
Garnham, Nigel William (1995) Motion compensated
video coding. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/13447/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

i

MOTION COMPENSATED VIDEO CODING

Thesis submitted for the degree of

Doctor of Philosophy

by

Nigel William Garnham BEng CEng MIEE

University of Nottingham

Department of Electrical and Electronic Engineering

October 1995

ii

To my parents

iii

One picture is worth ten thousand words

Attributed to Frederick Barnard

Printers’ Ink

March 1927

ii

Abstract

The result of many years of international co-operation in video coding has been the

development of algorithms that remove interframe redundancy, such that only

changes in the image that occur over a given time are encoded for transmission to

the recipient. The primary process used here is the derivation of pixel differences,

encoded in a method referred to as Differential Pulse-Coded Modulation (DPCM)

and this has provided the basis of contemporary research into low-bit rate hybrid

codec schemes. There are, however, instances when the DPCM technique cannot

successfully code a segment of the image sequence because motion is a major

cause of interframe differences. Motion Compensation (MC) can be used to

improve the efficiency of the predictive coding algorithm.

This thesis examines current thinking in the area of motion-compensated video

compression and contrasts the application of differing algorithms to the general

requirements of interframe coding. A novel technique is proposed, where the

constituent features in an image are segmented, classified and their motion tracked

by a local search algorithm. Although originally intended to complement the

DPCM method in a predictive hybrid codec, it will be demonstrated that the

evaluation of feature displacement can, in its own right, form the basis of a low

bitrate video codec of low complexity.

After an extensive discussion of the issues involved, a description of laboratory

simulations shows how the postulated technique is applied to standard test

sequences. Measurements of image quality and the efficiency of compression are

iii

made and compared with a contemporary standard method of low bitrate video

coding.

iv

Acknowledgements

It is a pleasure to thank all members of staff in the Department of Electrical and

Electronic Engineering at the University of Nottingham for their assistance with

this research project.

In particular, I am most grateful to my supervisor, Dr M K Ibrahim, for his

guidance and valuable suggestions, which stimulated my thoughts and provided

impetus to my practical efforts.

Thanks are extended to Professor Greg Donahue at the University of New Mexico,

for introducing me to the nuances of the Khoros image processing system and to

Chris Greenhalgh and Dave Snowdon in the Department of Computer Science, for

helping in the production of conference videotapes. The help given by Karl

Lillevold at Telenor Research in supplying H.263 simulation binaries is also greatly

appreciated.

Finally, I am indebted to my family and friends for the steadfast support and

encouragement they have given me over the years, without which this endeavour

would not have been possible.

v

Statement of originality

The work contained in this thesis is that of the author, unless otherwise stated.

This work has not been submitted for any other publication, examination or

qualification.

Nigel William Garnham

vi

Publications

ADAPTIVE SUB-REGION VARIABLE SHAPE MOTION COMPENSATED

PREDICTION

N W Garnham and M K Ibrahim

Conference on Applications of Digital Image Processing XVII, San Diego, USA.

Proceedings of the International Society for Optical Engineering (SPIE),

volume 2298, chapter 78, pages 35-44, July 1994.

CLASSIFIED SUBREGION MOTION ESTIMATED INTERFRAME

CODING

N W Garnham and M K Ibrahim

Proceedings of the IEE Colloquium on Low Bit Rate Image Coding

Digest number 1995/154, pages 3/1-3/6, June 1995.

ADAPTIVE FEATURE-BASED MOTION ANALYSIS AND ITS

APPLICATION TO INTERFRAME CODING

N W Garnham and M K Ibrahim

Proceedings of the Fifth International Conference on Image Processing and its

Applications, Heriot-Watt University, Edinburgh, UK.

IEE Conference Publication 410, pages 31-35, July 1995.

vii

Contents

Abstract.. i

Acknowledgements ... iii

Statement of originality... iv

Publications ... v

Contents... vi

Image reproduction - note .. xi

Glossary

Acronyms and abbreviations.. xii

Symbols... xiv

Chapter 1 Introduction
Motion Compensated Video Coding

1.1 Overview ... 1

1.2 The scope of this thesis..3

1.3 Outline ... 6

Chapter 2 Video Compression and Coding
A review of contemporary techniques

2.1 Introduction ... 9

2.2 Differential Pulse Code Modulation ... 13

2.2.1Quantisation .. 15

2.3 The ITU-T H.261 Algorithm ... 18

2.3.1Spatial and temporal coding .. 20

2.3.2Transform Coding ... 20

2.3.3Quantisation and transform data compression 23

2.4 Methods of data representation for low bit-rate coding 25

viii

2.5 Video data buffering... 29

2.6 Codec Storage.. 31

2.7 ISO/MPEG Algorithms ... 32

2.8 The ITU-T H.263 Algorithm ... 36

2.8.1H.263 Base Functions .. 38

2.8.2H.263 Optional Functions

2.8.2.1 Unrestricted motion vectors (Annex D) 40

2.8.2.2 Syntax-based Arithmetic Coding SAC (Annex E) 41

2.8.2.3 Advanced Prediction Mode (Annex F) 41

2.8.2.4 PB-Frames (Annex G)... 42

2.8.3Summary .. 42

Chapter 3 Motion Compensation
Algorithms describing feature displacement

3.1 Introduction ... 44

3.2 The nature of interframe motion ... 45

3.2.1The spectrum of a moving object .. 46

3.2.2Post- and pre-filters .. 48

3.3 Methods of motion detection and estimation....................................... 51

3.3.1Method of differentials .. 51

3.3.2Fourier Methods .. 54

3.4 Block matching algorithms .. 55

3.4.1Full-search block matching .. 56

3.4.2Variable-size block matching

3.4.2.1 Image decomposition .. 59

ix

3.4.2.2 Displacement vectors.. 64

3.4.2.3 Edge block classification .. 66

3.4.2.4 Codebook design .. 68

3.4.2.5 Variable block size motion estimation - summary........ 69

3.5 Model-based coding .. 70

3.5.1Model-based image synthesis ... 72

3.5.2Model-based coding - summary .. 77

Chapter 4 Spatial Processing
Methods of low-resolution image representation

4.1 Introduction ... 79

4.2 Spatio-temporal perception... 80

4.3 Spatial pre-processing... 81

4.3.1Reduction in spatial resolution .. 83

4.3.2 Image sub-sampling...84

4.3.3Mode-value sampling ... 87

4.4 Spatial quantisation ... 91

4.5 Hybrid pre-processing ... 96

4.6 Spatial Processing - Summary ... 101

Chapter 5 Feature Classification
The detection and identification of image subregions

5.1 Introduction ... 103

5.2 Pixel Clustering .. 104

5.2.1Seed Pixels .. 104

5.2.2Pixel Relationships ... 106

5.2.3Pixel Connectivity.. 107

x

5.3 Image Segmentation .. 110

5.4 Sub-region boundary tracking .. 111

5.5 Boundary Coding ... 114

5.5.1Runlength Coding ... 114

5.5.2Feature Primitives ... 115

5.6 Implementation of a classification algorithm 117

5.6.1Clustering... 117

5.6.2Conversion to runlength labels.. 118

5.6.3Conversion to feature primitives.. 120

5.6.4Data Representation... 123

5.7 Summary ... 124

Chapter 6 Interframe Coding
Evaluating the displacement of subregions

6.1 Introduction ... 126

6.2 Codec Structure ... 127

6.3 Motion Vectors.. 129

6.3.1Linear motion vectors ... 130

6.3.2Perspective motion vectors .. 132

6.3.3Stationary motion vectors... 133

6.4 Changes in feature topography .. 134

6.5 Implementation of a displacement vector algorithm 138

6.5.1Searching... 138

6.5.2Data Structure ... 141

6.5.3Classification of new features.. 143

6.6 Application to standard test sequences... 144

xi

6.6.1Motion vector generation.. 144

6.6.2Reconstruction .. 147

6.7 Summary ... 149

Chapter 7 Image Quality
The detection and correction of prediction errors

7.1 Introduction ... 151

7.2 Error detection and correction .. 152

7.2.1Displacement errors.. 152

7.2.2Error Correction... 154

7.3 Measurements of spatial quality ... 156

7.4 Comparisons with the H.263 algorithm .. 160

7.5 Video compression .. 165

7.6 Information theory .. 167

7.7 Summary ... 170

Chapter 8 Conclusions
Discussion and recommendations for further work

8.1 Introduction ... 173

8.2 Overview ... 173

8.3 Results .. 176

8.4 Recommendations for further work .. 177

8.4.1Adaptive feature classification... 177

8.4.2Variable length coding.. 178

8.4.3Vector generation.. 179

References.. 181

Appendix 1: Test sequence spatial resolutions 187

xii

Appendix 2: Image data format and file handling 191

Appendix 3: Primitive feature look-up table .. 199

Image reproduction - note

This thesis was printed using Apple and Hewlett-Packard laser printers, with a

halftone resolution of 600 dpi. It should be noted that whilst the quality of most

images is quite clear, the effect of image reproduction can serve to further degrade

image resolution.

xiii

Glossary
Acronyms and abbreviations

ATD Absolute Temporal Difference

BBMC Block-Based Motion Compensation

BMMC Block-Matching Motion Compensation

BT British Telecommunications

CCIR International Radio Consultative Committee

CCITT International Telegraph and Telecommunications Consultative

Committee (see ITU)

CD-ROM Compact Disc Read-Only Memory

CIF Common Intermediate Format

Codec Coder-decoder

CRT Cathode Ray Tube

DAT Digital Audio Tape

DBMC De-composed Block Motion Compensation

DC Direct Current

DCT Discrete Cosine Transform

DPCM Differential Pulse Code Modulation

EOB End of Block

FIFO First-in first-out

HDTV High Definition Television

IS International Standard

ISDN Integrated Systems Digital Network

ISO International Standardisation Organisation

xiv

ITU International Telecommunication Union

ITU-T International Telecommunication Union Telecommunication

Standardisation Sector

KLT Karhunen Loève Transform

MAP Maximum a posteriori Probability

MC Motion Compensation

MCP Motion Compensated Prediction

ME Motion Estimation

Modem Modulator-demodulator

MPEG Moving Picture coding Experts Group

NICAM Near Instantaneous Companded Audio Multiplex

NTSC National Television System Committee

PAL Phase Alternating Line

PSNR Peak Signal-to Noise Ratio

PSTN Public Switched Telephone Network

QCIF Quarter Common Intermediate Format

SAC Syntax-based Arithmetic Coding

Sub-QCIF Sub-Quarter Common Intermediate Format

VLC Variable Length Code or Variable Length Coding

VLSI Very Large Scale Integration

VOD Video on Demand

xv

Symbols

r
Vn Motion vector

v
V

n
Motion vector component

r
V∅ Null displacement vector

η Pixel luminance value

∅ The null set

∆Q Quantisation step interval

d Quantisation error

ds Spatial pixel intervals

dt Temporal interval

dx, dy Spatial intervals

e Interframe error (the result of DPCM)

H(z) Picture entropy

In Frame at instant n

In’ Previous frame with respect to In

Ln Feature perimeter runlength label

Lp Feature primitive label

NB Number of bits

Nn(p) n-neighbour pixel relationship

pc Corrected pixel value

Pc Pixel search parameter (current frame)

pn Seed pixel

Pp Pixel search parameter (previous frame)

qz Quantisation indicator flag

xvi

R Image area subregion set

Rn Component subregion

Rp Component subregion (previous frame)

s Scale factor

u, v Frequency co-ordinates in the transform domain

V A value set

v Motion vector bitstream

wn Input level (probability)

x, y Spatial co-ordinates in the pixel domain

1

Chapter 1

Introduction

Motion compensated video coding

1.1 Overview

Of all the technological achievements in the 20th century, television has perhaps had

the greatest effect on our everyday lives. For many people, a television set is an

obscure box in the corner of their living room - providing news, education and

entertainment. Children are now said to be addicted to it and there is no doubt that

the nature of leisure time activities has radically changed over the past thirty years to

accommodate television. Telecommunications systems have also invaded the home

and people can now hold a telephone conversation as comfortably as they would face

to face.

But the evolution in television and telecommunications systems have followed

different paths. Since the introduction of colour television in the 1950’s, there have

been no significant changes to the mechanism of picture transmission and display. In

this country, the 625 line format has been with us for a long time and for many

people, their perception of improvements in the “quality” of television has been

assisted by advances in associated audio reproduction, particularly since the advent of

NICAM digital stereo. The telecommunications system, on the other hand, has been

able to take advantage of new technology to provide a modern, digital network,

available to everyone. Recent advances in mobile communications offer the potential

for telephones to be associated with individuals, rather than their homes and offices.

2

Taking account of this background, it is perhaps surprising that the concept of

combining pictures and sound into a single PSTN channel for video conferencing has

taken so long to evolve. The essential difficulty is that bandwidth is limited in the

services provided by telephone companies on the basis that to transmit speech, only

14 kHz is required for acceptable quality. Broadcast quality digital television, on the

other hand, requires over 100 Mbits/s to supply pictures. Even existing terrestrial

channels allocated for television cannot accommodate this amount of data.

Consequently, video compression and coding appear to be the best approach to the

problem, until someone provides a mass communications system in which bandwidth

is not a limitation.

International co-operation has proved important in the development of video codec

algorithms. Under the auspices of the CCITT, now known as the International

Telecommunication Union (ITU), a recommendation was published in 1990,

describing the framework of a video codec intended for use on the ISDN system on

channels of 64 kbits/s. Its primary concern is the removal of redundancy, which

occurs within and between picture frames. Intraframe coding can be used to

compress a single frame and redundancy is said to be present where the picture

comprises groups of adjacent equal value picture elements, or pixels. Similarly, where

pixel values have not changed over time, interframe coding can remove temporal

redundancy. Only changes in picture content need to be supplied to the decoder and,

as a result, an efficient mechanism of picture coding is developed.

3

In most cases, however, video codecs are said to be lossy, since additional processing

tends to lower the resolution and introduce errors. This said, provided certain

requirements of quality are kept, most users are unable to detect coding errors and

those who do will probably be able to tolerate them.

The implementation of video codecs has also been limited by the technology available.

Where real-time processing is required, compression and coding must be performed at

high speed - a requirement that VLSI technology has only recently appeared able to

satisfy. A new generation of software video codecs is being proposed in current ITU

recommendations, to work on the growing number of personal computers connected

to the PSTN by a modem. As the processes are refined and the technology is

improved, video conferencing codecs will become less expensive and more widely

available. Whether they become more popular is, however, a different matter. It took

many years for televisions and telephones to get into most homes and wariness about

seeing the person the user is talking to may, for some while, make the videophone

something the public feels it can do without.

1.2 The scope of this thesis

This thesis examines the current state of video technology and assesses different

aspects of video compression and coding. A comprehensive introduction to the

outline ITU-T H.261 recommendation is given and comparisons made with its sister

MPEG algorithm, more commonly associated with picture storage and HDTV. The

concepts of redundancy removal, using DPCM/DCT coding will be covered and it

will be shown that, whilst useful, it is not exhaustive and other methods are needed to

4

work in conjunction, providing a more accurate coding of picture content over

changes in time.

One such method is referred to as motion compensation. If a video sequence is

divided into individual frames, it is possible to see if particular spatial components

have been displaced as a result of overall motion. Contemporary approaches to

motion compensation have been block-based and it will be shown that there are so

many combinations of blocks in an image that, for real time applications, an

exhaustive search is not cost-effective. Furthermore, block-based searching is rather

unreliable, since the segments considered represent arbitrary areas of the picture

rather than easily identifiable features.

A more advanced technique of video coding uses models of known picture features

and then re-maps them against vectors supplied by a motion detection algorithm. This

is perhaps more useful, although defining the original set of features has proved

difficult and it has been found that images do not necessarily move consistently,

making an accurate assessment of motion difficult.

The fundamental basis of this thesis is a proposal for a novel algorithm, using the best

characteristics of block and model-based coding. Using the simple parameters of

constituent pixel values, outline and location, a new feature classification technique

compiles, for each frame, a sourcebook of subregion data. Comparison of such

sourcebooks shows where any displacements have occurred and motion compensation

allows a decoder to reconstruct features with the supply of motion vectors.

5

Effective feature classification has been made possible by the introduction of spatial

processing. It is shown that the use of pixel subsampling reduces the resolution of an

image and subsequent quantisation limits the range of values which can occur. Spatial

processing therefore serves to deliberately introduce errors. However, it will be

demonstrated that such errors are no worse than those seen in contemporary coding

algorithms, by means of both visual inspection and calculating measures of spatial

quality. The process of reconstruction has been found to introduce displacement

errors, where successful feature replacement has not occurred. To counter this, a

simple method of error detection and correction is proposed, removing many

interframe errors and restoring quality and data content to acceptable levels.

All work in the development of video codec systems is undertaken with compromise

in mind. There is an inherent trade-off between image quality, process efficiency and

compression. An increase in compression usually leads to a reduction in quality and

greater processing needs. Results from the feature classification based coding

algorithm will be considered against the background of contemporary methods and

comparisons made.

6

1.3 Outline

Chapter 2 provides the reader with an insight into contemporary techniques of video

compression and coding. Using the framework of the H.261 algorithm, concepts of

DPCM/DCT coding will be described, along with associated processes for efficient

codeword generation and constant bitrate supply. This chapter also considers the

ISO/MPEG standard and comes up to date with the latest H.263 recommendation for

very low bitrate video codecs.

Although motion compensation is a very wide-ranging topic, chapter 3 concentrates

on the principles of block and model-based motion compensation. It will be shown

that, whilst conventional block-based motion compensation is a simple process, it is,

computationally highly intensive and often impractical to implement in a real-time

codec. Model-based coding, on the other hand, is more complex as it is difficult to

set the parameters of model descriptions in a finite set.

Chapter 4 considers the application of spatial processing as an initial stage in a novel

coding algorithm. It is shown that an image can be reduced in resolution and still

maintain an acceptable level of quality. Furthermore, pixel-value quantisation can be

introduced to limit the range of values associated with a given image. Frames from

standard test sequences are processed and a measure of relative quality produced by

both illustrations and calculations of signal-to-noise ratio.

A novel method of feature classification is described in chapter 5. Taking a low-

resolution image, it is possible to identify features as subregions of equal value pixels.

A comprehensive description of the classification process is made, identifying

7

consistent seed pixels and then clustering against predicates of pixel connectivity.

With segmentation complete, a method of boundary coding is described, using

runlength and primitive shape labels. A description of the implementation shows

these processes at work and defines the nature of sourcebook data structures,

subsequently used for the detection of motion.

Chapter 6 describes the process of motion vector generation and shows how

sourcebooks are assessed in order to deduce interframe motion. Different forms of

motion vector are described, covering stationary features, linear motion and

perspective changes. It is also suggested that, where motion detection is

unsuccessful, features can be re-classified to reduce the likelihood of error

propagation.

The process of motion compensation inevitably introduces errors and chapter 7

develops a simple method of error correction, restoring some spatial quality to the

images in a sequence. This chapter also illustrates and quantifies image quality and

contrasts the results from the feature classification based algorithm against a

simulation of the H.263 algorithm. Information theory is also used to demonstrate

how error correction restores the entropy of frame data, close to its input levels.

In the conclusions of chapter 8, it will be suggested that feature classification forms

the basis of a novel video codec of low complexity. Where contemporary codecs use

motion compensation in conjunction with other coding techniques, feature

classification works alone in determining the nature of interframe differences.

8

Suggestions for further work are made, particularly in the area of compression

efficiency, expressing the trade-off between quality and data content.

9

Chapter 2

Video Compression and Coding

A review of contemporary techniques

2.1 Introduction

The principle of combining images and sound into a single communications systems is,

by no means, unfamiliar. Over fifty years have passed since the introduction of

broadcast television in the United Kingdom. However, it is only recently that the

concept of using moving pictures for interactive video and multimedia has received

interest, as the costs of transmitting a television signal over anything other than short

distances has proved prohibitive. We have been limited to sending mainly still images

over the public telephone network, using facsimile and low-scan techniques, made

slow by the restriction in bandwidth available to most users.

It seems paradoxical that whilst the technology of digital television has advanced in

remarkable leaps in recent years, we still have no efficient, widespread means of

sending high quality video over the telephone network for the purposes of

videotelephones. One of the fundamental costs of colour television is the bandwidth

required to transmit a channel of sound and pictures. The four terrestrial channels

allocated in the United Kingdom have equivalent digital bandwidths of 12-24 Mbits/s,

which would be insufficient to carry sound, chrominance (colour) and luminance

(brightness) signals. It is the scarcity of space in the radio-frequency spectrum that

has limited the extent of broadcast television.

10

In its uncompressed state, conventional broadcast-quality digital television requires bit

rates of typically 166 megabits per second - well over that available for even the

newest Integrated Services Digital Network (ISDN) [i] channel. Given this primary

constraint, contemporary research has focused on the compression of video images,

allowing transmission of low resolution images over the multimedia digital network.

In most cases, compression is easy to achieve, removing spatial and temporal

redundancies naturally occurring in sequences of images.

Figure 2.1.1: A frame from the sequence Claire, demonstrating picture

redundancies.

Consider the image of figure 2.1.1. This could be regarded as typical of a

videoconferencing scene, where during the conversation, most of the picture will not

change other than, say, the lips, eyes and occasional head movements. This feature

can be used to good effect, such that only information about differences that have

occurred will need to be sent to the recipient. This process is called interframe

11

coding and is ideal for the low level of temporal changes, associated with

videoconferencing.

It is also possible to extract information about differences between spatially adjacent

pixels at a given instant in time. This process of intraframe coding makes large areas

of consistent colour and shade (the plain background in this example) easily

represented. Boundaries are easy to detect, where significant changes in luminance

and chrominance occur. Interframe and intraframe coding are two methods of

redundancy compression that have been used to good effect in the development of

videoconferencing hardware for transmission over telecommunications channels of up

to 64 kbits/s.

The intrinsic effect of redundancy coding is not to reduce picture quality, indeed the

efficiency of a differencing algorithm should not serve to affect spatial resolution.

However, subsequent processing of the difference information can take place, where

“useful” information can be described as those aspects of the image that convey

meaning to the human viewer, even if that is only a small proportion of the image

content. The contrast sensitivity function [ii] allows understanding of the human

ability to detect spatial and temporal detail and this will be described in chapter 4.

Assuming the human eye can resolve down to two minutes of an arc, it can take in the

equivalent of a million pixels of information without moving. By moving the eye, but

not the head, the field of view is at least an order of magnitude greater. We know the

head is likely to remain stationary whilst a person is doing something specific, but the

eyes are moving continuously. If we assume that to represent the colour and

12

luminance of a pixel, 12 bits are required, over 100 million bits of information are

needed to represent the user’s static scene.

Consideration of these factors gives an understanding of the essential nature of video

compression algorithms. It is necessary to take a picture, which under normal

circumstances would require extensive data representation and code it to the

constraints of digital telecommunications network, whilst maintaining an image

satisfactory to the human perception.

At an early stage, the international telecommunications community identified the need

for close collaboration to ensure the adoption of a system which could be applied in

all countries and make videotelephony available to a world market. Even though a

European standard specification did emerge in the 1980’s [iii], for a 2Mbits/s, 625

line, 25 frames per second PAL system, demand in North America required plans

using the 525 line, 30 frames per second NTSC system. Subsequently, the conversion

between these standards was regarded as the focal point of international co-operation

and under the auspices of the organisation now known as the International

Telecommunication Union
1
 (the ITU), a videophone algorithm was recommended,

meeting the needs of the new ISDN systems and working for all bit rates between 64

kbits/s and 2Mbits/s.

The resulting ITU-T Recommendation, H.261 [iv][v], forms the basis of the

international development of videoconferencing systems using the new ISDN

1 The International Telecommunication Union was formed from an amalgamation of the CCITT and

the CCIR.

13

networks being installed throughout the world. However, many concepts used are

equally applicable to other areas of video codec design, such as high-definition digital

television, where an increased amount of picture data is to be transmitted within the

constraints of existing terrestrial bandwidths.

2.2 Differential Pulse Code Modulation (DPCM)

At the heart of the videoconferencing system proposed in the ITU-T H.261

document, is the use of Differential Pulse Code Modulation, or DPCM [vi]. Whereas

conventional Pulse Code Modulation (PCM) uses a fixed-length set of binary codes to

represent temporally-current data, DPCM extracts difference data between temporally

adjacent data sets. When applied to adjacent images which constitute a video

sequence, the DPCM value is that which results from differencing the pixel values, at

a given spatial co-ordinate, in successive frames.

