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Abstract

With the expected continued increases in air transportation, the mitigation of the conse-

quent delays and environmental effects is becoming more and more important, requiring

increasingly sophisticated approaches for airside airport operations. The ground move-

ment problem forms the link between other airside problems at an airport, such as arrival

sequencing, departure sequencing, gate/stand allocation and stand holding. The purpose

of this thesis is to contribute to airport ground movement research through obtaining a

better understanding of the problem and producing new models and algorithms for three

sub-problems. Firstly, many stakeholders at an airport can benefit from more accurate

taxi time predictions. This thesis focuses upon this aim by analysing the important fac-

tors affecting taxi times for arrivals and departures and by comparing different regression

models to analyse which one performs the best for this particular task. It was found that

incorporating the information of the airport layout could significantly improve the accuracy

and that a TSK fuzzy rule-based system outperformed other approaches. Secondly, a fast

and flexible decision support system is introduced which can help ground controllers in an

airport tower to make better routing and scheduling decisions and can also absorb as much

of the waiting time as possible for departures at the gate/stand, to reduce the fuel burn and

environmental impact. The results show potential maximum savings in total taxi time of

about 30.3%, compared to the actual performance at the airport. Thirdly, a new research

direction is explored which analyses the trade-off between taxi time and fuel consumption

during taxiing. A sophisticated new model is presented to make such an analysis possi-

ble. Furthermore, this research provides the basis for integrating the ground movement

problem with other airport operations. Datasets from Zurich Airport, Stockholm-Arlanda

Airport, London Heathrow Airport and Hartsfield-Jackson Atlanta International Airport

were utilised to test these sub-problems.
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1

Introduction

Imagination is more important
than knowledge.

Albert Einstein

1.1 Background and Motivation

There has been a significant increase in air traffic over the past few years and this trend is

predicted to continue. The SESAR (Single European Sky ATM Research) project predicts

a doubling in the number of flights between 2005 and 2020 (SESAR 2006). SESAR aims to

triple capacity by 2020 and to reduce delays on the ground and in the air (SESAR 2009). It is

expected that the hub airports could form the bottlenecks for the overall air traffic management

system within Europe (SESAR 2009; ACI EUROPE 2010). Hence, improvements in critical

airport operations will be more and more important in the near future. The main operations

which affect this bottleneck are arrival and departure management (sequencing and scheduling)

at the runway, gate assignment, and ground movement.

Ground movement links the various other operations together and is the focus of this thesis.

The main aim of this research is to better understand the ground movement problem, in such

a way that important operations can be automated. Furthermore, this research provides the
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1.2 Aims and Scopes

basis for integrating the ground movement problem with other airport operations. The majority

of previous research has focussed on the optimisation of a single airport operation at a time.

Moreover, it has often either neglected real-world constraints or provided decision support sys-

tems which would take too long to find a beneficial solution to be used as real-time methods.

The execution time of an approach can be especially important when solving integrated prob-

lems. From both an economic point of view (reducing delays and increasing throughput), and

an environmental point of view (reducing noise, air pollution and carbon emissions), there are

obvious benefits to be gained from treating the different airport operations as a whole.

This work is part of a research project called “Integrating and Automating Airport Opera-

tions” in which four universities are involved, namely the University of Lincoln, the University

of Loughborough, the University of Nottingham and the University of Stirling. In addition,

Manchester Airport and Zurich Airport have committed time and resource to it and their

involvement has provided us with access to historic data from airports and to gain insights

into their operations. During this research, I was able to start collaborations with three other

airports to extend the analysis of some approaches to more airports.

1.2 Aims and Scopes

The purpose of this thesis is to contribute to airport ground movement research through ob-

taining a better understanding of the problem and producing new models and algorithms for

various sub-problems. This thesis can broadly be split into three different research directions:

• Firstly, many stakeholders at an airport can benefit from more accurate taxi time predic-

tions. Two chapters focus upon this aim by analysing the important factors affecting taxi

times and by comparing different regression models to analyse which one performs best

for this particular task.

• Secondly, a fast and flexible decision support system is introduced which can help ground

controllers in an airport tower to make better routing and scheduling decisions.

• Lastly, a new research direction is explored which analyses the trade-off between minimis-
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1.3 Contributions of this Thesis

ing either taxi time or fuel consumption during the taxiing process. A sophisticated new

model is presented to make such an analysis possible.

The focus is upon the ground movement problem, but some of the links to other airside airport

operations are also discussed, to enable follow-up research related to the integration of various

problems. In contrast to many other sources, this research analyses European hub airports,

whereas much of the academic research in the literature is focused on North American hub

airports, where the situation and the bottlenecks often differ.

1.3 Contributions of this Thesis

The contributions can be summarised as follows:

• Chapter 2

– Overview and comparison of the various ground movement models and solution meth-

ods in the literature.

• Chapter 4

– A linear function was developed to more accurately estimate taxi times at European

hub airports.

– Identification of the factors which are better correlated to taxi speeds, such as taxi

distance and the traffic level.

– First extensive analysis of taxi time prediction that covers both arrivals and depar-

tures at an airport.

– A function which is useable by ground movement optimisers, allowing the elimination

of individual factors.

• Chapter 5

– Analysis compares different regression approaches, to determine the best approach

for predicting taxi times of aircraft.
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1.4 Publications from this Thesis

– A TSK fuzzy rule-based system was found to outperform the other approaches.

– New insights into the influence of distance and amount of traffic upon taxi-in times.

• Chapter 6

– Introduction of a more realistic ground movement decision support system with

average solution times of only a few milliseconds per aircraft, making it adequate for

real-time use.

– This work extends the basic ground movement problem of minimising the travel

times to include the concept of absorbing possible waiting times for departures at

the gate/stand.

– The results show potential maximum savings in total taxi time of about 30.3%,

compared to the actual performance at the airport.

– An effective swap-operator which can further improve the quality of the solution

with comparatively little additional computational time.

– An approach which could be used to test different airport extension plans and to

analyse the effects of different operational scenarios.

• Chapter 7

– A sophisticated combination of two algorithms has enabled the development of a

framework to analyse the trade-off between taxi time and fuel consumption for the

ground movement problem.

– The new model is able to tackle this hard problem in a comparatively efficient way.

– Sensitivity analysis has highlighted that the potential trade-off depends very much

upon the actual modelling of the fuel-based objective function.

1.4 Publications from this Thesis

A number of publications have been produced in the course of the development of this thesis

underpinning the importance of the tackled problems and the achievements of our work. The

key publications can be assigned to specific chapters as follows:
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1.4 Publications from this Thesis

• Chapter 2

– Jason A. D. Atkin, Edmund K. Burke, and Stefan Ravizza. “The airport ground

movement problem: Past and current research and future directions”. Proceedings

of the 4th International Conference on Research in Air Transportation (ICRAT),

Budapest, Hungary, pp 131-138, 2010.

• Chapter 4

– Jason A. D. Atkin, Edmund K. Burke, and Stefan Ravizza. “A statistical ap-

proach for taxi time estimation at London Heathrow Airport”. Proceedings of the

10th Workshop on Models and Algorithms for Planning and Scheduling Problems

(MAPSP), Nymburk, Czech Republic, 2011.

– Stefan Ravizza, Jason A. D. Atkin, Marloes H . Maathuis, and Edmund K. Burke. “A

statistical approach for improving taxi time estimations at airports”. Journal of the

Operational Research Society, (advance online publication), doi:10.1057/jors.2012.123.

• Chapter 5

– Jun Chen, Stefan Ravizza, Jason A. D. Atkin, and Paul Stewart. “On the utilisation

of fuzzy rule-based systems for taxi time estimations at airports”. Proceedings of the

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimiza-

tion, and Systems (ATMOS), Saarbrücken, Germany, pp 134-145, 2011.

– Stefan Ravizza, Jun Chen, Jason A. D. Atkin, Paul Stewart, and Edmund K. Burke.

“Aircraft taxi time prediction: Comparisons and insights”. (submitted)

• Chapter 6

– Jason A. D. Atkin, Edmund K. Burke, and Stefan Ravizza. “A more realistic ap-

proach for airport ground movement optimisation with stand holding”. Proceedings

of the 5th Multidisciplinary International Scheduling Conference (MISTA), Phoenix,

Arizona, USA, 2011.
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1.4 Publications from this Thesis

– Stefan Ravizza and Jason A. D. Atkin. “Exploration of the ordering for a sequential

airport ground movement algorithm”. Tech. Rep. 1543, University of Nottingham,

2011.

– Stefan Ravizza, Jason A. D. Atkin, and Edmund K. Burke. “A more realistic ap-

proach for airport ground movement optimisation with stand holding”. Journal of

Scheduling, (advance online publication), doi:10.1007/s10951-013-0323-3.

• Chapter 7

– Stefan Ravizza, Jun Chen, Jason A. D. Atkin, Edmund K. Burke, and Paul Stewart.

“Trade-off analysis between taxi time and fuel consumption in airport ground move-

ment”. Proceedings of the Conference on Advanced Systems for Public Transport

(CASPT12), Santiago, Chile, 2012.

– Stefan Ravizza, Jun Chen, Jason A. D. Atkin, Edmund K. Burke, and Paul Stew-

art. “Trade-off analysis between taxi time and fuel consumption in airport ground

movement”. Public Transport, (advance online publication), doi:10.1007/s12469-013-

0060-1.

The order of the authors changed over time, from alphabetic order to order by contribution. I

was main author on all publications, except the conference paper which was published at the

ATMOS workshop in 2011. In addition to the aforementioned papers, I presented my work at

the following events:

• “The airport ground movement problem: Past and current research and future directions”,

presentation at Student Conference on Operational Research (SCOR 2010), Nottingham,

UK (2010-04-10)

• “The airport ground movement problem: Past and current research and future directions”,

presentation at International Conference on Research in Air Transportation (ICRAT

2010), Budapest, Hungary (2010-06-03)

• “Comparison of airport ground movement algorithms”, presentation at EURO XXIV,

Lisbon, Portugal (2010-07-12)
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1.4 Publications from this Thesis

• “Ground movement at airports”, presentation at “Airports and the Environment” seminar

(PhD for PhD event), Loughborough, UK (2010-09-22)

• “Ground movement at airports”, presentation at ASAP seminar, Nottingham, UK (2010-

12-07)

• “Ground movement optimisation to increase stand holding”, presentation at Aerodays

2011, Madrid, Spain (2011-03-30)

• “A statistical approach for taxi time estimation at London Heathrow Airport”, presen-

tation at Workshop on Models and Algorithms for Planning and Scheduling Problems

(MAPSP 2011), Nymburk, Czech Republic (2011-06-20)

• “A more realistic approach for airport ground movement optimisation with stand hold-

ing”, presentation at Multidisciplinary International Scheduling Conference (MISTA 2011),

Phoenix, Arizona, USA (2011-08-10)

• “Exploration of the ordering for a sequential airport ground movement algorithm”, pre-

sentation at OR 2011, Zurich, Switzerland (2011-09-02)

• “How OR can aid airport ground movement”, presentation at OR 53, Nottingham, UK

(2011-09-06)

• “Integrating and automating airport operations” (jointly with Geert De Maere), presen-

tation at Air Transport Research Workshop, Lincoln, UK (2011-09-09)

• “How OR can aid airport ground movement”, presentation at ASAP seminar, Notting-

ham, UK (2011-12-15)

• “How Operational Research can aid airport ground movement”, presentation at University

of Stirling, Stirling, UK (2012-03-06)

• “The trade-off between taxi time and fuel consumption in airport ground movement”,

presentation at Conference on Advanced Systems for Public Transport (CASPT 2012),

Santiago, Chile (2012-07-23)

Finally, I presented two posters at two different competitions:
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1.5 Non-disclosure Agreement

• “Ground movement optimisation to increase stand holding”, 6th European Aeronautics

Days (Aerodays 2011), Madrid, Spain, 2011 (shortlisted)

• “Less hassle for your next flight - A green approach to optimise airport operations”, Re-

search Showcase 2011 from the University of Nottingham, Nottingham, UK, 2011 (short-

listed)

1.5 Non-disclosure Agreement

Three non-disclosure agreements cover this thesis and prevent us from making the utilised

datasets available. This work, as well as all related publications, were approved by our contacts

at the particular airports, such as Giovanni Russo and Daniele Gullo at Zurich Airport, Pelle

Lövstrand at Stockholm-Arlanda Airport and Simon Brown at Heathrow Airport.

1.6 Collaborations with Other Universities

Prof. Dr. Marloes Maathuis from the ETH Zurich, Switzerland has helped in the work related

to Chapter 4. In particular, she was involved in the validation of the statistical assumptions

(Section 4.3.4.3) and the analysis with the general least squares models using autoregression

models (Appendix A).

Dr. Jun Chen from the University of Lincoln, UK has contributed to the work in Chapters 5

and 7. Both fuzzy rule-based systems used in Chapter 5 have originally been implemented by

him and an adopted version of the source code has been made available to us (Sections 5.3.5

and 5.3.6). Chapter 7 combines his research with the algorithm from Chapter 6. The part

about the population adaptive immune algorithm (Section 7.3.4) has been developed by him

and he made it available to run the combined model.

Prof. Dr. John-Paul Clarke from the Georgia Institute of Technology, USA has welcomed me as

a scholar visitor for two months. He made it possible to work with data from Hartsfield-Jackson

Atlanta International Airport to analyse a North American airport (Appendix D).
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1.7 Structure of the Thesis

1.7 Structure of the Thesis

The main body of this thesis is organised as follows: Chapter 2 reviews existing contributions

related to ground movement at airports, the integration with other airport operations and

related research areas. In addition, the needs in this research areas are highlighted in this

chapter. In Chapter 3, the different datasets are discussed, which are then utilised in the

following chapters. A multiple linear regression approach is utilised in Chapter 4 to identify the

significant factors when predicting taxi times for arrivals and departures. Chapter 5 continues

with the prediction of taxi times, but instead of focusing on the relevant factors, different

regression approaches are tested to find more accurate predictions. Chapter 6 introduces a

graph-based algorithm to solve the routing and scheduling problem for aircraft on the surface

of an airport which takes into account the findings of Chapters 4 and 5. In Chapter 7, an

extension of the graph-based algorithm is presented where in addition to minimising the total

taxi time a new objective was added, to taxi in a more environmentally friendly manner. Finally,

a general concluding discussion is presented in Chapter 8.
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2

Background and Related Work

I suppose it is tempting, if the
only tool you have is a hammer,
to treat everything as if it were a
nail.

The Psychology of Science: A

Reconnaissance

Abraham Maslow

2.1 The Airport Ground Movement Problem

The airport ground movement problem is basically a routing and scheduling problem. It in-

volves directing aircraft on the ground to their destinations in a timely manner, with the aim

being to either reduce the overall travel time and/or to meet some target time windows, while

simultaneously reducing environmental issues. Throughout the movement, it is crucial, for rea-

sons of safety, that two aircraft never conflict with each other. The complexity of the problem

can vary and should drive the choice of the solution approach. When an airport has only a

few aircraft moving at once, with few potential conflicts between them, optimal routing can be

achieved by simply applying a shortest path algorithm, such as Dijkstra’s algorithm (Dijkstra

1959; Cormen et al. 2001), to each aircraft in turn. For larger airports, especially during peak

hours, the interaction between the routes of different aircraft often requires the application of
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2.1 The Airport Ground Movement Problem

a more complex routing algorithm.

The details of the problem descriptions and the constraints which have been utilised in previous

work have varied according to the requirements of the airport which was being modelled. The

various constraints upon the ground movement problem are considered in Section 2.1.1 and the

different objectives in Section 2.1.2. Since it is important for improving the operations at an

airport to integrate the related operations with the ground movement problem, this integration

is discussed in Section 2.2. Section 2.3 presents the existing models and solution approaches of

the ground movement problem and Section 2.4 relates this area to other research areas. Sections

2.5 and 2.6 review the areas of taxi time prediction and fuel efficient taxiing at airports, before

Section 2.7 highlights some of the further needs related to ground movement at airports from

an operational research point of view.

2.1.1 Constraints

The different constraints discussed in the ground movement research literature can be divided

into the following categories:

2.1.1.1 Consideration of the route taken

It is important to ensure that aircraft follow a permitted route (see Figure 2.1 for an example).

If the route for each aircraft is pre-determined, the ground movement problem is reduced to

finding the best possible schedule (Smeltink et al. 2004; Rathinam et al. 2008). The other

extreme occurs when no restrictions are set for the routing of each aircraft (Maŕın 2006; Maŕın

and Codina 2008; Keith and Richards 2008; Clare et al. 2009; Clare and Richards 2009, 2011).

The last possibility is for the restrictions to lie somewhere in between these extremes, where

there is a predefined set of routes for each aircraft and the algorithm can choose amongst them

(Pesic et al. 2001; Gotteland et al. 2001, 2003; Gotteland and Durand 2003; Herrero et al. 2005;

Garćıa et al. 2005; Balakrishnan and Jung 2007; Roling and Visser 2008; Deau et al. 2008,

2009). How an airport is operated can differ and hence certain approaches can be more suitable

for certain airports. The mentioned sources are further discussed in Section 2.3.
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2.1 The Airport Ground Movement Problem

Figure 2.1: Different routes from the exit of runway 14 to pier A at Zurich Airport

2.1.1.2 Separation constraints between aircraft

As previously mentioned, it is crucial that aircraft moving around on the ground do not conflict

with each other and have a separation based on jet blast to avoid affecting aircraft behind them.

This is ensured during taxiing by applying separation constraints. The required minimum

distances between aircraft appear to vary between authors. For example, Pesic et al. (2001)

required it to be at least 60 metres, while Smeltink et al. (2004) required a value of 200 metres.

Such constraints can also depend upon the aircraft type or size. If an aircraft is at a gate,

no such restriction is usually used. At the point of take-off or landing, other restrictions are

employed, which are presented in Section 2.2.

2.1.1.3 Aircraft movement speeds

Different aircraft require different lengths of time for taxiing. Recent research has taken this into

account, modelling the speed depending either upon the type or size of an aircraft (Balakrishnan

and Jung 2007; Roling and Visser 2008), or the kind of taxiway that is being followed (Gotteland

et al. 2001). The time for making a turn can also be taken into account (Pesic et al. 2001),

12



2.1 The Airport Ground Movement Problem

where the maximal speed may need to be limited. Chapters 4 and 5 analyse how taxi speed can

vary and this information is incorporated in the routing and scheduling approach in Chapter 6.

2.1.1.4 Timing constraints for arrivals

Arriving aircraft have to be routed from the runway to their stands (see Figure 2.1 for an

example). From the point of view of the isolated ground movement problem, the arrival time

for aircraft can be considered to either be fixed or to permit small deviations. The allocated

gate is usually assumed to be vacant and, therefore, the aim is usually for the aircraft to reach

the gate as soon as possible, since this is better from an environmental as well as an airline and

passenger perspective.

2.1.1.5 Timing constraints for departures

Departing aircraft have to be routed and scheduled from their stands to the runway from which

they will be departing. A pushback time (or earliest pushback time) is usually provided and

is often seen as an earliest time for an aircraft to start taxiing. The aims for the ground

movement of the departing aircraft can be more complicated than for arrivals. Assuming that

the departure sequencing at the runway(s) has not been integrated into the problem, one of

the following aims is usually adopted: 1) To reach the runway as early as possible. 2) To

reach the runway in time to attain, or be as close as possible to, a pre-determined take-off

time. 3) To reach the runway in time to take off within a specified time window, since many

European aircraft have fifteen minute slots which are allocated by the Eurocontrol Central Flow

Management Unit (CFMU) and have to be satisfied (Gotteland et al. 2003).

2.1.2 Objective Functions

The aim of the ground movement problem depends upon the scope of the problem. Much

of the previous research has concentrated upon minimising the total taxi time including the

waiting time for aircraft at the runway (Pesic et al. 2001; Maŕın 2006; Roling and Visser 2008;

Rathinam et al. 2008), while other research has considered makespan (the duration from first
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2.2 Integration of Other Airport Operations

to last movement) minimisation (Herrero et al. 2005; Garćıa et al. 2005). Yet more research has

treated this as a multi-objective problem. For example, penalising deviations from a scheduled

time of departure/arrival (STD/STA) (Smeltink et al. 2004; Balakrishnan and Jung 2007; Deau

et al. 2008, 2009), or from the CFMU slots (Gotteland et al. 2003), in addition to considering

one of the total taxi time or makespan reduction objectives. In other research, longer taxi

paths were penalised as well (Gotteland et al. 2001; Keith and Richards 2008; Clare et al. 2009;

Clare and Richards 2009, 2011). Maŕın and Codina (2008) used a weighted linear objective

function to simultaneously consider the total routing time, number of controller interventions,

worst routing time, delays for arriving and departing aircraft and the number of arrivals and

take-offs.

2.2 Integration of Other Airport Operations

The ground movement problem does not actually occur in isolation at an airport. The land-

ing/arrival sequence will determine the times at which some aircraft enter the system; the

gate/stand allocation problem will determine where arrivals leave the system and where de-

partures enter the system. The departure sequencing problem determines the times at which

departures leave the system. These systems can be seen to be intimately linked, so potential

benefits from integrating all four problems are obvious. However, little research so far has con-

sidered this integration (see Sections 2.2.1 and 2.2.2). The complexity of these problems is such

that it is currently impossible to simultaneously optimise all of these airport operations, but

the real situation at the airport means that there has to be at least some coordination between

the solutions of the sub-problems.

Before showing the relevant research areas which are linked to the ground movement problem,

the interested reader is directed to review papers about air traffic management in general to

better understand all of the relationships between the different areas (Wu and Caves 2002;

Barnhart et al. 2003; Ball et al. 2006).
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2.2 Integration of Other Airport Operations

2.2.1 Integration of Departure Sequences

For departing aircraft, the ground movement can affect the departure sequencing, and vice

versa. An optimal take-off sequence is of no use if it cannot be achieved by the taxiing aircraft,

as discussed in Atkin et al. (2007). To maximise the throughput of a runway, two sequence-

dependent separations are of major importance (Atkin 2008): wake vortex separations and

en-route separations. The wake vortex separations depend upon the weight classes of the

aircraft, so that larger separations are required whenever a lighter class of aircraft follows a

heavier class. Separations also have to be increased when aircraft have similar departure routes

(to ensure that en-route separations are met) or when the following aircraft is faster (to allow

for convergence in the air).

Departure sequencing is sometimes considered within ground movement research (Gotteland

et al. 2001), especially the newer research (Rathinam et al. 2008; Deau et al. 2008, 2009; Keith

and Richards 2008; Clare et al. 2009; Clare and Richards 2009, 2011), in order to ensure that

aircraft arrive at the departure runway at appropriate times, rather than merely reducing the

overall taxi times. Only wake vortex separations are usually considered. However, the en-route

separations are also sometimes taken into account (Keith and Richards 2008; Clare et al. 2009;

Clare and Richards 2009, 2011).

Similarly, taxi times cannot be ignored in realistic departure sequencing systems. The movement

near the runway can be especially important, for example, within flexible holding areas (Leese

et al. 2001; Atkin et al. 2007), or the interleaving of runway queues (Bolender 2000). Even

where the models for movement are not explicitly required, accurate taxi time predictions are

often beneficial for improving sequencing (Atkin et al. 2006, 2008b), even when re-sequencing

is performed at the runway, and would be more important if the re-sequencing was performed

earlier.

Different techniques have been used to tackle the departure sequencing problem: Leese et al.

(2001) and Balakrishnan and Chandran (2010) used dynamic programming algorithms, Cooper

et al. (2002) and Gupta et al. (2010a) employed mixed integer programming formulations,

Anagnostakis and Clarke (2003) recommended a two-stage approach and Atkin et al. presented

work using metaheuristics (Atkin et al. 2007; Atkin 2008; Atkin et al. 2008b,a, 2009). A recent
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2.2 Integration of Other Airport Operations

review paper was written by Bennell et al. (2011). In addition, Li et al. (2009) presented

an approach to plan runway configuration changes under stochastic wind conditions as the

preferred direction for aircraft to depart is depended upon the wind.

The ultimate goal to support airside operations at an airport is to integrate ground movement

with other operations. However, to be useful, such an approach needs to be able to find solutions

in real-time, to deal with changes of the situation at an airport (such as delays, changes of

gate allocations, etc.) and to be able to model the different operations in a realistic way by

incorporating all the required real-world constraints.

2.2.2 Integration of Arrival Sequences

Aircraft enter the ground movement system by landing on a runway, or by leaving stands. The

entry times into the system of landing aircraft will influence the ground movement operations.

Better arrival time predictions can have a positive effect on the ground movement planning.

There may be a choice of landing runway to be made. This choice can depend upon the

current status of the ground movement and the assigned gate for the aircraft. After landing

it will influence the later ground movement planning. Boysen and Fliedner (2011) analysed

the problem to balance workload of ground staff by evenly distributing the number of arriving

passengers, the arrivals per airline and the number of arrived passengers per airline over a

certain time.

In some airport layouts, runway crossings may be necessary for taxiing aircraft. For realistic

runway sequencing and taxiing optimisation, such crossings may need to be taken into account

(Anagnostakis and Clarke 2003), requiring knowledge of the runway sequencing when planning

the ground movement. Furthermore, runways are sometimes used in mixed mode, in which case

departure and arrival sequences also have to be coordinated (Bianco et al. 2006; Böhme et al.

2007). Some of the approaches for the departure problem can also be used to solve the arrival

problem and Bennell et al. (2011) presented a recent survey about both kinds of problem.

The problem of scheduling arrivals on a runway can be seen as a machine scheduling problem

with sequence-dependent setup times (Bianco et al. 1999; Ernst et al. 1999; Bennell et al.

2011). Most of the literature either solves the problem with dynamic programming algorithms
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2.2 Integration of Other Airport Operations

(Psaraftis 1980; Chandran and Balakrishnan 2007; Balakrishnan and Chandran 2010) or with

heuristics (Ernst et al. 1999; Bianco et al. 1999, 2006; Beasley et al. 2004; Soomer and Koole

2008; Soomer and Franx 2008; Salehipour et al. 2013). Artiouchine et al. (2008) presented a

compact mixed integer programming formulation which was solved with a hybrid branch and

cut framework. Very recently, Tavakkoli-Moghaddam et al. (2012) used fuzzy goal-programming

to solve the problem on a single runway.

2.2.3 Integration of Gate Assignment

Gate assignment is another major problem which arises at congested airports (Ding et al. 2005;

Dorndorf et al. 2008; Drexl and Nikulin 2008; Diepen et al. 2009; Jaehn 2010; Dorndorf et al.

2012). The aim is to find an assignment of aircraft to gates at terminals, or stands on the

apron, so that some measure of quality (such as total passenger walking distance) is improved.

This problem was fully discussed in a survey paper by Dorndorf et al. (2007), where the need

for future work in multi-objective optimisation and robust assignments was also identified.

The ground movement problem could be integrated with the gate assignment problem, with

the aim being to allocate gates/stands so that the total taxiing distance is reduced. This would

have a beneficial impact upon the use of fuel, with consequent benefits for the environment as

well as financial savings for airlines, delay benefits for passengers and a reduction in congestion

on the apron. Kim et al. (2009, 2010) presented gate assignment research which considered

minimising passenger flow in terminals and aircraft congestion on ramps. Other research areas

for the gate assignment problems are how to reassign gates for flight delays (Tang et al. 2009;

Maharjan and Matis 2011) or to have robust or stochastic gate assignments (Kim and Feron

2011; Azeker and Noyan 2012; Diepen et al. 2012).

A related field of research is to schedule baggage-handling facilities at airports (Abdelghany

et al. 2006; Asco et al. 2011; Barth and Pisinger 2012) which is another assignment problem

with different objective functions.
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2.3 Existing Ground Movement Models and Solution Ap-

proaches

Table 2.1: Overview of approaches for the ground movement problem based on MILP formula-
tions and GA models

Authors Approach Representation

Pesic et al. (2001) GA Times

Gotteland et al. (2001); Gotteland and Durand (2003) GA Ordering, Times

Gotteland et al. (2003) GA Ordering

Smeltink et al. (2004) MILP Ordering

Herrero et al. (2005); Garćıa et al. (2005) GA Times

Maŕın (2006) MILP Times

Balakrishnan and Jung (2007) MILP Times

Maŕın and Codina (2008) MILP Times

Roling and Visser (2008) MILP Times

Deau et al. (2008, 2009) GA Ordering

Keith and Richards (2008) MILP Ordering

Rathinam et al. (2008) MILP Ordering

Clare et al. (2009); Clare and Richards (2009, 2011) MILP Ordering

Yin et al. (2012) MILP Ordering

In this section, we present a comparison and categorisation of the existing research for the

ground movement problem at airports, which has previously taken two main forms. The first

form has involved the development of a Mixed Integer Linear Programming (MILP) formulation,

to which a commercial solver was usually applied, yielding an optimal solution. Where models

were formulated in a manner which would not be tractable to a MILP solver within a reasonable

solution time, heuristic methods have been applied. This alternative approach has so far mainly

involved the use of Genetic Algorithms (GAs). Of course, as heuristics, GAs give no guarantee

of the optimality of the solutions found. However, their success over far shorter (and far more

realistic in practice) execution times can often more than compensate for this.

We will first focus on the MILP formulations before discussing the GA-based approaches. For

each approach, we will first discuss the various models which have been developed, before

considering the previous research which has used these models in more depth. We will then

compare the approaches, discussing the advantages and disadvantages of each. Finally, we
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end this section by considering two important issues: firstly, how do the models handle the

dynamic nature of the real problems at the airports, and secondly, how can speed uncertainty

be handled to make the solution more robust in the real situation? An overview of the published

ground movement optimisation research considered here can be found in Table 2.1, showing

in chronological order both the solution approach which has been adopted and the defining

characteristics of the model.

2.3.1 Mixed Integer Linear Programming (MILP) Formulations

MILP formulations are widely used by exact solution methods in operational research. In com-

parison to Linear Programming (LP) formulations where the objective function and constraints

all have to be linear, MILP formulations introduce an additional restriction of integrality for

some variables. Unfortunately, since this restriction changes the nature of the search space

from continuous to discrete, it often leads to problems which are much harder to solve, so that

solution times for large problems may no longer be practical.

Three different MILP modelling approaches are described below:

• Exact position approach: Here a time is allocated for each aircraft to traverse each indi-

vidual part of its path. The approaches of Maŕın (2006), Balakrishnan and Jung (2007),

Maŕın and Codina (2008) and Roling and Visser (2008) used a space-time network for this

purpose. A spatial network representing the map of the airport is used as a starting point,

then time is discretised and a copy of the underling spatial network is created for each

time unit. These are then used to build a time expanded network. A good illustration of

this can be found in Maŕın and Codina (2008).

