disagreements; that is, there was a consistent tendency for the

second marker to grade slightly lower than the first. In Adding

A Nought, there were three X/Rgr disagreements, arising from the

difficulty of judging whether examples were being used as evidence

on which to base the conclusion (X), or as illustrations to a

deductively-based conclusion (Rgr). On Diagonals of a Polygon,

there were three X/Rcd2 disagreements arising from a similar

difficulty of judgement. On Noughts and Crosses there were two

Rcd/Einc disagreements; in'this problem these categories are non-
I

adjacent, being separated by Emist.
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A less rigorous procedure was adopted for One and the Next and

Triangles, since these were the first problems categorised, and

the second marker was unfamiliar with the material. In this

case the second marker was informed of the experimenter's

categorisation of each script, and asked simply to identify

cases of disagreement. There was disagreement over one script

in the set for each of the two problems. The final allocations

to categories, for all problems, were made after the reliability

check had been conducted and disagreements had been discussed

with the second marker.

Table 2 shows the number of responses to each problem in each of

the major categories. For this table, certain combinations of

categories have been made. The category F responses, which occur

only in One and the Next, have been entered in the E comp column;

in Triangles, the SI and S2 categories have been entered under D

and Einc respectively; and the E responses to Stamps are entered
o

in the Einc column. In each case these are shown separately from

any other entries in the same cell.

TABLE 2

TEST O,¢ X D Rgr Rcd Einc Ecomp Total A.C.*

Add and Take 3 13 9 3 6 7 41 .69

Coin Turning 20 1 1 3 9 3 4 41 .94

Adding a Nought 3 7 20 8 1 2 41 .77

Diags of Polygon 3 24 2 1 9 2 41 .86
f--

Midpoints 9 12 2 13 2 3 41 .74

Noughts & Crosses 4 8 5 9 15 41 .80

Stamps 3 9 10 3Eo 11 36 .97

Quads 7 15 3 11 36 .77
....1----

One & the Next 7 9 4 2 3 4 6F 35 -
Triangles 11 8 4S1 2 4 3 35 -

. +3S2

Totals 70 98 24 50 64 37 45 388

% 18% 25% 6% 13% 16% 9% 12%

* Agreement Coefficient



9.51

Tables 3 to 7 show to what extent each pupil performed at the

same level in the two problems constituting his test. Each of

the 41 pupils who worked the first two problems is denoted in

Table 3 by his serial number. Thus the table shows that pupil

No. 38 was classed as Xl on Add and Take, and as 0 on Coin

Turning. The (different) 41 pupils who worked the third and

fourth problems are similarly represented in Table 4 by their

serial numbers; and so on.
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DISCUSSION

(1) Categories and Stages

The tables showing pupils' performances compared on the two

problems which each attempted show that the hypothesis that

they will make similar responses to the two problems is un-

tenable in general. One table, Add and Take/Coin Turning,

shows a fair degree of association, and if Rcd, Einc and

Ecomp responses are taken together, and compared with the

remaining categories, on each problem, the resulting 2 x 2

table shows a significant association at the 0.001 level.

O,X,Rgr Rcd,E

O,X,D
21 4

Rgr

Rcd,E 4 12

x2 = 10.6, p = 0.001

Table 8

None of the other tables shows significant association. There

appear to be two reasons for this. One is that the ten problems

are very diverse indeed, both in their nature and in the levels

of difficulty they presented to the pupils, and hence in the

responses. This is good for the descriptive aspects of this

study, in that it has produced a wide range of examples of pupils'

mathematical activity; but it has made it difficult to establish

coherences across problems - at least by direct statistical methods.

Some common characteristics do exist and they will be described

below. The second proposed reason for lack of association is more

fundamental. It is that a pupil's level of explanation in a

particular problem depends directly on his familiarity with the

concepts and relationships involved, and his degree of insight

into the problem. He seems willing to accept whatever level of

insight he can reach in the problem as his explanation, and not

to be aware that this is ,incomplete. This contrasts with the

situation of the trained mathematician, who will know whether or

not he has explained a result satisfactorily. The evidence for



9.55

this explanation of the results is as follows:

(1) The remark "I can't explain it" or the equivalent appears

scarcely at all in these 388 scripts.

(2) The prevalence of Rgr responses, the general "re-statements"

which give the impression that the writer feels he has

settled the question, but which add nothing to what is in

the data.

(3) The general tone of most of the responses is as if a satis-

factory explanation has been given. The ones quoted in the

previous sections provide a liberal supply of examples of

this.

The most striking contrast in levels of explanation on a pair of

problems is between Noughts and Crosses and Midpoints. Here 24

pupils trace the moves of the game situation through several

steps to its conclusion, but only 3 of them give as much as an

incomplete explanation of Midpoints. The scripts of the remaining

pupils on Midpoints were carefully studied by the experimenter and

the second ~arker, without being a?le to detect any sense that the

pupils were aware of the inadequacy of their explanation. (It was

not possible on this occasion to conduct follow-up interviews, but

this is a suggestion for future research).

(2) Context

This states that familiar non-mathematical situations, number and

geometrical situations will be in this order of increasing difficulty

with regard to the provision of explanations. The number of Einc

and E camp responses combined are, for the non-mathematical situations;

Noughts and Crosses, 24; Coin Turning, 7; Number: Add and Take, 13,

Stamps 14, Adding a Nought 3; Geometrical; Quads 0, Triangles 3 + 3S
2

•

The numerical evidence appears to support the hypothesis, but the

problems are by no means equal in all respects other than context.

However, the good performance on Noughts and Crosses does appear to

be attributable to familiarity, and the poor performance on Quads

partly to lack of agreed basic principles. Adding a Nought shows
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that what is familiar as a process may be difficult to explain.

In Coin Turning the generally poor performance was due partly to

inability to perform and record the manipulations without mistakes,

and partly to the factor mentioned under (f), that is, the tendency

not to present full explanations in impossibility situations. This

factor is affecting Stamps too, but this is a particularly easy

problem in which to reach a conclusion, so that even after this

loss the number of full explanations is high.

(3) Finite Sets

The method of exhaustive check is adopted by noone in Add and

Take, and by 6 pupils in One and the Next. It seems that in Add

and Take, conviction of the truth of the generalisation comes to

most pupils fairly quickly and even those pupils who do not actually

give an explanatory response think they have done so. In One and

the Next,a much harder problem to explain, there are pupils who

cannot achieve an explanation but, being aware of this, adopt the

next best alternative for justifying the result. Or it may be that

the less obvious nature of this generalisation makes extensive

empirical check appear more reasonable. Taking the two problems

together, it is clear that a large number of pupils could have given

more cogent justification of the results than they actually did,

if they had employed such a check, but that they did not do so.

This supports the hypothesis that pupils are more concerned with

illumination than with certainty.

(4) Impossibility Situations

These are Coin Turning and Stamps. Coin Turning failed to be

particularly attractive from this point of view because many pupils

made mistakes which led to the false assumption that the problem

was soluble. From those who did reach the correct conclusion, the

explanations were, as predicted, incomplete. Stamps did produce

the expected good performance, and with an unexpectedly large number.
of responses presenting 9 fully argued case.
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(5) Use of Record (Coin Turning)

This has been discussed under the particular problem. The result

was as predicted; pupils who could not solve the problem could

not, in general, construct and use correct records.

(6) Use of Algebra

Two pupils used algebra fully, and one partially, for Add and Take;

none did so for One and the Next. The hypothesis is not confirmed.

It would appear that the teaching of algebra to these pupils has

not made them aware of its value in expressing general number

properties and relationships. Perhaps more experience of problems

of the kind used in the test would help.

(7a) Factors determining performance

The three proposed factors were (i) specific knowledge required,

(ii) logical complexity, and (iii) possession of general strategies.

The first has been commented on already; it was clearly very important.

There was also plenty of evidence of the operation of the second factor.

For example, in Triangles, some subjects drew triangles some of whose

vertices were not on the sides of the big triangle, (e.g. No. 43) and a

few interpreted "equilateral" to mean "congruent"; in One and the

Next, some failed to observe the "next number" condition, while

others assumed that the last number of the three had to be a multiple

of three; in the second step of Add and Take some took the first

number from the second number instead of from ten; in Diagonals some

drew lines in the figure which did not terminate at vertices, and

others drew too few diagonals or miscounted the ones they had drawn.

In some of these cases the lack of knowledge of a particular concept

is the reason for failure, but in most the breakdown appears to be .

an inability to coordinate all the data - the information-receiving

apparatus seems to be over~oaded. In some cases this complexity

factor interacts with the'knowledge factor and ~~e grasp of a concept

which is not well understood is lost. The failures to attach P, Q,

R to the sides of XYZ in Triangles must be attributed to the complexity
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factor, as the meaning of the individual terms is quite clear;

whereas to read "congruent" for "equilateral" is an equally clear

knowledge failure. Only a few mistakes in Diagonals are attributable

to lack of knowledge of the concepti missing diagonals and miscounting

are failures of coordination. The misreading of Add and Take, which

was comparatively co~mon, must be attributed similarly. It seems to

arise as follows:

Subjects have written a chosen number (say 3), and have added it to

ten (13). Now they are asked to "take the first number away from 10."

What they do is to take the first number away not from 10 but from 13,

which they have just written downi it must be that their own written

13 is much more immediate to them than the 10 which only appears on

the printed page. This is not unlike other documented phenomena

related to the perceptual field - ten-year-olds will often write'i

in 15 7 3 = ~ 7 31the answer 5. In One and the Next the significance

of the term "next number" may conceivably be missed because of unfam-

iliarity with it in this type of context; but both this and the reading

of "one and only one of these numbers" and "the last of these numbers"

are more plausibly attributed to the complexity factor. This factor

is well recognised in the literature of psychology and mathematical

education (Collis 1975b, p. 76 ) and it is related to the "acceptance

of lack of closure" (Lunzer, 1973b). It is also implicitly recognised

by the mathematics teacher who knows that when a pupil says "I don't

understand this problem", often he needs only to be asked to read it

aloud to achieve comprehension, his previous sketchy reading having

failed to collect all the data.

In Midpoints, another type of logical,failure was prevalent, that of

not distinguishing the finding of the midpoint geometrically from

finding its coordinate from the formula; "it's the average" seemed to

be a statement which linked the two aspects and made them difficult.

to separate. This last failure might be aided by the development of

a strategy of stating data,and conclusion; on the other hand, deciding

what is data and what conclusion presents the same difficult problem

of separating the two aspects; naming them mayor may not help. This

is similar to the once-familiar problems of understanding formal

Euclidean proof • .
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Thus logical complexity is clearly an operative factor. Whether

the possession of general strategies is helpful is a question which

cannot be answered in this experiment. What can be done is to

identify where possible the points of breakdown in the problem and

to formulate general strategies whose value might be tested in a

further experiment. This is part of the task of the next section.

(7b) Strategies for Improvement

There are first a number of what are not so much strategies as

strategic concepts, which might plausibly be taught to pupils and

which might improve performance. (1) One is simply the concept

of all cases. Pupils aware of this should be able to replace X

responses by F, in problems such as Add and Take, and, where not

possible, as in Diagonals of a Polygon, to acknowledge the logical

gap and to take steps to seek a general insight. (2) The concepts

of data and conclusion might help, as suggested above. (3) Several

strategies which might be described as being systematic could be very

helpful. The notion of identifying different types of case and

dealing with them successively is required for One and the Next

(the three possible types of starting number, M(3), M(3)+1, M(3)+2,)

Triangles (the possible different kinds of new triangle), Stamps

(0, 1, 2 or 3 twenties together with appropriate numbers of 8s) and

could be useful in Adding a Nought (one-digit numbers, 2 digit and

so on.) The use of mathematical induction (under a less sophisticated

name as "adding oneil) could be helpful in Diagonals of a Polygon in

teaching towards the one-to-one relation between radiating diagonals

and their terminal vertices.

The facilitation of progress from Rgr and Rcd stages to E is not

easy, on account of the pupils' apparent satisfaction with their

existing performance and the difficulty of showing them convincingly

what it lacks. The best strategy is prob~ly to vary the situation,

in any identifiable way. In Add and Take, one could ask how the
I

process could be altered to give something other than twenty; or

could vary the chosen number by one at a time and see what happens.

In Midpoints, varying by one was used by one of the few pupils who
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achieved Einc (No. 10). He wrote 35 i 36 t 37, then 141 17 320.
In the same problem, trying big numbers was suggested in the questions,

and seems to have helped in a few cases by forcing attention to the

processes being performed. Trying special numbers loses the general-

ity but may be a step towards a fuller insight; it helped another

pupil on Midpoints (taking A at 0, and general B: No. 36). These

may all be feasible strategies or concepts for improving explanations

(and insights generally), but the first requirement is a context in

which they can be developed, that is sufficient experience of

solving problems and giving explanations. The present experiment

has shown that such problems need to be in contexts which are already

familiar. The development of such work thus may be competing for

course time with the teaching of new concepts. It may be that at

present the balance allows too little time for the development of

these process abilities as distinct from new content. The second

requirement for the development of improved explanations is the

ability to distinguish an explanation from a lower level statement,

in particular from a restatement. This recognition may be developed

by discussing different proposed written explanations of a given

result, with a group of pupils. This ability to consider and

evaluate, explanations is probably a very important step towards

being able to improve one's own explanations. An experiment to

test the efficacy of these methods in improving sixth formers'

understanding of proof forms the subject of the next chapter.

A different and complementary approach to the teaching of the axiom-

atic concept-of proof would be to see it embodied in a small-scale

system. Possible systems are the seven point geometry, Steiner's

(1968,,1975) voting systems, the schoOl version of Euclidean geometry

- and Boolean algebra. Euclid's Elements itself formed a model from

which many generations of thinkers derived their notions of deduction

and of axiom systems, perhaps in a way not essentially different from

that in which multiple classification is embodied in logic blocks or

the place value system in ~ultibase blocks. We are here discussing

a study in which one of tHese systems is actually built up with

reflection on its deductive structure, so 'that the concept of axiom-
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system is abstracted from it. This would be for advanced and/or

able pupils, since both experience and the present results show

that most school pupils are far from such ideas at present. An

outline of such a study of Boolean algebra formed a partial guide

for the teaching programme of the experiment of Chapter 10; it

appears in Appendix 10.
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INTRODUCTION

Underlying all the research reported in this thesis has been the

question "To what extent can general mathematical strategies be

learnt?". In the age cross-sectional experiment of Chapter

developments with age were noted in the coherence of deductive

arguments and in the recognition of the non-validity of empirical

extrapolation from a number of cases; but whether these developments

could be accelerated by suitable teaching could not be determined

from the data of that experiment. The ten-problem experiment of

Chapter 9 exposed more fully both these and other strands of devel-

opment with regard to generalisation and proof, such as the construc-

tion of classes of cases and the sense of what are acceptable as

agreed assumptions on which arguments may be based, but, again,

this did not study the effects of teaching. The General Mathematics

Test used with the South Nottinghamshire Project's first year

secondary classes showed their superiority over non-project classes

in the generation of examples to test generalisations or to meet

criteria, and to a smaller extent in the giving of explanations.

This does suggest the susceptibility of certain strategies to

educational influence, but is based on the comparative performance

of two groups on a single occasion so that the differences cannot

unquestionably be attributed to differences in their secondary

school experience rather than to earlier differences in experience.

The experiment of the present chapter studies the effect, on the

generalisation and proof attainments of a sixth form group, of

specially-directed teaching over a period of about six weeks. It

also involves the development of a more objectively-markable test,

based on the responses obtained in th~ ten-problem study. This is

used as both pre- and post-test, and the results of the trained

group compared with those of a control group. The experiment was

conducted in collaboration with Mrs. B.C. Edmonds, who taught both

the classes as part of her normal teaching duties in the sixth form

college used. The present,writer was responsible for developing

and providing the criterion test, and for consultation regarding the

teaching programme. The detailed teaching was the responsibility of

Mrs. Edmonds.
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PREVIOUS RESEARCH

Several researches exist which bear on the learning of general

strategies. The first two to be quoted concern general heuristic

strategies, the remainder,mathematical strategies,except for one

which is about an aspect of scientific method.

Covington and Crutchfield (1965) developed a General Problem Solving

Program based on strategies such as planning one's attack, searching

for uncommon ideas, transforming the problem and using analogies.

The setting is not mathematical, but consists of stories of how two

children solve a nurrber of puzzles and mysteries with the help of

their uncle, and high school science teacher and part-time detective.

Groups of 10 and 11 year old pupils studied this program with their

teachers and were tested for problem-solving ability, creative

thinking and attitude. They showed considerable gains on all of

these, and the gain in problem-solving ability was still significant

five months later. Other workers followed up this work though with

less successful results (Kilpatrick, 1969).

Lucas (1974) studied the effect of heuristically-oriented teaching

of a university calculus course on the students' ability to solve

problems. An experimental group and a control group each contained

about 15 students; both groups received "enquiry-style" instruction

except that with the experimental group, the same style was adopted

during problem-solving sessions, and "the problems were discussed

more thoroughly for the sake of problem-solving", whereas the

control group had "an expository treatment of problem solution".

Also, the experimental group received 12 papers outlining and demon-

strating various heuristic strategies, and their problem solutions

were graded to reward heuristic usage. This programme lasted for

eight weeks. Pre- and post-test interviews were administered:

during these, each subject talked through the solution of seven

problems. Significant differences on the post-test, favouring the

experimental group, were found on total score for the problems, on

plan and approach, and on the strategies of using a well-chosen
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mnemonic notation, using the method or result of a related problem,

and of separating and summarising data. There was no difference in

the frequency of use of diagrams, but there was a lower incidence

of incorrect diagrams in the experimental group. Among the results,

the first was significant at the .005 level, the others at levels

of .025 or .05, which suggests that the simple, well-defined strategy

of choosing a mnemonic notation is more susceptible to teaching than

the others.

Brian (1966) analysed the mathematical process into (1) constructing

mathematical models, (2) conjecturing, (3) settling conjectures as

true or false, and (4) using known or given axioms, theorems or

algorithms on problems where they clearly apply. A short course

(about two weeks) designed to help students acquire these processes

was given to a group of 17 college students. This resulted in a

significant improvement on the third process, the settling of con-

jectures, but not on the others. The fourth process is described

by Brian as the primary aim of most present mathematics teaching.

In terms of the strategies we have defined in Chapter 4, Brian's

first process is formulating questions and making representations,

and his second and third processes appear as higher and lower levels

of generalisation. Thus Brian's result suggests that testing gener-

alisations may be easier to learn than making generalisations, or

formulating questions, if we may assume equal emphasis on the diff-

erent processes in the teaching he provided.