The information which results from this process can be transmitted over the

communications network using variable-length codesets, where codes described by

the least number of bits are used to represent the most frequently-occurring values.

Practically, if little or no change occurs in the sequence, the amount of data to be

coded and sent to the recipient is minimal.

In addition to considering temporally adjacent picture frames and extracting difference

data (interframe coding), groups of similar pixels which are spatially adjacent in a

given frame can be DPCM encoded. The use of intraframe coding is particularly

helpful in the first few frames of a sequence, where all known values need to be sent

to the receiver.

14

To explain the principle behind the DPCM process, consider the simple loop in figure

2.2.1:

In e = In - In’

 -

In’

 +

In’ + e

(i)

e In’ + e = In

 +

In’

(ii)

Figure 2.2.1: A simple DPCM loop (i), and receiver (ii)

STORE

STORE

15

Current frame data, held in the store, is updated with the generation of the difference

value e which is to be sent to the decoder. Initially, the value of a given pixel

magnitude held in store is subtracted from its equivalent next value and hence the

current frame values are subtracted from the next-frame values. The difference signal

is received at the decoder, where another store holds the current values, updated by

the addition of e to produce a representation of the next frame.

Algebraically, if In is considered the next frame value, In’ the current frame value and

e the difference between them, then:

e = In - In’ [Equation 2.1]

and In = In’ + e [Equation 2.2]

which allows the next frame to be reproduced at the decoder. An example of

the effect of taking a DPCM difference image is shown in figure 2.2.3.

2.2.1 Quantisation

A key feature of the H.261 recommendation is the introduction of quantisation to

reduce the large number of values that are possible for chrominance and luminance.

This results in less bits being required for transmission and storage, although there is a

natural addition of errors and whilst not noticeable under quiescent picture

conditions, coarse quantisation can produce a poor reproduction of the original

image.

16

In e (e + d) = e’

 -

In’

 +

In’ + e + d

(i)

e’ In’ + d

 +

In’

(ii)

Figure 2.2.2: A simple DPCM quantised loop showing (i) encoder and

(ii) decoder

The quantisation error is carried through to the output of the decoder and can be

described:

e’ = In - In’ + d = e + d [Equation 2.3]

thus In + d = In’ + e’ [Equation 2.4]

where d is the quantisation error

and e’ is the resulting difference signal

STORE

STORE

QUANTISER

17

(i)

(ii)

(iii)

Figure 2.2.3: Two temporally-adjacent frames (i), (ii) and their DPCM

difference image (iii) {reverse video is used for clarity}.

18

One method of controlling the extent of quantisation errors is the use of buffer

feedback that allows the quantisation step interval to be related to the amount of data

being produced by changes in the picture, principally due to motion..

2.3 The ITU-T H.261 Algorithm

At an early stage, the complexity of various proposals for video codec design made it

clear that initially building real-time hardware to prove algorithms would be difficult.

Under the supervision of the ITU, international collaboration brought together novel

algorithms and flexible software-based simulation systems. Once the material had

been downloaded into bit form, it could easily be processed by a mainframe computer.

A video sequence of about thirty seconds real-time data can practically be stored and

the results time-scaled, reflecting the increase in performance that dedicated hardware

would produce.

The first stage in the process is to digitise a sequence for each pixel to assign values

for both chrominance and luminance, storing the results in a random access memory.

The video luminance signal is sampled at 6.75MHz and digitised to a resolution of

eight bits per pixel (the equivalent of 256 grey levels). A similar process applies for

chrominance, but at 3.375 MHz. The stored data for each successive frame can then

be manipulated and the DPCM values extracted and coded. A block diagram of the

outline H.261 hybrid codec is shown in figure 2.3.1.

19

Figure 2.3.1: An outline block diagram of the H.261 hybrid DPCM/DCT

encoder

20

2.3.1 Spatial and temporal encoding

Whilst the primary aim of a hybrid video codec is to remove interframe redundancies

that occur through time, it has already been mentioned that a lot of intraframe

redundancy is to be found in many image sequences. The H.261 algorithm uses a

threshold mechanism, such that it normally works in temporal interframe coding

mode. However, there will be occasions when a scene changes very significantly -

either due to sudden movement of a large object across the scene, panning, or a wipe

to a new scene. In these cases, intraframe coding is used and the codec will operate

to encode difference information between spatially-adjacent pixels on the new frame.

The switch to intraframe coding inevitably results in a surge of new data to produce a

new frame, providing the values to which subsequent interframe DPCM coefficients

may be added.

2.3.2 Transform Coding

Having obtained the DPCM values (point [A], figure 2.3.1), data compression can be

applied. The picture is divided into 8 × 8 pixel blocks and a discrete cosine transform

(DCT)[vii] applied to each block.

Transform coding does not directly cause data compression - there is still an 8 × 8

array of coefficients in the transform domain. Compression is achieved by the

subsequent extraction of the transform coefficients representing basic spatial

relationships and the choice of transform method is an important factor. Following

transformation by the DCT, the transform coefficients in each 8 × 8 block can be

21

considered as the magnitudes of the various spatial frequencies present in the spatial

pixel domain.

Consider a block in which all the pixel values are identical, as is the case in the plain

areas of a picture. After transformation, the only non-zero transform domain value

will be the D.C. coefficient, which occupies the top left-hand corner of the block.

Hence the block can be said to have been compressed by a ratio of 64:1, provided the

inverse transform algorithms knows that all other coefficients are zero. Unless the

frame is completely plain, there will be many blocks having more non-zero transform

coefficients. In almost all frames there will be a large number of transform

coefficients sufficiently close to zero to be either not transmitted, or represented by

data of less than eight bits.

The nature of the DCT transform and its resulting coefficients is shown in figure

2.3.2.

Figure 2.3.2: The application of the discrete cosine transform to a

DPCM image of 8 × 8 pixel blocks (Claire). The higher

intensity dots represent the location of each DC coefficient.

22

The transfer function of the DCT is given by:

F u v f x y x
u

y
v

x y

(,) (,)cos[()]cos[()]= + +
= =

∑ ∑1

4
2 1

16
2 1

160

7

0

7

π π

with u,v,x,y = 0,1,2,...,7 [Equation 2.5]

where x,y are spatial co-ordinates in the pixel domain

and u,v are co-ordinates in the transform domain.

Whilst the DCT is often considered to be the most suitable transform method

available, less sophisticated methods such as the Walsh-Hadamard transform [viii] can

be used with limited success in more basic applications. The Karhunen Loève

transform (KLT)[ix] has been demonstrated as the most efficient technique, but has

proved more complex to implement. Normally, the magnitude of the coefficients in

the transform domain can be related to the frequency of the pixel values in the spatial

8 × 8 block.

Since it is normally assumed that humans cannot readily detect sharp, high-frequency

spatial transitions [46], the lower transform coefficient values (which represent the

high-frequency elements in the 8 × 8 block) can be discarded to allow subsequent data

compression. The effect of the high-coefficient grouping is demonstrated to good

effect in figure 2.3.3, which shows the effect of applying the DCT to a much larger

square area of an image.

23

(i)

(ii)

Figure 2.3.3: Distribution of transform coefficients (i) for a selected

64 × 64 pixels area of interest (ii).

2.3.3 Quantisation and transform data compression

With data in each 8 × 8 block now reduced to a set of coefficients in the DCT domain

(point [B], figure 2.3.1), the compression which follows makes use of the transform

domain block characteristics already known. Each spatial 8 × 8 block can reliably be

represented by a few transform coefficients grouped into the top left-hand corner of

24

the 8 × 8 coefficients in the transform domain, representing the D.C. and a few low-

frequency coefficients. Quantisation is then performed on the transform coefficients,

having the effect of setting all small values to zero and quantising larger values to a

set of preferred magnitudes ready for coding and transmission. The quantised

transform coefficients (point [C], figure 2.3.1) are then scanned in a zigzag manner,

shown in figure 2.3.4.

10 8 6 6 0 0

8 6 5 0 0

7 3 1 0 0

2 2 0 0 0

2 0 0 0 0

Figure 2.3.4: Codec scanning of transform domain coefficients, starting

at D.C. and ending after three consecutive zero values

The transform coefficients are scanned in an order which indicates descent from the

highest transform coefficient (the D.C. value) to the lowest. However, the effect of

quantisation produces a large quantity of zero coefficients. Their existence makes

compression possible, since it is not necessary to provide the decoder with long

streams of zero values. Having encountered a run of three zero coefficients, the

assumption can be made that all remaining ones are also zero and a single End-Of-

Block (EOB) symbol is produced, denoting the end of all non-zero coefficients for the

current 8 × 8 transform block. In the example of figure 2.3.4, sixteen codes would be

25

needed (including the EOB character), representing a compression of about 25% from

the original set of transform coefficients.

2.4 Methods of data representation for Low Bit-Rate Coding

The video codec, by extracting the DPCM difference data and then performing a DCT

upon it, will have formed a data set considerably compressed from the original

broadcast-quality image values. To efficiently transmit these over the

communications network, a set of codes is developed which relate to the frequency of

occurrence of each quantised transform coefficient. Practically, this is achieved by the

use of variable-length coding (VLC), where codes of the least bit length are used to

represent the most frequently occurring coefficients. The length of the codes then

increases by inverse proportion to coefficient frequency.

 11101

11100

 1101 1 etc.

1100 0

 101

100 1 0 1

 01 0

 1

 0 0 1

 1 0 1

0 1

Figure 2.4.1: Binary tree representation of variable length code

generation.

26

Use of variable length codes removes the redundancy that would occur if a fixed-

length word were used. In the case of an image sequence where any one of 256

values could occur, fixed length coding would require that the minimum data word

was eight bits long. Generation of VLCs is related to probability and a simple method

of developing the required codeset is shown by the binary tree mechanism in figure

2.4.1). Starting at the root, a left-hand branch at each node adds a 0 to the code and

a right-hand branch adds a 1. The assignment of these codes requires the probability

of occurrence of each scanned quantised transform coefficient.

Consider the example shown in the table of figure 2.4.2, where the probability of

occurrence of one hundred coefficients is known.

Coefficient value Frequency Code Bits required

12 40 01 2

11 15 100 3

13 14 101 3

10 12 1100 4

9 8 1101 4

8 8 1111 4

Figure 2.4.2: Assignment of variable length Codewords.

27

By multiplication of the number of bits required to represent each value by the

frequency, it can be seen that 291 bits would be required to represent this sequence of

100 coefficients. Had four bits been employed, given that all values are less than

fifteen, 400 bits would have been needed and so the benefit of variable length coding

is easily shown.

An algorithm for the adaptive assignment of Variable Length Codes was proposed by

Huffman (1952) [x]. The compact code can be derived by first ordering the input

probabilities with respect to their magnitudes, as illustrated in the table of figure 2.4.3.

Input Level Probability Step1 Step2 Step3 Step4

 w1 0.4 0.4 0.4 0.4 0.6

 w2 0.3 0.3 0.3 0.3 0.4

 w3 0.1 0.1 0.2 0.3

 w4 0.1 0.1 0.1

 w5 0.06 0.1

 w6 0.04

Figure 2.4.3: Construction of a Huffman Code

The two smallest probabilities are added together on a step-by-step basis to form a

new set of probabilities until only two values are left. In the example, this is at the

fourth step.

Codewords are generated by starting at the last step and working backwards,

assigning a 0 and 1 at each step, decomposing probabilities. This is depicted in figure

2.4.4.

28

Step 1 Step 2 Step 3 Step 4

 w1 0.4 {1} 0.4 {1} 0.4 {1} 0.4 {1} 0.6 {0}

 w2 0.3 {00} 0.3 {00} 0.3 {00} 0.3 {00} 0.4 {1}

 w3 0.1 {011} 0.1 {011} 0.2 {010} 0.3 {01}

 w4 0.1 {0100} 0.1 {0100} 0.1 {011}

 w5 0.06 {01010} 0.1 {0101}

 w6 0.04 {01011}

Figure 2.4.4: Generation of Huffman Codewords

Starting at (in this case) step 4 and working backwards, the 0 associated with the 0.6

remains the first bit value of its decomposed codewords and the 1 associated with 0.4

remains the first bit value in each step back. When the input probabilities are reached,

a compact code has been generated to reflect the frequency of occurrence.

The codes produced are uniquely identifiable in a serial communications system. That

is to say that, provided the start point is known, a bit stream can only be sub-divided

into the correct codewords as smaller codes are not similar to the constituent

components of larger ones (figure 2.4.5)

29

0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0

 w3 w4 w1 w2 w5 w1 w2

Figure 2.4.5: The resolving of unique Huffman Serial Codewords

2.5 Video Data Buffering

The final interface to the ISDN channel is a buffer (figure 2.3.1 point [E]), ensuring

the constant flow of 64kbits/s data into one of the B channels [xi], even though the

buffer input could be anything between 0 and 384kbits/s. It has already been shown

that the resulting bit stream from the DPCM process is likely to be variable,

depending on how much interframe activity has occurred. A high rate of

unpredictable motion has to be transmitted at the same data rate as would apply for

no interframe difference. The practical approach to this is the use of variable step size

quantisation of the transform coefficients, where the magnitude of the sampling

interval is determined by control parameters generated at the buffer.

Although a buffer does have the capacity to store data on a first-in first-out (FIFO)

basis, the technology available for real-time data buffering still limits performance

where increased capacity is normally accompanied by greater propagation delays.

The use of quantisation feedback is shown in figure 2.5.1.

30

 Transform 64 kbits/s

 Data

Feedback Control

Figure 2.5.1: Quantisation step control feedback to produce constant

output bitrate.

The use of this feedback control mechanism enables the coarseness of quantisation

step values to be affected by buffer status. As the buffer is filled with data

(particularly during significant interframe motion), the effect of the feedback is to

coarsen the quantisation step interval employed and thus reduce the rate at which data

is presented to the buffer. The primary drawback to this idea is that as the buffer

reaches capacity and the quantisation step interval is at a maximum, picture quality

can be very poor. Even though the loss of quality may only be temporary, with

subsequent data correcting the quantisation distortion, it happens at a time when the

viewer’s temporal perception is most sensitive to changes in resolution. It would not

be acceptable to use this approach for broadcast-quality television under the MPEG

standard, where high transmission quality is required all the time.

In a videoconferencing situation where the video signal is frequently switching

between the interactive parties, picture distortion is quite a problem because of the

buffering factors mentioned. Whilst large buffers, where practical, will reduce the

dependence on quantisation step control, only the availability of a broadband packet

video system, such as B-ISDN, will provide a more feasible solution to this problem.

QUANTISER VLC BUFFER

31

2.6 Codec Storage

In the simple DPCM loop of figure 2.2.1, the incorporation of picture feedback allows

current picture data to be stored in the codec for subsequent interframe comparison.

Having committed spatial video to the transform domain and applied quantisation, the

coefficients must be transformed back to the pixel domain to facilitate like-for-like

differencing in spatial terms.

Once again, the effect of quantisation will cause difficulties, as the distorted

coefficient values will be differenced and, as a result, errors may propagate. An

inverse DCT function is employed to re-form pixel difference data from the transform

coefficients at point [F] on figure 2.3.1, where the differences are added to the current

frame value in the fixed store to update the retained frame to that of the new frame

undergoing coding.

32

2.7 ISO/MPEG Algorithms

Like the ITU-T Recommendation, the algorithms specified by the Moving Picture

coding Experts Group (MPEG) [xii] employ a degree of both loss-less and lossy

coding techniques. However, whilst the H.261 algorithm is specifically designated as

the framework of video codecs working on ISDN channels of p × 64kbits/s, the scope

of MPEG is more wide-ranging. In the late 1980’s an obvious relationship began to

emerge between personal computers, digital storage on inexpensive media (such as

CD-ROM) and the sale of video entertainment and educational software. The extent

of MPEG has also been applied to the compression of video for the purposes of

Video-on-Demand [xiii] and for HDTV.

The primary objective of MPEG was to produce a compression algorithm for storage

media having a throughput of 1 - 1.5 Mbits/s, with other goals of up to 60 Mbits/s.

Whilst the direct application of CD-ROM was an obvious one, the brief of MPEG was

to produce a standard that would apply to other storage techniques and applications.

Data-DAT, which originated in the digital audio tape standard has a data throughput

rate of typically 1.5Mbits/s, has two hours per cassette and unlike CD-ROM has easy

re-recording by the end user. The capacity of hard disks has also grown in recent

years making them a practical option for video storage.

The MPEG-1 video coding algorithm [xiv] resulted from the requirements of CD-

ROM and was greatly influenced by preliminary results in the formulation of the ITU-

T H.261 algorithm. The development and evaluation of the algorithm was performed

at bit rates in the region of 1 Mbits/s and video resolutions of 352 pixels × 288 lines,

25 frames per second, for PAL and 352 pixels × 240 lines, with an average of 29.97

33

frames per second for the NTSC system. However, whilst the H.261 algorithm

effectively works on a predetermined spatial format (CIF), these rates are not fixed

and can be varied according to the requirements of different applications.

The essential difference of MPEG-1, compared with H.261, is that, by the nature of

the application to CD-ROM, random access is required. This allows the end user to

arbitrarily choose any point in the video sequence from which to start viewing the

moving images. To achieve this, MPEG-1 has a number of frames which are encoded

on their own and without any reference to other frames in the sequence, which are

referred to as key frames and occur typically once in every twelve. As a result,

MPEG-1 deliberately forces intraframe coding on some frames, whilst the majority are

formed as an interframe prediction with reference to temporally adjacent frames. The

result of this is a maximum waiting time of twelve frame-delays between the user-

defined start location and the commencement of playback - about 0.4 s for the PAL

format.

The presence of regularly occurring intraframe coding is one of the reasons why

MPEG-1 is unsuitable for real-time coding in audiovisual communications. The time

taken to process and transmit an intraframe coded frame is considerably higher than

for interframe difference data, causing considerable variations in the quantity of bits

per frame. If the I-frames were to be taken as primary start frames for an interframe

sequence, they would have to be encoded with minimal losses, rendering the

availability of data for the subsequent interframe coding relatively low in a given time

period. The arrangement of MPEG-1 frame data is shown in figure 2.7.1.

34

Figure 2.7.1: MPEG-1 Frame Origins

The predictive codec used in MPEG-1 solutions is once again a hybrid of the

DPCM/DCT algorithm already detailed in this chapter. The DCT coefficients are

scanned and quantised and assigned minimum redundancy codes. They are then

passed through a buffer and out to the storage media. The buffer provides

quantisation control to the forward coder, allowing smoothing of data rates and a

constant bitrate to the storage device. MPEG also has the ability to produce motion

vectors for the interpolative decoding of large interframe differences. Functions used

in the decoding process are also employed at the encoder to ensure an equivalent

prediction to the final decoded output. A block diagram of the MPEG-1 scheme is

shown in figure 2.7.2.

35

Figure 2.7.2: The MPEG-1 Coding Algorithm

One of the essential differences between MPEG-1 and the H.261 algorithm is the way

in which interframe predictions are made. H.261 is primarily interframe coding using

the previous frame as the main prediction source for the generation of the next frame.

However, since MPEG-1 applies mainly to pre-recorded video sequence, subsequent

frames can also be used to make a better prediction of the current frame. Figure 2.7.1

shows that in addition to the I-frames, occurring at every twelfth frame instant, there

are groups of two B-frames, bounded by single P-frames between them. P-frames use

forward prediction only from previous P- or I-frames in the sequence. However, B

frames have both forward and back prediction from P- or I-frames. As B-frames are

formed by the interpolation of earlier and later pictures, two motion vectors per block

are needed. The effect of this is that MPEG codecs require enough storage space to

hold two pictures for the coding process, as opposed to the one needed in H.261

coding. B-frames are not used as the basis of prediction for other frames in the

sequence and so it has been found useful to encode them with a coarser quantisation

36

step interval than would be the case for I- and P-frames in the same sequence, since

error propagation is not an inherent problem.

Motion vectors used by MPEG have a greater range than would be required for

videoconferencing applications, since the nature of a wide range of video comprises

more interframe motion than would be anticipated in a typical head-and-shoulders

scene.

Subsequent work on MPEG standards has considered the application of the algorithm

for data rates of up to 40Mbits/s. MPEG-2 [xv] has been adopted for direct satellite

broadcasting in Europe and by the US Advanced Television Committee (FCC) for

HDTV. It is effectively the same as MPEG-1, except that interlace scanning can be

retained and interframe delays are less, resulting in a picture of improved quality.

2.8 The ITU-T H.263 Algorithm

As the latest development in low bitrate video compression algorithms, the H.263

algorithm [xvi][xvii] is intended to provide a framework for transmission at bitrates

lower than the p × 64kbits/s associated with H.261. The recommendation takes

account of the growing popularity of home personal computers, connected to the

PSTN by a modem, having bitrates of 14.4kbits/s or 28.8kbits/s. In consequence,

recommendation H.263 is part of a set of ITU documents, relating to the line

transmission of non-telephone signals. The outline of the system is contained in

recommendation H.324 and peripheral information, such as the V.34 modem

standard, relates directly to it.

37

H.263 is broadly based upon the H.261 algorithm, using block-based DPCM/DCT

coding with associated motion compensation. However, there are some changes in

the basic implementation and optional processes are available to improve the

interframe prediction (figure 2.8.1).

T Transform Coding

Q Quantisation

P Picture memory with motion compensated variable delay

p Flag denoting INTRA/INTER

t Flag for transmitted or not

qz Quantiser indicator

q Quantising index for transform coefficients

v Motion vectors

Figure 2.8.1: H.263 draft recommendation encoder block diagram

38

2.8.1 H.263 Base Functions

As with H.261, H.263 supports the CIF format, however the QCIF and sub-QCIF

(128 × 96 pixels) resolutions are more appropriate to the low bitrate environment.

The H.261 algorithm incorporates a spatial low-pass filter in the encoder feedback

loop, which has been omitted from H.263. It has been shown that the pixel

interpolation function involved in the half-pixel motion compensation process has the

effect of low-pass filtering, without the need for a specific spatial function to remove

high frequency noise caused by the quantisation of transform coefficients and also

evident at the boundaries of blocks in the motion compensation process.

Motion compensation is optional, but all decoders must be capable of it.

Macroblocks for colour video sequence comprise 16 × 16 pixels luminance, plus two

corresponding 8 × 8 chrominance blocks. Vectors can take the form of one per

macroblock, or on a block basis, where four vectors per macroblock would exist. The

latter forms part of the Annex F ‘Advanced Prediction Mode’ of H.263.

The basis of macroblock sampling is shown in figure 2.8.2.

39

× × × × × ×
 O O O
× × × × × ×

× × × × × ×
 O O O
× × × × × ×

× × × × × ×
 O O O

 × × × × × ×

× Luminance sample

O Chrominance sample

 Block edge

Figure 2.8.2: Positioning of block luminance and chrominance samples

Both types of motion compensation operate at half pixel resolution in the horizontal

and vertical components. Motion vectors usually take the form of an absolute vector

for a macroblock (or block, in the Annex F mode) and a prediction is formed as the

median of the vectors for the three previously transmitted macroblocks (or blocks) to

the left and above the current block. A positive value of the horizontal or vertical

component of the motion vector signifies that the prediction was formed from pixels

in the previous picture to the right or below the pixels being predicted. Vectors for

the two 8 × 8 chrominance blocks in a macroblock are calculated as half the value of

the single macroblock vector, or in the case of Annex F as 1/16 of the average of the

four luminance block vectors, rounded to half pixel resolution.

40

H.263 uses a linear quantisation function with a fixed step-size for the DC component

of an INTRA coded DCT block. Quantisation step size can be altered to

accommodate variations in encoded bit-rate, caused by picture changes, together with

the switch between intraframe and interframe coding and the time interval between

coded pictures (variable frame rate). This allows the codec to adaptively trade-off the

spatial and temporal resolution parameters of the system.

2.8.2 H.263 Optional Functions

A suite of additional functions is available to improve the interframe prediction.

2.8.2.1 Unrestricted motion vectors (Annex D)

In the default prediction mode of H.263, the search for motion vectors can only take

place inside the normal picture. In the Unrestricted Motion Vector mode, this

requirement is removed and motion vectors are allowed to point outside the picture.

To do this, edge pixel values are extrapolated in x and y directions as appropriate,

producing a virtual search area outside the normal boundaries (figure 2.8.3).