• Ordering approach: In this case, rather than dealing directly with timings, the algorithm

first aims to decide upon the sequencing, then uses this information to schedule times

for each aircraft at each vertex or edge. This approach was adopted by Smeltink et al.

(2004), Rathinam et al. (2008), Keith and Richards (2008), Clare et al. (2009), Clare and

Richards (2009, 2011) and Yin et al. (2012). All of these only required a spatial network

and modelled the sequencing constraints using binary variables, where the variables for
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a pair (i,j) of aircraft at a vertex/edge are equal to one if and only if aircraft i passes

this vertex/edge before aircraft j. With this approach, the times for each aircraft can be

modelled as continuous variables, avoiding the disadvantages of time discretisation.

• Immediate predecessor/successor approach: It would also be possible to indicate only the

immediate predecessor and successor for each aircraft at each vertex/edge rather than a

full sequencing. As far as we can determine, this approach has not been used for solving the

ground movement problem so far. Although the model in Smeltink et al. (2004) indicated

the immediate predecessor aircraft, this was only to support the ordering model.

2.3.2 Review of Previous MILP-related Research

To our knowledge, Smeltink et al. (2004) was the first approach to handle the ground movement

problem using the MILP formulation. This was performed for Amsterdam Schiphol Airport

in 2004. Since this airport used standard, predefined taxi routes for aircraft, the problem was

reduced to a scheduling problem. The approach worked on a spatial network where times were

modelled as continuous variables and binary variables were used for the sequencing, as described

above. The objective was to minimise the waiting time while taxiing and the deviation between

the desired departure time and the scheduled departure time.

Maŕın (2006) presented a linear multi-commodity flow network model to simultaneously solve

the aircraft routing and scheduling problem around airports. Two different methodologies were

used to solve the MILP formulation: a branch and bound, and a fix and relax approach. In the

latter case, the planning period was split into k smaller periods. Initially, only the variables

within the first time period are taken as binary and a linear relaxation is applied to the variables

for the other periods. The variables for the first period are then fixed, the variables for the

second time period are made binary and the linear relaxation is maintained for the remaining

variables. This is repeated for all k periods until all of the variables have been fixed. The

objective of the MILP formulation was to minimise the total taxi time.

Maŕın and Codina (2008) later published further work where the model was multi-objective.

The weighted linear objective function considered five other objectives, in addition to the previ-

ous goal of reducing the total routing time: 1) reducing the number of controller interventions,
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2) reducing the worst routing time, 3) reducing the delays for arrivals, 4) reducing the delay

for departures and 5) attempting to maximise the number of arrivals and take-offs. In contrast

to other models, they allowed the aircraft to use the whole network and did not restrict them

to a pre-determined set of paths. However, the presented algorithm was not able to deal with

the separation constraints in an accurate way because the constraints were only modelled in

the space-time network, which is independent of the type or size of aircraft.

Balakrishnan and Jung (2007) published another MILP formulation of the ground movement

problem on a space-time network. In this approach, each aircraft could be allocated one of a

limited set of routes. The relative benefits of different control approaches, such as controlled

pushback and taxi path re-routing were also considered. Their aim was to minimise the total

taxi time and to penalise situations where aircraft departed too late. It was pointed out that

controlled pushback could reduce the average departure taxi time significantly, saving fuel.

An alternative MILP formulation for ground movement, which was also based on a space-time

network, was provided by Roling and Visser (2008). A number of alternative routes were

assigned to each aircraft beforehand, and only these were considered at the solution stage. It

was possible for an aircraft to wait at the beginning of the journey, as well as on special vertices

during the journey. The objective was to minimise a weighted combination of the total taxi

time and total holding time at the gates. The objective function considered the entire route

for each aircraft but the solution was only guaranteed to be conflict-free within the planning

horizon, since these constraints were relaxed for later times.

Rathinam et al. (2008) used a MILP formulation which was based on the work of Smeltink et al.

(2004) and primarily considered the ordering of the aircraft at vertices. Further separation

constraints were added to the model, and it was simplified by reducing the number of binary

variables. The algorithm used a spatial network and a predefined route for each aircraft, to

minimise the total taxi time.

Keith and Richards (2008) introduced a new model for the coupled problem of airport ground

movement and runway scheduling. Their MILP optimisation was influenced by the work of both

Smeltink et al. (2004) and Maŕın (2006). The objective function was a weighted combination

of minimising the makespan, the total taxi and waiting time and the total taxi distance. As
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in Smeltink et al. (2004), a spatial network was used, with binary variables for handling the

sequencing constraints and continuous variables for the timings. Although both wake vortex

and en-route separations were considered for the take-off sequencing element, there were no

route limitations applied. The work of Clare et al. (2009) extended their previous work. Their

MILP formulation was changed to make it possible to introduce an iterative solution method for

departing aircraft. In the first step, a relaxed MILP formulation was solved, and no guarantees

were given for a conflict-free solution. An iterative procedure was then applied, where additional

constraints were added where they were necessary to avoid any conflicts detected in the previous

iteration. This was repeated until a conflict-free schedule was found. The papers by Clare and

Richards (2009, 2011) expanded their work by incorporating arrival aircraft at Heathrow airport.

The model simplifies the setting at an airport and cannot model pushbacks, variable taxi speeds

and the detailed taxiway layout in the presented form. Moreover, it seems questionable if the

approach is fast enough for real-time use and can deal with sudden changes.

Yin et al. (2012) published very recently a MILP formulation for George Bush Intercontinental

Airport in Houston, Texas. The model aims to minimise weighted total taxi times by finding

the taxi routes and the related schedules for each aircraft. However, the execution times for

small simplified datasets were relatively long even when applying the concept of rolling horizon

(see Section 2.3.7).

2.3.3 Genetic Algorithm (GA) Models

GAs are search methods inspired by evolutionary biology (Goldberg 1989; Sastry et al. 2005).

They maintain a population of candidate solutions, have a method (called a fitness function)

for evaluating solutions and apply a selection mechanism to guide the algorithm towards good

solutions. The correct encoding of the problem can be key for the successful application of a

GA (as we will consider in the next section), as can be the choice of appropriate mutation and

crossover operators for the selected problem encoding.

The basic GA algorithm involves a repetition of the stages of evaluating the current population,

selecting the population members to modify, applying the crossover and mutation operators

and replacing old population members by new population members, as appropriate for the
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replacement strategy (Sastry et al. 2005). These steps are repeated (iteratively improving the

overall quality of the population of candidate solutions) until a given termination condition is

met.

We now consider the important elements of the encodings which have been used for the ground

movement problem over the last decade before considering, in Section 2.3.4, the specific encod-

ings. As for the MILP approaches (discussed in Section 2.3.1), the GA approaches consider

either the absolute timing or the relative sequencing of the ground movement.

All of the encodings which have been considered in the GA implementations, (Pesic et al. 2001;

Gotteland et al. 2001, 2003; Gotteland and Durand 2003; Herrero et al. 2005; Garćıa et al.

2005; Deau et al. 2008, 2009), included the route allocation information, specifying the route ri

to allocate for each aircraft i. The additional information which was included differed between

the approaches, but can be summarised into three categories:

• Applying an initial (aircraft-specific) delay/hold time, prior to pushback. The GA is

responsible for determining this delay for each aircraft, as well as the route to allocate.

This approach was adopted by Herrero et al. (2005) and Garćıa et al. (2005).

• Applying a delay at some point during the movement, but not restricting it to being

applied at the start of the taxiing. This could be implemented either by specifying times

for both initiating and terminating the delay (the approach which was adopted in Pesic

et al. (2001) and Gotteland and Durand (2003)) or as a delay amount and (spatial)

position at which to apply it to the aircraft, as in Gotteland et al. (2001). The GA is

responsible for investigating when or where to apply the delay and the duration or end

time of the delay as well as the route to allocate to the aircraft.

• Prioritising aircraft movement, where the GA is used to investigate the relative prioriti-

sation of the aircraft rather than allocating holds directly. Here, the priority determines

which aircraft take precedence when there are conflicts during the movement. This ap-

proach was adopted in Gotteland et al. (2001, 2003), Gotteland and Durand (2003) and

Deau et al. (2009), where the GA explored the priorities to assign to aircraft as well as

the routes.
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2.3.4 Review of Previous GA-related Research

As far as we can determine, Pesic et al. (2001) published the first paper for optimising the

ground movement problem at airports in 2001. They allowed a single delay per aircraft at a

time determined by the GA. Their fitness function considered the number of time steps C, for

which aircraft were in conflict during the movement, and the total travel time T for aircraft.

The GA aimed to maximise the fitness value, which was 1
2+C

in the presence of conflicts or 1
2+

1
T

in the absence of conflicts. Thus, all values larger than 1
2 corresponded to solutions which were

conflict-free and all values smaller than 1
2 had at least one conflict and were therefore infeasible.

Crossover and mutation operators were introduced, along with a diversification strategy and

some simple termination criteria. For a random pair of parent solutions, the crossover operator

chose for each aircraft the parent which had fewer conflicts with other aircraft, in order to

increase the probability of producing an offspring population with better fitness values. This

operator was appropriate because the problem was partially separable as defined and discussed

in Durand and Alliot (1998). The mutation modified the details for the aircraft with the

(potentially shared) worst local fitness value.

Gotteland et al. (2001) extended their previous work by considering how the GA could deal

with speed uncertainty. We believe that this is an important consideration and will discuss

it in Section 2.3.8. In addition to the encoding from their previous work (Pesic et al. 2001),

they used a representation for prioritising aircraft movements, discussed in Section 2.3.3. The

encoding included the route number and priority level for each aircraft. A fitness value was

computed by applying an A* algorithm with the specified prioritisation of the aircraft. A space-

time network was then generated and aircraft were routed in order of priority level. After an

aircraft had been routed, the network was adjusted in such a way that the allocated route was

removed, along with all potentially conflicting edges, so that the routing of the next aircraft

avoided conflicts with previous aircraft.

The clustering of aircraft within these ground movement problems was considered in Gotteland

et al. (2001). A two stage approach was adopted, where the clusters of aircraft with conflicts

were solved independently in the first stage, before the different clusters were unified and solved

in combination in the second stage.
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Gotteland and Durand (2003) subsequently presented an alternative sequential algorithm: a

branch and bound algorithm, with a first search strategy (Horst and Tuy 1990) replacing the

A* algorithm to speed up the calculation of the fitness value, since there is always a preference

to continue taxiing rather than to hold position.

Gotteland et al. (2003) explained the way in which their GA handles both take-off time predic-

tion and CFMU slots. They modified their algorithms from Gotteland et al. (2001) with the

aim of reducing the deviation from CFMU slots (rather than minimising the necessary taxi-

ing time) by penalising (with a linear cost) deviations from the desired take-off times for each

aircraft, with a steeper penalty when the scheduled take-off is outside the CFMU slot.

Garćıa et al. (2005) hybridised two earlier approaches which were previously detailed by the

same authors in Herrero et al. (2005). A modified minimum cost maximum flow algorithm

determined the initial population of a GA and was used to penalise the fitness function. The

approach considered the application of an initial delay at the gate and the allocation of a

route to each departing aircraft, with no possibility for waiting at intermediate points or slower

taxiing during the ground movement. They used tournament selection, single-point crossover,

a traditional mutation operator and an additional random variation of the delay time. Their

fitness function penalised infeasible solutions and tried to minimise the makespan and the sum

of the delays, while attempting to maximise the number of departing aircraft.

Two more recent papers from Deau et al. (2008, 2009), developed the ideas which had been

discussed in Pesic et al. (2001), Gotteland et al. (2001, 2003) and Gotteland and Durand

(2003). They proposed a two-phase approach which considered the runway sequencing in the

first stage and the ground movement in the second stage. The separations to account for

the wake vortices were the most important constraint for the runway sequencing element. A

deterministic constraint satisfaction problem solution algorithm was used, which was based on a

branch and bound methodology. They used an objective function which was similar to that used

in Gotteland et al. (2003). Departing aircraft were moderately penalised if their scheduled time

deviated from the desired time within the CFMU slot, but were much more heavily penalised

if the scheduled time was outside this slot. Arriving aircraft had a fixed predicted time to land,

so a solution was only feasible if these aircraft had, at most, a small delay (no more than one
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minute) compared with the predicted landing time. In the second stage, their GA was modified

to find a good solution for the ground movement problem given the runway sequencing from the

first stage. The target runway sequence was considered as the ideal result of the routing stage

but was not treated as a hard constraint. Thus, the fitness function for their GA penalised

deviations from the target times. However, their publications do not present the execution

times. Moreover, it seems unclear as to whether the approach is robust enough and can flexibly

deal with changes.

2.3.5 Other Solution Approaches and Developments

Other solution approaches and developments for the ground movement problem at airports are

discussed in the following section.

Andersson et al. (2000) used simple queueing models for the taxi-in and taxi-out processes

to better understand the airport dynamics. These queuing models were later extended by

Carr et al. (2002). The Ground-Operation Situation Awareness and Flow Efficiency (GO-

SAFE) system was presented by Cheng and Foyle (2002) and Cheng (2003), but the technical

details were omitted since the paper was from a commercial company and it was only stated

that a dynamic programming approach using Dijkstra’s algorithm was used for the ground

movement problem. Experiments on a simple mock symmetric airport with six aircraft showed

that an event-based A* algorithm outperformed a co-evolutionary strategy with respect to

the cumulative time of completion (Brinton et al. 2002). Confessore et al. (2005) presented a

discrete simulation-based architecture for a decision support system for taxiing on the apron.

Different objectives where analysed on Rome Fiumicino Airport where significant improvements

could be achieved compared to the approach used previously. Baik and Trani (2008) introduced

a time-based simulation model for the analysis of airfield operations which incorporates a time-

dependent shortest path algorithm published in Baik et al. (2002). A sequential A* algorithm

was utilised in the papers by Lesire (2009, 2010) to deal with speed uncertainty on Toulouse-

Blagnac airport (our approach in Chapter 6 is similar to this, but provides a better coverage of

the solution space). The approach minimised the travel time of each aircraft and the execution

time was very fast. Gupta et al. (2010b) presented results on a simplified model of the primary
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international airport in Mumbai (BOM), with a network consisting of 15 nodes and 22 edges

and a testset with 9 aircraft, where the approach was mainly based on the work by Smeltink

et al. (2004). A different approach was presented by Mori (2010), who used cellular automata

to simulate congestion for departing aircraft on predefined routes. The model divides the layout

of the airport into small cells and the position and the speed of each aircraft is modelled in a

process which was first developed to describe the traffic on highways (Nagel and Schreckenberg

1992; Esser and Schreckenberg 1997).

The benefits that can be gained by using the Airport Surface Detection Equipment Model X

(ASDE-X) to have better awareness on the ground are highlighted in the work by Bhadra et al.

(2011) and Srivastava (2011). ASDE-X obtains data from radars, sensors, aircraft transponders

and ADS-B (Automatic Dependent Surveillance-Broadcast).

Finally, the paper by Cheng (2007) serves as a progress update on effort to introduce flight-

deck automation systems for pilots, so that more detailed information can be delivered from

the tower to the cockpit in an automatic manner.

2.3.6 Comparison of the Approaches

We now consider the major differences between the different models and solution approaches.

2.3.6.1 Differences in objectives and constraints

The optimisation of airport operations is a real-world problem, and as such it is important that

the real objectives of the airport and real constraints upon the problem are considered. The

majority of the published work has considered real airport settings, and it is apparent that both

the objectives and the details of the constraints have differed between airports. Consequently,

the models for the problems have also differed, resulting in the development of different solution

approaches.
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2.3.6.2 Optimality vs. execution time

The solution method which is adopted may also depend upon the load upon the airport (i.e. the

number of aircraft which need to be simultaneously considered), since exact solution approaches

become less practical as loads increase. With the expected increases in the density of air traffic

meaning that airports have to be able to handle more aircraft in the near future, some solution

techniques may potentially need to be adjusted over time.

GAs are heuristics rather than exact solution methods and can, therefore, often give neither any

guarantee for the solution nor even an approximation ratio in many situations. However, a poor

formulation of a MILP can also mean that an exact solution to the MILP can be a poor solution

for the underlying real-world problem. For example, with time discretisation models, the way in

which the time discretisation is handled can have a major effect upon the quality of the results:

smaller intervals may give better results but will result in significantly larger problems to solve.

Similarly, the way in which a model deals with the separation rules between aircraft can also

affect the quality of the results. It should be noted that none of the papers which were discussed

here measured the optimality gap for realistic scenarios, evaluating the effects of utilising only

a heuristic (GA-based) solution approach or of the effects of time discretisation, perhaps due

to the difficulty or impracticality of optimally solving these problems. In our opinion, it would

be worthwhile to have some kind of comparison between the performance of the approaches,

to be able to see the trade-off explicitly, but several publications do not provide all the needed

information to reproduce their results and enable a rigorous comparison.

Due to the fact that airports are usually interested in real-time decisions, the execution time

of an algorithm is a crucial measure. From this point of view, heuristics such as GAs often

outperform MILP formulations. For example, in Roling and Visser (2008) it was shown that

the execution time increased dramatically as the number of aircraft increased for their MILP

formulation.

Different researchers have also used different objective or fitness functions, due to having slightly

different aims. We believe that the generation of some generic benchmark scenarios to allow

such an analysis to be performed, comparing exact and heuristic solution approaches and the

effects of different objective functions, would be of huge benefit.
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As far as we are aware, there has been no investigation using other metaheuristics such as sim-

ulated annealing (Aarts et al. 2005), or tabu search (Gendreau and Potvin 2005). Furthermore,

there seems to be an unexploited potential for hybrid approaches which can make use of the

advantages of different models. More discussion about heuristics can be found in Section 6.5.

2.3.7 Dealing with the Dynamics

One major characteristic of the problem of ground movement at airports is the dynamic nature

of the problem. Predictions become less accurate the further they are in the future: predicted

positions for current aircraft may be wrong as may be predictions of when new aircraft will

be ready to pushback from the gates or to land. Predictions, therefore, have to be regularly

updated and, since some approaches need a significant execution time, attempts have been

made to decompose the problems into smaller sub-problems. In this section, we summarise the

approaches which have been used to cope with the dynamic nature of the routing problem.

• A simple modelling approach, called shifted windows, was introduced by Pesic et al. (2001)

for their GA. Every ∆ minutes, the situation was resolved for a fixed time window. Only

arriving or departing aircraft within the time window were considered but the time window

was enlarged for these aircraft to avoid horizon effect problems.

• Smeltink et al. (2004) evaluated three different variants of a rolling horizon approach,

not only for handling the dynamics of the problem, but also to reduce the size of the

problem to be solved. In each case, the planning period was split into disjoint, equal

length time intervals. In the first variant, the routes which had been allocated in previous

intervals were considered to be fixed, whilst in the second variant they could be modified.

In the third variant, the aircraft were sorted according to their pushback or landing time,

respectively, and a sliding window was applied to consider m aircraft in each iteration.

The first iteration considered aircraft 1 to m, then aircraft 1 was fixed and aircraft 2 to

m+1 were considered, then aircraft 2 was fixed, and so on. Unfortunately, this variant had

a significantly higher execution time without increasing the solution quality significantly.

• The fix and relax approach (discussed in Section 2.3.2) which was used by Maŕın (2006) for
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solving his MILP formulation, worked in a similar way to the sliding window approach. He

also used an alternative time-interval-based approach, where only aircraft in a particular

interval were used for planning but the interval was not enlarged to guarantee a conflict-

free solution. Instead, a shortest path algorithm was used to estimate the remaining time

for the aircraft which do not reach their destination within the interval.

• Lesire (2009, 2010) suggested a routing and scheduling approach which considers the

aircraft sequentially. Even though a simultaneous approach may find better solutions to

this problem, this method has several benefits. A decision support system can better

react if an aircraft has a delay and less or no changes to the other aircraft’s routes have

to be applied, since the other aircraft’s routes are considered to be fixed in most cases.

Chapter 6 introduces a sequential routing and scheduling approach and highlights that

the solution quality is very good. Moreover, both the approach by Lesire (2009, 2010) and

Chapter 6 report very fast execution times making them more suitable for the real-time

use at airports.

2.3.8 Robustness and Speed Uncertainty

Almost all published approaches were based on deterministic data. However, the real world

situation at airports is less predictable. Therefore, we think it is important to take solution

robustness into consideration. Uncertainty in the data for the ground movement problem can

appear in different areas, one of which is speed predictions (see Chapters 4 and 5). An approach

to cope with this was presented and illustrated in Gotteland et al. (2001). They modelled the

speed uncertainty as a fixed percentage of the predefined speed. Hence, an aircraft was assumed

to occupy not only a single position in the network but multiple possible positions at the same

time. While an aircraft was taxiing, the number of occupied positions grew and when an

aircraft was waiting at a holding point, the speed uncertainty and number of occupied positions

decreased. More discussion about buffer times can be found in Section 6.4.7.
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2.4 Related Research Areas

Similar application problems have been considered in other areas of research, such as job-shop

scheduling with blocking (Hall and Sriskandarajah 1996), the control of Automated Guided

Vehicles (AGVs) (Vis 2006; Nishi et al. 2011; Schüpbach and Zenklusen 2012) or robots (Nishi

et al. 2005) and train routing and scheduling (Cordeau et al. 1998; Caimi et al. 2011). Of course,

the details of the constraints and objectives differ, so there are limits to the applicability of the

research.

2.4.1 Job-shop Scheduling with Blocking

The job-shop scheduling problem is a standard problem in Operations Research in which jobs

are allocated to resources in a sequential manner. In general, a finite set of jobs is given,

together with a chain of operations which need to be executed on a finite set of machines or

resources. Each operation has an execution time and a resource can normally only handle

one job at a time. The goal is to find an allocation of the job’s operations to a time interval

of the resources, such that the makespan is minimal. Many different variations have been

studied and applied to different areas (Pinedo 2012). The version which is closest to the ground

movement problem at airports seems to be the job-shop scheduling with blocking problem (Hall

and Sriskandarajah 1996; Mascis and Pacciarelli 2002; Brucker 2007). Aircraft can be treated

as jobs, resources represent the different taxiway parts and a fixed route of an aircraft defines

the chain of operations to which this aircraft have to be allocated. The constraint of fixing the

aircraft’s route may affect the solution quality and may even make a certain ground movement

scenario infeasible which could be solved with more flexibility of the possible routes. In the

variation of the job-shop scheduling with blocking problem, a job remains on the resource after

its processing until the downstream resource becomes available. Gröflin and Klinkert (2009)

presented an approach to solve a generalised version of the job-shop scheduling with blocking

problem with tabu search on a generalised disjunctive graph.
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2.4.2 Controlling AGVs or Robots

In the case of controlling AGVs or robots, it is less important to avoid permanent changes to the

routes and schedules of vehicles which are already moving. Vis (2006) presented a survey paper

about the design and control of AGV systems. Nishi et al. (2005) first presented a decentralised

approach using Lagrangian decomposition and coordination techniques. Afterwards, another

approach was introduced with the decomposition of Petri nets and Lagrangian relaxation (Nishi

et al. 2009). Results showed execution times of the approach were less than 1 second on average

for scenarios with up to 9 AGVs, but scenarios with 15 AGVs had an average execution time of

13 seconds, with one particular scenario using 36 seconds. Nishi et al. (2011) later presented a

bilevel decomposition approach using a mixed integer formulation for the simultaneous conflict-

free routing of AGVs. Their results with up to 4 AGVs on a relatively simple layout suggest

that the approach is too slow to be used in an online setting. Richli (2009) in his Master’s

dissertation introduced different approaches to solve the simultaneous AGV routing problem,

but again the reported execution times of the algorithm suggest that sequential approaches,

as presented by Gawrilow et al. (2008), are more appropriate for real-time cases. A different

approach again by Tanaka et al. (2010) tackled the simultaneous routing problem using Petri

nets, but reported execution times which were too long for the use at airports. Very recently,

Schüpbach and Zenklusen (2012) published work on adaptive routing for personal rapid transit.

The idea behind this work is to reoptimise the routes of all currently used vehicles, when a new

vehicle requests a new route. The approach was based on solving a minimum cost multi-

commodity flow problem on a time-expanded graph with column generation and randomised

rounding.

2.4.3 Train Routing and Scheduling

In the field of conflict-free routing and scheduling for trains, Caimi et al. (2011) presented

an integer linear programming formulation which utilises information from conflict cliques as

strong cutting planes. This new approach was able to massively reduce the execution time

compared with other known algorithms. Earlier, D’Ariano et al. (2007) published work for

scheduling trains in a railway network based on a branch and bound algorithm. Often such
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approaches fix the speed and prohibit any waiting outside of the stations, either since they are

focusing on the routing and scheduling within station areas only or to explicitly simplify the

problem.

2.4.4 Complexity of the Problem

As far as we are aware, there is no published proof that the simultaneous ground movement

problem is NP-hard. However, there are many similarities with the job-shop scheduling with

blocking problem (Mascis and Pacciarelli 2002; Brucker 2007) and with the multi-commodity

integral flow problem. The multi-commodity integral flow problem with only two commodities

has been shown to be NP-complete (Even et al. 1976). Basically a space-time network of the

airport layout can be used as a directed graph where each edge has a capacity of 1 and the

aircraft can be considered as commodities with source, target and demand which are set to 1

showing the close relation between the two problems. Schüpbach and Zenklusen (2011) showed

very recently that a simplified version of the conflict-free vehicle routing problem is NP-hard

even on paths, using a reduction from the 3-partitioning problem. The ground movement

problem varies depending on the problem description and also on the objective function. It is

unclear whether special cases exist which can be solved in polynomial time, but that would only

be of particular interest if such special cases were relevant for the support of airport operations.

2.5 Taxi Time Prediction

In visually analysing the average taxi speed of different airports, it was obvious that major

differences appeared depending on various factors. Major differences are apparent between

arriving and departing aircraft as well as from whether the amount of traffic at the airport

is low, medium or high at the time. Since the effect of the taxi times do not appear to have

been sufficiently incorporated into the current state-of-the-art research, we are also interested

in predicting taxi times accurately and use this information later in our approach to have a

more realistic decision support system. Chapters 4 and 5 provide more background about this

problem domain.
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2.6 Fuel Efficient Taxiing

There is not much coverage of environmental considerations in taxiing. Previous research

mainly focused upon stand holding in order to reduce fuel burn (Burgain et al. 2009; Atkin

et al. 2010a, 2011a; Simaiakis et al. 2011). The assumption made was that by reducing the total

taxi time one can simultaneously improve the efficiency of airport operations and reduce the

fuel consumption, but Chen and Stewart (2011) indicated that this may not always be the case.

We suggested the value of considering speed profiles when routing aircraft to avoid unnecessary

fuel burn due to acceleration and deceleration (Atkin et al. 2010b).

Chapter 7 shows an analysis of the trade-off between the total taxi time and the fuel consump-

tion for the conflict-free routing problem for aircraft on the airport’s surface, which is also

published in Ravizza et al. (2012b). In contrast to the approach of Chen and Stewart (2011),

the interactions between aircraft are considered, instead of analysing a single trajectory of an

unimpeded aircraft. Interactions affect speed profiles of the aircraft involved and massively

increase the solution space of the routing approach.

2.7 Spotting the Needs in the Area

In this section, we describe several important open research directions for the airport ground

movement problem.

2.7.1 Consistency and Comparability

As discussed in Section 2.3.6, the constraints and objectives vary widely within the published

research. No comparison has so far been performed between different approaches, so it is

difficult to estimate the gap between the exact optimisation methods (e.g. MILP formulations)

and the heuristic approaches (e.g. GA) for either the quality of the solution or the execution

time of the algorithms. More consistency is desirable. Results about our routing and scheduling

approach are discussed in Section 6.6.
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2.7.2 Integration of Other Airport Operations

The integration of other airport operations, such as departure and arrival sequencing and gate

assignment, is highly desirable and, ultimately, optimisation across multiple airports would be

even better. Of course, the complexity of the integrated problem would grow and, since the

computation is time-critical, there seems to be more potential for heuristic and hybrid methods

than exact approaches. With the integration of different airport operations, the problem may

also have to be treated as a multi-objective optimisation problem.

2.7.3 Robustness and Uncertainty

Uncertainty in the input data is common at airports. Pushback time uncertainty and taxi

speed/duration uncertainty are known to be major limiting factors upon the accuracy of models.

We see the need for more investigation into models of the airport ground movement problem

which are more robust against such uncertainty.

2.7.4 Environmental Considerations in Taxiing

Consideration of the environmental effects of airports has become increasingly important and

could be taken into account for ground movement. For example, where possible, delays for an

aircraft should be scheduled prior to starting the engines, i.e. as initial delays at the gate/stand.

Perhaps more interestingly from the point of view of the problem modelling, aircraft engines

are more efficient when a constant taxi speed can be maintained rather than having a lot of

acceleration and deceleration. Speed changes and multiple stops should, therefore, be avoided

or reduced. It may be advisable to consider some kind of post-processing to calculate speeds

for link traversals, so that the pilots could be given appropriate information to allow them to

replace higher speed taxi operations plus waits by a lower speed operation. Chapter 7 takes

this into account.
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2.7.5 Limiting Changes

When the real-world dynamic case is considered, it is possible that routes or sequencing can

change over time. This may be highly undesirable if information has been transmitted to pilots.

Thus, the effects of avoiding changes should at least be considered. These issues are considered

in Chapter 6 and this has not been widely discussed in other publications.

2.8 Conclusions

A good proportion of this chapter was published as a conference paper (Atkin et al. 2010b)

and provided the first overview and comparison of the various ground movement models and

solution methods in the literature. It is apparent that there are significant differences between

both the objectives and the constraints which were utilised in previous research. To some

degree this is inevitable due to the differences between airports and different stakeholder aims.

However, there is obvious benefit to be gained from a formalisation of these. The state-of-the-

art approaches use mostly either a MILP formulation or a genetic algorithm approach and a

categorisation of the representations has been provided for both.

In addition to highlighting the state-of-the-art in this research area, a number of interesting

and important future research directions have also been identified. Of particular importance

is the integration of other (highly-related) airport operation problems. Runway sequencing

(for both departures and arrivals) and gate assignment are highly connected to the problem

of airport ground movement and we suggest that there would be benefits from handling them

simultaneously. More consistency within airport operations would also be helpful and generic

benchmark scenarios would be useful for both quantifying algorithms and encouraging further

research by those who may not have direct contact with an airport. Finally, we have iden-

tified the importance of handling uncertainty in taxi speeds and generating robust solutions

and of considering the operational limitations of communicating instructions to pilots and the

environmental effects of decisions.
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3

Datasets Used in Experiments

We have no idea about the ‘real’
nature of things ... The function
of modeling is to arrive at
descriptions which are useful.