Wills (1967), constructed a programmed unit to teach the following

problem-solving procedure; (a) a difficult problem is given, requiring

a certain generalisation, (b) similar, but simpler problems are

presented, (c) the results of these are tabulated so as to reveal a

pattern, (d) the generalisation suggested by the pattern is applied

to the initial problem, and the result checked. The subject matter

was recursive definitions and figurate numbers; the age of the

students is not stated, nab is the length of the instructional period.
I

The pre- and post-test comprised 60 problems on a wide variety of

topics which could be solved by steps (b) and (c), that is, by the
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generation and tabulation of examples, from which a generalisation

can be made and applied to the problem. 561 students took part,

in three groups; the first used the programrr.ed unit only, the second

also had back-up instruction from teachers, while the third was a

control. Both of the first two groups made highly significant gains

compared with the control, and there was no significant difference

between these two. In terms of the set of strategies discussed in

this thesis, Wills' experiment shows successful teaching of one well-

defined strategy for generalisation, including the generation of

relevant examples and the making of generalisations. Wilson (1967)

attempted to improve performance on theorem-proving tasks by either

(a) task-specific heuristics, or (b) identifying data and conclusion

and seeking to make a connection, or (c) planning a solution in

general terms. The task-specific heuristics did not improve per-

formance, even on the tasks at which they were directed; of the

general heuristics, planning a solution was successful in only a

few of the tasks. Thus this attempt to teach strategies for theorem-

proving tasks was largely unsuccessful.

Post (1967) had ten classes of 12 year olds given a six week period

of instruction and practice in the processes of problem-solving, but

obtained no significant differences in comparison with a control

group.

Lawson and Wollman, (1975) trained classes of fifth and seventh

grade (10-11 and 12-13 year aIds) in controlling variables, in the

Piagetian task with bending rods. Transfer was investigated (a) to

another task involving controlling variables (the pendulum), (b) to

one (the beam balance) involving a different aspect of formal reason-

ing, in this case proportional reasoning, and (c) to other tasks,

e.g. Peel's passages for showing imaginative judgements. Transfer

was obtained to the task (a) involving the same strategy but not to

(b) or (c). The training consisted of evoking the subjects' intuitive

judgements about "fair tes~s", of clarifying and exposing their

judgements to them, supplying verbal forms focussing the experience,

e.g. fair test, variables, all factors the same except the one being

tested, and getting the pupils to describe their actions and the

rationale for them.
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To summarise the results of these researches, it is clear that it

is possible to teach at least some of the strategies which comprise

the mathematical process, but that some are easier to teach than

others. The testing of conjectures (Brian), the adoption of a

mnemonic notation (Lucas) I the finding of a generalisation by

generating and tabulating examples (Wills) and the learning o~ one

strategy for scientific experiment (Lawson & Wollman) are shown

here as the most susceptible to teaching. Nilson's failure may

perhaps be attributed to a less careful identification of the

strategies actually required for his tasks. But, as in all

teaching experiments, fully consistent results cannot be expected

because of the difficulty of specifying the teaching in sufficient

detail to identify the significant aspects.

HYPOTHESIS

The reports of these researches say so little about the methods

used to teach the strategies in question that it is difficult to

make useful deductions regarding what methods are most likely to

be successful.

Gagne (1970) points out that strategies are essentially higher-

order rules and that they are normally learned in the course of

performing the activity to which they relate. An appropriate

method is therefore experience of the activity, preferably with

verbal guidance. Thus, to be specific, the suggested method for

learning strategies of generalisation and proof is to provide

problems involving them, to discuss the solution of the problems

and to identify and name the concepts which have emerged as

important in the present studies, such as "all cases", extreme

values, iteration, "re-statement", connected, data, conclusion,

agreed starting points. This can be done to some degree in any

mathematical context, but as the Ten Problem Study (Chapter 9) shows, it is

best done in the context o~ already-familiar ideas. In designing

the present experiment, wh'ich has to take place under normal school

conditions, about two thirds of the teaching time will need to

contribute to the learning of syllabus content; in this, process
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aspects will be emphasised as much as possible. The remaining

third of the available time will be given to material on familiar

content, chosen particularly to illuminate the concepts listed

above. The hypothesis is that such teaching will lead to improve-

ments in pupils' concepts and strategies of proof.

CRITERION TEST

The behaviours wh i.ch it was aimed to improve in this experiment

were essentially those studied in the Ten Problem Study - the

making of generalisations and the giving of explanations and

proofs - but a more accurate method of measuring them was

required. This implied more and shorter questions, and the same

set of questions for each pupil. The solution adopted was to

take some of the Ten Problems, to present them along with correct

and incorrect responses, and to ask the sixth formers to distinguish

these and to give reasons. (This is a different activity, and a

more concentrated one, than the spontaneous provision of general-

isation or proof but it is highly relevant to proficiency in these

strategies.) For example, the first questions are based on the

problem Add and Take. This is given Ln essentially its original

form and the question continues:

Susan:

The result will always be 20. If you chose a number between 1
and 10 and add it to 10, then if you take the first number away
from 10 it will be whatever is needed to make 20.

Yvonne:

Always 20. Whatever you add you always take it away so it
cancels out. But as you add 10 and take the number from 10,
you get double 10 which is 20.

Have these pupils proved their answers?

Susan's: Yes/No . Yvonne's: Yes/No

Give your reasons:
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A question based on One and the Next, and contributing to the

factor X, is

Amanda: 1 + 2 = 1, 2 + 3 = 5, 3 + 4 = 7. So John is right.

Bob: 4 + 5 =~, 7 + 8 =~, i + 2 = 3, 10 + 11 = f1
So John is right.

Have they proved their answers? Amanda: Yes/No

Bob: Yes/No

1. Say why you think so:

2. Say which you think has the better set of examples.

Amanda/Bob

Give your reasons:

The full test and notes on marking are included in Appendix 10

together with notes on the development of the test, and item and

factor analyses.

The factors included in the test are:

F/X: The recognition of the conclusiveness of a full check of

a finite set of cases, and the non-validity of a conclusion

based on a subset only.

c: The construction of an identified set of subsets of the

relevant cases, and dealing with these exhaustively.

E: The recognition of a genuine explanation as distinct from

a re-statement OL data or an irrelevant statement.
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Eg: E in relation to geometrical situations, in particular,

the polygon problem.

EE: Ability to state explicitly the nature of the distinction

between an explanatory and a non-explanatory response.

SAMPLE

The experimental class consisted of 12 first-year sixth formers

(5 boys, 7 girls) who were studying Boolean algebra as one topic

of their A-level mathematics course. The first control class

comprised 11 pupils (all boys) in a parallel group, studying

Mechanics. A second control group consisted of 3 pupils of the

same age group, taking English A-level with no mathematics. Strict

matching ,of the two groups was not possible; the O-level mathematics

grades of the experimental group were slightly higher than those of

the first control. The criterion test was adminisLered to all three

groups immediately before and after the teaching programme.

TEACHING PROGRAMME

The first two classes were both taught by Mrs. Edmonds for two hours

per week and studied mathematics with other teachers for a further

three hours per week.

a total of 20 hours.

The experimental teaching programme occupied

During this time, the first control group

studied Mechanics for 20 hours; the second control group studied no

Mathematics at all. The design of the experimental teaching pro-

gramme was to some extent limited by the fact that it had to serve

as part of the normal A-level course for these pupils; a fact of

which the teacher, being their normal teacher, was very much aware.

Hence, of the 20 hours available, 13 hours were occupied by the

teaching of the Boolean algebra topic with special emphases intended

to develop the awareness of aspects of p~oof within the topic, and

the remaining 7 hours by work and discussion based on some of the

material from the Ten Problem study (Chapter 9) which had not been

used in constructing the criterion test. (One problem was discussed

which was also in the test; this is referred to below.)
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The first of the special emphases given to the Boolean algebra

course was aimed not directly at improving performance on the

criterion test, but at developing the pupils' confidence in

evaluating a mathematical situation for themselves, at using

symbolic forms to model a given situation and the studying of

the relationships among the concepts extracted, considering

whether they can be simplified and reduced to a smaller set.

Thus the laws of Boolean algebra were not given initially, as

rules to be practised, but derived by examination of the prop-

erties extracted intuitively from a body of logically connected

information.

Similarly, in subsequent lessons, starting with some experiment

with a "switch board" containing switches and lamps which could

be connected in various ways by plugging in wires, some laws of

switching circuits were observed, codified and compared with

those derived from logical situations. Broadly, the aims of

this approach were (a) the development of the pupils' understanding

of the mathematical process, and (b) to develop their reliance on

their own powers of reasoning rather than simply on received

instruction. (See article in Appendix 10) The second

special emphasis of the Boolean algebra course was that pupils

were encouraged to discuss and criticise their colleagues' proposed

results and reasons. This emphasis became the basis of the last

7 hours of the 20 hour programme, when the validity of proof-

arguments was examined more closely.

The first of these sessions discussed the validity of checks by

examples to settle conjectures such as "If a * b = a + b - ab,

with a, b integers, is * a commutative operation"; and similarly,

if a~ b = a/b 2• The contrast between disproof by a single counter-

example and the need for a general argument for proof of the

positive statement was exposed. In subsequent sessions the

problems Stamps, Quads, Co~n Turning, Midpoints and Triangles

were discussed. On some dccasions pupils were asked to write

proofs, and these were then duplicated ano circulated to the
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whole class for criticism. (For further details of this teaching

see Edmonds (1976».

RESULTS

It was expected (i) that the teaching programme would improve the

pupils' performance substantially on all aspects of the criterion

test; (ii) that the first control group would make small gains

arising from their normal study of mathematics; and (iii) that all

groups would show small gains due to previous experience of the

test.

The mean scores of the experimental group and the two control groups

on each of the six scales, and on the tota~ are shown in Table 1.

Scale X F C Eg E EE Total
Group N Max 3 3 2 2 6 4 20

12
Pre 1. 25 2.33 0.75 1.00 3.08 1.08 9.58

E
Post 2.50** 2.50 1.25 1.25 , 3.75 1. 33 12.58*

-
Pre 2.00 1.09 1.00 1.27 2.36 1.09 8.82

Cl
11 IPost 2.00 1.27 1.09 1.27 : 3.18 1. 36 10.18

C2 I Pre 0.67 1.67 0.67 , 0.6711.00 0.00 4.67
3

1.00 I 0.67 1.33I Post 0.33 2.00 0.33 5.67

** Gain significant at .01 level in comparison with combined control groups;

* At .05 level.

TABLE 1
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The estimates of significance of the gains in Table 1 were obtained

by first calculating gain scores for each individual, using a short

specially-written Fortran program and then applying a

correlational analysis, which compared gains within and between the

two groups (experimental and combined control) using Tukey's Q

test. (Youngman, 1975)

DISCUSSION

The results offer partial but not total confirmation of the hypothesis

stated above. Both control groups show small gains, though that made

by the first control is not significantly different from that made

by the small second control group. The overall gain by the experi-

mental group is Significant, but this arises mainly from Scale x.

The experimental group gains more than the main control on C and Eg

but not significantly so, and scales F, E and EE show no differences

between the groups. The main conclusion to be drawn is probably that

the distinguishing of valid from invalid informal proofs, as required

by the criterion test, requires judgements of relevance and logical

completeness which need more time or more intensity of teaching - or

more general mathematical ~aturity - than they received here. On

the other hand, the recognition of .invalid inference from a limited

number of examples requires only fairly superficial observation,

together with a general sensitivity to the matter, and this was

quite easily learned.

Edmonds (1976), commenting on these results, suggests that there

were improvements in the experimental group's performance which did

not appear in the test results. Their more critical attitude led to

the rejection of some proposed proofs which the mark scheme defined

as acceptable. For example, on Add and Take, Ann's explanation that

the addition of a positive and a negative number gave zero was judged

to require proof; similarly, her omission of an explicit statement

that the 20 arose from adding the remaining two tens was criticised.

These comments highlight the fact that the completeness of a proof

is a matter of judgement or what is crucial to this particular

result, (so needs mentioning); and what can be regarded as already

agreed among those reading the proof.
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The results of the second control group, of pupils taking A-level

English, are of some interest. Their particular weeknesses, compared

with the mathematics students, lie on scales X, E and EE. On X it

was noticeable from their comments that they all regarded the check

of a sufficiently varied set of examples as fully convincing; they

were insensitive to the need for all cases to be conforming. However,

their F results show them equally capable of recognising that a full

empirical check is valid. For example, "Jayne shows a complicated

polygon • • • .she can say definitely that the statement is true."

Regarding their performance on E and EE, it has been observed by

Backhouse (1967) that performance by sixth formers on Valentine's

Reasoning Test showed significant differences between pupils studying

different subjects both before and after the full sixth form course,

but no significant differences in the gains made by the different

groups. Mathematics students scored highest, English students among

the lowest on the Valentine test.

Most of the failures on F were due to assuming that "a correct proof"

implied an argument with some explanatory quality, so that a complete

check of all cases was not regarded as a full proof. One pupil said

"Tessa has only showed it, not proved why."

The C scale requires some comment. The two items concerned are

from Stamps; James and Richard. James's proof (that 70 cannot

be made up from 8s and 20s) is a muddled but complete check of the

cases 0, 1, 2 and 3 x 20; whereas Richard's is a systematically

arranged check, but omits consideration of 0 x 20. These items

showed poor reliability; and although in the pre-test nearly half

the pupils were right on one of these, only about 15% had both

right. The conflict between the superficial degree of organisation

of the answers and the actual completeness of the check has proved

a difficulty. Although a mean gain from 0.75/2 to 1.25/2 is recorded

for the experimental group, it should be remembered that this actual

question was discussed du~ing the teaching programme, which makes

the post-test score look very low.
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In conclusion, if we consider the general level of the results

in relation to the content of the questions, even bearing in mind

the limitations of this experiment, we are led to the suggestion

that there are a number of straightforward concepts and skills

related to the empirical aspects of proof which could be improved

quite Substantially by suitable emphases in teachingi and others,

mainly related to deductive aspects, which involve judgements of

relevance and of explanatoriness, and of whether the assumptions

on which the arguments are based are sufficiently fundamental,

which develop much more gradually. If they are considered important

it would seem necessary to devote greater attention to activities

involving judgement and the construction and criticism of arguments

than is normal in mathematics courses.
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INTRODUCTION

The previous studies have shown how wide a gap exists between the

general mathematical strategies possessed by school pupils, even

including sixth formers studying mathematics and the fully

developed mathematician. As a first attempt at filling this

gap in the pattern of development, an informal study was made

of 52 students in October 1975, at the beginning of their first

year in the mathematics department of Nottingham University.

HYPOTHESIS

It was expected that the performance of these students would be

superior to that of the pupils previously tested in the following

respects:-

A. Strategies for Generalisation

1. Interplay of empirical and deductive work - use of empirical

work to suggest generalisations, and to test proposed general-

isations.

2. Construction of classes of case to be dealt with exhaustively.

3. Use of 1-1 correspondence and iterative arguments.

4. Recognition of symmetries and isomorphism.

5. Spontaneous extension and generalisation of problems.

B. Concepts of Proof

1. Clear awareness of the invalidity of a partial empirical check

and the validity of a complete check.

2. Distinction between implication and equivalence.

3. Precise literal treatment of statements of propositions and

definitions.

4. Relevance to proof of ,(a) starting assumptions

I (b) definition of terms

5. Nature of axioms as (a) basic statements of relationship

among the undefined terms of a theory, (b) logically arbitrary,

but in practice chosen with hindsight.
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Of these, Al-3 and Bl have been exhibited to a limited extent

among the better responses from school pupils; considerable

improvements are expected on these. On B2 and B3 deficiencies

have been evident in the pupils' work. Little or no opportunity

has been given for showing B4 and BS in earlier work; they appear

well beyond the capabilities of pupils in general so were not

incorporated in the test material.

SAMPLE AND PROCEDURE

As this was a pilot study, two forms of test were prepared, to

allow a larger number of questions to be tried. Each form contained

three questions. 52 first year students in a university mathematics

department worked at them for about 40 minutes during their first

meeting with their tutor of the academic year. The tutors were

free to decide whether or not they wished their tutor group to

take part in the survey; in the event, 27 of form A were returned

for analysis, and 25 of form B.

The six questions used included three adapted from earlier studies,

Coin Turning, Diagonals of a Polygon and Quads, to facilitate

comparisons; and three new questions aimed at sampling understanding

on B2 and BS above. B3 and B4 would be exposed, it was hoped, in

Diagonals of a Polygon, and the reformulation of the question was

intended to assist in this.
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QUESTIONS h~D RESPONSES

MEANS

Theorem:
numbers

The arithmetic mean of any two positive real
is not less than their geometric mean.

a + b
~ lab

2

Hence a + b ~ 2/ab

Proof:

Squaring to remove square roots,

(a + b)2 ~ 4ab

Hence a2 + b2 _ 2ab ~O

So (a _ b)2 ~O

This is true for all real numbers a&b, hence the theorem
follows.

Is this theorem proved? If not, say what is wrong and give
a correct treatment of the situation •

.------------------------------------------------------------------------------------

RESULTS

Of the 25 respons~to this question, 17 correctly stated that the

argument needed to be reversed, 5 accepted it, and 3 said it would

be 'better' to reverse it.

Other observations: One student argued by contradiction:

a + b 2 -t
"assumed 2 ~ lab ...• . ::3> (a - b) f 0' One tried to check some

numerical cases. Of the 17 responses which were correct, 8 also

mentioned the need to ensure that the·positive square root was taken.

Thus, although a majority (68%) of this sample correctly identified

the logical error, there are still 20% who failed to reject a proof

of form Q => P as a substitute for P ~ Q, and a further 12% who

regarded it as a matter of preference rather than necessity •

.'_
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COINS

Take 3 coins showing all tails.

A move consists of turning over any two coins.

1. Using as many such moves as you wish, obtain all heads.
Prove or disprove that this is possible.

2. Extend this problem to 4 coins, turning 3 at a time.
Prove your results.

3. Generalise your results as far as possible.

This question was included particularly to observe improvements

on Strategies A4 and AS; it produced additionally an observation

relating to Al.

RESULTS

25 correct, 1 wrong

19 correct, 7 wrong

13 attempts, 7 correct statements, 6 wrong

3 attempted proof/explanations, 1 correct, 2 wrong

No (n,m) generalisations.

3 coins, turn 2:

4 coins, turn 3:

n coins, turn n-l:

Other observations: The student who was wrong on the 3,2 problem

was attempting an over-sophisticated approach involving coding HHT

as the binary number 110, and stating that turning two coins involves

changing the number by a multiple of 11, i.e. of 3. (He apparently

missed 101). He applied the same method to the 4, turn 3, problem

and deduced that this too is impossible.

On the 4,3 problem, four students, working empirically. on reaching

repetitions of previous states assumed that, as in the 3,2 problem,

not all states were possible.

The proof explanations involved an application of parity arguments

to the situation; the errors arose from vagueness and failure to

check that the generalisations observed we~e actually true.
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A typical response with a correct result but a wrong imprecise

reason:

"4 moves are required with 4 coins. The system works with
4 coins since an odd nurrber of coins is turned over, so at
each move effectively one coin is turned over, the other 2
moves having no overall effect."

Compared with school pupils to whom this problem was given, the

students were of course much more competent in making and

recording their trials. Their mistakes arose less from initial

empirical errors than from hasty generalisations with inadequate

checks. Most of them saw the problems as a class of problems

embodying some general principles of parity; for them the task

was to find out just which of these principles applied, and how,

and their manipulation of the system with pencil and paper was

limited to what they needed for checking these points. No one

observed that one could use symmetry; if one can get from TTTT

to THTH, then one must be able to get from there to HHHH.

The two questions, one on form A, one on form B, on axioms will

be considered later. The two remaining questions on form Bare

described next.
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p

QUADS

Q

S

R

A, B, C, D are the midpoints of the sides of the quad PQRS.
In some quads the midpoint figure ABCD is a rectangle.