Extrapolated pixels

4 4 5 6 6 8 8

4 4 4 5 6 6 8 8 Picture area

5 5 6 5 5 6 8 8

5 5 6 6 6 6 7 8

4 4 5 5 6 7 8 8

Figure 2.8.3: Extrapolation for Unrestricted Motion Vectors

41

Unrestricted motion vectors can improve the image prediction, particularly where

there is motion involving objects entering or leaving the scene, or where the camera

itself is moving in a pan. This mode is optional as it does not improve the prediction

for static camera and central objects (which would be common in videoconferencing).

2.8.2.2 Syntax-based Arithmetic Coding SAC (Annex E)

SAC is a variant of Arithmetic Coding, used in place of the traditional Variable

Length Code for minimum-redundancy serial transmission. The optimum length of

Variable Length Codes is derived from the entropy of the data and tends to be non-

integer. Arithmetic Coding, on the other hand, allows fractional bits per symbol and

removes this inefficiency. It works together with a modeller to evaluate the

probability of a particular symbol in the bit stream and the process varies depending

on the type of information being coded, be it a Coded Block Pattern or Motion

Vectors.

The implementation of SAC is, however, rather complex and it is impossible to

recognise individual symbols in an encoded bit stream. Recovery from errors is

difficult, since SAC does not re-synchronise after a few false symbols, as Variable

Length Codes do.

2.8.2.3 Advanced Prediction Mode (Annex F)

This uses four motion vectors instead of one per macroblock and uses overlapped

block motion compensation [xviii], which tends to provide a smoother prediction

image and a better spatial quality at the decoder. It is required that this mode

operates in conjunction with the Unrestricted Motion Vector Mode (Annex D), to

42

make a consistent prediction from the availability of extrapolated luminance and

chrominance pixels.

The four 8 × 8 pixel luminance blocks in a macroblock allow a better representation

of motion to be made, albeit at the price of a greater data overhead. It is therefore the

responsibility of the implementing organisation to decide the value of this additional

motion data.

2.8.2.4 PB-Frames (Annex G)

The algorithm also allows for the use of forward and bi-directionally predicted frames,

similar to those described in section 2.7. Motion vectors can be used from the P-

frames to generate predictions for the B-frames. Additional vectors may also be

transmitted as an optional mode, which effectively doubles the temporal resolution of

the image with only a small increase in the coded video data rate. However, this tends

to produce a less satisfactory prediction in sequences having very fast or complex

motion, or low initial frame rates.

2.8.3 Summary

The H.263 algorithm has been demonstrated as a versatile low bitrate video coding

procedure, with particular application for PSTN communications, where ‘software

codecs’, using the processing power of a contemporary personal computer can do

away with the need for an expensive custom receiver.

43

Comparisons with the H.263 algorithm will be made later in this thesis, contrasting

the parameters of bitrate and signal-to-noise ratio in both the base-level functionality

and with the incorporation of annexes D-G.

44

Chapter 3

Motion Compensation

Algorithms describing feature displacement

3.1 Introduction

Chapter 2 described methods of picture coding using the difference between spatially

or temporally adjacent pixels. It is certainly true that these techniques provide an

effective means of picture coding. However, the need to maintain a constant data rate

during moments of more significant motion can result in an image reproduction of low

quality.

The performance of interframe coding can be significantly improved by the use of

motion compensation. If movement has occurred, it is possible to map the

displacement of groups of pixels, representing either image features or regular blocks,

in the next frame. For example, the pixels representing part of a moving lip in the

head and shoulders examples can be grouped and a single vector used to denote their

origin and destination, provided no significant change in topography has occurred.

Motion compensation and estimation techniques can broadly be divided into four main

categories, the method of differentials, Fourier techniques, block matching and model

coding. For completeness this chapter gives coverage to each method, even though

the novel algorithm described in this thesis is based on feature description and

classification.

45

3.2 The nature of interframe motion

One fundamental concept to emphasise is that each frame in an image sequence is

merely a snapshot of some real-life event at a given moment in time. A video

sequence is no different to cinema or an animated cartoon, in that it is a collection of

still images displayed in temporal sequence, at high speed, to give the viewer an

impression of motion. This may sound rather basic, but the effectiveness of human

psychovisual perception (see chapter 4), depends to a great extent on the nature of the

image subject, as well as how it is displayed.

The tendency we have to see linear motion in a sequence of still images is referred to

as temporal aliasing. Normally this is a natural process that causes us no difficulty,

although sometimes the mechanics of temporal aliasing can easily be seen.

Occasionally real time motion is filmed at a frame rate incompatible with the motion

taking place. An ideal example of this is in old Western films, where wagon wheels

seem to rotate slowly backwards, even though the wagon itself is travelling forwards

at speed. The reason for this is that the temporal sampling of the wheel is such that it

rotates slightly less than one revolution between each frame and the difference it

should have made up is seen as being a small rotational movement in the opposite

direction, as shown in figure 3.2.1.

46

Perceived Motion

Actual Motion

Frame 1 (In) Frame 2 (In+1)

Figure 3.2.1: The effect of temporal aliasing

Moving objects can be considered as residing in a spatio-temporal spectrum of their

own, that allows an understanding of the processes at work. The motion of a

particular feature in an image scene can distinguish it from other stationary objects, as

well as the background. Consequently, the temporal activity of an object provides the

viewer with more interest in its features.

3.2.1 The spectrum of a moving object

The spatio-temporal spectrum of an object undergoing displacement is described by

Thomas [xix][xx]. If we consider a point moving horizontally at fixed speed, its

trajectory in one dimensional space can be plotted graphically (figure 3.2.2). The line

will be vertical if the velocity is zero, with angle of skew increasing for higher

velocities. Spatial and temporal axes are labelled m and f respectively. For a

stationary point, its spectrum in the domain lies along the f = 0 axis, with the spectrum

skewed due to motion, as shown in figure 3.2.2(ii). To illustrate the cause of skew,

consider the temporal frequency of a fixed point in the image - the contribution to the

47

temporal frequency from a given spatial frequency is the product of the spatial

frequency and the velocity of displacement. It follows, therefore, that higher spatial

frequencies give rise to higher temporal frequencies.

 t f

 x m

(i) (ii)

 f

 m

 1/x

 (iii)

Figure 3.2.2: The spectrum of a moving object. (i) the space-time description of

a moving point, (ii) spatio-temporal frequency spectrum before

sampling, (iii) spatio-temporal frequency spectrum after sampling.

48

When the image is sampled, either in space or time, the spectrum is repeated at

intervals of the reciprocal sampling frequencies. Figure 3.2.2(iii) shows a replicated

spectrum in the case of orthogonal sampling. Notice that there is insufficient pre-

filtering, prior to sampling, to prevent the repeat spectra from overlapping both

spatially and temporally at particular motion speeds.

3.2.2 Post- and pre-filters

The most important post-filter process, occurring after the image has been displayed

on a screen, takes place in the human psychovisual perception system. Different

effects have been observed for the separate cases of an eye staring at a fixed spatial

point on a screen and an eye which is tracking a moving point. Greater detail on the

human spatio-temporal response is found in Budrikis (1973)[xxi].

Figure 3.2.3.1 shows the spatio-temporal frequency response of a staring human eye,

superimposed on the spectra produced from supplying the sampled signal described in

the previous section into a CRT display. Sampling frequencies used are set so as to

make the first temporal repeat spectrum just visible - an example of which is the

flicker that occurs on a 50Hz television picture. High spatial frequencies cannot easily

be detected on the retina due to blurring.

Figure 3.2.3.2 shows an exaggerated example of fast motion, still with a fixed gazing

point. At this speed, components from the first temporal repeat spectrum lie close to

the axis of zero temporal frequency, appearing as almost stationary objects (an

explanation of the slowly-reversing wagon wheels mentioned earlier). There is a very

marked loss of spatial resolution at this speed. However, if the eye is to track an

49

object, the eye’s post-filtering mechanism skews in the same way as the object being

tracked, such that spatial resolution is enhanced and only flicker causes temporal low-

quality.

Response of the

observers stationary

eye

Large area flicker

Retinal blurring of

high spatial

frequencies

Figure 3.2.3.1: The spatio-temporal response of the stationary eye to slow motion

Response of the

observers stationary

eye

Visible temporal

aliases (e.g. wagon

wheels)

Loss of spatial

resolution

Figure 3.2.3.2: The spatio-temporal response of the stationary eye to fast motion

50

Response of observers eye

whilst tracking fast motion

Aliasing of slow-moving

objects as eye tracks fast

motion

Loss of slow-moving

object’s spatial resolution

Figure 3.2.3.3: The spatio-temporal response of the eye tracking fast motion,

 with slower motion also present

This is a satisfactory explanation of the spatio-temporal response of the case where a

single component is moving in an image scene. However, it is more usually the case

that there are several objects moving at the same time in different directions. In the

case of television coverage of an ice skater, if the observer was to track the moving

background whilst the camera panned to follow the skater, the observer would see

multiple images of the skater on the periphery of their vision (figure 3.2.3.3).

Such problems are normally overcome by increasing the frame rate in the display so as

to provide more than enough information for the human perception mechanism to

effectively perform temporal aliasing. Unfortunately, this is not often acceptable from

an engineering stance, since the provision of more frames requires more bandwidth in

the radio-frequency spectrum and is incompatible with the desire to actually reduce

the amount of data required to reproduce an image sequence of acceptable quality.

51

3.3 Methods of motion detection and estimation

Many methods of motion estimation and representation have been investigated and

whilst an exhaustive review would be a major undertaking, an overview of the four

main areas of interest has been completed.

3.3.1 Method of differentials

This is a simple technique that relies fundamentally on two basic assumptions. Firstly,

that luminance is a linear function of position over the distance an object could move

in a given frame period - i.e. the displacement is small in comparison with the highest

image frequency present. Secondly, the luminance of objects remains constant as they

move. The second of these conditions is common to most basic methods of motion

estimation, because features are not necessarily regarded as objects they represent, but

rather arbitrary groups of similar-value pixels. As will be described later, this is a

limitation on the effectiveness of any algorithm.

The process of differentials is shown in figure 3.3.1, illustrating the process in a single

dimension. The luminance difference between corresponding pixels in temporally

adjacent frames, dt, and spatially adjacent pixels in a single frame, ds, is calculated. A

ratio dt:ds shows the interframe displacement of pixels, which can easily be observed

from the diagram. Limb and Murphy [xxii] proposed the use of this technique to

measure the speed of motion in video sequences, with two modes - optimised for both

slow and fast motion.

52

Amplitude Motion

 dt

 d

 ds

 1 pixel

 Displacement

Luminance level in adjacent frames

dt temporal amplitude difference

ds spatial amplitude difference

d interframe displacement (for calculation)

Figure 3.3.1: Estimating interframe displacement by differentials

The assumptions already mentioned can be described, by modelling the image using

the equation:

I (x, y, t + ∆t) = I (x - vx∆t, y - vy∆t, t) [Equation 3.1]

where I (x, y, t) is the intensity of a pixel at (x, y) at time t

and vx, vy are average components of motion between time t

and t + ∆t

53

for all regions of an image, except those through which an object has already passed

during time ∆t. A Taylor expansion of equation 3.1 gives:

v
I

x

I

y

I

t
E x y tx

∂
∂

∂
∂

∂
∂

+ + + =(, ,) 0 [Equation 3.2]

where E(x,y,t) represents the high-order terms of I.

Theoretically, the two directional velocity components, vx and vy, can be obtained if

the spatial and temporal derivatives of image brightness are available at the positions

of anticipated motion. It is assumed that the higher-order components of E can be

ignored.

Whilst the method of differentials has been used to some effect in low-resolution

schemes, it is unable to cope with large displacements. The use of a pel recursive

method, such as that described by Netravali and Robbins [xxiii], does help and some

form of spatial pre-filtering can be applied to the picture to remove high-frequency

components, allowing an approximate measure of motion to be made. The technique

is, however, unsatisfactory in the generation of motion vectors for temporal

interpolation, since it matches similar areas rather than producing vectors which

correspond to actual motion between frames.

54

3.3.2 Fourier Methods

Use of the Fourier transform provides a more satisfactory estimate of true motion.

However, the algorithms that result are often complex and impractical for use in real-

time coding schemes. The phase information, produced by taking the 2-D transform

of each frame, is used to determine relative interframe displacements.

If we consider two successive frames, I1 and I2 of a scene undergoing some form of

translatory motion with a motion vector of (vx, vy) pixels per field (frame) period,

then:

I2 (x, y) = I1 (x - vx, y - vy) [Equation 3.3]

ignoring edge and interlacing effects.

Taking the Fourier transform of each side and employing the shifting theorem gives:

F2 (m, n) = F1 (m, n) e
-πj(m

v
x + n

v
y)

[Equation 3.4]

where F1 is the Fourier transform of I1 and m, n represent spatial

frequencies.
v
x and

v
y are equivalent to the vector components vx, vy.

The Fourier transform of the (circular) cross-correlation of the images is:

ℑ (C) = F F1 2. * [Equation 3.5]

= F F1 1. .* e
2πj(m

v
x + n

v
y)

where ℑ () represents the Fourier transform.

Dividing this expression by F F1 1. * before taking the inverse transform, yields:

C(x, y) = δ(x - vx, y - vy) [Equation 3.6]

showing that the correlation function has become a delta function located at the

required displacement. Generally speaking, if I2 was not a pure translation of I1, but

differed in overall luminance, we would calculate:

55

C(x, y) = ℑ-1

F F

F F

1 2

1 2

*

*

[Equation 3.7]

where ℑ-1
 represents the inverse Fourier transform.

The effect of this process has been to normalise the spectrum of the two adjacent

images I1 and I2 before performing a cross-correlation. The normalising process has

extracted the phase information from the transforms. This technique is specifically

known as phase correlation, which differs primarily from normal cross-correlation in

that the sharpness of the peaks allows us to distinguish several types of motion. Other

features of this technique are that scene brightness changes do not affect

measurement, provided they have a low spectral bandwidth (if, for example, the

overall luminance drops due to a large shadow being cast on the scene). Fourier

transforms are more efficient than using ‘long-hand’ cross-correlation, particularly for

large displacements, with less multiplications required. However, the computational

complexity for a real-time sequence is still a problem and hence Fourier techniques

tend not to be used for real-time video processing.

3.4 Block matching algorithms

Having already shown that pixel-recursive techniques have inherent computational

intensity, experience has demonstrated the effectiveness of block-matching methods.

These are a fairly large category and are well-documented [xxiv], ranging on one hand

from arbitrary full-search, regular block size, algorithms to more adaptive variable-

56

size block searching, where the blocks have a greater correlation with actual shapes in

the scene.

3.4.1 Full-search block matching

This technique, refined by Jain and Jain [xxv] involves the division of an image into

small blocks of a given size. Using a larger search window, all possible blocks of the

same size in the previous frame are evaluated. The position at which least errors

occur is assumed as the origin of a current block and a displacement vector produced,

as shown in figure 3.4.1. If we denote the size of the search subject block as being a

square of dimensions n × n and the search window a square of N × N pixels, then a

simple summation can be employed to test each of the possible n × n blocks in the

previous frame. This can be expressed by the following function:

e P x y P x yc p

y

n

x

n
2

00

2

∑ ∑∑= −
==

(,) (,) [Equation 3.8]

where Pc is a pixel value on the current frame in the subject block Rc

and Pp is a pixel value on the previous frame in test block Rp.

57

 N

 Rp

r
V

 Rc n N

 n

Figure 3.4.1: Generating a displacement vector by full-search block matching.

With the generation of a motion vector
r
V dx dy= (,) , the previous frame subregion,

Rp, can be re-mapped in the current frame to the location Rc. Although this would

appear to be a generally satisfactory method of interframe motion estimation, it is

important to note that the blocks used for searching contain completely arbitrary

picture information. Calculating the errors between blocks of interest is not an

exhaustive technique. It is possible that in a given search window, N × N, there will

be several blocks from the previous frame that meet the required minimum error

criteria, simply because they possess the same net pixel intensities. However, there is

no mechanism to ensure that the location of given values within the block under

consideration uniquely correlates with those in the current subject block, Rc. For

images having large areas of uniform texture and intensity, the method of minimum

error calculation fails, as no reliable estimate of interframe motion can be produced.

58

However, the full-search block matching technique has proven feasible to implement

as a relatively simple algorithm, for the purposes of interpolative motion

compensation in predictive hybrid DPCM/DCT codec schemes. Indeed, it was

adopted by CCITT Study Group XV [xxvi] in their base models for a

videoconferencing codec system operating on channels of p × 64 kbits/s. Hardware

solutions of varying efficiency have been constructed [xxvii][xxviii], however whilst

this technique is simple, the process of block-matching motion compensation

(BMMC) requires a significant computational overhead. To demonstrate this, we can

use the example of BMMC in a standard Common Intermediate Format (CIF)

sequence, using only luminance values as the comparison for temporally adjacent

frames. If we set the block size (n × n) to be 8 × 8 pixels and the search window (N ×

N) to be 24 × 24 pixels, then:

- for each search window, there are 17 × 17 possible locations of

8 × 8 blocks = 289 positions per search window;

- the calculation of least errors requires 64 multiplications and 64

subtractions, per block. Hence, for each search window we

have 128 arithmetic operations in 289 positions = 36992 operations;

- Each frame has 400 windows of 24 × 24 pixels.

So 400 × 36992 operations = 14 million operations per frame

- and with 30 frames per second, the real-time computational

overhead is in the order of 480 million operations per second.

59

It is clear that for the purposes of real-time video codec design, this alone raises

significant implementation issues. The inclusions of fast integrated circuits to perform

this level of processing is impractical in low-cost video codec hardware.

A further drawback to the simple full-search method is that as motion vectors are

estimated on a block by block basis, it is assumed that motion within the block itself is

uniform. To make this assumption more practicable, small blocks (8 × 8 or 16 × 16)

are used, but there is an essential trade-off between the number blocks present in the

image, the amount of processing needed and the reconstructed quality. Were it not

for the real-time processing limitations of the system, simple block matching with

small blocks would be ideal. Where motion vectors are employed as “side”

information in predictive codecs, this overhead cannot be accommodated.

3.4.2 Variable-size block matching

3.4.2.1 Image decomposition

A refinement to the conventional theme of block matching is described by Chan, Yu

and Constantinides [xxix]. Using different block sizes, such that smaller blocks

describe areas of most detail, a more efficient algorithm can be developed, whilst

retaining the basic search method for blocks of similar sizes. The technique is similar

to the algorithm proposed by Horowitz and Pavlidis [xxx], in which a binary- or quad-

tree traversal algorithm is used to hierarchically segment each frame into regions of

uniform intensity. Figure 3.4.2 shows the application of binary decomposition to a

square image segment.

60

(i)

(ii)

Figure 3.4.2: Variable size block matching motion compensation showing (i) an

example of decomposition and (ii) the resultant binary tree. [After

Chan, Yu and Constantinides.]

4

1

2 3

5 9 10

6

7 8

61

Each frame is subdivided using the binary tree process shown. For each block, an

attempt is made to match it to blocks in a search window on the previous frame,

assuming that only a certain number of blocks of the same shape may exist in that

region. Sub-division into smaller blocks is performed using the calculation of a sum-

square, employing an algorithm similar to that shown in equation 3.8. The splitting

continues until the error approximation for the block falls below a certain threshold,

or until the smallest tolerable block size has been reached. In this way, a bottom-up

process is developed, starting at the largest block available which is sub-divided into

many, smaller, constituent blocks. The blocks are recognised as representing regions

of uniform intensity which is a good platform from which to commence a more

adaptive method of block-based coding. However, the blocks themselves are still of

regular dimensions and only follow statistical trends in image content, rather than

describing the nature of spatial features.

A further adaptation of this approach is made by Seferidis and Ghanbari [xxxi],

extending the binary-tree decomposition to a full quad-tree method where each node,

unless it is a leaf, generates four children (figure 3.4.3).

 (i) (ii)

Figure 3.4.3: (i) Original fixed-block image and (ii) its quad-tree decomposition

62

Intermediate node

End node

Figure 3.4.4: The process of quad-tree segmentation

[after Seferidis and Ghanbari]

The basis of both binary and quad-tree decomposition is that, to limit the extent of

processing required, maximum and minimum sizes are set for the root and smallest

block respectively. Whilst it may be desirable to specify the entire image as the root,

results for still and moving images [xxxii] have shown that it is practical to start with

smaller root-blocks of 32 × 32 pixels working down to small blocks of 8 × 8 pixels.

Hence, the tree diagram shown in figure 3.4.4 is the extent of the processing required

for the variable block size decomposition of the image segment of figure 3.4.3.

The absolute temporal difference (ATD) is defined as the measure by which blocks

are subdivided in a hypothesis test. Simply this is the sum of the absolute differences

for a spatially-equivalent block in the previous frame and those of the corresponding

block in the current frame. If this value is greater than some pre-determined

threshold, further division of the image segment is necessary. It is clear that this

process is not wholly satisfactory, since the information represented by the ATD says

very little about the nature of interframe motion. However, since the application of

motion vectors is primarily to reduce the interframe error signal, rather than provide

Root

63

an accurate description of motion, it may not necessarily be considered a

disadvantage. To ensure that subdivision only takes place where there is still a

significant change in luminance, the threshold value employed is proportional to the

number of pixels in the block. For blocks having an ATD above the minimum

threshold Tmin, a second adaptive threshold is used to divide the blocks into four

children (for the case of quadtree decomposition). An algorithm for the assignment of

blocks is then followed:

(1) choose four adjacent blocks of 32 × 32 pixels, each representing a child;

(2) calculate the absolute temporal difference for each as a, b, c, d;

(3) set the adaptive threshold Ta = (a+b+c+d)/8;

(4) if Ta < Tmin , then set Tmin = Ta;

(5) if the absolute temporal difference of any child is above this threshold,

subdivide it;

(6) stop if the minimum block size (8 × 8) has been reached, else return to

step (2).

Results have shown that the effect of this algorithm on a CIF image (352 × 288

pixels), yields 99 blocks of the maximum block size, 32 × 32 pixels. The coding

overhead can be significantly reduced by the use of Huffman variable-length codes

according to the probability of occurrence of each block. Assuming codes of 0, 01

and 11 for blocks of 8 × 8, 16 × 16 and 32 × 32, respectively, the binary tree can be

encoded with a very small overhead. For the image Claire (figure 2.1.1), the

application of quadtree segmentation yields a data overhead of 304 bits for tree

encoding. Seferidis and Ghanbari claim this to be comparable or less (depending on

64

picture activity) than the basic macro-block structured bit pattern used in the standard

H.261 codec for addressing coded/non-coded blocks.

3.4.2.2 Displacement vectors

Having a range of different size blocks provides a useful basis on which to develop an

adaptive method of interframe motion detection. It has been shown that smaller

blocks relate to areas of detail in an image, and it can be assumed that the moving

edges of the foreground subject, compared with the background, will be represented

by the smallest permissible block size. This assumption allows us to suggest that

much larger blocks will exist to represent a lack of interframe activity, particularly in

the background. Block matching can be performed using the full-search method

described in section 3.4.1. Using a local search template of ±16 pixels in the previous

frame, with respect to the reference block, the search overhead is the same for each

decomposed block, regardless of size. However, if it is assumed that motion is much

less, the search window can also be a variable size. 32 × 32 pixel blocks tend to

exhibit a low interframe activity and can normally be compensated by only a

translational motion vector. Smaller blocks, on the other hand, may demonstrate

complex rotational and perspective changes for which a further test may be required.

Generally speaking, the spatial translation for block displacement between two

adjacent frames can be depicted by two mapping functions, f1 and f2, where in the

current frame:

65

x f x y
i

c

i

p

i

p= 1 (,) and y f x y
i

c

i

p

i

p= 2 (,) [Equation 3.9]

where x
i

c and y
i

c are the current block values

and f x y
n i

p

i

p(,) is the translation of pixels in the displacement of a block

from the previous frame.

The effect of the variable shape block matching method is shown in figure 3.4.5.

Direction of motion

Previous frame Current frame

Figure 3.4.5: Edge motion affecting only smaller variable shape blocks

66

3.4.2.3 Edge block classification

Whilst these smaller blocks provide a more accurate representation of feature contrast

than might be the case with regular block sizes, there is still an arbitrary nature to the

detail they represent. Recent work by Lee and Crebbin [xxxiii] has extended the

scope of segment classification to provide a set of primitives to describe high-detail 4

× 4 pixel regions. Using eight edge classes and one mixed class in the normalised

DCT domain, pattern matching each of the blocks can be linked to six DCT

coefficients. The DCT of a 4 × 4 image vector is given by:

F =

F F F F

F F F F

F F F F

F F F F

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3,0 3,1 3,2 3,3

, , , ,

, , , ,

, , , ,

[Equation 3.10]

where the relationship of Fu,v to the spatial values Fx,y is analogous to

that stated in equation 2.5.