Richard Bandler and

John Grinder

3.1 Introduction

This chapter reviews the datasets which are utilised in the experiments presented in the up-

coming chapters. It is important in such a project to have access to real world data, because

one of the main aims of this project was to bridge the gap between theory and practice and

enhance decision support systems at airports. Datasets from three different airports in Europe

were used for the different experiments. It is important to clarify that non-disclosure agree-

ments were signed for all of the different datasets which restricted us from openly publishing

the datasets, stating very detailed information about the data in this thesis and from running

all of the experiments with all datasets.

The setting and experiments with the world’s busiest airport (Hartsfield-Jackson Atlanta In-

ternational Airport) are shown in Appendix D as a case study of how to apply some of the

findings introduced in this thesis to a new airport.
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The rest of the chapter is structured as follows: An overview is first given of the available

datasets and how the airport layouts are modelled as a graph. Afterwards, each of the three

airports is explained and visualised, before ending the chapter with an aircraft categorisation.

The main elements of all of the supplied data consisted of information about each aircraft,

detailing the terminal gate or remote stand, the runway, the start and end time of taxiing, the

aircraft type and whether the aircraft was an arrival or a departure. The considered data also

included information about the airport layout, the positions of stands and the runway entrance

and exit points and the layout of all of the taxiways. This information was used to represent

an entire airport layout as a directed graph, where the edges represent the taxiways and the

vertices represent the junctions or intermediate points. Aircraft are considered to occupy edges

in our routing and scheduling approach (see chapter 6), and conflicts are avoided by preventing

any two aircraft from using the same edge simultaneously.

3.2 Airports

3.2.1 Zurich Airport

This thesis utilised data from Zurich Airport (ZRH), which is the largest airport in Switzerland

and a hub airport for Swiss International Air Lines. It was reported that the airport had around

24.3 million passengers and 279000 movements in the year 2011.

The airport has three runways, named 10/28, 14/32 and 16/34, according to their direction of

operation, with the first and the last runways intersecting each other (see Figure 3.1). It was

confirmed by the field staff that, as long as no heavy winds occur, ZRH operates with three

operational modes: a) before 7am, runway 34 is used for arrivals and 32 and 34 for departures;

b) during the day, runways 14 and 16 are used for arrivals and 28 and 16 for departures c) after

9pm, only runway 28 is used for arrivals and runways 32 and 34 are used for departures. The

mentioned rules only apply on weekdays and outside the holiday times of Baden-Württemberg.

The considered data included information about the airport layout, the positions of stands and

runway entrance and exit points and the layouts of all of the taxiways. Figure 3.2 visualises the
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3.2 Airports

Figure 3.1: Sketch of Zurich Airport (ZRH)

graph which was created to represent the airport’s layout in Zurich, with 465 vertices, 553 edges

and 119 gates. It also included the real timings for the aircraft using the airport during each

day. This information was used to develop a taxi time prediction function, as discussed later,

to improve the accuracy of the taxi time predictions which are used in the ground movement

model. We had access to data for an entire week’s operations between the 27th of June and

the 3rd of July 2011. No extraordinary occurrences took place and there were 5613 movements

in total (2806 arrivals and 2807 departures). This dataset is referred to as “ZRH 2011” within

this thesis. Additionally, an older dataset contains 679 movements in total (337 arrivals and

342 departures) from an entire day’s operations for the 19th of October 2007. This dataset

is referred to as “ZRH 2007”. Figure 3.3 shows the total amount of traffic on the surface at

different times of the day for “ZRH 2007”, with different colours for arriving and departing

aircraft. Taxi times at Zurich Airport varied from around 1 to 12 minutes (with a mean of

4.43 minutes) for arrivals and 4 to 24 minutes (with a mean of 8.88 minutes) for departures.

Departures often need longer for the taxiing process due to waiting in a runway queue before

take-off.

Figure 3.4 visualises the amount of traffic for the dataset “ZRH 2011”. Instead of providing

the information of whether an aircraft is arriving or departing, the different days are indicated

by different colours. During the working days the patterns look very similar, with considerably

fewer movements on Wednesday. The amount of traffic at the weekend (indicated with dashed
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3.2 Airports

Figure 3.2: Layout from Zurich Airport modelled as a graph with vertices and edges

lines) follows a different pattern and fewer movements are recorded. The mean taxi times for

this dataset were 3.60 and 11.13 minutes for arrivals and departures, respectively, with maximal

taxi times of around 15 and 34 minutes, respectively,
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Figure 3.3: Hours of the day at Zurich Airport for the datatset from the year 2007
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Figure 3.4: Hours of the day at Zurich Airport for the datatset from the year 2011
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3.2.2 Stockholm-Arlanda Airport

Another dataset which was used for some of the analysis in this thesis was from Stockholm-

Arlanda Airport (ARN), the largest airport in Sweden. Their main hub carrier is Scandinavian

Airlines. Around 19 million passengers and 105400 landings were reported during the year 2011.

Figure 3.5: Sketch of Stockholm-Arlanda Airport (ARN)

The airport has three runways, named 08/26, 01L/19R and 01R/19L. The latter two runways

are parallel and named with an “R” and an “L” depending upon whether they are on the right

or left side according to the facing of the aircraft. A sketch of the airport layout is provided

in Figure 3.5. Figure 3.6 shows the graph representing taxiways on the surface, which has 317

vertices, 349 edges and 91 gates. We had access to the data for an entire day’s operations at

Stockholm-Arlanda Airport for the 7th of September 2010 (661 movements, with 326 arrivals

and 335 departures) with no extraordinary occurrences. This is referred to as “ARN 1”. Aircraft

within this dataset were most often landing on either runway 19L or 19R and departing from

either runway 19R or 08. The average taxi time was around 7.4 minutes, with a maximal taxi

time of 20 minutes. It is clear from Figure 3.7 that airside airport operations have a peak in

the morning between 7am and 9am and also more movements during the late afternoon and

early evening. At a later date, a second datasets was made available for the 14th of October

2010. It consists of 656 movements and it will be referred to as “ARN 2”.
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3.2 Airports

Figure 3.6: Layout from Stockholm-Arlanda Airport modelled as a graph with vertices and edges

3.2.3 London Heathrow Airport

The last dataset utilises real recorded data from London Heathrow Airport (LHR), supplied

by NATS Ltd. London Heathrow Airport is one of the busiest international airports in the

world with around 65 million passengers and 455000 movements a year, despite the fact that
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Figure 3.7: Hours of the day at Stockholm-Arlanda Airport

it operates with only two runways and (for noise control reasons) is restricted to using only a

single runway at a time for departures. Heathrow is a primary hub airport for British Airways

and British Midland International (BMI) and also a base for Virgin Atlantic Airways Limited.

The dataset was recorded during the entire week from the 5th to the 11th of July 2010. All

of the 4727 arrivals and 4728 departures (9455 in total) were landing or departing from either

runway 27R or 27L (direction west) and none from the east on runway 09L or 09R. The graph

representing the surface of Heathrow is shown in Figure 3.8 which consists of 559 vertices, 642

edges and 197 gates.

The taxi times for incoming aircraft were on average 8.25 minutes, with a maximum of 63.12

minutes. The outgoing taxi times were considerably longer with an average of 22.09 minutes

and a maximum of 171.53 minutes.
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Figure 3.8: Layout of London Heathrow Airport, modelled as a graph with vertices and edges
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3.3 Aircraft Categorisation

The following aircraft categorisation was mainly used for the experiments in Chapter 7, with

data from Zurich Airport. Aircraft were classified into different groups and for each group

the settings for a representative aircraft type were used for calculations. This procedure was

necessary due to the lack of detailed data in the provided datasets. Aircraft were distinguished

by their wake vortex separation group. The group ‘light’ was represented by the settings for

a Cessna 172 Skyhawk. The settings for an Airbus A320 were used for the wake vortex group

‘medium’. Finally, the group ‘heavy’ was represented by the settings for an Airbus A333. All

of these aircraft were the most common aircraft type in their category at Zurich Airport. The

technical details of the aircraft and their engines can be found in Table 3.1.

Table 3.1: Specifications of aircraft and engines

Cessna 172 Skyhawk Airbus A320 Airbus A333

Maximum take-off weight 1100 kg 78000 kg 230000 kg
Rolling resistance 162 N 11.48 kN 33.85 kN
Engine O-320 CFM56-5A1 PW4168
Number of engines 1 2 2
Maximal fuel flow 1× 0.0112 kg/s 2× 1.051 kg/s 2× 2.884 kg/s
Rated output unknown 2× 112 kN 2× 302.5 kN

The same approach as in Chen and Stewart (2011) was used to calculate the total rolling

resistance and is defined as follows:

Fr = µ ·m · g, (3.1)

where µ = 0.015 is the rolling resistance coefficient on a concrete surface, m is the maximum

take-off weight of the aircraft and g = 9.81 m/s2 is the acceleration due to gravity. The maximal

fuel flow and the rated output values are based on the International Civil Aviation Organization

engine emissions database (ICAO 2008) and the research by Stettler et al. (2011). They have

to be multiplied by the number of engines specified in each setting.
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4

A Statistical Approach for Taxi

Time Estimation

Essentially, all models are wrong,
but some are useful.

Empirical Model-Building and

Response Surfaces

George E. P. Box

4.1 Introduction

Airlines and airports face several key challenges in the near future. Firstly, the number of flights

is predicted to increase in the next few years (SESAR 2006). Secondly, there is an increasing

focus upon environmental considerations, and this is likely to increase in importance. Thirdly,

the use of computerised tools is enabling increased aircraft utilisation, reduced idle times, and

increased passenger connection options, leading to ever more complex and interlinked flight

schedules. The on-time performance of flights at each airport and the earlier visibility of any

delays (allowing corrective measures to be put into place) is becoming increasingly important,

since many downstream flights can be affected by delays to each single aircraft. Consequently,

the operations at busy hub airports are experiencing an increased focus of attention, and this
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is likely to increase in the face of future challenges.

Total taxi times from stand/gate to runway are needed if advanced predictions of take-off times

are required, for use by en-route controllers (or decision support systems to help them) or

for improving arrival time predictions for the destination airports, allowing the effects of any

predicted delays to be mitigated. Taxi times are already needed by several existing search

algorithms for take-off time prediction and take-off sequencing (Atkin et al. 2007; Eurocontrol

2012) and for allocating appropriate stand holds to aircraft to absorb ground delay at the

gate/stand, decreasing the fuel burn and environmental effects (Burgain et al. 2009; Atkin

et al. 2010a). Although the effects have been less well studied and perhaps being less sensitive

to small prediction errors, taxi times are also useful for arrivals, being necessary for predicting

stand/gate arrival times, to ensure that adequate resources are available at the correct time

(Eurocontrol 2012). Taxi time predictions will become even more important if the efficiency of

stand resource utilisation is to be improved in the future. The current common practice is to use

standard mean taxi times for each taxi source/destination pairs. A better understanding of the

influencing factors, and a model to estimate such taxi times to a higher level of accuracy, would

have positive effects for both the published approaches and the systems which are currently in

use.

The importance of the ground movement problem was explained in Chapter 2, highlighting

how it links several other airport operations such as runway sequencing and gate assignment.

Improved ground movement can increase on-time performance at airports, so ground movement

simulations and optimisers are extremely useful. These usually explicitly model the interactions

between aircraft (modelling delays due to other aircraft and any necessary re-routing on longer

paths to avoid conflicts) and, thus, require predictions for taxi times which do not already

include these elements (Gotteland and Durand 2003; Smeltink et al. 2004; Balakrishnan and

Jung 2007; Roling and Visser 2008; Lesire 2010). The use of historic data would be preferable

for calibrating models. However, such recorded data usually includes significant delays due to

the interactions between aircraft. There are obvious benefits from being able to quantify the

effects of this interaction and the model which is considered in this chapter aims to provide

this facility. Although average speeds have often had to be used in the past due to the lack of
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reliable predictions, it is important to understand aircraft speed in more detail if more realistic

ground movement decision support systems are desired.

The causes and effects of taxi time variability are both often neglected in academic literature.

However, some elements have been considered in the past. Rappaport et al. (2009) analysed

the effect on taxi times of having to reduce speed for turns and it was shown that aircraft

travelling straight forward reached higher average speeds than those with upcoming turns.

Atkins et al. (2008) also suggested remarkable variabilities of taxi times around a corner during

taxiing. In addition, Idris et al. (2002) performed a statistical analysis of departing aircraft

at Boston Logan International Airport (BOS) with the conclusion that the taxi-out time for

each airline/runway configuration combination was highly dependent upon the take-off queue

size. However, the analysis by Idris et al. (2002) only covered taxi times for departing aircraft.

The problem also seems to differ between North American and European airports, with much

shorter take-off queues usually being observed at European hubs. More recently, two further

estimation approaches were published for North American airports. Simaiakis and Balakrishnan

(2009) presented a queuing model and considered the potential impact on emissions reduction.

The statistical analysis exclusively used the size of the take-off queue to estimate the taxi-

out time. Balakrishna et al. (2009) presented a model for taxi-out time prediction based on

reinforcement learning algorithms. Recently, Srivastava (2011) published work on departure taxi

time prediction using ASDE-X surveillance data in a linear regression model. The explanatory

variables were aircraft queue position, distance to the runway, arrival rates, departure rates and

weather and were evaluated at John F. Kennedy International Airport (JFK).

In other work, Tu et al. (2008) analysed push-back delays at Denver International Airport with

seasonal trends and daily propagation patterns. Gate-waiting is defined as the phenomenon

when an arrival has to wait until a gate becomes available, e.g. when the gate was blocked

by another aircraft (Idris 2001; Wang et al. 2009a; Wang 2011). Wang et al. (2009b) showed

that 10 major US airports were affected regularly. However, this seems to be less of an issue

for the European airports which were analysed in this study. A recent study by Carpenter and

Stroiney (2012) showed the potential of managing ramp congestions. Ramps are areas around

terminals, especially at US airports, which are mostly managed by an airline, whereas the rest
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of the taxiways are usually controlled by another authority. Such a division is not the normal

case at airports in Europe.

The aim of this chapter is to extensively study the variation of taxi times not only for departing

aircraft, but also for arriving aircraft. In contrast to earlier studies, we focus on European hub

airports in this chapter where the taxi process is less dominated by queuing at the runway and

hence other factors have a proportionately greater effect upon taxi times. The consideration

of the airport layout is essential for this research and was not considered in the past. The

outcomes will enable researchers to make increasingly accurate taxi time predictions and to

develop more realistic decision support systems for ground movement, potentially resulting

in smoother airport operations, emission reductions for the taxi process and better on-time

performance at airports.

The remainder of this chapter is structured as follows: Section 4.2 provides a description of the

problem and the available data. The statistical taxi time prediction method is then detailed in

Section 4.3, where the influence of the ground movement model will be observed. The results

and their applications are discussed in Sections 4.4, 4.5 and 4.6. The chapter ends by drawing

important conclusions from this work in Section 4.7.

4.2 Problem Description

The problem considered in this chapter involves the identification of a function to estimate taxi

times for both arriving and departing aircraft, which can then be used in an airport decision

support system. The problem description in this section has two parts. Firstly, we summarise

the airport ground movement problem, explaining why accurate taxi times are very important.

Secondly, we discuss the data which we can expect to be available from an airport for use in

calibrating ground speed models.

4.2.1 The Airport Ground Movement Problem

This research was motivated by our work on the airport ground movement problem (Atkin

et al. 2011b; Ravizza and Atkin 2011), which is basically a routing and scheduling problem (see
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Chapter 6). It involves directing aircraft on the surface of an airport to their destinations in

a timely manner, with the aim usually being to reduce the overall travel time, to meet some

target time windows and/or to absorb the delay at a preferred time, such as when the engines

are not running. It is crucial, for reasons of safety that two aircraft never conflict with each

other throughout the ground movement.

For larger airports, especially during peak hours, decision support systems are advantageous

to deal with the complexity of the problem (Gotteland and Durand 2003; Smeltink et al. 2004;

Balakrishnan and Jung 2007; Roling and Visser 2008; Lesire 2010). Sophisticated algorithms

are needed to route and schedule all the aircraft simultaneously on the surface. In doing so,

some aircraft might be allocated to a longer route and/or waiting times might need to be added

to some schedules to handle conflicts, aiming for a globally better solution.

For the purpose of this chapter, the important feature of this problem is that decision support

systems need taxi time predictions for aircraft in isolation, ignoring the presence of other air-

craft, but historic data is rarely able to provide this information. However, it is clear that the

use of historic data is vital in order to ensure that results are realistic and can be compared to

the status quo at an airport, in order to quantify any potential improvements from new airport

ground movement decision support systems, without running expensive trials.

4.2.2 Utilised Airport Data

This analysis utilised data from two hub airports in Europe: Stockholm-Arlanda Airport and

Zurich Airport. Sketches of the two airport layouts are provided in Figure 3.5 and Figure 3.1 in

Chapter 3. We utilised data for an entire day’s operation at each airport and used the datasets

“ARN 1” (661 movements) and “ZRH 2007” (679 movements). Both datasets represent days

with no extraordinary occurrences to be taken into account.

In visually analysing the average taxi speeds, it was obvious that there were major differences

between different groups of aircraft. A boxplot is presented in Figure 4.1, showing the general

variability in the average speed of the aircraft for two stand groups at Stockholm-Arlanda

Airport (the average speed was calculated based upon the taxi time and the shortest path).

51



4.3 Approach for Estimating Taxi Speed

Amount of Traffic

highmediumlow

S
p

e
e

d
 [

m
/s

]

1
2

1
0

8
6

4
2

0

Amount of Traffic

highmediumlow

Stand Group

31-441-10

Departure

Arrival

Figure 4.1: Average speed at Stockholm-Arlanda Airport from two different stand groups to the
runway 19R

Major differences are apparent between arriving and departing aircraft as well as between low,

medium and high traffic situations at the airport.

4.3 Approach for Estimating Taxi Speed

The aim of this research is to estimate a function which can more accurately predict taxi times

for aircraft or, equivalently, better predict their average speeds. It is not obvious which factors

are important for calculating such taxi times and which factors can be ignored. Discussions

with practitioners can help in understanding the problem and identifying potential factors but

this has its limits for mathematically determining the importance of factors. Multiple linear

regression was able not only to answer this question, but also to estimate a function which could

predict the taxi speed and was easy to interpret. Of course, the accuracy of the estimation has

to be verified, but given such a function, the aim is to eliminate the effects of factors which

represent the actual amount of traffic at the airport, by setting the respective variables to 0.

Our aim is to be able to predict the taxi times for independent aircraft, for use in a more

advanced ground movement decision support system. This would provide the opportunity to
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compare scenarios with the way in which an airport is currently operating.

4.3.1 Summary of Multiple Linear Regression

A brief summary of multiple linear regression is given here for reasons of completeness, before

providing the details of how it has been applied to the problem of estimating taxi times by

incorporating details of the airport layout. The interested reader is directed to the book by

Montgomery et al. (2001) for a more in-depth presentation of multiple linear regression.

Multiple linear regression is a statistical approach which attempts to model a dependent variable

y as a function of other explanatory variables x1, . . . , xp, by a function of the following form:

yi = β0 + β1xi1 + · · ·+ βpxip + ǫi, i = 1, . . . , n, (4.1)

where β1, . . . , βp are the true (but unknown) coefficients of the regression, xij is the ith value of

the jth explanatory variable, yi is the ith value of the response variable, and ǫi is the ith value of

a random error term. The random error terms ǫ1, . . . , ǫn are assumed to be uncorrelated and to

have a normal distribution with mean zero and constant variance σ2. The regression coefficients

can be estimated using least squares regression, yielding estimated coefficients β̂1, . . . , β̂p. The

predicted y value for the ith observation is then given by

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂pxip. (4.2)

The difference between yi and ŷi is called the residual, ei.

A measure is needed to analyse the accuracy of the model. We used the coefficient of determi-

nation R2 to perform this function, which is defined as follows:

R2 = 1−
SSRes

SST

, (4.3)

where SSRes is the residual sum of squares, i.e. SSRes =
∑

i (yi − ŷi)
2, and SST is the total

sum of squares, i.e. SST =
∑

i (yi − ȳ)2, where ȳ is the mean of y. Since models with fewer

explanatory variables should be preferred over models using many explanatory variables that
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fit equally well, an adjusted R2 value is often used, including an additional factor to count the

number of observations n and the number of explanatory variables p:

R2
Adj = 1−

SSRes/(n− p− 1)

SST /(n− 1)
. (4.4)

Both R2 and R2
Adj are values between 0 and 1 for regression models, with values closer to 1

representing better models.

Multiple linear regression is widely used to describe data, to understand the correlation between

variables, to forecast similar observations and to estimate parameters. Regression models work

well within their range of observed data, but they can be very poor for forecasting events outside

of this range.

4.3.2 Analysis of the Dependent Variable

We discovered that estimations of taxi speeds (in m/s) better fit the requirements of the linear

regression models than direct estimates of the taxi times of aircraft. In particular, the as-

sumptions that the statistical errors are normally distributed were not fulfilled with the direct

estimates. Furthermore, we also discovered that a logarithmic transformation of the dependent

variable (Equation (4.5)) was required in order to fulfil the stated assumptions of multiple linear

regression. Therefore this transformation is used throughout the following sections:

y := log10(Speed). (4.5)

A good estimate for log10(Speed) can then be used for the calculation of a good estimate of the

taxi time.

4.3.3 Analysis with only one Explanatory Factor

Different individual factors are analysed in this section. The analysed factors were derived

from a combination of previously published work in this area, discussions with practitioners

and data-driven transformations. The factors which appeared to be statistically relevant were
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then included together in a combined model. For reasons of simplicity, we focus within this

section only on the settings for Stockholm-Arlanda Airport, although many results are similar

for both airports, as can be observed in Section 4.3.4.

4.3.3.1 Distances

The first factor which was analysed considered the distance (in metres) that an aircraft was

taxiing. To determine such distances, it was useful to model the airport ground layout as a

graph, where the edges represented the taxiways and the vertices represented the junctions or

intermediate points (see Figure 3.6). Based on this underlying graph, it was then assumed that

aircraft were travelling on their shortest path and Dijkstra’s algorithm (see Cormen et al. (2001)

for more details) was used to determine, for each aircraft, the taxi distance from the stand to

the runway or back again. The incorporation of the actual airport layout was essential for the

approach as will be seen later. We note that further improvements may be possible from using

the actual route taken, but that information was not available at the time.

Regressing log10(Speed) on ‘Distance’ yielded an adjusted coefficient of determination R2
Adj =

0.473, with a p-value smaller than 2.2e-16 (the p-value comes from the F-test that compares

the given model to a model with only an intercept). Figure 4.2(a) shows a plot of the observed

values, y, against the explanatory variables, x.

Analysis of the results in Figure 4.2(a) encouraged the application of a logarithmic transfor-

mation to the distance. The visualisation of the fit can be seen in Figure 4.2(b), where the fit

has a better linear shape. Regressing log10(Speed) on log10(Distance) yielded an R2
Adj value

of 0.479 (p-value < 2.2e-16), which is only marginally better, but it will be observed later that

it leads to significant improvements in the final model for both airports.

The R2
Adj value indicates that almost half of the variance can be explained by this factor, show-

ing the importance of this indicator. Therefore, additional time was invested in analysing it.

Instead of only using the entire distance of an aircraft as a variable, it was divided into three dif-

ferent components based upon the known behaviour of aircraft as they taxi around the airport.

‘Distance0’ represented the length of the path directly around the gates, ‘Distance2’ represented

the length of the path which was comprised of long sub paths without any junctions and ‘Dis-
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Figure 4.2: Scatterplots showing the logarithmic transformation

tance1’ represented the remaining distance (where all values were in metres). These distances

were determined using the directed graph model of Stockholm-Arlanda Airport, by assigning

each edge in the graph to one of the three distances. The ‘Distance’, ‘Distance0’, ‘Distance1’,

‘Distance2’, log10(Distance), log10(Distance0), log10(Distance1), and log10(Distance2) values

were all included in the analysis. The resulting regression model yielded an improved R2
Adj value

of 0.604 (p-value < 2.2e-16).

4.3.3.2 Angle

The total amount of turning which an aircraft had to achieve was another promising predictor

of taxi speed, since aircraft have to slow down to make turns (Gong 2009). A factor was

introduced to measure the total turning angle (in degrees), calculated as the total angular

deviations between adjacent edges on the shortest path for the aircraft. Again, the graph

model of the airport layout was used for this, as shown in Figure 4.3. This turned out to

be another major factor (R2
Adj = 0.470, p-value < 2.2e-16) and the importance was improved

further when log10(Angle) was considered (R2
Adj = 0.482, p-value < 2.2e-16).
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Figure 4.3: Measuring turning angle of aircraft on one vertex

4.3.3.3 Departures vs. arrivals

As shown in Figure 4.1, the speed for departures can differ significantly from the speed for

arrivals and factors were introduced for this. In contrast to the factors which have been intro-

duced so far, this information is nominal rather than being a continuous variable. A dummy

variable called ARR was introduced, defined to be 1 for arrival aircraft and 0 for departure

aircraft. The regression showed an R2
Adj value of 0.380 for this single factor, demonstrating its

importance (p-value < 2.2e-16).

4.3.3.4 Amount of traffic

Another important factor affecting the taxi speed of aircraft is the amount of traffic on the

airport surface while the aircraft is taxiing. As a first attempt for an indicator of surface load, we

divided the operational hours into three different categories. The indicator ‘Traffic high’ was set

to 1 for hours where more than 50 aircraft were moving and to 0 otherwise. ‘Traffic medium’ was

set to be 1 for hours with between 36 and 50 moving aircraft and 0 otherwise. Both indicators

were set to zero for the last category representing low surface load (the same categorisation

is visible in Figure 4.1). This approach with these variables resulted in an R2
Adj value of only

0.007 and a p-value of 0.036.

A more advanced measure was introduced based upon the paper by Idris et al. (2002). The

value Ni counts the number of other aircraft which are taxiing on the airport surface at the

time that the particular aircraft i started to taxi, as shown in Equation (4.6), where the Iverson

bracket denotes the value 1 if the condition in square brackets is satisfied and is 0 otherwise.

The parameters tistart and tiend represent the time at which aircraft i starts and ends its taxi

operation.
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Ni =
∑

j∈Aircraft\{i}

[

tistart ∈ (tjstart, t
j
end)

]

(4.6)

The value Qi was also adopted to count the number of other aircraft which cease taxiing during

the time aircraft i is taxiing, as shown in Equation (4.7), again using the Iverson bracket.

Qi =
∑

j∈Aircraft\{i}

[

tjend ∈ (tistart, t
i
end)

]

(4.7)

Since the paper by Idris et al. (2002) was restricted to taxi-out times, this approach was further

developed to cope with separate departures and arrivals. Eight integer variables were used to al-

low consideration of the effects of the counts of arrivals and departures depending upon whether

the current aircraft was an arrival or departure. These were named NDEP,#DEP , NDEP,#ARR,

NARR,#DEP , NARR,#ARR, QDEP,#DEP , QDEP,#ARR, QARR,#DEP and QARR,#ARR. In this

notation, the N or Q indicated whether it was the count of already moving aircraft or of aircraft

which ceased their movement. The first index for each value represented the type of aircraft

under consideration (ARRival or DEParture). The second index indicated whether it was the

count of arrivals or departures (#ARR or #DEP ) which was to be considered for counting,

i.e. for a departing aircraft, all of the variables with a first index ARR are treated as if they

are 0 and for arriving aircraft all of the variables with the first index of DEP are treated as if

they are 0.

A highly significant regression model considering only these eight factors led to an R2
Adj value

of 0.422 (p-value < 2.2e-16). Further investigation was performed to determine whether the

model could be further improved by considering only aircraft destined for, or originating from,

the same runway as the aircraft under consideration. In that case, the fit was worse (R2
Adj =

0.382, p-value < 2.2e-16). One possible explanation for this is that often one runway is used for

departures and another one for arrivals, in which case half of the factors have the same value as

in the unrestricted case and the other half have the value 0, resulting in less information being

considered by the model than in the unrestricted case.
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4.3.3.5 Less important factors

A number of other elements were taken into consideration, for example whether the model

could be improved by using the square of some of the values or by including some interaction

terms but no improvement was found. Another approach was to consider the number of engines

of the aircraft (R2
Adj = 0.007, p-value = 0.039) or by using the wake vortex categorisation of

the aircraft (R2
Adj = 0.032, p-value = 4.4e-05). These results for the European airports which

we studied fit the findings of Idris et al. (2002) (for a North American airport), where a poor

correlation was observed between taxi time and aircraft type, and the type determines both the

number of engines and the wake vortex categorisation.

Further analysis studied the effect of the different runways and stand groups. Although noth-

ing relevant was found for Stockholm-Arlanda Airport, some effects were found at Zurich Air-

port by analysing different operational modes (which runway(s) is/are being used for take-

offs/landings). The details are reported later, in the analysis of the whole model for Zurich

Airport.

4.3.4 Multiple Regression with Several Factors

This section presents multiple regression models for Stockholm-Arlanda Airport and Zurich

Airport and ends with a consideration of the validity of the necessary assumptions to apply

the regression. The applicability of the model and the discussion of the results can be found in

later sections.

The goal of the multiple regression approach was to find the most important factors explaining

the variability of the real datasets.

Extensive analysis was performed using different stepwise selection methods based on the factors

described in Section 4.3.3 (depending on p-values, Akaike’s Information Criterion (AIC) and the

Bayesian Information Criterion (BIC)). We decided to present models which are as practical

as possible for use at airports (requiring less information) and which are easy to interpret.

The following models fulfil this aim and are less than 2.2% away from the best found models

(according to the R2
Adj value).
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4.3.4.1 Stockholm-Arlanda Airport

The final regression model for Stockholm-Arlanda Airport is given in Table 4.1. The first column

indicates the variables, the second column represents the estimated unstandardised coefficients

and the third column presents the corresponding estimated standard errors. The fourth column

shows the estimated standardised coefficients for all non-dummy variables (i.e. the estimated

coefficients if the variables were standardised so that their variance was 1). This measure can

be used to analyse which factor has the largest positive or negative impact on log10(Speed). In

contrast to the unstandardised coefficients, they have no units and can therefore be compared

directly. The last column shows the significance of each variable based on a t-test.

Table 4.1: Coefficients for Stockholm-Arlanda Airport, Sig. indicates if the p-value is < 0.05 (*),
< 0.01 (**) or < 0.001 (***)

Coefficient β̂i Std. Dev. Standardised Coefficient Sig.
(Constant) -2.349 0.091 ***
log10(Distance) 0.922 0.029 0.842 ***
ARR 0.211 0.015 ***
NDEP,#DEP 0.031 0.005 0.260 ***
NARR,#DEP 0.029 0.004 0.230 ***
NARR,#ARR 0.049 0.011 0.209 ***
NDEP,#ARR 0.036 0.006 0.176 ***
Distance2 -5e-05 8e-06 -0.188 ***
QDEP,#ARR -0.034 0.004 -0.268 ***
QARR,#ARR -0.066 0.011 -0.279 ***
QARR,#DEP -0.052 0.006 -0.280 ***
QDEP,#DEP -0.044 0.005 -0.397 ***

The model has a good R2
Adj value of 0.863 (p-value < 2.2e-16). This means that around 86% of

the variance of the log10(Speed) values can be explained by the model. The fit of the prediction

can be seen in Figure 4.4.