1. Find out what has to be special about the quad PQRS for
ABCD to be a rectangle and prove your results.

2. It is suggested that in order to obtain a rectangle as the
midpoint figure ABCD, the quadrilateral PQRS must be a rholoous.
Check this and prove the correct result.

RESULTS

The aims of this question were to observe general differences in

approach between school pupils and the students, and in particular

to see hO~l far students were aware of the distinction between

rhombus outside => rectangle inside, which is true, and rectangle

inside ~ rhombus outside, which is not true, since the kite, and

in fact, any quadrilateral with perpendicular diagonals, has a

rectangle for its midpoint figure.

The gen~ral difference was quite strik~ng. Although most of the

school pupils who knewing the meanins of the terms well enough to

attempt the question as intended had treated the question globally

and empirically, trying various types of inside and outside figure,

only two students did so. The remainder all treated it analytically,

using known geometrical theorems and proving lines parallel to each

other. 18 students of thet2S obtained PQ 1QS or something similar.

(Lunzer (1973b) observed similarly that, whereas for 11 year olds a

rectangle either got bigger or smaller as a whole, older children
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were able to separate its are and perimeter as distinct attributes

which could vary independently of each other.)

Question 2 was the attempt to detect the confusion between implication

and equivalence in this context. On only 8 of these scrtpts was it

possible to tell whe cher or not it had been committed; the error

appeared to have been made in 3 of these 8 scripts.
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DIAGONALS OF A POLYGON

7,4

7,4

5,2

Theorem: The greatest number of non-crossing diagonals which
can be drawn in a polygon is three less than the
number of sides.

Proof: In the left hand diagram, it is clear that diagonals
can be drawn from one vertex to each other vertex,
except three; these being the first vertex itself and
the two adjacent ones to it. Similar radiating sets
of diagonals can be drawn in any polygon; hence the
theorem is true for all polygons.

Is this theorem proved? If not, say what; is wrong and
give a correct treatment of the situation.

RESULTS

A correct treatment is probably best obtained by abandonning the

radiating sets idea and considering what happens when each new

diagonal is added, thus:

Without any diagonals the polygon contains 1 region. Each added

diagonal increases the number of regions by 1, so after adding D
n
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diagonals the polygon contains D + I regions. If no more diagonals
n

can be added, every region is a triangle, needing 3(D + 1) sides.
n

n of these are sides of the polygon, and the diagonals provide 2D .
n

Hence 3(D + 1) = n + 2 D
n n

D = n - 3
n

Whence

Necessa~definitions are: an n-sided polygon is a sequence

Al , A2 .• • .An of distinct points in the plane, together with

the n line-segments A l , A 2, A2A3 ...An-1Ani such that the

plane is divided into a single finite inside region and an

infinite outside region. A diagonal of such a polygon is

any join Ap Aq of two of its points which is not a side and

which lies inside the polygon.

The two points of the proof which it was intended that students

should query were (a) 'similar radiating sets of diagonals'

cannot be drawn in all polygons; (b) no proof is offered that

a radiating set gives the greatest possible number of non-

crossing diagonals, as compared with the other possible diagonal-

isations, e.g. of the type shown in the other 7, 4 polygon. It

was also expected that some would comment on the dependence on

implicit definitions of polygon and diagonal.

Of the 25 responses obtained, 3 accepted the proof as correct, thus

missing points (a) and (b). 10 rejected the proof because it

'relies on intuition from looking at the diagrams', or because it

does not deal explicitly with an n-sided polygon. These could

be said to be reacting to the superficial aspects of the proof

rather than its substance. The remaining 12 criticised the proof

on more substantial grounds:

7 said it did not apply to non-radiating aiagonalisationsi

1 said also that some polygons had no radiating sets;
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4 (including the previous 1) said that the question assumed that

diagonals were internal.

Of these, none mentioned that a definition of diagonal was needed

to clarify the matter, but one noted the omission of an argument

that the radiating sets gaves the maximum number of diagonals for

a given polygon.

There were four attempts to give a correct proof but none was

successful. All made assumptions as substantial as the theorem

viz. (i) that the sum of the interior angles of an n-sided polygon

was (n - 2) x 180°, or (ii) that the number of triangles formed

was n - 2.

Hence although we see here some improvement in comparison with

the school pupils, on B3 and B4 - the precise literal treatment

of a statement and awareness of the importance of starting

assumptions and definitions - there is clearly still a considerable

gap between the students'. performance and the approach of the mature

mathematic~an.

The two items relating to axioms asked the same questions, one in

relation to a geometrical theorem, the other in· relation to a

number theorem. Four examples are inserted here to give the spirit

of the responses.
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QUESTIONS OF PROOF G

Consider the following statement: "The sum of the interior angles
of a triangle is 180°".

A. It can be justified by experiment with objects in the physical
world.

B. It has nothing to do with the physical world, but it is the
only possible way of making a geometric system work.

C. It cannot be said to be true in any absolute sense, but it
can appear as a theorem in a system based on suitable axioms.

Say which of A, B, C is closest to your own point of view, and
sketch the steps of the argument you would use to justify this
theorem.

Example 1

A + B + C = 180°

An axiom - the angles at a point on a straight line add up to
180°.

Angles Band B O are the same, alternate angles and also C and CO.

As angles at a point on a straight line add up to 180° the sum of
interior angles of a triangle is 180°.
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Example 2

"Mathematics has evolved because of the vro rLd , This case is
a case of two dimensions which is easily seen to everyone.
Thus the fact can lead to the theory.

To say it is unreal but makes a geometric system work is untrue
because it is real and we see triangles about us constantly.
However, this basis of mathematical knowledge within our own
world leads us to less real situations of greater than four
dimensions, complex numbers, etc.

It is true to say that it is a theorem based on a number of
axioms. But the axioms must be true in an absolute sense or
theory would break down somewhere."
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QUESTIONS OF PROOF N

Why does (-1) (-1) = +1 ?

A. It can be justified by experiment with objects in the physical
world.

B. It has nothing to do with the physical world, but is the only
possible way of making a number system work.

c. It cannot be said to be true in any absolute sense, but it
can appear as a theorem in a system based on suitable axioms.

Say which of A, E, C is closest to your own point of view, and
sketch the steps of the argument you would use to justify this
law.

Example 1

"B is the closest to my paint of view. To have a number system
which works the answers to 3 calculations must be known

i) 1 x 1

H) 1 x -1

iii) -1 x -1

Since 1 is the identity element of multiplication of real numbers,
1 x 1 = 1. Again using this fact, 1 x -1 = -1. Resolution of
-1 x -1 may occur by

-1 x -1 = -(1 x -1) = -(-1)

Since the - sign means that the figure is at the opposite side of
the origin, -(-1) means that the answer figure is at the opposite
side of the origin to -1 and of magnitude 1. The answer to -1 x -1
must therefore be -1 x -1 = 1."



11.14

Example 2

"c is closest to my own point of view.

It certainly cannot be justified by experiments with objects
in the natural world as a negative number is merely an extension
of the number system below zero and cannot be represented by a
number of objects.

However, it is wrong to say that is nothing to do with the physical
world. It is possible to have a negative velocity for example,
but only in the sense that this velocity is contrary to the
direction in wh Lch one is measuring.

Everyone is taught that (+1) x (+1) = (+1). It is relatively
easy to see that (-1) x (=1) (-1).

a
e.g. 'F = ma'

In this system

F = -rna. Therefore F is -ve too.

So really (-1) x (-1) = (+1) must be true. If the force in
the above system is in the opposite direction we can take it
as -F in the direction we are measuring. The mass is +ve,
hence we have the produce of two -ves being +ve."

RESULTS ON AXIOMS QUESTIONS

On the 26 responses to the geometrical version, 18 chose C, 6

chose A, one A and C, one B.

Of those choosing A, one suggested a experiment with beams and

wires, one a more sophisticated version of walking round the

triangle and adding the changes in direction, one measuring the

angles.

Of those choosing C, only one stated that the properties of

parallels were "always taken from granted"; one other took as an

axiom that the angle between parallel lines was OOi the only

other axioms suggested were that the angles formed on a straight

line made 180 0 (2 students) or that the circle was 360 0 (2 students).



11.15

One student said that "the angle sum of a triangle = 1800
" was

itself an axiom but used without comment the properties of

angles on parallel lines.

Of the 23 responses to the number version, 16 chose C, 4 chose

S, 2 chose A. 1 chose S/C (2 omitted the question).

These did not always correspond to the type of explanation

subsequently offered. Four students (ABBC) justified (-1) x (-1)

= + 1 by appeal to some other system involving negation, e.g.

"taking away a hole", - means "going to the other side of the

origin", negative = "a contradiction." One justified it by

continuing the number pattern, -1 x 2, -1 x 1, 1 x 0, -1 x -1.

One said it was "too great a part of the number system not to

work", another that "if (-1) x (-1), then complex numbers would

be unnecessary."

In all, six students stated or implied that number properties

could be d 7duced from a suitable set of axioms, definitions and/

or rules, but only one, and a more doubtful second, recognised

that these were in a certain sense arbitrary, in that "other

number systems are possible", to quote the clearest statement

made.

DISCUSSION

On strategyAl - interplay of empirical and deductive work - the

responses to Coins showed almost a ~eversal of the school pupils'

approach. The students moved quickly into deductive work with

parity relationships and often failed to make adequate use of

empirical checks. On strategies A2 and A3 no definite observations

could be made. On A4, the useful symmetry in Coins was not recog-

nised; and on AS, in the same problem, only the most obvious gener-

alisation was made.
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The proof-concept Bl appeared (for example, in Diagonals of a

Polygon) to be well established; but there was a fair amount

of confusion between implication and equivalence (B2) in

Means and Quads. The Polygon problem showed most students

to be treating propositions literally (B3) but non explicitly

showed awareness of the need for definitions (B4b) and some

gave potentially circular arguments (B4a). On axiom systems

(B5), it appears that although a majority of the students have

some awareness of the nature of an axiomatic system, the idea

is extremely vague. It amounts generally to knowing that

mathematical theories can be deduced from definite starting

points, but considers these to be basic truths about the real

world rather than logically arbitrary. The notion of a logic-

ally self-contained system built on relationships between

undefined terms is almost certainly not yet present. The

greatest opportunities for improvement would seem to be on

Al and AS, extension and generalisation of problems with

skilled interplay between empirical and deductive work, and

in the concepts of proof B2-BS.
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The orip;inal problem I'ItlS:-

Wh~n a boy counted hi3 s'tmets in .rot.U'~ he btld 2 left over,wben
he counted. them in five3 he bw.done left over.Ho',,, 1Iisny sweq.ts did he
have?

I thou~;ht a.bout this probl(:1Jl and ,,,rote 1t dONn liktl th~8

4r2
2£L 6,26,46,66,86, • • •

'I'he fir6t nuob9r 0....s.eets becould have had "ms f, but lJ.f't~l' "hat
tbere were ~an1 more numbors which c~ntlnued :0 So up in 208.1 notlccd
that 5x4 • 20

and the numbers \-Ientup in 208.1'0 cueck this rvle I tried a eou l~
more examples

;r2
4r2
3x4-
8r4
')r1

Bx9 •

2,14,26,38,50,62
• 12 the numbers go up in 128

28,100,T'72 • • •
72 It goes up in ?2s

We looked at the problems
'1..lio'....do .you find what the starting number is 'B0ing to be?
2.ilow many do they go up in each time?

;.Wh::lt happena with three orClore counts.

i"irat I tried to !in1 what the starting numbl?r is GoinG to be ..Dut at
first it didn't seem a very easy problem.

".[here ~"ere except ionally cases, 'fhen4r2 and 5r1 wcuL1 acid up to
6 the first number but this rarely worked.

For a while 1 l~ft th1~ and \'rent on to thl!) problem of ",hat. the
numbers went up in ..I had foundthat the first r.umh~rs \....hen Mullapli(~d
together made the a:novnt the numbers went up in.

But th~ll uk f'ound these two cases

~~~ 22,34,46• • • •
4r3 .6r1 19,;1,43• • • •

~his made upthlruc th&t the numbers always BO up ~ either by
the multiples of the t'tIO numbers or hal! that auounn,

'i';hen tbis example came up

~~ 6,10,1~t18,22,
I thought that ~ben ~ll the t~st, numbers are prime numbers the numbers
~o up in those numbers multiplied to~ether but when thoso numbers
are not p}.l prime numbers 'the numbers go up In half t:his muI 'tiple.
Hut another case cropped up and put meoff the trail

g~~10,16 ,22,28,3q.,/~O,46
Lhis time the numebrs should go up in a th,irdot ;x6

3x6 • 18 1/, of' 18 • 6
1'0 test this rule Wo' tried some mora examples

4r1 4r2 5r2
_81'5 Br6 -. 1{g1_'

, 1~29... 14,22,;8.... 'IT,2'T,37., • • • •
~he rule seemed to bo corroct.lr the 1areer nuubor is a ~ultiple of'
the s:1l311or number then the number-a al\>iays(.';0 up in th~) 1!&1.!ltiples of
the t,.,o nunbez-s d1vided by the smallest number
e.g. 3r1

9r4
.,.



E2

Nins 1s a multiple at three,.¥--

'x9 • 27 27.J. '5 • 9. ,
~o multipl;r two numbers together and divido by the smallest aluays
leaves you ''liththe largest nUmbor.

1[:: ended unwith -
U" the numbers have no conneotion they go up in th'" multiples

of the two numbero and it ono number is a multIple of the second the
nukbers go up in the largest number.• • • • •

, .
Next 1" tried ~3ing three or four oounts.Here are a fe\'1examples ot

.them·

3r21;~~IS3t113,1?3~233• • • •

;,4 and 5 have no connection so the numbers go up in 60a - 3x4x5

2r°l' .~;~ ;8.118.178.238• • • •
5r; .
As 4 is 0. mul t1ple of 2 the numbers go \\p in 2x3x4x5-'1-2
In this next example the numbers have no oonneotion so 60 up in

.2x;x5x'7 • 21~

~1 95.,05.515.
5rOf '. .
I found out that in some cases you can predict what the last digit
is going to be.In the last Gxample 2r1 ~oans it mustr ho an odd number
and 5rOmoans to divide by 5 exactly the numbers must all end ill 5
or a.As a isn't an odd number the numbers must all end in 5
. This doesn't help ovary time.But I did lind that there was a
pattern in the tables ot first numbers,re 3r13r1 4rO4r14r24r3

5rO 0 10 5 5rO 0 5 10 15
51'1 6 ~ 11 5r1 16 1 6 11
51'212 7 2 5r2 12 '17 2 ?
5r3 '5 13 8 5r3 C '13 18 '5

. 5rll- . 9 l;' 14 5r4 1+ 9 14 19
~he numbers go' from 0 to (in this case) 19 i~ order in a pettern.
~he numbers .~? trom 0 diagonal11 down from the top corner

2r1

1
GJ. .

~hen you want the next number dO\vl1 at Cl but as it goeo oft tho tabie
10u have to look horizontally across for the 2.Then the 3 goes off
the, table eo you look vertically upwards from .,thore the 3 should be.
~~e 4 also goe~ ~rt the edge of the table so you must look -
horizontally across to find it and then as .usually diagonally do~~

till 10U reaoh the bottom nnd the table is finished, .
"

.,
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I • • ,

2rO 2r1
~. .f

.. 2rQ 2t.'1
3rO ' ..l . 3'

"31"1 ':4 '1'
. '3r2' .~! .. :,.

It always workB in the same pattern

nos start here ''5-+---1--+--+-~

os finish here

~h1s kind ot table works for any numbers

o 11r1 11r2 11r3 11r~ 11r~ 11r6 11r7 11r8 11r9 11r10
o 12 24 36 4 1 ~8 40 8 20 32 ·

33 1 13 25 37 5 17 29 41 9 21
22 34 2 14 26 38 G ":~1 ,30 42 10
'11 23 35 , 15 27 39 7 19 31 43

As we know how the table worka \'10 can 'C:,c~lict what the first number
is going to be by wor~ng1t out fro~ tho table but not actually
writing all the numbers in. If the nunbez-s are large it lt/ould~ake
a long time.
~ also found a tew caseothat didn't work at all
e.g. 5rO} 3r21 4r31

1Or1 6r4 8r11 .
but didn't reall,. have time to go into this • .

Conelu:.lion
'--rcouldn't find a really efficient wayof predioting \that

tho first number 1s 80ing to bo,only by the method of the tables.
\ihat I found about the way the numbers go up has been mentioned
earl1er.\'lhen I tried using more than 2 counts the r~sults seemed
to be the same and fitted in with any patterns or rules about
two counts. .

One ot tha thinBs I didn't oover was when it ,~as impossible
to find any whole numbers above 0 which would fit.Tbis happened
when there was t''10 numbers ot which one was a multiple of the other
with a completely di!forent remainder.As there are no numbers
there 13 ~ot ~uch yO~'can do with them.
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APPENDIX TO CHAPTER5

Number test

General Mathematics Test (Strategies)

Further notes on development of the sub-scales

I
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'JJ
P- III

Q) C .,-1 C.. Cl} a o .c o...
r-I ~ ~ .,-1 Vl Vl .,-1
I';l < z ... Q) c ...:> t1:l .... C :il
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p., E-- Eo< U I r.:l '" <~

Ii 6 7 4 3 15 5

NA~1E • • • • • • • • • • • • • • • • • • • • Farm • • • • • • • .•

Pl. What number is seventeen less than 20107

Fill in the answers in the spaces provided. Do
any working at the side.

P2. Write these numbers in the boxes in order of size,
starting with the smallest and ending with the
largest.

P3. Put a ring round the· letter at the end of the line
which goes up in tens

310 )11 )12 )13 A

420 520 620 720 B

352 362 372 382 C

pI! • 'vrite the number wh Lch consists of six hundreds,
four tens and thirteen units. 1'1;

Fill the boxes

5+0Tl. B + 5 0 T2. = 13
=

T3. 6 + 7 D T4. D + 4 = 18 Tas=

0T5. Cl + q = D T6. 14 - Cl =
6

D
,

3xDT7. 8 x 5 = 'Tl1. = 21

D D:x Tmd

TB. 6 x 4 = T12. 8 = Ll8

TC). 3 x 8 D T13. 36 + <) = 0 --= 7

Tl0. 7 x I) = CJ
I_-""~. -
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ct. Subtract 325 C2. Subtract:
Z2 481 39-

C1i

C3. Hultiply 511') c4. Nultiply:
x 8

40235 by

El. Ring the number nearest to 58.

60 68

E2. Ring the number nearest to 5 x 340

850 1250 1500 17501000

E3. Ring the number nearest to the total

36 + 5 + 1 + 27 + 92

100 130 3000150 10,0

E-
3
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Rl. Fill the boxes with the correct signs, + or -

37 + 68 - 24 = 68 0 2/• 0 37

R2. Given that 36 + 58 = n4, do the following without
working out.

36 + 68 = D
37 + 57 = 0
f) Ii - 36 =0 ( )

R3. Given that 18 x 35 = 6)0, do the following without
wor-kLrig out.

1«) x 35 = D
18 x 34 = 630 - 0

R4. }lark each statement ./ if it is r-Lgb t j X if wr-orrg;
? if you are not sure.

5 x 60

( 6 x 50
(
(
(

= 60 x 50

5 x 10 x 6 ( 3)

R5. Nark each statement ./ if it is right; X if wrong;
? if you are not sure.

40 x 80 =
( )20

~ 3200

( 12,000 ( 3)

n6. Nark each statement V if it is right; X if wr-ong s
? if you are not sure.

44 - 19 = 19 - 44

44 x 19 = 19 x 44
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A 1. Harry get spaid 10p for his paper round each day
except Sundays. Andrew docs a Sunday round only,
and gets J5p fer it. 110\, much more does Harry
get than Andrew in a week?

p

A2. 180 pupils are to have a medical check-up.
doctor can see 12 pupils in half an hour.
long will he take to see all the pupils?

The
How

hours-------

A 3. John buys J bags of sweets.
Each bag contains 20 sweets.
bag cost'?

He pays 45 penco ,
How much does aRch

_______ ....Penc e

A~. There is going to be a school outing'to the countr'
which will cost 40p per child. 115 children want
to go and a bus holds )0 children.

How many buses will be needed?

buses-------
Ilow much money will the children pay altogether?

A-
5



Name ." " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "

Form " " " " " " " " " " " " " " " " " " " " " " "

GENERAL MATHEMATICS TEST

FINDING AND PROVING RULES

Read the questions carefully.

Do all your working in the spaces left on the paper.

A pencil and rubber will be needed for questions 2 and 5.

Time allowed: 1 hour.



1. Choose a number, less than 10, and write it down here ...• ....• ..• .•

Add the number to 10, and write the answer .• • • ....• ..• ..• •

Take your first number away from ~O, and write what is left

Add the two last answers; write the result here ............• • ....

Choose another number and do all the same things.

Ir~~: MMI' 2{~ 2. '-~

~~'U.

I {Q< I Un'"'reJ./2~,<
o«: +wo u-..~·,~t&.Je"f.~1u
,Iv- o: ~ ~f~d?lju:....

What happens?

Will the same thing always happen? Try further numbers if you wish.

Irt.- :): M~~'2. + 'a/...-..:;s 2..0 I

o« ~\. w-rred" j~'s.~

fw- lk ~ ~.~~
o~u..

Answer Yes/No.

Explain why this happens. 1f-bh..4: M~ 2f t4.. ey.jJ/~

~h..~ ~ itt
~ ~ p·".J.:;t ..-eo.Je.;l ~
c.~ .

. 'fW4.~
reJ /-r..I~J-- cJ../ tM-t'~
~/?{~ift-.. .



2. A

I
I
I

I
f,
I

I
~

liw tV1 tow~

:' for ecd; ~

~~-/.oo.

\

l

BIT]

The pieces A, B and C can be

used to make other shapes. Here is one example

Try to make the shapes below by putting together the three

pieces A, Band C each time.

If you can, say YES,and mark

the shape to show how you

would do it.

If you say NO, use this

space to explain why it
can't be done.

, I

I I I

___ 1_ - - !. - - _J - - .-

I I I.

I I

I
___ l __ L _

I
I

I__-. __ L _

I 1 ,
- - T - -,- - -

I

W-t--~r-+ -~---
I

I

I I

- _1- _ _! __
I I

YES/pO

~/NO

YESI)l6

Ir~~) 7J8: E~ H~ 2..r
~f_~'~71~
~(f;)A I(~ IOJ(1J~'M.lO~~ J

(~) ~ A IJ ~fi~«_ ~-irCV1

'r.U~ •

o fw (to, ~ft:
I t" tJ-~'Ji' u#'-l.



3. This is like question 1.
,',

This time choose a number bigger than ten. Write it here ..• .• .....• •

Add it to ten and write the answer.

Take ten a\vay from it, and write down what is left ...• • ........•

Add the two last answers .............• •

------.---

Try this with other numbers.

Is there any pattern in the results? If so, describe it.

1~/o" I{~ L

Explain why it happens. Ir~lI: /v{~ l. .



4. Suppose you have a lot of stamps of value 6p and lSp but

no others.

You can make up various amounts of postage from these.

If you want to, you can make 27p as 15 + 6 + 6.

Can you make 29p? Use the space below for your trials.

1re--....11- :
I fur~J~~f~

~w ~1.. if ~(;w-l ,

e,v,"~ of lW'f~sftJ....i.~j

2.. ~ e¥i'~ cl
~~~

