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Abstract  

 

Waveguide discontinuities are frequently encountered in modern photonic structures. 

It is important to characterize the reflection and transmission that occurs at the 

discontinuous during the design and analysis process of these structures. Significant 

effort has been focused upon the development of accurate modelling tools, and a 

variety of modelling techniques have been applied to solve this kind of problem. 

Throughout this work, a Transmission matrix based Bidirectional Beam Propagation 

Method (T-Bi-BPM) is proposed and applied on the uncoated facet and the single 

coating layer reflection problems, including both normal and angled incident 

situations.  

 

The T-Bi-BPM method is developed on the basis of an overview of Finite Difference 

Beam Propagation Method (FD-BPM) schemes frequently used in photonic modelling 

including paraxial FD-BPM, Imaginary Distance (ID) BPM, Wide Angle (WA) BPM 

and existing Bidirectional (Bi) BPM methods. The T-Bi-BPM establishes the 

connection between the total fields on either side of the coating layer and the incident 

field at the input of a single layer coated structure by a matrix system on the basis of a 

transmission matrix equation used in a transmission line approach. The matrix system 

can be algebraically preconditioned and then solved by sparse matrix multiplications. 

The attraction of the T-Bi-BPM method is the potential for more rapid evaluation 
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without iterative approach. The accuracy of the T-Bi-BPM is verified by simulations 

and the factors that affect the accuracy are investigated.  
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Chapter 1: Introduction 

 

1.1 Background and Motivation  

 

In the second half of the 20th century, the improvement of the understanding and 

manipulation of light lead to a new technology revolution. Typically related to the 

electromagnetic or quantum properties of light, this revolution encompasses the areas 

of both optical science and optical engineering. Nowadays, photonic devices have 

been widely applied in information transmission over long distances and high 

bandwidth communications [1]. However, the hybrid application of the electrical 

components and the optical components in optoelectronic hybrid circuits requires a 

conversion between the optical and electrical signals, which is a time-consuming and 

expensive process. In order to eliminate this negative effect, all-optical networks 

(AONs) which eliminate the optical-to-electrical-to-optical conversion have become a 

new research target. The idea of AONs is to replace the electrical components in the 

integrate circuit by photonic components of the same functionality. Components such 

as switch and memory which are currently operating in the electrical domain are 

potentially to be replaced by equivalent photonic components, so that the operations 

are conducted completely within the optical domain [2, 3]. With the ongoing research 

toward photonic components, their application also extends to the area of quantum 
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computing and bio-sensing [4, 5]. 

 

Optical waveguides are the basic building blocks in integrated photonics [6]. As the 

transmission medium, their main function is to confine and guide electromagnetic 

waves to different optical devices. Silicon (Si) and semiconductors belonging to III-V 

group are traditional materials used for waveguides fabrication. Dielectric waveguides 

can be fabricated in different configurations such as straight waveguides, S-bends, Y 

branches, and Arrayed Waveguide Grating (AWG) [7, 8]. They guide optical light 

relying exclusively on total internal reflection. In recent years, Photonic Bandgap 

(PBG) Waveguides are becoming more popular due to their ability to guide optical 

light in photonic crystal fibers, along narrow channels and around very tight bends, 

with no losses [9]. Furthermore, with the development of nanoscale fabrication and 

characterization techniques, Surface Plasmon (SP) waveguides have attracted much 

interest because of its ability to guide electromagnetic energy within nanostructures 

[10]. In Chapter 2 of this thesis, typical optical waveguides and materials will be 

introduced in details. 

 

The advance of integrated optics poses new challenges in the design, optimisation and 

fabrication of the increasingly complex individual devices and whole circuits. In 

practice, the design and optimisation processes are ideally to be proceeded by means 

of computer simulation, before embarking upon costly and time consuming 

experimentation. Therefore, accurate and efficient analysis methods which can reduce 
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both the cost and the length of the design cycle are required. To date, a variety of 

simulation methods have been reported which can be globally classified into three 

categories, namely analytical, semi-analytical and numerical methods. Analytical 

methods provide accurate results but their application is limited to simple cases of 

layered slab waveguides. Semi-analytical methods simplify a problem by introducing 

acceptable approximations in the light of physical analysis. They tend to be not very 

numerically intensive providing a fast solution of good accuracy. Typical 

representatives for semi-analytical methods are Effective Index (EI) Method [11], 

Mode Matching Method [12], Spectral Index (SI) Method [13] and Free Space 

Radiation Mode (FSRM) Method [14]. Typical structures analysed using 

semi-analytical methods are rib waveguides, buried waveguides, tapers and 

directional couplers [15-17]. Nevertheless, the application of semi-analytical methods 

is restricted to relatively simple structures where approximations have to rely on a 

priori knowledge of physical fields. In contrast, numerical methods are versatile and 

can be applied to any type of structures. Typical numerical methods, such as Finite 

Difference (FD) method [18], Finite Element Method (FEM) [19], Finite Difference 

Time Domain Method (FDTD) and Finite Difference Beam Propagation Method 

(FD-BPM) [20], provide flexible platforms for modelling a wide range of modern 

photonic devices starting from rib waveguides and extending to PBG, photonic crystal 

and plasmonic waveguides. By means of the discretization of the physical space, they 

can be readily applied to complicated problems with complex cross-section. However, 

the generality of numerical methods comes at the expense of high computational 
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demand, which means large memory requirements and long computation time. 

Generally, numerical methods fall into time domain methods or frequency domain 

methods. The former, such as FDTD [21], simulate the transmission of signals 

through the optical structure in time. They can be used to simulate structures made 

with time dependent or dispersive materials. The main disadvantage of these 

approaches is computational efficiency, requiring direct discretization of the full 

spatial domain and by virtue of their explicit nature, using small time steps leading to 

long overall run times [22]. On the other hand, frequency domain methods such as FE 

and FD-BPM model propagation of signals with steady state behaviour at one 

particular frequency. A brief introduction of the commonly used analysis methods 

will be given in Chapter 3. 

 

The FD-BPM has been proved as an invaluable tool to design integrated photonics in 

the last decade. It is suitable for majority of photonic devices for which Slowly 

Varying Envelope Approximation (SVEA) can be applied. SVEA assumes slow 

changes in the envelope of the field containing a fast varying carrier. The FD-BPM 

describes the evolution, ie. the envelope, of the total field rather than the carrier. 

Therefore, it is much more computationally efficient compared to time domain 

methods. Its simplicity, flexibility and accuracy make it popular to provide practically 

useful simulations of arbitrary optical waveguides and large structures such as 

Y-junctions, tapers, bends and gratings [22]. By different approximation schemes, 

FD-BPM can be divided into paraxial algorithm and wide angle (WA) algorithm. 



 

5 

 

Paraxial BPM uses a paraxial wave equation which assumes the incident wave is 

inclined by a small angle with respect to the axis of the propagation direction [23]. It 

is a convenient tool in simulation for most forward propagation problems, which 

means that the wave travels in an invariant structure along the propagation direction 

and no reflections need to be considered. The paraxial approximation greatly 

simplifies the wave equation for computational modeling but limits applications of 

this method. Paraxial BPM is not suitable for the structures where the beam 

propagates in directions that make large angles with respect to the axis of propagation. 

On the other hand, wide angle BPM (WA-BPM) removes the paraxial approximation 

and enables simulation of structures where the field propagates at an angle to 

propagation axis. The detailed information of the paraxial BPM and the WA BPM 

will be presented in Chapter 3 and Chapter 4, respectively. 

 

Compared to the paraxial BPM, the WA-BPM has another important application, 

which is to be the foundation of bidirectional BPM (Bi-BPM) for solving bidirectional 

propagation problems. Bidirectional propagation problems are frequently encountered 

in the investigation of modern integrated photonics systems. Many practical optical 

devices involve laser facets, taper structures, multiple dielectric layers, waveguide 

ends and junctions between different waveguides. In these devices, the material of the 

guiding structure changes along the propagation direction and reflections occur on the 

interface between different materials. During the analysis of this kind of problems, it 

is often of crucial importance to characterize the reflection and transmission that 
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occurs at these interfaces. Typically, it is desired that facet reflections are minimized 

to avoid resonances within amplifiers and similar integrated devices and, of equal 

importance, that the transmission is maximized to obtain superior system performance. 

In practice, facets are angled in order to redirect reflected light away from the 

waveguides, therefore reducing coupling back into their guided modes [24, 25]. 

Furthermore, the use of optical antireflection, AR, coatings provides enhanced 

transmission as well as reducing the total quantity of reflected light [26, 27] and in 

practice, facets that are both coated and angled are employed [28-30]. In order to 

solve these kinds of problems, a connection between the fields on either side of the 

discontinuity interface needs to be set up. This work cannot be easily done by the 

convenient paraxial FD-BPM. Again, this is the scenario where the wide angle 

FD-BPM shows the advantage. So far, various Bi-BPM algorithms based on the WA 

scheme have been proposed for handling the single facet reflection problems [31-33] 

and the coating layer reflection problems [34-37].  

 

The objective of the work presented in this thesis is to develop and improve FD-BPM 

for analysis of bidirectional propagation. A novel BPM method, the Transmission 

matrix Based Bi-BPM (T-Bi-BPM), to assess the reflection problems of the facet and 

the single coating layer structures will be developed and investigated. This new 

scheme aims to derive a matrix equation that establishes the connection between the 

fields on either side of the coating layer by using the well-known transmission matrix 

analysis. By suitable mathematical derivation, the matrix can be arranged into a sparse 
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matrix form that is convenient to solve. The following outlines the organization of the 

work contained in this thesis. 

 

1.2 Thesis Organization 

 

Chapter 2 presents different design technologies in integrated photonics, including 

Planar Lightwave Circuit (PLC), Photonic Integrated Circuit (PIC) and Optoelectronic 

Integrated Circuit (OEIC), together with the introduction of typical optical materials 

used and different configurations of optical waveguides including traditional dielectric 

waveguides, PBG waveguides and SP waveguides. This chapter also presents the 

basic electromagnetic principles of wave optics starting from the Maxwell’s 

Equations for isotropic dielectric media. The boundary conditions at material 

interfaces are introduced and the wave equations are derived in Cartesian coordinates 

for full-vectorial, semi-vectorial and scalar field solutions. These concepts form the 

basis of computational modeling.  

 

Chapter 3 provides an overview of various semi-analytical and numerical modeling 

methods commonly used in modern optics, including the discussion of features of 

each method. Special emphasis is placed on the review of the developments and 

applications of paraxial FD-BPM because it is the basic BPM scheme which is 

considered as the foundation of other developed BPM schemes. Important concepts in 
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the application of FD-BPM such as SVEA are presented. The Crank-Nicolson scheme, 

which will be used as the discretization scheme along the propagation direction 

throughout this thesis, will also be introduced in this chapter. Moreover, boundary 

conditions frequently applied in BPM simulations such as Neumann and Dirichlet 

Boundary Condition, Transparent Boundary Condition (TBC), Perfectly Matched 

Layers Boundary Condition (PLM) and the periodic boundary condition, are 

discussed. The Alternation-Direction Implicit (ADI) scheme is also described. Finally, 

the imaginary distance BPM (IDBPM) is described as an effective mode solver. It will 

be used to calculate the effective refractive index of the modelling structures and to 

obtain the fundamental mode of incident field for all the simulations presented in this 

thesis. 

 

The bidirectional BPM schemes are derived on the basis of the wide angle BPM 

scheme. The techniques frequently used in wide angle scheme, such as the Padé 

approximation and the multistep method，are also applied to solve the bidirectional 

problems. Therefore, before the investigation of the bidirectional BPM, the wide 

angle BPM is introduced in Chapter 4. Important concepts including Padé 

approximation, Multistep method and Rotated Branch Cut Approximation are 

overviewed. Test simulations using the WA FD-BPM are implemented for 2D and 3D 

forward propagation problems, and the simulation results are compared with those 

obtained using the paraxial scheme. In Chapter 5, the FD-BPM theory is extended to 

the bidirectional propagation problems based on the wide angle wave equation. An 
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overview of the existing Bidirectional BPM (Bi-BPM) schemes for the facet 

reflection problems and the coating layer reflection problems is given in details.   

 

In Chapter 6, the T-Bi-BPM scheme is proposed according to the transmission matrix 

used in the transmission line theory. The T-Bi-BPM method is especially applicable 

for a special case where the waveguide has a cladding or an interlayer along the 

propagation direction. The difficulty of this kind of problems is that the structure 

contains more than one interface so that multi-reflection will occur. The T-Bi-BPM 

method considers the incident and the reflected fields of either side of the coating 

layer as a whole and establishes the connection between the total fields on either side 

of the coating layer by a matrix operator in order to avoid the analysis of the 

multi-reflection between the interfaces, and therefore, simplifies the problem. 

Moreover, the T-Bi-BPM method is also considered as a potential approach to solve 

the uncoated facet reflection problems. The benefit of T-Bi-BPM is that it describes a 

bidirectional propagation problem by an algebraically preconditioned matrix system, 

which can be calculated by a matrix solver without iterative process. This leads to 

more rapid evaluation. The assessment of the performance of T-Bi-BPM is 

implemented and discussed for the case of normal and angled incident waveguide. In 

each case facet is considered to be uncoated and coated with a single coating layer. 

 

Finally, Chapter 7 concludes the thesis, together with a discussion about possible 

further work.  
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Chapter 2: Basic Electromagnetic Theory 

 

This chapter overview typical optical waveguides and materials used in optics. The 

Maxwell’s equations for a linear non-dispersive medium are given together with the 

boundary conditions for optical waveguides. The chapter also derives full-vectorial, 

semi-vectorial and scalar wave equations and overviews the mode classification. 

 

2.1 Optical Waveguides and Materials 

 

The realisation of the required functions of photonic devices is reliant on planar 

dielectric material systems. The material used, the physical shape and dimensions of 

the component structure are the main factors to affect the behaviour of an optical 

device. The main types of technologies in integrated photonics are divided into Planar 

Lightwave Circuit (PLC), Photonic Integrated Circuit (PIC) and Optoelectronic 

Integrated Circuit (OEIC). The first one is the simplest type to fabricate because it 

only consists of passive optical components. Typically silica based material, being the 

most common and favorable semiconductor material, is widely used due to its 

attractive properties including low propagation and insertion loss, stable physical and 

chemical characteristics [1]. In comparison with PLCs, PICs consist of active and 

passive components on the same substrate, and allow optical systems to be more 

compact and achieve higher performances. The fabrication process of PICs is more 
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complicated than that of PLCs and the material is limited to III-IV group of 

compounds such as Gallium Arsenide (GaAs) and Indium Phosphide (InP) [2-4]. PICs 

can be integrated with Electronic Integrated Circuits (EICs) to form Integrated 

Optoelectronic Circuits (OEICs), a hybrid integration of optical and electronic 

components, which provide increased functionality.  

 

Optical waveguides are the transmission medium in photonic integrated circuits to 

confine and guide electromagnetic waves [5]. A slab waveguide is the simplest 

waveguide consisting of three layers of materials with different refractive indices, as 

shown in Fig. 2.1. The middle layer, ncore, has a larger refractive index than the 

surrounding layers, ncladding, to confine the wave in one dimension by total internal 

reflection [6].  

 

      

Figure 2.1: slab waveguide 

 

A strip waveguide is a strip of the guiding layer confined between cladding layers 

which confines the light in both transverse directions. A strip or several strips can be 

superimposed onto a slab to form a rib waveguide. Various strip-line waveguides are 

shown in Fig. 2.2, namely (a) embedded strip waveguide, (b) strip waveguide, (c) rib 
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waveguide and (d) strip loaded waveguide [5].  

 

 

(a)          (b)          (c)           (d) 

Figure 2.2: Various waveguide geometries: (a) Embedded strip, (b) Strip, (c) Rib, (d) 

Strip loaded. The darker the shading, the higher the refractive index is. 

 

Waveguides that confine light in both transverse directions are also used as S-bends, 

Y branches, couples, Mach-Zehnder interferometers or intersections, as illustrated in 

Fig. 2.3. Two waveguides in close proximity, or intersecting, can exchange power and 

may be used as directional couplers. S-bends can be used to control Bragg 

wavenumber for laser cavity [7, 8]. During the propagation, unwanted leakage can 

occur where the bends are sharp. The Y branch plays the role of a beamsplitter or 

combiner. It can be designed either symmetrically to equally separate the input wave 

at the output port, or asymmetrically to create bias at the output port [9]. Two Y 

branches can be used to make a Mach–Zehnder interferometer which is used as an 

intensity modulator, where output from one arm can be altered by applying electric 

voltage to create phase shift. When signal from two arms meet, they can interference 

constructively or destructively [10-12]. 
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(a)   (b)      (c)      (d)         (e)           (f) 

Figure 2.3: Different configurations for embedded-strip waveguides: (a) straight, (b) 

S-bend, (c) Y branch, (d) Mach–Zehnder, (e) directional coupler, (f) 

intersection. 

 

The drive for miniaturization has meant that dimensions of standard waveguides are 

reduced bellow μm range. One of the first waveguides with cross section reaching 

nano-scale range is a Silicon wire based on SiO2 technology [13]. In order to reduce 

the waveguide dimensions even further, a range of PBG waveguides and devices, 

which are on the basis of photonic crystals, are introduced [14]. Photonic crystals are 

composite of two materials with different refractive indices. One material is patterned 

with a periodicity on the other material. This structure creates a range of ‘forbidden’ 

frequencies called a photonic bandgap. Light with frequencies in this range is 

forbidden to exist within the interior of the crystal so that photons with energies 

cannot propagate through the medium. If there is a defect in the periodicity, it could 

lead to localized photonic states in the gap. The shapes and properties of the localized 

photonic states would be determined by the nature of the defect. This ability to 

manipulate a photon provides a new dimension to control the properties of light [14]. 

If there is a line defect in the periodicity, the structure works like a waveguide. Light 
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with a frequency within the bandgap of crystal is confined within the defect and 

propagates along the waveguide. Compared to the traditionally optical waveguides 

relying on the total internal reflection to propagate light, PBG waveguides have a 

significant advantage. If the traditionally optical waveguides, such as an optical fiber, 

curve tightly, the incidence angle is too large to satisfy the condition of total internal 

reflection, hence light would escape at the corners and serious loss is unavoidable. 

PBG waveguides could continue to confine light within the gap even around tight 

corners [14]. Fig.2.4 presents an example of light guided in a bended PBG waveguide. 

A 1.55μm optical signal is launched into a 90
o
 bended PBG waveguide as in Fig.2.4 (a) 

and propagates long the gap with little loss as in Fig.2.4 (b) [15]. 

 

 

                  (a)                                 (b)   

Figure 2.4: The electric field of a 1.55μm optical signal traversing the bend of a PBG 

waveguide: (a) the single is launched into the waveguide; (b) the single 

propagates along the gap with little loss. 
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Another new waveguide, the SP waveguide which uses the interface between a metal 

and a dielectric to guide the signal, has attracted much recent interest for its good 

ability in guiding electromagnetic energy within nanostructures [16]. SPs wavegudies 

are named after Surface Plasma Polaritons (SPPs) which are collective coherent 

oscillations occurring and existing at the interface between metal and dielectric 

materials at optical frequencies. SPPs can propagate along the surface of a metal over 

a short distance (couple of hundreds μm), with fields that peak at the interface and 

decay exponentially away from the interface [17]. The SP waveguides are used for 

highly integrated photonic signal-processing systems, and as  nano-resolution optical 

imaging sensors [16, 18]. Moreover, SP waveguides are to sense very small dielectric 

constant changes of molecules on its surface and are used in chemistry and biology 

area. For example, based on surface plasmon resonance (SPR) phenomenon, SPR 

microscope is invented for the medical and bio-sensing science [19]. The basic SP 

waveguide is a thin metal film of a certain thickness laying on a dielectric substrate, 

covered by a dielectric cladding or air. The thickness of the metal film is normally 

around dozens to hundreds of nanometers. Metals at optical frequencies behave as 

lossy dielectrics with negative dielectric constant. The typical metals which yield 

negative dielectric constants at optical wavelengths are gold, silver, and copper [20]. 

Only optical fields polarized perpendicular to the metal-dielectric interface can excite 

SPP waves. A schematic illustration of a classic SPP waveguide is shown in Fig. 2.5 

[21]. The waveguide is composed of a thin silver (Ag) film located above a dielectric 

substrate. SPP waveguide supports surface electromagnetic waves at the interface 
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between dielectric material and metal film, where the charge density oscillations are 

supported [22]. This surface localization has the potential for transporting and sensing 

information via guided polariton modes with small spatial extents [21].  

 

 

Figure 2.5: Illustration of a SPP waveguide structure and its mode (red curve) guided 

between the interface of silver (Ag) film and the dielectric.  

 

There are four parameters associated with the SPP modes, including the SPP 

wavelength (λspp), the SPP propagation distance (δspp), and the penetration depths of 

the field associated with the SPP into the dielectric (δd) and metal media (δm) that 

bound the interface to support the SPP [23]. Fig. 2.6 illustrates different length scales 

of SPP parameters [23] and shows that these length scales span seven orders of 

magnitude. It can be seen that the SPP penetration depth into the metal is in the range 

of dozens of nanometers, the SPP penetration depth into the dielectric and the SPP 

wavelength is around hundreds of nanometers, and the SPP propagation length spans 

from dozens of micrometers to about one centimeter. It should be noted that the SPP 

propagation length is significantly greater than the SPP wavelength. This fact means 

that wavelength scale gratings and other periodic surface structures can be used to 

manipulate SPPs since the modes are able to interact over many periods of such a 
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structure [23]. 

 

 

Figure 2.6: The different length scales of importance for surface plasmon-polaritons 

in the visible and near-infrared are indicated on a logarithmic scale. [23] 

 

In terms of materials, semiconductors belonging to III-V group are generally used to 

fabricate both active and passive waveguides [24]. The typical representatives of this 

category are InP- and GaAs- based technologies, both of which are suitable for high 

frequency and high power applications. However, these two technologies work at 

slightly different frequencies: InP technology works in the 1.3-1.5 μm wavelength 

range in which single mode optical fiber exhibits small losses, while GaAs technology 

works in the 0.8 λm wavelength range [25]. However, III-V semiconductor 

waveguides have several common characteristics: (a) they have relatively large 

refractive index differences, typically in the ratio of 3:1, so that an air-semiconductor 

boundary can exist near a guiding region; (b) the dimension of the waveguides is 

about one micrometer in the vertical direction and approximately a couple of 

micrometers in the lateral direction, leading to an elliptic mode profile which is not 
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matched to the circular fiber mode. To alleviate this, particular waveguides known as 

mode spot converters are used to couple a rib waveguide to a fiber. These converters 

are specially designed rectangular waveguides buried deeply in the substrate or close 

to the air-semiconductor boundary, such as buried rectangular waveguides, diffused 

waveguides, or air-clad rib waveguides. [24].  

 

Silicon (Si) is the most common and economical semiconductor device material that 

has played a crucial role in large scale manufacture of monolithic optoelectronic 

integrated circuits. Traditionally, Si is used for passive components over a wide 

optical communication range from 1.3 to 1.55μm [26]. Recent development in active 

Si based material alloys, such as SiGe [27, 28], has extended the application of Si to 

active photonic components. Experimentally, light can be propagated within four 

types of Group IV waveguides, including lightly doped silicon on heavily doped 

silicon, epitaxial Si1-xGex on Si, silicon-on-sapphire, and silicon-on-insulator [26]. The 

combination of materials normally exhibits a large refractive index difference and 

provides a possibility to achieve low-loss optical waveguide. For instance, 

waveguides can be fabricated using silicon-on-insulator (Si-SiO2 or SOI) technique, 

in which the refractive index of silicon is around 3.5 but that of silica is around 1.5 

[29].  