Components in the horizontal and vertical domains can be represented by two edge

feature sets, horizontal feature Fhor and vertical feature Fver:

F F u

F F v

hor u

ver v

= =
= =

{ ,2, }

{ ,2, }

,

,

0

0

1 3

1 3
[Equation 3.11]

The set can be expanded such that diagonal components, such as 45° and 135°, can be

represented by a combination of vertical and horizontal features.

67

This technique has been implemented such that it only extracts edge features on the

basis of their location and orientation. For reference, the DCT edge features of

equation 3.11 are grouped into one DCT set E = {Ek; k = 1, ..., 6} and the largest

value between the two dominant DCT coefficients E1 and E4, which correspond to

F1,0 and F0,1 in equation 3.11, is defined as the pivot point for the DCT set. Each

member of the set is the normalised so that the pivot point is unity, so that it is then

found that E´ = {Ek/E1} (or E´ ={Ek/E4}, for k = 1, ..., 6}. This is then used to

represent a given edge feature, without reference to the value of pixels in the spatial

domain. Lee and Crebbin have specified 24 edge models for 4 × 4 segmented blocks,

examples of which are shown in figure 3.4.6.

F01= 0.0000 0.0000 1.0000 -1.0000

F02= 0.0000 0.0000 0.3170 0.0000

F03= 0.0000 0.0000 -0.0711 -0.0711

F10= 1.0000 -1.0000 1.0000 -1.0000

F20= 0.7654 -0.7654 0.3170 0.0000

F30= 0.4142 -0.4142 -0.0711 -0.0711

Figure 3.4.6: Use of DCT coefficients to describe sample 4 × 4 pixel edge

models [after Lee and Crebbin]

To generate the basis of a fixed-length codebook, groups of 4 × 4 pixels are taken

from the input of the codec and their normalised DCT coefficients compared with

each of the 24 combinations in the edge model set. The groups are then represented

by the model which is closest.

68

3.4.2.4 Codebook design

Lee and Crebbin’s work demonstrates that a codebook cannot be exhaustive in terms

of the features it represents. Some limitation has to be imposed, where the quality of

reconstructed images has to be traded-off against the overall data requirements of the

coding system. Contemporary techniques of codebook design, to represent in the

most efficient way each type of block encountered, are based on the technique know

as the LBG algorithm, after its founders Linde, Buzo and Gray (1980) [xxxiv]. A

primary codebook comprises twelve different sub-codebooks - three for variable size

blocks in low-detail regions and nine for edge and mixed blocks in high-detail regions.

All the sub-codebooks are based on the descriptor residing in the DCT domain.

As will be discussed in chapter 4, the human perception mechanism is critical of local

areas of concentrated low-quality, compared with a smaller, overall reductions in

image quality. Hence the size sub-codebooks must be selected such that the optimal

size produces the least average distortion in the reconstructed image. Ramamurthi

and Gersho [xxxv] suggest a weight set, {ri}, to satisfy this requirement, which has a

relationship to the asymptotically optimal sub-codebook sizes, { N
i

* }, given by the

equation:

r P D

N

i i i

i

*

*
= constant [Equation 3.12]

where Pi is the probability of a block residing in the ith class. However, it is

hard to find an analytical method to derive the set { N
i

* } that produces the optimal

picture distortion { D
i

* }, since the probability density of the input image is unlikely to

be known. It is normally assumed that the distortion criteria is constant throughout

69

an image sequence, which is acceptable provided there is no significant change in

interframe activity. It has been shown [xxxvi] that the perceived quality of low-detail

regions where sub-codebook sizes are the same, is not subject to a noticeable

variation. However, a variation in the sizes of sub-codebooks representing high-detail

areas, seemed to produce an approximately equal variation in spatial quality.

Hence it is desirable to have a greater range of block classification for high-detail

areas of an image than would apply for regions of low-detail. The probability of a

block residing in any class within a codebook is reduced as the size of the codebook is

increased, simply because there are more descriptors available to describe a block.

The statistical relationship of block descriptions and the probability of block

occurrence has been examined at length by Bergeron and Dubois [xxxvii]. They

describe a technique of maximum a posteriori probability (MAP) criteria, used to set

a descriptive function and parameters, that can represent local block motion vector

fields.

3.4.2.5 Variable block size motion estimation - summary

The techniques described have only covered one area of block-based motion

compensation and many other techniques have been pursued by the video coding

community. However, in this thesis, it is intended to build on the methods described.

It has been shown that an exhaustive search of all areas in the image is not necessary

and, by introducing blocks of different sizes to represent the range of detail present in

an image, the overhead required for both searching and block description is

significantly reduced. Using statistical measures, the size of the codebooks needed to

describe interframe blocks can be adaptively suited to the image and the level of

70

temporal activity present. It has been shown that meeting a requirement for low bit-

rate coding, is as much a goal of these techniques as a constraint.

Whilst the process of block matching can use the statistical or transform domain

characteristics of a pixel block to uniquely identify it from others in the area, blocks

still cannot, inherently, describe the nature of features appearing in an image. An edge

is merely the transition in contrast between neighbouring groups of pixels and even

though a group of blocks, all transversed by an edge, may show statistical trends,

there is still no direct relationship between the topography of features and the motion

they undergo.

3.5 Model-based coding

Model-based coding is a technique which models the detail of image objects so they

may be represented in coded form. Applications are diverse ranging from the

interpretation of handwriting and automated facial recognition, to the identification of

diagnostic trends in medical image processing. As an example, we could require that

the receiver displays a cube undergoing some kind of rotation or translation. Using a

model for the description of the cube, the information needed to generate a moving

sequence at the receiver would be the size, colour, position and other static properties

of the cube, together with a description of its motion. Whilst it is easy to produce

computer animated sequences of simple objects undergoing motion, it is not so

straightforward for the head and shoulders of one of the parties in a videoconference.

Once again, a measure of image quality must be employed to maintain a minimum

acceptable level of detail. An image having many blurred or misplaced artefacts

71

would demonstrate a direct relationship between the relative observed spatial quality

and the calculated signal to noise ratio. It is also possible to continue the approach

where a trade off is accepted between the spatial quality of a particular object and its

temporal motion.

The application of model-based techniques to low bit-rate image coding is discussed

by Welsh [xxxviii], who describes two approaches. The first is purely synthetic,

where a sequence of frames is coded and transmitted in such a way as to allow the

receiver to effectively produce an object animation. Differences encountered will be

tolerated, provided they are small and non-propagating. The second approach [xxxix]

employs model-based methods to form a good prediction of successive frames for a

moving sequence, with errors between the predicted and actual frames coded using

the conventional techniques outlined in chapter 2.

Model-based predictors produce an estimate of true motion superior to block-based

approaches, allowing the data rate to be reduced without any significant reduction in

picture quality. Since features are more easily classified, the predictive algorithm can

concentrate effort on areas where the viewer requires greater spatial resolution, such

as the eyes and mouth in a videophone scene.

72

3.5.1 Model-based image synthesis

A common method of representing two- and three-dimensional objects in computer

graphics is by a network of connecting polygons. The model can then be stored in the

computer as a list depicting the relevant shape relationships. These arrays take two

forms. Firstly, the x, y and z co-ordinates of each polygon vertex in object space

X[V], Y[V], Z[V], where V is the vertex address. Secondly, a pair of two dimensional

arrays is used LINV[L][E] gives the addresses of the vertices at the end of line L,

where E is 0 or 1, depending on which end of the line is involved. LINL[P][S] gives

the line address for each side S of a polygon P. A wire frame image can then be

plotted to depict the object by examining all the values of L in LINV[L][E] giving the

vertex addresses, which in turn supply the X[V] Y[V] and Z[V] data. A small example

of this technique is shown in figure 3.5.1.

Figure 3.5.1: Section of a simple wire-frame model

In the example shown, the co-ordinates of vertex V5 are X[5], Y[5] and Z[5], each

indexed by vertex addresses. The addresses of each end of line L6 are given by

73

LINV[6][0] and LINV[6][1]. The addresses of each side of polygon P3 are given by

LINP[3][0], LINP[3][1] and LINP[3][2].

To give the model an impression of depth, shading can be employed to depict

contours with respect to light reflected from a given source, as shown in figure 3.5.2.

Figure 3.5.2: Shading a polygon net to enhance perceived depth

Further processing can employ shading techniques [xl] which interpolate a smooth

transition in luminance between polygons, giving the effect smooth curved surface.

Wire-frame models of faces were constructed by Frederic Parke [xli] to produce facial

animations. The face can be made to move in a global way by applying common

rotations and translation to the vertices as a whole, with local changes made to

emphasise changes in facial expression - a technique that corresponds to the

evaluation of facial actions (the facial action coding system, or FACS) [xlii]. Parke

took 50 categorised actions and translated them into a set of vectors that could be

applied to the vertices.

74

Parke’s work has been taken further by Akimoto, Suenaga and Wallace [xliii], who

have developed a generic head model based on the wire-frame principle. They

worked on the basis that it is difficult and computationally impractical to generate a

full set of vertices, for a given person, on a real-time basis. So, it was proposed that a

generic model could be adjusted to reflect the unique facial features of an individual.

Using a front and side view, the feature extraction system extracts the base vertices of

a new subject. A template matching technique is used to identify primary profile

features, such as chin tip, mouth, nose tip and nose bridge. Hence the areas of

searching are limited to those of most subjective interest to the coding application.

The generic model is then adjusted to take account of these changes, altering the

vertices co-ordinates and polygon topography as required. The structure of this base

model is shown in figure 3.5.3.

75

Figure 3.5.3: The structure of a human head base model

Figure 3.5.4: The application of depth shading

76

The technique developed by Welsh et al uses the synthesis of certain areas of the face

to produce a montage of the expressions to be applied to an individual’s base model at

the decoder. A codebook is developed for each face, with up to 10 different

subimages of both the eyes and the mouth, which allows up to 100 facial expressions

to be modelled. To improve the spatial effect, the edges of the subimage can be

contoured against the vertices of the head model to give the effect of smoothness,

even though changes and perspective and orientation may, in some part, have

occurred.

The primary difficulty of model-based synthesis lies in the evaluation of the face when

generating the codebooks. Locating the eyes and mouth, especially from an

undulating head and shoulders image of low contrast, is not a simple proposition.

Furthermore, the selection of appropriate templates to generate the expressions is a

difficult task. It is perhaps analogous to quantisation - where we try to describe a

feature having a large range of possibilities with a small set of values. Interpolation

between actual and montage vertices produces a spatio-temporal impression of

smoothness, although this is practically the introduction of errors. For cases of more

significant change, the tracking of individual vertices may be difficult to achieve,

where several vertices may make up a feature such as the mouth.

The wireframe structure shown in figure 3.5.3 is unlikely to be adopted for a real-time

coding system, simply because it would be difficult to model the face against all the

vertices provided. The model can be represented with less points in a three-

dimensional space, effectively producing an image of lower spatial resolution. The

77

emphasis of coding can then be applied to the eyes and mouth as areas having most

spatial significance to the viewer.

Practical implementations of the synthesis technique employ binary extraction to

locate the important facial features. Using a simple edge enhancement algorithm,

such as a Sobel filter, the transition zones between areas of contrast can form the

basis of a simple search process. Nagao [xliv] used a sample of 700 faces and claimed

a feature extraction success of 90%. The Welsh model is 50% efficient, however this

work has been carried out with an application to real-time coding. The sourcing of

eye and mouth features requires a significant computational search overhead and the

transmission of codebooks to the receiver has a high initial data transfer requirement.

Whilst this method of model based coding examines more closely the spatial detail of

an image, it is still concerned only with the boundaries between areas of detail in

making a prediction of motion. A more intuitive algorithm would not only look at the

edges, but also consider the content of subregions.

3.5.2 Model-based coding - summary

This section has described work which provides coding parameters more directly

associated with the physical nature of features in an image. However, there is some

degree of compromise required in the extent model notation. Model-based coding has

a foundation in computer graphics and static image analysis, where real-time

constraints are not an issue. However, the application to interactive video coding

indicates that models must be of lower resolution, and in the case of model-based

78

synthesis, codebooks must be a fixed set to reflect a range of likely changes in feature

orientation, whilst limited by the processing capability of the system.

There is a strong argument that feature based coding techniques along these lines are

the way forward in video coding and whilst model-based coding, in general, is not

suited to a realistic implementation as a video codec algorithm, it does provide us

with some important pointers for future development.

79

Chapter 4

Spatial Processing

Methods of low-resolution image representation

4.1 Introduction

It has already been shown that a mechanism which encodes an image or video

sequence in terms of its constituent features is closely linked to the human

psychovisual perception mechanism. The fundamental issue explored in this chapter is

the extent to which image quality can be compromised to yield a more efficient data

representation for subsequent coding.

The approach to this is made in several ways. Initially, the expectations of human

perception will be considered - more simply, what can we “get away with” ?

Essentially, it will be shown that there is a useful trade-off between the amount of

information needed to represent a picture and the quality the perception mechanism

can tolerate. Methods of data reduction can be very effective, providing a lower

resolution image. Inevitably an image of inferior quality will result, but it may be the

case that the image, when viewed as part of a video sequence, will be satisfactory. It

will then be suggested that pre-processing can be employed to reduce the quantity of

subregions required to represent an image, such that low bit-rate coding can be used

to transmit a sequence of satisfactory quality to a decoder.

This chapter will also introduce some of the benchmarks used to quantify image

quality - contrast sensitivity and the signal-to-noise ratio of single images and video

sequences. Ideally, it would be desirable not to have to reduce image quality at all.

80

However, the scope of this thesis is the demonstration of a novel mechanism to

perform classified subregion motion estimation and as such, it must be expected that

compromises will be made between quality and codec efficiency.

4.2 Spatio-temporal perception

Chapter 3 dealt extensively with the concept of object displacement and its

relationship to the spatio-temporal frequency spectrum. In a more qualitative way, we

can assess the application of this relationship on contemporary standards of video

production. Throughout Europe and Australasia, video is supplied with a spatial

resolution of 625 lines of pixels per frame, operating at 25 frames per second,

whereas in the Americas and the Far East, the 525 lines, 30 frames per second, system

is used. In each system, there is a balance between spatial and temporal quality, with

the 625/25 system offering greater spatial resolution, at a slightly slower framerate.

Relating the constraints of these standards back to the evaluation of spatio-temporal

perception, we know that the video has to be displayed at a frame rate fast enough to

prevent visible flicker and temporal aliasing, and at a spatial resolution so as to

provide sufficient information to allow the recognition of features.

The spatial resolutions specified by the ITU-T for videoconferencing codecs under

recommendations H.261 and H.263 are shown in appendix 1. Three distinct image

formats are shown, based on the primary Common Intermediate Format (CIF), with a

spatial resolution of 352 × 288 pixels. Nominally, temporal resolution is sampled at

25 frames per second, however most practical H.261 codecs employ a degree of

variable frame rates, as a further trade-off in the provision of better spatial quality at

81

times of significant interframe motion. The effect of these spatial resolutions is that if

the QCIF image were enlarged to the same actual size as a CIF image, it would have

one quarter of the resolution. However, that is not to say that the psychovisual

perception mechanism will perceive a similar qualitative reduction in detail. Extensive

work evaluating the human perception of spatial quality has been carried out by

Watson [xlv], who not only assesses the effects of a change in spatial resolution, but

also considers the characteristics relating to different types of spatial quantisation.

Work by some psychologists, particularly Triesmann [xlvi], has suggested that in

general, the psychovisual perception system tends to take more interest in the spatial

qualities of objects undergoing motion. This infers that the amount of detail in the

surroundings and background are not an issue.

4.3 Spatial pre-processing

If we are to relate these observations to the type of information held in a

videoconferencing scene, they would be most useful as the basis of a pre-processing

mechanism. For example, would it be practicable to introduce a resolution-reduction

technique and spatial quantisation to deliberate attenuate the quality of an image?

There would naturally be an effect on the quality observed by the viewer, but there

would also be a significant reduction in the amount of data required to represent the

image as part of a video sequence. To further explore this idea, consider the three

CCIR standard images shown below.

82

Figure 4.3.1: Frame 001 from CCIR base sequence Susie

Figure 4.3.2: Frame 001 from CCIR base sequence Miss America

83

Figure 4.3.3: Frame 001 from CCIR base sequence Salesman

Looking at each of these images, we see they represent a range of spatial detail likely

to occur in a fixed-background videoconferencing situation. This distinction is

important, since other image sequences contain elements of pan, where the

background changes as the camera tracks a foreground subject. For the purposes of

this work, we shall assume that the camera is static in common with most

videoconferencing codecs. The frames from Susie and Miss America show a

foreground subject of principally facial detail, set against a fairly plain background.

However, the Salesman image is more complex, having a background of much greater

detail. If we consider the postulates of spatial perception already mentioned, we

should still be able to reduce the resolution of the images and gain a data compression

advantage, with only a small cost in image quality.

4.3.1 Reduction in spatial resolution

To test this idea, each of the images was reduced from a full CIF original to a QCIF

equivalent, using two different techniques.

84

4.3.2 Image sub-sampling

Image subsampling is a simple method of reducing image resolution without the need

for any processing of the pixel intensity value. An image is reduced in size by a scale

factor s, simply by skipping to every s’th pixel. The relationship between the area of

the resulting lower resolution image and the original is proportionate the square of s,

hence:

[M(R’) × N(R’)] =
1
2

s
[M(R) × N(R)] [Equation 4.1]

where M × N is the image area (width × height)

and R and R’ are the original and resultant images, respectively.

In the case of a CIF original image, the area will be 352 × 288 = 101376 pixels. The

application of a scale factor of 2 will be a QCIF image of 176 × 144 = 25344 pixels,

one quarter the original resolution. Although used in many primitive systems,

arbitrary sub-sampling produces an unsatisfactory representation of the original

image, simply because so much data (in this case, 75%) is discarded. This effect is

shown in figure 4.3.4.

x sub-sampling sampled pixels

y sub-sampling

85

Figure 4.3.4: Image sub-sampling

Simple sub-sampling was applied to each of the test image frames, using a scale

factor, s, of two to produce QCIF resolution. The resultant images were scaled to

CIF equivalent size, such that each group of four pixels represents one single sub-

sampled pixel from the resulting QCIF image. This allows for the visual comparison

of the images.

Figure 4.3.5: Susie 001 - QCIF result of sub-sampling

Figure 4.3.6: Miss America 001 - QCIF result of sub-sampling

86

Figure 4.3.7: Salesman 001 - QCIF result of sub-sampling

The effect of this process has a greater influence on picture quality in areas of detail

and high-frequency transitions in luminance. For example, the edge of the telephone

handset in Susie has a stepped profile, as does the shirt sleeve in Salesman. This

noticeable degradation must be addressed, as it will inevitably cause error propagation

in subsequent processing.

For a more quantitative appreciation of image quality, we can compare the resultant

images to their originals using the mean square signal-to-noise ratio [54], which for

images is given by:

snrms (dB) =

[]
10 10

2

0

1

0

1

2

0

1

0

1
log

(,)

$(,) (,)

f x y

f x y f x y

y

n

x

m

y

n

x

m

=

−

=

−

=

−

=

−

∑∑

∑∑ −
[Equation 4.2]

where m and n are the image width and height

and f x y f x y(,), $(,) are the original and resulting image pixel values.

87

Image snrms

(dB)

Susie 001 40.2101

Miss America 001 43.6039

Salesman 001 42.2735

Figure 4.3.8: Sub-sampling signal-to-noise ratio

4.3.3 Mode-value sampling

In spite of its obvious limitations, the sub-sampling technique, illustrated in figure

4.3.4, is quite satisfactory for images having large areas of consistent pixel intensity,

but in areas of detail, extracting one pixel in every four may reduce the overall

representation of trends in the image. To help deal with this, another technique was

developed to sample the original CIF image and extract one value for each four that

represented the four pixels as a group.

Statistical sampling is a technique used predominantly in spatial filtering, where

individual pixel errors can be compensated by considering the surrounding pixel

values. However, for the purposes of this exercise we can consider the possibility of

extracting the mean, the median or the mode value of each s × s pixel block, where s

is the scale factor. The mean value would represent most accurately the trend of pixel

intensity in a block, however it would inevitably result in the introduction of many

new values not present in the original image. As images are normally represented by

integers only, the rounding up of a floating-point value would introduce errors to the

88

low-resolution image. Given that the median is simply the middle value and does not

represent the spread of intensities, it was decided to select the mode as a sample

parameter for the reconstructed picture. So for an s × s sample block, the mode is the

most frequently-occurring value.

Block 1 Block 2

4 4 5 6 Mode-value segment

4 3 5 6 4 5

4 5 5 4 4 4

4 3 4 4

Block 3 Block 4

CIF QCIF

Figure 4.3.9: Extraction of mode value samples, s = 2

For the usual case where the scale factor, s, is an even integer, there will be occasions

where the mode value could be either of s values, as is the case in figure 4.3.9, Block

2, where the scale factor is 2. The algorithm deals with this situation by selecting the

lower of the two values. In areas of consistent pixel intensity, the mode value is

normally representative of all the pixels, whereas in areas of transition, the mode value

represents the dominant pixel value for that block and the QCIF image represents

local trends more efficiently than may be the case for simple sub-sampling.

89

The mode sampling algorithm was applied to each of the three test images and the

results are shown below. Once again, the images have been re-scaled for comparison

with the original CIF images. Hence, each block visible is simply four picture

elements representing the one sample made for the resultant QCIF image.

Figure 4.3.10: Susie 001 - QCIF result of mode sampling

Figure 4.3.11: Miss America 001 - QCIF result of mode sampling

90

Figure 4.3.12: Salesman 001 - QCIF result of mode sampling

The evaluation of signal-to-noise ratio for each of these images, compared with the

original CIF image was made and the results are shown in figure 4.3.13.

Image snrms (dB)

Susie 001 56.7098

Miss America 001 61.4962

Salesman 001 59.6213

Figure 4.3.13: Mode sampling signal-to-noise ratio

Once again, a visual inspection of each of the resultant images shows a coarse

rendition of changes in contrast. However, there is a significant improvement in the

signal-to-noise ratio, based upon the original images. This suggests that the selection

of mode value as a sample parameter is more effective than the previous method of

image sub-sampling. The interpolation of the QCIF result back to a CIF format for

this comparison has produced an image more closely resembling the original. If a

91

scheme is to be selected for image sampling, it is clear that mode value extraction is

preferable.

4.4 Spatial quantisation

The amount of data required to represent an image can be further reduced by the

introduction of quantisation, which is a pixel-level approach to achieving a lower

resolution image. Quantisation is used throughout signal and image processing to

reduce a large set of values to one much smaller for the purposes of coding. It has

already been shown in chapter 2 that the introduction of a quantiser to the

DPCM/DCT loop in a predictive video codec reduces the range of DCT coefficients

and makes coding more efficient.

Having achieved a reduction in image resolution by the use of mode sampling, the

feasibility of further pixel quantisation was investigated. Figure 4.4.1 shows a

histogram of the pixel luminance values in the base image Susie001. The data shown

is for the value of pixel luminance - this is of most significance in video processing as

the psychovisual perception system is more sensitive to changes in brightness than to

changes in colour.

92

0

500

1000

1500

2000

2500

3000

1 24 47 70 93 116 139 162 185 208 231 254

Pixel luminance

F
re

q
u

en
cy

Figure 4.4.1: Luminance histogram for the base image Susie001

The representation of the luminance for any CIF image, without quantisation will be a

fixed value of 352 × 288 pixels × 8 bits, if there are 256 grey levels. This overhead of

811008 bits per frame can be reduced by quantisation. By halving the total number of

steps of quantisation employed, the datagram is reduced by one bit.

An algorithm for linear quantisation was developed, allowing the user to specify any

even quantisation step interval, ∆Q. If an input value lies within the range ηn to ηn +

∆Q

2
, or ηn -

∆Q

2
 then it is assigned to the quantised luminance value ηn (figure

4.4.2).