Answer: YES/NO

..

Ir~13~ '2.. fw ~~
a."plrt-e..~ of cL.oi{.t of
'V\w' c,vvvJ:rV; ..a;I~ ~

~'

Explain why.

.-._---_._-------_._-
Find all the amounts you can make up from 6's and is's which

are above 30 and below 40.

I~e-!<t Ih. ~CL.. U-U) 2-

Answe r : I can make :.: ~~!~~,J.~ j;.:::~-I
It-e-.,(S ~. I~

but not ...~. )/ .. ~f-... ~9-. }~ ... ~7...~$.. {rO)... /.fo,



5. In the first two triangles below, a figure has been drawn
in two different places.

In how many different places can you put this figure in these
triangles? (It must fit on the dots)

'I'hen write davin your answer below.

Try some drawings.

• • • • • • • • • • • • • • .. ..• • • • • • • •

'. • • •• •
..

• • •• • •

• oj• •
•

• • • • • • .. • • .. « .'• • .,- . • • •• • • • • • •
• ..• ••

• ..• •

• ..• ••
•

• • • • • • • • • • • w• • • .' t • • • • • II •
.. • •• •

.. •
• • •• •

• •
• • •• •

•
• • .. •

Ire.-.. I / {cv Wt'".-eJ'k/- .

~ t\~~Answer different places. Irt-I : ?.-r- J. ey.p!~_
~ ~-C-~Are you sure you have got exactly all the different places? ~rl~~'c . .~

Not too many nor too few?'

~. 3h ~) :w-._i'~
Say why you are sure. r &-%-h>p.

If'" a.-..... ~~-1're
c....J.(~

O~ (/~ t~eJ
L\./,i, U.e di{fe-e....r PI'-c.e.)



6. Look at your last answer to Question 4.

Describe anx pattern in the numbers you have found.

/t<r-. 17: 1-{-w "-~
(~~v cJ;Ic".f.,J1A.. c! tJk..~
" ~f;i5 ~J ~ ~ ..~.

Explain why the pattern occurs.

..
Ir~I~: 2 ,~ ~~. ~/JIa'_~.

fj. r Sec..I«4l ~o~ It) ,.L.rf.

i>ou... ~(h/X~ of ]1 .



...... _ ... .. ~__ . ~ __ .. w_ ... _ .... _··_·~~··_····· ···_· -. ---- .. -~ .. --.- .. -. .- _ .. - ... ----- ._. ----- ..,..,,-

2 + 3 = 5

4 6 10
\lrite tHO more nunbei- eent encesto

+ =
shoH hO~'1 the pattern corrt inues

6 + 9 = 15

8 + 12 = 20

.................
.._._._-----_._--_._.._..._._---_._--_.__ ..._._.-_.- ._.__ - ---------._

-;~~-.-_ ~--.-..-.-_-- __ -_ ..~.. _ _. '''''--- _._ -- _-_ .. '_ .. -- ,.

16 + =................. + := 60. .
Hore ar-e hie) number sentences taken from the s arne pattorn. Can :ro'..' finish

them?
--~---,---.._. .. ---- -.-._., __ ...

.................
~ I<.Q.'

,- .._ .• ._--_._• .....-----_.__ ._ -_._._-.._.,._---_- -- .-.__ ..__ .._ .._..__..- ._

29 + =:

Jim says thz.t thin numhsr sentence istakr,n t'nom tlw f:DJI~Q prvtt ern and he

asks j'!andy to fini:3h it.

Kmdy RilyS that it 'is i.mposuLbl e •

.':Iho is right'! F:Xpl~tin your 8jV)\,8r car-ef'u ll y ,

I.

____ '" _. _. '._ -• • __ • • .• _.~ .• __ ,. , '_4 " • • ~ .. _ _ " _._ ,• • '_.'

r' .-~.-.-..~.~--..' --._._....--. - - _ ...._.-_._--'._

i
five;

. __ ..... _ .. + r
I.
I

Is he riGht? C 1· . to,an YOll exp a~n J. - •

i
I

I

t,_._... " -.._ -.._ ......



FURTHER NOTES ON THE DEVELOPMENT OF THE SUB-SCALES

The factor analyses (Tables 1, 2 below) are dominated by the high

inter-correlation between parts of the same question. This is

inevitable with this type of test. Independent items cannot be used

.,,s, ....-_.

without altering the nature of the activity, since generalising from

examples produced oneself is a different activity from doing so from a

set offered in the item; similarly, an explanation of a generalisation

found for oneself is different from one of a generalisation proposed.

The factor analysiscan offer guidance regarding how far the character-

istics which the tester supposes he has built into the item are

reflected in differential performance characteristics of the pupils.

But it is clear that in many cases items which seem clearly different

in nature correlate highly because, for example, it is impossible to

score for an explanation if one has failed to make the generalisation.

The main points of interest in the factor analysis are therefore those

where items from different questions are brought together in a factor,

or items from the same question are separated. In the final decision

regarding scale allocation, the prima facie nature of the item, its

occurrence in factors and its actual intercorrelations with the other

items were all considered. Some notes on particular items are given.

The four scales adopted are:

1. Generatin~ examples: to meet given criteria,stating how or

why given examples fail to qualify, classifying examples,

finding complete sets. Items I, 5, 6, 7, 8, 12, 14, 15.

2. Recognising relationships and patterns, extending patterns;

expressing relationships verbally. Items 10, 17, 19, 20, 21.

3. Giving explanations or proofs. Items 4, 11, 13, 16, 18, 22

4. Following verbal instructions to produce data. Items 2, 3 and 9

The separation of scales 1 and 4 was made in response to the factor

analysis. This brings together items 2, 3 and 9 into a factor

separate from items 1, 5,.'12; the difference is that expressed in

the scale titles. In SCene 1 items, trials have to be made and
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examples selected which meet certain criteria e.g. multiples of

6 and 15 around 29, hexagons which fit into a triangle and have

not been found already; in items 2 and 9 one simply chooses a

starting number and follows instructions. Item 3 correlates

highly (0.75) with item 2, and although it was originally

considered as a 'making generalisation' item, since it requires

only the assertion that 'the result is always 20' following the

process defined in item 2, it seems reasonable to include it

with that item.

Of the other original 'making generalisation' items, No. 10 emerged

as highly correlated (0.66) with its explanation item, No. 111 in

contrast to items 3 and 4, where the 'generalisation' is easy and

the explanation hard, (means 1.22 and 0.44 out of 2), here the

recognition of the pattern is much less obvious and the step from

there to giving an explanation not so big (means 0.68, 0.39 out of

2). For example, possible sequences of answers in Item 9 are 12-

22-2-24, 25-35-15-50 with the first to last doubling explainable

as two lot.sof the first number, one with 10 added, one with 10

ta~en away. However, we have kept item 11 in the explanation scale,

and item 10 ih the modified generalisation scale, now called

Recognising relationships.

This new scale 2 collects with items 10 and 17, the first three of

the four parts of question 7. Here the general pattern has to be

abstracted from the four examples 2 + 3 = 5, 4 + 6 = 10, 6 + 9 = 15,

8 + 12 = 20; it does not have to be verbalised but has to be extended

by the provision of more examples first simply following one,

then meeting other criteria, viz. starting with 16 then ending with

60 then starting with 29 (impossible). These three items cohere

strongly in all the factor analyses, but the following item 22,

requires insight into·and verbal explanation of the 2n + 3n = Sn

pattern and the 7 factor tables associate this with another explanation

item (No.4). (See table 2).
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Item 17 asks for detection of the pattern in the results of

question 4 i.e. in 33, 36, 39i it thus falls clearly into scale

2, though statistically it sticks on all analyses with the other

items in Question 4, since it depends on reasonably correct

results in Question 4. In this case We resist the statistical

pull and retain it in Scale 2.

Scale 1 contains mainly items from Questions 2 and 4. The latter

involve generating numerical examples to meet certain conditions -

e.g. multiples of 6 and 15 between 30 and 40 - while in question

2, item 5 requires experiment with geometrical shapes to determine

whether they fit in certain frames. Items 6, 7, 8 require

'explanations' of why certain frames cannot accommodate the

pieces. These explanations are of a somewhat different character

from the verbal/numerical/insight explanations of Items 4, 11 and

22. The present ones require little more than a statement of why

the attempt to fit the shapes broke down. Item 8, for completeness,

requires a two step statement that shape A must go across the 100g

row, and then there is an isolated square, impossible to fi11i but

this still is not comparable with items 4, 11 and 22. It seems

reasonabl~ here to accept the statistical suggestion that associates

these items 5-8 all together, as a scale consisting of "Generating

Examples to meet given conditions, and stating how or why certain

examples fail to quality." Item 1 appears also in this scale.

This mark is obtained for giving a correct complete set of hexagons

placed in different positions within a triangle (Question 5).

Although this represents one of the generalisation strategies

developed during the SNP course, the mark was dropped initially

from the scoring because, the Project schools' scripts being marked

first, the item appeared too easy. However, the non-Project classes

scored less well and it is therefore an important item for comparison

purposes. It does not correlate particularly highly with any other

variables, but fits reasonably statistically and naturally on grounds

of content into Scale 1.

Scale 3 (Explanation) has by now been discussed fairly fully.

Items 4 and 11 define it and are brought together in the 5-factor

analysis. Item 22 is clearly of the same type, item 16 (why the
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set of hexagons is complete) is close in type of thinking though ."'.

different in context; item 18 is also a genuine explanation item,

though it is capable of being answered correctly at the more

superficial level which might suggest scale 2 rather than scale

3. (Why are 33, 36, 39 all multiples of 3? Because 6 and 15 are

both multiples of 3!) The 7-factor analysis brings together items

4 and 22, and items 13, 16 and 18, so in this scale the apparent

nature of the items and the statistical analyses are in good

agreement. The item analysis following these scales is shown in

Table 5.

1 ? 3 4 5

....

__.0, 1." 0,31 0,12 -0,03 "0,2~
1

__ __._:--,~O.J 0 I• . ', 0,('11 O,BO· - 0 .01 "0,05
2 "

.._~q.!n.~ . 0,80· ",04 0,0'
(. ,:,0..,.01.. ··-"O~·22"

..

0," 0,30.
4 0,'7 "O,O~

0,20 -0,08
0,05 0,'59* ~0,' °~
0,05 1'1.,1.4· "0.15 0,12 0,00

(,
..O,OR a, 51 • 0,14 1'),03 0.0'

7
!'I'O,23 0,'71* -0,0 5 -0,05 0,22

8
-0,0(1 o • ,5 0,2' "0,22 O.2Q

9
0,01 O. ()l\ 0,09 "0,05 O.6~.

, 0
..0 J 01 -",03 .. 0,13 0,03 0,74.

1L - , 0, ,., ..0,11
·0.29 O,~?· 0.1 Z, 2 0,09 "0,23 '!I 0 • 1 :5

1 :5 0.16 O.ISR* 0,01
14 0,89. o , r) 1 "0,07 0,01

0,90. -0,03 0,09 ..0 • ,1 "0.02
1 5

0,25 0,1(\ 0,01 -0,07 o • 11
16

0.61. -o.n~ -0.06 0,23 o , (19
, 7

0.23 I') • (I Ii 0.(16 (,),18 o • 1 5
18

0.03 -r),I'I'; -0.0 9 0,62. -0.06
, 9

0,02 O.7S. -0.00
20 -0.08 "'O,t'S

-0,10 0.1"9 0, "
('I.6~. -0,01

21
0,05 -0. M~ -0,01 0,37. 0.09

22

'TABLE 1

5-factor analysis ,(oblique) of the 22 items



FAr.TOn PATTERN I1ATRI X (CUNVENTIONALLV SCALED), SALIENTS IIA~I<ED ..,ITH AST~Rrs

1 l 3 4 5 6 7
« I ~! -1

1- o. , IS 0, , j 0,00 o , , 4 U,1 Y "0,':0 ..0,09
~ 0.03 O,HIJ~ Od)' ..0.03 IJ. 0 l 0.0' ,,0,"
J "0,03 0.74* 0.00 0.04 "U,O' -0,02 0.14
4 (\• , 3 O. ,4 ..O,OB "0.1' O. "

0.05 0,,6.
)" 0.10 "0.°7 - 0, ~1 o , 17 <>,45* -0.V7 ,,0,03
b O. 7.1 "'O,OM 0,' 4 "0,02 0,61. 0.00 ..O,U9

r 0.01 O. 11 0.03 0,06 fJ.44* 0.00 ..O,U3
d -0.14 -0.U4 -0.13 U,Of> 1.'.6::' • n.10 o • , :\
'I "(I.01 v.21 ..0.13 u , , 3 t', OJ n • .sy. -0.11)

1u f).OO 'J, UY 0.00 U,01 0,04 O. 7' • ..0.U7
1, "'0,03 "'0.14 0,03 -U.09 1.'.01 O. 7' • O. '}8- 0,03 iJ,Uo O.~6 U.S6* I'" t' • 0 ti "0.V3 ,.0.141 ~

1 .s -0.11 I).uo ..O.~(\ u.31· L'. , i -O,U5 .. 0.01)

1 It 0.89. "0.U6 O,()~ -IJ,02 IJ,Ol o , I), .. O.IJ()

15 Q.90. 0, , u ..0.10 -U.02 "f).0~ -0.03 O.VZ
,to· 0.04 "0.°1 "0,07 u.31l* .1 ' , , :, 0, , Z O. 11.- 0.44. ...o. , , O,~4 0.22 -U.ll. 0," 0.u711
!.it "'0.04 "'V.V4 0,15 U.42* "'1.'.21 n. 14 O.~O
1Y 0.01 "i) .lJij 0,66. "0.01 "0.0 6 (\,01 .. 0.1.18

7,u "0.09 0,1)$ 0./9. "'0.06 "'.', OJ (I • "3 ..0.01

?1 "'0.05 O. , z 0,63* -0,11 'J. , ~ -n.u4 O,UH
7.~ "0.14 "0.1.s. 0,' 7 u .12 "OIOY -n l'4 0,011*

TABLE 2

7-factor (oblique) analysis of the 22 items



APPENDIX TO CHAPTER 6

Examples of pupils' deductions - CSMP

Logical problems test, with results

Logical questions from University first year examination, with
results (Anderson)

\

.,.
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(a) P = '1', T ~ .(Q::) ""S), -S::) RJ. (P1\ Q) ~ R

Prove:

~'. '
~.- -

·l,De ~Oy'\ 5~ reti Id ~.
.......---_ ..............

\ P ==?T
G \~)~~~)
3'_cS~R .'
t-f "'t(,lPAQ')-¥l

S LP"C() A .. F\
b ~R
l p/\Q

.~ \)

\ Q_
', I'

t6 \"
\\ &~'""\.~-:

" 1'2.-S

l3 "'s
I ~ ~ 1\ '"t.S
t s (P I\~K

1
,

";

,~JY~fL.:iJiJl.rffJL#s_c{ _9-_{:&?y) --~4.0>;~Z
, .