4.3.4.2 Zurich Airport

As indicated in Section 4.3.3.5, a significant factor at Zurich Airport is the current operational

mode of the runways. As long as no heavy winds occur, Zurich Airport operates strictly with

three operational modes (see Section 3.2.1). We modelled the three operational modes using

two dummy variables, OMorning to represent the morning period and OEvening to represent the
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Figure 4.4: Scatterplot showing the linear fit of the regression model in Table 4.1 for Stockholm-
Arlanda Airport

evening period. Each variable was set to 1 during the corresponding period and 0 otherwise,

so during the day period both variables were set to 0.

In contrast to Stockholm-Arlanda Airport, statistical analysis showed only small improvements

by classifying the total distances into different components, so they were excluded from the

final model. This was expected from the airport layout since it has fewer straight sub paths

without junctions.

The fit for Zurich Airport is given in Table 4.2, and shows an even better fit than for Stockholm-

Arlanda Airport, with an R2
Adj value of 0.878 (p-value < 2.2e-16). The scatterplot of the

relationship between the observed values and the predicted values can be seen in Figure 4.5.

4.3.4.3 Validation of statistical assumptions

The estimated regression coefficients are unbiased if E(ǫi) = 0 for all i = 1, . . . , n. The resid-

ual plots in Figure 4.6 indicate that this assumption is approximately valid (with perhaps a

slight lack of fit for small speeds). Hence, one can be confident that the estimated regression

coefficients and resulting predictions are (almost) unbiased.

The standard errors for the estimated coefficients are valid if the following three assumptions

hold: E(ǫi) = 0 and V ar(ǫi) = σ2 for all i = 1, . . . , n, and Cov(ǫi, ǫj) = 0 for all i 6= j. The
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Table 4.2: Coefficients for Zurich Airport, Sig. indicates if the p-value is < 0.05 (*), < 0.01 (**)
or < 0.001 (***)

Coefficient β̂i Std. Dev. Standardised Coefficient Sig.
(Constant) -2.601 0.250 ***
log10(Distance) 1.161 0.091 0.731 ***
ARR 0.260 0.018 ***
NDEP,#DEP 0.025 0.005 0.234 ***
NARR,#ARR 0.054 0.008 0.208 ***
NARR,#DEP 0.019 0.004 0.143 ***
NDEP,#ARR 0.029 0.007 0.101 ***
OEvening 0.049 0.013 ***
OMorning -0.075 0.019 ***
log10(Angle) -0.143 0.039 -0.083 ***
Distance -7e-05 2e-05 -0.181 **
QDEP,#ARR -0.032 0.004 -0.208 ***
QARR,#DEP -0.067 0.006 -0.285 ***
QARR,#ARR -0.081 0.007 -0.318 ***
QDEP,#DEP -0.046 0.004 -0.466 ***
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Figure 4.5: Scatterplot showing the linear fit of the regression model in Table 4.2 for Zurich
Airport

residual plot in Figure 4.6(a) indicates that the constant variance assumption is approximately

valid for Stockholm-Arlanda Airport. For Zurich Airport, there seems to be some increase in

the variance with increasing predicted speeds. Due to the time dependent nature of the data, it

is likely that there is some correlation in the statistical errors. The Durbin-Watson test (Durbin

and Watson 1950, 1951) indicated positive serial correlation for both airports. Generalised least

squares models using autoregressive AR(1) and AR(2) models (Fox 2002; Venables and Ripley
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2002) for the residuals were fitted to account for this correlation, and the results were compared

to Tables 4.1 and 4.2. Estimates of the coefficients and standard errors at both airports are

very consistent (see Appendix A).

Finally, the p-values are valid if, in addition to the assumptions above, the statistical errors have

a normal distribution. Moreover, even without the normality assumption they hold approxi-

mately if the sample size is sufficiently large, due to the central limit theorem. The Q-Q-plots

in Figure 4.7 show that the residuals are approximately normally distributed. A discussion

about the outliers (indicated with triangles) is presented in Section 4.4.2. Formal Shapiro-Wilk

tests (Shapiro and Wilk 1965) were also performed to test the normality assumption, where the

outliers were excluded. These tests supported the findings from the figures and indicated no

evidence for departure from normality (p-values 0.083 and 0.463 for Stockholm-Arlanda Airport

and Zurich Airport, respectively). However, due to potential (small) violations of the assump-

tions of constant variance and uncorrelated errors, the p-values for Zurich Airport might be

slightly off.

The taxi distance appears on both sides of the multiple linear regression models, due to the

decision to use speed as the dependent variable. However, since it seems clear that distance

might influence speed but not the other way around, we assume that there are no endogeneity

problems.

4.3.5 Cross-validation

A common way of testing how well a model performs in predicting new data is the so called

PRESS statistic, suggested by Allen (1971):

PRESS =

n
∑

i=1

(yi − ŷ(i))
2. (4.8)

It sums the squared differences between the observed variables yi and the predicted variables

ŷ(i) for each of the sample points i, where the prediction ŷ(i) only uses the data of the remaining
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Figure 4.6: Residual plots showing the validation of the assumptions
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Figure 4.7: Normal Q-Q-plots showing the validation of the assumptions

observations. It can be categorised as a leave-one-out cross-validation. The PRESS statistic

can be used to calculate an R2 value for a prediction:

R2
Pred = 1−

∑n

i=1 (yi − ŷ(i))
2

∑n

i=1 (yi − ȳ)2
. (4.9)
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The R2
Pred value was 0.860 for Stockholm-Arlanda Airport and 0.875 for Zurich Airport. This

means that, for similar settings at the airport (the same operational modes, similar weather

conditions and so on), these models could explain around 86% and 87.5%, respectively, of the

variability in predicting new observations due to the combination of the statistical analysis with

the incorporation of the ground layout model.

4.3.6 Prediction Accuracy

A second dataset was made available for Zurich Airport after the model had been fitted to

the existing dataset. The second dataset consisted of 5613 aircraft movements which occurred

during one week’s operation (dataset “ZRH 2011” from Section 3.2.1). Even though we used the

same coefficients as reported in Table 4.2, and they were generated using the old data (dataset

“ZRH 2007”), the approach was still able to demonstrate a high R2
Adj value of 0.864 for the

prediction. Keeping the same factors as in Table 4.2, but re-estimating the coefficients for the

new dataset, the R2
Adj could only be improved to 0.899. These results demonstrate that the

model was not only able to fit historic data well but that it can also be used to make accurate

taxi speed predictions, especially when keeping in mind that the two datasets were from periods

which were almost four years apart.

4.4 Interpretation of the Models

First of all, it can be seen from Tables 4.1 and 4.2 that the two fitted regression models are very

similar and have the same general structure, indicating their potential usage for other airports.

All the factors in the tables are highly significant (p-value < 0.01).

4.4.1 Coefficient Meanings

We now interpret some of the coefficients, to gain insight into the effects of specific factors. The

straightforward interpretation of this model could possibly encourage airport operators to use

this approach to support their needs.
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4.4.1.1 Distances

The most important factor for both airports was the logarithmic transformation of the total

distance. In general, the average taxi speed was higher the further an aircraft had to taxi.

This finding is new compared to the results from other research, where the focus was upon

airports with longer queues, which probably dominated the effect of the distance. Even with

the assumption of using the shortest path for each aircraft, the results look promising and would

probably look even better by utilising the actual distance rather than the shortest path.

4.4.1.2 Departures vs. arrivals

Another important factor in the models for both airports was the differentiation between arriv-

ing and departing aircraft. Since departures often need to wait in a queue, their average speed

is smaller in comparison to arriving aircraft, which are forced to clear the runway as soon as

possible and taxi directly to the stands.

4.4.1.3 Angle

The logarithmic transformation of the total turning angle which an aircraft had to complete

was observed to be a significant slowing factor at Zurich Airport. The inclusion of this factor

significantly improved the accuracy of the prediction.

4.4.1.4 Amount of traffic

All of the different Q values were observed to have a negative effect upon the taxi speed. In

general, more aircraft travelling around the airport means that each individual aircraft’s speed

is reduced. Factors which particularly slowed taxi speeds were QDEP,#DEP and QARR,#ARR,

representing the number of aircraft which have the same target (runways or stands) but end

their taxi operation first. The N variables were found to counteract some of the effect of the

Q variables, together modelling those aircraft which both start to taxi earlier and which reach

their destination earlier. Our results showed differences between the North American airport

studied by Idris et al. (2002) and the European airports considered in this research, since the
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number of arrivals did not affect the taxi out time in their study whereas there was a strong

correlation in our analysis. This may be related to the airport layouts or the runway queue

lengths.

4.4.1.5 Operational mode

In the case of Zurich Airport, the influence of the different operational runway modes was

incorporated into the model. It can be observed that aircraft taxi faster in the evening than

during the day, and faster during the day than in the morning. There is insufficient information

at the moment to determine whether the effect is due to the different runway modes or whether

other elements such as visibility or different aircraft mixes at different times of the day are

affecting the taxi speeds.

4.4.2 Unexplained Variability

Around 13% of the variability in taxi speeds cannot be explained by our models. Some potential

explanations are listed below:

• The taxi behaviour can vary between different airlines and pilots. Additional data should

allow this to be analysed in more detail in the future.

• In the case of Stockholm-Arlanda Airport the taxi time information was only to the minute

rather than to the second, but the model uses continuous time for the speed predictions.

The data of Zurich Airport had detailed times at the runway, but again the times at the

stands/gates were only to the minute. This matching of continuous time to discrete values

is unlikely to provide extremely accurate predictions.

• We assumed that aircraft travelled along the shortest path and that there were no un-

expected changes. This assumption will be valid in general but can lead to occasional

errors.

An analysis of the outliers at Stockholm-Arlanda Airport showed that the three worst fits (the

three triangles in Figures 4.4, 4.6(a) and 4.7(a)) were for aircraft landing at runway 26 and
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taxiing to pier F. The indicated taxi times in the data were 1 minute for one of the aircraft and

2 minutes for the other two - showing extremely short taxi times. Given the minute granularity

on the data, it is perhaps unsurprising that the estimations were least accurate for these aircraft.

Removing these three aircraft from consideration resulted in an improvement to R2
Adj of about

0.01. Similarly, the most extreme outliers at Zurich Airport (the three triangles in Figures 4.5,

4.6(b) and 4.7(b)) were also related to very short taxi times.

4.5 Applicability of this Research

The two main applications for this research are for total taxi time prediction and for use in a

ground movement decision support system. We consider both of these in this section.

4.5.1 Improved Total Taxi Time Prediction

To the best of our knowledge, there is no existing taxi time prediction function to compare

against for both departing and arriving aircraft, but we have the lookup table which is used for

Zurich Airport. This considers only the sources and destinations and gives average taxi-in and

taxi-out times. However, it has a granularity of one minute and deliberately underestimates

times. In order to eliminate the deliberate underestimates, we used linear regression to find a

linear scaling which best fitted their table to the observed data. This resulted in an improved

R2
Adj value of 0.180, with a scaling of ax + b, where a is 0.883 and b is 2.210. In contrast,

the approach presented in this chapter, when applied to taxi times (rather than log10(Speed))

resulted in an R2
Adj value of 0.793, thus explaining the variability in taxi times at this airport

to a much greater extent than the lookup table and indicating the benefits of the consideration

of more factors. The function generated by our multiple linear regression is, therefore, more

appropriate for predicting total taxi time.

The results were also compared to the results from the application of a reinforcement learning

algorithm by Balakrishna et al. (2009) at other airports. They presented results for the ± 3 or

± 5 minute prediction accuracy for the taxi-out times (see Table 4.3), measuring the percentage

of departing aircraft with a time difference between the predicted time and the observed time
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Table 4.3: Comparison of prediction accuracy; The first block shows the result for the two airports
which were studied where the prediction model is simplified by not considering the airport layout
(particularly not considering the factors about the distances and the turning angles). The results
for the best found models are indicated in the third block.

within ± 3 min within ± 5 min
Stockholm-Arlanda Airport (simplified) 73.2% 88.4%
Zurich Airport (simplified) 82.6% 91.6%
Stockholm-Arlanda Airport 94.4% 98.9%
Zurich Airport 95.6% 99.4%
Stockholm-Arlanda Airport (full) 96.1% 99.2%
Zurich Airport (full) 96.8% 99.7%
Detroit International Airport 89.9% - 97.1% -
Tampa International Airport 89.9% - 95.7% -
John F. Kennedy International Airport - 20.7% - 100%

which is smaller than the given threshold value. An average of 95.7% was found for Detroit

International Airport (DTW) and an average of 93.8% for Tampa International Airport (TPA)

for ± 3 minute accuracy. The results for John F. Kennedy International Airport (JFK) were

not very consistent and much less promising, showing ± 5 minute prediction accuracy between

20.7% and 100% for different days and parts of the day. Additionally, Idris et al. (2002) predicted

65.6% of the taxi-out times at Boston Logan International Airport within ± 5 minutes of the

actual time. In contrast, our regression model found an average ± 3 minute accuracy of 94.4%

for Stockholm-Arlanda Airport and 95.6% for Zurich Airport, considering both departures and

arrivals simultaneously.

Reported taxi times at Stockholm-Arlanda Airport were from 1 to 16 minutes for arrivals and

3 to 20 minutes for departures. The seven cases which were not predicted within ± 5 minute

accuracy were all departures with very long taxi times with the highest deviation being 7.40

minutes. Figure 4.8 shows the deviations of the estimated to the actual taxi times where the

deviations are ordered. The rounded deviations are also shown (the step function), where the

estimated taxi times are rounded to the nearest minute, to match the accuracy of the historic

input data from Stockholm-Arlanda Airport, since many stakeholders are only interested to

this level of accuracy. Taxi times at Zurich Airport ranged from 1 to 12 minutes for arrivals

and 4 to 24 minutes for departures. Again, the four worst predictions were for aircraft with

long taxi times and only one prediction was not within ± 6 minutes accuracy (but this has less

than 8 minutes deviation).
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Figure 4.8: Taxi time prediction accuracy at Stockholm-Arlanda Airport

The results labelled ‘(simplified)’ in Table 4.3 also show the prediction accuracy of our approach

for both Stockholm-Arlanda Airport and Zurich Airport without taking the actual graph layout

of the airports into account. A simplified regression analysis was performed without the different

distance measures and the measures related to the turning angle. The significant improvements

when the layout is considered emphasise the need for layout-based factors for airports where

queuing is not dominating the whole ground movement process.

In contrast, the results labelled ‘(full)’ in Table 4.3 correspond to the model with the best R2
Adj

value when considering all possible factors, rather than attempting to simplify the model. These

indicate that the R2
Adj would increase by around 2.2%. However, the aim of this research was

to provide a practical model which was easy to interpret and hence the focus was not entirely

on getting the model with the best accuracy.

As discussed in the introduction of this chapter, several other airport-related decision support

systems as well as a wide variety of stakeholders at an airport (e.g. runway controllers, gate

allocators, cleaning crews, de-icing crews, bus drivers, etc.) will benefit from better taxi time

predictions.
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4.5.2 Use for Ground Movement Decision Support

As discussed at the beginning of this chapter, algorithms that aim to optimise ground movement

at airports need a model for predicting taxi times when there are no delays, since the inter-

action between aircraft would be explicitly considered by the model anyway. Such predicted

uninterrupted taxi times can then be used to find a globally good solution by adding some

delays or detours to aircraft where contention with other aircraft is indicated by the algorithm.

The presented regression model allows such uninterrupted taxi time modelling by setting all N

and Q values to 0.

Regression models work well within their range of observed data, but have to be handled

with care for predictions at the boundaries and for extrapolations. Importantly, both datasets

contain a number of observations with all N and Q values equal to 0 (for 3 departures and 9

arrivals at Stockholm-Arlanda Airport and 6 departures and for 4 arrivals at Zurich Airport)

and these values are spread throughout the taxi speed range.

Once the regression approach has been implemented in a ground movement search methodology,

it will be interesting to test the new system against the actual operations at the specific airport,

and to fine tune the parameters to match the taxi times even more.

4.6 Results for London Heathrow Airport

The same multiple linear regression approach was also used to estimate taxi times at London

Heathrow Airport (Atkin et al. 2011c). A dataset for one week’s operations (9391 movements

with outliers removed, see Chapter 3.2.3) was considered from summer 2010. The dependent

variable was log10(Speed) and log10(Distance) and the N and Q values were used as explana-

tory variables. For Heathrow, it was found to be better to have separate regression models

for departures and arrivals, and to separate cases depending upon which runway the aircraft

were starting from or landing at (see table with the coefficients in Appendix B). The R2
Adj

value was 0.929 for departing aircraft (0.903 for runway 27R and 0.956 for runway 27 L) and

0.835 for arriving aircraft (0.812 for runway 27R and 0.861 for runway 27L), totalling to 0.882.

Experiments with leave-one-out cross-validation, as explained in Section 4.3.5, indicated that
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the R2
Pred values were at most 0.1% smaller than the R2

Adj values, leaving them very high.

Figure 4.9 shows four scatterplots for the linear fit of the regression models of the four different

models. It is also clear from the figures that the linear fit for departing aircraft is better.

Validations of the statistical assumptions were tested and they are approximately valid for all

of the models.
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Figure 4.9: Scatterplots showing the linear fit of the regression models for Heathrow Airport

4.7 Conclusions

With the current emphasis upon improving the predictions for on-stand times and take-off

times (Eurocontrol 2012), an improved method for taxi time prediction is both important and
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timely. This chapter analysed the variation in taxi speed and, consequently, the variations

in taxi times, and considered not only departures but, for the first time, also arrivals. Data

from Stockholm-Arlanda and Zurich Airport, both major European hub airports, was used for

this research and the potential significant factors were identified and individually tested. In

addition, similar experiments at London Heathrow Airport and at Hartsfield-Jackson Atlanta

International Airport (see Appendix D) strengthened the findings. Multiple linear regression

was used to find a function which could more accurately predict the taxi times than existing

methods. An emphasis was placed upon ensuring that the function was easy to interpret

and simple to use for operators at airports and researchers. Key for the analysis was the

incorporation of information about the surface layout, since, in contrast to other airports which

have previously been studied, the runway queuing was not dominating the entire taxi time.

The average speed between the gate and runway (and between the runway and gate) was

found to be highly correlated to the taxi distance, with higher speeds being expected for longer

distances. Arrivals had higher taxi speeds than departures, due to departure queues at the

runway, and the quantity of traffic at the airport was also found to have a significant impact

upon the average taxi speed, as identified by several variables in the resulting model. Finally,

the total turning angle and the operating mode (which runways were in use) were also highly

correlated to the average taxi speed.

Consideration of taxi time accuracy does not appear to have been sufficiently incorporated into

the current state-of-the-art research in ground movement decision support systems at airports.

Better predictions would, if nothing else, reduce the amount of slack which had to be used

to allow for taxi time inaccuracies, allowing tighter schedules to be created. Historic data is

vital for model calibration, but such data usually includes the effects of various inter-aircraft

dependencies. When a decision support system takes care of the dependencies between the

aircraft, predicted taxi speeds should not themselves include the effects of these dependencies.

However, it is not usually obvious how to quantify and eliminate these effects. Amongst other

uses, the approach which has been presented here could potentially be employed for such situ-

ations, allowing individual effects to be removed from consideration. The development of such

a facility was the prime motivation for this research.
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Since this work considers a combined statistical and ground movement model, which seems to

accurately predict the effects of turns and congestion as well as total travel distances, we note

here that these results can also feed into ground movement models, to improve the accuracy of

the predictions for the effects of re-routing or delays.

Further research should explore more sophisticated ways of fine-tuning the parameters to in-

crease the value of the approach for decision support systems for ground movement at airports,

or other prediction approaches such as fuzzy rule-based systems (see next Chapter) or time

series analysis (Chatfield 2003; Box et al. 2008).
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5

Aircraft Taxi Time Prediction:

Comparisons and Insights

Prediction is very difficult,
especially if it’s about the future.

Nils Bohr,

Nobel laureate in Physics

5.1 Introduction

The latest vision for air transportation in Europe is predicting marked growth in this sector.

The European Commission (2011) assumes an increase in the global volume of air traffic from

2.5 billion passengers in 2011 to 16 billion passengers in 2050. Thus, the number of commercial

flights in Europe per year is expected to increase from 9.4 million to 25 million during the same

time period. Nevertheless, one of the formulated goals by 2050 is also that on-time performance

of flights is within 1 minute.

Efficient ground movement operations are key to successful operations of air transportation

networks (Atkin et al. 2010b). For example, the benefits for take-off sequence of having accurate

taxi times was shown in Atkin et al. (2008b) and recent developments for Heathrow (Atkin et al.
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2012) require accurate taxi times both for take-off sequencing and for allocating pushback times

to aircraft, at which they should leave the stands. A significant proportion of the actual travel

time can be spent on airport’s surfaces especially with short-haul flights. To achieve the stated

on-time performance from the European Commission, it is crucial to more accurately predict

taxi times at European airports.

Idris et al. (2002) published the first paper on taxi-out time estimation based on multiple

linear regression. With the introduction of Collaborative Decision Making (CDM) systems at

airports within the last few years (Pina et al. 2005; Pina and Pablo 2005; Eurocontrol 2012;

Brinton et al. 2011), practitioners at airports realised the need for having more accurate taxi

times and, driven by that, more researchers have analysed the problem of taxi time prediction.

Several authors have published their results about taxi-out time prediction at US airports

(Balakrishna et al. 2008a,b, 2009, 2010; Balakrishna 2009; Clewlow et al. 2010; Ganesan et al.

2010; Zhang et al. 2010; Srivastava 2011). Balakrishna et al. used a reinforcement learning

algorithm which showed good results for data from Detroit International Airport (DTW) and

Tampa International Airport (TPA), but the results were not very consistent for data from

John F. Kennedy International Airport (JFK) (Balakrishna et al. 2008b, 2009, 2010; Ganesan

et al. 2010). However, this approach cannot provide the same insights into the problem as

some other approaches. Clewlow et al. (2010) highlighted that the number of arrivals does

affect the taxi-out times, which was not sufficiently taken into account prior to that. Their

multiple regression approach was based on John F. Kennedy International Airport and Boston

Logan International Airport. Jordan et al. (2010) developed a sequential forward floating subset

selection method with the aim of selecting the most influential explanatory variables from a set.

It seems to be one of the few sources which analysed not only taxi-out times, but also taxi-in

times. The analysis was performed with data from Dallas/Fort Worth International Airport

(DFW). Kistler and Gupta (2009) developed a multiple linear regression approach, for the same

airport, with several different explanatory variables, to predict taxi-in and taxi-out times.

All of the aforementioned publications were based on data from US airports. One problem of

adopting these findings for Europe is that US airports are usually structurally different from

European airports. For example, they distinguish between gate-ramps which are operated by
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airlines, and taxiways, which are controlled by tower ground controllers. In addition, it seems

that the problem of taxi time prediction in the US is dominated by the runway queue size and

is less related to the actual distance that an aircraft has to taxi (Ravizza et al. (2012a) and

Chapter 4). Furthermore, since no cross-validation details were often given in the papers, and

the assumptions for multiple linear regression were not discussed, the importance of some of

the findings was not clear.

Chapter 4 identified which explanatory variables affect the taxi time the most at two major

European airports, Stockholm-Arlanda Airport and Zurich Airport. The utilised multiple linear

regression approach incorporated explanatory variables based on the airport layout and not only

fitted historic data well, but also predicted taxi times accurately. The assumptions for multiple

linear regression were also tested, making the findings more reliable. Chen et al. (2011)1 further

improved the accuracy of the prediction by using a Mamdani fuzzy rule-based system based on

the same explanatory variables which had been identified for Zurich Airport.

This chapter uses the same explanatory variables as in the research by Ravizza et al. (2012a)

and Chapter 4, on datasets from the same airports, but with considerably longer operational

periods. The aim is to test different regression approaches to more accurately predict taxi

times, to demonstrate the advantages and disadvantages of these approaches and to give further

insights into the problem, especially about taxi-in times. Such predictions can be used to make

better overall decisions at airports and also to improve the quality of decision support systems

for the ground movement problem at airports, by applying the findings and integrating the

different aircraft speeds into such models (see Chapter 6).

The remainder of the chapter discusses the utilised datasets from Stockholm-Arlanda Airport

and Zurich Airport in Section 5.2. Section 5.3 introduces six different regression approaches,

which are tested in Section 5.4. This section also presents insights from the best performing

approach, before Section 5.5 ends with the conclusions.

1Joint work between the University of Lincoln and the University of Nottingham
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5.2 Considered Airport Data

Historic data from two European airports was utilised. All available data from each airport

was combined into one dataset each and they were tested separately. This approach was used,

since, as discussed by Demšar (2006), no statistical test exists which could compare different

prediction methods based on different datasets where each prediction method is utilised for

several repetitions of 10-fold cross-validation, due to the overlaps of the training data in different

random samples.

Data from two entire days’ operations were used within the analysis of Stockholm-Arlanda

Airport (661 movements in datatset “ARN 1” and 656 movements in dataset “ARN 2”). The

dataset for Zurich Airport consists of an entire day’s operations (679 movements in dataset

“ZRH 2007”) and an entire week’s operation (5611 movements in dataset “ZRH 2011”). More

details of the datasets can be found in Chapter 3. The reported taxi time information is only

to the minute rather than to the second. The only exception is the information about landing

times on the runway at Zurich Airport, where detailed times have been recorded.

This research aims to compare various prediction methods and to find further insights into taxi

time prediction at airports. Thereby, it extends the research by Ravizza et al. (2012a) and

Chapter 4 which highlighted the statistically significant explanatory variables of this problem.

The same explanatory variables were used in this study, which is based on more data from the

same airports. All of the explanatory variables and their ranges for both datasets are shown in

Table 5.1.

Appendix D presents the same analysis for Hartsfield-Jackson Atlanta International Airport as

in this chapter for Stockholm-Arlanda and Zurich.

5.3 Regression Approaches to Predict Taxi Time

The aim of this research is to compare a wide range of different regression approaches for the

problem of predicting taxi times at airports. WEKA (Hall et al. 2009) is an open source col-

lection of machine learning algorithms for data mining tasks. It was used to explore which
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Table 5.1: Overview of datasets from Stockholm-Arlanda Airport and Zurich Airport

Range for ARN Range for ZRH Type

Taxi Time [1,30] [0.2,34.0] Ordinal for ARN, Scale/Ordinal for ZRH

ARR {0,1} {0,1} Nominal
Distance - [119,4320] Scale
log10(Distance) [2.8,3.7] [2.1,3.6] Scale
log10(Angle) - [1.9,3.0] Scale
Distance2 [0,3373] - Scale
QDEP,#DEP [0,16] [0,23] Ordinal
QDEP,#ARR [0,13] [0,26] Ordinal
QARR,#DEP [0,9] [0,8] Ordinal
QARR,#ARR [0,9] [0,7] Ordinal
NDEP,#DEP [0,12] [0,15] Ordinal
NDEP,#ARR [0,6] [0,6] Ordinal
NARR,#DEP [0,12] [0,16] Ordinal
NARR,#ARR [0,6] [0,6] Ordinal
Mode 1 - {0,1} Nominal
Mode 3 - {0,1} Nominal
Mode 5 - {0,1} Nominal

regression models were promising for delivering good taxi time predictions, as this software

contains a large selection of approaches to compare against our existing approaches. During an

initial selection analysis, several regression approaches were not showing promising results and

thus are not included in the rest of this study. These regression methods included, among oth-

ers: a decision tree learner using reduced-error pruning, nearest neighbourhood methods, Pace

regression, multilayer perceptron (back propagation neural network) and Gaussian processes

(Witten et al. 2011).

Four regression techniques from WEKA which are showing promising results are explained in

the rest of this section. These are: multiple linear regression, least median squared linear

regression, support vector regression and M5 model trees. In addition, the approach published

by Chen et al. (2011) with a Mamdani fuzzy rule-based system is used for comparison. Finally,

a very promising extended version of another fuzzy rule-based system is also explained and

utilised.

5.3.1 Multiple Linear Regression

Multiple linear regression is a very widely used regression methodology. It is not only very

well studied, but it also has the advantage of determining which explanatory variables of a
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model are significant. In this study, this technique is mainly used to act as a baseline for

comparison with the other approaches. As discussed in Chapter 4, multiple linear regression is

a statistical method attempting to model the dependent variable as a linear weighted function

of the explanatory variables. The weights, or regression coefficients, can be estimated by using

the least square approach. More in-depth coverage of multiple linear regression can be found

in the book by Montgomery et al. (2001) and Chapter 4.

5.3.2 Least Median Squared Linear Regression

Least median squared linear regression is a more robust linear regression approach than multiple

linear regression (see Figure 5.1). Instead of minimising the mean of the squares of the errors,

this approach aims to minimise the median of these squares. Standard linear regression is

applied iteratively to subsamples of the data and the solution with the smallest median of the

squared errors is output (Rousseeuw and Leroy 1987). The advantage of being robust against

the effects of outliers comes with the disadvantage of higher computational costs.

Figure 5.1: Effect of an outlier (P1) on least median squared (LMS) and least squared (LS)
regression (source: Ortiz et al. (2006))

5.3.3 Support Vector Regression

Support vector machines are supervised learning methods and can be used for classification and

regression analysis. Support vector regression ignores training data within a specified threshold

ǫ of the model prediction (see Figure 5.2).
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Figure 5.2: Linear support vector regression (source: Smola (1998))

The objective is to minimise the norm of the weights of the explanatory variables together

with the error ζ for the training data which is further away from the prediction than the set

threshold. A value C is normally defined to weight the trade-off between the two objective

functions. The dual formulation of this optimisation model is often solved by preference. Sup-

port vector regression can be extended to non-linear models by incorporating a kernel function

which transforms the original training data into a higher dimensional space. The best kernel

found for this particular problem and these datasets turned out to be a normalised polynomial

kernel (see Section 5.4.1). A tutorial for this approach can be found in Smola and Schoelkopf

(2004).

5.3.4 M5 Model Trees

Another way of predicting numeric values is by using decision trees which store linear regres-

sion models on their leaves (see Figure 5.3). Such trees are called model trees and are similar

to piecewise linear functions for the entire model. Model trees are usually smaller and more

accurate than regression trees which have only an average value on their leaves (Quinlan 1992).