∆Q

2

∆Q ηn Decision thresholds

∆Q

2

Figure 4.4.2: Assignment of quantisation values

93

Quantisation was performed on each of the three base images, using steps of ∆Q=8

and ∆Q=16 luminance levels. As figures 4.4.3. and 4.4.4 show, there is a

considerable reduction in the range of luminance values for Susie001, without a

significant change in spatial quality. Figures 4.4.5 and 4.4.6 show the application of

the same quantiser to the Salesman sequence. Notice that the overall contrast of

adjoining objects has improved, as quantisation has had the effect of increasing some

spatial frequencies.

Figure 4.4.3: Susie001 - CIF image with quantisation ∆Q=8

94

0

2000

4000

6000

8000

10000

12000

14000

16000

1 25 49 73 97 121 145 169 193 217 241

Pixel intensity

F
re

q
u

en
cy

Figure 4.4.4: Luminance histogram for base image Susie001, ∆Q=8

Once again, there are now only a small range of values required to represent the

image. Overall, Salesman is notably darker than Susie and so the most frequently

occurring values are at the lower intensities (figure 4.4.6).

Figure 4.4.5: Salesman001 - CIF image with quantisation ∆Q=8

95

0

2000

4000

6000

8000

10000

12000

14000

16000

1 25 49 73 97 121 145 169 193 217 241

Pixel luminance

F
re

q
u

e
n

c
y

Figure 4.4.6: Luminance histogram for base image Salesman001, ∆Q=8

In both cases, the effect of a quantisation step interval of 8 luminance levels is to

reduce the range of values from 0-255, single step, to 0-255, eight steps. To

represent 255 levels, eight bits are required, whereas for the quantised image the

maximum number of values is 32, which would be coded using five bits. In general,

the number of bits required, NB, following quantisation is:

NB = log2
ηmax

∆Q
 - 1 [Equation 4.3]

where ηmax is the maximum number of grey levels

and ∆Q is the quantisation step interval.

For a full CIF image, the number of bits required to represent an image is:

352 × 288 × 8 = 811008.

However, for a full CIF image processed with a quantisation step interval, ∆Q=8, the

number of bits required is:

352 × 288 × 5 = 506880

which is 62.5% of the original.

96

Having considered the bitrate, the signal-to-noise ratio of the quantised image

provides a quantitative measure of image quality. The linear quantiser was applied to

each of the test images for ∆Q=8 and ∆Q=16 (figure 4.4.7).

Image snrms(dB)

∆∆Q=8

snrms

(dB)

∆∆Q=16

Susie 001 41.6001 39.3813

Miss America 001 39.7326 37.6130

Salesman 001 40.0457 38.2237

Figure 4.4.7: The effect of quantisation on signal-to-noise ratios

In the case of ∆Q=16, there will be a reduction in bits required per pixel to four,

reducing the data overhead to half that required for the original representation.

However, images resulting from this level of quantisation were found to be of poor

spatial quality and it was decided not to pursue any level of less than 5 bits (∆Q=8).

4.5 Hybrid pre-processing

Having evaluated the separate effects of image spatial sampling and pixel quantisation,

the processes can be combined to produce a low-resolution image which can be

represented by a much smaller data set. In other words, we can both reduce the

number of pixels and the number of values they can take. The nature of the algorithm

is shown in figure 4.5.1.

97

 Quantised
Input CIF Output
CIF Mode-value

QCIF

Figure 4.5.1: A hybrid spatial pre-processing algorithm

It was noted that the most efficient method of combining the two processes was to

have quantisation before sampling. Whilst this adds slightly to the process load (the

quantisation is performed on all the pixels in a CIF image), the effect on signal-to-

noise ratio of reversing the process is that more errors result as the mode-values

selected may represent a much larger variance in luminance than was originally the

case. Each of the test sequences was processed and the resulting bitrates and signal-

to-noise ratios evaluated (figures 4.5.2 to 4.5.5).

Figure 4.5.2: Susie frame 001 after hybrid pre-processing, s=2, ∆Q=8

Quantisation Mode-value

Sampling

98

Figure 4.5.3: Miss America frame 001 after hybrid pre-processing, s=2,

∆Q=8

Figure 4.5.4: Salesman frame 001 after hybrid pre-processing, s=2,

∆Q=8

99

Image snrms(dB)

s=2, ∆∆Q=8

Susie 001 40.8508

Miss America 001 39.1163

Salesman 001 39.5421

Figure 4.5.5: Hybrid pre-processing single frame signal-to-noise ratios

The effect of hybrid pre-processing on the range of pixel values produces histograms

of the same overall shape as before, however with lower frequencies, due to the

reduced resolution in QCIF format (figures 4.5.6 and 4.5.7).

0

500

1000

1500

2000

2500

3000

3500

4000

1 25 49 73 97 121 145 169 193 217 241

Pixel luminance

F
re

q
u

e
n

c
y

Figure 4.5.6: Luminance histogram for base image Susie001 after hybrid

pre-processing, s=2, ∆Q=8

100

0

500

1000

1500

2000

2500

3000

3500

4000

1 25 49 73 97 121 145 169 193 217 241

Pixel luminance

F
re

q
u

e
n

c
y

Figure 4.5.6: Luminance histogram for base image Salesman001 after

hybrid pre-processing, s=2, ∆Q=8

Having retained the overall pixel distribution, albeit at a fraction of the original image

magnitudes, it is clear that a significant reduction in bitrate will be possible, whilst the

image quality has been lowered to an acceptable level. The use of a quantisation

interval of 8 levels (5-bits), was adopted for all remaining work, as it was considered

the best trade-off between bitrate reduction and the maintenance of acceptable quality.

To consider the associated bitrate implications, we can evaluate the effects of applying

both quantisation and mode-value sampling to the single frame images:

Quantisation

If ∆Q is set to eight grey levels, the effect of quantisation will be:

NB = log2
256

8
 - 1 = 5 bits per value

101

Resolution

If CIF is mode-value sampled to QCIF, there will be a 25% reduction in

data content, hence:

176 × 144 = 25344 pixels per frame

Bitrate reduction

To describe the original, CIF image, with 256 luminance levels, the required

bitrate for each frame is:

352 × 288 × 8 = 811008 bits per frame

compared with

176 × 144 × 5 = 126720 bits per frame

a reduction to 15.6% of the original data overhead.

4.6 Spatial Processing - Summary

This chapter has described an effective method of picture pre-processing, which

realises the efficient reduction of data content. It has been shown that an image of

lower resolution can quite adequately represent the range of spatial information

required for low bit-rate transmission, using a novel application of mode-value

sampling. This ensures that the resultant image more closely reflects trends in pixels

values that may not be accurately represented by simple two-dimensional sub-

sampling.

102

It has also been shown that quantisation can be employed to reduce the range of

values a pixel can take. The histograms demonstrate that this method of sampling

maintains the characteristic pixel frequency curve shape, albeit with many less levels

of luminance.

The combined effect of these techniques is an algorithm which can easily be applied to

images, having no intraframe recursion and working at real-time requirements. It will

subsequently be demonstrated that the pre-processing technique yields further benefits

in terms of designating the contrast levels between adjoining groups of similar value

pixels.

More fundamentally, the application of spatial processing is a method of conditioning

the resolution of images, such that control exists as to the extent of reduction in image

quality outside the machinery of interframe coding. In many video codecs, image

quality is determined by the constraints imposed by the compression algorithm and the

bitrate requirements. It is therefore a useful departure from conventional thinking to

deliberately manage the resolution of images before compression and coding takes

place.

103

Chapter 5

Feature Classification

The detection and identification of image subregions

5.1 Introduction

This chapter introduces the infrastructure of a novel method of image classification,

representing groups of pixels by the shape they take. Chapter 3 examined closely the

range of techniques currently employed for motion compensated video coding,

ranging from regular-shape blocks, image decomposition and segmentation and

model-based coding. Each of these techniques, whilst adequate for the purposes of

motion compensation, is rather cumbersome, tends not to directly represent spatial

features and may not uniquely represent any particular group of pixels, making a good

prediction of motion difficult to achieve.

The iterative binary and quadtree segmentation approaches are, however, a step in the

right direction. The fundamental idea explored here is whether these processes can be

reversed, such that a subregion is formed from the pixel level up, rather than from the

whole image down. Using a method of unique value clustering, it will be shown that

an algorithm of low computational complexity can be developed. It will also be

demonstrated that the methods of spatial processing described in chapter 4 are of

particular assistance in regulating the quantity of features to be detected and

classified.

Having extracted groups of pixel values from a given image, a simple method of

topological classification is demonstrated. In subsequent chapters, it will be seen that

104

the efficient generation of motion vectors will depend almost totally on the success of

feature classification.

For the purposes of nomenclature, a whole image frame R is composed of many

subregions, or features, which for the purposes of this work are simply groups of

similarly valued picture elements, conforming to some basic predicates.

5.2 Pixel Clustering

5.2.1 Seed Pixels

Pixel clustering is a simple method of region-growing and is familiar to users of

computer graphics applications. One use of this technique is the extraction of non-

uniform areas of interest by shading an area of pixels, which conforms to given

parameters, with a high intensity colour. Often, the user randomly selects a seed pixel

as the start location and the process ‘grows’ the sub-region around the seed.

To extract sub-regions for feature classification, a refinement to this approach is

required. Firstly, the selection of a seed pixel must be made in accordance with

simple criteria, common to all sub-regions and so the method selected uses the raster-

scan principle to pass all possible seed pixel locations. Consider figure 5.2.1.

105

Figure 5.2.1: Scanning for the location of seed pixels

The criteria used is simple and non-recursive. The seed pixel is the first pixel to be

encountered in the scan, which is different from its immediately scanned predecessor

and which does not belong to a sub-region associated with a previously marked seed

pixel. In the example shown, for many sub-regions, the seed pixel tends to be located

at the top left-hand corner, however in the lower sub-region, the seed pixel is a single

point above the main body of it's related group.

The process of clustering is known as pixel aggregation. Starting with a series of seed

locations, neighbouring pixels are appended to a set, provided they meet certain

spatial predicates and have a similar value to the seed pixel. The practical

implementation of this is a linked-list, which is a set of values and (x, y) co-ordinates

identifying related pixels and their luminance values.

106

For a given image, R, we may consider segmentation as a process which partitions R

into a set of n adjoining sub-regions, hence:

R Ri

i

n

=

=
1

U [Equation 5.1]

where Ri is a connected sub-region, i = 1, 2, ..., n

and Ri ∩ Rj = ∅ for all i and j, i ≠ j

where ∅ is the null set, demonstrating that adjacent subregions are disjoint.

For all the constituent pixels of R, we can define a subregion using a predicate P(Ri) =

TRUE for i = 1 ,2 ,..., n which shows that the pixel values (in this case) will be the same

and predicate P(Ri ∪ Rj) = FALSE for i ≠ j, indicating that pixels in adjacent regions are

different.

5.2.2 Pixel Relationships

Having specified the nature of sub-region uniqueness, we can consider the

aggregation process for the formation of image sub-regions R1 to Rn. This can take

two forms. A pixel p at co-ordinates (x, y) has four horizontal and vertical

neighbours, whose co-ordinates are given by:

(x + 1, y) (x - 1, y) (x, y + 1) (x, y - 1).

This set, called the four-neighbours of p, is denoted by N4(p). Each pixel is a unit

distance from (x, y) and some of the neighbours of p will lie outside the image area if

(x, y) is on the border.

107

The four diagonal neighbours of p reside at:

(x + 1, y + 1) (x + 1, y - 1) (x - 1, y + 1) (x - 1, y - 1)

and are denoted by ND(p).

These points, together with the four-neighbours are called the eight-neighbours of p,

N8(p). As before, some of the points of ND(p) and N8(p) will lie outside the image

boundary.

5.2.3 Pixel Connectivity

An important concept in establishing boundaries of sub-regions is whether adjoining

pixels are neighbours in terms of satisfying the set criteria, as well as having some

kind of luminance similarity. It is not necessarily the case that pixels are wholly

related, simply because they belong to the four-neighbour set.

If a further parameter is set, a sub-region can be formed against both spatial and value

measures. For example, we could select a sub-region as comprising pixels having

luminance values in the range η=32 to η=64, forming a value set:

V = {32, 33, ..., 64}.

Four-connectivity would apply if two pixels are in the set N4(p) and have values from

V. Similarly, eight connectivity would be satisfied if two pixels are in the set N8(p)

and have values from V (figure 5.2.2).

108

s w s x

r p t r p t

q v q u

q ∈ {N4(p)}, q ∈ {V} v ∈ {N8(p)}, v ∈ {V}

Four-connectivity Eight-connectivity

Figure 5.2.2: Pixel connectivity relationships

A refinement of these relationships is referred to as m-connectivity. Generally

speaking, two pixels p and q with values from V are m-connected if :

q ∈ N4(p)

 or q ∈ ND(p) and N4(p) ∩ N4(q) = ∅

This is a useful extension of the set relationship as it avoids multiple path connections used

when eight-connectivity is employed. Consider figure 5.2.3.

0 1 1 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

Eight-neighbours m-neighbours

Figure 5.2.3: Modification of pixel connectivity

Notice that the multiple connection to the top right value, which was double

connected under the set N8(p) is now connected only horizontally and vertically. It

109

has a relationship to the centre pixel, but only via the value in the middle of the top

row.

The application of these predicates to a sub-region clustering algorithm is quite

straightforward. We select a set V, comprising the range of values permissible and

then specify the type of connectivity required. It was considered most appropriate to

have only orthogonal connectivity, as this allowed a simple perimeter description,

described later. Using the idea of m-connectivity, diagonal relationships are not

allowed, unless the path can be made via a mutually adjacent pixel (figure 5.2.4).

Figure 5.2.4: Sub-region connectivity

In the group, pixel Y is not connected to pixel W in the set N4(W), however, it is

connected via the set N4(X). Pixel Z, on the other hand, is not four-neighbour

connected to any pixels in the group and so would not be considered as part of this

subregion.

110

5.3 Image Segmentation

Chapter four showed how the introduction of spatial pre-processing significantly

reduced the overhead in data required to represent an image. One useful side effect of

this process is that it makes image segmentation much easier. Practically, we find that

adjoining pixels tend to vary by only small luminance values, unless there is an

obvious boundary between the objects in an image. If quantisation is introduced,

these small fluctuations are removed and the result is a larger region comprising pixels

of the same value. The contrast between such regions is improved to a minimum

equal to the quantisation step interval, ∆Q. If an image, R, is composed of up to n

subregions, the value of n will be reduced as ∆Q is increased.

In order to test this effect, quantisation was applied to the image sequence Miss

America, with ∆Q set to a minimum of eight grey levels and then increased to 16 and

32 grey levels. A sample frame of eight-level quantisation is shown in figure 5.3.1.

Figure 5.3.1: Miss America QCIF resolution with ∆Q=8

111

Sub-regions were segmented on the basis of the m-connectivity approach, but instead

of using a range of values in a set V, a single quantised value was used for that

locality. The total quantity of segmented sub-regions was counted and the results are

shown in figure 5.3.2. It is clear that quantisation directly affects the quantity of sub-

regions in a given image.

0

200

400

600

800

1000

1200

1400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Frame number

S
u

b
-r

e
g

io
n

 f
re

q
u

e
n

c
y

No quantisation

8 levels

16 levels

32 levels

Figure 5.3.2: The effect of quantisation on sub-region frequency (Miss

America)

5.4 Sub-region boundary tracking

The process of orthogonal pixel connectivity allows for several approaches to the

unique classification of a particular type of feature, together with its location in the

image space, R.

There are many approaches to the description of sub-region topography for the

purposes of digital image processing. We can consider the perimeter of a shape as

being a description related to the pixels bounded to it, the pixels outside it, or the

112

“cracks” between such pixels. Rosenfeld [xlvii] introduced the concept of adjacency

graphs, where a digital image can be represented as a graph whose vertices are the

pixels. An edge of the graph corresponds to each pair of adjacent pixels and

connected subsets containing similar pixels formed consistent subgraphs. A

neighbourhood was defined as the boundaries found in an image and was introduced

as a set of adjacent graph vertices.

In defining what constitutes a sub-region boundary, Rosenfeld [xlviii] went on to

define a crack as a finite element separating two pixels which, for the purposes of this

analysis, are considered as squares. To generate the boundary of a sub-region, we

require that for any two adjacent sets, Ri and Rj in an image region R, Ri ∩ Rj = ∅.

The boundary, or frontier, of a sub-region can be extracted as a series of cracks,

comprising no pixels. It may be a closed polygon, or several polygons if the sub-region

has holes in it. For the purposes of this application of boundary tracking, it is assumed that

a sub-region wholly contained within another will be classified in its own right and so the

latter of these characteristics will not apply. Consider figure 5.4.1. If we take the “inner”

and “outer” boundaries of the sub-region, then we could say that they were the same, as

they achieve the topological classification of a common perimeter. However, Pavlidis

[xlix] makes a distinction between them as there is a difference in the numbers of pixels

involved.

113

(i) (ii) (iii)

Figure 5.4.1: (i) An image sub-region, (ii) its boundary comprised of a

series of “cracks”, (iii) its “inner” and “outer” boundaries

under eight-adjacency.

As we already have the sub-region pixel information as a set of connected values, we

simply need to describe the shape they take as a unique classification. This is done by

a method similar to that described by Kovalevsky [l], where boundaries are tracked

and a complete shape description taken when the outline is closed. (figure 5.4.2).

(a) (b) (c) (d)

Figure 5.4.2: Turn rules for boundary tracking

114

We select the perimeter as being the series of cracks bounding the entire sub-region

and the boundary is tracked, starting and finishing at the seed pixel location. When a

node (the intersection of four pixels) is reached, a decision is made on the next

tracking direction by evaluating the four adjoining pixel values. If L and R are in the

object, turn left, but if L and R are in the background turn right. If L is in the

background and R is in the object retain the old direction. Kovalevsky allows for a

further condition to track left if L is equal to the object value and R is not (rule (a)),

however this only satisfies the connectivity of N8(p), which is not being used in this

feature extraction process. When complete, a code can be constructed to describe the

path followed by the boundary tracking algorithm and, given the seed pixel location

and the sub-region pixel value, the feature can be reconstructed.

5.5 Boundary Coding

5.5.1 Runlength Coding

Figure 5.5.1 shows the resulting boundary for a given sub-region, Rn, in image space

R.

Figure 5.5.1: A connected sub-region boundary

115

The perimeter is assigned a boundary label L, which uses a runlength code to

describe, in relative Cartesian co-ordinates, the magnitude of each side and the series

of turns made to complete the boundary. In the case of the example shown, the

perimeter can be coded:

Ln = +3 -j8 -3 +j2 -2 +j4 +2 +j2

To test that the boundary is closed at the seed pixel location, we simply require that

the sum total of Ln is zero. An essential feature of the boundary label is that it is

simply shape-descriptive. That is to say that a much larger version of the same shape

requires the same amount of data to describe its outline. The result of this is that

runlengths are relatively inefficient for smaller shapes found in an image region.

5.5.2 Feature Primitives

A practical approach to improving the efficiency of small sub-region coding is by the

use of feature primitives. In a given image, particularly one which has been spatially

pre-processed, it has been found in this work that many subregions tend to be

regularly-occurring shapes, albeit of different size. By producing a set of primitives,

we can remove the need for a full boundary label and instead apply a single code

relating to a known primitive in a look-up table. The definition of a primitive is that it

is unit-length, such that at least one side has a length of one pixel/block. Some typical

primitives are shown in figure 5.5.2.

116

Figure 5.5.2: Some examples of unit-length sub-region primitives

If a single byte were to be used for the sub-region primitive description and another

for a positive scale factor, s, it would be possible to considerably reduce the

transmitted data overhead. The format of the data for each sub-region is [s:(code)]

(figure 5.5.3).

Ln = +2 -j2 +2 -j2 -2 -j2 -2 +j6

Primitive description = 2:(21)

Figure 5.5.3: Use of primitive descriptions reduces the data overhead

117

5.6 Implementation of a classification algorithm

5.6.1 Clustering

Having developed the fundamental processes of feature classification, the

implementation of a practical algorithm is fairly straightforward. The clustering

technique, where we start with a seed pixel and list all adjoining pixels meeting the m-

neighbour criteria, indicates the use of a linked list. By simply tagging each pixel

value and location, we can show its relationship to adjoining pixels, as well as indicate

that it no longer needs to be considered as a possible component of another

subregion.

Information about file handling is shown in appendix 2. Using a two-dimensional

array, having the same maxima as the width and height of the image frame, we can

classify groups of values according to their value and the relative position (x, y) in the

array. The framework of this technique is shown in the pseudo-code below:

for y = 0 to (frame_height - 1) {

for x = 0 to (frame_width - 1) {

if pixel_value[x,y] is not already marked

mark pixel_value(seed);

mark pixels at [(x+1),y][x,(y+1)] if = seed;

for the pixels locations [(x+1),y][x,(y+1)] {

loop to iteratively mark pixels at [(x+1),y]

[x,(y+1)][(x-1),y][x,(y-1)] if = seed };

increment x by 1 }; (Pixel scan left-right)

increment y by 1 }; (Line scan top-bottom)

This approach is shown diagrammatically in figure 5.6.1.

118

0 1 2 3 4 5 6 7 → width

0 4 4 3 2 4 5 5 5

1 4 3 3 3 2 5 5 5

2 3 3 3 2 2 5 5 6

↓
height

Seed Pixel
First Relationship at [x,(y+1)]

Iterative Relationships at [(x+1),y],[x,(y+1)],[(x-1),y],[x,(y-1)]

p → Seed Pixel Relationships

↓

↑
 ←q→ Other Relationships

↓

Figure 5.6.1: Array implementation of a clustering algorithm

Clustering is quite efficient, since the effect in areas having large subregions is that

once pixels are linked, the scan jumps over them until it finds a pixel location which

has not been clustered. This is taken as the seed for another subregion and so on.

5.6.2 Conversion to runlength labels

Having scanned a full frame, a set of linked lists exists to describe the pixels which go

to make up the constituent subregions. Consider the shape shown in figure 5.6.2.

The corresponding linked list contains all the information needed to generate the

runlength label, since the boundaries of the subregion occur at the maximum and

minimum values in the directions +x, -x, +y and -y. If we extract these maxima and

119

minima, the feature runlength label is easy to construct. For large regions, this is a

considerable compression in the amount of data to be handled, since the core pixels in

the subregion play no further part in the classification if their value is the same as the

seed pixel.

Linked list maxima and minima (x,y):

(1,1),(2,1),(2,2),(3,3),(4,3),(4,4),(3,4),(2,5),(2,6),(1,6),(1,5),(1,4),(1,3),(1,2),(1,1)

Figure 5.6.2: Linked list maxima and minima

 .

In this case, we have dropped only two core pixels at (2,3) and (2,4). We can extract

the runlength directions and magnitudes by simply ordering the linked list maxima and

minima, as shown. Starting with the seed pixel (1,1), the next value is (2,1) and the

next is (2,2). A runlength component is taken from two adjacent values, where one

co-ordinate is the same. So (2,1) has a similarity to (1,1), but (2,2) does not. Hence

the y-component is constant, but the x-component comprises two pixels, including the

seed pixel, increasing in order. Therefore, the runlength component for this segment

will be +2. The value (2,1) also forms a set with (2,2). Here the x-component is

120

constant, whereas the y-component comprises two-pixels, so the runlength

component will be -j2.

For the longer runlength on the left-hand side of this shape, we have a set comprising

the linked values (1,6),(1,5),(1,4),(1,3),(1,2)(1,1), returning to the seed pixel location.

Here x is constant, but y decreases over six pixels, so the runlength component will be

+j6.

Hence, the runlength label, for the subregion located at seed pixel location (1,1) will

be:

L(1,1) = +2-j2+2-j2-2-j2-2+j6

To check on the coding, these values are added together and their sum is found to be

zero.

5.6.3 Conversion to feature primitives

The subregion primitives shown in figure 5.5.2 are examples from a pre-defined set of

80 shapes, found to occur frequently in a variety of video sequences. All primitives

have at least one side which is unit-length - i.e. they cannot be scaled down any

further. The shape shown in figure 5.6.2 corresponds to primitive 21 from the

reserved set, scaled by a factor of two. To express this, we take the runlength and

recursively divide it by two until one of the values is unit length.

121

In the case of L(1,1) , only one iteration is required:

(+2-j2+2-j2-2-j2-2+j6) ÷ 2 = (+1-j1+1-j1-1-j1-1+j3)

so L(1,1) = 2:(21)

The generation of primitive codes is done by simple comparison with a look-up table,

which would be available to both the encoder and decoder. A section of the look-up

table is shown in appendix 3.