PI. And rew is 511,,1'011' s brother'.

"Tina is John's sister. I

Shnron is Tina's cousin.

Gnry is John's cousin.

Tick any statement wh Lch you nrc sure mu s t be correct.

Cross an)' statement ,...hich you nrc sure must be false.

)( a) Tina is Gnry's sister.
_,.. b4- 100 IQO

/ b) Tina is Gary's cousin. ~ CO>2.. 1&0 ,C-O

1- c} Andrew is John's hrother. ,.. 73 g2. h7

d) Gary is Andrew's brother.
"+5 \"· ll.ruf1 r" ..(~c~

og( 0 ') b7
et) 5hnron is Gary's sister.

'1 q SO

P~. There were seven children at Susan's party.

Six of them each brought a present, and four of the

presents were toys.

Three of the children won prizes.

,false.

Tick(V"') nn y statement below which you are St11:"e iuus t be
corr~ct. l
Cross(x) nny statement below which you are sure IlIU_tbe

I
All of the children who brought presents brour,ht toys.

, I ,,(, 100 Kl. ,""
Some of t.he children wh o brought presents 0ls'o won
prLz e s , ISO 73 73 Ic;rO

Some of the children who brought toys '\\'011 priz~s. q 3~ i3
ro belt ,.vlr co,,"Lt

All of the children who won prizes had brought presents.
l-'If '1 ~(, ~7

c)

)< a)

./ b)

cl)



p/L In the Smith family, :111 those wh o cook a1£10 help w Lt h

washing up.

Peter Smith can cook. Jnne Smith wn ah es up.

Ti-ck the sp.ntence helow which yon arc sure must
correct.

be

I
fnlse.Cross any statement ,...hieh you arc sure must be

n) All the Smi t.h family both cool. and ,..a ah up. .~ 20 I~ 33

b) Peter and Jane Smi.th both cook and wn sh up. _,. 0 ) 0

c) All the Smith fOlllily either c o ok or ~H\sh up. "* 2.0 ,g SO

/ d) Peter Sud th c o ok s and washes up. (,2.. 5""0 "4- It;'

C) J an e Smith cooks and ,...ashes up.
"*' 0 1 '7

At least two houses IlIUSthave the same number of
pop er s , I~70

At least one house must h av e more than one pnIP~r.q I ro-o 100

'If 61- .,\l( ~k c<>IT(,(,~

ps. The paperboy delivers 15 newspnpers to 12 houses.

Ticl< the st.a t cmerrt a ,...h Lch mu st be true.

a)

b)

/ c)

One house must have no papers.

Each house faust,liaveat least one poper.

~ b lao

~'~~k~ of ~LH~.<.J- "-s~ 10 P,+-

Ca.) v'
~

tb) /
~

4-0 IS '7
'+-0 b4- s-o

5U 8L en
50 If '7

4.0 l b '7
~o 4-) >3



:r:£" S':C: .
(It)· .\ 11I·1·(·.~"'an·condition t lurt tl ... ~t:tI"lIlt'nt /, ht, true i..;that J' < I).

~1:llt'rnt'l1t~ 1I111~t. I,,· lrut'~"

Which one of the following

Ii) If J < rI, t hell P i~II"IU'. (iv ) If J' ~ rI, thou P is fnlso,

(i i) If J' < :,. t 111'11J' i~f;ll.;". (v) None of these.

(iii) lf J" ;- rI, 11"'11 I' i~I nu-,

0) [71] (ii) EJ (iii) EJ (iv) @ (v) E?J (/0/ )

(b) Lt·t X J,l' t III' ~I't of nil intl'gl'rs lx-tween 0 :11111!) inclusive, nnd let P be the statement
''VJ'= .\", 311 c.\' ~11I·hthat. :\J-:!!/ = r,',
\nlich OJ ... of till' rllll'l\\ ill!! statl:lltl'lIl.,.. is c'orr('('t?

(i) Pis true.

Iii) J' ~ ~" y = fi.

(iii) r 11111"1I", c"lll.

(iv) ,r,." 2, y = .J i~ a eounterexnmple.

[v) None of tlll'~<',

,(i) E3 (ii) 1m (iii) [[QJ (iv) 01 (v) @
(IOC)

(d) .\ :,ufli('il'lIt. r-ornlit.iun t.hnt tho st"tl·III1'nt. Q he true i~t.hnt Y > 0, "'hieh ono of the following
IlII1.;t J,e ImP? .

(i) If() i" t 1111', tlll'lI Y ~ O. (iv) If Q i:i Inlse, t.h<'11Y ::> 0,

(ii) IU) i.'i f,t J:.:l', t 111'11!I ~ 0, (v) N,))to of these.

. (iii) If Q is trill" t.III'n y > 0,

(i) EJ (i i) @ (iii) ~ (i\' ) El (v) ~ ('19)

(e) It has J'('l'lI prunc! that ilifillilo'l~' llt:1m' illt<'l!<'rs satisfy 1\ n,lation R, ('onsit1('f the stutement S:
'uU intl'iIl')''; ~nti~fy It, \\'hidl 0111' of llll~ fllll()\\'ill~ i1!true?

(i) s i~dearly '.1'111'. (iv) S is fl\l~e.

(ii) S j~ t.rul', hilt rpquirr~ proof, (v) None of these.

(ii i) S i.'I lIlorl' likely to be truc than false.

(i) . [ill (ii) [ill (iii) ~ (h') ~ (v) ® ClOo)
._---

4

(9) A nceCI'SIIr\' 1111(18uffil'i('lIt ClllHlitill1l that P Le true is t.hllt ..t 01' Jl he tl'llll, Whil'h 0110of t,hn
followillg j~ 1·IlITI,(·t !

(i)

(ii)

(i ii)

(i\')

(\. )

(i) [l]

J f A i~ falsl' or /I i~fl\l~(', 1.111'1lI' iH ral~I~.

/' is trill' if 1I11t!11111\'if A is tnll' allli II i:4 "nw.

If /, is fa!:;r, tlll'll A i~flll;-l(' IIJ' /l i~fal:-I(~.

/' i" fab,' if allli only if ..I i:i fabe.

Nlllw uf 1111':;1',

(ii) [1] (iii) ® (v) ~ (qq)

Ci) A Ilrce~;.;an· ('(lllditiIlJl that /' III' tnw i,; that rithpI' ..t IIr II, hilt not. hot.h, I.u rals!', Whil'h onl'

of thl' fCIJl~will).! is tnlt'!

(i)

(ii)

(ii i)

(i\')

(v)

(i) [41

II' I' i~fal.;l', at I,·;i~t.0111' of A allli II i~Inu'.

If /, is f"I.;." "o!h ..I HIli I /1M!' tl'lIl'.

II' P is 11'111'. (.1 III' /I) j~ falsI',

If I' i,.; 11111" p ...·l'i,.;,· ly 0111' of A 111111/l j~ tme,

(ii) [4] (iii) [l>J (iv) @ (v) [4.1 (q(P
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ADU Ar-iU TAKE

uetwccn 1 nnd 10.Choose any Ilumuer Add it. to 10 alld write down

the answer. 10 and write down r\. r away frolllt;~e fir 8t n umu e

sb e answer'. Add your two answers.

1. What result do you gel?

'l
1...

r t Ln a with other numb er e ,Try s t a ,_

b the same for all s t e rt Lu gWill the resu\.t e

Do you gel t h e same r oau Lt ?

3.

ft •

n umb era ?

answer Is right.Explain why your . \

\4 ~ b

) LO-

,
, , ',' /',.

-- \\.J ql.O

\0.4 lO -}0 ~ -J_O

"Ie.s, \ CL.l.u..:>~ -S 9e--* 2.0 .

\ ..:5 \0

~.,\__ CL~'1 += eX: ~ ",-,-""\l,,et- f\-o"" -lo 10'"1

\O---ltJ ~y\ +='''''\ ~e ""~f'le_~t O-Aol ~"\ ~-l
~ \0+4-.

-e-9.
\0 + 4- +-b =--lO .

~ -\_, ..... -e. '-\""'-'-- '-'.C>c>~ct "\ e_'t- --:::l_ 0 c'-'S -t-L,e_ 1<=:0'-.<.•

-t~e.. -t='l ~""\- Y-\\...Ly ~.J~~)-._
c..)+k_c:>~ <::.,.1 __, l8.\....-..')!;:)_I'

..__,

lO

/

\L ~ ---:>0~ -\--C; _- _::::::_



8

AlJU A~U TAKE

between 1 and 10.Choose any !lumuer
Add it to 10 alld write down

the answer.
, 10 and write down r\. away f r omt;~e first nurnu er'

sh e answer'. A.dd your two answers.

1. What Lt do you gel'?resu

,.,
w.

, er with other number s ,Try starl.:Ln~

h the same for allWill the result e

answer ls right.Exp.lain why your

Do you gel t h e result'?sallie

3.

ft •

st e r t Lug numbel's'?

',. l,.
1" ,"

-
\ l.O \\.J q--

\02., -) z.o ~0 ~'J_O

~ 'Ie6,. \ CUJ ..A,:x\.).1-S 9e--+-' 2..0 .

~) '-Ie-s. \he ~ul+- ohovld ~<?- --\-l.e_

,~~ f"\ \) "" berS

\ ~ \0

\0 -r ~) -\:::-L-.e", +a-c,'" '\ ~e_ ~ '"'i'fl e~y\ t ~ a..~" '\ '*-
-h-o \0+4- '

~·9.
\0 +4-+-b =-lO ,

~ -\-II'V> -e, ,\0,-<- ~o vJ-d_ "\e.-t-- --:2_ 0 c,-,s ~"e_ "'=8,,-,\

~:).ol-~. ',.,....-_.-+-1_ e <GL.t £}- r ~ _I C"" c:::--L L (
OL_ " . ,Y) - - -l-f ~e, , ,er>,T I" -:J'-:-'---' r Cv\C)+ ,'21- L..J C\.L I <J't

-t~e__ f?ll'-E::,-;- Y-\L.Lr~-,~~)' __

c.'+~""-c:>-r-- =-'-.1--, ~"--'-~I '<;:)_1'
to

'1. \0+ ~::..\ 4-
b--' J

\C> --Lt- z: 6
20-_



n.
Au!) A~!) TAKE

Choose any numuer uetwecn 1 and 10. Add it to 10 alld write down

the a n swe r , Tuke l;i~e first number away f'"UIlI 10 a nd write .Iowu r

the answer'. Add y uu r' t w o answers.

1. . t "What result UO you Ke .

.,.... Try starling \"j t h other numb or s • l> 0 you ~to! l t h I:' SaIIIe t·eSIJ 1t ?

3. \~ill the re s u l t, be the s am o for a I 1 s t a rt j u g n umb e re?

I. EXI)lain why your tH1S\~(!r Ls right.'1 •

l<L'Qo\t .r. ~Q_\-
0\0\

~
Q."", ~ l..__::, 'Q \ t~ C3-..\ ~~~

\ ,,<---.,CL '\ Q._ ~ u\\- \~ t"" Q_ C~.\Q_\,()Q 901"-

~f\ C\ ~ -\:~-~ ~Q \\ o\'\)\_y~.~,-- .r: \
'() ~ ~ -~ '-\"""Cb {Y'\_ -- \a

.I\\Q_ \lE:'_":::'5_) \- I "b 0..\ ~~q_ .\;: ~~ ~.k"'-~"~
-< : o:=)(_:)~"Q__ G~C:_00'2:,Q__ ~~'~~\

tIC ()cr'l§;~ - 't@ . \0 \Y\.~\\._) B ~'-\-U_j-\-~\ {)ufO~

,x -,>Z -\- ~ \o.~.M·'-{-")% f\ ~~~GQ_\j- ~. \(])\___)..==- ,r 1.Cl>
,,
I
I

\~ Qo

\\c)~~" ,~
f{__o
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ALJU A1\U TAKE

Choose any number between 1 nnd 10. Add it to 10 ulld write down

the answer. Tul"e (;)~e first number away fr om 10 an d write clown r

she an sw e r", Add your t "'0 answer s •

1. WhaL result do you g~l?

2 • Try st aJ' Lin ~ \\' i L hot her 11u Inher s • Do you g e L t l i e- s aOJ ere su 1t '?

J. Will the result be the same for a LL st art Lug number's?

II. Explain why your answer is r Lg h t ,

t
\ I,

=«

8
OrAqS IS( leI :) .---

10
\ 6

-. _--- ~9
.a.s; ~5.?-~



AIJIJ At\U TAKE

Choose any numuer uetween 1 nnd 10. Add it to 10 alld write down

the answer. Take (i~e first nurnb er' away fr om 10 and write d own r

& 11e a n B w C r' • Add your t \0,'0 an sw or s ,

1. Whal result do you ge~?

::!. ~'ry s t e r t dng w a t h other numb e r a , Do you gel th « sallie result?

J \~il1 the result be the same for oJ1 st art Lng n umb er s?. .
4. Exp.lain why your an s ...Jcr is right.

~
2 tA.) '3 + 10 -s: 13

'2. +- I (') -= 12.. I 10 ,- '3 = I

10- ;2..="i5

I..L

fl I..) -t- to -:: , ~e:
10 '

.1_
"0

.1·
I '1- l...

.I c: .1
1 I i;' I C .,~ 'I~C) ,

re.sW+ i.s :;2..0,

~.
:-:;tc.u-ri '23

l.J iI \

c:.>-..r'I.::J n ~ b~.r I eNe.,.n

\J e_' t-h e.. :SCl..r>'l.e.

~"t.._-.:.~~ \ c~:::.., I ()

k"c..~an) '1\ t..-1" e re: 'S~d .

10 is the..

cu,c(

0....n'":' ....werS wi (I

EO --==~ 'TJ,'~ ~ ')

C\..0 --=:'~''jl\'~ 10 - y_ .\- 10'1' \)_

pr<:sve.d betC_C_~.GV::le

I C' - r:;. -+ I Co '1- l'~ ':" '2 C



Aut) Al\t) TAKE

Add .i L l o 10 a II d W I' i t e d ow 11
• ,j~hoo13e any n urub er: u e t w e e n 1 and 10.

'Ta k e U~e first n umb er' away Lr om 10 and write down 1:

Add your' t w o un ew c r s ,

~ ~ \:i,t~q,~ resu 1 t do you ge t '?

"0:;..
Try s t a I' till g \~i t h ()t II Po r J\11111her s •
, .1"'. .

Du you gol LlH' s auie r c s u I t.?

3.
j •

Will l II e r' e S u I. t bet 11e ~aIII e for Cl j 1 ~ t Cl ,. L .i II ~ II U IIIb l' r: s 7
• , 1 :..

l~: Exp~ain why your an swor' .i s right.
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CO.1N TUHN ING

This is a co i.n t.urn i ng game hut played wi t h pencil and paper.

1. Thp. firsl is about :3 coins, and a mo ve consists of turning

over any two.

lJsing as !IIany such moves as you wish, get from 3 tails to

3 heads.

Mak e your moves I Lk e l hi~: T T 'l'

U H T

T It II

......... and so on.

If you can do il, show your list of moves.
it is Lrnp o a sLl, 1e t ~p_la.L-u--w-hyo==

I f you th Lnk

•
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COIN TURNING

This is a coin turning game but played with pencil and paper.

1. The firsl is about J coins, and a mov e con s i s t s of turning;
over any two.

Using as ma n y such moves as you wish, gel f rcm ) tails lo
) heads.

Hake your moves like lhis: T

H

T

II

II

T

l' T

II

......... and so on.

If you can do il, show your list of moves.
it is impo8siblc, explain why.

If you t hLnk

b

possLblQ

~ ~ '-two
b three

Y"e\:v-rn

tj0u. 'cl chc:,u--.se

u...')cH...Jd Lcu..:e

L"o kexb cmc\

CY-> tkc O\"-~

~d-:),1k

vuo~x.~., (~=Ft: l.~<'L;....ld

l~ rae t 0\..L.J: op <1
(hQ.n (:h..:1 \.~:o\.._Ld

l-o LA...lo lQ. c'\C_,~)hU.L-l

cho.':Je
h:u.L.

'l-t...:::o 1'V\.U'l:->

~IS \..0CI,_._Ld

.."bO C':"'-C 'F'-'- f'

ct:.'-" ::J«II'" (,Y'" {'C''''
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COIN TURNING

This is a coin turning game but plnyed with pencil nnd paper.

1. Th~ firsL is about J coins, anrl a mOVe consists of turning
over any two.

Using as many such moves as you wish, get from) tails to
J heads.

T

H

T

'1'Make your moves like Lhis: T

u
It

r
II

......... and so on.

If you can do it, show your list of moves.
it is impossible, explain why.

If you t.h i nk



2. The diagrams below show all the possible ways of putting
down three coins. An arrow has been drawn from 'HiT to HTT
to show that this is a possible single move. TIT to l11lll is
not n possible single move so these will not be joined.

Complete one of these diagrams by drawing arrows to show all
the possible single moves. (The spares are for use if you
make mistakes on the first one.)

~
TT H<..-.?"I It III ~T HT TTII illlil THT

~t ~

!lH~ !ITT
UH'f TlVI' IITT

. ~

t1TII4:11TlIlI 11'1'11 'fllil

T1'li Illill THT TTl I 111111 TIlT

1 ~

HilT TTT 111''1' IlH'l' TTT ur-r

liTH TIIiI HTII '1'1111

J Now. cxpl ain aga in why your answer' to No 1 is right.

HH M,

s-~.
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COIN TUHNING

This is a coin turning game but played with pencil and paper.

1. 'lh e first is about J coins, and a move consists of turning
over any two.

Using as many such moves as you wish, get from) tails la
:3 heads.

Make your moves like this: T

H

T

H

It

T

T

II

T

II......... and so on.

If you can do il, show your list of moves.
it is impossible, explain why.

I f you t.h Lnk

~V\ ·rl.ACct t._b lOS ~~::S~. IF -rvcx» CC"-Y-r::: hOA._'E' -+0

~ or-€ VVlOU€ ~.-e OJ< not ~\ol...)3'" cov--t:;. '5 "'-'La.d-:;

3~ ttl YVOlJU'(3 ov\O eoV\ ~ Cl ·+I.-t-I-\t2 I 'o~t I....t-
t) l"'Y1ovLV\3 +c,x> .

ca._y, ~-~O"~" I
'-- . < , '->-- "::}

-- 'J. F·...-)-··.,.··, l,I,.,,..._) '-- "'- ......'-- ~- '- '... .. ,\",.
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2. The diagrams below show all the possible ways of putting
down three coins. An arrow has been drawn from TilT to IITT
to show that this is a possible single move. TTf to 111111' is
not n possible single move so these will not be joined.

Complete one of these diagrams by drawing arrows to show all
the possible single moves. (The spares are for use if you
make mistakes on the. first one.)

TTH ~lIH~-)THT 1'1'11 111111 1'11'1'

~,~", ~
II HT '1'1'1') 11'1'1' HUT 1"11' IITT

\ j -,
~1T11 '1'1111 IITlI 1'1111

TTH. 111111 1'111' 1''1'11 111111 TilT

J, ~
HilT TTl' 111''1' HHT ' '1'1'1' 111'1'

irr 11 '1'1111 HTII '1'1111

J Now explain again why your answer to No 1 is right.