The tree is constructed by the divide-and-conquer method, where the splitting criterion deter-

mines the best explanatory variables to split on, based on the expected error reduction. The

splitting process finishes when the standard deviation of the subset of the training data is below

a certain threshold or the size of this subset is too small. Afterwards, a linear regression model

is calculated for each leaf. Pruning can be applied in a second stage: all non-leaves are tested

for whether it is better to keep the subtree or whether a linear model could replace the subtree.

Additionally, a smoothing stage can be added to reduce the discontinuities between the linear
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models for different leaves. More details of the M5 model tree can be found in the paper by

Quinlan (1992).

Figure 5.3: Example of M5 model tree (source: Bonakdar and Etemad-Shahidi (2011))

5.3.5 Mamdani Fuzzy Rule-Based Systems

Fuzzy Rule-Based Systems (FRBSs) are a way of modeling processes which have the ability

to be interpreted with linguistic statements. First introduced by Zadeh (1965), they give the

possibility of combining human expertise together with mathematical models. In addition,

FRBSs, with the proven ability to approximate any real continuous function on a compact set

to an arbitrary accuracy (Wang and Mendel 1992; Kosko 1994), should be very competent for

modelling the non-linearity which is present in airport data. The input is first mapped with

a fuzzification interface, then decisions can be made before these are mapped to a single crisp

output using a defuzzification interface. The general process of fuzzy inference and its schematic

diagram is shown in Figure 5.4.

The concept behind Mamdani FRBSs (Mamdani 1974) is introduced first here, before discussing

another concept based on a different type of FRBS in the next section. The general ‘rule-base’

of a FRBS has the following form, with a number of fuzzy if-then rules Ri:

Ri : If x1 isA
1
i and x2 isA

2
i , . . . , and xj isA

j
i Then yi = Zi. (5.1)
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Figure 5.4: Fuzzy Inference Systems (source: Jang (1993))

The values xl for all l = 1, . . . , j are the explanatory variables, yi is the output of the ith rule

and the Al
i are the ith linguistic values (fuzzy sets). For each Al

i, there is a membership function

µAl
i
(xl) associated with it which maps the universe of discourse to the range [0,1]. They take

the form of Gaussian functions of the following form in this work:

µAl
i
(xl) = exp

[

−
1

2
·
(xl − cli)

2

(σl
i)

2

]

, (5.2)

where cli denotes the centre of the bell-shape curve and σl
i denotes the standard deviation.

Figure 5.5 shows, for illustration, an example of a Gaussian membership function with its

centre at 0.5 and its standard deviation at 0.2.
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Figure 5.5: The shape of a Gaussian membership function for the explanatory variables

The consequence part Zi is a fuzzy set for a Mamdani FRBS, which is here modelled as a

bell-shaped membership function.
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Each of the resulting rules can be expressed to the end user using linguistic terms, without

showing the mathematical details of Al
i and µAl

i
(xl). For example, Ri, could also be rewritten

as follows:

Ri : If x1 is big and x2 is small, . . . , and xj is medium Then yi = Zi,

where ‘big’, ‘small’ and ‘medium’ are linguistic values defined by µAl
i
(xl).

The ‘database’ in Figure 5.4 contains all such membership functions for the fuzzy sets used

in the fuzzy rules. Usually, the rule base and the database are jointly referred to as the

‘knowledge base’. The ‘decision-making unit’ performs the inference operations on the rules

and two interfaces perform fuzzification and defuzzification, respectively. Defuzzification is an

important module since it converts a set of output values or output membership functions from

different fuzzy rules into a single crisp output value.

As Jun Chen from the University of Lincoln developed the MATLAB code for this joint work

(Chen and Mahfouf 2012), we point the interested reader to our paper (Chen et al. 2011) for

more details about the approach, the tuning for the problem of estimating aircraft taxi times,

and preliminary results.

Some of the key features of Mamdani FRBSs highlighted in Chen et al. (2011) are:

1. the ability to approximate complex non-linear systems,

2. the ability for rules to differ in different regions,

3. the ability to integrate human expertise, and

4. the ability to interpret the underlying system.

5.3.6 TSK Fuzzy Rule-Based Systems

Another form of fuzzy inference system, originally proposed by Takagi and Sugeno (1985), has

fuzzy sets involved only in the premise part. By using Takagi and Sugeno’s fuzzy inference
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scheme (TSK), one can describe the fuzzy if-then rules as follows:

Ri : If x1 isA
1
i and x2 isA

2
i , . . . , and xj isA

j
i Then yi = gi(x1, x2, . . . , xj). (5.3)

Ri denotes the ith rule to be considered. gi() is any function, and could, for example, be linear

or quadratic. Normally, using a linear function for gi() is enough, since the fuzzy if-then rule

has already embedded non-linearity inherently. When a linear model structure is assumed then

a rule base with k rules takes the following format:

R1 : If x1 isA
1
1 and x2 isA

2
1, . . . , and xj isA

j
1 Then y1 = b01 + b11 · x1 + . . .+ bj1 · xj

. . .

Rk : If x1 isA
1
k and x2 isA

2
k, . . . , and xj isA

j
k Then yk = b0k + b1k · x1 + . . .+ bjk · xj .

(5.4)

The crisp output from the input (x1, x2, . . . , xj) is obtained as the weighted sum of the conse-

quences of the k rules:

y =

k
∑

i=1

βi · yi =
k

∑

i=1

βi · (b
0
i + b1i · x1 + . . .+ bji · xj), (5.5)

where βi actually represents the certainty of each rule contributed by the premise of the corre-

sponding rule:

βi =
µA1

i
(x1) · µA2

i
(x2) · . . . · µA

j

i
(xj)

∑k

l=1 µA1

l
(x1) · µA2

l
(x2) · . . . · µA

j

l

(xj)
. (5.6)

The membership function µAl
i
(xl) of the premise part is again a Gaussian function as in Equa-

tion (5.2).

When a set of input-output data is given, one can obtain the consequent parameters b0i , b
1
i , . . . , b

j
i

for all i = 1, . . . , k via some learning algorithms. As used for the Mamdani FRBS, Chen

et al. (2011) utilised a combined k-means algorithm and genetic algorithm (Chen 2009) to

automatically identify the initial values of the parameters both in the premise and consequent
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parts, the same method is used to determine the parameters associated with the premise part.

The least square approach is then used to determine the initial values of b0i , b
1
i , . . . , b

j
i for all

i = 1, . . . , k. To further refine the initial fuzzy system which is obtained, a genetic algorithm,

namely G3PCX (Deb et al. 2002), is incorporated into TSK to fine-tune the premise part,

followed by a least square approach to obtain the consequent part. This process continues

iteratively until a pre-specified condition is met in order to reach a more accurate fuzzy system.

G3PCX is a real-parameter genetic algorithm using a parent-centric recombination operator

(PCX) and an elite-preserving, computationally fast evolutionary model (G3).

The Figures 5.7 and 5.10 together with the Tables 5.4 and 5.5 help the reader to better under-

stand and visualise a possible model from a TSK fuzzy rule-based system.

As mentioned in Chen et al. (2011), in comparison to the Mamdani FRBS, the following dis-

tinctive features associated with the TSK FRBS can be identified:

• The TSK FRBS could in some ways be viewed as an extension of multiple linear regression.

Each rule in the rule base resembles a multiple linear regression model for a decomposed

explanatory variable region. Hence, the explanatory ability associated with multiple linear

regression automatically applies to the TSK FRBS.

• These rules work cooperatively to produce estimations, which may result in more accurate

estimations.

• Although one could lose certain linguistic meanings in the consequent part in comparison

to the Mamdani FRBS, due to the function form of the TSK consequent part, such a

form should be able to approximate the sub region more accurately than a fuzzy set.

5.4 Comparisons and Insights

This section analyses the different regression approaches for predicting taxi times at airports

and shows comparisons between approaches and insights from the best performing approach.

First, it is necessary to specify the experimental setup and the performance measures used.
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5.4.1 Experiment Setup

All of the experiments were executed on a standard desktop PC (Intel Core 2 Duo, 3GHz, 2GB

RAM). WEKA was used to perform all of the experiments apart from the last two models, which

are related to the fuzzy rule-based systems (Hall et al. 2009; Witten et al. 2011). Analysis with

the support vector regression method identified that the best parameter for the model is to use

the value C equal to 2 and to employ a normalised polynomial kernel with exponent 3 (tested

with discretised values over a reasonable value range and with different kernels). Both of the

fuzzy rule-based systems were implemented by Jun Chen from the University of Lincoln, who

provided the source code, and were tested in MATLAB R2010a. Mamdani FRBS was based on

12 rules, as published in Chen et al. (2011). TSK FRBS was analysed in detail and preliminary

results showed that 4 rules for Stockholm-Arlanda Airport and 8 rules for Zurich Airport were

the most promising settings. All experiments were based on 10-fold cross-validation if not

otherwise stated. This is suggested to be the recommended setting and leads to relative low

bias and variance (Nadeau and Bengio 2003; Han et al. 2011). Furthermore, 15 repetitions

were done for each experiment, as recommended by Nadeau and Bengio (2003). They also

recommend using the corrected resample t-test to test whether the difference between the two

prediction models is significant. The corrected resample t-test should be preferred over a normal

paired t-test, because the suggested test adjusts the variance in relation to the overlaps between

subsets of the data (Demšar 2006). To compare the different models the same seeds were used

to generate the subsets for cross-validation for the different repetitions for both utilised software

packages. The significance level α was set to 0.05.

5.4.2 Performance Measures

This research aims to compare the different prediction methods using various performance

measures to provide as much insight as possible and to enable further comparisons. The utilised

measures are discussed below.
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5.4.2.1 Root mean-squared error

The root mean-squared error (RMSE) is a very commonly used measure and was preferred

over the mean-squared error in this chapter since it gives values in the same dimension as the

predicted values. The formula is

RMSE =

√

(y1 − ŷ1)2 + . . .+ (yn − ŷn)2

n
, (5.7)

where yi is the actual taxi time of aircraft i and ŷi is the corresponding predicted taxi time.

The value n represents the number of aircraft in the dataset.

5.4.2.2 Mean-absolute error

A second measure, which is also in the same dimension as the predicted value, is the mean-

absolute error (MAE). This performance measure averages the individual errors by neglecting

their sign. It is defined as follows:

MAE =
|y1 − ŷ1|+ . . .+ |yn − ŷn|

n
. (5.8)

5.4.2.3 Root relative-squared error

In the root relative-squared error (RRSE) the total squared errors are divided by the total

squared errors when using the simplest prediction model (which just outputs the average value

ȳ) as can be seen below:

RRSE =

√

(y1 − ŷ1)2 + . . .+ (yn − ŷn)2

(y1 − ȳ)2 + . . .+ (yn − ȳ)2
. (5.9)
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5.4.2.4 Relative-absolute error

The relative-absolute error (RAE) is the total absolute error, which is normalised as the root

relative-squared error by using a simple average predictor:

RAE =
|y1 − ŷ1|+ . . .+ |yn − ŷn|

|y1 − ȳ|+ . . .+ |yn − ȳ|
. (5.10)

5.4.2.5 Coefficient of determination

A commonly used performance measure related to linear regression is the coefficient of determi-

nation R2. It can be determined from the root relative-squared error and takes values between

0 and 1 for linear regression models, with values closer to 1 indicating a better fit. R2 is defined

as follows:

R2 = 1−
(y1 − ŷ1)

2 + . . .+ (yn − ŷn)
2

(y1 − ȳ)2 + . . .+ (yn − ȳ)2
. (5.11)

Sometimes an adjusted coefficient of determination is used, which penalises models with many

explanatory variables. In this study, the explanatory variables are fixed and the size of the

datasets is much larger than the number of explanatory variables, making such a correction

term unnecessary.

5.4.2.6 Prediction accuracy

The last set of performance measures is used to show practitioners the accuracy of the models

and is of a form that they will be familiar with. The percentage of the prediction accuracy

measure indicates what percentage of the flights in the dataset are predicted within ± 1, 2, 3,

5 or 10 minutes.

5.4.3 Visual Comparisons

Figure 5.6 shows the predication accuracy of the 6 different regression approaches for Zurich

Airport. The x-axis represents the aircraft, which were sorted from underestimated to over-
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Figure 5.6: Taxi time prediction accuracy at Zurich Airport

estimated taxi times within each approach. The analysis is based on 15 repetitions of 10-fold

cross-validation and shows each single error value. The range on the y-axis is only shown

within the interval of ± 5 minutes. The solid black line visualises the multiple linear regression

approach (LinReg) which is used as a baseline analysis. It is clear that least median square

linear regression performs (LMS) poorly for predictions which underestimate the actual taxi

time. Support vector regression (SMOreg), Mamdani FRBS and TSK FRBS seem to perform

the best, but it is hard to distinguish clearly based on this figure, so a numerical comparison

will now be presented.
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5.4.4 Numeric Comparisons

Table 5.2 shows the first four performance measures for both airport datasets. Bold numbers

highlight the best (smallest) result for each performance measure at each airport. The newly

introduced TSK FRBS outperforms the other approaches in almost all cases. Only in the case

of Zurich Airport does support vector regression have the same result for the mean-absolute

error and be slightly better in terms of the relative-absolute error. Tests with the corrected

resample t-test showed that there is always a significant improvement between the multiple

linear regression approach and TSK FRBS at Zurich Airport. For this dataset, TSK FRBS also

significantly outperformed least median square linear regression and, apart from the relative-

absolute error, also outperform the M5 model trees. Although the numeric results are better

for the TSK FRBS, it only significantly outperformed the Mamdani approach in terms of the

root mean-square error and the root relative-squared error and did not outperform the support

vector regression. The results for Stockholm-Arlanda Airport are very similar, but fewer tests

identify significant differences. The best values found for the coefficient of determination R2

were 80.85% and 93.25% for Stockholm-Arlanda Airport and Zurich Airport, respectively, using

the TSK FRBS.

Table 5.2: Comparisons of performance measures for Stockholm-Arlanda Airport and Zurich
Airport

Performance Measure Airport LinReg LMS SMOreg M5P Mamdani TSK

Root mean-squared error ARN 1.52 1.57 1.50 1.51 1.46 1.44
ZRH 1.47 1.60 1.32 1.36 1.33 1.30

Mean-absolute error ARN 1.14 1.14 1.09 1.13 1.07 1.06
ZRH 1.08 1.10 0.96 0.99 0.97 0.96

Root relative-squared error ARN 45.70% 47.47% 45.27% 45.54% 44.19% 43.53%
ZRH 29.29% 31.76% 26.28% 27.00% 26.41% 25.89%

Relative-absolute error ARN 45.80% 45.92% 43.98% 45.61% 43.28% 42.83%
ZRH 26.85% 27.52% 23.87% 24.55% 24.30% 23.93%

The prediction accuracy within ± 1, 2, 3, 5 and 10 minutes can be found in Table 5.3. Again,

TSK FRBS outperformed, in most cases, the other regression approaches in both datasets.

Mamdani FRBS also did very well in comparison to the others. Our findings are in line with

the analysis by Wu et al. (2011) where TSK FRBSs with fewer rules were more successful than

Mamdani FRBSs. Although support vector regression often seemed a good alternative, the ±

2 and 3 minutes accuracy in the case of Stockholm-Arlanda Airport reported the worst values.
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Table 5.3: Comparisons of accuracies for Stockholm-Arlanda Airport and Zurich Airport

Accuracy Airport LinReg LMS SMOreg M5P Mamdani TSK

Accuracy within ± 1 min ARN 54.28% 56.02% 57.86% 54.61% 58.21% 58.80%
ZRH 58.38% 59.66% 64.05% 62.49% 62.97% 63.33%

Accuracy within ± 2 min ARN 85.30% 85.18% 84.91% 85.19% 86.73% 86.81%
ZRH 86.12% 85.99% 88.98% 88.15% 88.55% 89.07%

Accuracy within ± 3 min ARN 95.40% 94.80% 94.32% 95.43% 95.72% 96.16%
ZRH 95.55% 94.26% 96.60% 96.46% 96.54% 96.89%

Accuracy within ± 5 min ARN 99.16% 98.81% 99.16% 99.18% 98.97% 99.08%
ZRH 99.21% 98.56% 99.45% 99.46% 99.53% 99.62%

Accuracy within ± 10 min ARN 99.92% 99.92% 99.92% 99.92% 99.92% 99.92%
ZRH 99.92% 99.87% 99.97% 99.97% 99.98% 99.97%

Appendix D shows a case study of Hartsfield-Jackson Atlanta International Airport. TSK

FRBS was again the best approach to predict taxi times and it can be highlighted that the ±

1 minute accuracy can be improved by 26% when using a TSK FRBS instead of the baseline

experiment with the multiple linear regression approach.

5.4.5 Insights from Prediction Models

As the comparisons in the last section showed, TSK FRBS seems to perform the best for the

analysed prediction problem. Therefore, this section focuses on the results of that particular

approach. Earlier results and analysis for multiple linear regression and Mamdani FRBS can

be found in the papers by Ravizza et al. (2012a) and by Chen et al. (2011), respectively.
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Figure 5.7: Four fuzzy rules extracted from the TSK FRBS analysis for Stockholm-Arlanda
Airport
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Figure 5.7 illustrates the membership functions of two explanatory variables for the TSK FRBS

at Stockholm-Arlanda Airport. The first figure is related to the indication of whether an aircraft

is arriving or departing and the second figure shows the final model related to the logarithmic

transformation of the total taxi distance. Input values are scaled to the range [-1,1] using a

linear scaling from their range (see Table 5.1). The other explanatory variables had less distinct

membership functions for the different rules and were omitted. The four rules are represented

with different lines, showing rules 1 and 2 are more focusing on departures and rules 3 and 4

on arrivals. Furthermore, the rules cover different total taxi distances starting with rule 3 for

smaller distances, following by rules 2, 4 and 1. The consequence part of the four rules can

be seen in Table 5.4. Each rule has the form of a multiple linear regression approach with the

coefficients stated in the table. This model is based upon using the approach with the entire

dataset as training data.

Table 5.4: Consequence part of the TSK FRBS analysis for Stockholm-Arlanda Airport

Rule 1 Rule 2 Rule 3 Rule 4

(Constant) 0.793 -0.146 -0.964 1.666
ARR 0.772 0.339 -1.452 -1.080
Distance2 0.082 -0.208 -0.587 -0.224
log10(Distance) -0.200 0.091 -0.871 -0.368
QDEP,#DEP 0.594 2.891 -1.554 -2.144
QDEP,#ARR 0.550 -6.788 10.588 5.890
QARR,#DEP -0.415 -0.569 1.118 1.042
QARR,#ARR 0.041 3.828 -1.002 -0.080
NDEP,#DEP -0.019 -0.273 -1.767 0.575
NDEP,#ARR -0.127 5.007 -7.334 -4.586
NARR,#DEP -0.169 0.455 -0.472 -0.038
NARR,#ARR -0.139 -2.314 0.906 0.089

TSK FRBS has the ability to model non-linear relationships, which gives such a method an

advantage over multiple linear regression, least median squared linear regression or M5 model

trees, where automatic transformations of linear functions with a polynomial transformation are

only possible to a certain extent (Box and Cox 1964; Weisberg 2005; Osborne 2010). Figure 5.8

shows how the functions look for the TSK FRBS and multiple linear regression on the example

of the total taxi distance at Stockholm-Arlanda Airport. Two functions are plotted for each

approach, one showing the predicted taxi times for departing aircraft (solid lines) and one for

arriving aircraft (dashed lines). In the case of multiple linear regression, the two functions
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Figure 5.8: Non-linearity of TSK FRBS models shown on data from Stockholm-Arlanda Airport

always differ by the same taxi time, which is equal to the coefficient of the explanatory variable

indicating the difference between arrivals and departures of the multiple linear regression model.

The two functions have a logarithmic shape due to the transformation of the explanatory

variable related to distance. On the other hand, the shapes of the two functions of the TSK

FRBS can differ and can model non-linear behaviour. This is demonstrated in Figure 5.8, where

the model only consists of four fuzzy rules.

Figure 5.9 shows the predicted taxi times of arriving aircraft at Stockholm-Arlanda Airport

with the TSK FRBS. One axis again represents the different total taxi distances and the other

axis the amount of traffic at the airport. The analysis was set as following: the Q and N

values counting other arrivals are indicated on the axis while the Q and N values counting

other departures were set to 1 for the entire analysis. An increase in the total taxi distance

increases the predicted taxi time and the curve flattens for longer distances. Analysing the

amount of traffic on the surface shows that the slope of the curve grows with higher Q and

N values. In addition, the influence of the total taxi distance decreases with more traffic on

the surface. Again, it should be highlighted that such behaviours cannot be modelled with a

linear regression approach, suggesting that one reason for TSK FRBS outperforming the other

approaches is due to its ability to model complex non-linear systems. Figures for departures
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and for Zurich Airport can be found in Appendix C. These figures show that regression models

are airport dependent and linear or quadratic models are less likely to predict taxi times to the

same accuracy.

0
1000

2000
3000

4000
5000

6000

0

2

4

6

8

10
3

4

5

6

7

8

9

10

11

12

Distance [m]

Amount of Traffic

P
re

di
ct

ed
 T

ax
i T

im
e 

[m
in

]

Figure 5.9: Analysis of predicted taxi-in times at Stockholm-Arlanda Airport with the TSK
FRBS

The model for the TSK FRBS for Zurich Airport is shown in Figure 5.10 in the same way

as in Figure 5.7. As mentioned earlier, the best results at Zurich Airport were found with

eight fuzzy rules. The most interesting membership functions were for the indication of arrivals

and departures and the logarithmic transformation of the total taxi distance as it was before

for Stockholm-Arlanda Airport. In addition, the logarithmic transformation of the total angles

and the three operational modes also have distinct functions. The corresponding multiple linear

regression models for the eight different fuzzy rules can be found in Table 5.5.
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Figure 5.10: Eight fuzzy rules extracted from the TSK FRBS analysis for Zurich Airport

5.5 Conclusions

Airports commonly have many objectives and most will already be automating some of their

operations or decision support, or be planning to do so in the future. Some of the aims of

doing so are to improve predictability, improve on-time performance, reduce ground movement

costs, enhance the use of ground handling resources, stands, gates and terminals and reduce

apron and taxiway congestion (Eurocontrol 2012). Key to such improvements are better taxi

time predictions, which can help many different decision support systems. This research should

also help the development of new and more accurate decision support systems for the ground
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Table 5.5: Consequence part of the TSK FRBS analysis for Zurich Airport

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

(Constant) 4.983 -4.299 0.424 -19.232 0.923 -0.203 3.008 2.233
ARR 2.608 0.398 -0.273 -2.787 -0.037 -0.062 -0.334 -0.169
Distance -1.294 -2.751 0.466 2.004 0.954 -2.952 -0.342 1.694
log10(Distance) 0.374 2.778 -0.321 -1.031 -2.494 3.096 0.280 -0.582
log10(Angle) 1.598 -0.443 0.060 -0.579 0.688 0.155 -0.603 -0.270
QDEP,#DEP -0.215 -1.108 0.825 1.096 0.294 -2.289 1.952 0.936
QDEP,#ARR 7.583 0.063 0.232 -1.360 0.039 0.528 1.633 0.827
QARR,#DEP -0.028 -0.247 0.168 -1.639 0.025 -0.941 0.545 0.887
QARR,#ARR 1.422 0.351 0.009 -0.333 1.023 1.772 -0.448 1.069
NDEP,#DEP 1.727 1.229 -0.707 -0.176 0.283 -0.763 -0.367 0.194
NDEP,#ARR 0.764 -0.213 -0.240 -0.377 0.074 1.022 -0.379 -0.077
NARR,#DEP 0.296 0.001 0.061 1.111 -0.955 -0.818 0.542 -0.369
NARR,#ARR -0.643 -0.810 0.088 -1.055 -1.326 -0.508 0.568 -1.157
Mode 1 1.072 0.214 -0.034 5.916 -0.797 -2.149 0.201 -0.166
Mode 3 -2.264 -0.317 0.154 2.814 0.122 -2.580 -0.099 0.074
Mode 5 1.342 -0.035 0.056 21.321 0.251 1.665 0.086 0.127

movement problem.

Chapter 4 focused on finding the explanatory variables for taxi time prediction for both ar-

rivals and departures, using multiple linear regression to highlight their statistical significance.

This chapter uses the same explanatory variables and shows an analysis of different regression

approaches for predicting taxi times at airports to demonstrate the performance of each. Six

different approaches were analysed in detail: multiple linear regression, least median squared

linear regression, support vector regression, M5 model trees, Mamdani fuzzy rule-based systems

and TSK fuzzy rule-based systems. The latter outperformed the other approaches on datasets

from two European hub airports and the world’s busiest airport (see Appendix D). TSK fuzzy

rule-based systems use fuzzy membership functions to subdivide the input space in the premise

part and a weighted sum of multiple linear regression approaches in the consequent part. As

the different fuzzy rules work cooperatively, in contrast to approaches such as M5 model trees,

the approach may potentially give more accurate estimates and can also model non-linear pat-

terns in the data. Furthermore, this chapter gave insights into the different rules found by the

TSK fuzzy rule-based system and considered taxi-in times, which seems to be a less understood

problem in this field.

It would be interesting to also compare these regression approaches for other busy airports
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to see whether these findings can be extended into settings where the airport operations are

managed differently or are operated under differing constraints. In addition, this research could

be integrated into decision support systems which help controllers in the towers, followed by

a fine-tuning phase of the models and the decision support systems to provide more valuable

decision-making aids.
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6

A More Realistic Approach for

Airport Ground Movement

Optimisation with Stand Holding

Do not worry about your
difficulties in Mathematics. I can
assure you mine are still greater.

Albert Einstein

6.1 Introduction

European airports face several challenges in the 21st century, including the capacity challenge

(with demands for air travel still increasing year on year) and the environmental challenge

(ACI EUROPE 2010). To avoid forming huge bottlenecks in the air transportation system,

airports have either to be enlarged, or (since enlargement is either not possible or prohibitively

expensive in most cases), to utilise the existing resources as efficiently as possible. De-peaking

hub-and-spoke flight schedules would be an alternative, but can cause revenue decreases for

airlines, as it was the case for Delta Air Lines with their project “Operation Clockwork” in
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2005 (Petroccione 2007). In addition, the increasing focus upon environmental issues is likely

to further grow over time. As airports work closer to their maximum capacity, airside airport

operations become much harder to address. As a result, decision support systems have to be

increasingly advanced and they need to integrate different airside airport operations with each

other and to model each process increasingly realistically.

From an optimisation point of view, ground movement of aircraft can be considered to be one

of the most important airside operations at an airport, since it links several other problems

together, such as the runway sequencing problems for arrivals and/or departures (Atkin et al.

2007), the stand holding problem (Atkin et al. 2011a) and the gate assignment problem (Dorn-

dorf et al. 2007). A comprehensive literature review of ground movement research and the

integration with other operations can be found in Chapter 2.

This chapter presents a decision support framework for environmentally friendly ground move-

ment, along with promising experimental results which utilise more realistic taxi time predic-

tions for a European hub airport. A framework is described for integrating a graph-based

sequential movement algorithm into a larger decision support system which can also consider

the runway sequencing problem and the stand holding problem. A Fuzzy Rule-Based System

(FRBS) has been used to more accurately estimate taxi and pushback times for aircraft than

a standard lookup table may allow. This utilises the same graph which is employed for the

ground movement model. This integrated approach allows the effects of ground plan changes

to be modelled more accurately, changing both taxi time predictions and routing information.

In addition, several concepts have been included in the model which allow airport layouts to

be modelled in a more realistic manner, such as restricting certain taxiways to be used only by

certain aircraft and coping with the required separations between aircraft. Finally, the absorp-

tion of delay at the stand, before to starting the engines, has been considered. This reduces

the waiting times at the runway and is further extending previous stand holding ideas (Burgain

et al. 2009; Atkin et al. 2010a, 2011a). The potential benefits of such a system have been

quantified.

Section 6.2 provides a description of the airport ground movement problem and how it can

be embedded into the larger combined sequencing/routing/stand holding framework. Details
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of the dataset which were provided by the airport are then presented in Section 6.3 together

with the method for estimating taxi times. Following this, the sequential ground movement

algorithm which has been developed, and was utilised for these experiments, is detailed in

Sections 6.4 and 6.5. The results of the application of the algorithm to the dataset are then

shown in Section 6.6. The chapter ends with some conclusions in Section 6.7.

6.2 Problem Description

The links between the ground movement problem and runway sequencing are considered first in

this section, before the ground movement problem itself is discussed in more detail. The section

ends with a consideration of the stand holding benefits which can result from the appropriate

solution of the ground movement problem.

6.2.1 The Links with Runway Sequencing

Atkin et al. (2010b) highlighted the importance of integrating the ground movement problem

with other airside airport operations, such as the problems of finding good departure and arrival

sequences. Supporting controllers in these tasks is a challenge, especially when departures

and arrivals have common restrictions and interactions due to the airport layout. For this

chapter, we assume that the runway sequencing and ground movement problems are solved

as two distinct stages. The integrated (departures and arrivals) runway sequencing problem

is assumed to be solved in a first stage, then the consequent landing and take-off times are

used in the second stage, within the consideration of the ground movement problem. Thus,

the wheels-on time at the runway (for arrivals) and the wheels-off time at the runway (for

departures) are both assumed to be fixed within the ground movement problem. Issues such

as conformance with take-off time slots are assumed to be taken into account by the runway

sequencing stage. This decomposition has been found to be effective, but further research will

analyse the benefits of providing a feedback loop from the ground movement problem to the

integrated runway sequencing problem and of closer integration between the two problems.
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6.2.2 Problem Description of the Ground Movement Problem

This chapter considers ground movement at an airport. The ground movement problem is a

combined routing and scheduling problem. It involves guiding aircraft on the surface of an

airport to their destinations in a timely manner, where the goal is to reduce the overall travel

time and to enable the target take-off times at the runway to be met. It is important that two

aircraft never conflict with each other throughout the ground movement process.

In the model which is considered in this chapter, the route of the aircraft is not pre-determined,

allowing greater flexibility for solutions. However, the utilised solution method provides the

possibility to restrict certain aircraft to specific taxiways and/or to avoid routes which involve

tight turns. The airport layout is represented as a directed graph, where the edges represent the

taxiways and the vertices represent the junctions or intermediate points. Aircraft are considered

to occupy edges, and conflicts are avoided by preventing any two aircraft from using the same

edge simultaneously, or from simultaneously using edges which are too close together.

The sequential approach to ground movement will then minimise the taxi time for each in-

dividual aircraft given the planned movement for the other aircraft which have already been

routed. Hence, the approach will attempt to absorb as much of the waiting time as possible

at the gate/stand, allowing the departures to start their engines as late as possible, reducing

fuel burn and environmental impact. Thus, the solution method could be considered to be not

only reducing the ground movement time, but also solving the stand holding problem (Burgain

et al. 2009; Atkin et al. 2010a, 2011a) for a given runway sequence.