Runlength labels which cannot be matched to subregion primitives are retained in their

existing state. Whilst this is an addition to the data overhead for the description of a

given subregion, it is found that most features correspond to the set of primitives, as

shown in figure 5.6.3.

Figure 5.6.3: Distribution of classified subregions in Miss America

frame 001, mode-value subsampled, ∆Q = 8.

122

In this example, subregions corresponding to the set of primitives have their seed pixel

locations marked by the filled circle, ?, whereas those requiring full runlength

descriptions are denoted by a filled square, ¦. This segment of the image is transition

area of fairly high frequencies, with the ear contrasting against the darker background

of the hair. In such areas, there tend to be high concentrations of single-pixel

subregions, s:(01), which are needed to form a luminance gradient from one object to

another. However, for much of this image, features are larger and easily defined.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 12 23 34 45 56 67 78 89 100

Frame number

S
u

b
re

g
io

n
 f

re
q

u
e
n

c
y

Primitive labels

Runlength labels

Figure 5.6.4: Subregion runlength and primitive code frequencies

Miss America CIF, ∆Q=8

Figure 5.6.4 shows the distribution of runlength labels and primitive codes for the

sequence Miss America. For clarity, this was processed in the full-CIF format. It can

clearly be seen that full runlength codes occupy only a small part of the total

subregion description, typically less than 10% at the start of the sequence. However,

as the amount of motion increases, there is a greater quantity of runlength labels, due

mainly to a corresponding increase in single-pixel primitive codes, seen here between

123

frames 56 and 100. There is an increase in data overhead for this period, however it

reduces once the motion has passed (in this case, the head moved from side to side).

Primitive codes are thus not only efficient in terms of data content, but also in their

frequency of occurrence in the video sequence. As will be seen in chapter 6, this

greatly assists the prediction of interframe motion.

5.6.4 Data Representation

Where a subregion can be represented by either a runlength label or a primitive code,

it is necessary to distinguish which is to be used. The format used for sourcebook

encoding is shown in figure 5.6.5, using as an example the first two lines of pixels in

the enlarged area of figure 5.6.3.

Seed
Location

η value Ln or Lp

(4,1) 72 1:01

(6,1) 56 1:01

(7,1) 48 1:01

(8,1) 64 1:01

(9,1) 40 1:01

(1,2) 128 1:72

(4,2) 64 1:06

(5,2) 72 1:01

(6,2) 64 +3-j2-2+j1-1+j1

(9,2) 48 1:01

Figure 5.6.5: Sourcebook representation of classified subregions

124

For the purposes of laboratory simulation, the sourcebook needs no further encoding.

However, in a serial communications system, these descriptors would have to be

encrypted as datagrams, uniquely identifiable in a bitstream. The method proposed by

Huffman (section 2.4) for minimum-redundancy coding could be applied equally to

this application, as it can be seen that there is a high frequency of single-pixel features

in the example area. Proposals for further data compression will be outlined in the

conclusions of chapter 8.

5.7 Summary

This chapter has presented a novel method for the evaluation and classification of

image subregions as discrete features for the purposes of video coding. Using a

clustering algorithm and a few simple predicates specifying the relationships of

neighbouring groups of pixels, it is possible to segment a locality into clearly-defined

features.

The practical implementation of the classification technique uses a linked list to show

the relationship between pixels in their relative x and y axes. Then, by examining only

the maxima and minima for the co-ordinates in each of the feature lists, a runlength

label, Ln ,of directions and magnitudes in Cartesian notation can be used to depict the

topography of a subregion.

The runlength labels can further be coded with equivalent, pre-defined feature

primitive codes Lp, which relate directly to the runlengths of subregions found to

occur frequently.

125

The data is then held in a sourcebook, comprising the components of seed pixel

location (x,y), the subregion pixel value, η and a code describing the shape using

either runlength label or primitive code notation. It will subsequently be shown that

this information can be used as the basis of a simple method of interframe coding.

This process of subregion segmentation, description and classification is clearly a

method of intraframe coding in its own right. The sourcebooks of subregion

descriptions provide all the information needed for subsequent interframe coding and

it is their size governed, in this case, by the effects of spatial processing, that will

affect coding efficiency and reconstructed image quality.

126

Chapter 6

Interframe Coding

Evaluating the displacement of subregions

6.1 Introduction

In the development of this novel algorithm for the detection of interframe motion, it is

the feature classification aspect which holds the key to its success. In chapter 3, it

was seen how the designation of blocks or segmented subregions allowed a simple

search for motion to take place. Feature classification is no different, although now

we have a sourcebook of data relating specifically to the attributes of features in the

image. It would be reasonable to say this provides a very good starting point for the

estimation of interframe motion, compared with the rather arbitrary approach of

block-based motion compensation (BBMC).

A further consideration is that, generally speaking, BBMC tends to be used in

conjunction with conventional DPCM/DCT coding, as a hybrid approach to

interframe coding. As a technique having a fairly high computational intensity, it

forms only a small part of the process of predictive interframe coding. It will be

suggested in the conclusion to this chapter that feature classification provides an

effective means of displacement vector generation and, in its own right, offers the

basis of a novel video codec.

It has already been shown that a sourcebook can be generated for each frame in the

sequence. This chapter will show how an update process delivers information about

127

interframe differences to the decoder. Having transferred a set of initial parameters,

the data overhead drops to levels consistent with the requirements of a low bit-rate

environment. The origins of base vectors will be used to provide information on the

extent of interframe motion and spatial plots will show how these vary over a test

sequence. The quantity of errors will also be plotted, showing the effect of interframe

vector coding on the quality of the reconstructed images.

6.2 Codec Structure

The video coding algorithm described in this thesis is shown in the schematic of figure

6.2.1. It differs from conventional approaches to interframe coding in that a lot of

processing takes place on a frame before it is compared with temporally adjacent

neighbours, for the production of motion vectors. The process of spatial quantisation

and sub-sampling from mode values, together with the feature classification

technique, provides a sourcebook of codes, each describing the content and

topography of image subregions.

128

Figure 6.2.1: Classified feature interframe coding schematic showing

(i) encoder and (ii) decoder structures.

129

In the same way that managed coefficient quantisation retains an acceptable level of

quality for the DPCM/DCT process in the H.261 algorithm, a vector generation

technique using feature sourcebooks must make an efficient trade-off between picture

quality and the data compression requirements of the system.

As with any algorithm where errors are created as part of the coding method, it is

important that error propagation is minimised. To accomplish this, components of the

vector encoding algorithm are common to those needed to decode and reconstruct the

sourcebook at the decoder. Where the H.261 algorithm uses an updated picture store

in the encoding and decoding loops, the feature classification method uses an updated

sourcebook, comprising component subregion descriptions.

6.3 Motion Vectors

The process of motion vector generation is not significantly different to the BBMC or

DBMC techniques, outlined in chapter 3. There are still two sets of data, relating to

adjacent frames in a video sequence. For each known artefact at a given location, we

search the equivalent spatial vicinity in its neighbouring frame to see if any motion has

occurred. For most of the time, much of an image may be stationary, in which case

the location of a feature in adjacent frames will be constant.

For a pair of temporally adjacent sourcebooks, where motion is seen to occur it may

take one of three forms. Firstly, a feature can be displaced, retaining its outline, with

all constituent pixels shifted by the same magnitude and direction. This effect is

known as linear interframe motion and an example is shown in figure 6.3.1. The

second possible outcome of a displacement might occur where the fundamental

130

outline of a shape is unchanged, but it has become larger or smaller. For such

perspective motion, the location of the seed pixel may not actually have changed, and

a motion vector may have to be designed such as to allow the alteration in

perspective, without displacing the whole object. Finally, a feature may have been

displaced, retained its outline and been rotated at the same time. It would be difficult

to describe this complex motion with a single vector, however the practical effect of

rotation would be that a feature could only have retained its exact topography if the

shift were a multiple of 90°, as shown in figure 6.3.5.

6.3.1 Linear motion vectors

Figure 6.3.1: Linear interframe displacement of feature primitives

131

Providing the features have retained their topography, the majority of motion vectors

produced for the sequences Miss America and Salesman are found to be linear.

Linear motion vectors are the most simple to code, since the decoder will know that

all pixels forming a feature will experience the homogeneous displacement specified

by the motion vector.

Figure 6.3.1 shows the development of linear motion vectors for given primitive

features. We choose as a common reference point the seed pixel, pn-1, in the previous

frame, In-1. A search of feature runlength labels and values for the equivalent spatial

vicinity in the current frame, In, shows any displacement of the feature. The value of a

linear motion vector is taken as the equivalent spatial separation of the seed pixels pn

and pn-1. The vectors are then recorded in Cartesian notation,

r
V x jy

n
= ± ±() [Equation 6.1]

r
V1 = +2-j1 y

r
V2 = +3+j2

r
V2

 O
r
V1 x

Figure 6.3.2: Linear displacement vectors (for example of figure 6.3.1)

132

Displacements are taken as relative to the origin (O) of the seed pixel, pn-1, rather than

their absolute location in the whole frame. This allows local reconstruction to take

place.

In the example, the features shown are both primitives and it may be the case that

several features located in the search area match both the topography and value of the

reference subregion, Rn-1. Any displacement is therefore to be assumed as relating to

the location nearest the seed pixel pn-1.

6.3.2 Perspective motion vectors

Figure 6.3.3: Perspective interframe motion of a feature primitive

For the case of a displacement which occurs in conjunction with a perspective

transform (figure 6.3.3), the process of feature searching will be similar to that

employed for the derivation of linear motion vectors. However, the search algorithm

will need to recognise a feature as being scaled from the reference feature.

133

Practically, we could expect the process to take a form similar to the feature primitive

classification technique, where a simple filter scales the runlength labels to unit-

distance values before making a comparison with pre-determined criteria.

r
V1 = 2:(+3-j1) y

 O x

r
V1

Figure 6.3.4: A perspective displacement vector

Figure 6.3.4 shows the introduction of a scale value for a perspective transformation

and displacement of the example feature. The form of the vector notation is similar to

that employed for feature primitive labels, where a universal scale factor, s, precedes

the displacement vector components.

6.3.3 Stationary motion vectors

It seems perhaps rather an abstract idea, but if the reconstruction is to be complete,

codes must also be produced to show where no motion has occurred. Stationary, or

null vectors are used to tell the decoder to keep features where they were in the

previous frame.

134

Figure 6.3.5: A null (stationary) motion vector

This approach is shown in figure 6.3.5. A null vector,
r
V∅ , is produced to show the

location of a stationary object. The use of null vectors has proved important to the

success of a displacement coding algorithm, since they form the majority of all

interframe codes produced. As will be seen later in this chapter, vectors describing

motion account for only a small part of the total interframe data produced in the test

sequences.

6.4 Changes in feature topography

Motion vectors are very useful in portraying the displacement of simple subregions,

however there are occasions when a search fails to detect any shape in the selected

neighbourhood, likely to be the destination of a feature in the previous frame. This

could be for two reasons. Either the motion has been so great that the feature has

moved outside the designated search area, or the nature of interframe activity, caused

principally by neighbouring features, will have distorted the topography of the feature.

135

In these cases, motion vectors cannot adequately describe changes in the feature

parameters and a full re-classification will be needed for the unaccounted pixels.

Consider figure 6.4.1. Here we see an area comprising several subregions, all

classified, with the seed pixel locations known in the frame In-1. However, the effect

of displacement is that some features have moved and can still be identified by their

descriptors, whilst their motion has caused a change in topography to another feature

which may not have been subject to displacement in its own right.

Figure 6.4.1: The re-classification of distorted features

136

In the example, subregions A and C have retained their topography - A is stationary

and C has undergone linear displacement. Subregions B and D, on the other hand,

have been directly affected by the displacement of subregion C. A good example of

this would occur where a foreground object was moving over a background, with the

effect of revealing more of the background feature. Whilst A and C can be

represented by null and linear motion vectors, subregions B and D could not be

located in a search of this area. Consequently new seed pixel locations would be

chosen and the features described.

This is an addition to the processing overhead and is not the most optimal method of

feature re-classification. However, it is important to keep the decoder sourcebook

updated with as much contemporary data as possible and the supply of re-classified

runlength and primitive labels seems to be a good solution.

Practically, it is found that re-classification accounts for typically 8% of the features in

the Miss America sequence and typically 14% for the Salesman sequence (∆Q=8).

An illustration of the need for re-classification is shown in figure 6.4.2.

The data overhead of motion vectors increases with spatial complexity. The

background of Salesman is more detailed than was seen for Miss America, however

most motion vectors are null. Only when the background is exposed or covered by

the motion of a foreground object will interframe differences occur. This example

shows a stationary background feature (A), near to a displaced foreground feature

(B). In this case, re-classification of the foreground feature is required, since at this

137

point the box is being rotated and changes in overall luminance will occur for that part

of the image.

138

 (i)

 (ii) (iii)

Figure 6.4.2: (i) Frame 58 from the Salesman sequence with (ii) an

enlarged area showing selected subregions and (iii) their

displacement in frame 59. ∆Q=8, QCIF resolution.

6.5 Implementation of a displacement vector algorithm

6.5.1 Searching

Figure 6.5.1 shows the base schematic for a feature classification motion vector

algorithm. Primarily, we use two sourcebooks for the searching - the previous frame

In-1, from which features have originated and the current frame In, where

displacements may occur. Once again, the scanning process starts in the top-left and

139

works down to the bottom-right corner of the array In the process, all seed-pixel

values in the x direction are checked before incrementing y. For each seed pixel pn-1

in the frame In-1, we search In to determine the displacement.

Figure 6.5.1: Vector coding search schematic

Consider again the example features illustrated in section 5.6.4 (figure 6.5.2).

Seed
Location

η value Ln or Lp

(4,1) 72 1:01

(6,1) 56 1:01

(7,1) 48 1:01

(8,1) 64 1:01

(9,1) 40 1:01

(1,2) 128 1:72

(4,2) 64 1:06

(5,2) 72 1:01

(6,2) 64 +3-j2-2+j1-1+j1

(9,2) 48 1:01

Figure 6.5.2: Feature sourcebook structure

140

Let this set act as the sourcebook structure for the frame In-1. The first feature is at

(4,1). The initial step in the search algorithm would be to see whether a similar

feature exists in the sourcebook at the same spatial location in In, matching pixel value

72 and primitive label 1:01. If this is the case, a null vector
r
V∅(,4 1) would be produced

and supplied to the decoder. Any failure to match the equivalent seed pixel in In

would invoke the full search algorithm.

Full searching works along the same lines as many other schemes for motion

estimation. We take the seed pixel location pn-1 in the previous frame and around it,

search all seed pixel locations residing within a search window in In. For each seed

pixel location, the value and description of the associated feature is compared with

that relating to the reference feature. A linear motion vector can then be plotted from

the reference feature seed pixel to the seed pixel location in frame In that matches Rn-1

and is spatially closest to its seed pixel. This process is shown in figure 6.5.3.

Figure 6.5.3: Local feature searching

141

It may be the case that, although a seed pixel occurs within the search window, part

of the body of its associated subregion extends beyond this area. This is not a

problem, since it is the seed pixel location used for a reference marker in local

searching. In conventional BBMC, the size of search window is usually important as

it has a direct effect on the computational overhead. However, in this case the effect

is of less concern, as the search parameters are provided in the sourcebooks and no

additional calculations have to be made. The comparisons between the subregions

associated with each seed pixel are made on a topological basis. The algorithm is also

less intensive as only the seed pixels are used in a search - conventional BBMC tries

every pixel location for a match with its reference block. The structure of the

searching algorithm is shown in figure 6.5.5.

6.5.2 Data Structure

Where vectors have been produced successfully, they can describe feature

displacement with one of three data structures, shown in figure 6.5.4.

Description Vector Notation Data Structure

Null Vector
r
V

x y∅(,) VNULL (X,Y)

Linear
r
Vn x y(,) V(X,Y) (±X±JY)

Perspective
r
Vn x y(,) V(X,Y) S(±X±JY)

Figure 6.5.4: Vector data structures

142

Figure 6.5.5: Design Structure Diagram for the vector search algorithm:

BS6224 [li][lii]

143

6.5.3 Classification of new features

Subregions residing in the sourcebook are marked once a vector is produced, to

describe their interframe activity. However, this leaves a number of pixel groups not

matched to any (n-1) feature. Their classification is simple and easy to perform, along

the lines described in chapter 5. Consider again the group illustrated in figure 6.4.1.

Subregions A and C were successfully coded with null or linear motion vectors.

Subregions B and D were distorted and could not be matched. If subregions A and C

are removed, we can classify the remaining features (figure 6.5.5).

Figure 6.5.5: Feature re-classification

For each of the new subregions, seed pixels are allocated using the criteria specified in

chapter 5. Clustering and boundary detection then follow and feature runlength or

primitive labels are assigned. For the new frame, new feature data, together with the

existing feature displacement vectors are sent to the decoder. For the purposes of

simulation, they were held in a file.

144

6.6 Application to standard test sequences

6.6.1 Motion vector generation

The vector coding algorithm was applied to frame sourcebooks produced for the

sequences Miss America and Salesman. Miss America was found to be quite simple

to code - the plain background generates very few feature descriptions and the head is

mainly stationary. The location of seed pixels relating to subregions undergoing

motion is shown in figure 6.6.1.

Figure 6.6.1: Location of motion vector origins, Miss America frame

001, ∆Q=8, QCIF resolution

It can be seen that the distribution of motion vectors around the face is significant -

indeed when viewing the sequence there is a concentration of facial activity caused by

a change in expression over the first few frames. By frame 32, interframe differences

have been reduced as the subject is virtually stationary (figure 6.6.2).

145

Figure 6.6.2: Location of motion vector origins, Miss America frame

032, ∆Q=8, QCIF resolution

Between frames 60 and 90, there is a lot of interframe activity as Miss America moves

her head from side to side. This is manifested by a considerable increase in the total

of runlength labels and primitives, shown in figure 5.6.4. The maximum extent of

head displacement, occurs in frame 79 (figure 6.6.3).

Figure 6.6.3: Location of motion vector origins, Miss America frame

032, ∆Q=8, QCIF resolution

146

A similar range of effects applies in the Salesman sequence. For much of the time,

motion is concentrated around the foreground box object, however frame 68 shows

interframe activity involving body motion, illustrated in figure 6.6.4.

Figure 6.6.4: Location of motion vector origins, Salesman frame 068,

∆Q=8, QCIF resolution

Salesman is more demanding on the feature classification algorithm, primarily because

of the extent of background detail. It is no more difficult to encode, but requires a

significantly greater computational overhead to do so. One feature experienced with

Salesman was that spatial errors were introduced by an aliasing effect during the

process of mode-value sub-sampling. This characteristic is discussed further in

chapter 7.

147

6.6.2 Reconstruction

The process of re-constituting new images requires the decoder to displace

subregions, in accordance with the motion vector parameters. Using the vector sets

for Miss America and Salesman, spatial reconstruction took place. Equivalent spatial

illustrations for the Miss America set, corresponding to the base vectors shown in

figure 6.6.1 - 6.6.3, are seen in figures 6.6.5 - 6.6.7.

Figure 6.6.5: Reconstructed frame Miss America 002

Figure 6.6.6: Reconstructed frame Miss America 033

148

Figure 6.6.7: Reconstructed frame Miss America 080

It can be seen that overall shifts caused by the subject have been effectively

reconstructed. However, there is a noticeable reduction in spatial quality and this is

caused by a process of overlapping, where the reconstruction process places parts of

displaced subregions over others and pixel values are added. Chapter 7 presents a

discussion of this effect and proposes a solution of non-recursive error detection and

correction.

Figure 6.6.8 shows the overall distribution of errors for the Miss America sequence.

These values are absolute, although it is of more analytical use to consider the plots of

signal-to-noise ratio, seen in chapter 7.

149

0

500

1000

1500

2000

2500

3000

1 13 25 37 49 61 73 85 97 109 121 133 145

Frame number

E
rr

o
r

fr
e
q

u
e
n

c
y

Figure 6.6.8: Distribution of reconstruction errors for Miss America

6.7 Summary

This chapter has demonstrated the implementation of a novel algorithm for interframe

displacement vector coding, based on the feature classification technique. Unlike

BBMC and other full-search algorithms, the evaluation of seed pixel locations in a

local area and subsequent comparison of their related subregions, requires a process

of low computational complexity.

Vectors may take several forms, with null vectors showing stationary features and, for

the test sequences, accounting for most vectors produced. Linear displacements are

calculated by a local full-search algorithm, where feature descriptors are compared by

their parameters, without recourse to statistical calculations. Where displacements

cannot be detected, the method of feature classification is invoked to classify the

parameters of new pixel groups.

The effect of these techniques is to supply to the decoder a set of values from which a

reconstruction of interframe activity can be made. The process is not error-free and,

150

in particular, the overlapping of displaced subregions has been identified as a problem.

However, a plot of such error quantities show that they form only a small part of the

reconstruction. To enhance the mapping of features, a technique is required to

improve the spatial quality of image reconstruction.

Having already described the process of feature description and classification as a

useful novel method of intraframe coding, the generation of motion vectors is simply

an extension of this for interframe coding. All the information needed to generate

motion vectors, where applicable, is to be found in temporally adjacent intraframe

sourcebooks. Where vectors cannot be produced, the update is simply provided by

the description of new subregions where the presence of previously classified features

has not been detected.

151

Chapter 7

Image Quality

The detection and correction of prediction errors

7.1 Introduction

This chapter explores the nature of interframe errors caused by various effects of the

displacement vector algorithm. In the previous section, it was seen that a reasonably

comprehensive set of data is supplied for decoding, comprising motion vectors and

new feature labels. Whilst the algorithm is fairly efficient in describing overall trends

in interframe motion, small errors do occur where features overlap. The result is that

each frame contains areas of unwanted motion artefacts. Using the concepts of

spatial filtering introduced in chapter 4, a method of error detection and correction is

presented, with the overall objective of improving spatial image quality. It will be

suggested that, whilst the spatial quality is still far from that observed in the original

images, it is less noticeable as a temporal effect when the images are animated as part

of a video sequence.

The signal-to-noise ratio of an image has already been used as a measure of

reconstructed image quality, with respect to the base sequence. However, where this

was once used for single images only, it is now calculated for all the component

frames in a video sequence, revealing changes in signal-to-noise ratio caused by

different types of motion. Sequential signal-to-noise ratio plots are also used to show

152

the effect of error correction, with comparisons made with both the H.263 algorithm

and conventional block-based motion compensation.

In addition to quality measures, this chapter considers the anticipated efficiency of the

algorithm. The concluding remarks of chapter 8 will suggest that as an area for

further development, the frame rate of the feature classification technique could be

varied adaptively in order to supply the needs of a constant bitrate communications

system.

7.2 Error detection and correction

7.2.1 Displacement errors

Chapter 6 described how interframe errors accumulate where an inaccurate prediction

of motion has been made, with the decoder placing shapes over others so as to cause

overlaps. It is usually seen to be the case that overlaps affect only one or two pixels

for a displaced subregion (figure 7.2.1.), since most simple primitive shapes have at

least one side equal to a single pixel width.

Figure 7.2.1: The nature of interframe errors

The spatial effects of such displacement errors are manifested by a ‘frosting’ effect of

white pixel around the margins of large displaced objects. Figure 7.2.2 shows an

example from the Salesman sequence. Notice that around the head, shoulders and

153

sleeves, there are small displacement errors and in particular on the margins of the box

(enlarged). Salesman is particularly prone to such errors where foreground objects

have been subject to motion over a rather detailed, stationary background. Errors are

also in evidence for the reconstructed sequences of Miss America, but are less

frequent, primarily because foreground motion is made with respect to a plain

background.

(i)

(ii)

Figure 7.2.2: (i) Salesman reconstructed frame 052 showing (ii) the

location of displacement errors. ∆Q=8, QCIF resolution.

154

7.2.2 Error Correction

Spatial filtering is a technique widely used in the correction of image errors, where

noise has been introduced and it is also suitable for this application. Using a filter

template, a pixel error can be corrected, not necessarily to its original value, but to a

good approximation, based on neighbouring trends. Using either the mean, median or

mode value of a particular set, the template centre pixel can be corrected. From a

quality viewpoint, the optimum method would be to extract the mean. However, this

has the drawback of possibly adding to the image a value unused elsewhere. Also,

since pixels can only take integer values, the correction may be a truncation of the

mean and thus an approximation. In a low-resolution system, where pixels are being

quantised by (in this case) an interval of eight grey levels, a mean value would

possibly fall somewhere within the range of a quantisation step interval.