~::P-.;I CC)....Y1 "J:2Q I t-V\Q_~ I"G Y'JC) Q-{" (C\,0 9C>'L"/'-3 .....~yOV-1..A .~ -tJ0 I (:'-:-...t......l-:::;-

P:)<' ~- W\J:..' --n-·wx<? C~h:...'
:'1 3 ~&oct:::- ~~ I':) 'cK~c~-c l-Vill. yV\OuQ r::.. \KY'\ __-....J )
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COIN TUHN ING

This is a coin turning game but played with pencil and paper.

1. The first is about J coins, and a move consists of turning
over any two.

Using as many such moves as you wish, get from) tails lo
J heads.

Nake your moves like lhis: T

H

T

T

II

r T

11

It

......... and so on.

If you can do it, show your list of moves.
i tis imp 0 B s_ib 1 c , expl a i n why.

If you think

I' "1\.\ )\i\-\
! 1 i

;~',HI
, 1 ; :
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, I
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ADDING A NOUGHT

If you want to multiply by ten, you can add a nou ght ] for.

1. Is t h i s lrue for all whole esumbe r s?

2. Exp l.ai n why your nuswcri s r' j gh t ,

'('V'V'C' \Je.<.;
when rY\.U....l.l:. ~~ U""q '0~ \ 0 ~ e, ~~lU. r0\.Kv'.:.

.O"n~ p~~ tJO' ~ ~~\NI:, ~c., \Q_OJ,J4 0.... ~~o...<.~~

vn :OQ~u.:>~ . \:)(-,Q.. pu b~ ~'ncur 0J"("Vt\ ':.h ()_ (~e.(~<u

f>o~ I v..>h.ut.h ~ Q.. ~ 0 ~'M.. ~ c:. .i,



AlWINe; A NOU(_ill1'

If you w a nt to muI tlply by ten t you can add a uo ug ht i for

exampl¥, 2~) x 10 = 2~)O.

1. Is lhis t r u e for aLf whole mUlIlbers'?

~. Exp La Ln why your a n sw er' is r f gh t ,

'f'<'\~U"\5 ~ ~ ~ l.n~"-j.o.f u..:..lh(~

.~ ~ ,~s;u- ~ ~.QJ,
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ADDiNG A NOUljllT

If you want to multiply by ten,you can add n nought;

examply. 211J x 10 = 2/1)0.

for

1. Is this Lrue for nIl whole lIumbers?

I)... Explain why your an sw cr is right.

t,'lS'S x \0

Ss .Y .x lO

\ . ouSe'::, X to -_ lO ,05G

(,,-\325 ~ l~ z: IY"~'2S'

f C.y::~~ 4
,0

\ c>C-iS Lt

'iSS .:;
ID

''\..\..\cu..16~ \"3 ~~ If:lO Cq_~ dQ.CLVY\o..l p\D.(_Q_5 )o.,~\Ol

C\lC'S 1..).'\ ~t: Dr Cu..JL c\.o.C(~\{)aJ_ p~-V'\\:- o......'"€. qvc,,-cLc2_cJ \.A.,"\.

Q. or rv-v:Y€- 1<\ u..l.J:: l_f:LQ 0 ~ to I
r

t 1. a ~K?r I ; I0 l DO, ..\ DOO. cu./\c\ so u/\$\-e_(A,_d -0 {- l.~~ Lt\/\..'\Sl

'-t t\AQ '6LLy"'n '-1~ LA tf\.Q_Q_c\ ~u.SY a.cld -t:\.A.-Q- "Aff:>copi o.\-.Q h'--l~ry\'Q.)}--

\l\A:)uqlA.J_~. '\l.r-.Q. ~'"V\.Q. "\S . \ ~ LtD Lt \fY,- u._ULI;:)\A..( \D L\ C'- l DO ~

~x Lf0v... o.clc.t hx:) 1r\.t:)~L-LtS b..eCCLL"l~ c\. \.AU\ilc\re.c:..\ \8 \CI
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ADU INCa A NO\JC_jIIT

If you want to multiply by ten. you can add a noug h t j for

exampl~, 24) x 10 = 24)0.

1. Is Lhis true for all whole mumbers1

2. Explain why your lltlSWf'r is right.

lYQ/J -tI-M lA t.'-UL J:rr a.J..L w-h-ola,

~tA~
rUJ.I'I'"l.1.Mif S .

.e,~ LL Jcrr ~ Cl..fWWff t.r.l,'

~ nu.tlt.f~ l::h,Lr~ roJ4:~ ~ \

og X J ==-;to ~
htrv . ~Lpb 'LJ: ,~- 10. '/ Ol,V'V.e- ~t:. 1:0 ~ \:.\-tL CJ.-nlJ~"er

tLJn9./J ~ if. I wZIL /dho"v h.oto We- do -thAJ:).

2 0 ?? X F~I::. ......,e..c1.o 0)( 9'J -t:::J-mn., 0 X 0) lI-uin. 0X Z .

J 0 ThaJ; 3 \v£A ~ CN ~t.ccL oJ o .
o 0 0 B,d.kJ-u_ {;)flC~ ~ LU o: {!J._rR- rnuJ+<f!:J

2 0 0 -l.J1;Q I HIt... A f CD tUrl1rt. Io 0 -.._.J -...:J tfU"\.. .So tr (L.. u-r>r ~ tJ.j Q" nCLV'e,

-:z.:---O-8~o~ ~ pLAt ~ CV ~~, 13~Je. lOx ~
~ ~ lA_)an!l:: ~ '-k~ -\:.ho..n10. EVQn..

;lX0 .::0. 11-u.rv we oLo J X!? (Ncrt 10)<S' Ge£0-.t.WQ. u:le.- ~ e. puk

~ Ut, *h.a_,}flf- CdLUftlfl- to I)haW we. cere: ~~~ ~ 101
we. do \)<. a -th.o..n.- \)(..:z. 'tJ£; p' CJ-t o...r-e.. OJ-Lrl1.l)OJ/fj/) Lrl.

) .

l" appr~ c.olLu-ruvl) tha.n.. o..~ cJL t:tuz_ .~r up.
ru:u.. equ.e.l:.s ;2 0 W. J 11 \:hQ.. ju}'b1- P~Q. J J:. c.om..Jd U-e_

~ ctu- co ~ et., O. ,n.J)tQo.ci '?f cJ0 ~ 0 'X g_J (J~O .eJ- (., .



AUUING A NOUGIlT

ex arnp ly , 21~) x 10 = ~1130.

If you want to multiply by ten, you can add a noughtj for

1. Is lhis lrlle for all whole numbers?

2 • Ex p 1ai 11 why yo II r t:\ TI sw e r I S 1"j gh t •

~ ~ ."~ y-\ct::,.. ~ ~ ~

~ eo~f»-D- 2 4-.3 K 1+ clc>eo
Lt:: ~KoC 0.1 ~.

~ ~~ yC1->-

Qold 0- ~\.-,+-' C).,C)

~~ ~. t,.tD-A- ~ 9- H-~
o ~ L..t L-0~d

LO L-1ClA

I D X ';;2. N-3

d-~ olC:W(l

~ cO 9-k:-~(j



ALHHNG A NOUGIIT

. 1 uy ten, you can add a nought;If you want to nlultJ.p y

examply, 24) x 10 = 24)0.

for

1. Is this lrue for all whole mUlllbers?

Explain why y ou r' ~nswcr is r f gb t ,,.,...
, .

@

<25 CD (oo~l+fo )<:: to - ~60\ltW-

eo 4i(,b4lQ X \0 41bb_h13Q,.....-
..... ."

6) '2164-(.5- X \() '~l b Lf-l1~O
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~~ ~\c \ C)J0\ ~""~.
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AD.OING A NOUGHT

I If you want to rnult LpLy by ten, you can add a nought; for,
t examply, 2~J x 10 = 2~30.

1. Is this true for all whole numbers?

2. Explain why your answer is r f gh t ,
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AUUING A NOUlilll'

I If you want to OIultiply by ten, you can add El lIought;

e x amp l.y , 2't) x 10 = 2l,)0.

Is t h is t ru e for a l I whole mUlllbers'l1.

for

2 • E xPIEl i II why you r a Jl 5 VI cri s r j gh t •

.
CV""t.f ~OI..L "-"VV\~j A W""'ol(.. V\\.)V"''oCII- bj \0
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43
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00
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UIAGONALS OF POLYGONS

I

/~,t:>
\j ',2

Some d Lagr-ama have been drawn here. It seems
that "The greatest J1umher of non-crossing diagonals
which can be drawn in a polygon is three less than
the number of sides."

Is this statement true for all polygons?

Investigate this fullYi then state your conclusions
and your reasons.

\'\-e.\fe doe.o ~ ~eer-n l::t> be.c__. pa~k:~xY)Of
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D.

UIAGONALS O~ POLYGONS

Some rliagrams havn heen drawn hp-re. It seems
that liThe greatest numher ofn on-sc r-oe s Ln g diagonals
which can be drawn in a polygon is three less than
the number of eides.1I

Is this statement troup' -for all polygons?

Investigate this fully; then state your conclusions
and your reasons.
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, cA 1,,"'tA. ~ 0 n0..\
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S 01" POLYGONSIJIAGONAL

/~,~
\),,2. .

d awn h~re. It seemsSome diagrams h a v e b een .rof na~-craesing diagonals
that liThe greatest num~crOl gall is three lCS8 thanwhich can be drawn i~ p Y
the number of side8.

f all polygons? Ye~)Is this statement true or

. then state your conclusionsInvestigate this fully,
and your reasons.
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UIAGUNALS Of POLYGONS

D.

4, I 7.+

Some diagrams h a ve b een d r awn h er-e, It se em a
that liThe greatest numher of non-crossing diagonals
which can bc drawn in a polygon is three less than
the numb e r' of aLd e s s "

Is this statement true for all polygons? '10.:'

then state your conclusionsInvestigate this fully;
aud your reasons.
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S or })OLYGONSIJIAGUNAL

D.

4. I

/"~
\) >,2 .

b ee n drawn hp-re. It seems
Some d ie gr-ems ha vo "her of n on-sc r-os s Lng diagonals
that liThe greatest ',I urna polygon is three less than

hich can be drawn 10
'pi • d "the number of 81 P.S.

a tat em e11t t r'u e for all pol Yg0 n t!J 1Is this w

then state your conclusionsInvestigate this fully;
and your reasons.
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UIAGONALS OV POLYGONS

u.

Some riiagrams h a ve hl~f!ndrawn hp-re. It seems
that "The greatest nurnher of non-crossing diagonals
which can be drawn in a polygon is three less than

the number of sLd e s s "

Is this statement true for all polygon!!?

Investigate this f u Ll y j then state your conclusions

and your reasons.
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UIAGONALS Of POLYGONS

4, I

Somc di a g rams have! h een d r awn hp-re. It s eem s
that "The greatest Ilumher of non-crossing diagonals
which can be drawn in a polygon is three less thnn
the number of sides."

Is this statement t rue for all polygons? ::le:")

Investigate this fully; then state your conclusions
and your reasons.

10"

13,10
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MIDPOINTS
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I ., I • S )!0 1 2. ) 5 7 :1) 10 li 12 :"

A and 0 can be any two whole number points on the number line..
H is thp point half way between them.

1. If A is at 2 and B is at 8, at what number is M1

2. Add A's number to U's number and halve the resuJ t. Do
you g~t M's number?

J. Will the rule in No. 2 work for every possible position
of A and B on the line, including bigger numbers.



MIDPOINTS

~ I I I
~

I t I A I I I I )0 1 2 J I) 7 t') 10 11 12

A and B can be any two whole number points on the number line.

1'1 is the point. half way between them.

1. If A is at 2 and B is aL 8, at what number is M'? 5 .

2. Add A's number to U's number and halve Lhe result. Do
you gpt 101' s number? 'I~,

3. Will the rule in No. 2 work for every possible position
of A and B on the line, includillg bigger numbers. Ye/) .

'i , ExpJain why your answer is true.

~ ~ \V'b\ ~UI\Av~
.

~~ .e...-UJU\

~ ~l ~ ~ ~, ~ ~
PJ-

CoJ\. ~~ ~.



MIDPOINTS

, I I ! t I t I A I J I I ')
0 1 2 J I) 7 I) 10 11 12

A and 0 can be any two whole· number points on the number line.

t-I is thp point half way betwe~n them.

1. If J.. is at 2 and B is at 8, at what number is H? '5

2. Add A's number to U's number and halve the result. 00
you g p t l-t' 8 nUIIIb er'? t'-Q/.)

3. Will the rule in No. 2 work for every possible position
of A and B on the linc, including bigger numbers. "2 c..t...\Ac...t x o

~ 4\-~~\.-E~(\\)Q\J~bExpJain why your answer is truc.
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MIDPOINTS

o
, I I 1 I ,

1 2 J 5 7 10 11

A and B can be any two whole number points on the number line.

M is thp point half way between lhem.

1. If A is at 2 and 0 is at 8, at what number is H'? 5'
2. Add AI s number to UI s number and halve the result. Do

you gP. t !ol I S number? jE:.~ •

J. Will the rule in No. 2 work £or every possible position
of A and D on the line, including bigger numbers. ':Jt;~

E xp j aLn why YOIU' an ewer is true.

't>€ Cau..'5 ~ ~ "-lUM bQ..r b€.~O\'!.. H, (f\) \'5 H h..~'Yll'

ct(··StC\Y\(e C, \A)C\ v-.\ f r Co t--f ~\, 13 is "
(h~ 5aM€ (:V~

(::"'J'
..

35 36
A t..-' ,..,~'-"'>r~

\ '.
c~. '2...

{ (, (---) \ "1 c. - <:1'1 ()
"t' -~ -5 r ....

I .'. \.\.."'\ (~ 0' t--\, •

V~/V¥ ?-If /¥ - 11 ac.ld~(::,~ ..2.

to ,er
~I,)t.. i f. eqtACt t ~,;J,,,-,5 ",-')(">r ~



MIDPOINTS

, I • I 1. I t I A I I II I )
0 1 2 J 5 7 C') 10 11 12

A and B can be any two whole number points on the number line.

H is thp. point half way between them.

1. If A is at 2 and B is at 8, at ~hat number is W?

2. Add A's number to U's number and halve the result. Do

you gP.t NI s number'?

J. Will the rule in No. 2 ~ork for every possible position

of A and B on the line, including bigger numbers.

I, • Explaill why your answer is true.

A i~ oJ ~ and P 1.0 J C(" , t-.I\ -:. 5.

A ,~ z, c:>--'<"'d e:, ,~ ~::.... \ C

\r...o..\." e, \0 ~ '$""
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v~ .,~
le

M -=- -S;. e> ~ \:hu..

\ ~ ~ ~ ?::, C->---"'d

y-..._~ \:R_c- \ , ..........a...

()__, ~ C\ -= p-

3· \(:.

M

a ~-:::-\"'l- ;.. ~.os.. IS-, -s, :2....,
"':l -=-- \~\,'t..
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~ '-..O-~ ~~ ~~ \- ,~
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MIDPOINTS
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0 1 2 J 5 7 q 10 11 12

A llnd B can be any two whole number points on the number line.

z.t is the point half way between them.
, ,

1. If A- is at 2 and B is at 8, at what number ia M'?

2. Add A's number to Uls number and halve the reBult. 00

you SP.t HIs number?

3. Will the rule in No. 2 work for every possible position
of A and B on the line, including bigger numb er s ,

~. ExpJain why your answer is true.
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~ . .;o .. cl" 10 ~ ~ ': ~ ~QS
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NOUGHTS AND CROSSES

1 20 J

» 5 X t,,,

You are X and it is your turn.

You are thinking oC going in 6square •

1. Is this a good move?

2. ExplailJ fully wl'.·y YOlI Itlink 80.

~~. \+\.5 ~ ~ ~d ~ ~..r:\. ...~~_ ,Q- ~.I,.~~,

~ ~ 0 ~~ ~f""'r\~ \ ~-t"D <S=(._~ ~ ,~'r-e c.~~\d
~ 9c::k ~ c...~~ ~ \..I.::)\hl\~9 '-'-=>\-+h ~ h'-~e'-_

'1°. ~ ~ c::.=Wd ha-ue.. "'\.d- 0.. ~ &- \. '2. .'?:

Oy- Co ~ '?,.b .q \_~ '-~~ ~-'hE:. K ,~ b t.~. cC\.f'\

'o~ t>~~*v ~~...::> ~.~.q ~ :. ~
be ~r'~ ~ ¥U-q ~ I. ~.~ ~ ~ \~r\'~ to
. _ \_.. \t- L~ ~ CA. - \ b, ., c\C:::::::ic:s<::::) ~e - - ........(")I.,\ ec-_c~ c...("'-",

cr=J ~ ~ ~ E""~ Y.S. b
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NO.UGHJ'S AND CROSSES

20
,.

1 3

'IX I) ·6 0 y'

6 7 80
You are X aud it is your turn.

You are thinking of going in square 6.

1. Is this a good move?

2. Explain fully why y ou think so.

1:) V ~

. crrod ;'V1()UQ....

b'h..vo u:> 0\

QQ...~ ~OV\ C--Ct-rl ~

~ ~
s ~d' If LiOt:...1

. 6 JuL
oU-d Y1~ 0 ~

vv~ h~ CiD1- ~
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NOUGHTS ANU CROSSE&

1

5

:3

6

, o
q

You are X and it is your turn.

You are t.h Lnk Lng oI' going in square §...

1. I s this a good mayo?

-
2. Explain fully why you think so.

NO
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NOUGHTS A.NOCROSSES'

1 20 :3

;< ,,
-,

\

5 6 \

,0
You are X and it is your turn.

You are thinking of going in square 6.

1 Is this a good movo?•
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NOUGHTS AND CROSSES

1 20 )

4
X )<

'j 6

lO
You are X and it is your turn.

You are·thinking of goillg in square 6.

1. Is this a good move?

2. Explaill fully why you think 80.

\ • '\.,Q/:).
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A, fl, C, D, are the midpoints or the sides of the quad PQHS.

In. some quads the midpoint figure ABCD is a r ec t ang Le ,

1 • It· in cl 0 U t w hat 11a 5 t. 0 b e 5 pee 1a 1 Clb 0 u t t, h e q u ad PQ HS for
ADeD to be a rectangle.

2. Give reasons to justify your answers.

Use the plain orspotty side of the paper provided for
your trial drawings.)

'leu. CQ~l

1+ S~dE:s·



· .~;.
..

•

•

•

•

•

•

•

•

•

,

•

,

•

•

•

•

•

•

•

..

•

•

•

•

•

•

,

•

•

,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

,

"

..

•

•

•

•

·.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

,

•

•

•

•

,

•

.. ..

• • ••

• • •

.. •

• • ••

• • • •

• • •

• • •

• •• •

• • •

•

. .
•

•

• • • ,

•

•

• ••

• •

• • •

• ,

• • • •

t,

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• • • •

• • •

, • • • •

• , •• • •

• • • • ••

• •

•

• •

• •

•

• ..

• • • • •

• • • ••

• • •• •

• • ••

• ••

, • •• ••

• • • •

• • •

• • • • •

• • • • •

• •

•

• •

• •

• • ••"

• • • • • •

• • , • •

• •

•

• •

•

• •

• •

• •

•
•

• •

• •

• •

• "

• •

•

• •

•

•

"

•

• •

•
"

•



· .