 

Furthermore, Lithium niobate (LiNbO3) crystal that belongs to III-V group is another 

important electro-optic material. Over the past twenty years, the fabrication and 
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application of LiNbO3 structures has attracted a lot of attention, and fiber and 

waveguide forms of LiNbO3 have played increasingly important role [30]. It is widely 

used for optical waveguides and optical modulators where non-linear interaction 

between the signal and material is required. For instance, LiNbO3 modulators using 

the electro-optic effect is a very important device for optical communications as it is 

used for Mach-Zehnder interferometer (MZI) [30]. 

 

2.2 Maxwell’s Equations 

 

An optical field is a time dependent electromagnetic wave and is completely described 

by Maxwell’s equations [31]. The differential form of Maxwell’s equations in a 

source free region is given as: 

 
B

E
t


  

 ,
  (2.2.1) 

 
D

H
t


 

 ,
 (2.2.2) 

 0D  , (2.2.3) 

 0B  . (2.2.4) 

where, E  and H  denote the electric and magnetic field vectors respectively, D  

denotes the electric displacement vector and B  denotes the magnetic flux density. 

Eq. (2.2.1) and Eq. (2.2.2) are vector equations which relate time and space 
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derivatives of the field quantities, and Eq. (2.2.3) and Eq. (2.2.4) are scalar equations 

to express Gauss’s law for the electric and magnetic field.  

 

For a linear and isotropic medium, electric displacement vector is given as 

 0 LD E P 
,
 (2.2.5)        

where LP is the polarisation density of the linear non-dispersive material and is given 

as: 

  
2

0 0( 1)L e rP E n E     ,
 

 (2.2.6) 

where e  
is electric susceptibility, and rn  is the refractive index which is related to 

the relative dielectric permittivity r  
as r rn  . 

 

Therefore, the relationships between D  and E , H  and B , in a phasor form are 

defined as: 

 
2

0 rD n E   (2.2.7) 

 0 rB H 
 (2.2.8)

 

 

In the context of this work, only non-magnetic materials are considered, and 1r  . 

The free space permittivity is 0 ≈8.85×10
-12

 and the free space permeability is 0

=4π×10
-7

.  
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2.3 Boundary Conditions at Material Interfaces 

 

Maxwell’s equations, as stated in Eq.(2.2.1) to Eq.(2.2.4), hold true for homogenous 

regions with continuous physical properties. In the case where the properties of the 

material changes abruptly, the solution to Maxwell’s equations have to satisfy 

boundary conditions across the interface separating different media. An interface 

plane between two dielectric regions with refractive indices 1rn
  

and 2rn
 
is 

illustrated in Fig. 2.7. 1E  and 1H  denote the electric and magnetic field vectors in 

medium 1 of refractive index 1rn . 2E  and 2H  denote the corresponding field 

vectors in medium 2 of refractive index 2rn , and n  is the unit normal to the 

interface between these two media. 

 

 

 Figure 2.7: An interface between two dielectric materials. 

 

In the absence of surface charges and surface currents, the boundary conditions are 

reduced to four conditions, namely [32]: 

(i) Tangential components of electric fields are continuous: 

   1 2n E n E   . (2.3.1) 
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(ii) Tangential components of magnetic fields are continuous: 

 1 2n H n H   . (2.3.2) 

 

(iii) Normal components of electric flux are continuous: 

 1 2n D n D   .
   

(2.3.3) 

 

(iv) Normal components of magnetic flux are continuous: 

  1 2n B n B   .
 

(2.3.4) 

 

For non-magnetic media, 1 2 1r r   . Eq. (2.3.4) is reduced to  

 1 2n H n H   .
 

(2.3.5) 

 

These equations allow the boundary conditions for the normal ( ) and tangential (||) 

field components to be expressed explicitly as: 

 1|| 2||E E
 

(2.3.6) 

 1|| 2||H H
 

(2.3.7) 

 
2 2
1 1 2 2r rn E n E 

 
(2.3.8) 

 1 2H H 
 

(2.3.9) 

 

It is observed that the tangential components of the electric and magnetic fields, ||E
 

and ||H , are continuous, and so is the normal component of the magnetic field,
 

H . 
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However, the normal component of the electric field, E , is subject to a step-change 

due to the discontinuity in the refractive indices of the media. 

 

2.4 Wave Equations 

 

In this section Maxwell’s equations are used to derive wave equations for the 

full-vectorial, semi-vectorial and scalar fields. From Maxwell’s equations, a general 

vector wave equation can be derived in terms of only electric or magnetic field 

components. Time-harmonic electric and magnetic fields can be expressed as [33]: 

 ( , , ; ) ( , , )exp( )E x y z t E x y z j t  (2.4.1) 

 ( , , ; ) ( , , )exp( )H x y z t H x y z j t  (2.4.2) 

where   is the angular frequency. 

 

Substituting Eq. (2.2.8) and Eq.(2.2.7) into Eq. (2.2.1) and Eq. (2.2.2) gives 

  0( )H
E

t


  

 , 
(2.4.3) 

 

2
0( )rn E

H
t


 

 . 
(2.4.4) 

 

For time harmonic form of electric and magnetic fields it follows that j
t






, and 

previous equations reduce to: 

 0E j H  
, 

(2.4.5) 
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2

0 rH j n E 
. (2.4.6)

 

 

Taking the curl of Eq. (2.4.5) and replacing time derivatives with the term jω gives: 

 0 0( ) ( ) ( )E j H j H       
 

 
2 2 2

0 0 0 0r rj j n E n E       ,
 

(2.4.7) 

or         
2 2

0( ) rE k n E   ,
 

(2.4.8) 

where k0 is the wave number in free space and is given as 0 0 0k    .  

 

On the other hand, the angular frequency is 2 f  and the speed of light in 

vacuum is 
0 0

1
c

 
 . Therefore, the wavenumber in free space can be expressed as: 

 
0 0 0

2 2f
k

c

 
  


  

, 
(2.4.9)

 

where  is the free space wavelength. 

 

Using the vector identity in Eq. (2.4.10) 

 
2( )E E E    . (2.4.10) 

 

Eq.(2.4.8) can be rewritten as    

 
2 2 2

0( ) 0rE E k n E     .
 

(2.4.11) 

 

For the source free region, the relationship 2( ) 0rD n E   is satisfied. Using the 

identity  
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2 2 2( ) 0r r rn E n E E n     

, 
(2.4.12) 

gives                

 

2

2

r

r

E n
E

n


  

, 

(2.4.13) 

 

and substituting Eq. (2.4.13) into Eq. (2.4.11), the general vector wave equation for 

the electric field is obtained as: 

 

2
2 2 2

02
( ) 0r

r

r

E n
E k n E

n


   

. 

 (2.4.14) 

 

The general vector wave equation for the magnetic field may be derived in a similar 

manner by eliminating the electric field and is 

 

 
2

2 2 2
02

0r
r

r

n
H H k n H

n


      .

 

 (2.4.15) 

 

Eq. (2.4.14) and Eq. (2.4.15) are only valid in regions of continuous refractive index. 

For the case that the refractive indices are discontinuous, appropriate boundary 

conditions need to be applied. Because the solution for either the electric field or the 

magnetic field can be used to calculate the other field components via Maxwell’s 

equations, only one wave equation needs to be analysed. In this thesis, the wave 

equation for electric field will be applied for most modelling and simulations.  
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2.4.1 Vectorial Wave Equation  

For most photonic components and waveguides, the refractive indices of the 

structures are longitudinally invariant or slowly changing along the propagation 

direction, conventionally the z direction, and the derivative of the refractive index 

with respect to z direction can be neglected. The second term in the left-hand side of 

Eq. (2.4.14) can be rewritten as: 

 

2 2 2 2

2 2

2 2 2

2

( ) [ ( )]

1
[ ( )]

r r r r

r r

r r r
x y z

r

E n n n nE
i j k

n n x y z

n n n
E E E

n x y z

   
    

  

  
   

  
 

(2.4.16) 

 

For longitudinally invariant waveguides,  

 
2

0rn

z




,  

the electric field in Eq. (2.4.15) can be expressed in terms of transverse components 

Ex and Ey as: 

 

2 2
2 2

02 2

2 1 1
( ) ( ) 0r r

x y r x

r r

xE
x x

n n
E E k n E

n x n y

 
  






 

 

 

(2.4.17) 

 

2 2
2 2

02 2

2 1 1
( ) ( ) 0r r

x y r y

r r

yE
y y

n n
E E k n E

n x n y

 
  






 

 

 

(2.4.18) 

 

Furthermore, the following equations are valid: 

 

2
2 2

2 2
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2 2
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1
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1
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1
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r x x r

r r
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x

r
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x x
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
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




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 (2.4.19) 
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(2.4.20)               
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(2.4.21) 
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(2.4.22) 

 

Based on these identities, the full-vectorial wave equations Eq. (2.4.17) and Eq. 

(2.4.18) can be rewritten as [34]: 

22 2
2 2 2 2

02 2 2 2
[ ( )]

1 1
( )] 0[

yx x
r x r y r x
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EE E
n E
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 

  
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   

   
,    (2.4.23) 

   
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.

 

(2.4.24)

 

 

2.4.2 Semi-vectorial Wave Equation 

For a strongly polarised wave along either of the transverse direction, the coupling 

terms of the transversal components xE  and yE can be neglected and the 

corresponding terms in the wave equation, 2

2
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1
]( r y
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n E
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, are assumed to be zero. In this case, the vectorial 
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wave equations are simplified into the semi-vectorial wave equations. 

 

In this thesis, The TE mode is defined in the condition that the component xE  is 

assumed to be zero and then the field components are ( , , ) (0, , )y zE x y z E E ; the TM 

mode is defined in the condition that the component yE  is assumed to be zero and 

then the field components are ( , , ) ( ,0, )x zE x y z E E , as shown in Fig. 2.8. Therefore, 

the wave equations Eq. (2.4.23) and Eq. (2.4.24) are simplified into the TM 

semi-vectorial wave equation with dominant xE  field component as 

 

2 2
2 2 2
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E E
n E k n E

x n x y z
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

 
,

 

(2.4.25) 

and TE semi-vectorial wave equation with dominant yE  field component as 

 
 
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.  (2.4.26) 

 

The semi-vectorial equations only solve the dominant field component for each 

corresponding polarisation and thus significantly simplify the simulation algorithm 

and reduce the computation time [35] 

 

 

(a)                        (b) 

Figure 2.8: Principal electric field components for the (a) TM mode (b) TE mode. 
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2.4.3 Scalar Wave Equation  

Further simplification of the wave equation is possible when polarisation is not of 

interest or in case of waveguides with very small refractive index difference. 

Mathematically, this means that the term 2 0n   and the vector field E  can be 

replaced by a scalar quantity ψ. This leads to scalar Helmholtz formulation in the form 

of: 

 

2 2 2
2 2

02 2 2
0rk n

x y z

  


  
  
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(2.4.27) 

 

In the scalar approximation, both the field and its derivative are required to be 

continuous across the dielectric boundary.  

 

So far, the approaches to solve the wave propagation problem have fallen into three 

classes: (1) vectorial, (2) semi-vectorial, and (3) scalar. For the waveguide with high 

refractive index contrast or longitudinally variant structures such as bends and 

Y-junctions, significant coupling occurs between electric and magnetic field 

polarisations. In this case, the full vectorial wave equations are required for accurate 

modelling. On the other hand, for weakly guiding structures with low refractive index 

contrasts, the propagating fields can be regarded as uncoupled, in which case the 

semi-vectorial or the scalar wave equation can be used for efficient modelling. These 

wave equations will be considered as the foundation for further development of 

analysis tools.  
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2.5 Waveguide Modes Classification  

 

The solutions of a waveguide are given by a complete set of functions describing the 

modes supported by the waveguide. As dielectric waveguides are open structures, the 

modes that exist in a waveguide can be divided into two classes: a discrete set of 

bound modes and a continuum of radiation modes [36]. The differences between these 

two types of modes can be distinguished from the perspective comparison, which 

between the propagation constants of the modes and the refractive indices of the 

materials forming the waveguide. For simplicity this is illustrated for the case of an 

asymmetric 3-layer slab waveguide in Fig. 2.9, where the refractive indices of the 

cladding, the core and the substrate satisfy the relationship ncore > nsubstrate > ncladding.  

 

 

 

Figure 2.9: The modes supported by a 3-layer asymmetric slab waveguide: (a) guided 

mode, (b) substrate radiation mode and (c) substrate-cladding mode. 
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Propagation constants  of the bound modes are purely real and lie within the range

0 0substrate corek n k n  . These modes are oscillatory within the core region and 

exponentially decay in the cladding and substrate regions [37], hence bound modes 

are known as guided modes, as shown in Fig.2.9(a). A guided mode, normally the 

fundamental mode, is used to transmit the information. 

 

The total radiation field is comprised of radiation modes and leaky modes. 

Propagation constants of radiation modes are below the cut-off for bound modes. If 

0 0cladding substratek n k n  , the modes are known as substrate radiation modes, as 

shown in Fig.2.9(b). If 00 claddingk n  , the modes are known as 

cladding-substrate radiation modes, as shown in Fig.2.9(c). Leaky modes are 

characterised by discrete solutions that yield complex propagation constants below cut 

off which lose power into the cladding as they propagate. 
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Chapter 3: Overview of Analysis Tools for 

Photonic Devices 

 

The developments of optical waveguide based technologies require powerful tools for 

the designing and testing of the photonic devices. With the improvements of computer 

capabilities, Computer-Aided Design (CAD) has played an increasingly important 

role in the design process. To date, a variety of CAD simulation packages and 

methods exist. They can be classified into three main groups: (1) Analytical methods, 

(2) Semi-analytical methods, and (3) Numerical methods.  

 

This chapter will review typical analysis methods used in modelling of photonic 

devices, and concentrate on their characteristics, advantages and disadvantages. 

Semi-analytical methods such as Marcatili’s method, the Effective Index (EI) Method 

and the Spectral Index Method are presented. Classic numerical methods including 

the Finite Element (FE) Method, the Finite Difference (FD) Method and Finite 

Difference Time Domain (FDTD) are described. The chapter focuses on the overview 

of the FD-BPM method and the derivation of the paraxial FD-BPM wave equation. 

Boundary conditions used to terminate the simulation window in FD-BPM method 

are also outlined. Finally the chapter presents the approach based on Imaginary 

Distance (ID) BPM that is used for solving for the propagation modes, together with 

the test simulation results of the mode solver.  
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3.1 Analytical and Semi-Analytical Methods 

 

Analytical methods provide accurate results that are limited to simple structures, such 

as homogenous medium or slab waveguide structures. In other words, they are not 

valid for practical waveguide structures with a complex refractive index distribution.  

 

The semi-analytical methods were popular tools for simulation before the advent of 

modern computers. They simplify the problem by applying certain approximations to 

the structure, and then solve the modified structure analytically. Nowdays, they are 

still highly valuable for the design of optical waveguides such as rib and buried 

waveguides. Semi-analytical methods provide good accuracy and are not numerically 

intensive. This makes them efficient and easy to implement. However, the 

semi-analytical methods often involve extensive mathematical manipulations in order 

to obtain the simplified solutions of the practical problems for further process, and 

their range of applications are limited to certain types of problems [1].  

 

This section will overview the most commonly used semi-analytical methods 

including Marcatili’s [2], Effective index [3] and Spectral index [4] methods. 
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3.1.1 Marcatili’s Method 

Marcatili’s Method is one of the first semi-analytical methods for analysis of a buried 

rectangular waveguide surrounded by dielectric material [2]. This method is restricted 

to waveguides having large dimensions and small refractive index contrast between 

the core and the cladding materials. The principle of the Marcatili’s Method is 

schematically shown in Fig. 3.1. Firstly, the whole cross section of the waveguide is 

divided into nine regions belonging to three different types:  

(1) the core region;  

(2) four neighbouring cladding regions obtained by extending in turn the height 

and width of the core region to infinity;  

(3) four corner regions.  

 

Secondly, the field in each region is considered separately. The field in the corner 

regions is assumed to be negligible and taken as zero; the field in the neighbouring 

cladding regions is assumed to vary exponentially; the field in the core region is 

assumed to vary sinusoidally. Finally, two transcendental slab equations are solved 

simultaneously so that the propagation constant is obtained.  

 

The weakness of Marcatili’s method is that it is not valid for waveguides operating 

near cut-off region when the field in the corners cannot be neglected. 
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Figure 3.1: (a) the original structure, (b) the equivalent structure obtained by    

Marcatili’s Method                                                                  

 

3.1.2 The Effective Index (EI) Method 

Proposed by Knox and Toulios, the Effective Index (EI) Method is an improvement 

based on Marcatili’s Method [3]. The basic idea of this method is to analyse 

two-dimensional optical waveguide structure by simply repeating the slab optical 

waveguide analyses, and finally combining the results to get the effective refractive 

index of the original structure. A rib waveguide is taken as an example as shown in 

Fig. 3.2 to explain the effective index calculation procedure. Firstly, the original 

waveguide is vertically divided into three slabs as shown in Fig. 3.2(a), and then the 

effective indices of each single slab along the y-axis, and , are calculated 

as shown in Fig. 3.2 (b). Calculated effective indices are now combined to form an 

optical slab waveguide which is solved for the effective index of the rib waveguide, 

rib

effn , as shown in Fig. 3.2(c) [5].  

 

outer

effn inner

effn
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Figure 3.2: Illustration of the EI method for a rib waveguide. (a) The physical 

structure is vertically divided into three 2D slabs by the red lines.  (b) 

Solving the vertical slab problem to define the slab effective indices. (c) 

Solving the equivalent horizontal slab problem to find the horizontal 

effective index. 

 

The EI method gives a good approximation of the propagation constant of a target 

waveguide. Due to its simplicity and speed, this method has been used to analyse a 

wide variety of optical structures including graded-index channel waveguide [6]. 

However, it does not give good results when the structure operates near cut-off or 

when the outer slab of a rib guide is not a guiding slab [7].  
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3.1.3 The Spectral Index Method 

The Spectral Index (SI) method is applied to air-clad rib waveguides that have high 

refractive index difference between the core and cladding, typically in ratio 3:1 [4, 

8-12]. Fig. 3.3 illustrates the principle of the method. The physical semiconductor-air 

boundary in the transverse plane of the waveguide is replaced with a polarisation 

dependant evanescent boundary, upon which the field is set to zero. The effective 

structure illustrated in Fig. 3.3 (b) is divided into two regions, the rib region Ω1 

(0<x<H’) and the layered slab region Ω2 (x<0), for analysing separately. The SI 

method proceeds by three steps: (1) finding a simple solution to the wave equation 

inside the rib, (2) finding a Fourier transform of the solution on the layered region 

below the rib, and (3) using a variational boundary condition to join the two together 

at the base of the rib [4].  

 

For the cases when structures operate near cut-off, which are difficult to deal with the 

previously described methods, the SI method is more reliable and gives better results. 

Further extension of this method has allowed it to be applied to more complex 

structures such as rib coupler problems [13, 14], disk resonators [15], cases with loss 

and gain [16] and cases with leaky modes [17]. 
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(a)                               (b) 

Figure 3.3: (a) The dimensions and refractive index distribution of the rib 

waveguide’s lateral cross-section, (b) The effective structure for the SI 

method. The position of the rib is moved outwards to a new position on 

which the boundary condition becomes E = 0.                         

 

3.2 Numerical Methods 

 

The numerical methods are versatile and robust analysis tools that are generally 

applicable to a wide variety of optical structures. They are often regarded as a 

benchmark when analysing the accuracy of other methods. Compared to the 

semi-analytical methods, the application of the numerical methods requires heavier 

computation, but little knowledge of the physical behaviour. Generally, the numerical 

methods fall into two classes as frequency domain methods and time domain methods. 

The former is utilised for the fixed frequency to obtain continuous wave (CW) 

response, and the latter can capture the behaviour of the target optical devices over a 

wide frequency range in a single simulation, but requires large computer memory and 
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computational time.  

 

3.2.1 The Finite Element (FE) Method  

The Finite Element (FE) Method [18] is a numerical tool that discretises the 

modelling domain into non-overlapping polygons, which are a set of adjoining 

triangular or rectangular elements for 2D problems, as given in Fig. 3.4, or tetrahedral 

or hexahedral elements for 3D problems. Inside each element the field is expressed in 

terms of polynomial functions, which are usually low order and constrained by 

boundary conditions, and the total field over the whole modelling domain is obtained 

by a linear summation of the fields over each element [19, 20]. The FE method uses a 

variational expression formulated from Maxwell’s equations and a matrix eigenvalue 

equation is produced mathematically.  

 

  

Figure 3.4: An example of FE representation of a waveguide using a triangular mesh. 

 

FE discretisation approach allows an area with high interest to be densely meshed and 

the material boundaries of arbitrary structures to be faithfully modelled. However, the 
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discretisation approach for complex system is not straightforward to implement, and if 

higher accuracy results are required, denser meshes are generally employed or higher 

order polynomials need to be solved, which leads to the increase of programming 

effort and computational overheads [21]. The application of the simple scalar and 

vectorial FE methods to commonly used optical waveguides are reported in [22, 23]. 

 

3.2.2 The Finite Difference (FD) Method 

The Finite Difference (FD) Method is one of the frequently used numerical analysis 

techniques [19]. This method discretises the modelling domain into a rectangular 

mesh of points for 2D problems or cube mesh for 3D problems. The discretisation of 

the problem can be uniform with fixed width and height for each mesh cell, or can be 

non-uniform with variable size for different mesh cells, which improves the mesh 

accuracy by using denser mesh for the part with high interest, as shown in Fig.3.5.  

 

 

Figure 3.5: 2D Finite difference discretisation schemes: (a) Uniform orthogonal mesh 

(b) Non-uniform orthogonal mesh 
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Like most of other numerical methods, the FD method is a procedure for transforming 

the wave equations of a physical problem into a matrix eigenvalue equation 

containing a finite set of linear equations, where the modal propagation constant is the 

eigenvalue and the corresponding fields represent the eigenvector. In this method, the 

discrete electromagnetic field values are stored by the sampling points which could be 

chosen to either lie at the centre of each cell so that each sampling point is associated 

with a constant refractive index, or at the mesh points so that each sampling point is 

associated to up to four different refractive indices [24], as shown in Fig. 3.6.  

 

 

Figure 3.6: Finite difference discretisation schemes: (a) Sampling points at the centre 

of the cell, (b) Sampling points at the mesh points 

 

Fig.3.7 illustrates an example of 2D FD mesh for the cross section of a rib waveguide. 

In the figure, a square mesh composed of lines parallel to coordinate axes is 

superimposed on the problem space. The indices i, j represent the coordinates of the 

mesh points. The distance between any two neighboring mesh points,  for 

x-direction and  for y-direction, is the same over the cross section. The discrete 

x

y
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electromagnetic field values are stored by the mesh points lying at the intersection of 

the mesh lines. An approximate expression for the derivatives occurring in the wave 

equation is formed that involves the field value at sampling point (i, j), and at some of 

its surrounding points. Once this discretisation process has been performed for all 

derivatives in the wave equation, a complete set of linear matrix eigenvalue equations 

relating the field values at all points is formed. The solution of the resulting matrix 

equation can be solved by an iterative method or through the application of a sparse 

matrix routine [25]. 