6.3 Analysed Case: Zurich Airport

This analysis utilised data from Zurich Airport. The major part of the analysis is based on

the dataset “ZRH 2011” for an entire week’s operations with 5613 movements in total (2806

arrivals and 2807 departures). A preliminary study is based on the smaller dataset from Zurich

Airport “ZRH 2007” which was available at the time of the study. In addition, this preliminary

study needed very long experimental runtimes, which was only reasonable to analyse for one

day of operation.
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6.3.1 Taxi Time Prediction

Ground movement models need accurate taxi time predictions, but sufficiently accurate values

are rarely available. Comparisons between ground movement tool results and the status quo

at airports have previously been hard to analyse, due to the need for accurate taxi speed data.

The historic data which has to be used usually includes the effects of any delays or re-routing

due to conflicts between aircraft, so the effects of taxi time variability and the benefits from the

ground movement decision support system were often intermingled. This research confronts

that challenge.

An approach to more accurately predict taxi times for aircraft or, equivalently, their average

speeds, was proposed in Ravizza et al. (2012a) and Chapter 4 with a multiple linear regression

approach. The aim was to be able to eliminate the effects of factors which represented the

actual amount of traffic at the airport (by zeroing the factors related to airport load), with the

goal being to predict the taxi times for unimpeded aircraft. These predictions could then be

used in a more advanced ground movement decision support system, such as the one described

in this chapter, which would itself model the effects of the interaction between aircraft (so these

should not already be included in the taxi speed data). Chapter 5 introduced a Mamdani FRBS

approach to estimate taxi times at airports and was adopted and extended for this research.

It was observed for Zurich that some aircraft have to push back from their allocated gates,

taking additional time to do so, whereas other gates allow aircraft to immediately start their

engines. The work by Ravizza et al. (2012a) and Chapter 4 was extended to include a pushback

duration and the multiple linear regression approach indicated that this factor was significant

for Zurich. The resulting taxi time prediction functions by Chen et al. (2011) were therefore

further enhanced for this work adding a predicted pushback duration to the taxi time for the

first edge for departures where the gate requires it, before being utilised to predict the taxi

times.

Finally, depending upon the terminal and the operating mode (which runways are in use),

runway crossings may be necessary during the taxi process. For the moment, these are included

only in the prediction model for taxi times (having influenced the historic data), but we plan

to integrate these effects into the combined ground movement and sequencing model later.
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6.4 Ground Movement Decision Support System

Figure 6.1 provides an overview flowchart describing the ground movement algorithm. Further

details are provided later. The aircraft are routed sequentially in this approach. When an

aircraft is ready, it has to be routed respecting all previous reservations by other aircraft using

the taxiways. The routes which have been previously calculated for other aircraft do not

normally change as new aircraft are taken into consideration (the exceptions are discussed in

Section 6.5). This has an advantage for the dynamic case, where some aircraft will have prior

instructions, and acknowledges the difficulty and time costs associated with communicating

changes to pilots and reducing the quantity of communication needed between the surface

controllers and pilots. The objective for each of the sequential routings is to find the routing

with minimal taxi time among all remaining conflict-free routings.

Figure 6.1: Flow chart of general concept of the approach

The approach described here is based on research by Gawrilow et al. (2008) and the PhD thesis

of Stenzel (2008) which advances earlier work of Desrochers and Soumis (1988) and Sancho

(1994). Ravizza modified the approach for his Master’s dissertation (Ravizza 2009) to label the

vertices instead of the edges, to simplify their interpretation. The original aim of this approach
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was to control automated guided vehicles in container terminals in harbours or in storage areas,

but it is here applied instead to routing aircraft. The approach has been further modified for

this work. The approach has been extended that it can be applied forwards and in addition also

backwards to meet a specific end time rather than a specific starting time (see Section 6.4.5).

Furthermore, different heuristics were integrated to improve the solution quality by changing

the sequence in which the aircraft are routed (see Section 6.5). The resulting algorithm is

described in this section.

The Quickest Path Problem with Time Windows (QPPTW) algorithm is a generalised vertex-

based label-setting algorithm based on Dijkstra’s algorithm and can sequentially route aircraft

on the airport surface, using a directed graph model of the airport. No time discretisation is used

in this approach, in contrast to many other ground movement support systems (Balakrishnan

and Jung 2007; Maŕın 2006; Maŕın and Codina 2008; Roling and Visser 2008). It has similarities

to the recently published work by Lesire (2010), which used a sequential A* algorithm, but it

provides a better coverage of the solution space, potentially allowing it to find better solutions

within comparable execution times - these being short enough for it to be appropriate for real-

time decision making. It also provides the possibility to define which edges in the graph are in

conflict with each other and hence cannot be used simultaneously. In addition, for each edge

incident to a vertex, the set of valid outgoing edges can be manually defined if desired, or can

depend upon information about the aircraft. This enables the decision support system to forbid

aircraft from making tight turns or to prevent aircraft from using taxiways for which they are

too large. Together, these features enable the approach to more realistically model the airport

surface while leaving the routing task itself to the algorithm.

The preprocessing of the algorithm is explained in Section 6.4.1, then the key concepts are

introduced. The QPPTW algorithm is detailed next and the section ends with a discussion

about buffer times and the sequence in which aircraft are routed.

6.4.1 Ground Plan Preprocessing

It is important to maintain separations between aircraft on the ground. The concept of conflict-

ing edges is introduced here for this reason, so that no two conflicting edges can be occupied
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simultaneously. The conflicting edges are determined in a preprocessing stage. For this re-

search, we used an approach which assumes straight connecting lines between vertices, since

this requires less time in the preprocessing stage and is adequate for the directed graph model

which has been used in this research, where the paths are almost straight lines between ver-

tices. Edges in the graph, together with their embedding in the airport plan, are here named

segments. In this approach, two segments conflict with each other if they are located closer

together than a given threshold distance. To find the minimal Euclidian distance between two

segments, the algorithm performs two processing steps. Firstly, it verifies whether the edges

are intersecting, then, if they are disjoint, the distance between each end point of one segment

and the closest point on the other segment is calculated (see Figure 6.2). The minimum over

these four distances corresponds to the minimal distance between the two segments.

Figure 6.2: Euclidian distance between two segments

6.4.2 Variable Definitions

Definitions of the variables and data structures which are used in the model are given in Table

6.1.

6.4.3 Key Concepts

The QPPTW algorithm with its expansion steps works in a similar way to Dijkstra’s algorithm

(Dijkstra 1959; Cormen et al. 2001). However, a label can be expanded several times due to the

different time-windows and an additional concept of dominance is needed in order to guarantee

a polynomial solution time. It is necessary to define some of the concepts upon which the

approach is based. Firstly, the algorithm needs information about the times that each part of

the taxiway (edge) is free:
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Table 6.1: Table of definitions

Variable Explanation

confl(e) The set of edges which conflict with edge e ∈ E
F j
e = [aje, b

j
e] jth time-window on edge e ∈ E, from time aje to time bje

F(e) The sorted set of all the time-windows on edge e ∈ E
G = (V,E) The directed graph representing the airport layout, with

vertices v ∈ V and edges e ∈ E
H The Fibonacci heap storing the added labels
IL = [aL, bL] The time interval used in a label L
L = (vL, IL, predL) A label on vertex vL ∈ V with time interval IL and

predecessor label predL
L(v) The set of all of the labels at vertex v ∈ V
R A conflict-free route that is being generated
T = (s, t, time) A taxi request to route, from source s ∈ V at time time

to target t ∈ V
we The weight (necessary taxi time) of edge e ∈ E

Definition: Set of sorted time-windows

The set F(e) contains the sorted set of time intervals F j
e = [aje, b

j
e] which specify the times

when the edge e can be used for a new route. This will exclude the times when e, or an edge

which conflicts with e, are in use by previously routed aircraft. These are inputs to the routing

algorithm for each aircraft.

The use of labels is an essential concept of the QPPTW algorithm:

Definition: Label

A label L = (vL, IL, predL) specifies the time period IL = [aL, bL] within which the current

aircraft could reach vertex vL. It includes a reference to the previous label on the route, predL,

and thus implicitly represents a route (with edge traversal timings) from a source vertex to the

specified vertex vL. These labels are generated as the routing algorithm progresses, together

specifying the (undominated) time periods (from time aL to time bL) when the current aircraft

could reach vertex vL.

An ordering relation is defined over the intervals of the labels to allow the definitions of domi-

nance:
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Definition: Dominance

A label L = (vL, IL, predL) dominates a label L′ = (vL′ , IL′ , predL′) on vertex vL = vL′ if and

only if IL′ ⊆ IL (and there are identical route restrictions on the outgoing edges), which implies

aL ≤ aL′ and bL ≥ bL′ .

Once the routing has been performed by the QPPTW algorithm, the time-windows are read-

justed (as discussed in Section 6.4.6) before the QPPTW algorithm is reapplied to route the

next aircraft.

6.4.4 QPPTW Algorithm

The input of the QPPTW algorithm contains the graph G = (V,E) with its weight function

we, which corresponds to the taxi times for each edge, estimated using the taxi time estimation

method which was described in Section 6.3. The sorted set of available time-windows F(e)

also has to be provided for each edge e, specifying when the edge is available. A taxi request

Ti = (si, ti, timei) for aircraft i is then a conflict-free route R from the vertices si to ti with

minimal taxi time (w.r.t. we) that respects the given time-windows.

The pseudocode of the QPPTW algorithm is shown in Algorithm 1 and is a variant of the

QPPTW algorithm described by Stenzel (2008). The main difference is that we allocate the

labels to vertices, which helps both to model the process more realistically and to more easily

understand the algorithm, since it distinguishes between the use of the labels at the vertices

and the input time-windows at the edges.

In summary, the algorithm expends iteratively found quickest routes from the source to vertices

in the network until it reaches the target by making sure that all the relevant time-window

constraints are fulfilled. The expansion steps of the algorithm work similarly to Dijkstra’s

algorithm. The main feature of the QPPTW is the ability to take into account when which

edge is free or blocked by another aircraft. The complexity of the algorithm is higher and the

dominance rules for two labels have to be extended.

Lines 1 and 2 of Algorithm 1 involve the initialization of the Fibonacci heap and the references

to this heap which are stored at each vertex. The use of Fibonacci heaps for this algorithm
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Algorithm 1: Quickest Path Problem with Time Windows (QPPTW)

Input: Graph G = (V,E) with weights we for all e ∈ E, the set of sorted time-windows F(e)
for all e ∈ E, a taxi request Ti = (si, ti, timei) with the source vertex si ∈ V , the
target vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with minimal taxi time that starts at the earliest
at time timei, respects the given time-windows F(e) or returns the message that no
such route exists.

1 Let H = ∅
2 Let L(v) = ∅ ∀v ∈ V

3 Create new label L such that L = (si, [timei,∞) , nil)
4 Insert L into heap H with key timei
5 Insert L into set L(si)

6 while H 6= ∅ do
7 Let L = H.getMin(), where L = (vL, IL, predL) and IL = [aL, bL]

8 if vL = ti then
9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of vL do
12 foreach F j

eL
∈ F(eL), where F j

eL
= [ajeL , b

j
eL
], in increasing order of ajeL do

13 /*Expand labels for edges where time intervals overlap*/
14 if ajeL > bL then
15 goto 11 /*consider the next outgoing edge*/

16 if bjeL < aL then
17 goto 12 /*consider the next time-window*/

18 Let timein = Maximise(aL, a
j
eL
) /*ajeL > aL ⇒ waiting*/

19 Let timeout = timein + weL

20 if timeout ≤ bjeL then

21 Let u = head(eL)

22 Let L′ = (u,
[

timeout, b
j
eL

]

, L)

23 /*dominance check*/

24 foreach L̂ ∈ L(u) do

25 if L̂ dominates L′ then
26 goto 12 /*next time-window*/

27 if L′ dominates L̂ then

28 Remove L̂ from H

29 Remove L̂ from L(u)

30 Insert L′ into heap H with key aL′

31 Insert L′ into set L(u)

32 return “there is no si-ti route”

109



6.4 Ground Movement Decision Support System

has the same beneficial effect upon the execution time as it does for Dijkstra’s algorithm. The

starting label is generated for the source si in line 3 and is then inserted into the Fibonacci

heap, which is sorted with respect to the earliest possible arrival time (key). A reference is

maintained to this label using the L(si) set for each vertex. These references are used as a

look-up by the dominance check in lines 23-29, where the algorithm needs fast access to all of

the labels associated with a particular vertex.

In each iteration of the while loop, the algorithm checks whether the Fibonacci heap still contains

elements. If this is not the case, there is no route which can be enlarged and, therefore, no route

from si to ti, starting at timei, exists (line 32). If the Fibonacci heap still contains elements,

the algorithm takes a minimal element with respect to the key (line 7), checks whether this

label already represents a route to the target ti (lines 8-10) and, if not, tries to expand the

associated route.

The route can usually continue along a number of different outgoing edges from any vertex and

can potentially use different time-windows on each edge (lines 11 and 12). In order to use an

edge, there must be a time-window available with an overlapping time interval, as expressed by

the conditions on lines 14 and 16. The earliest possible point in time that edge eL can be exited

is identified (lines 18 and 19) and the expansion step is executed. When the condition stated

in line 20 is true, a new label will be generated (lines 21 and 22). Different cases are possible

at this stage. Firstly, the new label may dominate another label (line 27), in which case the

dominated label will be erased (lines 28 and 29). Secondly, the new label may be dominated by

an older one (line 25), in which case it is not necessary to take this label into account (line 26).

The while loop is executed as long as there is a route which can be expanded. Once a route R

to the target ti has been found, the route can be generated by working backwards through the

set of labels (line 9) using the references, predL, to the previous labels.

This generalised vertex-based Dijkstra’s algorithm is a variant of that given by Stenzel (2008).

His proof that the edge-based algorithm solves the problem in polynomial time (in the number

of time-windows) will also hold for this algorithm.
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6.4.5 Modifications to the QPPTW Algorithm for Airport Ground

Movement

Algorithm 1 is used for arriving aircraft as described above, since their goal is to clear the

runway and reach the gate/stand as quickly as possible. In our model, departing aircraft aim

to reach the runway in time for their predetermined take-off time and leave the gate/stand as

late as possible in order to do so. This allows for more of the waiting time to be absorbed at

the gate/stand when the engines are not running. The same algorithm is used for this purpose,

computing the route backwards, with the end time fixed instead of the start time and with

changes to reverse the time-related steps. Since the algorithm logic remains unchanged, this

modified algorithm has not been presented here.

In an attempt to further speed up the execution time of the algorithm, we applied goal-oriented

search (Sedgewick and Vitter 1986) to the QPPTW algorithm. Two heuristic measures were

investigated for estimating lower bounds for the rest of the partial route: firstly the Euclidean

distance was used to measure the linear distance to the target, and secondly the remaining time

was estimated using Dijkstra’s algorithm to compute the time which would be needed ignoring

any interference from other aircraft. Unfortunately, neither approach resulted in a valuable

speed-up when applied to this problem. This can possibly be explained by the fact that the

graph representing the airport layout is sparse (having on average only a few outgoing edges for

each vertex) and routes often start on the border of the graph (see Figure 3.2), so the number

of expansions exploring non-promising areas of the airport is relatively small already.

6.4.6 Readjustment of the Time-Windows

When an aircraft has been routed, the time-windows have to be readjusted according to the

edge utilisation of the adopted route R, and the edges which conflict with these. It is necessary

to consider edge conflicts only during this stage and not during the routing process (Algorithm

1).

Algorithm 2 presents the pseudocode for the readjustment of the time-windows. The input

consists of the weighted graph G = (V,E), the set of conflicting edges confl(e) for all e ∈ E,
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Algorithm 2: Readjustment of the time-windows

Input: Graph G = (V,E) with weights we for all e ∈ E, the route R with reservations
[

timeinf , timeoutf

]

for all f ∈ R, the set of sorted time-windows F(e) for all e ∈ E and

the set of conflicting edges confl(e) for all e ∈ E.
Output: Sorted set of time-windows F(e) including the reservations of the route R

1 foreach f ∈ R do
2 foreach e ∈ confl(f) do
3 foreach F j

e = [aje, b
j
e] ∈ F(e) do

4 if timeoutf ≤ aje then

5 goto 2 /*time-window is too late*/

6 if timeinf < bje then

7 /*otherwise time-window is too early*/

8 if timeinf < aje + we then

9 if bje − we < timeoutf then

10 Remove F j
e from F(e)

11 else
12 /*shorten start of time-window*/
13 F j

e = [timeoutf , bje]

14 else

15 if bje − we < timeoutf then

16 /*shorten end of time-window*/
17 F j

e = [aje, timeinf ]

18 else
19 /*split time-window*/
20 F j

e = [aje, timeinf ]

21 Insert [timeoutf , bje] into set F(e)
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the set of sorted time-windows F(e) for all e ∈ E, and the route R which was found for the most

recent aircraft to be routed. The output is the new sorted set of time-windows F(e), including

the reservations of the new route R.

In summary, all the affected edges are considered one by one and their time-windows are read-

justed according to four cases (remove time-window, shorten at the start or the end, respectively,

or splitting the time-window). The main features are the specific distinctions of the cases and

the procedure to consider all possibly affected edges.

Basically, the algorithm determines which other edges are blocked for each edge of the route

R (lines 1 and 2). All affected time-windows on these edges are adjusted (lines 3-7) and four

different cases then have to be considered, depending upon the relative positions of the time-

windows. The remaining time-window may be removed (lines 9-10) if it becomes too short to

allow an aircraft to taxi; be shortened at the start (lines 11-13) or shortened at the end (lines

15-17); or it could be split in two smaller windows (lines 18-21).

Once a route has been allocated to an aircraft, some additional waiting time may be required

on edges, beyond the time required to traverse the edge as specified by the time intervals on

the labels from Algorithm 1. Time intervals on adjacent edges often overlap sufficiently that

there is a choice of which edge the wait can be assigned to. In our implementation, the waiting

times are forced to be as late in the corresponding part of the route as possible, apart from

the initial waiting time for departures, which is allocated so as to maximise the stand hold.

Alternative approaches could use this flexibility to select better and smoother speed profiles for

the aircraft. Using a similar approach to that used in Lesire (2010), the aim could be to spread

the necessary waiting times for an aircraft in such a way that the speed profiles are as “engine

friendly” as possible. Although the effects of such postprocessing are not studied within this

chapter, Chapter 7 analyses fuel efficient taxiing.

6.4.7 Buffer Times

The solutions of the approach are conflict-free routings, but it is possible for small delays to

affect the entire plan. Buffer times would enable small deviations from the taxi times to be

absorbed. To achieve such buffer times the label intervals in the algorithm are lengthened in
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the desired direction (before or after) by a certain amount. To reflect growing uncertainties

along the route, the amount of time can be made distance-dependent. Buffer times could also

depend upon the expected congestion at the time, being increased when delays were expected

to be more likely, although at these times the introduction of a buffer time would be more likely

to reduce throughput.

6.4.8 Initial Sequencing of Taxiing Aircraft

The order in which aircraft are considered by the sequential routing algorithm can potentially

affect the efficiency of the routing. The natural sequencing, of considering aircraft in the order

in which they become available, has advantages in terms of perceived fairness and has been

adopted in the past (Busacker and Fricke 2002). A more advanced approach using a concept

of collaborative virtual queues was presented in Burgain et al. (2009), with the idea being to

limit the number of aircraft which were taxiing on the surface to a specified maximum and

maintaining a virtual queue of those waiting to start, forcing them to wait until the count

allows them to pushback. The natural ordering (the expected wheel-on time on the runway for

arrivals and the expected earliest pushback time at the gate/stand for departures) was adopted

by default for this chapter, but the potential benefits of using better sequences have also been

considered, as explained in the next section.

6.5 Heuristics for Finding Better Aircraft Sequences

The aim of this section is to introduce heuristics which are used to improve the quality of the

utilised aircraft sequence. Gotteland et al. (2001) applied the concept of genetic algorithms to

attempt to find better orderings. A major drawback of such an approach is that there is no

control of the final sequence and a lot of communication between controllers in the tower and

pilots is potentially needed to change the routes of all of the affected aircraft as the situation

changes.

Our approach attempts to balance the additional communication between controllers and pi-

lots and reduce the total taxi time. The concept of a ‘causer aircraft’ is introduced first in
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this section, based on ideas from Ravizza’s Master’s dissertation (Ravizza 2009). Afterwards,

different heuristics are explained in order to improve the solution quality, as far as reduction in

total taxi time is concerned, while staying close to the original natural sequencing, to maintain

an element of fairness.

6.5.1 Finding a Causer Aircraft

The QPPTW algorithm sequentially routes new aircraft whilst respecting previous reservations

by other aircraft. The time needed by each aircraft to complete its route is compared to the

time which would have been needed if the aircraft had been routed in isolation (using Dijkstra’s

algorithm (Dijkstra 1959; Cormen et al. 2001) to find the shortest route). If the difference is

bigger than a certain threshold value then the algorithm attempts to find a better sequence.

This delay will always have been caused by an already routed aircraft and this aircraft is

classified as the causer aircraft. If several aircraft are affecting an aircraft, the one affecting the

current aircraft’s route the earliest is classified as the causer aircraft.

There are two cases to consider when detecting a causer aircraft. Firstly, an aircraft can need

to wait during taxiing because another aircraft is blocking the next part of the route and thus

causes a delay. Secondly, an aircraft could be forced to do a detour to avoid a wait, leading to a

delay which is longer than the threshold value. In this case, the computed route is compared to

the shortest route and from the separation point on, a look-ahead mechanism on the shortest

route is used to determine the causer aircraft. The blocking of a part of the taxiway can

potentially be further on the shortest route, since the QPPTW algorithm finds a way to detour

which leads to the destination the fastest, so a detour may diverge earlier than the blocker

position if this leads to a shorter route.

6.5.2 Swap Heuristic

The simplest (but very effective) heuristic involves using the swap-operator. As explained

before, the aircraft are initially sequenced in the natural ordering. If a route of a new aircraft

has a delay longer than the threshold value, this approach tests another sequence and uses the
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better one. In the case of the swap heuristic, the route of the causer aircraft is taken out of the

solution and the new aircraft is then routed and scheduled based on the QPPTW algorithm,

before re-routing the causer aircraft. All of the other routes and schedules are fixed in order to

maintain fairness and to aim for reduced communication requirements.

Tests were also performed to investigate the potential benefits of using the swap-operator and

also allowing all of the other aircraft’s routes to be changed. First, the final sequence found

by the approach was used to run the QPPTW algorithm and quantify the benefit. Then, after

swapping two aircraft in the sequence, the approach re-routed all of the intermediate aircraft

and tested whether this lead to a reduced total taxi time compared to adding the new aircraft

to the end of the old sequence.

6.5.3 Shift Heuristic

A shift-operator is used here instead of a swap-operator. In contrast to the previous heuristic,

the new aircraft is added just before the causer aircraft in the aircraft’s sequence. Obviously,

all of the aircraft afterwards may have to be re-routed to find a feasible overall solution of the

problem.

6.5.4 Best-shift Heuristic

Both of the above heuristics aim for a better overall solution by considering routing the new

aircraft earlier than the causer aircraft. Hence, the concept of a causer aircraft is the main idea

behind the improvements. This heuristic works in a different way and is based on the concept

of Constrained Position Shifting (CPS) (Dear 1976; Dear and Sherif 1991). CPS allows the

shifting of an aircraft by at most a predefined number of positions in the sequence. All of the

insert positions which meet the CPS are explored for a new aircraft in our heuristic and the

best is chosen. Again, all of the aircraft after the new position may have to be re-routed to

guarantee a feasible solution.
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6.5.5 Off-line Heuristic

To provide a baseline for all of the online heuristics discussed so far, the potential sequences

were explored using an off-line approach. An initial sequence was used and swap- and shift-

operators were randomly applied to delayed aircraft to find a better sequence, using a hill-

climbing approach: the new sequence replaced the old sequence if the new sequence had a

better overall quality.

6.6 Results and Discussions

This section starts with a table collating the key results, to ease comparison. The explanation

of the results will follow. The results of the taxi time estimation which was presented in

Section 6.3 are then discussed. An analysis of the results from the ground movement decision

support system, which was described in Section 6.4, is provided next, followed by more results

considering the different heuristics to improve the solution quality.

Table 6.2: Summary of the results

Total taxi time Average taxi time
[s] per aircraft [s]

Actual taxi time 2489262.0 443.5
Fuzzy rule-based system
Total taxi time estimation 2458400.4 438.0
Total taxi time estimation (unimpeded) 1685798.5 300.3
QPPTW algorithm with FCFS
Using unimpeded taxi time estimates 1736020.9 309.3

The relevant results are summarised in Table 6.2. The first row of results, labelled “Actual

taxi time”, shows the actual total and average taxi times for dataset “ZRH 2011”, including

the queuing time at the runway.

The taxi time function, which was developed, was applied to each aircraft to estimate the taxi

times and the results are shown in the next two rows, under the heading “Fuzzy rule-based

system”. In the first case, the function was applied assuming the actual traffic level and we

note that the difference between the predicted and actual times is less than 2%. In the second

case, the traffic-related components of the function were zeroed (as discussed in Section 6.6.1),
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to estimate the taxi times if there had been no delays due to other aircraft, and the difference

illustrates the amount of the taxi time which was a result of such delays.

The unimpeded taxi times were also used within the QPPTW algorithm, based on a first-come-

first-served (FCFS) ordering of the aircraft. The total and mean resulting taxi times are shown

in the table under the heading “QPPTW algorithm with FCFS”. These results are analysed

and explained further in the following two sections.

6.6.1 Analysis of Taxi Time Estimation

Once the pushback duration had been included in the Mamdani fuzzy rule-based system (see

Section 6.3.1), the coefficient of determination R2 of 94.15% showed that the FRBS was able

to explain the variability of the taxi time data very well for the real world Zurich dataset.

The fitted FRBS model was then used to predict a taxi time for each aircraft in the dataset,

with and without the factors which represented the effects of the delays due to other aircraft

(see Section 6.3.1). The results can be seen in Table 6.2. The model predicts that 31.4% of the

taxi time was related to delays due to other aircraft, including delays in queues behind other

aircraft at the runway. There would be an average saving of 137.7s per aircraft if these delays

could be eliminated. The influence of the interactions between the aircraft which lead to the

waiting times is analysed in the next section.

6.6.2 Experimental Details Using the QPPTW Algorithm

The framework was programmed in Java as a single-threaded application and executed on a

personal computer (Intel Core 2 Duo, 3GHz, 2GB RAM). In these experiments, all aircraft were

allowed to use all of the taxiways and only intersecting and adjacent edges were considered to

be in conflict and were, therefore, not allowed to be used by two aircraft simultaneously. The

buffer time (Section 6.4.7) was set to zero. An analysis of different buffer times showed that the

taxi time would have been enlarged by only a linear factor of the buffer time. Similar results

were also found in Ravizza (2009).

Extensive analysis was performed using the QPPTW algorithm, with a FCFS consideration
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sequence for aircraft, to solve the ground movement problem using the data from and layout

of Zurich Airport (dataset “ZRH 2011”). The aircraft were routed sequentially using the taxi

speed estimations from the Mamdani FRBS which was discussed in Sections 6.3 and 6.6.1. The

resulting total taxi times can be found in Table 6.2, where the taxi times used were those which

were estimated for unimpeded aircraft (ignoring the influence of factors related to other aircraft

on the surface), the average taxi time (including re-routing and waiting delays) was 309.3s per

aircraft.

The estimations of the unimpeded taxi times from the Mamdani FRBS prediction approach

provide a lower bound for the taxi times, since they assume no re-routing delays or queuing

behind other aircraft. The QPPTW algorithm is designed to predict the delays which are

actually necessary due to the interactions between aircraft for the specific routings and tim-

ings which the algorithm assigns to aircraft. Comparison of the resulting taxi times from the

QPPTW algorithm against the lower bound reveals an increase in the taxi time from 1685798.5

to 1736020.9 seconds, showing that the additional taxi times for the re-routing and waiting

summed to 50222.4s over the entire week, an increase of around 3% in the total taxi time. The

3% increase over the lower bound (rather than optimal) times indicates that its use as a ground

movement decision support system seems very promising for this problem.

It is also interesting to compare the approach described here against the actual performance of

the airport on this particular week of operation. Data from Zurich Airport reports a total taxi

time of 2489262.0s. Comparison with the results for the QPPTW algorithm with unimpeded

taxi time estimation highlights potential maximum savings of about 30.3%, an average of 134.2s

per aircraft. This only indicates an upper bound for the potential savings, since the real times

will include slack time for the departures at the runway to ensure a high runway throughput.

The solution time to solve the entire week of operation with 5613 aircraft was 216887ms, an

average solution time of 39ms per aircraft. This supports the potential use of the algorithm in

an online decision support system. No infeasible solution occurred within any of the executions

of the simulation. These findings are consistent with earlier work by Atkin et al. (2011b), using

another dataset from Zurich Airport (“ZRH 2007”) and taxi times which were generated from

the linear regression approach in Chapter 4.
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6.6.3 Analysis of Different Ordering Heuristics

The heuristics were first tested on the smaller datatset from Zurich Airport (“ZRH 2007”) and

the best heuristic was then used for improving the results on the larger dataset. The threshold

value to accept a small delay was set very low, to 5 seconds.

Table 6.3: Analysis of ordering heuristics

FCFS swap shift best-shift off-line
Difference from lower bound 4391s 2771s 2494s 2450s 2305s
Reduction of gap 0.0% 36.9% 43.2% 44.2% 47.5%
Approximation ratio 1.022 1.014 1.012 1.012 1.011
Solution time 11.6s 60.1s 13.2min 49.8h -
Solution time per aircraft 17.1ms 88.5ms 1.2s 4.4min -

All of the relevant results are summarised in Table 6.3. The columns categorise the ordering

heuristics which were used: FCFS ordering, swap heuristic, shift heuristic, best-shift heuristic

with a maximal position shift of 25 (because it is highly unlikely that a bigger limit would

lead to significant improvements but would increase the computational time even more) and

finally the solution from the off-line heuristic (starting from the best solution found by the other

approaches).

As reported in our initial paper (Atkin et al. 2011b), the total taxi time for the FCFS ordering

applied to the dataset “ZRH 2007” is 207723 seconds and a lower bound of the problem is 203332

seconds, implying that the optimality gap is at most 4391 seconds, with an approximation ratio

of 1.022.