Considering again the work outlined in chapter 5, it is clear that use of the mode value

is the best solution as a method of error correction. The mode is taken as the most

frequently occurring value in a group covered by a fixed size filter template, with

dimensions 3 × 3 pixels. If there are two values occurring at equal highest frequency,

the median is selected instead. The basis of this algorithm is illustrated in figure 7.2.3.

155

Figure 7.2.3: The detection and correction of displacement errors

The process of error detection is fairly simple. Given that most errors are seen to be

single pixels, all single pixel features found in a reconstructed image are extracted.

Then, ignoring known seed pixels having the primitive label 1:(01), a search list is

produced showing the location of errors (x, y). Returning to the reconstructed image,

the filter template is centred on the error locations and the corrected pixel value, pc, is

set.

if (0, y), (xmax-1, y), (x, 0), (x, ymax-1)

pc = mode (p, q, r, s, t)

if (0, 0), (0, ymax-1), (xmax-1, 0), (xmax-1,

ymax-1)

pc = mode (x, y, z)

Figure 7.2.4: Templates for edge and corner pixel correction

156

Fixed size filter templates have also been developed for the special cases where errors

are found at the edges or corners, seen in figure 7.2.4.

This method of adaptive error correction is useful, since it is of low complexity and

does not affect most other features, whose displacement has successfully been

reconstructed. Since the encoder will supply both motion vectors and re-classified

feature data for the next frame, the results of error correction are not stored, as they

would cause error propagation.

7.3 Measurements of spatial quality

Although the method of error correction described in section 7.2 has only a cosmetic

effect, its application has been very successful, given that corrected values may still be

errors if they have not reverted back to their base sequence value. Figure 7.3.1 shows

reconstructed frame 075 from the Miss America sequence, before and after the use of

error correction filtering.

Figure 7.3.1 (i)

157

 (ii)

Figure 7.3.1: (i) The presence of reconstruction errors - Miss America

075 and (ii) the spatial effects of their correction.

∆Q=8, QCIF resolution

It is clear the spatial quality has been improved in terms of the reduction of

displacement errors, however since many such errors occurred at boundary locations,

the filtering effect has also reduced high frequency spatial components. Whilst a

viewing single frame does not give a good impression of this effect, the temporal

improvement in quality is much better. To quantify this, figure 7.3.2 shows a plot of

the signal-to-noise ratio for the first 100 frames of the sequence. It can be seen that

an improvement of typically +5dB has been achieved.

158

28

30

32

34

36

38

40

42

1 9 17 25 33 41 49 57 65 73 81 89 97

Frame number

P
S

N
R

 (
d

B
)

Displacement errors

Following mode filtering

Figure 7.3.2: Signal-to-noise ratio for the reconstructed sequence

Miss America, ∆Q=8, QCIF resolution

Signal-to-noise ratio values are calculated with respect to the input frame, with ∆Q

set to eight grey levels, using equation 4.2.

A similar improvement is observed for the Salesman sequence. The ‘frosting’ effect

seen in the reconstruction has gone and been replaced by corrected values, giving an

impression of improved spatial quality (figure 7.3.3).

159

(i)

 (ii)

Figure 7.3.3: (i) The presence of reconstruction errors - Salesman

052 and (ii) the spatial effects of their correction.

∆Q=8, QCIF resolution

Figure 7.3.4 shows a plot of signal-to-noise ratio for the Salesman sequence over 100

frames. Once again, the effect of error correction filtering is an improvement in

signal-to-noise ratio, of typically +3dB.

160

28

30

32

34

36

38

40

42

1 9 17 25 33 41 49 57 65 73 81 89 97

Frame number

P
S

N
R

 (
d

B
)

Displacement errors

Following mode filtering

Figure 7.3.4: Signal-to-noise ratio for the reconstructed sequence

Salesman, ∆Q=8, QCIF resolution

The high peaks apparent of the signal-to-noise ratio for the corrected sequence are a

sign of greater improvements where there have been less errors, resulting from only a

small amount of interframe motion.

7.4 Comparisons with the H.263 algorithm

Section 2.8 introduced the infrastructure of the ITU-T H.263 algorithm. This is the

latest development in low bit rate video compression algorithms and, working on

similar principles to its parent H.261 hybrid DPCM/DCT algorithm, is intended for

bitrates of typically 14.4kbits/s to 28.8kbits/s. The half-pixel motion compensation

process used in the H.263 codec renders a good interframe prediction and ensures a

low level of noise caused by the quantisation of transform coefficients. Block effects,

usually observed in H.261 codecs, are less evident.

Using a simulation algorithm, developed primarily by Telenor Research [liii] and BT

Laboratories, the Miss America and Salesman sequences were encoded using the

161

H.263 parameters. For each sequence, two sets of resulting bitstreams were

produced - the base H.263 coding and base H.263 with optional annexes D-G applied

(section 2.8.2). Whilst the quality of the reconstructed frames is improved by the

incorporation of PB frames (annex G), the unrestricted motion vector searching,

outlined in annex D, have little effect since the background is stationary.

Figure 7.4.1 shows a reconstruction of frame 75 from the Miss America sequence,

with H.263-base and H.263-annex coding applied respectively.

Figure 7.4.1 (i)

162

(ii)

Figure 7.4.1: Reconstruction of (i) H.263-base and (ii) H.263-annex

encoded sequences, Miss America 075. Frame rate = 28.8

kbits/s

Plots of signal-to-noise ratio show the relative improvement to image quality provided

by the use of annex functions. It can be seen that the signal-to-noise ratio

improvement generally increases further into the sequence.

35.5

36

36.5

37

37.5

38

1 9 17 25 33 41 49 57 65 73 81 89 97

Frame number

P
S

N
R

 (
d

B
)

H.263-base coding

H.263-annex coding

Figure 7.4.2: Reconstructed sequence signal-to-noise ratio for H.263

coding. Sequence Miss America. Frame rate = 28.8

kbits/s

163

It is interesting to see that not only does the overall signal-to-noise ratio seem to drop

during the sequence, but the difference between H.263-base and H.263-annex coding

increases. The implementation algorithm used intraframe coding for the first frame of

the sequence. As the frames are further from the intraframe frame, the prediction is

less reliable, since it is based on the cumulative effects of interframe coding in

previous frames.

Similar effects can be seen in the Salesman sequence, which is more demanding on the

H.263 algorithm. Compare the pictures in figure 7.4.3 with those in 7.3.3.

Figure 7.4.3 (i)

164

(ii)

Figure 7.4.3: Reconstruction of (i) H.263-base and (ii) H.263-annex

encoded sequences, Salesman 052. Frame rate = 28.8

kbits/s

31.2

31.4

31.6

31.8

32

32.2

32.4

1 9 17 25 33 41 49 57 65 73 81 89 97

Frame number

P
S

N
R

 (
d

B
)

H.263-base coding

H.263-annex coding

Figure 7.4.4: Reconstructed sequence signal-to-noise ratio for H.263

coding. Salesman sequence. Frame rate = 28.8

kbits/s

Once again, signal-to-noise ratio is improved by the annex options, but this is less

when further away from the intraframe coded first frame (figure 7.4.4).

165

7.5 Video compression

Following on from image quality, it is useful to consider the effectiveness of video

coding algorithms in terms of the compression they achieve. It has already been

shown that the primary benchmark for image compression is the bitrate, either in

terms of bits per second to transmit a sequence, or the relative quantity of bits

required to rebuild an individual frame. The latter case will apply in a system which is

not constrained by constant bitrate requirements and is suitable for the feature

classification technique.

12000

13000

14000

15000

16000

17000

18000

19000

20000

1 5 9 13 17 21 25 29 33 37 41 45 49

Frame number

B
it

ra
te

Figure 7.5.1: Bitrate calculations for the Miss America sequence

Taking as an example the Miss America sequence, the bitrate is calculated from the

assignment of one byte = 8 bits for the encoded interframe data. So for the simplest

primitive, s:(01), we require two bytes, or 16 bits to produce a sourcebook code. For

motion vectors, two bytes are required for the seed pixel location identifier and two

bytes for the displacement notation In the case of null vectors, only two bytes are

required. For all other runlength codes, a single byte is assumed for each component.

It is clear there is quite a lot of waste here, since one byte could describe a runlength

166

magnitude of up to 255 units, unlikely for most classified features. In the conclusions

of chapter 8, it will be suggested that the runlength and vector coding methods could

be made more efficient by the use of variable length codes.

Considering the bitrates shown in figure 7.5.1, it shows an initially high overhead

caused by the transfer of the first sourcebook. It could be suggested that this is

analogous to the increased data rate resulting from intraframe coding in the first frame

of an H.263 sequence.

Bitrates for the equivalent H.263 coded sequence are shown in the table of figure

7.5.2.

Video sequence Mean kbits/s Mean frames/s Mean kbits/frame

Miss America

Feature-based 382.04 25.00 15.281

Miss America

H.263-base 21.18 9.85 2.150

Miss America

H.263-annex 20.18 10.96 1.841

Figure 7.5.2: Comparative video bitrates for the Miss America sequence.

The implementation of the H.263 algorithm aimed for a constant bitrate of

approximately 28.8 kbits/s. This yielded variable frame rates at 9.85 and 10.96

167

frames/second, improved by the H.263-annex options. The feature classification

technique, on the other hand used reconstruction at a fixed framerate, equal to the

source images, of 25 frames/second. The result was a much greater mean bitrate,

although spread over all frames, it was just over seven times the H.263 base result.

If these values were to be translated into video compression ratios, it would be seen

that for all techniques, the mean compression was still of a useful level. The

calculation of image compression is based on a mode-value sub-sampled QCIF image,

having 176 × 144 pixels, at eight bits per pixel = 202752 bits. This is then compared

with the mean frame bitrates shown in figure 7.5.2.

Video sequence Mean compression ratio

Miss America

Feature-based 13.3:1

Miss America

H.263-base 94.3:1

Miss America

H.263-annex 110.1:1

Figure 7.5.3: Mean compression ratios for the Miss America sequence

7.6 Information theory

One final technique used to evaluate the effects of image compression and coding is

the use of information theory. By considering the range of values occurring in a given

168

image, the average information per source input, or entropy, can be calculated to

show the spread of information. A high entropy value shows a large range of data,

which would be less efficient to encode than for an image exhibiting a low entropy

value. Generally speaking, for a range of pixel values, the entropy is given by:

H(z) = -
k

m

=
∑

1

Pk log2 (Pk) [Equation 7.1]

where H(z) is the entropy of input source z

Pk is the probability of occurrence of k in the set k=1 to m.

Entropy calculations have been made in two groups. Firstly, we can consider the

effect of spatial pre-processing on the image sequences for Miss America (figures

7.6.1 and 7.6.2). It can be seen that whilst the entropy profile has remained almost

the same, the values have been reduced to approximately 40% of the original, a

combined effect of quantisation and mode-value subsampling.

5.84

5.86

5.88

5.9

5.92

5.94

5.96

5.98

6

6.02

6.04

1 12 23 34 45 56 67 78 89 100 111 122 133 144

Frame number

E
n

tr
o

p
y

Figure 7.6.1: Frame entropy - Miss America CIF base sequence

169

2.32

2.34

2.36

2.38

2.4

2.42

2.44

2.46

1 12 23 34 45 56 67 78 89 100 111 122 133 144

Frame number

E
n

tr
o

p
y

Figure 7.6.2: Frame entropy - Miss America ∆Q=8 QCIF resolution

The second comparison is made between the reconstructed sequence and the effect of

error correction (figure 7.6.3).

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

1 16 31 46 61 76 91 106 121 136

Frame number

E
n

tr
o

p
y

Displacement errors

Following mode filtering

Figure 7.6.3: Frame entropy for the reconstructed Miss America

sequence showing the effects of error correction

Whilst entropy values have not re-gained their QCIF input levels, the effect of error

correction is useful in removing unwanted artefacts and restoring a low overall

entropy. A similar effect can be seen in the reconstructed Salesman sequence (figure

7.6.4).

170

3.8

3.85

3.9

3.95

4

4.05

4.1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Frame number

E
n

tr
o

p
y

Displacement errors

Following mode filtering

Figure 7.6.4: Frame entropy for the reconstructed Salesman

sequence showing the effects of error correction

In this case, the result of error correction is less significant because Salesman has a

greater degree of interframe detail than Miss America. However, both plots show that

it is useful to consider entropy in the evaluation of process efficiency.

7.7 Summary

The results presented in this chapter display a range of interesting characteristics

observed during the testing of the feature classification algorithm, together with a

comparison to a simulated H.263 implementation. In the first instance, it was known

that errors were likely to occur in the reconstruction of individual frames in both test

sequences. Empirical evidence had suggested that the majority of such errors

occurred only on a single pixel basis. The effect of the error correction algorithm,

therefore, was simply to extrapolate known error locations from the reconstructed

image and then correct their values using the mode or median, calculated from the

values of other pixels in the vicinity.

171

If we consider both the illustrations of reconstructed images and their associated

signal-to-noise ratios, it can be seen that there is a marked difference in perceivable

quality. For Miss America, figure 7.2.1 (ii) shows errors corrected and whilst there is

still good contrast between the subject and the plain background, facial details appear

blurred. This is an effect of the error correction process, but the success of the

algorithm in showing overall motion, at a point in the sequence where it is quite high,

indicates that such errors are not to be unexpected in a low-resolution codec. The

H.263 implementation of the same sequence is also prone to spatial blurring, caused

by low-pass filtering associated with the interpolation function in its half-pixel motion

estimation. However, the temporal quality of the sequence is satisfactory and playing

a sequence tends to diminish the importance of such spatial defects.

The video compression ratios for the reconstructed Miss America sequence are quite

variable and whilst a mean ratio of 13.3:1 appears good in its own right, it seems to

compare rather unfavourably with the H.263 mean compression values, with a figure

of 110.1:1 for the H.263-annex coding. An obvious explanation for these differences

is the absence of an efficient coding structure in the feature classification technique.

Chapter 2 described the use of Huffman codes in the context of video coding. Given

the high quantities of both primitive labels and null or linear motion vectors, further

work would be well directed towards the use of variable length coding.

It is also interesting to consider the effects of feature classification and coding on the

frame entropy values. Although there is an increase in entropy for the first iteration of

reconstruction, use of error correction appears to have the effect of restoring entropy

levels close to those observed after spatial pre-processing. This justifies the use of

172

mode-value filtering in the error correction process, where the new value remains

within the set of values normally occurring within the picture.

173

Chapter 8

Conclusions

Discussion and recommendations for further work

8.1 Introduction

This chapter presents a general view of the results described in this thesis and

discusses some of the issues raised by the implementation of the feature classification

algorithm.

In the introduction, it was suggested that the low bitrate objectives of video coding

and compression would inevitably lead to an element of compromise. It has been

shown that an inherent trade-off exists between image quality and compression

efficiency. At first glance, this might appear to be unsatisfactory. However,

contemporary algorithms for very low bitrate coding seek to sustain a reduced, yet

constant, level of quality as a design parameter. Under these circumstances, the

results exhibited by the feature classification algorithm are certainly within the bounds

of acceptability. It is considered, therefore, that the novel feature classification

algorithm, described in this work, contributes a useful development in video coding

and displays, in its own right, the basis of an efficient, low resolution technique.

8.2 Overview

The review section, comprising chapters 2 and 3, examined in detail the current state

of video coding and compression technology. Particular emphasis was given to the

ITU-T recommendations for the general structure of low bitrate video codecs. It was

seen that DPCM/DCT coding is an important part of a predictive algorithm which

174

seeks to extract pixel difference as a method of removing redundancy. The survey

then continued to examine different techniques for motion compensation and, in

particular, block and model-based coding methods.

It is demonstrated in section 3.4.1 that the full-search block matching motion

compensation algorithm, whilst simple, requires a level of computational intensity

unsuitable for implementation with personal-computer based software codecs. Since

the BMMC technique tends to be used in conjunction with DPCM/DCT coding, as

part of hybrid video codec systems, it may be difficult to reconcile the processing

overhead involved, unless motion vectors take a much greater role in the coding

representation. There have been developments, such as decomposed block

segmentation, where different block sizes are allocated to areas of detail. These assist

by reducing the overheads, but the fundamental nature of block matching is that

blocks represent arbitrary spatial regions and bear no direct relationship to the nature

of features occurring in an image.

Model-based coding goes further in resolving this constraint by attempting to

associate motion with a known set of feature primitives. It was seen, however, that

codebooks are limited in range and consequently, best fits are made to the restricted

set of parameters. In view of this, model-based motion compensation requires a

complex algorithm which may introduce errors or unsatisfactory quality where a good

prediction cannot be made.

Feature classification and coding can be considered as comprising elements of both

block and model-based coding. Chapter 5 described an approach to the detection and

175

identification of image subregions, using some simple predicates of pixel connectivity

and set notation. Whilst the classifications that result from boundary tracking the

pixel groups do not represent objects we would recognise, they do produce features

that have a greater certainty of unique identification in the area where they reside.

The extraction of feature descriptions is assisted by the deliberate introduction of low-

resolution sampling and pixel value quantisation. The effect of this is that errors tend

to be introduced before processing, so that they do not tend to propagate in the

decoder. With fewer subregions to process, the resulting QCIF image provides a

good starting point for the feature classification algorithm.

Successful feature classification makes motion vector generation straightforward. It

is known that, provided the background is stationary, many features will not be

displaced. Direct comparison of interframe seed pixel locations in temporally

adjacent sourcebooks generates null vectors, allowing dynamic searching to

concentrate on areas subject to motion.

176

8.3 Results

The processes of spatial subsampling and pixel value quantisation produce some

interesting effects. Whilst a bitrate reduction of almost 85% is possible, the resulting

QCIF images continue to give an appearance of satisfactory quality, quantified by the

measurement of signal-to-noise ratio (figure 4.5.5).

Spatial quality of the reconstructed sequences is also quite acceptable. Figure 7.3.1

shows the nature of displacement errors on Miss America and their subsequent

correction. Whilst the error filtering process serves to remove some high frequency

spatial components at object boundaries, there is a considerable improvement in

signal-to-noise ratio, from typically 32dB to 37dB. Considering the spatially pre-

processed Miss America sequence exhibits a signal-to-noise ratio of about 40dB, the

net improvement of approximately 3dB associated with the new algorithm is notable.

The Salesman sequence, on the other hand, comprises significantly more spatial detail

and, whilst pre-processing results in a reduction in quality to 42dB, the effect of

displacement error correction is to restore the sequence to about 35dB, a net

improvement of 7dB.

However, when comparing these results with those obtained for the H.263

simulations, it appears that the feature classification method provides a comparable

reconstruction. For the Salesman sequence, a measurement of signal-to-noise ratio

shows values of typically 31.8dB for the H.263-annex processing, a reduction of over

3dB with respect to the feature classification process. The comparative spatial quality

is clearly visible in figure 7.3.3 and 7.4.3 for the feature classification and H.263

simulations respectively.

177

Measurements of bitrate show that the compression ratios for the feature classification

process, whilst good, are not as efficient as those calculated for H.263. However,

there is clearly potential for further bitrate reduction by a more efficient coding

method, discussed in section 8.4. Generally speaking, it is difficult to make some

direct comparisons between feature classification and H.263 coding, because the

different approaches and criteria have been adopted.

8.4 Recommendations for further work

8.4.1 Adaptive feature classification

This thesis has demonstrated two connected approaches to feature classification. The

runlength labels produced by the pixel clustering and boundary detection process can,

in most cases, be reduced to a simple primitive label. However, some runlength labels

need to be retained, where they describe shapes outside the scope of the feature

lookup table.

This requirement could be removed by the introduction of an adaptive technique to

subdivide features into known primitives (figure 8.4.1). The result would be a

considerable reduction in the parameters needed to describe all subregions and an

associated reduction in bitrate.

178

 +2-j1+2-j2-3-j3-1+j6 1:(11) 2:(:01) 1:(07)

 (i) (ii)

Figure 8.4.2: (i) runlength encoded feature description and (ii) its

resolution to a set of primitive labels

8.4.2 Variable length coding

Variable length codes are used in predictive codecs as a way of efficiently coding

data, according to its frequency of occurrence. Chapter 2 showed how the H.261

algorithm employs Huffman coding to produce shorter datagrams for coefficients

which occur most often. This could easily be applied to the feature classification

technique for both sourcebook encoding and motion vector generation. If all features

could be expressed as primitives, then codes could simply be allocated against their

frequency without needing to provide a mechanism for coding runlength labels.

The application of further compression techniques will depend upon the application of

the feature classification algorithm. If low bitrates, equivalent to the application of

the H.261 and H.263 recommendations, are sought, further work may also have to

consider an adjustment in the pre-processing parameters to achieve a further reduction

in image quality.

179

Generally speaking, the use of pre-processing is an important development in

conditioning the input image sequence to levels of spatial resolution and pixel

magnitude, compatible with the compression activity of the codec. At the input stage,

errors are introduced, but there is control over their extent. The novel algorithm

described in this thesis uses sampling of both spatial and magnitude parameters,

whereas the H.263 technique discards some frames during moments of greater

interframe activity. A hybrid system could sample each of the three parameters of

space, magnitude and time, making a trade-off between the spatial and temporal

quality of the reconstructed image sequence.

Further work could also consider more closely the use of reconstruction error

correction, using passive techniques to improve visual quality. The method of mode-

value filtering outlined in this thesis is only one of many techniques which could be

applied, independent of the codec, to produce a cosmetic improvement.

8.4.3 Vector generation

With hindsight, it can be seen that many of the errors associated with feature

displacement and reconstruction are caused because the algorithm encodes on the

basis of where features originated in the previous frame. If the encoder were to be

genuinely predictive, looking to the next frame for its interframe information, there

would have been a more significant improvement in quality, without any real increase

in processing overhead.

180

Further work would be well directed to re-considering this approach and

implementing the displacement algorithm in such a way as to minimise the interframe

errors for which subsequent filtering has proved necessary.

181

References

1 Griffiths J. M., ISDN Explained - Worldwide Network and Applications

Technology, John Wiley, 1990.

2 Sekuler R. and Blake R., Perception, 3rd Edition, McGraw-Hill 1994, pp

158-178.

3 Thompson J., “European collaboration on Picture Coding Research for

2Mbits/s transmission”, IEEE Trans, COM-29, no. 12, December 1981, pp

2003-4.

4 ITU-T Recommendation¶ H.261 Video codec for audiovisual services at p ×

64 kbits/s, July 1990. [¶ Formerly “CCITT Recommendation”]

5 Carr M.D., “Video codec hardware to realise a new world standard”,

British Telecom Technology Journal, vol. 8, no. 3, July 1990, pp 28-35.

6 Aggoun A., DPCM Video Signal/Image Processing, University of

Nottingham PhD Thesis, May 1992.

7 Clarke R.J., Transform Coding of Images, Academic Press, 1985, pp 111-

115.

8 Ibid. pp 100-105.

9 Ibid. pp 91 - 97.

10 Huffman D.A., “A method for the construction of minimum-redundancy

codes”, Proc IRE, September 1952, pp 1098-1101.

11 Ramteke T., Networks, Prentice-Hall 1994, pp 294-299.

12 Morrison D.G., “Standardization by ISO/MPEG of Digital Video Coding for

Storage Applications” , in Audiovisual Telecommunications, ed. Kenyon N.D. and

Nightingale C., Chapman and Hall, 1992, pp 177-193.

182

13 Hodge W., Mabon S. and Powers J.T. (Jr.), “Video on Demand:

Architecture, Systems and Applications”, Journal of the Society of Motion

Picture and Television Engineers, vol. 102, no. 9, 1993, pp 791-803.

14 ISO/IEC “Coding of moving pictures and audio for digital storage media at

up to about 1.5 Mbits/s”, IS 11172-2.

15 ISO/IEC “Generic coding of moving pictures and associated audio”,

IS13818-2.

16 ITU-T Draft Recommendation H.263, Study Group XV Document,

Q2/15, Expert’s Group on Very Low Bitrate Video Telephony,

Leidschendam, April 1995.

17 Whybray M.W. and Ellis W., “H.263 - Video Coding Recommendation for

PSTN Videophone and Multimedia”, Proc IEE Colloquium on low bit-rate

image coding, Jun 1995, pp 6/1-6/9.

18 Orchard M.T. and Sullivan G.J, “Overlapped Block Motion Compensation:

An Estimation-Theoretic Approach”, IEEE Trans on Image Processing,

vol. 3, no. 5, Sep 1994, pp 693-699.