 

 

Figure 3.7: Illustration of five point finite difference scheme of the finite difference 

method  
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Generally, the finite difference discretisation of the first order and the second order 

derivative at any mesh point  in Fig. 3.7 can be expressed in the following forms 

with the truncation errors O (
2
) in homogeneous region as: 

  (3.2.1) 

  (3.2.2) 

 

in which α is the transverse direction x or y in orthogonal coordinate system and m is 

the corresponding subscript i or j. Eq. (3.2.1) and Eq. (3.2.2) can be substituted into 

the wave equations for the corresponding terms in order to replace the original PDEs 

by the equations in terms of the sampled field values in the homogeneous regions. 

This replacement is only valid if all the sampling points are located in the region of 

single material. Additional factors need to be taken into account if there is an interface 

of different materials between the sampling points. 

 

The accuracy of the FD method depends on the mesh size, the assumed nature of the 

electromagnetic field (scalar, semi-vectorial or vectorial), and the order of the finite 

difference scheme used. One approach to improve the accuracy of the method is to 

reduce the mesh size in the regions where the field changes rapidly. Another effective 

approach is to apply a higher order finite difference scheme, such as generalised 

Douglas (GD) scheme [26].  
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Moreover, the successful application of the FD method also requires careful 

consideration of the problem domain boundaries to maintain a good accuracy. For 

instance, open structures must be boxed before the implementation of the method. 

Application of the correct boundary conditions at the edge of the simulation window 

can absorb the field reaching the boundaries and prevent unwanted reflection into the 

modelling space. Moreover, the structures lying obliquely to the orthogonal mesh 

require a staircase approximation, which introduces artificial corners. The staircase 

approximation results in a series of reflections along the staircase and affects the 

accuracy of the algorithm. This problem can be overcame by structure-related (SR) 

co-ordinate schemes which allow the physical boundaries to be modelled exactly [27].  

 

Both the FE methods and the FD methods have their own features and should be 

chosen carefully to solve different practical problems. Generally, due to the great 

flexible feature of triangular elements, the FE method can deal with complex 

geometry structures and complex boundary problems such as waveguides with curved 

or slanting sections [7], which are not suitable for the FD method because of the 

possible negative effects like staircase effects and unphysical scattering.  

 

In addition, the most attractive feature of the FD method is that it is much easier to 

implement and more efficient for simple geometry problems compared with the FE 

method [28]. Therefore, the FD method is usually taken as the basic discretisation 
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technique of some other popular numerical techniques, such as the FDTD method [29] 

and the BPM method algorithm [30].  

 

3.2.3 The Finite Difference Time Domain (FDTD) Method 

FDTD is a widely used numerical method, which uses central difference 

approximations to the space and time partial derivatives to discretize the time 

dependent Maxwell’s equation [31]. It solves the electric field components and 

magnetic field components alternately in a leapfrog pattern in time on the basis of Yee 

cell, as illustrated in Fig. 3.8. As a time domain method, it can cover a wide frequency 

range within a single simulation run, and treat dispersive and nonlinear material 

properties in a natural way [32].  

 

 

Figure 3.8: Illustration of a standard Cartesian Yee cell used for FDTD, about which 

electric and magnetic field vector components are distributed. 
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To achieve a good accuracy, the mesh size used in FDTD needs to be much smaller, 

typically 10-20 times, than the operating wavelength. Moreover, based on the 

Courant-Friedrichs-Lewy (CFL) stability condition, the time step must be less than a 

certain time in simulations to keep the algorithm stable. These preconditions lead to 

one of the major drawbacks of the FDTD method, which is the heavy computational 

demand on both execution time and memory. In order to reduce computational effort, 

various extensions for FDTD have been achieved such as the scalar FDTD [33] and 

the ADI FDTD, which makes it possible to use a larger time step for simulation and 

provides unconditional numerical stability [34]. 

 

3.3 Beam Propagation Method 

 

A lot of practical optical waveguides have nonuniform structures such as bends, tapers 

and crosses in the propagation direction. One of the most commonly used methods to 

analyse such nonuniform structures is the Beam Propagation Method (BPM). The 

essence of the BPM method is the application of the slowly varying envelope 

approximation (SVEA), which means that the BPM method samples the envelope of 

the signal and not the fast varying carrier. Various kinds of BPMs have been 

developed including the Fast Fourier Transform BPM (FFT-BPM), the Finite Element 

BPM (FE-BPM), the Finite Difference Beam Propagation Method (FD-BPM) and 

Time Domain BPM (TD-BPM). 
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The original Beam Propagation Method (BPM) was first introduced into 

optoelectronics in 1980 by M.D.Fiet and J.A.Fleck [35, 36]. The BPM method was 

first developed with the Fast Fourier Transform (FFT) technique, known as FFT-BPM, 

for modelling weakly guiding structures. The limitations of the FFT-BPM method are: 

a requirement that lateral sampling is a power of 2 due to the use of FFT algorithm, 

small propagation step and long computational time. Moreover, it is not suitable for 

the application of artificial absorbing boundary condition [30, 37]. In order to avoid 

the application of FFT, the Finite Element Beam Propagation Method (FE-BPM) [23, 

38, 39] and the Finite Difference Beam Propagation Method (FD-BPM) [38, 40, 41] 

have been developed.  

 

FE-BPM uses unstructured meshes with flexible shape for the arbitrary 

cross-sectional boundaries. It also provides an adaptive discretisation method that can 

be renewed at every propagation step [42]. However, the discretisation in non-uniform 

elements still requires high computational cost and the quality of approximation 

highly affects the accuracy of the method [43]. Meanwhile, the implementation of 3D 

FE-BPM is less straightforward [44].  

 

FD-BPM is another choice to replace traditional FFT-BPM for modern simulations. 

Compared to FFT-BPM, FD-BPM is a more efficient method as it can employ a larger 

propagation step to achieve comparable accuracy and the computational time is much 
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shorter for each propagation step [30]. In fact, FD-BPM is one of the most popular 

and powerful tools for both 2D and 3D problems because it can discretise the 

structure easily and its implementation is straightforward. Generally, depending on the 

approximations applied, FD-BPM is divided into paraxial FD-BPM and Wide-Angle 

(WA) FD-BPM [45, 46]. Paraxial approximation assumes that the incident wave is 

inclined by a small angle with respect to the propagation axis, whilst WA-FD-BPM 

attempts to overcome this restriction. 

 

WA-BPM uses the Padé approximation [45] to derive the PDE to be a tri-diagonal 

matrix problem, which can be solved by the Thomas algorithm [45]. For complex 

structures, higher order Padé approximation operators are applied to improve the 

accuracy of the scheme. In this situation, larger band matrix needs to be considered 

and computational cost increases. To resolve this problem, multistep method is 

introduced to split each propagation step to several sub-steps and repeat utilising 

simple tri-diagonal matrix solver for every sub-step [46]. The less intensive matrix 

solver results in an algorithm much faster than that of a large band matrix created by 

Padé approximation only.  

 

An important significance of the WA scheme is that the application scope of FD-BPM 

is widely extended. The WA scheme provides a possibility for FD-BPM to deal with 

the propagation in both forward direction and backward direction, even to deal with 

multiple reflections existing. This powerful scheme is known as Bi-directional BPM 
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[47, 48].  

 

TD-BPM is another choice for the analysis of the reflection problems [49]. It applies 

the SVEA in the propagation with respect to time, not to space [50]. The whole spatial 

space needs to be analysed and evaluated at each time propagation step. Compared to 

frequency domain methods, it introduces an additional time dimension to the 

modelling and increases computational demand. TD-BPM will not be considered 

during the work of this thesis. 

 

To successfully employ FD-BPM, the edge of the simulation range needs to be 

considered carefully and a suitable boundary condition should be chosen for a specific 

problem. The commonly used boundary conditions include Absorbing Boundary 

Condition (ABC) [51], Transparent Boundary Condition [52], Perfectly Matched 

Layer (PML) boundary condition [53, 54] and Periodic Boundary Condition (PBC). 

An introduction of these common boundary conditions will be given in section 3.4. 

 

In the following sections, SVEA approximation, discretisation schemes in the 

propagation direction and a paraxial FD-BPM are derived, followed by a description 

of different boundary conditions. The scalar case and TM-polarized case are 

considered, and the situation for TE-polarized case can be derived similarly. 
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3.3.1 SVEA Approximation 

The slowly varying envelope approximation (SVEA) can be applied when the 

envelope of a forward-travelling wave varies slowly along direction of propagation. 

This requires the spectrum of the signal to be narrow-banded, hence it is also known 

as the narrow-band approximation, In longitudinally invariant structures, the 

time-harmonic field can be expressed as a product of the slowly varying envelope ψ 

and rapid oscillatory phase term  as: 

 
0( , , ) ( , )

j z
E x y z x y e

 
 ,

 
(3.3.1) 

 

where  is the propagation constant and n0 is the reference refractive index, 

field can be either for x or y directed. For example for the x-directed field,

0( , , ) ( , )
j z

xE x y z x y e
 

 . Replacing Eq. (3.3.1) in Eq. (2.3.25) and Eq. Eq. (2.3.26) 

leads to the semi-vectorial wave equations for x-directed component as: 
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. (3.3.2) 

 

If the envelope ψ varies slowly with respect to the propagation z-direction, the second 

order derivative along z-direction can be neglected: 

 , 

(3.3.3) 

resulting in the paraxial approximation as:  
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If the structure is a weakly guiding structure with low refractive index contrast and the 

propagating field can be regarded as scalar wave, the equation can be further 

simplified by neglecting term 2

2

1
( )r

r

n
x n x


  
 

  
 and results in:  

  

(3.3.5) 

which is much easier to implement.  

 

3.3.2 Discretisation Schemes in the Propagation Direction 

The FD-BPM finds the field intensity iteratively in the propagation direction based on 

the field from the previous slice as shown in Fig. 3.9 (a). The wave equation (3.3.5) 

that needs to be solved in optoelectronics is essentially partial differential equation 

(PDE), which needs to be discretised for the purpose of numerical implementation. 

Therefore, to find an effective and stable algorithm for discretisation is vital for any 

numerical method, including the FD-BPM. This section will discuss various 

commonly utilised FD schemes in terms of matrix solver requirement and stability.  

 

Eq.(3.3.5) and Eq.(3.3.4) can be rewritten in a more compact way as: 
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 for 2D scalar case, and 
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for 3D TM-polarized case and 2 2 2 2
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for 2D TM-polarized 

case. If the propagating step is set as Δz, the left hand side of Eq. (3.3.6) can be 

replaced through the first order FD discretisation. If a stability factor α, which 

determines the weighting of the halfway field point along the propagation direction, is 

introduced to the right hand side of Eq.(3.3.6), a general explicit-implicit scheme is 

given as: 

 
,
 

 (3.3.7) 

in which the value of α is within the range .  

 

Here three particular choices for parameter α are considered. When , Eq.(3.3.7) 

becomes:  
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and corresponds to an implicit or backward-difference scheme. L is approximated in 

the unknown domain as shown in Fig. 3.9 (b). Operator L consists of second order 

derivatives of the transverse operator, which results in a tri-diagonal matrix for a 2D 

structure. Thomas algorithm [55] can be used to solve the matrix equation efficiently. 
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solving a large, but sparse matrix.  

 

When , Eq. (3.3.7) becomes 

  
(3.3.10) 

or  

 0 ( , ) 0 ( , )2 (2 )x z z x zj j z L        , (3.3.11) 

which results in an explicit or forward-difference scheme [56] as illustrated in 

Fig.3.9(c). The operator L is taken on the current propagation step where the field 

values are known and the value in the next step can be directly calculated without 

using matrix solver [57]. Explicit scheme is very suitable for parallel computing. The 

calculation processes can be divided into numerous threads for different processor 

nodes to solve the unknown values independently.  

 

When , the points of calculation are set exactly at half-way between sampling 

points along propagation direction and a central difference based scheme, named the 

Crank-Nicholson (CN) scheme is obtained. Eq. (3.3.7) becomes:  
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Fig. 3.9 (d) shows the CN scheme. Similarly as in the implicit scheme, matrix solver 
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is required for solving Eq.(3.3.12) because the transverse operator is discretised 

between the current slice and the next slice, and the solution depends on the transverse 

neighboring nodes on both slices.  

 

  

 (a) 

 

                (b)                            (c) 

  

 (d) 

Figure 3.9: Illustration of (a) the FD-BPM arrangement in longitudinal direction, (b) 

Implicit scheme, (c) Explicit scheme, (d) Crank-Nicholson scheme. 
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In order to investigate the stability of different discretisation schemes mentioned 

above, the field gain per propagation step is introduced and defined as:  

 

.

 

(3.3.14) 

 

If , the fields in each propagation step continuously grow and accumulate step 

by step and non-physical power gain is generated. In this situation, the algorithm is 

unstable and the accuracy of the scheme cannot be trusted. If , the fields decay 

with the propagation and the algorithm is stable but lossy. The ideal situation is when 

, which means that the scheme is not only stable but also non-dissipative [58]. 

 

Eq.(3.3.7) can be rearranged as: 

 

.

 

(3.3.15) 

 

If a 2D homogenous structure is considered, then the discretisation of the second 

order derivative in the transverse direction is expressed as: 

 
.(3.3.16)

 

 

Based on Euler’s formula, the phase term in Eq. (3.3.16) can be expressed as: 
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Therefore, the right hand side of Eq. (3.3.16) can be rewritten as: 

 
.
 

  
(3.3.19) 

Using this relationship to replace the corresponding term in operator L in Eq. (3.3.15) 

leads the gain to be [58]: 

  

(3.3.20) 

 

If , the gain for explicit scheme becomes: 
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and the absolute value of gain , resulting in explicit scheme being an unstable 

algorithm. 

 

If , the gain for implicit scheme is obtained as:  
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and the absolute value of gain , resulting in implicit scheme being stable, but 

lossy. The non-physical power loss will limit its applications where prediction of 
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power is essential. 

 

If , the gain for CN scheme is: 

 

,

 

(3.3.23) 

and the absolute value of gain , resulting in unconditionally stable and 

non-dissipative algorithm. CN scheme will be considered throughout in this thesis. 

 

3.3.3 Paraxial FD-BPM 

The 2D CN FD-BPM equation is derived from Eq. (3.3.13) and can be written as: 

 (3.3.24) 

where subscripts p, and m denote the node position of the “current node” in transverse 

x and propagation direction z respectively. A, B and C are different coefficients 

according to the types of field approximation. For scalar case, coefficients are: 

  

 ,

 

 

0.5 

2 2 2
2 2 20 0
0 02

0

2 2 2
2 2 20 0
0 02

0

cos[( ) ] 1
2

1
4

cos[( ) ] 1
2

1
4

r
r

r
r

k n x
z k n

x
j

g
k n x

z k n
x

j











   
   

 


   

   
 

1g 

1 ( 1, 1) 1 ( 1, 1) 1 ( , 1) ( 1, ) ( 1, ) ( , )m p m m p m m p m m p m m p m m p mA B C A B C                  

1 1 2

2 2 2

0 0 0
1 2

1

2

2 1

2

m m

r
m

A B
x

j k n
C

z x

 

 



  



  

 

2

2 2 2

0 0 0

2

1

2

2 1

2

m m

r
m

A B
x

j k n
C

z x

 

 



  

 



 

66 

 

For TM mode, the coefficients are: 

  

 

 

 

Eq. (3.3.24) can be expressed by a three-band sparse diagonal matrix system 

respectively for further processing. The coefficients on the left hand side of the 

equations can populate a coefficient matrix [Mm+1]. The field values on the next slice, 

from ψ(1,m+1) to ψ(p,m+1), where p is the number of nodes sampled in the x direction, 

can be placed as a column vector [ψm+1]. The coefficient matrix and the column vector 

compose the left hand side of the matrix system. Likewise, the coefficients and the 

field values of current slice compose the right hand side of the matrix system. Because 

the field values and the coefficients of the current slice are all known for calculating 

the field values of next slice, the terms on the right hand side of the matrix system can 

be consolidated into a column vector [[Mm]  [ψm]]. The matrix equation is in the form 

of [Mm+1]  [ψm+1] = [[Mm]  [ψm]], and the relevant sparse diagonal matrix system is 

shown as follows: 
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(3.3.25) 

It is clearly seen that the large but sparse matrix on the left hand side of the matrix 

systems in Eq. (3.3.25) has tri-diagonal property and its size is . This kind of 

sparse matrix can be easily reduced to be a memory efficient form with the size of

, which results in the whole equation to be simplified as:  
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(3.3.26) 

and solved by Thomas algorithm efficiently [59]. 

 

The 3D CN FD-BPM can be derived in the same way as: 

 

(3.3.27)

 

where subscripts p, q, and m denote the node position of the “current node” in 

transverse x, transverse y and propagation direction z respectively. For scalar case, the 

coefficients A, B, C, D and E are:  

 

 

 

 

 

For TM mode, the coefficients are: 
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Eq. (3.3.27) could be expressed by a five-band sparse matrix system. The matrix 

system for 3D FD-BPM is not a simple tri-diagonal matrix system and cannot be 

solved by Thomas algorithm. Therefore, a popular scheme, the Alternating-Direction 

Implicit (ADI) method [60, 61], is developed to deal with the problem. The ADI 

method splits each propagation step in two halves, one for x-derivative taken 

implicitly and the other one for y-derivative taken implicitly, and then handles the 

derivative for x direction and y direction alternately.  

 

If the 3D scalar FD-BPM equation in Eq. (3.3.5) is to be solved by the ADI scheme, it 

can be divided into two associated equations with the propagation step  [60]. The 

first equation calculates x-derivative by full implicit scheme and calculates 

y-derivative by full explicit scheme, and the second equation is reversed. Then the 
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original equation can be split as:    

 , 

(3.3.28) 

 

. 

(3.3.29)   

 

These two equations can be expanded as: 

,

 

  (3.3.30) 

  

(3.3.31)

 To rearrange these two equations separately as Eq. (3.3.25) and combine the 

coefficients of the same field terms leads to equations as: 

 , 

(3.3.32)
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,

 

and     

  ,
  (3.3.33)

 

in which 

.

 

 

It is obvious that the ADI method decomposes the five-band matrix problem into two 

three-band tri-diagonal matrices problem which can be solved by applying Thomas 

algorithm repeatedly.  

 

Another choice for solving the sparse matrix systems mentioned in Eq. (3.3.27) is 

utilising a matrix solver such as Gaussian elimination method and iterative solver. 

Typical iterative solvers like Bi-Conjugate Stable (BI-CGSTAB) method [62] and 

Generalized Minimal Residual (GMRES) method [63] are widely applied because the 

solutions can converge in a reasonable time, which makes the method more reliable. 
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However, if a large number of iterations are used to achieve a better accuracy, the 

requirement for computational time and memory will be heavy for large matrices. 

Therefore, the application of an iterative solution normally needs to be supported by 

powerful modern computing tools.  



3.4 Boundary Conditions for FD-BPM 

 

Photonic devices are open structures but they need to be placed in a finite 

computational domain. Therefore, structure boundaries must be set at an appropriate 

distance from an optical waveguide. This section will overview various boundary 

conditions that have been developed for numerical simulation methods, include 

Neumann boundary condition, Dirichlet boundary condition, Transparent Boundary 

Condition (TBC), Perfectly Matched Layer (PML) boundary condition and Periodic 

Boundary Condition (PBC) [52, 53, 64]. 

 

3.4.1 Neumann and Dirichlet Boundary Condition 

Consider a 2D structure with P sampling points on the transverse modelling space as 

shown in Fig. 3.10. Neumann boundary condition [64] defines the field gradient at the 

boundary to be zero which means the field values are equal on either side of the 

boundary (ie.
  

and ). According to Eq. (3.2.2), the second order 

derivative for the left boundary is: 

0 1 
1p p  
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and similarly for the right boundary. 

 

 

Figure 3.10: 2D structure with p sampling points on the transverse modelling space 

 

As Neumann boundary condition mirrors field values of the sampling nodes on both 

sides of the boundary, it is also used to simplify the problem for structure that 

possesses symmetry. This is done by halving the structure along the line of symmetry 

and applying Neumann boundary condition on the symmetry plane, as shown in 

Fig.3.11, resulting in 50% computational saving. 

  

 

Figure 3.11: Neumann boundary condition is applied at the symmetry plane and 

computational domain is valued   
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The Dirichlet boundary condition specifies a value on the boundary as 1p p     

on the right boundary. This is equivalent to placing a metal boundary which can cause 

reflection at the edge of the computational window. The second order derivative in 

transverse operator is written as 

 

2

1

2 2

3p p p

x x

     


 
 (3.3.34) 

for the right and similarly for the left boundary. 

 

3.4.2 Transparent Boundary Condition (TBC) 

TBC is an absorbing boundary condition proposed by Hadley for FD-BPM 

specifically [52]. It introduces an estimated complex transverse propagation constant 

kx at the boundary based on the field values of the nodes close by the boundary. It also 

assumes that the outgoing radiation leaves the simulation space and is exponentially 

decreasing. With respect to Fig. 3.10, the field values of the nodes next to the right 

boundary follow the relationships: 

  

(3.3.35) 

 

and for the left boundary: 

 

.

 

(3.3.36) 

 

Based on the known values in these two equations, kx can be obtained for the right 
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boundary as 

  ,

 

(3.3.37) 

and for the left boundary as 

  

(3.3.38) 

 

It is worth noticing that the real part of the propagation constant kx must be positive to 

make sure the radiation leaves and does not come into the simulation space. Therefore, 

the field values of the boundary nodes are obtained as: 

  
(3.3.39) 

  
(3.3.40) 

 

The TBC is a computationally efficient algorithm since no additional virtual 

absorbing layer needs to be introduced. However, the radiation angle entering the 

boundary cannot be arbitrary since the rules shown in Eq. (3.3.35) and Eq. (3.3.36) 

may be broken. The TBC is the most effective if the field approaches the boundary at 

near-normal incident angle, but is less effective for higher angles. Moreover, this 

algorithm is not simple to implement for 3D situations in which the field approaches 

the boundary at different angles. 
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3.4.3 Perfectly Matched Layers (PML) 

Perfectly Matched Layers (PML) [53] is a powerful scheme to provide the boundary 

condition for 3D structure simulations. It is imposed by introducing an artificial 

material at the edges of the boundary, which is backed by perfect electric conductor 

walls. This additional layer acts as an absorber and allows plane waves of arbitrary 

incidence angles and frequencies to pass through with zero reflection. For a 

sufficiently thick layer, the plane waves will exponentially decay within the layer to a 

negligible level and any reflection from the metal boundary will be further attenuated. 