The results for the different approaches for improving the solution quality were ordered by their

complexity. It can be seen that a reduction of 36.9% of the gap between the initial solution

and the lower bound was found by applying the swap heuristic. Further improvements were

found when using any of the other approaches, but these were surprisingly small. The solution

times for ordering an entire sequence were in the opposite order. The swap heuristic needed

more time due to the fact that the approach first had to check whether a route had any delay

and then find the causer aircraft before trying the swapped sequence. The two shift heuristics

needed much longer since all of the intermediate aircraft had to be re-routed, which would also

imply more communication for the pilots and controllers.
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The off-line approach used the sequence which resulted from the best-shift heuristic as the

input. The presented solution was found after 3320 iterations of swap- or shift-operators, which

corresponded to around 22 hours of calculation. Another additional 20000 iterations did not

improve the solution any further and it is very likely that the approach had found a local

optimum.

Results are not shown for the variations of the swap heuristic which were previously discussed

since none had a better reduction in the taxi time than the other approaches in comparison to

their solution time and the number of aircraft affected.
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Figure 6.3: Sorted delay for each aircraft from the different heuristics

Figure 6.3 shows the sorted individual delays for the aircraft that resulted from the different

heuristics. Since both shift heuristics lead to very similar lines, the best-shift heuristic is not

presented. In all approaches, at least 577 aircraft were routed by the algorithm without any

delays and are not included in the figure. It can be seen that the heuristics can greatly improve

the solution and that the simple but effective swap heuristic reduced the longest delay from 160

seconds to 84 seconds.

6.6.4 Studies of a Swap Heuristic for the Larger Dataset

Table 6.4 provides a comparison of the routing and scheduling algorithm with and without the

swap heuristic for the larger dataset “ZRH 2011”. The different columns represent the different

days in the dataset and the total for the entire week. The first three rows of the table report the
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number of aircraft movements during each day and it can be seen that the airport has lighter

traffic at the weekend (day 6 and day 7). Rows two and three differentiate between departures

(DEP) and arrivals (ARR). The second block shows the results of the QPPTW algorithm with

the FCFS order (without the swap heuristic) and the third block shows the results with the

swap heuristic. The lower bound was computed using the estimated taxi times but with each

aircraft routed in isolation, so no waiting times or detours were included. The following block

shows the absolute gap between the lower bound and the results for the FCFS and the swap

heuristic, respectively. The reduction in the gap is the relative improvement from using the

swap heuristic compared with the FCFS ordering.

The results were similar for the different days and the total taxi times were approximately

double for departures compared to arrivals, independent of the sequencing method. Obviously,

the introduction of the swap heuristic increased the solution time per aircraft, however, the

algorithm is still fast enough to be used in an online environment.

The swap heuristic based sequencing method was able to reduce the gap between the routing

which was found and the lower bound by 30% on average over the entire week, with a bigger

reduction rate for departing aircraft (33%) than arriving aircraft (25%).
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Figure 6.4: Sorted delay for each aircraft with and without swap heuristic

The sorted individual delays for the aircraft, resulting from the analysis with and without the

swap heuristic are shown in Figure 6.4. In both cases, at least the first 4578 (out of 5613)

aircraft had no delays in their planned schedules and are not included in the figure. The delays
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Table 6.4: Analysis of routing and scheduling algorithm with and without swap heuristic

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Total

# Aircraft Total 818 806 781 839 825 757 787 5613
DEP 407 405 392 416 421 379 387 2807
ARR 411 401 389 423 404 378 400 2806

FCFS Total taxi time [s] 251231.3 248751.7 244449.9 256497.1 256662.5 234632.2 243796.2 1736020.9
Total taxi time DEP [s] 168731.8 168503.6 172718.4 172070.7 183031.6 163713.7 168059.2 1196829.0
Total taxi time ARR [s] 82499.5 80248.1 71731.5 84426.4 73630.8 70918.5 75737.0 539191.9
Solution time [ms] 33640 32562 28765 33078 30483 28859 29500 216887
Solution time per aircraft [ms] 41 40 37 39 37 38 37 39

Swap heuristic Total taxi time [s] 249355.0 246128.0 242097.1 253869.1 254924.1 233204.3 241216.3 1720793.8
Total taxi time DEP [s] 167382.5 166201.3 171258.8 170221.0 181683.2 162652.0 166168.5 1185567.4
Total taxi time ARR [s] 81972.5 79926.7 70838.3 83648.1 73240.8 70552.2 75047.7 535226.4
Solution time [ms] 123919 109248 110685 117701 101373 89311 101248 753485
Solution time per aircraft [ms] 151 136 142 140 123 118 129 134

Lower bound Total taxi time [s] 243699.3 240061.6 237926.9 248121.3 250165.6 228864.3 236911.6 1685750.5
Total taxi time DEP [s] 163890.8 161979.0 169068.7 166165.2 178146.0 159547.7 163469.9 1162267.3
Total taxi time ARR [s] 79808.5 78082.7 68858.1 81956.1 72019.5 69316.6 73441.6 523483.2

FCFS gap Total taxi time [s] 7532.1 8690.1 6523.0 8375.8 6496.9 5767.9 6884.7 50270.4
Total taxi time DEP [s] 4841.0 6524.7 3649.7 5905.5 4885.6 4166.0 4589.3 34561.7
Total taxi time ARR [s] 2691.0 2165.4 2873.4 2470.3 1611.3 1601.9 2295.4 15708.7

Swap heuristic gap Total taxi time [s] 5655.7 6066.4 4170.2 5747.8 4758.5 4340.0 4304.7 35043.3
Total taxi time DEP [s] 3491.7 4222.3 2190.1 4055.8 3537.2 3104.4 2698.6 23300.1
Total taxi time ARR [s] 2164.0 1844.1 1980.2 1692.0 1221.3 1235.6 1606.1 11743.2

Reduction of gap Total taxi time 25% 30% 36% 31% 27% 25% 37% 30%
Total taxi time DEP 28% 35% 40% 31% 28% 25% 41% 33%
Total taxi time ARR 20% 15% 31% 32% 24% 23% 30% 25%
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from Figure 6.4 are summarised in Table 6.5 in a numerical way, showing the percentage of

aircraft, which have more than a certain amount of delay. The swap heuristic was able to

improve most of the percentages by almost a factor of 2. Again, these results are consistent

with Section 6.6.3 based on the older dataset from the same airport.

Table 6.5: Percentage of aircraft with more than a certain amount of delay

Without With
swap heuristic swap heuristic

Have any delay 18.47% 18.31%
More than 1min 4.22% 2.51%
More than 2min 1.57% 0.86%
More than 3min 0.80% 0.48%
More than 4min 0.45% 0.27%
More than 5min 0.27% 0.12%

6.6.5 Scenarios with more Ground Traffic

New scenarios were generated based on the data from the summer of 2011, simulating more

ground traffic at Zurich Airport. The analysis focused upon Monday as a representative day.

Each movement of an aircraft was duplicated and the copy was shifted by 30 minutes to generate

the scenario with 200% ground traffic. For the 300% scenario each movement was duplicated

twice and one copy was shifted by 15 minutes and the other copy by 30 minutes. The scenarios

for the settings with 120%, 140%, 160% and 180% were generated by randomly removing some

of the duplicated aircraft movements from the 200% case and the scenarios between 200% and

300% were created by randomly removing movements from the second duplication. It has to

be noted that within this analysis the focus was entirely upon analysing the ground movement

problem with more ground traffic and, obviously, separations and deadlines were considered for

neither taking-off nor landing (since the runway throughput would not be achievable), nor was

it guaranteed that no overlaps occurred in the gate allocations. The aim is to consider only

whether the algorithm can cope with increased traffic load, and if so to determine the size of

the consequent delays which would be allocated to aircraft.

Table 6.6 shows the results of the analysis. Each column represents a scenario with the appro-

priate amount of ground traffic related to the actual setting. The table is structured similarly
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Table 6.6: Analysis of the routing and scheduling algorithm with and without swap-heuristic with artificially more ground traffic

100% 120% 140% 160% 180% 200% 220% 240% 260% 280% 300%

FCFS Total taxi time [s] 251231 304523 354337 406332 463119 522593 581120 640659 736357 858409 929010
Total taxi time DEP [s] 168732 204889 235528 267120 306219 350662 390517 432088 506596 607601 657527
Total taxi time ARR [s] 82500 99634 118809 139212 156900 171931 190604 208571 229761 250808 271483

Swap-heuristic Total taxi time [s] 249355 301591 349673 401258 456006 513862 570208 638429 715518 827778 887346
Total taxi time DEP [s] 167383 202594 232713 264669 302068 345455 384747 435042 492151 585126 624224
Total taxi time ARR [s] 81973 98997 116961 136589 153938 168407 185461 203387 223367 242652 263122

Lower bound Total taxi time [s] 243699 293209 339086 385438 435692 487399 537638 586888 633717 682267 731098
Total taxi time DEP [s] 163891 197666 226342 254709 289150 327782 362454 397385 427691 459642 491672
Total taxi time ARR [s] 79808 95543 112744 130729 146542 159617 175184 189504 206026 222626 239425

FCFS gap Total taxi time 3% 4% 4% 5% 6% 7% 8% 9% 16% 26% 27%
Swap-heuristic gap Total taxi time 2% 3% 3% 4% 5% 5% 6% 9% 13% 21% 21%
Reduction of gap Total taxi time 25% 26% 31% 24% 26% 25% 25% 4% 20% 17% 21%
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to Table 6.4 to ease comparison. It can be seen that the lower bound increases linearly which

is due to the construction of the problems. The numbers also show an approximately linear

increase of the approach which was based on the FCFS consideration of aircraft until the ground

traffic reached the 240% level. After that the gap between the QPPTW algorithm without the

swap-heuristic increased from values between 3% to 9% before that to values between 16% and

27% after it. The swap-heuristic achieved an average of a 22% reduction in the gap between the

lower bound and the QPPTW algorithm with FCFS ordering. This was relatively consistent

for the scenarios with lower traffic and higher traffic levels. The only exception was the 240%

scenario, where the reported reduction of the gap was only 4%. The implementation of the

swap heuristic was, therefore, generally worthwhile.

6.6.6 Further Use for Simulations

The main purpose of this chapter is to enhance decision support systems which can be used in

control towers. Nevertheless, a prototype of this approach could also be used for simulations of

management or operational strategies. From an airport point of view several kinds of analysis

would be possible. A taxiway layout could be analysed to highlight where the bottlenecks are

and by how much the operations are restricted if a part of the network is blocked, such as

for maintenance requirements. Airports often have a concept of where certain aircraft should

be routed and variations of such concepts could also be tested by either restricting certain

combinations of taxiway parts or by favouring certain combinations. Furthermore, a ground

movement simulation could be integrated with runway sequencing or gate assignment to perform

a broader analysis.

Airlines could also use simulations to better understand the situation at an airport. This could

improve their own operations. For instance, they could be used to identify which times of

the day are less likely to cause waiting times. Airlines could then adjust their schedules to

improve the operational performance, assuming that the other carriers maintain their existing

schedules. A good example of such a study is “Delta’s Operation Clockwork” (Petroccione

2007). De-peaking of their operations at Hartsfield-Jackson International Airport was able

to save waiting times for aircraft equivalent to adding nineteen aircraft into the fleet, which
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were then re-inserted into the system to provide more connections. A test phase confirmed the

findings of the analysis, but the airline decided to revert to the old schedule afterwards due to

reductions in revenue from reduced passenger demand.

Simulation has been widely used by research groups and software vendors to get insights into

airport operations and to evaluate the impacts of uncertainties. Rosenberger et al. (2000,

2002) presented a stochastic model for airline operations within the SIMAIR project, with the

primary purpose being to evaluate crew scheduling plans and recovery policies. Simulation tools

for airport and airspace operations, such as SIMMOD from the Federal Aviation Administration

(FAA), RAMS from Eurocontrol, DPM from Sabre and TAAM from the Preston Group, can

model existing and planned operations very well, but may lack in the area of automatically

improving operations which can be performed with optimisation systems.

6.6.7 Impact of Results

This section highlights the possible savings in fuel costs of the introduced algorithm by using the

same approach as in the analysis by Brinton et al. (2011). In our analysis with the integration

of taxi time estimation, the QPPTW algorithm and the swap heuristic, an average aircraft had

306.6 seconds of fuel burn instead of the 443.5 seconds which was reported in the historic data.

The saving of 136.9 seconds per aircraft movement accumulates to around 637000 minutes per

year, based on the 279000 movements as was reported at Zurich Airport in 2011. Brinton

et al. (2011) based their calculations on a jet aircraft using 25 pounds of fuel per minute while

taxiing, which fits the guidelines from ICAO for the settings of a “Single Aisle Jet”. With an

assumed $4 US per gallon of fuel, the annual cost savings in fuel at Zurich Airport would be

approximately $9.6 million. It should be noted that other sources question the actual fuel rate

for taxiing, which is possibly overestimated by ICAO (Morris 2005; Kim and Rachami 2008).

6.7 Conclusions

This chapter described a more realistic and potentially more environmentally friendly ground

movement decision support system, compared to previous approaches. The overall framework
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is designed to combine the runway sequencing problem and ground movement problem, aiming

for better global solutions, although only the ground movement element was considered in this

chapter. This work extends the basic ground movement problem of minimising the travel times

by including the concept of absorbing possible waiting times for departures at the gate/stand,

to reduce the fuel burn and environmental impact. The sequential QPPTW algorithm which

was described here is based on graph theoretical concepts and can include restrictions such as

limitations on which taxiways aircraft can use, which taxiways block which and when, and any

turning limitations at taxiway junctions. In addition, the algorithm provides the opportunity

to add buffer times for blocking the reserved taxiways for longer than expected, to absorb small

delays and schedule disturbances.

Experiments used data for an entire week of operations at Zurich Airport, the largest hub

airport in Switzerland. This data was used to generate more accurate taxi time estimations

for each aircraft, using a taxi time prediction function which was generated from an extensive

statistical analysis and a fuzzy rule-based system, applied to the same dataset. These taxi time

estimations were then utilised within the QPPTW algorithm to route and schedule the ground

movement. The results are very promising and show potential maximum savings in total taxi

time from using the decision support system described here, in conjunction with the taxi time

prediction system, of about 30.3%, compared to the actual performance at the airport. Further

research is necessary to determine the amount of buffer time and runway delay which should

be utilised to account for any remaining taxi time uncertainty and avoid starving the runways.

The experimental results of the developed decision support approach show average solution

times of only a few milliseconds per aircraft, and are, therefore, adequate for the implementation

of such a system for real-time use at airports.

The potential benefits of applying different ordering heuristics for the sequential ground move-

ment problem were also explored. The most promising approach was to use a simple but

effective swap-operator. The quality of the solution was shown to be substantially improved

with comparatively little additional computational time, making it still suitable for real-time

use at airports. Very few changes are needed in the initial sequence, hence the communication

between controllers and pilots is kept to a minimum.
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We intend to investigate various extensions of this work in future, in addition to the combination

of the ground movement problem with the runway sequencing problem. Firstly, the QPPTW

algorithm enables the possible waiting times to be spread in different ways. In this chapter,

they were allocated so as to maximise the stand hold time and to better adapt to schedule

disturbances, but an alternative approach would be to develop smoother speed profiles for

aircraft, using the engine in a more efficient and environmentally friendly way. Secondly, we

would like to perform a similar analysis for different airport layouts, to better understand the

effects of the layout upon the best solution approach, but it will be necessary to obtain more

data and support from other airports in order to do so.

129



7

Trade-off Analysis between Taxi

Time and Fuel Consumption in

Airport Ground Movement

A new idea comes suddenly and
in a rather intuitive way. But
intuition is nothing but the
outcome of earlier intellectual
experience.

Albert Einstein

7.1 Introduction

Air transportation represents a growing sector and this trend is predicted to continue for the

foreseeable future. However, there are increasing concerns, from a wide range of stakeholders,

about the environmental impact of the sector. Aircraft ground movement is an operation which

is particularly affected by these two conflicting trends. With the increase in aircraft movements,

it is likely that hub airports, especially, will form bottlenecks for air transportation. The ground

movement problem plays a key role in addressing the goal of reducing delays. It is important
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to note that lower accelerations may sometimes be more fuel efficient, even though movement

times may be increased. An ambitious goal stated in the report of the High Level Group

on Aviation Research for the European Commission attempts to have emission-free aircraft

movements when taxiing in the year 2050 (European Commission 2011).

The details of the ground movement problem vary depending upon the aims of the airport but

it can be summarised as the goal of producing conflict-free routings for aircraft on the airport’s

surface, usually from gates/stands to runways and vice versa. A variety of different constraints

and objective functions have been used in the literature (see Chapters 2 and 6). Previous

research on ground movement often focused on minimising the total taxi time (Pesic et al.

2001; Maŕın 2006; Roling and Visser 2008; Atkin et al. 2011b) or minimising the makespan

(Garćıa et al. 2005; Herrero et al. 2005). Multi-objective approaches have also been used.

In addition to minimising the total taxi time, penalising deviations from a scheduled time of

departure/arrival has been considered (Smeltink et al. 2004; Balakrishnan and Jung 2007; Deau

et al. 2009). Gotteland et al. (2003) investigated penalising deviations from a departure time

interval. Other research has employed a weighted linear objective function to simultaneously

consider the total routing time, the delays for arrivals and departures, the number of arrivals

and take-offs, the worst routing time and the number of controller interventions (Maŕın and

Codina 2008). Although multi-objective approaches have been employed, we have not found

any research focusing on the integration of objectives related to the environmental impact.

There is little coverage of the environmental considerations of the taxi operations within the

current research literature. The main focus has been upon stand holding, which shifts waiting

times for aircraft from the runway queue back to the gate, in order to reduce fuel burn (Burgain

et al. 2009; Atkin et al. 2010a, 2011a). The assumption made by them was that by reducing

the total taxi time, one can simultaneously improve the efficiency of airport operations and

reduce the fuel consumption. However, as indicated in Chen and Stewart (2011), this may

not be true for all cases or airports, since the detailed relationship between fuel consumption

and the corresponding speed profile was not investigated in previous research. Atkin et al.

(2010b) suggested the value of considering speed profiles when routing aircraft in order to

avoid unnecessary fuel burn due to acceleration and deceleration. Lesire (2010) applied a
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postprocessing stage in his routing approach to smoothen the speed profiles. Similar ideas

have also been presented by Cheng and Sweriduk (2009). Finally, Chen and Stewart (2011)

presented an approach to analyse the trade-off between taxi time and fuel consumption for a

single trajectory of an unimpeded aircraft.

In this research, we analyse the trade-off between the total taxi time and the fuel consump-

tion for the conflict-free routing problem for aircraft on an airport’s surface. In contrast to

the approach of Chen and Stewart (2011), the interactions between multiple aircraft are also

considered. These interactions affect the speed profiles of the aircraft involved and massively

increase the solution space of the routing approach. Hence, a sophisticated new procedure had

to be developed to make such an analysis possible.

A related problem can be found in energy-efficient running time control for metro lines. For

example, Binder and Albrecht (2012) recently presented a predictive dynamic control system to

save energy for the Hamburg metro system. Furthermore, Bektas and Laporte (2011) introduced

a new vehicle routing problem (VRP) variant, called Pollution-Routing Problem (PRP), which

takes pollution into account.

This chapter is structured as follows: Section 7.2 presents the case which was analysed, then

the newly developed multi-objective approach for analysing the trade-off between taxi time and

fuel consumption is detailed in Section 7.3. The results of the application of the algorithm to

the dataset are shown in Section 7.4; before the chapter ends with conclusions in Section 7.5.

7.2 Problem Details

Different approaches for fuel burn estimation are considered in this section, together with details

about the settings which are used for maximal speeds and acceleration.

Data for an entire week’s operations was utilised for this research (dataset “ZRH 2011”, see

Section 3.2.1 for more details). The information was used to represent the entire airport layout

as a directed graph, where the edges represent the taxiways and the vertices represent the

junctions or intermediate points (Figure 7.1 illustrates a part of this graph and Figure 3.2 the

entire airport).
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(a) Shortest route (b) Alternative route

(c) Alternative route (d) Alternative route

Figure 7.1: Different routes from pier A to runway 28 at ZRH

The explanation of the categorisation, which is used for aircraft, is discussed in Section 3.3.

7.2.1 Fuel Consumption, Taxi Speed and Acceleration

As is common practice, the International Civil Aviation Organization engine emissions database

(ICAO 2008) has been used for estimating the fuel consumption of aircraft. It states that the

engine power setting for taxi/ground idle is 7% of full rated power but does not distinguish

between the different phases of taxiing. This setting was also used by the FAA (2005a,b) and

Simaiakis and Balakrishnan (2010). Morris (2005) showed that levels of around 5% to 6% are

more realistic for most engine types and Kim and Rachami (2008) also stated that values below

7% are more likely. A newer approach by Nikoleris et al. (2011) and Jung et al. (2011) used a

set of four different values for different taxi operation phases: 4% for idle thrust, 5% for taxiing

at a constant speed or brake thrust, 7% for perpendicular turn thrust and 9% for breakaway

thrust. In their study about air quality and public health impacts of UK airports, Stettler

et al. (2011) used a setting of 4-7% (a uniform random distribution with a mean of 5.5%) for

taxiing (for maintaining a constant speed, decelerating, or holding) and a setting of 7-17% (a
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triangular distribution with mode of 10%) for taxiway acceleration. Based on the results by

Wey et al. (2006), they stated that the fuel flow of the engines is approximately proportional to

the engine thrust setting. Khadilkar and Balakrishnan (2011, 2012) presented an approach to

estimate fuel burn using linear regression. They concluded that the total taxi time is the main

factor, although the number of acceleration events was also a significant factor. Our analysis

has approached the problem using a physics-based model which is introduced later, in Section

7.3.1. We do not consider single engine taxiing in this chapter (Deonandan and Balakrishnan

2009).

Different researchers have worked with different taxi speed settings. Rappaport et al. (2009)

showed, using quantitative analysis, that the average speed on straight taxiways (29.4 km/h)

was higher than the average speed during turns (23.2 km/h) at Detroit Metropolitan Wayne

County Airport (DTW) in Michigan, USA. Cassell and Evers (1998) reported that 95% of

aircraft taxi at less than 30 knots (around 56 km/h) and the average speed was found to be

10 knots (around 19 km/h) during turns. This setting was also used in the work by Chen

and Stewart (2011), where the maximal speed during taxiing was set to 30 knots (around 56

km/h) and the speed during turns to 10 knots (around 19 km/h). The same setting has been

applied in this research, where a turn is considered to be when an aircraft has to make a change

of direction of more than 30 degrees on a part of a taxiway. The maximal acceleration and

deceleration is here set to 0.1 · g, to ensure passenger comfort, as in the latter reference, where

g = 9.81 m/s2 is the acceleration due to gravity.

It is assumed in this analysis that the airport has no significant taxiway slopes. It is also

assumed that there is no heavy wind, which affects the fuel burn of aircraft and that no drag

or lift considerations are needed in the model for estimating fuel consumption.

7.3 Methodology

The focus of this research is entirely on the ground movement part of the airport operations

of aircraft. In addressing this, the pushback/landing time of aircraft are as specified by the

dataset and are assumed to be fixed.
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This section first introduces the objective functions, before an overview of the developed inte-

grated procedure is given. Two key elements of the procedure are presented in separate sections

afterwards.

7.3.1 Objective Functions

This research analyses the trade-off between taxi time and fuel consumption in airport ground

movement. The first objective function aims to minimise the total taxi time (including waiting

times during taxiing) combined with moving possible waiting times to the gate where the engines

are not running. The second objective function aims to minimise fuel burn. As in the research

by Chen and Stewart (2011), a fuel consumption index is used. This penalises high acceleration

rates during taxiing and uses a physics-based model. In essence, the formula for the force of

acceleration is assumed to be given by Fa = m ·ap, (Newton’s second law of motion) where ap is

the acceleration of an aircraft during a phase p and m is its weight. The rolling resistance Fr is

then also taken into account (see Section 3.3 for the formula and values). The fuel consumption

index is defined as the sum of the force of acceleration plus the rolling resistance, multiplied

by the time for which it was applied. If the sum of the force of acceleration plus the rolling

resistance is negative, due to deceleration in a phase, then the sum is set to zero, since aircraft

need fuel to accelerate or taxi with constant speed but cannot recover fuel while decelerating.

The trade-off between the two objective functions for an example taxi route is shown in Figure

7.2.

7.3.2 Integrated Procedure

A routing approach was developed, based upon the algorithm presented in Chapter 6, utilising

the trade-off information gleaned from the algorithm proposed in Chen and Stewart (2011).

It is a sequential, vertex-based, label-setting algorithm working on a graph representing the

airport’s surface. Since two conflicting objective functions are considered, the approach has

to be enhanced by using an adapted version of the algorithm, in a sophisticated integrated

procedure.
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Figure 7.2: Pareto-front of unimpeded taxi trajectories

The general idea of this procedure was proposed by Climaco and Martins (1982), whose aim

was to develop a shortest path algorithm for finding the Pareto-front of optimal paths for

two criteria. The objective functions which they used were minimising the total time and

minimising the cost of the path, where each edge had two values assigned to it. Their method

generates a sequence of k shortest paths with respect to the first objective function, until the

path with the minimal value with respect to the second objective function is obtained, leading

to a Pareto-front of all optimal paths.

Our problem differs from the problem which Climaco and Martins (1982) were facing in two

main points. Firstly, not all edges are available at all times since other aircraft are also travelling

around the airport and will block some parts of the taxiways at certain times. Secondly, the

second objective function cannot be evaluated with a simple Dijkstra’s algorithm for finding

the shortest path (Dijkstra 1959) in this situation, but needs a more elaborate method due to

its non-additivity.

In summary, Algorithm 3 generates sequentially several feasible routes for each aircraft and

picks the one with the desired trade-off between taxi time and fuel consumption. Considering all
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Algorithm 3: Integrated procedure for trade-off analysis

1 Sort all flights by pushback/landing time

2 foreach objective function discretisation i← 1 to l do

3 foreach aircraft a do

4 Find the best k routes w.r.t. minimal taxi times using the k-QPPTW algorithm

5 foreach route k of aircraft a do

6 Approximate the Pareto-front of both objectives, using the population adaptive
immune algorithm (PATT-PAIA)

7 Generate the combined Pareto-front for the source-destination pair of aircraft a

8 Discretise this Pareto-front into l roughly equally spaced points

9 Select the ith point and reserve the relevant route for aircraft a

10 Save the accumulated values for all aircraft for both objective functions for the global
Pareto-front

11 Output: Global discretised Pareto-front

aircraft with the same desired trade-off, one possible schedule is found which is then represented

as a point in the global discretised Pareto-front (see Figure 7.4). As an input, the details of the

aircraft are needed together with the layout of the airport. The output can be used to better

understand the mentioned trade-off.

Algorithm 3 shows the proposed integrated procedure at a glance. The approximation of the

global Pareto-front is generated in a discretised way due to the complexity of the problem. The

parameter l defines the number of generated points on the global Pareto-front approximation.

In each iteration of the outer loop (lines 2-10), the objective values are generated for both

objectives, starting with the most time-efficient solution then incrementally changing to the

most fuel-efficient solution. For each outer loop, the entire set of aircraft has to be scheduled.

The algorithm routes and schedules the flights sequentially and is based on an initial sequencing

(line 1) by pushback/landing times of all aircraft. Different (adaptive) sequencing methods could

be used, as was done by Ravizza and Atkin (2011), but this was not investigated here.

The first subroutine (line 4) finds the best k routes for aircraft a related to the total taxi

time. In doing so, reservations of already routed aircraft have to be taken into account. The
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k-Quickest Path Problem with Time Windows (k-QPPTW) was developed for this purpose and

is explained in more detail in Section 7.3.3. A possible set of generated routes can be seen in

Figure 7.1.

The second subroutine (line 6) analyses each of the k routes independently. A population

adaptive immune algorithm (PATT-PAIA, see Section 7.3.4) approximates the Pareto-front of

different speed trajectories for aircraft a on a particular route, complying with the unblocked

time-windows for each edge and the detailed speed behaviours of this aircraft. A more detailed

description of this subroutine is given in Section 7.3.4 and an example of the output can be

seen in Figure 7.2. It should be noted that also other multi-objective evolutionary algorithms

could be used and that the decision to use the proposed algorithm was due to the fact, that we

had access to an implementation which was already tailored to this particular problem.

The subroutine in line 7 combines the k different Pareto-fronts and selects, with the same

dominance rules as in the PATT-PAIA, the global Pareto-front for a given source-destination

pair of aircraft a (see Figure 7.3). The resulting Pareto-front is discretised into l points, as

equally spaced as possible (line 8). The approach aims to split the border of the Pareto-front

between the most time-efficient and most fuel-efficient solutions into equally spaced segments

and always selects the closest non-dominated point to each of the ends of these segments. Line

9 selects the ith point (according to the outer loop of the algorithm) out of the l ordered

representative points. In addition, the detailed route associated with this point is fixed for this

aircraft and the scenario is changed in such a way that upcoming aircraft cannot use the same

parts of the taxiways at the same time.

The inner loop (lines 3-9) is repeated until all of the aircraft from the dataset have been routed

and the total taxi time and the total fuel consumption can be accumulated to generate a single

point in the global Pareto-front (line 10). Obviously, before repeating the outer loop (line 2)

all of the changes which have been made to the reservations of the aircraft have to be reversed,

since the scenario is then evaluated for a different objective function discretisation.

Since the subroutine on line 6 is comparatively time consuming, the procedure could be paral-

lelised for this stage and executed on a cluster of processors.
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Figure 7.3: Combined Pareto-front from four different routes which are shown in Figure 7.1
having associated time-windows

7.3.3 Sequential K-QPPTW

Schüpbach and Zenklusen (2011) recently showed that a simplified version of the conflict-free

routing problem for a group of n vehicles is NP-hard, even when the underlying graph is

a path, using a reduction from the 3-partitioning problem. Thus the approach, which was

discussed in Chapter 6 and Atkin et al. (2011b), was used based upon a sequential routing

of the aircraft. This vertex-based, label-setting algorithm works on a graph representing the

airport’s surface, does not need any time discretisation, respects reservations of parts of the

taxiways for previously routed aircraft and can compute a route very quickly.

The Quickest Path Problem with Time Windows (QPPTW) algorithm was extended to form

a k-QPPTW algorithm by adapting it to not only generate the “best” (in this setting, fastest)

route, but a set of the k best solutions. This extension is based upon the ideas of Yen (1971)

and Lawler (1972). Yen (1971) introduced an algorithm to find the k shortest loopless paths in

a network, where the computational upper bound of the algorithm only increases linearly with

the value k. The main idea behind the approach is that the (j + 1)th path can only deviate

from the root of one of the best j paths in one vertex. Hence, it is only necessary to look for
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all shortest deviations from the best j paths and then select the deviation which has the best

objective value for the entire path.