QUADS
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At at et D t are the midpoints of the sides of the quad PQHS.

In some quads the midpoiJlt figure ABCD is n reclangle.

1. It'ind out what has' to be special about t.he quadpqns for
ABCD to be a rectangle.

2. Give reasons to justify your answers.

Use the plain orspotty side of the paper provided for
your trial drawings.) ,
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QUADS

p
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At B, et Dt are the midpoints of the sides of the quad PQHS.

In some quads the midpoillt figure ABeD is a reclangle.

1. F ind out what has to be special about the quad PQns for
ADeD to be a rectangle.

2. Give reasons to justify your answers.

Use the plain orspotty side of the paper provided for
your trial drawings.)
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At B t Ct D, are the midpoints of the sides of the quad PQHS.

In Borne quads the midpoint figure ABeD is n rectallgle •

.-
1. F ind out what hast.o be special about the quad PQHS for

ABeD to be a rectangle.

2. Give reasons to justify your answers.

U~e the plain orspotty side of the paper provided for
your trial drawings.)
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At B, C
t

D
t

are the midpoints of the sides of the quadPQHS.

In some quads the midpoint figuI'e ABCD is 0 r e c t.angLe •

1. ...ind out what has t.o be special about t.h e quod PQIlS for
ABCD to be a rectangle. '.,.,' 't:'

• ,.• .~'))I, '.•

2. Give reasons to justify your answers.

Use the plain orspotly side of the pllpPI' provided f'o r

your trial drawings.)
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A, R
t

C, 0, are the midpoints of the sides of the quad PQHS.

In some quads the midpoint figure ARCD is a rectangle.

1. Find out what-- has t.o be special about t h e quad p'~ns for
ABeD to be a rectangle.

2. Give reasons to justify your answers.

tt S1',Ieof the paper provided forU~e the plain orspo y u

your trial drawings.)
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.be. 0/ e",.)~, 01,0 ~nQ2; =10 +1 Je>r"r: cf> Pq )qPi
ot- 90
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) +h e.refCre. +he ClI~ poe5 ('6,' tA.,..bt,
go +hi::> YJ ..per- R· ~ to _ a~I qp U
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.sTAHPS

of Bp and 20p stamps, but nu ulhers.1. Anne has plenty

a p ar c e L to post cos ting 70p.She has Can she put 011 the

correct amounL exactly?

2. Explaill why you~' answer is right.
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1. Ann e has plenty of Bp and 20p stamps, but 110 o t h er s ,

She has a parcel to post coSting 70p. Can she put OJ) the

correct amount exactly?

2. ExpLain why your answer is right.

A.

~ C,; O'Y"', ~ t.._...h -:~....,,, + tl\...L

Q....V .or L-0C~ ~~CV-__ h~~
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iTANPS

1. Anne has plenty of Bp and 20p stamps, but no others.

She h~s a parcel to post coSting 70p.
sfuJ.

correct amount exactly? ~~



STAHPS

1. Ann e has plenty of Bp and 20p stamps, but no o t.h e.r s ,

She has a parcel to post coSting 70p. Call she put 011 the

correct arno u n L exactly?

2. E.xplain wh y your answer is right.
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STAHPS

1. Anile h a s plenty of 8p and 20p stamps, but no ulhers.

She has a parcel to post coSting 70p. Can she put 011 the

correcl amou n L exaclly? ~O

2. E.xplaill why your answer is right.
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STANPS

1. Anile has plenty of 8p and 20p stamps, uut nu uthers.

She has a parcel ~o P?st coSting 70p. Can she put Oil the

correct amount exactly?

2. Explain why your answer is right.



ON~: AND TIlE NEXT 7
\o/rite d own any number up t o fifteen. \o,frite rl o w n the
next number' and odd it to the first. Wt·i le rlown your
an swer , You ha v e now written down t hr e e numbers.

Gail says that one, and only on c , of these numbers I s
in this list:

J, 6, 15, 1B , 21, 'J L,.. , )0

1. Is she r Lght ?

2. \';i11 she always be rd ght ?

I
J. Expla:in why.
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ONE AND TIlE NEXT . 11
Hrite down any number up to fifteen. \{rite down the
next numher and odd it to the first. Wri.te clown your
answer. You hove now written down three numbers.

Gail says that on!'!,and only one, of these numbers 1s
in this list:

J, 6, I), 12, 15 t 1n t 21, 24, 27, )0

1. Is she right?

" \\ill she always he ri~ht?....
3. Explilin why. o'
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UNl<: AND TilE NEXT

Write nown any number up to fifteen. Write down the
next number and odd it to the first. Write rlOWrl your
answer. You ha ve now written down three numbers.

Gail say s t haton e , and 0 n 1yon e , 0 f tile S H nII III ber 5 I 13

in this list:

3, 6, 12, 15, 1H, 21, f) II... , 27, 30

1. Is she right?

2. ",'ill she always b ori~ht?

3. Explnin why.
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ONE AND TIIF. NEXT ,

\vrite down any number up to fifteen. Write down the
next numher ond add it to the first. Write down your
answer. You have now written down three numbers.

Gail says thatonp., and only one, of these numbers is

in this list:

6, 1'.1-,

1. Is sh e ri ght '!

15, in, 21, 30

\~'ill she always he r Lg h t ? /,eJ'

E'xp ] n i n why. S~'IQ. ~i \\ oJ) loA) 0...0 b~ r,d'+
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ON~: AND TilE NEXT

Write clown any number up to fifteen. Write clown the
next numher and add it to the first. WI-)le down your
answer. You have now written clown three numbers.

Gail says that one, and only one, of these numbers ls
in this list:

:3 , 6, 1')'-, 15, 21, )0

1. Is she right'? YE.S

~ • h'i 11 5he a1way 5 be r i ~h t 1 ~. ND.

J. Explain why.
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The points Q, P, and H can be anywhere on the sldol!! of. t.he big
triangle.

In the first tr iangle above P(~U ia equ I Lat er a L,

1. Can PQH be' equilaleral with Pt q and Il i.n any other p on I t Lon s ?
Ie ao, what arc all tho olher p09sibililiea?
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The poi.nts Q, P,
trianglu.

on the sides of the bigand H CEln be anywhere

In the first ll' qui l e t e r a L,triangle above ~I 18 e

itt P Q and H in anyCan PQH be equilaleral W 1 I 0bolilies?
ar e all the oLh~r P0881 1If so, what

other positions?1.

2. 1'S right.I Your an swerExplain Wly
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The points Qt Pt and H can be anywhere on the sides of the big
triangle.

In the first triangle above ~~H is equilateral.

1. Can PQH Qe equilateral with.Pt Q and H in any other positions?
If 80, what are all the other possibilities?

2. ExpJain why your answer is right.
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The points ~, P, andIt can be anywhere on the sides of the big
triangle.
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In the first triangle abova J>~W is equilateral.
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1. Can PQH he e quLl a t.ur-n j with P, Q au d H in any o t h e r- positions?
If so, what. arc all the ot.her po s sr b tLt t Loss

•
• •

2. ExpJain why YOllr answer is right.
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The points Q, Pt and R can be anywhere on the sides of the big
triangle.

In the first triangle above P(~H is equilateral.

t. Can PQH be equilat.eral with P, Q and R in any other positions?
If so, what are all the other possibilities?

2. ExpJain why your answer is right.
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The points Q, P, and H can be anywhere on the sides of the big
triangle.

In the first triangle aboveP<~H is equ LI a t er-e Lv ,

1. Can PQR ~c equilateral with P, ~ and R in any other positions?
IC so, what are all the other possibilities?

2. ExpJain why your answer is right.
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P, and H can be anywhe.reon the s-i,des of the bigThe points Q,
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In the first triangle abovePQH is. equilateral.

d Ii i other positions?n"R be equilateral with P, Q an , .n any ~.
Can ""< 'b'l't' ?If so, what are all the other pOS8~ ~ ~ ~es.

E'xpl e Ln why your answer is right.
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APPENDIX TO CHAPTER 10

Test for sixth form experiment

Notes and mark scheme

Test statistics and notes on test development

"The Mathematical Process as illustrated by Boolean Algebra"

..



GENERALISING AND PROVING

This test is about making generalisations and proving
them. Here is an example:

"Squares are bigger?

Choose some whole numbers, less than ten, and square them.
Do they get bigger? Does this always happen? Prove your
answer."

Investiga~e this for a few minutes, then study the following
answers given by different pupils, and give your comments
on them.

Philip: 3 x 3 = 9
bigger.

a x a = 64 Yes, the numbers always get

Adrian: They always get bigger because you multiply them.

Patricia: n 2 is n x n which is greater than n.

Wendy: A number x the number = the number + the number +
the number, and so on, a certain number of times.
This is bound to be more than the number itself.

H=:tvethe pupils proved their answers?

Correct answers to this question would be:

Philip: No, he has only tried two cases.

Adrian: Has not proved it unless he also proves that multiplying
makes numbers bigger.

Patricia:has written it in letters but has not proved anything.

Wendy: would have proved it but she has forgotten 1; this is
a whole number for which it is not true.

The questions in the test are similar to this.



ADD AND TAKE

Problem: " Choose any number between 1 and 10 inclusive. Add it to 10
and write down the answers.Take the first number away from 10
and write down the answer. Add your two answers.

Try this starting with different numbers. Will the result
be the same for all starting numbers?

Prove your answer."

Investigate this for a few minutes and consider the following
answers.

Michael and Jenny both started by checking examples.

Michael: 10 + 2 = 12 10 + 8 = 18 10 + 5 = 15
10 - 2 = 8 10 - 8 = 2 10 - 5 = 5

20 20 20

Jenny: 10 + 6 = 16 10 + 3 = 13 10 + 10 = 20
10 - 6 = 4 10 - 3 = 7 10 - 10 = 0

20 20 20

Which do you think is the better set of examples?

Michael's/Jenny's

Give your reasons:

Susan:

The result will always be 20. If you choose a number between
1 and 10 and add it to 10, then if you take the first number
away from 10 it will be whatever is needed to make 20.

Yvonne:

Always 20. Whatever you add you always take it away so it
cancels out. But as you add 10 and take the number from 10,
you get double 10 which is 20.

Have these pupils proved their answers?

Susan's: Yes/No Yvonne's: Yes/No

Give your reasons:
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Wendy:

Always 20; because (10 + x) + (10 - x) = 20

Kevin: 10 + 1 = 11 10 + 2 = 12 10 + 3 = 13 4 -+ 14 5 -+ 15
10 1 = 9 10 - 2 = 8 10 - 3 = 7 6 5

20 20 20 20 20

6 -+ 16 7 -+ 17 8 -+ 18 9 -+ 19 10 -+ 20
4 3 2 1 0

20 20 20 20 20

Always 20

Are these correct proofs? Wendy's: Yes/No

Kevin's: Yes/No

Give your reasons:

Ann:

Always 20;it is the same as saying 10 - 2 + 10 + 2 = 20.
If you add a positive number to its own negative the result
will be nought.

Hazel:

Always 20; this is because if you take 2 from 10 you get 8,
and 8 from 10 you get 2. The two numbers always make up ten
and you cannot have any other number corning in.

Are these correct proofs? Ann's: Yes/No ®t:
Hazel's:YeS/No

Give your reasons:



S'l'AMPS

Problem:" Anne has plenty of 8p and 20p stamps, but no
others. She has a parcel to post costing 70p. Can she
put on the correct amount exactly?

Prove your answer."

Investigate tilis for a few minutes, ~~en comment on the
following three answers.

James:

Three 20's cannot be made up to 70 with 8's. 6 x 8 + one 20
= 68 and tvith 7 x 8 you get 76. All 8' s gives 64 or 72.
Two 20's + 4 x 8 = 72. This accounts for all the numbers of
20's which are small enough. So 70 is impossible.

Lesley:

8 and 20 are both multiples of 4, and 70 is not, so YOll cannot
get 70 by combining 8'5 and 20's.

Richard:

With one 20 you must add 50 which cannot be done with 8S.
With two 20's you need 30 which cannot be done Hith 8's.
\'liththree 20's you need 10 which cannot be done with 8's.
Four 20's are too much. Thus 70 is impossible.

Have these pupils proved their answers?

James Yes/No

Lesley Yes/No

Richard Yes/No

Explain your answers and add comments about good and bad points
in these three pupils' proofs.



DIA(,,oNALSOF A POLYGON

Problem:

7,4

t-
\<,~\ \,
\ ,
\
\

4-, I

Some diagrams have been drawn here. It seems that "the
greatest number of non-crossing diagonals which can be
drawn in Cl polygon is three less than the number of sides."

Is this statement true for all polygons?

Investigate this fully; then state your conclusions and
your reasons.

Two pupils drew some more examples of polygons and wrot.e
their conclusions.

Linda:

4,1 6,3 7,4

The statement is probably true for all polygons.

Jayne:

7,4 6,3 12,9

The statement is true for all polygons.
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Study each of these, and give your comments on whether the
set of examples proves the conclusion in each Cilse.

Linda's:

Ja nels:

Three pupils decided that the statement was true fur all

polygons, and gave the following reasons i

Julie: Conclusion: the statement is true for all polygon~.

Reason: If in an 8,5 polygon you go from one point,
you have only 5 other points to go to, as you cannot
go along edges of the shape and you cannot go to
yom.self. Other sizes of polygon work the same way.

Susan: Conclusion: The statement is true for all polygons.

Reason: You can't join every point on a polygon to
a single point without crossing another line e.g.
in the diagram you cannot join CA or the lines will

cross.

c

. ' D A



-3-

Valerie: Conclusion: The statement is true for all polygons.

Reason: the diagonals split the shape into triang.les
and the number of triangles is always 2 less than the
nwnber of sides. Also there is one less diagonal than
the number of triangles.

For each of these, say whether you think the reasons prove
the statement, and add your comments.

Julie's: Yes/No

Susan's: Yes/No

Valerie's: Yes/No --------------------------------------



ONE AND THE NEXT

Problem: "Write down two consecutive whole numbers, both
less than twelve. Add them and write down the answer ,

John says that one, and one only, of these three numbers
will be in the set of multiples of three.

Multiples of three 3 6 9 12 15 18 21

Example: 3 + 4 = 7 3 is a multiple of 3, 4 and 7 are not."

Question: Is this always true?

Investigate this for 5 minutes and then consider the following
ans vrez s given by different people.

Amanda: 1 + 2 = 1, 2 + 3 = 5, 3 + 4 = 7. So John is right.

Bob: 4 + 5 =~, 7 + 8 = ~,
So John is right.

1 + 2

'""
lO+11

Have they proved their answers? Amanda: Yes/No

Bob: Yes/No

1. Say ,...hy you think so:

0x
2. Say ,...hich you think has the better set of examples?

Amanda/Bob

Give your reasons:

Tessa and Stephen answered as follows:

Tessa: 1 + 2 = 3 4 + 5 = 9 7 + 8 = 15 10+11 = 21

2 + 3 = 5 5 + 6 = 11 8 + 9 = 17

3 + 4 = 7 6 + 7 = 13 9 + 10 = 19 So John is right.
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Stephen: Suppose A + B = C

If A is a multiple of 3, then B cannot be since
A and B are consecutive number.

Then C cannot be a mUltiple of 3 because A is and
B is not. If B is a multiple of 3, A cannot be and
so C cannot be.

So John is right.

Have they proved their answers?

3. Tessa: .Yes/No (§) r Stephen: Yes/No

4. Which do you think is the better answer? Tessa/Stephen

Give reasons for your answers to 3 and 4:

5. Have these pupils proved their conclusions? Explain your
answers.

Paul: John will not always be right. If when you add your
two numbers three does not go into it it won't be in
the list.

Karen: He will always be right. If you start with a number
in the list you have got one already. If you start
with any otiler number the answer will be in the list.
If you start with a number like 8 then the following
number is in the list.

Paul: -----------------------------------------

Karen: ----------------------~--------------



MAGIC SQUARES

The following square is to be filled with the numbers
2 to 10 inclusive, so that the sum of each row, each
column and each diagonal is the same. A start has been
made.

Is this a good start?

Explain your reasons.

4

6

8



NOTES AND MARK SCHEMES

ADD AND TAKE

Michael and Jenny

The significant difference is that Jenny has considered

the extreme value 10, which might conceivably have been

a special case.

Item 1: X: Marks: Jenny with reason mentioning 10 or

extreme value - 1 mark on scale X. (This was originally

allocated to a scale V(variety) but the item analysis

suggested it should be included in X)

Susan and Yvonne

Items 2, 4E, 3, SEE. Susan's is a restatement of the

given process. Yvonne's is explanatory.

1 mark on scale E for each correct Yes/No answer, and 1

on EE for each correct reason. But the first mark is

withheld if the reason given shows that the choice has been

made on invalid grounds; and the second mark is given only

if the reason shows a clear awareness of the explanatory

status of the response, e.g. "Susan only says what happens,

but Yvonne sayswhy" gains 2 + 2. In contrast "Susan No,

Yvonne, Yes;""Susan's explanation is not clear as she refers

to 'it' and does not explain this," is accepted as indicating

that the correct response "No" has been validly selected, i.e.

the non-explanatory nature of the response is recognised, but

the subject cannot articulate the nature of the difference.

Hence it scores only IE + IE.

Wendy and Kevin

Wendy's response is ambivalent, and proved impossible to

mark reliably, so was excluded. It is a step towards

explanation in that it expresses the relation in general,

algebraic terms and exposes it to view, but is not strictly

a.n explanation in Iteself without observing also that the
I

rearrangement, so that +x and -x cancel, is permissible.
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Items 6, 7F: Kevin's is a correct full check of the

finite set of possibilities. The mark for item 6 is

given for recognising this. The item 7 mark is for a

correct explicit statement of the reason, or if the

question is taken in include rationals, for recognising

that this is an incorrect extrapolation.

Ann and Hazel

Items 8, 10E, 9, llEE: Ann's is explanatory. Hazel's

does not relate directly to the process given, since

10 - 2 = 8 and 10 - 8 = 2 do not both occur in one

example - what relates to 10 - 2 is 10 + 2.

Examples:

Ann: "Yes": lE

Hazel:

"Not correct - she should add that 10 + 10 = 20" lE

"She explains how the first number cancels" IE + lEE

"Not enough examples" 0

"As her answer reads the answer is ten, not twenty" lE

"She does not explain how the added 2 and the subtracted

2 cancel." lE + lEE

STAMPS

James checks all possibilities in a disorganised way. Richard is

systematic but omits consideration of 0 x'20 so his proof is

invalid. Lesley's is correct.

Items 12, l3C: Marks: Lesley's mark was excluded because of poor

showing with item analysis. 1 mark on C for each of the others.

No marks for the comments unless they show that selection was on

faulty grounds, in which case the mark is lost.

Examples: "Richard has used examples, carefully planned out. James

has muddled it up a bit,tlut his point is still there." (with Yes/Yes)

This loses the Cl mark f~r James's "Yes", as there is no sense that

the check needed to be complete.
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Similarly, "Richard concentrates only on 20's when a combination

of both is needed."

Similarly, "Richard's answer is better than James's as it is

laid out more clearly."