 

Fig. 3.12 shows a 2D computational domain where the original simulation space is 

extended and the whole problem is divided into nine separate areas including the 

original simulation space, two extended regions along y direction, two extended 

regions along x direction and four corner areas. Thus, more computational effort is 

required since the computational window is enlarged, but it has been proved to be an 

effective approach to improve the accuracy of the numerical methods and widely 

applied in optical simulations [53]. 
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Figure 3.12: Cross-section of a 3D simulation space truncated by PML 

 

Fig. 3.13 illustrates the configurations of the PML applied on the interface between 

the original simulation window and the region 3 in Fig.3.12, where x’ is the distance 

between the boundary interface and the current node in the PML region. In region 3, 

the PML boundary condition is implemented by using complex variable transverse 

coordinate x’ as [65]: 
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(3.3.41) 

in which ω is the operational wavelength, Ɛ0 is the free space permittivity, δx is the 

attenuation strength, np is a reference refractive index which can be chosen to be equal 

to that of the material adjacent to the PML, η’ is the distance into the PML, (starting at 

zero at the inside edge of the PML), and w is the thickness of the PML [66].  
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The second order transverse derivative 
2
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m

x
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 inside the PML is expressed as: 
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or introducing an absorption strength factor A
2
 to represent the term 
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Eq.(3.3.42) is rewritten as: 
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(3.3.43) 

 

 

Figure 3.13: Configuration within PML region 3  

 

If the absorption factor is set to be a small value, the PML region needs to be thick to 

sufficiently eliminate the radiation. In addition, if the absorption factor is set as a large 

value, the absorption is strong and the layer can be made thinner. However, if the 

gradient of absorbing material is set to change too rapidly, unwanted reflection may 
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be introduced.  

 

With reference to Eq.(3.3.43), the second derivative in transverse operator x for the 

PML region 3 is: 

 

,

 

(3.3.44) 

in which 
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(3.3.45) 

 

Similarly, the second order derivative in transverse operator y can be transformed for 

absorption in the PML region 2. In the region 4, both the second order x-derivative 

and y-derivative need to be transformed. 

 

3.4.4 Periodic Boundary Condition  

Periodic Boundary Condition (PBC) [67] is a particularly suitable scheme for analysis 

of infinite periodic structures [68] such as PBG waveguides. Fig.3.14 illustrates the 

principle of the PBC, where one period of width w is modelled and suitable periodic 

boundary conditions are applied to the left and right boundary. The field values of the 

nodes outside the boundary  and  could be deduced by the field values of 

the nodes  and  inside the boundary by adding a phase change term as: 

 1 1 0exp( sin )p j w       ,
 

(3.3.46)  
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 , 
(3.3.47) 

both of which can be used directly as known values in the three-band matrix system to 

calculate the field values on the next propagation step. Therefore, the value of 

transverse radiation coming out of the boundary on one side of the original space 

equals that coming in through the other boundary along the same transverse 

coordinate, and the total energy is unchanged.  

 

 

Figure 3.14: 2D simulation with periodic boundary condition along transverse 

direction x 

 

3.5 Imaginary Distance BPM 

In this section an approach for extracting effective refractive index of the modes using 

BPM method is presented. For a longitudinally invariant waveguide, if the radiation 

field is assumed to be negligible, the fields may be expressed as a summation of 

transverse guided waveguide modes multiplied by a phase term: 
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It is often necessary to characterize the behavior of these guided mode fields in a 

waveguide by calculating their propagation constant, n , using a mode solver. 

Frequently, the fundamental or the first-order mode is used as the initial excitation 

field. In order to efficiently calculate the fundamental mode, three techniques within 

BPM have been developed. The first one is to excite an arbitrary field and propagate 

until field tends to fundamental mode. It is slow, and inaccuracy if multi-mode is 

propagated. The second one is similar with the first one, but evaluates the overlap of a 

superposition of all the modes of field at each step by Fourier transform, and 

possesses peaks at all propagating constant corresponding to a mode. The third one is 

the Imaginary Distance (ID) BPM method, which is a faster mode solver derived from 

BPM algorithm. The ID procedure was firstly developed by Yevick [69] and extended 

by others [70, 71]. This section will describe the principle of the ID BPM. For 

simplicity, the ID BPM formulation will only be developed for the scalar case, which 

can be easily extended to the semi-vectorial formulas. 

 

The scalar wave equation, Eq. (2.4.27), can be rearranged to get [72]: 

 

.

 

(3.5.2) 

 

For the waveguides which are uniform along the propagating direction, an arbitrary 

input field can be represented as a summation of the eigenmodes as: 
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(3.5.3) 

in which  represents the amplitude of the m
th

 order mode.  

 

On the other hand, the eigenvalue equation for the m
th

 order mode is: 

 

,

 

(3.5.4)

 

which can be re-expressed in the form of:  

 

,

 

(3.5.5) 

in which  is the propagation constant of the m
th

 order mode. 

 

Replacing Eq. (3.5.5) into Eq. (3.5.2) can obtain equation: 

 

(3.5.6)

 

 

Under the condition that , the coefficient on the right hand side of Eq. (3.5.6)

can be approximated and defined as: 

      

(3.5.7)

 

where  is the eigenvalue. 

 

Substituting  into Eq.(3.5.6), the solution of the equation can be formally written 

as:  
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which leads Eq.(3.5.3) to be: 

     

(3.5.9)

 

 

In the imaginary distance BPM, the propagation axis z is assumed to be imaginary i.e, 

,          (3.5.10) 

leading to 

 

. 

      

(3.5.11) 

 

As seen from Eq.(3.5.11), a sinusoidal phase change of the field is replaced with its 

exponential amplitude change in the imaginary distance procedure [72]. The 

eigenvalues are arranged in this order: 

        
(3.5.12) 

where  is the largest eigenvalue and corresponds to the fundamental mode. 

 

Eq. (3.5.11) says that the field propagating with the largest eigenvalue  increases 

much faster than all the other fields. Therefore, the propagating field converges to the 

fundamental mode as: 

        
(3.5.13)

 

 

From the viewpoint of power, the following relationship is deduced: 

      
(3.5.14) 

( , , ) ( , ) mj z

m m

m

x y z a x y e
 






z j

( , , ) ( , ) m

m m

m

x y a x y e
   





0 1 2 m       

0

0

0 0lim ( , , ) ( , )x y a x y


  




0 2 2

( , , ) ( , , )( ) ( )x y x ye dxdy dxdy
 

   

 



 

84 

 

or rearranged as:  

        

(3.5.15) 

 

Taking logarithm of both sides of Eq.(3.5.15) leads to: 

       

(3.5.16)

 

 

Based on Eq.(3.5.7), the calculated effective refractive index of the fundamental mode 

which is essentially a function of , is obtained as: 

  

(3.5.17) 

 

During the FD-BPM simulation, it is necessary to choose the reference refractive 

index  close to the effective refractive index  of the waveguide to obtain a 

good convergence. A popular technique, which is applied throughout this thesis, is to 

repeatedly substitute  by  of the immediately preceding numerical step for 

each step calculation to obtain a better convergence [73]. 

 

It is worth to noticing that once the fundamental mode is found by Eq.(3.5.13), the ID 

BPM mode solver can also be used to find other eigenmodes. Removing the 

fundamental mode from Eq. (3.5.11) results in:  
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Based on Eq.(3.5.18), the propagating field along the imaginary distance converges to 

the next eigenmode as 

1 1lim ( , , ) ( , )x y a x y


  
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         (3.5.19) 

 

Similarly, other eigenmodes can be obtained by repeating the same procedure. 

 

3.5.1 Numerical Implementation of the Paraxial ID 

Procedure 

This section will outline the numerical implementation of the ID BPM method. 

Starting from the 3D wave equation  

     

(3.5.20)

 

and replacing the field term by 0
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(3.5.21) 

 

If  is used to convert the real propagation axis into the imaginary axis, 

Eq.(3.5.21) can be rewritten as: 
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. (3.5.23)

 

 

Under SVEA 
2

2
0

z





 and Eq. (3.5.23) becomes:

 

    

(3.5.24)

 

which can be discretised by the CN scheme to obtain the numerical discretised form: 

                    

(3.5.25)

 

where the coefficients are: 



 

 

For 2D problem, Eq. (3.5.25) becomes: 
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By using Eq.(3.5.17) and Eq.(3.5.24), a suitable propagation constant and the 

fundamental mode input field for BPM simulation can be obtained. An easy method 

to avoid the excessive growth of the field during ID BPM is to gradually rescale the 

field by: 

       

(3.5.27)

 

 

The field rescaling can be repetitively employed when the field propagates a certain 

distance, for example after each propagation step, along the imaginary axis.  

 

3.5.2 Results 

In this section, the performance of the ID BPM mode solver is analysed in three 

aspects, including the accuracy for various sampling intervals in transverse and 

longitudinal direction, the reliability of the method for different initial values of the 

effective refractive index and different waveguide widths. The structure considered is 

a symmetrical slab waveguide as shown in Fig. 3.15. The refractive indices are 1.5 for 
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the core and 1.45 for the cladding, respectively. The width of the simulation window 

along x-direction is set to 10μm. TBC is applied as the boundary condition. Input 

beam in the form of Gaussian function is launched at the wavelength μm and 

the peak value is located at -2μm on the x-axis.  

 

       

Figure 3.15: The cross section of the simulated slab waveguide 

 

Firstly, the convergence of the calculated effective refractive index  for the 

fundamental mode for different transverse mesh size  ( =0.002μm, 0.005μm, 

0.01μm, 0.02μm, 0.05μm and 0.1μm, respectively) is tested for both TE and TM 

polarisation. The core width is set as Wcore =3μm. The propagation step along 

z-direction is kept at a fixed value of =0.01. A random start guess value of the 

effective refractive index is set as , although the true value should be in the 

range between the value of ncore and ncladding.  

 

For every propagation step along the imaginary axis, the eigenvalue  is found and 

the effective refractive index is calculated and updated by Eq.(3.5.17). The simulation 

is stopped when 
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  (3.5.28) 

where  and  denote the calculated  of previous and current 

propagation step respectively. The propagation distances for which convergence is 

achieved are plotted in Fig. 3.16 (a) for the TE and TM polarisition. it can be seen that 

for a smaller transverse sampling interval, the simulation requires a longer 

propagation distance to achieve convergence. 

 

In order to confirm the accuracy of simulation results, the exact solutions from an 

analytical slab waveguide mode solver are considered as the benchmark. The 

analytical value of the effective refractive index for the chosen slab waveguide is 

 for TE mode and 
 
for TM mode. The errors of the 

calculated effective refractive index by the ID BPM mode solver of the fundamental 

TE and TM modes comparing to the analytical values are calculated as 

                                       (3.5.29) 

and shown in Fig. 3.16 (b). It shows that for both TE and TM mode, the calculated 

 gradually converges to the analytical solution with the decrease of the transverse 

mesh size. When the transverse mesh size is less than 0.02μm, the errors between the 

calculated results and the analytical value are very small. However with a smaller 

mesh size, the calculated  needs a longer propagation distance along the 

imaginary axis for converging, and the CPU time and memory required for the 

simulation will be increased. Therefore, how to choose a suitable transverse mesh size 

is determined by the accuracy requirement of the calculated 
 
and the consuming 
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time and memory of CPU. 

 

 

 (a) 

 

 (b) 

Figure 3.16: (a) The propagation distance along the imaginary axis as a function of 

the transverse mesh size ; (b) The error between the calculated value 

and the analytical solution of  as a function of the transverse mesh 

size . 
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Secondly, the transverse mesh size is set at a fixed value of =0.01μm, 0.02μm, 

and 0.05μm respectively and the propagation step along z-direction is set at = 

0.002μm, 0.005μm, 0.01μm, 0.02μm, 0.05μm and 0.1μm for each certain value of 

. The effective refractive index is calculated for each case and the errors compared 

to the analytical values are calculated by Eq.(3.5.29) and shown in Fig. 3.17 (a). It can 

be seen that for the same transverse mesh size and different propagation steps, the 

error of the calculated  keeps the same value for both TE and TM mode. As the 

accuracy of the calculated 
 
is not affected by the change of the propagation step, 

a large propagation step can be used during the ID BPM simulation to reduce the time 

and memory consumption of CPU. Propagation distances for which 
 
is obtained 

for TE and TM mode when =0.01μm are plotted in Fig. 3.17 (b). It shows that if 

the longitudinal propagation step is set as a larger value, the propagation distance to 

obtain accurate calculated result is longer.  
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  (a) 

  

 (b) 

Figure 3.17: (a) The error between the calculated value and the analytical solution of 

 as a function of the longitudinal propagation step; (b) The 

propagation distance along the imaginary axis where the calculated 

 is obtained as a function of the longitudinal propagation step. 
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The effect of the choice of the starting effective refractive index is investigated next. 

Different initial guess values effn =1.25,2.25 and 5.45 are set for fixed transerve mesh 

size and propagation step as . The waveguide parameters are the same. 

For both TE and TM mode, when the starting value of  is different, the 

differences between the calculated  of two adjacent propagation steps are 

calculated by 

             
(3.5.30) 

 

The convergence of  is presented as a function of the propagation distance along 

the imaginary axis in Fig. 3.18. Fig. 3.18(a) and Fig. 3.18(b) illustrate the change rate 

in the first ten propagation steps (propagation distance from 0 to 0.1μm) for TE and 

TM polarisation, respectively. It can be seen that for both TE and TM mode, no 

matter what the starting value is, the effective refractive index converges very fast. 

The differences between the calculated values of  obtained by different starting 

values are particularly evident at the first few steps. After a short propagation distance, 

 converges to the same value regardless of the starting value. It can also be seen 

that a starting value which is closer to the analytical value leads to faster convergence. 

Fig. 3.18(c) illustrates how the calculated  converges along the propagation 

direction over a long distance (propagation distance from 0.1μm to 80μm) when the 

starting value is different. It can be seen that different starting values result in the 

similar convergence curve for both TE and TM polarisation. With the increasing of 
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the propagation distance, the change of  becomes inconspicuous. The simulation 

results prove that the ID BPM mode solver is reliable for any random initial guess 

value of the effective refractive index.  
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 (c) 

Figure 3.18: The differences between the calculated  of two adjacent 

propagation steps are presented as a function of the propagation distance 

along the imaginary axis for three different initial values. (a) First ten 

propagation steps for TE mode; (b) First ten propagation steps for TM 

mode; (c) The change rate of  over a distance of 80μm. 

 

In order to further verify the effectiveness and reliability of the ID BPM as a mode 
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waveguide, Wcore =0.1μm, 0.5μm, 1μm, 2μm, and 3μm. The transverse mesh size and 

the propagation step are , and the initial guess value of  is 2.25. 

For a chosen value of the core width, when the convergence of 
 
is achieved 

according to Eq.(3.5.28), simulation is terminated, and the error compared with the 

analytical value is calculated by Eq.(3.5.29). Table 3.1 displays the analytical values 

and the calculated values of 
 
for different core widths. It also lists the differences 

between the analytical values and the calculated values.  

0 10 20 30 40 50 60 70 80
-120

-100

-80

-60

-40

-20

0

Propagation distance (m)

D
if
fe

re
n
c
e
 b

e
w

te
e
n
 n

n
e
w

 a
n
d
 n

o
ld

 (
d
B

)

 

 

TE mode

TM mode

effn

effn

0.01x z    effn

effn

effn



 

96 

 

 

The comparison is presented more intuitively as a function of the core width in 

Fig.3.19. Fig. 3.19(a) illustrates the values of  for different core widths and 

Fig.3.19(b) illustrates the errors. It can be seen that for both TE and TM mode, the 

calculated values are very close to the analytical values. The errors are small 

regardless of the slab core width.  

 

Core 

Width 

(μm) 

 TE mode  TM mode 

Analytical 

value 

Calculated 

value 

Difference Analytical 

value 

Calculated 

value 

Difference 

0.1 1.450311 1.45037 5.9x10
-5

 1.450271 1.45027 - 10
-6

 

0.5 1.456421 1.45664 2.19x10
-4

 1.455781 1.45591 1.29 x10
-4

 

1 1.467511 1.46772 2.09 x10
-4

 1.466461 1.46665 1.89 x10
-4

 

2 1.482341 1.48244 9.9 x10
-5

 1.481651 1.48175 9.9 x10
-5

 

3 1.489311 1.48936 4.9 x10
-5

 1.488941 1.48899 4.9 x10
-5

 

Table 3.1: The comparison between the analytical values and the calculated values of 

 
for different core width of a slab waveguide.  
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          (a) 

 

(b) 

Figure 3.19: The comparison between the analytical values and the calculated values 

of 
 
for different core width of a slab waveguide: (a) the value is 

presented as a function of the core width; (b) the error of is 

presented as a function of the core width. 
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Fig. 3.20 illustrates the beam profiles obtained for the TE mode for the transverse 

mesh size and the propagation step as , the initial guess value of  

is 2.25, and the slab core width is Wcore =3μm. The incident field is launched into the 

structure at a random position. It can be seen that the field profiles changes fast at the 

beginning of the propagation, and then resumes the field profile of the dominant mode 

in the slab waveguide.  

 

 

Figure 3.20: The TE mode beam profile along the imaginary axis. 
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3.6 Conclusions  

 

This chapter introduced the most commonly applied analysis tools for optical devices. 

Typical semi-analytical methods such as the Marcatili’s method, the Effective Index 

(EI) method and the Spectral Index (SI) method are fast and efficient schemes that can 

provide accurate results. However, they are not suitable to solve complex photonic 

structures since these schemes are specifically developed for particular types of 

waveguides. In addition, the numerical methods such as the Finite Element (FE) 

Method and the Finite Difference (FD) Method have general applicability. They are 

highly accurate schemes and suitable for complex geometries, but large computational 

memory and time are often required as the carrier is sampled during the application of 

these methods.   

 

As a numerical method, FD-BPM is widely applied in optical simulations recently 

because of its flexibility and efficiency. It samples the envelope of the fields rather 

than the carrier so that it is more efficient than the conventional FE and FD methods. 

This chapter overviewed the theory and numerical implementation of the paraxial 

FD-BPM method. It considered the related concepts including discretisation schemes 

and different boundary conditions. The FD-BPM transforms the wave equation to be a 

matrix system problem which can be solved by the tri-diagonal algorithm. TBC and 

PML are two effective boundary conditions for FD-BPM simulation. They can 

eliminate the unwanted reflections from the edges of the simulation window. 
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The ID BPM scheme is overviewed and tested as a mode solver. The simulation 

results demonstrated that the ID BPM mode solver is accurate and reliable when 

solving for the effective refractive index of the fundamental mode of a waveguide, 

regardless of the initial guess value. The accuracy of the method can be improved by 

using smaller transverse mesh size. In following chapters, ID BPM will be used as the 

mode solver to calculate the fundamental mode of the input for simulations and the 

refractive index of the waveguides. A restriction of the application of the paraxial 

FD-BPM in optical simulation is that the input beam cannot propagate at large angles 

with respect to the longitudinal direction. A WA BPM removes this restriction and is 

overviewed in the next chapter. 
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Chapter 4: Wide Angle FD-BPM 

 

The previous chapter derived the paraxial FD-BPM method that can only be used to 

simulate propagation under a slowly varying envelope approximation (SVEA), for 

which 
2

2
0

z






 is true. This also means that only beams that propagate at small 

angles with respect to the propagation direction can be described accurately. 

Moreover, the reference refractive index needs to be appropriately chosen for the 

paraxial scheme [1]. In order to relax the paraxial requirement and weaken the 

dependence on the choice of reference refractive index, a more robust scheme, the 

Wide Angle (WA) FD-BPM has been developed [2, 3]. 

 

The WA-BPM scheme was first proposed by Hadley [2]. He introduced recurrence 

Padé method, which iteratively applies a Padé approximation process to re-introduce 

the 

2

2z




 derivative in the BPM wave equation so that the SVEA approximation is 

removed. The recurrence Padé method can achieve good accuracy by using a high 

order Padé approximation operator. However, the treatment of a high order Padé 

approximation operator can be a challenge. To avoid the complex mathematical 

process, he presented the Multistep Method [3] in which a propagation step is split 

into several substeps and the Padé approximant operator is factored into a series of 

simpler Padé (1, 1) operators. Later on, rational square root approximation is 

combined with WA scheme [4, 5], which allows the wave equation to be written in 
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the form that contains square root operators. The rewritten wave equation can be 

expressed as a rational polynomial and solved though factorization for the application 

of the Multistep Method. A drawback of the standard Padé approximation is that 

propagation of evanescent modes is incorrectly modelled, which may cause instability 

during the simulations. Therefore, a modification scheme, known as the rotated 

branch cut approximation or the rotated Padé approximation is introduced to give the 

evanescent modes the desired damping [4]. This chapter will introduce the WA 

FD-BPM issues such as the recurrence Padé approximation, the multistep method and 

the rotated Padé approximation, and apply the method to analyse slab and rib 

waveguides  

 

4.1 Recurrence Padé Approximation 

 

Consider the 3D scalar wave equation:  
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which can be rearranged as: 
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or written as:   
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From Eq. (4.1.3), the recurrence relation for Padé approximation is obtained as [2]: 

 

1j

j

M

z
L

z









 

(4.1.4) 

 

where the subscript j+1 and j represent the order of the Padé approximation, and M 

and L are the operators,
2 2

2 2 2

0 02 2 rk n
x y

M 
 

  
 

  and 02L j . Different orders 

of the Padé approximation can be obtained iteratively from this equation.  

 

If Padé (1,0) is adopted, then the paraxial approximation with SVEA discussed in 

Chapter 3 is obtained as: 

 

M

z L




  
(4.1.5) 

 

By substituting Eq. (4.1.5) into Eq. (4.1.4), Padé (1,1) is obtained as: 
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 
 

(4.1.6) 

 

Similarly, this new operator could be used to obtain a higher order Padé 

approximation for better accuracy. Details of the recursive process are given in [2]. 

However, when the high order Padé approximant operator is applied, the numerator 

and denominator in Eq. (4.1.4) become much more complex because the number of 

terms for the second derivative terms 
2

2x




 and 

2

2y




 included in the equation 
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increase with the recursive process. This results in large and complicated matrix 

problems. To avoid solving this problem, the Multistep Method for wide angle 

approximation is introduced, and explained in the next section. 

 

4.2 Multistep Method  

 

The Multistep Method [3] is a more computationally efficient algorithm compared 

with the recurrence Padé method. The idea is to employ an alternative propagation 

equation which splits each propagation step into multiple steps so that the high order 

Padé approximant operator is factored into a series of simpler Padé (1,1) operators. To 

deal with the second derivative terms in the Padé approximation operator, the Rational 

Square-Root Approximations [5, 6] is often applied with the Multistep Method. The 

scalar scheme of the Multistep Method with Rational Square-Root Approximation 

starts from Eq.(4.1.1), and the wave equation can be rewritten as: 

 
0 0 0 01 1 0j j Q j j Q

z z
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(4.1.7) 

where the operator Q is set as: 
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(4.1.8) 

for the scalar wave equation.  

 

The term in the first bracket of Eq. (4.1.7) represents the forward wave propagating in 
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the positive z-direction, and the term in the second bracket represents the backward 

wave propagating in the negative z-direction. If only forward propagation is assumed, 

then the wave equation is written as: 

 
0 0 1 0j j Q
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or       
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The discretization of Eq. (4.1.10) is: 
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or rearranged as:       
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It is known that the Padé (n, n) approximation of 1 Q  can be written as [7]: 
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. In order to avoid 

the treatment of the trigonometric function in Eq.(4.1.13), an alternative approach to 

apply the Padé approximant is introduced in the following part.  
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A commonly used approximation method for the square root operator 1 Q
 
is to 

apply the Taylor series and the operator is approximated as: 
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(4.1.14) 

where n represents the n
th

 order of the series. The larger the n value is, the more 

accurate the approximation is.  