The QPPTW algorithm was similarly adapted and generates the best route in the conventional

way. It then iterates until it has found the best k routes. In each iteration j, it generates all

deviations from the (j − 1)th best routes which are different from routes which have already

been found. The jth best route is then the best one of all of these routes which has not already

been identified as one of the (j − 1) best routes. To speed up the entire algorithm and to

minimise storage space, only subroutes need to be stored along with the information about

which route they are deviating from, instead of storing the entire route.

7.3.4 Planning Aircraft Taxiing Trajectories via a Population Adap-

tive Immune Algorithm (PATT-PAIA)

Chen and Stewart (2011) proposed an immune inspired multi-objective search algorithm which

utilised a physics-based aircraft dynamic model to search for different taxiing trajectories for

a given route. Each of these trajectories represents a different trade-off between taxi time

and fuel consumption. This algorithm has been extended in this research to incorporate time-

window constraints (collaborative work between the University of Lincoln and the University of

Nottingham and Jun Chen made the adjustments to his MATLAB code). In the following, the

PATT-PAIA is briefly discussed. Interested readers are referred to Chen and Mahfouf (2006)

and Chen and Stewart (2011) for more details.

Algorithm 4 shows the proposed PATT-PAIA with time-window constraints at a glance. As

discussed in Section 7.2, the entire airport layout is represented as a directed graph. Time-

windows, corresponding to edges between the vertices, represent when a part of a taxiway is

not used by any other aircraft. Unlike the vertices shown in Figure 7.1, PATT-PAIA only

considers junctions and divides the entire taxi route of an aircraft into segments. Each of

these segments may contain several intermediate vertices. There are two types of segments,

namely straight segments and turning segments. The maximum speed for a straight segment

is 30 knots (around 56 km/h) and the speed during turns is fixed to 10 knots (around 19

km/h). For a straight segment, there are four consecutive transitional phases for an aircraft:
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Algorithm 4: PATT-PAIA

1 Approximate the most time-efficient speed profile for each segment satisfying all given
time-windows

2 Randomly generate additional initial solutions in its neighberhood

3 Objective evaluation and non-dominated sorting

4 foreach of the Gen iterations do

5 Fitness evaluation: evaluate the fitness of the candidate solutions

6 Selection and cloning: selection of good solutions based on the fitness values; selected
solutions are cloned

7 Mutation: variation of clones

8 Constraint handling: check if the mutated solutions meet all time-windows and feasible
bounds

9 Objective evaluation and reselection: reselect good solutions from the combined solutions
based on non-dominated sorting

10 Output: Approximation of Pareto-front of taxi trajectories

a) acceleration phase, b) constant speed phase, c) deceleration phase and d) fast deceleration

phase. By adjusting the acceleration and deceleration rates and the switching points between

the phases, one can obtain different speed profiles and their corresponding fuel consumption

indices using the aircraft categorisation (see Section 3.3) and the second objective function (see

Section 7.3.1). For a turning segment, no optimisation is needed, since the speed is fixed.

The algorithm is a tailored adaptive immune algorithm with the following main features: fitness

evaluation, selection and cloning, mutation, constraint handling and objective evaluation. As

an input, the path of an aircraft is given and time-window constraints.

To obtain a good approximation of the Pareto-front of both objectives, PATT-PAIA is devised

as follows. First, an initial population pool is randomly generated around a feasible solution

(trajectory) which fulfils all of the time-window constraints (lines 1 and 2). This feasible solution

is generated using a heuristic to find the most time-efficient trajectory which takes into account a

more realistic speed profile. Non-dominated sorting will then be utilised to distinguish between

dominated and non-dominated solutions (line 3). The loop (lines 4-9) iterates Gen times to

improve the current Pareto-front and aims to have the Pareto-front equally spread. One of the

good solutions will be randomly selected in order to calculate its distance from the rest of the
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solutions, which defines the fitness of each solution (line 5). Based upon the fitness values, good

solutions will be selected to be cloned with a higher probability (line 6). The cloned solutions

will be mutated with small variation steps, to locally search the neighbourhood (line 7). On the

other hand, bad solutions will only be cloned once and will be subjected to greater mutation in

order to explore more of the search space. Constraint handling is used each time, immediately

after new solutions are generated, to check whether the mutated solutions are still within the

feasible bounds, as discussed by Chen and Stewart (2011), and also to calculate the arrival time

at each vertex to see whether the current solution still complies with the given time-windows

(line 8). The mutated solutions and the previous solutions will be combined and passed to

a reselection stage, so that the best solutions survive into the next generation (line 9). The

output of the algorithm is an approximation of the Pareto-front for a given route of an aircraft

within the given time-windows (line 10).

The feasible solution which is generated using the heuristic in line 1 not only speeds up the

search of the PATT-PAIA, but it also guarantees at least one feasible solution at the end. A

possible improvement to spread the solutions more equally between the most time-efficient route

and the most fuel-efficient route, would be to also generate the most fuel-efficient trajectory.

7.4 Results and Discussion

The following section is divided into three parts. It starts with the visualisation of the global

Pareto-front, continues with an analysis across an entire week’s operations and finishes with a

sensitivity analysis related to a different objective function.

7.4.1 Global Pareto-front

Analysis showed that, by using the three best routes (k = 3, in Algorithm 3), the procedure can

find very good approximations to the global Pareto-front. Similarly, the number of iterations

which were needed by the PATT-PAIA to find a good approximation was also tested, and

this value was then fixed to Gen = 40. The execution time of Algorithm 3 on a personal

computer (Intel Core 2 Duo, 3GHz, 2GB RAM) with these settings was around 100 minutes
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Figure 7.4: Global discretised approximation of the Pareto-front for 57 aircraft

for one data point on the global Pareto-front (inner loop of the algorithm), for a dataset of 57

aircraft. Due to the long execution time, the focus of this research was restricted to analysing

the busiest time of the day, which was the hour between 11am and noon. Figure 7.4 shows the

global Pareto-front with five discretised values for the “Monday” dataset. The point at the top

indicates the analysis where each of the 57 aircraft was taxiing as time-efficiently as possible,

whereas the furthest point to the right indicates the analysis where each aircraft was taxiing as

fuel-efficiently as possible.

7.4.2 Analysis over a Week’s Operations

An analysis was performed to see how consistent the results were over a week’s operations of

the hour between 11am and noon. For this purpose, only the two extreme cases were studied

instead of analysing the entire global Pareto-front. Table 7.1 shows the results for the analysed

week. The values are reported as the average values per aircraft, since the number of aircraft

in the dataset varied between 46 and 63 over the week. The first column (“Mon”) restates the

extreme values from Figure 7.4 (averaged per aircraft). The last row of each block highlights

the growth from the best solution to the other extreme value. The values seem to be relatively

consistent and the dataset for Monday seemed to be a good representation of an average day.
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Table 7.1: Analysis over a week’s operations of the hour between 11am and noon with the focus
upon the extreme values

Mon Tue Wed Thu Fri Sat Sun

∅ Taxi time
Time-efficient [s] 156 157 128 174 152 165 154
Fuel-efficient [s] 285 293 214 320 292 316 295
Growth 83% 87% 67% 84% 92% 91% 91%
∅ Fuel cons. index
Time-efficient [×103] 3832 3291 3492 4002 3173 3754 3718
Fuel-efficient [×103] 884 762 742 922 700 849 823
Growth 334% 332% 371% 334% 353% 342% 352%
Number of aircraft 57 58 46 58 56 63 52

7.4.3 A Different Objective Function

A further experiment was run to see how sensitive the algorithm was to the fuel-related objective

function. For this purpose, the setting from Stettler et al. (2011) was used as a replacement for

the second objective function. As stated in Section 7.2.1, two different settings were used, one

for acceleration and one for taxiing with constant speed, deceleration or holding. A stepwise

function was utilised to measure the fuel used (in kg) during taxiing, based on the fuel flow

coefficient. The parameters were set so that an aircraft burns 10% of the maximal fuel flow

during acceleration and 5.5% when it is not accelerating (the PATT-PAIA still models segments

with four transitional phases). With such a setting, the PATT-PAIA is encouraged to always

accelerate with the maximal acceleration rate and mainly controls the length of the acceleration

phases. Table 7.2 shows the results for the “Monday” dataset and is structured in the same

way as Table 7.1, with the only difference being that the new fuel-related objective function is

used instead.

Table 7.2: Analysis with the focus upon the extreme values where the fuel-related objective
function was replaced in reference to the research by Stettler et al. (2011)

Different objective function

∅ Taxi time
Time-efficient [s] 155.5
Fuel-efficient [s] 156.7
Growth 0.8%
∅ Fuel flow
Time-efficient [kg] 23.8
Fuel-efficient [kg] 23.5
Growth 1.2%
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It can be seen that the trade-off analysis very much depends upon the fuel-based objective

function which is used. With this approach, based on the research by Stettler et al. (2011),

there seems to be hardly any difference between optimising an aircraft’s trajectory for time-

efficiency or fuel-efficiency. The actual values cannot be directly compared to those in Table

7.1, but, due to the fact that fuel flow of the engines is approximately proportional to the engine

thrust setting (Wey et al. 2006, p. 7), the growth between the most extreme solutions indicates

the potential for using a trade-off analysis.

Calculations highlight why the trade-off is sensitive. Using the example of the Airbus A320, the

rolling resistance is 11.48 kN, which is around 5.1% of the total rated output. Hence, the two

fuel-related objective functions behave very similarly in phases of constant speed, deceleration

or during a hold. However, during acceleration with maximal acceleration rate, the physics-

based objective function adds the rolling resistance and the force of acceleration which is 88.0

kN in total. This is around 39.3% of the total rated output, which is considerably more than the

10% of the other function. More research is needed to better understand in detail the fuel burn

during taxiing, before the question can be answered as to whether there is actually a trade-off

between time-efficient and fuel-efficient taxiing, and to quantify any potential trade-off.

7.5 Conclusions

A new model was developed to analyse the trade-off between two different, potentially con-

flicting, objective functions for the ground movement problem at airports. A sophisticated

combination of two algorithms has enabled the development of a framework to run simulations

for different datasets, and to perform sensitivity analysis. The first utilised algorithm finds the

best possible routes for an aircraft at an airport and the second algorithm finds an approxima-

tion of the Pareto-front for different speed profiles for each of these routes, in relation to the

given objective functions.

Historic data from Zurich Airport was utilised for this analysis. The objective functions con-

sisted of the taxi time, which is a commonly used measure, and a physics-based function related

to the force needed from the aircraft engines during taxiing. The results show that the integrated
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procedure is able to tackle this hard problem in a comparatively efficient way. Furthermore,

results seem to be consistent over several days. Sensitivity analysis has highlighted that the

potential trade-off between the two objectives depends very much upon the actual modelling

of the fuel-based objective function, which appears not to be fully understood at the moment.

Future research is needed for better understanding the details of the fuel usage during taxiing

and the standard practices of pilots during taxiing. Such insights could then be used to show

more clearly the influence of operational and environmental targets during the taxiing process.
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8

Conclusions

It is easier to measure something
than to understand what you
have measured.

Anon.

8.1 Discussion

The central aim of this thesis is the support of ground movement operations of aircraft at air-

ports from an operations research, statistics and data mining point of view. Two different areas

were the focus of this research. On the one hand, algorithms were introduced and analysed for

better predicting taxi times of arrivals and departures and a routing and scheduling algorithm

is presented which needs very little execution time and facilitates stand holding. On the other

hand, this thesis makes a contribution to the understanding of airport operations. In particu-

larly, Chapters 4 and 5 identify the factors which are important for estimating taxi times and

which regression approaches can find the most accurate predictions. Chapter 7 tackles a new

research direction of understanding the trade-off between minimising taxi time and minimising

fuel consumption for airport ground movement. This research had a clear focus of being prac-

tical for use at an airport and for being able to be integrated with other approaches to finally

end up with a fully integrated decision support system for airside airport operations including
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gate assignment, stand holding, ground movement and runway sequencing.

The analysis is mainly based on European hub airports, but Appendix D shows that some of

the results can be similarly valid for other airports. Some parts of this thesis could be used

already by any airport at which they have access to historic data, especially to improve their

taxi time predictions. The routing and scheduling approach from Chapter 6 needs considerably

more IT infrastructure in place. We believe that such a system could be extended in such a

way that it does not only support controllers in the tower with suggesting routes, but that a

system in the cockpit of each aircraft could eventually act as an autopilot on the ground.

The following sections highlight the key results of this PhD thesis and disclose some future

research areas where we see potential.

8.2 Key Results

The key results are summarised here in the same order as the chapters within this thesis.

Ground movement can be supported. This thesis and research literature in general has

repeatedly demonstrated that prototypes of decision support system are able to solve the daily

operations which ground controllers are facing. In many instances, the results obtained can

decrease the total taxi time and reduce the carbon footprint.

Integration is the future. Ground movement decision support systems not only have to be

integrated with any collaborative decision making tool at an airport, but they should simul-

taneously optimise the integrated airside airport operations. In a first stage, such integration

contains links with the stand holding problem, the gate assignment problem and the runway

sequencing problem, so that all operations of an aircraft are considered between the landing

phase and the take-off phase. In a second stage, en-route optimisation should also be inte-

grated. Obviously, this starts to link the operations of various airports and greatly enlarges

the complexity of the problem. For this reason, the focus of this study was on fast solution

approaches, especially for the routing and scheduling algorithm, which can also deal with many

real-world constraints.

Other needs in the area. Section 2.7 highlighted some of the challenges which are considered
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in this thesis and some where we think it is important that further research should continue.

One area with increasing relevance is the consideration of environmental issues during all phases

of a flight, including taxiing on the ground. Benefits in this area are considered throughout the

entire thesis, but especially in Chapter 7. Furthermore, it is important that academic models

are dealing with the actual problems at an airport and not simplified scenarios. Therefore, any

approach has to be able to integrate all of the relevant constraints at an airport, to handle

uncertainty in an appropriate way, and to be robust in general.

Advanced taxi time prediction leads to improvements. Chapters 4 and 5 highlighted

the benefits of improving taxi time prediction. Analysis showed that Zurich Airport could

benefit greatly by applying more advanced models to predict taxi times, of the form which were

introduced within this research. Moreover, two different areas are suggested which could benefit

from such approaches. Firstly, many stakeholders at an airport need accurate predictions of

all the operations to better plan their tasks and improved taxi time prediction could help

them. Secondly, ground movement decision support systems need predictions for unimpeded

taxi times as such systems consider interaction between aircraft explicitly. In contrast to many

other publications, not only departures but also arrivals were included in the studies.

Better understanding of taxi times. Chapter 4 analysed which factors are significant

when predicting taxi times. The models were tested considerably on different airports. A key

requirement for improved taxi time prediction is the integration of the surface layout at an

airport. This was often neglected in other approaches and is especially relevant for European

airports where the runway queues are less dominant than at US airports. The important factors

turned out to be the total distance, the turning angle, the differentiation between arriving and

departing aircraft and the number of other aircraft on the ground. Moreover, the operational

mode (which runways were in use) can have an effect on the taxi times.

Better model for taxi time prediction. It is not only important to understand the signif-

icant factors for prediction taxi times, but it is also fundamental to analyse which regression

approach is best for doing so. Chapter 5 showed an extensive analysis of different regression

models and concluded that TSK fuzzy rule-based systems provided the best results for the

analysed airports.
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Routing and scheduling can be done within milliseconds. A graph-based decision

support system was introduced and tested which can route and schedule aircraft in a fraction

of a second. Even though the approach can add buffer times within the model to make the

schedule more robust, an instantaneous approach can deal with unexpected situations and is

also able to be used in a more complex integrated framework.

Solution time does not jeopardise a realistic setting. Even though the mentioned ap-

proach is very fast, it can handle realistic constraints. First of all, the routing and scheduling

approach utilises the information found from unimpeded taxi time prediction. Moreover, the

approach can incorporate different constraints and can be tailored to the circumstances of the

particular airport.

The swap-heuristic can improve the performance. By using a simple but effective heuris-

tic, the quality of the solution can be further improved with comparatively little additional com-

putational time. Very few changes in the initial sequence are needed. Hence, the communication

between controllers and pilots is kept to a minimum.

Massive expected savings. The results are very promising and show potential maximum

savings in total taxi time from using the introduced decision support system of about 30.3%,

compared to the actual performance at the tested airport.

Framework to analyse trade-off between taxi time and fuel consumption. It is

still an open question whether there is a trade-off between taxi time and fuel consumption

for the ground movement problem. Chapter 7 presented a sophisticated combination of two

algorithms to analyse this question. This new approach is able to tackle this hard problem in

a comparatively efficient way. Sensitivity analysis has highlighted that the potential trade-off

between the two objectives depends very much upon the actual modelling of the fuel-based

objective function, which appears not to be well understood at the moment.

8.3 Future Work

A consequence of research is that by answering challenging questions, new questions will arise.

The aim of this section is not to restate the individual future work sections of each chapter,
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but to focus upon an overall direction where we see potential for more research.

Extraordinary occurrences. An area which was less discussed within this thesis is how

to deal with extraordinary occurrences. Heavy wind and snow can affect the airside airport

operations a lot. Changes in wind can often result in the fact that the airport has to change

the operational mode. It is important that a decision support system enables such changes and

can resolve the operation in real-time. During weather conditions with colder temperatures

and snow, aircraft have to be de-iced. Obviously, this can affect the ground movement process,

since often there are remote de-icing stations, so the routing of an aircraft has to be adjusted

and the taxi time prediction has to be tuned to consider such operations.

Better understanding of fuel consumption. This thesis introduced a sophisticated frame-

work to analyse the trade-off between taxi time and fuel consumption. Nevertheless, more

knowledge about the fuel-based objective function is needed to conclusively answer the ques-

tion of whether there is trade-off between the two objective functions and to quantify any

trade-off.

Gate-waiting. Gate-waiting is the term used to describe the situation when an arriving aircraft

has to wait until a gate becomes available, e.g. when the gate is currently occupied or blocked

by another aircraft. Analysis suggested that this was not a major problem for the routing and

scheduling approach at the tested airport. However, this can be an issue at other airports and

it can be important to take this into account when modelling the operations of such an airport.

Runway crossing. As this thesis focuses upon the ground movement problem and is only

partly integrated with the runway sequencing problem, runways are assumed to be free for

crossing within this research. The routing and scheduling approach can be adjusted to also

consider the information about when a runway is free to cross, but the effects of this should be

further analysed in future work.

Integration. It was discussed many times within this thesis how important it is to integrate

different airside airport operations in a future step, such as ground movement, stand holding,

gate-waiting, gate assignment and runway sequencing for arrivals and departures. The presented

approaches have focused on the linking part of this integration - the ground movement problem.

As it was always intended to use these approaches later within an integrated model, it was
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important to develop flexible and fast algorithms. As such, we think that we have succeeded in

providing a solid basis for further integration within this area.

Improvements of algorithms. We are by no means stating that the presented algorithms

could not be further improved. We think that this thesis has presented significant new work

and that it has pushed the boundaries of the state-of-the-art in different areas related to ground

movement at airports. Moreover, it has tried to bridge the gap between the academic world

and the needs of industry. The study about the taxi time prediction especially can vary from

airport to airport and it is possible that other factors should be considered at other airports

and that the structure of the problem changes in such a way that the most suitable regression

approach will be different. In case of the framework for the trade-off analysis, the second stage

of the framework related to the detailed taxi trajectory could possibly be tailored to any new

fuel related objective functions.

Extension to more airports. We tried to generalise the findings by applying them to different

airports and we have been able to test some of the approaches at four different hub airports.

Regardless, other airports potentially have other bottlenecks in their systems and it could be

very interesting to apply similar approaches to other settings and to see whether they work or

what has to be adjusted to deal with the given airport setting.

Testing at airports and fine-tuning. This research tried to tackle problems which are

relevant to the air transportation sector and we hope that some of the ideas and concepts will

be used in operations. Discussions with experts from the field guided us to incorporate the

important constraints from the actual problems at an airport. Nevertheless, some issues can

only be identified by testing the concepts at an airport directly. Furthermore, a fine-tuning

phase would be needed to fully benefit from the presented approaches.
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Appendix

A Autoregressive AR(1) and AR(2) Models

Table A.1 shows additional results from Section 4.3.4.

Table A.1: Coefficients for Zurich Airport with and without autoregressive AR(1) and AR(2)
models ( φ was equal to 0.249 in the autoregressive AR(1) model and the φ values for the autore-
gressive AR(2) model were 0.221 and 0.105)

Without AR(1) model With AR(1) model With AR(2) model
Coefficient Std. Dev. Coefficient Std. Dev. Coefficient Std. Dev.

(Constant) -2.601 0.250 -2.529 0.237 -2.528 0.238
ARR 0.260 0.018 0.253 0.017 0.255 0.017
Distance -7e-05 2e-05 -5e-05 2e-05 -6e-05 2e-05
log10(Distance) 1.161 0.091 1.120 0.086 1.120 0.086
log10(Angle) -0.143 0.039 -0.133 0.037 -0.133 0.037
QDEP,#DEP -0.046 0.004 -0.049 0.004 -0.049 0.004
QDEP,#ARR -0.032 0.004 -0.034 0.004 -0.034 0.004
QARR,#DEP -0.067 0.006 -0.071 0.006 -0.069 0.006
QARR,#ARR -0.081 0.007 -0.087 0.007 -0.086 0.007
NDEP,#DEP 0.025 0.005 0.028 0.005 0.027 0.005
NDEP,#ARR 0.029 0.007 0.033 0.007 0.034 0.007
NARR,#DEP 0.019 0.004 0.020 0.004 0.019 0.004
NARR,#ARR 0.054 0.008 0.062 0.008 0.060 0.008
OMorning -0.075 0.019 -0.079 0.024 -0.080 0.026
OEvening 0.049 0.013 0.052 0.016 0.051 0.018
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A Autoregressive AR(1) and AR(2) Models

Table A.2: Coefficients for Stockholm-Arlanda Airport with and without autoregressive AR(1)
and AR(2) models (φ was equal to 0.242 in the autoregressive AR(1) model and the φ values for
the autoregressive AR(2) model were 0.205 and 0.146)

Without AR(1) model With AR(1) model With AR(2) model
Coefficient Std. Dev. Coefficient Std. Dev. Coefficient Std. Dev.

(Constant) -2.349 0.091 -2.420 0.088 -2.419 0.088
ARR 0.211 0.015 0.213 0.014 0.212 0.014
log10(Distance) 0.922 0.029 0.944 0.028 0.943 0.028
Distance2 -5e-05 8e-06 -5e-05 8e-06 -5e-05 8e-06
QDEP,#DEP -0.044 0.005 -0.045 0.005 -0.044 0.005
QDEP,#ARR -0.034 0.004 -0.033 0.004 -0.033 0.004
QARR,#DEP -0.052 0.006 -0.055 0.006 -0.054 0.005
QARR,#ARR -0.066 0.011 -0.069 0.010 -0.064 0.010
NDEP,#DEP 0.031 0.005 0.032 0.005 0.031 0.005
NDEP,#ARR 0.036 0.006 0.036 0.006 0.035 0.006
NARR,#DEP 0.029 0.004 0.030 0.004 0.028 0.004
NARR,#ARR 0.049 0.011 0.050 0.011 0.047 0.011
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B Multiple Linear Regression Models for Heathrow

B Multiple Linear Regression Models for Heathrow

Table B.1: Coefficients for London Heathrow Airport

Departure on 27R Departure on 27L Arrival on 27R Arrival on 27L
(Constant) -0.960 -0.966 -0.039 -0.383
log10(Distance) 0.943 0.976 0.771 0.885
QDEP,#DEP -0.018 -0.015 - -
QDEP,#ARR -0.008 -0.013 - -
QARR,#DEP - - -0.034 -0.038
QARR,#ARR - - -0.020 -0.018
NDEP,#DEP 0.009 0.004 - -
NDEP,#ARR 0.017 0.013 - -
NARR,#DEP - - 0.009 0.009
NARR,#ARR - - 0.015 0.012
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Figure C.1: Analysis of predicted taxi-out times at Stockholm-Arlanda Airport with the TSK
FRBS
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Figure C.2: Analysis of predicted taxi-in times at Zurich Airport with the TSK FRBS (daytime
operational mode with fixed average turning angle)

179



C Further Insights from Prediction Models

500 1000 1500 2000 2500 3000 3500 4000 4500

0

5

10

15

20
5

10

15

20

25

30

35

Distance [m]

Amount of Traffic

P
re

di
ct

ed
 T

ax
i T

im
e 

[m
in

]

Figure C.3: Analysis of predicted taxi-out times at Zurich Airport with the TSK FRBS (daytime
operational mode with fixed average turning angle)
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This appendix analyses some of the approaches from this PhD thesis, which were initially

focused on European hub airports, extending them to the setting of the world’s busiest airport

- Hartsfield-Jackson Atlanta International Airport (ATL). In particularly, this appendix shows

results for the application of the multiple linear regression approach from Chapter 4 to ATL

data and the analysis of Chapter 5 with different regression models.

With around 92 million passengers and around 924000 flights in 2011, ATL is ranked as the

busiest airport in the world measured by passengers and by the number of flights. The airport

is also the primary hub of Delta Air Lines. We had access to detailed high-fidelity aircraft

surveillance data from the 1st of May 2011 and 1948 aircraft movements were reported (993

arrivals and 955 departures). Hartsfield-Jackson Atlanta International Airport can operate

with 5 runways as indicated in Figure D.1. All runways are parallel and labelled as 8L/26R,

8R/26L, 9L/27R, 9R/27L and 10/28. All flights were landing or taking-off from west to east in

the utilised dataset, where the inner runways (runways 8R and 9L) were used for departures, the

outer runways (runways 8L and 9R) for arrivals and runway 10 for both, but with considerably

fewer movements.

The airport was modelled, as described in Chapter 3, with 200 gates, 739 nodes and 944 edges

and can be seen in Figure D.1.

Multiple linear regression was used to analyse the taxi times of aircraft. Unlike the analysis in

Chapter 4, no model was found which satisfied all of the needed statistical assumptions. The

best found model is presented in Table D.1 and results in an R2
Adj value of 0.888. This model

has as the dependent variable the taxi times of the aircraft (in minutes). Figure D.2 shows the

scatterplot for the linear fit of the regression model. These results are less meaningful than the

results presented in Chapter 4, since the normality assumption is not valid and also the residual

plots are showing abnormalities. Some of them can be seen in Figure D.2, where it is visible

that some observed taxi times are considerably larger than the predicted taxi times, but there

are no comparable observations with major underestimations.

Table D.1 shows the coefficients of the model as in Tables 4.1 and 4.2. All of the coefficients have
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Figure D.1: Layout of Hartsfield-Jackson Atlanta International Airport modelled as a graph
with vertices and edges
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a different algebraic sign compared to the other tables, since this table reports the coefficients

for the model related to taxi times and not the logarithmic transformation of the average taxi

speed. Again, all the Q and N values appear to be highly significant and the arrivals generally

have shorter taxi times than departures. The distance measure is less important, as was argued

in Chapter 4, and is a difference between North American and European airports. However,

the last column of Table D.1 should be handled with special care due to some violation of the

statistical assumptions.

Table D.1: Coefficients for Hartsfield-Jackson Atlanta International Airport, Sig. indicates if
the p-value is < 0.05 (*), < 0.01 (**) or < 0.001 (***)

Coefficient β̂i Std. Dev. Standardised Coefficient Sig.
(Constant) 6.927 0.201 ***
QDEP,#DEP 0.456 0.012 0.888 ***
QARR,#DEP 0.430 0.015 0.645 ***
QARR,#ARR 0.326 0.017 0.473 ***
QDEP,#ARR 0.232 0.012 0.401 ***
Distance 1E-04 6E-05 0.020 *
ARR -1.820 0.252 -0.152 ***
NARR,#ARR -0.129 0.016 -0.166 ***
NDEP,#ARR -0.171 0.014 -0.227 ***
NARR,#DEP -0.208 0.011 -0.329 ***
NDEP,#DEP -0.206 0.012 -0.360 ***
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Figure D.2: Scatterplot showing the linear fit of the regression model in Table D.1 for Hartsfield-
Jackson Atlanta International Airport

A second analysis was performed to predict taxi times at Hartsfield-Jackson Atlanta Interna-
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tional Airport and again highlights the benefits of using different regression approaches. The

procedure was identical to the predictions for Zurich Airport and Stockholm-Arlanda Airport.

The only differences to the settings from Chapter 5 are the utilised dataset, the explanatory

variables (as shown in Table D.1) and that the TSK FRBS used 6 rules instead of 4 (as for

Stockholm-Arlanda Airport) or 8 (as for Zurich Airport).

Figure D.3 shows a visual comparison of the 6 different regression approaches as was done in

Figure 5.6. Support vector regression performs badly and least median square regression seems

to have a bad performance for the underestimated taxi times. It is hard to visually identify

bigger differences from the best three approaches: M5 model trees, Mamdani FRBS and TSK

FRBS.
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Figure D.3: Taxi time prediction accuracy at Hartsfield-Jackson Atlanta International Airport

The comparison of the performance measures is shown in Table D.2 in the same way as was

done in Tables 5.2 and 5.3. The table clearly indicates that TSK FRBS with 6 rules leads

to the best performance measures. These results are based on 10-fold cross-validation with

15 repetitions. The corrected resample t-test suggested that the TSK FRBS was significantly
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better than least median square regression in all performance measures and was significantly

better than support vector regression in all performance measures apart from the ± 10 minutes

accuracy. Linear regression was outperformed by TSK FRBS in the ± 1, 2 and 3 minutes

accuracy, the mean-absolute error and the relative-absolute error. In addition, TSK FRBS was

significantly better than M5 model trees in relation to the ± 1 and 2 minutes accuracy and the

mean-absolute error, but was not able to statistically outperform the Mamdani FRBS in any

performance measure. Finally, it should be highlighted that the ± 1 minute accuracy can be

improved by 26% when using a TSK FRBS instead of the baseline experiment with the multiple

linear regression approach.

Table D.2: Comparisons of performance measures for Hartsfield-Jackson Atlanta International
Airport

Performance Measure LinReg LMS SMOreg M5P Mamdani TSK

Root mean-squared error 1.98 2.16 2.32 1.81 1.80 1.78

Mean-absolute error 1.46 1.44 1.56 1.29 1.26 1.23

Root relative-squared error 33.20 36.17 38.85 30.31 30.36 30.07

Relative-absolute error 32.69 32.32 34.93 28.88 28.39 27.58

Accuracy within ± 1 min 42.29% 48.02% 48.72% 50.08% 51.97% 53.35%

Accuracy within ± 2 min 75.78% 79.87% 74.06% 81.58% 82.55% 83.84%

Accuracy within ± 3 min 91.56% 90.49% 86.17% 93.39% 93.01% 93.47%

Accuracy within ± 5 min 97.99% 96.20% 95.35% 98.26% 98.15% 98.29%

Accuracy within ± 10 min 99.64% 99.48% 99.64% 99.74% 99.75% 99.80%
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