DIAGONALS OF A POLYGON

Linda and Jayne

Item 14 X: The main point here is that the assertion "true

for all" (Jayne) is certainly not justified by the check of

3 cases. Detection of this scores 1 on scale X (caution

in extrapolation). Linda's assertion "probably true" is

more acceptable, but is based on convex polygons with

radiating diagonals only. A comment to this effect

originally scored I on scale V (variety of relevant examples)

but this proved an unreliable mark and was excluded.

Julie/Susan/Valerie

Items IS, 16. Susan's comment is fragmentary and Valerie's

is a'side-step, i.e. it relates the number of diagonals to

the number of triangles but proves nothing about either.

Correct identification of these (with a not invalid reason)

scores I + 1 on Scale Eg. A separate scale was established

for these, since the thinking involved differed somewhat

from that required for the numerical situations; for example,

Susan's proof could be rejected because it refers to a

particular polygon, so is not general. Julie's proof is

valid for convex polygons with radiating diagonals: statement

that it is valid scored 1 on E, that it is not because it

fails to deal with other types scored I on C on the original

marking, but this was subsequently excluded as an unreliable

item.
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ONE AND THE NEXT

Amanda and Bob

Item l7X. Neither Amanda nor Bob have proved their

answerSj both have extrapolated from a few examples.

Score 1 on scale X if this is recognised. The better

set of examples is Amanda's since she has covered all

three different types of situation, where the multiple

of three is the first, second or third of the three

numbers appearing in the equation. This originally

scored on scale C as it involves recognising the import-

ance the classification into types but in the statistical

analysis it showed poor correlation with the other C

items but high correlation with scale E so it was trans-

ferred as it can quite legitimately be regarded as an

aspect of explanation.

Tessa and Stephen

Item l~F. Tessa has a full check of the finite set of

cases - score IF. Stephen's proof is insightful but

incomplete in that only two of the three types of situation

are covered. This was other poor item statistically and

was excluded.

Paul and Karen

Paul's second statement is correct, but does not prove his

first statement, since it does not consider the given proces~.

The mark is given here (on E) if this irrelevance is recognised.

The mark for Karen's response was not used.

MAGIC SQUARES

Less than half the pupils had time for this question. Marks are

allotted as follows: the highest allowable of these being given.

(These are not included in the analysis).

Not done

Something done

Any definite detailed reason

A correct detailed reason

o

1

2

3
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Examples:

"Yes, since each column row or diagonal must contain

these numbers." - score 1

"This is a poor start because it adds up to 18 which

will be hard to keep up throughout the square." - score 2

"This is not a good start because by simple checking the

10 will not wozk anywhere." - score 3.
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TEST STATISTICS AND NOTES ON DEVELOPMENT

Reliability of the Measures

In an experiment of this character, where the samples are small,

statistical analyses cannot be expected to produce uniform

results. It was, however, considered worth while to apply a

number of checks even though the results might have to be treated

with caution. The first of these was an item analysis, giving

the correlations of each item with its own scale total and with

L~e total for the whole test, and giving Cronbach's alpha for

each subscale (Youngman, 1975). For this purpose, experimental

and control groups were combined, giving a total of 26 cases.
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Examination of these results, combined with consideration of

the nature of the items, led to the exclusion of six of the

26 items from further analysis, the elimination of scale V and

the transfer of its one remaining item to scale X, and the

separation of scale E into Eg, E and EE. These decisions are

discussed above, in relation to the Mark Scheme. The character-

istics of the test with this revised marking scheme are shown

in Table 2. (Pre- and post-test results are here combined,

giving 52 cases.) These item statistics were then considered

satisfactory in relation to the numbers involved.

srALE JTFMS MEAN SlGMA Al..PHA

1 X 3, 1 .78R 0,91\1 0,4019
2 F :3 • 1 ,827 1 139 0,'1057
3C. 2 , 1 ,000 o 7P.4 0,3750
4E1 ? , 1 , 1 31) ():8~J ",5973
5 C 6 • 2,BH5 1 .660 0.6860
6£€ 4 , 1 .096 , ()()6 O. 1.684
7I"ctA.( ;>0, 9,731 3:701 0,"186

IT(,., SrALf REV KEV MEAN ST(jMA R(TOTAL) R(SrAL.E)
1 1 0 (\ O.~3 0.4R2 0.37(,,_ 0,6061

2 5 0 0 0.69 0 41-.7. 0,5591) 0,(:-'564
3 fl 0 n O.3~ O.4?fl 0,369'1 o ,fdflll
I. 5 0 0 n,67 n.4(,9 0,5253 O,l/d8
5 6 ° o o,'n 0.46 9 0,4052 0,7740

6 2 0 n 0.61 O.4R2 0,1282 n,~(,66
7 2 n () O,4A 0.500 .°, 1.3/.0 n,R"60
8 5 0 0 O.6~ (\ 482 O,40RB 0,7171
9 6 0 " n.21 (l.4(lR O,36RC; o , f, R 1.6

1 0 5 0 0 0.56 1"\.49'1 0.5610 0.7078
1 1 6 0 0 n.21 O.l.nH n,3B1? O.4?7n

1 "
3 0 0 O,5n O.SOI) O,21R2 O,7P.45

, 3 3 0 0 O.5n o.r;o() 0.33:>6 0,7R.41)
1 4 1 0 0 0.52 0,5(1) O.59,)1I O,U,86

1 5 4 0 0 0.62 0.48 7 0.5?99 O,f'~98

16 4 0 n 0.52 0.'500 0.470B O,H489
1 7 1 0 0 O.fl3 0 481 0.257'" n,f.,4flS
18 5 0 0 0.1' o 319 n,2Btir; 0,4739

19 2 0 0 0,71 n . '~5~ 0.3002 () • 6/~8 7

20 5 0 0 0,21 0.408 O,40t,7 0,4331

TABLE 2



Pre- and post-test reliabili.tywas also calculated, for the

experimental group (12 cases) and the two control groups

combined (14 cases). TI1e results appear in Table 3.

Scale X F C Eg E EE Total N

No. of items 3 3 2 2 6 4 20
~ -- --. --

Pre/Post: Exptl. .68 -.22 -.04 .33 .40 .58 .67 12

Control. .77 .28 -.11 .66 .82 .53 .92 14

TABLE 3

The generally lower values for the experimental group are to be

expected; their performance has presumably been influenced non-

uniformly by the teaching. The values for F are affected by the

fact that on one question the entire experimental group were

fully successful both on pre- and post-tests. The values for

C probably i~dicate an inherent la?k of reliability in these two

questions; this is discussed in the context of the actual results

(p .10.12).



THE MATHEMATICAL PROCESS AS ILLUSTRATED BY BOOLEAN ALGEBRA

Boolean algebra provides a small-scale system in which the
whole mathematical process, from real-life, raw material
through general laws to an axiom system, can be seen:
moreover, the system has distinct realisations and it can
be seen how the axioms link them together. All the necessary
material can be found in Boolean Systems, by D. Kaye.

It is possible to start either from switching problems or
from logic. Sixth formers are generally more strongly
motivated by the former. A good starting problem is the
'landing light' problem: the state of a light is to be
changed by every change ineitherof two switches. With or
without some preliminary consideration of the effect of
putting two circuit elements, which may be closed (conducting)
or open, in series and in parallel, a solution to this problem
can be reached by trial. Denoting open circuits by 0, closed
by 1, and circuit elements (such as switches or combinations
of switches) which may be either state,by variables, the laws
of combination of such elements can be described by the Table
1which gives the state of xsy and xpy for every possible
combination of values of x and y.

x y xsy

0 0 0

0 1 0

1 0 0

1 1 1

x--y_

x y xpy

0 0 0

0 1 1
1 0 1
1 1 1

-c:~
TABLE 1

A circuit element which is necessarily in the opposite
state to x is denoted by xl (called the complement of x)
Table 2 gives conditions for the landing light.

x y Q,

0 0 1
0 1 0

1 0 0

1 1 1

-.,__ x- y _ Q,

Table 2

Fig. 1
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The last three lines of this are satisfied by the upper
circuit of Fig. 1; the first line is satisfied by the
addition of the loop in the lower circuit, and it can be
verified that this does not affect the other lines in
the table. The expression for this circuit is (xsy)p(xlsyll.
Inspection of Table 1 shows .that xsy behaves just like the
arithmetical product xy, and xpy like x + y except that
1 + 1 = 1. It is common (though not universal) to use
these familiar symbols, and the landing light function
then becomes xy + xlyl. (A useful exercise is to show
that xyl + xly provides an alternative solution). In
practice x and xl,and y and y\each form a single change-
over switch. It is fairly easy to show that the expression
corresponding to a given table can be derived by choosing
from the full expression xy + xly + xyl + xlyl the one
term which contributes the value 1 for each appropriate
row of the table. Thus, in this case, for the first row,
x = 0, y = 0, so 1 is given only by xlyl; and the last
row needs xy. Thus a variety of practical problems can
be solved by (a) writing the table corresponding to the
required conditions (b) deriving the function (c)drawing
the circuit corresponding to the function.

But the algebra provides an additional benefit - by
suitable manipulations the expression can be brought
into a form which minimises the number of different
switches required. It is clear from the circuits of Table
1 that xy = yx and x + y = y + x, and it follows immediately
from the appropriate circuits that the associative laws
hold, and also two distributive laws, x(y + z) = xy + xz
and x + yz = (x + y) (x + z).

The second of these is the dual of the first, that is,
obtained from it by interchange of + and • (and of ° and 1
if they appear). A collection of problems which yield to
these methods is given by Kaye in the above mentioned book,
pages 15 and 22, and by Giles (1970), pages 22, 25, 31.
One of the more striking examples of the power of the method
is in the design of binary adders (Kaye ~ 23).

In the course of this work a number of possible general
laws other than those checked already will arise - some
may be used inadvertently at first, others may be spotted
and checked. These may range from 0 + x = x, 0 • x = 0,
through the (probably missed) 1 + x = 1 to de Morgan's laws
for complementing sums and products; (x + y)l = xlyl and
its dual. The following extensive list is given by Kaye
(p. 19).

SI. Commutative Laws
(a) x+y=y+x (b) x.y = y.x

S2. Associative Laws,
(a) x + (y + z ) = (x + y) + z (b) x. (y.z) = (x.y) .z

S3. Distributive Laws
(a) x. (y + z) = x.y + x.z (b) x + y. z = (x + y) (x + z)



-3-

S4. Laws of Tautology
(a) x + x = x (b) x.x = x

SS. Laws of Complementation
(a) x + xl = I (b) x.x l = 0

S6. Laws of Absorption
(a) x + x.y = x (b) x. (x + y) = x

S7. De Morgan's Laws
(a) (x + y) 1 = Xl.yl (b) (x .y) I = x 1 + Y 1

Laws with 0 and 1
s8. (a) 0 + x = x (b) l.x = x

S9. (a) I + x = I

SlO. (a) 11 = 0

(b) o.x = 0

(b) 01 = 1

However,this list is neither minimal nor maximal. For
example, the law of absorption x + xy = x can be derived
from the others in the list as follows:

x + xy = x.l + x.y
= x(l + y)
= x.l

x;

while there are other useful laws, such as (xyl + xty)l = xy + xly1
which could be added - in fact, these last two expressions occur
so often that an additional composition is sometimes defined,
x ~ y = xyl + x1y. The best reflection in the classroom of
the pr~cess of mathematical inquiry would consist of collecting
the actual list of possible general laws which emerged from
the work of the class. These could then be examined and reduced
to an agreed minimal list of 'axioms' by trying to prove as
many as possible from others. It would probably be best not
to press this process too far at this stage, but to regard it
just as getting a rather long list down to a more comfortable
number. Further efforts might be better motivated after the
next phase of the work, which will be a study of logic similar
to that of switching circuits. The task then will be to see
how far the two systems agree, and it will be important to
know that the sets of laws being checked against each other
fully characterise the systems.

The development of switching algebra could be broken off at
this point and the study of logic taken up. The source of
interest in this subject is the insight which it can give
into the logical structure of ordinary textual material,
but it is typical of the mathematical process that it should
begin by cry~al~sing out some problem material which displays
sharply and vividly the relationships which exist in normal
material. Aristotle studied syllogisms, and Lewis Carroll
invented puzzles; for our purpose the following problem
formsa suitable illustration.
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What conclusion can be formed from the following
statements?

(a) A dishonourable man is never perfect.

(b) An honourable man never lies.

(c) A man is not perfect unless he is always tactful.

(d) Every tactful man tells an occasional lie.

These statements refer to sets of people; the first says
that the complement of the set of honourable men has no
intersection with the set of perfect men; in symbols,
H1()P = 0

The full set of statements may be expressed as:

H1np = 0
HOL = 0
PCT
TCL

The third and fourth of these may be combined to give

PCL.

This is an example ~f the generJl law most frequently needed
in these problems -l XCY and YCZ :::;> XCZ (1)

The fact that PCL contradicts the first two statements can
be seen from Venn diagrams: see Fig. 2.

Fig. 2.
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Thus the set P, of perfect men, is empty. But the
diagram also makes it clear that PCH and Hn P = 9J are
equivalent; and in general

(2)

Thus the first two statements of the problem data are
equivalent to

PCH
HCLI

whence PCLI follows by the transitivity of inclusion, and
the contradiction w.i.th PCL is evident. Experience with a
few more problems suggests that here is a general method;
transform all statements into inclusion form and trans-
itivity will then expose all possible consequences.

Four further characteristics of mathematical process have
now emerged. They are (a) the extraction of the relational
aspects of a situation and the elimination of its particular
content - this is evident from the expressions like PCH,
which focus attention away from the particular nature of the
sets denoted by P and H and toward their relationship, (b)
the llse of diagrams and symbols as models of the situation,
(c) the derivation of rules for manipulation of the symbol
system (this involves consideration of the meaning of the
symbols), and the subsequent use of these manipulative
rules without further reference to the meaning of the
symbols, (d) the search for a general method which will
apply to all problems of a type.

On working through a number of such problems a collection
of general laws is built up. These may each be verified,
as they arise, using the Venn diagram model. One short
sequence of work produced the following in addition to the
two noted above:

XCY => XoZ C Ynz

(xuv) 1 = Xlf)yl

(XCY and XCZ) => Xc(ynz)

( 3)

(4)

(5)

As with circuits, the list of necessary laws could be
shortened by proving some from others.

The set of laws arising thus has some aspects in common
with those of switching algebra (e.g. complements, commutativity)
but also some clear differences, e.g. the absence of inclusion
in switching algebra, and the predominance of the associative
and distributive Laws- there. How close is the correspondence?
A reasonable approach would be to begin by checking all the
found (and non-redundant) laws in each system to see whether
they apply to the other. It will be a help to harmonise the
notations by replacing U and n by + and • in set algebra.
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Next, can we define inclusion in terms transferable
into switching algebra - that is, in terms of +, .,1.?
Law (2) above shows that this is easy: we define XCY as
Xyl = O. The rest of law (2) is then an application of
the con~utative law; Xyl = ylX. The remainder of laws
(1) to (5) can then be proved by the following methods.

(1) Suppose XCY and YCZi i.e. xyl = 0 and YZI ; O.

Then XZ = X.l.Zl by S8 and S2
= X(Y + y1)Z by SS

XYZI + Xyl Zl by S3 and S2
X.O + O.ZI given

= 0 by S9 and S8

Hence XCZ.

(3) Requires consideration of Xz(yZ)~

XZ(YZ)l == XZ(yl + Zl)
= XZyl + X (ZZl)

= xy1z + 0
= o.z + 0
= 0

by S7
by S3 and S2
by Sl, S2, SS
given
by S9 and S8

Thus all the laws of set algebra which have emerged from
our work can be derived from the Kaye list of laws for switching
algebra. To know whether all possible laws of set algebra
can be so derived requires that we check wheth~r sets, with
their defined compositions of V ,f) and 1, satisfy all the
same laws as switching circuits. At this point it becomes
useful to eliminate any redundant laws. At first this is
easy, but as the list gets shorter more ingenuity 1s required,
and more care to avoid mistakes. A few examples follow.
(We shall only deal with one of each dual pair; the other
needs only the dual of every step in the proof.)

86 has been proved above.

For S9: 0 = xxI by SS
; x(x 1 + 0) by S8
; xxI + x.O by S3
; o + x.O by SS

= x.O by S8

For S7 we show that (x + y)l = xlyl by showing that xlyl
satisfies the conditions in S5 for being the complement
of (x + y) (we shall ~ake SS as the definition of the
complement); but we ¢hall either have to assume, or prove
that the complement so defined is unique.
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First xlyl (x + y) = xlylx + xlyly
xxlyl + yylxl

= 0+0

= 0

Also xlyl +(x + y) (xl +(x + y) ) (yl + (x + y»

= (1 + y) (1 + x)

1.1

= 1

Hence, assuming uniqueness ~ y 1 = (x + y)l

by S3
by S2 and Sl
by S5 and S9
by S8

by S3b
by S2 and S5
by S9
by S8

by SS

It is also fairly easy to prove S4; and SlO follows from SS
if unique complements are assumed. Thus the set is reduced
to Sl, S2, S3, S5 and S8. It is possiblp. but harder, to
prove the associative laws S2 from the o~her four, and one
can decide whether or not to take this further step (Kaye
gives the proof on p. 97)

It is now a more straightforward matter to verify that
both circuits and sets satisfy these laws and hence any
laws derived from them. We give diagra~natic proofs.

Sl ->--x_y

-+-y--x

xy = yx

x + y = y + x similarly

S2

x + (y + z) = (x + y) + z x(yz) = (xy)z similarly

r----x----;

----i[y_ zJ
x + yz

x + yz



S3

(x + y) (x + z)

circuits have the same
state for all combinations
of 0, 1 for x, y z.

SS

+-[:.]-
x + xl= 1: since one is closed

-)::..-_ x x· _

xx' = 0 since one is open

S8

x + 0 = x
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APPENDIX TO CHAPTER 11

Selected responses
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COINS

Take 3 coins showing all tails.

A move consists of turning over any two coins.

1. Using as many such moves as you wish, obtain all heads.
Prove or disprove that this is possible.

2. Extend this problem to 4 coins, turning 3 at a time.
Prove your results.

3. Generalise your results as far as possible.
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FORM B

QUADS

p

Q

D

s

- -
B

C

R

A, B, C, D, are the midpoints of the sides of the quad PQRS.

In some quads the midpoint figure ABeD 1s a rectangle.

1. Find out what has to be spe ciaI about the quad PQRS for
ABeD to ba a rectangle and prove your results.

2. It is suggested that in order to obtain a rectangle
as the midpoint figure ABCD, the quadrilateral PQRS

must be a rhonmus. Check this and prove the correct
result.
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FORM B

QUADS

p

Q

s

-. -- - -
c

A, B, C, 0, are the midpoints of eh uLdc s of th quad PQHS,

In some quada the midpoint figure /\0 10 a r 'ctnl1'Jl0,

1. Find out what has to be ape c La l obou he quId [ORS fo.c
ABeD to be B rectangle and provo you r'sul n.

2. It iA suggested that in ord-r to obtain < r~ tanJl
as the mtdpoint figure J\DCD, h quud r Ll et c r a I I~S
must be a rhombus, Check this lind provr til orr
resul t.
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