 

Therefore, the whole expression in the bracket can be approximated as: 
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(4.1.15) 

 

By applying Padé approximation to the square root operator, a rational function is 

obtained as:   
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(4.1.16) 

where k represents the k
th

 order of Padé approximation. 

 

Therefore, Eq. (4.1.12) can be written as: 
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or rearranged as: 
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(4.1.18) 

 

In Eq.(4.1.18), the coefficients ib  and ia  can be combined as a complex coefficient 

of a specific order operator 
iQ  as: 
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(4.1.19)

 

Eq. (4.1.19) shows clearly that the coefficients on the right hand side are the conjugate 

of those on the left hand side for the same order operator Q. If it is set that 

2
i i i

z
c b j a


   and

2
i i i

z
c b j a 
  , then the equation can be rewritten in simpler 

polynomial form as: 

 
( , , ) ( , , )

0 0

[ ] [ ]
k k

i i

i x y z z i x y z

i i

c Q c Q 



 

   
 

(4.1.20)

 

 

 

Eq.(4.1.20) can be rewritten in terms of: 

( , , ) ( , , )

1 1

( ) ( )
k k

i x y z z i x y z

i i

A Q d A Q d  



 

       
 

(4.1.21) 

where A  and A
 are conjugate constants, id  and id   are conjugate roots of the 

thi  order operator Q. 

 

By adopting the Multistep Method, each propagation step is split into k steps with the 

space interval 
1

z
k
  and Eq. (4.1.21) is broken into k equations as: 
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(4.1.22)
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Extending the operator Q and applying the CN scheme to the j
th

 equation of 

Eq.(4.1.22) gives: 
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(4.1.23)

 
Eq. (4.1.23) can be rearranged in the form of: 
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(4.1.24) 

where the coefficients are: 
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For 2D problem, the term 
2

2y




 in Eq. (4.1.8) is removed and Eq. (4.1.24) reduces to: 
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(4.1.25)

 

where the coefficients are: 

2 2
z+ z z+ z

0k k

2 2 2

0 02 2
z+ z

0k

1 1 2 2
z+ z z+ z

0k k

2 2 2

1 0 02 2
z+ z

0k

2
[ ( )]

2
[ ( )]

k

j j

k
k

j r j

k

j j

k
k

j r j

A
A

x
B

C

A B

C

A
k n A d

x

A

x

A
k n A d

x











 





 
 


 







   






  

 



 







 

 

Eq.(4.1.24) or Eq. (4.1.25) can be treated as a sparse diagonal matrix system and 

solved by the matrix solvers as the paraxial FD-BPM problem discussed in Chapter 3. 
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For the 3D TM polarisation semi-vectorial wave equation, the operator in Eq. (4.1.7) 

is: 

 

2
2 2 2 2

0 02 2
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(4.1.26) 

 

For the 3D TE polarisation semi-vectorial wave equation, the operator in Eq. (4.1.7) 

is: 

 

2
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(4.1.27) 

 

The coefficients for both semi-vectorial cases are derived similarly and summarised in 

the Appendix 1. 

 

Theoretically, good accuracy of the simulation results can be achieved if a high order 

Padé approximation is applied. However, the drawback of this scheme is the presence 

of unphysical poles along the negative real axis when the square root operator is 

evaluated by the Padé approximation. The square roots jd and jd 
 in Eq.(4.1.21) 

may have negative solutions less than -1 if high order Padé approximation operator is 

applied. From the viewpoint of a control system, these solutions result in the 

instability of the system and produce large errors. One of the methods to solve this 

problem is to rotate the original real axis branch [4, 8]. This will be discussed in the 

next section. 
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4.3 Rotated Branch Cut Approximation 

 

The poles on the real axis that cause instability can be rotated using the rotated branch 

cut approximation [4]. This method rotates the poles by a specific angle   so that the 

poles are off the real axis. Typically, the angle is set as 90   , which moves the 

poles to the imaginary axis and makes the Padé approximation stable. 

 

If axis rotation by an angle 𝝷 is used, the square root operator in Eq.(4.1.7) can be 

written as: 

 
  / 21 1 1 1j jQ e Q e      .

 (4.2.1)
 

 

A new operator  1 1jR Q e     can be introduced where 
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(4.2.2) 

If 90   ,          
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(4.2.3) 

and the Taylor series of Eq.(4.2.3) is: 
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(4.2.4) 
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Padé approximation of Eq.(4.2.4) gives the factor in the form of k roots to obtain 

equation:  
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(4.2.5) 

 

If the operator R is replaced by 1 (1 )j Q    , this results in a new form as: 
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  (4.2.6) 

Extending the operator Q and applying the CN scheme results in an equation in the 

form of Eq. (4.1.24). For 3D scalar situation, the coefficients are: 
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The coefficients for the semi-vectorial cases are summarised in the Appendix 2. 
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For 2D problems, the wave equation is reduced to the form of Eq. (4.1.25) with the 

coefficients that are only with respect to one transverse direction. 

 

It should be noticed that this method requires the Padé approximation operator to be a 

high order for good accuracy [8]. In [8], an alternative rotated branch cut approach is 

provided. A complex coefficient rational approximation for the square root operator is 

developed and an efficient numerical algorithm for computing the prime fraction 

expansion of the modified Padé approximation is presented. By this method, the 

rotated square root operator is expanded using a Padé approximation denoted by 

Padé(n,n) as 
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where ( )n

ic  and ( )n

ib  are the zeros of the following functions F and G [8], 

respectively:  
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in which / (2 1)n    and 𝝱 is taken to be unity in the present analysis. 

 

4.4 Results  

 

This part will test the feasibility and the effectiveness of the WA-BPM scheme. The 
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simulation results are obtained for slab waveguide and rib waveguide, respectively. 

For each case, the field profiles obtained by the paraxial BPM and the WA-BPM with 

different order Padé approximations will be compared firstly to give an intuitive 

concept that how the WA scheme improves the simulations for a tilted waveguide 

compared to the paraxial scheme, and then the simulation accuracy of the WA scheme 

will be investigated. The running time of the WA scheme will also be discussed for the 

case of slab waveguide. 

 

4.4.1 Results for Slab Waveguide 

To verify the implementation of the wide angle scheme, a slab waveguide is chosen 

for the test simulation in this section. The core width of the waveguide is wcore=1μm. 

The waveguide core and the cladding refractive indices are ncore=3.6 and ncladding=3.42 

respectively. The high refractive index contrast is deliberate to show the effect of 

changing refractive index in the propagation direction. The operating wavelength is 

λ= 0.86μm. The initial input is the fundamental mode of the waveguide, obtained by 

the ID BPM mode solver. The transverse mesh size is set as Δx=0.01μm and the 

longitudinal calculation step z  is adjusted according to the need of different test 

simulations.  

 

The waveguide is tilted by an angle δ with respect to the z-axis, as shown in Fig. 4.1. 

The projected core width, *w , and transverse mesh size, *x , onto the x-axis is 

* / cosw w   and * / cosx x    , where w  and x  represent the waveguide 

width and the transverse mesh size used in normal incident case. The width of the 
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simulation window is set as * / cosW W  , where W is 100μm. The broad width of 

the simulation window is to mitigate the effect of reflection from the boundaries. 

PML is applied at the edges of the simulation window. The thickness of the PML 

layer is 5μm and the absorption strength factor in Eq. (3.4.11) is set as A=4. To excite 

the tilted waveguide, the fundamental modal field is adjusted by taking the inclination 

of the wavefront into account: 

 0( *) ( )exp( *sin )effx E x j x   
 

(4.2.10) 

in which 0 ( )E x  and eff  represent the field profile and propagation constant of the 

fundamental mode obtained by the ID BPM solver, respectively [9].  

  

 Figure 4.1: fundamental modal field launched into a tilted waveguide 

 

Firstly, the performances of the Paraxial scheme and the WA scheme applying 

multistep method for simulating the beam propagation in a slab waveguide with 

different tilted angles are tested. The tilted angles of the waveguide are in step of 

every 5 degrees, form 0 degrees to 45 degrees. The length of the simulation window is 

20μm along z-direction and the longitudinal calculation step is 0.1 μm. Fig. 4-2 to Fig. 

4-4 illustrate the field profiles obtained by the paraxial, Padé (1,1) and Padé (2,2) 

schemes respectively. They clearly show how the field profiles change with the tilted 
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angle when different approximation schemes are applied. 

 

Figure 4.2: Field profiles of fundamental mode being launched into a tilted slab 

waveguide using the paraxial BPM scheme for different tilted angles 
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from 0
o
 to 45

o
. 

 

Figure 4.3: Field profiles of fundamental mode being launched into a tilted slab 

waveguide using the WA scheme with Padé (1,1) for different tilted 
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angles from 0
o
 to 45

o
. 

 

Figure 4.4: Field profiles of fundamental mode being launched into a tilted slab 

waveguide using the WA scheme with Padé (2,2) for different tilted 
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angles from 0
o
 to 45

o
. 

 

Ideally, the profile pattern of the beam should be that of the fundamental waveguide 

mode. However, from Fig.4.2-Fig.4.4, it can be seen that different Padé schemes 

provided different simulation results with the changes of the tilted angle. When the 

tilted angle of the waveguide is small ( 20  degree), the wave is well confined in 

the waveguide, regardless of what approximation scheme is applied. With increasing 

of the tilted angle, the paraxial approximation is no longer suitable. Fringes of wave 

can be seen and the mode is not confined in the waveguide. The results are improved 

by using the WA approximation. The wave is confined in the waveguide even when 

the tilted angle is large. Moreover, the WA scheme with a higher order Padé operator 

allows better representation of the waveguide with a large tilted angle.  

 

In order to further analyze the field profiles, Fig. 4.5 presents the field distributions 

obtained by different approximation schemes after 50μm propagation along 

z-direction when the waveguide is tilted 30 degree. The longitudinal calculation step 

is 0.1 μm. The obtained FD-BPM results are compared against the analytical result. It 

can be seen that the field distribution obtained from the paraxial scheme is seriously 

distorted. Comparatively, the WA scheme provided much better results where 

increased Padé order increases the accuracy of the result.  
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Figure 4.5: Field distribution of a 30 degree tilted Gaussian profile wave launched in 

a slab waveguide after 50μm using different simulation schemes 

 

The accuracy is improved by using a higher order Padé approximation. However, 

higher order WA approximation requires higher computational cost and longer 

simulation time. Typically, Padé(n,n) wide angle scheme should take n/m times longer 

than Padé(m,m), where n>m . Fig.4.6 illustrates the simulation time of Padé(5,5), 

Padé(10,10) and Padé(20,20) with different longitudinal calculation steps Δz when the 

slab waveguide is tilted by an angle of 45 degree. The simulation window is 50μm 

wide along x-direction and 5μm long along z-direction.  
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Figure 4.6: Simulation run-time for different order Padé approximations versus 

changed longitudinal sampling step. The transverse mesh size is 

Δx=0.01μm. 

 

It can be seen that a lower order Padé approximation or a larger calculation step 

consumes shorter simulation time, but a higher order Padé approximation or a smaller 

calculation step consumes longer simulation time. In practice, the simulation time is 

dependent on the cycling times of the application of the tri-diagonal matrix solver. It 

can be evaluated by the relationship: 

 0/t Z z n T     (4.2.11) 

where t is the simulation time, Z is the propagation distance along z-direction, n is the 

order of Padé approximation, and T0 is the running time of the matrix solver for a 

single operation. This equation is also efficient to estimate the run-time of the 
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WA-BPM for modelling other waveguides. 

 

Subsequently, it is investigating how the simulation accuracy of the WA scheme is 

affected by the change of the longitudinal sampling step z  and the Padé order. 

Power error between the incident field and the output field is taken into account to 

assess the simulation accuracy.  

 

The simulations are based on the slab waveguide with a tilted angle of 45 degree 

excited by the fundamental mode. Over a distance of 30 μm along the propagation 

direction, the output power is calculated and compared with the incident power. The 

power error is calculated by the equation:  

 

2

2
10 log 1

output

incident

dx
Error

dx




  




 (4.2.12) 

 

Firstly, simulation is implemented under the condition that the Padé order is fixed but 

the longitudinal calculation step Δz is changed. Three different order Padé 

approximations, Padé(1,1), Padé(2,2) and Padé(3,3), are applied respectively for 

various Δz, which is set as 10 different values between 0.01μm to 0.2μm. The errors 

for different Δz are plotted in Fig. 4.7.  
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Figure 4.7: Calculation errors obtained by Padé(1,1), Padé(2,2) and Padé(3,3) 

approximations for the slab waveguide are presented as a function of the 

longitudinal calculation step Δz. The transverse mesh size is Δx=0.01μm. 

 

Fig.4.7 indicates that the simulation accuracy can be improved by reducing the 

longitudinal calculation step. Comparing the power errors obtained when Δz=0.01μm 

and Δz=0.2μm, a significant improvement is achieved. However, smaller Δz requires 

longer simulation time for a fixed Padé order.  

 

Secondly, simulation is implemented under the condition that the longitudinal 

calculation step Δz is fixed but the Padé order is changed. Different order Padé 

approximations are applied for the situation that Δz is set 0.125μm. To avoid the 

instability, the rotated scheme discussed in section 4.3 is applied for high order Padé 
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approximation. The power errors obtained by Padé (1,1), Padé(2,2), Padé(3,3), 

Padé(5,5) and rotated Padé(10,10) approximations are plotted in Fig. 4.8. It can be 

seen that the simulation accuracy is improved with the increasing of the Padé order. 

 

 

Figure 4.8: Calculation errors obtained by different order Padé approximations for 

the slab waveguide when the longitudinal calculation step is Δz=0.125μm. 

The transverse mesh size is Δx=0.01μm. 

 

It is noted that increasing the Padé order is more effective than reducing the 

longitudinal sampling step Δz in order to improve the simulation accuracy of the WA 

scheme. To obtain good simulation accuracy within acceptable running time, 

simulation can be implemented by a relatively higher Padé order approximation with 

a larger longitudinal calculation step Δz.  

 

Fig.4.9 plots the error as a function of the Padé order when the tilted angle of 
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waveguide is 15
o
, 30

o
 and 45

o
, respectively. The transverse mesh size and the 

longitudinal sampling step are 0.01x  μm and 0.125z  μm. The wavelength is 

0.86μm. Padé(1,1) to Padé(5,5) are used for the simulations. It can be seen that for a 

certain angle, increasing the Padé order reduces the error. For a larger incident angle, 

a higher Padé order is required to provide a more accurate result.  

 

 

Figure 4.9: Calculation errors obtained by different order Padé approximations for 

slab waveguides with different tilted angle. The transverse mesh size is 

Δx=0.01μm and the longitudinal sampling step is 0.125z  μm. 

 

The investigation of how the simulation accuracy of the WA scheme is affected by the 

change of the transverse sampling interval x is presented in Fig.4.10. The tilted 

angle of a slab waveguide with 1μm core width is 45
o
. The longitudinal sampling step 

is 0.125z  μm and the operating wavelength is 0.86μm. The propagating distance 
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is 30μm and the width of simulation window is 100μm. PML is applied at the edges 

of the simulation window. Padé(1,1) to Padé(4,4) are applied for the WA-BPM for 

different value of x . The power errors are calculated respectively, and plotted as a 

function of x  in Fig.4.10.  

 

 

Figure 4.10: Calculation errors obtained by Padé(1,1) - Padé(4,4) approximations for 

the slab waveguide are presented as a function of the transverse sampling 

interval x . Longitudinal sampling step is 0.125z  μm 

 

It shows that regardless which order of Padé approximation is used, the smaller 

transverse sampling interval results in smaller error. These results prove that the 

accuracy of the WA-BPM can be improved by reducing the transverse sampling 

interval.  
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4.4.2 Results for Rib Waveguide 

In this section, the WA-BPM scheme is used to model forward propagation in a 

classical rib waveguide. The dimensions of the cross section of the rib waveguide are 

shown in Fig. 4.11 (a). The refractive indices of the cladding, the guiding region and 

the substrate are n1=1 (air), n2=3.44 (GaAs) and n3=3.4 (Ga0.9Al0.1As). The width and 

the height of the outer slab is w=3 μm and H= 0.5 μm. The depth of the core is D = 

0.5 μm. The ID BPM method is applied to obtain the fundamental mode for both TE 

and TM mode. The operating wavelength is λ = 1.15 μm. The transverse sampling 

intervals are x = y = 0.05 μm.  

 

 

(a)                            (b) 

Figure 4.11: 3D rib waveguide for WA-BPM modelling. (a) The cross section of the 

waveguide (b) Configuration of the tilted outer slab 

 

In Fig. 4.11 (b), the top layer of the rib waveguide is tilted by 30 degree with respect 

to the z-direction. The tilted waveguide is excited by the obtained fundamental mode 

and the propagation in the waveguide is modelled by the BPM method with different 
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approximation schemes. The width and height of the simulation window are set as 

* 20 / cos30W m  and 5H m  . The transverse sampling interval along x-axis 

are adjusted with respect to the tilted angle as * / cos 0.05 / cos30x x m     . 

The transverse sampling interval along y-axis is kept as y = 0.05 μm. The 

longitudinal calculation step is set as 0.25z  μm. A PML boundary condition with a 

width WPML=1μm and an absorption strength factor A=2 is applied at the end of the 

simulation window. Similarly to Eq.(4.2.10), the fundamental field is multiplied by a 

phase term exp( *sin )effj x   and used as the input excitation for the tilted 

waveguide.  

 

Firstly, the field profiles obtained by different Padé schemes are compared. The 

results presented in this section are based on the TE polarisation, and the results of the 

TM polarisation are presented in Appendix 3. Fig. 4.12 shows the input field profile 

that is launched into the waveguide. The paraxial, Padé(1,1) and Padé(2,2) 

approximations are applied respectively to obtain the field profiles after 10 μm 

propagation. 
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Figure 4.12: The input field profile launched into the 30 degree tilted rib waveguide. 

 

The field profile obtained by the paraxial BPM is illustrated in Fig. 4.13.  

 

 

Figure 4.13: The field profile obtained by the paraxial BPM after 10μm propagation 

distance in a 30 degree tilted rib waveguide 

 

It illustrates that the paraxial scheme cannot provide an acceptable simulation results. 

The field profile is seriously distorted and field is not positioned around the centre of 
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the rib. This leads to a big loss of the power of the field propagating in the waveguide. 

This result strongly suggests that the paraxial BPM is not effective for the tilted rib 

waveguide.  

 

For the same propagation distance, the field profiles obtained by the WA-BPM using 

Padé(1,1) approximation and Padé(2,2) approximation are illustrated in Fig. 4.14(a) 

and (b) respectively. It can be seen that the field profiles obtained by Padé(1,1) 

approximation still present a ripple in the left part of the simulation window, but the 

ripple is smaller comparing with the one caused by the paraxial method. 

Correspondingly, Padé(2,2) approximation eliminates most of the ripple and provides 

better simulation results. Obviously, the simulation results have been significantly 

improved when the WA-BPM is applied. The centre of the output field is located 

nearby the centre of the rib and the field profile is very close to the original input.  
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                           (a) 

 

(b) 

Figure 4.14: The field profiles obtained by the WA-BPM after 10μm propagation 

distance in the 30 degree tilted rib waveguide with (a) Padé(1,1) and (b) 

Padé(2,2). 

 

Moreover, Fig. 4.15 illustrated the simulation result of rotated Padé(10,10) 

approximation after the same distance propagation. The result has been further 

improved and the field profile is much smoother comparing with the results obtained 
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by the low order standard Padé approximation. This phenomenon proves that higher 

order Padé approximation is effective in improving the simulation accuracy of the 3D 

off-axis propagation problems. 

 

  

  

Figure 4.15: The field profile obtained by the WA-BPM with rotated Padé(10,10) 

approximation after 10μm propagation distance in the 30 degree tilted rib 

waveguide.  

 

The following part is investigating the simulation accuracy of the WA scheme when 

applying to   30 degree tilted rib waveguide. The simulations are implemented with 

various longitudinal calculation step Δz, which is set as 6 different values between 

0.1μm to 0.5μm. Padé(1,1), Padé(2,2) and Padé(3,3) approximations are applied 

respectively to calculate the results after 10μm propagating distance. The power errors 

are calculated by Eq.(4.2.12) and plotted in Fig. 4.16 according to different values of 

Δz.  
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Figure 4.16: Calculation errors obtained by Padé(1,1), Padé(2,2) and Padé(3,3) 

approximations for the rib waveguide are presented as a function of the 

longitudinal calculation step Δz 

 

It can be seen that the higher Padé order approximation with smaller longitudinal 

calculation step generates smaller errors comparing to the lower Padé order 

approximation with larger longitudinal calculation step. This conclusion is in 

agreement with that obtained for the slab waveguide.  

 

Fig.4.17 plots the power errors obtained by various order Padé approximations when 

longitudinal calculation step is Δz=0.2μm.  
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Figure 4.17: Calculation errors obtained by different order Padé approximations for 

the rib waveguide when the longitudinal calculation step is Δz=0.2μm. 

 

It shows that the errors become smaller with the increasing order of the Padé 

approximations. The results further proved that the WA-BPM can achieve good 

accuracy if high order Padé approximation is applied. 

 

4.5 Conclusions 

 

This chapter introduced the wide angle BPM scheme for forward wave propagation 

simulation. Two common wide angle approximations, the recurrence Padé 

approximation and the multistep method with rational square root approximation have 

been presented, followed by the introduction of the branch cut rotation method which 

improves the stability of the simulation.  
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The paraxial approximation scheme and the wide angle approximation scheme with 

different order Padé operators are tested in the simulation for both slab and rib tilted 

waveguides. By comparing all the results obtained by different approximation 

schemes, a firm conclusion is achieved that the wide angle scheme is much more 

effective than the paraxial scheme to deal with the off-axis forward propagation 

situation. Moreover, it also has proved that the WA-BPM with a higher order Padé 

approximation can provide better simulation results with good accuracy than a lower 

order Padé approximation, at the cost of more computational time. The accuracy of 

the WA-BPM method can also be improved by reducing the longitudinal calculation 

step or the transverse sampling interval. Simulation also shows that a larger incident 

angle requires a higher order Padé approximation to provide a better accuracy. In the 

next chapter, the application of the WA scheme will be extended to the analysis of 

bi-directional propagation, which cannot be solved by the paraxial scheme.  
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Chapter 5 Bidirectional Propagation Wide 

Angle FD-BPM 

 

As discussed in Chapter 4, the WA FD-BPM is required when dealing with problems 

where the incident beam is propagating at an angle with respect to the propagation 

axis. Another important application of the WA FD-BPM is when considering 

bidirectional propagation problems where there are discontinuities in the waveguide 

and where reflections need to be taken into account. This chapter will discuss the 

performance of the Bidirectional Beam Propagation Method (Bi-BPM) in details.  

 

Waveguide discontinuities are frequently encountered in many practical photonic 

components such as laser facets, grating structures, multiple dielectric layers, 

waveguide ends and junctions between different waveguides. Discontinuities that 

result in a change of a cross section of the waveguide or change in the refractive index 

along the propagation direction cause reflections. 

 

Consequently, reflections lead to negative effects such as loss of power, noise, power 

fluctuations and dispersion, which limit the performance of integrated devices. For 

example, minimising reflections from the waveguide facet is important in order to 

avoid resonances building up within a semiconductor optical amplifier (SOA). 