19 Thomas G.A., “Motion and motion estimation”, Image Processing,

ed. Pearson D.E., McGraw-Hill, 1991

20 Thomas G.A., “Television motion measurement for DATV and other

applications”, BBC Research Department Report, no. 1987/11, 1987

21 Budrikis Z.L., “Model approximations to visual spatio-temporal sine-wave

threshold data”, Bell System Technical Journal, vol. 52, n. 9, 1973, pp

1643-67

22 Limb J.O. and Murphy H.A., “Measuring the speed of moving objects from

television signals”, IEEE Trans COM-23, no. 4, 1975, pp 474-8

183

23 Netravali A.N. and Robbins J.D., “Motion compensated television coding:

part 1”, Bell System Technical Journal, vol. 58, no.3, 1979, pp 631-70

24 Mussman H.G., Pirsch P. and Grallert H.J.,”Advances in picture coding”,

Proc IEEE, 1985, vol 73, pp 523-548

25 Jain J.R. and Jain A.K., “Displacement measurement and its application to

interframe coding”, IEEE Trans, COM-29 (12), pp1799-1808

26 CCITT “Description of reference model 6 (RM6)”, SGXV, Specialists

Group on Coding for Visual Telephony, Doc 396, 1988.

27 Parke I. and Morrison D.G., “A hardware motion compensator for a

videoconferencing codec”, Proc IEE Colloquium on Motion Compensated

Image Processing, 1987, pp 1/1-1/5.

28 De Vos L. et al, “VLSI architectures for the full-search block matching

algorithm”, Proc ICASSP ‘89, M5.22, May 1989, pp 1687-1690.

29 Chan M. H., Yu Y.B. and Constantinides A. G., “Variable size block

matching motion compensation with applications to video coding”, Proc

IEE-I, vol 137, pt 1, no 4, August 1990, pp 205-212

30 Horowitz S. L. and Pavlidis T., “Picture segmentation by a tree traversal

algorithm”, J. Assoc. Comput. Mach., 23, 1976, pp 368-388

31 Seferidis V. and Ghanbari M., “Generalised block-matching motion estimation

using quad-tree structured decomposition”, IEE Proceedings-I, vol. 141, no. 6,

December 1994, pp 446-452

32 Seferidis V. and Ghanbari M., “General approach to block-matching

motion estimation”, Optical Engineering, vol. 32, no. 7, July 1993, pp

1464-1474

184

33 Lee M. H. and Crebbin G., “Image sequence coding using quadtree-based

block-matching motion compensation and classified vector quantisation”,

Proc IEE-I, vol. 141, no. 6, December 1994, pp 453-460

34 Linde Y., Buzo A. and Gray R. M., “An algorithm for vector quantiser

design”, IEE Trans. Commun., COM-28, January 1980, pp 84-95

35 Ramamurthi B. and Gersho A., “Classified vector quantisation of images”,

IEEE Trans, Commun., COM-34, November 1986, pp 1105-1115

36 Lee M. H. and Crebbin G., “Classified vector quantisation with variable

block-size DCT models”, Proc IEE-I, vol. 141, no. 1, pp 39-48

37 Bergeron C. and Dubois E., “Gradient-based algorithms for block-oriented

MAP estimation of motion and application to motion-compensated temporal

interpolation”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 1, no. 1, March 1991, pp 72-85

38 Welsh W. J., “Model-based coding of videophone images”, IEE

Electronics and Communication Engineering Journal, February 1991,

pp 29 - 36

39 Musmann H. G., Hotter M. and Ostermann J., “Object oriented analysis-

synthesis coding of moving images”, Image Commun., vol. 1, no. 2,

October 1989, pp 117-138

40 Newman W. M. and Sproull R., Principles of interactive computer graphics,

McGraw-Hill, 1981

41 Parke F. I., “Parameterised models for facial animation”, IEEE Computer

Graphics and Applications, November 1982, pp 61-68

42 Ekman P. and Friesen W. V., “Manual for the facial action coding system”,

Consulting Psychologists Press, Palo Alto, California, 1977

185

43 Akimoto T., Suenaga Y. and Wallace R. S., “Automatic creation of 3D

facial models” IEEE Computer Graphics and Applications, September

1993, pp 16-22

44 Nagao M., “Picture recognition and data structure”, Graphic Languages, ed.

Nake and Rosenfeld, North Holland Press, 1972, pp 48-69

45 Watson A.B., “Efficiency of a model human image code”, Journal of the

Optical Society of America (A), vol. 4, no. 12, December 1987, pp 2401-

2417

46 Treismann A., “Features and objects in visual processing”, Scientific

American, no. 255, 1986, pp 114-125

47 Rosenfeld A., “Connectivity in Digital Pictures”, Journal of the ACM, vol. 17,

1970, pp 146-160

48 Rosenfeld A. and Kak A. C., Digital Picture Processing, 2nd ed., Academic

Press, New York, 1982

49 Pavlidis T., Structural Pattern Recognition, Springer-Verlag, Berlin, 1977

50 Kovalevsky V. A., “Topological Foundations of Shape Analysis”, Shape in

Picture - Mathematical Description of Shape in Grey-Level Images, ed.

Ying-Lie O., Toet A., et al, NATO ASI Series, 1992, pp 21-36

51 Guide to Structure Diagrams for Use in Program Design and other Logic

Applications, BS6224, British Standards Institution, 1992

52 Macro A. and Buxton J., The Craft of Software Engineering, Addison-

Wesley, 1987, pp 203-209

53 WWW Hypertext source http://www.nta.no/brukere/DVC/

“Digital Video Coding at Telenor R&D”, Telenor Research Limited,

Norway.

186

54 Gonzalez R. C. and Woods R.E., Digital Image Processing, Addison-

Wesley, 1993, p 319

187

Appendix 1

Test sequence spatial resolutions

1 Introduction

This appendix details comparative sizes and resolutions of the Common Intermediate

Format (CIF) and its variants. CIF was adopted by the ITU to overcome standards

conversion between PAL and NTSC, has a spatial aspect ration of 4:3 and is encoded

from an input frame rate of typically 25 frames per second.

Luminance is sampled at 6.75 MHz - twice the frequency of chrominance (3.375

MHz). The result is that luminance images have twice the spatial resolution of

chrominance, shown in figure A1.1.

 Luminance Chrominance

Format Pixels/line Lines/picture Pixels/line Lines/picture

CIF 352 288 176 144

QCIF 176 144 88 72

Sub-QCIF 128 96 64 48

A1.1: Comparative format resolutions

An illustration of the sampling technique is shown in figure 2.8.2. To demonstrate the

relative sizes and resolutions involved, figures A1.2-A1.4 show comparisons between

the base CIF, QCIF and Sub-QCIF image sizes. Figures A1.5-A1.10 go on to

illustrate the different effects of image size and resolution for both luminance

(greyscale) and colour images. Sampling for luminance is greater because the human

psychovisual perception mechanism is more sensitive to changes in brightness than

colour.

188

A1.2: Common Intermediate Format (CIF)

 352 pixels per line

288
lines

A1.3: Quarter Common Intermediate Format (QCIF)

 176 pixels

144
lines

A1.4: Sub-Quarter Intermediate Format (Sub-QCIF)

 128 pixels

 96
 lines

189

2 Comparative luminance resolutions

 A1.5: Susie 001 CIF

 A1.6: Susie 001 QCIF

 A1.7: Susie 001 Sub-QCIF

190

3 Comparative colour resolutions

 A1.8: Susie 001 CIF

 A1.9: Susie 001 QCIF

 A1.10: Susie 001 Sub-QCIF

191

Appendix 2

Image data format and file handling

1 Introduction

This appendix describes the format of image files used for the simulation of the

feature classification algorithm. The related software was mainly compiled from C++

code generated by the author. Additional functions were sourced from the Khoros

image processing software. Different file formats were required for each

implementation and shell scripts were composed to manage the file sequencing,

conversion and output to sourcebook and data files.

2 Image file formats

2.1 Portable Bit Maps (PBMs)

The portable bitmap/pixmap (PBM) format was introduced to the public domain by

Jeff Poskanzer in 1989 and since then it has become popular as an X-image format.

PBM files represent the lowest common denominator monochrome file format. They

were originally designed to facilitate bitmap mailing between different types of

machines, using mailers that can only handle ASCII characters. The format now

serves as the common language of a large family of bitmap conversion filters.

The format of PBM files allows very simple implementation. It has a three line ASCII

header comprising: the PBM type; the width and height of the image; the maximum

pixel value. There then follows the pixel data, separated by single spaces. For

monochrome images, this is simply the luminance value and for colour images, each

192

adjoining triplet represents the red, green and blue component of the pixel value. This

is illustrated in figure A2.1.

Comment lines PBM type
 Image dimensions

Maximum value
Created by viff2pbm

missa000.pbm

P2

352 288

255

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

Figure A2.1: PBM File format

The example shows part of one of the CIF frames from the Miss America sequence,

converted into PBM monochrome (P2). The presence of the header information in a

simple ASCII format is very useful as it allows C++ code to read-in the file data

193

directly to an array, without any further conversion in types. This is demonstrated in

the following code extract for main().

#include <stdio.h>
#include <iostream.h>
#include <fstream.h>

char * f;
char * o;

// string for the first ID of pgm files
char pgmtype[4];

int xmax, ymax, gmax, count, x, y, pixval;

// arrays to hold line data
int image_array [400][300];

// array to hold block info

int block [10];

main (int argc, char * argv[]) {

// setup default files
f = argv[1];
o = argv[2];

ifstream fin (f);
if (! fin.is_open()) {

cerr << "Error with input file \n";
exit (1);
} // if (! fin):

ofstream fout (o);
if (! fout.is_open()) {

cerr << "\nError with output file \n";
exit (1);
} // if (! fout)

// Read in file from input source

// get the header information

fin >> pgmtype >> xmax >> ymax >> gmax;

// read pixel values into array

for (y=0; y < ymax; y++) {

for (x=0; x < xmax; x++) {

fin >> pixval;
image_array[x][y] = pixval;
} // read in lines x

} // read in columns y

194

{ Program body }

// output header

fout << pgmtype << "\n";
fout << xmax << " " << ymax << "\n";
fout << gmax << "\n";

//output pixel values

for (y=0; y < ymax; y=y+2) {

for (x=0; x < xmax; x=x+2){

 // force <CR> to tidy PBM file
if (x % 20 == 0 && x != 0) fout << "\n";
fout << image_array[x][y] << " ";

} // for output of pixels
} // for output of lines

} // main

In the simulations, PBM files were passed without comment lines. The example

shows how a string is allocated for the header PBM identifier and integers set for the

header values xmax, ymax and gmax (the maximum greyscale value). The xmax

and ymax values are passed to a loop to read the remaining PBM pixel values into an

array, directly matching the x, y positions of the image.

For writing, the header, xmax, ymax and gmax are written to a new file, with

appropriate carriage returns to keep the header format. The loop then goes through

the image array and writes the processed values to the output file, separated by a

single space. This example comes from the main() body of a program, where file

parameters are passed from shell command-line arguments in main (int argc,

char * argv[]). The first argument f is set to the ifstream fin parameter

used to designate the source file and the second argument o is used to designate the

195

ofstream destination file. A check can be made to ensure the file arguments are

correctly presented and comprised the .ppm file extension.

This format was most useful and the direct relationship between image and array

value locations allows simple processing of subregions. Given a specific location (x,

y), local calculations for adjacent horizontal and vertical pixels are made using (x-1,

y)(x+1, y) and (x, y-1)(x, y+1), respectively.

2.2 Visualisation/Image File Format (VIFF)

The VIFF format is an advanced file structure designed to facilitate the interchange of

data, primarily within the functions of the Khoros system, but also between

researchers who want to exchange data and information. VIFF was designed to be

comprehensive, covering the many applications of image processing that require

different information about an image. The VIFF header comprises information

necessary for a component application to interpret the data and perform basic error

checking. The VIFF data structure has been applied to one and two-dimensional data

processing applications, as well as three-dimensional visualisation. There is currently

spare capacity in the 1024 byte header to extend the data field contained in a VIFF

file.

The 1024 byte header is followed by map(s), location data and then image data. The

header also information identifying the header format used. The file format (on disk)

or data structure (while in memory) have evolved to be directly compatible, in a way

analogous to the PBM and array data format previously mentioned. The data may be

196

an image in the normal sense, or sets of vectors. The difference is indicated by

carefully examining the values of the various fields.

The fields can be divided into five categories:

- administration - file management information;

- data storage - how data is stored, but not how it is interpreted;

- location data - describes the spatial location of the data (optional);

- data mapping - describes how the stored data should be mapped or

interpreted;

- colour space - in the case of images, indicates what co-ordinate space and

model is being used.

A full explanation of the VIFF format can be found in the Khoros Manual [liv],

volume II, chapter 1. In general the it is a format which contains a lot more than the

simple image data. For the design of a large image processing system, it is useful to

have additional information and file, image and spatial parameters, all held in the same

location.

This explanation of VIFF is included, since some Khoros functions were used during

the simulation of the feature classification.

3 File handling

Image sequences were stored as sets of individual frame files. This made the process

of interframe manipulation quite straightforward, as a relationship existed between the

temporal location of a frame and its position in the file set.

197

Image sequence files were held in a specific directory in the UNIX filestore. Each

had a common identification in its filename, with a numeric separator determining the

temporal sequence. In the case of Miss America, files were stored under

missa(frame_number).vif , using the compressed VIFF format, as shown in

the listing below:

 4 drwxrwxrwx 2 nwg 4096 Aug 14 16:18 .
 1 drwxrwxrwx 23 nwg 512 Jun 17 20:09 ..
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1000.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1001.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1002.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1003.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1004.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1005.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1006.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1007.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1008.vif
 112 -rwx------ 1 nwg 104704 Sep 8 1993 missa1009.vif

Following processing, the initial identifier is changed, but the frame number is

retained. UNIX shell script was developed to control file handling in the simulation

process. Consider the example listed below, for the spatial pre-processing algorithm:

#!/bin/sh

for I in `ls missa10*.vif`
do

FILENO=`echo $I | awk -Fmissa '{print $2}'| awk -F. '{print
$1}'`
 echo "Processing file $FILENO"

viff2pbm -i missa$FILENO.vif -o missa$FILENO.pbm
quant missa$FILENO.pbm missaq$FILENO.pbm 8
cifmode3 missaq$FILENO.pbm missaqcif$FILENO.pbm
pbm2viff -i missaqcif$FILENO.pbm -o missaqcif$FILENO.vif
vconvert -i missaqcif$FILENO.vif -o missaqcif$FILENO.vif -t
"byte"
rm *.pbm

done

This example shows how all files matching the wildcard missa10*.vif are listed.

The frame number is extracted from the listing by use of the awk command, used for

non-interactive text processing. This is set as an environment variable $FILENO. At

198

each stage of processing, files are created having different prefixes, but retaining their

position specified by the current value of $FILENO. The script loops until all files in

the set missa*.vif have been processed. In this case, the source files are in VIFF

format, they are converted to PBM, quantised to a step interval of 8 grey levels, mode

value subsampled and then returned to VIFF format. The resulting files will therefore

be:

 112 -rwx------ 1 nwg missaqcif1000.vif
 112 -rwx------ 1 nwg missaqcif1001.vif
 112 -rwx------ 1 nwg missaqcif1002.vif
 112 -rwx------ 1 nwg missaqcif1003.vif
 112 -rwx------ 1 nwg missaqcif1004.vif
 112 -rwx------ 1 nwg missaqcif1005.vif
 112 -rwx------ 1 nwg missaqcif1006.vif
 112 -rwx------ 1 nwg missaqcif1007.vif
 112 -rwx------ 1 nwg missaqcif1008.vif
 112 -rwx------ 1 nwg missaqcif1009.vif

The use of shell script processing made file handling very simple and allowed a fully

modular approach to programming in the context of image sequence file sets.

199

Appendix 3

Primitive feature look-up table

Strips

01 02 03 04 05

06 07 08 09

Rectangles

11 12 13 14 15

T-shapes

21 22 23 24 25 26 27 28

31 32 33 34 35 37 38 39

200

L-shapes

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57

Steps (diagonal edges)

60 61 62 63 64 65 66 67

Single steps

70 71 72 73 74 75 76 77

Notation

In all cases, the seed pixel is the first to be encountered in a scan from top-

left to bottom-right, e.g.:

201

i Griffiths J. M., ISDN Explained - Worldwide Network and Applications

Technology, John Wiley, 1990.

ii Sekuler R. and Blake R., Perception, 3rd Edition, McGraw-Hill 1994, pp

158-178.

iii Thompson J., “European collaboration on Picture Coding Research for

2Mbits/s transmission”, IEEE Trans, COM-29, no. 12, December 1981, pp

2003-4.

iv ITU-T Recommendation¶ H.261 Video codec for audiovisual services at p ×

64 kbits/s, July 1990. [¶ Formerly “CCITT Recommendation”]

v Carr M.D., “Video codec hardware to realise a new world standard”,

British Telecom Technology Journal, vol. 8, no. 3, July 1990, pp 28-35.

vi Aggoun A., DPCM Video Signal/Image Processing, University of

Nottingham PhD Thesis, May 1992.

vii Clarke R.J., Transform Coding of Images, Academic Press, 1985, pp 111-

115.

viii Ibid. pp 100-105.

ix Ibid. pp 91 - 97.

x Huffman D.A., “A method for the construction of minimum-redundancy

codes”, Proc IRE, September 1952, pp 1098-1101.

xi Ramteke T., Networks, Prentice-Hall 1994, pp 294-299.

202

xii Morrison D.G., “Standardization by ISO/MPEG of Digital Video Coding for

Storage Applications” , in Audiovisual Telecommunications, ed. Kenyon N.D. and

Nightingale C., Chapman and Hall, 1992, pp 177-193.

xiii Hodge W., Mabon S. and Powers J.T. (Jr.), “Video on Demand:

Architecture, Systems and Applications”, Journal of the Society of Motion

Picture and Television Engineers, vol. 102, no. 9, 1993, pp 791-803.

xiv ISO/IEC “Coding of moving pictures and audio for digital storage media at

up to about 1.5 Mbits/s”, IS 11172-2.

xv ISO/IEC “Generic coding of moving pictures and associated audio”,

IS13818-2.

xvi ITU-T Draft Recommendation H.263, Study Group XV Document,

Q2/15, Expert’s Group on Very Low Bitrate Video Telephony,

Leidschendam, April 1995.

xvii Whybray M.W. and Ellis W., “H.263 - Video Coding Recommendation for

PSTN Videophone and Multimedia”, Proc IEE Colloquium on low bit-rate

image coding, Jun 1995, pp 6/1-6/9.

xviii Orchard M.T. and Sullivan G.J, “Overlapped Block Motion Compensation:

An Estimation-Theoretic Approach”, IEEE Trans on Image Processing,

vol. 3, no. 5, Sep 1994, pp 693-699.

xix Thomas G.A., “Motion and motion estimation”, Image Processing,

ed. Pearson D.E., McGraw-Hill, 1991

203

xx Thomas G.A., “Television motion measurement for DATV and other

applications”, BBC Research Department Report, no. 1987/11, 1987

xxi Budrikis Z.L., “Model approximations to visual spatio-temporal sine-wave

threshold data”, Bell System Technical Journal, vol. 52, n. 9, 1973, pp

1643-67

xxii Limb J.O. and Murphy H.A., “Measuring the speed of moving objects from

television signals”, IEEE Trans COM-23, no. 4, 1975, pp 474-8

xxiii Netravali A.N. and Robbins J.D., “Motion compensated television coding:

part 1”, Bell System Technical Journal, vol. 58, no.3, 1979, pp 631-70

xxiv Mussman H.G., Pirsch P. and Grallert H.J.,”Advances in picture coding”,

Proc IEEE, 1985, vol 73, pp 523-548

xxv Jain J.R. and Jain A.K., “Displacement measurement and its application to

interframe coding”, IEEE Trans, COM-29 (12), pp1799-1808

xxvi CCITT “Description of reference model 6 (RM6)”, SGXV, Specialists

Group on Coding for Visual Telephony, Doc 396, 1988.

204

xxvii Parke I. and Morrison D.G., “A hardware motion compensator for a

videoconferencing codec”, Proc IEE Colloquium on Motion Compensated

Image Processing, 1987, pp 1/1-1/5.

xxviii De Vos L. et al, “VLSI architectures for the full-search block matching

algorithm”, Proc ICASSP ‘89, M5.22, May 1989, pp 1687-1690.

xxix Chan M. H., Yu Y.B. and Constantinides A. G., “Variable size block

matching motion compensation with applications to video coding”, Proc

IEE-I, vol 137, pt 1, no 4, August 1990, pp 205-212

xxx Horowitz S. L. and Pavlidis T., “Picture segmentation by a tree traversal

algorithm”, J. Assoc. Comput. Mach., 23, 1976, pp 368-388

xxxi Seferidis V. and Ghanbari M., “Generalised block-matching motion estimation

using quad-tree structured decomposition”, IEE Proceedings-I, vol. 141, no. 6,

December 1994, pp 446-452

xxxii Seferidis V. and Ghanbari M., “General approach to block-matching

motion estimation”, Optical Engineering, vol. 32, no. 7, July 1993, pp

1464-1474

xxxiii Lee M. H. and Crebbin G., “Image sequence coding using quadtree-based

block-matching motion compensation and classified vector quantisation”,

Proc IEE-I, vol. 141, no. 6, December 1994, pp 453-460

205

xxxiv Linde Y., Buzo A. and Gray R. M., “An algorithm for vector quantiser

design”, IEE Trans. Commun., COM-28, January 1980, pp 84-95

xxxv Ramamurthi B. and Gersho A., “Classified vector quantisation of images”,

IEEE Trans, Commun., COM-34, November 1986, pp 1105-1115

xxxvi Lee M. H. and Crebbin G., “Classified vector quantisation with variable

block-size DCT models”, Proc IEE-I, vol. 141, no. 1, pp 39-48

xxxvii Bergeron C. and Dubois E., “Gradient-based algorithms for block-oriented

MAP estimation of motion and application to motion-compensated temporal

interpolation”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 1, no. 1, March 1991, pp 72-85

xxxviii Welsh W. J., “Model-based coding of videophone images”, IEE

Electronics and Communication Engineering Journal, February 1991,

pp 29 - 36

xxxix Musmann H. G., Hotter M. and Ostermann J., “Object oriented analysis-

synthesis coding of moving images”, Image Commun., vol. 1, no. 2,

October 1989, pp 117-138

206

xl Newman W. M. and Sproull R., “Principles of interactive computer

graphics”, McGraw-Hill, 1981

xli Parke F. I., “Parameterised models for facial animation”, IEEE Computer

Graphics and Applications, November 1982, pp 61-68

xlii Ekman P. and Friesen W. V., “Manual for the facial action coding system”,

Consulting Psychologists Press, Palo Alto, California, 1977

xliii Akimoto T., Suenaga Y. and Wallace R. S., “Automatic creation of 3D

facial models” IEEE Computer Graphics and Applications, September

1993, pp 16-22

xliv Nagao M., “Picture recognition and data structure”, Graphic Languages, ed.

Nake and Rosenfeld, North Holland Press, 1972, pp 48-69

xlv Watson A.B., “Efficiency of a model human image code”, Journal of the

Optical Society of America (A), vol. 4, no. 12, December 1987, pp 2401-

2417

xlvi Treismann A., “Features and objects in visual processing”, Scientific

American, no. 255, 1986, pp 114-125

xlvii Rosenfeld A., “Connectivity in Digital Pictures”, Journal of the ACM, vol. 17,

1970, pp 146-160

207

xlviii Rosenfeld A. and Kak A. C., Digital Picture Processing, 2nd ed., Academic

Press, New York, 1982

xlix Pavlidis T., Structural Pattern Recognition, Springer-Verlag, Berlin, 1977

l Kovalevsky V. A., “Topological Foundations of Shape Analysis”, Shape in

Picture - Mathematical Description of Shape in Grey-Level Images, ed.

Ying-Lie O., Toet A., et al, NATO ASI Series, 1992, pp 21-36

li Guide to Structure Diagrams for Use in Program Design and other Logic

Applications, BS6224, British Standards Institution, 1992

lii Macro A. and Buxton J., The Craft of Software Engineering, Addison-

Wesley, 1987, pp 203-209

liii WWW Hypertext Source http://www.nta.no/brukere/DVC/

Telenor Research Limited, Norway.

Reference

208

liv Khoros User’s Manual, Release 1.0, The Khoros Group, University of

New Mexico, USA