Typically facet reflection of SOAs is required to be less than -40dB [1]. There are 

several different approaches that can reduce facet reflectivity. One of them is to use 
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angled facets to redirect reflected light away from the waveguides, therefore reducing 

coupling back into the guided mode [2, 3]. Furthermore, the use of optical 

antireflection (AR) coatings further reduces the reflections and enhances the 

transmissions [4, 5]. In practice, facets with a combination of both tilting and coating 

are frequently employed [6-8].  

 

A variety of numerical approaches have been developed for the purpose of   

accurately calculating facet reflectivity and reflections from discontinuities. One of 

these techniques is the Free Space Radiation Mode (FSRM) method [9]. The FSRM 

method takes the guided modes to be exact, but assumes the radiation modes 

supported by the waveguide to propagate in a region of uniform refractive index. This 

approximation holds true whenever the variation of refractive index in the transverse 

direction is small so that the effective index method could be applied to reduce the 

dimensionality of a general three-dimensional device [10]. There is no restriction on 

the variation of refractive index in the propagation direction, so the FSRM method 

can be applied where reflected waves are significant. So far, FSRM method has been 

developed for analysis of 2D and 3D angled and coated facet reflections and 

propagation along tapers [11, 12]. It has yielded useful results, allowing full 3D 

effects to be modelled, including the case of angled and coated facets [10, 13, 14]. 

The method is fast and efficient. It provides accurate results comparable to the 

benchmark results which obtained by Vassallo who used an integral equation 

approach [15-17], Smartt who used Fourier operator methods [18, 19] and Ikegami’s 
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variational formula [20]. However, the limitation of FSRM is that it is not suitable for 

structures with high refractive index contrasts. The index difference in transverse 

direction is typically restricted to be less than 10%. 

 

Another efficient approach successfully employed to simulate bidirectional wave 

propagation is the Transfer Matrix Method (TMM), and is based on mode matching 

for distributed-feedback structures [21]. However, the TMM does not account for 

radiation modes and thus is not appropriate for a wide range of problems. As a 

general-purpose algorithm, the Finite Difference Time Domain (FDTD) method 

developed by Yee [22] provides another possible choice. The FDTD method is an 

approach that directly solves Maxwell’s equations by a proper discretisation of both 

the time and space domains. It is accurate and straightforward but very expensive in 

time and memory resources [23]. With increases in computational power, the FDTD 

method has been applied not only to optical guiding structures [24], but also the 

optical waveguides with anti-reflection and high-reflection coatings [25, 26].  

 

As a widely used technique for simulation integrated optical components, BPM is 

naturally to be investigated for the analysis of bidirectional propagation problems. So 

far, various Bi-BPM algorithms have been proposed for handing the reflection 

problems for single [27-29] or multiple interfaces [30-33]. In Bi-BPMs, the incident, 

reflected and transmitted waves that occur at discontinuities, can be expressed in 

terms of propagation matrix that contains square root operators. Depending on how 
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the matrix systems are solved computationally, the Bi-BPM algorithms can be 

classified into two categories including iterative schemes [27-31] and non-iterative 

schemes [32, 33]. The iterative schemes propagate the field back and forth until a 

convergence is reached. Meanwhile, the non-iterative schemes involve direct 

manipulations of propagation operators which are approximated by matrices. 

Compared to the FDTD method, the Bi-BPMs is much more efficient and yet offers a 

good accuracy for simulation of the reflection, transmission and scatting loss. 

 

Properly modelling the evanescent modes excited at reflecting interfaces is a major 

challenge for the Bi-BPM. Incorrect treatment of evanescent modes leads to 

numerical instability and results in degradation of accuracy. This problem becomes 

even more serious when modelling strongly reflecting structures with high refractive 

index contrast [34]. To overcome this problem, rational approximants to the square 

root operators are frequently applied to facilitate the calculation. The Bi-BPMs are 

based upon the WA scheme and hence the Padé approximation of the square root 

operators can be implemented. It should be noted that the standard Padé 

approximation fails to treat the evanescent modes correctly. Two approaches have 

been developed to improve the Padé approximation to deal with the evanescent modes 

for the bidirectional propagation problems, named rotated branch cut approximation 

[35] and complex coefficient Padé approximation [36]. The former obtains complex 

valued approximation by rotating the real axis branch cut by a rotation angle and then 

applies the standard Padé approximation to the rotated variable, as shown in Chapter 4. 
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The latter solves nonlinear equations by Newton’s method to obtain the complex 

coefficients. Different Padé approximations for the square root operator in Bi-BPM 

have been assessed in [37]. The comparison of four types of rational approximations 

(real Padé, complex coefficient Padé, rotated branch cut Padé and complex coefficient 

Padé with rotated branch cut) demonstrates that under the same simulation conditions, 

the real Padé exhibits the worst performance because it treats the evanescent modes 

which are supposed to decay exponentially as the propagating modes. In contrast, the 

complex coefficient Padé avoids this problem and exhibits better performance. The 

rotated branch cut Padé achieves higher accuracy than the complex coefficient Padé. 

Both the rotated branch cut Padé and the complex coefficient Padé with rotated 

branch cut exhibit very close performance [37]. Therefore, in this thesis, the rotated 

branch cut Padé approximation will be adopted to evaluate the square root operator as 

it offers good accuracy and avoids the computational load for calculating the complex 

coefficients [37].  

 

In the following sections a detailed theory for the Bi-BPM method will be presented. 

The study will start with the overview of the single interface reflective BPM [27-29], 

followed by the introduction of the Bi-BPM for modelling multiple-interface 

reflection problems [30-33]. 
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5.1 Single Interface Reflective BPM Scheme 

 

This section overviews the BPM scheme for single interface reflection problems. A 

typical single interface reflection problem is shown in Fig. 5.1, in which two different 

media A and B joined at interface. The left half space z<0 is a slab waveguide with a 

refractive index nrA, incident on a lossless homogeneous dielectric with a refractive 

index nrB (z>0). At the interface the incident signal is part transmitted into region z>0 

and part reflected into region z<0. 

 

  

 Figure 5.1: Two different media A and B joined at interface  

 

This single interface reflective problem can be solved by establishing the connection 

between the incident beam, the reflective beam and the transmitted beam via the 

boundary condition for the tangential fields at the media interfaces. Once the reflected 

field and transmitted field equations at the interface are derived, they can be solved by 

the multistep method in the similar way as the one wave propagation equation 
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represented using the WA-BPM.  

 

First, a two-dimensional reflective problem is considered to derive the connection 

equations at the interface. Assume the refractive index of the medium is uniform in 

the y-direction and z-direction, the y-polarized electric field satisfies the equation  
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(5.1.1) 

for the TE mode, and the y-polarized magnetic field satisfies the equation  
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(5.1.2) 

for the TM mode [38]. In the following part, equations will be derived from Eq. (5.1.1) 

for the TE mode, and the TM case can be derived similarly. 

 

Eq. (5.1.1) can be factorized into: 
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(5.1.3) 

L is the square root operator and is defined as 
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[28], where 
rn  and   are the refractive index and the propagation constant of the 

respective regions. The X is the transverse operator as: 
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The propagating fields can be decomposed into forward and backward propagating 

fields as y yyE E E   ,where yE
and yE

 are identified by the solutions of the 

terms in the first and the second bracket of Eq.(5.1.3), 0yj L
z

E  
  

 
and 

0yj L
z

E  
  

 
, respectively. Therefore, in Fig. 5.1, forward and backward 

propagating fields in different medium can be presented as j z

yAE e   ,
 

j z

yAE e  
 

for 

media A, and j z

yBE e   , j z

yBE e  
 
for media B. At the interface, z=0, hence the 

phase terms, 
j ze 

 and 
j ze 

, are equal to one. 

 

 

In the case that an incident field is launched onto the interface from media A, 0yBE  . 

Applying the boundary conditions as: 

  
.

,yA yA yB

yA yA yBE E E

z z z

E E E  
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The expressions for the reflected field
 
and transmitted field can be obtained in terms 

of the incident field
 
as [27]: 

  ( 1 1 ) ( 1 1 )A A B B yr A A B B yiX X E X X E         
,
 (5.1.6) 

 
( 1 1 ) 2 1A A B B yt A A yiX X E X E       ,

 
(5.1.7) 

AX  and BX  are the relevant operators in different media which have different 

refractive index rn  as from Eq.(5.1.4).  

 

The key to solve Eq. (5.1.6) and Eq. (5.1.7) is to evaluate the square root operators. 
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This can be achieved by the rotated Padé approximation as discussed in Chapter 4. 

However, employing the rotated Padé approximation to the equations directly is not 

advisable because each equation involves two different square root operators in terms 

of both AX  and BX . Therefore, alternative formulations amenable to the 

straightforward application of the rotated Padé approximation are necessary. 

Considering Eq. (5.1.6) as an example, the equation can be expressed in the form of:  
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or  
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(5.1.9) 

 

Applying the axis rotation method to the square root operator by 
je 

 [29, 35] 

results in: 

 

/21 1 1 1
1 1

j jB A B A

A A

X X X X
e e

X X

    
      

    ,
 

 

If 90o   , Eq. (5.1.9) is transformed as: 

      

2 2
( ) 1 (1 ) 1

2 2 1

2 2
( ) 1 (1 ) 1

2 2 1

B A
A B yr

A

B A
A B yi

A

X X
j j E

X

X X
j j E

X

 

 

  
         

  
           . 

(5.1.10) 

 

Expanding the square root operators in the same way as that for the forward 

WA-BPM in section 4.2 and 4.3 leads to: 
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1 1

( 1 ) ( 1 )
1 1

k k
B A B A

i yr i yi

i iA A

X X X X
A j j d E A j j n E

X X



 

 
          

 
 

 

(5.1.11) 

or: 

1 1

( 1 ) ( 1 )
k k

i B A i A yr i B A i A yi

i i

A j d jX X d X E A j n jX X n X E

 

               
,

(5.1.12) 

where A  and A
 are conjugate constants, id  and in  are conjugate roots of the 

thi  order operator (1 ) 1
1

B A

A

X X
j

X

 
  

 
. 

 

By using Multistep Method, the calculation is split into k steps and Eq. (5.1.12) is 

broken into k equations as: 

 

1

1 1 1 1( 1 ) ( 1 )
kik

B A A yr B A A yiA j d jX X d X E A j n jX X n X E               

 
   

 

1( 1 ) ( 1 )
ki j i jk

j B A j A yr j B A j A yrA j d jX X d X E A j n jX X n X E                 
 

 

 

1( 1 ) ( 1 )
k i kk

k B A k A yr k B A k A yrA j d jX X d X E A j n jX X n X E                
 

    (5.1.13) 

Substituting 

2
2 2 2

0 ( / ) ( / )2

( / ) 2

( / )

r A B A B

A B

A B

k n
xX






 

  and applying the CN scheme to the j
th

 

equation of Eq.(4.1.22), the equation becomes: 

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

ki j i j i j i j i j i jk

r yr x x r yr x x r yr x i yr x x i yr x x i yr xA A E B E C E A A E B E C E         

   
           (5.1.14) 

with the coefficients: 
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2 2 2

2

2 2 2

2

2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 2

2 2 2

2

2 2 2

2

2 2 2 2 2 2 2 2 2

0 0 0 2

1
( )

1
( )

2
( ) ( )

1
( )

1
( )

2
( ) (

r A B i B

r A B i B

r A rB B rA i B rA A B i B

i A B i B

i A B i B

i A rB B rA i B rA

A j d
x

B j d
x

C j k n k n d k n j d
x

A j n
x

B j n
x

C j k n k n n k n j
x

  

  

     

  

  

  

  


  


     


  


  


   


2 2 2 )A B i Bn     

 

Once the reflected field is obtained by the above procedure, the transmitted field will 

be easily calculated using the boundary conditions. Alternatively, the transmitted field 

can also be calculated individually by a similar process starting from Eq. (5.1.7). The 

wave equation can be rewritten as: 

 

1 2
1

B A
A B yt A yi

A

X X
E E

X
  
 

      , 

(5.1.15) 

or in the form of axis rotated by -90
o
: 

 

2 2
( ) 1 (1 ) 1 2

2 2 1

B A
A B yt A yi

A

X X
j j E E

X
  
  
           .

 

(5.1.16) 

 

Using the same procedure, Eq. (5.1.16) can be solved in the same way as Eq. (5.1.10), 

and reflected field can be obtained from boundary conditions. 

 

For the TM mode, Eq. (5.1.2) can be derived into the similar form of Eq. (5.1.14) to 

solve the reflected field, as:  
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1 1 1

( ) ( ) ( ) ( ) ( ) ( )

ki j i j i j i j i j i jk

r yr x x r yr x x r yr x i yr x x i yr x x i yr xA A H B H C H A A H B H C H         

   
           (5.1.17) 

with the coefficients:  

2 2

( ) ( )2 2

2 2 2 2 2

( ) ( ) ( ) ( )

2 2

( ) ( )2 2

2 2 2 2 2

( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

0 0 0

2 21
(1 )

2 21
(1 )

(

rB x rA x

r A B i

rB x x rB x rA x x rA x

rB x rA x

r A B i

rB x x rB x rA x x rA x

r A rB B rA i B rA

n n
A j d

x n n n n

n n
B j d

x n n n n

C j k n k n d k n

 

 

  

 

 

 
   
    

 
   
    

   2

2 2

( ) ( )2

2 2 2 2

( ) ( ) ( ) ( )

2 2 2

( ) ( )2

2 2 2 2

( ) ( ) ( ) ( )

)

2

(1 )

rB x rB x

A

rB x x rB x rB x x rB x

rA x rA x

B i

rA x x rA x rA x x rA x

n n
j

n n n n

x n n
d

n n n n





 

 

  
      

  
   

        

2 2

( ) ( )2 2

2 2 2 2 2

( ) ( ) ( ) ( )

2 2

( ) ( )2 2

2 2 2 2 2

( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

0 0 0

2 21
(1 )

2 21
(1 )

(

rB x rA x

i A B i

rB x x rB x rA x x rA x

rB x rA x

i A B i

rB x x rB x rA x x rA x

i A rB B rA i B rA

n n
A j n

x n n n n

n n
B j n

x n n n n

C j k n k n n k n

 

 

  

 

 

 
   
    

 
   
    

   2

2 2

( ) ( )2

2 2 2 2

( ) ( ) ( ) ( )

2 2 2

( ) ( )2

2 2 2 2
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)
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rB x rB x

A

rB x x rB x rB x x rB x

rA x rA x

B i

rA x x rA x rA x x rA x

n n
j

n n n n

x n n
n

n n n n





 

 

  
      

  
   

        

 

 

The transmitted field can be obtained by using the relationship yi yr ytH H H  . 

 

5.2 Multiple-Interface Bi-directional BPM 

 

This section presents a way of dealing with multiple discontinuities in the BPM 
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method. Optical structures containing multiple interfaces, such as Bragg gratings, 

multilayer antireflection coatings and high-reflection coatings, lead to a more 

complicated situation for modelling. The difficulty to model this kind of problem is 

that the multiple interfaces will cause multiple reflections among different material 

layers. The typical multiple-interface bi-directional propagation problem is illustrated 

in Fig. 5.2. The incident field excites a series of reflected and transmitted waves in the 

longitudinally varying integrated optical structure. In order to solve this problem, the 

waveguide can be discretized into a number of longitudinally–invariant waveguide 

sections separated by interfaces. The modelling of electromagnetic field propagation 

through this structure focus on two steps: [30]: 

(1) Solving for the total propagating fields in each waveguide section. 

(2) Applying boundary conditions at the interfaces connecting two adjacent 

waveguide sections and solving for the reflected and the transmitted fields. 

 

  

Figure 5.2: A longitudinally varying integrated optical structure is discretized into a 

series of longitudinally–invariant sections separated by interfaces 

 

These two steps can be achieved via two kinds of matrices: the propagation matrices 



 

158 

 

[P] for step 1 and the interface matrices [T] for step 2, as shown in the highlight part 

in Fig.5.2. The propagation matrices propagate the forward and backward fields to the 

next junction by using the single directional BPM. The interface matrices can be 

written by analogy with the single reflective BPM scheme. Once the matrix operators 

of these two processes are found for each section, they can be applied alternatively to 

yield the overall transfer matrix [G] for the whole structure and obtain the reflected 

and transmitted fields at the input and the output of the structure, as [32]: 

[ ]output inputG         (5.2.1) 

where  

1 1 2 2 1 1[ ] [ ][ ][ ][ ]...[ ][ ][ ][ ]n n n nG T P T P T P T P      (5.2.2) 

is the transfer matrix, and [Tj] and [Pj] represent the interface matrix and propagation 

matrix for the j
th

 section.  

 

Firstly, the reflection and the transmission at the interface are taken into account, and 

the interface matrix is derived. Fig.5.2 shows incident and reflected fields in two 

adjacent waveguide sections, namely (j)
th

 and (j+1)
th

. 
( )inc j ,

( )ref j ,
( 1)inc j 

and

( 1)ref j 
 represent the electric fields for the TE polarization and the magnetic fields 

for the TM polarization. Here the TE polarization is considered and the TM case can 

be derived similarly. The boundary conditions require that the total electric fields are 

continues at the interface as: 

 ( ) ( ) ( 1) ( 1)inc j ref j inc j ref jE E E E   
, 

(5.2.3)
 

and the derivations of the fields have the relationship that: 
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( ) ( )

1 1 ( 1) 1 1 ( 1)

1 1

1 1

j j inc j j j ref j

j j ref j j j inc j

X E X E

X E X E

 

      

  

   
,
 (5.2.4) 

where the transverse operator Xj and Xj+1 for the two sides of the interface are in the 

similar form of that in Eq.(5.1.5), 
j  and 

1j 
 are the propagation constants in 

region j and j+1, respectively.
 

 

Solving Eq. (5.2.3) and Eq. (5.2.4) for the fields on the right hand side of the interface 

gives: 

( 1) ( ) ( )

1 1 1 1

1 11 1
(1 ) (1 )

2 21 1

j j j j

ref j inc j ref j

j j j j

X X
E E E

X X

 

 


   

 
   

 
, 

(5.2.5) 

( 1) ( ) ( )

1 1 1 1

1 11 1
(1 ) (1 )

2 21 1

j j j j

inc j inc j ref j

j j j j

X X
E E E

X X

 

 


   

 
   

 
. 

(5.2.6) 

 

Eq.(5.2.5) and Eq.(5.2.6) can be expressed in the form of a matrix system [32]: 

 
( 1) ( )

( 1) ( )

[ ]
ref j inc j

j

inc j ref j

E E
T

E E





   
       

    , 

(5.2.7) 

where [Tj] is the interface matrix as: 

 

1 1 1 1

1 1 1 1

1 1
1 1

1 11
[ ]

2 1 1
1 1

1 1

j j j j

j j j j

j

j j j j

j j j j

X X

X X
T

X X

X X

 

 

 

 

   

   

  
  

  
  

  
  

  
   

(5.2.8) 

 

Secondly, the forward and backward propagations in a single region are considered, 

and the propagation matrix is derived. Based on the formula which is calculating the 
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field propagation in single direction discussed in section 4.2, the propagation equation 

of the j
th

 section can be written as: 

 

 

 

1
(1 1 1 X )

2( ) ( )
1

(1 1 1 X )
2

j j

j z

E z z E z

j z





 

   

 

   
 

(5.2.9) 

for the forward propagation, and, 

 

 

 

1
(1 1 1 X )

2( ) ( )
1

(1 1 1 X )
2

j j

j z

E z z E z

j z





 

   

 

   
 

(5.2.10) 

for backward propagation.  

 

Eq. (5.2.9) and Eq. (5.2.10) can be written in the form of a matrix system as: 

 

( ) ( )
[ ]

( ) ( )

j j

j j

j

E z z E z
P

E z z E z

 

 

    
    
   
    , 

(5.2.11) 

where [
jP ] is the propagation matrix as: 

    
0

[ ]
0

j

j

j

P
P

P





 
   
   

(5.2.12)

 

with 
 

 

1
(1 1 1 X )

2
1

(1 1 1 X )
2

j

j z

P

j z







   



  

. 

 

The final field yielded at the output side of the structure can be calculated by 

alternately applying the above two matrix equations as [32]: 

 [ ]out in

out in

E E
G

E E

 

 

   
    

    , 

(5.2.13) 

where 
inE  and 

inE  denote the forward and backward field components at the input 
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side, 
outE  and 

outE  denote the forward and backward field components at the output 

side. [G] is the overall transfer matrix as given in Eq.(5.2.2). It can be represented in 

another form as: 

 

11 12

21 22

[ ]
g g

G
g g

 
  
  . 

(5.2.14)

 

 

The square root operators in the characteristic matrices [Tj] and [Pj] can be evaluated 

by the well- known Padé approximation. It is important to note that the branch cut 

rotation method needs to be used in order to treat the evanescent modes correctly, as 

discussed in section 5.1.  

 

Physically, 0outE   because the output side of the structure only contains forward 

travelling fields. Therefore, the total reflected fields at the input end of the structure 

can be presented as [32]: 

 1

22 21in inE g g E    , (5.2.15) 

and the total transmitted fields at the output end of the structure can be presented by: 

 1

11 12 21 22( )out inE g g g g E    . (5.2.16) 

 

Eq. (5.2.15) and Eq. (5.2.16) can be solved by applying a standard iterative algorithm, 

such as the Bi-conjugate gradient or the quasi-minimal residual methods [39-41].  

 

Because the matrix operators involve complicated matrix multiplications, the 
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successful application of the multiple-interface Bi-BPM frequently requires 

preconditioning for the matrix operators. Unfortunately, the presence of the inverse 

matrices increases the difficulty of preconditioning. Therefore, an alternative 

formulation, amenable to algebraic preconditioning is necessary. For the special case 

of a single coating structure which contains only two reflective points, a simplified 

variant of this approach is possible. This will be discussed in the next chapter. 

 

5.3 Conclusions 

 

This chapter recalled the commonly used Bi-BPM methods for solving the facet 

reflectivity of discontinuous waveguides. The Bi-BPM methods based on the WA 

approximation are efficient schemes that can provide good accuracy when dealing 

with reflection problems. In the next chapter, based on the conventional Bi-BPM 

theories, a transmission matrix based Bi-BPM, T-Bi-BPM, will be proposed for 

solving single coating layer or uncoated facet reflection problems. The performance 

of the T-Bi-BPM scheme will be assessed on a waveguide normal incident or at an 

angle to the facet plane. 
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Chapter 6 Transmission Matrix Based 

Bi-BPM (T-Bi-BPM) for Modelling Single 

Layer Coating Structures 

 

In this chapter, a novel method, the T-Bi-BPM method, to solve the single coating 

structure reflection problems is proposed. This method takes the incident and the 

reflected fields from either side of the coating layer as a whole, and tries to solve the 

whole field based on the input of the structure. Based on the transmission line theory 

approach, the new method derives a matrix equation, which establishes the connection 

between the total fields on either side of the coating layer and the incident field at the 

input side of the structure. The matrix equation can be solved by sparse matrix 

multiplications once the incident field is given. Section 6.1 will present the derivation 

of the matrix equation in details by two steps. In the first step, the total field at the 

input side of the coating layer is connected with the total field at the output side by a 

transfer matrix. Different from the Bi-BPM discussed in section 5.2, the transfer 

matrix used in this method is derived on the basis of a transmission matrix used in the 

transmission line theory. In the second step, the matrix equation obtained in step one 

is rearranged to remove the unknown of the total field on the output, leaving only the 

field terms on the input. Therefore, the total field at the input side can be calculated on 

the basis of the incident field and from where the reflected field at the input can be 

obtained. Section 6.2 presents numerical implementation of the method. Simulation 

results will be presented in section 6.3 to test the accuracy and the effectiveness of the 
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T-Bi-BPM method. The results obtained by FSRM will be considered as the 

benchmark for comparison purpose. The limitation of FSRM is that it is only suitable 

for structures with low refractive index contrast because it makes use of the effective 

index method during mode analysis. The main advantage of the T-Bi-BPM method 

over FSRM is that the low refractive index contrast limitation is removed. Therefore, 

the method has the potential to handle a wider range of problems.  

 

6.1 Matrix Formulation  

Fig. 6.1 illustrates a two-port network. According to the transmission line theory, the 

voltage V1 and the current I1 at the left hand side port and the voltage V2 and the 

current I2 at the right hand side are connected via a transmission (ABCD) matrix as 

[1]: 

 

1 2

1 2

V VA B

I IC D

    
     
     . 

(6.1.1)

 

 

The parameters in the transmission matrix are: 

 0

0

cos ,

sin ,

sin .

A D l

B jZ l

C jY l







 





 

where Z0 is the characteristic impedance and Y0 is the characteristic admittance,   is 

the propagation constant and l is the physical length of the transmission line.  
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Figure 6.1: A two-port network 

 

A single coating optical structure can be considered in the similar form as a 

transmission line, as illustrated in Fig. 6.2. The incident and reflected electric fields on 

the input side of the coating layer are set as Einc(1) and Eref(1), and on the output side of 

the coating layer are set as Einc(2) and Eref(2) . where d denotes the thickness of the 

coating. 

 

 

 Figure 6.2: A single layer coating structure 

 

Physically, the total electric field is proportional to the voltage as total inc refE E E  , 

and the derivative of the total electric field along the propagation direction is 
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0

total
total

z

dE
G

dz 

 . According to Eq.(6.1.1), the physical quantities at the start and end 

junctions of the coating are connected via a new transmission matrix as:  

 

(2) (1)

(2) (1)

' '

' '

total total

total total

E EA B

G GC D

    
     
     , 

(6.1.2) 

where the matrix parameters are: 

 

' ' cos( 1 ),

sin( 1 )
' ,

1

' 1 sin( 1 ),

c c

c c

c c

c c c c

A D X d

X d
B j

X

C j X X d







 

   

 
 



      
 

(6.1.3)

 

with Xc and c  being the transverse operator and the propagation constant of the 

coating layer, respectively.  

 

In order to avoid the manipulation of the trigonometric functions with square root 

operators, which are difficult to deal with during the computer processing, the 

trigonometric functions are approximated by polynomials as: 

 

2

2 2
1

2

2 2
1

sin 1 ,

4
cos 1 .

(2 1)

m

m

x
x x

m

x
x

m













 
   

 

 
  

  





 (6.1.4) 

 

In practice, the first M terms of the polynomials can be adopted to approximate the 

trigonometric functions, and a large value of M leads to good accuracy. Therefore, the 

operators A’, B’, C’ and D’ can be expressed via  
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2

2 2
1

2

2 2
1

2

2

2 2
1

4 ( 1 )
' ' 1

(2 1)

( 1 )
' 1

( 1 )
' ( 1 ) 1

M
c c

m

M
c c

m

M
c c

c c

m

X d
A D

m

X d
B j d

m

X d
C j d X

m




















   
   

    

  
     

  

  
       

  






 

(6.1.5) 

 

Though Eq. (6.1.2) successfully established the connection between the total fields 

(1)totalE and (2)totalE , it cannot be utilized directly to solve the reflected fields (1)refE  

and (2)refE  at the same time. Therefore, Eq. (6.1.2) is transformed in order to 

eliminate (2)refE  and leave only (1)refE  for solving, as discussed in the following 

part. 

 

In Fig. 6.1, total voltage on the port 1, 
(1)totalV , can be expressed as a sum of incident 

and reflected voltages as:  

 
(1) (1) (1)total inc refV V V  , (6.1.6) 

and total current, 
(1)totalI , is: 

 
(1) (1) (1)

1

1
( )total inc refI V V

Z
  . (6.1.7) 

where Z1 is the characteristic impedance of port 1. 

 

Eq.(6.1.6) and Eq.(6.1.7) lead to the following equation: 

 
(1) 1 (1) (1) (1) 1 (1) (1) (1)

1

1
( ) ( ) 2total total inc ref inc ref incV Z I V V Z V V V

Z

 
       

 
. (6.1.8) 
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Replacing the physical quantities in Eq. (6.1.8) from a viewpoint of fields and 

expressing the characteristic impedance by 1

1 1

1

1
Z

X


 
 leads to the equation:  

 

(1) (1) (1) (1) (1) (1) (1)

1 1

1
( ) ( ) 2

1
total total inc ref inc ref incE G E E E E E

X
     

 
,

 

(6.1.9)

 

where X1 is the transverse operator of the left side of the coating layer and is in the 

same form of that in Eq.(5.1.5).

 

The square root operators can be approximated by

1
1 1

1

( )
1

( )

N X
X

D X
    , where 1( )N X  and 1( )D X  are polynomials in X1. This leads 

to:

 

 1 (1) 1 (1) 1 (1)( ) ( ) 2 ( )total total incN X E D X G N X E  
. 

(6.1.10) 

 

The incident and reflected fields at the other side of the coating layer, (2)incE  and 

(2)refE , propagate at a reverse direction to (1)incE  and (1)refE , as shown in Fig. 6.2, 

hence an equation similar to Eq.(6.1.9) is obtained as: 

 (2) (2) (2) (2) (2) (2) (2)

2 2

1
( ) ( ) 2

1
total total inc ref ref inc incE G E E E E E

X
       

 
(6.1.11) 

 

Represent 2 21 X    by 2
2 2

2

( )
1

( )

N X
X

D X
    , Eq. (6.1.11) can be rewritten as: 

 2 (2) 2 (2) 2 (2)( ) ( ) 2 ( )total total incN X E D X G N X E  
. 

(6.1.12) 

 

By solving Eq. (6.1.2) for Etotal(2) and Gtotal(2) and taking the obtained expression of  

Etotal(2) and Gtotal(2) into Eq. (6.1.12), a new expression is obtained as: 

2 (1) (1) 2 (1) (1) 2 (2)( )( ' ' ) ( )( ' ' ) 2 ( )total total total total incN X A E B G D X C E D G N X E     , (6.1.13) 
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which combines Eq.(6.1.10) to be a new matrix equation as: 

 
(1) 1 (1)1 1

(1) 2 (2)2 2 2 2

( )( ) ( )
2

( )( ) ' ( ) ' ( ) ' ( ) '

total inc

total inc

E N X EN X D X

G N X EN X A D X C N X B D X D

    
                  .

(6.1.14)

  

 

 

In Eq.(6.1.14), the terms (2)totalE  and (2)totalG  have been removed and the unknown 

values Etotal(1) and Gtotal(1) can be solved by matrix multiplication if the incident fields 

(1)incE and (2)incE are known. Once the value Etotal(1) is obtained, the reflected field on 

the left hand side of the coating layer can be solved according to 

(1) (1) (1)total inc refE E E  .  

 

6.2 Numerical Implementation 

The matrix equation, Eq.(6.1.14), is not suitable for computer processing. Two issues 

need to be resolved: the first one is that the square root operators are approximated by

( )
1

( )

i
i i

i

N X
X

D X
     so that suitable expressions of 1( )N X  and 1( )D X  are 

required; the second one is that the second order derivative 
2

2x




 contained in the 

transverse operators Xi need to be approximated before computer processing. This 

section is going to present how to deal with these issues. 

 

 

For the first problem, the Padé approximation can be applied to approximate the 

square root operators. However, the standard Padé approximation may cause the 

instability as discussed in Chapter 4. In order to improve the stability of the algorithm, 
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the branch cut of square root operator can be rotated by an angle . For the left hand 

side of the coating layer, the square root operator can be rewritten as: 

 /2 /2 1
1 1 1 1 1 1

1

( )
1 1 1 1 1

( )

j j j N R
X e X e e R

D R

               
 

 

(6.2.1)

 

 

where 1( )N R  and 1( )D R  are polynomials in R1. Similarly, 2( )N R  and 2( )D R are 

introduced for the right side of the coating layer.  

 

Physically, 
(2) 0incE  is satisfied since no backward field is present at the right hand 

side of the coating layer. Replacing ( )iN X  and ( )iD X by ( )iN R  and ( )iD R in the 

matrix, respectively (i equals to 1 for the left side and 2 for the right side of the 

coating layer), the problem thus requires the solution of: 

(1)1 1 1 (1)

(1)2 2 2 2

( ) ( ) ( )
2

( ) ' ( ) ' ( ) ' ( ) ' 0

total inc

total

EN R D R N R E

GN R A D R C N R B D R D

    
      

           . 

(6.2.2)

 

 

Eq.(6.2.1) can be expressed by the well-known Padé approximation as: 

 

( )
/2 /2

( )
1

1
1

1

ss
j j r i

i i i s
r r i

c R
e R e

b R

  



   




, 

(6.2.3) 

where the Padé coefficients are given by [2] 

 

( ) 2cos
2 1

s

r

r
b

s

 
  

 
 and ( ) 2sin

2 1

s

r

r
c

s

 
  

 
 (6.2.4) 

 

If the rotated angle is 90o   , N(Ri) and D(Ri) are expressed as: 
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  

2

1

2

1

2 2
( ) 1 sin

2 2 2 1

2 2
1 sin 1 1

2 2 2 1

s

i i i

r

s

i i

r

r
N R j R

s

r
j j X

s











    
            

    
              





 (6.2.5) 

  2 2

1 1

( ) 1 cos 1 cos 1 1
2 1 2 1

s s

i i i

r r

r r
D R R j X

s s

 

 

      
           

       
   (6.2.6) 

 

So far the first problem has been solved. The square root operators are removed from 

the equation and the polynomials ( )iN X  and ( )iD X  are obtained.  

 

Eq.(6.2.5) and Eq.(6.2.6) can be further extended by replacing the operator Xi with its 

original form, 

2
2 2 2

02

2

ri i

i

i

k n
xX






 

 . If the second order derivative 
2

2x




is 

considered as an unknown term, the expressions of ( )iN R  and ( )iD R
 
can be 

reorganized in the form of product or summation as: 

( )( )
10

2 2 2
2 20

2 2 2
1

2

2
0

2 2 1
( ) 1 sin 1 sin

2 2 2 1 2 1

2 2
( ( ) )

2 2

rr

s
ri

i i

r i i

pp

s
r

i r

r

k nr r
N R j j j

s s x

j p
x

 


 







 
                              
 
 

  
       





(6.2.7) 

( )( )
10

2 2 2 2
2 20

2 2 2 2
01

1
( ) 1 cos 1 cos ( ( ) )

2 1 2 1

rr

s s
rri

i r

rr i i

qq

k nr r
D R j j q

s s x x

 

  

 
 

                        
 
 

 (6.2.8) 

where 
( )

0

r
p  and 

( )

0

r
q  denote the coefficients of the constant terms (the order of 

2

2x



  
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is 0), ( )

1

r
p  and ( )

1

r
q  denote the coefficients of the unknown terms (the order of 

2

2x



  

is 1), for the product, respectively. rp  and rq  denote the coefficients of different 

order unknown terms for the summation. The highest order of the second derivate 

operator 
2

2x



  
in these two equations equals to the value of the Padé order, s.

 

 

Similarly, replacing 

2
2 2 2

02

2

rc c

c

c

k n
xX






 

  into A’, B’ C’ and D’ gives: 

 

( ) ( )
0 1

2 2 2 2 2 2

0

2 2 2 2 2 2
01

4 4
' ' 1 ( )

(2 1) (2 1)
m m

M M
rrc

r

rm

a a

d k n d
A D a

m m x x  

 
       
        

          
 
 

  (6.2.9) 

 

( ) ( )
0 1

2 2 2 2 2 2

0

2 2 2 2 2 2
01
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where ra , 
rb  and rc  denote the coefficients of different order unknown terms for 

the summation. The highest order of the second derivate operator 
2

2x



  
in Eq.(6.2.9) 

and Eq.(6.2.10) equals to the value of the parameter M, and the highest order in 

Eq.(6.2.11) equals to M+1. According to Eq.(6.2.7) - Eq.(6.2.11), the combined 

operators, 2 2( ) ' ( ) 'N R A D R C   and 2 2( ) ' ( ) 'N R B D R D   , can also be expressed by 

polynomials in term of 
2

2x




. In 2 2( ) ' ( ) 'N R A D R C   , the highest order of the second 



 

178 

 

derivate operator equals to s+M+1, and in 2 2( ) ' ( ) 'N R B D R D   , equals to s+M.  

 

Mathematically, the derivate of a term 
2

2

n

nC
x


 
 
 

, where nC  is a constant 

coefficient, can be expressed as a polynomial containing (2n+1) terms as:  
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where ( )x i n xC     is the coefficient of the term ( )x i n x     and equals to: 

  
2
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n i i



  
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Using Eq.(6.2.12) to derive all the terms with respect to 
2

2x




 in the polynomials of 

1( )N R , 1( )D R , 2 2( ) ' ( ) 'N R A D R C   and 2 2( ) ' ( ) 'N R B D R D    , and adding up all 

the coefficients for the same term ( )x i n x    in each polynomial, the combined 

coefficients for each term ( )x i n x    , ( )x i n xC    , can be generated. According to the 

order of Padé, s, and the parameter M of the approximations of trigonometric function, 

the number of terms in polynomials 1( )N R
 
and 1( )D R  is 2s+1, the number of 

terms in polynomial 2 2( ) ' ( ) 'N R A D R C    is 2(s+M+1)+1, and the number of terms 

in polynomial 2 2( ) ' ( ) 'N R B D R D    is 2(s+M)+1. These obtained coefficients are 

the final non-zero elements in the matrices. If the number of the sampling points along 

the transverse direction is n (n>>s & n>>M), Eq.(6.2.2) can be expressed in a new 

form with size 2n as: 



 

179 

 

1 1 1 2 2 2

3 3 3 4 4 4

( 1) ( 1) ( ) ( )

(1)

0

(1)

0 | 0

|

|

|

0 | 0

0 | 0

|

|

|

0 | 0

j s j j s j s j j s

j s M j j s M j s M j j s M

total

total

j

tota

n

C C C C C C

C C C C C C

E

E

E

   

         

 
 
 
 
 
 
 
 

           
 
 
 
 
 
 
 
 



(1)

0

1 1 1 (1)

(1) (1)

(1)

0

(1)

(1)

0

0

2

0

inc

inc
j s j j s j

l inc

n

total

total

j

total

n

E

C C C E

E

G

G

G

 

    
    
    
    
    
    
    
    

                          
 
 
 
 
 
 
   

  




















(6.2.14) 

where, 1C , 2C , 3C  and 4C  represent the coefficients of polynomial 1( )N R , 

1( )D R , 2 2( ) ' ( ) 'N R A D R C   and 2 2( ) ' ( ) 'N R B D R D   , respectively. Eq.(6.2.14) 

can be explicitly evaluated by using sparse matrix multiplications. It also can be 

algebraically preconditioned. The attraction of Eq.(6.2.14) over the normal iterative 

approach is its potential for more rapid evaluation, especially when the coating is 

resonant and many iterations are required for convergence. Moreover, if the refractive 

index of the coating layer is set to be the same value as the refractive index of media 2, 

or if the thickness of the coating layer is set to be zero, the situation is equivalent to 

solving the uncoated facet reflection problem. In other words, the scheme proposed in 
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this section has the potential to solve both single layer coated and uncoated facet 

reflection problems. This will be analysed in the following result section.  

 

6.3 Simulation Results 

 

This section presents the test of the formulation derived above. The simulation results 

for the facet reflectivity of a slab uncoated and coated waveguide facet are presented. 

In each case, the waveguide is incident normally and at an angle to the facet. 

WA-BPM propagation is used for a short distance on either side of the facet to permit 

extraction of the transmitted and reflected guided modes. All simulations are obtained 

for the TE polarisation.  

 

6.3.1 Uncoated Facet  

In this part, the uncoated waveguide facet reflection problem shown in Fig. 5.1 is 

tested. The single interface reflective BPM discussed in section 5.1 and the T-Bi-BPM 

for single coating layer structures  proposed in this chapter are applied as the 

simulation tools respectively, for both the normally incident and tilted waveguide. The 

waveguide has core refractive index ncore=3.6 and the cladding refractive index is 

given by ncladding=ncore(1-p), where p is the percentage difference from ncore. In the 

following simulations, p has been chosen as 3%, 5% and10%. The core width of the 
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slab is allowed to vary from 0 to 1μm. The material on the right side of the facet is air. 

The operating wavelength is λ=0.86μm. Simulations have been carried out using mesh 

size x =0.01μm and z =0.0125μm. The ID BPM is applied as the mode solver to 

obtain the fundamental mode profiles and effective refractive indices for different slab 

waveguides. The mesh size in transverse direction is / cosx  , where δ is the angle 

of incidence. The simulation window is set as 20μm/ cos wide and terminated by the 

TBC. In order to achieve good calculation accuracy, rotated Padé approximation with 

order (10, 10) is used for all the simulations in this section.  

 

6.3.1.1 Simulation by conventional reflective BPM  

Firstly, the single interface reflective BPM is applied to the uncoated facet reflection 

problems with normally incident waveguide, and BPM simulations are given in Fig. 

6.3 and Fig.6.4. In Fig. 6.3 power reflectivities for the TE polarisation are plotted 

versus slab thicknesses. Three different cases of index contrast are considered, 

including p=3%, 5% and 10%. The results obtained by the BPM scheme are 

compared with those obtained by the Free Space Radiation Mode Method (FSRM) 

[3], which are presented by the solid line in the figure.  
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Figure 6.3: The TE power reflectivities obtained by the single interface reflective 

BPM versus slab width for the normally incident situation. The 

waveguide has core refractive index ncore=3.6 and the index contrast is 

p=3%, 5% and 10%. The operating wavelength is 0.86μm. 

 

It can be seen that the results of the two methods have good agreement. In the 

beginning, the power reflectivity increases with the increasing of the core width 

regardless of what the value of the index contrast is. It reaches the maximum value 

when the core width is around 0.3μm, and then reduces with the increasing of the 

core width. Overall, for fixed waveguide width, larger index contrast, p, leads to 

larger power reflectivity.  

 

Fig. 6.4 provides an example of the field profile when a waveguide normally incidents 
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on an uncoated facet. The field profile is obtained in the case that the waveguide 

width is 0.4μm, ncore=3.6 and p=5%. The operating wavelength is 0.86μm.  

    

 

Figure 6.4: The obtained field profile of fundamental TE mode by the BPM for the 

normally incident situation when the core width is 0.4 μm. The refractive 

indices of the core and the cladding are ncore=3.6 and ncladding=3.42, 

respectively. The operating wavelength is 0.86μm. 

 

It shows in Fig.6.4 that a standing wave pattern is generated in the waveguide and 

specially obvious in the core because the reflected field interferes with the incident 

field. Beyond the facet, the transmitted field disperses in the free space along the 

propagation direction as expected. 
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The single interface reflective BPM scheme is also applied for waveguide incident at 

an angle onto the facet, and BPM simulations are given in Fig. 6.5 and Fig.6.6. 

Waveguides incident at an angle of 5
o
, 10

o
 and 15

o
 to the facet are considered, 

respectively. In Fig. 6.5 (a, b, c), power reflectivities for the TE polarisation are 

plotted versus slab width for p=3%, p=5% and p=10%, respectively. The BPM and the 

FSRM [3] are compared and the results are in good agreement. For the fixed value of 

the index contrast, the larger the incident angle is, the smaller the facet reflectivity is. 

Moreover, for fixed waveguide width and fixed incident angle, larger index contrast 

results in larger power reflectivity.  

 

 

   (a) 
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   (b) 

 

   (c) 

Figure 6.5: The TE power reflectivities as a function of waveguide width for 

waveguides tilted at an angle onto a facet. The tilted angle is 5
o
, 10

o
 and 

15
o
. The waveguide has core refractive index ncore=3.6 and the index 

contrast is (a) p=3%, (b) p=5% and (c) p=10%. The operating wavelength 

is 0.86μm. 
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Fig. 6.6 shows the reflection of the field from the facet for different incident angle (5
o
, 

10
o
, 15

o 
and 20

o
).  

 

 

Figure 6.6: The obtained field profiles of fundamental TE mode for the waveguide 

tilted by 5
o
, 10

o
, 15

o 
and 20

o
, respectively. The core width of the 

waveguide is 0.4μm. The refractive indices of the core and the cladding 

are ncore=3.6 and ncladding=3.42. The operating wavelength is 0.86μm.  

 

Similar to the normally incident simulations, the standing wave pattern is generated in 

the waveguide. However, the standing wave pattern is not as strong as in the case of 
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normally incident waveguides due to the fact that large part of the reflected field is 

directed away from the core and into the cladding. As can be seen from the figures, 

with the increase of the titled angle, the reflectivity into guided mode reduces. This is 

why in many practical situations the waveguide is tilted to a facet. 

 

6.3.1.2 Simulations by the T-Bi-BPM 

The simulation results shown in Fig. 6.3 to Fig. 6.6 proved that the single interface 

reflection BPM is effective to solve the uncoated facet reflective problems, for both 

normally and angularly incident waveguides. In the following part, the T-Bi-BPM is 

applied to repeat all simulations which have been done by the single interface 

reflection BPM above. There are two ways to apply the new proposed method for the 

uncoated facet reflective problems: (a) setting the refractive index of the coating layer 

to be the same value as the refractive index of air, or (b) setting the thickness of the 

coating layer to be zero in the matrix equation. Here the latter one is used for the 

following simulations. This means in Eq.(6.1.5), the parameter d is zero, and hence 

the operator A’, and D’ are equal to one, the operator B’, C’ are equal to zero. The 

parameter M will not affect the simulation accuracy for this case. 

 

Fig 6.7 illustrates the power reflectivities of the fundamental TE mode which are 

obtained by the T-Bi-BPM for the normally incident waveguides. Similarly as in the 

previous simulations, the core refractive index of 3.6 and the index contrast, p=3%, 
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p=5% and p=10%, are considered. The operating wavelength is 0.86μm. All the 

results are plotted as a function of waveguide width which varies from 0 to 1μm. 

Results are compared with the results obtained by the FSRM method [3] and show 

good agreement.  

 

 

Figure 6.7: TE power reflectivities obtained by the transmission matrix based 

Bi-BPM versus slab width for the normally incident waveguides. The 

waveguide has core refractive index ncore=3.6 and the index contrast is 

p=3%, p=5% and p=10%. The operating wavelength is 0.86μm. 

 

Fig. 6.8 (a, b, c) illustrates the power reflectivities of the fundamental TE mode which 

are obtained by the T-Bi-BPM for the tilted waveguides. The incident angles, δ= 5
o
, 

10
o
, and 15

o
, are tested. The operating wavelength is 0.86μm. All the results are 
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plotted as a function of waveguide width which varies from 0 to 1μm. It can be seen 

that the results of T-Bi-BPM match those obtained by the FSRM method [3]. 

 

 

   (a) 

 

   (b) 
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   (c) 

Figure 6.8: TE power reflectivities obtained by the transmission matrix based 

Bi-BPM versus slab width for the tilted waveguide. The tilted angle is 5
o
, 

10
o
, and 15

o
. The waveguide has core refractive index ncore=3.6 and the 

index contrast is (a) p=3%, (b) p=5% and (c) p=10%. The operating 

wavelength is 0.86μm. 

 

6.1.1.3 The comparison of the two BPM schemes 

Fig. 6.9 illustrates the reflected power obtained by the two methods when the core 

width is 0.3μm, 0.4μm and 0.5μm, respectively. For each core width, the reflected 

power is given in dB and plotted versus the waveguide tilted angle. In the legend, 

S-BPM represents the Single interface reflective BPM and T-BPM represents the 

T-Bi-BPM. Results are obtained for the condition that the index contrast is p=3%, p=5% 

and p=10%, and the incident angle is 0
o
, 5

o
, 10

o
, 15

o 
and 20

o
, respectively.  
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   (c) 

Figure 6.9: Comparison of power reflectivities obtained by the single interface 

reflective BPM and T-Bi-BPM versus tilted angle when waveguide core 

width is (a) 0.3μm, (b) 0.4μm and (c) 0.5μm. 

 

As expected, the results show that the reflected guided power decreases as the tilted 

angle is increased. For fixed tilted angle, the large index contrast leads to large power 

reflectivity. It indicates that the results obtained by the two methods have good 

agreement. It also proves that when the same order of Padé approximation and the 

same transverse sampling interval are used, T-Bi-BPM and the single interface 

reflective BPM provide similar accuracy for the same simulation. The T-Bi-BPM 

scheme is reliable for solving the uncoated facet reflection problems. 
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6.1.1.4 Error analysis 

It can be noticed that when the waveguide has a titled incident angle to the facet, the 

differences of the calculated results between the T-Bi-BPM method and the FSRM 

method are more obvious than the normal incident situation. One of the possible 

reasons is the staircase errors. All the simulations reported above have been carried 

out using uniform rectangular meshing. In the case of angle facets, the facet is aligned 

with the mesh and the waveguides are staircased. For all the simulations, the incident 

field is launched into the waveguide and propagates a short distance before reaching 

the facet. Though the WA BPM scheme is applied during this process, the effect of the 

staircase cannot be completely eliminated. Moreover, because the waveguide is titled, 

the width of the core of the waveguide connecting to the facet is adjusted according to 

the titled angle for the simulations. This process may also introduce calculation errors. 

A possible approach to eliminate the errors is to use a smaller mesh size along the 

transverse direction. This has been proved effective for BPM schemes for the single 

direction propagation problems, with a cost of longer simulation time.  

 

6.3.2 Coated Facet for T-Bi-BPM 

In this section, further simulation results will be provided in order to test and verify 

the effectiveness of the T-Bi-BPM scheme for the single layer coated structure 

reflection problems. As mentioned in section 6.1, the parameter M in Eq.(6.1.5), 

which is the order of polynomials representing the trigonometric functions, affects the 
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accuracy of the T-Bi-BPM. Larger value of M leads to better simulation accuracy but 

it also means heavier computational cost because it results in the increase of the 

number of the non-zero coefficients in the matrix operators of Eq.(6.2.14). Therefore, 

it is necessary to investigate what value of M is suitable for simulations. A 

mathematical test has been done to find the value of M which can provide good 

accuracy with relatively low computational cost. The test is based on Eq. (6.1.4). 

Different order polynomials (M=1, 3, 5, 10, 15, 20, 30, 40, respectively) are used to 

approximate the trigonometric functions for various angle δ, and the errors compared 

to the exact values are shown in Fig.6.10 (a) and (b) for sine and cosine function as a 

function of angle.  

 

      

(a) 
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(b) 

Figure 6.10: The errors between the real values and the approximate values by 

different parameter M of (a) sine function and (b) cosine function. 

 

It can be seen that for both sine function and cosine function, the approximate values 

show better agreement with the real values when the angle is smaller. Moreover, the 

error reduces with the increase of the parameter M for a certain angle. This indicates 

that using larger parameter M to improve the method accuracy is effective. It also 

should be noted that, the effect of the improvement of the approximation accuracy by 

using a large value of M becomes weaker with the increase of M. For example, 

comparing the errors obtained by M=10 and M=1, the improvement is significant. 

However, comparing the errors obtained by M=20 and M=10, the improvement is not 

as obvious as the former case. Therefore, depending on the accuracy requirement of a 
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practical problem, M should be chosen as a value that provides an acceptable accuracy 

and requires relatively low computational cost.  

 

In the following part, the testing simulations include three aspects. Firstly, simulation 

is implemented for a waveguide with one AR coating excited by different operating 

wavelength. Different transverse sampling intervals are used to investigate if the 

method accuracy is affected by the transverse sampling interval. Secondly, the 

waveguides with different core widths normally incident on the facet with one AR 

coating are considered. Different values of parameter M for the approximations of the 

trigonometric functions are tested to investigate how the accuracy is affected by 

parameter M. Finally, the angularly incident situation is tested for a waveguide with 

various thickness of the AR coating. Different order Padé approximations are applied 

to investigate how the accuracy changes with different Padé orders. For the case of 

tilted waveguide the mesh size in transverse direction is changed to / cosx  , where 

δ is the angle of incident. For each case, published results obtained by the FSRM 

method are referenced for comparison purpose.  

 

6.3.2.1 Simulation for a single layer coated waveguide excited by 

variant wavelength 

Fig.6.11 shows power reflectivity as a function of wavelength for the waveguide with 

core refractive index ncore=3.512 and cladding refractive index ncladding=3.17, and core 
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width of 0.1μm. Waveguide is normally incident on the AR coating with the refractive 

index ncoating=1.7936 and the thickness t=0.22256μm. The operating wavelength 

varies from 1.45μm to 1.65μm. Rotated Padé approximation with order (10, 10) is 

used to obtained the polynomials ( )iN R  and ( )iD R , and the parameter M=15 are 

used for the T-Bi-BPM scheme. The simulations are implemented with transverse 

sampling interval Δx=0.025μm and Δx=0.01μm, respectively. For each wavelength, 

the ID BPM method is applied as the mode solver to obtain the fundamental mode. 

The simulation results obtained by the T-Bi-BPM are compared with the ones 

obtained by the FSRM method [4].  

 

Figure 6.11: Wavelength dependence of TE power reflectivities. Waveguide 

refractive indices are ncore=3.512 and ncladding=3.17. The core width is 

0.1μm. The thickness of the coating layer is 0.22256μm and the 

refractive index is ncoating=1.7936. 
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It can be seen that the results of these two methods compare favourably for the case 

that Δx=0.01μm. For the case that Δx=0.025μm, the results agree less well because the 

transvers sampling interval is too big relative to the waveguide core width. Overall, 

the power reflectivity reduced with the increasing of the wavelength in the beginning, 

and then increased in the ascending order of the wavelength. The smallest reflectivity 

exists when the wavelength is between 1.525μm-1.55μm. 

 

6.3.2.2 Simulation for single layer coated waveguides with different 

core width 

The structures analysed for the normally incident situation have core refractive index 

ncore=3.6 and cladding refractive index is given by ncladding=ncore(1-p), where p is the 

percentage difference from ncore. In the following simulations, the percentage 

difference has been chosen as p=3 and p=10 separately, which means that ncladding 

equals to 3.492 and 3.24 correspondingly. The core width of the slab is allowed to 

vary from 0 to 1μm. The material on the right side of the coating layer is air. The 

operating wavelength is λ=0.86μm. The fundamental mode and the corresponding 

effective refractive indices obtained by the ID BPM mode solver for different cases 

are the same as those employed in the uncoated facet reflective simulations. The 

refractive index and thickness of a single AR coating are 
coating effn n  and 

4
coating

coating

d
n


 , where neff is the effective refractive index of the tested waveguide. 
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T-Bi-BPM is implemented with rotated Padé (10, 10) approximation and transverse 

sampling interval Δx=0.01μm. The parameter M=5, 10 and 15 are tested respectively.  

 

Fig. 6.12 illustrates the power reflectivities for the TE polarisation versus slab 

thickness when the waveguide normally incident on the facet, for (a) p=3% (Fig. 

6.12(a)) and (b) p=10% (Fig. 6.12(b)). The results are presented in the form of dB and 

compared with the results obtained by the FSRM method [5].  

 

     

   (a) 
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   (b) 

Figure 6.12: The TE power reflectivities of the coated facet versus slab width for the 

normally incident situation. The waveguide has core refractive index 

ncore=3.6 and the index contrast is (a) p=3% and (b) p=10%.  

 

It can be noticed that the simulation results obtained when M=10 is in good agreement 

with the reference results. However, the simulation results obtained when M=5 show 

less agreement. Further simulation results with M=15 present similar agreement to the 

reference results as M=10.  

 

It should be noticed that though increasing the parameter M can provide a better 

accuracy, it also means high computational overhead for the matrix solver because the 

number of non-zero elements of the matrix system in Eq.(6.2.14) is increased. The 

number of non-zero elements, Nelement can be calculated by  
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        2 1 2 1 2( 1) 1 2( ) 1elementN s s s M s M n            (6.3.1) 

in which s is the Padé order and n is the number of sampling points in transverse 

direction. Consider a waveguide with the percentage difference of the refractive index 

is p=3 and the core width is 1μm, when rotated Padé (10, 10) approximation is used 

and the operating wavelength is 0.86μm, the power reflectivities calculated by the 

T-Bi-BPM with different values of M are listed in Table.6.1. The number of non-zero 

elements of the matrix system according to different values of M is also presented. It 

can be seen that the accuracy of the T-Bi-BPM method is sensitive to the parameter M 

when M is a relative small value. When M is a large value the improvement of the 

accuracy is not remarkable but the number of non-zero element increases obviously.  

 

 Power Reflectivity Non-zero Elements 

M=5 -32.5dB
 

106n 

M=10 -34.11dB 126n 

M=15 -34.49dB 146n 

M=20 -34.74dB 166n 

M=40 -34.98dB 246n 

FSRM -35.21dB  

Table.6.1: the calculated power reflectivity and the number of the non-zero element of 

the matrix system according to different values of the parameter M. 

 

Comparing the results in Fig. 6.12 with the results for uncoated facet (Fig. 6.3 & Fig. 
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6.7), it shows that the reflectivity of a coated facet changes much more. For both 

situations (p=3% and p=10%), the power reflectivity reduced very obviously for the 

same core width. The results prove that adding an AR coating onto the facet of a 

waveguide is an efficient way to reduce the facet reflection. It also can be noticed that 

for the same core width, the smaller index contrast leads to smaller power reflectivity 

than the larger index contrast. Moreover, regardless of what the value of the index 

contrast is, the power reflectivity increases with the increasing of the core width at 

first. It reaches the maximum value when the core width is around 0.3-0.4μm for p=3% 

and when the core width is around 0.2-0.3μm for p=10%, and then reduces with the 

increasing of the core width.  

 

6.3.2.3 Simulation for single layer coated waveguides with different 

thickness of the AR coating 

In this part, the application of the T-Bi-BPM method for a one-layer AR coating 

structure is extended to the case of the angled facet and the dependence of reflectivity 

on coating thickness and angle for TE polarisation is investigated. The results 

obtained by the FSRM method are taken as the reference to test the accuracy of the 

proposed method [4]. In order to ensure a fair comparison, the same simulation 

conditions used by the FSRM method in [4] are applied for the T-Bi-BPM method. 

For a waveguide with core refractive index ncore=3.512, cladding refractive index 

ncladding=3.17 and core width 0.1μm, the wavelength is fixed at λ=1.55μm and the 
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coating layer has refractive index ncoating=1.7936. T-Bi-BPM is implemented with 

transverse sampling interval Δx=0.01μm and parameter M=15. Rotated Padé(6, 6) and 

rotated Padé(10, 10) have been used to show how the accuracy is effected by different 

Padé orders. The incident angle and the corresponding reflectivity versus the coating 

thickness are illustrated in Fig. 6.13 for (a) 0
o
, (b) 10

o
, (c) 15

o 
and (d) 20

o
, 

respectively.  

 

 

   (a) 
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   (b) 

 

   (c) 
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   (d) 

Figure 6.13: Dependence of TE power reflectivities on coating thickness for tilting 

angle of: (a) 0
o
, (b) 10

o
, (c) 15

o 
and (d) 20

o
. The refractive indices are 

ncore=3.512, cladding ncladding=3.17 and ncoating=1.7936. The core width of 

the waveguide is 0.1μm and the operating wavelength is λ=1.55μm. 

 

In Fig. 6.13(a), which presents the normally incident results, the results obtained by 

the proposed method is in agreement with the results obtained by the FSRM method. 

The power reflectivity reduced with the increasing of the coating thickness at the 

beginning until it reaches the lowest value when the thickness is around 0.22μm, and 

then it increased in the ascending order of the thickness. In Fig. 6.13(b), (c), (d), 

which presents the angularly incident results, the two methods agreed less well. For 

each angle, there is an optimum coating thickness providing the smallest reflection. 
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The presenting results are not for optimising any structure in particular but merely to 

confirm that the proposed method may be used as a successful tool for optimisation 

purposes. Comparing Fig. 6.13(b), (c), (d) it can be noticed that the variation range of 

the reflectivity versus the thickness becomes smaller with the increasing of the 

incident angle. For different incident angles (0
o
-20

o
), the lowest reflectivity occurs 

when the thickness of the coating layer is larger than 0.2μm. For a larger incident 

angle, the coating layer needs to be thicker to provide the lowest reflectivity.  

 

Moreover, it can be seen that the results obtained by Padé(10, 10) are just a little 

better agreement with the reference results than those obtained by Padé(6, 6) for all 

the tested incident angles. For each incident angle, Padé(10, 10) and Padé(6, 6) 

provided quite similar results when the thickness of the AR coating is relatively thin. 

The differences between the results obtained by the two different approximation 

schemes become obvious as the increase of the AR coating thickness.  

 

6.4 Conclusions 

 

In this chapter, a novel Bi-directional BPM scheme, the T-Bi-BPM, has been proposed 

for the uncoated and the single coating layer structures. The new scheme refers to the 

well-known transmission matrix in the transmission line theory. Based on the wave 

propagation features, this method sets a connection between the total fields at both 
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sides of the facet by a matrix equation. Through matrix rearrangement, the method 

removes the field terms of the output side of the structure, leaving only the terms on 

the waveguide side. By a mathematical process through which the coefficients in the 

matrix operators are extracted, the rearranged matrix equation can be filled in with 

solvable elements, and then be solved by a matrix solver. Therefore, the total field and 

the reflected field on the waveguide side can be calculated according to the incident 

field. The advantages of the new method are that it can be explicitly evaluated by 

using sparse matrix multiplications and also can be algebraically preconditioned.  

 

The Bi-BPM methods have been tested for calculating the facet reflectivity for 

uncoated and single coating layer waveguides. For the former case, both the 

conventional reflective BPM and the T-Bi-BPM have been applied for both normal 

and angled incidence situations. Comparing to the reference data obtained by the 

FSRM method, the BPM schemes provided reliable results. The comparison of the 

simulation results between the two BPM schemes show that the T-Bi-BPM method 

has a good capacity to handle the uncoated facet reflection problems. For the single 

coated facet reflection problems, the T-Bi-BPM BPM method has been tested for 

different situations including normal and angled incidence. Comparisons show that 

using higher order rotated Padé approximation and smaller transverse sampling 

interval can give better agreement with the FSRM method. The polynomial order M 

for approximating the trigonometric functions is another factor that affects the 

accuracy of the method. In the simulations presented in this part, M=15 provides 
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acceptable accuracy with relative low computational cost.  
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Chapter 7: Conclusion 

 

This chapter outlines the main conclusions of the work presented in this thesis and 

gives some suggestions for possible future work. 

 

7.1 Review of the Work Presented in This Thesis 

 

Photonic structures such as junctions between optical fibers and rib waveguides, 

grating structures and coating layers require accurate characterization of the reflection 

and transmission that occurs at the discontinuities in these structures. This work 

proposed a transmission matrix based Bi-BPM (T-Bi-BPM) method and provided a 

new choice of modelling method to solve the bi-directional propagation problems. 

The T-Bi-BPM is applied on the uncoated facet and the single coating layer reflection 

problems, including both normal and angled incident situations.  

 

This thesis starts from an overview of basic electromagnetic theories in Chapter 2, 

including typical waveguides and materials used in optics, Maxwell’s equations, 

boundary conditions at material interfaces and the derivation of the full-vectorial, 

semi-vectorial and scalar wave equations.  
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In Chapter 3, a review has been given for different popular modelling methods, 

including semi-analytical methods such as Marcatili’s method, the effective index 

method and the spectral index method, and numerical methods such as the FE method, 

the FD method and the FDTD method. FD-BPM is overviewed as one of the most 

popular techniques due to its numerical efficiency. The primary concept of its 

simplest form, the paraxial BPM, is provided. Different boundary conditions 

frequently used during the simulation process are introduced, including Neumann and 

Dirichlet boundary condition, TBC, PML and periodic boundary condition. The ID 

BPM is presented and proved as an effective mode solver and is applied throughout 

the work of this thesis to find the fundamental mode of the incident field and the 

effective refractive index of structures before further simulations. It is shown that 

three factors may affect the performance of ID-BPM, including the choice of the 

transverse sampling interval, the longitudinal propagation step and the initial value of 

the refractive index. Simulation results show that the accuracy of the mode solver can 

be improved by reducing the transverse sampling interval. Changing the longitudinal 

propagation step does not affect the accuracy, but changes the convergence speed of 

the method. When a smaller longitudinal propagation step is used, the method shows 

a better convergence in a short propagating distance. The simulation results also prove 

that different initial values of the refractive index will not change the accuracy of the 

mode solver. 
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Chapter 4 focuses on the introduction and application of the WA-BPM scheme for 

single direction propagation problems. A comparison between the paraxial BPM and 

WA-BPM for dealing with forward direction propagation problems has been given. 

The simulation results based on slab and rib waveguides show that the paraxial 

FDBPM is suitable for modelling the wave propagation in longitudinal invariant 

waveguides with no or little tilted incident angle due to its simplicity of 

implementation, whereas, the WA scheme is a more suitable choice for modelling 

propagation with a large tilted angle. Rotated Padé approximation with multistep 

method can be applied to enhance the stability of the WA-BPM. Increasing the order 

of the Padé approximation or deducing the longitudinal propagation step can improve 

the accuracy of the WA method, with heavier computational cost and longer 

simulation time. When the incident angle is lager, a higher order Padé approximation 

is required for better accuracy.  

 

Bi-BPM schemes are overviewed in Chapter 5. The T-Bi-BPM method is proposed in 

Chapter 6 after a review of the exiting Bi-BPM schemes. The T-Bi-BPM is applied to 

uncoated and single layer coated facet reflectivity analysis. For the uncoated facet 

case, it shows simulation results for different percentage differences between the 

refractive indices of the core and the cladding of a slab waveguide when the tilted 

angle of the waveguide changes from 0
o
 to 15

o
. The results obtained by the T-Bi-BPM 

method have a good agreement with the reference data obtained by the reflection 

BPM method and the FSRM method. For the single coating layer case, T-Bi-BPM 
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presents a great potential to overcome the coating layer reflection problems. 

Simulation results show that increasing the order of Padé approximation and reducing 

the transverse sampling interval can improve the accuracy. Moreover, the matrix 

system of the T-Bi-BPM method includes the trigonometric functions, which can be 

mathematically approximated by polynomials. The order of the polynomials, M in 

Eq.(5.3.5), is another factor that affects the method accuracy. Larger value of M leads 

to better accuracy. However it also increases the non-zero elements in the matrix 

system and therefore results in heavier computational cost.  

 

7.2 Suggestions for Future Work 

 

There are several aspects of improvement worth attempting in order to optimize the 

T-Bi-BPM method. The first aspect of the possible future work is to improve the 

accuracy of the proposed method. Errors can be noticed when the simulation results 

obtained by the T-Bi-BPM method are compared with the reference results obtained 

by the FSRM method, though using higher order rotated Padé approximation and 

smaller transverse sampling interval can provide better agreement. It is believed that a 

significant reason can be in using the second-order accurate discretization scheme in 

transverse direction. Accuracy can be improved by applying the higher order schemes 

for transverse discretisation. A fourth-order scheme, the generalized Douglas scheme 

[1-3], is a possible choice. It maintains the same bandwidth of matrices as the original 
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BPM scheme and imposes no significant additional computation time [4]. Moreover, 

an improved 3-point finite difference scheme presented in [5] can deal correctly with 

all second-order terms regardless of the existence of multiple dielectric interfaces 

between sample points. These highly accurate schemes are worth implementing for 

the improvement of the new proposed method. 

 

Another interesting future research area is to extend the application of the method to 

3D propagation problems. However, it is always a big challenge to apply the WA 

scheme to 3D problems. The difficulty is to expand the high order derivatives for both 

transverse directions at the same time. A robust matrix solver based on BI-CGSTAB 

or GMRES is a possible choice to provide a possibility to deal with 3D problems.  

 

Most of the existing reflective methods are based on the scalar wave equations. It is a 

formidable task for all the frequency domain reflective methods to model reflection 

problems for semi-vectorial and full-vectorial wave equations. Especially for the 

full-vector wave equation, the boundary conditions at the interfaces become much 

more complicated. Therefore, for the T-Bi-BPM method, solving the semi-vectorial 

and full-vectorial problems is a challenge. This will be a potential interesting area for 

future research. 

 

The simulation results shown in Chapter 6 have proved that the T-Bi-BPM method 

has a good accuracy in solving the single coating reflection problems. Frequently, an 
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optical waveguide may have a discontinuous coating layer, such as the periodic 

grating structures. A typical example is the SPP waveguide [6]. Fig. 7.1 illustrates a 

situation of the periodic grating structures. The dielectric substrate is covered by a 

discontinuous coating layer. If the coating of the structure is metal displaying a 

negative real part of the propagation constant, the waveguide will have the capacity to 

support and guide SP waves at the interface between the dielectric substrate and the 

metal coating. This structure can be considered as a periodic one. If one period is 

modelled, the fields of the neighbour subsections can be deduced by utilising the 

periodic boundary condition. The difficulty of the application of the T-Bi-BPM 

method to analyse this structure is that the parameters obtained by the expansion of 

the power of the second derivation of x in Eq.(6.2.12), Cn, contains different coating 

reflective indices, nr. Therefore, the values of the elements in the operator matrix need 

to be modulated depending on the positions of the sampling points.  

 

 

Figure 7.1: The optical structures with a discontinuous coating layer 
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Moreover, it is known that in order to excite the SP waves, the waveguide must be 

excited by E field perpendicular to the interface ie. TM polarised field. However, the 

T-Bi-BPM method presented in this thesis is divided from a scalar wave equation. 

Therefore, further development of T-Bi-BPM needs to deal with the polarization 

problem as mentioned earlier which will also extend its range of applications. 
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Appendices  

 

Appendix 1 

The coefficients of 3D semi-vectorial wave equations after Padé Approximation:  

TM polarisation: 
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TE polarisation: 
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Appendix 2 

The coefficients of 3D semi-vectorial wave equations after Rotated Branch Cut 

Approximation:  

TM polarisation: 
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TE polarisation: 
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Appendix 3 

The field profiles comparison for the TM polarisation when different 

approximation schemes are used. 
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